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Chromosomal alterations can arise from numerous events, including errors during cell 

division or repair of damaged DNA. Of these errors, segregational defects such as anaphase 

bridges and multipolar spindles play a major role in chromosomal instability, leading to 

tumorigenesis.  

 

Bridges can theoretically be produced by several mechanisms including telomere-

telomere fusion, persistence of chromatid cohesion into anaphase or repair of broken DNA ends. 

DNA damage can induce anaphase bridges following exposure to agents such as hydrogen 

peroxide or ionizing radiation (IR). Our hypothesis is that while the majority of double strand 

breaks (DSBs) are repaired, to restore the original chromosome structure, incorrect fusion events 

also occur leading to bridging and that bridge formation allows cells to bypass the apoptotic 

pathways that are activated in response to DNA damage. To test this, we set out to determine 

what pathways the cells use to heal the damage and form bridges. Our data suggest that neither 

of the two major pathways used by the cell for repair of double strand breaks, homologous 

recombination (HR) and non-homologous end joining (NHEJ), is required for bridge formation. 

In fact, the NHEJ pathway seems to play a role in the prevention of bridges. When NHEJ is 

compromised, the cell appears to use HR to repair the break, resulting in increased anaphase 

bridge formation. Moreover, intrinsic NHEJ activity of different cell lines appears to be 
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correlated with induction of bridges from DNA damage. Our preliminary data also suggest that 

cell lines with high levels of bridging are capable of apoptosis, yet further experiments are 

required to test if blocking bridging can enhance cell death. 

 

Multipolar spindles are aberrant mitotic figures that occur when a cell divides with two or 

more poles, which can lead to uneven segregation of the chromosomes. In our studies, we found 

that IR treatment can lead to an increase in multipolarity shortly after treatment and changes the 

distribution of spindle pole components. Initial observations on the splitting of centrosomal 

proteins following IR treatment are presented. 
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1.0  CHAPTER I: INTRODUCTION 

1.1 CONCEPTS IN GENOMIC INSTABILITY  

 

Cancer is a result of accumulation of mutations that control cell division or cell death. It 

is widely accepted that a cell has to undergo multiple mutations before it becomes tumorogenic 

(Lengauer et al., 1997). Hence, events speeding up the mutation rate or which interfere with the 

stability of the genome are likely to give the some cells a growth advantage, which could 

potentially proceed to cancer development. Some of these events that may contribute to 

destabilization of the genome are described below: 

 

Changes in nucleotide sequence: These are alterations in the DNA sequence by 

substitution, addition or deletion of nucleotides.  Examples include mutations in c-K-Ras, which 

are found in most pancreatic cancers (Almoguera et al., 1988), BRCA1/2 genes, which are 

associated with 30-50% of the heritable breast cancer cases (Rahman and Stratton 1998; 

Nathanson et al., 2001), or the well-studied p53 gene, which is defective in 50% of all human 

cancers (Hollstein et al., 1991; Hainaut and Hollstein 2000; Soussi and Beroud 2001). 
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Changes in chromosome number: This can be described as the gain or loss of an entire 

chromosome, which leads to the state of aneuploidy. Aneuploidy is known to be associated with 

almost all cancer types (Mitelman 1983) and its severity is correlated with the stage of 

tumorogenesis (Cavalli et al., 1989).  

 

Translocations: A translocation is defined as the exchange of DNA material between 

non homologous chromosomes. Translocations may create fusion of genes with a change in 

activity of hybrid sequences. One famous example includes the Philadelphia chromosome in 

chronic myeloid leukemia, where the nuclear protein Bcr is translocationally juxtaposed to the 

Abl kinase, producing a hybrid Bcr-Abl protein with increased kinase activity/localization (Ben-

Neriah et al., 1986; Jeffs et al., 1998). Likewise, in Burkitt's lymphoma, the myc oncogene is 

translocated to the immunoglobin promoter leading to enhanced expression of Myc in 

lymphocytes (Dean et al., 1983). 

 

Amplifications: Gene amplifications involve an increase in the copy number of a proto-

oncogene, which may lead to over production of the associated gene product and drive the cell to 

an abnormal growth stage. For instance, amplification of the N-Myc oncogene has been reported 

in 30% of neuroblastomas (Seeger et al., 1985). 

 

In normal cells, the biological processes preventing these changes are intact, thus they 

occur rarely, if ever. On the other hand, all of these events are readily observed in different 

cancer types, and are tightly linked to genomic instability. For example, failure in mismatch 

repair system (MMR) has been shown to elevate the rate of DNA mutation by ~1000-fold 
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(Christmann et al., 2003) and results in the destabilization of simple repeat sequences. This 

phenomenon, which is known as microsattelite instability (MIN), is found in most hereditary 

non-polyposis colon cancers (HNPCC) (Aaltonen et al., 1993), and sporadic colon cancers 

(Narayan and Roy 2003). Phenotypically, MIN cannot be detected by karyotypic analysis and 

does not involve the large scale genomic changes discussed above. 

 

The other major form of instability involves continuous gross alterations in chromosomal 

structure and number, which is defined as chromosomal instability (CIN). While experimental 

data support a direct link for MIN and carcinogenesis, the link between CIN and cancer is 

ambiguous. Whilst it is clear that many tumor types exhibit the CIN phenotype (Lengauer et al., 

1997; Lengauer et al., 1998), there is a chicken-and-egg dilemma as to whether CIN is an early 

event leading to cancer or an outcome of malignant transformation. Despite the modeling 

studies, which indicate that CIN alone is sufficient to drive the cell into tumorogenesis (Nowak 

et al., 2002), other studies challenge this hypothesis with the evidence of adenomas without any 

obvious changes in CIN (Haigis et al., 2002). Regardless, CIN is a hallmark of cancer and 

studying the molecular events leading to chromosomal instability will enlighten our 

understanding of it.  

1.2 SOURCES OF CHROMOSOMAL INSTABILITY  

Although there are numerous events that may lead to CIN, the main reasons can be listed 

as defects in chromosomal segregation, repair of DNA damage and cell-cycle checkpoint 

regulation. Seemingly diverse at first, these events are actually very closely intertwined. The 
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different defects that lead to CIN usually coexist in tumor cell lines perhaps cooperatively 

contributing to the multistep tumorogenesis process (Saunders et al., 2000; Jallepalli and 

Lengauer 2001; Gisselsson 2003; Deng 2006).   For instance, incompetency to repair a 

checkpoint gene might allow mitosis despite incorrect chromosome congression. Experimental 

evidence from BRCA2 deficient mice show that these mice which harbor mutations in spindle 

checkpoint proteins (Bub1, BubR1) exhibit higher incidences of lymphomas (Lee et al., 1999). 

BRCA2 is also reported to interact with the mitotic kinase PLK1 (Lee et al., 2004) and the 

checkpoint kinase BubR1 (Futamura et al., 2000) indicating a tie between DNA repair and 

checkpoint proteins.  

 

While the links between DNA repair/checkpoint regulation and chromosomal 

segregation/checkpoint regulation are well studied, it is less clear how errors in the repair of 

DNA damage can lead to segregation defects. In this dissertation, evidence for the molecular 

mechanisms regarding this connection will be presented. Below, I will start by discussing the 

commonly observed segregation defects in cancer cells. 

1.2.1 Chromosome Segregation Defects  

The major segregation defects visible in cancer cells can be summarized as lagging 

chromosomes, micronuclei, anaphase bridges and multipolar mitoses.  

1.2.1.1 Lagging Chromosomes  

Lagging chromosomes can be defined as chromosomes or fragments of chromosomes, 

which fail to align properly at the metaphase plate or those that lag behind the separating 
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chromosomal masses during anaphase (Figure 1).  Lagging chromosomes have been shown to 

emerge as a consequence of failure in attachment of the spindle microtubules to the kinetochore 

proteins (Dulout and Olivero 1984) or by attachment to a single spindle pole (merotelic 

attachment)  (Cimini et al., 2001; Cimini et al., 2002). It has also been uncovered in the Saunders 

lab that resolution of anaphase bridges may also result in lagging chromosomes as pieces of 

chromosomal material (Hoffelder et al., 2004). In any case, the daughter cells are under the risk 

of losing a chromosome or having both copies of the sister chromatids, which contribute to CIN.  

1.2.1.2 Micronuclei  

Micronuclei are derived from whole chromosomes or chromosomal fragments, which 

have a nuclear envelope and are anywhere from 1/16 to 1/3 of the size of the main nucleus 

(Fenech 1993). Micronuclei are distinct from the nucleus, yet remain in the same cell (Figure 2). 

While the major reason for micronuclei formation appears to be due to lagging chromosomes, 

breakage of an anaphase bridge has also been shown to result in micronuclei in 50% of divisions 

with a bridge (Hoffelder et al., 2004). Micronuclei occur frequently upon treatment with DNA 

damaging reagents and have been proposed as a diagnostic tool to test for chemotherapy damage 

(Driessens et al., 2003). 

 

Once a micronucleus forms, many scenarios are possible for its fate. It may be excluded 

from the cell, reincorporated into the main nucleus or function separately in the cell’s cytoplasm 

(Leach and Jackson-Cook 2004). In the first situation, the cell would face the threat of losing 

chromosomal material, resulting in aneuploidy. In the second scenario, the micronuclear mass 

might potentially continue normal biological activity. In the third case, micronuclei do not  
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CA B

D E F

 

 

Figure 1  UPCI:SCC103 cells dividing normally in metaphase (A) or anaphase (D). 

Examples of cells in corresponding stages with lagging chromosomes are indicated by arrows (B, 

C, E, and F). DAPI is used for DNA staining and images are taken with an Olympus camera with 

100X magnification lens.  
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Figure 2  Example of a cell with a micronucleus (shown by arrow) in UPCI:SCC103 cell 

line. DAPI is used for DNA staining and images are taken with an Olympus camera with 100X 

magnification lens. (Image: Courtesy of Qian Wu.) 
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appear to be fully transcriptionally active as they are incapable of nucleotide incorporation and 

contain reduced numbers of nuclear pore complexes, which could potentially limit regular 

transport (Hoffelder et al., 2004).  

 

As described above, both lagging chromosomes and micronuclei could lead to genomic 

instability if not corrected. Fortunately, these defects can trigger checkpoint proteins to pause 

mitosis until all chromosomes are properly attached to both poles. There is evidence that 

merotelic attachments may be corrected even prior to anaphase (Salmon et al., 2005; Cimini et 

al., 2006). On the other hand, there is no indication of activation of checkpoints in cases of 

anaphase bridging or formation of multipolar spindles. Hence these defects are potentially more 

dangerous as will be discussed further. 

1.3 ANAPHASE BRIDGES  

Anaphase bridging is a commonly observed phenomenon in cancer cells, which can be 

described as a chromatin fiber connecting the two chromosome masses together (Gisselsson et 

al., 2000) (Figure 3B). This abnormality was first described by Barbara McClintock in 1941 

(McClintock 1942) and since then, it has been shown that bridges lead to structural and 

numerical chromosome changes which are strongly linked to tumorogenesis (Artandi et al., 

2000; Stewenius et al., 2005). Furthermore, anaphase bridges have major contributions to CIN 

and have been reported in both cell culture (Gisselsson et al., 2000) and tissues (Montgomery et 

al., 2003).  
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Figure 3 Examples of cells with bridges in UPCI:SCC103 cell line: normal anaphase (A), 

anaphase with a bridge (B).  Bridges are usually resolved by telophase (C), however can 

sometimes persist to telophase (D) or interphase (E) and (F). Arrows indicate bridges. DAPI is 

used for DNA staining and images are taken with an Olympus camera with 100X magnification 

lens.  

 

A B

C D

E F
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A bridge is thought to form from the fusion of two broken DNA ends, or as a result of 

shortened or absent telomere sequences (Fouladi et al., 2000; Gisselsson et al., 2001; Zhu et al., 

2002). Telomeres are composed of tandem (TTAGGG) repeats at the end of the chromosomes, 

which span a region of 5-15 kb (Moyzis et al., 1988; de Lange et al., 1990). They form a 

specialized structure called a t-loop, and are stabilized by many telomeric proteins (Callen and 

Surralles 2004), which may either directly bind to telomeres or have a regulatory role in telomere 

protection. Some of these proteins have a dual function in both telomere maintenance and DNA 

damage repair, indicating a cross talk between telomeres and the DNA damage pathways 

(Nugent et al., 1998; Surralles et al., 2004). An average of 65 bp of telomeric sequence tends to 

be lost with each division in cells lacking telomerase or alternative ways to stabilize telomeres 

(Counter et al., 1992). Once the shortening process starts, the t-loop can no longer form and the 

protective proteins detach from the telomeres. In this case, the chromosome ends can act as free 

DNA breaks and may be fused to other ends with short telomeres. Supporting this, anaphase 

bridges have been shown to arise from telomere shortening, loss of telomeres or defects in 

telomerase (Artandi et al., 2000; Fouladi et al., 2000; Gisselsson et al., 2001; Rudolph et al., 

2001; Lo et al., 2002).  Moreover, there is a perfect correlation between telomere length in 

cancer cells and the frequency of endogenous bridges (Stewenius et al., 2005).  

 

Telomeres might alternatively be lost with the occurrence of a DNA double stranded 

break (DSB) in the chromosome. This can also lead to a bridge, yet not necessarily through 

telomere-telomere fusions. How bridges form through the repair of double stranded breaks is the 
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main focus of this report. This gains particular importance, since many cancer cells exhibit 

stabilized telomeres. 

1.3.1 Double Stranded DNA Repair Mechanisms  

Cells are subjected to a number of DNA damaging events, threatening the genomic 

integrity. This damage can be induced by various agents, including endogenous factors such as 

free radicals formed as byproducts of metabolic functions, or stalled replication forks or 

exogenous factors such as ionizing radiation or mutagenic chemicals. Among the most severe 

lesions caused by these factors, DNA double stranded breaks (DSBs) are probably the most 

difficult to repair. Upon formation of a DSB, generally, the original ends are fused back together, 

restoring the chromosome’s original structure (Rief and Lobrich 2002). However, misligation of 

two non-matching ends may also occur, resulting in an anaphase bridge and chromosomal 

instability (Mills et al., 2003; Pfeiffer et al., 2004).  

 

In order to deal with double stranded DNA breaks, mammalian cells have two major 

repair pathways: Non-homologous end joining (NHEJ) and homologous recombination (HR). 

While NHEJ requires little or no homology to fuse the broken ends, HR-dependent repair utilizes 

the homologous strand as a template. These mechanisms will be discussed further below: 

1.3.1.1 Non Homologous End Joining (NHEJ)  

NHEJ is initiated by the binding of Ku proteins to the broken ends of the DNA (Smith 

and Jackson 1999) (Figure 4B). The Ku heterodimer, Ku80/70, which is composed of two 

subunits of molecular weight 86 and 73kDa, forms a hollow ring like structure large enough to  
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Figure 4 NHEJ in mammalian systems. Upon formation of a DSB (A), Ku70/80 proteins 

are recruited to the damage site (B). The Ku heterodimer recruits DNA-PKcs, which is thought 

to mediate end-bridging. DNA-PKcs both phosphorylates and forms a complex with Artemis and 

this complex is involved in processing the 5’ and 3’ DNA overhangs (C, D). Finally, DNA 

Ligase IV/XRCC4/XLF complex is recruited to the lesion site (E) and the ends are ligated 

together (F). Figure adapted from (Hefferin and Tomkinson 2005).  
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accommodate the duplex DNA and protects DNA ends from being degraded (Walker et al., 

2001). Upon binding, the complex translocates along the DNA possibly to allow further end 

processing (Ochem et al., 1997; Yavuzer et al., 1998). While the role of Ku in protecting DNA 

ends from degradation is well described, there is some ambiguity for its function as an alignment 

factor (Bliss and Lane 1997; Cary et al., 1997; Ramsden and Gellert 1998). Alignment and end 

bridging seem hard to reconcile, since Ku proteins are known to recruit another protein, DNA 

Dependent Protein Kinase catalytic subunit (DNA-PKcs) (Dvir et al., 1992; Gottlieb and Jackson 

1993), which might also be involved in the alignment process (Figure 4C, D). It appears that the 

association of Ku proteins and DNA-PKcs is dependent on DNA. While DNA-PKcs can bind to 

DNA without the Ku proteins, the binding is enhanced by 100 fold in the presence of Ku (Dvir et 

al., 1992; Gottlieb and Jackson 1993; Suwa et al., 1994; Yaneva et al., 1997). The Ku 

heterodimer, together with DNA-PKcs, forms the active kinase unit, which is called the DNA-

PK complex. 

 

Deficiencies in NHEJ proteins, such as mutations in DNA-PKcs, result in a syndrome 

with severe combined immunodeficiency (SCID), since the NHEJ pathway is also required for 

RAG1/RAG2 endonuclease initiated V(D)J recombination (Jhappan et al., 1997; Taccioli et al., 

1998). Recently a novel gene, which also causes the SCID phenotype, has been identified 

(Moshous et al., 2000; Moshous et al., 2001). The Artemis nuclease is found to associate with 

DNA-PKcs and is capable of hairpin opening, which is an intermediate structure formed during 

V(D)J recombination. The Artemis/DNA-PKcs complex exhibits nuclease activity, where 5’ 

ends are blunted, and 3’ overhangs are trimmed (Ma et al., 2002) (Figure 4D). Moreover, 
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phosphorylation of Artemis by DNA-PK appears to be crucial for this nuclease activity (Ma et 

al., 2002).  

