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ABSTRACT: Three dimensional (3D) photonic crystal has attracted enormous interest in the last decade 

in both science and technology communities. Its unique capability to trap photons offers an interesting 

scientific perspective and can be useful for optical communication and sensing. However, the fabrication 

of large-scale 3D photonic structures at sub-micron scale with optimal photonic bandgap (PBG) remains a 

great challenge. Considerable efforts have been dedicated to develop fabrication techniques to produce 

large area defect-free 3D photonic structures toward device applications. This part of research need to 

develop a CMOS-compatible, laser interference lithography technique to produce 3D photonic structure 

on-chip using single- or multiple- layer diffractive optical elements (DOE). The DOEs can be 

incorporated into phase/amplitude masks used in optoelectronic circuit fabrications to enable a full 

integration of 3D photonic structures on-chip.  

Presented in this dissertation is the study of novel fabrication approaches of 3D photonic crystal. 

Compare to others, our studies utilize phase masks to fabricate 3D diamond-like photonic crystal 

templates in SU8 photoresist. 3D woodpile structures were fabricated by a double-exposure of SU8 to a 

three-beam or five-beam interference pattern generated by phase masks. Lattice structures and the PBG 

can be controlled by the rotational angles and relative displacement of the phase mask between exposures. 

Also, by using a single optical element such as special designed prism or phase mask, we demonstrate the 

phase tunability in the laser holographic patterning of 3D photonic crystal and quasi-crystal lattice 

structures. Photonic band gap computation predicts the existence and optimization of a full band gap in 

fabricated structures. The current studies demonstrate a simple and flexible approach to fabricate 3D 
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photonic crystals with complex structures. It also lays solid ground work toward integrated fabrication of 

3D photonic crystal structures on other optoelectronic components.  
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1.0  MOTIVATION 

As the telecommunication and computing industries are currently facing increasing challenges to 

transfer data at a faster rate[1], researchers believe that it might be possible to engineer a device 

operate at optical, i.e. gigahertz or terahertz, frequencies. Photonic technology using light instead 

of electrons as a vehicle for information transfer paves the way for a new technological 

revolution in this field. Photons used for communication has several advantages over electrons 

which are currently being used in electronic circuits.  Photonic devices made of a specific 

material can provide a greater bandwidth than the conventional copper wires and can also carry 

large amount of information per second without interference.  

Photonic crystals are such kind of material. They are periodic structures that allow us to 

control the flow of photons [2, 3]. To some extent it is similar to the way in which semiconductors 

control the flow of electrons. Electrons move in a piece of crystalline silicon (periodic 

arrangement of Si atoms in diamond-lattice), and interact with the nuclei through the Coulomb 

force. Consequently they see a periodic potential which brings forth allowed and forbidden 

electronic energy bands. The careful control of this behavior allowed the realization of the first 

transistor. Now, imagine a slab of dielectric material in which periodic arrays of air cylinders are 

placed. Photons propagating in this material will see a periodic change in the index of refraction. 

To a photon this looks like a periodic potential analogous to the way it did to an electron. The 
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size of the index difference between the cylinders and the background material can be made such 

that it confines light and, allowed and forbidden regions for photon energies are formed[4].  

So it is critical to find a proper fabrication approach of photonic crystal with desired 

photonic band structure. Nowadays, the fabrication of photonic crystals is quite a hot topic. 

Intrigued by their vast potential in photonics engineering, tremendous efforts have been invested 

into the fabrication of 3D photonic crystal structures. However, the fabrication of those photonic 

crystals with a complete PBG, i.e. can exhibit bandgaps for the incident lights from all 

directions, still proves to be a challenge[5]. On the other way, the location of bandgap center is 

also important and a burning question to determine a useful communication region. Considerable 

efforts have been dedicated to develop fabrication techniques to produce large area defect-free 

3D photonic structures toward device applications. This part of research needs to develop a 

CMOS-compatible, fast and repeatable technique to produce 3D photonic crystal structures with 

complete bandgaps around the visible and near infrared (IR) telecommunication windows[5]. Our 

lab in collaboration with Dr. Yuankun Lin, from the University of Texas Pan-American, 

proposes the fabrication approaches of complex photonic crystal templates by using different 

kinds of optical elements[6-8]. These elements simplify the laborious fabrication of photonic 

crystals and are amendable for massive production and chip-scale integration of 3D photonic 

structures.  
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1.1 OUTLINE 

 

Figure 1.1 Flowchart of this dissertation.  

 

The paper is structured in a way to describe my PhD research directions to the goal for easy and 

optimal fabrication processes of 3D photonic crystal template. We start from the traditional 

multi-beam interference lithography[9], also namely holographic lithography (HL) [10], and design 

various advanced phase gratings as masks to assist the HL process[11]. The process has been 

improved from multiple exposures to merely single exposure. At same time, by introducing 

phase-tuning capability, the phase mask lithography technique can be developed into single 

exposure to have 3D interconnected, large bandgap width photonic structures[8]. The ultimate 

goal is to miniaturize the phase mask integrate the mask and 3D structure with other optical 

components and introduce defects inside the 3D structure as waveguide.  

 Chapter 1 in this paper starts from the theoretical description of photonic crystals, 

alternatively namely as PBG materials. It also covers the principle for the occurrence of PBG, 
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the simulation methods for photonic band structure, the optical properties, the application and the 

state-of-arts fabrication approaches of the photonic crystal. 

Chapter 2 first briefly introduces the HL methods, and then focuses on the DOE 

introduction, as a tool in HL. It will be used to fabricate 3D photonic crystal template throughout 

this paper. At the end, it describes the purpose of using DOEs, which is used to simplify the 

optical alignment and enhance the integrated system.  

From chapter 4 we will begin to present our experimental work consequently. This whole 

chapter describes the approach of phase mask assisted 3D photonic crystal fabrication. We 

introduce a one dimensional (1D) commercial phase mask, lab-made coplanar two dimensional 

(2D) and two-layer integrated phase mask as the novel DOE, respectively. Complex 3D photonic 

crystal structures are formed by exposure(s) to multi-beam interference patterns via DOEs.  

Chapter 5 demonstrates another approach to fabricate diamond-like structure with only 

one single exposure and with phase tuning ability. Both bulk reflective optical element, such as a 

top-cut prism, and thin film DOE, such as a specially designed planar phase mask, are employed 

to generate multiple coherent beams for HL process.   

Chapter 6 shows a 3D photonic quasi-crystal structure fabricated by specially designed 

coplanar phase masks. Chapter 7 shows the HL technique combined with two-photon direct laser 

writing technique to fabricate the 3D structure with line defect as waveguide.  

Chapter 8 concludes the paper.  
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2.0  PHOTONIC CYRSTAL FUNDMENTALS 

Photonic crystals are classified primarily into three categories, which are, 1D, 2D and 3D 

crystals according to the dimensionality of the stack[4]. Depending on the refractive index 

contrast ratio, structure geometry and the lattice periodicity, the PBGs of photonic crystal are 

determined for specific frequency ranges in electromagnetic (EM) spectra. No EM waves can 

propagate inside the corresponding bandgap ranges except for totally reflected. Using this 

property we can manipulate, guide and confine photons, which in turn makes it possible to 

produce optical integrated circuits.  

2.1 THEORY OF PHOTONIC CRYSTAL 

2.1.1 Mathematical expression 

First we will start from the theoretical deviation for this mysterious material. The mathematic 

expression of the EM wave propagation in a photonic crystal is derived from classic Maxwell’s 

equations [12]. The periodic structure of photonic crystal will turn the equations into a linear 

Hermitian eigenvalue problem. According to Maxwell’s equation, when an EM wave is 

travelling in a medium, the equation to describe the propagation can be written in S.I. unit as 

follows,  
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       ∇ ∙ 𝐷(𝑟, 𝑡) = 0              (2.1a) 

                  ∇ ∙ 𝐵(𝑟, 𝑡) = 0             (2.1b) 

( ) ( ),
, 0

B r t
E r t

t
∂

∇× + =
∂

    (2.1c) 

( ) ( ),
, 0

D r t
H r t

t
∂

∇× − =
∂

    (2.1d) 

here we assume that no free charges or current applied; E and H are macroscopic electric and 

magnetic field, D and B are the displacement and magnetic induction fields. Now considering a 

lossless, isotropic, dielectric medium, the relationships for the fields can be written as; 

( ) ( )rErrD εε 0)( = , )()( 0 rHrB µ=  

by substituting these equations into the places in Eq. (2.1c,d) , we obtain; 

( ) ( )

( ) ( ) ( )









=
∂

∂
−×∇

=
∂

∂
+×∇

0,,

0,,

0

0

t
trErtrH

t
trHtrE

εε

µ
   (2.2) 

Assuming that the fields are changing harmonically in time and using the linearity of 

Maxwell equations, we can separate the variables r and t and rewrite E and H as: 

( ) ( )
( ) ( )





=

=
−

−

ti

ti

erHtrH
erEtrE

ω

ω

,
,

     (2.3) 

Hence by substituting Eq. (2.3) into equations in Eq. (2.2), spatial profile of the fields can 

be found: 

( ) ( )
( ) ( ) ( )




−=×∇
=×∇

trEritrH
trHitrE

r ,,
,,

0

0

εωε
ωµ

   (2.4)  

Eq. (2.4) can be solved for either H or E, subject to the condition resulting from the 

transverse fields and assuming tie ω−  time dependence cancelling; 
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( ) ( ) ( )rEirH
rr

ω
εε

−=×∇
0

1

( ) ( ) ( )( ) ( ) ( )rHrHiirEirH
rr

0
2

0
0

1 µωµωωω
εε

=⋅⋅−=×∇⋅−=








×∇×∇  

recalling that 002

1 εµ=
c

, c is the speed of light, we obtain the vector Helmholtz equation,  

( ) ( ) ( )rH
c

rH
rr

21






=









×∇×∇
ω

ε
   (2.5) 

Eq. (2.5) is referred to as the master equation for the EM problem in a photonic crystal medium 

and can be written in a compact form; 

                                     
( ) ( )rH

c
rHH

2







=Θ
ω     (2.6) 

where, ( ) 







×∇×∇=Θ
rr

H ε
1 . Eq. (2.6) is classified as eigenvalue problems with eigenvalues 

2









c
ω and eigenfunction H(r). It is preferable to solve the problem for a given photonic crystal 

characterized by the dielectric function ε (r), by using Eq. (2.6), which is the standard choice in 

general, and then use Eq. (2.4) to find E as ( ) ( ) ( )trH
ri

trE
r

,1,
0

×∇







−

=
εωε

, because the 

operator HΘ  in Eq. (2.6) is proved Hermitian while the operator EΘ , if we following a similar 

procedure for E, is not. 

The band structure of a photonic crystal indicates the response of the crystal to certain 

wavelengths of the EM spectra for a certain propagation direction. It defines optical properties of 

the crystal such as transmission, reflection and their dependence on the direction of propagation 

of light. As stated above, photonic crystals are periodic dielectric materials with dielectric 
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functions of the form ( ) ( )Rrr += εε  for any GmR ⋅=  , where m is an integer and G is the 

primitive lattice vector. For a periodic eigenvalue problem as in Eq. (2.5) 

( ) ( ) ( ) ( )rH
c
krH

rr

21






=









×∇×∇
ω

ε
, 

by using Bloch’s theorem, the solutions can be chosen in the form: 

( ) ( )ruerH k
rik ⋅=  

where, ( )ruk is a periodic function on the lattice, with 

( ) ( )Rruru kk +=  

for all lattice vectors. Substituting above equation into Eq. (2.5), 

( ) ( ) ( ) ( )( )rue
c
krue

r k
rik

k
rik

r

⋅⋅ 





=








×∇×∇

21 ω
ε

 , 

( ) ( ) ( ) ( ) ( ) ( )( )rue
c
kruik

r
ik k

rik
k

r

⋅





=








×∇+×∇+

21 ω
ε

 

which results in a new Hermitian eigenvalue equation, 

( ) ( ) ( )ru
c
kru kkk

2







=Θ
ω     (2.7) 

with  

( ) ( ) ( ) 







×∇+×∇+=Θ ik

r
ik

r
k ε

1    (2.8) 

and eigenvalues ( )( )2/ ckω , over the primitive cell of the lattice at each Bloch wave vector k. 
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2.1.2 Regular crystal vs photonic crystal 

 

Table 2.1 Comparison of regular crystal and photonic crystal 

 Regular Crystal Photonic crystal 

System Periodicity  periodic potential  

𝑉(𝑟) = 𝑉(𝑟 + 𝑅) 

periodic dielectric constant 

𝜀(𝑟) =  𝜀(𝑟 + 𝑅) 

Time dependent 

function to separate 

out into normal 

mode 

scalar wave function 

Ψ(𝑟, 𝑡) = �𝑐𝐸
𝐸

Ψ𝐸(𝑟)𝑒𝑖𝐸𝑡/ℏ 

Vector wave function 

H(𝑟, 𝑡) = �𝑐𝐸
𝜔

H𝜔(𝑟)𝑒𝑖𝜔𝑡/ℏ 

Master equation Schrödinger Equation  

(Quantum Mechanics) 

�−
𝑝2

2𝑚
+ 𝑉(𝑟)�Ψ𝐸(𝑟) = 𝐸Ψ𝐸(𝑟) 

Maxwell Equation  

(Electrodynamics) 

�
𝑝2

2𝑚
+ 𝑉(𝑟)�Ψ𝐸(𝑟) = 𝐸Ψ𝐸(𝑟) 

Control unit Electrons’ motion Photons’ propagation 

Lattice constant Atom scale Wavelength scale 

In common Bloch’s Law  (expanded into Bloch form), Eigen problem, Brillouin zone 

Bandgap, defects 

 

The analysis of photon propagation in a photonic crystal is comparable to electron dynamics in 

regular crystal in quantum mechanics. The mathematic expression as periodic boundary 

conditions are taken into account, to solve this problem can be regarded to do it in a single unit 

cell. The Schrödinger equation for an electron with effective mass in a crystal can be written as  
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�− 𝑝2

2𝑚
+ 𝑉(𝑟)�Ψ𝐸(𝑟) = 𝐸Ψ𝐸(𝑟)  

where V(r) is a period potential function with the periodicity of the lattice R, V(r)=V(r+R). The 

eigenstates of this equation are period functions with period R as well. Table 2.1 shows a 

complete comparison between photonic crystal and regular crystal, indicating the parallelism 

between electrons in semiconductors and photons in photonic crystals.  

From Table 2.1 we can see that the electron are scalar waves, while photons are vectorial 

ones, which implies that in the latter case, the polarization must be taken into account. On the 

contrary, the electron wave equations are not scalable, since an intrinsic length measure is 

associated with the electron size (de Broglie wavelength) where the potential periodicity can be 

gauged. This restriction does not apply for photons. The photon wave equations are scalable. 

Hence if a PBG structure presents a given periodicity length, it will show photonic bands in a 

certain range of frequency.  

2.1.3 PBG formation 

Back to Eq. (2.8), if k is given, there will have an infinite set of modes with discretely spaced 

frequencies, numbered by band index n. However, we can see that the operator kΘ  is restricted 

by given k. Then we reach the conclusion the frequency of each band will vary continuously as k 

varies; and the modes of a photonic crystal are a family of continuous function ( )knω , indexed in 

order of increasing frequency by n. The band structure problem for a photonic crystal is to plot ω 

(k) as a function of wave vector k, as shown in Fig. 2.1. Because the eigensolutions are periodic 

functions of k, that is the solution at k is the same as the solution at k+G, where G is a primitive 

reciprocal lattice vector, we only need to consider the k points in the irreducible Brillouin zone. 
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Furthermore, by considering the invariance of the master equation (Eq. (2.5)) under time reversal 

(ω (k) = ω (-k)) for a photonic crystal, the band structure can be further simplified by only 

solving the non-negative Bloch vectors [12].  

 

 

Figure 2.1 (left) Energy dispersion relations for a free photon and a photon in a PBG structure; (right) 

illustration of two kind of confined modes (standing waves) in a 1D photonic crystal, corresponding to the 

upper and lower bounds of PBG. 

 

An intuitive explanation for the PBG formation can be seen from Fig. 2.1 (right). The EM 

wave incidents from one side and reflected at each interface of n1 and n2. For certain frequencies, 

if the reflected waves generated at each interface happen to be in phase, they will be summed up 

until cancel the incident wave. Thus in dispersion spectrum, a gap (or band, peaks) 

corresponding to those frequencies lights will show up. The confined modes, i.e. standing waves 

stored in n1 and n2, correspond to the PBG edge frequencies with zero group velocities.  
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Conventionally the relative PBG width is defined by the PBG width ∆ω over the central 

band frequency ω0  
0ω
ω∆

≡widthPBG .   

From dispersion relationship ω=kc/n, we have  









−=−=∆

12
12

11
nn

c
a
πωωω  

and  







+=+=

12
120

11
2

)(2/1
nn

c
a
πωωω  

then we can conclude the PBG of photonic crystal have properties as follow:  

1. PBG width independent of light polarization and k vector directions; 

2. To have a PBG in communication width (visible or near IR ranges), i.e. the central 

frequency ω0 should in that range,  the crystal lattice a should be comparable to the 

operating wavelength; 

3. ∆ω is proportional to the refractive index ratio n2/n1;  

4. The filling ratio of high index material determines the amplitude of the standing waves 

store, which means it changes upper and lower bound locations of the PBG.  

5. In 3D photonic crystal, as shown in Fig.2.2, the absolute and complete PBG is defined as 

the overlap region in every G direction of the crystal. So A good crystal lattice with 

symmetry as high as possible for the first Brillouin zone in reciprocal space is necessary.  
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Figure 2.2 (left) First Brillouin zone of a 3D woodpile photonic crystal; (right) a complete PBG shows 

presents the overlap gap region in every primitive vector (G vector) directions.  

 

Optical measurements are important to photonic crystals. Reflection and transmission 

spectroscopy is the principle tool used to characterize the PBG structures. It reveals the 

forbidden bands through increased reflection level or decreased transmission level, which forms 

a (Bragg reflection) “peak” or “gap” in the wavelength resolved domain, experimentally 

obtained by an optical spectrometer or Fourier Transform Infrared Spectroscopy (FTIR). If we 

do the Fourier transform for the time domain spectrum (E(r) or H(r)) into frequency domain, the 

photonic band structure spectrum (ω(k)) can be distinctly derived [12].   

