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ABSTRACT 
 

SOURCES AND SINKS OF METHANE: FUTURE CONCENTRATIONS AND IMPACT ON 
GLOBAL WARMING 

 
Dhruv Kapoor, M.S. 

 
University of Pittsburgh, 2005 

 
 

There has been an average increase in the surface temperature of the earth by 0.6 ± 0.2ºC over 

the 20th century (IPCC, 2001). This increase in the surface temperature of the earth is attributed 

to the increase in the greenhouse gases in the atmosphere, responsible for trapping outgoing heat 

radiation. Industrialization and the increase in anthropogenic activities are the causes of increase 

of these gases. 

 Methane (CH4) is the most important greenhouse gas after carbon dioxide (CO2).The 

increase in atmospheric CO2 can be attributed due to increase in the use of fossil fuels over the 

last 150 years. Methane, whose atmospheric concentrations are now nearly 2.5 times of what 

they were in pre-industrial times, has a variety of anthropogenic and natural sources. 

This work is an effort to document the anthropogenic sources of methane since 1960, 

namely, methane emissions from the use of fossil fuel, rice agriculture, domestic ruminants, 

biomass burning and waste disposal and handling. A model was created using the sources and 

sinks of methane and was used to predict the future concentrations of methane up to 2030. 

considering the atmosphere as a semi-batch reactor. Finally, this predicted concentration of 

methane was used to determine the surface temperature increase caused due to increase in the 

atmospheric methane concentrations and was determined to be 0.135 K. 
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1.0 INTRODUCTION 

 
 
The fact that there has been an increase in the average surface temperature of the earth is evident 

by the impact on earth’s climate. For example, satellite data shows that the extend of snow cover 

has declined by about 10% since the 1960’s.(EPA Website) There is overwhelming concern as to 

the impact global warming will have on the biodiversity of the earth. Although, previously there 

have been bouts of warm and cooler periods but they are not comparable to the drastic rise of the 

average temperatures of the earth in the past 150 years. This increase in the temperatures is due 

to the increase in atmospheric trace gases (known as greenhouse gases) such as carbon dioxide 

(CO2) and methane (CH4) whose concentrations have also doubled since pre-industrial 

times.CO2 is a well researched greenhouse gas and its sources are well quantified, the major 

source being the use of fossil fuel. Methane is an equally important greenhouse gas having 21 

times the effect of CO2 on a per molecule basis. This work is an attempt to quantify the sources 

of sinks of methane and using them to create a model to predict the future concentrations of 

methane and the impact it will have on the earth’s energy balance. 

The average flux of solar radiation at the top of the atmosphere, known as solar 

insolation, is approximately 342 W per square meter. This is approximately one fourth the solar 

irradiance-the solar power per unit area, which is the ratio of the earth’s disc to the surface area. 

Of the 342 W m-2 reaching the earth’s surface ,approximately 105 W m-2 is reflected back to 

outer space, the net input of the surface-atmosphere system being 237  W m-2. Applying Stephen 

Boltzman’s law of radiation, the temperature of the surface of the earth should be about 255ºK. 

The observed temperature of the surface of the earth is 288ºK which is about 33ºK more than 

what is expected.  
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The reason for this difference is the presence of greenhouse gases (Hugo et al, 1996). 

These greenhouse gases cause a global climate forcing, i.e., an imposed perturbation of the 

Earth’s energy balance with space (Hansen et al., 2000, 1997). 

According to the report by the Intergovernmenal Panel of Climate Change (IPCC), the 

average surface temperature of the earth has increased between 0.6 ± 0.2ºC over the 20th century 

(IPCC 2001, US Greenhouse inventory program). The Third assessment Report attributes the 

warming over the last fifty years to the “increase in the greenhouse gas concentrations” (IPCC 

2001). Thus, it is not the presence of greenhouses gases, but an increase in the concentrations of 

these greenhouse gases which is a cause of global concern. 

Carbon dioxide (CO2) and methane (CH4) are the most important greenhouse gases in the 

atmosphere (IPCC 2001). The concentrations of CO2 have been steadily on the increase due to 

the use of fossil fuels and other human related activities and the concentrations of methane today 

are nearly 2.5 times of what they were during the pre-industrial times. (Wuebbles and Hayhoe., 

2002). 
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Figure 1 below shows the concentrations of carbon dioxide and methane from 1850 till present. 

Methane and Carbon Dioxide Concentrations Vs Time
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Figure 1: Carbon dioxide and methane concentrations from 1850 till present 

 
It is evident that there has been a sharp increase in the concentrations of both carbon dioxide and 

methane over the last 150 years. This increase is due to the increase in human activities and from 

the trends, it is evident that the concentrations of both the gases are on the rise. 
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An effort to correlate the surface temperature changes along with CO2 and CH4 concentrations is 

presented below. 

Earth's Average Surface Temperature Deviation Vs CO2 concentration
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Figure 2: Earth’s average surface temperature Vs carbon dioxide concentrations. 

 

 
 

Although there is no direct relation between the concentrations of CO2 and CH4 and the 

temperature, it is observed that the temperature of the surface of the earth has increased as have 

the concentrations of both the species in the atmosphere. 
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Earth's Average Surface Temperature  Deviation Vs Atmospheric CH4 Concentration.
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Figure 3: Global average surface temperature Vs methane concentrations 

 

For both of these figures, the concentrations of CO2 and CH4 were obtained from 

NASA’s website and the average surface temperature deviation was obtained from the Climatic 

Research Department of University of East Anglia (UK).From these figures it is also evident that 

the average surface temperature increase is a combined effect of the increase in both the gases 

and not merely due to the increase in atmospheric CO2 concentrations or atmospheric CH4 

concentrations. 
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2.0 MECHANISM OF THE GREENHOUSE EFFECT 
 
 
After absorbing heat from the incoming solar radiation, the earth emits energy like any other 

warm body. For the temperature of the earth to remain constant, the amount of energy emitted by 

the earth should be equal to the energy absorbed by it. The emitted energy is neither visible light 

nor UV light but rather it is infrared light having wavelengths from 4 μm  to 50 μm ; known as 

the thermal infrared region since the energy is in the form of heat. 

 

 

Figure 4:Wavelength distributions for light emitted by the sun (dashed curve) and by the Earth’s surface and 
the troposphere (solid curve). (Source: Baird, Colin, “Environmental Chemistry”2nd Edition, W.H.Freeman 

Company, NY, 1998.) 

Not all of the infrared radiation emitted by the earth’s surface and atmosphere escapes 

directly to space as some gases in air can temporarily absorb thermal infrared light of specific 

wavelengths emitted by the earth’s surface. Shortly after it’s absorption by airborne molecules 

such as H2O, CO2, CH4, this infrared light is re-emitted in all directions in a completely random 

manner. Thus some of the thermal IR is redirected towards the earth’s surface, is reabsorbed and 

consequently further heats both the surface and the air. This phenomenon is the greenhouse 

effect and is responsible for the earth’s surface temperature being almost 288ºK rather than about 

255ºK. The phenomena that is a cause of concern is that  the increase in concentration of trace 
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gases will cause a redirection of even more of the outgoing thermal radiation and would this 

eventually contribute in the increase in the temperature of the earth. 

 

2.1 HOW GREENHOUSE GASES ABSORB ENERGY: MOLECULAR 
VIBRATIONS 

 

Nitrogen (N2) and Oxygen (O2), the principle constituents of the atmosphere, are incapable of 

absorbing infrared light. 

The absorption of light takes place when its frequency matches the frequency of an 

internal motion within a molecule that it encounters. The vibrations of the molecules atoms 

relative to each other are relevant for frequencies in the infrared region. The vibrations in 

molecules for the absorption of light are primarily of the bond stretching type and the bending 

vibration type. Bond stretching takes place when oscillatory motion takes place between two 

atoms bonded to each other. Bending vibration are oscillations which take place between two 

atoms bonded to a common third atom within the molecule. 

 If infrared light is to be absorbed by a molecule during a vibration, there must be a 

difference in the position in the molecule between its nucleus (positive charge) and electron 

cloud (negative charge) at some point during the motion i.e. the molecule must have a dipole 

moment during some stage of it’s motion. Specifically, there must be change in the magnitude of 

dipole moment during the vibration. Consequently the molecule can absorb light only during 

asymmetric stretching. The centers of free charge coincide in free atoms and in homonuclear 

diatomic molecules like O2 and N2 and the molecules have dipole moments of zero during all 

times of their vibrations. 
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In the case of methane, a methane molecule contains four C-H bonds. The C-H bond 

stretching vibrations occur well outside the thermal IR region, but due to the H-C-H bond angle 

bending vibrations occurring near the edge of the thermal IR spectrum, methane absorbs IR at 

7.7μm. Methane absorbs a greater fraction of the thermal IR photons that pass through them than 

CO2 and has a greater global warming effect than CO2.  (Baird, 1998) 
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3.0 PROBLEM DESCRIPTION: METHANE 
 
 

In December 1997, more than 160 countries met in Kyoto, Japan, to persuade limitations on 

greenhouse gases for the developed nations, pursuant to the objectives of the Framework 

Convention on Climate Change of 1992.The Kyoto Protocol was the outcome of the meeting in 

which the developed nations decided to reduce their greenhouse gas emissions relative to those 

what were in 1990. 

Studies of ice air trapped in ice cores show that CH4 has sustained a stable atmospheric 

abundance for centuries prior to the industrial revolution. The concentrations of methane at 

present are about 2.5 times of what they used to be before the industrial revolution. As shown in 

figure 6 below, methane levels have increased from around 750 parts per billion by volume 

(ppbv) to about 1750 ppbv today. 
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Figure 5:   Increase in methane concentrations in the atmosphere from the mid 1800’s till present. 
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One can also attribute the increase in levels of methane to the increasing population as in figure 

6. 
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Figure 6: Concentrations of methane Vs world population 

(Methane Data Source: NASA; Population Data Source: United Nations). 

 

As seen in the graphs the increase in the concentrations of methane, which had been 

relatively stable till the early 1800’s, can be attributed to the increase in various anthropogenic 

activities. These activities include the increase in the use of fossil fuels (Figure 8 & 9) along with 

the increase in rice agriculture to meet the needs of the exponential increase of the world 

population. With urbanization, there has also been a movement of the rural population into the 

urban areas increasing the amount of waste generated. Increasing demands for space and for 
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agriculture has also led to an increase in the land burnt. All these are sources of atmospheric 

methane. 

Fuel Consumption and CO2 Concentration Vs Time
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Figure 7: Carbon dioxide concentrations Vs fossil fuel consumption since late 1800’s till present. 

 
The historical data for fuel consumption in Figure8 and Figure 9 from 1860-1950 was obtained 

from Woytinski and Woytinski’s “World population and production-Trends and outlook” and the 

fossil fuel consumption data from 1950 onwards was obtained from British Petroleum’s 

Statistical Energy Review. For the data of the period comprising 1860-1950, the consumption of 

water power was excluded in our calculations and the coal equivalent was converted to oil 

equivalent. 

11 



 

Methane Concentration Vs Fuel Consumption
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Figure 8: Methane concentrations Vs fossil fuel consumption since late 1800’s till present. 

