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ABSTRACT

BLIND ESTIMATION OF MULTI-PATH AND MULTI-USER SPREAD

SPECTRUM CHANNELS AND JAMMER EXCISION VIA THE

EVOLUTIONARY SPECTRAL THEORY

Abdullah Ali Alshehri, PhD

University of Pittsburgh, 2004

Despite the significant advantages of direct sequence spread spectrum communications,

whenever the number of users increases or the received signal is corrupted by an inten-

tional jammer signal, it is necessary to model and estimate the channel effects in order

to equalize the received signal, as well as to excise the jamming signals from it. Due to

multi-path and Doppler effects in the transmission channels, they are modeled as random,

time-varying systems. Considering a wide sense stationary channel during the transmis-

sion of a number of bits, a linear time-varying model characterized by a random number of

paths, each being characterized by a delay, an attenuation factor and a Doppler frequency

shift, is shown to be an appropriate channel model. It is shown that the estimation of the

parameters of such models is possible by means of the spreading function, related to the

time-varying frequency response of the system and the associated evolutionary kernels. Ap-

plying the time-frequency or frequency-frequency discrete evolutionary transforms, we show

that a blind estimation procedure is possible by computing the spreading function from the

discrete evolutionary transform of the received signal. The estimation also requires the syn-

chronized pseudo-noise sequence for either of the users we are interested in. The estimation

procedure requires adaptively implementing the discrete evolutionary transform to estimate

the spreading function and determine the channel parameters. Once the number of paths,

delays, Doppler frequencies and attenuations characterizing the channel are found, a deci-

iv



sion parameter can be obtained to determine the transmitted bit. We have also shown that

our estimation approach supports multiuser communication applications such as uplink and

downlink in wireless communication transmissions. In the case of an intentional jamming,

common in military applications, we consider a receiver based on non-stationary Wiener

masking that excises such jammer as well as interference from other users. Both the mask

and the optimal estimator are obtained from the discrete evolutionary transformation. The

estimated parameters from the computed spreading function, corresponding to the closest

to the line of sight signal path, provide an efficient detection scheme. Our procedures are

illustrated with simulations, that display the bit-error rate for different levels of channel

noise and jammer signals.

keywords: Multipath channel fading, Direct sequence spread spectrum, Discrete evolution-

ary transform, Frequency-frequency kernel, Spreading suction, Time-varying frequency

response, Channel characterization, Wiener filtering and masking, Doppler shifts, Atten-

uation factors, and Bifrequency function..
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1.0 INTRODUCTION

1.1 MOTIVATION AND SCOPE

The transmission channel of a radio communication system is in most cases a multipath one

[2, 3]. When changes take place in the propagation environment (e.g. the radio stations

are mobile), reflectors and scatterers are moving, or the medium itself is changing, then the

channel response also changes as a function of time. The signals that arrive from various

paths are added to form a distorted signal. Due to multipath effects, each signal has a

different time delay, gain amplitude, and carrier frequency shift [4, 7, 55]. Channel time-

variation and inter-symbol interference affect the strength of the received signal. This effect

is called channel fading, and it poses a challenge in mobile wireless communications. One

fundamental characteristic of wireless communications is that the channel is time-varying

due to the mobility of the user, or of objects in the propagation environment[5, 6, 64, 65].

Fading due to multi-path is a major limitation in mobile wireless communication systems.

Fluctuations in the received signal degrade the performance of the receiver. For instance, the

RAKE receiver typically used in the code division multiple access (CDMA) works optimally

in slow-fading situations, but a significant loss of performance occurs whenever rapid channel

changes take place, causing fast fading. Moreover, the increased mobility of users in cellular

communications make the effect of Doppler spread in the transmitted signal more significant,

as the state of the channel is much more difficult to estimate.

In this thesis we propose an estimation approach for direct-sequence spread-spectrum

wireless communications (DSSS) channels using the discrete time-frequency evolutionary

transform [16, 20]. The model is characterized by parameters such as time-delays, frequency

shifts, and attenuation factors associated with signals coming from various paths. This

1



model contains all-pass filters that characterize the delays, constant attenuation factors, and

exponential modulators that characterize the frequency shifts, or Doppler shifts. During

the transmission of a single data symbol or frame the channel is almost constant, and the

channel response to the the symbol can be calculated using the formulas of linear time in-

variant systems [7, 57, 59, 60, 80, 81, 83]. When the channel changes significantly during

the transmission of a data frame, new channel representations must be used. The discrete

evolutionary transform DET was used to estimate the time-frequency kernel from the re-

ceived signal. We will show that this kernel can be used to obtain the channel time-varying

frequency response, and we present a special adaptive windowing method to compute the

time-frequency evolutionary kernel of the received signal, which can then be related to the

channel frequency response function [7, 8]. Once the channel frequency response is obtained,

it is possible to compute the spreading function (SF) that depicts the parameters of the

channel. A DSSS receiver is constructed based on the channel parameters obtained from

the received signal by means of the spreading function. Practical communication systems

are often multiuser in nature since mobile users share a common air interface and the re-

ceiver must detect one of the user’s signal only. Multiuser communication is substantially

more complicated compared to single-user communication, mainly due to limited physical

resources such as power and bandwidth. We will show that it is possible for our estimation

method to work for multiuser communication channels both in the down and up links.

Recently there has been a great deal of interest in the application of time-frequency signal

analysis to problems in communications, particularly to spread spectrum communications

[41, 42, 48, 49]. The direct sequence spread spectrum technique to some degree reduces

interference power. Therefore, the interference immunity of a DSSS system can be reduced

if the power of the interferences during transmission is very strong. Additional preprocessing

techniques before despreading such as transform domain excision can enhance the interfer-

ence immunity of the system. In many of these situations the type of jammer is known and

the methods are adapted accordingly. Different methods have been proposed to mitigate

broad-band jammers; many of the available excision techniques assume characteristics of

the interference (e.g., sinusoidal or chirp interference), and then project the received signal

either onto the signal-plus-noise space, or use time-varying filtering to excise the interference

2



[41, 42, 43, 44, 46, 49]. The Wigner-Hough transform method characterizes the jammer

by a parametric model of its instantaneous frequency. Time-varying filtering and masking

methods based on bilinear time-frequency distributions can excise jammers characterized by

their instantaneous frequency, bandwidth, and support in the time-frequency plane [50, 52].

The method of the projection excision technique improves the time-varying notch filtering

[44, 45]. In most situations the characterization of the jammer is not known, only its support

may be available or obtained. However, the users’ spreading sequences are always known at

both the transmitter and at the receiver, and the direct sequence has the same spectrum in-

dependent of the sign of the sent bit. The problem can be treated as a deterministic masking

problem, or as a mean-square estimation problem. We will show that the jammer excision

can be determined using the frequency-frequency evolutionary transformation which shows

a better performance when the interference is narrowly concentrated; conversely the Wiener

masking method is more capable of dealing with interference spread over the whole or most

of the frequency space. It will be shown that in the case of broadband jamming signals a

simplified version of the Wiener masking approach [54] can be used to excise such jammers.

In fact, it can be combined with the channel estimation approach to generate a special DSSS

receiver.

1.2 DISSERTATION OVERVIEW

The research presented in this dissertation is primarily concerned with aspects of reliable

channel estimation and interference excision of DSSS wireless communication in the presence

of multipath phenomenon. The time-frequency representation of the signal is connected

to a spreading function using the relation of LTV channel functions. The discrete time-

frequency evolutionary transform DET is used to obtain the time-frequency representation

of the multipath signal. Furthermore, detection schemes that follow channel estimation are

presented to develop robust receivers.

This thesis is organized as follows: in Chapter 2 the necessary theoretical backgrounds

are introduced, such as direct sequence spread spectrum communications, linear time-varying

3



(LTV) channels, and multipath channel fading. In the same chapter, we define the frequency-

frequency evolutionary spectrum obtained from the discrete evolutionary transform (DET)

via Gabor expansion. It is also shown how this kernel can be obtained from the time-

frequency evolutionary kernel, or directly from the signal. An example is provided comparing

the frequency-frequency evolutionary spectrum to the time-frequency evolutionary spectrum

of a multi-component signal.

Modeling and estimation of multipath wireless CDMA channels is discussed in Chapter

3, where an all-pass multipath channel model is used to characterize channel parameters.

We consider a single user case, showing how the evolutionary kernel is related to the chan-

nel frequency response, and the spreading function of the channel that depicts the channel

parameters. Examples are given to illustrate the estimation approach for different fading en-

vironments. A bit detection scheme based on the proposed channel modeling and estimation

technique is presented also in Chapter 3. This approach involves obtaining the transmit-

ted signal closest to the line of sight, with the smallest delay, the least attenuation, and

some Doppler shift for use in determining the transmitted bits. Such a signal is clearly the

strongest signal being sent, and thus its parameters are probably more easily estimated than

those of weaker signals. Two computational aspects showing a significant reduction in the

computational cost are presented as well.

In Chapter 4 channel modeling and estimation are extended to support the multiuser

levels encountered in DSSS wireless communications during both uplink and downlink trans-

missions. The estimated spreading function of a particular user depicts peaks that correspond

to that user, while other users’ spreading functions appear as noise. The detection scheme

is similar to the single user scheme, which uses information corresponding to the strongest

path signal.

In Chapter 5 we present two interference mitigation schemes based on spectrum masking

of the time-frequency, and the frequency-frequency evolutionary spectrums of the desired sig-

nals. In the instance of jammers with narrow support, frequency-frequency masking performs

best, while Wiener masking performs well in situations involving non-stationary jammers.

Also, a Wiener masking receiver capable of excising broad band jammers in multiuser and

multipath transmission channels is presented.
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Many examples are provided with illustrations explaining the ideas of this thesis. Several

simulations were performed and their plotted results are included in Chapters 3, 4, and 5.

Finally, a general conclusion with the contributions of this thesis and some ideas for future

work are provided in Chapter 6.

5



2.0 BACKGROUND

In this chapter we briefly present some issues that will be used in the rest of the thesis. In

particular, we generally review spread spectrum, then consider the physical propagation of

transmitted signals, and ways the transmission channels can be characterized. In addition

to that, the time-frequency evolutionary spectral theory is reviewed and a new frequency-

frequency evolutionary spectral representation is presented.

2.1 SPREAD SPECTRUM

Spread-spectrum techniques for digital communications were originally developed and used

for military communications either to provide resistance to jamming, or to hide the signal

by transmitting it at low power, thus making it difficult for an unintended listener to detect

its presence in noise [9]. Therefore, spread-spectrum communications have advantages in

the areas of security, resistance to jamming, resistance to multipath fading, and supporting

multiple-access techniques such as the code division multiple access (CDMA) [1, 3, 57].

2.1.1 Spread Spectrum Schemes

There are a number of different ways to generate spread spectrum signals. One spreading

scheme is the direct-sequence spread-spectrum (DSSS), which is achieved by phase mod-

ulation. Another spreading scheme is known as frequency-hop spread-spectrum (FHSS)

achieved by rapid changes in the carrier frequency. When both direct-sequence and frequency-

hop techniques are employed, the resultant scheme is called a hybrid DS-FHSS. Another way
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to generate a spread-spectrum signal is the time-hop spread-spectrum (THSS) signal. In this

case, the transmission time is divided into intervals called frames. Each frame is further di-

vided into time slots. During each frame, only one time slot is modulated with a message;

all the message bits accumulated in previous frames are transmitted.

2.1.2 Direct-Sequence Spread Spectrum (DSSS)

In direct-sequence spread spectrum (DSSS) the baseband data pulse is spread by multiplying

it with a pseudo-noise (PN) sequence produced by a code generator (see Appendix B). The

PN sequence is a deterministic, periodic signal that is known to both the transmitter and

the receiver. A single pulse or symbol of the PN sequence is called a chip [4]. The name

pseudo-noise, or pseudo-random comes from having similar statistical properties as white

noise. For an unauthorized listener, it appears to be a truly random signal. A more general

DSSS transmitter with binary phase shift keying (BPSK) is shown in Fig. 1, where a single

bit m(t) of duration Tb seconds is considered for transmission.

  Generator

Data
Source

PN  Sequence ~

p(t)

s(t)

A cos(2pi f t +θ)
c c

m(t) z(t)

Figure 1: Transmitter for DSSS system

Let us consider the transmission of a binary information sequence of rate R bits per

second with duration interval Tb = 1
R

seconds. The available transmission bandwidth is Bw

Hz, where Bw À R. The information-bearing baseband signal m(t), which is transmitted at
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a rate of R, and has the duration period of Tb = 1
R

seconds can be expressed as

m(t) =
∞∑

k=∞
dkg(t− kTb)

where dk = ±1, and g(t) is a rectangular pulse of duration Tb. The baseband signal can then

be spread by multiplying it by the spreading code. The pseudo-noise signal is generated

using shift registers (see Appendix B for generating PN ) and can be expressed as

p(t) =
∞∑

k=−∞
ckq(t− kTc) (2.1)

where ck = ±1 represents the binary code sequence, and q(t) is a rectangular pulse of

duration equal to the chip interval Tc.

m(t)

p(t)

m(t)p(t)

t

t

t

data sequence

code sequence

spread sequence

M(f)

P(f)

M(f) * P(f)

f

f

f

−1/Tb 1/Tb

0

1/Tc−1/Tc

−(1/Tc + 1/Tb) (1/Tc + 1/Tb)

(b)

   (a)

+1

−1

Figure 2: Spreading operation: (a) in time domain, (b) in frequency domain.

By the multiplication operation, we try to spread the bandwidth of the information-

bearing signal of narrow bandwidth R into a broad bandwidth.Figure 2 illustrates the spread-

ing processes in both the time and the frequency domains respectively.
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The product signal z(t) = p(t)m(t) is then used to modulate the carrier Accos(2πfct+θ).