In the presence of structural disorder, transmission/reflection spectra obtained in 

experiments are affected differently. Reflection peaks tend to become less intense, asymmetric 

and even spectrally wider. Angle-resolved transmission/reflection spectra are important in PBG 

structure characterization, especially for 3D PBG structures. Realization of complete PBGs has 

been a goal for researches on fabrication of 3D PBG structures. The only way to ensure a 
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complete bandgap is to obtain all-angle transmission/reflection spectra and find the 

corresponding mutual reflection peak or transmission valley for all incident angles. 

Also, optical diffraction pattern measurement is the simplest method to measure the long-

range order of the PBG structures. Diffraction patterns observed with visible light have been 

used to analyze the disorder in PBG structures. Studies in polarization properties of PBG 

structures have also been a concern of many researchers. 

Polarization has been an important issue for 2D PBG structures[13]. The transverse 

electric and transverse magnetic modes, the two linear polarization directions corresponding to 

the electric field oscillation in the 2D PBG structure plane or perpendicular to that plan 

respectively, usually contribute to different photonic band structures. The polarization-based 

transmission devices such as 2D photonic crystal slab waveguides have been widely studied. For 

3D PBG structures, the studies of polarization characteristics are still mostly on the fundamental 

principles. The polarization in 3D PBG structures is presented by s-light and p-light as defined in 

physical optics when Fresnel law is discussed. The fundamental questions, such as how the 

eigenmodes could be coupled into certain photonic bands, were solved with the discussion of 

incident light polarization and structure symmetry. 

2.2 NUMERICAL SIMULATION  

For a given photonic crystal with periodic distribution of ε(r), how can we calculated the ωn(k)? 

Various theoretical approaches have been proposed to photonic crystals which are based on the 

rearrangement of Maxwell's equation in form of eigenvalue problem for the electric and 

magnetic fields. These formulations have been suggested to develop numerical methods to 
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design different photonic lattice geometries and to predict their band structure which reveals the 

optical properties of these lattices. 

There are many theoretical methods to calculate the band structure of the photonic 

crystals. Among them, the Plane Wave Expansion (PWE) method [14], the Finite-Difference 

Time-Domain (FDTD) method [15-18], the transfer matrix method [19, 20], Finite Element Method 

[21] and Effective Medium Theory [22] are the most popular ones. Depending on the crystal 

structure to be analyzed, one method may have an advantage over the others. In the following I 

will put emphasis on the theory of PWE and FDTD methods, which have been frequently used in 

our research. 

2.2.1 Plane wave expansion 

PWE method depends on the expansion of the EM field with a plane-wave basis set and using 

this basis set to solve the master eigenvalue equation, Eq. (2.5), to determine the band structure 

of the crystal. This approach is very useful for structures with no defects. The strategy is to 

expand, electric (or magnetic) fields for each field component, in terms of the Fourier series 

components along the reciprocal lattice vector G; also, the dielectric permittivity  ( )rrε
1  (which 

is periodic along reciprocal lattice vector, for photonic crystals) is also expanded through Fourier 

series components,  

( )

( )
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where K’s are the Fourier series coefficients subscripted by m, n respectively. Using these 

expansions in the Maxwell’s curl equation for E, 

( ) [ ] E
c

E
rr

21






=×∇×∇
ω

ε
 

and simplifying under assumptions of a source free, linear, and non-dispersive region we can 

obtain the eigenvalue relations which can be solved. In this paper we use PWE as our primary 

simulation method implemented by the Matlab/MIT MPB package [23] for the PBG calculation.  

2.2.2 Finite-Difference Time-Domain Method 

The FDTD method, proposed by Yee, in 1966 [18], is another numerical method used widely for 

the solution of EM problems. Its original purpose is to solve a scattering problem in the time 

domain rather than in the frequency domain. Harmonic solutions are obtained in a second step 

through a Fourier transformation in time. The method is adapted to the specific case of photonic 

crystal materials by Joannopoulos in 1995[12]. Considering non-harmonic time-dependent fields, 

the algorithm is to determine the total field at any time t and at any point of space when the field 

enters a photonic crystal with finite size. The derivation is starting from the differential form of 

Maxwell’s equation (Eq. (2.1)), 










∂
∂

+=×∇

∂
∂

−=×∇

t
DJH

t
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


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=⋅∇
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By substituting constitutive relations ( ) ( )rErrD εε 0)( = , )()( 0 rHrB µ=  in, we can 

rewrite the six scalar equations in matrix from as, 
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    (2.9) 

FDTD employed an algorithm of Yee’s lattice to implement the calculation. The 

computational domain is divided into small unit lattice based on the computation time step Δt. 

Each lattice centers its E and H fields components in 3D space, thus every E is surrounded by 

four circulating H components and every H component is surrounded by four circulation E 

components. The domain is divided into a number of rectangular unit cells and every E and H 

field components are separated by 2/t∆  in time.  

Assuming any scalar function of space and time at a discrete point in the grid and at a 

discrete point in time is marked as ( )zkyjxiuun
kji ∆∆∆= ,,,, . We know that one can discretize a 

differential equation u into a difference expression, 

  ( ) ( )( )2,,2/1,,2/1,, xO
x
uu

zkyjxi
dx
du n

kji
n

kji ∆+
∆
−

=∆∆∆ −+ , then we can solve the Eq. (2.9) for 

components E and H,  
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Once we know the initial incident E and H values, and we know the periodic dielectric 

constant distribution ( )kji ,,ε  in the computational domain, we can find the next 2/t∆  

corresponding field components in above recursion equations. These equations shall be 

alternately used for calculating the time variation of the components of the electric and magnetic 

fields.  

FDTD is a popular EM modeling technique that is easy to understand and implement in 

software. Since it is a time-domain technique it can cover a wide frequency range with a single 

simulation run. Another advantage is that is can be applied to the 3D arbitrary geometries 

including our 3D photonic crystal model. In this method, we need concern about convergence 

and perfect absorbing boundary conditions, which means no reflection at the boundary, to 

achieve the maximum accuracy in the computation.  

Our group employs the FDTD based analysis software: the Fullwave, BeamProp and 

Bandsolver packages from RSoft Design Group, Inc., to perform the PBG and transmission 
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spectra calculations, and EM field and energy distributions in the optical waveguide and circuits. 

The numerical computations of a photonic crystal have predicted appropriate directions for our 

experimental works. 

 

2.3 PHOTONIC CRYSTAL APPLICATIONS 

 

Photonic crystals have been made various optical components using their capabilities to steering 

the photons. In optical industries, 1D photonic crystal are already in widespread use in the form 

of thin-film optics [24] with applications ranging from low and high reflection coatings on lenses 

and mirrors to color changing paints and inks. Higher dimensional photonic crystals are of great 

interest for both fundamental and applied research, and the 2D ones are beginning to find 

commercial applications. The first commercial products involving two-dimensionally periodic 

photonic crystals are already available in the form of photonic crystal fibers [25], which use a 

micron scale structure to confine light with radically different characteristics compared to 

conventional optical fiber for applications in nonlinear devices and guiding exotic wavelengths. 

The 3D counterparts are still far from commercialization but offer additional features possibly 

leading to new device concepts (e.g. optical computers [26]), when some technological aspects 

such as manufacturability and principal difficulties such as disorder are under control. 

Applications of PBG structures are numerous and mainly focused on the fabrication of devices 

that use photons as information carriers instead of electrons. Some applications rely on the 

existence of PBG; others rely on the peculiar properties of the bands and their dispersion.  

http://en.wikipedia.org/wiki/Thin-film_optics�
http://en.wikipedia.org/wiki/ChromaFlair�
http://en.wikipedia.org/wiki/Security_printing�
http://en.wikipedia.org/wiki/Photonic-crystal_fiber�
http://en.wikipedia.org/wiki/Optical_fiber�
http://en.wikipedia.org/wiki/Optical_computer�
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If a line defect is appropriately introduced in a perfect PBG structure, the line defect will 

work as a light waveguide. There is a wealth of proposed applications relating to this principle of 

functioning including linear waveguide [27], bendings [28], crossings, splitting [29, 30], junctions, 

add-drop filters [31], etc. All the devices in this category can direct the flow of light as electrons 

are directed by conductive wires. These waveguides can be made to bend through sharp corners 

without energy loss since scattering loss is prohibited by the nature of the PBG structures. 

Waveguides in a 2D PBG structures have been studied extensively. A commercial PBG fiber is 

basically a 2D PBG waveguide in cylindrical coordinates. 

Another application of PBG structures is to make nano-lasers [32]. A laser is made of a 

medium where population inversion is attained, whereby gain and amplification are achieved 

though stimulated emission. By introducing a point defect, which is usually at a sub-wavelength 

scale, in a PBG structure will be a perfect nano-cavity to function as a laser. These significant 

principles make it possible to make laser-on-chip which will greatly improve the capability of 

integrated photonic circuits. Recently, the major challenge is how to decrease the lasing 

threshold and to constitute an all-optical transistor [33] with a PBG laser [34].  

Since PBG structures are highly dispersive, the laws of refraction take surprising forms in 

PBG structures. The light propagation is always normal to the equifrequency surfaces. The 

region of curvature produces very strong divergence for slight change in incident wave vector 

and wavelength. The fact that a very slight change in wavelength results in a strong change of 

shape of the equifrequency surfaces can be applied to design a super-prism [35]. This dispersion 

property of PBG structure would be extended to an extreme case of negative refraction [36], with 

which the light could be delivered to an abnormal direction even to the same side of the surface 

normal with the incident beam. This effect is being studied and experimentally implemented for 
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de-multiplexers, in 2D PBG so far. The applications of 3D PBG structures are still rare due to the 

difficulties in analyzing and realization of complex refraction situation. Nevertheless, 3D 

photonic crystal structures have been the main subject of intense scientific and engineering 

interests since the first introduction. The existence of full and complete, non-polarization 

dependent PBG in 3D photonic crystals gives rise to a number of peculiar optical properties 

useful for photonic engineering. Most important, the fabrication of 3D photonic crystals with a 

complete PBG in visible and near IR regimes remains a great challenge.  

2.4 FABRICATION APPROACHES 

So how we can fabricate the periodic PBG structures which can steer the flow of light? A 1D 

PBG structure is a stack of thin dielectric films. The real challenges to fabricate PBG structures 

began with 2D and 3D periodic microstructures working in microwave range in late 1980s. 

There are two major categories in micro fabrication process: top-down approach and bottom-up 

approach. The former is to inscribe micro/nano features from bulk materials. The latter is to 

build up micro/nano structures from basic units such as atoms and molecules. Both methods 

were utilized to fabricate PBG structures. 

Electro-chemical etching [37] used to be a common top-down method to fabricate 2D 

periodic structures at the early age of PBG structure development. This method was able to etch 

porous materials with nano-scale holes with nice order and high aspect ratio, which yield perfect 

2D PBG structures: dielectric constant change in the 2D planes and good uniformity along the 

third direction. An obvious disadvantage is that it is limited to 2D structures. Few reports were 

devoted to the fabrication of 3D PBG structures with the electro-chemical etching method. 
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Although there are a large variety of materials exhibiting pores, only Si, Alumina are exhibiting 

the high surface quality required in PBG structure applications. Another improved approach for 

2D photonic crystal fabrication is by deep anisotropic dry etching in silicon, which can be 

integrated with ideal bended waveguide. 2D photonic device in the micron and submicron 

wavelength region has been greatly intensified when investigations deal with photonic structures 

in III-V compounds like GaAs, GaAs/AlGaAs [38], AlGaAs [39] and InP [40]. Fabrication is 

achieved using chlorinated plasmas, either by reactive ion etching or chemically assisted ion 

beam etching.  

Lithography is another top-down method to fabricate PBG structures, using an electron 

beam, an x-ray, or ultraviolet (UV) light. E-beam lithography combined with layer-by-layer 

assembly [41] could be used to fabricate 3D woodpile structures in semiconductor materials. 

However, this method requires expensive equipment and tedious procedures. Multi-photon 

lithography [42] using a laser is well utilized in this area. This method is usually applied to 

photoresist polymers. Therefore, it is also called laser direct writing with multi-photon 

polymerization. Based on the polymerization of photoresist, HL has attracted attention from 

researchers [9, 10, 43]. HL uses the elegant optical principle of interference, forming a periodic 

distribution of light intensity, which could be used to interact with photoresist materials to form 

periodic structures in 1D, 2D and 3D.  

Based on the mature techniques to synthesize and self-assemble mono-dispersive silica 

particles, silica colloidal crystals [44] are ideal for fabricating PBG structures. The colloidal 

crystals have the face-centered cubic (FCC) structure. Since it possesses the Brillouin zone with 

the most circular shape, the FCC structure is well accepted to produce large and complete PBGs 

[45]. There are many advantages in using colloidal crystals. First, colloidal crystals could be 
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inverted into other materials using chemical vapor deposition processes. Second, the colloidal 

particles with metallic or semiconductor cores can also be self-assembled into high-quality 

colloidal crystals. It is possible to adjust the optical properties of colloidal crystals by controlling 

core materials and core-shell geometries.  

A latest top–down technique to fabricate 3D woodpile structure direct in high index 

material that enables excellent optical performance has been achieved. The 3D periodic structure 

is created directly by reactive ion etching at angles of 45° with respect to the sample surface by 

using a 2D binary mask. The resulting structure corresponds to the woodpile 3D structure, 

rotated by 90° with respect to the conventional configuration [46].  However, the method is also 

limited by the etching depth and direction control of etchant flow.  

We chose the HL method as our primary approach to fabricate 3D PBG materials because 

of the tradeoff of the cost, time and quality. The goal of our project has been to develop a method 

which is simple and robust, looking toward the possibility of mass fabrication as a long-term 

goal. However, the most obvious approach, involves a large, complicated combination of beam 

splitters, mirrors and analyzers. Such an arrangement would be sensitive to vibration and 

alignment issues, as well as costly and cumbersome to maintain. Therefore, this approach was to 

be improved in favor of an integrated approach, which will be addressed in the next chapters. 
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3.0  HOLOGRAPHIC LITHOGRAPHY APPROACH 

Experimental studies of photonic crystals have been addressed to the methods for fabricating 

complex nano/micro-structures. It is now possible to produce 2D photonic crystal, at high 

volume and low cost, through use of deep UV photolithography or E-beam lithography (EBL), 

which is the standard tool of the electronics industry. But a large-scale efficient micro-fabrication 

of 3D PBG microstructures has been a scientific challenge over the past decade. So far, a number 

of fabrication techniques such as conventional multilayer stacking of woodpile structures by 

using semiconductor fabrication processes, colloidal self-assembly, and multi-photon direct laser 

writing, have been employed to produce sub-micron 3D photonic crystals or templates. Those 

methods have achieved different levels of success to some extent. However, we still need to find 

an economical and rapid way to able to produce defect-free nano/micro-scale structure over large 

area uniform photonic crystal in a simple step fabrication. This mission has been accomplished 

as the discovery of the HL method.  

3.1 PRINCIPLE 

HL has recently been employed to fabricate 3D photonic crystals by exposing a photoresist or 

polymerizable resin to interference patterns of laser beams. This interference technique requires 

multiple coherent beams converge on the same spatial region, which is also called multi-beam 
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IL. It is promising because it can create periodic microstructures in polymers without extensive 

lithography and etching steps. The monochromaticity and spatial volume of laser beam has 

produced nearly defect-free, submicron scale structures over large substrate areas. Photonic 

structures are defined in photoresist by iso-intensity surfaces of interference patterns. In the case 

of negative photoresist, the underexposed material is then dissolved away in the post-exposure 

processing. The overexposed region forms a periodic network motif and acts as a 3D photonic 

crystal template. The template can then be infiltrated at room temperature with SiO2 and burned 

away, leaving behind a daughter inverse template. Finally, the daughter template is inverted by 

infiltration with silicon and selective etching of SiO2 
[47].  

HL allows complete control of the translational symmetry of the photonic crystal and has 

considerable freedom to design the unit cell. The electrical field of a laser beam can be described 

by 

( ) ( )iiii trkEtrE δω +−⋅= cos,  

where k and ω are the wave vector and angular frequency of the beam, respectively, E is the 

constant of electric field strength, and δ is the initial phase of the beam. When two or more 

coherent laser beams are presented simultaneously in the same region, the waves interfere with 

each other and generate a periodic spatial modulation of light. The intensity distribution of the 

interference field for N laser beams can be described by a Fourier superposition, 
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The structure of the interference pattern can be designed by controlling interfering beam 

properties such as electric field strength, polarization, wave vector, and phase. The photonic 

structure formed through HL has the translational periodicity determined by the difference 

between the wave vectors ki-kj of the interfering beams. Therefore, lattice constants of the 
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photonic structure are proportional to the wavelength of the interfering laser beam. The 

polarization, represented by the electric field vector, determines the motif placed within the unit 

cell of the photonic lattice. The initial phase difference shifts the interference pattern and 

changes the motif within the unit cell. The laser intensity, exposure time, photoresist preparation, 

and post-exposure development condition will also contribute to the motif of the interference 

pattern. The photonic structure formed through HL should have good connectivity in both the 

dielectric and the air component so that the structure is self-supporting and the unwanted 

photoresist can be dissolved away. 

The N coherent laser beams produces an intensity pattern with maximal (N-1) 

dimensional periodicity if the difference between the wave vectors is non-coplanar [48]. As shown 

in Fig. 3.1, two interfering beams form a 1D fringe pattern and three crossed beams form a 2D 

hexagonal log-pile pattern. By using three-beam interference, arrays with hexagonal symmetry 

can be generated, while with 4 beams, arrays with rectangular symmetry are generated. Hence, 

by selecting different beam combinations, and even performing some pattern translations, 

patterns with different lattice symmetries are possible to make.  
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Figure 3.1 Multibeam interference visualized examples. N beams can form maximal (N-1) dimensional 

periodicities pattern. 

 

For HL to be successful, coherence requirements must be met. It is preferred to use a 

monochromatic or coherent light source. This is readily achieved with a laser or filtered 

broadband sources. The monochromatic requirement can be reached if a diffraction element is 

used as a beam splitter, since different wavelengths would diffract into different angles but 

eventually recombine anyway. In this case, spatial coherence and normal incidence would still be 

necessary. The coherent length for our laser system requires that the path difference cannot 

exceed 10cm. 
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3.2 BEAM-SPLITTING OPTICAL ELEMENT 

Fabrication strategies that rely on interference of multiple independent beams can introduce 

alignment complexity and inaccuracies due to differences in the optical path length and angles 

among the interfering beams as well as vibration instabilities in the optical setup. In order to 

improve the optical setup, DOE or phase masks have been introduced to create the interference 

pattern for the holographic fabrication of photonic crystals [49, 50]. Other than the traditional bulk 

optical reflective/refractive elements such as mirrors [51], beam splitters [48] and top-cut prisms [52, 

53], a diffraction based optical element is a promising alternative CMOS-compatible choice for 

3D HL. It can be incorporated into phase/amplitude masks used in optoelectronic circuit 

fabrications to enable a full integration of 3D photonic structures on-chip.   

