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Understanding the function of every protein is a goal of bioinformatics. Currently, a large 
amount of information (e.g., sequence, structure and dynamics) is being produced by 
experiments and predictions that are associated with protein function. Integrating these diverse 
data about protein sequence, structure, dynamics and other protein features allows further 
exploration and establishment of the relationships between protein sequence, structure, dynamics 
and function, and thereby controlling the function of target proteins. However, information 
integration in protein data resources faces challenges at technology level for interfacing 
heterogeneous data formats and standards and at application level for semantic interpretation of 
dissimilar data and queries.  
 
In this research, a semantic web services infrastructure, called Web Services for Protein data 
resources (WSP), for flexible and user-oriented integration of protein data resources, is proposed. 
This infrastructure includes a method for modeling protein web services, a service publication 
algorithm, an efficient service discovery (matching) algorithm, and an optimal service chaining 
algorithm. Rather than relying on syntactic matching, the matching algorithm discovers services 
based on their similarity to the requested service. Therefore, users can locate services that 
semantically match their data requirements even if they are syntactically distinctive. 
Furthermore, WSP supports a workflow-based approach for service integration. The chaining 
algorithm is used to select and chain services, based on the criteria of service accuracy and data 
interoperability. The algorithm generates a web services workflow which automatically 
integrates the results from individual services. 
 
A number of experiments are conducted to evaluate the performance of the matching algorithm. 
The results reveal that the algorithm can discover services with reasonable performance. Also, a 
composite service, which integrates protein dynamics and conservation, is experimented using 
the WSP infrastructure. 
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1. INTRODUCTION 

 

1.1. Introduction 

 

In the post-genomic era, understanding the function of every protein is viewed as a key step 

towards effective drug design and a major goal in bioinformatics. Protein function is a dynamic 

property closely related to conformational changes accessible to the protein structure under 

physiological conditions. Protein catalytic activity, binding and molecular recognition all involve 

protein motions (Sinha and Smith-Gill 2002). With the rapid accumulation of protein structures 

in the Protein Data Bank (PDB) (http://www.rcsb.org/pdb/; Berman et al., 2000), it is now 

widely recognized that efficient methods and tools for predicting dynamics are needed in order to 

better understand the function of target proteins. 

 

iGNM is a Web-based system for high throughput analysis and prediction of protein dynamics 

(http://ignm.ccbb.pitt.edu; Liu et. al, 2004; Yang et al., 2005). It is a joint project between the 

Department of Computational Biology, School of Medicine, and the Geoinformatics Laboratory, 

School of Information Sciences, at the University of Pittsburgh. As of August 2006, iGNM 

Version 1.2 provides protein dynamics information, i.e., conformational changes, for more than 

20,000 protein structures. Due to its efficiency and applicability to large structures and 

assemblies, iGNM is gaining attention of researchers in the scientific community. 
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Integrating iGNM with other protein data resources (see Section 2.4) allows for further 

exploration and establishment of the relationships between sequence, structure, dynamics and 

function, and thereby controlling the function of target proteins. This motivates the author to 

develop a convenient software environment for integrating various types of protein data, ranging 

from sequence-derived features (e.g., conservation) to structure-derived features (e.g., dynamics) 

and to biophysical features (e.g., hydrophobicity and enzyme active sites).  

 

Currently, many protein data resources are accessible to researchers through Web application 

interfaces, e.g., through a HTTP (Hypertext Transfer Protocol) form and a corresponding Java 

servlet. Users of these data resources are mainly biomedical researchers and developers. To 

integrate data through Web applications (current approach), users have to have prior knowledge 

about data resources and write scripts to parse HTML (Hyper Text Markup Language) code to 

exact data while ignoring explanatory text and graphics. This approach is labor intensive and 

fragile for minor changes in the HTML code of a given Web application may cause failure (Stein 

2002). Refer to Section 2.5 for details. 

 

Web services, on the other hand, offer an environment for flexible integration of various types of 

information, including data, programs, files and other Web resources (see Section 2.6). Web 

services represent underlying information using standard programmatic interfaces so that user 

applications can obtain explicit results without tedious HTML code parsing. Also, web services 

provide XML (eXtended Markup Language) based protocols and tools that facilitate the 

discovery and integration of Web resources developed in different platforms. Since Web services 
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simplify the information integration process, interest of applying Web services to biological 

research has grown in recent years (Stein 2002; Foster 2005; Gao et al., 2005). 

 

Current web services standards (see Section 2.6.1) allow user programs to discover services 

based on syntactic descriptions of services, e.g., WSDL (Web Services Description Language). 

However, service providers and users may have distinctive perspectives and knowledge about 

one service resulting in differing descriptions for the service. In this case, syntactic based 

matching, e.g., UDDI (Universal Description Discovery and Integration), will be unable to locate 

the service because there are no semantic operations. The term “semantic”, as defined by the 

Semantic Web community, refers to a machine’s ability to solve a problem without human 

direction by performing well-defined operations on existing well-defined data (W3C Semantic 

Web, 2006). The Semantic Web can provide the ability to tag all content on the web and give 

semantic meaning to the content item. The potential benefits are that search engines become 

more effective than they are now by providing the precise information users are looking for. 

 

To make Web services capable of handling semantic interoperation, the Semantic Web 

community has combined semantic markup languages and ontologies* with current web services 

standards. This has led to semantic web services, one type of web services that can express not 

only interfaces among services but also their capabilities (McIIraith et al., 2001; Paolucci, et al., 

2002). Since the semantics of web services are explicitly stated, services can be automatically 

discovered even if the services and the service requested are syntactically distinctive. 

 

                                                 
* An ontology is a “specification of a conceptualization” (Gruber 1993). In the computer science domain, ontology 
provides a commonly agreed understanding of domain knowledge for sharing across applications and organizations. 
Typically, ontology consists of a list of terms and the relationships between those terms. 
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Semantically annotated web services bring new paradigm shift of computing in scientific 

research where data are heterogeneous and distributed. This dissertation proposes a semantics-

based Web services infrastructure, called Web Services for Protein data resources (WSP), and 

how it can meet the requirements of optimal (automatic and accurate) integration of distributed 

protein data. In WSP, data resources (e.g., web databases, computational servers and tools) that 

provide protein data are modeled as reusable web services. Each service has a programmatic 

interface as well as a semantic description of its capabilities in terms of inputs, outputs and 

constraints. The semantic descriptions are published in a service registry and a semantic 

matchmaker is designed to perform semantic matching between services and requests. To 

facilitate protein data integration, a workflow-based chaining algorithm is designed to pipe 

together inputs and outputs of consecutive web services. Potential WSP users include protein 

data providers, bioinformatics researchers and developers. WSP allows users to conveniently 

publish, discover and assemble various types of protein data (both existing and yet to come) for 

their applications (e.g., predicting protein function from dynamics data). 

 

1.2. Contributions 

 

This research yields the following contributions: 

• An infrastructure for representing and correlating protein features at a higher semantic level. 

By exploiting the features of semantic-based web services, this infrastructure allows 

researchers to conveniently discover and assemble various types of protein data for their 

applications, e.g., determining the function or other features of proteins. 
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• Two biological web services that demonstrate the process of developing and using biological 

web services. The iGNM web service provides protein dynamics data for more than 20,000 

protein structures. The N-gram web service provides conservation profiles for more than 

50,000 protein sequences. 

• A semantic matchmaker service that allows service providers to publish the description of 

their services and allows users to submit requests and obtain semantically matched services. 

The matchmaker includes an efficient semantic service matching algorithm. 

• An optimal chaining algorithm that considers both accuracy and data interoperability 

between services. 

 

1.3. Organization 

 

This dissertation first describes research background and related work. Further, the WSP 

infrastructure for optimal data resource integration is presented. From this foundation the 

dissertation discusses the major components of the infrastructure, including protein web services, 

a semantic matchmaker and chaining of services. The outline of the chapters is as follows. 

 

Chapter 2: Background and Related Work. Covers the basics of proteins, the iGNM system 

and other protein data resources, traditional methods for data resource integration, web services 

and their applications in bioinformatics. 

 

Chapter 3: A Semantic Web Services Infrastructure for Protein Data Resource Integration. 

Discusses the methodologies and components of the WSP infrastructure.  
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Chapter 4: Modeling Protein Web Services. Details the design and development of protein 

web services. 

 

Chapter 5: Semantic Description of Web Services. Describes the role of ontologies and 

methods used to semantically describe protein web services’ capabilities. 

 

Chapter 6: Semantic Publication and Matching of Web Services. Describes the design of the 

WSP matchmaker, the service publication algorithm, and the service matching algorithm. 

 

Chapter 7: Chaining of Protein Web Services. Presents the methods and criteria used for 

chaining protein web services. 

 

Chapter 8: WSP Prototype. Discusses the implementation issues related to WSP components. 

 

Chapter 9: WSP Evaluation. Describes experiments performed to evaluate the service 

matching and integration processes. 

 

Chapter 10: Conclusion and Future Research. Summarizes the research and also presents 

topics for future work. 
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2. BACKGROUND AND RELATED WORK 
 

 

2.1. Introduction 

 

This chapter first presents the background knowledge about proteins, the iGNM data resource, 

and other protein data resources. Then it reviews the technologies used to integrate data 

resources, including traditional methods (e.g., data warehousing) and web services based 

methods. Finally, applications of web services in bioinformatics are discussed. 

 

2.2. Protein Sequence, Structure, Function and Dynamics 

 

Proteins are the most abundant macromolecules in living cells, constituting more than half of the 

dry weight of cells (Garrett and Grisham 1999). Proteins consist of amino acids. Figure 2-1(a) 

shows the basic structure of an amino acid, where the central alpha carbon (Cα) carries a 

carboxyl end (written as COOH), a hydrogen atom (H), an amino end (written as NH2), and a 

variable R group. R denotes any one of the 20 possible side chains found in the nature. Two 

amino acids connected to form a peptide through dehydration, see Figure 2-1(b), and a sequence 

of amino acids form a peptide chain. By convention, an amino acid in a peptide chain is also 

called a residue. 
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H – 

                   

H – H – 

 
 

Figure 2-1. (a) The basic structure of amino acid; (b) A peptide chain. 
 

Protein has multiple levels of structure, see Figure 2-2. The most basic level is the primary 

structure, which is simply the sequence of amino acids. The secondary structure refers to certain 

common repeating structures found in proteins such as alpha-helix and beta-pleated sheet. The 

tertiary structure is the full 3-dimensional folded structure of the polypeptide chain. The 

quaternary structure is the joining together of tertiary units, it is only present if there is more than 

one polypeptide chain. 

 

 

Figure 2-2. Protein multiple-level structures (Brown 2003) 
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While structural genomics attempts to crystallize or predict the structures of all protein in 

humans, functional genomics attempts to identify protein’s function or what it does. Protein 

function involves the binding of other molecules called ligands, which can be any kind of 

molecule, even other proteins. Ligands bind to the protein at a certain site called the binding site. 

The binding site is particular to the ligand with respect to shape and chemical properties (Gold 

and Jackson, 2006).  

 

Protein function is well illustrated by enzymes, a special type of proteins. Enzymes are 

biochemical catalysts that speed up chemical reactions that would occur too slowly for cells to 

function. The substrates fit into an enzyme’s active site. Enzymes do their job of catalysis by 

providing an optimal chemical environment for bond making or breaking steps. This is usually 

achieved by lowering the transition state energy during reaction (Griffiths et al. 2002). Figure 2-3 

illustrates the action of a hypothetical enzyme in putting two substrate molecules together, where 

“*” represents an active site. 

 

 

 

Figure 2-3. In the induced-fit model, binding of substrates induces a conformational change in the enzyme (Griffiths 

et al. 2002) 
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Protein function is a property closely related to the conformational mechanics of the structure in 

its physiological environment. Protein catalytic activity, folding, binding and molecular 

recognition all involve protein motions or conformational changes (Sinha and Smith-Gill 2002). 

The connection between structure and function presumably lies in dynamics, suggesting a 

paradigm shift in structural genomics studies from sequence-structure analysis to structure-

dynamics analysis, for gaining a more insightful understanding of sequence-structure-dynamics-

function relations (Yang et al., 2005).  

 

Proteins have uniquely defined native structures under physiological conditions. The motions of 

proteins near native state conditions are confined to a subset of conformations in the 

neighborhood of the folded state, e.g., the open and closed forms of enzymes. In addition, the 

equilibrium dynamics of proteins can be viewed as a collection of normal modes that lead to 

experimentally observed residue fluctuations. Fluctuations involve correlated motions of 

different structural elements, ranging from atoms, residues to large domains and subunits whose 

concerted movements underline biological function (Yang et al., 2005). 

 

2.3. iGNM Data Resource 

 

As dynamics gives insightful picture of the mechanism that dictates protein function, the 

collective effort to predict dynamics in a large database scale is relatively less than that for 

protein structure information. iGNM is a data resource that provides dynamics information for 

more than 20,000 protein structures. This section discusses the computational issues of protein 

dynamics, the Gaussian Network Model, and the iGNM system. 
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2.3.1. Computational Prediction of Protein Dynamics 

 

Experimental methods, such as X-ray crystallography, Nuclear Magnetic Resonance (NMR) and 

Hydrogen/Deuterium (H/D) exchange, reveal atomic level information on protein internal 

motions. For example, temperature factor or B-factor is used to measure the positional 

uncertainty associated with each atom in the thermal fluctuations. Due to experimental cost, a 

major endeavor in recent years has been devoted to developing computational models and 

methods for simulating protein dynamics using structural data and relating the observed behavior 

to other experimental data.  

 

Molecular Dynamics (MD) simulations have proven to be a useful approach for generating 

conformational trajectories of macromolecules in order to visualize the correlation of their 

dynamics to the biological functions (Brooks and Karplus 1983). However, MD simulations are 

expensive in terms of both CPU time and memory. An efficient method for identifying function-

related conformational changes is Normal Mode Analysis (NMA), a method widely used for 

characterizing molecular fluctuations near a given equilibrium sate using vibrational modes. The 

utility of NMA for protein dynamics has been recognized for the last 20 years (Brooks and 

Karplus 1983; Go et al., 1983) but has been revitalized in recent years with the success of elastic 

network models used in NMA. In these models, atoms or groups of atoms (e.g., residues or 

groups of residues) are modeled as point sites (network nodes) connected by springs, which 

account for the force field that stabilizes the native structure. The utility of these models in NMA 

was first pointed out by Tirion (Tirion, 1996). Given the insensitivity of the most cooperative 
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modes to the detailed structure, a large majority of recent analyses have been performed using 

lower resolution elastic network models. Among the elastic network models of different 

complexities, the simplest is the Gaussian Network Model (Bahar et al., 1997).  

 

2.3.2. Gaussian Network Model (GNM) 

 

GNM is entirely based on inter-residue contact topology in the folded state. GNM requires no a 

priori knowledge of empirical energy parameters, based on the original proposition of Tirion 

(Tirion, 1996), and most importantly it lends itself to a closed mathematical solution. An 

important feature of GNM is the possibility of dissecting the observed motion into a collection of 

modes. These modes usually provide information on the molecular mechanisms relevant to 

biological function (Tama and Sanejouand, 2001). Several studies (Jernigan and Bahar, 1998; 

Bahar et al., 1998; Jernigan and Bahar, 1999; Haliloglu and Bahar, 1999; Rader and Bahar, 

2004) have demonstrated the utility of GNM for understanding the machinery of proteins and 

their complexes.  
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                                 (a)                                                   (b)  

Figure 2-4. GNM graphic representation, where there is no distinction between nonbonded and bonded neighbors. 

(a) Chain of residues; (b) GNM interaction network of residues 

 

In GNM, the alpha carbon atoms of residues are identified as the junctions or nodes of the 

network, and the pairs of nodes closer than a cutoff distance are connected by harmonic 

potentials with a uniform spring constant γ (see Figure 2-4). In addition to nonbonded 

interactions, the effect of chain connectivity is also considered, as the model automatically 

includes the constraints imposed by the first neighboring alpha carbon atoms along the backbone. 

Thus, the residues fluctuate under the potentials of their near neighbors. The connectivity (or 

Kirchhoff) matrix of contacts, Γ, is used to describe the inter-residue contact topology. 
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Figure 2-5. An example illustrating residue connectivity 

 

The definition of Γ is given in Equation 2-1, where i and j are residue index, Rij is the distance 

between residue i and residue j, rc is the distance cutoff usually around 5 to 7 angstroms (Å), and 

is the number of coordination residues within the cutoff. The off diagonal elements of 

Γ are defined as Γ

∑Γik

ij = -1 if Rij is shorter than rc, and zero otherwise; and the ith diagonal terms is 

the degree of node i, or the coordination number of residue i.  
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Figure 2-5 shows an example of calculating Γ, where residue “3” is at the center of a cutoff 

sphere. The 3rd row of Γ, which is the connectivity between residue “3” and other residues is 

given in Equation 2-2. 

 

The statistical thermodynamics of the network are controlled by the Hamiltonian (Bahar et al., 

1998): 

 

 H = (γ/2) [ΔX Γ ΔXT + ΔY Γ ΔZT +ΔZ Γ ΔZT]  2-3 

 

where γ is the spring constant, ΔX, ΔY and ΔZ are the N-dimensional vectors of the X-, Y- and Z- 

components of the fluctuation vectors {ΔR1, ΔR2,  ..., ΔRN} of the N residues in the examined 

protein. The mean-square fluctuations of residue i scale with the ith diagonal element of the 

inverse of Γ (Bahar et al., 1997; Haliloglu et al., 1997), as  

 

 <(ΔRi)2> = (3kT/γ) [Γ-1]ii      2-4 

 

and the cross-correlations <ΔRi  ΔRj> scale with the ijth off-diagonal elements of Γ-1.   

 

The fluctuation dynamics of the structure results from N-1 superposed GNM modes. The modes 

can be extracted by the eigenvalue decomposition of Γ. The decomposition reads Γ = U Λ UT, 

where U is an orthogonal matrix whose columns ui (1 ≤ i ≤ N) are the eigenvectors of Γ, and Λ is 

the diagonal matrix of the eigenvalues λi, usually organized in ascending order. The ith 
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eigenvector reflects the shape of the ith mode as a function of residue index. The ith eigenvalue 

represents its frequency (Haliloglu et al., 1997). 

 

The eigenvalue decomposition of the connectivity matrix Γ is the most expensive task in GNM 

calculations from computational time point of view.  Singular value decomposition (SVD) 

method (Press et al., 1992) is usually used to this aim, the computing time of which scales with 

N3 for a network of N residues.  When N is less than 1,500, the computations are performed 

within minutes, while the CPU times increased up to 15 days in the case of the largest structures. 

 

An alternative decomposition algorithm that utilizes the BLZPACK software (Marques, 1995) is 

based on Block Lanczos Method for large structures. This method evaluates a subset (1 ≤ k ≤ 

100) of dominant (slowest) modes, within a time scale of N2, i.e. the computing times is more 

than 3 orders of magnitude shorter than the routine SVD, when structures of more than 103 

residues are analyzed.  

 

The theoretical temperature factor (BBi) predicted by GNM is proportional to the inverse 

Kirchhoff matrix and also to the summation of all modes as  
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2.3.3. Internet Accessible GNM (iGNM) 

 

The accumulating evidence that supports the utility of GNM as an efficient tool for protein 

dynamics has led to the construction of iGNM, a database of GNM results compiled for more 

than 20,000 protein structures ranging from small enzymes to large complexes and assemblies. 

iGNM is based on a client-server architecture for query and visualization of protein dynamics 

(see Figure 2-6). The client is based on standard Web browsers, where the servers include the 

iGNM database server and the PDB server. Also, there is an additional online calculation server, 

called oGNM, for online calculation of PDB structures that are not deposited in the iGNM 

database server (Yang et al., 2006). 
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Figure 2-6. iGNM architecture: database server + online calculation server 
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iGNM Database Server 

 

The goal of the database server is to provide information on the dynamics of all proteins beyond 

those experimentally provided by B-factors (for X-ray structures), root-mean-square fluctuations 

(NMR structures), or by interpolation between existing PDB structures. Currently, the iGNM 

database contains visual and quantitative information on the collective modes predicted by GNM 

for 20,058 structures deposited in PDB prior to September 15, 2003. 

 

There are five major database entities (tables) in the database server: (1) the GNM entity that 

stores both structural and dynamics information for each protein structure; (2) the B-factors 

entity that stores equilibrium fluctuations for each residue of a protein structure; (3) the Slow-

modes entity that stores the slowest (lowest frequency) modes; (4) the Fast-modes entity that 

stores the fastest (highest frequency) modes; and (5) the Crosscorr entity that stores the 

correlation of fluctuations between different residues. The GNM entity has a one-to-one 

relationship with the rest of the entities. Table 2-1 shows the iGNM database schema. 

 

Table 2-1. iGNM Database schema 

Entity Name Attributes 

GNM PDBID, protein name, protein class, structure, description, B-factors, Slow-
modes, Fast-modes, CrossCorr 

B-factors PDBID, Residue index, theoretical B-factor, experimental B-factor 

Slow-modes PDBID, Residue index, 1st slow mode, 2nd slow mode, …, 10th slow mode 

Fast-modes PDBID, Residue index, 1st fast mode, 2nd fast mode, …, 10th fast mode 

Crosscorr PDBID, Residue index1, Residue index 2, correlation 
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The GNM entity contains 9 attributes (see Table 2-1). The first one is the PDBID, which is a key 

to a protein record. Attributes such as protein name, protein class, structure and descriptions are 

the PDB objects, while attributes such as B-factors, Slow-modes, Fast-modes and Crosscorr are 

iGNM objects. 

 

The B-factors entity contains three attributes: the residue index, the GNM calculated theoretical 

B-factors, and the X-ray crystallographic B-factors taken from PDB.  

 

The Slow-modes entity contains eleven attributes. The first one refers to residue index. 

Attributes 2-11 are slow mode shapes associated with the 10 slowest modes, starting from the 

slowest (first) mode. Figure 2-7 shows a data instance example of the Slow-modes entity. 

 

There are also 11 attributes in the Fast-modes entity. The first one refers to residue index. 

Attributes 2-11 are fast mode shapes associated with the 10 fastest modes, starting from the 

highest mode. Since the last modes reflect localized fast motions in the protein, these modes 

have few non-zero elements. 

 

The Crosscorr entity contains three attributes. The first two are the residue indices and the last 

one is the correlation value. 
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Residue 
index 

Residue 
Name 

1st slowest 
mode 

2nd slowest 
mode 

3rd slowest 
mode ... 

0 MET 0.00632 0.01597 0.00061  

1 VAL 0.00511 0.02603 0.00276  

2 LEU 0.0038 0.02323 0.00279  

3 SER 0.00327 0.02429 0.00328  

4 GLU 0.00277 0.02328 0.00325  

5 GLY 0.00243 0.02234 0.00292  

6 GLU 0.00249 0.02053 0.00193  

7 TRP 0.00204 0.01651 0.00339  

8 GLN 0.00165 0.01939 0.00257  

9 LEU 0.00152 0.01733 0.00114  
 

Figure 2-7. Data instance example of entity Slow-modes 

 

The design of the iGNM database is customized based on GNM output files. The database has 

one instance of the GNM table schema for each protein in PDB. The attributes that are iGNM 

objects (e.g., B-factors) are linked through PDB ID to each corresponding table. As the database 

schema shows, there is only one-to-one relationship between the GNM table and other tables. 

Since there are no complicated join operations between the tables, each GNM instance is 

implemented as a folder and the object attributes (e.g., B-factors, Slow-modes) associated with 

the instance are stored as text files. 