 

Adding each molecule of methane has 21 times more effect on global warming than 

adding a molecule of carbon dioxide in the atmosphere. The number 21 is the global warming 

potential (GWP), a type of simplified index based on radiative properties which is used to 

estimate the potential future impact of emissions of different greenhouse gases in a relative 

sense. The reference gas is generally taken as CO2. Moreover methane is also an important trace 

gas due to the role it plays in tropospheric chemistry. 

The purpose of this study is to study the sources and sinks of methane and try to predict 

its future concentrations taking into account the “business as usual scenario” and the impact 

methane has on global warming. Understanding the sources and sinks will help us concentrate on 
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the reduction of methane which has more of an impact on global warming than carbon dioxide 

and to see whether methane is following the same trend as carbon dioxide in the atmosphere. 

Another object of this study is to determine the change in temperature caused by the projected 

increase in methane levels over the time period, 2006 to 2030. 
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4.0 LITERATURE REVIEW 
 

4.1 GLOBAL WARMING 
 
Global warming is caused by the blocking of thermal infrared radiation to escape the earth, 

which in turn increases global surface temperatures. This has been attributed to the increase of 

the atmospheric trace gases caused by human activity (Dickenson and Cicerone, 1986) A burst of 

global warming has taken the global temperature to it’s highest level in the past millennium, the 

average surface temperature having increased by about 0.6±0.2ºC since 1975 (Hansen et al., 

2000, Jones et al.1999, Mann et al, 1999, IPCC 2001). Houghton et al state that human influence 

has been the dominant detectable influence on climate change over the last 50 years (Karl and 

Trenberth, 2003). 

The concern that human activities may be affecting global climate has largely centered on 

carbon dioxide because of its importance as a greenhouse gas and also because of the rapid rate 

at which its atmospheric concentration has been increasing. It is being estimated that other 

greenhouse gases are contributing about half of the overall increase in the greenhouse radiative 

forcing on the climate (Wuebbles and Tamareis, 1993). 

The changes in atmospheric composition take place due to the anthropogenic emissions of 

greenhouse gases such as carbon dioxide that results from the burning of fossil fuels and 

methane and nitrous oxide from multiple human activities. According to estimates, the 

continuous increase in use of fossil energy will lead to an average increase of global temperature 

by 1.0-3.5 º C in the coming 50-100 years (Kessel, 2000). Highly reflective micron sized 

aerosols, such as sulfate and strongly absorbing aerosols such as black carbon or soot are emitted 

into the atmosphere as a result of fuel burning (Karl and Trenberth, 2003). 
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4.2 METHANE 
 
Methane was determined to be a component of the Earth’s atmosphere in 1948 by the 

analysis of high resolution solar absorption spectra. (Dlugokencky et al,1994.) Methane is 

only second to CO2 in its potential for future global warming (Khalil and Rasmussen, 1993). 

Adding more methane is more effective than adding CO2 into the atmosphere both on a 

molecule as well as a mass basis (Wuebbels et al, 2002). Methane has a direct effect on the 

radiative balance of the troposphere because of its strong IR absorption at 7.66 μm where 

CO2 and H2O absorb only weakly (Dickenson and Ciceraone, 1986). 

The concentrations of methane in the troposphere have more than doubled since 1800, the 

present concentrations of methane in 1998 being about 1745 ppbv and the concentrations of 

methane before the onslaught of industrialization being about 700 ppbv  (Etheridge et 

al,1992; IPCC,2001). Since direct systematic measurements of it’s trends did not begin until 

1978, most of the data containing the record of atmospheric CH4 for earlier times, are 

obtained by analyzing bubbles of ancient air preserved in polar ice (Khalil and Rasmussen, 

1987; Dlugokencky et al, 1994). 

Methane is released as a result of both natural as well as human induced activities. Figure 10 

shows the break up of individual sources of methane into the atmosphere. 
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Anthropogenic Methane Emissions

Fossil Fuels  ~ 
29%Biomass burning ~ 14 

Domestic 
Ruminants ~ 23 %

Waste Decomposition ~ 
17 %

Rice Cultivation ~ 17 
%

 

Natural Emissions

Wetlands ~ 72 %

Other ~ 9%Oceans ~ 6%

Termites ~ 13 

 

Figure 9: Break up of the anthropogenic and the natural Sources of methane (Source: Wuebbles, 2002 and 
Khalil, 2000) 
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4.3 ANTHROPOGENIC SOURCES OF METHANE 
 

Methane from Energy sources 

 

 Methane from fossil fuels account to about 29% of the total anthropogenic sources (Khalil, 

2000; Wuebbles and Hayhoe, 2002) .Fossil fuels are attractive not only because they are 

abundant and relatively inexpensive but also because they are used effectively and efficiently 

(Judkins et al, 1993).Methane is emitted by the extraction of fossil fuels such as natural gas, coal 

and petroleum (Wuebbles and Hoyoe, 2002). 

 

4.3.1  Natural gas 

 

Methane is released into the atmosphere by the leakage of natural gas during its production, 

transmission, storage and distribution and also during its venting and flaring. 

Gas leakage can occur during extraction at the well head (transport of large quantities under high 

pressure) and during transmission (which is transfer to the end user under low pressure).The gas 

leakage rates depend on various factors. These factors may include well head practice, the 

standard and maintenance of the pipe lines, the pressure of gas inside these pipelines (Watt 

Committee, 1993).These factors are not easy to determine and not well known in many 

countries. The leakage rates are very uncertain and vary tremendously from country to country 

(Law and Nisbet, 1996).Because of the difficulty in estimating the methane emissions from the 

venting and flaring of natural gas we will assume a constant value of 15 Tg yr-1 as done by Law 

and Nisbet (1996) and estimated by Cicerone and Oremland in 1988. 
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4.3.2 Coal 
 
Coalification-the process which produces coal also produces methane and other gases. (Revised 

IPCC Guidelines Workbook, 1996). These gases are stored in the coal bed itself. The excess gas 

produced in the process migrates into the surrounding rock strata, forming traditional gas 

deposits mined by the natural gas industry. When the coal seam is exposed to the atmosphere, the 

methane trapped in the coal seams is released. The methane in the coal seam depends on the coal 

age, moisture and the depth (Beck, 1993).Methane is released during the mining, crushing or 

inefficient combustion of coal by the process of desorption (Law and Nisbet, 1996) 

 

4.3.3 Domestic Ruminants 

 

Enteric fermentation is a digestive process by which carbohydrates are broken down into simple 

molecules for absorption into the blood stream by microorganisms. Methane is a by-product of 

enteric fermentation in herbivores. Due to the presence of specific microorganisms in their 

digestive tract, ruminants (e.g. cattle, sheep, etc) and some non-ruminant animals (e.g. pigs , 

horses), digest cellulose, a type of carbohydrate , and are able to produce methane.(IPCC 

Guidelines workbook,1996). 

The eructation of methane by cattle begins approximately 4 weeks after birth when the 

solid feeds are retained in the reticulorumen (Anderson et al, 1987; Johnson and Johnson, 1995) 
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4.3.4  Rice Cultivation 
 

Of the wide variety of sources of atmospheric methane, rice paddies are considered one of the 

most important. Rice soils are flooded for a large part of the year and usually provide an optimal 

environment for methane production. By flooding and puddling the soil optimal conditions are 

created which enhance the fertility of the soils and stabilize the rice eco-system. Flooding 

provides abundant water, buffer soil pH, enhances nitrogen fixation and carbon supply, increases 

diffusion rates, mass flow and nutrient availability (Bachelet and Neue, 1993). Methane is 

produced by the anaerobic decomposition of organic matter in rice fields. The production of 

methane is the final step in a sequence of anaerobic decomposition of organic matter which is 

allowed by anoxic conditions in waterlogged soils e.g. paddy rice fields. (Wassmann et al, 1993). 

Figure 11 shows the processes involved in methane emissions involve 1) methane 

production, 2) methane oxidation and 3) methane transportation. 

Redox potential is the most important factor for the production of CH4 in soils. Takai et 

al.(1956) demonstrated that the redox potential of a soil must be below -200mV in order to have 

CH4 production (Minami,1994). The final step of several anaerobic degradation chains is 

methane. The biochemical pathways which produce methane include fermentation of methylate 

compounds (e.g. acetate, methanol, trimethylamine, and dimethylsulfide) and CO2 reduction 

with molecular hydrogen. Although not as significant as other pathways, methane is also formed 

by the reduction of CO with formic acid. Thus the methaogenic bacteria can be subdivided into 

methlyotrophic, obligate chemolithotrophic, and ‘qausi’-chemilithotrophic microorganisms 

(Wassman et al, 1993). The optimum temperature for these methaogens was found to be between 

30ºC and 40ºC. 
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Methane is oxidized by aerobic methanotrophs in soils and in floodwaters of rice paddies, 

the immediate product being methanol. 

 

Figure 10: Depiction of production, reoxidation, and emission of CH4 in a paddy field  

(Source: Neue and Roger, 1993) 

 

Methane is transferred by three different pathways. They are the diffusion of dissolved methane, 

the emergence of methane in the form of gas bubbles and plant mediated transport. Plant 

mediated transport or transport through the aerenchyma is the most important phenomena for 

CH4 transport.  About 90% of the total CH4 released from rice paddies is through the 

aerenchyman system of rice plants. This path of methane through rice plants includes diffusion 

into the root, the conversion to gaseous methane in the root cortex; diffusion through cortex and 

aerenchyma  and finally release to the atmosphere through micropores in the leaf sheats. 
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4.3.5 Biomass Burning 
 

Biomass material contains about 40% carbon, 53.3% oxygen and 6.7% hydrogen by weight. 

Nitrogen accounts for between 0.3 and 3.8% and sulfur for between 0.1 and 0.9%, depending 

upon the nature of the biomass material (Bowen, 1979). 

The estimates of CH4 emissions from biomass burning are rather uncertain. Methane 

emissions from the burning of agricultural residues e.g. residues of rice straw, sugarcane and 

other agricultural disposals are also significant. Other major sources of methane release into the 

atmosphere are savannah burning, deforestation, shifting cultivation and firewood and 

agricultural waste burning. (Crutzen and  Andrea, 1990). 

Biomass burning includes the combustion of living and dead material in the forests, 

savannahs, agricultural wastes, and the burning of fuel wood. It includes human initiated burning 

of vegetation for land clearing as well as natural, lightning induced fires, although it is thought 

that the bulk of biomass burning is human initiated rather than naturally occurring. (Levine et al, 

2000.) 

    Ideally the product of complete combustion of biomass is carbon dioxide and water vapor 

according to the following reaction: 

OHCOOOCH 2222 +→+  

Where CH2O represents the average composition of biomass material. The product of incomplete 

combustion of biomass produces other carbon species, including Carbon monoxide (CO), 

methane, nonmethane hydrocarbons (NHMC’s), and particulate carbon. This is always the case 

as complete combustion is not achieved under any conditions. In addition, nitrogen and sulfur 

species are produced from the combustion of nitrogen and sulfur species in the biomass material. 

(Khalil,1993).The emissions of methane are dependent upon the stage of combustion reached as 
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well as the carbon content of the biomass burned.(Levine et al.,2000).Bolle et al suggest that the 

pyrogenic contribution of the increase in CH4 from 1940 to 1980 has gone up from 10 to 40% 

(Crutzen and Andrea,1990). 