3.2.1 Reflective optical element 

 

Figure 3.2 Traditional reflective optical elements to provide multiple coherent beams for interference. 
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An approach for easy fabrication of 2D and 3D photonic crystal microstructures is based on 

reflective beam splitting and overlapping by mirrors, beam-splitters or a single top-cut prism. By 

designed the prism properly, the number, angle, and diffracting efficiency of the output diffractive 

beams can be modulated. This give us the ability to fabrication more complex microstructure with 

high symmetry, such as FCC or diamond-like lattice [45]. This work is first demonstrated by Y. V. 

Miklyaev for a four beam interference to generate stable and uniform face-centered hexagonal 

structure [54]. Those four beam includes 3 three diffractive beams from the lateral surface of the 

prism and the center beam transmitted from the top surface. If we design more the lateral surface of 

the prism, more diffractive beams will participate into the interference. Thus we can get FCC 

structure or some quasi-crystal structures [55]. However, because all the beams are coming from the 

same half plane, the periodicity in axis direction (vertical direction of pattern) will be relative large 

than that in other dimension. It is not easy to fabricate a interconnect structure if too many 

diffractive beams participate in the interference. Otherwise the contrast ratio must be lowered, that 

is to say to increase the exposure dose. Bandgap simulation prediction the complete bandgap only 

exists when a structure has a high air filling ratio. Then we need to find an approach to compensate 

the structure symmetry. We are currently employing a phase retarder to modulate on diffractive 

beam to less the vertical periodicity or take multiple exposures to superimpose two simple lattices to 

one high-symmetry lattice. The prism methods show a promising way to fabrication photonic 

crystal as a complement of phase masks in the integrated DOE design.   
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3.2.2 Diffractive optical element 

A DOE has advantage over reflective optical element due to its thin thickness and small structure 

feature. Usually only when the element feature reach the scale of optical wavelength, the 

diffractive will happen.  A phase mask, typical a phase grating with periodically index variation 

in height direction, can create multiple laser beams in various diffraction orders that are 

inherently phase-locked and stable for reproducible creation of 3D interference patterns from a 

single laser beam. The 1D phase mask will create stable three in-plane output beams. These 

coherent beams are then generating a pattern inside the overlap region below the phase mask, in 

shape of 2D log-pile. The pattern is recorded in a photoresist to form periodic template. 

 

 

Figure 3.3 (left) phase mask based interference. A phase mask can replace a complex optical setup for a 

generation of interference pattern; (middle) a simulated woodpile-type photonic structure formed in the 

doubly-exposed photoresist; (right) a schematic illustration of woodpile-type photonic structure with 

orthorhombic or tetragonal symmetry and its lattice constants. 

 

Theoretically, when a single beam goes through a 1D phase grating, the beam will be 

diffracted into three beams as shown in Fig. 3.3 (left). Beams 1 and 2 are from first order 
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diffraction and beam 3 is from zero order diffraction.  Beam 1 or 2 has a diffraction angle θ 

relative to beam 3. Mathematically these three beams are described by:  
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These three beams will generate a 2D interference pattern. The interference pattern is determined 

by the laser intensity distribution I in 3D space: 
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The interference pattern generated behind the phase mask is shown in the Fig.3.3 (left), 

assuming the incident laser beam has a polarization in y direction. The interference pattern is 

periodic in the z-direction as well as in x-direction. The periodicity of the interference pattern 

along x direction is λ/(sinθ) (where λ is the wavelength of laser beam generating the interference 

pattern). The periodicity c of the interference pattern along z direction is λ/(2sin2(θ/2)). After the 

photoresist is exposed to such interference pattern, the sample is rotated by an angle of α along 

the propagation axis of the incident beam and its position is displaced along the laser propagation 

direction by 1/4 times λ/(2sin2(θ/2)). Then the photoresist receives second exposure. The doubly-

exposed photoresist is then developed to form a 3D woodpile-type photonic crystal template. 

Fig. 3.3 (middle) shows a simulated photonic structure formed with the rotation angle α=90º if a 

negative photoresist is used.  After the photoresist development, the under-exposed area is 
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dissolved away while the area exposed with above-threshold laser dosage is networked to form 

periodic structures. We illustrate in Fig. 3.3 (right) how we construct crystal lattices. We set a 

fundamental length scale L=λ/(sinθ) for such structure because the three beam interference 

pattern is determined by the laser wavelength and the interference angle θ. L is actually equal to 

the grating period of the phase mask. The lattice constants in xy plane depend on the angle. 

They are related by a=L/(cos(α/2)) and b=L/(sin(α/2)), respectively. The photonic crystal 

template has a lattice constant along the z direction c=λ/(2sin2(θ/2))=L(cot(θ/2)). If the sample 

rotation angle is 90º, we have a=b. Thus the 3D structure has a face-centered-tetragonal (FCT) or 

FCC symmetry. If the angle α  is less than 90º, a face-centered-orthorhombic (a≠b≠c) or FCT 

(a≠b=c) structure is formed in the photoresist. 

Contrary to an intensity (amplitude) mask, the laser beam travels through a phase mask 

and accumulates an additional phase relative to light that travels through the air gap. However, a 

phase mask has much larger diffractive efficiency than an amplitude mask. This property enables 

those periodic structures have enough contrast ratio to the background in the photoresist 

polymerization.   

 

 

Figure 3.4 Scheme of the semiconductor processes for 1D phase mask fabrication.  
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The fabrication technique of 1D phase mask has been demonstrated by H. Jiang etc in 

1999 [56], as Fig.3.3 shown. EBL technique has been used to pattern fine gratings in Si substrate. 

Then an inversed elastomeric mask is obtained by casting a layer of silicon-based organic 

Polydimethylsiloxane (PDMS) on the substrate. After curing and peeled off from the master 

mold, the elastomeric mold is used as a mask again in the photolithography process to reproduce 

a photoresist phase grating on glass substrate. The phase grating has high quality surface and 

profile but the semiconductor processes it required are costly, laborious and time-consuming. 

Furthermore, it needs a prototype mask with high resolution in EBL process for the parent mold 

fabrication.   

3.2.3 Phase mask: thickness modulated DOE 

 

 
Figure 3.5 Phase mask lithography for fiber Bragg grating inscription. (Courtesy by Wikipedia [57] ) 

 
 

One of the most effective methods for inscribing Bragg gratings in photosensitive fiber is the phase 

masks technique [58, 59]. This method employs a DOE to spatially modulate the UV writing beam.  
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Generally, phase masks may be formed either holographically or by EBL. One of the 

advantages of the EBL over the holographic technique is that complicated patterns can be written 

into the mask’s structure such as quadratic chirps and patterns. The phase mask technique for 

writing fiber gratings has the advantages over the traditional holographic method because of its 

simpler writing setup and more reproducible characteristics. Specifically, the utilization of phase 

mask relaxes the strict requirement on the coherence of a UV source.  

3.2.4 Lab made multi-dimensional phase grating 

 

Figure 3.6 Experimental setup for phase masks holographic fabrication. 

   

Here we demonstrate the holographic fabrication of a phase mask. The experiment setup is based on 

the principle of a Mach-Zehnder interferometer. As shown in Fig.3.6, two coherent beams were 

cleaned, collimated, separated and focused back into the same photoresist region to produce 

interference patterns directly. The pattern recorded is a series of parallel fringes with sinusoidal 

profiles. Thus we obtain the phase grating made of photoresist. This phase grating has refractive 

index difference between photoresist (n=1.67 at 514.5nm) and air gap, which can produce coherent 

three beams output when is used as a mask. This approach simplified the previous process and can 
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be applied into more complicated fabrication. If we do multiple exposures and rotate the receiving 

photoresist between each exposure, we can get phase mask with higher dimension. In next three 

chapters we will describe some concrete experiment steps to holographic fabricate those phase 

masks and use them for the HL fabrication of complex photonic crystal templates.   

Overall, the optical diffractive elements are designed to avoid the alignment complexity and 

inaccuracies due to differences in the optical path length and angles among the interfering beams as 

well as vibration instabilities in the optical setup. They provide great convenience in the HL. 

Meanwhile, the current DOEs, such as beam splitter, mirrors, prisms and phase masks, can be used 

to generate pattern with all fourteen Bravais lattice in the space groups [43]. Clearly, there is a need to 

establish a better understanding of the relationship between the resulting symmetries and the beam 

parameters. 
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4.0  PHASE MASK LITHOGRAPHY TECHNIQUES IN 3D PHOTONIC CRYSTAL 

FABRICATION 

4.1 DIFFRACTION PATTERN OF PHASE GRATING 

 

It is well known that a 1D phase mask can generate three beam interference patterns, which has a 

2D log-pile structure. The structure is polarization dependent of the incident EM wave thus lacks 

completeness of bandgap required for photonic communication. Previous researchers have 

proposed a method of building a 3D structure using two orthogonal 1D phase masks. The beams 

that propagate through two phase masks will have two log-pile patterns recorded inside the 

photoresist. If well controlled, a 3D woodpile structure may be piled up by the log-pile structure. 

However, addition diffractions occur. The distance between two phase masks can also bring 

unwanted phase delay, which is difficult to adjust in practice. Our solution consists of multiple 

exposures through one 1D phase mask, which is spatially shifted between exposures, 

demonstrating a new approach for controllable 3D woodpile structure fabrication. 
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Figure 4.1 Diffraction patterns of normal incident beam through a 1D phase grating. Talbot effect exists at 

near field and interference pattern generates at far field.  All HL in this paper record the diffraction pattern at 

far field.  

 

When a plane wave is transmitted through a grating or other periodic structure, the 

resulting wave front propagates in such a way that it replicates the structure at multiples of a 

certain defined distance, known as the Talbot length. The Talbot effect is a near field diffraction 

effect that has been observed both with light and with atom optics [60]. An existing periodic 

structure can be used in conjunction with light waves or atom waves to create a replica of the 

structure a Talbot length away. However, the details of the Talbot effect bring out the most 
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interesting possible applications. Exactly halfway between these locations, the Talbot effect 

reproduces the structures with half the spatial period of the original structure. The Talbot effect 

will produce smaller fractional revivals under perfect conditions.  

4.2 1D PHASE MASK - WOODPILE 3D STRUCTURE 

4.2.1 Pattern transformation 

Here we demonstrate the fabrication process of 3D woodpile photonic crystals template, which 

can have orthorhombic or tetragonal structure depending on the rotational angle. Furthermore, 

the elongation in the z-direction can be compensated by rotating phase mask by an appropriate 

angle, which increases the lattice constant in the other direction. Theory predicts that the 

optimized rotation angle of a phase mask can achieve up to a 50% increase in PBG compared 

with those formed by two orthogonally oriented phase masks.   
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Figure 4.2 Experimental setup for 3D photonic crystal template fabrication. Zoom in view is the schematic 

sketch of the double exposures procedure.  

 

In next step we describe how to construct an interconnected photonic crystal with 

woodpile symmetry. The interference pattern for a single exposure through a phase mask is a 2D 

log-pile structure, which is periodic in the z direction as well as in the x (or y) direction, as 

shown in Fig. 4.2. If we do a second exposure to record another log-pile structure on the same 

region, with appropriate relative rotation and shifting, we can have a 3D woodpile structure, 

which has periodic structure in all x, y and z directions, as shown in Fig. 4.3 It demonstrates a 

simulated structure from the dual-exposure procedure. Similar to how the photoresist reacts to 

illumination, the structure represents the receiving laser intensity distribution, i.e. the 

interference region, in the negative photoresist.  The boundary of the 3D pattern is defined by 
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setting a threshold value. The regions with intensity lower than the threshold value are removed 

and the regions with intensity equal and greater than the threshold value are sustained. Thus the 

photoresist records the interference pattern and can be visualized after development.      

 

 

Figure 4.3 Simulated 3D woodpile structure generated by double exposures. The rotational angle of phase 

mask is 60o. The scale bar shows the accumulated laser energy density upon two exposures.  

 

Theoretically, the rotation of the interference pattern can be regarded as replacing the 

wave vector k of the diffractive beams, by a coordinate transform with rotation angle α;  
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while the spatial movement of the pattern can be induced through the phase shift of 

interfering beams. When a phase difference (ρi-ρj) is introduced between interference beams, the 

interfering term Iint in Eq.(4.2) becomes  
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Such a phase difference between laser beams will translate the interference pattern by rs 

as described by,  
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where the translation rs is determined by (ki-kj)· rs=(ρi-ρj). In general, the initial phase difference 

δi -δj is a constant if the laser beams are mutually coherent. It will shift the interference pattern 

relative to the one generated with (δi-δj)=0. But the initial phase difference will be the same for 

two exposures. The interference pattern generated by the second exposure needs to be shifted 

relative to the first one to fabricate the woodpile photonic crystal. The shifting is produced 

through the extra phase shift of (ρi-ρj). Specifically, the initial phase difference is zero if all 

diffracted beams are generated through a single DOE. Then the final 3D structure can be 

expressed by adding up the interfering terms Iint for two exposures, normalizing and setting 

proper threshold isosurface values.  

Experimentally, the basic approach utilized to fabricate an interconnected periodic 

polymeric structure is the double exposure of photosensitive material to three interfering laser 

beams generated by a 1D phase mask as shown in Fig. 4.2. A linearly polarized beam from an 

argon ion laser at 514.5nm is expanded, collimated, and passed through a phase mask to produce 

two 1st order and one 0th order diffracted beams (intensity ratio 1:5). A layer of photoresist on a 

silicon wafer is first exposed to the interference of the three laser beams.  Thus, a spatially 
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modulated chemical change in the photoresist is produced. A second rotated and translated phase 

mask is then used to induce a second set of spatially modulated chemical changes in the 

photoresist. The orientation of the second interference pattern is controlled by the orientation 

angle α of the second phase mask with respect to the first one. To form an interconnected 3D 

woodpile structure, the phase mask was shifted along the z direction (c-axis) by a distance rs=(0, 

0, ∆z) for the second exposure. This shift has a significant impact on the size of overlap between 

the two interference patterns and consequently on the size of the bandgap formed in the final 

structure. A translation of ∆z= 0.25c of the second interference pattern along the c-axis yields an 

optimized fully-interconnected woodpile structure as shown in Fig. 4.3. High-precision motion 

stages were used to control the movements of the phase masks with ±100nm accuracy. By 

controlling the rotational angle and the relative shift of the phase mask along the optic axis, both 

orthorhombic and tetragonal photonic crystal structures were formed. Fig.4.3 shows a simulated 

face-centered orthorhombic photonic crystal structure formed by rotating the phase mask by 

α=60o between two exposures. The lattice constants (a, b, c) labeled in Fig. 4.3 are determined 

by the angle of diffraction θ of the 1st order beams in the photoresist and by the angular rotation 

of the phase mask α as (L/(cos(α/2)), L/(sin(α/2)), and L(cot(θ/2)), respectively, where L is the 

grating period given by L= λ/sinθ , and λ is the laser wavelength in the photoresist material. 

4.2.2 Band diagram of woodpile photonic crystal 

The woodpile-type photonic crystal template will be converted into high refractive index 

materials using the approach of CVD infiltration in order to achieve a full bandgap photonic 

crystal [47]. We calculated the PBG for converted silicon structures where ‘logs’ are in air while 
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the background is silicon. The calculation has been performed for photonic structures formed 

with various interference angle θ and rotation angle α. Fig. 4.4 (left) shows the first Brillouin 

surface of the face-centered-orthorhombic lattice. Coordinates of high symmetric points on the 

Brillouin surface varies with different structures. MIT Photonic-Bands Package was used to 

calculate the PBG of the converted silicon structure. Fig. 4.4 (right) shows the photonic band 

structure for the converted silicon woodpile-type structure with c/L=2.4 and α=51º (the dielectric 

constant of 11.9 was used for silicon in the calculation. We would like to clarify that the λphoton in 

the y-axis label of the Fig. 4.4 (right) is the wavelength of photons in the photonic band, not the 

wavelength of the exposure laser. The band structure shows that a photonic full bandgap exists 

between the 2nd and 3rd bands with a bandgap size of 8.7 % of the gap central frequency.  

 

 

Figure 4.4 (left) First Brillouin surface of face-centered-orthorhombic lattice; (right) photonic band structure 

for an orthorhombic photonic crystal. λ photon is the wavelength of photons in the photonic band. 
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4.2.3 PBG width modulation with crystal parameters 

 

Figure 4.5 PBG as function of the phase mask displacement ∆z between two exposures. The phase mask 

rotational angle α is 60º. Insets are the first Brillouin surface and photonic band diagram for the face-

centered-orthorhombic structure. 

 

The significance of the overlap between the two alternating high-intensity stacks controlled by 

the translation ∆z of the second phase mask along the optical axis is depicted in Fig. 4.5.  The 

relative bandgap size is measured from the bandgap diagram from Fig. 4.4 and defined by the 

ratio of central frequency and the frequency range of the bandgap. From Fig. 4.5 we can see that 

a global bandgap of 4% exists in structures with α=60º and ∆z=0.03c. The maximum PBG 

appears at ∆z=0.25c, where the 2nd log-pile pattern moves to a location closest to the 1st log-pile 
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pattern, symmetrizing the whole 3D woodpile structure. In structures where ∆z≤0.03c, the width 

of the bandgap reduces rapidly and eventually vanishes. A maximum bandgap of 17% was 

achieved at a shift ∆z=0.25c.  

To study the dependence of the size of the bandgap on α, PBG calculations were 

performed with various c/L ratios as shown in Fig. 4.6. Since all the laser beams come from the 

same half-space, the interference pattern generated will be elongated along the c-axis due to 

relatively small interference angles. This elongation, along with a rotational angle of 90º, causes 

the lattice constant c to be larger than a and b, yielding a FCT structure. When the phase mask’s 

rotational angle decreases from 90º, the lattice constant b increases, while a decreases; in effect 

reducing the photonic crystal structure to a lattice with orthorhombic symmetry. A small phase 

mask rotational angle α can transfer the lattice back into tetragonal again when the lattice 

constant b is equal to c. When the value of b approaches that of c, the structure becomes more 

symmetric and the bandgap increases. From simulation, we found that the maximum bandgap 

occurs when the structure has the highest possible symmetry. For relatively small c/L ratios, 

where c approaches a and b, and α=90º, the widest bandgap is produced. For larger c/L ratios, 

the maximum bandgap occurs at a rotational angle α≠90º. Fig. 4.6 also illustrates the rotation 

angles α that maximize the bandgap for structures with a large c/L values. When c is larger than 

1.9L, a small rotational angle of the phase mask is required to maximize the bandgap. For 

c/L=2.0, a 60º rotational angle maximizes the PBG. Maximizing the bandgap for structures with 

c/L ratios larger than 2 requires less than 60º angular displacements.  For this c/L ratio, varying 

the rotation angle from 90º initially results in a drop in the width of the gap followed by an 

increase. This is consistent with the symmetry transformation of the photonic structure, changing 

from tetragonal symmetry to orthorhombic symmetry then back to tetragonal symmetry.  
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Figure 4.6 PBG as a function of the phase mask rotational angle α.  