The transmitted signal can be expressed as

s(t) = Acm(t)p(t)cos(2πfct + θ) (2.2)

We notice here that for any t, the product signal m(t)p(t) = ±1, thus, the modulated

transmitted signal s(t) may also be expressed as

s(t) = Accos(2πfct + θ(t)) (2.3)

where θ(t) has two distinct values, θ(t) = 0 when m(t)p(t) = 1, and θ(t) = π when m(t)p(t) =

−1. Therefore, the carrier-modulated transmitted signal is a binary PSK signal. At the

receiver side, a demodulation process takes place by multiplying the received signal by the

replica of the spreading signal p(t) generated synchronously at the receiver. This operation

is called despreading and is shown in Figure 3. The despread signal is

ro(t) = Acm(t)p2(t)cos(2πfct + θ)

= Acm(t)cos(2πfct + θ) (2.4)

where p2(t) = 1 for all t. The resultant signal ro(t) will have approximately the same original

bandwidth R, which means that the spreading does not have any effect on the demodulation.

After despreading, the output signal will be demodulated by the PSK to recover the desired

signal.

However, the despreading has other effects on interference. Suppose that the received

signal is

r(t) = Acm(t)p(t)cos(2πfct + θ(t)) + j(t) (2.5)

where j(t) is the interference. The despread signal will then have the form

ro(t) = (s(t) + j(t))p(t)

= Acm(t)p2(t)cos(2πfct + θ(t)) + j(t)p(t)

= Acm(t)cos(2πfct + θ(t)) + j(t)p(t) (2.6)

9



We notice from ro(t) that it has the modulated signal in the first term with the original

bandwidth R, and in the second term it spreads the interference across the bandwidth

of the spreading code. If the interference has a narrow-band spectrum after despreading,

demodulating, and filtering with bandwidth R, the power of the interference will be reduced

by an amount equal to the bandwidth expansion factor, or what the so-called the processing

gain

G =
Tb

Tc

=
Bw

R
.

r (t)

p(t)

PN  Sequence

Generator

    Decision 

   o
r  (t)

Demodulator

−

−+ d
     PSK

Figure 3: Receiver for DSSS system

2.1.3 RAKE Receiver

In CDMA spread spectrum systems, the chip rate is typically much greater than the flat

fading bandwidth of the channel Rm = 1
Tm

, where Tm is the maximum access time delay.

The spreading code, or pseudo-noise PN sequence, is designed to provide very low correlation

between successive chips. Thus, the multipath channel provides multiple versions of the

transmitted signal at the receiver. If the multipath components are delayed in time by

more than a chip duration Tc, they appear as uncorrelated noise at the receiver [55, 57,

59]. In 1958, Price and Green [68] proposed a method for resolving multipath wide-band

pseudo-random PN sequence using the property that time-shifted versions of itself with

Tm > Tc are almost uncorrelated. Thus, a signal that propagates from transmitter to

receiver over multiple paths, and hence multiple time delays can be resolved into separately
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fading signals by cross correlating the received signal with multiple time-shifted versions

of the PN sequence. The receiver is called a RAKE receiver because the block diagram

looks like a garden rake. Thus, the RAKE receiver is essentially a diversity receiver designed

specifically for CDMA, where diversity is provided by the fact that the multipath components

are practically uncorrelated from one another when their relative propagation delays exceed

a chip period. The performance of the RAKE receiver is governed by the combining scheme

used. The RAKE receiver utilizes multiple correlators to separately detect the M strongest

multipah components (see Appendix C for details).

2.2 PHYSICAL PROPAGATION ENVIRONMENT

The communication link between a transmitting and a receiving antenna is called free space

path if it is a free of all objects that might absorb or reflect radio frequency energy [1, 2].

Within this path, the atmosphere behaves as a perfectly uniform medium, and the reflection

effect of the earth is neglected as being far away from the path. At the receiver, the received

signal is attenuated by a free space path loss factor Ls(d) and is giving by [4]:

Ls(d) =

[
4πd

λ

]2

i.e, it depends quadratically on the distance d between the transmitter and the receiver, and

the wavelength λ of the transmitting signal. Thus, the received signal power is predictable

and the attenuation factor is the only channel parameter that can determine the power level

of the received signal.

2.2.1 Multipath Fading

In practical channels, a signal typically propagates from transmitter to receiver over multiple

reflective paths. The effect of this phenomenon is that it causes fluctuations in the amplitude

and the phase of the received signal, and is referred to as multipath fading. Therefore, in

practice a channel model has to be introduced since the free space propagation model is
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inadequate to describe the channel and predict the system performance [4, 5, 7, 55]. Figure

4 illustrates this manifestation with three reflective paths and one direct path.

Transmitter

Receiver

P 1

P 2

P 3

Direct  
      path

Figure 4: Multipath fading environment

Thus, the characterization of mobile communication depends on the types of channel-

fading. The variations are characterized by two main manifestations: large-scale and small-

scale fading [5]. Furthermore, these manifestations give rise to specific types of degradations

of the signal. Figure 5 shows the fading manifestations and their associated degradations

[4].

2.2.1.1 Large-Scale Fading The first fading manifestation, large-scale fading, refers to

path loss caused by the effects of the signal traveling over large areas [5]. Large-scale fading

characterizes the losses due to sizable physical objects in the signal’s path such as hills or

forests. The statistics of large-scale fading provide a way of computing an estimate of path
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loss as a function of distance. This is often described in terms of a mean-path loss, and a

log-normally distributed variation about the mean [3, 7].

2.2.1.2 Small-Scale Fading The second fading manifestation, small-scale fading, char-

acterizes the effects of small changes in between a transmitter and a receiver. These changes

can be caused by mobility of the transmitter, receiver, or intermediate objects in the path

of the signal. Small scale changes result in considerable variations of signal amplitude and

phase. Small-scale fading is also known as Rayleigh fading since the fluctuation of the sig-

nal envelope is Rayleigh distributed when there is no predominant line-of-sight between the

transmitter and receiver. The Rayleigh probability density function is expressed as:

fRay(r) =
r

σ2
exp

(
− r2

2σ2

)
, r ≥ 0 (2.7)

where r is the envelope amplitude of the received signal, and 2σ2 is the pre-detection mean

power of the multipath signal. When there is a predominant line of sight between the

transmitter and receiver, the fluctuations are statistically described by a Ricean probability

density function expressed as:

fRic(r) =
r

σ2
exp

(−(r2 + k2)

2σ2

)
Io

(
Kr

σ2

)
, r,K ≥ 0 (2.8)

where I0(x) is the Bessel function of the first kind of order zero. As the amplitude of the

specular component (nonfaded component from the direct path when there is line-of-sight

between the transmitter and receiver) approaches zero, the Ricean pdf approaches a Rayleigh

pdf.

Small scale fading has two manifestations. The first one, signal dispersion, refers to the

time-spreading of the signal. Dispersion causes the underlying digital pulses transmitted

in the signal to spread in time. The second manifestation reflects the time varying of the

channel that is due to relative mobility between a transmitter and a receiver, or the objects

in the path of the signal. Both of these manifestations can be characterized in the time and

frequency domain by fading degradation types.

As shown in Fig 5, the degradation types of the dispersion manifestation are frequency

selective fading and flat fading. From the time domain point of view, frequency selective
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fading occurs when the maximum spread Tm in time of a symbol is greater than the duration

of the symbol. Consequently, another name for this fading degradation is channel induced

inter symbol interference ISI. From the frequency domain point of view, frequency selective

occurs when the spectral components of a signal are affected in different ways by the channel.

In particular, frequency selective fading occurs when the channel coherence bandwidth is

smaller than the signal’s bandwidth [5, 57].

Fading
Manifestations

Large−Scale
Fading

Small−Scale
    Fading

Time variance
of the channel

Signal
dispersion

Slow
Fading

Fast 
Fading

Flat
Fading

Freq.
selective
Fading

Figure 5: Channel fading manifestations and degradations

Figure 5 also shows the degradation due to the time variation of the channel. These are

fast and slow fading. For fast fading, the channel state changes during the time in which the

symbol is transmitted, leading to distortion of the received signal. But for slow fading, the
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channel state remains unchanged for the time in which the symbol is transmitted.

An important parameter in a time-varying channel is the Doppler shift fd caused by the

movement of the receiver, and is expressed as:

fd =
ν

c
fc cos β

where ν is the speed of the mobile receiver, c is the speed of the radio wave, fc is the carrier

frequency, and β is the angle between propagation path and transmitter.

2.3 CHANNEL CHARACTERIZATION AND MODELING

In the case of the channel being invariant with respect to time, an impulse response h(t), or

its corresponding transfer function H(f) fully describes it. In the characterization of a linear

time-varying (LTV) channel, several system functions are introduced [3, 7].

The time-variation nature of the channel can be seen from the varying number, attenu-

ations, and delays of the paths at different time instants. It can be said that the multipath

channel response depends on both the time of arrival of the input pulse (time), and on the

time passed since that (delay). The impulse response is a function of both time and de-

lay, while in the time-invariant channel it is only a function of delay. Furthermore, if the

transmitter in moving, a Doppler effect will also be seen at the receiver.

2.3.1 Multipath Channel Models

Several multipath channel models have been developed [4, 5, 6]. Proakis [1, 3] presented the

most general time-varying multipath channel model. In this model, the transmitted signal

was represented as

s(t) = Re[z(t)ej2πfct] =
1

2
[z(t)ej2πfct + z(t)∗e−j2πfct] (2.9)

where z(t) the transmitted data pulse.
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It was shown that there were multiple propagation paths, and that each was associated

with a time-varying propagation delay and a time-varying attenuation factor. Thus, the

received band-pass signal is

y(t) =

M(t)−1∑

k=0

αk(t)s(t− τk(t)) (2.10)

where αk(t) is the gain of the nth propagation path as function of time, τk(t) is the prop-

agation delay of the nth propagation path as function of time, and M(t) is the number

of propagation paths as function of time. By substituting Equations (2.9) into (2.10) the

received signal becomes

y(t) =

M(t)−1∑

k=0

αk(t)Re[z(t− τk(t))e
j2πfc(t−τk(t))]

= Re[

M(t)−1∑

k=0

αk(t)e
−j2πfcτk(t)z(t− τk(t))e

j2πfct] (2.11)

centered around the carrier frequency fc and has the following low-pass form at the output

of the demodulator

r(t) =

M(t)−1∑

k=0

αk(t)e
−j2πfcτk(t)z(t− τk(t)) (2.12)

From Equation (2.11), the impulse response of the channel can be written as

g(t, τ) =

M(t)−1∑

k=0

αk(t)e
−j2πfcτk(t)δ(τ − τk(t))e

j2πfct (2.13)

Thus, the characteristics of parameters αk(t) and τk(t) determine the classification of the

multipath channel. If they are slowly varying during the symbol time period, the channel

can be called slow-varying.

The time-varying channels can be classified as either deterministic or statistic depending

on whether its parameters are viewed as deterministic functions or as random processes. An

example of statistical models are those that employ the Rayleigh and Ricean pdfs to describe

the random fluctuations of the received signal’s envelope [5, 66].
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2.3.2 System Functions of a LTV-Channel

The basic system function of a deterministic LTV-channel is the time variant impulse re-

sponse g(t, τ) obtained in (2.13). Other frequently used system functions are [7, 55]:

(1) The time-variant frequency response function:

G(t, f) =

∫ ∞

−∞
g(t, τ)e−j2πfτdτ (2.14)

obtained by taking the Fourier transform of the impulse response with respect to the delay

variable τ .

(2) The channel bifrequency function:

B(Ω, f) =

∫ ∞

−∞
G(t, f)e−j2πΩtdt (2.15)

obtained by taking the Fourier transform of the transfer function with respect to the time

variable t.

,

TV impulse response

TV frequency response

G(t,f)
Spreading function

Bifrequency function

B(   ,f)

t f

tf

Ω

τg(t,  )

S( Ω τ)

Figure 6: System functions representation.
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(3) The Doppler spreading function:

S(Ω, τ) =

∫ ∞

−∞
g(t, τ)e−j2πΩtdt (2.16)

obtained by taking the Fourier transform of the impulse response function g(t, τ) with respect

to the time variable t, or taking the inverse Fourier transform of the bi-frequency function

with respect to frequency f . It gives the complex gain of the channel on the delay interval

[t + dt], and the Doppler-shift interval [Ω + dΩ]. The Fourier-transform relations of these

four system functions are shown in Figure 6.

The output of the LTV channel ζ(t) can be expressed in terms of the system functions

as

ζ(t) =

∫ ∞

−∞
g(t, τ)z(t− τ)dτ

=

∫ ∞

−∞
G(t, f)Z(f)ej2πftdf

=

∫ ∞

−∞

∫ ∞

−∞
S(Ω, τ)z(t− τ)e−j2πΩτdΩdτ

=

∫ ∞

−∞

∫ ∞

−∞
B(f − Ω, Ω)Z(f − Ω)ej2πftdΩdf. (2.17)

2.4 FREQUENCY-FREQUENCY EVOLUTIONARY SPECTRAL THEORY

The frequency content of the majority of signals encountered in our everyday lives such as

speech, acoustic, stock indexes, and biomedical signals change over time, and their estimation

has been a research topic of great interest [10, 11, 14, 15, 18, 26, 31]. Standard Fourier analysis

allows the decomposition of a signal into individual frequency components, and establishes

the relative intensity of each component with respect to frequency. The power spectrum

indicates which frequencies exist in the signal and their intensities, but does not reveal when

these frequencies occur. Therefore, time-frequency representations provide a characterization

of a signal in terms of its joint time and frequency content. In this chapter, we introduce

a new representation of the signal in terms of the frequency-frequency kernel which can be

obtained from the time-frequency evolutionary kernel, or directly from the signal. Before
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we get to the bi-frequency kernel, we will review in briefly about the evolutionary spectral

theory and the discrete evolutionary transform DET.