 

DNA-PK also appears to stimulate the last players of NHEJ: the XRCC4/DNA Ligase IV 

complex, which initiates the final ligation step between the two juxtaposed DNA ends (Chen et 

al., 2000) (Figure 4E, F). The activity of Ligase IV is strongly stimulated in vitro by its cofactor 

XRCC4, which is also shown to increase its stability (Critchlow et al., 1997; Grawunder et al., 

1997; Bryans et al., 1999). XRCC4 is known to be phosphorylated by DNA-PKcs, however 

mutations in these sites do not interfere with its complementation of radiation sensitivity 

(Critchlow et al., 1997; Yu et al., 2003; Lee et al., 2004). Recently, a protein which has strong 

predicted structural similarity to XRCC4 has been identified. The XRCC4 like factor, XLF (or 

Cernunnos), can bind to XRCC4-Ligase IV complex and is possibly involved in this last step of 

break repair (Ahnesorg et al., 2006; Buck et al., 2006; Callebaut et al., 2006). 

1.3.1.2 Phenotypes Associated with deficiencies in NHEJ components  

Deficiency in Ku80 results in defects in V(D)J recombination, and increased sensitivity 

to irradiation (Nussenzweig et al., 1996; Zhu et al., 1996; Nussenzweig et al., 1997; Kabotyanski 

et al., 1998). Mice deficient in Ku80 exhibit growth retardation and shorter life span (Vogel et 

al., 1999).  Moreover, spontaneous chromosome breaks appears to arise in fibroblasts derived 

from these animals, indicating insufficient response to DNA damage (Karanjawala et al., 1999). 

While heterozygous inactivation of Ku80 results in chromosomal instabilities such as 

translocations and fusions, homozygous mutation leads to cell death after a certain number of 

divisions (Li et al., 2002; Myung et al., 2004). Ku70 deficient mice manifest similar defects 

(Ouyang et al., 1997; Li et al., 1998). 
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Deficiencies in DNA-PKcs or Artemis show milder phenotypes without any growth 

retardation and similar incidences of T-cell lymphomas as wild type mice. However, as 

mentioned previously, both defects result in SCID phenotype (Jhappan et al., 1997; Taccioli et 

al., 1998; Moshous et al., 2000; Moshous et al., 2001) and lead to some sensitivity to DNA 

damaging agents (Jeggo 1998; Convery et al., 2005; Musio et al., 2005).  

 

Knockout mice for Ligase IV and XRCC4 exhibit the most severe defects. Deletion of 

both genes results in embryonic lethality, possibly due to severe neurodegeneration (Barnes et 

al., 1998; Frank et al., 1998; Gao et al., 1998). Defects in neurogenesis are also seen in Ku80/70 

deficient mice, but not in DNA-PKcs null animals (Gu et al., 2000). Lethality can be rescued by 

additional p53 deficiency, and these mice still suffer from high incidences of lymphomas 

indicating the importance of these proteins in protection from cancer (Frank et al., 2000; Gao et 

al., 2000).  

1.3.1.3 Homologous Recombination (HR)  

One of the earliest events in HR-dependent repair is converting the DSB ends to a 

recombination competent structure. This step involves degradation of single strands by the 

eukaryotic Mre11/RAD50/NBS1 (MRN) complex leaving a 3’ protruding end, which is 

hundreds of bases long (Figure 5B) (D'Amours and Jackson 2002). This 3’ single-stranded DNA 

(ssDNA), is pre-coated with Replication Protein A (RPA) (Figure 5C), which both resolves 

secondary structures and facilitates RAD51 loading on the DNA with the assistance of mediator 

protein RAD52 (Figure 5D) (Sung 1997; Shinohara and Ogawa 1998). Subsequently, this 

nucleoprotein filament invades the intact DNA duplex, and forms a structure called the  
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Figure 5  HR in mammalian systems. The DSB (A) ends are processed by the MRN 

complex (B). The 3’ protruding end, which is precoated with RPA (C), is later loaded with 

RAD51 (D), which is facilitated and stabilized by RAD51 paralogues, RAD54 and the mediator 

RAD52 protein. Following strand invasion and branch migration (E-F), the broken strand is 

repaired by copying the intact template and finally the complex is resolved (G). 
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“D-loop”. Strand displacement and branch migration are complicated tasks and involve many 

energy-dependent processes such as breaking internal hydrogen bonds, unwinding the DNA, and 

competing with other DNA binding proteins (Figure 5E). Hence, many proteins play roles during 

these processes including RAD51, and all five RAD51-like proteins, namely XRCC2, XRCC3, 

RAD51B (or RAD51L1), RAD51C (RAD51L2) and RAD51D (RAD51L3) (Albala et al., 1997; 

Rice et al., 1997; Cartwright et al., 1998; Dosanjh et al., 1998; Liu et al., 1998; Pittman et al., 

1998; French et al., 2002). These RAD51 paralogues form four different complexes, XRCC2- 

RAD51D, RAD51B-RAD51C,  XRCC3-RAD51C and RAD51B-RAD51C-RAD51D-XRCC2, 

which act to stimulate the activity of RAD51 in various aspects (Braybrooke et al., 2000; 

Kurumizaka et al., 2001; Sigurdsson et al., 2001; Henry-Mowatt et al., 2003; Yokoyama et al., 

2003).  

 

Other relevant proteins include RAD54, RAD54 paralogues, and the breast cancer 

associated proteins BRCA1/2 (Jasin 2002). RAD54 likely has a dual function in both enabling 

strand exchange and facilitating branch migration. It can stabilize RAD51 nucleofilament and 

enhance D-loop formation by introducing negative supercoils (Figure 5D-F) (Sigurdsson et al., 

2002; Mazin et al., 2003). RAD54B, a RAD54 paralogue, also associates with RAD51 and 

colocalizes with RAD51 foci (DSB sites where repair proteins accumulate) (Tanaka et al., 2000). 

RAD54B has additive phenotypes with RAD54, indicating they have non-overlapping functions, 

however the exact role is yet to be discovered (Wesoly et al., 2006). Cells deficient for either 

BRCA1 or BRCA2 have impaired HR-dependent repair, and these proteins mediate their 

function probably in conjunction with RAD51 (Moynahan et al., 1999; Moynahan et al., 2001). 
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Once new DNA is synthesized by copying the homologous template, the intertwined 

molecules are resolved, possibly by the action of XRCC3/RAD51C complex (Figure 5G) 

(Brenneman et al., 2002; French et al., 2002; Liu et al., 2004).  

1.3.1.4 Phenotypes Associated with deficiencies in HR components  

Defects in HR proteins have a range of phenotypes. RAD51 appears as a key protein, 

since RAD51 disruption causes early embryonic lethality in mice, and mutant cell cultures do not 

proliferate even in a p53-/- background (Lim and Hasty 1996; Tsuzuki et al., 1996). On the other 

hand, knockout mice for RAD51 like proteins (XRCC2, RAD51B, and RAD51D) can progress 

until later stages in development (Shu et al., 1999; Deans et al., 2000; Pittman and Schimenti 

2000). Both RAD54- and RAD54B-deficient mice are alive, but defective cells exhibit mild 

sensitivity to DNA damaging agents (Bezzubova et al., 1997; Essers et al., 1997; Wesoly et al., 

2006). While RAD52 defects reduce HR, no effect on mutagen sensitivity is observed (Rijkers et 

al., 1998). BRCA1 or BRCA2 homozygous deletion results in embryonic death, like the loss of 

RAD51, and deficient cell lines are sensitized to DNA damage (Gowen et al., 1996; Connor et 

al., 1997; Ludwig et al., 1997; Shen et al., 1998; Scully et al., 1999).  

1.3.1.5 The choice between NHEJ and HR  

Both NHEJ and HR are important mechanisms in the repair of DSBs in all eukaryotes. 

However there seem to be differences in the choice of pathway between different organisms. 

While NHEJ is the prominent pathway in vertebrates, HR appears as the major mechanism in 

yeast (Critchlow and Jackson 1998; Dudasova et al., 2004). One reason for this choice could be 

due to the highly repetitive structure of the mammalian genome, which might make it harder to 



 21 

find the correct template for HR to repair the damage. On the other hand, the yeast genome is 

smaller, nearly all genes are intronless and usually consist of a single copy.  

 

NHEJ has been long considered as the error-prone or even “illegitimate” repair pathway, 

since the deletions can be harmful, if they occur in an essential gene or its regulatory sequences. 

However it should be noted that HR also runs the risk of creating rearrangements by 

recombining with related sequences in non-homologous chromosomes (albeit with reduced 

frequencies) (Richardson et al., 1998), or might lead to loss of heterozygosity by copying 

information from the homologous chromosome (Stark and Jasin 2003).  

 

While both pathways seem to collaborate to maintain genomic stability, it also appears 

that there is a competition as to which repair pathway will be used to repair the damage. It has 

been shown that both NHEJ and HR can have access to the same DSB (Richardson and Jasin 

2000). The HR proteins RAD51 and RAD52 can bind to DSB ends, possibly competing with the 

Ku complex of NHEJ (Baumann and West 1998; Haber 2000). In support of this model, 

reduction in NHEJ protein levels results in stimulation of HR-mediated repair (Fukushima et al., 

2001; Pierce et al., 2001; Allen et al., 2002; Delacote et al., 2002). This stimulation only occurs 

if early NHEJ proteins, namely DNA-PKcs and Ku, are inhibited and not when late proteins are 

blocked such as XRCC4 inhibition (Pierce et al., 2001). Furthermore, consistently inactivated 

DNA-PKcs, which is a component of NHEJ, leads to decreased HR rates (presumably since it is 

still present at the break site, yet non-functional), while its absence leads to an increase in HR 

rates, indicating an “interactive competition” between the pathways (Allen et al., 2003). This 

selection between pathways is currently an area of intense investigation. It is at least partly 
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influenced by cell-cycle. NHEJ predominates throughout G1 to early S, and HR becomes more 

active during late S and mitosis, when the sister chromatids are available as template (Takata et 

al., 1998; Saintigny et al., 2001; Rothkamm et al., 2003).  

1.3.2 Breakage-Fusion-Bridge (BFB) Cycles   

After the formation of a DSB, the ends are repaired by either of the pathways mentioned 

above. However, if the initial fusion occurs between either the sister chromatids (after 

replication) or with another chromosome, a dicentric chromosome will form with two 

centromeres (Figure 6A, B). Dicentrics have the potential to attach to both spindle poles resulting 

in a tug-of-war between the two spindle halves at anaphase (Gisselsson 2005). The bridge will 

eventually resolve by breaking, most likely not at the site it fused (Gisselsson et al., 2001; 

Hoffelder et al., 2004). In the next cell cycle, the telomere-less DNA ends are again primed to 

fuse after replication, which is known as the Breakage-Fusion-Bridge (BFB) cycle, and can 

result in loss or amplification of genetic information or translocation of chromosome arms. 

Fusion events following DNA replication, as described, is known as “chromatid-type” BFB 

cycles (Figure 6B).  

 

In cases where fusion events precede DNA replication, the chromosome will replicate 

producing two dicentrics. These dicentrics may segregate either in a parallel fashion or by 

producing two anaphase bridges (Figure 6C). If they segregate in parallel, each daughter cell will 

inherit a dicentric chromosome, which will face the same scenario in the next cell cycle. In cases 

of bi-directional segregation, the bridges will form, and eventually break (Hoffelder et al., 2004).  
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Figure 6   Breakage-Fusion-Bridge cycles. Double stranded break formation followed by 

replication may result in bridging between sister chromatids (A). Chromatid type BFB cycles 

(B). Chromosome type BFB cycles and possible outcomes of chromosome segregation. See text 

for details (C). Green lines indicate the sites of break, “T” stands for telomeres. Centromeres are 

represented by black circles, and different chromosomes are color coded by red and blue.  
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The cells will have sticky telomere-free DNA ends, which may fuse back and enter a 

“chromosome type” BFB cycle. 

1.3.3 Fate of Anaphase Bridges  

It is now known that the breakage along the anaphase bridge typically occurs at multiple 

sites, leading to formation of micronuclei and extensive loss of DNA material (Gisselsson et al., 

2001; Hoffelder et al., 2004).  In an extreme case, the entire bridge may be fragmented, resulting 

in loss of whole chromosome arms, which may explain the high frequencies of isochromosomes 

or whole-arm translocations in cancer cells (Gisselsson et al., 2005; Stewenius et al., 2005). 

Furthermore, these rearrangements also result in amplifications of low copy genes. For example, 

there is evidence indicating that both cyclinD1 and NuMA genes have been amplified via 

breakage-fusion-bridge cycles (Jiang et al., 1992; Huang et al., 2002). Alternatively, a bridge 

might result in detachment of sister chromatids from the spindle, which would give rise to loss of 

the whole chromosome (Gisselsson et al., 2005; Stewenius et al., 2005). Lastly, anaphase 

bridging might interfere with cytokinesis, resulting in a binucleate cell (Stewenius et al., 2005). 

After another round of DNA replication and centrosome duplication, a binucleate has the 

potential to divide in a multipolar fashion, which will eventually cause further chromosomal 

instability (Luo L and Saunders WS, unpublished data). 

 

Although bridges usually break in anaphase from the tension of the spindle pulling forces 

or during cytokinesis, in rare cases they will persist until telophase or even after cytokinesis 

resulting in formation of an interphase bridge seen as persistent chromatin strands connecting 
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daughter cells (Figure 3C-F). It is not yet known whether these cells continue BFB cycles, 

function as a binucleate cell or cease proliferation. 

1.4 MULTIPOLAR SPINDLES (MPS)  

During mitosis, each daughter cell is ensured to obtain the correct amount of DNA 

through carefully controlled attachments of the chromosomes to the highly organized spindle 

fibers and symmetric separation in a bipolar fashion. However, divisions with more than two 

poles are also observed which leaves the cells with abnormal numbers of chromosomes (Figure 

7) (Wunderlich 2002). Multipolar spindle (MPS) formation is a defect observed in many cancer 

cell lines, and is associated with an increase in centrosome number (Saunders 2005; Stewenius et 

al., 2005).  

1.4.1 Centrosome Structure and Duplication  

Centrosomes are the microtubule organizing centers in mammalian cells. The major 

structural elements of centrosomes are a pair of barrel shaped centrioles surrounded by an 

amorphous framework of proteins called the pericentriolar material (PCM). Centrioles are small 

cylindrical organelles (~200-400nm) composed of 9 triplet longitudinal fibrils and radial spokes 

connecting fibrils to the center of the centriole (Figure 8) (Dutcher 2001; Dutcher 2001). Among 

the major components of the PCM are the γ-tubulin ring complexes, the site of microtubule 

nucleation (Zheng et al., 1995), and the Sfi1p and centrin fibers, which make connections 

between different components of the centrosome, mediating overall structure and centriole  
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Figure 7 Multipolar mitoses in metaphase (A, B) and anaphase (C, D) observed in 

UPCI:SCC103 cell line. Notice that bridging usually accompanies multipolarity. DAPI is used 

for DNA staining and images are taken with an Olympus camera with 100X magnification lens.  

 

A B

C D
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Figure 8  Centrosome structure.  Centriole configuration with an array of nine microtubule 

triplets is shown in cartoon and in enlarged view by electron microscopy. Magnification ~ 

305,000X. Figure from: 

http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/C/Cytoskeleton.html and 

http://io.uwinnipeg.ca/~jfranck/Bio3221_Pwrpt_lectures/Nov10_lecture_files/slide0016_image0

16.jpg 

http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/C/Cytoskeleton.html
http://io.uwinnipeg.ca/~jfranck/Bio3221_Pwrpt_lectures/Nov10_lecture_files/slide0016_image016.jpg
http://io.uwinnipeg.ca/~jfranck/Bio3221_Pwrpt_lectures/Nov10_lecture_files/slide0016_image016.jpg
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duplication (Salisbury 2004). Other structural components include several coiled coil proteins 

(Salisbury 2003), such as pericentrin (Doxsey et al., 1994; Dictenberg et al., 1998), Cep135 

(Ohta et al., 2002), AKAP-450 (Keryer et al., 1993; Witczak et al., 1999), and ninein (Bouckson-

Castaing et al., 1996), which regulate centrosomal activity. 

 

Since centrosomes play a critical role in equal segregation of the chromosomes, they have 

to be duplicated once and only once in the cell cycle to ensure bipolarity. In G1, cells typically 

have two centrioles, which are orthogonally oriented relative to each other. Once cells pass the 

G1 checkpoint, the centrioles separate slightly, and nascent procentrioles start emerging 

perpendicular to the mother centrioles at the proximal end (Adams and Kilmartin 2000; 

Khodjakov et al., 2002). Elongation of procentrioles continues throughout G2 and is completed 

by the end of mitosis. Centrosomal maturation continues by recruitment of the PCM proteins 

during the G2/M phase and completion takes ~1.5 cell cycles (Dictenberg et al., 1998). A 

number of phosphorylation and ubiquitin dependent degradation events also take place to 

regulate the centrosome duplication cycle (Freed et al., 1999; Fry et al., 2000; Wojcik et al., 

2000; Hinchcliffe and Sluder 2001; Meraldi and Nigg 2002).  

 

The centriole pairs and the associated PCM, which forms the new centrosomes, migrate 

away from each other shortly before mitosis, ensuring bipolar spindle formation.  

1.4.2 Centrosome amplification and MPS  

Extra numbers of centrosomes have been reported in many different tumor types 

including breast, lung, brain, gall bladder, bone, pancreas, colorectal, head and neck cancers 
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(Lingle et al., 1998; Pihan et al., 1998; Weber et al., 1998; Carroll et al., 1999; Lingle and 

Salisbury 1999; Sato et al., 1999; Gustafson et al., 2000; Kuo et al., 2000; Pihan et al., 2001; 

Sato et al., 2001). Moreover, changes in centrosome number is strongly correlated with 

aneuploidy and CIN in many cases (Lingle et al., 1998; Sato et al., 1999; Ghadimi et al., 2000; 

Pihan et al., 2003).  