 

4.3.6 Waste 

4.3.6.1 Solid Wastes 
 
Waste landfills have been recognized as a large source of anthropogenic methane and an 

important contributor to global warming (IPCC 1996, Kumar et al, 2004) Methane is emitted by 

the biogenic waste in anaerobic environments provided by landfills and waste water pool. A 

significant amount of carbon that is recycled though the environment consists of domestic and 

industrial wastes. This carbon is an appreciable source of methane due to the decay of organic 

carbon due to the anaerobic conditions developed when dumped in landfills.(Sheppard et al, 

1982; Bingmer and Crutzen,1987).  

Solid wastes disposal sites (SWDS) contains organic matter which is broken down by 

bacterial action in a series of stages that result in the formation of CH4 and CO2 (termed as 

biogass or landfill gas) and further bacterial biomass. This is done by anaerobic bacteria. 

Because of the dumping of large amounts of waste, the oxygen availability soon decreases and 

the decay is taken over by anaerobic microorganism, which is based on the interactions of 

different kinds of bacteria. Organic matter is first broken down to small soluble molecules which 

include a variety of sugars. These are further broken down to hydrogen, CO2, and a range of 

carboxylic acids. These acids are converted to acetic acid which, together with hydrogen and 

CO2, forms the major substrate for growth of methanogenic bacteria. The landfill gas produced 

22 



 

contains 50% CO2 and 50% CH4 by volume, although landfill gas may contain less CO2 because 

part of the CO2 becomes dissolved in landfill water (Gunerson and Stuckey, 1986) 

 

Bingmer and Crutzen further state that sanitary landfilling near urban centers is the main 

method in industrialized countries while crude dumping is common in the developing world. 

 

4.3.6.2 Wastewater handling 

 

Waste water can produce CH4 under anerobic conditions. Anaerobic methods are used to handle 

wastewater from municipal sewage and from food processing and other industrial facilities, 

particularly in industrial countries. 

Methane is again produced by acetate cleavage or by the reduction of CO2 with 

hydrogen. This acetic acid is the result of the conversion of amino acids or sugars. Amino acids 

along with sugars and higher molecular fatty acids are formed by the hydrolysis of proteins, 

hydrocarbons and lipids formed by the breakdown of wastewater organic fraction under 

anaerobic conditions (El-Fadel and Massoud, 2001).Aerobic decomposition processes in 

wastewater demand more oxygen than can be supplied by surface diffusion (Czepiel,1993) 

Degradable organic carbon (DOC) is the main factor which determines the amount of CH4 

produced from wastewater. This DOC is expressed in terms of biological or chemical oxygen 

demand (BOD) or (COD).Temperature, pH, retention time, degree of wastewater treatment are 

the environmental factors which influence CH4 production. Anaerobic systems are very sensitive 

to the presence of oxygen, which inhibits CH4 production completely (Casey, 1997; El-Fadel and 

Massoud, 2001) 
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4.4 NATURAL SOURCES OF METHANE 

 

Methane Hydrates 

 

Gas hydrates are formed by the physical combination of water and low molecular weight gases. 

They are solid crystalline molecular complexes formed beneath the earth’s surface due to the 

persistence of low temperatures. These hydrates are a more concentrated form of natural gas 

which contains 10-15% gas (by weight) and occupy less volume (20% to 80%) than would the 

same gas in an unhydrated state. (Lee and Holder, 2001; Holder et al, 1984). Methane can be 

released from hydrates with changes in temperature, pressure, salt concentrations, etc. However, 

this concentration could be much larger if global temperature increases resulting in massive 

methane hydrate decomposition (EPA, 2004). 

Lelieveld et al (1998) estimate the release of methane from these gas hydrates at the rate 

of 10 Tg/yr. 

 

Wetlands 

 

Wetlands were the main source of atmospheric methane prior to the industrial era, with other 

relatively minor contributors (Chappellaz et al, 1993; Methews, 1993). They still are most likely 

the largest natural source of methane in the atmosphere. 

A wide range of environmental parameters influence methane emissions from natural 

wetlands. These include availability of nutrients and organic carbon, vegetation cover, and most 
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importantly water table depth and soil temperature (Miller et al, 1999; Van Der Nat and 

Middelburg, 2000). 

Lelieveld et al (1998) estimate a source strength of 225 Tg/yr from wetlands, but they 

included rice agriculture in wetlands. Houweling et al (1999) estimated a source strength of 145 

Tg/yr. Fung et al. estimated methane release from wetlands to be about 115 Tg/yr, whereas Cao 

et al (1998) estimated a release of 92 Tg/yr. 

 

Termites 

 

Termites, although having wide geographical distribution, are particularly abundant in area 

where biomass is present. Even though a termite produces an credibally amount of methane per 

day, but when this is multiplied by the world population of termites, the methane emissions from 

termites are significant (Judd et al, 1993).  There is some sort of consensus among authors 

regarding the emissions from termites. Fung et al (1991), Lelieveld et al and Houweling at al 

estimate termite emissions to be about 20 Tg/year. 

Table 1 sums up the anthropogenic and the natural sources of methane. 
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Table 1: Anthropogenic and Natural Sources of Methane. 

 
Fossil Fuels  

(Natural Gas Production, Coal Mining) 

Rice Agriculture 

Domestic Ruminants 

Biomass Burning 

 

 

 

Anthropogenic Sources of Methane 

Waste  

(Solid Wastes, Wastewater Handling) 

Methane Hydrates 

Wetlands 

 

Natural Sources of Methane 

Termites 
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4.5 SINKS OF METHANE 

Sinks of Methane

Reaction with OH ~ 90%

Reaction with soil ~ 5%
Other ~ 5%

 

Figure 11: Sinks of methane 

 
 
Reaction with the hydroxyl [OH] radical is the primary removal method of greenhouse gases 

containing one or more H atoms. All greenhouse gases except CO2 and H2O are removed from 

the atmosphere primarily by chemical processes (IPCC, 2001). There are only one major and two 

minor sinks for tropospheric methane.  

 

Methane is removed from the troposphere by the following reaction. 

 

OH    CH      [OH]  CH 234 +→+  
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 The majority of methane (90%) is removed from the atmosphere by this reaction. (Wuebbles, 

2002). 

Ridgewell et al. (1999) estimate that about 5% of the methane is removed through dry 

soil oxidation and the rest is either consumed by its reaction with [Cl-] atoms or is transported to 

the stratosphere as estimated by Gettelman et al. in1997 and Singh et al.1996. 

The [OH] radical thus plays a very important role in atmospheric chemistry by reacting 

with many trace gases and free radicals. In turn the concentration of OH also depends on the 

atmospheric levels of the species with which OH reacts. Most of the OH is consumed by reaction 

with either CO or CH4, which may result in the decrease of OH, resulting in longer atmospheric 

lifetimes of the gases and free radicals with which OH reacts (Lu and Khalil, 1991). 

Modeling studies have shown that the concentrations of OH have decreased since pre-

industrial times between 10 and 30% due to increase in the CH4 and CO concentrations as the 

concentrations of OH are closely related to CO and CH4 concentrations. (Wang and Jacob,  

1998; Wuebbles 2002). However studies by Karlsdottir and Isaken (2000) show the present OH 

concentration to be relatively steady or increasing perhaps. The reason might be that the CH4 and 

CO increase is balanced by the increases in tropospheric ozone (O3). OH is formed by the photo-

dissociation of O3 into O (1D) which in turn combines with water vapor to form two OH radicals. 

The concentrations of OH are assumed to be constant for the time period concerned for our 

model. 
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4.6 MODEL 
 
Objective: 
 
The objective of this work is to predict the concentrations of methane over time by treating the 

entire atmosphere as a single continuous stirred tank reactor, with the mass balance having being 

performed on component methane. The reaction feeds are the sources mentioned in table 1. 

There is no reactor effluent, or if an effluent is considered, for mass balances purposes, it 

does not contain methane. The methane is consumed via chemical reaction in the atmosphere via 

chemical reaction with troposheric OH radicals. 

 
 
The simplest form of the model is 

Accumulation = Sources - Sinks 

or , ][CHk-Area] ][Soil[CHk-][OH][CHk - F
dt

]d[CH
4other4soils4OH

i
CH

4
4∑=  

where is the summation of the various individual sources of methane ∑
i

CH 4
F

][OH][CHk - 4OH  is the sink of methane via reaction with [OH] in the atmosphere 

Area] ][Soil[CHk- 4soils  is the consumption of atmospheric CH4 in the soils 

][CHk- 4other  is the removal of CH4 via reaction with Cl- or transport to the stratosphere 

 

Since OH is considered constant and about 90% of the removal of CH4 is via its reaction with 

OH , the above equation can be rewritten as : 
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][CHk- F
dt

]d[CH
4CH4

i
CH

4
4∑=  

Since this is a first order chemical reaction, therefore kCH4 = 
τ
1  

 

The equation for the model can be written as 

τ
][CH- F

dt
]d[CH 4

i
CH

4
4∑=  

 

where [CH4] is the number of Tera-grams of Methane (which is the commonly used unit for 

methane) . ‘τ’ is the atmospheric lifetime of methane made up of various sinks. It can be given 

by the equation: 

)/1/1/1(
1

othersoiOH l τττ
τ

++
=   (Khalil et al, 1996) 

The value of 1/τOH is the same at the product of the rate constant of the reaction between 

[CH4] in the atmosphere and [OH] radicals. Therefore, 1/τOH = k[OH], as [OH] is treated as a 

constant (Karlsdottir and Isaken ,2000). 

Khalil and Rasmussen in 1993, take into account a varied form of the above equation. 

They introduce a parameter ‘λ’ which takes into account the rate at which concentrations of [OH] 

might be changing over time. 

Dlugokencky et al. (1998) used the equation above to calculate the source strength in order 

to figure out the decrease in growth rate of atmospheric methane.  
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5.0 MODEL FORMULATION 
 

5.1 METHANE EMISSIONS FROM NATURAL GAS PRODUCTION AND 
TRASMISSION 

 

Methane is released by the venting and flaring of natural gas as well as the transmission and 

distribution of natural gas. 

Since the amount of gas retrieved increases with the age of the installation, the temporal 

trend of the amount of CH4 vented and/or flared is not related to production (Law and Nisbet, 

1996). Because of the difficulty of estimating a temporal trend for emissions from venting and 

flaring of natural gas, a constant value of 15 Tg/yr is assumed for the model in this thesis. This 

assumes that the increases in methane production are balanced by reductions in venting and 

flaring. 

For the estimate of CH4 emissions from natural gas production, the world was divided 

into two groups. The first group comprised of the former Soviet Union (FSU) and the second 

group comprised of the Rest of the world (ROW). 

Natural gas production figures were obtained from the 2003 British Petroleum Statistical 

Review of World Energy worksheet. Gas leakage rates of 2 % of the entire natural gas 

production were used for ROW for the entire time period. For the FSU a gas leakage rate of 5% 

of the entire gas produced was used. These higher leakage rates are attributed to the age of the 

pipleleines, higher leakage rates from the valves and fittings etc. 

            It was assumed that 90% of the natural gas is methane for the calculations. 