 

iGNM allows users to retrieve information through a simple search engine by entering the PDB 

identifier of the protein structure of interest. For example, “2hmg” is the PDB code for influenza 

virus hemagglutinin A (HA). The output includes: (1) the equilibrium fluctuations of residues 

and comparison with X-ray crystallographic B-factors; (2) the sizes for residue motions in 

different collective modes; (3) the cross-correlations between residue fluctuations, or domain 

motions in the collective modes; and (4) the identity of residues that assume a key mechanical 
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role (e.g., hinge) in the global dynamics, and thereby function, of the molecule, as well as those 

potentially participating in folding nuclei/cores (Bahar et al., 1998; Rader and Bahar, 2004).  

 

After a protein structure is retrieved, the fluctuations of each residue are displayed in both 2D 

mobility graph and 3D ribbon diagram. iGNM allows the visual query of each residue’s 

fluctuation by either interactively clicking a residue’s position in the 2D graph or using 

embedded menus to select residues with desired features in the 3D diagrams. 

 

In addition to queries using PDB IDs, iGNM is integrated with the PDB SearchLite query 

interface for keyword-based queries (Liu et. al, 2004). By typing keywords related to the 

biological macromolecules of interest, users can browse PDB records and iGNM output files for 

a given protein family in an integrated environment (see Figure 2-8). The PDB linkage and the 

GNM linkage are inserted into each retrieved record for convenient access to both 

conformational and dynamic information. The retrieved records can be sorted alphabetically 

according to PDB ID and Title, as well as numerically according to protein resolution. 
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Figure 2-8. iGNM-PDB integration snapshot: the results using ‘phospholipase’ as keyword are shown. The GNM information 

for all the retrieved structures is tabulated in the right column 

 

oGNM Online Calculation Server 

 

When the user performs a search for a PDB structure, the iGNM database is checked first for that 

structure’s GNM results. If the structure’s results are not found, an interface to the oGNM online 

calculation server is automatically provided.  

 

oGNM takes as input a 4-digit PDB ID from the user’s browser. It then retrieves the 

corresponding structure from PDB and performs online calculation. Once the calculation is 

complete the results are delivered to the visualization engine for visual presentation to the user 

(see Figure 2-6). 
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2.4. Other Protein Data Resources 

 

2.4.1. Protein Structure Data Resources 

 

PDB (Berman et. al, 2000) is the single international repository for the distribution of 3D 

macromolecular structure data primarily determined by X-ray crystallography and Nuclear 

Magnetic Resonance.  

 

Based on PDB, there are many specialized structure databases for various purposes. For 

examples, the SCOP (Structural Classification of Proteins) database (Conte et al., 2000) provides 

information on close relatives of a given protein using keywords and homology searches; the 

CATH (Class, Architecture, Topology, and Homologous superfamily) database (Pearl et al., 

2001) provides a hierarchical classification of protein domain structures at four levels: class, 

architecture, topology and homologous super-family; MMDB (Molecular Modeling Database) 

(Chen et. al, 2003) provides graphical summaries of the biological annotation available for each 

structure, based on automated comparative analysis.  

 

2.4.2. Protein Dynamics Data Resources 

 

In addition to iGNM (see Section 2.3), there are several other online data resources on protein 

dynamics, including MolMovDB (Echols et al., 2003), ElNémo (Suhre and Sanejouand, 2004), 

ProMode (Wako et al., 2004), MoViES (Cao et al., 2004), Dynamite (Barrett and Noble, 2005), 

and WEBnm (Hollup et al., 2005). 
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Table 2-2. Sample data resources on protein structural dynamics 

System 
Name Brief Description Components Model Num. of 

Structures 

MolMovDB 
(USA) 

Presenting conformational 
changes using motion 
trajectories 

Database;  
Calculation 
server 

Interpolation between known 
Conformations 4400 

ElNémo 
(France) 

Presenting up to 100 slowest 
modes of studied structures 

Calculation 
server Simplified NMA No database 

available 

ProMode 
(Japan) 

Presenting collective 
motions for 20 slowest 
modes 

Database All-atom NMA 1,442 

iGNM 
(USA) 

Presenting collective 
motions for 20 slowest 
modes and 20 fastest modes 

Database;  
Calculation 
server 

GNM 22,549 

 

Table 2-2 shows features of some sample data resources. As can be seen, theses data resources 

are based on different methods and contain differing information about protein dynamics. For 

examples: MolMovDB contains protein motions (also referred to as “morphs”) generated by 

interpolation between two known conformations (structures); ElNémo uses a simplified NMA 

model at the residue level; ProMode uses all-atom NMA and determines the motions in the space 

of dihedral angles, as opposed to Cartesian coordinates used in all other resources; iGNM uses 

GNM, which is also at the residue level, but yields N-1 normal modes’ amplitudes, and not 3N-6 

node vectors conventionally obtained by NMA.  

 

These data resources have different components for providing dynamics. For examples: 

MolMovDB and iGNM have both database and online calculation server; ProMode contains a 

database; ElNémo only provides online calculation. In addition, these data resources have 

differing data coverage. Due to its simplicity and efficiency, the iGNM database contains the 

results for a significantly larger number of protein structures compared to other databases.  
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2.4.3. Protein Sequence Data Resources 

 

Protein sequence data resources contain sequence information without detailed 3D structure 

information. For examples: SwissProt/Trembl (Bairoch et al., 2005) is a database that contains 

more than 2 million protein sequences; Pfam (Finn et al., 2006) is a database of multiple 

alignments of protein domains or conservation residue regions. Pfam consists of two sets of 

protein families: Pfam-A families are based on multiple alignments whereas Pfam-B is an 

automatic clustering of the SwissProt/Tremble. 

 

Protein sequences that belong to the same family have conserved regions. Conservation profiles 

are a measure of the shared patterns that remain. The conserved regions revealed in profiles are 

useful for identifying sites that are important for structure and function (Valdar and Thornton, 

2001). Traditionally they have been constructed from multiple alignments (MSA) using scoring 

matrices and weighted averages (Valdar and Thornton, 2001). This approach has been effective, 

but it also requires a chain of assumptions that may not be valid in all cases. There are many 

ways to generate scoring matrices and these matrices vary in their sensitivity to remote homologs 

(Johnson and Overington, 1993). Many proteins contain multiple domains or overlapping and/or 

nested domains that strongly influence alignment (Raghava et al., 2003). Sequences for multiple 

alignments often require preprocessing to eliminate low complexity regions (Wootton and 

Federhen, 1996). 

 

A new algorithm based on n-gram patterns has been developed that avoids the assumptions 

associated with the MSA approach (Vries et al., 2006a). Due to the advantage of this algorithm, 
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it has been used to generate conservation profiles for more than 50,000 protein sequences (see 

Section 4.6 for more details). 

 

2.5. Traditional Methods for Data Resource Integration 

 

Currently, many bioinformatics resources (e.g., PDB and iGNM) are accessible to researchers 

through web application interfaces, e.g., through a HTTP form and a server-side processing 

script. There are three main ways to integrate data via web applications: data warehousing, data 

wrapping, and link-based integration (Stein 2003).  

 

2.5.1. Data Warehousing 

 

Data warehousing method brings all the data from different databases into a single database. 

There are two steps to construct a data warehouse: the first step is to develop a unified data 

model that can accommodate all the information contained in various data resources; the second 

step is to write a set of scripts to fetch the data from the source databases, transform them to the 

unified data model and then load them into the warehouse. The warehouse serves as a centralized 

database for answering any of the queries that source databases can handle, as well as cross-

database queries that the individual databases cannot handle.  

 

The major limitation of the data warehousing approach is that the warehouse is fragile to source 

database changes. New information is being continuously added to the source databases, which 

means that new data must be incorporated into the warehouse or the warehouse will be out of 
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date. Also, source databases may continuously be modified by adding new data types, changing 

fields and the relationships between data types. This means that scripts written for one version of 

a database may no longer work with a later version. For example, the Integrated Genome 

Database (IGD) project attempted to combine human sequencing data with the multiple genetic 

and physical maps using data warehousing approach (Ritter et al., 1994). On average, each of the 

source databases changed its data model twice a year, the IGD data import scripts often broke 

down and had to be rewritten. Because software maintenance became unmanageable, the IGD 

project eventually terminated (Stein 2003). 

 

2.5.2. Data Wrapping 

 

Most online biological databases provide HTTP user interfaces and underlying datasets using 

different data formats and access methods. To integrate these databases, the data wrapping 

method leaves the information in its source databases, but builds an environment or view on top 

of the databases that makes them seem to be part of a logic unit. To this end, the database 

community has developed various cross-database query languages. For example, Kleisli and K2 

languages can analyze a given query to discover which databases need to be accessed to satisfy 

the request, and generates a set of subqueries to fetch data (Davidson et al., 2001). Despite the 

appeal of this approach, the data wrapping approach introduces the complexity of writing and 

maintaining the database drivers or wrappers. Therefore, languages such as K2 have not been 

widely adopted by the bioinformatics community (Stein 2003). 
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2.5.3. Link-Based Integration 

 

Link-based integration often begins query with one data resource, and then creates hypertext 

links to related information in other data resources. In this approach, data resources either 

cooperate to create dependable linking rules or links to external databases can be manually 

inserted. The sequence retrieval system (SRS) is an example of link-based integration for 

biological databases. SRS is more sophisticated than general web-based search tools (e.g., 

Google) because it allows users to explicitly relate a field in one database to a differently named 

field in another database (Zdobnov et al., 2002).  However, link-based integration is problematic 

because it is vulnerable to naming ambiguities. For example, a user might interpret the name of 

links differently than the developer and wander into the wrong page. Also, links to external 

databases may fail if external databases no longer function. 

 

2.6. Web Services and Data Resource Integration 

 

Traditional web application-based methods (e.g., data warehousing) are tightly-coupled with data 

resources. Users need to have prior knowledge about data resources and write scripts to parse 

HTML code to extract data while ignoring explanatory text and graphics. This tightly-coupled 

approach is labor intensive and fragile for minor changes in the HTML code of a given web 

application may cause failure (Stein 2002). In addition, most methods only focus on the data 

integration aspect without providing means to integrate computational and visualization tools 

such as molecule search engines (e.g., PDB) and homology search tools (e.g., BLAST) (Lacroix 

et al., 2003). 
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Web services, on the other hand, offer a loosely-coupled environment for dynamic integration of 

various data resources and software components (see Table 2-3). Web services provide XML-

based programmatic interfaces and communication protocols for user applications to obtain 

explicit results without tedious HTML code parsing. Also, web services provide protocols and 

tools that facilitate the discovery and aggregation of data resources. This section reviews current 

web services technologies and web services-based methods for data resource integration. 

 

Table 2-3. Web Applications vs Web Services 

 Web Applications Web Services 
     

User-to-program interaction Program-to-program interaction 
Workflow is determined by developer Application determines workflow 
Static integration of components Possibility of dynamic integration of components D

es
ig

n 

Monolithic service Possibility of service aggregation 
Existing web applications are based on either a 
specific platform 

Doesn't assume any specific platform or 
programming paradigm 

HTML is the primary data format  XML is the foundational enabling technology 

D
ev

el
op

er
 

Application is more difficult to maintain Maintenance of services is easier 
Application is described in graphic user interface 
(GUI) 

Individual services are self describing via 
programmatic interfaces 

U
se

r 

GUI is important GUI may not be necessary 

 

 

2.6.1. Web Services and Service-Oriented Architecture 

 

The term “Web services”, as defined by the World Wide Web Consortium (W3C) 

(http://www.w3.org/), refers to “programmatic interfaces” used for Web application to 

application communication. Web services represent an emerging distributed computing paradigm 

that differs from other approaches such as Common Object Request Broker Architecture 
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(CORBA), Remote Procedure Call (RPC) and Java Remote Method Invocation (RMI) in that it 

emphasizes Internet-based standards to address heterogeneous distributed computing (Foster et 

al., 2002). The aim of Web Services is to exploit XML technology and the Web by integrating 

applications that can be published, located and invoked over the Web. An example of Web 

services for biology is myGrid which is a middleware for in-silico experiments (Lord et al., 

2004). It contains a number of Web services, such as XEMBL service which displays data from 

the EMBL (European Molecular Biology Laboratory) Nucleotide Sequence Databank in XML 

formats (http://www.ebi.ac.uk/xembl/). 

 

Service-Oriented Architecture 

 

Web services interact with each other and user applications using the Service-Oriented 

Architecture (SOA). There are three entities in any SOA (see Figure 2-9): service providers, 

service requestors, and service registry. A service provider is responsible for generating a service 

description, publishing that description to one or more service registries, and responding 

invocation messages from service requestors. A service registry acts as a central location for 

registering all services. A service requestor is a customer of a Web service that can be either a 

human or a software agent. The requestor checks for a service description in a service registry 

and then binds to the Web service if found. The responsibility of a service registry is receiving 

service descriptions from service providers and matching them with requestors’ service requests. 
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Figure 2-9. Service-Oriented Architecture 

 

Several technologies are involved in enabling interactions within the web services architecture, 

including SOAP (Simple Object Access Protocol) (W3C SOAP, 2001), WSDL (Web Service 

Description Language) (Christensen et al., 2001), and UDDI (Universal Description, Discovery 

and Integration) (UDDI, 2000). A stack diagram of these component technologies is illustrated in 

Figure 2-10. 

 

The lowest layer in the stack diagram is the communications layer which includes standard 

Internet protocols such as HTTP. The layer above the communication level is the messages layer, 

representing how a message is exchanged between providers and requestors. SOAP is the 

framework for functionality in this layer. The description layer is for creating a common 

understanding of message structure and data types for both service providers and requestors. 

WSDL is currently used to describe the invocation syntax of Web services. The processing layer 

contains high-level tools used for service discovery and composition. UDDI is one of the 
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techniques which could be used in this layer. In addition, composition languages and standards, 

such as WSFL (Web Services Flow Language) and BPEL4WS (Business Process Execution 

Langue for Web Services), are also used in this layer for representing workflows. The details of 

WSDL, SOAP, UDDI and BPEL4WS are discussed below. 

 

 

Figure 2-10. Technology stack diagram for Web services (Booth et al., 2003) 

 

Web Services Standards 

 

• WSDL 

WSDL is an XML-based standard for describing application services that use a standard 

messaging layer such as SOAP. A WSDL description is a collection of ports for providing 

operations. In WSDL, abstract definitions of data for exchange are called messages, and abstract 

collections of operations are called port types. The protocol and data format specifications for a 

particular port type form a reusable binding.  
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  <?xml version="1.0" encoding="UTF-8" ?>  
  <definitions name="Blast"> 
 
    <message name="searchSimple1In"> 
      <part name="program" type="xsd:string" />  
      <part name="database" type="xsd:string" />  
      <part name="query" type="xsd:string" />  
    </message> 
    <message name="searchSimple1Out"> 
      <part name="Result" type="xsd:string" />  
    </message> 
 
    <portType name="Blast"> 
      <operation name="searchSimple" parameterOrder="program database query"> 
        <documentation>Execute Blast</documentation>  
        <input name="searchSimple1In" message="tns:searchSimple1In" />  
        <output name="searchSimple1Out" message="tns:searchSimple1Out" />  
      </operation> 
    </portType> 
 
    <binding name="Blast" type="tns:Blast"> 
      <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />  
      <operation name="searchSimple"> 
        <soap:operation soapAction="searchSimple" style="rpc" />  
        <input name="searchSimple1In"> 
          <soap:body use="encoded" namespace="http://tempuri.org/Blast"  
                encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />  
        </input> 
        <output name="searchSimple1Out"> 
          <soap:body use="encoded" namespace=http://tempuri.org/Blast 
                encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />  
        </output> 
      </operation> 
    </binding> 
 
    <service name="Blast"> 
      <port name="Blast" binding="tns:Blast"> 
        <soap:address location="http://xml.nig.ac.jp/xddbj/Blast" />  
      </port> 
    </service> 
 
  </definitions> 
 

 
Figure 2-11. Sample BLAST WSDL description, adapted from http://xml.nig.ac.jp/wsdl/Blast.wsdl, which is 

provided by XML Central of DNA Data Bank of Japan (DDBJ). 

 

Figure 2-11 shows a sample WSDL description for Basic Local Alignment Search Tool 

(BLAST) (Altschul et al., 1990; Altschul et al., 1997), which is the tool most frequently used for 

calculating biological sequence similarity. In the WSDL description, the port type contains an 

operation (Java class method) called “searchSimple”, the input message “searchSimpleIn” 

contains three parameters called “program”, “database” and “query”, the output message 
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“searchSimpleOut” contains one parameter called “Result”, and the binding uses SOAP 

messages on top of the HTTP protocol. 

 

• SOAP 

SOAP is an XML-based protocol for exchanging information in a distributed environment using 

typed message and remote invocation. SOAP supports a framework for describing what is in a 

message and how to process it, and there is a set of rules for encoding instances of data types. 

This protocol is specific mostly to Web services over HTTP. A Web service could interact with 

remote machines through HTTP’s post and get methods, but SOAP is more robust and flexible. 

 

A SOAP message is an XML document that consists of a mandatory SOAP envelope, an 

optional SOAP header, and a mandatory SOAP body. The SOAP envelope defines an overall 

framework for expressing what the message contains, who should deal with it and whether it is 

optional or mandatory. The SOAP encoding rules define a serialization mechanism that can be 

used to exchange instances of application-defined data types. The SOAP RPC representation 

refines a convention that can be used to represent remote procedure calls and response. 

 

• UDDI 

UDDI is a set of services that support the description and discovery of web services. It is the 

technical interface, or “yellow page”, to access available services. UDDI contains four core 

elements:  
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(1) Service provider (business) information. Service provider information is described using 

the “BusinessEntity” element representing a physical organization. It contains information, 

such as name, description and contacts, about the organization. 

(2) Service information. Service information is described using the “BusinessService” 

element, which groups together a set of services provided by an organization.  

(3) Binding information. Binding information is described using the “BindingTemplate” 

element, which contains information relevant for application programs that need to connect 

to and then communicate with a remote Web service. The instructions can be in the form 

of WSDL or a text-based document. 

(4) Service specification. Specification for services is described using the “tModel” element, 

which supports the registration of attributes of services. In general tModels have two 

functions: tagging the type of service advertised and providing abstract keys to be 

associated with a service specific value. For example, in myGrid service registry, the 

myGrid ontology is represented as a tModel (myGrid, 2002). 

 

 

Figure 2-12. WSDL to UDDI mapping (Brittenham et al., 2001) 
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WSDL descriptions are published in UDDI through WSDL-UDDI mapping (see Figure 2-12). 

For example, each service element in a service implementation document is used to publish a 

UDDI “BusinessService”, and a service interface is published as a tModel in a UDDI registry 

(Brittenham et al., 2001).  

 

Workflow 

 

Workflows are representation of structured activities or processes (Singh and Vouk, 1996). A 

biological process typically involves the invocation of a series of activities that are invoked in a 

routine manner. In workflow management, output from one task is fed as input to the next task 

with additional parameters, if necessary. The intermediate results are checked for consistency 

and validated to ensure that the computation as a whole remains on track.  

 

A workflow task must be explicitly represented (e.g., as Web services) to enable effective 

intervention. In the Web services architecture, executable processes are used to execute 

workflows by referencing port types contained in WSDL documents. There are several 

languages for specification of executable processes. Examples are WSFL (Web Services Flow 

Language) which provides a process model to glue WSDL services together and specify the 

order in which operations execute (Staab et al., 2003; Foster et al., 2002) and BPEL4WS 

(Business Process Execution Langue for Web Services) which enables specification of 

executable processes (composed of Web services) in terms of execution logic or control flow 

(Mandell and McIlraith, 2003).  
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2.6.2. Semantic Web Services 

 

The Semantic Web, coined by Berners-Lee (1998), provides a common interoperable framework 

in which information is given a well-defined meaning such that data and applications can be 

understood and reasoned by machines for more accurate and automatic discovery and integration 

of information resources across organizational boundaries (Berners-Lee, 1998). To make Web 

services capable of handling semantic interoperation, the semantic Web community has 

combined semantic markup languages grounded in Description Logics with current Web service 

standards. This has led to semantic Web services, one type of Web services that can express not 

only interfaces among services but also their capabilities (i.e., inputs, outputs, preconditions and 

effects) using ontologies (McIIraith et al., 2001; Paolucci, et al., 2002). 

 

Ontologies describe concepts and their relationships for a domain (Gruber, 1995). Several 

ontology languages have been developed for describing ontolgoies. For example, OWL (Web 

Ontology Language) (W3C OWL, 2004) is a Web ontology language that is widely used to 

formally describe various types of concepts and relationships. Based on OWL, OWL-S (OWL-

based Web Service Ontology) (W3C OWL-S, 2004) is a set of interrelated OWL ontologies that 

provide a set of well-defined terms for describing Web services (see Section 2.5.1). By having 

service descriptions and requests refer to the same ontological concepts, semantic matching 

algorithms can be designed to reason about similarities between services and requests in an 

unambiguous and machine-interpretable form (Paolucci et al., 2002). Thus services that provide 
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solutions to a request can be automatically discovered even if the services and the service 

requested are syntactically distinctive. 

 

A typical semantic Web services architecture contains five major components: (1) service 

interfaces using some form of programmatic access; (2) semantic descriptions about service 

capabilities; (3) a domain ontology which provides terms or key concepts used with semantic 

descriptions of Web services; (4) a registry service that advertises the availability of services and 

searches over the semantic descriptions made available to it; and (5) messaging that enables 

service requestors to treat data from different service providers in a uniform fashion (Lord et al., 

2004).  

 

OWL-S Framework 

 

The most prominent semantic Web services framework is OWL-S. OWL-S is an OWL-based 

upper ontology that describes three key aspects of a service: “service profile” which states 

abstract description of service capabilities; “service model/process” which states how requestors 

interact with services; and “service grounding” which states actual messages that are exchanged 

among services (see Figure 2-13) (Paolucci et al., 2002). OWL-S supports semantic 

representation of services through its tight connection with OWL. OWL supports subsumption 

reasoning on taxonomies of concepts. It also facilitates relations definition between concepts.  
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Figure 2-13. OWL-S upper ontology 

 

2.6.3. Web Services Based Methods for Data Resource Integration 

 

Several methods have been proposed to enable automatic or semi-automatic integration or 

composition of web services. These methods usually fall in the realm of workflow composition 

or AI planning (Rao and Su, 2004), see Figure 2-14. 
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Figure 2-14. Hierarchy of information integration problems 
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The goal of workflow composition is to create a composite service which is a set of atomic 

services together with the control and data flow among the services. For the workflow based 

methods, the workflow can be generated either statically or dynamically. In the static workflow 

category, users have to manually create an abstract process model, while the selection and 

binding of services is done automatically. In the dynamic workflow category, both the abstract 

process model and the section and binding of services are done automatically.  

 

The AI planning based methods usually assume relevant service descriptions are already loaded 

into the reasoning engine. Traditional AI planning techniques such as theorem proving 

(McIlraith and Son, 2002; Ponnekanti and Fox, 2002) and hierarchical task planning (Wu et al., 

2003) are applied to derive the final composition descriptions.  

 

Workflow composition requires service discovery or searching all services to find most relevant 

services for workflow tasks. The major issue is that when the number of all the services is large, 

the discovery process may not be efficient (Constantinescu et al., 2004). AI planning does not 

require service discovery. However, it requires users to have prior knowledge about all the 

services, which may not be feasible. 

 

As discussed in Sections 2.6.1 and 2.6.2, several initiatives have been conducted to provide 

platforms and languages that will allow web services based integration. In particular, WSDL, 

OWL-S, UDDI, and SOAP define standards ways for service discovery, description and 

invocation; BPEL4WS and OWL-S service model provide means for representing web service 

integrations or compositions.  
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Despite all these efforts, web service composition still is a complex task. First, the number of 

available services has increased dramatically in the recent years. Finding suitable services that 

provide a solution to the problem at hand becomes more complex than ever. Second, services can 

be created and updated on the fly. The composition system needs to detect the updating at 

runtime and the decision should be based on up-to-date information. Third, services are 

developed by different organizations, which use different concept models to describe services; 

and different data schema for service parameters (Rao and Su, 2004). 

