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Escherichia coli O157:H7 is an important food-borne pathogen and public health risk that infects 

thousands of people a year in the United States alone.  While many infections may remain 

undetected, some develop into hemorrhagic colitis and/or hemolytic uremic syndrome especially 

in young children and the elderly.  The development of the molecular subtyping technique 

pulsed-field gel electrophoresis (PFGE) greatly enhanced the detection of outbreaks caused by 

this organism, but its technical limitations had researchers searching for alternative techniques.  

The use of variable-number tandem repeats (VNTRs) for human forensics and subtyping of 

extremely clonal bacterial species such as Bacillus anthracis provided a potential new technique 

for examining E. coli O157:H7.  This new technique, multi-locus VNTR analysis (MLVA), 

examines multiple VNTR loci, which are some of the most rapidly evolving genetic elements in 

the genome.  We demonstrated the utility and superiority of MLVA over PFGE as a molecular 

subtyping technique for E. coli O157:H7.  With the establishment of the MLVA protocol, the 

need arose to understand how often the MLVA loci mutate to help characterize which isolates 

are highly related.  Using an experimental protocol of 10 serial subcultures, one of the 7 MLVA 

loci was found to be hypervariable with a tendency of single, addition TR mutations.  Two other 

loci were found to be slightly variable while the remaining 4 loci had no mutation events during 

the experiments.  The establishment of a protocol based on VNTRs and the initial understanding 

of mutational dynamics only touched upon the genotypic roles of VNTRs but not the functional 
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roles.  A preliminary examination of the functional roles of a few selected VNTRs was 

undertaken by performing a variety of tests.  A detailed description of all this project’s results is 

presented in the following work. 
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1. INTRODUCTION 

 

1.1. Overview of Escherichia coli O157:H7 biology and epidemiology 

 

Escherichia coli O157:H7 is a major cause of foodborne and waterborne illness in the United 

States and the world.  Escherichia coli O157:H7 was first recognized in 1982 in association with 

a food-borne outbreak and is now recognized as causing an estimated 74,000 infections a year 

(10, 16).  Most E. coli O157:H7 infections are caused by exposure to bovine fecal contaminated 

food or water.   

 

E. coli O157:H7 infection occurs when the bacteria enter the intestine and adheres to the 

epithelium of Peyer’s patches (14).  This allows for the translocation of shiga toxins and binding 

to the lining of blood vessels.  The intestinal epithelium cells begin to die due to the effect of the 

toxin and the cells slough off.  While many of these cases remain undetectable or mild, a 

proportion of people develop the characteristic bloody diarrhea and/or hemolytic uremic 

syndrome (HUS), which may require hospitalization, and in some cases long recuperation 

periods and permanent disability.  Many of those most severely afflicted with this infection are 

the elderly and the very young.  Additionally, E. coli O157:H7 is the primary cause of acute 

renal failure in children (2).  In recent years, there have been numerous large outbreaks of E. coli 

O157:H7-related bloody diarrhea and HUS (3, 4, 6). 

 

The disease impact of E. coli O157:H7 has created a need for increased preventative food 

handling techniques and surveillance for outbreaks.  In addition to traditional epidemiological 
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investigations, the major molecular method for surveillance has been pulsed-field gel 

electrophoresis (PFGE), which is the preferred method of the Centers for Disease Control and 

Prevention (CDC).  The CDC’s PulseNet program has created a protocol and centralized 

database for state public health laboratories to compare their E. coli O157:H7 isolates to isolates 

across the country (18).  The PulseNet system and PFGE in general allow epidemiologists to 

discriminate between isolates and identify those that are potentially involved in an outbreak (1).  

While there has been great success with PFGE, several factors have researchers searching for an 

alternative method.  This method, while simple, takes several days to complete, and the results 

can be difficult to compare between labs due to different protocols, reagents, and other 

parameters. Additionally, the resulting banding patterns of PFGE can be difficult to determine; 

for example, it can be problematic to tell if a thick band is due to a large amount of DNA at that 

molecular weight or due to unresolved multiple bands.  Finally, we cannot say definitively that 2 

bands that migrate to the same molecular weight from 2 different isolates are the same segments 

of the bacterial chromosome.  However, sequence-based methods offer several important 

potential advantages over PFGE; including shorter assay times and fully comparable and 

transferable data (9). 

1.2. New Sequenced-Based Methods for Outbreak Detection 

 

The advent of faster and more reliable techniques using sequence-based technologies offers a 

plethora of advantages over pulsed-field gel electrophoresis.  With this knowledge, we first 

examined multi-locus sequence typing (MLST) as a possible subtyping technique for E. coli 

O157:H7.  MLST examines the alleles of selected housekeeping genes by nucleotide sequencing 

a 500 to 600 base pair segment of the gene (9). The sequence data are then analyzed to determine 
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the genetic relatedness of the bacterial isolates.  MLST has been successful for a variety of 

bacterial species including, Neisseria meningitidis and Streptococcus pneumoniae (5, 11). 

 

Multi-locus variable-number tandem repeat (VNTR) analysis (MLVA) examines specific tandem 

repeats (TR) found at a single genetic locus within the genome and then the copy number of each 

specific tandem repeat from one isolate can be compared to another isolate.  VNTRs are among 

the most rapidly evolving elements in the genome possibly allowing an array of different alleles 

in different isolates.  This variation may be useful for outbreak detection as long as the targeted 

loci are not under selective pressure, in which the variation would not be neutral and potentially 

confounding for molecular typing (20).  MLVA already has been successful in differentiating 

Bacillus anthracis isolates, one of the most clonal bacterial species (7).   

1.3. Mutation rates of tandem repeats 

 

The basis of molecular typing using VNTRs is that these elements can mutate, creating different 

length alleles at the same VNTR locus.  The mechanism by which tandem repeats mutate has 

been suggested to be the result of slippage and mispairing during DNA replication (17, 20, 21).  

Multiple factors influence how tandem repeats change; such as which TRs will mutate more 

quickly than others and if an addition or a loss of a repeat is more likely to occur. As the length 

of the VNTR increases, the mutation rate increases greatly; resulting in long VNTRs tending to 

be unstable ensuing in the loss of tandem repeats more frequently than the addition of a TR.  

This phenomenon results in the rarity of long tandem repeats (8).  Additionally, the nucleotide 

length and composition of the TR can affect the rate of mutation: the shorter the TR unit length 

is, the higher the mutation rate (19). 
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The rate of change of these tandem repeats becomes important when trying to analyze a group of 

isolates to determine their genetic relatedness.  The E. coli O157:H7 MLVA protocol 

demonstrated that sporadic isolates could be separated by their very different MLVA types, 

while the outbreak isolates had identical MLVA types or were single locus variants (12, 13).  We 

need to understand how the 7 MLVA loci change in order to accurately describe the genetic 

relationship between E. coli O157:H7 cases.  E. coli O157:H7 isolates that are highly related, i.e. 

an outbreak, will typically have a single MLVA type.  However, during DNA replication 

slippage of the DNA polymerase may result in the loss or addition of a tandem repeat(s), just as 

we see PFGE patterns change during an outbreak.  Certain loci are more likely to change and 

therefore calling of related isolates must consider the propensity of these loci to change. 

 

1.4. Biological functions of tandem repeats 

 

Some VNTRs may have functional roles in E. coli O157:H7.  However, a majority of the 

research on TR functionality has focused on humans.  Tandem repeats have been associated with 

several genetic disorders in humans either by influencing transcription through the promoter 

region or altering the actual coding region.  A 12 nucleotide repeat found within the promoter 

region for the EPM1 locus had been linked to epilepsy as the repeat expands beyond the normal 

allele (15).  TRs also have been found within the coding regions that affect normal expression.  

For example, a 24-bp repeat in the gene for the prion protein has been associated with 

Creutzfeldt-Jackob disease (15).  The normal gene has 5 repeats, while increases of 6-14 repeats 

are associated with the disease.  While less VNTR research has been conducted in bacteria, TRs 

 4



are known to influence gene expression at both the transcriptional and translation levels.  

Haemophilus influenzae contains a tetranucleotide unit in the gene lic1 resulting in different 

patterns of LPS expression (20).  In Mycoplasma hyorhinis two different repeats are involved in 

antigen variation.  One repeat within the coding sequence results in a size variation in membrane 

surface lipoproteins while the other can turn on or off gene expression of these same genes by 

variation in the promoter region (20).  The limited research for VNTRs in bacteria has been 

partly due to the lack of fully sequenced bacterial genomes, which now is greatly changing.  We 

have found many tandem repeats by using the 2 fully sequenced E. coli O157:H7 genomes.  The 

goal is to focus on a few of these TRs and determine if they vary between isolates and then if the 

variability has an effect on function. 
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2. SPECIFIC AIMS 

 

The overall goal of this project is to identify genetic elements to molecularly subtype 

Escherichia coli O157:H7 and determine how these elements influence this organism’s biology.  

The specific aims of the project are: 

1) To develop and validate a PCR-based molecular subtyping technique.  A PCR-based 

subtyping technique may be superior to the current technique used, pulsed-field gel 

electrophoresis, to detect outbreak and sporadic cases.  Pulsed-field gel electrophoresis 

(PFGE) is the current gold standard for E. coli O157:H7 outbreak detection and will be 

the comparison method for our trial techniques.  We studied both multi-locus sequencing 

typing (MLST), which utilizes sequence variation in housekeeping genes and multi-locus 

variable-number tandem repeat analysis (MLVA), which uses the variability in tandem 

repeats as potential assays to replace pulsed-field gel electrophoresis.

 

2)      Determine the rate of change of variable-number tandem repeats. The hypervariability

      of certain MLVA loci,  especially  TR2, will  result in  highly  related  strains possibly 

    becoming single or double  locus variants.  The establishment of MLVA as a fast, 

   reproducible, sensitive, and automated  method for outbreak demands  an understanding

     of the mutational dynamics of each TR locus. A single colony was grown for multiple

   generations to analyze the number  of  mutation  events  that  occur at the seven MLVA  

     VNTR loci to determine mutational dynamics.   

 
3) To determine possible functions of several variable-number tandem repeats.  

Increasing the number of tandem repeats in the α-helical region of the gene tolA will 
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decrease the cell’s sensitivity to indirect attacks, such as detergent, but will enhance a 

cell’s susceptibility to filamentous phages.  The variability of tandem repeats provokes 

the question of whether these changes are neutral or whether this variability results in 

changes in protein expression or behavior.  First, a locus that contains a VNTR and has a 

known function needed to be made.  Several potential loci were found and a variety of 

techniques including sequencing, bacterial kill assays, and phage infection assays, were 

performed to make inferences about the potential roles of selected VNTRs in the E. coli 

O157:H7 genome. 
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3.1.1. Preface 
 

PFGE had been a reliable subtyping technique for identifying Escherichia coli O157:H7, but 

newer sequenced-based techniques provide several advantages over PFGE including 

unambiguous and faster results.  We decided to examine MLST’s utility for subtyping O157 and 

published our results in a peer-reviewed journal. 
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3.1.2. Abstract 
 

Escherichia coli O157:H7 is a major cause of foodborne illness in the United States.  Pulsed-

field gel electrophoresis (PFGE) is the molecular epidemiologic method mostly commonly used 

to identify foodborne outbreaks. Although PFGE is a powerful epidemiologic tool, it has 

disadvantages that make a DNA sequence-based approach potentially attractive.  Multi-locus 

sequence typing (MLST) analyzes the internal fragments of housekeeping genes to establish 

genetic relatedness between isolates.  We sequenced selected portions of 7 housekeeping genes 

and 2 membrane protein genes (ompA and espA) of 77 isolates that were diverse by PFGE to 

determine whether there was sufficient sequence variation to be useful as an epidemiologic tool.  

There was no DNA sequence diversity in the sequenced portions of the 7 housekeeping genes 

and espA.  For ompA, all but 5 isolates had the identical sequence as the reference strains.  E. 

coli O157:H7 has a striking lack of genetic diversity in the genes we explored, even among 

isolates that are clearly distinct by PFGE.   Other approaches to identify improved molecular 

subtyping methods for E. coli 0157:H7 are needed. 
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3.1.3. Introduction 
 

Escherichia coli O157:H7 was first recognized in 1982 in association with a food-borne outbreak 

and is now recognized as an important cause of foodborne illness in the United States, causing an 

estimated 74,000 infections a year (26, 20). This pathogen causes both bloody diarrhea and 

hemolytic uremic syndrome (HUS), a severe illness characterized by hemolytic anemia and acute 

renal failure (2).  In recent years, there have been numerous large outbreaks of E. coli O157:H7-

related bloody diarrhea and HUS (3, 4, 11).  Most E. coli O157:H7 infections are caused by 

exposure to food or water that has bovine fecal contamination.  

  

Pulsed-field gel electrophoresis (PFGE) is currently the most widely utilized molecular 

subtyping method for detecting outbreaks of E. coli O157:H7.  In fact, PFGE has been found to 

identify outbreaks of E. coli 0157:H7 that were not detected by traditional epidemiologic 

methods (1).  However, DNA sequence-based methods offer several important potential 

advantages over PFGE; including shorter assay times and fully comparable and transferable data 

between laboratories (5, 16, 19, 21).  Additionally, while PFGE is relatively simple and 

inexpensive, it is labor intensive, the interpretation of banding patterns can be subjective, and it 

does not easily handle large sample sets (13).      

  

Multi-locus sequence typing (MLST) is a DNA sequence-based molecular subtyping method that 

has been used successfully for other bacteria, such as Neisseria meningitidis, Streptococcus 

pneumoniae, and Salmonella for both evolutionary and epidemiologic studies (8, 16, 22, 29). 

Briefly, MLST examines the alleles of selected housekeeping genes by nucleotide sequencing a 

500 to 600 base pair segment of the gene. The sequence data are then analyzed to determine the 
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genetic relatedness of the bacterial isolates.  In this study, we performed MLST on a set of E. 

coli O157:H7 isolates that had been characterized epidemiologically and by PFGE to determine 

the potential utility of MLST for the molecular subtyping of this organism. 

 

3.1.4. Materials and Methods 
 

E. coli O157:H7 Isolates.  

E. coli O157:H7 isolates were obtained from several sources for this study. Isolates were selected 

to include groups of strains from known outbreaks that were indistinguishable by PFGE, groups 

that were indistinguishable by PFGE but not associated with a known outbreak, and strains with 

a unique PFGE pattern that were not known to be associated with an outbreak.  The Public 

Health Infectious Disease Laboratory (PHIDL) obtained all E. coli O157:H7 strains isolated by 

the Allegheny County Health Department (ACHD) from 1999 to 2001 (n=59). These strains 

were not associated with known outbreaks, with the exception of seven isolates from a single 

restaurant-associated outbreak in August and September 2001. A sample of isolates from the 

Minnesota Department of Health (MDH) was also included; these were outbreak-associated 

isolates (n=14) and sporadic isolates (n=4) from 1996 and 1997. ATCC strain EDL933 and the 

Sakai, Japan, strain RIMD 0509952 were used as reference strains (10, 23). 

 

PFGE.  

PFGE analysis was performed according to the Centers for Disease Control and Prevention 

PulseNet protocol with minor variations (25, 28). Briefly, pure isolates were grown overnight on 

blood agar. Equal amounts of bacterial suspension, represented by an optical density at 610 nm 

of 1.3 in 1X TE buffer (10 mM Tris, 1 mM EDTA [pH 8.0]; Sigma, St. Louis, Mo.), 1% SeaKem 
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Gold agarose (BioWhittaker, Rockland, Maine), and 1% sodium dodecyl sulfate (Sigma) were 

added to 0.5 mg of proteinase K per ml (Sigma) and mixed to form plugs. The bacteria were 

lysed within the plugs with a cell lysis buffer (50 mM Tris, 50 mM EDTA [pH 8], 1% Sarcosine, 

0.1 mg of proteinase K per ml [Sigma]) and incubated overnight at 37°C. The plugs were then 

washed four times with 1X TE buffer. Two-millimeter slices of plugs were incubated overnight 

with either XbaI or SpeI (New England Biolabs, Beverly, Mass.) at 37°C. The plugs were then 

loaded onto a 1% SeaKem Gold agarose gel. PFGE was performed with the CHEF III system 

(Bio-Rad, Hercules, Calif.) with the following run parameters: XbaI with a switch time of 3 to 40 

s and a run time of 21 h and SpeI with switch time of 3 to 20 s and a run time of 21 h. All gels 

were run with the Centers for Disease Control and Prevention reference strain, G5244, of E. coli 

O157:H7. After the gel had been stained with ethidium bromide, the gel was captured with the 

Gel Doc 2000 and Multi-Analyst program (Bio-Rad). Dendrograms were created with Molecular 

Analyst (Bio-Rad) by using the Dice coefficient, unweighted pair group method with arithmetic 

means (UPGMA), and a position tolerance of 1.3%. Isolates were considered highly related with 

0 or 1 band difference with both XbaI and SpeI. 

 

MLST. 

Genomic DNA was isolated with Prepman Ultra according to the manufacturer’s instructions 

(Applied Biosystems, Foster City, Calif.). Seven housekeeping genes were amplified from the 

genomic DNA by using recombinant Taq DNA polymerase (Gibco-Invitrogen, Gaithersburg, 

Md.); reaction parameters varied depending on the primer set (Table 1). The following genes 

(coding for the proteins in parentheses) were included: arcA (aerobic respiratory control protein) 

and aroE (shikimate dehydrogenase) with primers as described by Reid et al. (24), dnaE (DNA  
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Table 1.  The forward and reverse sequences of the primers; based upon sequences found  

in Genbank or [un]published primers. 

 

Gene Primer Sequence 
Reaction 

Parameters1 
Amplicon 

 Size2 
Accession #  or 

Reference 

arcA 
F:  5'-GAAGACGAGTTGGTAACACG-3'                     
R:  5'-CTTCCAGATCACCGCAGAAGC-3 

95oC (1 m)   
55oC (2 m)   
72oC (3 m)      

30X 680bp Reid, et al.  (17) 

aroE 
F:  5'-AAGGTGCGAATGTGACGGTG-3'                     
R:  5'-AACTGGTTCTACGTCAGGCA-3' 

95oC (1 m)   
57oC (2 m)   
72oC (3 m)      

28X 620bp Reid, et al.  (17) 

dnaE 
F:  5'-GA G/T ATGTGTGAGCTGTTTGC-3'                  
R:  5'-CG A/G AT A/C ACCGCTTTCGCCG-3' 

 94oC (45 s) 
45oC (45 s)   
72oC (1 m)    

30X 550bp 

Pallavi Garg, 
Personal 

Communication 

mdh 
F:  5'-CAACTGCCTTCAGGTTCAGAA-3'                     
R:  5'-GCGTTCTGGATGCGTTTGGT-3' 

 94oC (45 s) 
50oC (45 s)  
72oC (1 m)    

30X 580bp 
AE005551    
AP002564 

gnd 
F:  5'-GGCTTTAACTTCATCGGTAC--3'                       
R:  5'-TCGCCGTAGTTCAGATCCCA-3' 

 94oC (45 s) 
50oC (45 s)  

72oC (1 m 10 s)  
30X 590bp 

AE005428    
AP002559 

gapA 
F:  5'-GATTACATGGCATACATGCTG-3'                     
R:  5'-CAGACGAACGGTCAGGTCAAC-3'   

 94oC (45 s) 
50oC (45 s)  

72oC (1 m 10 s)  
30X 535bp 

AE005401   
AP002558 

pgm 
F:  5'-CC G/T TC G/C CA G/T AACCCGCC-3'             
R:  5'-TC A/G AC A/G AACCATTTGAA A/G/T CC-3' 

 94oC (45 s) 
50oC (45 s)  
72oC (1 m)    

35X 600bp 
Kotetishvili, et al.  