The temporal estimates for methane emissions from natural gas production are presented 

in the following figure. For the sake of uniformity of the model the 10th year is the time taken as 

the start of methane emissions as the data for the entire world was available since 1970 onwards.  
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A value of 717 g/m3 was taken as the density of methane at 25ºC and 1 atm.  to convert the 

volume of methane released to Tg. 

Methane from Natural gas

y = -0.0136x2 + 1.6816x - 0.4003
R2 = 0.9895
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Figure 12: Model of methane production from Natural Gas. 

 
The temporal model for the emissions of methane emissions from natural gas production and 

transmission was: 

y = -0.0136t2 + 1.6816t – 0.4003 

The constant value of 15 Tg for venting and flaring will be incorporated in the final simulation of 

the model. 

The temporal estimates of methane emissions lie between 15 and 50 Tg of methane per year. 

These are close to the IPCC (1996) estimates of 30 to 70 Tg methane per year. 
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5.2 METHANE EMISSIONS FROM COAL PRODUCTION 
 

The methodology adopted was the same as laid out in the 1996 IPCC Guidelines for the 

calculation of National Greenhouse gas inventories. The equation for calculating CH4 emissions 

from mining activities was: 

 

  = × ×  CH4
Emissions 

Coal 
Production 

Emission 
Factor 

Conversion 
Factor 

 

Where CH4 Emissions are in Tg/yr 

            Coal Production is in Tonnes/yr 

            Emission Factor is in m3/ton 

and     Conversion factor is in g/m3 

 

The only difference between the IPCC methodology and the one adopted here was in the 

Emission factor. The Emission factor in the IPCC guidelines was according to the type of mines 

(underground or surface) while the emission factor taken in this thesis is according to the type of 

coal mined (hard or brown).This difference was due to the non-availability of data for the types 

of mines and the break up of coal mined form each kind of mine for the entire world at different 

times. 

 The data for the production of coal was taken from the Energy information and 

Administration website of the Department of Energy (Govt. of the United States). The data was 

obtained for lignite (brown) coal and bituminous as well as anthracite (hard) coal. The 

production of anthracite and bituminous coal exceeded the production of lignite coal throughout 

the world. 
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 The emission factors was taken from Smith and Sloss’ 1992 report which give the 

emission factors on the basis of the type of coal mined. The estimates for hard coal are between 5 

and 20 m3 of CH4 per ton of coal produced and between 0.05 and 0.5 m3 of CH4 per ton of brown 

coal mined. For the estimation of methane emissions from coal in this thesis, the emission factors 

were taken to be an average of 5 and 20 m3/ton for hard coal and an average of 0.05 and 0.5 

m3/ton for brown coal respectively. 

The conversion factor was the density of methane at 25º C and 1 atm., taken to be  

717 g/m3. 

 The final temporal estimate of CH4 emissions from coal are presented in the figure 

below. For the sake of uniformity of the model, the starting period for the estimate of coal 

emissions was taken to be the 20th year (1980) since the coal production statistics for the entire 

world was available from this time. 
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Methane Emissions from Coal
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Figure 13: Model of Methane production from Coal. 

 
The model for coal production as a source of Methane was : 

y =0.3841t+22.97 

with R2 = 0.7872 

 

Our model estimates coal emissions between 25 and 40 Tg of CH4 per year with no clear 

trend. This is due to the variation in coal production throughout the world, with focus now 

shifting from coal to alternate forms of energy such as natural gas, nuclear energy etc. Estimates 

from literature are between 20 and 50 Tg of CH4/yr for coal mining (IPCC, 1995). 
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5.3 METHANE EMISSIONS FROM RICE AGRICULTURE 
 

Rice paddies are considered to be one of the most important anthropogenic sources because the 

demand for rice is proportional to the population. Methane is produced by the anaerobic 

decomposition of organic material in flooded rice fields which escapes to the atmosphere 

primarily by the diffusive transport through the rice plants during the growing season. 

 

Methane emissions from rice paddies were estimated using the following correlation: 

 = ×  

 

The Emission factor was obtained on a rice production basis. Rice production was 

obtained from the FAO website. Major rice growing countries were taken into account for the 

calculations. The countries in question were China, India, Japan, Philippines, Thailand, and 

USA. Rice production from the rest of the world was considered in the ‘other’ category. The 

emission factors for the various countries was obtained from table 2 

 

Table 2: Rice emission factors 

 
Country Total area of 

rice paddies 
(Mha) 

Total Rice 
grain yield 
(Tg/yr) 

CH4 
emissions 
(Tg/yr) 

Emission 
Factor  
(g CH4/g rice 
production) 

China 32.2 174.7 13-17 0.0858 

India  42.2 92.4 2.4-6 0.0454 

Japan 2.3 13.4 0.02-1.04 0.0395 

Thailand 11.7 19.2 0.5-8.8 0.2421 

Rice 
Production 

Emission 
Factor 

CH4
Emissions 
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Table 2: Continued 
 
Philippines 3.5 8.9 0.3-0.7 0.0561 

USA 1.0 6.4 0.04-0.5 0.0421 

Other 54.6 158.5 9.2-20 0.0921 

 

 Table 2 Source: Sass (1994), Minami and Takata (1997). 
 
 

The rice emission factors on a rice production basis were obtained by dividing the average 

emissions from the above table with the total production mentioned. This emission factor was 

used to obtained the temporal emissions of methane. The rice production statistics were obtained 

form the FAO website. 

 

The production of rice has dramatically increased, especially since the 1960’s. Although 

the area of rice harvested has not changed by a great extent (The area harvested in 2003 was 1.3 

times the area harvested in 1960), the total rice production has changed since 1961 (The total 

production in 2003 was 2.7 times the production in 2003) to meet the needs of the growing 

population. This is has been achieved by the use of high yielding rice cultivars, large investments 

in irrigation schemes and improved soil, water and crop management. These developed irrigation 

schemes and the sorter growth duration of modern cultivars increased the harvested area by 

allowing 2 to 3 crops per year. However there has only been a slight increase in the total area 

harvested due to the expansion of residential and industrial areas as well as diversification of 

crops (Neue and Roger, 1993) 
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Figure 14: Total rice production vs area harvested for time starting 1960. 
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The methane emissions from rice paddies are shown in the figure below. 

Methane from Rice Production
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Figure 15:: Model of methane emissions from rice agriculture. 

 

The model for Methane emissions from rice Agriculture is: 

y = 0.8072t + 17.466 

R2=0.9888 

 

Our estimates of methane emissions from rice agriculture are between 15 and 60 Tg for the time 

period concerned while the IPCC (1996) estimated the global emission rates from paddy fields at 

60 Tg/yr, with a range of 20 – 100 Tg/yr. 
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5.4 METHANE EMISSIONS FROM DOMESTIC RUMINANTS 
 

Enteric fermentation is a process by which carbohydrates are broken down by micro-organisms 

into simple molecules for absorption into the blood stream. Methane is produced in herbivores as 

a by-product of enteric fermentation. CH4 is produced by both ruminant (e.g. cattle, sheep) as 

well as non ruminant (e.g. pigs, horses) animals, although ruminant animals are the largest 

source since they are able to digest cellulose, a type of carbohydrate, due to the presence of 

specific micro-organisms in their digestive tracts. 

The Tier-1 approach of the IPCC Guidelines for National Greenhouse gas inventories  

from agricultural emissions was used to estimate methane emissions from domestic ruminants. 

Default emission factors for each group of animals were mentioned in the guidelines and 

only readily available animal populations were needed to estimate the emissions.  

The animal populations were obtained from the Food and Agricultural Organization website of 

the United Nations.  

The emission factors for various groups of animals varied for developed countries and 

developing countries. The difference in the emission factors are driven by differences in the feed 

intake and feed characteristic assumptions (IPCC, 1996). 

The animals included in the calculations were buffaloes, sheep, goats, camels, horses, 

mules, swine and dairy cattle. 

The total emission was calculated using the following relation: 

 

 =Σ (     × ×          ) 

 

CH4
Emissions 

Emission factor 
(Kg/head/year) 

Population 
(Head) 

 where Σ sums up the methane emissions from different animals. 
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Table 3: Emission Factors for Domestic Ruminants 

 
LIVESTOCK DEVELOPED 

COUNTRIES 

(Kg per Head per Year) 

DEVELOPING 

COUNTRIES 

(Kg per Head per Year) 

Buffalo 55 55 

Sheep 8 5 

Goats 5 5 

Camels 46 46 

Horses 18 18 

Mules 10 10 

Swine 1.5 1 

Poultry Not estimated Not Estimated. 

 

 

Source: IPCC 1996 Reference Manual. 

 

 The figure on the next page depicts methane emissions from domestic ruminants. 
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Methane Emissions from Domestic ruminants
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Figure 16: Model of methane emissions from domestic ruminants. 

 
The model for emissions of methane from domestic ruminants is as follows: 

y = -0.0175t2 + 1.3313t + 64.199 

R2 = 0.9937 

 

Our model estimates methane emissions from domestic ruminants to lies between 60 and 100 

Tg/yr. 
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5.5 METHANE EMISSIONS FROM BIOMASS BURNING 
 

Methane is produced by the incomplete combustion of biomass represented by (CH2O). 

Emissions from biomass burning were obtained from two categories. The first category was the 

burning of forests and wild fires and the second category was the burning of agricultural wastes. 

Methane emissions from the burning of forests and wild fires were calculated by first 

calculating the total mass of biomass fuel burnt. This was done by obtaining the total area burnt 

and multiplying it by the fuel load and burning efficiency.  

Since statistics were not available for the entire time period as were other sources, the 

data available between 1990 and 2000 was used to create the model. The area of the fuel burnt 

for various countries was obtained from “Global Forest Fire Assessment 1990-2000”. 

(Goldammer,2001) 

 

Methane emissions were calculated using the formula: 

 

 = ×                              ×  × 

 

CH4
Emissions 

Biomass 
Burnt 

Carbon 
Mass 

Fraction

Emission 
Factor 

Elemental to 
Molecular 
Conversion 

Factor 

  

The biomass burnt was the product of the total area burnt and the biomass load per Ha (137 

Mg/ha in this case.) with a burning efficiency of 0.72. 137 Mg/ha was obtained as the average of 

the biomass fuel load of 208 Mg/ha for closed forests and 67 Mg/ha for open forests. A carbon 

mass fraction of 0.46 was assumed to be present in the biomass. The elemental to molecular 

conversion factor was 1.33 for methane and the emission factor was taken to be 0.012 (IPCC, 

2001). 
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For agricultural wastes, methane emissions were calculated form the burning of wastes 

from coarse grain production, sugarcane production and wheat production. 

A similar method to estimating methane emissions form forest and wildfires was adopted. 

The biomass burnt was calculated by using the following relation: 

 

 = ×  ×  × 

 

Biomass 
Burnt 

Course 
Grain/Sugarcane/ 
Wheat Production

 ×  × 

Residue 
to crop 
ratio

Fraction 
Burnt 

Fraction of 
Residue 

while 
burning 

Dry 
Matter 
Conten

    Burning 
Efficiency 

 

This method was adopted from the Australian government’s effort to estimate methane emissions 

from biomass burning. 