 

Centrosomes can potentially be amplified by three different mechanisms (Nigg 2002). 

The first model involves several rounds of duplication within a single cell cycle. Since 

centrosome duplication requires a long time, there has to be a delay in cell cycle progression for 

this model to be correct. Indeed, when cells are treated with drugs, such as hydroxyurea or 

aphidicolin to stall DNA replication (Balczon et al., 1995; Meraldi et al., 1999), or when RAD51 

deficient cells are arrested in G2 phase after irradiation (Dodson et al., 2004), centrosomes 

continue to duplicate in the absence of DNA replication and completion of the cell cycle. In the 

second model, over-replication occurs due to a failure of cytokinesis. Abortion of cell division 

arises from a variety of reasons some of which are: persistence of DNA damage, an inactive 

spindle-assembly checkpoint or abnormalities in mitotic progression (Meraldi et al., 2002; 

Millband et al., 2002). For example, it has been shown that a reduction in the activity of the 

myosin light chain kinase, which functions in contractile ring formation and completion of 

cytokinesis, is a major source of cytokinesis failure in a variety of cancer cell lines (Matsumura 

2005) (Wu Q. and Saunders WS., unpublished results). Thirdly, cell fusion might also result in 

supernumerary centrosomes. This phenomenon has been observed following treatment of cells 

with X-Ray or UV or overexpression of Rad6 in epithelial cells (Kura et al., 1978; Brathen et al., 

2000; Shekhar et al., 2002). Regardless of which initial event leads to an amplification in 
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centrosome number, the main outcome is the increased likelihood of formation of multipolar 

spindles (Lingle et al., 1998; D'Assoro et al., 2002; Lingle et al., 2002).  

 

It has been observed that both MPS and centrosome amplification appear together in 

cancer cells, suggestive of a link between these abnormalities (Gisselsson et al., 2002). Despite 

the intimate correlation, cancer cells do not always undergo multipolar mitosis when they acquire 

extra centrosomes. A typical example is the N1E-115 cell line, where supernumerary 

centrosomes coalesce to form a bipolar metaphase plate (Ring et al., 1982). Similar results are 

also observed in UPCI:SCC114 cells indicating that there are mechanisms clustering the 

centrosomes allowing bipolar division (Quintyne et al., 2005).  There is evidence suggesting that 

coalescence is achieved through a dynein-dependent mechanism, since this microtubule binding 

motor is reduced in the spindle of most cancer cells. Restoring dynein to the spindle results in 

centrosomal clustering and bipolar division (Quintyne et al., 2005).  

1.4.3 Other mechanisms leading to MPS  

Although centrosomal amplification is a major mechanism in MPS formation, 

multipolarity can be induced in the absence of changes in centrosome number. Overexpression of 

Nek2 kinase, which plays a role in centriole separation through phosphorylation of linker 

proteins between the centrioles, has been shown to provoke centrosome splitting and 

multipolarity (Fry et al., 1998; Fry et al., 1998). Centrosomal splitting can also occur via 

treatment of microtubule destabilizing drugs such as nocodazole, colcemid, or disorazole (Jean et 

al., 1999; Meraldi and Nigg 2001) (Acilan C, Saunders WS, unpublished observations).  

Moreover, the splitting effect can be amplified with the combined action of nocodazole and 
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overexpression of Nek2, indicating that the effect can be additive (Meraldi and Nigg 2001). 

Furthermore, treatment of cells with reagents other than microtubule destabilizers or cold-

shocking the cells have also been reported to induce splitting of centrosomes and MPS (Schliwa 

et al., 1983; Callaini and Marchini 1989; Kojima and Czihak 1990).  

 

In addition, there is evidence indicating that incomplete replication or DNA damage can 

result in centrosomal splitting in both Drosophila and mammalian cells (Hut et al., 2003). 

Treatment of cells with γ-irradiation has also shown to induce multipolarity and once again 

centrosome overduplication has been proposed as the mechanism. In chapter 5, we shall provide 

evidence suggesting other mechanisms as to how γ-irradiation might lead to MPS. 

1.4.4 MPS and tumorogenesis  

During a multipolar division, a balanced distribution of chromosomes to the daughter 

cells is very unlikely, even if the sister chromatids segregate accurately. In point of fact, it has 

been shown that the division of sister chromatids after a tripolar mitosis is almost random 

(Stewenius et al., 2005). Under this assumption, some of the progeny cells will inherit no copies 

of certain chromosomes (nullisomy) and it is likely that clonal expansion will not be favored in 

cells containing nullisomies. So why do cancer cells exhibit multipolar mitoses but are not 

eliminated by selection? It can be speculated that the majority of the daughter cells will not 

undergo further cell divisions, which will be an evolutionary dead end, but a rare event can grant 

a selective advantage. This would hold true especially after a multipolar division in binucleate 

cells, which might provide extra number of chromosomes. Moreover, a genetic variation leading 

to in vivo resistance to chemotherapeutic drugs or an ability to stimulate angiogenesis in a tumor 
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could also favor multipolar divisions. Alternatively, formation of MPS can be a secondary event 

without any particular advantage. Cancer cells frequently lack cell cycle checkpoints and 

abnormal mitotic figures could be expected to occur in these backgrounds. Supernumerary 

centrosomes are only associated with a minority of cells contributing 1–15% of the population. 

It is possible that those that divide in a multipolar fashion are eliminated from the culture and a 

steady frequency of supernumerary centrosomes is achieved by de novo amplification of 

centrosomes.  

1.5 CORRELATION BETWEEN MULTIPOLAR SPINDLES AND ANAPHASE 

BRIDGES  

Both anaphase bridges and multipolar spindle formation can lead to chromosomal 

instability and massive changes in chromosomal structure and number. They are usually found 

concomitantly driving the cancer cell to aneuploidy (Gisselsson et al., 2004). Moreover, there is 

a strong positive correlation between the frequency of MPS and the level of bridging in many 

different tumors tested (r=0.96) (Gisselsson et al., 2002). The basis for such a correlation could 

be a single event, environmental or genetic, causing both of these defects. For instance, 

treatments such as ionizing radiation and X-ray exposure have been shown to induce both (Scott 

and Zampetti-Bosseler 1980; Gisselsson et al., 2001; Sato et al., 2001). Furthermore, loss of p53 

results in an increase in centrosome number probably through deficiencies in the regulation of 

the centrosome duplication cycle and failure of cytokinesis. p53 might also control centrosome 

cycle through transactivation independent ways such as physical binding to the centrosomes 

(Carroll et al., 1999; Tarapore and Fukasawa 2002). Moreover, p53 loss also affects the 
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frequency of anaphase bridges in backgrounds with deficient DNA repair pathways or 

telomerase enzyme (Zhu et al., 2002). Consistently, expression of human papillomavirus proteins 

E6 or E7, which bind to and inactivate p53 and pRb tumor suppressor proteins, can both trigger 

formation of anaphase bridges and lead to supernumerary centrosomes and multipolar mitoses 

(Duensing and Munger 2002; Schaeffer et al., 2004). Alternatively, a correlation might exist due 

to a dependence of anaphase bridges or multipolar spindles on one another. We have observed 

that when cells undergo multipolar anaphase, they usually contain bridges connecting some or all 

poles to each other (Figure 7C, D). Thus, within a mixed population of normal and aberrant 

division, these events tend to occur together. It is known that anaphase bridges do not necessarily 

resolve and persistence through interphase is observed (Figure 3D-F). In such instances, the 

bridge might interfere with cytokinesis, which would lead to an increase in centrosome number, 

hence multipolar spindles. While any of the above, alone, could explain the observed correlation, 

they might also co-exist strengthening the link between these defects.  
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2.0  CHAPTER II: ROLE OF DNA REPAIR PATHWAYS IN THE FORMATION OF 

ANAPHASE BRIDGES 

2.1 INTRODUCTION  

2.1.1 Oxidative stress and DNA damage 

There are a number of DNA damaging events and oxidative damage constitutes a 

significant source of DNA damage in all aerobic organisms. Oxidative damage can occur 

through exogenous sources such as ionizing radiation (IR) (Skov 1984; Teoule 1987; Nikjoo et 

al., 1994) or from endogenous sources such as production of H2O2 as a result of metabolic 

processes associated with redox reduction reactions in the mitochondria (Chance et al., 1979). 

 

While H2O2 does not react with DNA directly, it results in production of •OH radicals, 

which are highly reactive with DNA, through the Fenton reaction (Imlay et al., 1988). 

 

Fe2++H2O2→•OH+Fe3+. 

 

Metals, such as Cu+ and Fe2+, catalyze this transition, and both of these metals are 

abundant in cellular fluids, and are also associated with DNA in trace amounts. Interestingly, 
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DNA damage through H2O2 requires the presence of these metals, consistent with Fenton 

reaction as the primary source of reactive oxygen species (Blakely et al., 1990). •OH can result in 

nearly 100 different types of DNA damage including formation of single stranded DNA breaks 

(SSB) (Michalik et al., 1995). It can also indirectly lead to double stranded breaks (DSB) 

possibly due to close proximity of SSBs, when  H2O2 is present at higher concentrations (Dahm-

Daphi et al., 2000; Jackson and Loeb 2001).  

 

IR can also result in different DNA lesions, including DSBs (Hutchinson 1985).  On the 

other hand, unlike H2O2, ionizing radiation can exert its effects directly on DNA, by radiation 

energy (Teoule 1987; Ward 1988). Ionization can release 6-7 times more energy than needed to 

break a covalent C-C bond (Hall 1994), and DSBs can be induced by IR, even at low doses 

(Dahm-Daphi et al., 2000). The effects of IR may also be indirect through production of reactive 

oxygen species by ionizing water molecules (Skov 1984; Teoule 1987; Ward 1988; Nikjoo et al., 

1994). 

2.1.2 Secondary effects induced by H2O2 

While H2O2 is a useful experimental reagent to induce DNA damage, this treatment has 

other side effects, such as damaging cells through oxidation of membrane lipids or proteins 

(Howe et al., 2004; Huang et al., 2004). Moreover, it is known to stimulate apoptosis by altering 

Ca2+ homeostasis (Lin et al., 2004; Shin et al., 2004; van Rossum et al., 2004). In contrast, direct 

H2O2 exposure inhibits CaM-kinase activity, hence might have an inhibitory effect on apoptosis 

as well (Franklin et al., 2006). Furthermore, certain oncogenes, such as K-ras, are shown to be 

activated by oxidative stress, which suggests a tumor promoting role for H2O2 (Jackson 1994). 
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H2O2 treatment is able to influence cell volume as well by changing membrane potential 

(Bychkov et al., 1999) or by activation of membrane serine-threonine phosphatases (Bize and 

Dunham 1995; Bize et al., 1998). In addition, the cytoskeletal network is affected by hydrogen 

peroxide, which can either selectively alter the structure of the cytoskeletal proteins (Aksenov et 

al., 2001) or rearrange cellular actin networks (Huot et al., 1998). H2O2 also induces formation of 

focal adhesion complexes possibly through activation of the SAPK2/p38 pathway (Dalle-Donne 

et al., 2001).  

2.1.3 Anaphase Bridges 

Anaphase bridging, a commonly observed segregation defect in cancer cells, is one of the 

major sources of genomic instability (Gisselsson et al., 2000) (Montgomery et al., 2003).  It has 

been proposed that bridging may have hazardous consequences like gene deletions, 

amplifications or translocations, and is known to be strongly linked to carcinogenesis (Artandi et 

al., 2000; Stewenius et al., 2005). Anaphase bridges can theoretically be produced by several 

mechanisms such as telomeric fusions, or repair of DNA double-stranded breaks (Bryant 1984; 

Artandi et al., 2000; Fouladi et al., 2000; Gisselsson et al., 2001; Rudolph et al., 2001; Lo et al., 

2002; O'Hagan et al., 2002). While a significant amount of evidence has been obtained on how 

bridges form as a result of telomeric fusion, relatively little is known about bridge induction after 

DSB formation.  

 

In an attempt to determine how and why cells form bridges following DSB induction, we 

first set out to determine what DNA repair pathways the cells use to heal the DNA damage that 

cause bridges. Preliminary experiments were performed using hydrogen peroxide to induce 
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DSBs. To exclude the possible side effects of H2O2 mentioned above, the results were confirmed 

and expanded using IR. 

 

Our studies have indicated that neither of the two major DNA repair pathways in 

mammalian cells, HR or NHEJ, alone, is required for bridge formation. In fact, the NHEJ 

pathway seems to play a role in the prevention of bridges. Moreover, it appears that cancer cells 

that have intrinsically high NHEJ activity are less likely to form bridges. 
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2.2 RESULTS  

2.2.1 Screening genetic mutants of DNA repair proteins using H2O2 to induce DSBs for 

deficiencies in formation of anaphase bridges 

Whilst cells usually fuse the correct broken ends efficiently, the presence of dicentric 

chromosomes and anaphase bridges indicate that incorrect fusions also occur. In order to explore 

the mechanisms behind anaphase bridging in response to DSBs, we hypothesized that formation 

of bridges is an enzymatic process, which involves the fusion of broken DNA ends via repair 

proteins. Initially, we tested this hypothesis by using genetic mutants for numerous proteins 

involved in either NHEJ or HR, the major DSB repair pathways in vertebrates. The DSBs were 

induced by H2O2 treatment in unsynchronized cultures. Cells were fixed 24 hours following 

treatment, which is approximately one cell-cycle duration after the breaks were introduced. 

Anaphase bridges were scored based on DAPI staining and exclusively DNA links that are 

entirely continuous between the condensed chromosome masses were counted as a bridge. 

Consistent with previous reports, in all cell lines tested, treatment of H2O2 resulted in increase 

bridges, albeit with varying frequencies (Figures 9-11) (Thomas et al., 2003).  

2.2.1.1 Mutant cell lines exhibit similar levels of bridging in HR-deficient backgrounds in 

response to H2O2 treatment 

We began by examining whether HR plays a role in bridging. Figure 9 illustrates the 

induction of anaphase bridges in HCT116 cells and the RAD54B mutant derived from this cell 
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line by targeting all three copies of the gene (HCT116 cells harbor three alleles of RAD54B). 

The loss of RAD54B expression was verified by immunoblotting (Figure 13). RAD54B deletion 

results in decreased HR rates and varying levels of sensitivity in response to different DNA 

damaging reagents (Miyagawa et al., 2002; Wesoly et al., 2006). In this HR mutant, we observed 

that anaphase bridges were induced to similar extents compared to the parental line, indicating 

that HR pathway was not required for bridge formation.  

2.2.1.2 Mutant cell lines exhibit enhanced levels of bridging in NHEJ-deficient 

backgrounds in response to H2O2 treatment 

In order to test whether NHEJ plays a role in bridging, we used Ku80 deficient Chinese 

Hamster Ovary (CHO) and the DNA-PKcs deficient human glioblastoma (MO59) cell lines. For 

both cell lines, the parental wild type cells showed an induction of bridges upon H2O2 treatment. 

Strikingly however, the level of anaphase bridge formation in either NHEJ deficient cell line was 

higher than seen in wild type cells (Figure 10). This result suggested that NHEJ was not required 

in the formation of bridges, but rather it played an efficient role in their prevention.  

2.2.1.3 There is no additive effect for induction of anaphase bridges with deficiencies in 

different proteins of NHEJ pathway 

DNA-PKcs is a member of phosphotidylinositol-3 (PI-3) kinase family (although there is 

no evidence for its function as a lipid kinase like PI-3 kinase) (Smith et al., 1999). PI-3 kinases, 

including DNA-PKcs, are known to be inhibited by wortmannin (Hosoi et al., 1998). Given this 

tool, we wanted to test whether inhibition of DNA-PKcs by wortmannin will have similar effects 

on bridging in other cell lines as well as in cells that are already defective for NHEJ. As 

predicted, anaphase bridges were enhanced upon induction of DSBs in wild type cells after drug 
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treatment. Nevertheless, inhibition of DNA-PKcs in cells with an existing mutation in a NHEJ 

protein, Ku80, did not further augment bridge frequency, indicating that there is no additive 

effect between the NHEJ proteins for the induction of anaphase bridging (Figure 11). However, 

it should be noted that wortmannin is not specific for DNA-PKcs and among the other PI-3 

kinases, activity of DNA repair proteins, such as ATM or ATR, is also expected to be reduced.  

2.2.1.4 p53 is not required for bridge formation  

The tumor suppressor protein, p53, has a critical role in many signal transduction 

pathways including DNA repair, distinguishing between growth arrest or apoptosis (Niida and 

Nakanishi 2006; Sun 2006) p53 has been shown to inhibit deletion of bases during repair related 

joining events by NHEJ and has been proposed to influence NHEJ during site-directed, but not 

IR induced DSB repair (Tachibana 2004; Dahm-Daphi et al., 2005).  

 

To test whether p53 is required for bridge formation, we assayed for bridging in p53 

knockout mouse epithelial cells (Figure 12). Upon H2O2 treatment, anaphase bridges were 

greatly induced from ~5% to an average of 80%. Likewise, another segregation defect, formation 

of micronuclei that occurs as a consequence of bridging, was increased in accordance. Consistent 

with this data, it has been reported by our lab that treatment of cells with cigarette smoke 

condensate also induces anaphase bridge formation at a higher frequency in p53 deleted 

backgrounds (Luo et al., 2004).  

 

The induction of bridges in p53 deleted cells suggests that this protein is probably not 

required for bridge formation. However, this experiment lacks control cells with wild type p53. 