(13) 

espA 
F:  5'-ATGGATACATCAA A/C TG G/C A/C AC-3'        
R:  5'-TTATTTACCAAGGGATATT-3' 

 94oC (45 s) 
50oC (45 s)  
72oC (1 m)    

35X 579bp 
AE005594    
AP002566 

ompA 
F:  5'-AGACAGCTATCGCGATTGC-3'                         
R:  5'-GCTTTGTTGAAGTTGAACAC-3' 

 94oC (45 s) 
50oC (45 s)  
72oC (1 m)    

30X 691bp 
AE005286    
AP002554 

 1 All reactions had initial denaturation at 94oC (4 m) & final extension at 72oC (4 m) 

 
2 The sequenced DNA strands were typically shorter than the original PCR amplicon. 
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polymerase III, α subunit), mdh (malate dehydrogenase), gnd (6-phosphogluconate 

dehydrogenase), gapA (glyceraldehydes-3-phophate dehydrogenase), and pgm 

(phosphoglucomutase). Also sequenced were the membrane protein coding genes espA (E. coli 

secreting protein A) and ompA (outer membrane protein A).  The oligonucleotide primers were 

designed based on the published sequences of the genes found in GenBank (Table 1). PCR 

products were purified with Multiscreen PCR plates (Millipore, Bedford, Mass.). PCR products 

were sequenced with the Big Dye Terminator Cycle Sequencing Ready Reaction kit (Applied 

Biosystems). Initial denaturation was for 4 min at 94°C, followed by 25 cycles of denaturation at 

96°C (30 s), annealing at 50°C (5 s), and extension at 60°C (4 min), with a final extension at 

72°C (1 min). The sequencing products were run on an Applied Biosystems 3700 DNA 

sequencer. Both the forward and reverse strands were sequenced with the PCR primer set (Table 

1).  Raw sequences were interpreted with Phred (a base-caller program) and Phrap (an assembly 

program) and verified with Consed (a Unix-based graphical editor) (6, 7, 9). All sequences were 

aligned and compared by using ClustalX, a graphical multiple alignment program (12). Sequence 

results were compared to the reference strains from the National Center for Biotechnology 

Information (NCBI) EDL933 (AE005174) and Sakai RIMD 0509952 (BA000007) by using 

ClustalX. 

3.1.5. Results 
 
 
A total of 77 E. coli O157:H7 isolates were studied: 59 from Pennsylvania and 18 from 

Minnesota. The PFGE patterns of a selected group of these isolates, chosen to demonstrate the 

range of diversity of isolates that were sequenced, are shown in Fig. 1. The genetic relatedness of 
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1 0 09 08 0

Isolate #                     Isolation                      County, 
                                      Date                             State 

 

Figure 1. PFGE analysis of selected strains from the Allegheny County Department of Health and Minnesota Department of  

Health restricted with XbaI.  Reference strains include those from; the CDC, G5244; Japan, Sakai RIMD 0509952; and American  

Type Culture Collection, EDL 933.  Isolates are designated with county and state, except for Allegheny County isolates, which are all  

from Pennsylvania.
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these isolates ranged from around 75 to 100% with XbaI and around 80 to 100% with SpeI (data 

not shown). 

 

Initially, housekeeping genes were targeted because they have successfully been used for other 

organisms (8, 22, 29). The seven selected housekeeping genes were chosen for their potential 

sequence diversity. Three of the genes, aroE, arcA, and mdh, have been used to determine the 

evolution of pathogenic E. coli (24). Two genes, dnaE and pgm, were chosen because they were 

found to be informative for Salmonella and Vibrio cholerae (16; Pallavi Garg, personal 

communication). The final two housekeeping genes, gapA and gnd, were chosen because they 

were transferred into the O157 genome at different evolutionary times. We hoped to find 

diversity as these genes reached G-C equilibrium with the new host (18). Finally, the two 

membrane proteins were chosen as being potential targets of the immune system and under 

possible pressure to mutate. 

 

MLST analysis of the seven housekeeping genes demonstrated that the PHIDL and Minnesota 

strains had identical sequences at all seven loci. Similar to the housekeeping genes, there were no 

nucleotide differences in espA. All of the housekeeping genes and espA loci had identical 

sequences compared to the reference NCBI sequences EDL933 and Sakai RIMD 0509952. For 

ompA, all of the isolates had the same allele as the reference sequences in NCBI, except for five 

isolates that demonstrated two minor alleles. There was a single nucleotide polymorphism (SNP) 

(cytosine to thymidine) that was present at base 301 in 4 PHIDL isolates (PHIDL no. 19, 26, 34, 

and 61). These isolates were clustered together by PFGE, but were not indistinguishable (Fig. 1). 

Additionally, PHIDL 61 did not remain in the cluster when digested with SpeI (data not shown). 
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PHIDL 62 had an SNP further downstream in ompA at nucleotide 560 (guanine to adenine); but 

the other isolates in its XbaI PFGE cluster, PHIDL 12 and 35, did not have this nucleotide 

polymorphism and instead had the most common allele. 

 

3.1.6. Discussion 

 

In this study, we found a striking lack of DNA sequence diversity for all seven housekeeping 

genes, with not a single difference in the approximately 311,000 nucleotides (over 4,000 

nucleotides per isolate) that were sequenced. Additionally, two other genes which might have 

been expected to have a higher degree of diversity, ompA and espA, exhibited either minimal or 

no diversity, respectively. We had included these genes because we hypothesized that, with 

products exposed on the surface of the cell, they could be under immune pressure and therefore 

might exhibit a higher degree of genetic diversity than the housekeeping genes, as was seen in 

Neisseria menigitidis subgroup III (30).  

 

In studies conducted with other bacterial species, strain-to-strain variations in nucleotide 

sequence are commonly seen, even among strains within a single serotype (8, 19, 27, 29) and 

PFGE type (16) and/or associated with a common source. The observed sequence conservation 

could be interpreted as indicative of strong selection, as has been suggested for conserved 

genotypes of strains of N. menigitidis (19). An alternative interpretation—that the strains are 

clonal due to the organism’s recent evolutionary appearance as a recently emerged human 

pathogen—is consistent with our sequence data. The contrast between the sequence conservation 
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and presence of diversity as measured by PFGE that we observed could be explained if the PFGE 

pattern changes resulted from insertions and deletions of DNA that included a restriction site.  

 

Three lines of evidence suggest that an important source of genetic diversity of E. coli O157:H7 

is based on insertions and deletions of DNA sequences. First, octamer-based genome scanning 

has revealed distinct lineages of E. coli O157 strains. The polymorphic markers that distinguish 

the lines of descent have been shown to be the result of insertion and deletion of phages and 

prophages (14, 15). Second, the different banding patterns by PFGE have been shown to result 

from insertions and deletions containing the XbaI restriction sites, not SNPs (17). These 

deletion/insertion sites all were localized within O157-specific regions (O-islands) of the genome 

compared to the restriction sites E. coli O157:H7 has in common with E. coli K-12. Third, an 

analysis of the differences between the two published E. coli O157:H7 genomes indicated 

substantial differences attributable to insertions and deletions, because the total number of 

potential protein-encoding genes differs between the genomes by several dozen (10, 23). 

Additionally, Sakai RIMD 095520 has 1,632 O-island genes that are not found in E. coli K-12, 

while EDL933 has only 1,387 of these genes. 

 

Sequence analysis has multiple advantages over fingerprinting-based methods, including shorter 

assay time, less subjectivity in interpretation of results, fully transferable data that are 

comparable among laboratories, and greater ease of automated computer analysis. Our study 

indicates that the genes we selected for analysis did not have sufficient variation to be useful as 

an epidemiological tool in E. coli O157:H7. Clearly, other approaches to identify informative 
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regions of the genome will be required to develop improved methods for molecular subtyping of 

this important pathogen. 
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3.2.1. Preface 
 

MLST showed that E. coli O157:H7 was too clonal to target its housekeeping genes, so we 

needed to concentrate on elements that mutated at a much higher rate.  VNTRs were found to 

differ within the highly clonal species Bacillus anthracis; therefore we decided to focus on these 

elements as a subtyping technique.  We published our results in a peer-reviewed journal. 
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3.2.2. Abstract 
 

Escherichia coli O157:H7 is a major cause of foodborne illness in the United States.  Outbreak 

detection involves traditional epidemiological methods and routine molecular subtyping using 

pulsed-field gel electrophoresis (PFGE). PFGE is labor intensive, difficult to analyze, and not 

easily transferable between laboratories. Multi-locus variable-number tandem repeat (VNTR) 

analysis (MLVA) is a fast, portable method that analyzes multiple VNTR loci, areas of the 

bacterial genome that evolve quickly. Eighty isolates, including 21 from 5 epidemiologically 

well-characterized outbreaks from Pennsylvania and Minnesota, were analyzed by PFGE and 

MLVA.  PFGE clusters were defined as strains that differed by <1 band using XbaI and the 

confirmatory enzyme, SpeI. MLVA was performed by comparing the number of tandem repeats 

(TRs) at 7 loci.  A range of 6-30 alleles was found at the 7 loci resulting in 64 MLVA types 

among the 80 isolates. MLVA correctly identified all 5 outbreaks if only a single-locus variant 

was allowed.  MLVA differentiated strains with unique PFGE types. Additionally, MLVA 

discriminated strains within PFGE-defined clusters that were not known to be part of an 

outbreak.  In addition to being a simple and validated method for E. coli O157:H7 outbreak 

detection, MLVA appears to have equal sensitivity and superior specificity compared to PFGE. 
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3.2.3. Introduction 
 

Escherichia coli O157:H7 has emerged as an important food-borne pathogen infecting thousands 

of people per year (17).  Most E. coli O157:H7 infections are caused by exposure to bovine fecal 

contaminated food or water.  The clinical syndromes caused by this organism include bloody 

diarrhea and hemolytic uremic syndrome (HUS) (4).  There have been numerous large foodborne 

outbreaks of E. coli O157:H7-related bloody diarrhea and HUS (1, 5, 6, 21).   

   

The public health impact of E. coli O157:H7 has created a need for improved preventative food 

handling techniques and enhanced surveillance for outbreaks.  In addition to traditional 

epidemiological investigations, pulsed-field gel electrophoresis (PFGE) is used to discriminate 

between outbreak and sporadic strains (2).  Although PFGE has been successful, several factors 

have led researchers to search for alternative methods.  This method, while simple and 

inexpensive, takes several days to complete, produces results that are suboptimal for 

interlaboratory comparisons, and can be subjective because it is based on banding patterns (19). 

  

Sequenced-based methods, such as multi-locus sequence typing (MLST), are becoming powerful 

subtyping tools in molecular epidemiology.  These methods have the advantage of being easily 

standardized and automated.  MLST, while successful for other organisms (9, 16, 18, 25) has 

been unable to discriminate among E. coli O157:H7 isolates (19).  In one study, no variation was 

detected in 7 housekeeping genes and little variation was noted in 2 surface protein genes (19).   

  

Given the poor discriminatory power of MLST for E. coli O157:H7, we decided to target short 

tandem repeats (TRs), areas of the bacterial genome that evolve rapidly.  Targeting these 
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elements, which often vary in number among different strains of the same species (the definition 

of a variable number TR, or VNTR), has successfully been used to discriminate between strains 

of prokaryotes (24).  Multiple-locus VNTR analysis (MLVA) involves determining the number 

of repeats at multiple loci, thereby providing a powerful tool for assessing the genetic 

relationships between bacterial strains of the same species.  In a study of the highly clonal 

Bacillus anthracis, 426 isolates that were previously homogeneous by other molecular subtyping 

methods, including PFGE, were separated into 89 distinct genotypes by MLVA (14) (18).  

MLVA has several advantages over PFGE because, like MLST, the output is highly objective, 

making the data amenable to automated computer analysis for the rapid detection of outbreaks 

and easy to compare across laboratories.   

 

The 2 completely sequenced E. coli O157:H7 genomes have allowed us to identify many tandem 

repeats (11, 20).  We initially focused on short TRs that varied in the number of times repeated 

between the 2 reference genomes.  We then were able to compare MLVA and PFGE in their 

ability to detect outbreaks.  The highly discriminatory power of PFGE demands that a competing 

technique be equal, if not superior, in its ability to differentiate between isolates.  In this study, 

we sought to develop a MLVA assay that is useful for detecting outbreaks while being at least as 

discriminatory and easier to perform compared to PFGE. 

 

3.2.4. Materials and Methods 
 

E. coli O157:H7 Strains. 

All E. coli O157:H7 strains collected by the Allegheny County Health Department (ACHD) from 

1999-2001 were provided to the Public Health Infectious Disease Laboratory (PHIDL) at the 
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University of Pittsburgh (n=58) (Table 2). These strains were not associated with known 

outbreaks, with the exception of 7 isolates from a single restaurant-associated outbreak in August 

and September 2001.  Two strains collected from ACHD were Shiga toxin-positive E. coli 

O157:NM (PHIDL isolate numbers 27 and 28).  A sample of isolates from the Minnesota 

Department of Health (MDH) was also included; these were isolates from 4 outbreaks (n=14) 

and sporadic isolates (n=4) from 1995 and 1996 (Table 2).   ATCC strain EDL933 and the Sakai, 

Japan strain RIMD 0509952 were used as reference strains for MLVA (11, 20), while G5244 

from the CDC was used as the reference strain for PFGE.  [All of these strains were analyzed 

previously by our MLST protocol (19)]. 

 

Each isolate was classified into 1 of 3 groups.  Group 1 isolates were from known outbreaks and 

were associated with a specific PFGE cluster.  Strains with ≥2 band difference by XbaI and SpeI 

that were not known to be associated with an outbreak were classified as Group 2.  Finally, 

strains that were <1 band different by PFGE but not associated with a known outbreak were 

classified as Group 3.  

 

PFGE. 

PFGE analysis was performed according to the Centers for Disease Control and Prevention 

PulseNet protocol with minor variations as described previously (19). The bacterial DNA was 

restricted with XbaI or the confirmatory enzyme, SpeI (New England Biolabs, Beverly, MA).  

The switch times for XbaI and SpeI were 3-40 sec and 3-20 sec, respective, and both ran for 21 

hours.  Dendrograms were created with Molecular Analyst (BioRad, Hercules, CA) using the  
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Table 2. Isolate information.  Isolates (n= 80) included in this study, including year, state of  

isolation, and outbreak number. 

 
Group1 Year Location Outbreak # 2 Strain I.D. 

      
1 1995 MN (Daycare) 4 E96001161 E96001162 
    E96001177 I96001815 
 1996 MN (Daycare) 1 I96003168 I97000025 
    I97000024 I97000027 
 1996 MN (Daycare) 2 I97001003 I97001180 
    I97001017 I97001040 
 1996 MN (Daycare) 3 I97000770  
    I97001176  
 2001 PA (Restaurant) 5 PHIDL 51 PHIDL 57 
    PHIDL 52 PHIDL 59 
    PHIDL 53 PHIDL 60 
    PHIDL 54  
2 1995 MN  E96000049  
 1996 MN  E97001162 E97001249 
 1999 PA  PHIDL 5 PHIDL 14 
    PHIDL 7 PHIDL 15 
    PHIDL 11 PHIDL 18 
 2000 PA  PHIDL 19 PHIDL 37 
    PHIDL 21 PHIDL 38 
    PHIDL 25 PHIDL 41 
    PHIDL 26 PHIDL 42 
    PHIDL 29 PHIDL 43 
    PHIDL 33 PHIDL 44 
    PHIDL 34 PHIDL 45 
    PHIDL 36  
 2001 PA  PHIDL 46 PHIDL 56 
    PHIDL 47 PHIDL 58 
    PHIDL 48 PHIDL 61 
    PHIDL 49 PHIDL 62 
    PHIDL 55  
3 1996 MN  E97001568  
 1999 PA  PHIDL 2 PHIDL 10 
    PHIDL 3 PHIDL 12 
    PHIDL 4 PHIDL 13 
    PHIDL 8 PHIDL 16 
    PHIDL 9 PHIDL 17 
 2000 PA  PHIDL 20 PHIDL 30 
    PHIDL 22 PHIDL 31 
    PHIDL 23 PHIDL 35 
    PHIDL 24 PHIDL 39 
    PHIDL 27 PHIDL 40 
    PHIDL 28  
 2001 PA  PHIDL 50 PHIDL 63 

REFERENCE 1982 MI  EDL933  
 1993 CDC  G5244  
 1996 Japan  Sakai RIMD 0509952  

      
1 See text for definition of groups 1-3    
2 Information only for outbreak isolates    
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Dice coefficient, and a position tolerance of 1.3%.  Isolates were classified as belonging to the 

same PFGE cluster if they had <1 band difference with both XbaI and SpeI. 

 

Potential Variable Number Tandem Repeats.  

Over one hundred potential TRs were found in the two fully sequenced E. coli O157:H7 

genomes, EDL933 (AE005174) and Sakai (BA000007) using the Tandem Repeats Finder 

software (3).  After identifying all TRs that were common to both strains, we chose 6 TRs that 

were different in number between the two strains.  Among TRs that were not variable between 

the 2 reference genomes, some were found to be variable among the study isolates.  For example, 

because of success with several 6 base pair TRs that were variable between the reference 

genomes, we tested some that were not variable and found them to be variable among the study 

isolates, such as TR5.  

 

DNA Isolation & PCR Amplification & Sequencing. 

DNA was isolated using the Prepman Ultra Protocol (Applied Biosystems, Foster City, CA).  All 

Allegheny County and Minnesota isolates were analyzed at 7 loci.  Primers were based on the 

sequences from Sakai and EDL933 genomes (11, 19) and were designed using the Primer Finder 

website (http://eatworms.swmed.edu/~tim/primerfinder/).   

 

Primers were designed for the amplification and sequencing of the targeted repeat region (Table 

3) (IDT Inc., Coralville, IA) to verify that the differences seen were due to the variability in the 

TR region rather than another genetic event (proof of concept primers).  Each 30 µL PCR 

reaction contained 3 µL of 10X PCR buffer, 1.5 mM MgCl2, 0.33 µM of each primer, 25 µM of
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Table 3. VNTR loci primers & characteristics.   Primers used for the initial amplification and 

sequencing of the selected tandem repeats for all isolates and characteristics of each tandem 

repeat locus. 