 The production statistics for course grain / wheat / sugar cane production was obtained 

from the FAO website. The residue to crop ratio for course grain and wheat was taken to be 1.5 

and for sugarcane it was taken as 0.25. The fraction of residue at time of burning was 0.5 for 

course grain and wheat and 1 for sugarcane. The dry matter content was 0.8, 0.2 and 0.9 for 

coarse grain, sugarcane and wheat respectively. The burning efficiency was assumed to be 0.96 

for all the three agricultural residues. It was further assumed that 23% of the coarse grain and 

wheat burned and 58% of the sugarcane residue burned. A carbon mass fraction of 0.4 was 

assumed in the agricultural residues and the methane emission factor was taken as 0.012 with an 

elemental to molecular conversion factor of 1.33. 

 Methane emissions from biomass burning are presented in the figure below. Although, 

the estimates are rough, the overall trend is an increasing one. 
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Figure 17: Model of methane emissions from biomass burning. 

 

The model for methane emissions from biomass burning is: 

y = 0.2797t + 46.534 

 with R2 = 0.0277. 
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5.6 METHANE EMISSIONS FROM WASTE DISPOSAL 
 

Most important greenhouse gases are produced by the disposal and treatment of industrial and 

municipal wastes. Methane is the most important greenhouse gas produced in this source 

category. The IPCC 1992 estimates approximately 5-20 per cent of the annual global 

anthropogenic CH4 produced and released into the atmosphere is a by-product of the anaerobic 

decomposition of waste. 

CH4 along with CO2 is formed when organic waste in Solid Waste Disposal Sites 

(SWDs) is broken down in a series of stages by bacterial action. 

The Default Methodology mentioned in the 1996 Guidelines for National greenhouse Gas 

Inventories was adopted to estimate Methane emissions from MSWs. 

The default methodology is a mass balance approach that involves the estimating of 

degradable organic carbon (DOC) content of the solid waste i.e. the organic carbon that is 

accessible to biochemical decomposition and using this estimate to calculate the amount of CH4 

which can be generated by the waste (IPCC Guidelines, 1996) 

This method does not incorporate any time factors. This method assumes that all the CH4 

is released into the atmosphere the same year that the waste is disposed. It requires the least 

amount of data to perform calculations and can be modified and reformed as the amount of data 

for each available country increases. 

Bingemer and Crutzen (1987) were the first to formulate this approach, dividng the world into 

four economic regions and applied different DOC values to the waste generated within these 

regions. 
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Methane emissions were estimate using the following equation: 

OX)-(1R)-16/12FDOCDOCMCFMSW(MSW  Emissions  Methane FFT ×××××××=  

Where 

MSWT = Total MSW generated 

MSWF = Fraction of MSW disposed to solid waste disposal sites 

MCF     = Methane Correction Factor 

DOC     = Degradable Organic Carbon 

DOCF   = fraction DOC dissmilated 

F           = Fraction of CH4 in landfill gas 

R           = Recovered CH4

OX        = Oxidation Factor. 

The approach followed in this project was slightly different than that followed by Bingemer and 

Crutzen (1987) in the sense that they had divided the world inot four economic regions and 

calculated the methane emissions while we have taken the maximum possible countries for 

which data is available. 

The total MSW (MSWT) can be calculated as the product of the population (thousand 

persons) and the annual MSW generation rate (Gg/thousand persons/yr).  

For countries where no organized waste collections or disposals take place in rural areas,  

only the urban population was considered. This was particularly true for developing countries. 

Per capita MSW generation rates are provided for many countries and regions in Table 4. 
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Table 4: Country waste generation, composition and disposal data 

 
Region/Country MSW 

Generation rate 

(kg/cap/day) 

Fraction of 

MSW disposed 

to SWDs 

Fraction of 

DOC of MSW 

MSW disposal 

rate 

(kg/cap/day) 

USA 2.0 0.62 0.18-0.21 1.24 

Canada 1.81 0.75 0.18-0.21 1.35 

Australia 1.26 1.00 0.15 1.26 

New Zealand 1.33 1 0.19 1.33 

UK/Western 

Europe 

  0.08-0.19  

UK 1.9 0.9 0.1 1.7 

Ireland 0.85 1  0.85 

Austria 0.92 0.4  0.36 

Belgium 1.1 0.43  0.47 

Denmark 1.26 0.2  0.25 

Finland 1.7 0.77  1.3 

France 1.29 0.46  0.6 

Germany 0.99 0.66  0.65 

Greece 0.85 0.93  0.79 

Italy 0.94 0.88  0.83 

Norway 1.40 0.75  1.05 

Portugal 0.90 0.86  0.78 
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Table 4: Continued 
 
Spain 0.99 0.85  0.83 

Sweden 1.01 0.44  0.44 

Switzerland 1.10 0.23  0.25 

Japan 1.12 0.38  0.43 

India 0.33 0.6 0.18 0.2 

China   0.09  

South America 

/Brazil 

  0.12 1.47 

Africa/Egypt   0.21 0.4 

     

 

* Table Reproduced from IPCC 1996 Guidelines for Greenhouse Gas Inventories. 

 

The population of the world was obtained from the Food and Agricultural Organization website 

of the United Nations.  

The Methane Correction Factor (MCF) reflects the way MSW is managed and the effect 

of management practices on CH4 generation. The MCF values for methane estimations for this 

project were taken according to the following table: 
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Table 5: SWDs Classification and methane correction factors (MCF) 

 
Type of Site Methane Correction factors (MCF) 

default values 

Managed 1.0 

Unmanaged – deep (≥ 5m waste) 0.8 

Unmanaged – shallow (< 5m waste) 0.4 

Default value – uncategorized SWDs 0.6 

 

* Table Reproduced from IPCC 1996 Guidelines for Greenhouse Gas Inventories. 

 

For the developing countries the value of ‘1’ was taken, for countries in economic transition, the 

default value of 0.6 was taken. 

The DOC values were taken from the table 

Recovered CH4 (R) is the amount of CH4 that is captured for flaring or use. Except for 

the United States it was assumed that between 95 to 100 % of the methane generated form 

MSWs is not captured and is released directly into the atmosphere. 

Due to the presence of oxygen in the upper layers of the waste mass, CH4 is oxidized 

before it’s release into the atmosphere. The Oxidation factor (OX) accounts for the CH4 that is 

oxidized in the upper layers. Not much is known about this factor and the OX factor in this 

estimate has been set equal to 0. 
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Figure 18: Model of methane emissions from waste. 

 
The model for methane emissions from waste disposal was found to be: 
 
y = -0.0027t2 + 0.4547t + 19.595 
R2 = 0.9899 
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5.7 METHANE EMISSIONS FROM INDUSTRIAL WASTEWATER 
 
 
Methane is produced from wastewater when treated anaerobically .Industrial wastewater sources 

are estimated to be major contributors to wastewater emissions. Methane is produced when 

wastewater from industries like the meat and poultry, paper and pulp, etc are handled 

anaerobiacally. This is particularly true for developing countries. 

 The principle factor in determining the CH4 generation potential of waste water is the 

amount of degradable organic content of waste water. This is generally determined by the 

Biological Oxygen Demand (BOD) or the Chemical Oxygen Demand (COD) content of waste 

water. 

 The EPA Report by Doorn et al (1997) is the basis of the method adopted for determining 

the emissions from industrial waste water. The equation below provides the methodology for 

estimating CH4 from industrial wastewater: 

 

)/()TACODQ(P10EF  Emissions  Methane
i c

iciiic
-12 yrTg∑∑ ×××××=  

Where: EF    = Emission Factor (g CH4/COD removed) 

             Pic       = Industry and country specific output (Mg/yr) 

             Qi        =Industry specific wastewater produced per unit of product (m3/Mg) 

             CODi =Organic Loading removed, by industry (g/m3) 

             TAi =Industry and country specific fraction of COD in wastewater treated                        

anaerobically 

             Subscript i = An individual industry; and 

             Subscript c =An individual country 
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For this project, the world was divided into six regions, namely Africa, Asia, Europe, North 

America, Oceana and South America. Emission were estimated for the wastewater emitted from 

Beverage (Food), Beverage (Non-food), Meat and Poultry, Fish Fruits and Vegetables, Sugar, 

Paper & Pulp as well as textile industries. Area specific data for the production of these 

commodities was obtained form the Food and Agricultural Organization (FAO) website of the 

United Nations.  

 Qi, CODi, and TAi values for the various regions were taken from Doorn et al (1997). For 

the regions for which data was not available the data was the neighboring regions were taken for 

estimation. This is done by taking into account the economic similarities (or differences) 

between the neighboring regions. 

 The product of the above mentioned factors that was expected to be treated anaerobically 

was multiplied by and emission factor of 0.3 CH4/g COD (Doorn et al, 1997). 
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Methane emissions from wastewater are represented by the figure below: 

METHANE EMISSIONS FROM INDUSTRIAL WASTEWATER

y = 0.0067x2 + 0.0167x + 3.2224
R2 = 0.9944
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Figure 19: Model of methane emissions from industrial wastewater. 

 
The model is represented by: 
 
y = 0.0067t2 + 0.0167t + 3.2224 
R2=0.9944 
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6.0 MODEL AND RESULTS 
 

The table below presents an example of our estimate of emissions in Tg from various 

anthropogenic sources. 

 

Table 6: Example of Calculated Anthropogenic Sources 

 
 1985 1990 1995 2000 

Energy 

(Natural Gas 

Production) 

33.8 38.8 41.8 44.6 

Energy 

(Coal Mining) 

33.4 37.2 37.2 35.9 

Rice 

Agriculture 

39.2 42.51 45.61 50.42 

Domestic 

Ruminants 

86.9 89.01 89.3 89.5 

Biomass 

Burning 

 53.06 51.86 59.61 

Waste (SWD’s) 29.2 31.5 32.8 32.8 

Industrial 

Wastewater. 

7.5 9.6 12.3 14.9 

 

The temporal trends for various anthropogenic sources were obtained. The trends over time for 

the various sources discussed in the previous chapter. These were the trend lines as the models 

for various sources. 
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The equation used for predicting methane emissions was: 

dt
CHd ][ 4 =Sources – Sinks 

The sources include all the natural and anthropogenic sources of methane and the sinks include 

all the processes by which methane is removed from the atmosphere. 

 

 The model for anthropogenic sources are time dependent series derived from natural gas 

production, coal production etc. Since the data for most of the time series was available from 

1960, a common time frame of time starting in 1960 was considered for all the anthropogenic 

emissions. The year 1961 was taken as year 1.Since the sources of methane are additive, the 

combined methane source was taken as the sum of the individual sources. The coefficients of t3, 

t2, t, t0 were added to give the combined source. 

 

 Along with the anthropogenic sources, emissions estimates of natural sources were taken 

from Fung et al (1991) were taken as the basis for the model. These are considered to be constant 

for the time period of the simulation. 
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The combined sources of methane are presented in table 7. This was for the first 34 years 

because the trends of methane from domestic ruminants start decreasing after 34 years which is 

contrary to what is expected. Thus a steady linear increase in emissions from domestic ruminants 

was assumed after the 34th year for future predictions (Table 8). 