Hence these results are inconclusive for a definitive role for p53 in bridge formation. 
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Figure 9 Induction of anaphase bridges in human colon cancer cell line HCT116 following 

H2O2 treatment. A RAD54B-deficient cell line was created by sequential gene targeting of all 

three copies of the RAD54B gene in HCT116 (wild type, WT) cells. Cells were treated in culture 

medium containing H2O2 at the indicated concentrations, switched to regular medium following 

10 minutes of incubation and fixed in cold methanol 24 h after H2O2 treatment. Cells were 

scored for the percentage of bridges in the total anaphase population. 
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Figure 10 Induction of anaphase bridges in cells deficient for NHEJ proteins after H2O2 

treatment. Ku80 (A) or DNA-PKcs deficient (B) cells are treated with H2O2 as described in 

Figure 9, and scored for anaphase bridging. The XRS-6 cell line is derived from the parent 

Chinese Hamster Ovary (CHOK1) cells, and is deficient for Ku80 expression (A). MO59K is the 

sister cell line for MO59J, which fails to express the catalytic subunit of DNA-PK. The two cell 

lines were established from the same tumor, and otherwise exhibit similar genomic instability 

(Allalunis-Turner et al., 1993) (B).  
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Figure 11 Inhibition of DNA-PK by wortmannin (WM) enhances bridge induction. Wild 

type (WT) CHOK1  (A), or Ku80 deficient (Ku80-/-) XRS-6 (B) cells are treated with H2O2 as 

described previously, but grown in wortmannin (WM) containing medium, where indicated. 

While inhibition of DNA-PKcs by wortmannin induces bridge formation in a background wild 

type for NHEJ (A), an additive induction is not observed in Ku80 deficient backgrounds (B).  
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Figure 12 KE epithelial cells that are derived from p53 knockout mouse were treated with 

H2O2 as described previously. Cells are scored for bridge formation and presence of micronuclei. 

Both of these defects were induced following DSB induction.  
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2.2.2 Role of DNA repair pathways involved in anaphase bridging   

Although formation of anaphase bridges is most likely a result of the DNA damaging 

effects of H2O2, in order to rule out other secondary causes, IR was also used as an additional 

source of DNA damaging agent. 

 

Since cell lines used in these initial experiments were coming from different genetic 

backgrounds and species, cross comparison of the data was hard to judge. Hence we used 

deletion mutants of HR pathway or siRNA to reduce the levels of NHEJ proteins in the same 

HCT116 background in the following sets of experiments.  

2.2.2.1 HR is not required for bridge formation  

A reduction in homologous recombination is generally tested by two different assays: 

targeted integration frequency and sister chromatid exchange (SCE) rate. The two mutants used 

in our assays were once again the RAD54B mutant, which is known to display reduced targeted 

integration frequencies (>10 fold) with no change in sister chromatid exchange rates (Miyagawa 

et al., 2002), and the XRCC3 mutant, which exhibits reduced SCE rates without altered targeted 

integration frequencies (Yoshihara et al., 2004). Neither the XRCC3 nor the RAD54B mutant 

cell lines express the corresponding proteins as confirmed by immunoblotting (Figure 13).  

Consistent with our results using H2O2, ionizing radiation treatment led to similar levels 

of anaphase bridging in either mutant background relative to the parental HCT116 cell line 

(p<0.0001, both mutants) (Figure 14A). To rule out a possible influence of known deficiency of 
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MLH1 (Aaltonen et al., 1993; Branch et al., 1995), a DNA mismatch repair protein, or unknown 

mutations in the HCT116 cell line, we also examined parental and HR-defective RAD51C 

mutant Chinese Hamster Ovary cells and again found no difference in bridge induction with 

mutation of HR (p<0.08) (Figure 14B). 

2.2.2.2 NHEJ is essential for prevention of bridges induced by IR  

 To explore the role of NHEJ in anaphase bridging, we targeted both Ku80 and XRCC4 

proteins using siRNA. These targets represent early and late acting proteins in the pathway 

(Figure 4). siRNA transfection of HCT116 cells efficiently reduced the Ku80 and XRCC4 

expression as judged by immunoblotting (Figure 15). The knockdown was also confirmed by 

immunostaining of the cells for these proteins (Figure 16). These cells clearly showed decreased 

staining upon siRNA treatment and only cells with no visible staining were scored. The average 

transfection efficiency was between 90-95%, hence most of the population was included.  

 

In both of the targeted knockdowns, we observed a significant increase in anaphase 

bridge formation (p<0.0001, both knockdowns) (Figure 17A). To exclude the possibility that 

these findings were specific for HCT116, we established similar conclusions using Ku80 and 

XRCC4-deficient CHO cells, where enhanced levels of bridging are seen (p<0.0001, both 

mutants) (Figure 17B, C). These observations, in combination with our findings using H2O2 

treatment, reveal that NHEJ activity is critical to prevent bridge formation in response to DNA 

damage. 
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Figure 13 HR-deleted cell lines RAD54B-/-/- (HCT116 cells that are disrupted in all three 

copies of the RAD54B gene) and XRCC3-/- (HCT116 cells that are disrupted in both copies of 

the XRCC3 gene) do not express RAD54B, or XRCC3 proteins, respectively. Whole cell 

extracts were immunoblotted and both non-specific bands and γ-tubulin were used as loading 

controls. 
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Figure 14  Anaphase bridges were induced to similar levels in HR mutants by IR.  (A) 

HCT116 cells, or RAD54B or XRCC3 mutants in that background, were treated with IR, fixed 

after one day, and DAPI stained.  Percentage of bridges was calculated from the total anaphases. 

(B) Mutation of the HR component RAD51C did not change bridge-induction in CHO cells. 

Wild type and the RAD51C mutant cells were IR-treated and scored for anaphase bridges. 
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Figure 15  Both Ku80 and XRCC4 levels are reduced after siRNA treatment. Immunoblots 

of HCT116 cells were transiently transfected with siRNA for Ku80 (siKu80) or XRCC4 

(siXRCC4) and harvested three days after transfection using RIPA buffer. 

XRCC4
+r

an
do

m
 si

R
N

A

+s
iK

u8
0 

+s
iX

R
C

C
4 

Ku80

γ-Tubulin



 55 

 

+siKu80

Random 
siRNA

DNA Ku80

DNA XRCC4

+siXRCC4

Random 
siRNA

A)

B)



 56 

Figure 16  HCT116 cells were fixed in methanol and stained for Ku80 (A) or XRCC4 (B) 

three days after transfection with either siKu80 or siXRCC4, respectively. siRNA treatment 

results in reduction in the expression of both of these proteins as determined by fluorescence 

intensity. Only anaphases with reduced intensity were scored for bridging.  
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Figure 17 Enhanced induction of anaphase bridges in siRNA-treated cells or genetic mutants 

upon IR treatment. (A) HCT116 cells were transiently-transfected with either siKu80 or 

siXRCC4.  Cells were treated with indicated doses of IR three days after transfection.  Cells were 

fixed one day after IR treatment and stained for DNA to count bridges and antibodies to XRCC4 

or Ku80 to measure knockdown.  Only anaphases with no visible staining were scored for 

bridges.  The transfection efficiency was ~ 90%. (B) Bridge induction in the CHO-K1 parental 

line or the same background with a Ku80 mutation (XRS-6).  (C) Bridge induction in CHO cell 

lines that were either XRCC4-/- or XRCC4-/- stably-transfected with an XRCC4 expression 

plasmid (XRCC4+). 
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2.2.2.3 HR appears to form bridges, when NHEJ is compromised  

It has been previously reported that HR levels are increased in NHEJ deficient mutants 

(Fukushima et al., 2001; Pierce et al., 2001; Allen et al., 2002; Delacote et al., 2002). In order to 

explore whether HR is the source of bridging in the absence of NHEJ, we used siRNA 

knockdown of NHEJ proteins (Ku80 and XRCC4) in HR deleted backgrounds (XRCC3 and 

RAD54B) in all pair wise combinations and examined their capacity to form bridges. 

Consistently, the increased bridge phenotype by NHEJ induction was reduced back to wild type 

levels (p<0.001, all combinations) (Figure 18). We conclude that the increased bridge induction 

from loss of NHEJ requires HR.  

 

To confirm these observations, we performed similar experiments in chicken DT40 cells. 

Again, Ku70 deficiency resulted in elevated levels of bridging (p<0.02), while RAD54 mutation 

alone showed no further increase than wild type. In both cell lines, the HR/NHEJ double 

deficiency led to a decrease in the high anaphase bridge phenotype seen in NHEJ mutants alone 

(p<0.01) (Figure 19).  

2.2.2.4 NHEJ/HR double deficient cells can still repair DSBs  

To distinguish whether the reduction of bridging in these double mutants is due to 

persistent breaks or by an unknown repair mechanism which does not lead to bridges we tested 

the presence of DNA breaks by phosphorylated H2AX (γ−H2AX) staining, an established 

marker for DSBs (Rogakou et al., 1998; Sedelnikova et al., 2002). While almost all cells were  
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Figure 18 (A-D) Reducing NHEJ activity in HR-deleted backgrounds mostly eliminates the 

increased bridge frequency from loss of NHEJ in all pair-wise combinations tested (p<0.001, all 

combinations).  Cells were treated with IR three days after transfection, fixed one day later and 

stained with DAPI and antibodies to XRCC4 or Ku80.  Only anaphases with no visible staining 

(~ 90% of total cells) were scored for bridges.    
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Figure 19 Chicken DT40 cells also show HR-dependent induction of bridges in NHEJ 

mutants. Wild type, RAD54-deficient, Ku70-deficient, or RAD54/Ku70 double-deficient DT40 

cells were treated with the indicated doses of IR and scored for anaphase bridge formation.  As 

observed with human cells, HR-deficiency did not change bridge induction, and mutational loss 

of NHEJ enhanced the bridge levels, while the HR/NHEJ double mutants showed levels of 

induction similar to the parental line.  Both DIC optics and DAPI staining were needed to 

distinguish anaphase bridges in these cells. 
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positive for foci formation 20 minutes after IR, the staining disappeared by 24 hours, at the time 

anaphase bridging is scored (Figure 20). Even though the differences between these samples 

were dramatic, quantification for the presence of γ−H2AX foci was not very obvious due to the 

differences in the size of the foci, which were scattered on many focal planes. Yet, approximate 

scores for cells containing foci are shown in Figure 21. 

 

Although these results suggest that DSB repair still occurred in the HR/NHEJ defective 

background, breaks might simply lose γ-H2AX phosphorylation without repair. In order to 

exclude this possibility, we tested other DNA double strand break markers, 53BP1 and 

phosphorylated-ATM (P-ATM), which also form foci at the site of DSBs (Figures 22, 23) 

(Anderson et al., 2001; Bakkenist and Kastan 2003). Once again, the majority of the foci 

disappeared by 24h in every combination tested (siRNA knockdown of XRCC4 and Ku80 in 

RAD54B and XRCC3 deficient backgrounds). 

2.2.3 Decrease in anaphase bridges does not appear to be due to a decrease in mitotic 

index  

It has been previously shown that cells that are defective for Ku80, XRCC4 or XRCC3 

are sensitive to ionizing radiation (Giaccia et al., 1990; Nussenzweig et al., 1997; Brenneman et 

al., 2000). Moreover, cells deficient for both repair pathways exhibit reduced proliferation 

(Gorski et al., 2003; Couedel et al., 2004; Mills et al., 2004). Correspondingly in our assays, if 

cells with damage do not undergo mitosis, they would not form a bridge in anaphase, and this 

could potentially account for the decrease in anaphase bridging in cells compromised for both 

pathways.  
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Figure 20 γ-H2AX staining was transient in HR/NHEJ defective cells.  RAD54B-/-/- cells 

were transfected with siKu80 and monitored for the presence of γ-H2AX foci 20min or 24h after 

IR treatment.  Similar results are obtained for all pair-wise HR/NHEJ double deficiencies (data 

not shown). The formation of foci in repair defective backgrounds was similar to the wild type 

HCT116 cells. See Figure 21 for quantification. 
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Figure 21 Cells were scored for formation of γ-H2AX foci following IR treatment.  Majority 

of the breaks disappear by 24h in HR/NHEJ defective cells. Similar levels of foci appearance 

were observed in repair defective backgrounds compared to the wild type HCT116 cells 20min 

after IR. Although both the number of foci/cell and the number of cells containing foci decreased 

after 24h, the percentage of cells with γ-H2AX foci was slightly more in NHEJ/HR deficient 

cells. The percentage of cells that contain foci is shown in the graph. Approximately 500 cells 

were scored for each experiment. 
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Figure 22  53BP1 staining was transient in HR/NHEJ defective cells.  RAD54B-/-/- cells 

were transfected with siKu80 and monitored for the presence of 53BP1 foci 20min or 24h after 

IR treatment.  Similar results are obtained for all pair-wise HR/NHEJ double deficiencies (data 

not shown).  
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Figure 23 P-ATM staining was transient in HR/NHEJ defective cells.  RAD54B-/-/- cells 

were transfected with siKu80 and monitored for the presence of P-ATM foci 20min or 24h after 

IR treatment. Both P-ATM and Ku80 antibodies were from the same species, hence a 

fluorophore-labeled random siRNA was used as a cotransfection marker (third panel labeled 

siKu80). Labeled siRNA is 100% associated with knockdown of Ku80 as determined on a 

separate slide (data not shown), but probably underestimates the number of knocked down cells 

since only accumulation of siRNA label can be detected by immunofluorescence. Arrows 

indicate transfected cells. Similar results are obtained for all pair-wise HR/NHEJ double 

deficiencies (data not shown).  
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In order to explore whether there is a reduction in proliferating cells, we scored mitotic 

indices before and after ionizing radiation treatment. While there was a mild decrease in XRCC4 

deficient backgrounds, cell division was mostly not affected despite the repair deficiencies 

(Figure 24). Moreover we did not detect a reduction in cell proliferation in any background 

during the course of the experiment (data not shown). These results suggest that the decrease in 

anaphase bridge frequency in repair deficient cells for both pathways cannot simply be explained 

by a decrease in mitotic population. Consistent with our results, XRCC3 deletion in the same 

HCT116 cell line has been previously published not to cause sensitivity to ionizing radiation 

(Yoshihara et al., 2004). Hence it appears that HCT116 cells lack the checkpoints required to 

arrest cell division.  

 

Since the anaphase bridges are expressed as a percentage in the total anaphase population 

(number of cells scored in each category is displayed in Table 1), and the fact that mitotic index 

is not affected in double deficient cells,  the decrease in anaphase bridging in these cells does not 

appear to be due to a decrease in the anaphase population. 

2.2.4 In vitro NHEJ ligation assay  

Since NHEJ clearly plays a role in the prevention of bridges, can we explain the anaphase 

bridge variation in cancer cell lines by differences in NHEJ activity?  We used an in vitro 

ligation reaction to quantify NHEJ activity in different tumor cell lines (Diggle et al., 2003).  

Linearized plasmid DNA was incubated with whole cell extracts (WCE) and religation measured 

by the appearance of dimers and trimers.  (The presence of WCE blocked monomeric ligation by 

an unknown mechanism, as shown by comparison of T4 DNA ligase +/- WCE, (Figure 25D)).   
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Figure 24 Mitotic indices for HCT116 parental cells and for repair deficient backgrounds. 

HCT116 cells do not show growth abnormalities in repair defective backgrounds upon ionizing 

radiation treatment. Each experiment was repeated three times and 500-600 cells were scored per 

slide from five different positions on the coverslip. (rdm siRNA: random siRNA, siKu80: siRNA 

to Ku80, siXRCC4: siRNA to XRCC4) 
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Table 1 Total number of coverslips and cells scored for each experiment.  (WT: wild type, 

def: deficiency) 
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 Although this assay has been previously shown to measure NHEJ activity (Baumann and West 

1998; Diggle et al., 2003), to confirm the specificity of the assay we tested various NHEJ 

inhibitors.  

 

 Addition of PI3-kinase inhibitors (to block DNA-PKcs activity), or antibodies specific to 

NHEJ proteins reduced ligation (Figure 25A, B). Interestingly, while siRNA to XRCC4 

diminished ligation, siRNA to Ku80 did not reproducibly decrease ligation, which could be due 

to residual Ku80 after knockdown (Figure 25C). Consistent with other reports, addition of Ku80 

antibodies effectively reduced NHEJ activity with very little ligation (Figure 25B, lane 4) 

(Baumann and West 1998). The difference could be due to residual Ku80 from the untransfected 

population or incomplete siRNA knockdown. Alternatively, addition of antibodies might 

interfere with the activity of other proteins that are in complex with Ku80 and result in a 

reduction in the NHEJ activity. While this assay could be less sensitive to Ku80 levels, because it 

was dependent on NHEJ components and we believe reflects cellular NHEJ activity.  As 

expected, the NHEJ activity of HR mutants was undiminished (Figure 25E). 

2.2.4.1 NHEJ activity is correlated with the induction of bridges in cancer cells  

We next tested for a correlation between NHEJ activity and bridge induction for eight 

tumor-derived and two control cell lines (Figure 26).  The RPE-hTERT normal control cell line 

had very few anaphase bridges prior to treatment and arrested in interphase following IR 

treatment (Figure 26A and data not shown. Total cell counts are shown in Table 2.). We 

therefore utilized HEK-293, an immortalized nonmalignant cell line, for a reference.  Anaphase 

bridges in this line increased from ~20% to ~40% after IR exposure. Among the tumor-derived 

cell lines, the frequency of both pre-existing and induced bridges varied dramatically (Figure 
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26A, 0Gy), suggesting that the pathway leading to bridge formation has varied levels of activity 

in different cancer cells.  The induced bridge levels are calculated as the difference of anaphase 

bridge frequency between 1.8Gys and untreated levels, since some cell lines do not increase 

bridge frequency at doses higher than 1.8Gys (data not shown). To compare levels, we defined 

NHEJ activity as the ratio of multimers to all plasmid bands.   