 
TR Name Forward Primer Sequence Reverse Primer Sequence  Ta(oC) Tandem Repeat Sequence 

Number of Repeats       
Mimimum    Maximum  

# of 
Alleles Diversity1 

Found in 
E. coli 
K12 

Inside 
ORF2

TR1 ACTGCATGATAAGCCTCAGG CACTGAAGCCTGTTCCGTTC 57 AAATAG 4 20 12 0.88 No No 
TR2 CGCAGTTGATACCTACGG GGAAGGAAGCTGATAGGT 53 TGGCTC 7 58 30 0.96 No Yes 
TR3 TCTTGTCAATATAGATTGG TGATTAAGCGTGTACTGA 50 TATCTT 3 10 8 0.71 No Yes 
TR4 GGTGATGGCTTGATATTGA GCCACACTGCGAGTATAGAG 53 TGCAAA 2 9 7 0.57 Yes No 
TR5 GTTGATTATCATGGTATGTC GGACAACTTGTAGTACAAG 51 AAGGTG 6 26 15 0.86 No Yes 
TR6 GATGGTTCGACTAACCGTTAT TAGCAGATGTTCGTTCCT 53 TTAAATAATCTACAGAAG 7 12 6 0.69 Yes Yes 
TR7 CGCAGTGATCATTATTAGC TGCTGAAACTGACGACCAGT 50 GACCAC 4 9 6 0.67 Yes Yes 

           
1Diversity based on Nei's marker diversity: 1-Σ(allele frequency)2, and based on 63 or 64 unique genotypes.  
2Most of the open reading frames were hypothetical based on either Sakai or EDL933 in NCBI (11,19). 
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each deoxyribonucleotide, 1.5U of the recombinant Taq DNA polymerase (Invitrogen, Carlsbad, 

CA), and 1 µL of DNA template.  The PCR thermocycling program was identical for the 

7reactions, except for the annealing temperatures (Table 3).  The samples were placed on a 

GeneAmp PCR System 9700 (Applied Biosystems) and raised to 94ºC for 4 min, followed by 35 

cycles of 94ºC for 45 sec, 50ºC-57ºC for 45 sec, 72ºC for 1 min.  The final hold was for 5 min at 

72ºC.  PCR products were purified using Exo-Sap It (USB Corporation, Cleveland, OH).   

 

Forward and reverse strands of the PCR products were sequenced with an ABI PRISM® 3700 

Genetic Analyzer using the Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Applied 

Biosystems) following the previously described protocol (19).  Contigs were created using Phred 

and Phrap (7,8). Once the sequences were aligned, the number of repeats was counted using 

ClustalX (13) or Chromas (Technelysium Pty Ltd.).   

  

Data Analysis. 

The unweighted pair group method with arithmetic mean (UPGMA) was used to generate the 

PFGE and MLVA dendrograms.   

 

The sensitivity and specificity of MLVA for detecting outbreaks were calculated using the pair-

wise distances between isolates after being analyzed by UPGMA (also known as cophenetic 

distances) to determine which cut-point would yield the highest values for both of them. 

Sensitivity, a measure of the ability to detect outbreaks, was defined as the ability of the MLVA-

derived dendrogram to classify a pair of Group 1 isolates as belonging to an outbreak.  

Specificity, a measure of the discriminatory power for unrelated isolates, was defined as the 
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ability of a MLVA-derived dendrogram to classify a pair of Group 2 isolates as not belonging to 

an outbreak.   

 

We observed that the single locus variants that occurred during outbreaks differed by only a 

single TR.  To test the hypothesis that only a single TR difference would likely occur during an 

outbreak, we determined the likelihood of such a difference to occur between isolates that belong 

to Group 2. This was achieved by constructing an empirical distribution of the distances in that 

group after performing logarithmic transformation to account for normality and allow negative 

values. Using another approach, we compared the mean distance among Group 1 and Group 2 

pairs, employing a Student’s t-test. All analyses were done with the statistical package R (12). 

 

3.2.5. Results 
 

PCR Amplification & Sequence Analysis of Potential VNTRs. 

Initially, a subset of 16 PHIDL isolates was sequenced at 11 loci to determine if the TR locus 

had sufficient variability (data not shown).  If variation existed in this small subset at a particular 

locus, the remaining isolates were amplified.  We found that 7 loci had multiple alleles with 

substantial variability (Table 3 & Figure 2).  The seven primer sets amplified all isolates at all 

loci with 2 exceptions: isolate E96001161 with the TR2 primers and E97001249 with the TR5 

primers.  These data were counted as missing for the MLVA analysis.  We sequenced the 7 loci 

of all of our isolates to confirm that the size variations seen in the PCR products were due to the 

number of TRs.  In all cases, the size variation we observed was due to the number of TRs.  

Rarely, there was sequence variation within the repeat. 
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Figure 2. MVLA dendrogram of PHID

profile of the 80 E. coli O157:H7 isolates

 

Genetic Distanc

0.6 0.8

 

L and MN isolates.  Dendrogram based on the allelic 

.  See Table 2 for isolate details. 

 37



Locus Characteristics.   

A range of 6 to 30 alleles was found for the seven loci, with VNTRs repeating as few as 2 times 

at one locus to 58 times at another (Table 3).  The diversity for each locus was calculated based  

on either 63 or 64 unique genotypes; the former was used for TR2 and TR5 because of 

unsuccessful PCR amplification.   

 

MLVA for outbreak detection.   

Group 1 included organisms from 5 separate outbreaks, each associated with a specific PFGE 

cluster (Figure 3).  For outbreak numbers 1, 3, and 4, all isolates had an identical MLVA type.  

For the remaining 2 outbreaks, there were single locus variants (SLV) that were a result of single 

TR differences in all instances.  In outbreak 2, 2 isolates had 30, rather than 31 repeats at locus 

TR2.  For outbreak number 5, one isolate had 16, rather than 15 repeats at locus TR4 and another 

isolate had 9, rather than 10 repeats at locus TR6.  Allowing SLVs to be considered part of the 

same outbreak cluster, the sensitivity of MLVA for identifying outbreak strains as such using all 

7 loci was 100% (21/21). 

  

The isolates from outbreak 2 differed at 2 loci from the outbreak 3 isolates.  The outbreaks 

involved person-to-person transmission, were separated in time by 2 weeks in September 1996, 

and occurred in cities that are about approximately 75 miles apart.  There was no known 

epidemiologic connection between the 2 outbreaks.   

  

The probability of a pair of isolates not belonging to an outbreak having at most a 1 TR 

difference was estimated to be 1.02x10-5, when all 7 loci were taken into account. The difference  
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MLVA Results 
Isolate

Outbreak 
Number

TR1 TR2 TR3 TR4 TR5 TR6 TR7

4 9 40 7 4 7 11 7

4 9 40 7 4 7 11 7

4 9 40 7 4 7 11 7

4 9 40 7 4 7 11 7

2 11 30 7 5 9 11 7

2 11 30 7 5 9 11 7

2 11 31 7 5 9 11 7

2 11 31 7 5 9 11 7

3 10 24 7 5 9 11 7

3 10 24 7 5 9 11 7

5 15 25 7 5 11 10 6

5 15 25 7 5 11 9 6

5 15 25 7 5 11 10 6

5 16 25 7 5 11 10 6

5 15 25 7 5 11 10 6

5 15 25 7 5 11 10 6

5 15 25 7 5 11 10 6PHIDL59    
1 13 19 7 5 11 10 5

1 13 19 7 5 11 10 5

1 13 19 7 5 11 10 5

1 13 19 7 5 11 10 5

E96001161

E96001177

E96001162

I96001815

I97001003

I97001180

197001040

I97001017

I97000770

I97001176

PHIDL60

PHIDL51

PHIDL52

PHIDL53

PHIDL54

PHIDL57

I97000024

I97000025

I96003168

I97000027
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Figure 3. Pulsed-field gel electrophoresis using XbaI of all Group 1 isolates, representing 5 

outbreaks and corresponding MLVA types.  The numbers under each tandem repeat locus 

reflect the number of times the TR is found in that isolate.  The horizontal lines through the 

dendrogram and chart are used to visually demarcate the outbreak isolates. 
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of the average distances in Groups 1 (0.4) and 2 (14.4) was also highly significant (p < 0.0001) 

These data suggest that intra-locus differences that occur during outbreaks occur 1 TR at a time, 

whereas unrelated isolates are much more likely to differ by more than 1 TR. 

 

MLVA for discriminating isolates from sporadic cases.   

Each Group 2 isolate had a unique MLVA type (Figure 4).  Additionally, these isolates differed 

by at least 2 VNTR loci when compared to all other isolates included in this study, for a 

specificity of 100% (35/35). Discriminatory power was less with all possible combinations of 6 

loci.   For example, when TR1or TR2 was excluded, PHIDL #14, a Group 2 isolate, was 

included in outbreak 5 if a single locus difference was allowed.  In addition, PHIDL #3 and 

PHIDL #4, both Group 3 isolates, differed from outbreaks 2 and 3 by 1 locus.  When TR7 was 

excluded, PHIDL #30 and PHIDL #31, Group 3 isolates, differed from outbreak 3 isolates by 

only a single locus.  Similar results were encountered with the exclusion of each of the remaining 

loci. 

 

MLVA for discriminating strains related by PFGE.   

After restriction with XbaI, the 24 Group 3 isolates were found to group together in 7 PFGE-

based clusters, despite not being part of any identified outbreaks. After restriction with SpeI, 

according to the PulseNet Protocol (22), some of the isolates were further subgrouped (data not 

shown).  Since these strains had not been identified as part of an outbreak, they could not be 

included in the calculation of sensitivity and specificity.  However, the PFGE and MLVA results 

were compared to provide insights about the relative discriminatory power of these 2 methods 

using the limited epidemiologic information that was available for these isolates (Figure 5).   
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Figure 3. 
MLVA Results 

Isolate
TR1 TR2 TR3 TR4 TR5 TR6 TR7

17 39 4 5 15 8 7

15 15 4 13 8 6

12 58 4 5 9 8 6

8 20 3 4 No 1 8 7

11 29 5 4 12 9 6

11 15 5 4 7 10 7

12 18 5 4 7 9 7

13 28 7 5 10 10 6

16 17 7 5 10 10 7

15 28 9 5 8 11 6

20 35 7 9 14 10 6

14 26 8 4 10 10 5

15 25 7 5 11 10 6

PHIDL15

PHIDL41

PHIDL37

E97001249

PHIDL26

PHIDL34

PHIDL19

PHIDL55

PHIDL60

E96000049

PHIDL43

PHIDL47

PHIDL46
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Figure 4. Pulsed-field gel electrophoresis using Xb

corresponding MLVA types.  The numbers under ea

of times the TR is found in that isolate. 
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Isolate Onset Date TR
1

TR
2

TR
3

TR
4

TR
5

TR
6

TR
7

E97001568 12/4/19961 10 No2 5 3 26 7 8

PHIDL12 8/11/1999 11 14 7 3 21 8 7

PHIDL35 7/21/2000 10 14 5 4 14 8 9

PHIDL16 8/31/1999 11 14 6 3 9 8 7

PHIDL20 3/6/20001 8 23 5 4 18 8 8

PHIDL40 8/7/2000 10 9 5 3 9 8 9

PHIDL27 5/21/2000 9 33 6 4 14 8 7

PHIDL28 5/27/2000 9 35 6 4 14 8 7

PHIDL8 3/13/1999 15 16 8 5 10 10 6

PHIDL23 3/21/2000 17 22 7 5 9 10 5

PHIDL24 3/25/2000 17 22 7 5 9 10 5

PHIDL63 10/5/2001 14 19 8 5 10 10 6

PHIDL17 10/18/1999 15 31 8 5 6 10 4

PHIDL22 3/1/2000 11 11 7 5 11 11 6

PHIDL30 6/27/2000 10 38 7 5 9 10 6

PHIDL31 6/26/2000 10 38 7 5 9 11 6

PHIDL9 5/5/1999 13 18 7 5 8 9 6

PHIDL2 6/21/1999 14 16 7 4 13 10 6

PHIDL39 8/8/2000 15 24 7 7 10 10 6

PHIDL50 6/6/2001 12 29 7 4 10 10 6

PHIDL10 8/6/1999 16 34 7 8 12 10 6

PHIDL13 8/24/1999 16 34 7 8 12 10 6

PHIDL3 7/18/1999 13 10 7 5 9 11 7

PHIDL4 7/17/1999 13 10 7 5 9 11 7

MLVA Results
1 0 09 08 0

 
1This date reflects the culture date and not the onset of clinical symptoms.
2No product for this PCR reaction.  

Figure 5. Pulsed-field gel electrophoresis using XbaI of a sample Group 3 isolates and 

corresponding MLVA types.  The numbers under each tandem repeat locus reflect the number 

of times the TR is found in that isolate.  The horizontal lines through the dendrogram are used to 

visually demarcate the PFGE-grouped isolates. 
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The XbaI-based cluster containing PHIDL #2, #9, #22, #30, and #31 was subdivided by SpeI into 

2 clusters, with 1 cluster consisting of the 2 1999 isolates and the second cluster consisting of the 

3 2000 isolates, PHIDL #22, #30, and #31.  The MLVA provided further discrimination among 

some of the isolates from 2000. PHIDL #30 and PHIDL #31 had identical MLVA types and 

these 2 organisms were only isolated one day apart.  In contrast, PHIDL #22 differs at 3 loci 

from #30 and #31 and is separated in time by 3 months from the other 2 isolates.   

 

In addition to PHIDL #30 and #31, other isolates that were clustered by PFGE were also highly 

related by MLVA.  For example, PHIDL # 3 and #4 were identical by MLVA and were isolated 

in Allegheny County 1 day apart from each other.  Taken together with the analysis of the Group 

1 isolates, the data suggest that these isolates were part of an unrecognized outbreak.   

 

On the other hand, MLVA also differentiated some Group 3 strains. For example, PHIDL #39 

and #50 were different at 3 MLVA loci and were isolated 11 months apart.  PHIDL #8 and #23 

were also clustered by PFGE (indistinguishable by XbaI and 1 band difference by SpeI), were 

detected over a year apart, and differed at 5 MLVA loci.  These data suggest that MLVA is able 

to distinguish among unrelated strains that may be falsely clustered together by PFGE. 

 

The preliminary data suggest that even with a second enzyme, PFGE is unable to differentiate 

strains as well as MLVA.  These data suggest that Group 3 isolates consist of both previously 

unrecognized E. coli 0157:H7 outbreaks and unrelated isolates that PFGE erroneously clustered 

together.  If confirmed in future studies, these data indicate that MLVA is more specific than 

PFGE for detecting outbreaks caused by this organism. 
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3.2.6. Discussion 
 

The MLVA assay we developed was highly sensitive in identifying E. coli O157:H7 outbreaks 

while at the same time able to accurately discriminate among sporadic isolates.  Using cutoffs of 

a difference of ≤1 locus with 2 TR differences allowed us to correctly classify all Group 1 and 

Group 2 isolates, respectively.  The data from our Group 1 isolates, consisting of well-

characterized outbreaks, suggest that isolates that differ at no more than a single locus are highly 

related and should be considered to be part of the same outbreak.  It was striking that the SLVs 

we identified among Group 1 isolates all differed by a single repeat, suggesting that SLVs that 

occur during outbreaks are likely to differ by a small number of repeats (C. Keys, Z. Jay, A. 

Fleishman, J. Fox, G. Evans, and P. Keim, poster, 103rd General Meeting American Society for 

Microbiology, Washington, D.C., 2003).  Whether all intra-outbreak SLVs will differ by a single 

repeat remains to be seen.  However, the data from our Group 3 isolates suggest that the 

difference may not always be a single TR because PHIDL numbers 27 and 28, which were likely 

from a point source, differed at locus TR2 by 2 repeats  

 

Importantly, MLVA was able to distinguish among some Group 3 isolates that appeared to be 

highly related by PFGE.  Based on the comparison of the results for these two assays and the 

available epidemiologic information, it appears that this group included both sporadic and 

outbreak-related strains. Thus, MLVA was more discriminatory than PFGE with the group of 

isolates we studied.   

 

The major implication of this finding is that, if used as part of routine public health surveillance, 

MLVA may result in fewer false positive signals suggestive of an outbreak.  This finding, in 
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addition to the fact that MLVA has many other advantages over PFGE, suggests that MLVA is 

superior to PFGE.  We are currently automating this process by analyzing fluorescently tagged 

PCR amplicons of the 7 TR loci on a 3700 DNA analyzer as described by Keim (14).  This will 

eliminate the sequencing step that was described in this experiment and further reduce user 

intervention, thereby increasing the efficiency of this protocol.  

 

VNTRs are rapidly evolving genomic elements that have been used successfully for the 

molecular typing of other pathogens such as Bacillus anthracis, Yersinia pestis, and 

Mycobacterium tuberculosis (10, 14, 15). One potential concern is that VNTRs evolve so rapidly 

that multiple MLVA types would emerge during an outbreak initially caused by a single clone.  

In fact, we observed SLVs in 2 of the 5 outbreaks we studied.  This is similar to PFGE, where 

differences of up to several bands can be observed by PFGE during outbreaks (23).  Whether 

MLVA frequently exhibits a degree of diversity that diminishes its utility for outbreak detection 

will need to be studied with additional isolates. 

 

We primarily chose relatively short TRs for two reasons. First, shorter repeats may be associated 

with an increased potential of DNA polymerase slippage resulting in either a loss or gain of a TR 

(24).  Second, shorter repeat sizes may facilitate automation by reducing the potential overlap of 

different loci during the run on the DNA sequencer.  Of the 7 VNTR loci we analyzed, there was 

a minimum of 6 alleles found at one locus and a maximum of 30, which gives MLVA 

tremendous discriminatory abilities that are superior to PFGE based on the results for our 

isolates. 
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3.3.1. Preface 
 

We wrote a data letter to demonstrate the automation of our MLVA protocol and published it in 

the Journal of Clinical Microbiology.  We also have additional data that were not published, but 

enhances the published data and provides additional validation of our MLVA protocol. 
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3.3.2. Brief Report 
 

We recently developed a multi-locus variable-number tandem repeat (TR) analysis (MLVA) 

assay for Escherichia coli O157:H7 (2). In this assay, we identified 7 loci that, when used in 

combination, were able to identify E. coli O157:H7 outbreaks, discriminate among genetically 

diverse isolates, and discriminate among isolates that were found to be highly related by pulsed-

field gel electrophoresis but not known to be associated with an outbreak. 

 

In our paper, we supplied primers for the 7 loci (2): these primers successfully amplified the 

appropriate tandem repeat loci, and by sequencing each locus and counting the number of repeats 

we were able to assign a MLVA type for each isolate. We now have automated the process with 

new primers, using the approach described for Bacillus anthracis (1). Our fluorescently-labeled 

primers have been designed to give each locus a discrete range on the sequencer, when possible, 

and color (Table 4). 