2.4.1 Evolutionary Spectral Theory

According to the Wold-Cramer representation [29], a discrete-time non-stationary process

{x(n)} can be represented as the output of a casual, linear, time-varying system with impulse

response h(n,m), or

x(n) =
n∑

m=−∞
h(n,m)e(m) (2.18)

where {e(m)} is a stationary, zero-mean, unit-variance white noise process. On the other

hand, {e(m)} may be expressed as a sum of sinusoids with random amplitudes and phases,

e(m) =

∫ π

−π

ejwmdZ(ω) (2.19)

where Z(ω) is a process with orthogonal increments, i.e.,

E[dZ(ω1)dZ
∗(w2)] =

1

2π
δ(ω1 − ω2)dw1dω2 (2.20)

By substituting Equations (2.18) into (2.19), we can express the non-stationary process

{x(n)} as

x(n) =

∫ π

−π

H(n, ω)ejωndZ(ω) (2.21)

where

H(n, ω) =
n∑

m=−∞
h(n,m)e−jω(n−m) (2.22)

is the time-frequency response of the LTV system, or the so called Zadeh’s generalized

transfer function [21] evaluated on the unit circle. The non-stationary signal provided in

Equation (2.21) can be interpreted as an infinite sum of sinusoids with time-varying random

amplitudes and phases.
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Using Equations (2.18) to (2.22), the variance of x(n) is given by

E[|x(n)|2] =
1

2π

∫ π

−π

|H(n, ω)|2dω (2.23)

illustrates the distribution of the power of a non-stationary process x(n) at each time n, as

a function of w. The Wold-Cramer (WC) evolutionary spectrum is defined as

SWC(n, ω) = |H(n, ω)|2. (2.24)

which shows that the time-varying power spectral density of the output is equal to the

magnitude squared of the time-varying frequency response of the filter.

2.4.1.1 Evolutionary Spectral Theory Using Gabor Expansion The Wold-Cramer

representation and Priestley’s evolutionary spectrum [29, 31] provide a desirable representa-

tion and a time-dependent spectrum for non-stationary random signals. The Gabor expan-

sion has been related to the evolutionary spectrum and it was possible to define a discrete evo-

lutionary transform that represents the signal and gives the signal spectrum [15, 16, 17, 20].

For a non-stationary deterministic signal, or a deterministic signal with a time-dependent

spectrum, x(n), 0 ≤ n ≤ N − 1, an analogous Wold-Cramer representation is possible [17]:

x(n) =
K−1∑

k=0

X(n,wk)e
jwkn 0 ≤ n ≤ N − 1 (2.25)

where wk = 2πk
K

, K is the number of frequency samples. The inverse discrete transformation

that provides the evolutionary kernel X(n, ωk) in terms of the signal is

X(n, ωk) =
N−1∑

l=0

x(l)Wk(n, l)e−jωkl 0 ≤ k ≤ K − 1 (2.26)

where Wk(n, l) is, in general, a time and frequency dependent window. The DET and its

inverse are then given by Equations (2.25) and (2.26).

To obtain the evolutionary kernel, specifically the window, we consider here the Gabor

signal representation that uses a non-orthogonal basis. The classical Gabor expansion rep-

resents a signal as a weighted sum of Gaussian windows shifted in time and modulated by

sinusoids.
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The Gabor expansion can be seen as generating a rectangular tiling in the time-frequency

plane. We consider the multi-window Gabor expansion [17] that generates a non-rectangular

tiling with the signal represented as

x(n) =
1

I

I−1∑
i=0

K−1∑

k=0

M−1∑
m=0

ai,m,khi(n−mL)ejwkn (2.27)

where {ai,m,k} are the Gabor coefficients, {hi(.)} are synthesis functions obtained by scaling

a Gaussian window g(n) as

hi(n) = 2i/2g(2in), i = 0, 1, ...., I − 1, (2.28)

and I is the number of scaled windows. The time step L is chosen as L < K, which

corresponds to the oversampled Gabor expansion (See Appendix A). The Gabor coefficients

are obtained using analysis functions {γi(.)} that are orthogonal to the synthesis windows,

so that

ai,m,k =
N−1∑
n=0

x(n)γ∗i (n−mL)e−jωkn (2.29)

Comparing Equations 2.25 and 2.27 and substituting the expression for Gabor coefficients

{ai,m,k}, we get

X(n,wk) =
M−1∑
m=0

am,khi(n−mL)

=
N−1∑

l=0

x(l)W (n, l)e−jwkl, (2.30)

where W (n, l) is the time-varying window defined as

W (n, l) =
M−1∑
m=0

γ∗(l −mL)h(n−mL). (2.31)

The energy density, or the evolutionary spectrum can be calculated as

S(n,wk) =
1

K
|X(n,wk)|2. (2.32)

as the magnitude square of the time-frequency evolutionary kernel divided by the frequency

samples K.

Thus, the magnitude of the evolutionary kernel is the energy density in the time-frequency

plane and is similar to the spectrogram, or the magnitude square of the STFT.
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2.4.2 Frequency-Frequency Evolutionary Spectrum

In this section we show how to extend the time-frequency evolutionary spectrum to the

frequency-frequency. In situations, like the one we consider later on the modeling of a

time-varying channel, a frequency-frequency representation besides the time-frequency rep-

resentation is required; here we consider how to obtain it. To motivate the development

of the frequency-frequency evolutionary transform, let us consider a non-stationary signal

x(n) =
∑

k A(n,wk)e
jwkn as the input of a linear time invariant(LTI) system with impulse

response g(n). The output is given by

y(n) =
∑
m

g(n−m)x(m)

=
∑

k

[∑
m

X(m,wk)g(n−m)e−jwk(n−m)

]
ejwkn (2.33)

where the term in the square brackets is the DET of y(n) 2.26, can be denoted as Y (n,wk),

and it can be expressed as a convolution in time:

Y (n,wk) = X(n,wk) ∗ [g(n)e−jwkn] (2.34)

Computing the discrete Fourier transform of ?? with respect to n, we obtain

Y (Ωs, wk) = X(Ωs, wk)G(Ωs + wk) (2.35)

which establishes a relationship between the input and the system response with frequency-

frequency representation. Such a relation was used in the identification of non-stationary

processes [27]. The above equation in the frequency-frequency representation simplifies the

computation with the time convolution.
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Now, the above relation can be extended to frequency-frequency transformation by com-

puting the discrete Fourier transform of X(n,wk) with respect to n, so that it can be calcu-

lated directly from the signal x(n), or from the evolutionary kernel X(n,wk), that is

X(Ωs, wk) =
N−1∑

l=0

x(l)W (Ωs, l)e
−jwkl

=
N−1∑

l=0

N−1∑
n=0

x(l)W (n, l)e−j(Ωsn+wkl)

=
N−1∑
n=0

X(n,wk)e
−jΩsn (2.36)

The inverse discrete evolutionary transform IDET 2.25 process can then be obtained

from the frequency-frequency representation as

x(n) =
∑

k

∑
s

X(Ωs, ωk)e
j(wk+Ωs)n (2.37)

Now it is possible to calculate the frequency-frequency evolutionary spectrum in a way

similar to the time-frequency evolutionary spectrum by computing the magnitude square of

the frequency-frequency kernel. Doing so produces the following:

S(Ωs, ωk) =
1

K
|X(Ωs, ωk)|2 (2.38)

One advantage to the frequency-frequency representation is the compactness of the in-

formation. At the new frequency domain Ωs all information is concentrated around the DC

value, allowing for less computations since the rest of the frequency-frequency plane can be

ignored as will be shown in Chapter 5. A possible disadvantage is that the time information

is now in the phase of the kernel, and cannot be seen in the frequency-frequency spectrum.

As an application we have used the frequency-frequency representation in the segmenta-

tion of non-stationary signals into locally stationary parts, and estimated their bandwidth by

calculating the width function defined to measures the slowly time-varying processes. From

that we obtained the characteristic width, defined as the interval at which the process was

treated approximately stationary.
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Example : In this example, we illustrate the time-frequency and frequency-frequency spec-

trum of a sinusoidal signal that is composed of two segments with a different frequency for

each segment, defined as

x(n) =





exp(j0.5πn), 0 ≤ n ≤ N
2
− 1

exp(j0.2πn), N
2
≤ n ≤ N − 1

with each segment having a length of M=64 samples. The length of the total signal is

N = 128 samples and is equal to the length of the multi-scale Gabor window. The time-

frequency and frequency-frequency spectra are shown in Figures 7 and 8 respectively.

Clearly the frequency-frequency spectrum is the Fourier transform of the time-frequency

kernel with respect to time n as explained earlier. We notice that the output appears as

large peaks located at low frequencies in the frequency − Ω domain, thus satisfying the

slow-varying condition imposed on the evolutionary spectrum, and have original frequency

values π
5

and π
2

in the frequency − ω domain.

2.5 SUMMARY

This chapter provides a review on the DSSS communication systems and the LTV chan-

nels considered in mobile communications. The multipath channel fading phenomenon was

explained and its challenge in mobile communication was emphasized. The LTV-channel

system functions were introduced with their relation. A bi-frequency representation of the

signal has been introduced. This representation can be obtained from the time-frequency

kernel, or from the signal directly using Gabor windows. The spectrum of this kernel depicts

significant values around the dc value, Ωs = 0 and the corresponding frequency values ωk. It

compacts this information in a small region, which is a computational advantage in certain

cases as can be shown in Chapter 6.
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Figure 7: Time-frequency evolutionary spectrum.
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3.0 SINGLE-USER CHANNEL MODELING AND ESTIMATION

Multi-path channel modeling and estimation pose a significant challenge in wireless commu-

nications. Because multi-path and Doppler effects in transmission channels spread the DSSS

transmitted signal in both time and frequency, the channel models need to be random and

time-varying which are difficult to deal with. Furthermore, blind estimation is needed using

the only available data which are the received signal and the pseudo noise sequences at the

receiver. In our estimation approach, we consider deterministic linear time-varying channel

models with parameters that change randomly and our aim is to estimate such parameters.

In this chapter we limit our discussion to a single user multipath channel.

In modeling and characterization of LTV channels, a discrete model is used. Therefore,

if the system has g(n, m) as its discrete impulse response, then its corresponding discrete

time-varying frequency response, or Zadeh’s function, is

G(n, ωk) =
∑

k

g(n, m)e−jωkm (3.1)

or the Fourier transform of g(n,m) with respect to the delay variable k. The bifrequency

function is then found by computing the Fourier transform of G(n, ωk) with respect to n

giving

B(Ωs, ωk) =
∑

n

G(n, ωk)e
−jΩsn. (3.2)

Finally, the spreading function is the inverse Fourier transform of B(Ωs, ωk) with respect

to ωk, or equivalently the Fourier transform of the impulse response function g(n,m) with

respect to the time variable n,

S(Ωs, k) =
∑

n

g(n,m)e−jΩsn. (3.3)
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The evolutionary time-frequency kernel of the received signal is used to estimate the

spreading function S(Ωs, k) from which the channel parameters can be estimated. Based

on this model, we will also describe in detail how the time-frequency evolutionary kernel

of received multipath signal can be computed, and hence used to obtain the time-varying

frequency response of the multipath channel. Once the time-varying frequency response

is obtained, computing the spreading function is possible using the relation of the above

channel system functions.

3.1 MULTIPATH CHANNEL MODELING

The baseband DSSS multipath transmission channel model is depicted in Fig. 9, where

each path is considered an all-pass filter with an impulse response {h`(n)} characterizing

the delay, and the functions {f`(n)} are the modulators that generate the frequency shift,

or Doppler effect. The channel parameter {α`(n)} is the attenuation factor, or the gain of

the `th propagation path as a function of time. The impulse response of each path can be

defined as

h`(n) = δ(n−N`) (3.4)

where N` is an integer delay representing the time difference between the first arrival signal

and the signals that come through various paths due to reflection, scattering, and diffraction

in the transmission channel. The Doppler shifts can be characterized by exponentials that

modulate the delayed signals,

f`(n) = ejψ`n. (3.5)

Using the time delays, Doppler shifts, and gain factors characterizations, the overall

impulse response of the multipath channel can be written as

g(n,m) =

L(n)−1∑

`=0

α`(n)δ(m−N`(n))ejψ`(n)n. (3.6)
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Figure 9: LTV channel model: a) System model, b) Baseband channel model

Assuming that the channel is almost constant during the transmission of a single data

symbol, the channel model will then reduce to

g(n,m) =
L−1∑

l=0

α`e
jψ`nδ(m−N`) (3.7)

as the number of paths L, path gain {α`(n)}, the delays {N`(n)} and the Doppler shifts

{ψ`(n)} do not change during the small period of time equal to the time period of the

transmitted bit, or the pseudo-noise signal.

The randomness of the channel appears as the model parameters, after one or more

frames, obtain new values in an arbitrary fashion.

Under the above assumptions, the output signal y(n) is given by

y(n) =
L−1∑

l=0

α`s(n−N`)e
jψ`n (3.8)
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where s(n) = dp(n) and d = ±1. The received signal for the corresponding bit d is given by

r(n) = y(n) + η(n) (3.9)

where η(n) is the interference signal due to channel noise and any possible interference in

the medium.

To find the frequency response of the model we consider for simplicity d = 1, so that

s(n) = p(n) and is represented by its Fourier representation

p(n) =
1

2π

∫ π

−π

P (ω)ejωndω (3.10)

If we replace Equations (3.10) into (3.8), we get

y(n) =
1

2π

L−1∑

`=0

α`e
jψ`n

∫ π

−π

P (ω)ejω(n−N`)dω

=
1

2π

∫ π

−π

P (ω)
L−1∑

`=0

α`e
jψ`ne−jωN`ejωndω (3.11)

or the equivalent response to p(n) as an infinite sum of weighted exponentials

y(n) =
1

2π

∫ π

−π

P (ω)G(n, ω)ejωndω (3.12)

where G(n, ω) is the frequency response of the LTV system, which is given by the following

equation after comparing (3.12) and (3.11)

G(n, ω) =
L−1∑

`=0

α`e
jψ`ne−jωN` (3.13)

which can be seen as the Fourier transform of the separable impulse response g(n,m) given

earlier.