 

It appears that the NHEJ activity is generally inversely proportional to the induction of 

bridges (Figure 27, p< 0.07).  The relationship is not strictly linear; perhaps reflecting the genetic 

variance of these independent cell lines.  We find no correlation between pre-existing bridges 

and NHEJ activity (data not shown).  These results suggest that the level of induced bridges 

depends on the NHEJ activity of the cancer cells, although the correlation is rather weak. 
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Figure 25  (A) Addition of DNA-PK inhibitors abolished ligation capability of WCEs. WM: 

Wortmannin, InhII/ InhIII: DNA-PK Inhibitor II or III.  Forty μg of total protein each reaction.  

(B) Addition of antibodies specific for NHEJ proteins reduced NHEJ activity.   (C) WCEs 

prepared from cells that were transfected with siXRCC4, but not siKu80, show reduced ligation 

activity.  DNA gels of NHEJ ligation on top, immunoblots of WCEs below.  (D) Intramolecular 

ligation is inhibited by WCE.  Equal amounts of WCE and T4 ligase were used in all indicated 

lanes.  Monomeric circles, like the supercoiled band near the bottom of the gel, can reform with 

the addition of T4 ligase, but not when WCE is present.  WCE also seems to suppress the total 

ligation activity of T4 ligase.  DNA was visualized with SYBR-Green (Molecular Probes).  (E) 

HR mutants have no change in NHEJ ligation efficiency.  
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Figure 26 (A) Bridge induction varies between different cell lines. The indicated cell lines 

were treated with IR, fixed 1 day after treatment, and stained with DAPI to visualize bridges. 

The RPE-hTERT are primary retinal pigmented epithelial cells expressing human telomerase.  

(B) NHEJ activity varies between different cell lines. WCEs from the indicated cell lines were 

used for end joining reactions, as described in Materials and Methods.  
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Table 2 Total number of coverslips and cells analyzed for each experiment. 
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Figure 27 Correlation between NHEJ activity in vitro and induction of bridges by IR. The 

ligation activity of WCEs from the cell lines in Figure 26 (except RPE-hTERT cells) was 

quantified as described in the text.  The median value of NHEJ for each cell line was plotted 

versus the median percent increase in bridges at 1.8 Gy of IR.  The values in this graph were the 

median for 4-7 experiments for NHEJ activity and 4-12 experiments for bridge frequency.  Each 

experiment gave similar results, but the absolute values of the different data points varied 

substantially from day-to-day (p<0.07). 
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2.3 DISCUSSION  

In this study, we investigated which DNA repair pathway contributes to formation of 

anaphase bridges using cells compromised in NHEJ, HR or both pathways. Our data support a 

role for NHEJ as an essential pathway in preventing the formation of chromatin bridges, which 

lead to gross chromosomal changes. This is consistent with previous observations of 

chromosomal instability in NHEJ mutants, such as non-reciprocal translocations, or deletions 

(Difilippantonio et al., 2000; Gao et al., 2000; Bassing et al., 2002; Rooney et al., 2003), some of 

which could be a consequence of anaphase bridges.  Based on our data, HR is not required for 

the formation of bridges.  However surprisingly, in the absence of NHEJ, the HR pathway 

apparently repairs DSBs in such a way that a chromatin bridge forms in anaphase (Figure 28). 

 

It has been previously demonstrated that DSBs may be repaired by an NHEJ-independent 

pathway resulting in formation of dicentric chromosomes and subsequent translocations and 

gene amplifications in cells deficient for XRCC4 or Ligase IV (Zhu et al., 2002) or Ku80/70 

(Difilippantonio et al., 2002). The authors have proposed mechanisms which involve incursion 

of the DSB end into an intact template followed by break induced replication. Replication of the 

broken chromatid leads to fusion of the sister chromatid ends, formation of dicentrics and cycles 

of breakage-fusion-bridge. Furthermore, the authors also reported that these chromosomal 

changes can occur in the absence of both Ku80 (NHEJ) and RAD54 (HR), which implies that 

intact homologous recombination is not required for bridge formation in the absence of NHEJ. 

However, these studies did not examine the change in the frequency of dicentrics (or  
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Figure 28 Cells with active NHEJ and HR remove DSBs without forming anaphase bridges 

(I). NHEJ can still repair the breaks efficiently without bridging in the absence of HR (II). 

However when NHEJ is compromised, HR repairs the damage, but forms anaphase bridges 

during this repair (III). In the absence of both pathways, wild type levels of anaphase bridges are 

observed, which could indicate either the presence of a third repair pathway or persistence of 

breaks (IV). Our data suggest that majority of the DSBs are repaired, hence a slow acting third 

pathway could act in the absence of both pathways.  
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translocations) following DNA damage. It should be noted that despite the reduction in bridging 

in NHEJ/HR compromised cells, there is still a basal level of induction in bridging which could 

account for the genomic aberrations observed in these studies. 

 

The mechanism for HR-driven bridge formation in the NHEJ mutants is currently 

unknown. One possibility is suggested by the observations that a reduction in NHEJ protein 

levels results in a stimulation of HR-mediated repair (Fukushima et al., 2001; Pierce et al., 2001; 

Allen et al., 2002; Delacote et al., 2002).  The stimulation is greatest if early NHEJ proteins, 

namely DNA-PKcs and Ku70/80, are diminished, and less if the late-acting XRCC4 is inhibited 

(Pierce et al., 2001).  Not surprisingly then, we found Ku80-deficiency leads to a higher level of 

bridging compared to lack of the late-acting XRCC4 (Figure 17A-C).  Moreover, studies on the 

motility of free chromosome ends have indicated that immobilization of the ends requires Ku80 

(personal communication with Dr. T. Misteli). This result is consistent with the increase in 

bridging in the absence of Ku80, since formation of an anaphase bridge would require loss of 

positional constraints for the fusion of incorrect ends. Perhaps enhanced levels of HR crossover 

intermediates form in the NHEJ-deficient cells which cannot be completely resolved, thus 

leading to bridges in anaphase.  Further analysis will be required to test this model.   

 

The tendency of HR to form anaphase bridges in NHEJ-deficient backgrounds may 

explain why patients with increased frequencies of HR also carry elevated cancer risk and 

chromosomal instability (Bishop and Schiestl 2000; Bishop and Schiestl 2001; Thompson and 

Schild 2002; Bishop and Schiestl 2003; Griffin and Thacker 2004). Loss of heterozygosity, 

amplifications, or translocations are genetic events common during carcinogenesis, and are 
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associated with HR. For example, in acute myleloid leukemia, duplication within the ALL-1 gene 

involves recombination between Alu sequences (Schichman et al., 1994). In chronic myeloid 

leukemia, the nuclear protein Bcr is translocationally juxtaposed to the Abl kinase, and has been 

shown to have shared homology at the break site, possibly indicating HR as the mechanism 

(Jeffs et al., 1998).  A future line of investigation would be to test whether diminished NHEJ 

activity is necessary for these HR-driven illegitimate recombinational changes. 

 

Recently, attention has been focused on mice that are deficient for both HR and NHEJ 

repair pathways.  Derived cell lines have higher frequencies of DSBs as shown by elevated γ-

H2AX and chromosomal instability (Gorski et al., 2003; Couedel et al., 2004; Mills et al., 2004).  

The reduction in bridge formation in our cell lines does not appear to be a consequence of 

persistent breaks since γ-H2AX-foci disappear after IR.  Moreover, other proteins involved in 

DSB repair, 53BP1 and phospho-ATM, are also no longer present at the break sites. However, 

we cannot discount the possibility that breaks may lose DSB repair markers without completing 

repair.   

 

While the disappearance of repair foci and the existence of bridges in the double mutants 

suggest the possibility of a third pathway to repair the damage, it is also possible both NHEJ and 

HR may function despite absence of these repair proteins albeit maybe with reduced accuracy or 

efficiency. A third NHEJ-independent repair pathway has previously been proposed (DiBiase et 

al., 2000; Wang et al., 2001; Wang et al., 2001). Whilst there is evidence that DNA ligase III and 

PARP-1 might be involved in this alternative pathway (Wang et al., 2005; Wang et al., 2006), it 

is not yet well characterized.  The back up NHEJ path efficiently is shown remove the majority 
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of the DSBs in the absence of canonical NHEJ factors and is shown to operate with 20-30 fold 

slower kinetics (Wang et al., 2001; Wang et al., 2003).  This path could potentially account for 

the repair we see in HR/NHEJ deficient backgrounds, since bridges are scored after 1 cell cycle 

(~24h). More detailed kinetic studies of anaphase bridge induction in NHEJ/HR deficient 

backgrounds, where foci disappearance rate is observed between 20min and 24h are required to 

initially explore this possibility.  

 

In our studies, we also found that intrinsic differences in NHEJ activity might explain 

why cells form varying levels of bridges in response to IR. However, this correlation is not very 

strong (p<0.07), possibly due to genetic differences in these cancer cells, such as aneuploidy. 

Since the number of chromosomes in each cell may influence the number of bridges observed, 

we obtained the karyotypes of these commonly used cell lines (from HyperCLDB and ATCC 

Cell line databases and personal communication with Dr Susanne Gollin). These results indicate 

that HCT116 and MES-SA cells display near diploidy, cell lines such as HEK-293, A549, HeLa, 

UPCI:SCC070, U2OS and SK-HEP1 are close to triploid, and UPCI:SCC103 cells are near 

pentaploid. Among these, while both HEK-293s and SK-HEP1 cells are hypotriploid, HEK-293 

cells show the highest induction of bridges after IR (~26%), and SK-HEP1 cells exhibit only a 

mild increase (~8%). On the other hand, the pentaploid cell line, UPCI:SCC103, shows an 

intermittent value with a ~19% raise.   Hence total chromosome number is not likely to be the 

source for the differences in anaphase bridging, however the correlation between induction of 

bridges and NHEJ activity might be weakened by this added variable. 
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3.0  CHAPTER III:  ANALYSIS OF NHEJ IN INDUCTION OF ANAPHASE 

BRIDGES AND END JOINING ACTIVITY IN CANCER CELLS 

3.1 INTRODUCTION  

 

As discussed in Chapter II, cancer cells which lack proper checkpoint signaling continue 

cell cycle progression despite defects such as anaphase bridges. Briefly, we hypothesized that 

anaphase bridging is a consequence of incorrect repair of double stranded breaks (DSBs), 

defined as fusion of two non-contiguous DNA ends, and we wanted to explore which repair 

pathway is involved in misfusion. Between the two major repair mechanisms in mammalian 

cells, non homologous end joining (NHEJ) and homologous recombination (HR), our findings 

indicated that NHEJ plays an important role in the prevention of bridges and that the intrinsic 

NHEJ activity in cancer cells (as determined by an in vitro ligation assay) negatively correlates 

with the induction of anaphase bridges. 

 

In this chapter, I shall discuss our studies in determining whether overall NHEJ activity 

or the expression of any one of the NHEJ proteins has a correlation with the bridging potential. 

To answer this question, we examined the levels of various NHEJ proteins and compared their 
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expression to bridge induction as well as NHEJ activity. This analysis does not take into account 

other changes in activity that are not caused by elevated expression.  

 

During NHEJ mediated repair, the ligation is initiated with the recruitment of Ku80 and 

Ku70 proteins to the damage site, which protect the DNA ends from degradation and allow 

further processing (Smith et al., 1999). Subsequently, Ku80/70 recruits DNA Protein Kinase 

catalytic subunit (DNA-PKcs), and together they form the DNA-PK complex (Dvir et al., 1992; 

Gottlieb and Jackson 1993). DNA-PKcs both phosphorylates and associates with Artemis and 

this complex is involved in processing the 5’ and 3’ DNA overhangs (Ma et al., 2002). Other 

targets of DNA-PKcs include XRCC4 and Ligase IV, which function in the final ligation step of 

NHEJ. XRCC4/Ligase IV complex seals the break along with the associated XLF protein (See 

Figure 4 for illustration of the pathway) (Critchlow et al., 1997; Chen et al., 2000; Ahnesorg et 

al., 2006; Buck et al., 2006).  

 

XRCC4 is a small (38kDa), nuclear protein, which tightly binds to Ligase IV and 

increases its stability (Critchlow et al., 1997; Bryans et al., 1999). This binding also enhances the 

activity of Ligase IV in vitro, possibly at the adenylation step (Grawunder et al., 1997). The 

deficit of XRCC4 causes sensitivity to ionizing radiation (IR), defects in proliferation, and 

increased genomic instability including chromosomal translocations (Gao et al., 1998; Yan et al., 

2006). Moreover, cells which lack XRCC4 show enhanced levels of anaphase bridges after 

ionizing radiation (Chapter II).  
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We report here our analysis of the NHEJ components involved in bridge formation. 

Among these proteins, endogenous XRCC4 expression was correlated with resistance to 

anaphase bridging. Furthermore, the levels of XRCC4 demonstrated a correlation with the NHEJ 

activity of tumor cells, suggesting a limiting role of XRCC4 for NHEJ. However, elevation of 

XRCC4 by itself was insufficient to prevent bridges in cancer cell lines that exhibited lower 

XRCC4 levels. These results suggest that although XRCC4 appears to have an important role for 

bridge formation, it is not the only factor that determines induction of bridging. Moreover, 

coexpression of XRCC4 with its interacting partner, DNA Ligase IV, did not affect the increased 

bridging phenotype, suggesting that factors other than XRCC4/Ligase IV are limiting in these 

cells. 
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3.2 RESULTS  

3.2.1 XRCC4 expression is correlated with both the induction of bridges and NHEJ 

activity   

To determine which NHEJ component, if any, correlates with induction of bridges, 

expression of various NHEJ proteins was assessed in commonly used cancer cell lines. 

Immunoblotting for DNA-PKcs did not give consistent results, possibly due to transfer 

inefficiencies of this high molecular weight protein (~420 kDa) (data not shown). DNA Ligase 

IV, Ku80 and Ku70 expression varied little between cell lines (Figure 29A), as reported formerly 

(Kasten et al., 1999; Carlomagno et al., 2000; Merel et al., 2002). The levels of XRCC4 

expression on the other hand, varied substantially (Figure 29B). Moreover, this variation was 

inversely correlated with the frequency of induced bridges after IR treatment (p<0.04, Figure 

30A). Next we determined the NHEJ activity of these cell lines as described previously (Chapter 

II) and compared with XRCC4 expression. These results indicated that the intrinsic changes 

observed in XRCC4 expression was correlated with NHEJ activity in vitro (p<0.05; Figure 30B). 

3.2.2 Restoring XRCC4 in cells with low endogenous levels does not rescue the increased 

bridging phenotype   

To test if XRCC4 levels were limiting for the induction of bridges, we exogenously- 

expressed XRCC4 in two low-expressing cell lines (HeLa and UPCI:SCC103).  Overexpression  
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Figure 29  (A) Ku80, Ku70, and DNA Ligase IV-expression levels were relatively constant, 

(B) while XRCC4 levels show variation among different cancer cell lines.  Twenty μg of total 

whole cell extracts (WCEs) (also used in NHEJ activity assays in Chapter II) were 

immunoblotted and  γ-tubulin was used as a loading control.  
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Figure 30 (A) Inverse correlation between XRCC4 levels and bridge induction. XRCC4-

expression levels were quantified using Image Guage software, normalized for γ-tubulin levels, 

and the median plotted against the increase in bridges after ionizing radiation.   (B) NHEJ-

dependent ligation was positively correlated with XRCC4 levels.  The values in these graphs 

were the median for 4-7 experiments for NHEJ activity and 4-12 experiments for bridge 

frequency and 3-7 experiments for XRCC4 expression.  While individual experiments gave 

similar trends, there was a variation in the absolute values of experiments performed on different 

days. 
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was confirmed by both immunoblotting and immunofluorescence (Figure 31A, B and data not 

shown).  Based on counting cells for the presence of Flag-tag staining, elevated expression of 

XRCC4 did not reduce bridge formation in response to IR in either tested cell line (Figure 32).  

Exogenously-expressed XRCC4 was able to suppress the elevated bridge phenotype of an 

XRCC4-/- CHO mutant (Figure 33).  These observations suggest that the exogenously-expressed 

XRCC4 was active, but could not complement the bridging defect of the low-expressing cell 

lines.  

 

This result indicates the presence of other variables playing a role in determining bridge 

frequency.  To test whether this variable is DNA Ligase IV, the binding partner of XRCC4, we 

coexpressed XRCC4 and Ligase IV (Figure 31A and data not shown). Transfection was 

controlled by the presence of GFP cotransfection marker for Ligase IV overexpression. 

However, we did not control for the activity of Ligase IV expressed from our construct. 

Simultaneous expression of these proteins did not reduce anaphase bridging (Figure 32) 

indicating that Ligase IV levels are not limiting in these cell lines.  