 

The PCR reactions were multiplexed to reduce the overall number of reactions needed: TR1, 

TR5, and TR6 in the first reaction; TR3, TR4, and TR7 in a second reaction; and TR2 alone in a 

third reaction. All 3 PCR reactions were based on a 30µL reaction volume with 3µL of 10X PCR 

buffer, 1.5mM MgCl2, 25µM of each deoxyribonucleotide, 1.5U of Platinum Taq DNA 

polymerase (Invitrogen, Carlsbad, Calif.), and 1.0 µL of DNA. After primers were added to the 

reactions, water was added to a final volume of 30µL. The first multiplex reaction contained the 

following primer concentrations: 0.27µM each of TR1 and TR6, and 0.13µM of TR5. The 

second multiplex reaction contained 0.17µM each of TR3 and TR4, and 0.2µM of TR7. The 

single PCR reaction contained 0.33µM of TR2. The samples were placed on a GeneAmp PCR  
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Table 4. Genotyping primers for automation of MLVA for E. coli O157:H7.  Table includes 

fluorescent tags, annealing temperatures, and product ranges in basepairs. 

58 208-304
53 205-515
56 85-128
56 147-183
58 318-405
58 395-483
56 186-216

Locus Forward Primer Sequence Reverse Primer Sequence

TR1 6Fam-CTCAGGGAAAAGGGAAGACAC TTTCCTCTGCTGTAAATGTTCG

Vic-CAGTTGCTCGGTTTTAACATTG CGACAAGATGATAATGAAAGCG

TR7 Vic-ACGCAACTGGCTGGAGAATA TGACCTCTCTACCATCAAAGCG

TR4 6Fam-AGGAGGGTGATGAGCGGTTA CATTATTCCCATTTCTGCCTG
TR5 Vic-ACTTTGGAGTGAGGGCTGCTA ATAACCGATACTGAGCTGTCGC

Genotyping 
Product 

Range (bp)

Genotyping Primers (5'-3')

Annealing 
Temp (oC)

TR6 6Fam-GACTCGTCAAGGACATACAGCC CAGATGTTCGTTCCTTATTGCTAA

TR2 Ned-AAGTGATTATCTTTTTCAGCCTCC GAACAACCCATTTCATTATCTGAT
TR3

 

 52



System 9700 (Applied Biosystems) and the temperature was raised to 94°C for 4 min, followed 

by 32 cycles of 94°C for 45 s, 53 to 58°C for 45 s, and 72°C for 1 min. The final hold was for 5 

min at 72°C. The 3 PCR reaction products were pooled so that each isolate had its 7 loci 

analyzed on one lane on the ABI PRISM 3700 Genetic Analyzer (Applied Biosystems). 

 

Our genotyping results correlated with our previous results with one exception (2). PHIDL 18 

(1/80 isolates, 1.25 %) could not be genotyped after repeated attempts, even though the PCR was 

successful. Moreover, sequencing of 8 isolates demonstrated that the genotyping primers were 

amplifying the tandem repeats of interest. 

 

Due to migration differences of the ladder and products, the genotyping size differed from the 

expected size based on the length of the flanking region and TR (Appendix A). For all isolates, 

the observed size for each locus was reproducible from at least four independent runs. With the 

verification of these new primers, our MLVA protocol provides an automated, reproducible, 

highly discriminatory method for detected outbreaks caused by E. coli O157:H7. 

 

3.3.3. Additional Introduction 
 

The creation of our MLVA protocol and subsequent automation of this procedure offers a rapid, 

reproducible, and almost completely objective analysis of E. coli O157:H7 isolates and their 

potential to be part of outbreaks.  The previous investigation into E. coli O157:H7 MLVA used 

80 clinical isolates from restricted geographical regions: Allegheny County, Pennsylvania and 

Minnesota.  The following, additional results demonstrate the ability of our MLVA protocol to 
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classify 100 isolates form across the United States including both known outbreak isolates and 

known sporadics. 

3.3.4. Additional Methods & Materials 
 

E. coli O157:H7 Strains. 

One hundred isolates from around the United States were provided by the Centers for Disease 

Control & Prevention.  A combination of sporadic and outbreak isolates were sent without 

epidemiological data.  Once PFGE and MLVA had been completed, the epidemiological 

information was obtained.  Twelve outbreaks with a total of 22 isolates were included, while the 

remaining isolates were either sporadic isolates or were isolates that were genetically and 

temporally related but were unconfirmed outbreaks. 

 

Pulsed-Field Gel Electrophoresis. 

Isolates were examined using PFGE as previously described (2).  PFGE and MLVA genotyping 

were performed by different individuals to not influence the analysis of the results from both 

techniques.  Briefly, pure isolates were grown overnight on blood agar. Equal amounts of 

bacterial suspension were added to 1X TE buffer (Sigma), 1% SeaKem Gold Agarose 

(BioWhittaker), 1% sodium dodecyl sulfate (Sigma), and proteinase K (Sigma).  Suspensed cells 

were lysed overnight with cell lysis buffer and washed four times with 1X TE buffer.  Two-

millimeter slices of plugs were incubated overnight with either XbaI or SpeI (New England 

Biolabs).  PFGE was performed with the CHEF III system (Bio-Rad).  After the gel had been 

stained with ethidium bromide, the gel was captured with the Gel Doc 2000 and the Quantity 

One program (Bio-Rad).  Dendrograms were created with the program, Bionumerics (Bio-Rad) 
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by using the Dice coefficient, unweighted pair group method with arithmetic means (UPGMA).  

Isolates were considered highly related with 0 or 1 band difference with both XbaI and SpeI. 

 
DNA Isolation. 

DNA from the E. coli O157:H7 isolates was isolated using the Prepman Ultra technique 

(Applied Biosystems) as described in Chapter 1. 

 

MLVA Genotyping. 

All isolates were examined at the 7 MLVA loci using the primer sets and PCR reactions as 

described in the Brief Report above.  More specifically, 5uL of each of the 3 PCR reactions were 

run on a 3% high-resolution gel (Sigma) to examine the intensity of the bands.  From those 

results, the amount of each sample to be added to the pooled sample was determined.  The 

pooled samples from all 100 isolates were run on a 3700 DNA Analyzer using the Rox® Ladder 

(Applied Biosystems) as a size standard.  The software package Genescan® (Applied 

Biosystems) algorithm automatically identifies and sizes each peak to the Rox® Ladder (Applied 

Biosystems), and provides peak area and peak height information.  Genotyper® software 

(Applied Biosystems) was used to call and catalog alleles for all 7 loci and build tables 

automatically.  Allele sizes for each of the 7 loci were converted to number of tandem repeats by 

using an equation specific for each MLVA locus: 

 # of Tandem Repeats =  (Genotyper Peak Size [bp] – Constant Size of Region Flanking TR[bp]*) 

       # of Nucleotides in Repeat (bp) 

 *Constant size is different for each of the 7 loci. 

Each isolate had a 14 digit MLVA type which could then be compared to one other to determine 

relatedness.   
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3.3.5. Additional Results 
 

PFGE Results. 

Of the 100 CDC isolates, 96 of the isolates were successfully digested with both XbaI and SpeI 

while the remaining 4 isolates had degraded DNA despite several attempts.  During the primary 

analysis of the PFGE data, we were blinded regarding the epidemiologic information for each 

isolate.  Therefore, we classified our isolates into 2 groups: highly related isolates, defined as <1 

band different with both restriction enzymes and sporadic isolates, defined as >2 bands different 

to their closest neighbor (Figures 6 & 7).  Fifty-eight of the 100 isolates were clustered in the 

highly related group into 19 groups and 2 subgroups (labeled PFGE-based groups A-S). 

 

MLVA Results. 

Of the 100 CDC isolates, 98 of the isolates had all 7 alleles and the other 2 isolates had results 

for 6 of the 7 loci (Figures 6 & 7).  Isolates were suspected to be highly related with identical 

MLVA types or single locus variants (or double locus variants in particular situations). Forty-one 

of the isolates were characterized as highly related by MLVA alone. 

 

Comparison of PFGE and MLVA with the Inclusion of Epidemiological Data. 

Fifteen of the 19 groups that were deemed highly related by individual methods were shown to 

remain so with the combination of PFGE, MLVA, and epidemiological information.  There were 

multiple examples of isolates that were grouped together due to their PFGE patterns, but were 

separated by the MLVA and epidemiological data.  For example, PFGE-based group H1 had 6 

isolates in which the PFGE patterns were identical with both enzymes.  The MLVA data 
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demonstrated that only 2 isolates (9082 & 9220) had identical MLVA types, while the remaining 

4 isolates had 3 to 4 different loci (Figure 6). 

 

In the group defined as sporadic by our PFGE definition, 29 out of 42 isolates were confirmed as 

sporadic individually and together with the PFGE, MLVA, and epidemiological information.  

The majority of the remaining 13 isolates had the potential to be highly related and were deemed 

sporadic due to our very strict definition of highly related versus sporadic isolates.  For example, 

isolates 8945 and 8948 were categorized as sporadic because while identical under XbaI (Figure 

7), the isolates had a 2-band difference under SpeI (Data not shown).  These 2 isolates had an 

identical MLVA type and epidemiologically appeared to be highly related because they were 

both from Oregon and were isolated 2 days from each other.  A third isolate, 8947, also had an 

identical MLVA type and epidemiological data to suggest being part of the same group, but the 

PFGE data placed this isolate even further outside the definition of highly related.   

Four of the sporadic isolates were untypeable by PFGE, so we automatically assigned them to 

the sporadic group because we initially had no additional information.  The MLVA data 

suggested that 2 of the isolates were indeed sporadic, but the other 2 isolates (G5289 & G5290) 

had the identical MLVA type and were confirmed as part of a known outbreak by the 

epidemiological information. 

 

Mixed between the highly related and sporadic groups were 10 outbreak groups and 2 individual 

outbreak isolates.  Eight of the outbreaks were correctly assigned to the highly related group by 

the PFGE and MLVA data.  The remaining 4 isolates were assigned to the sporadic group.  Two 

of these isolates were described previously, as they were untypeable by PFGE.  The other 2 
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PFGE-
Based
Groups TR1 TR2 TR3 TR4 TR5 TR6 TR7 Date State** County

A 11 20 5 3 9 9 6 1988 MN
A 11 20 5 3 9 9 6 1988 MN
B 10 35 5 4 10 9 7 1/7/00 CT NEW HAVEN
B 10 36 5 4 10 9 7 1/19/00 OR CLATSOP
C 9 12 3 4 7 9 5 9/14/00 MD ANNE ARUNDEL
C 13 13 3 4 7 9 5 11/20/00 CT NEW HAVEN
D 9 29 6 4 M* 8 8 3/21/00 OR UMATILLA
D 9 28 6 4 22 8 8 8/31/00 OR CROOK
E 10 9 5 3 19 8 9 1992 ME
E 10 13 5 3 18 8 10 10/7/00 NX SUFFOLK
F 7 27 5 3 24 8 9 1986 NC
F 7 27 5 3 24 8 9 1986 NC
G 9 34 5 4 8 8 6 1984 NC
G 9 34 5 4 8 8 6 1984 NC
H1 16 36 4 4 14 8 7 10/11/00 KS STAFFORD
H1 11 27 4 4 14 8 8 10/12/00 MN DOUGLAS
H1 15 18 4 5 13 8 7 4/17/00 MD BALTIMORE
H1 14 34 4 5 13 8 7 6/29/00 MD BALTIMORE
H1 15 14 4 4 13 8 6 10/13/00 GA WALKER
H1 15 14 4 4 13 8 6 11/5/00 NX SUFFOLK
H2 15 23 4 5 14 8 7 1/9/00 NX WESTCHESTER
H2 15 23 4 5 14 8 7 1/11/00 NX WESTCHESTER
H2 15 23 4 5 14 8 7 1/14/00 NX WESTCHESTER
H2 15 23 4 5 14 8 7 1/22/00 NX WESTCHESTER
H2 15 18 4 4 17 8 8 12/1/00 CO DENVER
I 13 11 7 4 13 10 6 1986 WA
I 13 10 7 4 13 10 6 1986 WA
J 11 6 8 5 11 10 6 1/17/00 CT LITCHFIELD
J 4 20 8 7 8 12 6 9/21/00 WA CLARK
K 12 21 8 3 11 10 6 1991 MT
K 12 21 8 3 11 10 6 1991 MT
K 9 33 6 3 14 9 7 10/9/00 NX SARATOGA
L 10 36 7 5 3 11 6 8/25/00 WA KING
L 10 36 7 5 3 11 6 9/12/00 WA SNOHOMISH
L 13 23 6 5 9 11 8 11/28/00 NX ONTARIO
M 13 39 9 6 8 11 8 11/6/00 NY NEW YORK
L 7 20 7 3 9 10 4 6/16/00 MD BALTIMORE
L 12 13 7 5 10 10 4 11/13/00 MN HENNEPIN
M 13 16 7 5 9 11 8 2/21/00 TN DAVIDSON
M 9 20 8 5 10 11 4 9/28/00 CA ALAMEDA
N 16 23 4 6 12 10 8 1987 UT
N 16 23 4 6 12 10 8 1987 UT
O 10 14 6 5 8 10 6 11/21/00 NX ONONDAGA
O 10 14 6 5 8 10 6 12/8/00 NX MONROE
P1 14 41 6 5 14 10 6 9/17/00 WA KING
P1 14 41 6 5 14 10 6 9/15/00 WA KING
P1 14 41 6 5 14 10 6 10/15/00 WA KING
P2 12 14 7 5 10 10 4 11/16/00 MN ANOKA
P2 12 13 7 5 10 10 4 11/20/00 MN HENNEPIN
P2 12 13 7 5 10 10 4 11/23/00 MN DAKOTA
P2 12 13 7 5 10 10 4 11/26/00 MN RAMSEY
P2 12 13 7 5 10 10 4 11/29/00 MN RAMSEY
Q 13 17 7 5 11 10 4 1993 OR
Q 14 18 7 5 11 10 4 1993 OR
R 4 42 6 5 11 10 6 1990 ID
R 4 42 6 5 11 10 6 1990 ID
S 12 40 6 5 8 11 8 8/15/00 MD HOWARD
S 12 18 7 5 10 10 6 1993 WA

*Missing Data
**NX = New York State, NY = New York City

MLVA Results
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Figure 6. PFGE, MLVA, and epidemiological data of the highly related isolates.  The 

dendrogram is based on both the XbaI and SpeI data, but only the XbaI patterns are seen.  The 

corresponding MLVA types and any known epidemiological information are also presented. 
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TR1 TR2 TR3 TR4 TR5 TR6 TR7 Date State** County Known Outbreak
4 20 7 4 6 6 7 10/22/00 FL ORANGE
18 34 4 3 6 8 6 11/26/00 NX ONEIDA
16 29 7 6 9 11 6 1/1/00 MN SCOTT
16 29 7 6 9 11 6 1/20/00 MN DAKOTA
12 24 6 5 10 9 6 1/13/00 MN BLUE EARTH
16 11 8 4 11 10 4 8/31/00 WA KING
11 16 6 5 8 10 6 3/3/00 MA WORCESTER
16 20 9 5 10 11 6 10/29/00 NX SARATOGA
14 23 6 6 11 10 6 1/1/00 NX HERKIMER
5 29 7 6 13 10 6 10/22/00 FL LEE
12 21 7 5 11 10 5 10/8/00 WA SPOKANE
10 34 8 7 8 11 7 2/20/00 MN CROW WING
10 27 8 5 11 10 4 11/3/00 CA ALAMEDA
9 20 10 5 11 10 4 11/22/00 CO EL PASO
12 M* 9 5 11 10 6 1/26/00 OR WASHINGTON
10 20 7 6 8 11 7 10/1/00 WV MERCER
20 33 7 10 14 10 6 1/10/00 MA MIDDLESEX
13 22 8 5 18 10 6 10/19/00 WV OUT OF STATE
22 30 8 8 14 10 6 9/27/00 NX NIAGRA
10 9 8 5 9 12 6 8/20/00 OR MARION
10 9 8 5 9 12 6 8/22/00 OR LINCOLN
13 8 8 4 12 10 6 10/24/00 MN ANOKA
13 30 7 5 8 12 8 9/23/00 NX ONONDAGA
10 30 9 5 9 10 6 2/18/00 OR CLATSOP
11 33 9 5 9 10 6 9/9/00 OR UMATILLA
13 15 7 5 8 11 7 4/13/00 MD HARFORD
10 9 8 5 9 12 6 8/24/00 OR MARION
9 33 6 3 14 9 7 8/15/00 OR COOS
17 21 6 5 10 10 6 10/25/00 NX PUTNAM
14 35 4 5 13 8 7 8/19/00 OR DOUGLAS
16 11 8 4 11 10 4 1/21/00 NX
9 22 9 5 7 11 5 11/7/00 WV KANAWHA
10 14 8 5 8 11 7 1988 WI college outbreak
10 14 8 5 8 11 7 1988 WI college outbreak
13 44 12 5 9 12 4 1/18/00 NX ALBANY
11 40 6 3 9 7 6 10/19/00 CT FAIRFIELD
10 13 5 3 18 8 10 9/20/00 NY KINGS
10 14 5 3 18 8 10 10/5/00 NX SCHENECTADY

*Missing Data CDC 9004 5 29 6 4 9 10 8 1/9/00 MD BALTIMORE
CDC 9167 14 8 9 3 15 10 8 11/13/00 NY KINGS

Untypeable by PFGE CDC G5289 11 29 6 3 12 10 8 1986 WA Walla Walla outbreak
CDC G5290 11 29 6 3 12 10 8 1986 WA Walla Walla outbreak

*Missing Data
**NX = New York State, NY = New York City
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Figure 7.  PFGE, MLVA, and epidemiological data on the sporadic isolates.  The 

dendrogram is based on both the XbaI and SpeI data, but only the XbaI patterns are seen.  The 

corresponding MLVA types and any known epidemiological information is also presented.  The 

highlighted colors represent identical or SLV MLVA types. 
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isolates were part of a known college outbreak and had identical MLVA types (Figure 7).  Again, 

they were classified as sporadic because of our strict PFGE criteria. 

 

3.3.6. Discussion 
 

The goal of evaluating the 100 CDC isolates was to further validate our MLVA genotyping 

protocol as explained in the Brief Report.  These isolates represented a diverse collection of 

sporadic and outbreak cases from across the country collected over 16 years.  These isolates 

would truly test if our MLVA protocol was sensitive and specific enough to replace the current 

molecular subtyping technique, PFGE. 

 

Overall, MLVA and PFGE results correlated with most of the isolates determined to be highly 

related by PFGE also being highly related by MLVA.  Similar concurrent PFGE and MLVA 

results are seen for the sporadic isolates.  Where the 2 techniques differ is where MLVA is able 

to more precisely separate isolates that cluster by PFGE but that are not related.  This can be seen 

in examples in which PFGE has identical patterns (ex. 9050 & G5309), but the MLVA types 

differ at multiple loci, in this example 5 loci, and the epidemiological information confirms that 

the isolates are not related.  More important are those isolates that are not clustered 

epidemiologically but have identical PFGE patterns.  This could set off a potentially expensive 

investigation.  Some of these proposed outbreaks are in fact not related events, but instead are 

due to PFGE’s inability to discriminate.  MLVA is able to identify that these groups are in fact 

not part of an outbreak.  For example, PFGE-based group H2 had 5 isolates in it (Figure 6), with 

4 isolates from the New York area and 1 from Denver, Colorado.  The identical PFGE patterns 
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could trigger suspicions of a nationwide outbreak, but the MLVA data clearly show that the 

Colorado isolate is not part of the outbreak as it differs at 4 MLVA loci. 