 

Fig. 4.7 shows the optimum bandgap size in FCT photonic structures which is formed 

with the rotation angle α=90º and in face-centered-orthorhombic structure where α≠ 90º, under 

different beam interference geometries. When c/L is small (beams have a larger interference 

angle), a rotation angle of 90º is preferred in order to have a larger bandgap. However if c/L is 

larger than 2.0, then the face-centered-orthorhombic structure is preferred for a larger bandgap. 

At c/L=2.3, the optimum bandgap size is 11.7% of the gap central frequency for a face-centered-

orthorhombic structure formed with a rotation angle near 55º. While the FCT structure formed 

with α=90º has a gap size of 6.7%.  
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Figure 4.7 PBG size in FCT structures (=90º) and in face-centered-orthorhombic structures (< 90º) for 

various structures with a different c/L value. 

 

To demonstrate the feasibility of the proposed fabrication technique, both orthorhombic 

and tetragonal structures were recorded into a modified SU8 photoresist. Utilizing the phase 

mask method a number of photonic structures can be generated; however there are some 

practical issues in realizing a photonic structure with a full PBG. Fig. 4.7 shows that a PBG 

exists in structures with smaller c/L values. Because c/L=cot(θ/2), a bigger interference angle is 

required in order to generate an interference pattern for a structure with a full bandgap. When the 

photoresist is exposed into an interference pattern, the interference pattern recorded inside the 

photoresist will be different from that in air. In the case of c/L=2.5, an interference angle θ=43.6º 

is required, which is greater than the critical angle of most of photoresist.  
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4.2.4 3D structure in photoresist 

In order to expose the photoresist to an interference pattern formed under a bigger interference 

angle, a special setup is arranged for the phase mask and the photoresist as shown in Fig. 4.8 

(left). The photoresist is placed on the backside of the phase mask with the contact surface 

wetted with an index-match mineral oil. The design of the phase mask is modified 

correspondently. As a proof-of-principle, we show in Fig. 4.8 (right) Scanning Electron 

Microscope (SEM) of woodpile-type structures in SU8 photoresist formed through the phase 

mask based HL. An Ar ion laser was used for the exposure of 10 μm thick SU8 photoresist spin-

coated on the glass slide substrate. The photoresist and phase mask were both mounted on high-

precision Newport stages. Both the phase mask and photoresist were kept perpendicular to the 

propagation axis of the incident Ar laser beam.  

 

 

Figure 4.8 (left) an arrangement of the phase mask and the photoresist. The interface between the backside 

of the phase mask and the photoresist is wetted with an index-match fluid; (right) SEM top-view of an 

orthogonal woodpile-type structure in SU8 photoresist formed through the phase mask based HL.  
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The photoresist solution was prepared by mixing 40 gram SU8 with 0.5 wt % (relative to 

SU8) of 5,7-diiodo-3-butoxy-6-fluorone (H-Nu470), 2.5 wt% of iodonium salt co-initiator 

(OPPI), and 10 ml Propylene Carbonate to assist the dissolution [6]. Due to the large background 

energy presented in the generated interference pattern (53% of 0th order), the photoresist solution 

was further modified by the addition of 20 mol percent Triethylamine [61]. Subsequent exposure 

to light generates Lewis acids that are vital in the crosslinking process during post exposure 

bake. The addition of Triethylamine, acting as an acid scavenger, allowed the formation of an 

energy gap which prevented the polymerization process in locations exposed below the energy 

threshold. The substrates utilized for crystal fabrication were polished glass slides cleaned with 

Piranha solution and dehumidified by baking on a hot plate at 200 ºC for 20 min. Each substrate 

was pre-coated with 1µm layer of Omnicoat to enhance adhesion. The SU8 mixture was spin-

coated onto the pre-treated substrate at speeds between 700 and 1500 rpm; resulting in a range of 

thicknesses from 25 to 5 µm. Pre-bake of SU8 films was performed at a temperature of 65 ºC for 

about 30 min. The prepared samples were first exposed under 500mw illumination for 0.9 s 

using the first phase mask. A second phase mask, which was rotated by α about the optic axis 

and translated by ∆z with respect to the first one, was then used for an additional 0.9 s exposure. 

The samples were post-baked at 65 ºC for 10 min and 95 ºC for 5 min and immersed in SU8-

developer for 5 min.  
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Figure 4.9 (a) A SEM top view picture; and (b) a SEM side view picture of a woodpile orthorhombic 

structure recorded in SU8 with α=60º. Simulated structures are inserted. 

 

Fig. 4.9(a) shows an SEM top view picture of a woodpile orthorhombic structure 

recorded in SU8 with an α of 60º. The inset of the same figure details the predicted structure 

from simulation. The 3D span of the structure visible in Fig. 4.9(b) was also imaged by SEM. 

The layer-by-layer, woodpile nature of the structure is clearly demonstrated. The overlapping 
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and cross-connection of neighboring layers ensures a stable formation of 3D structures for 

further processing. From Fig. 4.9 (a) and (b), we measured in the SEM the lattice constants to be 

b=1.3 μm and c=3.4 μm. The elongation in the z-direction was thus compensated by the 60º 

rotation, compared with b=1.06 μm and c=6.13 μm in the structure generated by two 

orthogonally-oriented phase masks with similar period used in this work.  

In summary, we demonstrate the fabrication of 3D photonic crystal templates in SU8 

using phase mask based HL technique. Both face-centered-orthorhombic and FCT woodpile-type 

photonic crystals have been fabricated. The usage of phase mask dramatically simplified the 

optical setup and improved the sample quality. The structure and symmetry of the photonic 

crystals have been demonstrated by controlling the rotational angle of a phase mask to 

compensate the structural elongation in z-direction in order to enlarge the PBG. PBG 

computations have been preformed optimally on those woodpile structures with α between 50º to 

70º as well as traditional 90º rotation. Our simulation predicts that a full bandgap exists in both 

orthorhombic and tetragonal structures. The study not only leads to a possible fabrication of 

photonic crystals through HL for structures beyond intensively-studied cubic symmetry but also 

provides a blueprint defining the lattice parameter for an optimum bandgap in these 

orthorhombic or tetragonal structures. 

 

4.3 2D PHASE MASK – DIAMOND-LIKE 3D STRUCTURE 

In this section we will demonstrate our work to extend the phase-mask approach for holographic 

3D structure fabrication from 1D phase mask to 2D phase mask. We used the holographic 
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method introduced in Chapter 3 to fabricate the photoresist 2D phase mask. The flexibility of 2D 

phase mask design enables the construction of multiple-beam interference patterns for the 

fabrication of complex 3D periodic structure such as diamond-like structures [45]. As we all 

know, diamond-like photonic crystal structures possess the largest PBG among all possible 

photonic crystal but hard to synthesize. This flexibility is demonstrated by fabricating the 

diamond-like structures in SU8 photoresist using a lab-made 2D phase masks as the DOEs. 

 

4.3.1 2D phase mask holographic fabrication 

The 2D phase masks used in this experiment were fabricated in a thin negative-tone SU8-2035 

photoresist. The photoresist was spin-coated on a glass substrate with a thickness of 2 μm. After 

spin-coating, the sample was prebaked at 65 0C for 5 min and 95 0C for 3 min before receiving 

the laser exposure. The source beam from an Argon Ion laser was collimated and split into two 

coherent linearly polarized beams with equal intensity using a beam splitter. Two laser beams 

were recombined by a pair of mirrors and overlapped across the photoresist with a certain angle 

to produce an interference pattern. The polarizations of two interference beams are parallel to the 

surface of the photoresist. The photoresist solution was sensitized for 514.5 nm laser wavelength 

by adding 0.25 wt% H-Nu470 and 2.5 wt% OPPI photo-initiators. After the first exposure, the 

sample stage was rotated along the normal direction of the sample by angle α and received a 

second exposure. Then the samples were post-baked at 65 0C for 10 min and 95 0C for 5 min 

followed by photoresist development for 5 min. After that, the phase mask was hardened by 

baking at 120 0C for 10 min. Figures 4.10 (a) and (b) show the SEM and simulated surface 

topography in SU8 resulting from double laser exposures with 90o rotation angle between 
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exposures. Figure 4.10(c) shows the diffraction pattern produced by the phase mask. The 

diffraction efficiency depends on the thickness of photoresist, the exposure and development 

times, and the rotational angle. 

 

 

Figure 4.10 The SEM, simulated surface and diffractive pattern of 2D phase masks made by double 

exposures with rotation angle α= 900 (a), (b), (c) and by triple exposures with α= 600 (d), (e), (f).  

 

To produce more complex multiple-beam interference patterns, multiple laser exposures can 

be used to create a 2D phase mask. Figures 4.10(d) and (e) show SEM and simulated topography 

resulting from three laser exposures; the sample was rotated by α=60o each time between exposures. 

The diffraction pattern produced by this phase mask is shown in Fig. 4.10(f). Its interference pattern 

produces a face-centered hexagonal structure.  

The 2D phase mask we used for photonic crystal fabrication has typically a period of 1.1 

μm. It has an orthogonal surface profile (α=90o) and its laser beams diffraction is schematically 
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shown in Fig. 4.11(a). The diffraction angle and diffraction efficiency of four 1st-order diffraction 

beams labeled as (1, 0), (-1, 0), (0, 1), (0, -1) were measured to be 200 and 10%, respectively. The 

four second-order diffraction beams (1, 1), (1, -1), (-1, 1), (-1, -1) had much lower diffraction 

efficiency at 1.5%.  The 3rd and higher order beams have negligible intensities. Therefore, only the 

0th and 1st order beams were used to determine crystal structures based on iso-intensity surface of 

the interference pattern [49]. The interference of five-beam produced by the 2D phase mask yields a 

FCC or FCT structure.  

 

 

Figure 4.11 (a) Sketch of propagation of light through an orthogonal 2D phase mask. FCT pattern is 

generated by recording the intensity distribution of five-beam interference in SU8 photoresist. (b) Diamond-

like structure constructed by double exposures with one FCT pattern shifted by Δx=0.5a and Δz=0.25c. 
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4.3.2 3D diamond-like template 

Figure 4.11(b) illustrates the path for lattice translation from FCT to diamond-like structures. 

Theoretically, the diamond-like structures can be viewed as the superposition of two FCT structures 

with a lattice displacement. This can be achieved by double exposures through the 2D phase mask 

on the same photoresist sample with phase mask displacement along the [2, 0, 1] direction of 

Cartesian coordinator system for a quarter diagonal length between exposures. The offsets Δx and 

Δz (marked in Fig. 4.11(a)) between two exposure patterns inferred from simulation are 0.5a and 

0.25c respectively, where a and c are the lattice constants of the FCT structure in x and z direction. 

These actual precise displacements were performed by three-axis high-precision Newport motorized 

linear stages. The simulated iso-intensity surfaces of the 1st FCT, 2nd shifted FCT, and final 

superimposed structures are shown in Fig. 4.11(b).  

The 3D template was fabricated in a thick SU8 film sample of 20 μm. The concentration of 

H-Nu 470 in photoresist solution was increased to 0.5 wt % to accelerate the photoresist cross 

linking. 20 molar % of Triethylamine was added into the recipe again to increase the contrast 

ratio of the template during the photoresist development. To avoid reaching the boiling point of 

Triethylamine of 89.7 0C, the prebake procedure was adjusted to one step at 65 0C for 20 min. 

The laser exposure dose was fixed at 100 mW/cm2 for both exposures. Figures 4.12(a) and (b) 

show SEM top view of diamond-like structures recorded in SU8. The surface feature is 

consistent with the simulation results of the (0, 0, 1) plane of a diamond-like structure in both 

inset of Fig. 4.12(a) and (c). The cross-linking between two FCT structures formed by two laser 

exposures produces a stable 3D template for further inversion processes to create high-index 

contrast structures.  
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Figure 4.12 (a) SEM top view of the fabricated structure together with inserted surface simulation based on 

FCT pattern superposition. (b) Enlarged view of the fabricated structure. (c) Simulated interconnected 3D 

diamond-like structures through double exposures. 

 

4.3.3 Optimal bandgap simulation  

The PBG for the silicon inverse structures is calculated and shown in Fig. 4.13 using the MIT 

Photonic-Bands Package. Figure 4.13(a) shows the photonic band structure for c/a=1.5 for the 

silicon inverse structure where the dielectric constant of 11.9 is used for silicon. The optimal 

silicon filling fraction for diamond-like structure is approximately 18.4% while 20.5% for a FCT 

structure. The band structure shows that a full PBG of 27% of the gap center frequency exists 

between the 2nd and 3rd bands of the optimal diamond-like structure. This is in contrast to the 

maximal PBG of 3.8% between the 8th and 9th bands of a single FCT inverse structure with the 
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same c/a value. The gap size is increased by the operation of constructing the diamond-like 

lattice formed by double laser exposures.  

 

Figure 4.13 (a) Photonic band diagram for the inverse FCT structure and FCT based diamond-like structure. 

The left inset is the first Brillouin surface. (b), (c), (d) are the gap size as a function of c/a ratio, dielectric 

filling factor and relative shift distance, respectively. 
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The bandgap of the fabricated diamond-like structure depends on c/a ratio (the diffractive 

angle), the filling ratio of the structure (exposure dose) and the relative lattice shift distance. The 

bandgap size dependence on these fabrication parameters are shown in Fig. 4.13(b)-(d). Figure 

4.13(b) indicates a need of larger diffraction angle or a close match between lattice constant c 

and a.  A c/a ratio from 1.0 to 1.7 will maintain a bandgap larger than 20%. The bandgap is 

closed when the c/a is greater than 2.5. In addition, the filling fraction of the structure also 

impacts the bandgap, which can be controlled by laser exposure dosage and the photoresist 

development time. Figure 4.13(c) shows this trend for a diamond-like structure with c/a=1.8. The 

optimal dielectric filling fraction was found to be 23% for the inverse structure. In Fig. 4.13(d) 

the bandgap size is shown as a function of phase mask translation distance between two 

exposures. When the second FCT lattice is shifted away the optimum location of (0.5a, 0, 0.25c) 

toward (0, 0, 0), for the inverse structure with c/a=1.8, the bandgap size decreases almost linearly 

during the transition from the diamond-like structure to the FCT structure. 

In summary, we have demonstrated a 2D phase mask approach to generate multiple 

coherent beams for complex photonic crystal fabrications. Diamond-like photonic crystal 

templates were fabricated in SU8 by double exposures with lattice superposition using this 

approach. The utilization of the 2D phase mask simplifies the fabrication configuration in multi-

beam HL for complex 3D optical fabrication. 
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4.4 TWO-LAYER PHASE MASK – DIAMOND-LIKE 3D STRUCTURE 

In this section we will introduce a two-layer phase mask, i.e. a mask with phase gratings at two 

different planes, as the DOE in the consequent HL 3D fabrication. The phase mask is designed 

with similar holographic fabrication principle as we used before. However, extra step are 

introduced before the grating development. If designed properly, this single optical element can 

replace a complex optical setup to generate a desired interference pattern.  

Although the adaptation of single DOE has significantly simplified the optical setup to 

generate three or five interfering laser beams, the formation of diamond-like or woodpile 

structures requires a well-controlled π-phase difference among diffractive laser beams. Chan, etc. 

have proposed theoretically to “lock” the required phase shift in the mask by fabricating 1D 

grating in two layers on the same substrate [62, 63]. The optimized phase shift is determined by the 

vertical spatial separation between two gratings. Illuminating the phase mask with a normally 

incident beam produces a five-beam interference pattern which can be used to expose a suitable 

photoresist and produce a photonic crystal template. One can carefully design the phase mask to 

manipulate the relations of the interfering beams and thus it can be used to produce photonic 

crystal templates with diamond-like structures. However no experimental fabrication of such an 

optical phase mask has been reported to date. 

 

4.4.1 Liquid crystal phase separation approach 

The first mask fabrication approach we demonstrate is to make multi-layer phase mask on a 

single substrate. The fabricated optical phase mask consisting of two orthogonally-oriented 
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gratings has high diffraction efficiencies and generate five-beam interference pattern with a 

phase relation among the interfering beams. The photonic crystal template is fabricated by 

exposing a photoresist to the five-beam interference pattern. 

One laser beam was expanded and separated into two beams using a beam-splitter. A 

parallel fringe is formed when two laser beams overlap. The spacing Λ between the dark (or 

bright) fringes is determined by the laser wavelength and interference angle θ by the relationship 

of Λ=λ/(2sinθ). When a photoresist is exposed to the interference pattern and developed, it forms 

a 1D grating on the substrate. In order to protect the grating formed after laser exposure, liquid 

crystal was employed to mix with the photoresist. Their inherent phase separation characteristic 

played a key role in the fabrication of the integrated phase mask described as follows. 

 

Figure 4.14 Schematic of two beam interference (a) for the formation of optical phase mask consisting of 

two orthogonally oriented gratings in a photoresist mixed with liquid crystal molecules (b). 