 

2.7. Web Services in Bioinformatics 

 

Recently, interest in applying Web services and semantic Web technologies to bioinformatics 

has grown (see Table 2-4 for example projects). For example, PDB is currently in the early 

implementation stage of providing Web services that will allow users to use XML and SOAP to 

perform queries and retrieve results programmatically from the PDB Beta Web site (Deshpande 

et al., 2005); BSML (Bioinformatics Sequence Markup Language (http://www.bsml.org/) is an 

XML that encodes biological sequence information and includes graphic representations of 

sequences, genes, electrophoresis gels, and multiple alignments (Spitzner, J.); SBML (Systems 

Biology markup language) is a language for representing biochemical reaction networks serving 

as a standard exchange format for computational models of biochemical networks (Hucka et al., 

2003); BioSimGrid is a project for archiving and analyzing MD trajectories and making them 

accessible to the biological community (Tai et al., 2004); the myGrid (Lord et al., 2004) project 

aims to provide high-level middleware to support personalized in-silico bio experiments using 
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semantic Web services technologies, namely WSDL and UDDI; the MOBY services (Lord et al., 

2004) use user created and centrally stored Gene Ontology (GO) style ontologies for semantic 

descriptions; the Semantic-MOBY (Lord et al., 2004) services use semantic Web technology to 

improve automation; the N-Glycosylation Process (NGP) project (Sahoo et al., 2005) uses Web 

services to expose computational tools for different Web process phases and uses two glycomics 

domain ontologies to annotate data with different formats such as image and raw data.  

 
Table 2-4. Sample data resources using Web services/semantic Web technologies 

Data 
Resources Brief Description Web 

Services 
Semantic 
Web  

PDB A public data resource of protein structures  Yes No 
BSML Bioinformatics Sequence Markup Language No Yes 
SBML Systems Biology markup language No Yes 

BioSimGrid Data resource for archiving and analyzing MD 
trajectories No Yes 

myGrid A high-level middleware for personalized in silico bio 
experiments Yes Yes 

MOBY A prototype semantic web service for the investigation 
of biological problems in different organisms Yes Yes 

NGP A semantic web service for N-glycosylation process Yes Yes 
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3. A SEMANTIC WEB SERVICES INFRASTRUCTURE 
FOR DISTRIBUTED PROTEIN DATA INTEGRATION 

 

 

3.1. Introduction 

 

Bioinformatics research relies on techniques for describing and performing experiments that 

retrieve data from distributed resources. Such computational techniques, or in silico experiments, 

are an important tool for researchers because they can validate and motivate experiments 

performed in conventional laboratories or “wet” laboratories (Hull et al., 2005). 

 

Understanding the function of every protein is one of the major objectives of bioinformatics. 

Currently, there is a lot of information (e.g., sequence, structure and dynamics) being produced 

by experiments and predictions that are associated with protein function. Integrating these 

diverse data resources about protein sequence, structure, dynamics and other protein features 

allows further exploration and establishment of the relationships between protein sequence, 

structure, dynamics and function, and thereby controlling the function of target proteins 

(Marcotte and Date, 2001). However, researchers from different organizations develop 

algorithms, tools and resources on protein data—often with no thought on how other researchers 

are doing the same tasks. Consequently, an integration problem may require interactions with 

many incompatible data resources with many different interfaces (Gao et al., 2005).  

 

Currently, researchers use ad hoc scripts and programs to retrieve data from these distributed and 

heterogeneous data resources (see Section 2.5 for more details). There are no systematic methods 
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for accessing and integrating those heterogeneous data resources for collaborative research and 

large-scale knowledge discovery. Also, there are no available architectures and tools that allow 

automatic discovery, selection and invocation of accurate data resources that meet specific 

research requirements from users’ perspectives. To facilitate knowledge discovery and stimulate 

collaboration in the research community, architectures that provide efficient and automatic 

solutions for biological data resource integration are critical. 

 

In this research, a Web services infrastructure (WSP) for flexible integration of various protein 

data resources, is presented. The main features of this architecture include component-based 

design of service functionalities and semantics-based description and matching of web services 

using ontologies (i.e., domain and upper service ontologies). The architecture allows researchers 

to conveniently discover and assemble various types of protein data (both existing and yet to 

come) for their applications (e.g., determining the function or other features of proteins).  

 

This chapter discusses the challenges for distribute protein data integration, WSP’s strategies for 

optimal integration, WSP’s computing platform and major components, and the WSP 

deployment process. The details of WSP’s major components are discussed in the Chapters 4–7. 

 

 

 

3.2. Protein Data Resource Integration: Challenges 
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Stein (2002) envisioned a “bioinformatics nation” in which previously fragmented organizations 

provide standard web service interfaces to their resources so that performing in silico 

experiments is potentially quicker and easier than the ad hoc methods (e.g., data warehousing). 

Recently, the interest of applying web services in bioinformatics has grown. For example, as of 

2005, the myGrid project has a registry of more than 1000 web services provided by a wide 

range of third parties (Hull et al., 2006). The number of available web services will continue 

growing as the impetus behind the technology grows (Greenbaum et al., 2005). 

 

Despite the advantageous features of web services (see Section 2.6), there are a series of 

challenges to apply web services in protein data resource integration:  

 

(1) Unlike traditional web applications, the purpose of developing web services is to wrap 

reusable software components with standard programmatic interfaces so that application 

programs can automatically obtain data/results. However, current research only focuses on 

delivering the final results to end users without exposing some intermediate data that can 

benefit other users. To maximize the utilization of available resources that provide protein 

data, the first challenge is how to define common elements in protein data resources that can 

be shared by different applications. 

 

(2) Users usually have specific requirements about the data used for their applications. However, 

service providers and users may have distinctive perspectives and knowledge about one 

service resulting in differing descriptions for the service. In this case, syntactic-based 

matching cannot locate the service. In order to allow semantic interpretation of dissimilar 
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data and query expressions, common concept models (i.e., ontologies) have to be adopted. 

The challenge is what ontologies provide the necessary terminologies for expressing various 

perspectives/requirements related to protein data and data integration. 

 

(3) As number of biological Web services increases, finding suitable services that provide a 

solution to the problem at hand becomes more important than ever. The XML-based web 

services standards (i.e., WSDL and UDDI) do not support operations at semantic level, 

leaving the promise of automatic discovery and integration of services incomplete. The 

challenge is how to design service matching algorithms that can efficiently retrieve the most 

accurate service required to perform a given task. 

 

(4) An in silico experiment or integration problem usually involves many data resources or 

services. For an integration problem, bioinformatics researchers usually have a high-level 

workflow without knowing a concrete and executable web services workflow. Because 

services are developed by different organizations, they may have different concept models 

and data schema for service parameters (i.e., inputs and outputs). Semantic interoperability 

(interoperable concepts) and data interoperability (interoperable data schema) become major 

issues. The challenge is how to design automatic means of integrating heterogeneous data 

resources with little or no user interventions. 

 

3.3. Methodologies for Optimal Integration 
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WSP exploits the potential of semantic web services to address the aforementioned challenges. 

The goal of WSP is to provide optimal solutions for protein data resource integration. In this 

research, optimal solutions include three major components: (1) web services granularity, (2) 

matching accuracy, and (3) automation.  

 

(1) Granularity. Web services granularity means the identification of common atomic 

components which can be published as web services (Yang 2003). The goal is to maximize 

the utilization of available data resources. In WSP, atomic components are identified as 

protein features, which are functions of a protein sequence. This is based on the observation 

that the core of most protein research is related to some biological sequences. Whatever 

features proteins have, they are functions of some operations of a position in a sequence. 

Examples are: conservation is a function which tells how each residue in a sequence is 

repeated across the protein family; enzyme active site is a function which tells whether a 

residue in a sequence is an active site or not; slow mode is a function of fluctuation of each 

residue in a sequence. Therefore, protein features represent common atomic components in 

protein data resources that can be shared by many different studies. For example, enzyme 

active site data can be used for correlating with other protein features and also for developing 

prediction models. Refer to Chapter 4 for details. 

 

(2) Accuracy. Matching accuracy is a measure of how a service request semantically matches a 

service. Unlike syntactic matching which operates on unannotated descriptions, WSP relies 

on semantic annotation and matching to discover services. By having service parameters (i.e., 

inputs and outputs) in requests and service descriptions refer to the concepts in the same 
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domain ontology, a semantic matching algorithm is designed to reason about similarities 

between requests and service descriptions in an unambiguous and machine-interpretable 

form. WSP ranks matched services based on their similarity score to the request. Services 

with the highest similarity score represent the most accurate solutions. Refer to Chapters 5 

and 6 for details. 

 

(3) Automation. A set of methodologies are designed to enhance the level of automation for 

integration problems. First, protein feature data are modeled as web services with 

programmatic interfaces so that user applications can automatically call exposed 

functionalities and obtain explicit results without tedious HTML code parsing. Secondly, a 

semantic matching mechanism is used to locate most accurate services so that users do not 

need to have prior knowledge about data resources. Especially, services that provide 

solutions to a request can be automatically discovered even if the services registered and the 

services requested are syntactically distinctive. Thirdly, a service chaining strategy is adopted 

to automate the process of data integration for in silico experiments. One way of performing 

in silico experiments is to pipe together inputs and outputs of consecutive web services in a 

workflow environment. Usually, scientists would like to create a high-level “abstract” 

workflow and not bother about low-level details of web service, e.g., urls, parameter passing, 

data transformations, and control flow (Ludascher et al., 2003). Due to the nature of scientific 

workflows, a static-workflow based approach is chosen for service integration (see Figure 3-

1). In this approach, a higher-level workflow is created by the user, and the system is 

responsible for mapping the higher-level workflow to an invokable workflow which consists 

of real web services. Refer to Chapter 7 for details.  
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Figure 3-1. A hierarchy of information integration problem. The shaded paths and blocks represent WSP’s 

integration approach 

 

 

3.4. Computing Platforms  

 

WSP is a web services environment where protein data resources are wrapped with uniform 

WSDL programmatic interfaces and SOAP is used as the protocol for communications between 

these data resources. Unlike generic service oriented architectures, UDDI is not used as the 

registry for locating services because it can only perform syntactic but not semantic matching 

between user requests and services. Instead, a semantic registry is designed to meet the 

requirement of providing accurate solutions from user’s perspectives. This matchmaker registry 

uses current Semantic Web standards such as OWL and OWL-S to capture the capabilities of 

web services and the data requirements of user applications.  
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3.5. Architecture, Components and Tools  

 

As any Web services architecture (see Section 2.6.1), WSP has three entities: the service 

provider, the service requestor, and the service registry (see Figure 3-2). The provider refers to 

an organization that provides protein data and Web services. The requestor refers to users 

(researchers) that require protein Web services. The registry refers to a middle registry service 

that contains registered services and facilitates discovery of services requested. 

 

Integration Agent

User Application

Web Services

Data Resources

Ontologies

Service Requestor Service Provider

Service Registry

Matchmaker

Discovery Publish

Binding

Semantic ProfileSemantic Request

 

 

Figure 3-2. Mapping of Components to WSP Architecture 

 

On the service provider side, there is a set of components, including data resources which 

provide protein feature data, tools for developing web services, tools for semantic description 

and publication of services. On the service registry side, there is a matchmaker service and 
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community-agreed domain ontologies. On the service requestor side, there are tools for 

representing integration problems (in silico experiments), tools for semantic description of 

service requests and an integration agent which interacts with the service registry and the service 

provider to obtain results. 

 

These components and tools can be classified into four categories: tools for biological data 

resources and web services; tools for semantic description of web services; tools for semantic 

publication and matching of web services; and tools for chaining of web services. The following 

sections provide a brief review for each category. 

 

3.5.1. Biological Data Resources and Web Services 

 

In WSP, protein data resources are modeled as Web services by providers. Web services 

represent reusable components with certain query functionalities. The query functionalities 

(operations) are data and application specific. For sharing of protein data, it is expected that a 

service’s basic (atomic) operation is a functionality that provides a certain protein feature. A 

complex service may contain several such functionalities. 

 

In this research, two methods for developing biological web services are considered. One method 

is based on the existing Web applications of protein data. The other method is about building 

web services from scratch. Despite their differences, the common goal is to identify appropriate 

query functionalities and implement them as WSDL programmatic interfaces. 
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For example, iGNM’s functionality for providing dynamics information (mode shape) is 

modeled as a Mode Shape Service with a WSDL interface. To invoke the Mode Shape Service, a 

SOAP client is written to acquire the service’s WSDL description and generate a SOAP request 

to the service. Similarly, any protein data resources that provide protein features can be modeled 

as web services. These resources include other protein dynamics data resources besides iGNM, 

protein sequences data resources, structure and function data resources.  

 

Web services can be implemented in many different platforms (e.g., Microsoft .NET, IBM 

WebSphere/J2EE) according to the web services standards. In WSP, the Apache Axis 

(http://ws.apache.org/axis/java/) is adopted as the development platform because it has a SOAP 

engine for processing service requests and toolkits for generating WSDL interfaces.  

 

3.5.2. Semantic Description of Services 

 

The purpose of semantic description of web services is to describe service capabilities (what a 

service can do) and user requests (what a user wants) in machine-understandable format so that 

algorithms can be designed to automatically discover semantically matched services. 

 

There are two ways to semantically describe service capabilities. The first one assumes 

onotlogies that provide an explicit representation of the operations (tasks) performed by web 

services. In those ontologies, each operation is described by a different concept. The second one 

describes web services by the state transformation and the information transfer that they produce. 

In this case, the operation is implicitly represented by the state transformation. Since web 
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services can perform many different operations, the first way will lead to very large ontologies 

that is unmanageable and may not scale up when new capabilities become available. The implicit 

representation does not suffer from those shortcomings since they only require concepts that 

describe the domain of the web services (Sycara et al., 2003). Therefore, implicit representation 

of service operations is used in this research. 

 

WSP provides an extended version of the Protein Ontology (PO) (Sidhu et al., 2005) and a 

semantic profile generator that allows a wide range of semantic descriptions of web services on 

complex protein data related issues. PO is implemented in OWL language using the Protégé 

ontology editor (Protégé, 2002). The service descriptions are implemented in OWL-S data 

format using the profile generator. While the protein ontology represents common perspectives 

of the research community, the descriptions of web services are based on individual researchers’ 

perspectives and data requirements. 

 

3.5.3. Semantic Publication and Matching of Services 

 

A semantic matchmaker is used to identify accurate services for service requests. The 

matchmaker includes a client-server architecture. The server is a centralized registry service. It 

implements two algorithms, one for publication and one for matching of services. There are two 

SOAP clients for interacting with the registry services. One client is designed for service 

providers to publish their service descriptions to the registry. The other client is designed for 

users to send their requests and obtain information (i.e., URL) about semantically matched 

services. 
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The matchmaker is capable of locating the most accurate services among all registered services. 

That is when there are exactly matched services, it will be automatically discovered. When there 

are no exact matches, the most semantically accurate services will be provided. 

 

3.5.4. Chaining of Services 

 

Scientific workflows are usually subject-specific and exploratory-based (require an iterative 

procedure) (Rygg et al., 2005; Ludascher et al., 2003). It is important for users to interact with 

the integration program during the generation and execution of the web service workflow.  

 

Due to the nature of scientific workflows, an integration problem is represented as an abstract 

workflow of service requests (tasks). The abstract workflow defines data dependencies between 

services and the control flow (i.e., order of execution). Each request is expected to be 

implemented by a web service.  

 

An integration agent (a program that performs integration tasks) is used to select and chain 

services. First, requests are generated using the profile generator. Then the agent will send the 

requests to the matchmaker and determine a concrete web services workflow. Since each request 

may return several semantically matched services (candidate services), the agent needs to 

perform service selection. WSP adopts two selection criteria: (1) select the service with the 

highest score (most accurate service) for each request and (2) when there are multiple services 

with the highest score (equivalent services) for a request, select a service that is compatible with 
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the previously selected service. Here “compatible” means that the input data schema of the 

current service is the same or similar to the output schema of the previous service. WSP 

performs three types of comparisons between the output and the input of adjacent services, 

including all-or-nothing compatibility, subset compatibility and arbitrary compatibility (Spillner 

et al., 2006).  

 

By combining the two selection criteria, WSP handles both semantic interoperability 

(interoperable concepts) and data interoperability (interoperable data schema) at design time. 

However, due to the nature of scientific workflows, users are expected to interact with the 

integration agent to produce a production web service workflow (e.g., modifying requests in the 

abstract workflow). A production workflow is fully automatic. It works as a logic unit or a global 

data resource so that automatic integration of various types of protein data can be achieved. 

 

3.6. The Deployment Process 

 

The purpose of this section is to compare the current approach and the WSP approach for protein 

data integration. 
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Figure 3-3. The current ad hoc approach for data integration 

 

With the current approach for integrating data resources (see Figure 3-3), researchers are 

required to either have prior knowledge or manually look for data resources (i.e., Web 

applications) for workflow tasks. Then they have to write a screen-scraping script for each 

selected data resource to obtain a semi result. These screen-scraping scripts are non-reusable 

because different Web applications have different HTML coding and a script written for a given 

Web application cannot be used for other Web applications. The intermediate results from all 

screen-scarping scripts are then combined to form the final result. The integration script is also 

non-reusable because it is designed according to the specific data formats of intermediate results 

and cannot handle new results. The iGNM-PDB integration (see Section 2.3.3) shows an 

example of screen-scraping based data integration. 
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Given an integration problem (i.e., integrating protein features), WSP uses the OWL-S profile 

generator to generate service requests. It then uses the matchmaker to discover data resources 

(i.e., web services) that semantically match the user’s requests. Finally, the integration agent is 

used to select and chain services to obtain the final result (see Figure 3-4). The profile generator, 

the matchmaker and the integration agent are all reusable components because they can handle 

different service requests by exploiting standards such as OWL-S upper ontology and WSDL 

interface. 
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Figure 3-4. The deployment process of WSP 

 

The WSP approach has several advantages over the current web application-based approach for 

protein data resource integration: 
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• Desired solutions from user’s perspectives. By exploiting the potential of semantic web and 

ontologies, WSP allows users to discover desired services among all registered services. 

 

• Higher level of automation. With the WSP approach, researchers only need to specify their 

service requirements (i.e., desired output) without having to manually look for data 

resources. The system will automatically discover, select and integrate appropriate services. 

 

• No duplication of effort. With the current approach, researchers are required to perform such 

tedious tasks as writing scripts to parse the HTML code from every data resource (i.e., Web 

application). The scripts are non-reusable and new scripts have to be developed when new 

data resources are incorporated. With the WSP approach, reusable components such as the 

matchmaker and the integration agent are used to handle any data resources (i.e., Web 

services). There is no development overhead when new data resources are incorporated.  

 

• Less fragile to Web site changes. In the current approach, the screen-scraping scripts are 

fragile for a minor change in the HTML code of a given Web application may cause failure. 

With the WSP approach, data resources/services are discovered and integrated dynamically. 

Whenever a service changes or fails, alternative services will be selected and invoked 

without modifying existing software components. 
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4. MODELING PROTEIN WEB SERVICES 
 
 

 

4.1. Introduction 

 

Web services are self-contained, self-describing, modular applications that can be published, 

located, and dynamically invoked across the Web (Gao et al., 2005). By modeling protein 

information resources (e.g., iGNM) as Web services, different types of biological data can be 

dynamically assembled from multiple network-enabled Web services for a variety of user 

applications.  

 

This research contributes two biological web services: the iGNM web service that provides 

protein dynamics data for more than 20,000 protein structures; and the N-gram web service that 

provides conservation profiles for more than 50,000 protein sequences. These two services 

demonstrate the process of developing and utilizing biological web services. 

 

This chapter discusses the issues for modeling protein feature web services, the approaches for 

developing web services, the iGNM web service, the N-gram web service, and the category of 

WSP web services. 

 

 

4.2. Protein Features 
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Understanding protein function is the key to understand health and diseases. In many cases, 

however, it is difficult to directly determine the function of a specific protein. In experimental 

context, a protein has many attributes or features (e.g., the binding sites, enzymatic activities, and 

ability to fold). These diverse features are associated with protein function and can be integrated 

to determine the function of proteins (Greenbaum, 2004).  

 

The core of most protein research is related to some biological sequences. Whatever features 

proteins have, they are function of sequences. A fundamental way is to relate protein features to 

sequences. Each feature is a function of some operation of a position in a sequence. For 

instances, conservation is a function which tells how each residue in a sequence is presented 

across the protein family; enzyme active site is a function which tells whether a residue in a 

sequence is an active site or not; slow mode is a function of fluctuation of each residue in a 

sequence. Figure 4-1 shows an example of protein conservation feature, where the x-axis 

represents the residue position and the y-axis represents the percentage of occurrence across the 

protein family. 
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Figure 4-1. A conservation profile for carbonic anhydrase (PDB ID 1ca2) 

 

 

4.3. Modeling Protein Feature Services 

 

Many research questions can be asked for protein features, e.g., how does one feature relate to 

another feature, and how does one do that? These are no easy problems because features 

provided by different organizations have heterogeneous format and semantic quality 

(capabilities) associated with them. Web services are widely regarded as a way to solve this 

integration problem (Stein 2002; Foster 2005; Gao et al., 2005). Web services provide a higher 

level layer of abstraction that hides implementation details from applications so that each 

organization can concentrate on its own competence and still leverage the services provided by 

other research groups (Gao et al., 2005). By developing web services which provide protein 

features, it is possible to build high throughput features maps and correlations in theory. 
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A Web service is a set of application operations or functionalities that can be programmatically 

invoked over the Internet (IBM 2006). A functionality may take one or more input parameters 

and return one or more output parameters (Spillner et al., 2006). The definition of service 

functionalities and parameters are dependent on specific requirements. For information 

integration, it is valid to assume that the functionality of a service represents an atomic operation 

that can be assembled into many different applications (Rao and Su, 2004).  

 

To model protein feature web services, we define a protein feature Fi as a function fi of 

coordinate system (x, y, z, t), see Equation 4-1. The coordinate is the residue position (x, y, z) 

and/or time t. Fi can be any protein feature such as motions and conservation. Function fi refers 

to some model or algorithm that has certain operations of residues to produce the feature. For 

example, the GNM model is a function that generates fluctuation for each residue. 

 

),,( tzyx,fF ii =    4-1 

 

We define a service operation Oj as a function which maps a protein identity Ii into a protein 

feature Fi, see Equation 4-2. Ii refers to an identifier that distinguishes a protein. It can be protein 

name, PDB ID, protein sequence or structure. Oj represent a query functionality (operation) that 

takes a protein and returns the protein’s feature. For example, the PDB SearchLite query 

interface is an operation that takes a protein’s ID (PDB ID) and returns the protein’s structure. 

 

iij FIO →)(     4-2 
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We define a feature web service Sk as a set of operations Oj for providing feature data, see 

Equation 4-3. A simple service only contains one operation (j = 1); while a complex service 

many contain multiple operations (j >1). For example, N-gram service can be designed to just 

provide one feature, e.g., ICP profile, or it can be designed to provide both ICP profile and 

Valdar profile (see Section 4.6).  

 

},...,,{ 21 jk OOOS =      4-3 )1( ≥j

 

Protein feature web services allow users to develop a wide range of applications. The service 

operations that provide protein features constitute basic building blocks out of which new 

applications are created. For example, enzymatic sites feature can be used in many different 

applications. One application can be using enzymatic feature to develop prediction models for 

protein function. Other applications can be correlating enzymatic feature to conservation, 

hydrophobicity or dynamics. 