 

In the last few chapters, we have shown the superiority of MLVA as a subtyping technique.  Not 

only does it discriminate between outbreak and sporadic isolates as well as PFGE, but it is able 

to discriminate isolates that PFGE is unable to differentiate.  Our MLVA genotyping technique 

also surpasses PFGE in its high reproducibility, faster protocol times, objective data output, and 

automated analysis.  MLVA may represent the next generation molecular subtyping technique 

for E. coli O157:H7. 
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3.4. Chapter 4 

 

Evaluation of Multi-Locus Variable Number Tandem Repeat Analysis for non-O157 

Escherichia coli 
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3.4.1. Preface 
 

With the establishment of the MLVA protocol for Escherichia coli O157:H7,we wanted to 

determine whether our assay could be used to detect outbreaks of non-O157 enterohemorrhagic 

E. colis (EHECs).  Non-O157s EHECs represent an underreported portion of gastrointestinal 

disease in the United States.  The following displays the results we obtained looking at a wide 

array of EHECs from Baltimore, Maryland and São Paulo, Brazil.  These results have not been 

published but instead are the framework for the continuing investigation into MLVA of non-

O157 EHECs. 
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3.4.2. Introduction 
 

Escherichia coli O157:H7 is responsible for over 74,000 illnesses a year in the United States 

alone, but other serotypes do occur in the U.S. (5).  Worldwide, non-O157 strains continue to be 

an increasingly important cause of hemorrhagic colitis.  Unfortunately, most screening has been 

for E. coli O157:H7 resulting in an underreporting of these non-O157 strains.  The 

enterohemorrhagic E. coli (EHEC) serogroup O111 is becoming an increasingly important cause 

of human illness, as it is second only to O157 (1).  In 1999, 55 individuals were infected with E. 

coli O111:H8 while attending a high school cheering camp in Texas; a 16-year and 19-year old 

developed hemolytic-uremic syndrome (2). Examples of other outbreaks caused by non-O157 

strains include an outbreak in 1994 where 11 confirmed cases and 7 suspected case-patients were 

identified in an outbreak of E. coli O104:H21 in association with the consumption of milk in 

Montana (3). Additionally, other important serotypes include O111:H2 in Germany, O103:H2 in 

France, and O145:H5 in Japan; but multiple serotypes have global distribution including O5:H-, 

O26:H11, O91:H-, O113:H21, O116:H-, O123:H-, and O128:H2 (1). 

 

 Currently pulsed-field gel elecrophoresis (PFGE) is a highly used method in which E. coli 

O157:H7 and other EHECs are molecular subtyped using restriction enzymes.  We have 

established a protocol that is superior to PFGE for molecular typing of E. coli O157:H7 with the 

completion of the multi-locus variable-number tandem repeat (VNTR) analysis (MLVA) 

protocol (6,7).  MLVA discriminates among target isolates allowing for rapid identification of 

potential outbreak and/or sporadic strains.  The advantages of MLVA for E. coli O157:H7 are its 

rapid procedure, more objective data, and high discriminatory powers.  With other EHEC strains 

playing an important role worldwide, a subtyping technique that can be used to type any strain 
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using the same parameters would be very beneficial.  While laboratories are not always capable 

of determining which EHEC serotype they have, besides E. coli O157, this should not inhibit the 

ability of officials to examine the potential of an outbreak situation.  If our MLVA protocol 

works for non-O157 isolates, another powerful tool will be added to the arsenal of EHEC 

surveillance. 

 

3.4.3. Materials and Methods 
 

Isolates.  

Forty strains of various EHECs were obtained from the Instituto Adolfo Lutz, a large public 

research and reference laboratory in São Paulo, Brazil; strains were from human and bovine 

sources. A human strain of E. coli O157:H7 was used as a positive control for PCR amplification 

(SPB24).  The remaining 8 EHEC strains were from the University of Maryland, Baltimore, 

Maryland. 

 

PCR Amplification.   

DNA was isolated using the Prepman Ultra protocol as previously described (6) All isolates were 

PCR amplified using the protocol as previously described (6), but using the genotyping primers 

(7). 

 

Sequencing.  

Amplified products from the Baltimore, Maryland isolates were sequenced as previously 

described (6).  Sequenced products from Brazil were purified using the protocol from Instituto 

Adolfo Lutz.  Briefly, 80 uL of 75% isopropanol were added to each sample in a 96- well plate 
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Table 5. Isolates used in this experiment.  Information included: serotype and source; those 

strains identified by "PHIDL" are from Baltimore, Maryland, and those marked "SPB" are from 

São, Paulo, Brazil. 

Organism Isolate # Source

E. coli  OX3:H21 PHIDL1 UNKNOWN
E. coli  O185:H25 PHIDL2 UNKNOWN
E. coli  O45:H2 PHIDL3 UNKNOWN
E. coli  O128:H27 PHIDL4 UNKNOWN
E. coli  O121:H19 PHIDL5 UNKNOWN
E. coli  O91:H21 PHIDL6 UNKNOWN
E. coli  O146:H21 PHIDL7 UNKNOWN
E. coli O137:H41 PHIDL8 UNKNOWN
E. coli O22:H8 SPB1 BOVINE
E. coli  O22:H16 SPB2 BOVINE
E. coli  O26:H11 SPB3 HUMAN
E. coli  O44:H25 SPB4 BOVINE
E. coli  O55:H19 SPB5 HUMAN
E. coli  O77:H18 SPB6 BOVINE
E. coli  O79:H14 SPB7 BOVINE
E. coli  O87:H16 SPB8 BOVINE
E. coli O88:H25 SPB9 BOVINE
E. coli  O91:H21 SPB10 HUMAN
E. coli  O93:H19 SPB11 HUMAN
E. coli  O98:H4 SPB12 BOVINE
E. coli O98:H17 SPB13 BOVINE
E. coli  O103:H2 SPB14 HUMAN
E. coli  O105:H18 SPB15 BOVINE
E. coli  O111:HNM SPB16 BOVINE
E. coli  O111:H8 SPB17 HUMAN
E. coli  O111:H11 SPB18 HUMAN
E. coli  O111:HNM SPB19 HUMAN
E. coli  O112:H21 SPB20 BOVINE
E. coli  O113:H21 SPB21 BOVINE
E. coli  O118:H16 SPB22 HUMAN
E. coli O136:HNT SPB23 BOVINE
E. coli  O157:H7 SPB24 HUMAN
E. coli O157:H7 SPB25 BOVINE
E. coli O178:H18 SPB26 BOVINE
E. coli  O178:H19 SPB27 BOVINE
E. coli  O181:H4 SPB28 BOVINE
E. coli O181:HNT SPB29 BOVINE
E. coli  ONT:H2 SPB30 HUMAN
E. coli  ONT:H8 SPB31 BOVINE
E. coli ONT:H16 SPB32 BOVINE
E. coli ONT:H19 SPB33 BOVINE
E. coli  ONT:H21 SPB34 BOVINE
E. coli  ONT:H28 SPB35 BOVINE
E. coli  O178:H19 SPB36 BOVINE
E. coli  ONT:H46 SPB37 BOVINE
E. coli  ONT:H49 SPB38 BOVINE
E. coli ONT:HNM SPB39 BOVINE
E. coli  ONT:HNT SPB40 BOVINE
E. coli  OR:H46 SPB41 BOVINE  
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and allowed to sit at room temperature for 30 minutes.  The plate was centrifuged for 45 minutes 

at 4,000 rpm at room temperature; then the supernatant was discarded.  One hundred uL of 70% 

ethanol were added to each sample and then centrifuged for 15 minutes at 4,000 rpm at RT.  The 

supernatant was discarded and then the ethanol step was repeated.  Finally, the inverted plate was 

centrifuged at 200 rpm for a short pulse.  The plate was dried by heating it on a thermocycler for 

2 minutes at 94oC. The dried products were stored at –20oC until ready for the sequencing run.  

Immediately prior to sequencing, 10uL of Hi-Di formamide were added to each well to 

resuspend the pellet.   The plates then were placed on a 3100 DNA Analyzer (Applied 

Biosystems, Foster City, Calif).  The 8 remaining isolates from Baltimore, MD were sequenced 

as previously described (6). 

 

Analysis of Sequenced Products.  

 Sequencing results were analyzed using Phred, Phrap, and Chromas as previously described (6). 

 

3.4.4. Results 
 

PCR Results.   

All 49 isolates were analyzed using the 7 sets of genotyping primers from the E. coli O157:H7 

MLVA protocol (Table 6).  The TR3 primers did not amplify any of the samples, except for the 

human O157:H7 isolate.  TR1 and TR5 had very limited success with a PCR product only from 

E. coli O121:H19.  TR2 had limited success with 7/49 isolates amplifying.  TR6 had partial 

success with 35/49 isolates amplifying.  TR4 had almost complete amplification success (48/49). 

TR7 had complete success with all isolates resulting in a PCR product (49/49). 
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Table 6. PCR and sequencing results of non-O157 EHECs using the 7 MLVA loci.  The 

sequence shown below for each locus is the known E. coli O157:H7 sequence.  All isolates that 

successfully amplified using the MLVA loci primers were then sequenced to examine the 

similarities or differences to the known sequence. 

 
 

 

TR Locus O157:H7 TR Sequence PCRa Identical Different
TR1 AAATAG 1/48 (2%) 1/1 (100%) 0/1 (0%)
TR2 TGGCTC 6/48 (12.5%) 1/6 (16.7%) 5/6b (83.3%)
TR3 TATCTT 0/48 (0%) -- --
TR4 TGCAAA 47/48 (98%) 2/47 (4.2%) 45/47c (95.8%)
TR5 AAGGTG 1/48 (2%) 1/1 (100%) 0/1 (0%)
TR6 TTAAATAATCTACAGAAG 34/48 (70.8%) 3/34 (8.8%) 31/34d (91.2%)
TR7 GACCAC 48/48 (100%) 2/48e (4.2%) 46/48f (95.8%)

a All isolates that amplified, also sequenced successfully.
b Single copy of "TGGCTG"
c Single copy of "TGCAAA"
d TR begins identically to O157 TR than degenerates
e Bovine O157:H7 had single copy
f Similar sequence of "CACCACGACCAT"

Sequence Compared to O157:H7 TR
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Sequencing Results.  

TR1 and TR 5 had successful sequencing products for E. coli O121:H19; TR1 (“AAATAG”) 

repeated 14 times and TR5 (“AAGGTG”), 8 times.  The sequences of the flanking regions and 

the TRs themselves were identical to that seen in E. coli O157:H7 (6) (Table 6). 

 

The TR2 locus was amplified for 7 isolates, in which only E. coli O121:H19 had the repeat seen 

in O157:H7; “TGGTCT” was repeated 34 times in this isolate.  The remaining isolates had 

flanking regions with low homology, with around 30% in the 50 bp before and after the repeat, 

to O157:H7 and did not contain the known repeat.  Instead a single copy of “TGGCTG” was 

found within the range of the O157:H7 repeat (Figure 8).  Those non-O157 isolates without the 

TR sequence had highly homologous sequences (>95%) (Table 6). 

 

The TR3 locus in E. coli O157:H7 was a 6-basepair repeat containing the sequence “TATCTT”, 

which was found to repeat from 3 to 10 times in the previous investigation (6).  The Brazilian 

human O157:H7 isolate (SPB24) contained the same sequence repeated 8 times and the flanking 

regions were homologous (Table 6). 

 

TR4 in E. coli O157:H7 was a 6-basepair repeat containing the repeat “TGCAAA.”  In our 

previous study, we found that TR4 was minimally repeated 2 to 9 times (6).  In this study, the 

human O157:H7 was repeated 4 times.  The remaining isolates, including the bovine O157:H7 

(SBP 25), had a single copy of “TGCAAA” excluding 2 isolates: E. coli O87:H16 (SPB 8) had 2 

copies and E. coli O121:H19 (PHIDL 5) had 4 copies (Table 6).  The flanking regions 

surrounding the target sequence were highly similar to the O157 (around 96% homology) for the 

single copy isolates and identical for E. coli O87:H16 and E. coli O121:H19 (Figure 9). 
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(OX3:H21) 
(O91:H21) 
(O121:H19) 
(O157:H7) 

 PHIDL1 
PHIDL6 
PHIDL5 
SPB24  

 AAGGTCAGGTTTCCTACGCAATCGGCG-TGGCTGAACCGACCTCCATCATGGTAGAAACTTTCGGTACTGAGAAA GTGCCTTCTGAACA
 AAAGTCAGGTTTCCTACGCAATCGGCG-TGGCTGAACCGACCTCCATCATGGTAGAAACTTTCGGTACTGAGAAAGTGCCTTCTGAACA
 AGGATCTTAT TGGCTCTGGCTCTGGCTCTGGCT---CTGGCTCTGGCTCTGGCTCTGGCTCTGGCTCTGGCTCTGGCTCTGGCTCTGGC
 AGGATCTTAT TGGCTCTGGCTCTGGCTCTGGCT---CTGGCTCTGGCTCTGGCTCTGGCTCTGGCTCTGGCTCTGGCTCTGGCTCTGGC

 

 

 

Figure 8. A portion of the TR2 locus.  PHIDL 5 (E.coli O121:H19) shows the known TR2 

repeat as compared to SPB 24 (human E. coli O157:H7).  PHIDL 1 & 6 show highly homolgous 

sequences to the O157 TR2 sequence, but they differ at a single nucleotide and are present only 1 

time.  These sequences were typical of the other nonO157s that were sequenced at the TR2 locus 

(except for PHIDL 5).  The green highlighted region show the repeat “TGGCTC,” while the blue 

highlighted nucleotides show the difference in the non-O157 sequence. 

 

 

 SPB25 
PHIDL5 
SPB24 
SPB8 

(O157:H7) 
(O121:H19) 
(O157:H7) 
(O87:H16) 

 TAATTTTGTTTGTAAATGCAAA------------TGAGAAATATACGCATTCATATTTGTCATGTAAACCA
 TAATTTTGCTTGCAAATGCAAATGCAAATGCAAATGAGAAATATACGCATTCATATTTGTCGTGTAACCCA
 TAATTTTGCTTGCAAATGCAAATGCAAATGCAAATGAGAAATATACGCATTCATATTTGTCGTGTAACCCA
 TAATTTTGCTTGCAAATGCAAA------------TGAGAAATATACGCATTCATATTTGTCGTGTAACCCA 

 

Figure 9. The TR4 locus containing the flanking regions and the repeat itself.   The flanking 

regions of this VNTR were highly homologous even in those isolates that only had a single copy 

of the repeat.  The green highlights show the known repeat "TGCAAA." 
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TR6 in E. coli O157:H7 was an 18-basepair repeat containing the sequence 

“TTAAATAATCTACAGAAG,” but this repeat did tend to have some slight variation in its 

sequence.  We found a range of 7-12 repeats in our collection of E. coli O157:H7 (6).  The 

human isolate of E. coli O157:H7 in this study repeated 9 times.  Three non-O157s did contain 

the repeats seen in O157:H7: O121:H19, O137:H41, and OX3:H21 which repeated 10, 14, and 

16 times, respectively.  In the remaining non-O157s analyzed, several copies of a repeat were 

found that began identically to the O157:H7 isolate but then varied dramatically.  The 5’ end-

flanking region had 93 nucleotides that were identical between O157 and the non-O157s, minus 

2 nucleotides leading into the first repeat, in which all isolates had the beginning sequence of 

“TTAAATA.”  The O157 repeat continued as previously described (6), but the majority of the 

non-O157 had a variant sequence (Table 6).  The second repeat began similarly between the 

O157 and most of the non-O157 isolates, but again, the non-O157s quickly diverged from the 

O157 sequence and from the first non-O157 repeat (Figure 10).  There was a possibility of more 

repeats in the non-O157 isolates, but there was substantial sequence diversity making it difficult 

to determine where the repeat terminated.   

 

TR7 in E. coli O157:H7 was another 6-basepair repeat containing the sequence “GACCAC.”  

Previously, we found a range of 4-9 tandem repeats in our collection of E. coli O157:H7 (6).  In 

this study, the human O157:H7 was repeated 8 times while the bovine isolate had a single copy.  

The remaining 47 isolates did not contain the sequence “GACCAC”, except for E. coli 

O121:H19 in which “GACCAC” repeated 6 times (Figure 11, Table 6).  The flanking regions 

were highly similar; although minimal sequence was obtained on the 5’ end, the 3’ end was  
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 PHIDL7 
SPB4   
SPB25  
PHIDL8 
       
 
PHIDL7 
SPB4   
SPB25  
PHIDL8 
 

  AGCTCGTCTATTAAATATTCCGCAGGAGTTAAATAATTCTCAGGACTTGAATAACTCGCAGGTGAGTTGTAAAGATTCAGTTGATTCTAC
  AGCTCGTCTATTAAATATTCCGCAGGAGTTAAATAATTCTCAGGACTTGAATAACTCGCAGGTGAGTTGTAAAGATTCAGTTGATTCTAC
  AGCTCGTCTATTAAATAATCATCAGAAGTTAAATAATCTACAGAAGTTAAATAATCTACAG--AAGTTA-AATAATATACAGAAGTTAAA
  AGCGCGGCTATTAAATAATCATCAGAAGTTAAATAATCTACAGAAGTTAAATAATCTACAG--AAGTTA-AATAATCTACAGAAGTTAAA
   

  GATTACGGATTTATTAGAAAAACCATTGAATAATGCATTATTAGCAATAAGGAACGAACA 
  GATTACGGATTTATTAGAAAAACCATTGAATAATGCATTATTAGCAATAAGGAACGAACA 
  TAATATACAGGAGTTAAATAATTCGCAGGA-GTTAAATAATTCGCAGGAGTTAA--ATAA 
  TAATATACAGAAGTTAAATAATATACAGGA-GTTAAATAATATACAGGAGTTAA--ATAA 

(O146:H21) 
(O44:H25) 
(O157:H7) 
(O137:H41) 

(O146:H21) 
(O44:H25) 
(O157:H7) 
(O137:H41) 

 

 

 

Figure 10.  The 5' end of the TR6 locus.  The first 2 repeats began the same regardless if the 

isolate was an O157:H7, a non-O157 with the O157 repeat, or a divergent non-O157.  The 

divergent non-O157s all had sequences that were identical to each other.  Additionally, the 

O157:H7 and the non-O157s with the typical repeat also were identical to each other.  But these 

2 groups differed when compared to each other.  The repeat is highlighted in green while the 

beginning of each repeat is highlighted in yellow. 