 

The photoresist mixtures were similar to a reported formulation (without fatty acid) 

containing the following components in the specified weight concentrations: dipentaerythritol 

penta/hexaacrylate (DPHPA) monomer (Aldrich, 65%), BL111 liquid crystal (EMD Chemicals, 

25%), a photo initiator rose bengal (0.3%), co-initiator N-phenyl glycine (NPG, 0.5%), chain 
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extender N-vinyl pyrrolidinone (NVP, 9.2%).   For the phase mask fabrication, the mixture was 

spin-coated over a transparent glass slide (Corning) with a typical speed of 4000 rpm for the 

phase mask fabrication. The thickness of the sample is determined by the spin-coating speed. For 

such a spin-coating speed of 4000 rpm, the typical thickness of the sample is 3 μm. Due to a 

well-known polymerization-induced phase separation process [64], the laser exposed sample 

consists of a periodic distribution of liquid crystal-rich domains, corresponding to the dark 

regions of the interference pattern, and polymer-rich grating structure [65]. Two laser exposures 

were performed for the fabrication of phase mask. For the first exposure, two interfering laser 

beams came from the glass slide side as shown in Fig. 4.14 (a, b) and formed the liquid crystal-

rich and polymer-rich gratings parallel to the y-direction.  The liquid crystal-rich region is much 

less sensitive to further laser exposure than the polymer-rich region. More laser exposures will 

induce weak polymerization in the liquid crystal-rich region allowing this region to be washed 

out during the development. Thus the addition of liquid crystal in the photo-sensitive mixture 

helps preserve the grating structure produced in the first exposure. The time for first exposure 

was in the range of 0.5 to 2 s. Because the exposure time is short, only the photoresist near the 

glass-slide substrate becomes polymerized. Then the same sample was exposed to the laser 

interference pattern rotated by 90 degrees and coming from the sample side as shown in the 

figure. After an exposure in the range of 2 to 4 s, a grating parallel to the x-direction is formed. 

The sample was developed in propylene-glycol-methyl-ether-acetate (PGMEA) for 20 s and 

rinsed in isopropanol. 
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Figure 4.15 SEM of the fabricated phase mask showing two layers of grating structure (a), and the enlarged 

view (b). 

 

Figure 4.15(a) shows the SEM of the fabricated sample. The SEM shows clearly two 

layers of grating structures, also shown in the Fig.4.15 (b) as enlarged view. The top layer has a 

grating in the horizontal direction. The layer beneath has a grating in vertical direction, 

orthogonal to the top grating structure. When a single beam goes through such a phase mask, it is 

desirable to have five and only five diffracted beams behind the phase mask, namely the (0,0), 

(0, ±1) and (±1, 0) beams, as indicted in Fig. 4.16 (a). The next lowest order beams are the (±1, 

±1) beams. If the phase mask was designed properly, these four beams vanish. The five low 

order diffracted beams can be described by: 
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Figure 4.16 (a) Scheme of phase mask and diffracted beams by the top grating; (b) Photo of fabricated 

phase mask and diffracted beams by the phase mask. 

 

where k and ω are the wave vector and angular frequency of the beam, respectively, E is the 

constant of electric field strength, and δ is the initial phase of the beam. If the initial phases for 

five-beam are the same, the generated interference pattern has FCC or FCT symmetry [66]. In this 

study, the initial phases for beams (0, 1) and (0, -1) are the same, but different from those for 

beams (0, 0), (1, 0), and (-1, 0), i.e. the δ1 and δ2 are different in the above equations. This is a 

consequence of the optical path difference developed between (0, 0) and (0, 1) (or (0, -1)) when 

(0, 0) beam goes in straight line while the (0, 1) or (0, -1) travels along a direction with a 

diffraction angle before further diffracted by second grating, as shown in Fig. 4.16(a). 

As shown in Fig. 4.16(b) as an example, when one beam goes through the phase mask, 

nine diffracted beams can be produced. The beams (1, 0) and (-1, 0) have approximately the 

same intensity, although the (1, 0) beam spot looks bigger than (-1, 0) caused by a closer distance 

to the digital camera. Beams (0, 1) and (0, -1) have the same intensity also. The (±1, ±1) beams 

are very weak and their diffraction angles are larger than the (±1, 0) and (0, ±1) beams. The 
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beam intensities for (0, 1) and (0, -1) modes might be different from those for beams (1, 0), and 

(-1, 0), depending on the diffraction efficiency. As an example, one of the fabricated phase 

masks generates beam intensities with a ratio of 1: 0.68: 0.38: 0.13 for (0, 0), (1, 0), (0, 1) and (1, 

1), respectively. The diffraction efficiency is determined by the cycle, depth, and period of the 

grating structure, the polarization direction of the laser, and the laser wavelength.  

Experimentally the cycle and depth of the grating structure can be controlled through the 

weight percentage of photo-initiator, the laser exposure time and the sample development time 

[49]. The period of the grating can be controlled through the interfering angle of the two laser 

beams. There is a way to compensate the intensity difference during the exposure of the five-

beam interference to the photo-sensitive material. If the polarization of the laser is set to be in [1, 

0, 0] direction, the diffracted beams (1, 0) and (-1, 0) have polarization directions in xz plane 

with an angle relative to x-axis same as the diffraction angle. The diffracted beams (0, 0), (0, 1) 

and (0, -1) have the same polarization as [1, 0, 0]. If we define E(r, t) of each beam has the 

amplitude containing both the intensity and polarization. Thus intensity difference can be 

compensated by the selection of a polarization for the interference of above five-beam when 

calculating the dot product of two beams. 

Using a 1D phase mask, two exposures of the sample to the interference pattern were 

required to produce a 3D photonic crystal. Using a 2D phase mask, one exposure can produce a 

3D photonic crystal. With the two-layer phase mask produced in this work, not only can one 

produce a 3D photonic crystal by a single beam and single exposure, but also can introduce the 

phase shift of the interfering beams. Incorporation of the phase shift for (0, 1) and (0, -1) beams 

is necessary for the fabrication of 3D photonic crystals with a large PBG.  
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The lab-fabricated phase mask was used to generate a 3D photonic crystal template in the 

photoresist mixture with a similar formulation to that described above except that the liquid 

crystal was omitted. The DPHPA photoresist mixture was spin-coated on the glass slide substrate 

at a speed of 1000 rpm. The thickness is approximately 15 μm. The phase mask generated beam 

intensities with a ratio of 1: 0.68: 0.38: 0.13 for (0, 0), (1, 0), (0, 1) and (1, 1), respectively. The 

exposure laser has a wavelength of 532 nm with a polarization in the x direction [1, 0, 0]. As 

shown in Fig. 4.17(a), the photonic crystal template can be fabricated in the photoresist by the 

single beam and single exposure method using the phase mask. The photoresist was placed in a 

location where five and only five-beam overlap and generate the interference pattern. The 

exposure time was 60s. The exposed photoresist was developed in PGMEA. Figure 4.17(b) 

shows a large-scale SEM of the fabricated photonic crystal template. From the theory, the period 

of the structure in Fig. 4.17(b) should be the same as the grating period of the phase mask. The 

measured average period by SEM is approximately 1.02 μm, compared with the measured 

grating period of 1.06 μm in Fig. 4.17(b). 
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Figure 4.17 (a) Scheme of setup for single beam exposure; (b) SEM of photonic crystal template fabricated 

using the phase mask through single beam and single exposure method; (c) An enlarged view of SEM. The 

inset is the simulation of five-beam interference pattern; (d-e) 3D pattern of the five-beam interference with 

δ1-δ2=0.35 π (d) and δ1-δ2=0 π (e); (f) Fabricated structure in SU8 with δ1-δ2=0 π and simulated intensity 

pattern as an insert; (g) 3D pattern of the five-beam interference with δ1-δ2=0.2 π. 

 

Figure 4.17(c) clearly shows a 3D feature of the fabricated structure. The detailed feature 

of the SEM can be simulated as shown as an insert in Fig. 4.17(c). The grating period of 1.06 μm 

was used for the simulation. The beam intensities were set with the values we have measured 
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above, namely, the ratio of beam intensity was set to be 1: 0.68:0.68:0.38:0.38 for (0, 0), (1, 0), (-

1, 0), (0, 1), (0, -1) and (1, 1). The polarization of the incident laser was set in the [1, 0, 0] 

direction. After the diffraction, the polarization for (0, 0), (0, 1) and (0, -1) beams was set in the 

[1, 0, 0] direction. For (1, 0) and (-1, 0) beams, polarization directions were chosen in xz plane 

with an angle of 31 degrees relative to x-axis. The maximum phase shift (δ1-δ2) was estimated to 

be 0.47π based on the sample thickness of 3 μm. A phase shift of 0.35π (δ1-δ2=0.35π) between 

the group of (0, 1) and (0, -1) beams and the group of (0, 0), (1, 0), and (-1, 0) beams can 

simulate the fabricated structure in Fig. 4.17(c) (see the insert for the simulation). Figure 4.17(d) 

shows the 3D view of above simulated structure. As we have stated early, the incorporation of 

the phase shift for (0, 1) and (0, -1) beams is necessary for the fabrication of the diamond-like 

structure. If the phase shift is zero, the low-intensity iso-surface of the five-beam interference 

looks like spheroid-type FCC or FCT structure as shown in Fig. 4.17(e). Such a structure is not 

interconnected and thus is not stable. Under high laser dosage, the structure is interconnected but 

there is diminished accessibility for the solvent to wash out regions of low intensity exposure. 

Figure 4.17(f) shows a SEM of a fabricated FCT structure in SU8 photoresist under a high laser 

dosage with a phase shift of zero (the detail of the fabrication in SU8 will be reported elsewhere). 

The fabricated structure is in good agreement with a simulated intensity pattern of the 

interference as shown as an insert in Fig. 4.17(f). Compared Fig. 4.17(c) with Fig. 4.17(f), it is 

very clear that the fabricated structure through the two layer phase mask is totally different from 

the fabricated structure with zero phase shift. With a phase shift of 0.2 π, the spheroids start to 

interconnect and form diamond-like structure as shown in Fig. 4.17(g). The perfect phase shift is 

0.5 π. With such a phase shift, the interference pattern has a diamond-like structure as reported in 

reference. 
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The fact that the fabricated structure through the two-layer phase mask can be simulated 

by an interference pattern with a phase shift and is totally different from the fabricated structure 

with zero phase shift, indicates that there is the phase shift among beams generated by the two-

layer phase mask. 

The described method solved the optical alignment problem that one has faced using two 

separate 1D phase masks. Alignment of the two interference patterns in 3D space proved 

difficult in the production of the wood-pile type photonic crystal. This work solves the 

previously encountered difficulties, because using two-beam interference for the fabrication of 

the phase mask, there is no issue of alignment as long as the sample is rotated by 90 degrees for 

the second exposure. Furthermore optical alignment is no longer a concern for the fabrication of 

the photonic crystal template using the phase mask through single beam and single exposure HL. 

Once the optimal directions, amplitudes, polarizations, and phases are determined, a two-

layer phase mask can be designed and fabricated to yield the optimal diffraction condition for the 

holographic fabrication. The integration of the two-layer phase mask on a single substrate 

represents a significant improvement toward mass production of 3D photonic structures. Since 

the two-layer mask can be readily integrated with multiple-layer amplitude mask based 

integrated circuit (IC) fabrication, the proposed approaches also provide an avenue for chip-scale 

integration of the 3D photonic devices with other light wave and electronic circuit elements. 

 

4.4.2 PDMS grating mold imprinting approach 

The above approach can easily fabrication two-layer integrated phase mask, but such mask is not 

perfectly applicable to 3D pattern fabrication, which we will discuss about in the next section. 
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The most crucial thing is it lacks phase tunability. We know that by two beam interference, the 

interference pattern profile looks like standing wave in sinusoidal form. The aspect ratio of the 

photoresist grating is determined not only by the expose dose but also by the develop time. 

However, the expose dose, experimentally, is determined by the output power of the laser and 

the shutter controlled exposure time, as well as the glass absorption if light incident from the 

back side. So, in the two layer grating fabrication process, it is not convenient to control the 

distance between two grating layer. To get the final grating structure interconnected, the two 

grating layers have to always attach to each other, to be sustained after photoresist development. 

The distance between two layers is fixed, equal to the thickness of the grating.  

Another approach we demonstrate for holographic fabrication of photonic crystal 

structures with phase control of the diffractive beams. This technique reduces two laser 

exposures to one exposure and removes the need of the phase mask displacement. The phase 

mask used in this work is a two layer phase grating. Two phase gratings with desired orientations 

are separated by a spacer layer. Desired phase changes among different diffractive laser beams 

can be controlled by the thickness of the spacer layer. By doing so, the need of precise phase 

mask displacement is eliminated. Interconnected 3D photonic crystal structures such as woodpile 

structures can be directly fabricated in photoresist using one laser exposure for further 

processing. This critical improvement enables the fabrication of complex 3D photonic structures 

by a single laser exposure through a single optical element.  
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Figure 4.18 (a) Experiment setup phase grating holographic fabrication (b) PDMS grating mold inversion 

process. (c) AFM topography of the 10μm thick PDMS grating mold. Insets are the PDMS grating mode and 

the cross-section view of its sinusoidal profile. 

 

The fabrication of two-layer phase gratings demonstrated here is a two-step procedure: 

the fabrication of mold in PDMS and the imprinting of two layer gratings in SU8. The mother 
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mold of the phase mask was fabricated in DPHPA photoresist using two-beam interference, 

according to the principle of Mach-Zehnder interferometer. A collimated, vertically polarized 

(out of the paper plane) laser beam was split by a 50:50 non-polarized beam splitter. The two 

resulting arm beams are reflected by mirrors and symmetrically projected on the photoresist 

sample surface, as shown in Fig.4.18 (a). Figure 4.18(a) shows the laser holographic fabrication 

process to produce the PDMS mold. The mother mold of the phase mask is fabricated in DPHPA 

photoresist (0.2 wt% Rose Benegal photo-initiator, 0.8 wt% NPG co-initiator, 10 wt% NVP 

solvent, 89 wt% DPHPA) using the approach of dual-beam laser interference HL. A short 

photoresist development time (1-5 s) was used to reduce the surface erosion. According to the 

diffraction formula Λ = 𝜆/(2𝑛 sin 𝜃 ), the angle 2θ of the two interfering beams determines the 

grating period Λ in DPHPA. In this work θ=30o was chosen to produce a 900nm grating with 

about 5:1 0th/1st diffraction ratio. A subsequent pattern inversion transfers the grating into a 

daughter PDMS grating mold as shown in Fig. 4.18 (b). A pre-polymer solution of PDMS (Dow 

Corning® Sylgard 184; base: curing agent=10:1) was then poured onto the master. Then the 

sample is cured in an isothermal oven at 65oC for 1 hour and followed by a second cure at 100oC 

for 1 hour. The cured PDMS mold with a thickness about 10μm is peeled off from the master 

after cooling and bonded to a glass side. A surface treatment by oxygen plasma is applied to 

enhance the adhesion between the glass substrate and the PDMS grating. Fig.4.18(c) shows an 

atomic force microscope (AFM) image of the top and lateral views of the grating mold, which 

shows a uniform sine trapezoidal grating profile with 900nm period, 350nm ridge, and 250nm 

land and 300nm height. This mold is then used to imprint two-layer phase masks in SU8 

photoresist.  

http://www.ellsworth.com/display/productdetail.html?productid=216&amp;Tab=Vendors�
http://www.ellsworth.com/display/productdetail.html?productid=216&amp;Tab=Vendors�
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Since the grating is designed to provide multiple coherent beams, the intensity and 

polarization of the diffractive beams are critical. Our purpose is to have five diffractive beams 

(0th and 1st orders) output and symmetrically allocate the most transmitted energy into those 

beams. Higher order diffractive beams can be minimized by optimal design the gratings lateral 

profile. Fig. 4.19 (a) shows the designed grating in a sine trapezoidal shape based on the actual 

AFM measured dimensions. Fig. 4.19(b) is the calculated diffractive efficiencies of the 1st order 

and 2nd order efficiency for a normal incident light with different polarizations. The solid lines 

are corresponding to the first layer grating and dot line for the second layer gratings. To have 

uniform 1st order diffractive beams, a quarter waveplate for 514.5nm is used to change our linear 

polarization laser beam in to circular.  The diffractive efficiency ratio of 0th: 1st: 2nd order 

beams is 0.659:0.135:0.021 for single grating with a 22o diffractive angle.  This indicates after 

two-layer gratings, if the absorption ignored, the ratio between (0, 0): (0, ±1) or (±1, 0): (±1, ±1) 

are 1: 0.205: 0.042. (Higher order beams are negligibly small). 

The 5:1 0th to 1st diffraction ratio is important for a later fabrication process of 3D 

interference pattern, by 5 beam configuration. This ratio will determine the 3D structure’s 

contrast ratio since background light may influent the crystal quality if 0th order has much larger 

intensity than 1st order beams; on the other way, if 0th and 1st order get comparable value, 

higher order (±1,±1) diffraction beams will be generated. 9 beam interference pattern will replace 

5 beam one which spoil the symmetry of a FCT structure.     
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Figure 4.19 (a) Designed surface profile of the imprinting grating mold; (b) grating diffraction efficiency 

simulation for 1st order and 2nd order beams according to different polarized incident beam. To propagate 

through a two-layer orthogonal oriented grating, incident light with 45o linear or circular polarization can 

have equal diffractive outputs. 
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SU8 photoresist has been extensively used as building materials for MEMS and micro 

optic elements, thanks to its mechanic robustness, good thermal and chemical stabilities, and 

excellent optical transparency at visible wavelengths [67]. Figure 4.20 (a) depicts the two layer 

phase grating fabrication process in SU8. The PDMS grating mold was first used to imprint 

grating patterns on pure SU8-2035 photoresist (MicroChem Inc.) coated on a glass slide under a 

flood UV irradiation source (UL500P, Hoya-Schott Co.) for 1min. The exposed SU8 was 

partially polymerized by post-baking at 65oC for 10min. The PDMS mold is then peeled off from 

the SU8. 

 

 
Figure 4.20 (a) Fabrication processes of the two-layer phase mask. (b) SEM image of bonded SU8 two-

layer mask with orthogonal grating orientations. (c) Diffraction pattern of the two-layer phase mask.  
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To produce the second grating layer, a SU8 thin film was coated directly on the PDMS 

mold by a spin-coating process as shown in Fig. 4.20(a). The spin speed determines the film 

thickness which is important to the “built-in” phase delay of the mask. After the 2nd laser 

exposure on the SU8 film coated on the PDMS mold, both SU8 layers are brought into contact to 

form a two-layer structure. The two-layer mask was bonded at 95oC for 20 min under 50 kPa 

pressure [68]. The mask was further hardened by a hard-baking process at 200oC for another 20 

minutes. The intermediate layer between two gratings is about 22 μm thick, which is produced 

by the spin-coating process at 2000 rpm. An SEM image of a bound two-layer phase mask is 

shown in Fig. 4.20 (b). A two-layer grating with orthogonal orientations is clearly visible with a 

spacer layer.  