 

While the levels of XRCC4 were correlated with bridge induction, other unknown 

variables apparently influence bridge frequency, since restoring XRCC4 levels cannot rescue 

increased anaphase bridging. Thus, we believe XRCC4 is a potentially useful marker for 

anaphase bridges from DNA damage, but is not limiting bridge formation in the tested cancer 

cell lines.  
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Figure 31 (A) Expression levels of DNA repair proteins were increased after transfection 

with p3XFlag-XRCC4 and/or pTSIGN-Ligase IV plasmids. Cells were lysed 1 day after 

transfection and immunoblotted for DNA Ligase IV, Flag-tag, XRCC4 or γ-tubulin. (B) 

UPCI:SCC103 cells were transfected with p3XFlag-XRCC4 and stained with anti-Flag 

antibodies. Cells with Flag-tag expression were used for quantification of bridges. Similar results 

were obtained for HeLa cells.  
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Figure 32 Overexpression of XRCC4 does not rescue the bridge induction phenotype.  Both 

UPCI:SCC103 (A) and HeLa (B) cells were transfected with p3XFlag-XRCC4 alone, pTSIGN-

Ligase IV (with H2B-GFP marker) or both plasmids. Cells were scored for their bridge forming 

potential based on either the presence of Flag-tag or the cotransfection marker.  
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Figure 33 Overexpression of XRCC4 corrected the increased bridging phenotype in 

XRCC4-/- CHO cells. XR-1 (XRCC4-/- CHO cell line) cells were transfected with p3XFlag-

XRCC4 and were scored for their bridge forming potential based on the presence of Flag-tag. 

XR-1 TR: XR-1 cells stably transfected with wild type XRCC4 gene. 
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3.3 DISCUSSION  

In this study, we tested whether intrinsic genetic differences can explain why cells form 

various levels of bridges in response to ionizing radiation.  Our first candidates were NHEJ 

proteins, since our previous studies suggested a preventative role for NHEJ in anaphase bridging 

(Chapter II). Because there is no direct quantitative analysis for activity for each of the 

components, we assayed for the expression of NHEJ proteins. Among the NHEJ players tested, 

Ku80, Ku70, and DNA Ligase IV demonstrated similar expression between different cell lines, 

while XRCC4 levels displayed variation. A variation in NHEJ proteins in cancer cells had 

previously been of interest to other laboratories for various reasons. In agreement with our 

findings, both Ku70 and Ku80 levels appeared to be similar, and differences in XRCC4/Ligase 

IV levels were detected, although different cell lines were used in these studies (Kasten et al., 

1999; Carlomagno et al., 2000; Merel et al., 2002). However, these groups failed to find 

correlations between expression of proteins and the phenotypic differences such as 

radiosensitivity of the patients or in vitro ligation activity. Here we report that the reduced 

expression of XRCC4 is correlated with the induction of anaphase bridging. Moreover, the 

ligation capacity of the cancer cells also appears to positively correlate with XRCC4 levels.  

 

If XRCC4 was the only factor playing a role in determining the tendency to form bridges, 

restoring XRCC4 levels in cell lines with low endogenous expression would be expected to 

rescue the increased frequencies of bridging. However, increasing XRCC4 expression alone does 

not significantly change the induction of anaphase bridges, indicating that XRCC4 probably acts 
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with other factors in this process. Coexpression of XRCC4 with a potential candidate factor, 

DNA-Ligase IV, did not change resistance to bridging suggesting DNA Ligase IV is not limiting 

for these cells. Interestingly, the interaction between XRCC4 and Ligase IV has been reported to 

affect the stability of Ligase IV and low XRCC4 expression corresponded to low Ligase IV 

levels (Bryans et al., 1999). The authors demonstrated that increasing XRCC4 levels in these cell 

lines stabilizes Ligase IV and enhances its expression (Bryans et al., 1999). In contrast to 

previous reports, the change in XRCC4 expression did not correlate with the levels of DNA 

Ligase IV, but different cell lines were used in these studies. These results suggest that cancer 

cells might have alternative mechanisms to stabilize Ligase IV. 

 

Based on assays using nuclear extracts, it has been previously suggested that 

XRCC4/Ligase IV complex is rate limiting for NHEJ (Nick McElhinny et al., 2000; Huang and 

Dynan 2002).  This study further suggests that a natural correlation exists for the intrinsic 

expression of XRCC4 and the intrinsic ligation capacity of the extracts supporting a limiting role 

for this protein. This is in contrast to Merel et al. (2002) who found that XRCC4 levels did not 

correlate with the in vitro NHEJ activity from different breast cancer lines.  The differences 

between the studies may be due to different methodology or different source material for the 

malignant lines.  

 

NHEJ factors are potential tools both as diagnostic markers and targets for chemotherapy 

and radiotherapy, since deficiencies in these proteins factors confer sensitivity to DNA damaging 

agents. Among the NHEJ proteins, XRCC4 has been previously demonstrated to acquire 

mutations in cancer cells and small nucleotide polymorphisms (SNPs) in the XRCC4 gene have 
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been associated with elevated cancer risk (Fu et al., 2003). Moreover, XRCC4 has recently been 

proposed as a diagnostic tool in non-BRCA1/2 heritable breast cancer cases (Allen-Brady et al., 

2006). Based on our studies, among the tested NHEJ proteins, XRCC4 seems to be correlated 

with anaphase bridging, which is additional justification as a testing its importance for diagnostic 

tool.  
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4.0  CHAPTER IV: THE APOPTOTIC PATHWAYS AND THE ABILITY TO SENSE 

DNA DAMAGE ARE INTACT IN ORAL CANCER CELLS WITH HIGH ANAPHASE 

BRIDGES. 

4.1 INTRODUCTION 

 

Cancer development is a consequence of DNA damage. Normal cells with intact 

checkpoints and repair machinery either arrest until the damage is corrected or undergo 

programmed cell death if the damage exceeds the cells’ repair capacity. On the other hand, 

cancer cells continue proliferation despite the existing defects and frequently are resistant to 

apoptotic stimuli.  

 

Most of the current cancer therapies, including chemotherapy and radiation treatment, are 

based on triggering apoptotic pathways and selective death of cancer cells. Once the decision to 

die is made, several morphological and biochemical changes occur. Commonly, these can be 

characterized as fragmentation of DNA, a change in cell size, membrane blebbing, or 

chromosomal condensation (Hengartner 2000). Other intracellular changes include, but are not 

limited to, induction of tumor suppressor proteins such as p53, activation of caspases, inhibition 
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of both Bcl-2 family proteins and inhibitor of apoptosis proteins (IAPs) (Fulda and Debatin 

2006).  

 

While most therapies are based on killing cells by apoptosis, cancer cells may have 

disturbed apoptotic pathways, which contribute to failure of the treatment. These disturbances 

could be at various levels, including overexpression of anti-death proteins, inactivation of the 

proteins involved in apoptotic signaling pathways or inability to sense damage initially. In 

support of this, cancer cells which cannot undergo apoptosis have been reported in the literature 

(Zhao et al., 1997; Alam and Ratner 2001). However, apoptosis is not the only form of cell death 

and these cells can still be effectively eradicated through other means, involving necrosis, mitotic 

catastrophe, or autophagy (Abend 2003; Brown and Wilson 2003; Okada and Mak 2004).  

 

A characteristic element of anti-tumor strategies that trigger apoptosis is combining 

different drugs and killing cancer cells selectively with minimal damage to rest of the organism. 

Therefore, various approaches have been taken in order to increase the cytotoxicity of the 

damaging reagents and tendency of cancer cells to respond with apoptosis. For example, mutual 

action of S-phase specific poisons and irradiation has been shown to sensitize cells to apoptosis 

(Gorczyca et al., 1993). Moreover, triggering cell differentiation following DNA damage 

increases programmed cell death and has been proposed as another anti-tumor strategy (Del Bino 

et al., 1994; Darzynkiewicz 1995). Anti-apoptotic proteins, such as Bcl family members, have 

been attractive targets for cancer therapy. Consequently, small, membrane permeable chemicals 

inhibiting the activity of anti-apoptotic proteins have been identified and combining this 

treatment with chemotherapy has been shown to increase cell death (Wang et al., 2000; Real et 
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al., 2004). All of these strategies have taken numerous facts about cancer cells into consideration. 

Cancer cells undergo several rounds of cell division and have inactive checkpoints, which make 

them more vulnerable to selective killing upon damage in S-phase, especially given that normal 

cells are arrested in G1. In many cases, tumor cells may be de-differentiated and make extensive 

amounts of anti-death proteins and become highly sensitive to apoptosis when the conditions are 

reversed.  

  

As described in the previous chapters, anaphase bridging is a common phenomenon in 

cancer cells. We hypothesized that bridging occurs as a result of erroneous repair of the broken 

ends by fusion of two wrong ends. Consequently, cells escape from the inhibitory effects of 

DSBs since there are no further telomere-free DNA ends. Hence anaphase bridging can be 

considered a method of uninterrupted cell cycle progression without undergoing arrest or 

apoptosis. If this is true, a combined therapy of induction of DSBs by radiation treatment, and 

blocking repair proteins involved in bridging could serve as another potential strategy to increase 

apoptosis in tumors with high frequencies of anaphase bridges. 

 

With this idea in mind, initial studies were performed in order to test whether the 

apoptotic pathways are intact in cancer cells which exhibit high levels of bridges following DSB 

induction. UPCI:SCC103 and UPCI:SCC040 cell lines were subjected to H2O2 treatment and 

assayed for their ability to sense DNA damage, induce proteins involved in cell death signaling 

and execute apoptosis. 

 



 106 

4.2 RESULTS  

4.2.1 Oral cancer cells can sense DNA damage  

UPCI:SCC103 and UPCI:SCC040 cells were treated with H2O2 and the occurrence of 

DSBs was confirmed by the detection of TUNEL positive cells (data not shown). DSB marker γ-

H2AX was used to observe cellular response to DNA damage via formation of foci. Cells were 

fixed 30min and 1h after H2O2 treatment (Figure 34). Both cell lines showed intense γ-H2AX 

foci after induction of DSBs at these time points, suggesting that pathways involved in sensing 

DNA damage are intact.  

4.2.2 Cancer cells show induction of p53 and change in subcellular localization following 

DNA damage  

p53 has been often considered as the “guardian of the genome” as it plays an important 

role in making the decision between cell cycle arrest and cell death in response to DNA damage 

and various cellular stresses. It acts as a signal transducer and results in changes in the 

expression level of hundreds of genes via its ability to function as a transcription factor. These 

genes include apoptotic genes such as BAX, Bcl-L, FAS1, and genes involved in cell cycle 

regulation such as p21 WAF1/CIP1, GADD45, CyclinD1 or MDM2, which negatively regulates 

p53 activity (reviewed in (Tokino and Nakamura 2000)).  
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Figure 34 Cancer cells appear to be able to sense the DNA damage as judged by γ-H2AX 

foci formation. UPCI:SCC103 cells were treated with 4mM H2O2 for 10min, and fixed either 

30min or 1h after treatment and stained for γ-H2AX and DNA. Foci formation was observed in 

almost all cells.  
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p53 activity can be modulated by different mechanisms: an increase in levels, either by 

enhanced half life or by new transcription, post-translational modifications such as 

phosphorylation, acetylation, ubiquitination, cis/trans isomerization, neddylation, sumolytion, 

methylation, ribosylation and O-glycosylation events or a change in subcellular localization from 

the cytoplasm to the nucleus (Liang and Clarke 2001; Lacroix et al., 2006). 

  

During the cell cycle, in normal cells, p53 is located mostly in the cytoplasm through G1, 

translocates into the nucleus in G2/ early S, and shuttles back to the cytoplasm in late S 

(Shaulsky et al., 1990). MDM2 protein, which binds to and promotes p53 degradation by 

ubiquitination (Haupt et al., 1997), is involved in transportation of p53 from the nucleus to the 

cytoplasm (Roth et al., 1998; Tao and Levine 1999). Upon damage, MDM2 is sequestered in the 

nucleolus, which frees p53 to activate its target genes and p53 accumulates in the nucleus (Tao 

and Levine 1999). 

 

Mutations affecting p53 function are very frequent in cancer cells. Indeed, loss of p53 is 

correlated with drug resistance and predisposes mice to tumor formation (Attardi and Jacks 

1999; Wallace-Brodeur and Lowe 1999). Hence, we assayed for p53 activity and localization in 

UPCI:SCC103 cells. While p53 levels increased only slightly upon treatment with H2O2, there 

was significant augmentation of p21 levels, which is a target of p53 (Figure 35). Interestingly, 

p53 appeared to be sequestered in a subnuclear area in all untreated cells. After DNA damage, 

p53 was distributed diffusely in the nucleus and cytoplasm (Figure 36). While the intensity of 

immunofluorescence staining for p53 increased after treatment, the enhancement was mostly 
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detected in the cytoplasm. These results suggest that p53 may be active; however we cannot 

totally argue that it is fully functional, since the increase observed in its expression is not very 

compelling and p21 is only one of the many targets of p53. More experiments testing p53 

regulations have to be performed to test its activity and the genomic DNA be sequenced. 

4.2.3 Oral cancer cells can undergo apoptosis upon DNA damage   

Next we tested the ability of these cells to mediate apoptosis. As mentioned previously, 

one characteristic feature of programmed cell death through apoptosis is DNA fragmentation, 

which can be detected as formation of DNA ladders following gel electrophoresis. Cells were 

treated with H2O2 and collected after 3, 6 and 9 days. It is important to note that the 

concentration of H2O2 used in this assay was 10 times higher than what was used to induce 

anaphase bridges. 

 

We observed that H2O2 treatment under these conditions can lead to apoptosis starting 

from 3 days after exposure (Figure 37). Cell death mostly occurred in cells collected from the 

floating population and to lesser extent, at 9 days after treatment, in the attached cell population 

(Figure 37, lane 8). This result indicates that at least some of the oral cancer cell lines tested in 

this study can undergo apoptosis. However, there is also an apoptosis resistant population, which 

is indicated by no ladder formation in the attached cells. It will be interesting to see whether 

these cells can be sensitized further when repair proteins involved in bridge formation are 

blocked.  
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Figure 35 While p53 levels are only slightly increased upon H2O2 treatment, p21 induction 

is more pronounced. UPCI:SCC103 cells are subjected to 4mM H2O2 and lysed in RIPA buffer 

24h after treatment. 100μg of total cell lysate is used for immunoblotting for p53 and p21. Actin 

is used for a loading control. 
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Figure 36  UPCI:SCC103 cells were treated with 4mM H2O2, fixed at indicated times and 

stained with anti-p53  antibodies. Upon H2O2 treatment, subcellular localization of p53 was 

predominantly nuclear. 
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Figure 37  UPCI:SCC103 and UPCI:SCC040 cells are treated with 4mM H2O2, lysed at 

indicated times after treatment. The genomic DNA is isolated and electrophoresed on agarose 

gels. Apoptotic DNA ladder formation is observed mostly in floating cells.  
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4.3 DISCUSSION  

This chapter summarizes my preliminary studies on the apoptotic capacity of cancer cells 

with high bridge frequencies. We hypothesized that anaphase bridging may allow cells to bypass 

apoptotic pathways that are activated in response to DNA damage and continue cell cycle 

progression. Our initial data indicate that these cell lines can sense DNA damage and undergo 

apoptosis, yet further experiments will be needed to test this hypothesis.  

 

Our results demonstrated that while the cell lines under analysis were capable of DNA 

ladder formation, a subpopulation of cells was still attached with very little cell death. This could 

either indicate that cells are still resistant to apoptosis or that the dose of H2O2 used was not 

sufficient to trigger apoptosis. Similar experiments using control cells with normal checkpoints 

and apoptotic pathways should be able to resolve this question. Moreover, as mentioned 

previously, H2O2 treatment both leads to and inhibits apoptosis through mechanisms other than 

damage to DNA (Lin et al., 2004; Shin et al., 2004; van Rossum et al., 2004; Franklin et al., 

2006). Since our focus is apoptosis as a result of DNA damage, confirming these results by using 

other means, such as ionizing radiation would strengthen these conclusions. Lastly, whilst there 

is an increase in p53 and p21, there could still be mutations elsewhere in the apoptotic pathways. 

Assays for caspase activation or cytochrome c release from mitochondria would provide further 

evidence for the integrity of cell death signaling in these cancer cells.  
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Assuming intact apoptosis, which repair proteins should be blocked in order to test our 

hypothesis? While we collected significant information on how bridges form, unfortunately the 

induction of bridges was not completely eliminated in any of the DNA repair mutants. Even in 

the absence of both pathways, although the level of bridging was reduced compared to NHEJ 

mutants alone, the induction was still at wild type levels, which suggests the existence of a third 

unknown pathway contributing to bridge formation. Hence the aim of testing our hypothesis by 

inhibiting anaphase bridge formation is not as straightforward as we initially assumed. Based on 

what we know about bridges, we can speculate that the double deficient cells or wild type cells 

will undergo apoptosis more frequently than NHEJ deficient cells, since they form fewer bridges 

in response to damage. However, such an experiment relies on the assumption that repair 

deficiencies will only change anaphase bridge frequency and will not interfere with any of the 

apoptotic pathways. Yet, there appears to be a cross-talk between both repair mechanisms and 

apoptotic signaling. For example, physical interactions have been reported between p53 and the 

HR proteins, RAD51 and RAD54 (Linke et al., 2003). HR rates increase in the absence of p53 

and this p53 mediated limitation of HR is thought to be through p53-RAD51 interactions (Linke 

et al., 2003). More recent studies demonstrated that the proapoptotic proteins, Bax and Bid, can 

inhibit HR (Dumay et al., 2006). Furthermore, overexpression of RAD51 provides increased 

resistance to ionizing radiation (Vispe et al., 1998) and elevated levels of RAD51 have been 

observed in cancer cells, which might contribute to their insensitivity to apoptotic stimuli 

(Raderschall et al., 2002). As for NHEJ, similar associations have been observed. Both Ku and 

DNA-PKcs have been demonstrated to regulate apoptosis, but not cell-cycle arrest (Wang et al., 

2000; Sawada et al., 2003).  Deficiencies in NHEJ or HR result in apoptosis, and defects in both 

pathways are associated with more cell death than either one alone (Barnes et al., 1998; Gao et 
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al., 1998; Raderschall et al., 2002; Couedel et al., 2004). These observations are consistent with 

our hypothesis suggesting a role for anaphase bridging in prevention of apoptosis. The increased 

apoptosis phenotype observed in double deficient cells could partially be due to the decrease in 

the frequency of bridges. Yet, these experiments should be performed where the expected 

increase in apoptosis and decrease in bridges are confirmed in the same set of experiments.  