 
SPB25   
SPB10   
PHIDL5  
SPB30   
SPB24   

 ATCATCACGATCACGAACATCATCAAGACCACGAACATCACCACGACCATGGACATCA 
 AGTATGATCATGAACATCATCACCACGATCACGAAGATCAACACGACCATGGACATCA 
 ACGAACATCATCAAGACCACGACCACGACCACGACCACGACCACGACCACGAACATCA 
 GGCATGATTATGAGCATCATCATCACGATCACGAACATCACCACGACCATGGACATCA 
 AGACCACGACCACAGACCACGACCACGACCACGACCACGACCACGACCACGAACATCA 

(O157:H7) 
(O91:H12) 
(O121:H19) 
(ONT:H2) 
(O157:H7) 

 

 

 

Figure 11. Sequences of several non-O157 & O157 isolates for TR7.  The isolates that contain 

the known sequence of "GACCAC" were highly homologous to each other and differed by the 

number of times the repeat repeated.  The other isolates, while highly homologous to the O157 

sequence, were even more similar to each other.  The typical repeat is highlighted in green with 

the beginning of each typical repeat highlighted in yellow.  The blue highlighted region 

represents the similar sequence found in some of the non-O157s. 
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identical except for a 9-nucleotide insert in the human O157:H7 isolates.  The area in which the 

tandem repeat was located in O157:H7, the non-O157s contained a similar sequence of 

“CACCACGACCAT.” 

 

3.4.5. Discussion 
 

Several important and interesting results were gained in this pilot study on the use of our MLVA 

assay for molecular subtyping of non-O157 EHEC.  Initially, the results were surprising in that 4 

of the 7 loci did not amplify the majority of strains, and the remaining 3 loci had different 

sequences at the targeted loci.  But after further analysis of the results, including the fact that a 

majority of these strains are bovine isolates, the results may not be so surprising.  Additionally, 

EHECs are characterized as such because of the presence of shiga toxins and a few other 

virulence genes.  This allows for the potential for great variation among the remaining genome 

from one serotype to the next, as they have most likely evolved from the same lineage that have 

been diverging from each other for a long time (8). 

  

There is a possibility that several of these loci may be true VNTRs within specific serotypes.  

This study examined only 1 isolate from 47 different serotypes, many of them bovine isolates.  

One thought is that looking at 10-15 isolates from a single serotype may result in the discovery 

of multiple alleles at a specific locus.  For example, the serotype E. coli O87:H16 at TR4 may 

have multiple alleles as this one isolate did have 2 copies of the tandem repeat.  Additionally, E. 

coli O121:H19 had 6 of the 7 MLVA loci showing a “typical” repeat behavior.  But more likely, 

the majority of sequenced loci are not VNTRs in these 47 serotypes.  The reasoning behind this 

is that the vast majority either only had a single copy (hence not a tandem repeat by definition) or 
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the tandem repeat was absent.  The chance that all the loci examined for these isolates had these 

results but are still VNTRs is highly unlikely. 

 

Interestingly, the majority of the non-O157 loci that were amplified had a high sequence 

homology to O157:H7 and an even higher, if not identical, sequence to each other even though 

there were 47 serotypes.  Strangely, the O157:H7 isolates appear to have developed VNTRs at 

these loci while the non-O157s have not (6).  Whether these VNTRs confer advantages or 

disadvantages to E. coli O157:H7 is not known. 

 

These findings all indicate that further examination of specific serotypes is needed.  Ideally a 

panel of VNTR loci can be identified that can be used for all of the major EHEC serotypes.  

Future plans should include obtaining 10 or so isolates from each serotype of interest, 

representing the other major serotypes that cause disease both in the United States and 

worldwide (eg. serotypes O111 and O104:H21).  Both bovine and human isolates should be 

examined to determine if there is a propensity for VNTRs to be present in human versus bovine 

isolates.  Perhaps portions of the genomes will have been sequenced and can be searched for 

VNTRs; otherwise AFLP may be used to detect potential VNTRs (4).  Additionally, there may 

be some O157:H7 VNTRs that were not used for the original MLVA protocol that would be 

useful with some of the non-O157s.  Consideration should also be given to designing a less 

expensive MLVA protocol that may be applicable for labs that do not have the resources for the 

standard protocol.  This includes choosing VNTRs that are large (>50bp) allowing the 

elucidation of alleles using regular gel agarose to examine differences.  With the ever-increasing 

awareness of disease caused by non-O157 EHECs and the globalization of food distribution, the 
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need for a subtyping technique that can quickly identify potential EHEC outbreaks has become a 

pressing issue. 
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3.5. Chapter 5 

 

Mutational Events of the Seven Loci of the Multi-Locus Variable-Number Tandem Repeat 

Analysis Assay for Escherichia coli O157:H7 

 

 

Manuscript in Preparation: 
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3.5.1. Preface 
 

This work will be submitted to a peer-reviewed journal, and is representative of the work done to 

answer the questions posed in Specific Aim 2.  Additional work will be needed to completely 

characterize the manner in which VNTRs mutate and how this affects in turn the interpretation of 

MLVA data. 
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3.5.2. Abstract 
 

Multi-locus variable-number tandem repeat (VNTR) analysis (MLVA) for molecular subtyping 

of Escherichia coli O157:H7 is a fast, reproducible, and sensitive method for determining 

genetic relatedness and detecting outbreaks.  However, the high mutability of VNTR loci creates 

the need to understand the dynamics of how these loci change.  Using a representative E. coli 

O157:H7 outbreak isolate, two types of mutations experiments were performed. An analysis of 

384 isolates derived from a single culture revealed no changes in the seven MLVA loci (TR1-

TR7) that were studied. In contrast, serial subcultures collected twice daily for five days revealed 

a total of 41 mutation events.  TR2 had 35 of the 41 total events with an average mutation rate of 

3.5 x10 .  Additionally, 27/35 mutation events in TR2 were single additions.  TR1 and TR5 also 

had events, but at a much lower rate of 2 and 4 events, respectively and an average mutation rate 

of 1.9 x10  for TR1, and 4.0 x10  for TR5

-3

-4 -4 . The remaining four loci had no slippage events in 

either of the experiments.  These data indicate that growth conditions influence mutational 

dynamics of TR loci and that the tendency to change varies by locus.  These locus-specific 

differences must be taken into account when interpreting MLVA data from epidemiologic 

investigations.  
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3.5.3. Introduction 
 

Prokaryotic genomes contain a wide array of repetitive DNA elements ranging from single 

nucleotide repeats to large, complicated repeats of dozens of nucleotides.  Variable-number 

tandem repeats (VNTRs) are repeats that are found in tandem and demonstrate inter-strain 

variability.  Multi-locus VNTR analysis (MLVA) has become a reliable way to establish genetic 

relatedness for epidemiological surveillance and molecular subtyping of organisms such as 

Escherichia coli O157:H7 (17, 18), Salmonella typhimurium (14), Francisella tularensis (5), and 

Bacillus anthracis (9).  The basis of molecular typing using VNTRs is that these elements can 

mutate creating different alleles at the same VNTR locus. 

 

Tandem repeat (TR) loci are among the most variables regions of bacterial genomes. The 

mechanism by which tandem repeats mutate has been suggested to be the result of slippage and 

mispairing during DNA replication because of pausing and dissociation by DNA polymerase 

while within the tandem repeat (19, 21, 22).  Repeats can be inserted or deleted depending on the 

strand orientation (15).  If the tertiary structure occurs in the template strand during replication, 

this results in a loss of at least one tandem repeat in the new DNA strand, while an event in the 

nascent strand results in the addition of one or more tandem repeat.  Additionally, several models 

have been proposed to explain the mutation process seen in VNTRs.  The stepwise mutation 

model proposes that VNTR alleles evolve through a gain or loss of a single repeat (2, 11).  The 

infinite allele model assumes that the size of a new allele is independent of the ancestral allele (1, 

2).  Finally, the two-phase mutation model combines the 2 previous ideas and proposes that most 

changes lead to a change of one repeat change and that only a small portion of mutations 

involves large changes (2, 3). Estimations on the rate of change have been performed to a limited 
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degree with human VNTRs due to their involvement with heritable diseases, but there is a 

scarcity of literature on the rate of mutational changes of VNTRs in bacteria. 

 

Multiple factors influence the frequency and type of TR mutation, such as the number of TRs 

and the unit size of the TR. As the number of TRs increases, the slippage mutation rate 

dramatically increases due to instability, which accounts for the fact that long tandem repeats are 

relatively uncommon (12).  The mutation rate also increases with perfectly homologous repeats 

(15).  In contrast, a disruption of the repeat, caused by indels or point mutations, decreases the 

mutation rate by decreasing the length of the homologous repeat.  In addition to the number of 

TRs, the nucleotide length and composition of each TR can affect the rate of slippage mutation: 

the shorter the TR unit length, the higher the mutation rate (20).  Poly (G-T) tracts and 

polypyrimidine tracts also have been shown to be associated with high mutation rates (13).  

Multiple studies have shown that certain repeats, such as repeating purine-pyrimidine sequences, 

result in a bias towards expansion if the sequence is on the leading strand (3, 7, 8). 

 

Knowledge of the rate of TR change is important when using MLVA for epidemiologic 

purposes, such as outbreak detection.  In a previous study, we demonstrated that isolates from the 

same outbreak either had an identical MLVA type or were single locus variants (SLVs), 

suggesting that mutations occur during the course of an outbreak (17, 18).  Intra-outbreak events 

have been observed using other molecular subtyping methods, such as pulsed-field gel 

electrophoresis (PFGE) (10, 17).  All SLVs that were observed during outbreaks differed from 

the predominant MLVA type by a single repeat.  In addition, analysis of our MLVA data 

demonstrates that the TR1, TR2, and TR5 loci had a greater number of alleles than the other 4 
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loci (17).  These observations underscore the need to understand the dynamics of tandem repeat 

mutation events at each locus for the optimal interpretation of MLVA results.   

 

Using a known outbreak strain of E. coli O157:H7 that was an SLV of the predominant MLVA 

type, we performed both dependent and an independent mutation experiments to examine the 

MLVA VNTR mutation rates. The issue of independence arises when determining if a detected 

mutation is an original event or is just a detection of the offspring of the original mutation event.  

The purpose of this study was to examine tandem repeat mutational events to improve our 

understanding of MLVA as an outbreak detection tool. 

 

3.5.4. Materials and Methods 
 

Isolate. 

The Escherichia coli O157:H7 isolate (PHIDL #53) chosen was an outbreak isolate received 

from the Allegheny County Health Department.  This isolate was selected for two reasons. The 

outbreak strain was a SLV of the predominant MLVA outbreak type, with 16 repeats rather than 

15 repeats at the TR1 locus. Moreover, the strain’s MLVA alleles were close to the median 

number of repeats of the 80 isolates in our previous study (Table 7) (17). 

 

Parallel (Independent) Mutation Experiment. 

To alleviate the potential issue of non-independent events, 10 parallel cultures were cultured 

simultaneously.  From a frozen culture, the study isolate was streaked for isolation on 5% 

sheep’s blood agar and incubated for 24 hours at 37oC.  A single colony was picked and 

inoculated into 10mL of Luria broth (LB); a small portion of the colony was used to determine  
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Table 7. Range of alleles for the 7 MLVA loci.  The 7 loci of PHIDL #53, the isolate chosen for 

the present study, were close to the median range for the alleles.  The numbers represent the 

number of times the TR repeated at the particular locus.  The minimum and maximum TR sizes 

represent the ranges seen in our previous study (17). 

 
 TR1 TR2 TR3 TR4 TR5 TR6 TR7 
Min TR 4 7 3 2 6 7 4 
Median 13 24 7 5 10 10 6 
PHIDL #53 16 25 7 5 10 10 6 
Max TR 20 58 10 9 12 12 9 
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the starting number of tandem repeats at the 7 MLVA loci by sequencing as described previously 

(17).  The suspended colony was divided into 10 flasks each with 9.9mL of LB in a 25 mL 

Erlenmeyer flask.  The cultures were incubated for 12 hours at 37oC in a rotating water bath.  

One hundred uL of a 10-4 dilution from each flask was inoculated onto blood agar plates.  After a 

24-hour incubation at 37oC, the number of colony forming units (CFUs) was counted.  Eight of 

ten plates had at least 48 colonies/plate and were analyzed via MLVA as previously described 

(17, 18) 

 

Serial (Dependent) Mutation Experiment. 

The initial incubation of the study isolate from a frozen culture to a single colony in 10mL of LB 

was identical to the parallel study.  Again, a small portion of the colony was used to verify the 

starting number of tandem repeats at the 7 MLVA loci as described above.  The LB culture was 

incubated at 37oC in a rotating water bath for 12 hours.  Dilutions of 1:100 were made using LB.  

One hundred uL of a 10-4 dilution was added to 9.9mL of fresh broth and placed into the rotating 

water bath for 12 hours.  Dilutions from the original flask were made: 10-4, 10-6, and 10-8; 100uL 

of each of these dilutions were plated onto blood agar plates and incubated at 37oC for 24 hours.  

This serial subculturing and plating was performed 9 more times for a total of 10 12-hour serial 

subcultures.  The number of generations per time point was calculated using the following 

calculation:        Log10(#CFUEnd of 12-hr) – Log10(#CFUBeginning of 12-hr) 

 (Eq. 1)    Log102 

 After 24 hours of incubation on blood plates, the total number of CFU was counted from the   

10-6 plates and 48 isolated colonies were picked and each added to 50mL of sterile water.  The 

suspended colonies were then boiled for 2 minutes.  DNA was stored at -20oC until evaluation by 
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MLVA.  The MLVA protocol was identical to that previously described except 2.5mL of DNA 

was used in the 30uL reaction (17, 18). 

 

Data Analysis. 

The mutation rate was based on the mutant fraction and number of generations. The mutant 

fraction was the number of mutation events divided by the number of colonies screened at that 

time (16).  This value was multiplied by 2/number of generations to compute the mutation rate.  

At each time point over the five day period, the mutation rate for TR2 was calculated. These nine 

rates were averaged to determine an overall rate for each experiment. 

 

3.5.5. Results 
 

Parallel (Independent) Mutation Experiment. 

Due to insufficient numbers of colonies, two of the 10 subcultured blood plates were therefore 

excluded from the analysis.  An analysis of 48 colonies per 8 plates after the 12 hour incubation 

revealed no mutation events (0/384). In other words, all colonies had the identical MLVA type 

compared to the original colony. 

 

Serial (Dependent) Mutation Experiment. 

These experiments were performed in duplicate, resulting in similar numbers of generations and 

a similar pattern of mutation events (Table 8). The largest number of mutation events was seen in 

TR2 for both experiments: 11/13 (84.6%) in experiment 1 and 24/28 (85.7%) in the second 

experiment.  TR2 mutation events were seen throughout the time course of the experiments; the 

majority of events were single TR additions, but both deletion and addition events of single and  
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Table 8. Number of observed mutation events for the 2 serial mutation experiments by 

tandem repeat (TR) locus. 

 
 
 

TR1 TR2 TR3 TR4 TR5 TR6 TR7
Experiment 1 21.8 218 1 11 0 0 1 0 0 13
Experiment 2 21.6 216 1 24 0 0 3 0 0 28

Total Events 2 35 0 0 4 0 0

Ave Gen/ 
Time Pt

Observed Mutation EventsTotal # 
Gen

Total 
Events
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multiple TR units were observed (Figure 12).  The average mutation rate for TR2 in experiment 

1 was 2.1x10-3 while in experiment 2 the average rate was 4.8x10-3.  TR1 and TR5 had single 

addition events but resulted in a lower mutation rate than TR2. TR1 was associated with one 

event in both experiments and TR5 was associated with one event in the first experiment and 

three in the second experiment.  For TR1 the average mutation rate for experiment 1 was 1.7x10-

4 and for experiment 2 it was 2.1x10-4.  For TR5 experiment 1 demonstrated an average mutation 

rate of 1.7x10-4 and experiment 2 an average rate of 6.2x10-4.  The remaining four loci had no 

slippage events in either of the experiments, including the locus associated with the SLV in vivo. 

 

3.5.6. Discussion 
 

In this study, we detected no mutation events in the parallel mutation study, but in contrast 

observed 41 mutation events seen in the serial mutation study. Thirty-five of those 42 events 

were found at the TR2 locus, with only 2 and 4 events occurring at the TR1 and TR5 loci, 

respectively.  During both serial mutation experiments, there was an overwhelming tendency 

towards the addition of tandem repeats, and most involved a single tandem repeat change at all 4 

loci that mutated.  This is consistent with our previous study in which we observed 3 intra-

outbreak SLVs, all differing by a single tandem repeat (17).   

 

VNTRs have been shown to be a powerful tool for the molecular subtyping of a wide range of 

organisms, including humans, plants, and bacteria (2-5, 9, 14, 17).  However, interpretation of 

assays that exploit these genetic elements for epidemiologic purposes requires an understanding 

of the dynamics of TR mutations.  Many studies on VNTR mutations have been focused on those 

VNTRs associated with human disease (3, 8, 19).  While general comparisons about VNTR  
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Figure 12. Mutation events in TR2 for both serial mutation experiments combined.  The 

majority of observed events were single additions (+1). 
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mutations can be made between bacteria and eukaryotes due to their highly conserved genes 

involved in mutation repair, a detailed MLVA mutation analysis needs to be made for each locus 

in each bacterial species (6).   

 

Our serial mutation experimental design allowed for a completely random sampling of the 

original bacterial culture with subsequent analysis at nine more time points. Due the long interval 

between time points the bacteria reached stationary phase prior to sampling.  We hypothesize 

that the multiple cycles through the stationary phase may have been important for these 

mutations to occur.  This is supported by lack of observed mutation events during the parallel 

study, even though roughly the same number of isolates was analyzed.  The major difference 

between these two experiments was that the parallel cultures entered stationary phase only once.  

We believe that the serial mutation experiment more closely reflects what occurs in vivo than the 

parallel experiment. During the course of an outbreak, a strain likely goes through serial 

exponential and stationary phases due to passage from food to humans and subsequent human to 

human transmission.  

 

The most mutable locus in our MLVA assay was TR2. In an unpublished study of E. coli 

O157:H7, a single colony seeded 96 parallel cultures that subsequently was subcultured 40 times 

(C. Keys, Z. Jay, A. Fleishman, J. Fox, G. Evans, and P. Keim, poster, 103rd General Meeting 

American Society for Microbiology, Washington, D.C., 2003, 9).  The study had the advantage 

of removing the issue of independence, but had some similar observations to this study.  For 

example, their study also demonstrated the hypermutability of TR2. The current literature 

suggests that tandem repeats can have a tendency towards expansion depending on the 
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nucleotide sequence composition.  Most research has been done with mono-, di-, tri-, and 

tetranucleotide sequences showing that certain sequences can form tertiary sequences increasing 

the rate of mutation (4, 7, 8).  To our knowledge, there is no literature described hexanucleotide 

tandem repeats and their mutation propensities.  Perhaps the repeat sequence “TGGCTC” in the 

leading strand may form a tertiary structure that promotes additional events. 

 

The other 2 loci in which events were observed had lower rates of change than TR2.  TR1 had a 

single addition event in both 5-day experiments, while TR5 had several single addition events in 

the 5-day experiments.  Since only 6 events were observed, no firm conclusions can be made 

about the propensity towards additions versus deletions and single versus multiple TR changes.   