Now, the bifrequency function B(Ω, ω) is found by computing the discrete-time Fourier

transform of G(n, ωk) with respect to the n variable:

B(Ω, ω) = 2π
L−1∑

`=0

α`e
−jωN`δ(Ω− ψ`) (3.14)
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Finding the inverse discrete-time Fourier transform of B(Ω, ω) with respect to ω we find

that the spreading function is given by

S(Ω, k) = 2π
L−1∑

`=0

α`δ(Ω− ψ`)δ(k −N`) (3.15)

which displays peaks located at the delays and the corresponding Doppler frequencies, and

with α` as their amplitudes. To express the above functions in the discrete domain and to

relate them to the evolutionary kernels, assume that s(n) has a support 0 ≤ n ≤ Mp − 1,

where Mp is the pseudo-noise length, y(n) can be obtained by replacing the discrete Fourier

representation of p(n) = 1
Mp

∑Mp−1
k=0 P (k)ejωkn:

y(n) =
1

Mp

Mp−1∑

k=0

P (k)

[
L−1∑

`=0

dα`e
jψ`ne−jωkN`

]
ejωkn

=

Mp−1∑

k=0

Y (n, ωk)e
jωkn (3.16)

where ωk = 2πk
Mp

, the Zadeh’s time-varying frequency response G(n, ωk) is the term in the

square brackets and Y (n, ωk) is the time-frequency evolutionary kernel. Thus we have that

G(n, ωk) =
L−1∑

`=0

dα`e
jψ`ne−jωkN`

=
MpY (n, ωk)

dP (k)
. (3.17)

The bi-frequency function B(Ωs, ωk) is then found to be

B(Ωs, ωk) =
1

Mp

L−1∑

`=0

dα`δ(Ωs − ψ`)e
−jωkN`

=
MpY (Ωs, ωk)

dP (k)
, (3.18)

where Y (Ωs, ωk) is the frequency-frequency evolutionary kernel of y(n). Finally, the spread-

ing function is given by

S(Ωs, k) =
L−1∑

`=0

α`δ(Ω− ψ`)δ(k −N`)

= F−1
ωk

[
MpY (Ωs, ωk)

dP (k)

]
(3.19)
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which displays peaks of amplitude α` at the values of the delays and their corresponding

Doppler shifts. If we extract this information from the received signal, we should then be able

to figure out what d was. Furthermore, it is of interest to note that the above functions are

related to the evolutionary time-frequency and frequency-frequency kernels. Such relations

will be used in the estimation of the spreading function and in the development of fast

algorithms to compute it.

3.1.1 General Model

In this section we will consider the general model which is similar to the baseband model

shown in Fig. 9, except that it must include the carrier signal ejωcn for modulation at the

transmitter and its inverse e−jωcn for demodulation at the receiver.

When the receiver, or channel objects are moving, the carrier frequency of multipath

signals are shifted due to this movement, and new frequency values are obtained at the output

shifted from the original frequency by an amount equal to the Doppler shifts. Therefore,

the frequency of a received signal can be defined in terms of Doppler shift and the carrier

frequency as

ω` = ωc + ψ` (3.20)

where ωc is the carrier frequency and ψ` is the Doppler shift.

At the transmitter, the binary data is spread by the pseudo-noise sequence to have dp(n),

and then multiplied or modulated by the carrier signal producing the final transmitted signal

s(n) = dp(n)ejωcn (3.21)

and therefore the noiseless received signal is given by

y(n) =
L−1∑

`=0

dαls(n−N`)e
jψ`n

=
L−1∑

`=0

dα`p(n−N`)e
j(ωc+ψ`)ne−jωcN` (3.22)
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Similar to the baseband model, to find the frequency response of the channel we replace

p(n) by its inverse discrete Fourier representation, and get

y(n) =

Mp−1∑

k=0

P (k)

Mp

[
L−1∑

`=0

dα`e
j(ωc+ψ`)ne−j(ωc+ωk)N`

]
ejωkn

=

Mp−1∑

k=0

Y (n, ωc + ωk)e
j(ωc+ωk)n (3.23)

where the term inside the square brackets is Zadeh’s time-varying response G(n, ωc + ωk)

and Y (n, ωc + ωk) =
∑

` Y`(n, ωc + ωk) is the time-frequency evolutionary of y(n), and

Y`(n, ωc + ωk) =
1

Mp

P (k)dα`e
j(ωc+ψ`)ne−j(ωc+ωk)N` (3.24)

Letting ω
′
k = ωc + ωk, the Zadeh’s function G(n, ω

′
k) can be expressed in terms of the

evolutionary kernel as

G(n, ω
′
k) =

L−1∑

`=0

dα`e
j(ωc+ψ`)ne−j(ωc+ωk)N`

=
L−1∑

`=0

Mp

dP (k)
Y`(n, ω

′
k)

=
Mp

dP (k)
Y (n, ω

′
k) (3.25)

Taking the discrete-time Fourier transform of the Zadeh’s transfer function G(n, k) with

respect to n gives the bifrequency function

B(Ωs, ω
′
k) =

1

Mp

L−1∑

`=0

dα`δ(Ωs − ω`)e
−jωkN`e−jωcN`

=
MpY (Ωs, ω

′
k)

dP (k)
, (3.26)

where Y (Ωs, ωk′ ) is the frequency-frequency kernel of y(n). Finally, finding the inverse

Fourier transform of B(Ωs, ωk′ ) with respect to the frequency variable ωk′ we obtain the

spreading function S(Ωs, k
′
). There equations are similar to the ones for baseband model,

so we only need to consider the baseband case.
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3.2 SPREADING FUNCTION ESTIMATION VIA TIME-FREQUENCY

EVOLUTIONARY KERNEL

In the last section we illustrated how modeling DSSS multipath channels provides the time-

frequency representation of the channel. Now based on the above modeling of the channel,

we consider estimating these functions blindly from the received signal in order to obtain

estimates of the channel parameters. Both baseband and general models will be used for the

parameter estimation.

Let us consider first the baseband model, where the output noiseless combined signal

is y(n), and is defined in (3.16). This signal can be considered as a non-stationary signal

of length N , that can be represented in terms of either its time-frequency kernel Y (n, ωk),

or its corresponding bifrequency kernel Y (Ωs, ωk). To compute the discrete evolutionary

kernel, we need to consider what would be an appropriate function V (m,n). Consider a

noiseless multipath channel so that y(n) = r(n), a non-stationary signal, of length Mp, that

can be represented in terms of a time-frequency evolutionary or frequency-frequency kernels

Y (n, ωk) and Y (Ωs, ωk). The discrete evolutionary transform (DET) and its inverse provide

the following representations

Y (n, ωk) =
1

Mp

∑
m

y(m)Vk(m,n)e−jωkm

y(n) =
∑

k

Y (n, ωk)e
jωkn, (3.27)

where Vk(m,n) is a frequency and time-varying window that can be obtained from the Gabor

or the Malvar representation of y(n) [20].

For the kernel Y (n, ωk), computed from y(n), to coincide with that in (3.16) an appro-

priate window V (m, n) is needed. The conventional Gabor- or Malvar–based windows are

not appropriate, and rather an adaptive function Vq(m,n) = ejωq(n−m) needs to be used. In

fact, when we replace y(n) in (3.27) into the equation for the time-frequency evolutionary
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kernel and introduce Vq(m,n) = ejωq(n−m) we get

Yq(n, ωk) =
1

Mp

∑

s,`

dα`P (s)e−jωsN`

×
Mp−1∑
m=0

Vq(m, n)ej(ψ`+ωs−ωk)m, (3.28)

when ωq = ψ`, the last term of the above equation gives

ejψ`n

Mp−1∑
m=0

ej 2π
N

(s−k)m = Mpe
jψ`nδ(s− k),

Replacing this term back in equation (3.28) gives

Yψ`
(n, ωk) =

L−1∑

`=0

dα`P (k)ej(ψ`n−ωkN`), (3.29)

which is MpY (n, ωk) as in equation (3.16). If the frequency in Vq(.) does not coincide with

one of the Doppler frequencies, the result

Yq(n, ωk) =
1

Mp

∑

s,`,m

α`P (s)e−jωsN`ejωq(n−m)ej(ω`+ωs−ωk)m (3.30)

is a noise-like sequence and is completely different from the expected result. Once we can

compute Y (n, ωk), it is then possible to find the bifrequency and the spreading functions as

indicated before.

Since the Doppler frequencies are not known, to implement the computation of Y (n, ωk)

and then the spreading function, we consider Vq(m,n) = ejωq(n−m), where 0 ≤ ωq ≤ π.

When ωq coincides with one of the Doppler frequencies, the spreading function displays a

large peak at the corresponding delay and Doppler frequency. For those frequencies ωq not

equal to a Doppler frequency, the spreading function displays a random sequence of peaks

spread over all possible delays. We then determine a threshold that allows us to obtain

the most significant peaks of the spreading function corresponding to possible delays and

Doppler frequencies.
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For determining the desired peaks from the spreading function, we consider the ratio of

the maximum value of the largest peak at each frequency in Doppler frequency domain and

the mean value of all peaks in the time-delay domain

TΩs =
maxk|(S(Ωs, k))|

1
Mp

∑Mp−1
k=0 |S(Ωs, k)|

(3.31)

as a decision parameter determining candidate peaks. Thus, when the window frequency

coincides with any of the Doppler shift, a large peak will appear at that frequency ψ` as well

as the corresponding time delay N`, and the ratio TΩs explained above will determine if the

peak at that location is a candidate peak. Repeating the same procedure for all possible

frequencies provides all candidate peaks for the desired communication channel. From the

experimental part we found that a good value for the decision parameter approximately is

TΩs ≥ 2.5 in order to separate and locate the desired peaks.

Finally, the attenuation values {α`} can be estimated by considering the spreading func-

tion that matches the corresponding Doppler frequency. For instance, when there is a unique

Doppler frequency ψq, the spreading function as computed using the evolutionary transform

will be of the form

Sq(Ωs, k) ≈ (Mp −Nq)αqδ(Ω− ωq)δ(k −Nq) (3.32)

so that finding its peak and dividing by the factor Mp −Nq provides αq. In the noisy cases,

the above computations will be affected, but in general they can be done in a similar way.

In the following examples, we will illustrate our estimation approach as seen from both

models with different channels parameters.

Example1 : In this example We consider a multipath channel (base-band) with a total

number of paths L = 4. The received signal therefore will be composed of 4 signals having

different time-delays N`, frequency Dopplers ψ`, and attenuation factors α`. We chose the

original time delays of 0, 20, 40, and 80 samples with corresponding Doppler frequencies

of 0.2π, 0.4π, 0.6π, and 0.2π. The estimated spreading function obtained from the DET

evolutionary kernel using the special window V (m,n) provides the channel parameters as

large peaks at frequencies that coincide with the Doppler frequencies corresponding to time

35



delays in the frequency-time plane. Figure 10-(a) shows the spreading function displaying

a large peak at Doppler frequency 0.4π and a delay of 20 samples as expected, while Fig.

10-(b) shows the spreading function at a frequency that does not coincide with the Doppler

frequency, displaying random peaks all over the time-delay domain. Using the proposed de-

cision rule provides the desired peaks. When the frequency in use coincides with the Doppler

frequency, the above ratio changes significantly from a case when they do not coincide. The

thresholded spreading function obtained is shown in Fig. 10-(c). From these peaks, it was

possible to compute the time delays N`, the associated Doppler frequencies ψ`, and an esti-

mate of the attenuation factors α̂`. Table 1 shows the values of estimated channel parameters

along with the original values.

Example2 : In this example, We consider the general multipath channel model of 3 paths.

The received signal is composed of 3 signals of different time-delays N`, frequency shifts

ω` = ωc + ψ`, and attenuation factors α`. The carrier frequency ωc = π/2 and has been

shifted due to the Doppler effects to give a shifted version of the original carrier frequency.

The spreading function corresponding to one path is shown in Fig. 11-(a), which displays

a peak at the frequency ω` = 0.5π with Doppler shift (ψ` = 0). The final thresholded

spreading function for this multipath channel is depicted in Fig. 11-(b) displaying three

peaks corresponding to the three path signals. The estimated and original values are shown

in Table 2.

Example3 : We consider in this example the general model as illustrated in example 2,

but for the case of zero-Doppler in a multipath transmission channel. The initial spreading

function is depicted in Fig. 12-(a), which displays three peaks at three different time-delays

corresponding to the carrier frequency, since each multipath signals have zero Dopplers

ψ` = 0 or ω` = ωc. The thresholded spreading function is shown in Fig. 12-(b). The

estimated values are shown in Table 3.
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Table 1: Original and estimated values of the mulitpath channel parameters (example 1).
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Table 2: Original and estimated values of the mulitpath channel parameters (example 2).
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Figure 10: Example 1: (a) SF at ψ = 0.4π, (b) SF at ψ = 0.5π, and (c) Final SF.
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Figure 11: Example 2: (a) SF for single path,(b) Final thresholded SF.

0
20

40
60

80
100

120

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

Time−Delay

Frequency − Ω
0

20
40

60
80

100
120

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

Time−Delay

Frequency − Ω

(a) (b)

Figure 12: Example 3: (a) Spreading function, (b) Final thresholded spreading function.
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3.3 BIT DETECTION

In general, the DSSS receiver uses a locally generated replica of the pseudo-noise signal

at the receiver to separate multiple signals. By cross correlation, the coded information

can be obtained and interference suppressed. The multiple access advantage at the DSSS

provides reducing the effect of interference due to jamming, multiuser interference, and self

interference due to multipath propagations. In CDMA, to further reduce multipath effects,

a RAKE receiver is usually employed, exploiting multipath diversity by combining at the

receiver as many of the multipath signals as possible in a constructive way, which is done

through a bank of correlators. The proposed receiver is a channel estimation based were the

estimated channel parameters are used in a constructive way to detect the binary information

bit.

3.3.1 Conventional Receiver

For this receiver, we would like to consider the signal component closest to the signal that has

the smallest delay and the largest possible gain α to determine the value of d, or commonly

known as the the line of sight (LOS) signal. At first, the receiver performs the channel

estimation and computes the spreading function, which consists of the channel parameters

as explained in the previous chapter.

Based on the baseband model, the combined received signal r(n) that comes from various

paths is

r(n) =
L−1∑

`=0

y`(n) + µ(n)

=
L−1∑

`=1

α`dp(n−N`)e
jψ`n + µ(n) (3.33)

where µ(n) is the channel noise. Now it is possible to despread the received signal by the

shifted version of the pesudo-noise p(n − N) with a shift equal to the shortest estimated
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delay N = N̂0. The output despreaded signal is

r0(n) = r(n)p(n− N̂0)

= p(n− N̂0)

[
L−1∑

`=0

dp(n−N`)α`e
jψ` + µ(n)

]

= dα0e
jψ0n + α`dp(n−N1)p(n− N̂0)e

jψ1n

+...... + αL−1dp(n−NL−1)p(n− N̂0)e
jψL−1n + p(n− N̂0)µ(n). (3.34)

Demodulating and scaling the signal ro(n) with e−jψon/α0, we get

ρ(n) = d(n) +

[
L−1∑

`=1

dp(n−N`)e
j(ψ`−ψ̂o)n + µ(n)

]
p(n− N̂0)(1/α̂0)

= d(n) + η(n) (3.35)

where

η(n) =

[
L−1∑

`=1

α`e
jψ`ndp(n−N`) + µ(n)

]
p(n− N̂0)e

−jψ̂0n

α̂0

(3.36)

is noise-like term due to nonorthogonality between the shifted replicas of PN.