Table 7: Combined Sources of Methane for years 1-34 

 
 t3 t2 t1 t0

Anthropogenic 
Sources     

Natural 
 Gas  -0.0136 1.6816 -0.4003 

Natural Gas 
(venting and 

Flaring) 
   15 

Coal 
Mining   0.3841 22.97 

Rice 
Agriculture   0.8072 17.466 

Domestic 
Ruminants  -0.0175 1.3313 64.199 

Waste 
  -0.0027 0.4547 19.566 

Wastewater 
Handling  0.0067 0.0167 3.2224 

Biomass 
Burning   0.2797 46.534 

Natural 
Sources     

Wetlands 
    115 

Termites 
    20 

Ocean 
    10 

Hydrates 
    5 

TOTAL 
  -0.0271 4.9553 338.5571 
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Table 8: Combined sources of methane. Year 34 onwards 

 t3 t2 t1 t0

Anthropogenic 
Sources     

Natural 
 Gas  -0.0136 1.6816 -0.4003 

Natural Gas 
(venting and 

Flaring) 
   15 

Coal 
Mining   0.3841 22.97 

Rice 
Agriculture   0.8072 17.466 

Domestic 
Ruminants   0.0017 67.4262 

Waste 
  -0.0027 0.4547 19.566 

Wastewater 
Handling  0.0067 0.0167 3.2224 

Biomass 
Burning   0.2797 46.534 

Natural 
Sources     

Wetlands 
    115 

Termites 
    20 

Ocean 
    10 

Hydrates 
    5 

TOTAL 
  -0.0096 3.6257 341.7843 

 

Reaction with OH was taken as the major sink of atmospheric CH4 with the lifetime (or the 

atmospheric residence time) accounting for the other sinks (oxidation in soils, reaction with Cl-) 

also. 
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 Using IPCC 2001 as the basis and definition of atmospheric residence time from Khalil 

(1996), the combination of CH4 loss due to reaction with OH (residence time 9.6 years) with soil 

as a sink of methane (lifetime-160 years) and stratospheric loss (lifetime-120 years) gave us a 

lifetime of 8.4 years, which was used in this model. 

The equation was thus rewritten as: 

τ
][CH-338.5571t9553.4t0271.0-

dt
]d[CH 424 ++=    (Years 1-34) 

τ
][CH-341.7843t6257.3t0096.0-

dt
]d[CH 424 ++=  (Year 34 onwards) 

with ‘τ’ taken to be 8.4 years. 

 
Matlab (© 2002) was used for simulation purposes ODE 23 was used for the solution of 

the differential equation. The initial concentration of methane in the atmosphere was taken to be 

2909 Tg (1 Tg = 1012 grams) and the time period for which the simulation was run was period 1 

to 34 and then period 34 to 70. 
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The predicted concentrations of methane were as follows: 

 

Figure 20: Predicting Methane Concentrations for 70 years 

 
The figure above shows the predicted concentrations of Methane. According to our predictions 

the atmospheric burden of methane in 2030 should be about 4528.3 Tg which translates into 

1934.495 ppb. 
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An attempt was made to figure out the sources which had the maximum impact on the 

concentrations of methane. This was done by eliminating each individual source and then 

running the model: 

 

1. Effect of eliminating natural gas production on atmospheric methane concentrations. 

 

 

Figure 21: Effect of eliminating natural gas production on atmospheric methane concentrations 

 

Eliminating methane emissions from natural gas production would have ultimately brought 

about a decrease in the present atmospheric concentrations by about 12%. 
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2. Effect of eliminating coal mining on atmospheric methane concentrations. 

 

 

Figure 22: Effect of eliminating coal mining on atmospheric methane concentrations 

 
Eliminating methane emissions from coal mining would have resulted in a decrease of present 

day atmospheric methane concentrations by about 7.6 %. 

If all the emissions from fossil fuel are considered (natural gas and coal mining), the present day 

atmospheric methane concentrations reduce by approximately 20%. 
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3. Effect of eliminating methane emissions from rice agriculture on atmospheric methane 

concentrations. 

 

 

Figure 23: Effect of eliminating methane emissions from rice agriculture on atmospheric methane 
concentrations. 

 
 
Eliminating methane emissions from rice agriculture bring down the present day atmospheric 

methane concentrations by 9.5%. 
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4. Effect of eliminating methane emissions from domestic ruminants on atmospheric methane 

concentrations. 

 

Figure 24: Effect of eliminating methane emissions from domestic ruminants on atmospheric methane 
concentrations. 

 
 
Eliminating methane emissions from domestic ruminants reduce the present atmospheric 

concentrations by about 18%. Clearly individually domestic ruminants are one of the most 

important sources of atmospheric methane. 
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5. Effect of eliminating methane emissions from biomass burning on atmospheric methane 

concentrations. 

 

 
Figure 25: Effect of eliminating methane emissions from biomass burning on atmospheric methane 

concentrations. 

 
 
Eliminating methane emissions from biomass reduce the present atmospheric methane 

concentrations by about 11.7%. 
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6. Effect of eliminating methane emissions from waste handling on atmospheric methane 

concentrations. 

 
Figure 26: Effect of eliminating methane emissions from waste handling on atmospheric methane 

concentrations. 

 
Eliminating methane emissions from solid waste decomposition sites reduces the atmospheric 

methane concentrations by about 6.7%. 

 

 

 

 

 
 
 
 

66 



 

7. Effect of eliminating methane emissions from wastewater handling on atmospheric 

concentrations. 

 

 
Figure 27: Effect of eliminating methane emissions from wastewater handling on atmospheric concentrations. 

 
Eliminating methane emissions from waste water reduces the atmospheric methane 

concentrations by about 2.5%. 

 
Although from the above figures it appears that individually domestic ruminants and rice 

agriculture have the maximum impact on atmospheric methane concentrations, but on a 

combined basis methane emissions from fossil fuels (natural gas production and coal mining) 

have had the maximum impact on the atmospheric concentrations of methane. Thus the 
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exponential increase of methane since the start of industrialization can safely be attributed to the 

increase in the use of fossil fuel over the last century. 

It can also be concluded that in order to methane concentrations in the atmosphere, it is 

important to concentrate upon the reduction of methane emissions from these individual sources. 

 
 

6.1 SURFACE TEMPERATURE CHANGE DUE TO CHANGE IN METHANE 
CONCENTRATIONS 

 
 
Radiative forcing is a term employed in the IPCC Assessments to denote an externally imposed 

perturbation in the radiative energy budget of the earth’s climate system. This change in the 

radiation budget has the potential to lead to changes in climate parameters and result in new 

equilibrium state of the climate system. Such an imbalance or change can be brought out by 

radiatively active species such as CO2, CH4 etc. 

An attempt was made to determine the temperature change caused by the projected 

increase in methane concentrations in the atmosphere. 

The change in the net irradiance at the tropopause, is to a first order, a good indicator of 

the equilibrium global mean surface temperature change. 

The ratio of the global mean surface temperature response ΔTs to the radiative forcing ΔF is the 

climate sensitivity parameter ‘λ’ and can be written as: 

λ=
Δ
Δ

F
Ts  

(Dickenson, 1982; Cess et al., 1993) and can be defined as the transition of the surface-

troposphere climate system from one equilibrium state to another in response to an externally 

imposed radiative perturbation.  
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A simplified expression for the calculation of radiative forcing due to change in CH4 

concentrations was obtained from Hansen et al (2000) and is given by: 

 

)),(),(()(F 0000 NMfNMfMM −−−=Δ α  

 

where, M=concentration of CH4 in ppb 

            N=concentration of N2O in ppb 

            α = 0.036  

and f (M, N) = 0.47ln [1+2.01×10-5(MN) 0.75+5.31×10-15 M (MN) 1.52] 

 

The time period in question was 70 years i.e. from 1960 to 2030. The concentration of 

CH4 in 1960 (M0) was the measured concentration of 1247 ppbv and the concentration of N2O in 

1960 (N0) was 291.4 ppbv obtained from NASA’s website. 

The concentrations of CH4 in 2030 were obtained from our model and were approx.  

1934.49 ppbv.  

The climate sensitivity parameter ‘λ’ was obtained from Ramanathan et al (1985) and 

was taken to be 0.5 K/ (Wm-2). This parameter, first introduced in one dimensional convective 

models is a nearly invariant parameter for a variety of radiative forcings, thus introducing the 

notion of a possible universitality of a relationship between forcing and response (IPCC,2001). 

Thus radiative forcing has been made an appealing concept in order to measure the global mean 

surface temperature due to the invariance of ‘λ’. 

Our predicted methane concentrations of 1934.49 ppbv from 1960 to 2030 induce a 

radiative forcings of 0.2706 W/m2. 
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This calculation using the climate sensitivity parameter leads us to calculate a global 

mean surface temperature change of 0.135 K due to the increase in methane concentrations over 

the time period in question. This temperature change is with reference to the temperature in the 

year 1960. 

 

An attempt to see the overall temperature effect of this increased methane concentration 

was made using the regression model developed in the early part of this work. 

An attempt was made to correlate the change in the surface temperature of the earth with 

Carbon Dioxide and Methane concentrations. For this a regression analysis was performed using 

the concentrations of CO2 and CH4 and the average change in the temperature of the earth. The 

result is presented in the figure below. 

70 



 

Regression Analysis for Average Surface Temperature Deviation.
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Figure 28:Average Surface Temperature Change as function of concentrations of CH4 and CO2

 

 
The following relationship was obtained which gave the change in the average surface 

temperature of the earth as a function of the concentrations of atmospheric CO2 and CH4. 

 

ΔTs = 0.000293 [CH4] + 0.005539 [CO2] - 2.20224 

 

Where ΔTs = Change in the average Surface Temperature of the Earth 

            [CH4] = Atmospheric Methane Concentrations (ppbv) 

            [CO2] = Atmospheric Carbon Dioxide Concentrations (ppm) 
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In order to compare the temperature changes by the radiative forcing method  and our 

mathematical correlation, the concentration of carbon dioxide was kept constant at 1960 levels 

and the temperature change just due to the increase in methane levels to 1934.4 ppb in 2030 was 

found to be 0.119 K. 

An attempt was also made to see the individual impact of CO2. These was done by 

keeping the levels of CH4 constant at 1960 levels and use the predicted concentrations of CO2. 

The predicted concentration of CO2 in 2030 is 417 ppm. Using this our correlation obtained a 

temperature change of 0.47 K. 

In order to ascertain the entire temperature impact, the predicted concentration of 

methane in 2030 - 1934.49 ppbv and the predicted concentration of CO2 in the year 2030 - 417 

ppm (NASA, Alternate Scenario) was taken. 

The predicted temperature change using these concentrations and the model is 0.674 K. 

This increase in temperature change is not just due to the increase in methane but also due to the 

increase in carbon dioxide concentrations as well as the effect of other substances denoted by the 

constant in the equation. Also, this temperature change is with respect to the reference 

temperature of 15ºC taken as the average surface temperature of the earth. 