 

4.4. Developing Protein Feature Services 

 

There are two approaches to design service operations or functionalities: (a) the Web application 

approach and (b) the bootstrapping approach. The Web application approach is based on existing 

functionalities provided by Web applications. For example, Gao et al. (2005) built Web services 

based on existing Web applications such as IBM’s Genes@Work (Califano et al., 2000) and the 

National Center for Biotechnology Information’s Entrez Databases (Wheeler et al., 2003). An 
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example of existing functionality in iGNM is mode shape query that can be used for developing 

Web services (see Section 2.3.3). The bootstrapping approach is a from-scratch design of Web 

service’s functionality. For example, N-gram conservation service is build on top of ICP profiles 

without reference to existing systems (see Section 4.6). 

 

4.5. iGNM Protein Dynamics Web Service 

 

While iGNM web service could be built upon iGNM existing components (i.e., program for 

processing protein dynamics data), it is important to analyze the granularity of functionalities for 

web services. For example, iGNM’s mobility query extracts a user selected mode from the slow 

mode or fast mode file and inserts it to the PDB file for visualization. The selected mode, 

however, is not returned to the user explicitly. A finer functionality for returning a selected mode 

is desired for user applications that process the mode for other purposes rather than visualization.  

 

extract

getSlowModes

Other methods

PDB ID, Mode
Type, Mode ID

PDB ID

??

Mode

20 slow modes

??

iGNM Mode Shape Service

 

Figure 4-2. Design of the iGNM web service 
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Figure 4-2 shows the iGNM mode shape service with a set of operations. For example, the 

“extract” operation takes a PDB ID, mode type and mode ID, and returns the PDB structure’s 

given mode. The PDB ID is a 4-digit string. The mode type is a string which takes a value of 

“slow” or “fast”. The mode ID is an integer ranging from 1 to 20 (because iGNM provides up to 

20 slow modes and 20 fast modes). The output mode is a dynamics feature which is represented 

as a vector of fluctuations (functional motions) associated with each residue position. Similarly, 

the service provides a “getSlowModes” operation which takes a PDB ID and returns all 20 slow 

modes. Also, the iGNM web service is extensible by adding new operations. 

 

4.6. Protein N-gram Web Service 

 

4.6.1. Protein N-gram Patterns 

 

N-gram patterns (NP{n,m}) are sets of n residues and m gaps in windows of size n+m that start 

with a residue. Figure 4-3 shows an example of NP{4,2} patterns, where a pattern consists of 4 

residues and 2 gaps in a window of 6. For each residue position, there are 10 patterns based on 

combinatorics. 

 

Interest in these patterns was sparked by the success of an alignment-independent protein 

classification algorithm based on the distribution of NP{4,2} patterns (Vries et al, 2004). 

Features of interest in NP{4,2} patterns included: (1) the inclusion of all possible n-gram 

combinations for 1≤ n≤ 4; (2) a window wide enough to capture n+k periodicities for 2 ≤ k ≤ 5; 

(3) an implied scoring matrix due to the presence of gaps at variable positions; (4) a low 
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probability for finding redundant n-gram patterns in the same sequence; (5) a high probability of 

family membership for two sequences that contain the same pair of non-overlapping NP{4,2} 

patterns; and (6) the existence of all theoretically possible NP{4,2} patterns in nature.  

 

These features, together with our recent studies on protein conservation and secondary structure 

prediction (Vries et al., 2006a; Vries et al., 2006b), have lead support to the utility of n-gram 

patterns for characterizing protein structure propensities, conservation, dynamics and other 

protein features. In this research, we focus on n-gram’s utility for capturing protein invariant 

conservation profiles and how n-gram conservation profiles can be developed into a web service. 
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Figure 4-3. A example of NP{4,2} pattern, where residue H has 10 patterns. 

 

4.6.2. Protein Conservation Profile 
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Protein homologs are amino acid sequences with a common evolutionary ancestor. Substitutions, 

insertions and deletions over the course of evolutionary time cause the patterns of residues and 

gaps in homologs to drift away from each other (Dayhoff, 1976;Henikoff and Henikoff, 1992). 

Conservation profiles are a measure of the shared patterns that remain. The conserved regions 

revealed in profiles are useful for identifying sites that are important for structure and function 

(Valdar and Thornton, 2001). Traditionally they have been constructed from multiple alignments 

(MSA) using scoring matrices and weighted averages (Valdar and Thornton, 2001). This 

approach has been effective, but it also requires a chain of assumptions that may not be valid in 

all cases. There are many ways to generate scoring matrices and these matrices vary in their 

sensitivity to remote homologs (Johnson and Overington, 1993). Many proteins contain multiple 

domains or overlapping and/or nested domains that strongly influence alignment (Raghava et al., 

2003). Sequences for multiple alignments often require preprocessing to eliminate low 

complexity regions (Wootton and Federhen, 1996). The protein sequence samples available for 

multiple alignment are frequently skewed requiring the application of weighting algorithms 

(Karchin and Hughey, 1998). Finally, multiple alignment requires a parameterized gap penalty 

(Altschul et al., 1997). 

 

A new algorithm based on n-gram patterns, called n-gram pattern local alignment (NPLA), has 

been developed that avoids the assumptions associated with the MSA approach. The goal of the 

NPLA algorithm is to generate a conservation profile that is specific to a given query sequence 

when the family membership of the sequence is unknown. The first step is to identify and count 

the non-wildcard positions in the NPLAs shared by the query sequence and a representative set 

of 2.1 million target PDB chains (sequences). This process is illustrated in Figure 4-4(a). A 

 67



 

collection sequence equal in length to the query sequence is initialized to zero for each target 

sequence. The non-wildcard position in the collection sequence for each common element in 

shared NPLAs is set to 1. The combinatorics associated with NP{4,2} patterns generates 10 

different patterns for each position in the query sequence. These patterns are tested in an order 

that favors the longest contiguous residue runs. The algorithm stops when the first pair of 

NP{4,2} patterns is found. This provides an implicit substitution matrix and it insures that each 

position is counted only once. Summing the 1s for each collection sequence also provides a 

measure of similarity with respect to the query sequence for each target sequence.  

 

The similarity threshold with respect to the target sequence is used as the basis for separating the 

2.1 million target sequences into 20 samples with increasing levels of identity. This process is 

illustrated in Figure 4-4(b). The 95% bin for example represents all target sequences with 95% or 

greater similarity. The 0% bin represents all sequences in the target set. The collection sequences 

in each subset are then summed and normalized with respect to sample size to provide 20 raw 

conservation profiles. This is process is shown in Figure 4-4(c). 
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Figure 4-4. Initial steps in the NPLA algorithm: (a) Identifying and counting the non-wildcard positions in the n-

gram patterns shared by the query sequence and the target sequences; (b) Dividing the target sequences into 20 bins; 

(3) Generating raw conservation profiles. 
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A covariance matrix is generated from the 20 raw profiles and subjected to singular value 

decomposition (SVD) (Fogolari et al, 2002). Reconstructions of the 20 raw profiles are generated 

for each individual eigenvector with a significant eigenvalue (> 0.01). The applicability of the 

algorithm is then assessed based on the sample and eigenvalue distribution and the amplitude 

profiles of the reconstructions (Vries et al., 2006a).  

 

The carbonic anhydrase (P00918) from Pfam-A family PF00194 is characteristic of the 

sequences that meet these criteria. The sample distribution from a similarity thresholds ranging 

from 15% to 95% is shown in Figure 4-5(a). The sample is distributed over the range and large 

enough for statistical analysis. The percentage of variance associated with the first two 

eigenvalues is 0.75 and 0.20. A plot of the amplitude of the samples reconstructed from the first 

two eigenvectors is shown in Figure 4-5(b). The average amplitude of the reconstructions from 

the first eigenvector goes from low to high as the percentage of family members in the sample 

increases. The reconstructions from the second eigenvector go in the opposite direction. It can 

also be seen that the amplitude of the reconstruction from the first eigenvector is invariant over 

the central part of the the similarity range. Reconstructions of the raw profiles using the first 

eigenvector are shown in Figure 4-5(c) for similarity thresholds varying from 20-60%. The final 

plots have been subjected to 16 iterations of nearest-neighbor smoothing to eliminate high 

frequency noise. The conservation profiles over this range are nearly invariant. The final 

conservation profile (ICP) is selected from this set by identifying the profile with the least rmsd 

difference with its neighbors. The ICP trace representing the 40% similarity level is shown in 

Figure 4-5(d) with and without smoothing. 
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Figure 4-5. (a) Distribution of the similarity threshold samples for carbonic anhydrase (P00918) over the range from 

20-80%; (b) The average amplitude of reconstructions from the first and second eigenvectors for P00918; (c) The 

reconstructions using the first eigenvector for similarity ranges from 20-60%. (d) Invariant conservation profile 

(ICP) for P00918 reconstructed from the 40% similarity level. 
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4.6.3. N-gram Conservation Profile Web Service 

 

Due to the utility of n-gram patterns in characterizing protein features, several web service 

functionalities can be designed to provide reusable protein features such as conservation profile, 

slow mode profile, and hydrophobicity profile (see Figure 4-6). 
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getHydroProfile

Protein Sequence

Protein Sequence

Protein Sequence

Conservation
Profile

iGNM Slow
mode profile

 Hydrophobicity
profile

N-gram Attribute Profile Service

 
 

Figure 4-6. Sample n-gram service functionalities 

 

To demonstrate how features derived by n-gram patterns can be modeled as web services using 

the boot strapping approach, a conservation profile web service was developed in this research. 

Figure 4-7 shows the n-gram conservation service with a set of operations. For example, the 

“extrct_ICP” operation takes a PDB ID and a chain ID, and returns the PDB chain’s ICP profile. 

The PDB ID is a 4-digit string. The chain ID is a string which represents the chain (sequence) 

name of a PDB structure. The output ICP profile is a conservation feature which is represented 

as a vector of conservation percentage associated with each residue position. The n-gram 

conservation service is extensible by adding new operations. For example, an operation called 
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“extract_Valdar” can be added to provide MSA-based conservation profile using Valdar and 

Thornton’s method (Valdar and Thornton).  

 

extract_ICP

extract_Valdar

PDB ID, Chain ID

PDB ID, Chain ID

ICP Profile

Valdar Profile

N-gram Conservation Profile Service

 

Figure 4-7. Design of the n-gram conservation web service 

 

 

4.7. Category of WSP Web Services 

 

In addition to protein feature web services, other types of services can also be introduced in 

WSP, including tool services and analysis services (see Figure 4-8). Feature services are the core 

services that provide protein feature data. For example, the iGNM Mode Service provides 

protein functional motion data. Tool services are used to facilitate the processing or presentation 

of protein feature data. For example, the PDB Replacer Service is used to present feature data in 

standard PDB format. Analysis services are used to integrate or analyze protein features. For 

example, the Feature Overlay Service is used to overlay two (or many) features in the same 

normalization scale and compare the values at each residue position.  
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Figure 4-8. Category of WSP services 

 

Protein feature services represent the common elements or basic building blocks that can be 

shared by different user applications. Once a desired service is located, users can submit queries 

to obtain features for specific proteins. Once the feature data is obtained, users can either use tool 

services and analysis services (if available) for further analysis, or develop their own standalone 

applications. 

 

WSP services can also be dynamically assembled to perform in silico experiments. As shown in 

Figure 4-8, the iGNM mode service and the n-gram profile service can be linked with the feature 

overlay service to study the correlation between protein motions and conservation. Further, the 

feature overlay service and the PDB replacer service can be linked with the visualization service 

to visualize the motion-conservation correlation.  
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5. SEMANTIC DESCRIPTION OF WEB SERVICES 
 
 

5.1. Introduction 

 

There are many types of service descriptions which are used for different purposes. For example, 

WSDL is used as the programmatic interface to bind to the service. Also, there are quality of 

service (QoS) parameters or non-functional parameters (e.g., availability, reliability and 

reputation) that can be used as the criteria to select and chain services (Cardoso and Sheth, 2003; 

Zeng et al., 2004; Rao and Su, 2004). 

 

To enable effective and user-oriented discovery of web services, it is now widely recognized that 

ontologies are needed for semantically describing the capabilities of web services (i.e., what a 

service can do) (Paolucci et al., 2002; Hull et al., 2005). To semantically describe protein web 

services, domain ontologies used by the biological community and service ontologies used by the 

web services community need to be considered. 

 

This chapter first reviews the role of ontologies. It then describes the ontologies adopted by WSP 

and a semantic profile generator that generates semantic service descriptions and semantic 

service requests. 
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5.2. The Role of Ontologies 

 

Ontology originated from philosophy as a reference to the nature and the organization of reality. 

In general, an ontology is a “specification of a conceptualization” (Gruber 1993). In the 

computer science domain, ontology provides a commonly agreed understanding of domain 

knowledge in a generic way for sharing across applications and organizations (Chandrasekaran et 

al., 1999). Typically, ontology consists of a list of terms and the relationships between those 

terms. The terms denote the domain concepts (or classes of objects). The relationships indicate 

hierarchies of concepts. They also provide property information, value restrictions and 

specifications of logical relationships between objects. 

 

An ontology may take a variety of forms (e.g., object-oriented design), but it will necessarily 

include a vocabulary of terms and some specification of their meaning. This includes definitions 

and an indication of how concepts are inter-related which collectively impose a structure on the 

domain and constraint the possible interpretations of terms (Uschold and Jasper, 1999). 

 

The database community as well as the object-oriented design community also build domain 

models using concepts, relations, properties, etc., but in general both communities impose less 

semantic constraints that those imposed in heavyweight ontologies (Gómez-Pérez et al., 2004). 

 

Ontologies are largely used for representing domain knowledge. A common use of ontologies is 

data standardization and conceptualization via a machine-understandable language. Existing 
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ontology languages include RDF (Resource Description Framework), DAML-OIL (DARPA 

Agent Markup Language-Ontology Interface Language), OWL and OWL-S.  

 

Typical ontologies include taxonomies on the web (e.g., Amazon’s product catalog), domain 

specific standard vocabularies (e.g., Gene Ontology) and ontologies for data integration (e.g., 

semantic interoperation between XML schemas) (Cruz, I.F. and Xiao, H., 2005).  

 

There are three approaches to use ontologies for data integration (Cruz, I.F. and Xiao, H., 2005; 

Wache et al., 2001):  

 

• Single ontology approach. The schemas used by data resources are directly related to a 

shared global ontology that provides a uniform interface to the user. This approach requires 

that all resources have the same view on a domain. 

 

• Multiple ontology approach. Each data resource has its own local ontology. Instead of using 

a common ontology, local ontologies are mapped to each other. Therefore, additional 

representation formalization is required for inter-ontology mapping. 

 

• Hybrid ontology approach. This approach combines the above two approaches. First, each 

local resource has its own local ontology. Then, each local ontology is mapped to a global 

shared ontology. New data resources can be added without modifying existing mappings. 
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5.3. WSP Ontologies 

 

Much progress has been made in proteomics ontologies to semantically integrate heterogeneous 

protein data resources, including approaches to systematic structural and functional classification 

and initial work towards developing standardized and unified descriptions for protein properties. 

For examples, CATH (Pearl et al., 2003) describes protein folds; SPINE (Bertone et al., 2001) 

focuses on biophysical characteristics; Gene Ontology (GO) (Gene Ontology Consortium, 2004) 

is a controlled vocabulary of nearly 17,500 terms for describing function of gene products; 

Protein Ontology (PO) (Sidhu et al., 2005) is a recent effort in building a common structured 

vocabulary in OWL for sharing knowledge in proteomics domain, including concepts for 

proteomics data and the relations among these concepts. The details of the protein ontology are 

reviewed in the following section. 

 

5.3.1. Protein Ontology 

 

The Protein Ontology or PO (Sidhu et al., 2005) is a recent effort in building a common 

structured vocabulary in OWL for sharing knowledge in proteomics domain, including concepts 

for proteomics data and the relations among them. Currently, PO contains 92 concepts 

implemented as OWL classes. 

 

The Protein Ontology shows the value of hierarchy and relationships present in proteomics data. 

The creation of a Protein Ontology provides understanding of diverse types of data: (1) Protein 

Entry Details, (2) 3D Structural Representations of Proteins, (3) Structural Folds and domains 
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conserved in proteins, (4) Functional Domains and Families created based on Physiological and 

Pathological Functions of Proteins, and (5) Various Constraints like Genetic Defects and 

Chemical Properties of Cell that affect Final Stable Molecular Structure of Protein. Protein 

Ontology describes the concepts of interest in protein complex mechanisms and proteomics 

process (Sidhu et al., 2005). 

 

5.3.2. Extended Protein Ontology 

 

For semantic description of protein web services, existing ontologies that provide terminologies 

for describing protein identities and features need to be considered. For protein features that 

cannot be described by existing ontologies, existing ontologies need to be expanded or new 

ontologies need to be developed. Based on literature survey, we identified that PO already 

provides a set of standard terminologies that can be used to describe protein identities and 

features (e.g., “structure”, “sequence”, and “active binding sites”). However, there are also many 

protein features that cannot be described by PO, e.g., dynamics and conservation. Therefore, we 

try to use the established PO conceptualization as much as possible, and try to enhance PO’s 

expression power by adding more terminologies regarding protein features. We call the enhanced 

version of the protein ontology as the Extended Protein Ontology (EPO). 

 

Figure 5-1 shows the design of EPO, where the yellow ellipses represent the existing concepts in 

the protein ontology and the blue ellipses represent new concepts about protein features (e.g., 

dynamics, n-gram pattern and conservation).  The new concepts are either inserted as leave 
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nodes of existing concepts (see Figure 5-1(a)) or organized as an independent hierarchy—a 

branch that is directly connected to the root node “Protein Ontology”. 
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Structure
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(c) 

Figure 5-1. (a) Overall design of the extended protein ontology (EPO), where new concepts (blue ellipses) are added 

to the existing protein ontology (PO). (b) a fragment showing that new concepts are added as leaves of existing 

concepts (yellow ellipses). (c) a fragment showing an independent hierarchy. 

 

5.3.3. Upper Service Ontology 

 

OWL-S is an OWL-based upper ontology that describes key aspects of a service: “service 

profile” which states abstract description of service capabilities; “service model” which states 

how services interact with each other; and “service grounding” which states actual message that 

are exchanged among services (W3C OWL-S, 2004). The OWL-S Profile ontology is adopted to 

describe WSP web services. In an OWL-S profile, the service input and output are explicitly 

labeled with concepts in a domain ontology (e.g., EPO).  

 

OWL-S and WSDL have a complementary relationship (see Figure 5-2). OWL-S defines 

message types (inputs and outputs) in terms of OWL classes (ontological concepts), which 

allows for a richer semantic foundations underlying the type specifications. However, OWL-S 
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profile is an abstract specification; it does not specify the details of message formats, protocols, 

and network addresses by which a web service is instantiated. Since WSDL provides a well 

developed means of specifying these kinds of details, it is used as the protocol to access the 

service (Ankolekar et al., 2004).  

 

C8 Req1
OWL-S
(abstract)

Ontological concepts (OWL class)

C2

XSD schema
(e.g., xsd:string)

<Output><Input>
(concrete)
WSDL

Web Service

Matchmaker

WSDL1

 

Figure 5-2. The complementary relationships between OWL-S and WSDL 

 

5.4. Semantic Description of Protein Web Services 

 

OWL-S profile provides the data structure for describing capabilities of services. As defined in 

OWL-S (see Section 2.6.2), the upper ontology for service profile includes three parts: the actor, 

the functional attributes, and the functional description. The actor class records information 

about service providers. The functional attributes include parameters such as service category, 

the rating assigned to the services and the geographic constraints to the service. The functional 

description describes the capabilities of services in terms of inputs, outputs, preconditions, and 

effects.  
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In WSP, OWL-S service profile is used for describing both service descriptions (capabilities) and 

service requests. The service description of a request contains 3 categories of functional 

parameters: input, output and constraint. The input refers to the value passed to the service 

operation, the output refers to the value returned by the service operation, and the constraint 

refers to quality requirements on the output. For example, for a service that provides protein 

dynamics, the input could be a protein identity (e.g., a PDB ID), the output could be the mode 

shape, and the constraint could be the requirement that the mode shape should provide motion 

data (fluctuations) at atomic level. 

 

In theory, the input can contain multiple values/parameters, so are the output and the constraint. 

To semantically annotate these values, multiple concepts are needed. However, it is valid to 

assume a single parameter for input, output and constraint each, if the parameter is considered to 

be complex structure on their own (Spillner et al., 2006). Based on this assumption, the input is 

annotated using only one concept. The output and the constraint are also annotated using one 

concept respectively. 

 

Figure 5-3 shows an example of how service capabilities can be described by incorporating 

OWL ontologies and OWL-S profile. By having service descriptions and requests dynamically 

refer to the OWL concepts defined in the same ontology (i.e., EPO), semantic matching 

algorithms can be designed to reason about similarities between services and requests in an 

unambiguous and machine interpretable form (Paolucci et al., 2002). 
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Figure 5-3. Methodology for generating semantic descriptions of web services 

 

An OWL-S profile generator is developed to create OWL-S service profile. Given a domain 

ontology (i.e., EPO), the profile generator parses the ontology into a list of concepts. To generate 

a profile about service capabilities, the generator selects a concept as service input, a concept as 

service output and another concept as service constraint. For service descriptions, input, output 

and constraint are based on the functionalities provided by Web services. For example, 

“getAllSlowModes” provided by iGNM Mode Shape Service has one “PDB ID” as input and 20 

“mode shape” as output, where “PDB ID” and “mode shape” are both EPO concepts. For service 

requests, input, output and constraint are based on user requirements. For example, a user who is 

looking for a service that provides protein dynamics information may specify the input as 

“protein” and the output as “dynamics”, where “protein” and “dynamics” are both EPO concepts. 
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After generating the inputs and outputs for a service, the generator creates an OWL-S profile 

according to the OWL-S profile specification. 
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6. SEMANTIC PUBLICATION AND MATCHING OF 
WEB SERVICES 

 

 

6.1. Introduction 

 

Web services are an emerging technology for bioinformatics research. As number of biological 

web services increases, finding suitable services that provide a solution to the problem at hand 

becomes more important than ever. Therefore, service discovery is a critical component in web 

services integration.  

 

Current web services standards provide a standard means of interoperating between different 

software components (see Section 2.6). However, they do not support operations at semantics 

level, leaving the promise of automatic and user-oriented discovery of Web services incomplete. 

For example, service providers and requestors may have distinctive perspectives and knowledge 

about one service resulting in differing descriptions for the service. In this case, UDDI will be 

unable to locate the service because it can only perform syntactic, and not semantic, matching 

between the service requested and the services advertised.  

 

By having service advertisements and requests refer to the concepts defined in the same 

ontology, semantic matching algorithms can be designed to reason about similarities between 

service descriptions and requests in an unambiguous and machine-interpretable form (Paolucci et 

al., 2002). Thus services that provide solutions to a request can be automatically discovered even 

if the services registered and the service requested are syntactically distinctive. 
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This research contributes a semantic matchmaker service that allows service providers to publish 

the description of their services and allows users to submit requests and obtain semantically 

matched services. The matchmaker implements a service publication algorithm (see Section 6.4) 

and an efficient service discovery (matching) algorithm (see Section 6.5). By adopting an 

ontology-based service indexing strategy during the publication phase, the service matching 

algorithm has lower time complexity than existing algorithms. 

 

6.2. Background 

 

In this section, we will give an overview of data structures and matchmaking operations that are 

relevant to the WSP matchmaker’s design and implementation. 