Given the pseudo noise nature of p(n), and assuming it is uncorrelated with the noisy

term µ(n), the expected value of ρ(n) gives E[ρ(n)] = d, and using a short-term average we

obtain an estimate of d.

We notice that this approach requires obtaining the channel parameters estimate of the

first arrival signal in order to construct the desired receiver. Thus, our channel estimation

approach used the information obtained from the estimated spreading function S(Ω, k), and

repeats for all data bits. A complete structure of this receiver is shown in Fig. 13, which

includes both estimation and detection. Figure 14 shows the estimated signal ρ(n) obtained

from information of the first arrival peak in the spreading function corresponding to the

first arrival signal or simply the first path. We should mention here that the received signal

is composed of 3 multiple signals with different delays, attenuations, and frequency shifts,

and is transmitted in a noisy channel with an equivalent signal to noise ratio dB. The mean

value of the estimated signal ρ(n) gives 0.943, which means that the transmitted binary bit

is d = +1.
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3.4 DOPPLER EFFECT

Doppler shifts are caused by changes in the carrier frequency due to the movement of the

receiver, or moving objects in the communication channel. They negatively impact the

detection of the correct transmitted information bits causing an increase in the bit error rate

(BER). It is required to know these frequency shifts or Dopplers at the receiver, and then

compensate for them in order to reduce the BER. The simulation at the end of Chapter 5

illustrates these effects by means of bit error rate.

Furthermore, to show this effect it is important to examine a simple case where the

carrier frequency varies around a nominal frequency ωc = π/2 of the transmitted signal,

s(n) = dp(n)ejωcn (3.37)

where p(n) is the pseudo-noise sequence, and d is the transmitted binary data and equals to

+1. The channel in this case produces Doppler shifts ψ that have a different value at each

transmission.

Under the assumption of perfect synchronization, the received signal is then demodulated

and despreaded by a replica of pseudo-noise p(n) at the receiver in order to recover or detect

the binary data d. The demodulated and despreaded signal is

y(n) = dp(n)ej(ωc+ψ)np(n)e−jωcn (3.38)

where for simplicity the channel noise has been neglected, and since p(n)2 = 1, the final

despread signal is

y(n) = dejψn (3.39)

Now, consider repeating the transmission for the same data bit d = +1 at different

Doppler shifts, ψm, (0.005 ωc to 0.02 ωc), for m = 1, 2, ...., 11. At the output, the demodulated

and despreaded signal ŷm(n) is different for each transmission, and the average value of ŷm(n)

will decrease as the ψm increases. Notice here that the channel noise and multipath effects

will affect the averaging and hence increase the probability of getting an error for the detected

bit.
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Figure 15 illustrates the output results of this example where the mean value of ŷ(n) as

the estimated data dm decreases as the Doppler frequency shift increases and becomes totally

dependent upon it. Thus, ignoring Doppler effects at the receiver increases the bit error rate

BER as can be seen from the simple case result shown in Figure 15 and the simulation output

shown in Figure 19.
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Figure 15: Real value of the despread and demodulated output signal at different Doppler

shifts ψm defined as percentage changes of the carrier frequency ωc

3.5 COMPUTATIONAL ASPECTS

In this section we will address two aspects regarding the reduction of computational load

involved in the estimation approach. We will consider reducing the computations of the

spreading function estimation, and to eliminate the need of estimating the channel for every

single arrival bit avoiding the redundancy resulting from estimating channels with same or

similar parameters due to their stationarity.
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3.5.1 Fast Computation of Channel Spreading Function

For each arrival symbol, the spreading function is computed for all possible frequencies as

obtained from the corresponding time-frequency kernel using the time-dependent windows

V (n, m) = ejωq(m−n). This window function can be computed priori to reduce the overall

computational load. To show this, we have the evolutionary kernel as

Y (n, ωk) =
1

Mp

Mp−1∑
m=0

y(m)V (m,n)e−jωkm

=
1

Mp

Mp−1∑
ρ=0

L−1∑

`=0

dα`P (ωρ)e
−jωρN`

Mp−1∑
m=0

V (m, n)ej(ψ`+ωρ−ωk)m (3.40)

and the Zadeh’s transfer function was defined to be

G(n, ωk) =
MpY (n, ωk)

dP (ωk)
(3.41)

Now when the window frequency ψq coincides with the Doppler frequency ψ`, the bifre-

quency kernel is

B(Ωs, ωk) =
1

Mp

Mp−1∑
m=0

[
L−1∑

`=0

Mp−1∑
ρ=0

dα`e
jψ`mP (ωρ)e

jωρ(m−N`)

]
e−jψqmδ(Ωs − ψ`)e

j(ωρ−ωk)m e−jωkm

P (ωρ)

=
1

Mp

L−1∑

`=0

dα`e
−jωkN`δ(Ωs − ψ`)Mpδ(ρ− k)

=
L−1∑

`=0

dα`e
−jωkN`δ(Ωs − ψ`) (3.42)

showing peak at the frequency location when the signal frequency coincides with the fre-

quency of the window function. Clearly, the above equation indicates that some terms are

independent and can be computed a priori.

The bi-frequency function can be obtained by taking the discrete-time Fourier transform

of the transfer function G(n, ωk) with respect to n, or equivalently the window function

V (n, m) with respect to n, as,

B(Ωs, ωk) =
∑
m

y(m)Fn {V (m, n)} e−jωkm

P (ωk)

=
∑
m

y(m)V (m, Ωs)Φ(m,ωk) (3.43)
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where Φ(m,ωk) is Mp × Mp matrix and is independent of the window function. The final

spreading function is obtained by taking the inverse Fourier transform of the bifrequency

function B(Ωs, ωk), or equivalently the function Φ(m,ωk) with respect to k:

Ŝ(Ωs, k) =
∑
m

r(m)V (m, Ωs)Θ(m, k) (3.44)

where Θ(m, k) is the inverse Fourier transform of the the function Φ(m,ωk) and can be

computed a priori.

In matrix, the spreading function can be obtained as

S = U ·Θ (3.45)

where U is Mp ×Mp which can be obtained from the cross multiplications of the received

signal and the adaptive function V as


u11 u12 · · · u1N

u21 u22 · · · u2N

...
...

. . .
...

uN1 uN2 · · · uNN




=




yT

yT

...

yT



×




v11 v12 · · · v1N

v21 v22 · · · v2N

...
...

. . .
...

vN1 vN2 · · · vNN




.

The final spreading function is the result of the following inner product:




s11 s12 · · · s1N

s21 s22 · · · s2N

...
...

. . .
...

sN1 sN2 · · · sNN




=




u11 u12 · · · u1N

u21 u22 · · · u2N

...
...

. . .
...

uN1 uN2 · · · uNN







θ11 θ12 · · · θ1N

θ21 θ22 · · · θ2N

...
...

. . .
...

θN1 θN2 · · · θNN




.

We notice that the function Θ(m, k) can be computed a priori. For the window function,

V (m, Ωs), it can be generated for all possible frequency shifts corresponding to all possible

Doppler shifts. Thus, computing both functions a priori at the receiver allows computing

of the spreading function directly without obtaining other channel functions such as bi-

frequency and transfer function. Therefore, with such fast computational approach, the

computational load will be significantly reduced.
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Figure 16: Real value of the adaptive window V (Ωs,m)

3.5.2 Computational Load Reduction from Channel Behavior

Another computational aspect is the estimation of redundant channels. In some communica-

tion applications such as TDMA, the receiver uses an equalization scheme with a pilot signal

that is known at the receiver, and transmitted periodically so that the receiver can update

channel coefficients. The disadvantage of this procedure is the that transmitting pilot signal

comes at the cost of data rate. Another disadvantage is that the receiver performs channel

equalization, even with stationary channels where channel parameters remain constant. In

our approach, the estimated channel parameters for the previous bit data can be used for the

current one until a significant change occurs in the channel behavior that makes it necessary

for new updates. Therefore, the receiver should have self monitoring criteria that will allow

the estimation process to work according to the channel behavior.

A better way to achieve this approach is by considering the absolute value of the average

of the despreaded signal shown in Equation (3.35) as a required decision rule for determining
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new channel estimation. Thus, avoiding the estimation of redundant channels during the

transmission of stationary channels will significantly reduce the overall computational load.

Figure 18 shows the mean value of the despreaded signal versus the transmission channels

that change randomly; each remains constant for some period of time. It is shown that with

any significant change in the channel parameters the value of |d| becomes small, allowing

the receiver to use a proper threshold value to initiate a new estimation process.

3.6 SIMULATIONS

To illustrate our estimation and bit-detection procedures we simulated the time-varying

channel to vary at random in the number of paths (from 1 to 4), the delays (from 0 to

0.8Mp), and the doppler frequencies (from −0.005ωc to 0.005ωc) where ωc is the carrier
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frequency equals to π/2, and the gains α` were linearly related to the delays. The general

model was considered; information from the shortest path signal obtained by the spreading

function were efficiently employed to scale, demodulate, and despread the received signal

with the estimated parameters N̂0, ψ0, and αo.

A Monte-Carlo simulation was performed to determine the goodness of our process. The

model changes randomly from bit to bit as explained above in an attempting to simulate

very fast fading. For each bit we performed 10000 trials with different media noise and

with the same SNR. The chosen SNRs ranged from -2 dB to 16 dB. This simulation was

performed for four different cases: when channel parameters are known to the receiver, when

Doppler shifts are neglected, with no channel estimation, and finally with the consideration

and compensation of Doppler shifts. The simulation results are provided in Fig. 19 as BER

vs SNRs.
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3.7 SUMMARY

The LTV channel model for the direct-sequence spread-spectrum communications (DSSS) is

characterized by parameters such as time-delays, frequency shifts, and attenuation factors

associated with signals coming from various paths. Modeling such channels using channel

functions shows that they are characterized by means of spreading function.

At the estimation level, the discrete evolutionary transform DET has been used with

an adaptive window to estimate the time-frequency kernel from the received signal. The

connection between channel time-varying frequency response and Zadeh’s transfer function

was used to compute the spreading function, depicting the parameters of the channel as large

peaks at frequency locations corresponding to the time-delays of the multipath signals with

amplitudes equal to their gains.

An efficient DSSS receiver has been introduced that is dependent on the channel estima-

tion approach, where only the information of the spreading function, particularly the set of

parameters corresponding the shortest path signal, is needed for bit detection. This receiver

avoids the cross-correlation and bank of filters process as the case of RAKE receiver.

Doppler shifts were proved to have a negative impact on the detection part. It was shown

experimentally that the bit error rate decreases as the Doppler increases, and to correct it,

the receiver must compensate for those frequency shifts.

At the computational level, a newer, faster algorithm has been proposed for estimating

the spreading function with much less computational cost.
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4.0 MULTIUSER CHANNEL MODELING AND ESTIMATION

The proposed channel estimation approach presented in Chapter 3 considers only the single

user scenario. In this chapter, we extend our approach for higher level estimation considering

multiuser communication channels. In practice, as is the case with wireless communications,

multiple users can be actively communicating simultaneously with the base station at both

the up and down links. At the down-link, the base station transmits signals of multiple

users, however it is up to the receiver to determine which signal belongs to the appropriate

receiver. In the uplink, the base station receives multiple signals that come from active users

at different time delays depending on the distance and location of each user. In this case, the

base station must utilize a receiver that detects different signals corresponding to different

users. The interference is coming from channel noise, multipath, and multiuser interferences

only. We will consider how to deal with these interferences now and leave intentional jammer

for the following chapter.

4.1 UPLINK MULTI-USER DSSS COMMUNICATION CHANNEL

MODELING AND ESTIMATION

In uplink transmission, the base station receives signals –each affected by a different channel–

from different users and locations. The main function of the base station receiver is to

somehow separate these signals and detect the transmitted bits corresponding to a particular

user. The problem is then how to estimate the parameters of the channel corresponding

to one of the users from the received signal knowing his unique transmitted pseudo-noise

sequence, and then how to use these channel parameters in the detection of the sent data.

52



 (n)

X

X

p (n)

p  (n)

d

d

Σ Base station

y  (n)

y  (n)

r (n)
η

η

0
0

0

.

.

.

.

.

. 0

+

+

0

U−1

U−1

U−1

U−1

U−1

g   (n,m)

g    (n,m)

(n)

Figure 20: Multiuser communication channel (uplink).

4.1.1 Uplink Channel Modeling

Figure 20 illustrates the DSSS uplink transmission for U users, each having a different channel

with impulse response gu(n,m), modeled as in the single user case. If pu(n) is the unique

pseudo-noise assigned to user u, the spread signals {su(n) = dupu(n)}, u = 0, · · · , U − 1, are

transmitted over the different channels and

r(n) = y(n) + η(n) + j(n),

is the received signal, where η(n) is the cumulative channel noise, and we consider the

presence of a cumulative intentional jammer j(n). For simplicity in the analysis, we assume

each pu(n) to have the same length Mp.