 

Lastly, a comparison of cell death rates between cell lines with low and high levels of 

bridge induction could be informative; however other differences in genetic backgrounds would 

have to be considered during evaluations. 
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5.0  CHAPTER V: EVIDENCE FOR CENTROSOMAL SPLITTING AND 

MULTIPOLAR SPINDLE FORMATION AS A RESULT OF IONIZING RADIATION  

5.1 INTRODUCTION  

It has been commonly accepted that genomic instability and cancer are closely related 

phenomena. Almost every type of cancer has previously existing and ongoing rearrangements in 

the genome. These chromosomal alterations can arise from numerous events including errors 

during cell division and cell cycle progression (Charames and Bapat 2003). Of these errors, 

segregation defects such as multipolar spindles (MPS) play a major role in chromosomal 

instability, leading to tumor development. 

 

MPS can be described as abnormal mitotic figures observed when cell division takes 

place with more than two poles (Figure 7). Multipolarity is a commonly observed defect in 

cancer cells and is mainly associated with supernumerary centrosomes (Saunders 2005; 

Stewenius et al., 2005). Increase in centrosome number is reported in many carcinomas including 

breast, lung, brain, gall bladder, bone, pancreas, colorectal, head and neck cancers (Lingle et al., 

1998; Pihan et al., 1998; Weber et al., 1998; Carroll et al., 1999; Lingle and Salisbury 1999; Sato 

et al., 1999; Gustafson et al., 2000; Kuo et al., 2000; Pihan et al., 2001; Sato et al., 2001). Hence 

centrosomal amplification and formation of aberrant mitotic spindles have been proposed to be 
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involved in tumorogenesis, as these defects can lead to missegregation of chromosomes and 

genomic instability (Doxsey 1998).  

 

Centrosomes are the microtubule organizing center (MTOC) of the cells, which play an 

important role in cell-cycle progression. Centrioles, which are small barrel shaped structures and 

the pericentriolar material (PCM), amorphous protein mass surrounding the centrioles, constitute 

the major elements of centrosomes. Each centriole is composed of nine longitudal microtubule 

triplets and proteins such as centrin, cenexin and tektin (Rieder et al., 2001). On the other hand, 

the PCM contains proteins involved in microtubule nucleation and anchoring such as γ-tubulin, 

pericentrin and ninein (Rieder et al., 2001).  

 

Normally, centrosome duplication starts after the G1 checkpoint and maturation of the 

centrosomes continues until the next cell cycle (Dictenberg et al., 1998; Adams and Kilmartin 

2000; Khodjakov et al., 2002). During prophase, centrosomes begin migrating to opposite ends 

of the cells and mitotic spindles form. After cytokinesis, each cell receives only one centrosome. 

This is a carefully controlled process, since precise duplication ensures bipolar spindle formation 

and proper segregation of chromosomes. 

 

An increase in centrosome number can be a consequence of over-replication of 

centrosomes, failure of cell division or cell-cell fusion (Nigg 2002). While it is not currently 

known which mechanism contributes most in tumorogenesis, the final outcome of all these 

events is the tendency to form multipolar spindles (Lingle et al., 1998; D'Assoro et al., 2002; 

Lingle et al., 2002).  
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In Chapter I, the correlation between multipolar spindles and anaphase bridges was 

discussed. In an attempt to find whether there is a direct causal relationship between bridging and 

multipolarity, we performed experiments where either defect was induced and asked whether the 

frequency of the other segregation defect changed in parallel. While we failed to find a direct 

cause and effect relationship between these abnormalities, our studies indicated that ionizing 

radiation (IR), but not H2O2, leads to formation of MPS in human embryonic kidney cells. These 

preliminary studies demonstrated that IR results in an increase in multipolarity as fast as 30 

minutes after treatment. Moreover, this effect appears to be through centrosomal 

splitting/fragmentation as judged by centrosomal markers such as γ-tubulin and centrin-2.  
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5.2 RESULTS   

5.2.1 DNA damage by ionizing radiation, but not H2O2 increases MPS formation  

Anaphase bridges can be induced via either H2O2 or ionizing radiation, possibly due to 

the double strand breaks induced by these agents. To test whether another segregation defect, 

multipolar mitosis, which has a strong positive correlation with anaphase bridges in cancer cells 

(Gisselsson et al., 2002 117) can be induced by DNA damage as well, we treated human 

embryonic kidney (HEK-293) cells with both of these agents.  

 

Upon H2O2 treatment, while anaphase bridges were induced as expected (data not 

shown), we failed to see an elevation in the level of MPS (Figure 38). On the other hand, IR 

treatment did show a slight, but notable and reproducible induction in multipolarity (Figure 39). 

Consistent with our results, previous reports have suggested a role for gamma-irradiation on 

centrosome overduplication (Scott and Zampetti-Bosseler 1980; Sato et al., 2000; Sato et al., 

2000). These studies have demonstrated that occurrence of supernumerary centrosomes depends 

on p21Waf1/Cip1 and p27 (Sato et al., 2000; Sugihara et al., 2006) and that in some cell lines, 

centrosome amplification appears to increase only in p53 deficient backgrounds (Armit et al., 

2002; Kawamura et al., 2006). There is also evidence showing that Kruppel-like transcription 

factor, KLF4, prevents centrosome overduplication following IR by transcriptionally suppressing 

expression of cyclinE (Yoon et al., 2005). Yet, how DNA damage causes an increase in 

centrosome number/multipolarity is not very clear. 
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Figure 38  Scores for multipolar spindles in HEK-293 cells following H2O2 treatment. Cells 

were treated with 1.6mM of H2O2 for 10 minutes, changed to regular medium, fixed at indicated 

time points post-treatment, and scored for MPS by γ-tubulin staining and DNA shape.  
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Figure 39 Multipolarity in HEK-293 cells following ionizing radiation. Cells were treated 

with 6Gys of IR, and fixed at indicated time points after treatment. MPS were scored by γ-

tubulin staining and DNA shape.  
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5.2.2 MPS formation might be a result of centrosomal splitting after ionizing radiation   

Interestingly, in our experiments the induction in multipolarity was detectable as early as 

1h, but not 30min (Figure 39). The time frame for this increase suggests a cell cycle independent 

pathway, since MPS can be observed before the completion of one cell cycle (~24h). In order to 

further explore the mechanism of MPS formation in response to IR, cells were stained with 

common spindle pole markers, such as γ-tubulin and centrin-2, which are both centrosomal 

proteins found in PCM and on centrioles respectively (Rieder et al., 2001). 

 

Two distinct γ-tubulin spots were observed at the spindle poles in untreated, control cells 

which represents the normal state (Figure 40). However, the staining appeared disperse and/or 

broken up upon IR treatment (Figure 40). Likewise, the majority of the cells (>60%) have two 

centrin-2 foci associated with each centriole at the poles in untreated cells (Figure 41, 42, blue 

bars (2+2)).  Interestingly, cells with normal numbers of centrin foci were reduced (~40%) after 

ionizing radiation (Figure 41). The shift towards greater numbers of centrin foci occurred 30min 

following IR (Figure 42, red bars), but was reduced 1h after treatment, at the time when an 

increase in multipolar spindles was observed (Figure 42, yellow bars). Moreover, the size of 

these spots was irregular, which is consistent with centrosomal fragmentation (Figure 41, 

enlarged views).  

 

Although this data is very preliminary, it suggests that ionizing radiation may cause 

centrosomes to fragment or split, as early as 30 minutes after treatment. Fragmented/split 
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centrosomes may behave like extra copies of centrosomes and perhaps nucleate new 

microtubules and eventually lead to abnormal spindles. Correspondingly, multipolar mitosis was 

seen at 1h, when there was a reduction in the centrin foci/pole. It can be speculated that this 

reduction was due the appearance of new multipolar spindles (Figure 43). 

  

Other than centriolar fragmentation, this shift could also arise from displacement of 

centrin-2 from the centrioles, or de novo formation of centrin-2 at the poles. These possibilities 

will be covered further in the discussion. 



 125 

 

DAPI

γ-Tubulin

Before IR After IR

 

 

Figure 40 γ-tubulin staining in HEK-293 cells before and after IR. The arrows indicate the γ-

tubulin at the poles. γ-tubulin staining becomes disperse or split at the spindle poles after 

ionizing radiation.  
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Figure 41 Centrin-2 staining at the spindle poles before and after IR in HEK-293 cells. 

Normally, cells have 2 centrin spots per pole in unradiated cells. Upon radiation treatment 

multiple dots can be observed. Scale bar represents 10 microns. Insets represent enlarged centrin-

2 dots at the poles. Images are composed of the stack of focal planes, hence all foci are in focus. 

 

 

 

Before IR After IR
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Figure 42 Number of centrin-2 spots/pole in HEK-293 cells following ionizing radiation 

treatment. Cells were treated with 6Gys of IR, fixed at the indicated time points, and stained for 

centrin-2 and DNA. Number of centrin-2 dots at each pole was counted for bipolar metaphases. 

(2+2) indicates 2 centrin dots at each pole, which is the normal state. ( 2+>3) indicates two dots 

at one pole and greater than 3 dots at the other pole. Likewise, (3+>2) indicates 3 dots at one 

pole and greater than 2 dots on the other. Ionizing radiation treatment can result in abnormal 

numbers of centrin-2 foci 30min following IR, which is reduced by 1h.  
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Figure 43 Normally, cells exhibit two centrin-2 foci at each pole at the metaphase plate. 

Upon irradiation, supernumerary centrin-2 foci is detected 30min following IR. On the other 

hand, an increase in multipolar spindles is observed 1h after treatment, which coincides with a 

drop in the number of centrin-2 spots. 
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5.3 DISCUSSION  

This chapter summarizes the preliminary studies on how multipolar spindles form in 

response to ionizing radiation. Our initial data indicated that IR can cause splitting of 

centrosomal markers, namely γ-tubulin and centrin-2, as early as 30min after treatment and result 

in multipolarity at 1h. Yet, other DNA damaging reagents, such as H2O2, do not lead to MPS. It 

is important to note that while a link between IR and MPS was previously reported, these 

changes were known to occur 24h after IR and cell-cycle dependent mechanisms were under 

investigation (Sato et al., 2000). On the other hand, we detected an increase immediately after IR 

and our data are reminiscent for a role of IR in centrosome fragmentation or splitting rather than 

cell cycle changes or failure of cytokinesis. However, these results are not yet conclusive, and 

additional experiments need to be performed to study the mechanisms leading to multipolarity as 

a result of ionizing radiation.  

 

Firstly, it has been demonstrated that IR can induce a transient change in cellular free 

[Ca2+] concentration (Todd and Mikkelsen 1994) and that these rapid calcium fluxes can be 

detected at 30sec (Lyng et al., 2001). Moreover, self assembly of centrin-2 has been shown to be 

dependent on calcium (Tourbez et al., 2004; Yang et al., 2006) and at high [Ca2+] levels, large 

centrin spots form at or near the center of the cell (Baron et al., 1994). Hence extra numbers of 

centrin foci could be explained by formation of new centrin satellites due to increased [Ca2+] 

concentrations as a consequence of IR. Alternatively, centrin-2 could be displaced from the 
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centrioles or de novo centrioles might truly start emerging, which all would lead to an increase in 

centrin spots at metaphase.  

 

In order to distinguish between these possibilities, other centrosomal markers could be 

tested for the togetherness of staining at the poles following IR. Among the possible candidates, 

dynein, dynactin, ninein, c-Nap1, Nek-2, EB1 or APC are all known to focus at the metaphase 

poles (Smith et al., 1994; Gaglio et al., 1996; Berrueta et al., 1998; Quintyne et al., 1999; Helps 

et al., 2000; Mayor et al., 2000; Mogensen et al., 2000) and alterations in the staining of these 

proteins could potentially argue against both calcium dependent formation of centrin foci or 

displacement of centrin from the centrioles, yet still would not be conclusive. On the other hand, 

de novo centriole formation could be tracked by live cell imaging using cells expressing centrin-

GFP. While newly forming centrioles should emerge as a new spot, fragmentation of centrioles 

would appear as splitting of an already existing signal. However, there are some caveats 

associated with this experiment as well. First, it is not possible to irradiate cells under the 

microscope and centrosome splitting is observed soon after IR treatment. Hence events under 

observation may be missed by the time the experiment is set up. Second, centrin-GFP expression 

is usually low and the signal is weak. Moreover, centrin spots are rarely on the same focal plane 

and merging multiple planes increases the background making the results harder to interpret. To 

resolve these problems, electron microscopy could be used to analyze centrioles following 

radiation. While electron micrographs would be sufficient to distinguish among fragmentation, 

splitting or de novo formation of centrosomes, the sample size is usually a limiting factor. 

Therefore, a combination of these experiments will hopefully be able to enlighten our view about 

how supernumerary centrosome-like structures form upon IR.  
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Lastly, this experiment was performed in HEK-293 cells and normal number of centrin 

spots (2+2) was observed in only ~65% of the population (Figure 42, blue bars). This percentage 

is lower than the published literature (85-90%) (Salisbury et al., 2002), suggesting that there 

might be some intrinsic abnormalities in this cell line. It has been shown that in some cells IR 

treatment does not result in an increase in MPS, unless p53 levels are reduced using siRNA 

(Kawamura et al., 2006). Yet, we observe an elevation immediately after irradiation without any 

other treatments. Hence, it is important to repeat these experiments using normal cells, which do 

not exhibit any existing centrosomal defects.  
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6.0  CHAPTER VI: SUMMARY AND SPECULATIONS 

Carcinogenesis requires multiple changes in the genome. It is estimated that at least 5-6 

mutations should take place for a normal cell to become cancerous (Lengauer et al., 1997). Yet, 

the process of mutagenesis is slow and how it leads to cancer is determined by many factors. 

Less than 1.5% of the human genome encodes for proteins (Lander et al., 2001), and even when 

a DNA damaging event takes place, the majority of these mutations will occur in non-coding 

regions. Within the 1.5% coding region, only a minority of genes are involved in cell cycle 

regulation, and only mutations in these genes will actually be relevant to carcinogenesis. 

Furthermore, not all types of changes will lead to tumor formation, even if they occur in genes 

controlling the cell cycle. For instance, alterations cannot be silent mutations and should trigger 

the activity of oncogenes and often must deactivate both copies of the tumor suppressor genes. 

On the other hand, the cell also has defense mechanisms to correct these changes. Repair 

machinery actively removes lesions from the DNA. Cells either arrest or undergo apoptosis upon 

damaging events. Moreover, the immune system efficiently kills cancerous cells (Burnet 1965), 

as shown by the observation that organ transplant recipients with suppressed immune system 

carry a 65-fold increased risk of squamous and basal cell carcinoma (Jensen et al., 1999). Yet, 

despite the strong odds against it, cancer accounts for almost a quarter of all deaths in USA, 

exceeded by only heart diseases. As of 2005, the risk of an American man developing cancer 

over his lifetime is one in two, and one in three for women (results obtained from American 
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Cancer Society). So how is it possible that a single cell undergoes sufficient number of changes 

that lead to tumor formation? It is almost certain that mutations that allow further changes in the 

genome will speed up this process and lead to a hypermutable state (Nowell 1976). Among these 

alterations, defects in the DNA repair machinery and events that result in gross chromosomal 

changes could be expected to play a major role in tumorogenesis.  

 

There are approximately 10,000 lesions that occur spontaneously in a mammalian cell per 

day (Lindahl 1993). While these lesions are efficiently removed, failure to do so can result in a 

catastrophic outcome. For instance, individuals with deficient nucleotide-excision repair (NER), 

which is only one of the several DNA repair pathways (xeroderma pigmentosum patients), are 

5,000-fold more likely to have squamous and basal cell carcinoma and carry 2000-fold increased 

likelihood of melanomas (Kraemer et al., 1987). Higher incidences of malignancies are also 

observed in Fanconi anemia, Nijmegen breakage syndrome, or ataxia teleangiectasia, which are 

all associated with defects in repair pathways (Morrell et al., 1986; van der Burgt et al., 1996; 

Alter 2003). The enhanced risk of cancer in these patients provides strong evidence on how 

effectively DNA repair proteins protect the genome. 

 

Chromosome segregation defects, such as anaphase bridges and multipolar spindles, can 

be considered as the other major mechanisms that may lead to cancer, hence present an important 

field of study. These defects are strongly associated with chromosomal instability (CIN) 

(Gisselsson et al., 2000; Lingle et al., 2002; Montgomery et al., 2003). CIN, the increased 

tendency for having abnormal chromosome number and structure, is a common feature observed 

in many cancer cells.  As proposed in the classic paper titled “The Clonal Evolution of Tumor 
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Cell Populations” by Peter C. Nowell, CIN is one of the early events during tumorogenesis 

promoting other amplifications, losses or rearrangements (Nowell 1976).  In his paper, Nowell 

also proposed the more aneuploid a cell becomes, the more aggressive the resulting tumor. 

Rationally, both bridges and MPS can result in aneuploidy, and once a cell becomes aneuploid, 

these changes are most likely irreversible. Besides, formation of a single bridge can drive BFB 

cycles triggering further instability and perhaps leads to a more aggressive tumor grade. 

Moreover, there is no evidence yet that these defects can be detected by cell-cycle checkpoints, 

which make them potentially more dangerous. 