 

6.2.1. Data Structures 

 

In this research, we assume each web service has both an OWL-S semantic description and a 

WSDL description. These two descriptions are coupled with each other and have one-to-one 

relationship. While the OWL-S description is used for service discovery, the WSDL description 

is used for service binding.  

 

Table 6-1 shows that a service functionality contains four basic parameters: operation, input, 

output, and constraint. These parameters are represented differently in OWL-S and WSDL. In 

OWL-S, an operation is referred as an atomic process. The input, output and constraint 
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parameters associated with an atomic process are annotated using ontological concepts. In 

WSDL, the operation name is explicitly presented. The input and output are presented as 

messages. There is no presentation for constraint. 

 

Table 6-1. Comparison of OWL-S and WSDL data structure. 

Service Functionality Semantic Description 
(OWL-S) 

Programmatic Interface 
(WSDL) 

Operation Atomic process Operation name 
Input Ontological concept Message name, data schema 
Output  Ontological concept  Message name, data schema 
Constraint (optional) Ontological concept  N/A 

 

OWL-S profiles contain more explicit semantics than WSDL descriptions and act as the main 

data structure for service matching/discovery. Formally, an OWL-S web service description S is 

described by a tuple: 

 

>=< COIS ,,   6-1 

 

where I is an concept (OWL class) that specifies the service’s input, O is an concept (OWL 

class) that specifies the service’s output, and C is an optional concept (OWL class) that specifies 

the service’s output constraint. 

 

The tuple representation is isomorphic to the more common XML serialization of OWL-S, but 

more explicit for processing. The discovery of service is performed at the semantic level by 

comparing the service’s tuple and the request’s tuple. More specifically, the service input 

concept is compared with the request input concept, the service output concept is compared with 

the request output concept, and the service constraint concept is compared with the request 
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constraint concept (if available). Therefore, to reason the similarity between two semantically 

annotated service descriptions, we need to know the degree of match between concepts. 

 

6.2.2. Matchmaking Operations 

 

Since providers and users may have differing service descriptions, the output concept of a 

service may not match that of a request exactly. For example, iGNM Mode Shape Service which 

provides “mode shape” for a “PDB ID” does not exactly match a request that looks for 

“dynamics”. However, the iGNM service can be used for such request and should appear in the 

result list of the service request. Such implicit relationships between service descriptions and 

requests can be derived through reasoning the degree of match between two output (or input and 

constraint) concepts. 

 

There are four degrees of similarity match between the output of a service ( ) and the output 

of request ( ): 

SO

RO

 

• Exact. If and are the same, the match gets a score of 3 (highest similarity) RO SO

• Plug-in. If  subsumes , then can be plugged instead of . The match gets a 

score of 2. 

RO SO SO RO

• Subsumption. If subsumes , then the service may not completely satisfy the request. 

The match gets a score of 1. 

SO RO

• Fail. If  and  do not have either plug-in or subsumption relations, then the match fails 

and gets a score of 0. 

RO SO
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These definitions of match degrees are based on previous studies on semantic matching (e.g., 

Paolucci et al., 2002; Li and Horrocks, 2003) but with different scoring matrix. With these 

definitions of match degrees, the similarity between a service request and a service description 

will be realized. For example, in Figure 6-1, if a request has  as “Dynamics”, then the match 

between the request and a service whose  is the “Dynamics” class is exact. If a service has 

 as “Mode Shape”, then the match is plug-in. If a service has  as “3D Parameter”, then the 

match is subsumption. 

RO

SO

SO SO

 

Request

Service

EPO Ontology

?

If O_R = O_S
core=3Exact, S

If O_S      O_R 
core=2Plugin, S

If O_S      O_R 
Subsumption, Score=1

3

2

1
3D parameter

Static 
Relationship

Legend:

Dynamic 
Reference

DensityDynamics

Mode_Shape Trajectory

RO

output

SO

 

 

Figure 6-1. Semantic matching of service descriptions and a service request whose output concept  is 

“Dynamics”. Each dashed line (red) represents a specific type of matching between the request and a service. 

RO
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The matching between inputs and constraints is computed following the same procedure. 

Equation 6-2 generalize the comparison between a service concept  and a corresponding 

request concept : 

S
iC

R
iC
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Assuming there are m concepts in a service description and there are m corresponding concepts 

in a service request, the similarity or global match between the request R and the service S can be 

derived by summing up the match scores between the a concept pair: 

 

∑
=

=
m

i

S
i

R
i CCmatchSRsimilarity

1
),(),(    6-3 

 

Therefore, the matching between a request and a set of services can be quantitatively measured. 

A service with the highest similarity score represents the most accurate service for the request. 

There may be more than one most accurate service. Besides the most accurate service(s), those 

services with a similarity greater than zero are still useful as backup services. 

 

6.3. A Semantic Matchmaker Service 
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In this research, we developed a semantic matchmaker for user-oriented discovery. The 

matchmaker performs service publication and service discovery by interacting with a 

matchmaker client. Two algorithms are implemented in the matchmaker, one for publication and 

one for discovery. During the publication phase, the publication algorithm creates a hash index 

table (or registration table) of services by traversing the ontology. Then the discovery algorithm 

operates on the registration table without traversing the ontology (as in existing algorithms). By 

introducing service indexing, the time complexity associated with service discovery is reduced.  

 

6.3.1. Architecture 

 

Figure 6-2 shows the client-server architecture of the matchmaker service. The client has two 

modules, one for publication and one for discovery. The publication client is used by service 

providers to publish the OWL-S descriptions of their services. The discovery client is used by 

requestors (users) to submit OWL-S requests and obtain matched services. 

 

Ontology
Loader

Matching
Algorithm

Matchmaker Client Matchmaker Service

Publish MatchingLegend:

Discovery 
Client

Publication
Client

Communication
Interface

Registration
Table

Publication
Algorithm

 

Figure 6-2. Overall Semantic Service Discovery Architecture 
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There matchmaker service has four components: the communication interface, the ontology 

loader, the publication module, the registration table and the matching module. The matchmaker 

receives messages from the client through the communication interface. When a message is a 

service description, the interface sends it to the ontology loader and the publication module for 

publication. The result of the publication is stored in the registration table. When a message is 

service request, the communication interface sends it to the matching module for service 

discovery. The result of the matching is set of semantically matched services, which will be sent 

to the discovery client.  

 

The WSP matchmaker assumes there is only one centralized domain ontology (i.e., EPO), which 

is referenced by the OWL-S service description and the OWL-S service request. The ontology 

loader preprocesses the domain ontology and creates data structures necessary for semantic 

service publication and matching. The ontology loader parses the OWL file of the ontology and 

creates a hierarchical data structure to store all the OWL classes (concepts) based on their 

relationships defined in the OWL file. For each concept of the ontology, there is a list which 

stores the entire super and sub classes of the concept. Figure 6-3 shows an example of the 

hierarchical structure, where concept C2 has a super class C1 and a sub class C4. Based on the 

list associated with C2, we can infer that C1 subsumes C2, C2 subsumes C4, and C2 has no 

relation with C3.  
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Figure 6-3. Preprocessing of the domain ontology 

 

 

6.4. Semantic Publication Algorithm 

 

The purpose of the publication algorithm is to store and index service descriptions. Each service 

description is assigned a unique ID and store in a local database. Also, each service description is 

indexed using the domain ontology. The indexing result is stored in the registration table, which 

is used as the main data structure for service matching. 

 

6.4.1. Algorithm Description and Analysis 

 

Figure 6-4 shows the pseudo code of the publication algorithm. For a concept C in a service 

description, the publication algorithm performs a graph traversal to identify C’s relations with 

each node (concept) of the graph (ontology). At a node u, the algorithm compares C with u and 

u’s super and sub classes. If C is the same as u, then the service gets an “exact” match score at u. 
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If C is a subclass of u, then the service gets a “plug” match score at u. If C is a super class of u, 

then the service gets a “subsumption” match score. Otherwise, the service does not have a score 

at u, which means the service cannot provide the capability represented by u. If the service has a 

score at u, it is indexed by u and the match result is inserted into a hash table called service 

registration table. 

 

The index table is a survey of all services’ capabilities. It associates a service’s concept 

(capability) at relevant concepts (nodes) in the ontology. The benefit is that when we need to 

search for a capability (concept), we can search the index table and find all services that can 

provide the capabilities. 

 

A time complexity analysis was performed for the algorithm (see Appendix A). The analysis 

shows the time complexity is O( m(|V| + |E|) ), where |V| is the number of vertices in G, |E| is the 

number of edges, and m is number of concepts in service. 

 

 procedure register(service, G) 
   
1.    registration = empty hash table 
2.    parse service into concepts c[m] 
3.    for i = 1 to m do 
4.        u0 = the root vertex in G 
5.        DFS(u0, c[i]) 
6.    return registration 

//service is a service description 
//G is an ontology; G = <V, E> 
 
//m = number of concepts 
 
 
//depth-first traversal of G 
 

   
 procedure DFS(u, c)  

1.    degreeOfMatch(u, c) 
2.    status[u] = “processed” 
3.    for each neighbor v of u do 
4.        if status[v] != “processed” then 
5.            DFS(v, c) 
6.    return 

//u, c are concepts 

   
 procedure degreeOfMatch(u, c)  

1.    if c = u then 
2.        service.score = “exact” or 3 

//measure match between u and c 
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3.    if c is subclass of u then 
4.        service.score = “plugin” or 2 
5.    if c is superclass of u then 
6.        service.score = “subsumption” or 1 
7.    if service.score != null then 
8.        registration.add(u, service)  
9.    return 

 

Figure 6-4. Pseudo code for the WSP service publication algorithm 

 

6.4.2. A Service Registration Example 
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Figure 6-5. An example of service registration, where a service is pointed to the conceptual nodes which have 

relations with the concept in the service. 

 

Figure 6-5 shows an example of registering three semantic service descriptions S1, S2 and S3 

with the domain ontology, where S1 has an output concept C2, S2 has an output concept C1, and 

S3 has an output concept C4.  
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For S1, the algorithm traverses the ontology graph and compares C2 with each node. At node 

C1, the service gets a match score of 2 because C2 has a “plugin” match with C1; at node C2, the 

service gets a match score of 3 because C2 has an “exact” match with C2; at node C4, the service 

gets a match score of 1 because C2 has an “subsumption” match with C4; at node C3, the service 

gets a match score of 0 because C2 has no match with C3. Similarly, S2 gets a score of 3 at node 

C1; a score of 1 at node C2; a score of 1 at node 4; and a score of 1 at node C3. S3 gets a score of 

2 at node C1; a score of 2 at node C2; a score of 3 at node C4; and a score of 0 at node C3. The 

registration result is shown in Figure 6-6. 

 

Mapping ScoreServiceConcept

Score (c4, S3) = 3S3
Score (c4, S2) = 1S2
Score (c4, S1) = 1S1

C4

Score (c2, S3) = 2S3
Score (c2, S2) = 1S2
Score (c2, S1) = 3S1

C2

Score (c1, S3) = 2S3
Score (c1, S2) = 3S2
Score (c1, S1) = 2S1

C1

Concept Service Mapping Score

Score (c4, S3) = 3S3
Score (c4, S2) = 1S2
Score (c4, S1) = 1S1

C4

Score (c2, S3) = 2S3
Score (c2, S2) = 1S2
Score (c2, S1) = 3S1

C2

Score (c1, S3) = 2S3
Score (c1, S2) = 3S2

S1 Score (c1, S1) = 2
C1

 

Figure 6-6. Service registration result is a service registration table (or an index table). 

 

6.5. Semantic Service Matching Algorithm 

 

The matching algorithm compares the concepts (requirements) in an OWL-S request with the 

concepts (capabilities) in an OWL-S service description. The global match between the request 

and the service description is a summation of the degree of match between concepts, see 

Equation 6-3. 

 98



 

 

6.5.1. Algorithm Description and Analysis 

 

Figure 6-7 shows the pseudo code of the matching algorithm. For each concept Ci in a service 

request, the algorithm looks up the registration table for a record associated with it. This record 

contains a list of services that could provide the capability represented by Ci. This list is called a 

candidate list for Ci. After all candidate lists are retrieved, the algorithm tries to find the 

intersection of those lists. Services that appear in all the candidate lists represent the final 

matched services—services that can provide all the concepts (capabilities) in the request. Finally, 

the matched services are sorted based on their global match scores. 

 

A time complexity analysis was performed for the algorithm (see Appendix A). The best case 

time complexity is O( (m)(N) ), the worst case time complexity is O((m)(N) + n2), where m is the 

number of concepts in request, N is the total number of registered services, and n is the number 

of matched services. 

 

 
 procedure match (request, registration) 

 
1.    parse request  into concepts c[m]     
2.    var service[], candidateList[m][] 
3.    for i = 1 to m do  
4.       candidateList[i] = services indexed by c[i] 
5.    service = candidateList[1] 
6.    for i = 2 to m do 
7.        for j = 1 to N do 
8.            if service[j] != candidateList[i][j] then 
9.                    remove service[j] 
10.   for k = 1 to length(services) do 
11.       for i = 1 to m do 
12.           service[k].match += service[k].score(c[i]) 
13.  insertion_sort(service) 
14.  return service 

//request is a service description 
//registration is an index table 
 
 
//m = number of concepts 
//hash table search 
 
 
//N = all registered services 
 
 
 
//n = matched services (n < N) 
 
//calculate total match score 
//sort matched services 
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 procedure insertion_sort(A) 

1.    for j = 2 to length(A) do 
2.        key = A[j] 
3.        i = j – 1 
4.        while i > 0 and A[i] > key do 
5.             A[i+1] = A[i] 
6.             i = i – 1 
7.        A[i+1] = key 
8.    return 

  
//insert A[j] into the sorted list     
A[1...j-1] 
 
 

 

Figure 6-7. Pseudo code for the WSP service matching algorithm. 

 

6.5.2. A Service Matching Example 

 

Concept

Request

Cm

C1 S1,1 S1,2 S1,j

CiR1 Si,1 Si,2 Si,j

Sm,1 Sm,2 Sm,j

…

…

Registration
Table

…

 

 

Figure 6-8. Protocol for service matching. Each concept in a service request is matched against a record in the 

registration table. The final matched services will be the intersections of all candidate lists. 

 

Figure 6-8 shows an example of the service matching process, where the service request R1 has 

m required concepts {C1, …, Cm}. For C1, there is a list of matched services L1 = {S1,1, …, 

S1,j}. Similarly, Cm has a list of matched services Lm = {Sm,1, …, Sm,j}. The m lists are joined 

to find the common services—the final results. 
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6.5.3. Comparison with Typical Matching Algorithm 

 

Existing service matching algorithms usually perform a pair-wise comparison between a service 

request and all the registered services (e.g., Paolucci et al., 2002; Li and Horrocks, 2003). A 

match between a request and a service consists of the match of the request concept  and the 

service concept . In order to find the similarity between a request concept and a service 

concept, a matching algorithm needs to search the ontology graph to find the locations of the two 

concepts and then determines if they have any ontological relationship using the scoring matrix 

defined in Equation 6-2 (Section 6.2.2).  

R
iC

S
iC

 

Assuming the ontology is preprocessed such that each concept has a record of its subclasses and 

superclasses (see Section 6.3.1), then either  or  needs to be searched but not both. For 

example, to determine the match between a request output and a service output , an 

algorithm can search the ontology graph to find the location of and determine and degree of 

match between the two concepts by checking if appears in ’s list of subclasses and 

superclasses. Similarly, the match between a service input and a request input and the match 

between a service constraint and a request constraint all require traversal of the ontology graph.  

R
iC S

iC

RO SO

RO

SO RO

 

 
 procedure match(request, All, G)  

  
1.    var service[ ] 
2.    for i = 1 to length(All) do 
3.        match = serviceMatch(request, All[i]) 
4.        if match != null then 
5.            add All[i] to service 
6.    sort(service) 
7.    return service 

//G is an ontology, G = <V, E> 
//All is a list of all registered services 
 
//N = number of all services 
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 procedure serviceMatch(request, service) 

1.    parse request into concepts c1[m] 
2.    parse service into concepts c2[m]  
3.    for i = 1 to m do 
4.        u0 = the root vertex in G 
5.        score[i] = DFS’(u0, c1[i], c2[i]) 
6.        service.match += score[i]  
7.    return service.match 

//compare a request with a service  
 
 
 
 
 
//depth-first search of service concept 
//calculate match score 

 
 
 

procedure DFS’(u, x, y)  
  
1.    if u = y then 
2.        score = degreeOfMatch(y, x) 
3.        return score 
4.    else 
5.        status[u] = “processed” 
6.        for each neighbor v of u do 
7.            if status[v] != “processed” then 
8.                DFS’(v, x, y) 

//x is request concept 
//y is corresponding service concept 

 
 
 

procedure degreeOfMatch(u, c)   
1.    if c = u then 
2.        score = “exact” or 3 
3.    if c is subclass of u then 
4.        score = “plugin” or 2 
5.    if c is superclass of u then 
6.        score = “subsumption” or 1 
7.    return score 

 

 
Figure 6-9. Pseudo code for a typical service matching algorithm 

 

Figure 6-9 shows the pseudo code of a typical service matching algorithm. In the main control 

procedure “match” of the matching algorithm, a service request is matched against all the 

registered services. Whenever a match between the request and any of the services is found, it is 

recorded and scored to find the services with the highest similarity. 

 

A match between a request and a service consists of the match of all the request concepts and the 

service concepts (see procedure “serviceMatch”). A match is recognized if and only if for each 

request concept, there is a matching service concept. To determine if there is a match, the 

algorithm first searches for the service concept in the ontology and then calls the scoring matrix 
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(see procedure “degreeOfMatch”) to calculate the degree of match (or match score). The match 

scores for all concepts are summed up as the global match score (or similarity score) between the 

request and the service. 

 

The last piece of the algorithm is to sort the resulting matches. The sorting is based on the 

similarities scores of all matched services. Traditional sorting algorithms (e.g., insertion sort) can 

be applied here. 

 

A time complexity analysis was performed for the algorithm (see Appendix A). The best case 

time complexity is O( (N)(m)(|V|+|E|) ), and the worst case time complexity is O((N)(m)(|V|+|E|) 

+ n2 ), where N is the total of registered services, m is the number of concepts in service request, 

|V| is the number of vertices in G, |E| is the number of edges in G, and n is the number of 

matched services.  

 

Table 6-2. Comparing WSP matching algorithm with typical matching algorithm 

 Typical  WSP 
Service Publication No service indexing O(m(|V|+|E|)) 
Service Matching 
(best case) 

O((N)(m)(|V|+|E|)) O((m)(N)) 

Service Matching 
(worst case) 

O((N)(m)(|V|+|E|) + n2) O((m)(N) + n2) 

 

Table 6-2 compares the time complexity for typical service matching and WSP service matching. 

The typical matching algorithm does not have service indexing strategy. The matching between a 

service request and all the registered services is dependent on the size of the ontology and the 

number the registered services. When the number of the registered services increases or (and) the 

size of the ontology increases, the matching time also increases significantly. By introducing 
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service indexing, the time complexity associated with WSP matching is reduced. It is not 

dependent on the size of the ontology. 

 

6.6. WSP Scenario: Discovery of Protein Dynamics Data Resource 

 

With the rapid accumulation of protein structures in PDB, it now widely recognized that efficient 

methods and tools are needed for understanding the protein dynamics, and thereby controlling 

the function of target proteins (Yang et al., 2005). Indeed, researchers have built a wide range of 

Web servers and databases on protein structural dynamics, including MolMovDB (Echols et al., 

2003), DynDom (Lee et al., 2003), ElNemo (Suhre and Sanejouand, 2004), ProMode (Wako et 

al., 2004), MoViES (Cao et al., 2004), Dynamite (Barrett and Noble, 2005), WEBnm (Hollup et 

al., 2005), and iGNM (Yang et al., 2005), see Section 2.4.2.  

 

Although these data resources all provide protein dynamics data, they have different capabilities 

and semantic meanings associated with them. This is because there are many types of dynamics 

data derived from different methods. For example, the data provided by iGNM is the mode 

shapes predicted by the GNM model at the residue level; the data provided by ProMode is the 

mode shapes predicted by NMA at the atom level; the data provided by MolMovDB is the 

trajectories derived by interpolations between two conformations. Despite their heterogeneity, 

OWL-S semantic descriptions can be generated to precisely capture the capabilities of these data 

resources (see Section 8.3.2).  
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By having service descriptions and service requests refer to the EPO ontology, the semantic 

matching algorithm can quantitatively measure the similarity between a service and a request. 

Therefore, for a given request, the WSP matchmaker can perform user-oriented discovery by 

retrieving services that semantically meet the request.  

 

Figure 6-10 shows two service discovery examples. In the first example, the input of iGNM gets 

a score “2” (because “PDB ID” is a subclass of “protein”), and the output of iGNM gets a score 

“2” (because “mode shape” is a subclass of “dynamics”). So iGNM gets a global match score of 

“4”. Similarly, ProMode and MolMovDB also gets a score of “4”. In this case, all three services 

have equal capabilities for the request R1, which looks for general (any type) protein dynamics 

data. 

 

In the second example, the input of iGNM gets a score “3”, the output of iGNM gets a score “3” 

and the constraint gets a score “3”. So iGNM get a global match score of “9”. The input of 

ProMode gets a score “3”, the output of ProMode gets a score “3”, and the constraint gets a score 

“0” (because “atoms” is different from residues”). So ProMode gets a global match score of “6”. 

The input of MolMovDB gets a score “3”, but the output and the constraint both get a score “0” 

(because “trajectory” is different from “mode shape” and there is no constraint concept in the 

description). So MolMovDB gets a global match score of “3”. In this case, iGNM is the most 

accurate service because it provides the same capability that is being looked for—providing 

mode shape data for PDB structures at the residue level. 
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Figure 6-10. WSP service matching examples 
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7. CHAINING OF PROTEIN WEB SERVICES 
 

 

7.1. Introduction 

 

Protein feature web services and associated analysis web services (see Chapter 4) allow users to 

develop a wide range of applications. The service operations that provide protein features 

constitute basic building blocks out of which new applications are created. For example, 

enzymatic sites feature can be used in many different applications. One application can be using 

enzymatic feature to develop prediction models for protein function. Other applications can be 

correlating enzymatic feature to conservation, hydrophobicity or dynamics. 

 

This chapter presents a workflow-based approach for integrating protein feature web services. In 

this approach, a WSP application (i.e., an integration task) is represented as an abstract workflow 

of service requests, where each request is expected to be implemented by a web service. An 

integration agent is used to select and chain services, based on the criteria of service accuracy 

and data interoperability. The agent finally generates a concrete workflow of web services, 

which automatically integrates the results from individual services.  
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7.2. Workflow-Based Service Integration 

 

WSP allows users to integrate protein features through protein web services. As discussed in 

Section 2.6.3 and Section 3.3, one way of performing service integration is to pipe together 

inputs and outputs of consecutive web services in a workflow environment.  

 

In WSP, there are three types of workflows, namely application or higher level workflow, 

abstract workflow and concrete web services workflow. The higher level workflow is used to 

represent a user application (i.e., integration task). It is a directed acyclic graph (DAG) of tasks, 

where each task is to obtain a protein feature or correlate two protein features. Figure 7-1(a) 

shows a higher level workflow for protein feature integration/correlation, where the initial 

condition (input) T0 is a protein, the first task T1 is to obtain a structure of the protein, the second 

task T2 is to obtain dynamics for the structure, the third task T3 is to obtain the conservation 

profile of the protein, the four task T4 is to correlate the dynamics feature with the conservation 

feature, and the fifth task T5 is to visualize the correlation map. 