Analogous to the single-user case, when we replace pu(n) by its Fourier representation,

the noiseless received signal becomes

y(n) =

Mp−1∑

k=0

{
U−1∑
u=0

du
Pu(k)

Mp

[
Lu−1∑

`=0

αu,`e
−jωkNu,`ejψu,`n

]}
ejωkn

=

Mp−1∑

k=0

Y (n, ωk)e
jωkn (4.1)
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where the term in brackets is the time-varying frequency response function, Gu(n, ωk), of

the channel corresponding to the uth user, and Y (n, ωk) is the time-frequency evolutionary

kernel corresponding to y(n). As in the single user, for each user the channel functions

are similarly related, and it is found again that the spreading function Su(Ωs, k) provides

the parameters of the channel for user u and is connected with the kernel Yu(n, ωk). The

problem with the uplink case is that the overall time-varying frequency response function

is a matrix, given that the system is multiple input/single input, and cannot be used to

obtain the corresponding spreading functions. Instead, we will show that the Su(Ωs, k) can

be computed from Y (n, ωk). In fact, from (4.1) we have for a user i

Y (n, ωk) =
diPi(k)

Mp

Gi(n, ωk) +
1

Mp

∑

u 6=i

duPu(k)Gu(n, ωk)

from which we solve for Gi(n, ωk) and find the corresponding spreading function as

Si(Ωs, k) = F−1
ωk

[
MpY (Ωs, ωk)

diPi(k)
− 1

diPi(k)

∑

u6=i

duPu(k)Bu(Ωs, ωk)

]
. (4.2)

The last term in the above equation displays the influence of the other users in the de-

termination of the channel parameters for a specific user, and again the connection with

the evolutionary discrete kernels. We will see that when estimating the parameters of the

channel for some user, the effect of the other users is minimal.

4.1.2 Uplink Channel Parameter Estimation

The DET of y(n), letting Vq(n,m) = ejωq(n−m), is whenever ωq = ψi,`

Yψi,`
(n, ωk) = di

Mp−1∑
s=0

Pi(s)

Mp

[
Li−1∑

`=0

αi,`e
−jωsNi,`ejψi,`n

]

×
Mp−1∑
m=0

ej(ωs−ωk)m + Γ(n, ωk)

= diPi(k)Gi(n, ωk) + Γ(n, ωk), (4.3)
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where the last equation is due to the fact that the summation with respect to m gives

Mpδ(s− k), and that the effect of the other users is defined as

Γ(n, ωk) =
∑

u6=i

du

Mp−1∑
s=0

Pu(s)

Mp

[
Lu−1∑

`=0

αu,`e
−jωsNu,`

]

×
Mp−1∑
m=0

ejψu,`mejψi,`(n−m)ej(ωs−ωk)m,

From equation (4.3), we then have that

Gi(n, ωk) =
Yψi,`

(n, ωk)− Γ(n, ωk)

diPi(k)
. (4.4)

from which the spreading function Si(Ωs, k) is found to be

Si(Ωs, k) = F−1
ωk

[
Yψi,`

(Ωs, ωk)

diPi(k)

]
− Γ(Ωs, k)

diPi(k)
(4.5)

where

Γ(Ωs, k) =
1

Mp

∑

u6=i

Mp−1∑
s=0

Lu−1∑

`=0

duPu(s)αu,`e
−jωs(Nu,`−k)ej(ψu,`−ψi,`)kδ(Ωs − ψi,`),

which is a noise-like component that occurs only at the Doppler frequencies.

Thus, the spreading function Si(Ωs, k) found this way provides the corresponding channel

parameters for user i, with a certain amount of noise from the other users, when considering

frequencies that coincide with the Doppler shift frequencies. For any other frequency, the

spreading function appears noise-like. As before, it is also possible to obtain a fast computa-

tion in this case by adapting the matrices to the i-user. Figure 22 illustrates the computation

of a user spreading function in the multi-user uplink transmission.
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4.2 DOWNLINK TRANSMISSION

In the downlink transmission, the base station transmits the received information to all

required users simultaneously, and each user’s receiver detects its own information using

its unique pseudo-noise sequence. Figure 21 depicts the downlink communication channel

model. In this case, there is only one channel to model and estimate, but again it needs to

be estimated in a blind fashion from the received signal.

4.2.1 Downlink Channel Modeling

For the case of U users, the downlink noiseless baseband received signal, y(n), becomes after

expanding the pseudo-noise sequences {pu(n)}, u = 0, · · · , U , using their Fourier represen-

tations

y(n) =
∑

k

{
U−1∑
u=0

du
Pu(k)

Mp

[
L−1∑

`=0

α`e
−jωkN`ejψ`n

]}
ejωkn

=

Mp−1∑

k=0

Y (n, ωk)e
jωkn (4.6)
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where the term inside the square brackets is G(n, ωk), and Y (n, ωk) is the time-frequency

evolutionary kernel of y(n).

Just as before, the spreading function can be shown to be connected to the parameters

of the channel, and related to the evolutionary kernel of the received signal. In fact, from

equation (4.6) we can find G(n, ωk) and as before from it find the following expression for

the spreading function

S(Ωs, k) =
L−1∑

`=0

α`δ(Ωs − ψ`)δ(k −N`)

= F−1
ωk

[
Mp∑

u duPu(k)
Y (Ωs, ωk)

]
. (4.7)

4.2.2 Downlink Estimation

In the downlink, the parameter estimation is much simpler than in the uplink since there is

only one channel. As before, using the adaptive function Vq(m,n) = ejωq(m−n) permits us to

obtain the spreading function from the received signal. First, replacing Vq(m,n)

Yq(n, ωk) =
U−1∑
u=0

Mp−1∑
s=0

duPu(s)

Mp

L−1∑

`=0

α`e
−jωsN`ejωqn

×
Mp−1∑
m=0

ej(ψ`−ωq)mej(ωs−ωk)m,

and whenever ωq = ψ`, we obtain as before

Yψ`
(n, ωk) =

U−1∑
u=0

duPu(k)
L−1∑

`=0

α`e
−jωkN`ejψ`n

which will then give

Yψ`
(Ωs, ωk) =

U−1∑
u=0

duPu(k)B(Ωs, ωk).

For a user i, for which we know its unique PN sequence and consequently its Fourier coeffi-

cients {Pi(k)}, an estimate of its bifrequency is obtained by

Bψ`i(Ωs, ωk) =
Yψ`

(Ωs, ωk)

diPi(k)

=

[
1 +

∑
u6=i duPu(k)

diPi(k)

]
B(Ωs, ωk),
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from which we obtain

Sψ`i(Ωs, ωk) = S(Ωs, ωk) + Λ(Ωs, ωk), (4.8)

where S(Ωs, ωk) is the desired channel spreading function, and Λ(Ωs, ωk) is a noise-like

term that corresponds to the other users. As before, the above computation is when ωp

coincides with the Doppler frequency shifts, otherwise, the above process just gives a noise-

like sequence. Again, a fast computation of the above spreading function is possible using

the matrix procedure.

4.3 BIT DETECTION USING ESTIMATED CHANNEL PARAMETERS

Once the parameters of the channel for a certain user are found it is then possible to detect the

corresponding data using the correlation of the pseudo-noise sequences in the uplink as well as

the downlink situations. We consider two cases: (i) when the received signal is only affected

by channel noise, which is the typical situation in commercial wireless communications, the

other is (ii) when a jammer besides the channel noise is present, as in military wireless

communications. Next, we will give the analysis with the simulations for the first case, while

the second case (Wiener receiver) is introduced in the following Chapter.

4.3.1 Conventional Receiver

As seen, the spreading function provides a way to characterize the changes in the channel,

either bit by bit or for a group of bits, and also to determine the value of the bit sent as

we show next. To detect the sent bit, corresponding to a user u, our approach is to obtain

the transmitted signal closest to the line of sight; i.e. the received signal having the smallest

delay, the least attenuation and some Doppler shift and use these parameters to determine

the sent bit. The reason for this choice is that such a signal is clearly the strongest signal

being received, and thus its parameters are probably better estimated than for other weaker

signals.
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In the uplink transmission, to recover the bit du, corresponding to the user u, assuming

the parameters N̂u,0, ψ̂u,0 and α̂u,0 correspond to the path closest to the line of sight, the

received signal r(n) is de-spread by a shifted replica pu(n− N̂u,0) of the user’s pseudo-noise

pu(n), scaled by 1/α̂u,0 and demodulated by e−jψ̂u,0n giving

ρu(n) = dup(n− N̂u,0)
2 +

[∑

i6=u

Li−1∑

`=1

αi,`dipi(n−Ni,`)e
jψi,`n + η(n)

]

×pu(n− N̂u,0)e
−jψ̂u,on

α̂u,0

(4.9)

Given the pseudo noise nature of pu(n), and assuming it is uncorrelated with the channel

noise η(n), the expected value of ρu(n) gives E[ρ(n)] = du, and using a short-term average

being we obtain an estimate of du.

Likewise in the downlink transmission, the de-spread, scaled and demodulated received

signal of user u, letting N̂0, ψ̂0 and α̂0 correspond to the path closest to the line of sight, is

given by

ρu(n) = dupu(n− N̂0)
2 +

[
L−1∑

`=1

α`e
jψ`n

∑

i6=u

dipi(n−N`) + η(n)

]
pu(n− N̂0)e

−jψ̂0n

α̂0

, (4.10)

which again, under similar assumptions, gives that the expected value of ρu(n) is E[ρ(n)] =

du, and the short-term average is an estimate of du. These possible receivers would be special

cases of the RAKE receiver, simplified and improved by the information from the channel

estimation.

4.4 SIMULATION

To illustrate the performance of the proposed procedures we simulate a multiple user uplink

and downlink base-band system to transmit BPSK coded data. The aim of these simulations

is to show the robustness of the estimation under very restrictive conditions. Thus, the

channel models are allow to vary at random from bit to bit within certain restrictions. The

number of paths is allowed to vary from 1 to 4, the delays can vary from 0 to 0.8Mp, and
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the Doppler shifts to vary from the 0 to π. The attenuation factors are set to vary linearly

with the delays. Clearly, these simulations exceed real situations, where the model is valid

for much more than the duration of a bit, and the delays are not as large, and in particular

the Doppler frequency shifts are not as significant as it would require a rather large velocity

difference between the user and the receiver. The results are thus related to a very worst

situation, and despite this we will show that the results are encouraging. Using the fast

computation of the spreading function, indicated before, makes the simulations not very

computationally complex . We wish to determine the goodness of the process in detecting

the correct sent bit for both cases when the received signal is affected by Gaussian channel

noise. We thus perform for different situations 10,000 Monte-Carlo trials for each signal to

noise ratio (SNR) value of the channel noise (ranging from -2 dB to 14 dB). The bit error rate

(BER) is computed for the range of SNRs for several users (ranging from 1 to 7) in uplink and

downlink situations. The results are compared to the situation where no channel estimation

is performed and the received signal is just processes using the corresponding pseudo noise

sequence for a user (corresponding to an upper bound) and in the ideal situation when the

corresponding channel is known (corresponding to a lower bound).

The simulations results, shown in Figs. 24 and 25, correspond to the cases of uplink and

downlink transmission affected by Gaussian channel noise. As expected, the performance of

the procedures degrades as the number of users increases, although the performance is not

significantly different for 4 or 7 users as shown. Clearly, the estimation of the parameters

is improved as the noise SNR increases. In these simulations, no significant differences are

noticed between the uplink and the downlink cases. Considering the stringent conditions

imposed on the simulations, these results seem to indicate that the performance of our

procedures when these conditions would be a lot better.

4.5 SUMMARY

In this chapter, we showed an important extension of the proposed estimation approach to

supporting higher level multiuser applications that are encountered in wireless communi-
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cations and other applications. In multiuser uplink and down link wireless communication

channels, multiple users communicate simultaneously through a base station, and estimating

individuals’ channels parameters was possible by means of spreading function. The estimated

spreading function in this case depicts only the information for the desired user, while others’

information appear as a noise. Our approach is capable of estimating individual user channel

parameters in both scenarios.

In bit detection at each user level, the first set of channel parameters obtained from

the desired user’s spreading function is used to determine the correct data bit. For each

user, the interference of other users appears as a noise-like component with zero mean that

can be eliminated at the despreading level. When the interference is of a broadband type

with non-zero-mean, then detection will be affected, and requires an exciser to suppress the

interference and improve the BER, as can be explained in the following chapter.
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Figure 22: SF of user 2 in multiuser communication channel (uplink) of 6 users.
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Figure 23: SF corresponds to user 1 in multiuser channel (downlink) of 4 users.
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Figure 24: Multiuser uplink output as BER vs SNR
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Figure 25: Multiuser downlink output as BER vs SNR
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5.0 INTERFERENCE EXCISION AND A WIENER-MASK RECEIVER

One of the advantages to using DSSS in communication systems is the ability to resist

the interference of narrow-band signals. For non-stationary broad-band interference, the

DSSS is not robust [41]. Recently, time-frequency analysis has been used for excising a

non-stationary broad-band jammer [40, 54]. Amin was the first to propose the use of tme-

frequency to construct a time-varying notch filter [44]. A projection filter implemented

by using the time-frequency signature of jammers is given in [42]. Barabarossa uses the

Wigner-Hough transform to estimate the jammer instantaneous frequency, setting up an

adaptive time-varying excision filter [47]. Instantaneous bandwidth was used to the notch-

width of the filter to excise AM-FM jammers [48, 49]. Suleesathira and Chaparro examined

the use of instantaneous frequency estimated from the discrete evolutionary transform for

jammer excision [45]. Jang and Loughlin examined the use of interference bandwidth for

excising AM-FM jammers in direct sequence spread spectrum communication systems [48,

49]. Additionally, the discrete evolutionary and the Hough-transforms and singular value

decomposition have been implemented for interference mitigation in spread spectrum [45, 4].

In this chapter, two methods of interference excising will be introduced. Both of these

methods implement the masking techniques from the frequency-frequency spectrum using the

frequency-frequency discrete evolutionary and Wiener theory [54]. In the next two sections,

the discussion and the implementation of both approaches are based on free-space DSSS

communication channels with the assumption of perfect synchronization at the receiver. In

the final section we will discuss the mitigation of broadband interference in the presence of

multipath phenomenon in single and multiuser communication channels.
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5.1 FREQUENCY-FREQUENCY MASKING

This method is based on the discrete frequency-frequency evolutionary representation of

non-stationary signals as explained earlier in Chapter 2. We are using the fact that the

spreading sequence PN is known at both the transmitter and the receiver.
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Figure 26: Frequency-frequency masking exciser

Consider first the case when the channel effects are not considered. The model of the

DSSS system, including the frequency-frequency masking exciser for that is shown in Fig.