When a single beam goes through the first layer of grating, it produces diffractive beams 

in x-z plane as shown in Fig. 4.20 (b) labeled as (0, 0), (1, 0), and (-1, 0) orders. The (0, 0) beam 

incurs a different phase from (±1, 0) beams through the intermediate layer due to the propagation 

path difference. The second layer of grating further diffracts beams in the y-z plane to form 9 

diffractive beams labeled as (0, 0), (0, ±1), (±1, 0), and (±1, ±1) beams, respectively. Fig. 4.20 

(c) shows a diffraction pattern of the grating. Uniform diffractive beams are found and the 

intensity ratios were measured as 50%: 10%: 1.5% for (0, 0) order: (±1, 0) and (0, ±1) orders: 

(±1, ±1) orders, respectively, which is consistent with the simulation result perfectly.  

The highest order beams (±1, ±1) have much weaker intensity as measured and therefore 

have negligible effects on interference patterns. Therefore, the two-layer phase masks will 

produce five-beam interference patterns by (0, 0), (±1, 0), and (0, ±1) beams. When a plane wave 

propagating through the top layer of the phase mask, phases for beams (0, 0) and (0, ±1) are  

δ1 = 2π
λ

nd and  δ2 = δ1
cosθ

 , respectively, where n and d are the index of refraction and the thickness 
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of the spacer layer, respectively. The (0, 0) order beam was further split (0, 0) and (0, ±1) beams 

upon the incident on the second layer of the phase mask. Since periods for both layers of grating 

are identical, the phase difference between (0, ±1) beams and (0, 0), (±1, 0) beams remain Δδ= 

δ2-δ1 after the second layer of the phase mask.  

This two-layer phase mask is then used to produce 3D photonic crystal templates in 

DPHPA photoresist through one laser exposure. The phase difference between (0, ±1) beams and 

(0, 0), (±1, 0) beams is critical for the formation of interconnect 3D photonic crystal structures. If 

the “built-in” phase delay Δδ for five beams are zero or integral multiples of π, the generated 

interference pattern has FCT symmetry, as shown in the 3D simulation in the insets of Fig.4.21 

(a). When Δδ are odd integral multiples of π/2,10 the 3D template will evolve into 

interconnected woodpile structures as shown in the 3D simulation in the inlet of Fig. 4.21(b). 

 

 
Figure 4.21 SEM pictures of fabricated structures in the photoresist through an orthogonal two-layer phase 

mask with symmetries of (a) FCT and (b) woodpile structure. Insets are the simulation structure for 

comparison with parameter setting (a) Δδ=0 and (b) Δδ=π/2; And structure fabricated through a 60-degree 
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two-layer phase mask with symmetries of (c) Face Centered Hexagonal and (d) 3D hexagonal piled 

structure. Insets are the simulated structures with (c) Δδ=0.1π and (d) Δδ=π/2. 

 

The phase shift of π/2 is corresponding to a thickness change of(λ/4n) ⁄ ((1/cos θ − 1) ), 

i.e. 498 nm, given the period of the phase mask. To yield optimal 3D structures, a thermal tuning 

was used to adjust the phase delay induced by the as-fabricated two-layer phase mask. The 

thermal expansion coefficients of the hard-baked SU8 samples (n=1.67 at 514.5nm) were 

reported as 102 ppm/oC for in-plane and 253 ppm/ oC for out-of plane (thickness direction) [68]. 

Thus, for a 22 μm thick intermediate layer, the phase delay can be tuned by raising temperature 

at a rate of 0.011rad/ oC.   

The phase mask was mounted by a metal frame holder on a hot plate. The ambient 

temperature of the phase mask was raised by every 30 degree from room temperature to 240 oC, 

which is close to π/8 phase change for every 30oC temperature increment.  Once the temperature 

of the phase mask is stabilized, the DPHPA photoresist samples were placed in a close proximity 

of the phase mask for laser exposure. The laser exposure time was between 1-2 s and the samples 

were taken off rapidly after exposure. 

Fig. 4.21 (a) and (b) shows SEM pictures of the 3D photonic crystal by using the thermal 

controlled two-layer phase mask. Fig 4.21(a) reveals FCT structures when the phase delay Δδ= 

δ2-δ1 was not well-controlled. Since FCT structures are not interconnected, only one layer of 

period structures were left on the glass slide after the photoresist development. The fabricated 

structures match the simulated structure with zero phase delay Δδ= δ2-δ1=0. When the phase 

delay are close to odd integral multiples of π/2, thicker and interconnect 3D structures started to 

develop. Fig. 4.21(b) shows a woodpile-like 3D multi-layer structure. The surface morphology 

closely match the simulation results shown in the inlet with a phase delay Δδ= δ2-δ1= π/2.  
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The flexible fabrication approach of the two-layer phase mask can be extended to two-

layer grating with other orientations. Fig.4.21 (c) and (d) shows the SEM pictures for 3D 

structures produced by a two-layer phase mask with 60o angle orientation respect to each other. 

The phase mask was prepared in the same way as described in Fig. 1 and 2 with a 22 µm thick 

spacer layer. 3D photonic crystal structures demonstrated in Fig.4.21 (c) and (d) match 

simulation structure with the phase delay Δδ= δ2-δ1 of 0.1π and π/2, respectively.  

Theoretically, the interconnected 60o woodpile-like 3D structure shown in Fig.4.22 (b) 

could produce a larger bandgap than that in the orthogonal woodpile-like structures if followed-

up pattern inversion process was taken [6]. Moreover, the mask fabrication approach further 

enable hybrid combinations of micro-molding and lithographic processing, such as multi-layer 

phase mask for quasicrystal fabrication , to fabricate complex micro-optics that are difficult to 

realize using conventional techniques.  

In summary, we have developed of an integrated two-layer phase mask to produce five 

diffractive laser beams with a thermal controlled phase delay. Interconnected 3D woodpile 

photonic crystal template can be produced through this single optical element by only one laser 

exposure. This simple manufacturing process has potential to be integrated into existing 

photolithography-based fabrication approach used for 3D optoelectronic circuit manufacturing. 
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5.0  PHASE TUNING APPORACHES IN HOLOGRAPHY LITHOGRAPHY 

This chapter demonstrates a phase tunable holographic fabrication of 3D photonic lattice structures 

using a single optical element. A top-cut four-side prism is employed to generate five-beam 3D 

interference patterns. A silica glass slide is inserted into the optical path to adjust the phase of one 

interfering beam relative to other four beams [8]. The phase control of the interfering laser beam 

renders the lattice of the interference pattern from a face-center tetragonal symmetry into a high 

contrast, interconnecting diamond-like symmetry [69]. This method provides a flexible approach to 

fabricating 3D photonic lattices with improved photonic band structures. 

5.1 PHASE TUNING WITH A TOP-CUT PRISM SETUP 

In this chapter we will demonstrate a phase tunable holographic fabrication of 3D photonic lattice 

structures using a single optical element. A top-cut four-side prism is employed to generate five-

beam 3D interference patterns. A silica glass slide is inserted into the optical path to adjust the 

phase of one interfering beam relative to other four beams. The phase control of the interfering laser 

beam renders the lattice of the interference pattern from FCT symmetry into a high contrast, 

interconnecting diamond-like symmetry.  This method provides a flexible approach to fabricating 

3D photonic lattices with improved photonic band structures. 
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Technically, it is relatively easy to produce multiple coherent laser beams with precise 

interference angles by a single optical element. However, HL techniques using a single optical 

element presented so far, lack precise phase control of the interfering beams. Precise phase 

control of interfering laser beams is critical to the fabrication of complex, highly symmetric 

photonic structures such as the diamond-like structures which possess large PBGs. The technique 

demonstrated following provides a simple approach to finely tune and optimize photonic band 

structures with large PBG width.  

 

 

Figure 5.1 Experiment setup of the five-beam interference with one beam modulated by a glass slide. Inset: 

phase modulation Δδ as a function of the glass slide rotational angle θ.  
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The single optical element used to construct the five-beam interference pattern is a top-

cut, four-side prism. Five-beam are selected by a set of apertures from one incoming collimate 

beam. The use of the apertures prevents laser beams from hitting corners and edges of the prism.  

As shown in the inlet of Fig.5.1, all five laser beams are incident from the bottom side of the 

prism. After total internally reflected at four lateral surfaces of the prism, Beam 2-5 refract 

through the top surface of the prism and recombine with Beam 1 to form interference patterns.  

To perform the phase modulation, a thin microscope glass cover slide with a uniform thickness 

(Corning, BK7 glass, d=130μm, n=1.52) is inserted into one of five-beam used to form 

interference patterns (labeled as Beam 5 in Fig.5.1). By rotating the glass slide, the phase of the 

Beam 5 can be adjusted continuously. 

 

 

Figure 5.2 Isosurface of the unit cells of the phase modulated five-beam interference pattern, Imod. The phase 

change Δδ varies from 0 to π with 0.2π increment. 
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The rationale of the phase control of one interfering beam can be briefly described as the 

following. The intensity profile of the five-beam interference pattern can be calculated as,   
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where Ei is electric field strength and ki is wave number. The insertion of the phase control glass 

slide in the Beam 5 induces an additional phase modulation Δδ, which only affects on the last 

term of Eq. (5.1) and we can rewrite Eq.(5.1) as,   
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where Imod and Inon-mod denote the isosurface of the intensity pattern related to and not related to 

the phase modulation, respectively. The additional phase modulation Δδ as a function of the 

glass slide rotation angle θ can be described as,   
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where α=arcsin(sinθ/nglass) and λ is the incident wavelength. Fig.5.1 inset illustrates the relation 

between the phase change Δδ and the rotation angle θ from Eq. (5.3). From this curve, we can 

see that 6.1 degree of rotation of the glass slide is enough to produce a π phase retardation using 

the current setup. Fig.5.2 shows the variation of unit cell lattices for the five-beam interference 

pattern as the phase change Δδ evolves from 0 to π with a 0.2π increment. The evolution of the 

phase change Δδ renders the interference pattern (or holographic photonic crystal) from FCC or 

FCT structure into interconnected structures. When the phase modulation reaching the optimal 

value Δδ=π, a diamond-like network is formed.  

To experimentally validate the phase tuning and structure controlling, 3D photonic 

crystal templates were fabricated in a negative-toned DPHPA photoresist mixture. The mixture 
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was spin-coated on glass slides at 2000 rpm for 2 min. No prebake procedure was used before 

receiving exposure.  

A 514.5nm circularly polarized laser beam from Ar ion laser (Coherent Inc.) was cleaned, 

expanded, and collimated by spatial filter and collimating lens. The BK7 microscope slide used 

for phase tuning was mounted on a rotational stage. The exposure dose in use is tested in the 

range of 100-1000 mJ/cm2. After exposure, the photoresist samples were developed directly in 

propylene glycol methyl ether acetate for 20s, followed by rinsing in isopropanol for 10s and 

then left to dry in air.   

 

 

Figure 5.3 SEM pictures of fabricated structures in the photoresist through the five-beam interference 

without a phase modulation; inset are the zoom in view of the bottom layer and a simulation for a 

comparison. 
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Fig.5.3 shows the SEM pictures for the recorded five-beam interference pattern in the 

photoresist. In this case, the glass slide for phase modulation was not used. Without the phase 

modulation, the developed photoresist did not form interconnected networks. Only one layer of 

developed photoresist was left on the glass slide. 2D structures shown in the SEM is in good 

agreement with the simulated one (see insert in Fig.5.3).    

 

Figure 5.4 (a) SEM pictures for the photoresist templates of the interconnecting diamond-like structure, 

produced by the five-beam interference with phase retardation; (b) Computed five-beam interference pattern 

and its selected cross-section planes along height (z) direction; (c-f) Structure variation described by the 

zoom-in SEM views of the diamond-like template and their corresponding simulation planes from (b). 
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In a sharp contrast, the introduction of a phase tuning mechanism in the five-beam HL 

using the prism yields overlapping diamond-like structures. Figure 5.4(a) shows the SEM image 

for the photonic crystal template formed in photoresist with diamond-like structures, which were 

achieved by the phase tuning of the Beam 5. As predicted by the simulation in Fig. 5.4(b), the 

fine phase tuning transforms the photonic crystal template from the FCT symmetry to diamond-

like symmetry. The interference pattern locked in photoresist clearly shows interlaced structures 

with diamond-like symmetries in Fig. 5.4. The period of diamond-like structure in the Fig. 5.4(a) 

in x (or y) direction is measured to be 0.85 µm, in good agreement with a theoretic prediction of 

0. 84 µm with an interference angle of 37.5 degrees and a period of 0.82 µm in Fig. 5.3 for the 

fabricated one-layer structure. 

A detail examination of the SEM photo shows that various interlaced structures were 

produced periodically on the surface of the photoresist with a period of around 8.6 µm, which is 

approximately 10 times as large as the diamond-like lattice period. Zoom-in SEM pictures, as 

shown in Fig. 5.4(c)-(f), present detailed features of various interlaced structures in the 

developed photoresist. These structural variations could be attributed to a slight mis-alignment of 

the sample. The surface of the photoresist film is not completely perpendicular to the normal 

incident laser beam, but cut through the (0, 0, 1) surface of the diamond-like structure at a small 

angle. This will result in surface topology representing diamond-like structures at different depth. 

The comparison between the simulation and the experiment showed in Fig. 5.4 confirms this 

speculation. Fig.5.4(g)-(j) shows the computed five-beam interference pattern where one beam 

has a phase retardation of π relative to other four beams, and its selected cross-section planes 

along height (z) direction. The fabricated topographic images shown in Fig.5.4(c)-(f) match well 

with those simulation planes. 
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It should be pointed out that the PBG properties of the photonic crystal can be improved 

by such phase modulation. Theoretical simulation predicts that the photonic structure templates 

duplicated from the five-beam interference patterns can have complete bandgap if the templates 

or their inverse replica structures are translated into high-index materials. Such inversion 

processes have been well-documented. If the template structure shown in Fig. 5.4 is translated 

into a 3D photonic structure consisting of air filled voids and high refractive index dielectric 

materials such as Si, the phase modulation ∆δ from 0 to π will lead to an improvement of PBG 

width (bandgap width/bandgap central frequency) from 3.8% to 25%, with a change of bandgap 

location from band 8-9 to band 2-3.  

Up to now, we have demonstrated phase tunable holography fabrication of 3D diamond-

like photonic crystal templates using a top-cut prism as a refractive optical element and a glass 

slide as a phase modulator. The phase modulation can transfer the template from FCT structure 

to diamond-like structure, as confirmed though SEM images. This approach provides a simple 

and versatile way to control holographic interference patterns to fabricate photonic crystal with 

optimized optical properties.  

5.2 PHASE TUNING WITH A SPECIALLY DESIGNED PHASE MASK SETUP 

The prism setup can have good 3D pattern by single exposure. However, the bulk volume of this 

beam-splitting optical element makes it less compatible to other optical components, which typical 

have size at micron or smaller scales.  So, we are switching to design an optical element to replace 

the beam-splitting prism and at same time with at least one critical dimension in micro size.   



 87 

5.2.1 Design a coplanar phase mask 

The single DOE is produced by recording gratings in a photosensitive photoresist mixture. In order to 

obtain right grating depth and grating cycle for high diffraction efficiency, low power laser is used so 

that laser exposure time is extended and used as a control of exposure condition. Thus Coherent 

Compass laser (532 nm, 60 mW) is used for the exposure of the photoresist mixture. One laser beam 

was expanded to a size of 4 mm and separated into two by using a 50:50 beam splitter. Parallel 

fringes are formed when two laser beams overlap. The laser polarization is set in parallel with fringes. 

The DPHPA photoresist mixture is spin-coated on a glass slide (25 mm x 25 mm) with a speed of 

3000 rpm for 2 min. The glass slide is mounted on a rotation stage combined with a linear motion 

stage (Thorlabs Inc.). The location of the glass slide is initially adjusted with two beams overlapped 

in the rotational center, then moved away from the center by 5.1 mm. After the photoresist mixture 

receives the first exposure, the glass slide is rotated by 90 degree for the second exposure. Totally 

four-gratings are produced for the entire grating writing process as shown in Fig. 5.5(a). The 

exposure time is 2 s for each exposure. After exposure, the photoresist mixture is developed directly 

in PGMEA for 20s, followed by rinsing in isopropanol for 10s and air drying. Figure 5.5(b) shows 

the SEM pictures of fabricated gratings in the thin polymer on the glass slide. The period of the 

grating is approximately 0.78 μm. Thus the fabricated DOE consists of the central opening 

surrounded by four diffraction gratings orientated four-fold symmetrically with size of 4 mm in 

diameter and period of 0.78 μm.  
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Figure 5.5 (a) Scheme of single DOE consisting of one central hole and four side gratings. (b) SEM of 

fabricated grating in a polymer. 

5.2.2 Fabrication of 3D structure using the DOE 

Fig.5.6 shows the optical setup for the holographic fabrication of 3D photonic crystal template. For 

the five-beam HL, a high power laser is needed. Thus a 514.5nm laser beam from a Sabre Ar ion 

laser (Coherent Inc.) is circularly polarized, cleaned, expanded, and collimated by spatial filter and 

collimating lens. Five-beam are selected by an aperture array from one incoming beam. When the 

beams go through the single diffraction element, four first-order diffracted beams overlap with the 

central beam passing through the central opening (labeled as beam 1 in Fig. 5.6). The four beams are 

arranged symmetrically around the central one and tilted at the same angle. The first-order diffraction 

efficiency of the gratings is approximately between 24% and 28% of the incident beams 2, 3 and 4. 

The diffraction efficiency of the grating for beam 5 is 30%. The phase of the beam 5 is delayed by 

inserting a thin microscope glass cover slide with a uniform thickness (BK7 glass, d=130μm, n=1.52).  
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By rotating the glass slide through a rotation stage, the phase delay of beam 5 can be adjusted 

continuously and precisely.  

 
Figure 5.6 Experimental setup of the five-beam holographic fabrication using the single diffractive element 

with one beam phase-delayed by a glass slide. 

 

The insertion of the glass cover slide introduces a large phase delay for beam 5. 

However the interference pattern with a phase delay of Δδ5i is the same as the one with a 

phase delay of Δδ5i + 2nπ (n is an integral) because of the periodicity of the cosine function. A 

phase delay of π+Δδ5i produces the same pattern with a phase delay of π-Δδ5i. Thus we can 

simulate the five-beam interference pattern related to the phase delay by changing Δδ5i from 0 

to π.  
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Figure 5.7 SEM of recorded five-beam interference pattern in photoresist polymer. (a-c) The photonic 

structure fabricated with the glass slide rotation angle of 2, 4, and 6 degrees, respectively. (d) Enlarged view 

of the SEM (a) and the inserted simulation of structure with a phase delay of π. 