 

Given a higher-level workflow, the OWL-S profile generator (see Section 5.4) is used to 

generate a semantic service request for each task. The resulting workflow is called an abstract 

workflow which consists of service requests. The abstract workflow has the same topology (data 

dependency) as the higher-level workflow. Figure 7-1(b) shows an example of abstract 

workflow. The first request R1 is to find a service that provide protein structure, it is formulated 

according to the first task T1 in the high-level workflow by the user. Similarly, the second 

request R2 is to find a service that provide protein dynamics, and so on. 
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Given an abstract workflow, WSP generates a web services workflow which consists of web 

services. The web services workflow has the same topology as the higher-level workflow and the 

abstract workflow. Figure 7-1(c) shows a web services workflow, where each node is a service 

that implements a task. For example, service S2 is used to implement T1, S7 is used to implement 

T2, and so on. 
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Figure 7-1. (a) An example of higher-level workflow; (b) an example of abstract workflow; (c) an example of 

concrete web services workflow. 

 

As discussed in Section 3.3, WSP adopts a static-workflow based integration approach (see 

Figure 3-1), where the higher-level workflow is provided by the user. Based on a higher-level 

workflow, users can generate semantic service requests using the OWL-S profile generator (see 

Section 5.4). Once an abstract workflow is generated, the integration agent is responsible for 

generating the web services workflow. The details of service integration are presented in the 

following section. 

 

7.3. WSP Service Integration Process 

 

Figure 7-2 shows the WSP service integration process. Given a higher-level workflow, the 

OWL-S profile generator (see Section 5.4) is used to generate a semantic service request for each 

task. The result is an abstract workflow. The semantic matchmaker (see Chapter 6) is then used 

to discover services for all requests. The result is a list of candidate services for each request. 
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After that an integration agent is used to select and chain services. The resulting workflow is a 

web services workflow which consists of web services. 
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Figure 7-2. WSP integration process. 

 

The integration agent contains two modules, the first is service selection module and the second 

is service chaining module. Service selection is to select a service for each request using the 

WSP selection criteria: service accuracy and data interoperability (see Section 7.4 for details). 

Service chaining is to generate SOAP requests to all selected services and chain the service 

operations (functionalities) according to the data dependencies (links) defined in the abstract 

workflow. A service chaining algorithm is developed based on the WSP service selection criteria 

(see Section 7.5). 
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It should be noted that the mapping from an abstract workflow to a concrete web services 

workflow may require a number of user interactions (e.g., providing additional input parameters 

or modifying the abstract workflow). This is because adjacent services may have dissimilar 

service parameters (i.e., input and output data schema) that prevent a web services workflow 

from being fully automatic. The problem of user involvement in service chaining is not unique to 

WSP, scientists using workflows of web services have experienced similar problems (Hull et al., 

2005; Kim et al., 2004; Cardoso and Sheth, 2003; Sirin et al., 2003), so it seems that this problem 

is general rather than specific to WSP. 

 

7.4. Service Selection Criteria 

 

7.4.1. Literature Review 

 

Given a workflow of service requests (abstract work), the integration problem is to discover, 

select and chain services to generate an invokeable workflow of web services. Service selection 

is a critical step wherein a specific service instance is chosen based on user requirements. These 

requirements represent a wide range of quality expectations (e.g., accuracy, response time and 

reputation) for the services. 

 

Several service composition systems have been proposed to select services based on 

nonfunctional attributes such as quality of services (QoS) and trust. For example, Maximilien 

and Singh (2004) proposed a framework for service selection based on a QoS ontology. In their 
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framework, both users and providers can specify QoS policies using notations in the QoS 

ontology. A matching algorithm is used to match user policies to provider service policies and 

thereby select services according to user QoS requirements. Using a QoS model, Zeng et al. 

(2004) proposed two service selection approaches, namely local optimization and global 

planning. In the local optimization approach, the system selects the web service which has the 

maximum QoS score for a given task. In the global planning approach, all possible execution 

paths are generated and the one which maximizes the user’s QoS requirements is selected.  

 

In addition to QoS-based service selection, there are service selection methods based on the 

interoperability at the WSDL interface level. For example, Spillner et al. (2006) proposed an 

approach to select services based on data interoperability between consecutive services. This 

approach checks for the compatibility of the output message of one service operation with the 

input message of the other operation. For each check, there are three possible outcomes: (1) all-

or-nothing compatibility: the output message and the input message are either fully compatible 

(i.e., identical) or not at all; this can be easily checked for simple data types and recursively 

checked for complex data types; (2) subset compatibility: the input of the second operation is a 

subset of the output of the first one, in this case some output values of the first operation will 

have to discarded; or the output of the first operation is a subset of the input of the second 

operation, in this case some additional values will have to be provided in order to invoke the 

second operation; (3) arbitrary compatibility: there is a certain percentage of compatibility 

between the output message and the input message, e.g., two complex XML schema may have 

some compatible or overlapping parts. Similar to Spillner’s approach, Cardoso and Sheth (2003) 

proposed a method that checks the structural properties of service inputs and outputs. When this 
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is no perfect match between two services, the system will prompt the user to manually establish 

the connections among web service interfaces, e.g., manually connect the outputs of one service 

with inputs of the next service. 

 

7.4.2. WSP Service Selection Criteria 

 

WSP adopts two criteria to select services: service accuracy and data interoperability. Service 

accuracy means that the most accurate service is selected for each request (task). The accuracy is 

measured by the semantic similarity between the request and the service. For each request, the 

WSP matchmaker returns a list of semantically matched services sorted based on their similarity 

score to the request (see Section 6.5). Therefore, services with the highest score are selected. 

These services represent the services that can best meet the data requirements for each task.  

 

The second criterion is to consider data interoperability between adjacent services. More 

specifically, the output schema of one service is compared with the input schema with the next 

services. Figure 7-3 shows an example of selecting services based on data interoperability, where 

the first request R1 is to find protein members for a given protein family, and the second request 

R2 is to find dynamics data for protein members. Through semantic matching, the system 

discovers a list of candidate services for each request. For R1, there is only one service called 

“Pfam” that semantically matches R1. Therefore, “Pfam” is selected. For R2, there are two 

services “oGNM” and “iGNM” that semantically match R2. As can be seen, “oGNM” and 

“iGNM” have the same matching score and thereby the same capabilities to provide dynamics 

data (i.e., slow mode). Since “oGNM” and “iGNM” have the same capabilities, the system will 
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consider their interoperability with “Pfam”. By checking the WSDL interfaces of “oGNM” and 

“iGNM”, the system selects “iGNM” because its input data schema (XSD:String) is the same as 

the output schema of “Pfam”. 
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Figure 7-3. An example showing the process of service selection 

 

 

7.5. WSP Service Chaining Algorithm 

 

Service chaining is a complex problem. Assuming there are N requests (tasks) and each request 

has M candidate services, then there are NM  possible solution paths (i.e., chain of services), see 
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Figure 7-4. As discussed in Section 7.4.1, many algorithms have been proposed to select and 

chain services. These algorithms generally fall into two categories: local optimization algorithms 

and global optimization algorithms. The main feature for a local optimization algorithm is to 

select a service for each task without considering the relationships between selected services. 

The main feature of a global optimization algorithm is to select a solution path that maximizes 

the optimization parameter (e.g., QoS or interoperability). 
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Figure 7-4. An illustration of the service chaining problem 

 

Based on the WSP service selection criteria (see Section 7.4.2), we designed a service chaining 

algorithm that considers both semantics and data interoperability. This algorithm is a hybrid of 

local optimization and global optimization, because service accuracy is used for local 

optimization (vertical) and data interoperability is used for global optimization (horizontal).  
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Figure 7-5 shows the pseudo code of the chaining algorithm. There are three major steps in the 

main procedure “serviceIntegration”. The first step is to perform service discovery for each 

request by traversing the abstract workflow G. After service discovery, each request has a list of 

candidate services, which are matched services sorted based on their matching score. If there is 

no candidate service for a request, the algorithm will prompt the user to modify the request. The 

second step is to perform initial service selection based on the matching score of candidate 

services. For each request, the service with the highest match score is selected. If there is more 

than one service with the highest score, all such services are selected. The selected service(s) for 

each request is stored in “semiList”. The third step is to perform final service selection by 

choosing a service from the “semiList” for each request. The selection is based on the data 

interoperability. That is a service is selected if its input schema is compatible with the output 

schema of the previous selected service.  

 

A time complexity analysis was performed for the algorithm (see Appendix A). The analysis 

shows the time complexity is O(|V| + |E|), where |V| is the number of vertices (requests) in G, 

and |E| is the number of edges. 
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 procedure serviceIntegration(G, registration) 
 
   
1.    reqest0 = the root vertex in G 
2.    discovery(request0, registration) 
3.    initialSelection(request0) 
 
4.    finalSelection(request0) 
5.    return 

//G is an abstract workflow 
//G = <V, E>, where V is requests  
//and E is request dependencies 
 
//perform service discovery 
//select services based on matching 
//score 
//further select services based on data 
//interoperability 

   
 procedure discovery(u, registration) 

 
1.    status[u] = “processed” 
2.    candidates[u] = match(u, registration) 
3.    for each neighbor v of u do 
4.        if status[v] != “processed” then 
5.            discovery(v, registration) 
6.    return 

//depth-first traversal of G 
//u is a service request 

   
 procedure initialSelection(u) 

 
1.    status[u] = “processed” 
2.    if candidates[u] = null then 
3.        return 
4.    semiList[u] = top services in candidates[u] 
5.    for each neighbor v of u do 
6.        if status[v] != “processed” then 
7.            initialSelection(v) 
8.    return 

//depth-first traversal of G 
//u is a service request 
 
//check if there are candidate services 
 
//select services with highest score 
 

   
 procedure finalSelection(u) 

 
1.    status[u] = “processed” 
2.    if u is root vertex in G then 
3.        service[u] = first service in semiList[u] 
4.        lastS = service[u] 
5.    for i = 1 to m do 
6.        S = semiList[u][i] 
7.        if S.inputSchema = lastS.outputSchema then 
8.            service[u] = S break 
9.    if service[u] = null then 
10.      service[u] = first service in semiList[u] 
11.  for each neighbor v of u do 
12.      if status[v] != “processed” then 
13.          lastS = service[u] 
14.          finalSelection(v) 
15.  return 

//depth-first traversal of G 
//u is a service request 
 
 
 
 
//m is the number of services in 
//semiList[u], m ranges from 1 to 5 
 

 
Figure 7-5. Pseudo code for the WSP service chaining algorithm. 
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8. WSP PROTOTYPE 
 

 

8.1. Introduction 

 

A WSP prototype was developed using the methodologies proposed in Chapters 3–7. This 

chapter discusses the implementation issues related to protein web services, ontologies, semantic 

service descriptions, and the WSP matchmaker.  

 

8.2. Protein Feature Web Services 

 

A protein feature web service contains operations that process protein features (see Chapter 4). 

Once a protein feature web service is appropriately modeled, it will be implemented as a reusable 

component wrapped with standard interfaces for invocation and discovery. 
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Figure 8-1. Life cycle to develop biological Web services using AXIS platform 

 

Web services can be implemented in many different platforms (e.g., Microsoft .NET, IBM 

WebSphere/J2EE) according to the web services standards. In WSP, the Apache Axis 

(http://ws.apache.org/axis/java/) is adopted as the development platform because it has a SOAP 

engine for processing service requests and toolkits for generating WSDL interfaces. Figure 8-1 

shows the life cycle of Web services development. The boxes in the figure represent activities 

that the developer needs to perform. The parallelograms in the figure represent tools provided by 

Axis. The document symbols represent code or file that the developer needs to generate, possibly 

with the assistance of tools. 
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For cross-platform interoperability, we implement Web services using Java. The Java code is 

converted into WSDL automatically with the Java2WSDL Converter. A Web Service 

Deployment Descriptor (WSDD) contains information to be deployed into Axis, i.e., service 

name, Java class name, and allowed methods. Once a WSDD file is generated, it is sent to the 

Axis Server by the Axis AdminClient in order to actually deploy the described service. After 

that, a binding agent based on Axis Client is used to invoke the service through the WSDL 

description. 

 

8.2.1. iGNM Protein Dynamics Web Service 

 

The iGNM service operations are implemented in Java. The implementations are then published 

to the Apache Axis engine using a publish client and a deployment file. The deployment file 

explicitly lists all the allowed operations (methods) and their Java class names: 

 

  <deployment name="test" xmlns="http://xml.apache.org/axis/wsdd/"  
      xmlns:java="http://xml.apache.org/axis/wsdd/providers/java"> 
    <service name="ignm-mode-service" provider="java:RPC"> 
      <parameter name="className" value="ignm.ignmModeService"/> 
      <parameter name="allowedMethods" value="extract test2"/> 
      <parameter name="allowedRoles" value="user1,user2"/> 
      <parameter name="wsdlServicePort" value="GetQuote"/> 
      <requestFlow name="checks"> 
        <handler type="java:org.apache.axis.handlers.SimpleAuthenticationHandler"/> 
        <handler type="java:org.apache.axis.handlers.SimpleAuthorizationHandler"/> 
      </requestFlow> 
    </service> 
  </deployment> 

 

Once a service and its operations are published, Apache Axis automatically generates a WSDL 

programmatic interface based on the definitions of iGNM service operations. Figure 8-2 shows a 

portion of the iGNM service’s WSDL interface, where the operation name is called “extract”, the 

input message is called “extractRequest” and the output message is called “extractResponse”. 
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The data schemas for both input message and output message are explicitly defined. For 

example, the input data schema consists of two strings and one integer, and the output data 

schema consists of a double array.  

 

 

Figure 8-2. Fragment of iGNM web service’s WSDL interface 

 

A SOAP client is used to invoke the iGNM web service. The client first reads the definition of 

the selected operation and its input and output schema. Then it passes in the input values and 

makes binds to the iGNM service to obtain the output values. For example, to obtain the 1st slow 

mode for the PDB structure 101m, the following service binding command is used: 

 

java ignm.ignmClient -lhttp://gis35.exp.sis.pitt.edu:8080/axis/services/ignm-mode-service -uuser1 

-wpass1 101m slowmode 1 
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where the SOAP client is called “ignm.ignmClient”, the iGNM service is called “ignm-

modeshape-service”, and the default account and password are called “user1” and “pass1” 

respectively. This command returns an array of residue fluctuations, where each fluctuation is a 

double value. 

 

8.2.2. N-gram Conservation Profile Web Service 

 

The n-gram conservation operations are implemented in Java. The implementations are then 

published to the Apache Axis engine using a publish client and deployment file. The deployment 

file lists the allowed operations (methods) and their Java class names: 

 

  <deployment name="test" xmlns="http://xml.apache.org/axis/wsdd/"  
      xmlns:java="http://xml.apache.org/axis/wsdd/providers/java"> 
    <service name="ngram-profile-service" provider="java:RPC"> 
      <parameter name="className" value="ngram.ngramService"/> 
      <parameter name="allowedMethods" value="extract"/> 
      <parameter name="allowedRoles" value="user1,user2"/> 
      <parameter name="wsdlServicePort" value="GetNgram"/> 
      <requestFlow name="checks"> 
        <handler type="java:org.apache.axis.handlers.SimpleAuthenticationHandler"/> 
        <handler type="java:org.apache.axis.handlers.SimpleAuthorizationHandler"/> 
      </requestFlow> 
    </service> 
  </deployment> 

 

Once n-gram service is published, Apache Axis automatically generates a WSDL interface based 

on its definitions. Figure 8-3 shows a portion of the n-gram conservation service’s WSDL. 
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Figure 8-3. N-gram conservation service’s WSDL interface 

 

A SOAP client is used to invoke the n-gram conservation service. For example, to obtain the 

PDB structure 101m’s chain “0”, the following service binding command is used: 

 

java ngram.ngramClient -lhttp://gis35.exp.sis.pitt.edu:8080/axis/services/ngram-profile-service -

uuser1 -wpass1 101m 0 

 

where the SOAP client is called “ngram.ngramClient”, the service is called “ngram-profile-

service”, and the default account and password are called “user1” and “pass1” respectively. This 

operation call returns an array of conservation percentages for residues in chain “0”. 
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8.3. Semantic Descriptions of Services 

 

8.3.1. Implementation of the EPO Ontology 

 

EPO (see Section 5.3.2) is implemented in OWL using the Protégé OWL Editor (Protégé, 2002), 

see Figure 8-4. The current implementation of EPO contains 122 concepts, including 92 PO 

concepts and 30 additional concepts. Figure 8-5 shows a fragment of EPO OWL ontology, where 

each class element represents a concept, and the “subClassOf” attribute provides the hierarchy 

relationship between concepts. For example, “Protein” is a subclass of 

“ExtendedProteinOntologyConcept”, and “Dynamics” is a subclass of “ThreeD_Parameters”. 

 

 

Figure 8-4. Development of EPO in Protégé 
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  <owl:Class rdf:about="#Protein"> 
    <rdfs:subClassOf rdf:resource="#ExtendedProteinOntologyConcept"/> 
  </owl:Class> 
  <owl:Class rdf:about="#Dynamics"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#ThreeD_Parameters"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:ID="PDB_ID"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#Structure"/> 
    </rdfs:subClassOf> 
  </owl:Class> 
  <owl:Class rdf:ID="PhysiologicalFunctions"> 
    <rdfs:subClassOf> 
      <owl:Class rdf:about="#BiologicalFunction"/> 
    </rdfs:subClassOf> 
  </owl:Class>

 

Figure 8-5. Fragment of the EPO OWL ontology 

 

8.3.2. Generating OWL-S Service Descriptions 

 

The OWL-S profile generator (see Section 5.4) is implemented in Java. It incorporates EPO 

OWL ontology and OWL-S profile ontology to generate a wide range of semantic descriptions of 

web services on complex protein data related issues. 

 

Figure 8-6 shows the sample OWL-S service descriptions for iGNM, ProMode, and MolMovDB, 

using the EPO ontology. The description of iGNM specifies the input as “PDB ID”, the output as 

“mode shape” and the constraint as “residues”, which means that iGNM provides mode shape at 

the residue level for a given PDB ID. The description of ProMode specifies the input as “PDB 

ID”, the output as “mode shape” and the constraint as “atoms”, which means that ProMode 

provides mode shape at the atom level for a PDB structure. The description of MolMovDB 

specifies the input as “PDB ID” and the output as “Trajectory”, which means that MolMovDB 

provides protein motion trajectories for PDB structures. 
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<Input rdf:ID=”Protein”> 
  <parameterType>http://ontologyURL/EPO.owl#PDB_ID    
  </parameterType> 
</Input> 
<Output rdf:ID=”mode_shape”> 
  <parameterType>http://ontologyURL/EPO.owl#Mode_Shape 
  </parameterType> 
</Output> 
<Constraint rdf:ID=”Residues”> 
  <parameterType>http://ontologyURL/EPO.owl#Residues 
  </parameterType> 
</Constraint> 
<profile rdf:ID="dynamics service"> 
  <serviceName>iGNM_Mode_Shape</serviceName> 
  <hasInput rdf:resource="#Protein"/> 
  <hasOutput rdf:resource="#mode_shape"/> 
  <hasConstraint rdf:resource=”#Residues”/> 
</profile> 
 

(a) 
 
<Input rdf:ID=”Protein”> 
  <parameterType>http://ontologyURL/EPO.owl#PDB_ID    
  </parameterType> 
</Input> 
<Output rdf:ID=”mode_shape”> 
  <parameterType>http://ontologyURL/EPO.owl#Mode_Shape 
  </parameterType> 
</Output> 
<Constraint rdf:ID=”Atoms”> 
  <parameterType>http://ontologyURL/EPO.owl#atoms 
  </parameterType> 
</Constraint> 
<profile rdf:ID="dynamics service"> 
  <serviceName>ProMode</serviceName> 
  <hasInput rdf:resource="#Protein"/> 
  <hasOutput rdf:resource="#mode_shape"/> 
  <hasConstraint rdf:resource=”#Atoms”/> 
</profile> 
 

(b) 
 
<Input rdf:ID=”Protein”> 
  <parameterType>http://ontologyURL/EPO.owl#PDB_ID    
  </parameterType> 
</Input> 
<Output rdf:ID=”trajectory”> 
  <parameterType>http://ontologyURL/EPO.owl#Trajectory 
  </parameterType> 
</Output> 
<profile rdf:ID="dynamics service"> 
  <serviceName>MolMovDB</serviceName> 
  <hasInput rdf:resource="#Protein"/> 
  <hasOutput rdf:resource="#trajectory"/> 
</profile> 
 

(c) 
 

Figure 8-6. Sample OWL-S service descriptions for services that provide protein dynamics data. (a) iGNM mode 

shape service description; (b) sample ProMode service description; (c) sample MolMovDB service description. 

 

Similarly, users looking for protein dynamics data may have different requirements. In this case, 

OWL-S semantic descriptions of expected services can be generated to precisely capture the 

user’s data requirements. For example, if a user is looking for general protein dynamics data, 
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he/she can submit a request which specifies the input as “protein” and the output as “dynamics”, 

see Figure 8-7(a). However, if a user is looking for specific protein dynamics data, e.g., the mode 

shape for a PDB structure at the residue level, he/she can submit a request which specifies the 

input as “PDB ID”, the output as “mode shape” and the constraint as “residues”, see Figure 8-

7(b). 

 
<Input rdf:ID=”Protein”> 
  <parameterType>http://ontologyURL/EPO.owl#Protein    
  </parameterType> 
</Input> 
<Output rdf:ID=”Dynamics”> 
  <parameterType>http://ontologyURL/EPO.owl#Dynamics 
  </parameterType> 
</Output> 
<profile rdf:ID="dynamics service"> 
  <hasInput rdf:resource="#Protein"/> 
  <hasOutput rdf:resource="#Dynamics"/> 
</profile> 
 

(a) 
 
<Input rdf:ID=”Protein”> 
  <parameterType>http://ontologyURL/EPO.owl#PDB_ID    
  </parameterType> 
</Input> 
<Output rdf:ID=”mode_shape”> 
  <parameterType>http://ontologyURL/EPO.owl#Mode_Shape 
  </parameterType> 
</Output> 
<Constraint rdf:ID=”Residue”> 
  <parameterType>http://ontologyURL/EPO.owl#Residues 
  </parameterType> 
</Constraint> 
<profile rdf:ID=”dynamics service"> 
  <hasInput rdf:resource="#Protein"/> 
  <hasOutput rdf:resource="#mode_shape"/> 
  <hasConstraint rdf:resource=”#Residue”/> 
</profile> 
 

 (b) 
 

Figure 8-7. Two sample OWL-S service requests that look for protein dynamics data. 

 

Figure 8-8 shows a portion of a sample service description used to describe the N-gram 

Conservation Profile Service, which takes a PDB structure as input and produces a conservation 

profile as output. The description contains information about the input, output and constraint. 

More specifically, the input refers to the EPO concept of “PDB ID”, the output refers to the EPO 

concept of “conservation”, and the constraint refers to the EPO concept of “Ngram”. 
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<Input rdf:ID=”Protein”> 
  <parameterType>http://ontologyURL/EPO.owl#PDB_ID    
  </parameterType> 
</Input> 
<Output rdf:ID=”conservation”> 
  <parameterType>http://ontologyURL/EPO.owl#Conservation 
  </parameterType> 
</Output> 
<constraint rdf:ID=”method”> 
  <parameterType>http://ontologyURL/EPO.owl#Ngram 
  </parameterType> 
</constraint> 
<profile rdf:ID="conservation service"> 
  <serviceName>ProMode</serviceName> 
  <hasInput rdf:resource="#Protein"/> 
  <hasOutput rdf:resource="#conservation"/> 
  <hasConstraint rdf:resource=”#method”/> 
</profile>

 

Figure 8-8. Sample OWL-S description of n-gram conservation service 

 

 

8.4. WSP Matchmaker 

 

The Apache JUDDI (http://ws.apache.org/juddi/) is selected as the development platform for the 

WSP matchmaker (see Chapter 6). The advantage of JUDDI is that it is an open source Java 

implementation of the UDDI specification for Web Services. The WSP publication algorithm 

(see Section 6.4) and the WSP service matching algorithm (see Section 6.5) are integrated with 

JUDDI for semantic publication and discovery. Also, Jena toolkit (http://www.hpl.hp.com/sem 

web/jena.htm) is used to parse OWL ontologies for model representation and service matching. 
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9. WSP EVALUATION 
 
 

9.1. Introduction 

 

A number of experiments were performed to evaluate the performance of the WSP matchmaker. 