26. When transmitting the mth data the received baseband signal is given by

rm(n) = dmp(n) + im(n) 0 ≤ n ≤ (Mp − 1) (5.1)

where the data bit is dm = ±1, p(n) is a pseudo-noise signal of length Mp chips, and the

interference signal is

im(n) = jm(n) + ηm(n) 0 ≤ n ≤ (Mp − 1) (5.2)

composed of possible interference signal jm(n), and the channel white noise ηm(n) for that

bit. Having the knowledge that the spreading code is known at both the transmitter and
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the receiver, the frequency-frequency DET of p(n) can be computed for the spreading code

as a priori information as

P (Ωs, ωk) =
∑

l

p(l)Wk(l, Ωs)e
−jωkl (5.3)

where Wk(l, Ωs) is the Gabor window defined in Equation 2.31.

Similarly, the frequency-frequency DET of the received signal rm(n) = dmp(n) + im(n)

can be computed to give

Rm(Ωs, ωk) = dmP (Ωs, ωk) + Im(Ωs, ωk) (5.4)

where P (Ωs, ωk) and Im(Ωs, ωk) are the frequency-frequency DETs of the pseudo-noise and

the interference signal respectively and assuming p(n) and im(n) are statistically independent

or uncorrelated. In the stationary case, interference is eliminated by designing a filter with a

bandwidth coinciding with that of the desired signal. But in this non-stationary broadband

case, we define a mask

Mk(Ωs, ωk) =
|P (Ωs, ωk)|
|Rm(Ωs, ωk)| (5.5)

to do the interference excision. Notice here that the value of |P (Ωs, ωk)| is independent of

the sign of the received bit.

This approach works by taking the frequency-frequency DET of the PN code as a priori

information, and the frequency-frequency DET of the received signal. The mask will be

unity for some points in the frequency-frequency plane where the support of the interference

kernel does not overlap with the support of the kernel of the pseudo-noise signal. Once the

unity points are defined, a 2-D correlator will be used to correlate these points with their

equivalents from the known frequency-frequency kernel of the PN signal. Taking the average

of these points will allow us to obtain a decision for the estimated bit d̂.

Thus, in the case of interference that has a frequency-frequency kernel with a support

that does not cover the whole frequency-frequency plane, whenever the mask is close to unity

(given that the white noise has as support the whole frequency-frequency plane) the kernel

of the received signal Rm(Ωs, ωk) provides an estimate of the kernel dmP (Ωs, ωk). Such a

procedure works well whenever no channel noise is present, and the interference kernel is
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not spread over the whole frequency-frequency plane. The actual type of interference is not

important. When the interference has as support the whole frequency-frequency plane, or

when the channel noise is very strong, this method would not work well as explained in the

experimental section.

5.2 INTERFERENCE EXCISION VIA WIENER MASKING

In this approach we consider the implementation of the special case of the non-stationary

Wiener filter [54] for jammer excision in DSSS communications. Wiener masking requires

obtaining the time-frequency spectrum of both the received signal and reference signal using

DET.
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Figure 27: Wiener exciser

One piece of information that is critical for the direct sequence spread spectrum technique

to work properly is that the pseudo noise sequence used as the spreading function in the

transmitter is known at the receiver. Thus, for each bit, information regarding the spreading

sequence does not change and we can compute a priori its evolutionary spectrum, |P (n, ω)|2.
This spectrum and the spectrum of the received baseband signal y(n) = rm(n) can be used

to obtain a mean-square estimate of the DS signal, x(n) = dmp(n). This is a special case

67



of the non-stationary Wiener filtering [54], where we want a linear time-varying estimator

for a signal x(n) embedded in a non-stationary interference im(n). The Wiener filtering

problem can be setup by letting the desired signal be x(n) = dmp(n), and the data y(n) =

x(n) + im(n), assuming x(n) + im(n) are non-stationary and not correlated, or independent.

When transmitting the mth data bit using DSSS, the received baseband signal is given by

Equation 5.1, and an estimate can be found by minimizing the mean-square error

ε(n) = E|x(n)− x̂(n)|2, (5.6)

where x̂(n) is the output of a linear time-varying filter or mask. The masking estimator has

the Wold-Cramer representation

x̂(n) =

∫ π

−π

Y (n, ω)B(n, ω)ejωndZy(ω) (5.7)

where Y (n, ω) is the evolutionary kernel of y(n), B(n, ω) is a masking function, and Zy(ω) is

the process of orthogonal increments correspondsing to the non-stationary signal y(n). The

minimization of ε(n) requires, according to the orthogonality principle, that

E[x(n)− x̂(n)]x̂∗(n) = 0 (5.8)

which can be shown to be equivalent to

∫ π

−π

[
Sx(n, ω)

Y ∗(n, ω)
−G(n, ω)

]
G∗(n, ω)dω = 0, (5.9)

where we have defined G(n, ω) = Y (n, ω)B(n, ω). To minimize the above equation we let

G(n, ω) = Y (n, ω)B(n, ω) =
Sx(n, ω)

Y ∗(n, ω)
, (5.10)

so that the mask is given by

B(n, ω) =
Sx(n, ω)

Sy(n, ω)
(5.11)
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or the ratio of the evolutionary spectra of x(n), and that of the data y(n). This result

is analogous to the non-casual stationary Wiener filter. The optimal estimator and the

minimum mean square error are found to be

x̂(n) =

∫ π

−π

Sx(n, ω)

Y ∗(n, ω)
dZy(ω),

εmin(n) =

∫ π

−π

Sx(n, ω)Sψ(n, ω)

Sy(n, ω)
dω.

The Wiener mask, using DET implementation, is given by the ratio of the spectrum of

dmp(n) and the spectrum of rm(n). The evolutionary spectrum of dmp(n) is the same inde-

pendent of dm, and the spectrum of the received signal is available for every bit transmitted.

Finally, the estimated message signal is the inverse discrete evolutionary transform of the

kernel Rm(n, ω)B(n, ω). The above is only possible because of the connection between the

evolutionary kernel and the signal.

5.3 EXPERIMENTAL RESULTS

In this experimental section, we consider two examples of different interference signals for

free path communication channel. The first example is with interference that is composed

of monocomponent signals with narrow support; the second one is the interference of broad

support as of two chirp signals. Both methods require acquiring a priori the evolutionary

spectrum of the pseudo-noise Sp(n, ωk), and the frequency-frequency kernel P (Ωs, ωk) for

the frequency-frequency masking. These two a priori pieces of information are illustrated in

Fig. 27. The time-frequency and frequency-frequency spectrum of the received signal with

both narrow support and broad support interference are shown in Fig. 5.3.1.

5.3.1 Simulation

In the simulation, the goodness of algorithms at estimating the sent bit was measured by

the bit error rate (BER), where 5000 trials at each SNR (corresponding to the DS signal and

the channel noise) were performed. A multipath free channel was considered with perfect
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synchronization at the receiver. In each method, the interference-to-signal ratio (ISR) was

25 dB. The SNR values in each case varied from 0 to 20 dB. The results are shown in Figs.

30 and 31.

As expected, the performance of the frequency-frequency algorithm is better than those

from the Wiener algorithm when the support of the interference is narrowly concentrated.

In the case of broad support interference, the frequency-frequency algorithm does not work

well, as there are no regions where the mask is close to unity and so the estimation of dm is

not accurate, while the Wiener masking algorithm method performs better.
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Figure 28: (a) Time-frequency spectrum of PN, (b) Frequency-frequency spectrum of PN.
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Figure 29: (a) Time-frequency spectrum of the received signal with jammer of (narrow

support), (b) Frequency-frequency spectrum (narrow support), (c) Time-frequency spectrum

(broad support), (d) Frequency-frequency spectrum (broad support).
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Figure 30: Excision of interference of narrow support.
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5.4 BROADBAND JAMMER EXCISION IN MULTIUSER AND

MULTIPATH DSSS

In section 6.2, it was shown that the Wiener masking receiver is robust for excising interfer-

ences of broad support such as chirps and non-stationary jammers. In this section, we use

Wiener masking in the multiuser DSSS receiver to deal with jammers. The function of the

Wiener masking filter in this case is to mitigate chirp jamming signals, interference caused

by multipath effects, and channel noise as well.
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Figure 32: DSSS Receiver with Wiener masking

5.4.1 Wiener Masking in Downlink

Based on channel estimation, the received signal r(n) is demodulated and scaled by ejψ̂0n/α̂0

corresponding to the shortest path signal obtained from the estimated spreading function.

For user i, among a total of U users, the scaled and demodulated output signal is

ρi(n) = r(n)× e−jψ̂on

α̂o

=

[
L−1∑

`=0

α`e
jψ`n

U−1∑
u=0

dupu(n−N`) + η(n) + j(n)

]
e−jψ̂0n

α̂o

= dipi(n− N̂0) + γ(n), (5.12)

where

γ(n) =

[
L−1∑

`=1

α`e
jψ`n

∑

u6=i

dupu(n−N`) + η(n) + j(n)

]
e−jψ̂0n

α̂o

, (5.13)
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is the total interference, which includes channel noise η(n), multipath interference, and the

chirp jamming signal j(n). Excising γ(n) is then possible by means of Wiener masking,

which gives a good estimate of dipi(n−N0). Figure 32 illustrates the Wiener receiver at the

desired user.

The demodulated and scaled signal ρi(n) is the input to the Wiener mask and has an

evolutionary kernel

Ri(n,wk) =
N−1∑
n=0

ρi(n)W (n,m)e−jωkm

where W (n, m) is time-varying window obtained from Gabor expansion defined in (2.31).

The reference signal is the shifted version of the pseudo-noise pi(n− N̂o) generated at user i.

Thus, for each bit, information about the spreading sequence does not change, and we can

compute a priori its time-frequency evolutionary spectrum, |Pi(n, ω)|2.
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Figure 33: Example 2 results: (a) Estimated (dotted line) and original PN sequence (solid

line), (b) Despreaded signal from Wiener masking.

This spectrum and the spectrum of the received modulated signal ρi(n) can be used to

obtain a mean-square estimate of the signal, xi(n) = dipi(n − N̂0). The estimated signal is
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the output of the time-varying filter or mask which has the Wold-Cramer representation

x̂i(n) =

∫ π

−π

Ri(n, ω)M(n, ω)ejωndZu(ω) (5.14)

where R(n, ω) is the evolutionary kernel of ρi(n), and M(n, ω) is the masking function given

by

Mi(n, ω) =
|Pi(n, ω)|2
|Ri(n, ω)|2 (5.15)

or the ratio of the evolutionary spectra of x(n) = pi(n− N̂0) and that of the data ρi(n).

The estimated signal x̂i(n) is obtained by taking the inverse discrete evolutionary trans-

form IDET of the masked evolutionary kernel. Multiplying it with the the reference signal

pi(n− N̂0), and taking the average will give the transmitted binary bit d̂ = ±1. Figure 33-a

shows for user 0 the original pseudo-noise p0(n− N̂0) (solid line), along with the estimated

pseudo-noise signal p̂i(n − N̂0) (dashed line) obtained from Wiener masking output in a

multiuser channel (2 users) with chirp jammer (JSR=3 dB) and channel noise (SNR=10dB).

Figure 33-b shows the despreaded signal pi(n − N̂0) × dup̂i(n − N̂0). The average of this

signal clearly gives the value of the transmitted bit di.

5.4.2 Wiener Masking in Uplink

Similarly, based on the channel estimation, for user i, the received signal r(n) is demodulated

and scaled by ejω̂i,0(n−N̂i,0)/α̂i,0, corresponding to the shortest path signal obtained from

the estimated spreading function. At the base station received signals coming from active

users, each with different channel characterizations are added together to have one combined

signal. Each user has its reference receiver at the base station, and for user i, the scaled and

demodulated output signal is

ρi(n) = r(n)× e−jω̂i,on

α̂i,o

=

[
U−1∑
u=0

du

L−1∑

`=0

αu,`e
jψu,`npu(n−Nu,`) + η(n) + j(n)

]
e−jω̂i,0n

α̂i,o

= dipi(n− N̂i,0) + β(n) (5.16)
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where

β(n) =

[∑

u6=i

du

L−1∑

`=0

αu,`e
jψu,`npu(n−Nu,`) + η(n) + j(n)

]
e−jω̂i,0n

α̂i,o

(5.17)

as the total interference includes channel noise η(n), multipath interference, multiuser inter-

ference, and the chirp jamming interference signal j(n).

Like the downlink process explained in the last section, the signal ρi(n) is defined as

the input signal to the Wiener mask, and the reference signal for useri is its pseudo-noise

signature shifted with amount of shift equal to the estimated delay Ni,o. The Wiener mask

is obtained as in Equation (5.5) using the discrete evolutionary transform. The output of

the Wiener mask is the estimated pseudo-noise for that user. The final receiver diagram is

same as the downlink receiver shown in Figure 32.

5.5 SIMULATION

To illustrate the performance of the Wiener masking receiver, for the uplink and the down-

link, a linear FM jammer is added to the received signal. We considered jammer to signal

ratios (JSR) ranging from -2 dB to 8 dB. For each user, we modeled the channel as time-

varying channel varying randomly in the number paths (from 1 to 4), delays (from 1 to

0.8Mp), and Doppler frequency shifts ψ` (from 0 to π). The gains α` were linearly related to

the delays. Figures 34 and 35 show the BER vs JSR results at different SNRs for the uplink

and downlink transmissions, respectively. As expected, the Wiener mask helps not only in

the excision of the jammer but also in de-noising the received signal from the channel noise

as well as interferences from the same user and other users. The performance of the channel

parameter estimation is greatly affected by jammers with significant JSR. More sophisticated

approaches would be needed.
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5.6 SUMMARY

In this chapter we have proposed two methods to excise interference in DSSS: one that uses

a frequency-frequency DET masking approach, and the other an application of the non-

stationary evolutionary Wiener filtering with mean-squared based mask. In the first part,

the analysis was for a single user and neglecting multipath effects. In both approaches it

is assumed that the pseudo noise signal is available, and we wish to determine the value of

the sent bit dm. No special characterization for the interference is made; we only need to

know if it is narrowly or broadly supported. Given the compression of data in the frequency-

frequency kernels, it is shown that by locating the regions in the frequency-frequency plane

where the interference is not present, or has less power, an estimate of the sent bit can be

obtained. When the interference is of broad support, the Wiener masking method performs

better than the frequency-frequency method. The application of one algorithm instead of

the other depends on a-priori information about the type of support of interference, rather

than on its characterization. Also, Wiener masking depends on the connection between the

signal and the kernel, a unique property of the evolutionary methods.