We also tried to obtain the contribution of fossil fuel energy in the outgoing radiative 

budget of the earth. For the entire fossil fuel consumed on for the periods 1965-2002 was 

obtained from the British Petroleum Statistical Energy Review and the total flux of fossil fuel 

energy was calculated assuming the surface area of the earth to be 511,200,000 km2. The average 

flux obtained was 0.020 W/m2. This 0.020 W/m2 when compared to the outgoing radiation of the 

earth (237 W/m2) is just 0.0085% of the total energy budget. 
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CONCLUSION 
 

 

        Methane is undoubtedly the most important greenhouse gas after CO2.Unlike CO2 whose 

increase in atmospheric concentrations are primarily due the increase in the fossil fuel 

consumption over the last century, methane has a wide variety of anthropogenic sources. These 

anthropogenic sources can be said to be a function of population. The future concentrations of 

methane will thus be influenced by the population, the shape of the world economy as well as  

the ongoing efforts to reduce emissions from the present sources. Examples of these are efforts to 

reduce leakages through natural gas production lines, improving the quality of feed intake for 

domestic ruminants to reduce methane emissions, recovery of landfill gas produced on SWD 

sites etc. 

According to our estimates, methane levels will increase by about 100 ppbv over the next 

25 years. This increase in methane itself is quite significant as it will cause an increase of the 

surface temperature of the earth by about 0.135 K, considering the time period concerned. 

Thus, concentrating on reducing the emissions of methane will make more of an impact as the 

impact of methane is 21 times that of CO2 in the atmosphere. 
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APPENDIX 

 
Predicted concentrations of methane from 1961 (Time=1) up to 2030 (Time=70)  

 
 

Time Methane Concentrations (Tg) × 103  
     1 
     2 
     3 
     4 
     5 
     6 
     7 
     8 
     9 
    10 
    11 
    12 
    13 
    14 
    15 
    16 
    17 
    18 
    19 
    20 
    21 
    22 
    23 
    24 
    25 
    26 
    27 
    28 
    29 
    30 
    31 
    32 
    33 
    34 
    35 
    36 
    37 
    38 
    39 

    2.9190 
    2.9176 
    2.9208 
    2.9281 
    2.9391 
    2.9533 
    2.9703 
    2.9896 
    3.0112 
    3.0344 
    3.0593 
    3.0855 
    3.1128 
    3.1410 
    3.1700 
    3.1997 
    3.2299 
    3.2606 
    3.2915 
    3.3227 
    3.3540 
    3.3854 
    3.4168 
    3.4482 
    3.4796 
    3.5108 
    3.5418 
    3.5727 
    3.6033 
    3.6337 
    3.6638 
    3.6936 
    3.7231 
    3.7523 
     3.7811 
    3.8096 
    3.8378 
    3.8655 
    3.8929 
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    40 
    41 
    42 
    43 
    44 
    45 
    46 
    47 
    48 
    49 
    50 
    51 
    52 
    53 
    54 
    55 
    56 
    57 
    58 
    59 
    60 
    61 
    62 
    63 
    64 
    65 
    66 
    67 
    68 
    69 
    70 

    3.9198 
    3.9464 
    3.9726 
    3.9983 
    4.0237 
    4.0486 
    4.0731 
    4.0972 
    4.1208 
    4.1440 
    4.1667 
    4.1891 
    4.2110 
    4.2324 
    4.2534 
    4.2740 
    4.2941 
    4.3137 
    4.3329 
    4.3517 
    4.3700 
    4.3879 
    4.4053 
    4.4223 
    4.4388 
    4.4548 
    4.4704 
    4.4856 
    4.5003 
    4.5145 
    4.5283 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

75 



 

 
 

BIBLIOGRAPHY 
 
 
 

1. Anderson,K.L., Nagraja,T.G., Morrill,J.L., Avery,T.B.,Galitzer,S.J. and Boyer,E.J, 
“Ruminal microbial development in conventionally or early weaned calves” Journal of 
Animal Science  Vol.64 (1987),pp.1215 

 
2. Bachelet, D, and Neue H.U., “Methane Emissions from Wetland Rice Areas of Asia” 

Chemosphere Vol.26 (1993), Nos.1-4,pp.219-237  
 
 
3. Baird, Colin, “The Greenhouse Effect and Global Warming” Environmental Chemistry 

W.H. Freeman and Co, New York (1998), pp.173-220. 
 

4. Beck, L.L , “A Global Methane Emissions Program for Landfills, Coal Mines, and 
Natural Gas Systems” Chemosphere Vol.26,Nos1-4 (1993),pp.447-452 

 
5. Bingmer,H.G. and Crutzen .P.J. , “The production of Methane from Solid Wastes” 

Journal of Geophysical Research Vol.92,No.D2 (1987),pp.2181-2187 
 

6. Bowen, H.J.M, “Environmental Chemistry of the Elements” (1979) Academic Press, 
London, England. 

 
7. Cao, Mingkui, Gregson, Keith and Marshal, Stewart, “Global Methane Emissions from 

Wetlands and its Sensitivity to climate change” Atmospheric Environment Vol.32, No.19 
(1998), pp.3293-3299. 

 
8. Casey, T.J., “Unit treatment processes in water and wastewater engineering” John Willey 

New York (1997). 
 

9. Chappellaz, J., Fung, I.Y. and Thompson, A.M., “The atmospheric CH4 increase since 
the Last Glacial Maximum. Source Estimates” Tellus 45B (1993), pp.228-241. 

 
10. Cicerone,R.J. and Oremland,R.S., “Biogeochemical aspects of atmospheric methane” 

Global Biogeochemical Cycles.Vol.2 (1988),pp.299-327, 
 

11. Crutzen, Paul J. and Andreae, Mainrat O., “Biomass Burning in the Tropics: Impact on 
Atmospheric Chemistry and Biogeochemical cycles” Science Vol.250, No.4988 (Dec21, 
1990), pp.1669-1678. 

 
 

76 



 

12. Czepiel, Peter M., Crill, Patrick M. and Harriss Robert C., “Methane Emissions from 
Municipal Wastewater Treatment Processes” Environmental Science and Technology 
Vol.27 (1993), pp.2472-2477. 

 
13. Dickenson, Robert E and Cicerone, Ralph J “Future Global warming from Atmospheric 

Trace Gases” Nature Vol.319 (1986) pp.109-115. 
 

14. Dlugokencky, E.J., Steele, L.P., Lang, P.M., and Masarie, K.A. “The growth rate and 
distribution of atmospheric methane” Journal of Geophysical Research Vol.99, No. D8 
(1994) pp.17,201-17,043 

 
15. Dlugokencky, E.J., Steele, L.P., Lang, P.M., and Tans, P.P., “Continuing decline in the 

growth rate of atmospheric methane burden” Nature Vol.393 (1998) pp.447-450. 
 

16. Doorn, Micheal R.J., Strait, Randy P., Barnard, William R. and Eklund, Bart, “Estimates 
of Global Greenhouse Gas Emissions from Industrial nd Domestic Wastewater 
treatment” US Environmental Protection Agency, EPA-600/R-97-091, Air Pollution 
Prevention and Control Division. 

 
17. El-Fadel M. and Massoud, M., “Methane emissions from wastewater management” 

Environmental Pollution Vol.114 (2001) pp.177-185. 
 

18. Etheridge,D.M., Pearman,G.I., and Fraser,P.J., “Changes in tropospheric methane 
between 1841 and 1978 from high accumulation rate Antarctic ice core” Tellus Vol.44B, 
(1992) pp.282-294. 

 
19. Fung,I., John,J., Lerner,J., Matthews,E., Prather,M., Steele,L.P. and Fraser,P.J., “Three –

dimensional model synthesis of the global methane cycle” Journal of Geophysical 
Research Vol.96 (1991),pp.13033-13065. 

 
20. Gettelman, Andrew and Holton, James R, “Mass fluxes of O3, CH4, N2O and CF2Cl2 in 

the lower stratosphere calculated from observational data” Journal of Geophysical 
Research, Vol.102, No. D15 (1997) , pp.19,149-19,159. 

 
21. Goldammer,Johann G. and Mutch, Robert W., “Global Forest Fire Assessment 1990-

2000” (2001) FAO Document Repository. 
 

22. Gunnerson,C.G. and Stucky, D.C. “Anaerobic Digestion” Technical Paper, 49, (1986) 
World bank, Washington, D.C, 

 
23. Hansen, James, Sato, Makiko, Ruedy, Reto, Lacis, Andrew and Oinas, Valdar, “Global 

Warming in the twenty-first century: An alternate scenario” PNAS Vol.29, No.18 
(2000),pp.9875-9880. 

 
24. Holder, G.D., Kamath,V.A., and Godbole,S.P., “The Potential of Natural Gas Hydrates as 

an Energy Resource” Annual Rev. Energy Vol.9 (1984), pp.427-445. 

77 



 

 
25. Houweling, S., Kaminski, T., Denter, F., Lelieveld, J. and Heimann, M., “Inverse 

modeling of methane sources and sninks using the adjoint of a global transport model” 
Journal of Geophysical Research Vol.104 (1999), pp.26137-26160. 

 
26. Hugo, Loaiciga A, Valdes Jaun B, Vogel, Richard, Garvey, Jeff, Schwarz Harry, “Global 

warming and hydrologic cycle” Journal of Hydrology Vol.174 (1996) pp.83-127 
 

27. Houghton,J.T., Ding,Y.,Griggs,D.J.,Noguer,M.,van der Linden,P.J.,Dai,X.,Maskell,K., 
and Johnson,C.A., “Climate Change 2001:The Scientific Basis” Contribution of working 
group III to the Third Assessment Report of the Intergovernmental Panel on Climate 
Change. 

 
28. Johnson, K.A. and Johnson, D.E, “Methane Emissions from cattle” Journal of Animal 

Science Vol73(1995) pp.2483-2492 
 

29. Judd, A.G., Charlier, R.H., Lacroix, A., Lambert, G. and Rouland, C. “Minor Sources of 
Methane” Edited by Khalil, M.A.K, Atmospheric Methane: Sources, Sinks and Role in 
Global Change. (1993), Springer-Verlag, New York, NY, pp.432-456. 

 
30. Judkins  Roddie R, Fulkerson William and Sanghvi Manoj K, “The Dilemma of  Fossil 

Fuel Use and Global Climate Change” Energy and Fuels Vol.7 (1993),pp.14 – 22 
 

31. Karl, Thomas R. and Trenberth, Kevin E., “Modern Global Climate Change” Science 
Vol.302 (2003).  

 
32. Karlsdottir, S., and Isaken, I.S.A., “Changing Methane lifetime: Possible causes for 

reduced growth" Geophysical Research Letters, Vol.27, (2000) pp. 93-96. 
 

33. Kessel, Dagbort G., “Global warming – facts, assessment, countermeasures” Journal of 
Petroleum Science and Engineering, Vol.26 (2000) pp.157-168. 

 
34. Khalil, M.A.K., “Atmospheric methane: an introduction” Edited by Khalil,M.A.K., 

Atmospheric Methane: It’s role in the Global Environment.(2000) Springer-Verlag,New 
York,NY,pp.1-8. 

 
35. Khalil, M.A.K., and Lu, Yu, “Methane and Carbon Monoxide in OH Chemistry: The 

effects of feedbacks and Reservoirs generated by reacted products” Chemosphere Vol.26. 
Nos.1-4 (1993) pp.614-655. 