 

The same photoresist mixture as the one used for the grating is used to record the 3D 

interference pattern. The photoresist mixture is spun onto the glass substrate at 2000 rpm for 2 min. A 

laser power of 750 mW is used. After going through the diffraction grating, the first-order diffraction 

beam has power between 4 and 5 mW. The central non-diffracted beam has a power of 17 mW. The 

photoresist is exposed to the interference pattern for 10 s. After exposure, the photoresist mixture is 
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developed in PGMEA for 5 min, rinsed by in isopropanol for 1 min and left in air to dry. After 

development, a colorful sample with a size of around 4 mm is obtained.  

Figure 5.7 shows SEM images of fabricated 3D photonic structures in polymer using the 

single diffraction element. Figures 5.7 (a-c) are the structures fabricated with the inserted glass slide 

rotated by 2, 4 and 6 degrees, respectively. A woodpile-like (or diamond-like) structure is clearly seen 

in Fig. 5.7(a), indicating a phase delay Δδ5i close to π. From Fig. 5.7(c), we can see that the spheroid 

is sitting in the lattice of FCT structure, similar to the simulated structures in Fig. 5.2 with a small 

phase shift. Fig. 5.7 (b) has a structure with a phase delay between above two phase delays. From 

these figures, it is clear that the optical setup using the phase tunable single diffraction optical 

element can be used to fabricate 3D structures with well-controlled features. From the calculations 

Δδ5i(4 degrees)- Δδ5i(2 degrees)=0.32π,  Δδ5i(6 degrees)- Δδ5i(2 degrees)=0.85π and by comparing 

the Fig. 5.7 with Fig. 5.2, Figs. 5.7 (a-c) can be corresponded with simulated structures with a phase 

delay of  π, 0.68π, and 0.15π, respectively. Figure 5.7(d) shows the enlarged view of the structure in 

Fig. 5.7(a) and the inserted simulation with a phase shift of π. The agreement between the SEM and 

the simulated structure is very good. The period of diamond-like structure in Fig. 5.7(a, d) is 

measured to be 0.78 μm, in agreement with the period of grating shown in Fig. 5.5.   
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5.2.3 Simultaneous fabrication of line defects and 3D structure 

 
Figure 5.8 (a) Scheme of single diffractive optical element setup consisting of four gratings and an amplitude mask. (b) 

and (c) shows SEM pictures of the fabricated 3D photonic crystal structures with a line defect, introduced by the 

amplitude mask. The exposure dose can be chosen to be either between the threshold sustaining-values of 4-beam 

patterns and 5-beams patterns (b) or above both values (c). 

 

In addition to the phase tunability in the demonstrated method, the single diffractive optical approach 

can be further extended to produce 3D photonic crystals with functional defects. As shown in Fig 5.8 

(a), in order to insert a line defect in photonic crystal structures, an amplitude mask is placed in the 

central region of the optical element. The amplitude mask casts a shadow of the central beam on the 

photoresist. In the shadow region, four side-beams overlap and forms interference patterns in 

cylinder shape, compare to the woodpile-like pattern by five-beam overlap. However the power of 

the side beam is more than 3 times smaller than that of the central beam. The intensity of the four-

beam interference in the shadow region is less than the threshold needed for photo-polymerization in 
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the photoresist. Or in the other words, the threshold value to have a sustaining structure for 4-beam 

interference pattern is much higher than the one of 5-beam interference pattern. After exposure, the 

shadow region can be washed away if we choose a proper amount of develop time and exposure 

dose. As a proof-of-concept, we put a bar in the central opening as an amplitude mask to fabricate a 

line defect in 3D photonic crystal template. Using the same experimental conditions as none- 

amplitude mask case, we fabricate a line defect with a width of approximate 500 μm as shown in Fig. 

5.8 (b). Fig.5.8 (c) demonstrate the structures with both 5-beam and 4-beam interference patterns 

sustained, which corresponds a longer exposure time. Further studies are needed on the diffraction 

effect of the amplitude mask if small feature sizes of defect shapes are employed in the amplitude 

mask. Nevertheless this is the first demonstration, to author’s best knowledge, of simultaneous 

fabrication of line defects and 3D photonic crystal template using the one-step HL. 

5.2.4 Summary 

From the base of bulk top-cut prism setup, in this chapter we have successfully developed a phase 

tunable five-beam holographic fabrication of 3D photonic crystal template using a single DOE. The 

mask is designed by fabricated four co-plane diffraction gratings surrounding the opening center. A 

glass slide is inserted and rotated graduated as a phase modulator for one interfering beam. The 

fabricated 3D photonic crystal template shows a clear transition of structures from FCT to diamond-

like lattice through the phase tuning, as confirmed though SEM images. The demonstrated mask 

method is compatible with traditional photolithography process used for the optoelectronic chip 

fabrication and provides a simple way to control holographic interference patterns to fabricate 

photonic crystal with optimized optical properties.  
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6.0  3D PHOTONIC QUASI-CRYSTAL TEMPLATES HOLOGRAPHY 

FABRICAITON 

 
Large-area 3D Penrose-type photonic quasi-crystals are fabricated through a HL method using a lab-

made DOE and a single laser exposure. The DOE consists of five polymer gratings symmetrically 

orientated around a central opening. The fabricated Penrose-type photonic quasi-crystal shows ten-

fold rotational symmetry. The Laue diffraction pattern from the photonic quasi-crystal is observed to 

be similar to that of the traditional alloy quasi-crystal. A golden ratio of 1.618 is also observed for the 

radii of diffraction rings.  

6.1 INTRODUCTION 

In traditional photonic crystals, two-, three-, four- and six-fold rotational symmetries are allowed, 

however, five-, seven- and higher-fold rotational symmetries are forbidden. It has been shown that 

photonic quasi-periodic crystals (or called quasi-crystals) have higher rotational symmetries (five, 

seven, and all high-fold symmetry) and thus more isotropic PBGs leading to more interesting wave 

propagation properties than traditional photonic crystals. It has been demonstrated experimentally 

that a complete PBG can be realized in quasi-periodic lattices of small air holes in materials of low 
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refractive index such as silicon nitride and even glass. This property can enable coupling of light 

from quasi-crystal device to optical fiber with low optical coupling loss.  

In the last decade, several elegant techniques have succeeded in fabricating 3D photonic 

crystals, such as conventional multilayer stacking of woodpile structures using semiconductor 

fabrication processes, colloidal self-assembly, multi-photon direct laser writing, and HL. However, 

some traditional fabrication techniques, such as self-assembly of microspheres [70] and layer-by-layer 

fabrication [71], are prohibitive for the fabrication of photonic quasi-crystals. Multi-photon 

lithography and stereo lithography have demonstrated capabilities in the fabrication of 3D 

icosahedral quasi-crystal but are limited by the large processing time required [72, 73]. HL has been 

very successful in fabricating photonic crystal templates through multi-beam interference controlled 

by the number of interfering laser beams, their interfering angle and relative phases. HL has also 

been used for the fabrication of photonic quasi-crystals [74-78]. 3D icosahedral photonic quasi-crystals 

are formed via seven-beam interference with five beams five-fold-symmetrically surrounding two 

oppositely-propagating beams. The single optical element (such as prism or phase mask) based HL 

has greatly reduced the optics setup complexity and improved the mechanical stability for the 

micro/nano-fabrication of photonic structures. Through the HL, the interference pattern is usually 

recorded in a photo-sensitive resist which has a low index of refraction. The photonic quasi-crystal 

template in polymer can be converted into high refractive index materials such as silicon to have a 

PBG in crystal. The template can be infiltrated at room temperature with SiO2 and burned away, 

leaving behind a daughter “inverse” template. Then, the daughter template is inverted by infiltration 

with silicon and selective etching of the SiO2.  

In this paper, we demonstrate the laser holographic fabrication of 3D Penrose-type photonic 

quasi-crystal templates using a lab-made DOE with five gratings orientated five-fold symmetrically. 
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The adaptation of a single DOE to HL drastically reduces the fabrication complexity. The Laue 

diffraction pattern from the fabricated photonic crystal shows a pentagon-shaped ghost-face like 

pattern and a golden ratio of 1.618, which have not been observed before in 3D artificial photonic 

quasi-crystals. 

6.2 LAB-MADE DOE BY HOLOGRAPHIC FABRICATION 

 
 

Figure 6.1 (a) the scheme for the lab-made DOE. Each of the five oriented gratings has the structure as 

imaged by AFM in (b) with a periodicity of 0.781 μm as measured by the section analysis (c). 

 

 
Figure 6.1(a) shows a scheme of a single DOE consisting of five gratings produced by recording 

gratings in a photosensitive mixture. A low power laser (Coherent Compass, 532 nm, 60 mW) was 

used in order to control the exposure condition and thus to obtain high diffraction efficiency. The 

laser beam was expanded to a size of 5 mm and separated into two by using a 50:50 beam splitter. 

Two laser beams overlap and form grating in the mixture. The photoresist mixture consists of 

DPHPA monomer (88.5%), photo initiator rose bengal (0.2%), co-initiator N-phenyl glycine (0.8%) 
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and chain extender N-vinyl pyrrolidinone (10.5%). The mixture was spin-coated on a microscope 

glass slide with a speed of 3000 rpm for 2 minutes to produce a thin film. The glass slide was 

mounted on a rotation stage. The rotation stage was mounted such that the overlapped beams that 

make up the exposure spot were 5 mm away from the rotation center. The glass slide was rotated by 

72 degrees for each successive exposure until a total five gratings were produced. The exposure time 

was 2s for each exposure. After exposure, the photoresist mixture was developed directly in PGMEA 

for 20s, followed by rinsing in isopropanol for 10s and air drying. The size of single fabricated 

grating is approximately 5mm in diameter and the grating shows uniform colors under a white light.  

Figure 6.1(b) shows AFM of the fabricated grating in the thin polymer. Figure 6.1(c) shows 

the section analysis of the measured AFM topography. From the Figs. 6.1(b) and (c), the period of the 

grating is measured to be 0.781 μm. Thus the fabricated DOE consists of the central opening 

surrounded by five diffraction gratings orientated five-fold symmetrically. The DOE is mounted in 

the expanded laser beam and five beams are diffracted by the DOE as shown in Fig. 6.2.  

The central beam and five first-order diffracted beams overlap and form 3D interference 

patterns. The intensity profile of the 6-beam interference pattern can be calculated as 
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where E and δ are the electric field and initial phase for wave vector k. The wave vector in the Eq. 

(6.1) can be described by Eqs. (6.2, 6.3), 
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The wave vector difference Δk can be considered as reciprocal vectors of holographically 

formed structures. The Δk between the five side beams can be described in Eq. (6.4) as 
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This Δkn is the reciprocal vector for the Penrose quasi-crystal in the x-y plane. After considering k0, 

these six beams form 3D structures while the periodicity in z-direction is determined by k0-kn. 

 

 

Figure 6.2 (a) Laser experimental setup for the HL; (b) Enlarged view of the lab-made DOE and beam 

propagation for generating the six-beam interference region for the holographic fabrication of photonic 

quasi-crystals.   

 

6.3 EXPERIMENTAL RESULTS AND DISCUSSION 

 

As shown in Fig. 6.2(a), the 514.5nm laser beam from an Innova Sabre Ar ion laser (Coherent Inc.) 

was circularly polarized by a quarter wave-plate, spatially filtered, expanded and collimated. The 

DOE was mounted before the sample. The DOE produced six-beam interference for the holographic 

fabrication of the quasi-crystal as shown in Fig. 6.2(b). The five gratings have a first-order diffraction 

efficiency of 34.9%, 36.9%, 35.1%, 37.1% and 35.0%, respectively. The same photosensitive 
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mixture as the one in previous section was used. The spin-coating speed was 1000 rpm and the 

sample thickness was around 10 μm. A laser power of 500 mW was used with an exposure time of 

several seconds. After the exposure, the sample was developed in PGMEA for six minutes, typically. 

A magnetic bar with a speed of 60 rpm was used to stir the PGMEA developer. Finally the sample 

was washed with isopropanol for 20s and left to dry in ambient air. The developed sample had a size 

of approximately 4.5 mm in diameter. The edge of the sample was thinner than the central area as 

observed under an optical microscope. The central area with a size of around 3.5 mm in diameter was 

homogeneous as determined by scanning the 532 nm laser cross the sample and observing the 

diffraction pattern from the sample. The diffraction pattern from the central area of the sample 

showed not only high rotation symmetry but also detailed fine structures as discussed later in the 

section. The diffraction from the edge part of the sample did show the high rotational symmetry 

however detailed fine structure disappeared.  

Figure 6.3(a) shows an SEM of photonic quasi-crystal fabricated by exposing the 

photosensitive mixture to the six-beam interference. A simulation is overlaid in the SEM for 

comparison and fits the SEM very well. Local five-fold symmetry is clearly observed as there are 

many pentagons in the SEM. For eye guidance, four pentagons were drawn in the figure with two of 

them around a common vertex. This five-fold symmetry is incompatible with translational 

crystallography. Surface undulations are apparent in Fig. 6.3(a), which might be caused by uneven 

laser beam intensities diffracted from gratings with different heights in Fig. 6.1(c). Figure 6.3(b) 

shows an enlarged SEM view of the photonic quasi-crystal fabricated through the six-beam 

interference. 3D structures and ten-fold symmetry are obvious. 
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Figure 6.3 (a, b) SEM image of the holographically formed photonic quasi-crystal at both large (a) and 

small (b) scales. (a) Inserts are simulation on the right side and eye-guidance pentagons in the middle. (b) 

Overlay geometries provide eye-guidance in establishing the symmetry and tiling. (c) SEM image of cross-

section of the holographically formed photonic quasi-crystal and (d) the simulation of formed 3D structures. 

 

The large-area SEM structures can be constructed 10-fold symmetrically by a small block 

with five-fold symmetry (represented by a small circle for simplicity). Ten magenta light-line circles 

can represent structures inside the large magenta circle. Outside the large magenta circle, ten small 

magenta circles can represent the structure next to the large circle. The diameter of the small circle is 

measured to be approximately 1 μm. The refractive index of the photosensitive mixture is estimated 

to be 1.5. The size of the circle due to the first order reciprocal vector Δkn is calculated to be 0.997 

μm, which is very close to the measured value. SEM cross-section view of the fabricated photonic 

quasi-crystal is shown in Fig. 6.3(c) and theoretic simulation is shown in Fig. 6.3(d). The SEM in Fig. 
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6.3(c) was taken in a flip-over sample with photonic structures developed through 10 μm thickness 

down to the glass substrate. The sample close to the substrate looks over-exposed due to the back-

reflection of laser beams from the glass substrate surfaces. Photonic structures in z-direction are 

determined by k0-kn and periodic in z-direction as shown in Fig. 6.3(d). The periodicity is λ/(1-cosα) 

and is calculated to 2.08 μm. The measurement is performed in areas which appear to be in vertical 

direction to the surface in Fig. 6.3(c). The measured periodicity is 1.99 μm. The smaller measured 

value than that calculated might be due to the shrinkage of the sample.    

 

 
Figure 6.4 (a) Laue diffraction pattern from the photonic quasicrystal using 532nm laser. The diffraction 

spots are connected using pentagon and form ghost-face like pattern. (b) Projections of the wave vectors 

(black) on the plane perpendicular to the k0 direction. The first and second order reciprocal vectors are 

represented by pink lines and blue lines, respectively.  

 

Figure 6.4(a) shows the Laue diffraction pattern from the photonic quasi-crystals in wholly 

patterned samples on the glass substrate, using the Coherent Compass 532 nm laser. The diffraction 

pattern is formed on a white paper behind the quasi-crystal and the digital image is taken behind the 
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white paper. The size of the spot is a measure of the diffraction intensity. The ten-fold symmetry is 

clearly shown in the diffraction pattern, which is typical for Penrose or icosahedral quasi-crystals. 

The diffraction pattern can be explained by the first and second order reciprocal vectors as drawn in 

Fig. 6.4(b). The five wave-vectors for the five side beams are arranged five-fold symmetrically 

around the central wave-vector k0. Several pentagons have been drawn in Fig. 6.4(a) for eye-

guidance and, actually, are similar to the pentagon arrangement in Fig. 6.4(b). The high-intensity 

diffraction spots are formed due to the first order reciprocal vectors such as k1-k2. Five low-intensity 

diffraction spots are surrounded by the high-intensity spots and form pentagons (see ghost-face in Fig. 

6.4(a)), due to the second order reciprocal vectors such as k1-k3 and k2-k4 (see Fig. 6.4(b)). The 

diffraction pattern from the fabricated photonic quasi-crystal is similar to the one obtained in 

quenched alloy quasi-crystals with icosahedral structure [79, 80], and also in agreement with the 

calculated diffraction pattern from the icosahedral photonic quasi-crystal, although the structure is 

formed through six-beam interference instead of seven-beams. Their diffraction intensity 

distributions are also similar [80]. Seen away from the zero-th order diffraction, there are ten spots 

forming first, second and third rings, respectively. The ratio of radii of the third and second rings to 

the first ring is measured to be 2.6 and 1.6, respectively, which are very close to the ratio of 1 + 1.618 

and 1.618 where 1.618 is golden ratio. The golden ratio is a characteristic of Penrose or icosahedral 

quasi-crystals and thus the observation of a golden ratio demonstrates the high-quality of fabricated 

photonic quasi-crystal.  
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6.4 SUMMARY 

In summary, we demonstrated a holographic fabrication of a large-area 3D Penrose-type photonic 

quasi-crystal using the lab-made DOE. The DOE was fabricated through two-beam interference in a 

polymer and consisted of five polymer gratings rotationally orientated symmetrically around a 

central opening on a glass slide substrate. The five first-order diffracted beams and the central beam 

formed the interference pattern for a single-exposure based recording of the photonic quasi-crystal in 

a polymer. The use of the DOE for the HL has greatly improved the optics alignment accuracy and 

mechanical stability. High quality 3D photonic quasi-crystals have been fabricated with ten-fold 

symmetry in the x-y plane, similar to a Penrose quasi-crystal. The Laue diffraction pattern from the 

3D photonic quasi-crystal was observed to be similar to the traditional alloy quasi-crystal and a 

golden ratio of 1.618 was also observed for the diffraction rings, which have not been observed 

before in 3D artificial photonic quasi-crystals. The photonic quasi-crystal in polymer can be double 

inverted to silicon structure for the opening of the PBG. 
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7.0  3D PHOTONIC CRYSTAL WITH DEFECT STRUCTURES  

This chapter presents the capability of direct laser writing of complex defect structures in 

holographically formed 3D photonic crystals in DPHPA monomers mixed with photo-initiators. 

The 3D photonic crystal template was fabricated through single optical element-based HL. 