The results obtained in the first part indicate that the Wiener masking scheme is robust

with a jammer of broad support, alloying one to employ it in multiuser channels to excise

such interference. Another reason for choosing Wiener masking over the frequency-frequency

scheme is the type of broadband interference that comes form multiple-user interference in

such situations. A Wiener masking receiver was implemented which follows the channel

estimation and capable of excising broad band jammers.
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Figure 34: Bit error rate BER vs JSRs for different SNRs for uplink

−2 0 2 4 6 8
10

−3

10
−2

10
−1

10
0

JSR (dB)

B
ER

15 dB SNR
10 dB SNR
 5  dB SNR
 No Masking

Figure 35: Bit error rate BER vs JSRs for different SNRs for downlink

78



6.0 CONCLUSIONS

This dissertation addressed the problem of blindly estimating multipath communication

channel parameters such as time-delays, Doppler frequency shifts, and attenuation factors

in direct sequence spread spectrum communication systems. The channel is characterized

by means of the spreading function obtained from the time-frequency evolutionary kernel of

the overlapped received signal.

The assumption of a constant channel during the transmission of a single data symbol

or frame allows the use of formulas of linear time invariant systems to calculate the channel

impulse response. The proposed LTV channel model has been related to direct-sequence

spread-spectrum communication systems (DSSS); such a model is characterized by param-

eters such as time-delays, frequency shifts, and attenuation factors associated with signals

coming from various paths. This model contains all-pass filters that characterize the delays,

constant attenuation factors, and exponential modulators that characterizes the frequency

or Doppler shifts. The discrete evolutionary transform DET has been used for computing

the time-frequency kernel from the received signal. The connection between channel time-

varying frequency response and Zadeh’s transfer function was used to compute the spreading

function, which depicts the parameters of the channel as large peaks corresponding to the

Doppler shifts frequency locations corresponding to the time-delays of the multipath signals

with amplitudes equal to their gains.

The use of time-frequency representation in the mitigation of interference signals has

been of great concern. The two schemes we have proposed are time-frequency based by

means of masking the time-frequency spectrum, utilizing the fact that the spreading signal

is always known at both the transmitter and at the receiver; therefore the direct sequence

has the same spectrum independent of the sign of the sent bit. When interference is of broad
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support, the Wiener masking method performs better than the frequency-frequency method.

The Wiener masking scheme has been used to excise any intentional broadband jam-

mer and multiuser interference. The implementation of Wiener masking was possible for

multiuser transmission situations, both uplink and downlink.

6.1 CONTRIBUTIONS

The contributions made in this dissertation are related to the issues of identifying and es-

timating multipath channel parameters from the overlap DSSS signal at the receiver. We

developed a DSSS communication channel modeling and estimation technique for single

and multiuser transmission channels using the evolutionary theory that provides the time-

frequency evolutionary kernel, which is related to Zadeh’s transfer function known as the LTV

channel transfer function, or time-varying frequency response of the LTV channel. Using the

spreading function obtained from the time-varying frequency response of the channel could

provide a blind estimation of channel parameters directly from the combined received signal.

We presented this approach as a new idea of using time-frequency analysis in blind multipath

DSSS channel estimation. We addressed and used the time-varying channel functions and

their relations to obtain the spreading function that provides estimates of channel parameters

from its peaks. We also developed an evolutionary frequency-frequency spectrum, that has

been presented in the thesis as an extension of the evolutionary time-frequency spectrum,

capable of compacting information in a small region around low frequencies.

We proposed two interference mitigation techniques that were developed based on the

time-frequency and frequency-frequency evolutionary kernels by means of spectrum masking.

In both approaches, the priori knowledge of the PN at the receiver has been used to obtain the

time-frequency and frequency-frequency evolutionary kernels. We compared both approaches

for interferences to narrow and wide support. The frequency-frequency based masking shows

superior performance in the case of narrow support, while time-frequency wiener masking

performs better under broad support interference.

In the detection part, we implemented 2 DSSS receivers based on channel estimates
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obtained from the spreading function. The first scheme is a generalized approach, while

the second is for bit detection and excision of broadband jammers. Both methods use the

channel estimates of the first, or shortest path signal to detect the correct binary data. The

estimated parameters are efficiently utilized to demodulate, scale, and shift the received

signal providing a signal that has a mean value equal to ±d.

Furthermore, a proper implementation of the Winer masking approach has been em-

ployed to excise broadband interference in multiuser DSSS applications, namely in uplink

and downlink communication channels.

6.2 FUTURE WORK

The problem of efficient channel estimation when both Doppler and time-delay are present in

the channel remains an area for further research. At the present, this research focuses on the

modeling and estimation of direct sequence spread spectrum communication channels only.

It is important to extend this work to other communications schemes such as orthogonal

frequency division multiple aces (OFDM), multi-carrier code division multiple aces (MC-

CDMA), and multi-carrier direct sequence (MC-DS).

In chapter 2, the developed frequency-frequency evolutionary spectrum does not reveal

time information, and only shows peaks at the zero frequency of the new frequency domain

Ω corresponding to frequency components of the signal at frequency domain ω. However, the

phase contains time information and it is important to exploit it and examine its significance,

and investigating more appropriate applications. One possible application is in the case of

jammer excision for multiple users, similar to the case of Wiener excision developed in 6.4.2.

It is also important to look at the instantaneous frequency and instantaneous bandwidth

described in such a representation.
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APPENDIX A

GABOR EXPANSION

In conventional Fourier transform, the signal is represented via complex sinusoidal functions.

Because sinusoidal basis functions spread over the entire time domain and are not concen-

trated in time, the Fourier transform does not explicitly indicate how a signal’s frequency

contents evolve in time. A natural way to characterize a signal in time and frequency si-

multaneously is to represent it the signal with elementary functions that are concentrated

in both time and frequency domains, such as the frequency modulated Gaussian function.

Gaussian-type functions are optimally concentrated in the joint time and frequency domains,

reflecting the signal’s behavior in local time and frequency.

Gabor expansion represents a signal in terms of time and frequency shifted basis func-

tions, and has been used in various applications to analyze the time-varying frequency content

of a signal [10, 13, 15, 17]. Elementary basis or logons of the Gabor representation are ob-

tained by translating and modulating a single window function. This single window function

has a Gaussian shape and called the mother Gabor function, and is given by

h(n) =
1

(πσ2)
1
4

exp

{
− [n− 0.5(N − 1)]2

2σ2

}
(A.1)

where σ is the standard deviation constrained by 3σ ≤ (N − 1)/2. This function is shown

in Fig. 36.

The discrete-time Gabor representation:

A discrete-time Gabor representation was defined from the continuous-time representa-
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Figure 36: Gaussian window h(n) with two different scales.

tion by applying sampling theory and the discrete Poisson-sum formula [5]. The discrete

Gabor expansion of a discrete-time, finite extent signal x(n) is given by

x(n) =
M−1∑
m=0

K−1∑

k=0

am,kh̃m,k(n) 0 ≤ n ≤ N − 1 (A.2)

where the elementary signal is

h̃m,k(n) = h̃(n−mL)ejwkn (A.3)

and h̃(n) is a periodic extension of the synthesis window h(n), i.e.,

h̃(n) =
∑

r

h(n + rN) (A.4)

and wk = 2πL
′

N
k, and positive integers M, K, L and L

′
are constrained according to

ML = KL
′
= N. (A.5)

where M and K are the number of samples in time and frequency respectively.
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There are several methods to calculate Gabor coefficients [21]: using biorthogonal func-

tions, the Zak transform, or by deconvolution of the sample Short-Time Fourier transform.

We use the first method here which was introduced by Bastiaans [11] and uses an auxil-

iary function γ(n) called the biorthogonal window, or dual function of h(n). The Gabor

coefficients are evaluated by

am,k(n) =< x(n), γ̃m,k >=
N−1∑
n=0

x(n)γ̃∗m,k(n) (A.6)

where γ̃m,k(n) is obtained from the biorthogonal analysis window γ̃(n) as

γ̃m,k(n) = γ̃(n−mL)ejwkn. (A.7)

High Resolution Gabor Expansion:

Higher resolution in Gabor expansion is obtained by using scaled versions of the synthesis

window [17]. This approach called the multi-scale Gabor expansion and the scaled window

generated from a the mother Gabor window h(n) by scaling, i.e.,

hi(n) = 2
i
2 h(2in), 0 ≤ n ≤ N − 1, i = 0, 1, ..., I − 1 (A.8)

Thus the multi-scale expansion for a finite energy signal x(n)(0 ≤ n ≤ N − 1) is

x(n) =
1

I

I−1∑
i=0

M−1∑
m=0

K−1∑

k=0

ai,m,kh̃i,m,k(n) 0 ≤ n ≤ N − 1 (A.9)

where I is the number of resolutions used in the analysis of the signal. The multi-scale Gabor

expansion representation of the signal x(n) is given as the average of I representations, each

obtained at a different resolution level or scale. The logon h̃i,m,k(n) is centered at n = mL

and is localized over a time domain determined by the scale 2i. The Gabor coefficients are

evaluated as before by

ai,m,k =< x(n), γ̃i,m,k(n) >=
N−1∑
n=0

x(n)γ̃∗i,m,k(n) (A.10)
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where

γ̃i,m,k(n) = γ̃i(n−mL)ejwkn (A.11)

is the scaled analysis (biorthogonal) window obtained from the biorthogonality condition,

similar to the regular discrete Gabor expansion introduced in the last section.
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APPENDIX B

PSEUDORANDOM SEQUENCE

The pseudo-noise (PN) or pseudorandom sequence is a binary sequence generated using

sequential logic circuits. Although it is deterministic, a pseudonoise sequence has many

characteristics that are similar to those of random binary sequences. As a result of having

randomness, it is used in several applications of communication systems such as data scram-

bling, spread spectrum, and encryption [3, 9]. It is generated using sequential logic circuits

known as a feedback shift register. A feedback shift register, which is shown in Fig 29,

consists of consecutive stages of two state memory devices and feedback logic [57]. Binary

sequences are shifted through the shift registers in response to clock pulses, and the output

of the various stages are logically combined and fed back as input to the first stage.

When the feedback logic consists of exclusive-OR gates, which is usually the case, the

shift register is called a linear PN sequence generator. If a linear shift register reaches zero

state at some point of time, it should always remain in the zero state, and the output would

subsequently be all 0’s. The period of a sequence generated by an m-stage shift register is

L = 2m−1 bits. The pseudo-noise sequence p(n) after each clock cycle n is the content from

the first stage register. Therefore, the content of the (i− 1)th stage is placed by the content

of the ith stage, denoted as ai(n). The last stage can be obtained by

am(n) =
m∑

i=1

ai(n− 1)bi(mod2)
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Figure 37: Binary linear shift register sequence generator.

where the initial ai(0) is

ai(n) =





1, i=1

0, i=2,...,m

and bi for iε1, ..., m is a stage connector to the modulo-2 adder. In DSSS, the PN se-

quence of 0’s and 1’s is changed to a corresponding set of -1’s and 1’s called a bipolar sequence.

PN Autocorrelation Function

The autocorrelation function Rp(τ) of PN sequence p(t), with period T0, can be given in

normalized form as

Rp(τ) =
1

K
(

1

T0

)

∫ T0
2

−T0
2

p(t)p(t + τ)dt (B.1)

where

K =
1

T0

∫ T0
2

−T0
2

p2(t)dt (B.2)
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When p(t) is a periodic pulse waveform representing a PN code, we refer to each fundamental

pulse as a PN code symbol or a chip. The normalized autocorrelation function for a maximal

length sequence, Rp(τ), is shown in Figure (38).

It is clear that for τ = 0, that is, when p(t) and its replica are perfectly matched,

Rp(τ) = 1. However, for any cyclic shift between p(t) and p(t − τ) with (0 ≤ τ < L −
1), the autocorrelation function is equal to −1/L (for large L, the sequences are virtually

decorrelated for a shift of a single chip). Since PN is periodic, the autocorrelation function

Rp(τ) is also periodic, with the same period L as shown in Figure (38).
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APPENDIX C

RAKE RECEIVER

A RAKE receiver, shown in Figure (39) below, is essentially a diversity receiver designed

specifically for CDMA, where diversity is provided by the fact that multipath components

are practically uncorrelated from one another when their relative propagation delays exceed

a chip period [62].

Correlator M

Σ

Z

Z

Z

a

a

a

M

1

2

2

M

Z

1

 Signal

CDMA
Basedband

wih
Multipath

Correlator 1

Correlator 2

Figure 39: RAKE receiver.

A RAKE receiver utilizes multiple correlators to separately detect the M strongest mul-

tipath components. The output of each correlator is weighted to provide a better estimate

of the transmitted signal than provided by a single component. Demodulation and bit de-

cisions are then based on the weighted outputs of M correlators. The M decision statistics
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are weighted to form an overall decision statistic as shown in Fig 33 above. The outputs

of the M correlators are denoted as Z1, Z2, .... and ZM , and are weighted by a1, a2, ....

and aM , respectively. These weighting coefficients are based on the power of the SNR from

each correlator output. If the power, or SNR from a particular correlator is small, it will be

assigned a minimal weighting factor. The overall combined signal Z̄ is given by

Z̄ =
M∑

m=1

amZm

The weighting coefficients am are normalized to the output signal power of the correlator

in such a way that the coefficients sum to unity

am =
Z2

m∑M
m=1 Z2

m

In the combining process, the various signal inputs are individually weighted and added

together as

r(t) = a1r1(t) + a2r2(t) + .... + aMrM(t)

=
M∑

m=1

amrm(t) (C.1)

where rm(t) is the envelope of the ith signal, and am is the weight factor applied to the ith

signal. Since the goal of the combiner is to improve noise performance of the system, the

analysis of combiners is generally performed in terms of SNR. Several combining methods

are used such as selection-combiner, maximal-ration combining, and equal-gain combining

[62, 57].
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