The parameters tested include: (1) solution space, (2) accuracy and (3) time efficiency. The 

results show that the matchmaker can efficiently match services from registered services. Also, a 

composite service, which integrates protein dynamics and conservation, is developed to 

demonstrate the effectiveness of the integration agent. 

 

9.2. Evaluation of the WSP Matchmaker 

 

9.2.1. Experimental Setups 

 

Two hundred OWL-S service descriptions were generated using the OWL-S profile generator 

(see Section 5.4 and Section 8.3). These service descriptions reflect a wide range of possible 

protein web services, from protein dynamics services to protein conservation services and to 

functional domains services (see Appendix B).  

 

Twenty OWL-S descriptions were randomly selected from the 200 OWL-S files to represent 

possible service requests. The 20 requests include 10 requests without constraints (2 concepts: 
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input and output) and 10 with constraints (3 concepts: input, output and constraint), see Table 9-

1. 

 

Table 9-1. Sample WSP service requests  

Request Index Service Input Service Output Constraints 
1 Protein Dynamics  
2 Protein  Conservation  
3 Protein  Catalytic Sites  
4 Protein  Active Binding Sites  
5 Structure Hydrophobicity  
6 Structure Ngram Patterns  
7 Structure Residue Sequence  
8 PDB_ID Mobility  
9 PDB_ID 3D Parameters  

10 PDB_ID Physiological Functions  
11 Protein  Dynamics Experimental 
12 Protein  Dynamics NMA 
13 Protein Conservation Multiple Alignment 
14 Protein Conservation Ngram 
15 Structure Dynamics Computational 
16 Structure Catalytic Sites Experimental 
17 Structure Catalytic Sites Computational 
18 PDB_ID  Hydrophobicity Residues 
19 PDB_ID  Hydrophobicity Atoms 
20 Chains  Functional Domains Computational 

 
Figure 9-1 shows the process to perform service matching. The 200 services are randomly 

divided into 20 sets, each containing 10 services. The 20 sets are published to the WSP 

matchmaker sequentially. After a set is published, service matching is performed using the 20 

requests (see Table 9-1). The matching results (e.g., matched services for each request) are 

recorded for further analysis. 
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Figure 9-1. Illustration of the matchmaker evaluation process 

 

Currently, EPO and PO have limited number of concepts, which in turn leads to limited number 

of semantic service descriptions about protein web services. As the ontology development in the 

protein domain continues to grow, the size of EPO/PO is expected to grow. To test the matching 

algorithm’s scalability with respect to the ontology size, a 1000-concept random ontology was 

generated. To test the algorithm’s scalability with respect to the number of registered services, 

1000 service descriptions (500 with constraints and 500 without constraints) were generated 

using the 1000-concept random ontology. 

 

To generate the random ontologies, concept names were created in the form of “conceptX” 

where X varies from 1 to N (e.g., N = 1000 for the 1000-concept ontology). The concept names 

are then randomly linked through a subclass relation. The services and requests are generated by 

randomly selecting concepts for inputs, outputs and constraints from the randomly generated 

ontology.  
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The experimental process for the 1000 random service descriptions is the same as that for the 

200 WSP service descriptions. 20 service requests (10 with constraints and 10 without 

constraints) were randomly selected and used to match against the 1000 random services. 

 

9.2.2. Analysis of Solution Space 

 

For a give request, the matched services constitute its solution space. The solution space is 

dependent on the available services registered in the matchmaker. Figure 9-2 shows the number 

of matched services for the 20 requests (see Table 9-1) when there are only 50 WSP services. As 

can be seen, the number of matched services varies from request to request. For example, 

“Request 1” has 25 matched services in its solution space while “Request 18” does not have 

matched services and thereby a null solution space. 

 

Also, it can be seen that the solution space for requests without constraints (see Figure 9-2(a)) is 

in general larger than that for requests with constraints (see Figure 9-2(b)). This can be explained 

by the number of concepts that need to be matched. For requests without constraints, there are 

only two concepts (input and output) that need to be matched, while for requests with 

constraints, there are three concepts (input, output and constraint) that need to be matched. 

Therefore, requests with constraints require stricter matching and thereby a smaller solution 

space (see Section 6.6). 

 

 133



 

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

No constraint

N
um

be
r o

f M
at

ch
ed

 S
er

vi
ce

s

Request Index

Match against 50 services

 

(a) 

 

0

5

10

15

20

25

30

11 12 13 14 15 16 17 18 19 20

Constraint

N
um

be
r o

f M
at

ch
ed

 S
er

vi
ce

s

Request Index

Match against 50 services

 

(b) 

 

Figure 9-2. Number of matched services when there are 50 WSP services: (a) using 10 requests without constraints; 

(b) using 10 requests with constraints. 
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Figure 9-3 shows the number of matched services for 20 requests when all the 200 WSP services 

are registered in the matchmaker. As it is obvious (compared with the 50 services situation 

shown in Figure 9-2), the solution space for each request in the case of 200 services increases. 

This is because there are more services for matching, i.e., with a larger search space, there is a 

larger solution space. 
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Figure 9-3. Number of matched services when there are 200 WSP services: (a) using 10 requests without 

constraints; (b) using 10 requests with constraints. 

 

Figure 9-4 illustrates the increase of solution space when the search space (registered services) 

increases from 10 to 200. It can be seen that there is a linear increase of solution space for both 

types of requests (without or with constraints). When the search space is creased 300% (from 50 

to 200), there is a 1000% increase (from 2.7 to 30.3) in solution space for the 10 requests without 

constraints, and there is a 255% increase (from 3.3 to 11.7) for the 10 requests with constraints. 
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Figure 9-4. Average number of matched services as a function of search space. 

 

 

The services in a solution space have differing match scores and thereby differing capabilities to 

meet the requirements of the request. There is a distribution of match scores associated with a 

solution space. Figure 9-5 shows four examples of score distributions, where (a) is the score 

distribution for “Request 1” with 50 services, (b) is the score distribution for “Request 1” with 

200 services, (c) is the score distribution for “Request 15” with 50 services, and (d) is the score 

distribution for “Request 15” with 200 services. These distributions show that there are only a 

few services with the highest match score. 
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Figure 9-5. Sample match score distributions. 

 

 

Figure 9-6 shows the average match score for the solution space (each for a request) when there 

are 200 services. It can be seen that the average score for a solution space varies from request to 

request. Figure 9-7 shows the average match score as a function of the search space (registered 

services). It can be seen that the average match score for both types of requests (without or with 

constraints) does not scale with the search space. 
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Figure 9-6. Average match score when there are 200 WSP services: (a) using 10 requests without constraints; (b) 

using the 10 requests with constraints. 
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Figure 9-7. Average match score as a function of search space. 

 

 

9.2.3. Analysis of Matching Accuracy 

 

In this research, accuracy acc is a measure of how a service request semantically matches a 

service. It is defined as the match score x divided by the largest possible match score max, see 

Equation 9-1. For request without constraints, the largest possible match score is 6 (3 for input 

and 3 for output). For requests with constraints, the largest possible match score is 9 (3 for input, 

3 for output and 3 for constraint).  

 

 )100( ≤≤≤≤= accmax,x
max

xacc  
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The accuracy of each matched service was calculated using the math score x. The average 

accuracy for each request’s solution space is also calculated. For requests without constraints, the 

average accuracy is within 40% ~ 85%, see Figure 9-8(a). For requests with constraints, the 

average accuracy falls within 60% ~ 95%, see Figure 9-8(b). 
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Figure 9-8. Matching accuracy with 200 services: (a) using 10 requests without constraints; (b) using 10 requests 

with constraints. 

 

 

Figure 9-9 shows the average accuracy as a function of the search space. It can be seen that the 

average accuracy for both types of requests (without or with constraints) does not scale with the 

search space. Also, the average accuracy for requests with constraints appears to be higher than 

the accuracy for requests without constraints. This suggests that formulating requests with 

constraints could improve accuracy. 
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Figure 9-9. Average accuracy as a function of search space. 

 

 

9.2.4. Analysis of Service Matching Time 

 

Figure 9-10(a) shows the average matching time for the 10 WSP requests without constraints. 

The value varies from 360ms to 420ms. Figure 9-10(b) shows the average matching time for the 

10 WSP requests with constraints. The value varies from 350ms to 380ms. Figure 9-10(c) shows 

the average matching time using the 1000-cocnetp random dataset. The value varies from 465ms 

to 530ms. These time ranges show that the matchmaker can discover services within seconds. 

 

The data also shows that the matching time increases as the number of registered services 

increases, which is consistent with the matching time complexity, see Section 6.5.1. In terms of 

trend, the data shows that the percentage of time increase is small as the number of registered 

services increases. Therefore, the overhead of service matching is small. 
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Figure 9-10. (a) Service matching time for 10 service requests without constraint; (b) service matching time for 10 

requests with constraint; (c) service matching time for random requests. 

 

 

Figure 9-11 correlates the average matching time with the average number of matched services 

(size of solution space). It can be seen that the number of matched services has a strong 

correlation with the average matching time. This is consistent with the matching process and the 

time complexity discussed in Section 6.5.1. 
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Figure 9-11. Correlation between matching time and solution space: (a) using 10 service requests without constraint; 

(b) using 10 requests with constraint; (c) using random requests. 

 

 

9.3. Evaluation of the WSP Integration Agent 

 

In this section, we present a WSP scenario describing the integration of protein dynamics data 

with sequence data. Figure 9-12 shows the higher-level workflow. The initial condition is a 

protein name or ID. The first task is to obtain the protein’s dynamics information. The second 

task is to obtain the protein’s conservation profile. The third task is to correlate the dynamics 

information with the conservation profile. 

 

 147



 

 

Initial condition
Protein name or ID

(e.g., 1ca2)

Task 1

Obtain protein
dynamics information

Task 2

Obtain protein
conservation profile

Task 3

Correlate dynamics with
conservation

 

Figure 9-12. A sample workflow for integrating dynamics data with conservation data 

 

Figure 9-13 shows the process of integrating dynamics data with sequence data, using the 

workflow shown in Figure 9-12. First, the integration agent takes the workflow and generates 

semantic service requests for each task (Step 1 in Figure 9-13). For Task 1, the request is to find 

a service which provides specific protein dynamics data (e.g., the mode shape at residue level) 

for a given protein (e.g., PDB ID). For Task 2, the request is to find a service which provides 

conservation profile (e.g., n-gram based conservation) for the protein. For Task 3, the request is 

to find a service which correlates two profiles at each residue position. 

 

 

Figure 9-13. Integrating dynamics data with sequence data 

 148



 

 

 

Figure 9-14 shows a portion of an OWL-S request that is used to describe the task. The input 

refers to the EPO concept of “PDB ID”, the output refers to the EPO concept of “Mode Shape” 

and the constraint refers to the EPO concept of “Residues”. 

 
<Input rdf:ID=”Protein”> 
  <parameterType>http://ontologyURL/EPO.owl#PDB_ID    
  </parameterType> 
</Input> 
<Output rdf:ID=”mode_shape”> 
  <parameterType>http://ontologyURL/EPO.owl#Mode_Shape 
  </parameterType> 
</Output> 
<Constraint rdf:ID=”Residues”> 
  <parameterType>http://ontologyURL/EPO.owl#Residues 
  </parameterType> 
</Constraint> 
<profile rdf:ID="dynamics service"> 
  <serviceName>iGNM_Mode_Shape</serviceName> 
  <hasInput rdf:resource="#Protein"/> 
  <hasOutput rdf:resource="#mode_shape"/> 
  <hasConstraint rdf:resource=”#Residues”/> 
</profile>

 

Figure 9-14. Sample OWL-S request for protein dynamics (mode shapes) 

 

Figure 9-15 shows a portion of an OWL-S request that is used to describe Task 2. The input 

refers to the EPO concept of “PDB ID”, and the output refers to the EPO concept of 

“conservation”.  

 
<Input rdf:ID=”Protein”> 
  <parameterType>http://ontologyURL/EPO.owl#PDB_ID    
  </parameterType> 
</Input> 
<Output rdf:ID=”conservation”> 
  <parameterType>http://ontologyURL/EPO.owl#Conservation 
  </parameterType> 
</Output> 
<profile rdf:ID="conservation service"> 
  <serviceName>ProMode</serviceName> 
  <hasInput rdf:resource="#Protein"/> 
  <hasOutput rdf:resource="#conservation"/> 
</profile>

 

Figure 9-15. Sample OWL-S request for protein conservation 
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The matchmaker is used to perform semantic matching between each service request and 

registered service descriptions (Step 2 in Figure 9-13), and returns a set of matched services for 

each request (Step 3 in Figure 9-13). After obtaining all matched services (candidate services) 

from the matchmaker, the chaining algorithm is applied to select and chain services. For 

example, the chaining algorithm selects iGNM Mode Shape Service for Task 1 based on the high 

match score between the iGNM service description and the service request (see Section 6.6). 

Similarly, the algorithm selects the N-gram Conservation Profile Service for Task 2 and the 

feature overlay service (see Section 4.7) for Task 3. The integration agent then invokes the 

selected services as a group by sending SOAP requests (Steps 4-7 in Figure 9-13). The output of 

the iGNM Mode Shape Service (e.g., 1st slow mode) and the output of the N-gram Conservation 

Profile Service are used as the input to the feature overlay service (Step 8 in Figure 9-13). The 

output (a correlation map) of the feature overlay service constitutes the final result (Step 9 in 

Figure 9-13).  

 

Figure 9-16 shows a sample correlation map between dynamics and conservation for carbonic 

anhydrase (PDB ID: 1ca2). It can be seen that conserved regions tend to have small motions 

(e.g., position 100) while non-conserved regions tend to have large motions (e.g., position 20). 

This kind of statistical relationships could potentially lead to prediction models that predict 

dynamics directly from sequence data instead of 3D structure data. 
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Figure 9-16. Correlation between protein dynamics and conservation, using the carbonic anhydrase (PDB ID: 1ca2) 

as an example. 
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10. CONCLUSION AND FUTURE RESEARCH 

 

 

10.1. Summary of the Research 

 

Understanding the function of every protein is one of the major objectives of bioinformatics. 

Currently, there is a lot of information (e.g., sequence, structure and dynamics) being produced 

by experiments and predictions that are associated with protein function. Integrating these 

diverse data about protein sequence, structure, dynamics and other protein features allows further 

exploration and establishment of the relationships between protein sequence, structure, dynamics 

and function, and thereby controlling the function of target proteins.   

 

Currently, many protein data resources are accessible to researchers through Web application 

interfaces, e.g., through a HTTP form and a corresponding Java servlet. To integrate data 

through Web application interfaces (current approach), users (researchers) need to perform such 

tedious tasks as screen scraping or writing scripts to extract data while ignoring explanatory text 

and graphics associated with the HTML code. Since different web applications have different 

HTML code, this approach is labor intensive and not scalable.  

 

Web services, on the other hand, offer an environment for flexile integration of various data 

resources, including databases, web servers and software tools. Web services provide standard 

programmatic interfaces (e.g., WSDL interface) for user applications to obtain explicit results 

without tedious screen scraping tasks. Also, web services provide protocols and tools that 
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facilitate the discovery and integration of data resources. However, current web service standards 

(e.g., WSDL and UDDI) do not support operations at semantic level, leaving the promise of 

automatic discovery and integration of web services incomplete. For example, service providers 

and requestors may have distinctive perspectives and knowledge about one service resulting in 

differing descriptions for the service. In this case, a UDDI registry will be unable to locate the 

service because it can only perform syntactic, and not semantic, matching between the service 

requested and the services registered. 

 

In this research, a semantics-based web services infrastructure, called WSP, for semantic and 

user-oriented integration of protein data resources, is proposed. In WSP, protein data resources 

are modeled as reusable web services that provide protein features. In addition to the WSDL 

programmatic interface, each service has a semantic description which precisely describes the 

service’s capabilities in terms of inputs, outputs and constraints. The semantic descriptions of 

web services are generated using the OWL-S upper service ontology and the EPO domain 

ontology. These semantic descriptions are then published in the WSP matchmaker for service 

discovery and integration. Rather than relying on syntactic matching (e.g., UDDI service 

discovery), the matchmaker discovers services based on their similarity to the service request. 

Therefore, users can locate services that semantically match their data requirements even if the 

services and the service requested are syntactically distinctive. In addition to service discovery, 

WSP supports a workflow-based approach for service integration. In this approach, an 

integration problem is represented as an abstract workflow of service requests, where each 

request is expected to be implemented by a web service. An integration agent is used to select 

and chain services, based on the criteria of service accuracy and data interoperability. The agent 
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finally generates an invokeable web services workflow, which automatically integrates the 

results from individual services. 

 

A number of experiments were conducted to evaluate the performance of the WSP matchmaker. 

The parameters tested included solution space, accuracy and time efficiency. The results show 

that the size of solution space (number of matched services) is dependent on the size of the 

search space (number of registered services); the larger the search space, the larger the solution 

space. The solution space is larger for (service) requests without constraints (i.e., 2 concepts: 

input and output) than for (service) requests with constraints (i.e., 3 concepts: input, output and 

constraint). However, the average match score for both types of requests, without or with 

constraints, does not scale with the search space. This is also true for the accuracy of the matched 

services; the matching accuracy does not scale with the search space. The matchmaker can 

efficiently discover semantically matched services, and the matching time increases as the search 

space becomes larger. However, the percentage of time increase is relatively small which means 

the overheard of service matching is small. 

 

A composite service, which integrates protein dynamics and conservation, is experimented using 

the WSP integration agent (i.e., service chaining algorithm). The experiment shows that the 

agent can select the most desirable (accurate) services and integrate the results (i.e., protein 

features) from selected services. 
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The contributions of this research are: 

• An infrastructure for representing and correlating protein features at a higher semantic level. 

By exploiting the features of semantic-based web services, this infrastructure allows 

researchers to conveniently discover and assemble various types of protein data for their 

studies, e.g., determining the function or other features of proteins. 

• Two biological web services that demonstrate the process of developing and using biological 

web services. The iGNM web service provides protein dynamics data for more than 20,000 

protein structures. The N-gram web service provides conservation profiles for more than 

50,000 protein sequences. 

• A semantic matchmaker service that allows service providers to publish the description of 

their services and allows users to submit requests and obtain semantically matched services. 

The matchmaker includes an efficient semantic service matching algorithm. 

• A service chaining algorithm that considers both service accuracy and data interoperability 

between services. 

 

10.2. Conclusions 

 

This research explores a semantic web services approach for protein data integration. Several 

conclusions can be drawn: 

• It is feasible to integrate protein data resources (e.g., online databases and web servers) 

through web services. By modeling protein features (e.g., dynamics and conservation) as web 
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services, WSP allows users to conveniently share and retrieve protein data for many different 

applications. 

• Using the OWL-S upper service ontology and the EPO domain ontology, it is feasible to 

generate a wide range of semantic descriptions of web services on complex protein data 

related issues. The semantic descriptions of protein web services precisely describe service 

capabilities (i.e., what a service can do) and user requests (i.e., what a user wants) in 

machine-understandable format so that algorithms can be designed to automatically discover 

and integrate semantically matched services. 

• It is feasible to apply semantics-based service discovery mechanism for protein data resource 

integration. Semantic matching of web services’ capabilities is an effective way to discover 

semantically matched services from users’ own perspectives. Semantic matching is more 

robust than syntactic matching (e.g., UDDI service discovery), because the most accurate 

services can be discovered from all registered services even if the services and the service 

requested are syntactically distinctive. 

• Workflow-based web services integration is an effective way to integrate protein data 

resources. An abstract workflow allows users to precisely define individual service requests 

and their data dependencies. Given an abstract workflow, service chaining algorithms can be 

designed to discover, select and chain services. Since web services are developed by different 

organizations and have heterogeneous interfaces, it is important to consider both semantics 

and data interoperability for service selection and integration. 

• The proposed semantic web services approach (WSP) provides a more convenient 

environment for protein data resources integration than the current approach (i.e., web 

applications based integration): (1) With WSP, researchers only need to specify their service 
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requirements (i.e., desired output) without having to manually look for data resources. Using 

the web application approach, users have to write ad hoc scripts for different data resources. 

However, there is no duplication of effort with the WSP approach because the semantic 

matchmaker and the chaining algorithm can be applied to many different data resources; (2) 

The web application approach is fragile for a minor change in the HTML code of a given 

web application may cause failure. The WSP approach is less fragile to web site changes 

because data resources/services can be discovered and integrated dynamically.  

 

10.3. Future work 

 

Using semantic web services for bioinformatics is an emerging area for research. Many problems 

in this field remain to be studied. In light of this research, some topics that need further 

investigation are: 

 

• Granularity of web services. In this research, protein features are identified as the atomic 

elements that can be shared by many protein-related problems. However, other 

bioinformatics topics (e.g., microarray data analysis) may require different methods to define 

the atomic elements. A valid design of granularity needs further investigation. 

 

• Ontology development. In this research, the EPO ontology is developed by extending the 

Protein Ontology. To allow a wider range of applications, it is necessary to further evaluate 

the construct of the EPO ontology. Also, other proteomics ontologies need to be investigated 

and incorporated for richer descriptions of complex protein data related issues. 

 157



 

 

• Semantic matching. The semantic matching of web services’ capabilities is dependent on the 

comparison of concepts in domain ontology. In this research, four relationships between 

concepts are adopted: “exact match”, “plug-in match”, “subsumption match” and “no 

match”. However, other scoring methods could be studied and compared with the current 

scoring method. 