 
36. Khalil, M.A.K., Shearer, M.J.and Rasmussen, R.A., “Atmospheric Methane over the Last 

Century” World Resource Review, Vol.8, No.4 (1996), pp.481-492. 
 

37. Khalil, M.A.K., and Rasmussen, R.A., “Decreasing Trend of Methane: Unpredictability 
of future concentrations” Chemosphere Vol.26. Nos. 1-4 (1993) pp.803-814. 

 

78 



 

38. Khalil,M.A.K., and Rasmussen,R.A, “Atmospheric Methane: Trends Over the Last 
10,000 Years” Atmospheric Environment Vol. 21, No.11 (1987) pp.2445-2452. 

 
39. Kumar Sunil, Gaikwad S.A., Shedkar, A.V., Kshirsagar, P.S. and Singh, R.N., 

“Estimation method for national methane emission from solid waste landfills” 
Atmospheric environment Vol.38 (2004), pp.3481-3487. 

 
40. Law, K.S. and Nisbet, E.G., “Sensitivity of the CH4 growth rate to changes in CH4 

emissions from Natural Gas and Coal” Journal of Geophysical Research Vol.101, No.D9 
(June 1996), pp.14, 387-14,397. 

 
41. Lee, S.Y., and Holder G.D., “Methane hydrates potential as a future energy source” Fuel 

Processing Technology Vol.71 (2001) pp.181-186. 
 

42. Lelieveld, Joe, Crutzen, Paul J, and Dentener, Frank J, “Changing concentration, lifetime 
and climatic forcing of atmospheric methane” Tellus Vol.50B (1998) pp.128-150 

 
43. Levine,J.S., Cofer III,W.R. and Pinto,J.P., “Biomass Burning” Atmospheric Methane :Its 

Role in the Global Environment. (2000), Springer-Verlag, New York, NY, pp.190-201. 
 

44. Lu,Y., and Khalil,M.A.K., “Tropospheric OH: Model Calculations of spatial temporal 
and secular variations” Chemosphere Vol.23,No.3,pp.397-444. 

 
45. Mathews, Elaine, “Wetlands” Edited by Khalil, M.A.K, Atmospheric Methane: Sources, 

Sinks and Role in Global Change. (1993), Springer-Verlag, New York, NY, pp.314-361. 
 

46. Miller, Daniel N., Ghiorse, William C. and Yavitt, Joseph,B. “Seasonal Patterns and 
Controls on Methane and Carbon Dioxide Fluxes in Forested Swamp Pools” 
Geomicrobiology Journal, Vol.16 (1999),pp.325-331. 

 
47. Minami K., “Methane from rice production” Fertilizer Research Vol.37 (1994) pp.167-

179 
 

48. Minami K. and Takata K., “Atmospheric Methane: Sources, Sinks and Strategies for 
Reducing Agricultural Emissions” Water Science and Technology Vol.36 (1997) No.6-7, 
pp.509-516. 

 
49. Nue, H.U. and Roger, P.A., “Rice Agriculture: Factors Controlling Emissions” edited by, 

Khalil,M.A.K.,Atmospheric Methane: Sources and Sinks and Role in Global Warming 
(1993), Springer-Verlag, New York, NY, pp.254-298. 

 
50. Revised 1996 IPCC guidelines for National Greenhouse Gas Inventories: The workbook 

(Volume 2). Published by the Intergovernmental Panel on Climate Change. 
 

51. Ridgewell, A.J., Marshall, S.J. and Gregson, K., “Consumption of methane by soils: A 
process-based model.” Global Biogeochemical Cycles, Vol.13 (1999),  pp. 59-70 

79 



 

 
52. Sheppard,J.C, Westberg,H., Hopper,I.F., Gansea,K., and Zimmerman,P. “Inventory of 

global methane sources and production rates” Journal of Geophysical Research Vol.87 
(1982) pp.1305-1312. 

 
53. Singh, H.B., Thakur,A.N., and Chen, Y.E., “Tetrachloroethylene as an indicator of low 

Cl atom concentrations in the troposphere” Geophysical Research Letters, Vol.23, No. 12 
(1996) pp. 1529-1532. 

 
54. Takai,Y.,Koyama,T. and Kamura,Y., “Microbial metabolism in reduction process of 

paddy soils (Part 1)” Soil Plant Food 2 (1956), pp.63-66. 
 

55. Van Der Nat, Frans-Jaco and Middelburg, Jack, J , “Methane Emissions from tidal 
freshwater marshes” Biogeochemistry Vol.49 (2000), pp.103-121. 

 
56. Wang,Y. and Jacob,D.J., “Anthropogenic forcing on tropospheric ozone and OH since 

pre-industrial times” Journal of Geophysical Research Vol.103, pp.31123-31135. 
 

57. Wassmann, R., Papen, H and Rennenberg, H., “Methane emissions from Rice paddies 
and Possible Mitigation Strategies” Chemosphere, Vol. 26 (1993) Nos. 1-4 pp.210-217. 

 
58. Watt Committee, Watt Committee Report, “Methane Emissions” Twenty-ninth 

Consultative Conference of the Watt Committee on Energy (1993).  Edited by Williams 
A, Watt Committee on Energy, London. 

 
59. Woytinsky,W.S. and Woytinsky E.S., “The economics of Energy and Power” World 

Population and Production – Trends and Outlook (1953) The Twentieth Century 
Fund,Inc, New York,pp.924-983. 

 
60. Wuebbles, Donald J. and Hayhoe, K., “Atmospheric methane and global change” Earth 

Science Reviews Vol.57 (2002) pp.177-210 
 

61. Wuebbles, Donald J. and Tamarsis, John S. “The role of methane in the global 
Environment” Edited by,.Khalil,M.A.K., Atmospheric Methane: Sources , Sinks and 
Role in Global change(1993), Springer-Verlag, New York, NY, pp.469-513 

 
62. http://www.epa.gov/methane/sources.html#natural 

 
63. http://www.cdiac.esd.ornl.gov/ftp/ndp055/ndp055appA.pdf 

 
64. http://www.faostat.fao.org/ 

 
65. http://www.eia.doe.gov/international/ 

 
66. http://www.un.org/esa/population/publications/sixbillion/sixbilpart1.pdf 

 

80 

http://www.epa.gov/methane/sources.html#natural
http://www.faostat.fao.org/
http://www.eia.doe.gov/international/
http://www.un.org/esa/population/publications/sixbillion/sixbilpart1.pdf


 

67. http://www.giss.nasa.gov/ 

81 

http://www.giss.nasa.gov/

	TABLE OF CONTENTS
	LIST OF TABLES 
	Table 1: Anthropogenic and Natural Sources of Methane.
	Table 2: Rice emission factors
	Table 3: Emission Factors for Domestic Ruminants
	Table 4: Country waste generation, composition and disposal data
	Table 5: SWDs Classification and methane correction factors (MCF)
	Table 6: Example of Calculated Anthropogenic Sources
	Table 7: Combined Sources of Methane for years 1-34
	Table 8: Combined sources of methane. Year 34 onwards

	LIST OF FIGURES 
	Figure 1: Carbon dioxide and methane concentrations from 1850 till present
	Figure 2: Earth’s average surface temperature Vs carbon dioxide concentrations.
	Figure 3: Global average surface temperature Vs methane concentrations
	Figure 4:Wavelength distributions for light emitted by the sun (dashed curve) and by the Earth’s surface and the troposphere (solid curve). (Source: Baird, Colin, “Environmental Chemistry”2nd Edition, W.H.Freeman Company, NY, 1998.)
	Figure 5: Increase in methane concentrations in the atmosphere from the mid 1800’s till present.
	Figure 6: Concentrations of methane Vs world population(Methane Data Source: NASA; Population Data Source: United Nations).
	Figure 7: Carbon dioxide concentrations Vs fossil fuel consumption since late 1800’s till present.
	Figure 8: Methane concentrations Vs fossil fuel consumption since late 1800’s till present.
	Figure 9: Break up of the anthropogenic and the natural Sources of methane (Source: Wuebbles, 2002 and Khalil, 2000)
	Figure 10: Depiction of production, reoxidation, and emission of CH4 in a paddy field(Source: Neue and Roger, 1993)
	Figure 11: Sinks of methane
	Figure 12: Model of methane production from Natural Gas.
	Figure 13: Model of Methane production from Coal.
	Figure 14: Total rice production vs area harvested for time starting 1960.
	Figure 15:: Model of methane emissions from rice agriculture.
	Figure 16: Model of methane emissions from domestic ruminants.
	Figure 17: Model of methane emissions from biomass burning.
	Figure 18: Model of methane emissions from waste.
	Figure 19: Model of methane emissions from industrial wastewater.
	Figure 20: Predicting Methane Concentrations for 70 years
	Figure 21: Effect of eliminating natural gas production on atmospheric methane concentrations
	Figure 22: Effect of eliminating coal mining on atmospheric methane concentrations
	Figure 23: Effect of eliminating methane emissions from rice agriculture on atmospheric methane concentrations.
	Figure 24: Effect of eliminating methane emissions from domestic ruminants on atmospheric methane concentrations.
	Figure 25: Effect of eliminating methane emissions from biomass burning on atmospheric methane concentrations.
	Figure 26: Effect of eliminating methane emissions from waste handling on atmospheric methane concentrations.
	Figure 27: Effect of eliminating methane emissions from wastewater handling on atmospheric concentrations.
	Figure 28:Average Surface Temperature Change as function of concentrations of CH4 and CO2

	ACKNOWLEDGEMENTS
	1.0 INTRODUCTION 
	2.0 MECHANISM OF THE GREENHOUSE EFFECT 
	2.1 HOW GREENHOUSE GASES ABSORB ENERGY: MOLECULAR VIBRATIONS 

	3.0 PROBLEM DESCRIPTION: METHANE 
	4.0 LITERATURE REVIEW 
	4.1 GLOBAL WARMING 
	4.2 METHANE 
	4.3 ANTHROPOGENIC SOURCES OF METHANE 
	4.3.1  Natural gas 
	4.3.2 Coal 
	4.3.3 Domestic Ruminants 
	4.3.4  Rice Cultivation 
	4.3.5 Biomass Burning 
	4.3.6 Waste 
	4.3.6.1 Solid Wastes 
	4.3.6.2 Wastewater handling 


	4.4 NATURAL SOURCES OF METHANE 
	4.5 SINKS OF METHANE 
	4.6 MODEL 

	5.0 MODEL FORMULATION 
	5.1 METHANE EMISSIONS FROM NATURAL GAS PRODUCTION AND TRASMISSION 
	5.2 METHANE EMISSIONS FROM COAL PRODUCTION 
	5.3 METHANE EMISSIONS FROM RICE AGRICULTURE 
	5.4 METHANE EMISSIONS FROM DOMESTIC RUMINANTS 
	5.5 METHANE EMISSIONS FROM BIOMASS BURNING 
	5.6 METHANE EMISSIONS FROM WASTE DISPOSAL 
	5.7 METHANE EMISSIONS FROM INDUSTRIAL WASTEWATER 

	6.0 MODEL AND RESULTS 
	6.1 SURFACE TEMPERATURE CHANGE DUE TO CHANGE IN METHANE CONCENTRATIONS 

	CONCLUSION
	APPENDIX
	BIBLIOGRAPHY