 

Interestingly, in our studies we found that these seemingly different mechanisms driving 

carcinogenesis are in fact related and that there is a statistically significant correlation between 

the efficiency of DNA repair and segregation defects, namely between double stranded break 

repair pathway Non-Homologous End Joining (NHEJ) and induction of anaphase bridges. Since 

cells that exhibit less NHEJ activity are more likely to form bridges, the effect could potentially 

be amplified by having both defects. Indeed, deficiencies in NHEJ proteins are associated with 

increased instability (Difilippantonio et al., 2000; Gao et al., 2000; Bassing et al., 2002; Rooney 

et al., 2003) and some of these abnormalities could actually be a result of anaphase bridge 

formation, not simply a failure of DNA repair.  

 

The homologous recombination (HR) pathway has been generally considered as an error-

free pathway, since it uses the undamaged homologous template to repair the break. Yet, it 

appears that this pathway can also lead to genomic imbalances, such as anaphase bridging, in the 

absence of NHEJ. The physiological nature of chromatin joint sites in anaphase bridges is not 
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currently known. While these may represent continuous covalently-linked DNA molecules, they 

may also be proteinous intermediate structures of the HR pathway. On the other hand, recent 

reports indicate the presence of γ-H2AX foci on anaphase bridges without fragmentation (as 

confirmed by metaphase spreads), and the authors have proposed that these “residual” foci 

represent abnormal chromosome structures as a result of illegitimate repair (Suzuki et al., 2006). 

Hence, it is entirely possible that HR repairs the break leading to continuous DNA strands in the 

bridges, but this repair is not equivalent to normal rejoining of the two broken ends, since γ-

H2AX foci persist along these sites. In order to further characterize these joint sites, it will be 

important to know where exactly the breaks are formed. In an experimental system, where 

double stranded breaks are precisely induced by either the RAG recombinase or by the I-SceI 

endonuclease could provide insights in revealing the nature of these break sites in different repair 

deficient backgrounds. Moreover, fluorescence and PCR-based assays are described, which 

could be used to identify the individual contribution of NHEJ and HR (Weinstock et al., 2006).  

 

Both results from our lab and others show that reduction of p53 or blocking the activity 

of either p53 or pRb by HPV encoded proteins E6 and E7 lead to enhanced levels of anaphase 

bridging (Luo et al., 2004; Wentzensen et al., 2004). Both of these proteins are involved in repair 

signaling pathways, but no direct involvement in the physical repair of DSBs has been described. 

Since we show that a reduction in HR alone is not sufficient to increase the frequency of 

radiation-induced bridges, enhanced levels of bridging does not appear to be a general 

phenomenon as a result of knockdown of any repair protein or pathway. p53 has been 

demonstrated to inhibit site-specific, but not radiation-induced NHEJ, suggesting a link between 

p53 and NHEJ, which may partly explain these findings (Tachibana 2004; Dahm-Daphi et al., 
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2005). On the other hand, it can also be speculated that perhaps anaphase bridges are sensed by 

the cell by some mechanism such as tension on the DNA. p53 and pRb might be playing a role in 

elimination of these cells from the dividing population, which would reduce the observed 

frequency of bridges. Alternatively, the increase in the level of bridging could be a result of 

abnormalities in the pRb or p53 regulated signaling pathways that are involved in bridge 

formation. For instance, HR rates have been shown to increase in the absence of p53 (Linke et 

al., 2003), which could explain increased bridging in these cases similar to our findings where 

we demonstrated that HR is responsible for induction of bridges in the absence of NHEJ. 

 

In this study, we also demonstrated preliminary evidence indicating that radiation 

treatment leads to not only an increase in anaphase bridges, but also in multipolar spindles. 

Surprisingly, these changes occur shortly after IR, suggesting cell-cycle independent 

mechanisms as a cause. IR can physically change the structure of DNA by introducing numerous 

types of lesions that include DSBs (Hutchinson 1985), but it will be really interesting to see if it 

can cause physical disassociation of proteins, such as centrin-2 from the centrioles or if it is 

strong enough to break bonds holding a centrosome together. Future lines of investigation will be 

required to answer these questions. 

 

During the tumorogenesis process, we already know that multiple events should take 

place. However, while the potential contribution of segregation defects is not doubted, it is still 

not known whether these events, on their own, are powerful enough to lead to genomic 

instability or to cancer formation. Following clones from primary cells subsequent to an initial 

segregation defect could improve our current understanding of these abnormalities and disclose 
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their relevance in carcinogenesis. Our work has just put some pieces in the big puzzle of this 

process, revealing how these defects might be forming. 
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7.0  CHAPTER VII: MATERIALS AND METHODS  

7.1.1 Cell Culturing   

American Type Culture Collection (ATCC, Manassas, VA) cell lines, HCT116, SKHEP-

1, U2OS, HEK-293, HeLa, MES-SA, A549 and CHO-K1, are cultured in the culture medium 

recommended by the supplier. Oral cancer cell lines, UPCI-SCC103 and UPCI-SCC70s, were 

gifts from Dr. S. Gollin (University of Pittsburgh, USA). They were maintained in MEM, 

supplemented with 10% fetal bovine serum (FBS), non-essential amino acids, L-Glutamine, and 

gentamicin, and trypsinized in 0.05% trypsin, 0.053 mM EDTA. HCT116 RAD54B-/-/- and 

XRCC3-/- deletion cell lines (described in Miyagawa et. al. 2002, Yoshihara et. al., 2004) were 

generously donated by Dr. K. Miyagawa (Hiroshima University, Japan). They were maintained 

in 10% FBS, McCoy’s 5A medium and trypsinized in 0.05% trypsin, 0.053 mM EDTA.  All 

DT40 chicken cell lines (kindly provided by Dr. Y. Wang, Thomas Jefferson University, USA) 

were cultured in DMEM supplemented with 10% FBS, 5% chicken serum, and 10-5 M 

betamercaptoethanol. Ku80 deficient CHO-K1 cell line, XRS-6 (gift from Dr. P. Jeggo, 

University of Sussex, UK), and XRCC4 deficient XR-1 (gift from Dr. T. Stamato, Lankenau 

Institute for Medical Research, USA) were grown in Kaign’s modification of F12 medium 

supplemented with 10% FBS. Irs3 (RAD51C-mutant), and V79 (wild-type parent) cells (kindly 

donated by Dr. J. Nickoloff, University of New Mexico School of Medicine, USA) were 
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maintained in MEMα with 10% FBS and with 1% penicillin/streptomycin (Gibco). KE p53-/- , 

mouse primary epithelial cells were a gift from Dr. Fukasawa (University of Cincinnati College 

of Medicine, Cincinnati) and were derived from embryonic tissues from p53-null mice. These 

cells were cultured as described (Chiba, Okuda et al. 2000). All cells were incubated at 37oC, in 

5% CO2. 

7.1.2 Transfections and ionizing radiation  

HCT116 cells were grown on 22mm x 22mm sterile glass coverslips in six-well plates or 

35mm dishes. Transfection with siKu80 (Dharmacon), siXRCC4 (Dharmacon), or the negative 

control siRNA, Alexa Fluor 488 (Qiagen) was performed using Lipofectamine 2000 reagent 

(Invitrogen) according to the manufacturer’s recommendations. 0.5μg of siRNA per dish was 

used for transfection. Cells were transfected 16-18 hours after being seeded on the coverslip, 

when they were around 50-60% confluent. Two days after transfection, cells were split 1:2.  

Three days after transfection, they were exposed to indicated doses of ionizing radiation (IR) 

using a gamma irradiator (137Cs source, Manufactured by Atomic Energy of Canada Limited, 

Model CP-36-B-533, Serial number 1030), when the siRNA effect is determined to be maximum 

by immunoblotting. 24 hours after IR treatment, cells were fixed in -20oC methanol for 5 

minutes and air dried. Coverslips were either immunostained immediately or stored at -20oC. 

HeLa and UPCI-SCC103 cells were transfected with 1μg p3XFlag-XRCC4 plasmid DNA using 

Fugene6 reagent (Roche) with a 1:3 ratio (w/v) according to manufacturers instructions (cells 

were kept in OPTI-MEM (Gibco) overnight during transfection, rather than regular growth 

medium). Transfections with two plasmids were performed similarly as single transfections 

except that 0.5μg of each plasmid DNA was mixed prior to incubation with transfection reagent. 
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These cells were treated with ionizing radiation 24 hours after plasmid transfection. Each 

experiment was performed at least 3 times.  

7.1.3 H2O2 and wortmannin treatment   

H2O2 was purchased from CVS or Giant Eagle and the bottles were not reused after 

opening. Cells were treated as a modification of (Kang et al., 2002). Briefly, H2O2 was diluted in 

regular cell culture medium and filter sterilized before putting on cells for 10min at 37oC for both 

inductions of anaphase bridges and apoptosis. The medium was replaced with regular medium 

and cells were fixed at 1 day (for bridge formation) or collected at 3, 6 or 9 days (for apoptosis 

assays) after treatment. Cells were preincubated with 20μM wortmannin diluted in medium for 

1.5h prior to H2O2 treatment, changed to medium containing H2O2 for induction of DNA 

damage, and switched back to medium with 20μM wortmannin until next day.  

7.1.4 Isolation of genomic DNA for ladder formation  

Cells grown on 100mm dishes were washed with 3mls of PBS and lysed with 2mls of 7M 

Guanidine hydrochloride. The lysate was mixed with 1ml of Wizard DNA purification resin 

(Promega) in 15ml Falcon tubes and incubated for 5min at room temperature. The tubes were 

centrifuged at 2000g for 3min, the pellet was collected and rinsed in 3mls of washing solution 

(90mM NaCl, 9mM Tris.Cl pH: 7.4, 2.25mM EDTA, 55% Ethanol). The pellet was then 

transferred to a 3cc syringe attached to a Wizard miniprep column and washed twice with 3mls 

of washing solution, and dried by centrifugation over a microfuge at 5000g for 5min. For eluting 

DNA, 50μls of TE buffer pH: 8 was incubated with the pellet for 5min. The mixture was 
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transferred to a new eppendorf tube, and centrifuged at 5000g for 5min. Then, the supernatant 

was incubated with RNAse A for 30min at 37oC and run on 1% agarose gel, 400ng DNA/well, at 

5V/cm.  

7.1.5 Immunofluorescence staining 

Cover slips were either processed immediately after fixation or stored at -20°C for 

methanol fixed cells or stored at 4oC in blocking solution up to two weeks for paraformaldehyde 

fixed cells. Coverslips were rehydrated in PBS or 1.5% BSA/PBST. Staining for anaphase 

bridges was carried out as described in (Luo et al., 2004). Cells were immunostained with anti-

XRCC4 (BD Biosciences, 1:300 dilution), anti-Ku80 (BD Biosciences, 1:300 dilution), anti-Flag 

(Sigma, 1:1000) antibodies for 1h following methanol fixation. Cells that were efficiently 

knocked down (no visible immunolabelling) for either XRCC4 or Ku80, or cells that had Flag 

signal were scored for bridge formation. For γH2AX, 53BP1 and phospho-ATM (P-ATM) 

staining, cells were fixed in 2% (γH2AX) or 4% paraformaldehyde (53BP1, P-ATM) in PBS at 

room temperature for 30min (γH2AX) or 10min (53BP1, P-ATM), rinsed in PBS and 

permeabilized in 1% Triton/PBS at 4°C (γH2AX) or room temperature (53BP1, P-ATM) for 5 

min (γH2AX) or 30min (53BP1, P-ATM), and blocked in 4% goat serum/PBS in 37°C (γH2AX) 

or 1.5% BSA/PBST (53BP1, P-ATM)  for 1 hr. Primary antibodies were diluted in the blocking 

solution and incubated on cells for 1h at room temperature.  Cells were incubated with Alexa 488 

goat anti-rabbit IgG and Alexa 568 goat anti-mouse IgG for 30min at room temperature and 

stained with DAPI. The coverslips were then mounted with anti-fade solution (1 mg/ml p-

phenylenediamine, 0.1x PBS, pH: 9.0 with KOH, 90% glycerol, stored in the dark at -20°C). 
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Olympus BX60 epifluorescence microscope with 100x or 50x oil immersion objectives was used 

to view slides. Hamamatsu Argus-20 CCD camera was used to capture images. 

7.1.6 Preparation of cell free extracts and Non-homologous end joining activity assay  

Cell free extracts were prepared following the described protocol in Diggle et. al. (2003) 

with the following changes. 1-2 plates of (150 mm dish, 99% confluent) cells were resuspended 

in 1.5 volume of hypotonic buffer and homogenized with a tissue tearor (Biospec products, 

Model 985-370) Speed 2, 1min, 4oC, rather than a dounce homogenizer. The same extracts were 

used for both immunoblotting and NHEJ activity reactions. DNA end joining assay was 

performed using pSilencer U6-Linker plasmid as template DNA, which was end labeled with 32P 

after KpnI digestion.  End joining reactions were carried out in 20μl with 40μg protein extract 

(determined by Bradford Assay) and 10ng radiolabeled DNA as described. The DNA from each 

reaction was purified using Eppendorf Perfectprep Cleanup kit prior to electrophoresis (0.7% 

agarose gel, 10V/cm, 1h). For DNA-PK inhibition reactions, cell lysates were preincubated with 

a final concentration of 30μM wortmannin, 50μM DNA-PK InhibitorII, or 50μM DNA-PK 

InhibitorIII (all Calbiochem) at 37oC for 15-20min or XRCC4/Ku80 antibodies (1:3 dilution, BD 

Biosciences, in a total of 30μl) at room temperature for 45min prior to addition of DNA.  

Phosphorimage data was collected using FujiFilm BAS-2500 (serial number 2702264), and the 

data was quantified using ImageGuage software program (Fuji Film Science Lab).  
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7.1.7 Antibodies   

rAb-XRCC3 (1:1000) and rAb-RAD54B (1:750) (gift from Dr. K. Miyagawa), mAb-

Ku80, mAb-Ku70 and mAb-XRCC4 (BD BioSciences, 1:1000 dilution for immunoblotting and 

1:300 for immunofluorescence), mAb-γTubulin (1:1000, Sigma), rAb-DNA Ligase IV (1:1000, 

GeneTex, Inc.), rAb- phosphorylated histone γH2AX (1:800, Upstate Cell Signaling Solutions, 

Lake Placid, NY), rAb-53BP1(1:500, Novus Biologicals), mAb-phospho ATM (1:200, gift from 

Dr. C. Bakkenist), mAb-Flag tag (1:1000, Sigma), mAb-p53 (DO-1, 1:50, Santa Cruz, for 

immunoblotting), mAb-p53 (1:100, Oncogene, for immunofluorescence), mAb-p21 (1:100, 

Santa Cruz), mAb-HA (Roche), rAb-actin (1:500, Sigma), mAb-centrin-2 (1:5000, gift from Dr. 

J. Salisbury), rAb-cyclinE (SantaCruz Biotechnology) were used as primary antibodies. Alexa 

Fluor488 and Alexa Fluor568 (1:250, Molecular Probes, Eugene, OR, for immunofluorescence), 

ECL anti-mouse IgG-HRP linked F(ab’)α fragment and ECL anti-rabbit IgG-HRP linked 

F(ab’)α fragment (1:5000, Amersham, GE Healthcare, UK) were used as secondary antibodies. 

4’, 6-diamidino-2-phenylindole (DAPI) at 1 μg/ml (Sigma, St. Louis, MO) was used to stain 

DNA. Antibodies were diluted in 1.5% BSA/PBST, DAPI in ddH2O or PBS for 

immunofluorescence and the supernatant for 5% dry milk/TBST after centrifugation for 10 

minutes, full speed on a tabletop centrifuge for immunoblotting.  

7.1.8 Plasmids  

pTSIGN-DNALigIV was generated by subcloning DNA ligase IV cDNA (ATCC, Cat # 

5259632) into pTSIGN vector (gift from Dr. R.D. Wood)  using the EcoRI and BamHI sites.  
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For pSilencerU6-Linker plasmid, two oligonucleotides (Invitrogen)  

5’GATCCCGGGCCCGATATCGGTACCACGCGTTTCAAGAGAACGCGTGGTACCGATA

TCGGGCCCTTTTTTGGAAA3’and 

5’AGCTTTTCCAAAAAAGGGCCCGATATCGGTACCACGCGTTCTCTTGAA 

ACGCGTGGTACCGATATCGGGCCC GG 3’ are annealed according to manufacturers 

instructions and cloned into pSilencerU6 plasmid (Ambion). p3XFlag-XRCC4 was a gift from 

Dr. MJ. Sadofsky.  

7.1.9 Statistical methods   

Correlation between XRCC4 level and NHEJ activity was assessed by a permutation test 

for which the test statistic was the sum of Spearman correlation coefficients for all possible 

combinations of replicated experiments; each coefficient was weighted by the number of 

XRCC4/NHEJ pairs that contributed.  Tests of all other correlations were based on within-cell 

line medians of replicated experiments, and utilized Spearman’s test.  A t-test based on a pooled 

variance was used on the data for determining significance of the difference in the induction of 

bridges in NHEJ/HR mutant backgrounds.  

 

For the assessment of correlation between NHEJ activity and induction of bridges, the 

measure of induction of bridges for a cell line was defined as difference in the median number of 

bridges before and after irradiation. Correlation of NHEJ activity and induction of bridges was 

assessed with a permutation test based on the weighted sum (over replicated NHEJ experiments) 

of Spearman correlation coefficients. Weights were proportional n-1, where n is the number of 

NHEJ-bridge induction pairs contributing to each coefficient, and the test was evaluated with 
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2000 replicates. A t-test, utilizing pooled variance, was used to assess significance of the cell-

line differences in the induction of bridges. 
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