 

• Service chaining. Service selection and integration is a complex problem. In this research, a 

workflow-based chaining algorithm is developed based on the service accuracy (semantics) 

and data interoperability. However, more complex algorithms can be designed to support 

various user requirements. For example, it is useful to develop service selection algorithms 

based on a combination of semantics, data interoperability and QoS parameters. In addition 

to workflow based approaches, it is useful to explore AI planning based approaches for 

service integration. 
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APPENDIX A 
 
 

Time Complexity Analysis 
 
 
WSP Publication Algorithm 
 
Cost 
 
C1 
C2 
C3 
C4 
C5 
C6 

procedure register(service, G) 
   
1.    registration = empty hash table 
2.    parse service into concepts c[m] 
3.    for i = 1 to m do 
4.        u0 = the root vertex in G 
5.        DFS(u0, c[i]) 
6.    return registration 

Times 
 
1 
1 
m+1 
m 
m 
1 

//service is a service description 
//G is an ontology; G = <V, E> 
 
//m = number of concepts 
 
 
//depth-first traversal of G 
 

    
 
C7 
C8 
C9 
C10 
C11 
C12 

procedure DFS(u, c)  
1.    degreeOfMatch(u, c) 
2.    status[u] = “processed” 
3.    for each neighbor v of u do 
4.        if status[v] != “processed” then 
5.            DFS(v, c) 
6.    return 

 
|V| 
|V| 
|E|+|V| 
|E| 
|V| 
|V| 

//u, c are concepts 

    
 
C13 
C14 
C15 
C16 
C17 
C18 
C19 
C20 
C21 

procedure degreeOfMatch(u, c)  
1.    if c = u then 
2.        service.score = “exact” or 3 
3.    if c is subclass of u then 
4.        service.score = “plugin” or 2 
5.    if c is superclass of u then 
6.        service.score = “subsumption” or 1 
7.    if service.score != null then 
8.        registration.add(u, service)  
9.    return 

 
1 
1 
1 
1 
1 
1 
1 
1 
1 

//measure match between u and c 

 
Figure A-1. Pseudo code for the WSP service publication algorithm 

 
A time complexity analysis for the algorithm was performed as follows: 
 
Time  
Cost 

= 
= 
 
= 
 
= 
 
= 
= 

C1(1) + C2(1) + C3(m+1) + C4(m) + C5(m) + C6(1) 
C1 + C2 + C3 + C3(m) + C4(m) + [C7(|V|) + C8(|V|) + C9(|E|+|V|) + C10(|E|) + C11(|V|) + 
C12(|V|)](m) + C6 
C1 + C2 + C3 + C3(m) + C4(m) + {[C13(1) + C14(1) + C15(1) + C16(1) + C17(1) + C18(1) + 
C19(1) + C20(1) + C21(1)]|V| + C8(|V|) + C9(|E|+|V|) + C10(|E|) + C11(|V|) + C12(|V|)}(m) + C6 
(C1+ C2 + C3 + C6) + (m)(C3 + C4 ) + m(|V|)(C13 + C14 + C15 + C16 + C17 + C18 + C19 + 
C20 + C21 + C8 + C11 + C12) + (m)(|E|+|V|)(C9) + (m)(|E|)(C10)  
C1’m + C2’(m)(|V|) + C3’(m)(|E|+|V|) + C4’(m)(|E|) 
O( m(|V|+|E|) ) 
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Note that “DFS” is a recursive function, which is called at each node of G. Therefore, line 1 and 

line 2 are visited |V| times. Line 3 is visited = |E| + |V| times. Similarly, 

line 4 is visited = |E| times. Line 5 and line 6 are visited |V| times each. 

Therefore, time complexity is O( m(|V| + |E|) ), where |V| is the number of vertices in G, |E| is 
the number of edges, and m is number of concepts in service. 

)1)((
|V|

1i
i +∑

=

uneighbors

∑
=

|V|

1i
i )(uneighbors

 
 
WSP Matching Algorithm 
 
cost 
 
C1 
C2 
C3 
C4 
C5 
C6 
C7 
C8 
C9 
C10 
C11 
C12 
C13 
C14 

procedure match (request, registration) 
 
1.    parse request  into concepts c[m]     
2.    var service[], candidateList[m][] 
3.    for i = 1 to m do  
4.       candidateList[i] = services indexed by c[i] 
5.    service = candidateList[1] 
6.    for i = 2 to m do 
7.        for j = 1 to N do 
8.            if service[j] != candidateList[i][j] then 
9.                    remove service[j] 
10.   for k = 1 to length(services) do 
11.       for i = 1 to m do 
12.           service[k].match += service[k].score(c[i]) 
13.  insertion_sort(service) 
14.  return service 

 Times 
 
 1 
 1 
 m+1 
 m 
 1 
 m 
 (m-1)(N+1) 
 (m-1)(N) 
 (m-1)(N) 
 n+1 
 n(m+1) 
 n(m) 
 1 
 1 

//request is a service description 
//registration is an index table 
 
 
//m = number of concepts 
//hash table search 
 
 
//N = all registered services 
 
 
 
//n = matched services (n < N) 
 
//calculate total match score 
//sort matched services 

 
 
C15 
C16 
C17 
 
C18 
 
C19 
 
C20 
 
C21 
C22 

procedure insertion_sort(A) 
1.    for j = 2 to length(A) do 
2.        key = A[j] 
3.        i = j – 1 
 
4.        while i > 0 and A[i] > key do 
 
5.             A[i+1] = A[i] 
 
6.             i = i – 1 
 
7.        A[i+1] = key 
8.    return 

 
 n 
 n-1 
 n-1 

∑
=

n

2j
jt  

∑ −
=

n

2j
j )1(t

∑ −
=

n

2j
j )1(t     

 n-1 
 1 

  
//insert A[j] into the sorted list     
A[1...j-1] 
 
 
//tj = the number of times the 
while loop test for that value of j 

 
Figure A-2. Pseudo code for the WSP service publication algorithm. 

 
A time complexity analysis for the algorithm was performed as follows: 
 
Time  
cost 

= 
 
= 
 
= 

C1(1) + C2(1) + C3(m+1) + C4(m) + C5(1) + C6(m) + C7(m-1)(N+1) + C8(m-1)(N) + C9(m-
1)(N) + C10(n+1) + C11(n)(m+1) + C12(n)(m) + C13(1) + C14(1) 
(C1 + C2 + C3 + C5 + C14 – C7 + C10 + C14) + (m)(N)(C7 + C8 + C9 + C11 + C12) + N(–C7 – 
C8 – C9) + m(C3 + C4 + C6 + C7) + n(C10 + C11) + nm(C11 + C12) + C13 
C1’(m)(N) + C2’(N) + C3’(m) + C4’(n) + C5’(nm) + [C15(n) + C16(n-1) + C17(n-1) + 
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= 

C18( ) + C19 ( ) + C20( ) + C21(n-1) + C22(1)  ] ∑
=

n

2j
jt ∑ −

=

n

2j
j )1(t ∑ −

=

n

2j
j )1(t

C1’(m)(N) + C2’(N) + C3’(m) + C4’(n) + C5’(nm) + C6’( ) + C7’( ) ∑
=

n

2j
jt ∑ −

=

n

2j
j )1(t

Best 
case 

= (m)(N) + [ (n-1) + 0 ] 

 = O( (m)(N) ) 
Worst 
Case 

 
= (m)(N) + [ )1

2
)1n(n( −

+ + 
2

)1n(n − ] 

 = O( (m)(N) + n2) 
 
As can be seen, the best case time complexity is O( (m)(N) ), the worst case time complexity is 
O((m)(N) + n2), where m is the number of concepts in request, N is the total number of registered 
services, and n is the number of matched services. The time complexity for this algorithm is 
lower than existing algorithms (see Section 6.2.3). 
 
 
Typical Matching Algorithm 
 
cost 
 
C1 
C2 
C3 
C4 
C5 
C6 
C7 

procedure match(request, All, G)  
  
1.    var service[ ] 
2.    for i = 1 to length(All) do 
3.        match = serviceMatch(request, All[i]) 
4.        if match != null then 
5.            add All[i] to service 
6.    insertion_sort(service) 
7.    return service 

times 
 
1 
N+1 
N 
N 
N 
1 
1 

//G is an ontology, G = <V, E> 
//All is a list of all registered services 
 
//N = number of all services 
 

 
 
C8 
C9 
C10 
C11 
C12 
C13 
C14 

procedure serviceMatch(request, service) 
1.    parse request into concepts c1[m] 
2.    parse service into concepts c2[m]  
3.    for i = 1 to m do 
4.        u0 = the root vertex in G 
5.        score[i] = DFS’(u0, c1[i], c2[i]) 
6.        service.match += score[i]  
7.    return service.match 

 
1 
1 
m+1 
m 
m 
m 
1 

//compare a request with a service  
 
 
 
 
 
//depth-first search of service concept 
//calculate match score 

 
 
 
C15 
C16 
C17 
C18 
C19 
C20 
C21 
C22 

procedure DFS’(u, x, y)  
  
1.    if u = y then 
2.        score = degreeOfMatch(y, x) 
3.        return score 
4.    else 
5.        status[u] = “processed” 
6.        for each neighbor v of u do 
7.            if status[v] != “processed” then 
8.                DFS’(v, x, y) 

 
 
|V| 
|V| 
|V| 
|V| 
|V| 
|E|+|V| 
|E| 
|V| 

//x is request concept 
//y is corresponding service concept 

 
 
C23 
C24 

procedure degreeOfMatch(u, c)   
1.    if c = u then 
2.        score = “exact” or 3 

 
1 
1 
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C25 
C26 
C27 
C28 
C29 

3.    if c is subclass of u then 
4.        score = “plugin” or 2 
5.    if c is superclass of u then 
6.        score = “subsumption” or 1 
7.    return score 

1 
1 
1 
1 
1 

 
 
C30 
C31 
C32 
 
C33 
 
C34 
 
C35 
 
C36 
C37 

procedure insertion_sort(A) 
1.    for j = 2 to length(A) do 
2.        key = A[j] 
3.        i = j – 1 
 
4.        while i > 0 and A[i] > key do 
 
5.             A[i+1] = A[i] 
 
6.             i = i – 1 
 
7.        A[i+1] = key 
8.    return 

 
  n 
  n-1 
  n-1 

∑
=

n

2j
jt  

∑ −
=

n

2j
j )1(t

∑ −
=

n

2j
j )1(t     

  n-1 
  1 

  
 //insert A[j] into the sorted list     
 A[1...j-1] 
 
 
 //tj = the number of times the 
  while loop test for that value of j 

 
Figure A-3. Pseudo code for a typical service matching algorithm 

 
A time complexity analysis for the algorithm was performed as follows: 
 
Time  
Cost 

= 
= 
= 
= 
 
 
 
 

= 
 

 
= 
 
 

= 
 
 
 
 
 

= 

C1(1) + C2(N+1) + C3(N) + C4(N) + C5(N) + C6(1) + C7(1) 
(C1 + C2 + C7) + N(C2 + C4 + C5) + C3(N) + C6 
C1’(N) + (N)C3 + C6 
N + (N)[C8(1) + C9(1) + C10(m+1) + C11(m) + C12(m) + C13(m) + C14(1)] + [ C30(n) + C31(n-

1) + C32(n-1) + C33( ) + C34( ) + C35( ) + C36(n-1) + C37(1) ] ∑
=

n

2j
jt ∑ −

=

n

2j
j )1(t ∑ −

=

n

2j
j )1(t

N + (N)[(C8 + C9 + C10 + C14) + m(C10 + C11 + C13) + (m)C12] + [ n + + ] ∑
=

n

2j
jt ∑ −

=

n

2j
j )1(t

N + (N)(m) + (N)(m)C12 + [ + ] ∑
=

n

2j
jt ∑ −

=

n

2j
j )1(t

N + (N)(m) + (N)(m)[C15(|V|) + C16(|V|)[ C23(1) + C24(1) + C25(1) + C26(1) + C27(1) + 
C28(1) + C29(1) ] + C17(|V|) + C18(|V|) + C19(|V|) + C20(|E|+|V|) + C21(|E|) + C22(|V|) ]  + 

[ + ] ∑
=

n

2j
jt ∑ −

=

n

2j
j )1(t

(N)(m) + (N)(m)(|V|+|E|) + [ + ]  ∑
=

n

2j
jt ∑ −

=

n

2j
j )1(t

Best 
case 

= (N)(m)(|V|+|E|) + [ n  + (n-1) + 0 ] 

 =  O( (N)(m)(|V|+|E|) ) 
Worst 
case 

 

= N + (N)(m)(|V|+|E|) + [ n + )1
2

)1n(n( −
+ + 

2
)1n(n − ] 

 =  O( (N)(m)(|V|+|E|) + n2 ) 
 
The best case time complexity is O( (N)(m)(|V|+|E|) ), and the worst case time complexity is O( 
(N)(m)(|V|+|E|) + n2 ), where N is the total of registered services, m is the number of concepts in 
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service request, |V| is the number of vertices in G, |E| is the number of edges in G, and n is the 
number of matched services. 
 
As can be seen, the matching between a service request and all the registered services is 
dependent on the size of the ontology and the number the registered services. When the number 
of the registered services increases or (and) the size of the ontology increases, the matching time 
also increases significantly. 
 
 
WSP Service Chaining Algorithm 
 
cost 
 
 
C1 
C2 
C3 
 
C4 
C5 

procedure serviceIntegration(G, registration) 
 
   
1.    reqest0 = the root vertex in G 
2.    discovery(request0, registration) 
3.    initialSelection(request0) 
 
4.    finalSelection(request0) 
5.    return 

times 
 
 
1 
1 
1 
 
1 
1 

//G is an abstract workflow 
//G = <V, E>, where V is requests  
//and E is request dependencies 
 
//perform service discovery 
//select services based on matching 
//score 
//further select services based on data 
//interoperability 

    
 
 
C6 
C7 
C8 
C9 
C10 
C11 

procedure discovery(u, registration) 
 
1.    status[u] = “processed” 
2.    candidates[u] = match(u, registration) 
3.    for each neighbor v of u do 
4.        if status[v] != “processed” then 
5.            discovery(v, registration) 
6.    return 

 
 
|V| 
|V| 
|E|+|V| 
|E| 
|V| 
|V| 

//depth-first traversal of G 
//u is a service request 

    
 
 
C12 
C13 
C14 
C15 
C16 
C17 
C18 
C19 

procedure initialSelection(u) 
 
1.    status[u] = “processed” 
2.    if candidates[u] = null then 
3.        return 
4.    semiList[u] = top services in candidates[u] 
5.    for each neighbor v of u do 
6.        if status[v] != “processed” then 
7.            initialSelection(v) 
8.    return 

 
 
|V| 
|V| 
|V| 
|V| 
|E|+|V| 
|E| 
|V| 
|V| 

//depth-first traversal of G 
//u is a service request 
 
//check if there are candidate services 
 
//select services with highest score 
 

    
 
 
C20 
C21 
C22 
C23 
C24 
C25 
C26 
C27 
C28 
C29 

procedure finalSelection(u) 
 
1.    status[u] = “processed” 
2.    if u is root vertex in G then 
3.        service[u] = first service in semiList[u] 
4.        lastS = service[u] 
5.    for i = 1 to m do 
6.        S = semiList[u][i] 
7.        if S.inputSchema = lastS.outputSchema then 
8.            service[u] = S break 
9.    if service[u] = null then 
10.      service[u] = first service in semiList[u] 

 
 
|V| 
|V| 
|V| 
|V| 
(m+1)(|V|) 
(m)(|V|) 
(m)(|V|) 
(m)(|V|) 
|V| 
|V| 

//depth-first traversal of G 
//u is a service request 
 
 
 
 
//m is the number of services in 
//semiList[u], m ranges from 1 to 5 
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C30 
C31 
C32 
C33 
C34 

11.  for each neighbor v of u do 
12.      if status[v] != “processed” then 
13.          lastS = service[u] 
14.          finalSelection(v) 
15.  return 

|E|+|V| 
|E| 
|V| 
|V| 
|V| 

 
Figure A 4. Pseudo code for WSP service matching algorithm 

 
A time complexity analysis for the algorithm was performed as follows: 
 
Time  
Cost 

= 
= 
 
 
 
= 

C1(1) + C2(1) + C3(1) + C4(1) + C5(1) 
C6(|V|) + C7(|V|) + C8(|E|+|V|) + C9(|E|) + C10(|V|) + C11(|V|) + C12(|V|) + C13(|V|) + C14(|V|) 
+ C15(|V|) + C16(|E|+|V|) + C17(|E|) + C18(|V|) + C19(|V|) + C20(|V|) + C21(|V|) + C22(V|) + 
C23(|V|) + C24((m+1)|V|) + C25(m|V|) + C26(m|V|) + C27(m|V|) + C28(|V|) + C29(|V|) + 
C30(|E|+|V|) + C31(|E|) + C32(|V|) + C33(|V|) + C34(|V|) 
O(|V| + |E|) 

 
Time complexity is O(|V| + |E|), where |V| is the number of vertices in G, and |E| is the number 
of edges. 
 
 
 
 
 
 
 
 
 

 164



 

APPENDIX B 
 
 

WSP Service Descriptions without Constraints 
 

Service ID Service Input Service Output Constraints 
1 Protein Dynamics  
2 Protein  Mode_Shape  
3 Protein  Fluctuation  
4 Protein  Trajectory  
5 Protein  Mobility  
6 Protein  Conservation  
7 Protein  Hydrophobicity  
8 Protein  Catalytic Sites  
9 Protein  Structure  

10 Protein  Sequential Parameters  
11 Protein  3D Parameters  
12 Protein  Ngram Patterns  
13 Protein  Family  
14 Protein  Chains  
15 Protein  Functional Domains  
16 Protein  Biological Function  
17 Protein  Structural Domains  
18 Protein  Source Cell  
19 Protein  Active Binding Sites  
20 Protein  Physiological Functions  
21 Protein  Pathological Functions  
22 Protein  Density  
23 Protein  Residues  
24 Protein  Atomic Bind  
25 Protein  Molecule  
26 Protein  Residue Link  
27 Protein  CISPeptide  
28 Protein  Description  
29 Protein  Reference  
30 Protein  Helix Structure  
31 Protein  Modified Residue  
32 Protein  Residue Sequence  
33 Protein  ATOM Sequence  
34 Structure Dynamics  
35 Structure Mode_Shape  
36 Structure Fluctuation  
37 Structure Trajectory  
38 Structure Mobility  
39 Structure Conservation  
40 Structure Hydrophobicity  
41 Structure Catalytic Sites  
42 Structure Sequential Parameters  
43 Structure 3D Parameters  
44 Structure Ngram Patterns  
45 Structure Family  
46 Structure Chains  
47 Structure Functional Domains  
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48 Structure Biological Function  
49 Structure Structural Domains  
50 Structure Source Cell  
51 Structure Active Binding Sites  
52 Structure Physiological Functions  
53 Structure Pathological Functions  
54 Structure Density  
55 Structure Residues  
56 Structure Atomic Bind  
57 Structure Molecule  
58 Structure Residue Link  
59 Structure CISPeptide  
60 Structure Description  
61 Structure Reference  
62 Structure Helix Structure  
63 Structure Modified Residue  
64 Structure Residue Sequence  
65 Structure ATOM Sequence  
66 PDB_ID Dynamics  
67 PDB_ID Mode_Shape  
68 PDB_ID Fluctuation  
69 PDB_ID Trajectory  
70 PDB_ID Mobility  
71 PDB_ID Conservation  
72 PDB_ID Hydrophobicity  
73 PDB_ID Catalytic Sites  
74 PDB_ID Structure  
75 PDB_ID Sequential Parameters  
76 PDB_ID 3D Parameters  
77 PDB_ID Ngram Patterns  
78 PDB_ID Family  
79 PDB_ID Chains  
80 PDB_ID Functional Domains  
81 PDB_ID Biological Function  
82 PDB_ID Structural Domains  
83 PDB_ID Source Cell  
84 PDB_ID Active Binding Sites  
85 PDB_ID Physiological Functions  
86 PDB_ID Pathological Functions  
87 PDB_ID Density  
88 PDB_ID Residues  
89 PDB_ID Atomic Bind  
90 PDB_ID Molecule  
91 PDB_ID Residue Link  
92 PDB_ID CISPeptide  
93 PDB_ID Description  
94 PDB_ID Reference  
95 PDB_ID Helix Structure  
96 PDB_ID Modified Residue  
97 PDB_ID Residue Sequence  
98 PDB_ID ATOM Sequence  
99 PDB_ID Chemical Bonds  

100 PDB_ID UnitCell  
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WSP Service Descriptions with Constraints 
 

Service ID Service Input Service Output Constraints 
101 Protein  Dynamics Experimental 
102 Protein  Dynamics Computational 
103 Protein  Dynamics MD Simulation 
104 Protein  Dynamics NMA 
105 Protein  Dynamics Simplified NMA 
106 Protein  Dynamics Full-Atomic NMA 
107 Protein Mode_Shape Residues 
108 Protein Mode_Shape Atoms 
109 Protein Mode_Shape NMA 
110 Protein Mode_Shape Simplified NMA 
111 Protein Mode_Shape Full-Atomic NMA 
112 Protein Fluctuation Residues 
113 Protein Fluctuation Atoms 
114 Protein Fluctuation NMA 
115 Protein Fluctuation MD Simulation 
116 Protein  Mobility Experimental 
117 Protein  Mobility Computational 
118 Protein  Mobility NMA 
119 Protein  Mobility MD Simulation 
120 Protein Conservation Multiple Alignment 
121 Protein Conservation Ngram 
122 Protein  Catalytic Sites Experimental 
123 Protein  Catalytic Sites Computational 
124 Protein  Active Binding Sites Experimental 
125 Protein  Active Binding Sites Computational 
126 Protein  Hydrophobicity Residues 
127 Protein  Hydrophobicity Atoms 
128 Protein Structure Xray 
129 Protein Structure NMR 
130 Protein  Functional Domains Experimental 
131 Protein  Functional Domains Computational 
132 Protein  Structural Domains Experimental 
133 Protein  Structural Domains Computational 
134 Structure  Dynamics Experimental 
135 Structure Dynamics Computational 
136 Structure Dynamics MD Simulation 
137 Structure Dynamics NMA 
138 Structure Dynamics Simplified NMA 
139 Structure Dynamics Full-Atomic NMA 
140 Structure Mode_Shape Residues 
141 Structure Mode_Shape Atoms 
142 Structure Mode_Shape NMA 
143 Structure Mode_Shape Simplified NMA 
144 Structure Mode_Shape Full-Atomic NMA 
145 Structure Fluctuation Residues 
146 Structure Fluctuation Atoms 
147 Structure Fluctuation NMA 
148 Structure Fluctuation MD Simulation 
149 Structure Mobility Experimental 
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150 Structure Mobility Computational 
151 Structure Mobility NMA 
152 Structure Mobility MD Simulation 
153 Structure Catalytic Sites Experimental 
154 Structure Catalytic Sites Computational 
155 Structure Active Binding Sites Experimental 
156 Structure Active Binding Sites Computational 
157 Structure Hydrophobicity Residues 
158 Structure Hydrophobicity Atoms 
159 Structure Conservation Multiple Alignment 
160 Structure Conservation Ngram 
161 Structure Functional Domains Experimental 
162 Structure Functional Domains Computational 
163 Structure Structural Domains Experimental 
164 Structure Structural Domains Computational 
165 PDB_ID  Dynamics Experimental 
166 PDB_ID  Dynamics Computational 
167 PDB_ID  Dynamics MD Simulation 
168 PDB_ID  Dynamics NMA 
169 PDB_ID  Dynamics Simplified NMA 
170 PDB_ID  Dynamics Full-Atomic NMA 
171 PDB_ID  Mode_Shape Residues 
172 PDB_ID  Mode_Shape Atoms 
173 PDB_ID  Mode_Shape NMA 
174 PDB_ID  Mode_Shape Simplified NMA 
175 PDB_ID  Mode_Shape Full-Atomic NMA 
176 PDB_ID  Fluctuation Residues 
177 PDB_ID  Fluctuation Atoms 
178 PDB_ID  Fluctuation NMA 
179 PDB_ID  Fluctuation MD Simulation 
180 PDB_ID  Mobility Experimental 
181 PDB_ID  Mobility Computational 
182 PDB_ID  Mobility NMA 
183 PDB_ID  Mobility MD Simulation 
184 PDB_ID  Catalytic Sites Experimental 
185 PDB_ID  Catalytic Sites Computational 
186 PDB_ID  Active Binding Sites Experimental 
187 PDB_ID  Active Binding Sites Computational 
188 PDB_ID  Hydrophobicity Residues 
189 PDB_ID  Hydrophobicity Atoms 
190 PDB_ID  Conservation Multiple Alignment 
191 PDB_ID  Conservation Ngram 
192 PDB_ID  Structure Xray 
193 PDB_ID  Structure NMR 
194 PDB_ID  Functional Domains Experimental 
195 PDB_ID  Functional Domains Computational 
196 PDB_ID  Structural Domains Experimental 
197 Chains Structural Domains Computational 
198 Chains Functional Domains Experimental 
199 Chains  Functional Domains Computational 
200 Chains Structural Domains Experimental 
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