 

Although no mutations were observed in TR3, TR4, TR6 and TR7, our previous study indicates 

that these loci do mutate in natural populations (16).  Further experiments will be required to 

better understand the mutational dynamics at these loci.  In addition, to fully characterize how 

the MLVA loci mutate, a more detailed investigation would need to be undertaken.  The allelic 

extremes of each locus would need to be examined to truly determine how the length of the TR 

influences the mutational dynamics.  These questions must be answered to completely 

understand how TRs change for the optimal interpretation of MLVA data. 

 

In light of the results from these experiments and our previous study, several generalizations can 

be made about the interpretation of MLVA data during outbreak investigations.  Patients with 

isolates with an identical MLVA type likely acquired their infection from the same source.  In 

addition, SLVs that differ by either a single or double TR then should also be considered to be 
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suspicious for having come from the same source and should be investigated accordingly.  If an 

isolate differs from other suspected outbreak isolates at two different loci, then the specific loci 

involved and the difference in the number of TR would become important to assess. A double 

locus variant that includes an increase in TR size by two within the TR2 locus might part of the 

outbreak based on these data. In general, precise cut-offs will be difficult to develop because 

some variables, such as the duration of the outbreak, will likely increase the likelihood that 

additional intra-outbreak variability will be observed.  Therefore, as with all molecular subtyping 

methods, the interpretation of MLVA results must be done in conjunction with the epidemiologic 

data. 
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3.6. Chapter 6 

 

The Functional Roles of Variable Number Tandem Repeats in Escherichia coli O157:H7 

 

 95



3.6.1. Preface 
 

The work in the following chapter reflects the preliminary steps towards examining the potential, 

functional roles of variable-number tandem repeats in Escherichia coli O157:H7.  This work will 

not be published but can be used as a building block for future experiments. 
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3.6.2. Introduction 
 

Eukaryotic and prokaryotic genomes contain tandemly-repeated elements that have been utilized 

to differentiate strains.  In humans, many of these repeated nucleotide tracts have been linked to 

heritable diseases, such as Fragile X syndrome and Huntington Disease (12).  Many bacterial 

TRs also have been shown to have a functional role.  For example, Haemophilus influenzae 

contains a tetranucleotide repeat “CAAT” that is located in a gene resulting in different patterns 

of lipopolysaccharide expression (14).  Not only are TRs found directly within affected genes, 

but can also effect gene transcription by regulating promoters.  In Neisseria menigitidis, porA 

encodes an outer membrane protein that is a vaccine target.  A polyguanine tract found between 

the –35 and –10 promoters modulates the level of expression (14).  This modulation of 

expression could in turn affect the efficacy of a vaccine that utilized the porA outer membrane 

protein as a key antigen. 

 

Escherichia coli O157:H7 contains a large number of tandem repeats ranging from simple mono-

nucleotides to complicated tracts of nucleotides over 150 bases long; some are found within 

genes while others are extragenic.  No literature to date has examined any of the TRs in E. coli 

O157:H7 to classify their functional roles.  We had hoped to study the 7 variable-number tandem 

repeats (VNTRs) in our multi-locus VNTR analysis (MLVA) protocol (9).  Unfortunately, the 7 

VNTRs are located within or between hypothetical open reading frames.  The identification of 

these genes was beyond the scope of our study, so we focused on TRs with known or highly 

homologous gene products.  We chose 6 genes or extragenic regions to determine if 1) the TRs 

were VNTRs within our sample isolates and 2) if a function of the VNTR could be determined. 
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One of the 6 chosen TRs with the most interesting gene was the TR located within tolA.  TolA is 

a periplasmic protein with its N-terminus anchored in the inner membrane, an α-helical central 

domain, and a C-terminus that interacts with the inner portion of the outer membrane (8).  This 

protein is thought to have 3 roles in the E. coli genome: 1) structural stability of the cell, 2) group 

A colicin uptake and 3) filamentous phage import (2, 6, 7).  The C-terminal region appears to be 

the active portion of the protein that interacts with invading phage and colicin molecules.  The 

N-terminus region interacts with other tol proteins as part of an energy-dependent process 

involved in the outer membrane stability (4).  Separating the 2 ends of tolA is a 750-nucleotide 

region flanked on both sides with a polyglycine sequence; these regions may encode a flexible 

hinge.  This central region is mainly an uninterrupted α-helix containing the basic amino acid 

sequence KA3D/E; this is the 15-basepair tandem repeat of interest (8).  The addition or loss of a 

TR may lengthen or shorten, respectively, the α-helix altering its proximity to the outer 

membrane resulting in a functional change in either membrane stability or infection by colicin 

and/or filamentous phage. 

 

3.6.3. Materials & Methods 
 

Bacterial Isolates.  

E. coli O157:H7 isolates were obtained from several sources for this study.  The Public Health 

Infectious Disease Laboratory (PHIDL) obtained all E. coli O157:H7 strains isolated by the 

Allegheny County Health Department (ACHD) from 1999 to 2003 (n=70).  A sample of 18 

isolates from the Minnesota Department of Health (MDH) was also included from 1996 and 

1997.  ATCC strain EDL933 and the Sakai, Japan, strain RIMD 0509952 were used as reference 

strains (5, 11).  The tolA assays used 3 isolates representing the 3 alleles detected in the 
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sequencing reactions: PHIDL #60, #61, and #62.  A Salmonella typhimurium (F'400,his+,zee-

1::Tn10 [tetracycline resistance]) strain was used for the conjugation assay.  JM109 E. coli cells 

(F' traD36 proA+ proB+ lacIq delta[lacZ]M15 delta[lac-proAB] supE44 hsdR17 recA1 gyrA96 

thi-1 endA1 relA1 e14- lambda-) were used as a positive control for the phage assay as these 

cells were known M13 phage hosts. 

 

Potential Variable Number Tandem Repeats.  

During our previous investigation into VNTRs, we found over one hundred TRs in the two fully 

sequenced E. coli O157:H7 genomes, EDL933 (AE005174) and Sakai (BA000007) using the 

Tandem Repeats Finder software (1, 9).  We chose 6 new TRs for this investigation in which 5 of 

the TRs had the same number of repeats in both of the reference strains.  The final TR was 

located on the O157 plasmid in both reference strains and was variable between the 2 strains. 

 

DNA Isolation, PCR Amplification, and Sequencing. 

DNA was isolated using the Prepman Ultra Protocol as previously described (9, 10).  All 

Allegheny County and Minnesota isolates were analyzed at the 6 loci, plus 3 isolates were 

analyzed at all the genes in the tolQRAB operon and related genes (Table 8).  Primers were 

based on the sequences from Sakai and EDL933 genomes (5, 11).  PCR amplifications were 

performed as previously described, but with primers and annealing temperatures specific for 

each of the primer pairs (9, 10) (Table 9).  Sequencing of the targeted genes was done as 

previously described (9, 10). 
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Table 9. Primer sequences and annealing temperatures of potential VNTRs and accessory 

proteins. 

Locus Forward Reverse 
hem X1 TCATCGGGCCAACCACGATC TGCAAAGCCAGGCGATGCTGG 54

IS31 TGAGGTACTTTGCCTCAGG TTGCCACAGATGCAATATC 54
mop A1 CGAATGCATGGTTACCGACCT CTCGCGTCGTCCGTGTCTGA 54

tir 1 TATCAGACCTGTAGCAACAGTC CATGCTATGGTCACCGTT 54
tol A1 ATGACGCAGCCTATCTAAACATCTG ACTACCAGAACCCCGTGGCAA 54
yci 1 GACTCGGTACGACTGGATC ATCAGAGCGATTGTTCAGAG 54

ygb C2 CGCGTATAGTAGCAGCGTTT CAGAAGGCTAGCCTTCAGG 54
tol Q2 TGCTGAATGAAGCAGAGGTTC CACCAGCAGTACGTCCA 52
tol R2 TTTACCGCGATTCTGCACC CTGTTCGCCTGTTACCCG 52
tol B2 CACGGGGTTCTGGTAGTTT ATCATCAGCCCTTTCAGCAC 52
pal 2 TGGACAGGTCAAATTCCCTG CCAACCAGTAACGACAGACA 52

ygb F2 ACCTGCAGTACTGGGTCAT ATGATTCGCACGACACGAC 52
btu B2 TCTGGTTCTCATCATCGCG CGGATCTCGTCATAGACCG 52
omp F2 TGAGATTGCTCTGGAAGGC GGAAAGATGCCTGCAGACA 54

omp A2,3 AGACAGCTATCGCGATTGC GCTTTGTTGAAGTTGAACAC 50
1Loci associated with VNTR determination
2Loci associated with tol A studies
3Primers previously described (10)

Sequence (5'-3') Annealing 
Temp (oC)
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Deoxycholate Assay. 

Three isolates of E. coli O157:H7 containing the 3 different alleles of tolA were incubated 

overnight at 37oC in Luria broth (LB).  The isolate concentrations were equalized to each other 

by measuring the OD650nm.  Susceptibility to deoxycholate (DOC) was measured two ways: in 

solid or liquid media.  For the liquid experiment, 50 µL of each equalized culture was added to 

6mL of LB containing 0-1% DOC (wt/vol).  Cultures were incubated for 3 hours and then visual 

observations and the OD650nm were made.  One hundred µL aliquots of the bacteria-DOC mixture 

were subcultured onto 5% sheep’s blood agar.  Plates were incubated overnight (O/N) at 37oC 

and the colony forming units (CFU) were counted the next day.  This experiment was repeated 3 

times.  The solid experiment consisted of making LB agar plates with increasing concentrations 

of DOC from 0-1%.  One hundred µL of a 10-6 dilution of the equalized cultures were added to 

the plates.  Plates were incubated overnight at 37oC and the CFUs were counted the next day.  

This experiment also was repeated 3 times.  Negative controls for both assays consisted of 0% 

and 1% DOC media/plates being incubated with no bacteria. 

 

Bacterial Killing Assay. 

The 3 tolA allele strains were subcultured overnight on 5% sheep’s blood plates at 37oC.  

Isolated colonies were incubated in 5 mL of LB O/N at 37oC with shaking.  Five hundred µL of 

the overnight cultures were added to 20-24 mL of fresh LB and incubated with vigorous shaking 

for another 3 hours.  Meanwhile, 200µL of the 40µM WLBU2 peptide were added to the 

undiluted peptide-undiluted bacteria well (3).  Two-fold dilutions of the peptide were made by 

adding 100µL of the starting 40µM peptide into 80µL of 1X PBS buffer and continued until a 

final dilution of 0.075µM was obtained.  One hundred eighty µL of 1X PBS buffer were added 
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to the remaining wells.  The bacterial suspension was prepared by centrifuging 10mL of the 3-

hour culture at 2800 rpms for 10 minutes.  The supernatant was decanted and the pellet 

resuspended in 7-10mL of 1X PBS.  The OD600nm of the resuspended bacteria was measured and 

the dilution factor obtained by dividing the OD600nm by 0.009.  The dilution factor was divided 

into 3mL to determine the amount of resuspended bacteria to be added to 3mL of 1X PBS.  This 

equation resulted in obtaining an estimated 1 x 105 cells for the start of the experiment.  Twenty 

µL of bacterial suspension were added to each of the peptide dilutions and incubated for 30 

minutes at 37oC.  Dilutions of the bacteria were then made by taking 20µL of the bacteria-

specific peptide concentration mixture and diluting 10-fold to a final bacterial concentration of 

10-3.  Positive controls contained bacteria but no peptide.  Finally, 100µL of each bacterial-

peptide suspension were added to Luria plates and spread using glass beads.  Plates were 

incubated overnight at 37oC and then the colonies counted. 

 

Conjugation of E. coli O157:H7. 

To make the 3 E. coli O157:H7 isolates (recipient[R]) F’ plasmid positive cells, a donor (D) male 

Salmonella typhimurium was used as the F’ plasmid source for the conjugation.  This plasmid 

supplied both the pilus apparatus needed for phage infection and the gene for tetracycline (TC) 

resistance.  A single colony was used to inoculate LB and was incubated overnight.  Single 

colonies of the 3 R isolates were used to inoculate 20mL LB containing 0.4% glucose and a 

phosphate-nitrogen-sulfur buffer and then were incubated overnight at 37oC with shaking.  The R 

cultures were spun down and resuspended into a final volume of 1mL.  Equal volumes of the D 

and R overnight cultures were mixed together to allow for conjugation and incubated overnight 

without agitation.  An aliquot was transferred onto solid LB medium and allowed to conjugate 
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for another 2 days.  The bacteria then were printed first onto minimal-glucose plates, in which 

only the E. coli O157:H7 bacterial cells would grow and not the donor source, followed by 

printing on minimal-glucose-TC plates where only the conjugated E. coli O157:H7 F’ positive, 

TC resistant cells would grow.  Finally, the cells were printed to LB-TC plates in which the 

Salmonella and conjugated E. coli O157:H7 would grow.  The first and last plates were used as 

controls to ensure that the bacterial cells were growing successfully and to not lose the D and R 

cells, which neither should grow on the minimal-glucose-TC plates.  All plates were incubated at 

37oC for 2 days until conjugants appeared on the minimal-glucose-TC plates.  Isolated, 

conjugated colonies were restreaked for clonal expansion and then frozen in 20% glycerol-

nutrient broth. 

 

M13 Phage Infection Assay. 

A frozen aliquot of the 3 conjugated isolates and the positive control JM109 each were 

subcultured into 5mL of LB (5µg/mL TC in the conjugate’s LB) and agitated at 37oC until 

OD600nm ~ 0.5.  A 10-6 phage dilution was made using LB.  The M13 phage stock came from a 

culture propagated in 1985 using E. coli KK2186.  One hundred µL of bacteria were gently 

mixed with 100µL of the phage dilution and incubated at room temperature for 2-3 minutes.  

Three mL of warm soft agar (5µg/mL TC for conjugants) were added to the combination, then 

mixed gently and poured onto prewarmed LB plates.  After the soft agar hardened, the plates 

were inverted and incubated overnight at 37oC.  The number of plaques was then counted for 

each phage-bacteria combination.  Due to individual restriction modification systems in the 3 E. 

coli isolates, each isolate must be tested with a phage that has been modified by the other isolates 

(11).  Three 3 mL of LB were added to the overnight cultured plates of JM109 & the 3 E. colis.  
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The plates containing the fresh LB alternated between gentle rocking and resting for 10 minutes.  

The LB supernatants from each plate were decanted into tubes and centrifuged at 10,000 rpms 

for 1 minute.  The supernatant was saved as each supernatant contained phage that had been 

epigenetically tagged by the specific isolate.  Each new specifically tagged phage was then tested 

on the other 3 hosts by the method described above. 

 

Statistical Analysis. 

ANOVA analysis was performed on the M13 phage assay using the statistical package found at 

the website: http://faculty.vassar.edu/lowry/ank3.html.  The statistical significance was 

determined for the means of the 3 isolates with their 3 specific phages, also the statistically 

significance of the total means was examined. 

 

3.6.4. Results 
 

Identification of Potential VNTR Loci. 

Of the 6 TR loci, we found 4 to have multiple alleles and the remaining loci, tir and mopA, had 

only 1 allele each after examining a sample of isolates (n=16) (Table 10).  Yci and hemX both 

had 2 alleles each so we decided to not pursue their functional roles.  The final 2 loci had much 

more interesting results: the loci located before IS3 had 9 alleles plus 8 isolates had an insert 

interrupting the tandem repeat.  This 1.2kbp insert was sequenced and found to be a shiga toxin- 

2 (Stx-2) pseudogene.  The final gene, tolA, was found to have 3 alleles resulting in 7, 9, and 

13.7 repeats. 
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Table 10. Characteristics of the 6 targeted tandem repeat loci.  Details included are the 

known functions of the genes containing or flanking the TR and the range of alleles. 

TR Locus
hem X 3-4X

Hyp-IS31, 2(IS3) 4-12X 3

mop A 4X
tir 3X

tol A 7,9,13.7X 4

yci D-int O1(yci) 3-4X
1TR locus is inbetween 2 open reading frames
2Hyp-Hypothetical open reading frame
3Some isolates have a 1.2kbp insert
4Discrete alleles, not a range

Extracellualr functions
Membrane stability, colicin/phage infection
Putative enzyme & Integration

Range of 
AllelesLocus Function

Chaperone
Hypothetical protein & Transposase
Uroporphyrinogen III methylase
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Growth in Liquid Medium in Increasing Amounts of DOC. 

Three independent experiments were performed evaluating the growth of our 3 conjugated tolA 

allele isolates, PHIDL #60 with 7 repeats, PHIDL #61 with 9 repeats, and PHIDL #62 with 13.7 

repeats, in the presence of increasing amounts of DOC.  This assay was an indirect measure of 

tolA’s role on the structural stability of the cell.  After 3 hours of coincubation, the OD650nm was 

measured although there was interference due to the cloudy and proteinacious material in some 

of the cultures (Figure 13). PHIDL #62 had the highest OD readings, and typically had the 

largest amount of gelatinous material in the culture suggesting growth and then lysis of the cells.  

One hundred µL of each bacteria-specific DOC percentage were aliquoted onto blood plates.  

PHIDL #60 consistently had the least amount of CFUs per plate followed by PHIDL #61 then 

PHIDL #62. This pattern remained consistent even as the percentage of DOC increased (Figure 

14). 

 

Growth on Solid Medium with Increasing Amounts of DOC. 

This assay also was an indirect measure of the role of tolA in cell wall stability.  The growth 

patterns on solid DOC medium differed from that of the liquid medium.  PHIDL #60 had the 

highest level of growth against the 0% control compared to the other 2 isolates (Figure 15).  

PHIDL #62, which had the highest level of growth in the liquid-DOC coincubation, had a growth 

pattern between the other two isolates. 
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Figure 13. Typical results after isolates exposed to increasing concentrations of DOC. A) 

Overall, loss of turbidity with increasing DOC.  Increased turbidity seen in tubes containing 

PHIDL #62 compared to the other isolates.  B) Sample of growth after 3 hours coincubation of 

samples with 0.6% DOC; with the order of tubes from left to right being PHIDL #60, PHIDL 

#61, and then PHIDL #62.  Increasing amounts of potentially proteinacious material were seen in 

PHIDL #62 tubes. 
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Figure 14.  CFU count of each isolate-DOC combination.  Liquid cultures of isolates with 

increasing amounts of DOC were incubated together for 3 hours and then plated overnight.  

Typically, more colonies were seen with lower concentrations of DOC than with the higher 

percentages.  PHIDL #62 had the highest amount of growth than the other isolates in the 

presence of DOC. 
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Figure 15. Percent growth of E. coli O157:H7 isolates compared to control on LB agar 

containing increasing concentrations of DOC.  The average number of CFU/plate for each 

isolate was compared to growth on the 0% DOC plate. 
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Bacterial Killing Assay. 

The ability of the peptide WLBU2 to kill the 3 tolA study isolates and a control isolate, 

Pseudomonas aeruginosa was measured by counting the number of CFUs.  The control 

Pseudomonas had a known susceptibility to the WLBU2 peptide at the concentrations tested.  