Waveguide and letter structures are fabricated through the two-photon polymerization excited by 

a femtosecond laser oscillator. The strengths of two optical lithographic techniques are combined 

with HL providing a rapid and large area micro-fabrication and two-photon lithography (TPL) 

providing flexible defect structure fabrication. The optical fabrication process is simplified in the 

negative tone DPHPA without pre-bake and post-exposure bake. Similar to SU8, DPHPA also 

demonstrates a capability for constructing 3D structures with high aspect ratio and small feature. 

 

7.1 INTRODUCTION 

 

The semiconductor processing techniques provide advanced tools for building structure layer-by-

layer and incorporating defects at any depth. Most of the direct laser writing was based on two-

photon polymerization of photosensitive resins. When a high-intensity light shines on a material, 

the probability for two-photon absorption is proportional to the square of the optical field 
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intensity, and thus is greatest at the center of a Gaussian laser beam. When tightly focused into 

the volume of a photosensitive resin, the polymerization process can be initiated by nonlinear 

absorption of near infrared femtosecond laser pulses within the focal volume. By moving the 

laser focus three-dimensionally through the resin, the two-photon polymerization happens at the 

focus points. 3D structures and defects such as missing rod in woodpile structure can be 

fabricated by a computer-aided sample stage control [81]. The photonic crystal structures 

fabricated by above two approaches are dedicated but the process are time-consuming. 

Fabrication of defects in self-assembled opal photonic crystal has made headway by surface 

modification followed by overgrowth of opal [82] or laser direct writing of defect structures 

within the opal [83, 84]. However, opal photonic crystals were limited to FCC structures with a 

relative small photonic bandgap. 

Multi-beam interference-based HL has been successful for fabricating 3D photonic 

crystals by exposing a photoresist or polymerizable resin to interference patterns of laser beams.  

In the case of positive resist, the overexposed material is then dissolved away in the post-

exposure processing. The underexposed region forms a periodic network and acts as a 3D 

photonic crystal template. For negative photoresists, the underexposed regions can then be 

selectively removed using a developer while overexposed region becomes polymerized and 

forms a periodic network for photonic crystal template. Furthermore, HL has demonstrated 

functionality to fabricate complex photonic structures such as woodpile, spiral and diamond 

photonic crystals. Multiple-beam HL was complicated when it was based on multiple bulk 

optical elements such as mirrors and beam splitters. Recently the optical setup for HL has been 

simplified by using a single optical element such as flat-top prism or a phase mask. Multi-layer 

phase masks have been demonstrated for the fabrication of photonic crystal templates by 
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introducing a phase difference among the diffracted beams through changing the distance 

between two orthogonally oriented gratings. These single-beam and single-exposure processes 

using the multi-layer mask in HL have drastically reduced the fabrication complexity. The 

disadvantage is that a change in wavelength is required in order to obtain a different lattice 

period, which can also compromise the resist photochemistry. On the other hand, Meisel et al. 

have demonstrated that a simple cubic photonic crystal, with a wide variety of lattice spacing, 

can be fabricated with a single free-space beam splitter, using three separate two-beam 

exposures, with no change in wavelength [85]. To be useful for optoelectronics applications, the 

incorporation of engineered defects must be realized in photonic crystal. A significant advance 

has been achieved on the simultaneous fabrication of functional defects in photonic crystal 

templates by using a multi-beam phase-controlled one-step HL and by combining the amplitude 

mask with the phase mask. However, the process still needs to be improved to increase the 

functionality of the photonic crystal devices.  

The strength of HL and TPL can be combined by using the HL for a rapid and flexible 

fabrication of 3D host photonic crystals and using TPL for creating desired defects in photonic 

crystals, which in principle, can be placed in any depth with any shape. Two-photon ablation or 

polymerization was used to create defects in photonic crystal template in SU8, which were 

created through HL, by three research groups in 2005, 2006and 2008. Sun et al. demonstrated the 

hybrid holographic and direct-writing method in a two-dimensionally periodic structure while 

Scrimgeour et al. described the creation of a buried waveguide structure that is commensurate 

with the photonic crystal matrix. The other group fabricated and developed polymer-air photonic 

crystals in SU8 via HL and the photonic crystals were infiltrated with trimethylol propane 

triacrylate (TMPTA) and a two-photon sensitive photoinitiator for the direct writing of defects 
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via ultrafast laser. Nice defects with a size of several lattice constants were demonstrated. These 

three groups used SU8 photoresist for the holographic fabrication. The SU8 usually requires pre-

bake and post-exposure bake although it is an excellent resist for fabricating nano/mcro-

structures with high aspect ratio.      

In this chapter we use a different photosensitive mixture of DPHPA and photoinitiator for the 

hybrid HL and TPL without pre-bake and post-exposure bake. A phase-tunable single optical 

element is used for the holographic fabrication of large-area woodpile-type photonic crystal 

template in order to reduce the optics setup complexity. The TPL is demonstrated in the same 

photosensitive mixture without an infiltration of other photosensitive mixture. We create 

complex defect structures including letters and waveguide through direct-writing in the 3D 

holographically formed photonic crystal template. 
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Figure 7.1 (a) SEM of fabricated 3D photonic crystal template through HL; (b) Cross-section SEM image of 

the fabricated photonic crystal; (c) Enlarged view of the cross-section; (d) The reflection spectrum from the 

fabricated photonic crystal measured by ellipsometery.  

 

7.2 3D PHOTONIC STRUCTURES HOLOGRAPHIC FABRICATION 

 
 
A 514.5nm laser beam from a Sabre Ar ion laser (Coherent Inc.) was used for the five-beam 

interference based holography lithography. The laser beam was circularly polarized, cleaned, 

expanded and collimated by spatial filter and collimating lens set. A phase-tunable single optical 
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element (top-cut four-side-prism) was used to construct five-beam interference pattern as 

described in reference 26. 3D photonic crystals were fabricated holographically in a negative 

tone photosensitive mixture mainly monomer DPHPA and photoinitiator Rose Bengal. The 

photosensitive mixture was spin-coated as a thin film on a cut glass-slide. The spin-coating speed 

was between 800 and 2000 rpm and the sample thickness was between 6 and 18 μm.  A laser 

power around 250 mW was used. The exposure time was around 15 seconds. After the exposure,  

the photoresist was developed in propylene glycol methyl ether acetate for several hours and then 

washed by isopropanol for 20 seconds and left to dry in ambient air. The developed holographic 

sample has a surface area of 3.5x3.5 mm2.  

Figure 7.1(a) shows an SEM image of photonic structures developed in the photoresist, 

showing the quality of woodpile structure fabricated through HL. The cross-section of the 

fabricated sample is shown in Fig. 7.1(b) and an enlarged view is shown in Fig. 7.1(c). The 

photonic structure is determined by the wave vector k of the five beams as described by Eq. (7.1) 

and (7.2), 
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where is the interference angle between the side-beam kn and the central-beam k0. The wave 

vector difference k can be considered as reciprocal vectors of holographically formed structures. 

The periodicity in x or y direction is λ/sinα which is calculated to 0.84μm for α=37.5o. The 

periodicity is measured to be 0.83μm averaged over several SEMs. The periodicity in z-direction 

is λm/(1-cosαm)=4.21 μm assuming the refractive index is 1.58 for the photoresist (subscript m 

for value inside the mixture). The measured value is 3.96 μm which is smaller than theoretic one. 

The difference might be due to the sample shrinkage. The wavelike long period banding in the 
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surface of the structure in Fig. 7.1(a) and (b) is caused by a small sample tilt as illustrated in Fig. 

7.1(c).  

Fig. 7.1(d) shows the reflection spectrum from the fabricated photonic crystal measured 

by ellipsometery with incident angle of 70o. There is a strong reflection peak around 870 nm. A 

reflection peak around 940 nm due to stop-band was reported for photonic crystal with lattice 

parameters of 763 nm in plane and 789 nm out of plane by Shir et al. [20]. For the photonic crystal 

shown in Fig. 7.1, there are 4 layers structures in one period in z-direction. Considering that the 

distance between the layers is 0.99 μm and lattice parameter in plane is 0.83 μm which are 

similar to these values reported by Shir et al. [20], it is reasonable to assign the peak in Fig. 7.1(d) 

as the reflection due to the stop-band in the photonic crystal. 

 
Figure 7.2 (a) Experimental setup for TPL. (b) Large area SEM image of the two-photon polymerization 

induced waveguide on glass substrate; (c) Enlarged SEM view of the waveguide on glass substrate; (d) SEM 

of woodpile structure constructed by arranging the waveguide into several layers; (e) SEM of suspended 

waveguides by cutting the woodpile structure; (f) Line width of structures fabricated at three scanning 

speeds. 
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7.3 TWO-PHOTO POLYMERIZATION THROUGH LASER DIRECT WRITING 

Figure 7.2(a) shows the laser direct writing setup. A tunable Ti: Sapphire femtosecond laser 

oscillator (Chameleon, Coherent Inc.) was used with a repetition rate of 80 MHz and pulse width 

of 140 fs. The laser operation wavelength is 720 nm. The laser beam was controlled through an 

external shutter and the laser power was attenuated through neutral density filters. The laser 

beam was expanded and then focused inside the photoresist using a 0.55 NA aspheric lens 

(Thorlabs). The laser power was 150 mW as measured before the aspheric lens. The photoresist 

was spin-coated on a glass slide and the slide was mounted on a three axial motion stage 

(Newport) which was controlled with a computer and translated with a constant speed of 2.4 

mm/s.  The same photoresist mixture and spin-coating on the glass slide were used as described 

in the above section. After the laser direct writing, the photoresist was developed in propylene 

glycol methyl ether acetate and then washed by isopropanol. Fig. 7.2(b) shows a large area SEM 

image of the direct laser written waveguide standing on the glass slide substrate generated using 

the TPL method. It is clearly shown that the two-photon polymerization can be realized in the 

DPHPA mixture by the Ti: sapphire oscillator instead of an expensive ultrafast laser amplifier 

system. Fig. 7.2(c) shows an enlarged SEM image of the fabricated waveguide on the glass 

substrate. From the figure, we can see that the waveguide has clean surface and a width of 2.3 

μm. 

In order to measure the true aspect ratio, defect lines are arranged in the form of woodpile 

for several layers as shown in Fig. 7.2(d). Then we cut the woodpile and measure the size and 
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aspect ratio of defect lines for suspended part (see Fig. 7.2(e)). The aspect ratio is measured to be 

approximately 4. It demonstrates that DPHPA can be used for constructing microstructure with 

high aspect ratio. On the other hand, the aspect ratio can be reduced through laser beam shaping 

and controlling beam scanning direction. Fig. 7.2(f) shows the line width changes for three 

scanning speeds. As the scanning speed increases, the line width decreases. Further detailed 

studies will be performed for line width as a function of laser pulse energy, wavelength and 

scanning speed. 

 

 
 

Figure 7.3 (a) Large area SEM image of waveguides fabricated in holographic photonic crystal template; (b) 

An enlarged view of SEM image of waveguide in 3D photonic crystal template; (c) Defect structures in 

UTPA letters are fabricated in 3D photonic crystal template; (d) SEM cross-section of a sample fabricated 

through hybrid holographic and TPL methods.  
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7.4 DEFECT STRUCTURES IN 3D PHOTONIC CRYSTAL 

The strength of above optical lithography techniques can be utilized for the fabrication of 3D 

photonic crystals with defects. As a demonstration, Fig. 7.3 shows defect structures fabricated in 

the 3D photonic crystal template by combining the above two optical-lithography methods. The 

spin-coated photoresist film was firstly exposed to the Ar ion laser for the HL. After initial 

exposure, the glass slide is then mounted on the computer controlled motion stage. Then the 

femtosecond laser pulses were focused inside the previously holographically exposed resist. The 

motion stage was controlled such that the focal point moves across the undeveloped photonic 

crystal region. The same motion speed of 2.4 mm/s was used. After exposure, the photoresist 

was developed in propylene glycol methyl ether acetate for six minutes and then washed with 

isopropanol for 20 seconds and left to dry in ambient air. Fig. 7.3(a) shows the large scale 

uniformity while Fig. 7.3(b) shows the interfacial quality of the two lithography processes. The 

width of the waveguide is approximately 3 μm. Although the waveguide is not in alignment with 

the lattice, it might be not essential because theoretic simulations have demonstrated an existence 

of guide mode for zig-zag defects in photonic crystal.  

 A complicated structure can also be fabricated with the TPL. Fig. 7.3(c) shows defect 

structures of UTPA letters fabricated in the 3D photonic crystal template, which clearly 

demonstrates the capability of direct laser of complex structure through the TPL in holographic 

structure. The fabrication of completely buried waveguide in photonic crystal has been 

performed. Fig. 7.3(d) shows SEM of one sample fabricated through hybrid holography and 
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direct-writing method. Further characterization can be done through optical fiber butt coupling 

and CCD imaging or by adding fluorescent dye into the photosensitive mixture for imaging.   

7.5 SUMMARY 

In summary, this chapter demonstrated the capability of optical fabrications of photonic crystals 

with defect structures in DPHPA instead of SU8 through a simplified lithographic process 

without pre-bake and post-exposure bake. The flat-top four-side prism-based HL was used for 

the rapid fabrication of large area 3D photonic crystal templates with woodpile-type structure. 

TPL was capable to write complex defect structures in the holographically formed 3D photonic 

crystals in DPHPA with a clear interfacial connection. Thus DPHPA can be used for HL, laser 

direct-writing, hybrid holographic and TPL and constructing nano/micro-structures with high 

aspect ratio. 
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8.0  CONCLUSION 

In this dissertation we provide design approaches of holographic fabrication 3D photonic crystal 

templates by using sequential phase masks as the DOE tools. The structure and symmetry of the 

photonic crystal formed can be controlled by modulation of the rotational angle, elongation in lattice 

length or the phase difference of the interfering beams.  

First of all, we report the fabrication of both orthorhombic and tetragonal woodpile photonic 

crystal using a 1D phase mask technique. 3D photonic crystal structures were formed by a double 

exposure process. Secondly, we also demonstrate holographic fabrication of 3D diamond-like 

photonic crystal template using a single 2D lab-made phase mask. The superposition of two 

interference FCC or FCT patterns through double exposure yields diamond-like structure. Thirdly, 

based on the 2D phase mask fabrication technique, we introduce an integrated two-layer phase mask 

to reduce the required times of exposure. A 3D photonic crystal template was fabricated by only 

single exposure through the two-layer phase mask and without further spatial operations. At last, we 

introduce new phase tuning ability to our optical elements. A simultaneous fabrication of the line 

defect and 3D photonic crystal templates is also demonstrated by combining the amplitude mask 

with the phase mask, using the one-step HL.  

The utilization of the DOE simplifies the fabrication configuration of 3D photonic crystals 

and is amendable for massive lithography production. The demonstrated approaches are compatible 

with traditional photolithography processes used for chip-scale optoelectronic integration.  
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APPENDIX 

MATLAB SIMULATION FOR FIVE-BEAM INTERFERENCE PATTERN 

VIRTULIZATION  

 

%Five-beam interference pattern with phase shift 
clear all 
clc 
clf 
  
shift=0; 
 
firstorder = 42.8; %angle 19.8 of first order diffraction in SU-8 mixture 
using n = 1.67 
  
lamb = 0.5145e-6; %free space wavelength 
  
angle = 90; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
xs=0.; 
x = (xs:0.2:xs+8)*1e-6;  
ys=0; 
y = (ys:0.2:ys+8)*1e-6; 
zs=4;       
z = (zs:0.3:zs+3)*1e-6; 
  
k1 = 2*pi/lamb; k2 = k1; k3 = k1; k5 = k1; k6=k1; 
k1x = 0; k1y = 0; k1z = k1; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
  
% diffraction intensities setup 
  
E1o=sqrt(5); % central beam 
E2o=1; 
E3o=1; 
E5o=1; 
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E6o=1; 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%k-vector geometry for k2 
theta = (shift)*pi/180; 
phi = (90-firstorder)*pi/180; 
%the function sph2cart converts from spherical to cartesian 
% returning its coresponding x y z components 
[k2x,k2y,k2z] = sph2cart(theta,phi,k2); 
  
%k-vector geomety for k3 
theta = (shift)*pi/180; 
phi = (90+firstorder)*pi/180; 
[k3x,k3y,k3z] = sph2cart(theta,phi,k3); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%k-vector geometry for k5 
theta = (shift+angle)*pi/180; 
phi = (90-firstorder)*pi/180; 
[k5x,k5y,k5z] = sph2cart(theta,phi,k5); 
  
%k-vector geometry for k6 
theta = (shift+angle)*pi/180; 
phi = (90+firstorder)*pi/180; 
[k6x,k6y,k6z] = sph2cart(theta,phi,k6); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
phase_retard=1*180;  % <-----  here is the phase shift 
  
polar_angle1=45; 
polar_angle2=45; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
for j = 1:length(x) 
   for v = 1:length(y) 
      for l=1:length(z) 
            E1(j,v,l) = 
cosd(polar_angle1)*E1o*exp(i*((k1x*x(j)+k1y*y(v)+k1z*z(l))));  % center beam 
            E2(j,v,l) = 
cosd(polar_angle1)*E2o*exp(i*((k2x*x(j)+k2y*y(v)+k2z*z(l))+phase_retard*pi/18
0)); % side -left 
            E3(j,v,l) = 
cosd(polar_angle1)*E3o*exp(i*((k3x*x(j)+k3y*y(v)+k3z*z(l))));       % side  -
right 
            E5(j,v,l) = 
cosd(polar_angle2)*E5o*exp(i*((k5x*x(j)+k5y*y(v)+k5z*z(l))));       % top 
            E6(j,v,l) = 
cosd(polar_angle2)*E6o*exp(i*((k6x*x(j)+k6y*y(v)+k6z*z(l))));       % bottom 
  
      end 
   end 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Et =(E1+E2+E3+E5+E6); 
  
It = abs(Et).^2; 
It = It./max(max(max(It))); 
Iti=1-It; 
 
level=0.5; % exposure threshold value 
  
  
  
figure(1) 
data = smooth3(It,'box',1);  
p1 = patch(isosurface(x,y,z,data,level), ... 
   'FaceColor','blue','EdgeColor','none'); 
p2 = patch(isocaps(x,y,z,data,level), ... 
    'FaceColor','interp','EdgeColor','none'); 
isonormals(x,y,z,data,p1); 
  
view(3); axis equal; axis off; %tight vis3d; axis off;  
%title('/D/d=0\pi','FontName','Times New Roman','FontSize',24); 
 
camlight; lighting phong; material shiny; 
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