We were able to determine if the assay was working correctly by looking at the susceptibility 

curve of the control bacterium.  As the WLBU2 peptide forms pores in cell membranes, this 

assay was the final indirect measure of tolA’s role in maintaining structural stability.  Overall, 

the E. coli O157:H7 isolates had at least a 3-fold higher resistance to the peptide compared to the 

P. aeruginosa.  While not significant, PHIDL #60 had the highest resistance to the peptide and 

PHIDL #61 had the least resistance (Figure 16).   

 

Sequence Results of the Genes Associated with M13 Phage Infection. 

A direct measure of the role of tolA was conducted by looking at the infectivity of M13 phage in 

E. coli O157:H7.  The genes associated with M13 infection were sequenced to determine if only 

tolA was different between the 3 isolates.  All the genes in the tolQRAB operon and the 

receptors for phage M13 were identical to each other in the 3 isolates except for 2 single 

nucleotide polymorphisms (SNPs) found in ompA.  These SNPs were found previously in our 

MLST study (10).  Both PHIDL #61 and PHIDL #62 each contained a SNP but both were 

synonymous changes, so the amino acid sequence did not change. 

 

Conjugation of E. coli O157:H7. 

The 3 isolates were successfully conjugated with the F’ plasmid, which conferred tetracycline 

resistance from the Salmonella isolate, although at different levels of success.  PHIDL #61 had  
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Figure 16.  Bacterial killing after 30 minute exposure to the synthetic peptide WLBU2.  All 

E. coli O157 isolates were more resistant than the control Pseudomonas strain (PAO1) to the 

peptide.  PHIDL #60 had a slightly higher resistance to the peptide than the other E. coli 

O157:H7 strains. 
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the most conjugants followed by PHIDL #60, then PHIDL #62.  After conjugation, the E. coli 

O157:H7 isolates had the necessary pilus assembly to be infected by M13.  The sex pilus is the 

coreceptor for M13 attachment to the bacterium. 

 

M13 Phage Assay. 

Isolates were infected by each of the 4 specific epigenetically-tagged M13 phage.  Plaques were 

counted for each isolate-phage mix and the counts normalized to the JM109 counts.  When 

looking at specific phages, the isolate that was most susceptible for each phage varied from 

phage to phage (Table 11).  Comparing each isolate to its matched phage showed that isolate #60 

had the greatest number of plaques compared to the others, and this was statistically significant 

(p=0.004).  When the mean total count of plaques per isolate was calculated, once again PHIDL 

#60 differed by the others, but a conflicting result arose showing that the total count of PHIDL 

#60 was not significantly less than the other 2 isolates’ counts (p=0.13). 

 

3.6.5. Discussion 
 

Variable-number tandem repeats are fascinating genetic elements in both the prokaryotic and 

eukaryotic genomes.  Certain VNTRs in humans cause a wide array of genetic disorders while 

some VNTRs in bacteria are thought to modulate the immune response (14).  E. coli O157:H7 

also has a wide array of VNTRs, but their roles are undefined.  We analyzed several tandem 

repeats to determine if they were indeed VNTRs and if we could begin to understand their 

possible functions. 
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Table 11. Plaque counts for each isolate-phage combination normalized to the JM109 

counts. 

Isolate JM109 60 61 62 Total
60 Mean 190.1 353a 96.3 132.0 771.3b

StDv 33.6 24.0 27.2 28.7 59.1
61 Mean 216.5 463.0 107.25a 168.8 955.5b

StDv 14.9 46.7 35.0 9.0 57.8
62 Mean 247.5 448.0 82.5 143.4a 921.4b

StDv 14.0 62.2 7.8 1.8 82.2
aANOVA analysis (p=0.004)
bANOVA analysis (p=0.13)

Phage Grown In:
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We chose to focus on 6 potential VNTRs, as they were located within or between known or 

highly homologous genes (Table 9).  Four of the loci were true VNTRs when we sequenced the 

loci in at least 16 different isolates.  We then chose to focus on 2 loci because they had multiple 

alleles.   

 

The VNTR loci located before IS3 is a seven-basepair repeat that was found to repeat 4 to 12 

times in our collection.  Of the 90 isolates that we sequenced, 8 isolates (8.9%) were found to 

have a 1.2kbp insert that encodes a Stx2 pseudogene.  This insertion interrupted the tandem 

repeat in the middle of the sequence and at the same repeat for all 8 isolates.  At the end of the 

pseudogene, the tandem repeat continued and the sequence was identical to that of the isolates 

without the insertion.  Additionally, 6 of the 8 isolates were related via PFGE, but only 2 of these 

were found to be related both temporally and by MLVA.  This suggests that the pseudogene may 

have integrated into different genomes at separate, evolutionary events and that this tandem 

repeat sequence may be ideal sites for integration. 

 

The other locus of interest was that of tolA, which contained a 15bp tandem repeat in the central 

portion of the gene.  TolA has 3 roles in the E. coli genome that of cell membrane stability, 

filamentous phage infection, and group A colicin sensitivity (2, 6, 7).  Upon sequencing our 

isolates, we found 3 discrete alleles in which the TR was found to repeat 7, 9, and 13.7 times.  

We hypothesized that the increasing length of the TR in tolA would result in an increased 

stability of the cell, but an enhanced sensitivity to filamentous phages. 
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One of the roles of tolA is that of cell membrane stability as tolA is anchored in the inner 

membrane, spans across the periplasmic space, and interacts with the inner portion of the outer 

membrane (7, 8).  We chose to examine the role of tolA in membrane stability through 2 indirect 

assays: growth in deoxycholate and exposure to a synthetic antimicrobial peptide.  These are 

indirect assays because these compounds indiscriminately attack the bacteria.  The effect of DOC 

was measured 2 ways:  the bacteria were exposed to DOC in a liquid culture for 3 hours or the 

bacteria were plated directly on hard agar impregnated with DOC.  In the liquid media, PHIDL 

#62 had the highest level of growth in the presence of DOC (Figures 13, 14).  PHIDL #62 was 

the isolate with the longest tolA α-helix, while PHIDL #60 with the shortest α-helix had the 

lowest amount of growth.  The assay using DOC in solid agar had discordant results from that of 

the liquid assay.  PHIDL #60 had the best growth in DOC followed by PHIDL #62 and then 

PHIDL #61 (Figure 15).  The difference between the solid and liquid assays may be completely 

independent of tolA.  Different genes are turned on or off depending on the medium used, so the 

different results could be due to this, which leaves the role of tolA unanswered. 

 

The other indirect assay used the antimicrobial peptide WLBU2 to again examine the role of 

tolA in membrane stability.  This cationic peptide inserts itself into bacterial cell membranes 

resulting in pore formation and lysis of the bacterium.  The results were similar to that of the 

solid agar-DOC assay.  PHIDL #60 had the highest level of resistance to the peptide resulting in 

the most growth with higher concentrations of the peptide than the other isolates (Figure 16).  

PHIDL #62 followed with the next highest resistance to the peptide.  These results along with the 

solid agar-DOC assay may suggest that length is not necessarily the main determinant for tolA’s 

role in cell membrane stability, but perhaps how the rotation and position of the α-helix against 
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the outer membrane.  Protein chemistry and structure are beyond the scope of this study, so only 

observations and ideas can be postulated about the results that have been observed. 

 

The M13 phage infectivity assay was the direct assay to determine if the alleles of tolA would 

result in a difference in infectivity between the 3 isolates.  This was a direct assay because M13 

must use tolA and a few accessory proteins to enter into the host, along with the sex pilus 

encoded for on the F’ plasmid.  As previously discussed in the results, the 3 isolates had identical 

accessory protein sequences, besides for ompA.  The 3 isolates also contained the same F’ 

plasmid, which was supplied during the conjugation assay.  Another factor that could influence 

the infection level is how a phage is modified upon replicating in the host cell and then the this 

modified phage is introduced into another host E. coli.  We attempted to control this confounder 

by having the M13 phage propagate using all 4 hosts and then testing those modified phages on 

the other 3 isolates and the cognate host.  So while the 3 E. coli O157:H7 isolates are not 

identical to each other, we hope that we have controlled for the extraneous variation important to 

M13 infection.  The assay showed us that PHIDL #60 is different from the other two isolates and 

the tolA is most likely the reason for this.  Little more can be said about the difference of PHIDL 

#60’s tolA because the 3 E. coli O157:H7 isolates are not isogenic strains.  While as many 

differences were controlled for as possible, these are wildtype stains and hence other factors may 

be playing a role. 

 

A comparison of all the results for tolA shows a conflict not only between assays that should 

have similar results, but also the original hypothesis (Table 12).  The DOC experiments have 

contrasting results, which may be due to the technical issues in the liquid experiment (eg.  
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Table 12. Compilation of tolA functionality results.  All assays performed to ascertain the 

change of function due to the different alleles of tolA.  The results are presented as short, 

medium, and long which refers to the length of the VNTR of the isolate that was most, medium, 

or least susceptible to the particular assay.  

 

Most Medium Least
Short Medium Long

Med/Long Med/Long Short
Medium Long Short

Short Med/Long Med/Long
Med/Long Med/Long Short

1Technical Issues with Assay
2Statistically Significant (p=0.004)

Susceptibility
Assay

Restriction-Modified Phage2

Total Phage

Liquid DOC1

Solid DOC
Antimicrobial Peptide
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protenacious material).  If the liquid DOC experiment is removed, then the results of the 2 

indirect assays do correspond, but this result opposed the original hypothesis, which was that the 

isolate with the shortest tolA allele would be the most susceptible.  The direct assay looking at 

susceptibility of the bacteria to M13 phage also had conflicting results.  The only significant 

finding was that PHIDL #60, the isolate with the shortest allele, was the most susceptible to the 

phage.  Again, this result went against the original hypothesis that the isolate with the longest 

allele would be the most susceptible to the M13 phage.  The tolA protein in PHIDL #60 appears 

to function differently from the other 2 alleles, but how or what this implies has not been 

determined during this investigation.  As mentioned previously, isogenic strains are the next step 

to determine if these same differences occur in strains that are identical except for their tolA.  

Additionally protein modeling could be done to determine if there are conformational differences 

between the 3 proteins that might affect function. 

 

This set of preliminary work suggests that some of E. coli O157:H7’s tandem repeats may have 

functional roles.  Some TRs may be signals for insertion of foreign or virulence genes as seen 

with the TR loci before IS3 where a Stx2 pseudogene was inserted.  Additionally, an active 

functional change may be assigned to other TRs as potentially seen with the gene tolA with an 

apparent difference between the tolA of PHIDL #60 with the smallest repeat to the other 2 larger 

repeats found in the other isolates.  Again, the best way to address functional changes would be 

to have isogenic strains in which the only difference exists in the TR of interest.  Care must be 

given when using VNTRs for epidemiological work versus VNTRs that have functional roles.  

The VNTRs for epidemiological surveillance should mutate neutrally.   This work represents the 

background work into determining the roles of interesting VNTRs in E. coli O157:H7. 
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4. DISCUSSION 

 
Escherichia coli O157:H7 was first detected in 1982 in association with a food-borne outbreak 

(5).  Now, this bacterium is thought to cause an estimated 74,000 illnesses a year in the United 

States alone (2).  With the high number of cases and the association with outbreaks, the detection 

and genetic relatedness of this organism became a high priority.  The use of PFGE for E. coli 

O157:H7 outbreak detection greatly enhanced the surveillance of this organism along with the 

traditional epidemiological methods (1). 

 

In Specific Aim I, we wanted to create a molecular subtyping technique for detecting outbreaks 

that was as discriminatory as PFGE, if not better, but did not have the drawbacks of PFGE: time 

consuming protocol, subjective interpretations, etc.  MLST and MLVA both have the advantage 

of being PCR-based.  As we saw, MLST did not provide enough variation to be an effective 

submolecular typing scheme most likely due to E. coli O157:H7 being a clonal species and 

MLST targeting housekeeping genes (3).  Conversely, MLVA utilizes tandem repeats, which are 

one of the most rapidly evolving genetic elements in the bacterial genome.  We found that 

MLVA was able to discriminate outbreak strains from sporadic strains and strains from different 

outbreaks (4).  Additionally, MLVA discriminated some strains that PFGE had been unable to 

which becomes important if an outbreak investigation would begin because of the molecular 

subtyping results. 

 

MLVA can become a powerful tool in the surveillance and detection of E. coli O157:H7 

outbreaks with its fast, reproducible, and objective benefits.  We are hoping to create a website 

where investigations can import the MLVA types of their isolates of interest. They can then 
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compare their isolates to other isolates in the database to look for potential outbreaks.  As the 

MLVA protocol takes 2-3 days and the Internet comparison takes a matter of moments, our 

ability to detect potential outbreaks will be enhanced greatly.  The next step will be how we 

involve public health departments into our MLVA website so that our MLVA results have 

consequences in the real world. 

 

MLVA does have a major limitation: we use expensive dyes and sequencing machines to obtain 

the results.  For those laboratories with limited funds or equipment, our current MLVA protocol 

is not appropriate, but an alternative does exist.  While determining which VNTRs were 

appropriate for our MLVA protocol, we chose to ignore those VNTRs with large repeat sizes 

(>50bp).  These alleles caused a problem with running them on a sequencing gel because the 

range could become too large and could overlap with multiple other loci.  These larger VNTRs 

could be ideal for an agarose gel-based system where the VNTR PCR products could be run and 

loci visually determined using an adequate ladder.  No work has begun on this protocol, but this 

would offer an alternative method, but still discriminatory, that would be more feasible in costs 

for some facilities. 

 

With the establishment of our MLVA protocol, we needed to apply some basic guidelines for the 

calling of isolates’ genetic relatedness.  The basis of MLVA is that these TR loci are in fact 

VNTRs resulting in multiple alleles at each locus.  What is important to understand is how often 

do these VNTRs mutate from one allele to the next.  In Specific Aim II, we attempted to answer 

this question by analyzing our 7 VNTRs after multiple generations of growth.  We found that 

TR2 was the most hypervariable locus and that there were more single, additions of a repeat than 
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any other addition or deletion.  Additionally, TR1 and TR5 had a moderately higher rate of 

mutation compared to the other 4 loci.  These preliminary mutation results will help us to 

evaluate the MLVA data.  A group of suspected, outbreak isolates will typically have the same 

MLVA type; but as we have seen before, single locus variants can occur and at any locus (4).  

Our mutation data suggest that a single change at the TR2 locus during an outbreak will be very 

common but a double or triple repeat change could also occur.  Additionally, this TR2 

hypermutability could result in a potential double locus variant as another locus could mutate. 

 

While the mutation experiment provided us with preliminary guidelines on how to call isolates 

related or not, much more work needs to be done.  This experiment was performed using a single 

isolate, which had close to the median allele for each locus.  To more fully understand how each 

locus mutates and how that affects the calling of outbreaks, more mutation studies need to be 

performed.  Alleles at the extremes of a range should be analyzed to understand how these 

extremes affect the mutation rate for each locus.  More analysis will only strengthen our 

definitions of highly related versus sporadic isolates defined by their MLVA types. 

 

Finally, Specific Aim III began the work of examining the functional roles of specific VNTRs.  

The original goal was to look at the MLVA loci and determine if there was a functional role that 

could potentially affect how or why they mutate, which could in turn affect their epidemiologic 

role.  Unfortunately, the 7 MLVA are all within or between unknown or hypothetical open 

reading frames.  The discovery of the function or lack of function of these 7 loci was beyond the 

scope of our study; therefore we chose to focus on a few VNTRs with known genes.  We saw 

that one of the VNTR loci could be a hotspot for recombination events with an insertion of a 

 123



toxin pseudogene.  There is a potential for this locus to recombine with an active gene that could 

make changes to the phenotype of the E. coli O157:H7 host.  If VNTRs can become hotspots for 

recombination, there is a chance that some of the MLVA loci could also become targets for an 

insertion.  Obviously, this would greatly change the size of the VNTR, which would in turn 

change the MLVA type.  Researchers using the MLVA protocol should be mindful of an isolate 

with an allele outside the normal distribution and perhaps should sequence this allele to be sure 

the aberrant size is due only to the number of repeats and not some other event.   

 

The other VNTR of interest was the one found in the gene tolA.  Three alleles were found with 

PHIDL #60 containing the shortest allele; PHIDL #61, the middle allele; and PHIDL #62, the 

longest allele representing the 3 alleles found in our entire isolate bank.  The indirect assays 

using DOC and an antimicrobial peptide were used to show tolA’s role in cell stability.  Two of 

the 3 assays suggested that PHIDL #60 with the shortest allele was the most resistant to DOC 

and the peptide.  This finding contrasts our hypothesis that the shorter tolA allele would be the 

most susceptible to these agents.  The direct measure of tolA was looking at the susceptibility of 

the 3 tolA alleles to the M13 phage.  After analyzing the data 2 different ways, the results 

conflicted in that the short tolA was the most susceptible to its own modified phage, but overall 

was the least susceptible to all the modified phages. This conflicting result once again shows that 

PHIDL #60, the shortest allele, is different from the other 2 alleles.  Perhaps the difference 

between the short allele and the other 2 is due to a conformational difference between the short 

tolA and the other 2 alleles.  PHIDL #60’s central domain containing the VNTR may end in a 

way that causes the C-terminus to interact differently with the outer membrane than that of the 

other 2 alleles.  But much more research needs to be done to answer this question including 
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analyzing the 3 tolA alleles in an isogenic strain.  This may allow a more conclusive analysis if 

this VNTR locus has a functional role.  Additionally, structural analysis of the 3 tolA alleles 

would help to determine if the conformation of the protein changes depending on the length of 

the tandem repeat, which then may affect the functionality of the protein.  Other researchers have 

found functional purposes for VNTRs in other bacteria, and it is only a matter of time and more 

experiments to discover the role of specific VNTRs in E. coli O157:H7. 

 

Overall, this project has improved our outbreak detection capabilities for Escherichia coli 

O157:H7 and has begun to understand how variable-number tandem repeats impact their 

genotypic and phenotypic functions of the genome.  We have greatly enhanced the ability to 

detect outbreaks, which will affect any person who could come in contact with E. coli O157:H7.  

Our faster and more sensitive protocol has the potential to identify outbreaks much earlier 

possible resulting in fewer illnesses and protecting the public’s health.  The continuing 

investigation of the behavior of these VNTRs will help to develop our guidelines for the optimal 

interpretation of MLVA data obtained during outbreak investigations. 
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APPENDIX 
 
 
 

3100 DNA ANALYZER SCREEN SHOWING MLVA ISOLATES 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 17. The figure above represents 48 isolates of Bacillus anthracis that have been 

examined at 8 TR loci.  The labeled PCR products were run on a 3100 DNA Analyzer (Keim 

2000).  Our MLVA analysis differs in that we used a 3700 DNA Analyzer.  Fluorescent-labeling 

of PCR products and creation of discrete ranges (if possible) allows each TR locus to have its 

own unique color and range.  This allows for simple, objective analysis of the data. 
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