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Chemically reacting flow occurs in many industrial settings such as combustion, catalysis, 

chemical synthesis, materials processing, etc. It is particularly important because of its function 

in catalysis, since catalysis accounts for 90% of the processes in the chemical industry. Catalytic 

processes with temperatures in the range of 400-1000 degrees C are classified as high 

temperature. Some industrially relevant high temperature catalytic processes include combustion 

and partial oxidation of hydrocarbons for energy production, and catalytic cracking for oil 

refining [1]. 

Microreactors, with characteristic dimensions less than one millimeter, have been shown 

to quench explosive reaction systems and are well worth exploring [2-5]. Microreactors have 

several advantages over conventional reactors, such as good thermal transport and increased 

surface-to-volume ratio. Microreactors can also be used to study explosive reaction systems such 

as hydrogen oxidation. Hydrogen oxidation is an important reaction for energy production 

through combustion and use in fuel cells. The reaction has wide flammability limits, 3-75 vol% 

of H  in air, and very high flame velocities which can lead to strong explosions [62 ]. In order to 

avoid explosions and to operate this reaction safely, it would be ideal to run hydrogen oxidation 

via the catalytic pathway.  

The aim of this study is to investigate the use of microreactors for potentially explosive 

high temperature catalytic reactions through detailed numerical simulations, and the 
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development of a modular silicon microreactor. In this study, simulations will be performed 

using the same two-dimensional boundary layer model and CRESLAF module (version 

CHEMKIN 4.0 will be used). These simulation studies show the suppression of the 

homogeneous radical formation, which allows for the safe operation of the hydrogen oxidation 

reaction.  An experimental microreactor was designed using detailed numerical simulations in 

Fluent. A preliminary experimental setup was also fabricated. 
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1.0  INTRODUCTION 

Chemically reacting flow is seen in many industrial settings such as combustion, catalysis, 

chemical synthesis, materials processing, etc. It is particularly important because of its function 

in catalysis, since catalysis accounts for 90% of the processes in the chemical industry. Catalytic 

processes with temperatures greater than in the range of 400-1000 degrees C are classified as 

high temperature. Some industrially relevant high temperature catalytic processes include 

combustion and partial oxidation of hydrocarbons for energy production, and catalytic cracking 

for oil refining [1]. 

Because these high temperature reactions occur under extreme conditions, it is important 

to understand how the process and reactions are affected by the changing process conditions. 

Ignition, the transition from the unreacted to the reacted state, has been studied for both the 

homogeneous and catalytic reactions [6, 7]. Heterogeneous (catalytic) ignition is desirable 

because it generally causes an increase in selectivity activity and yield; however, a catalyst 

complicates the study and understanding of the ignition behavior because it increases number of 

reaction pathways. Catalytic ignition generally occurs at lower temperatures and activation 

energies, and can prevent extreme temperatures. This in turn can prevent a loss in selectivity, 

flames or even explosions. 

Microreactors have been shown to quench explosive reaction systems and are well worth 

exploring [2,3,4]. Microreactors are defined here as chemical reactors with characteristic 
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dimensions less than one millimeter [5]. Microreactors have several advantages over 

conventional reactors. Microreactors have high surface to volume ratios and small thermal 

masses which allows good control of thermal transport. The high surface to volume ratio also 

allows for large well defined catalytic surface areas. Because microreactors have good thermal 

transport, their use is particularly attractive for high-temperature catalytic reaction engineering. 

Catalytic reactions can be studied in microreactors with very good control and precision because 

of the well defined surface area and thermal transport. Also, microreactors are designed to be 

small and lightweight and are ideal for on demand production. Because of their small size and 

good control, they are ideal for use in combinatorial chemistry:  because hundreds can easily be 

run in parallel. Also, because of the small volumes tested, new reaction regimes can be explored 

and research on potentially hazardous unknown reactions can be performed in microreactors in a 

safe matter. 

Microreactors can also be used to study explosive reaction systems such as hydrogen 

oxidation. There is a current demand for alternative fuels and hydrogen is a potential alternative 

fuel because is it is clean and efficient; however, the large scale use of hydrogen creates concerns 

over the safety of production, transportation and use. Hydrogen oxidation is an important 

reaction for energy production through combustion reaction and use in fuel cells. It is a very well 

understood and thoroughly tested reaction [8-11]. The reaction has wide flammability limits, 3-

75 vol% of H  in air, and very high flame velocities which can lead to strong explosions [62 ]. This 

reaction is also strongly exothermic reaction (ΔH ≈ -240 kJ/mol). In order to avoid explosions 

and to operate this reaction safely, it would be ideal to run hydrogen oxidation via the catalytic 

pathway.  
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Typically, the study of this reaction system would have to be carried out under extreme 

conditions where it is very difficult to perform thorough studies. The hydrogen oxidation 

reaction is a chained, branched explosion when within the flammability limits and exposed to an 

ignition source. These branched explosions are characterized by a time delay whereby a radical 

pool is formed [12]. Because it has been found that surfaces act as radical capturers a large 

surface area would be needed to capture radicals and suppress the homogeneous reactions. 

Unlike conventional, large-scale reactors, microreactors have large-surface-to volume ratios and 

would provide the opportunity to study the extinction of the homogenous reactions through 

radical capturing. 
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1.1 PREVIOUS RESULTS 

Over the past three decades, the miniaturization of reactor systems has increased due to the 

improvement of technologies that are used fabricate and analyze these systems. Numerous 

research groups have developed and studied micro-chemical systems. Different reactor 

configurations have been tested such as micro-mixers, micro-heat-exchangers, packed bed 

reactors, and laminated multi-channel reactors [13]. Table 1 includes a compilation of several 

high temperature reactions that have been carried out in microreactors. The contents and the 

format of the table were adapted and modified from Christine Apelee [14]. 
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Table 1.  Compilation of high temperature reactions carried out in microreactors. 
 

Reaction type Reaction Catalyst Max temp. 

reported (˚C) 

Reference 

700 15Partial oxidation of methane Rh 

CH4+ 1/2 O2  CO + 2H 1200 162

250 17Ag Epoxidation of ethane 
½C2H4+  O2  C2H4O 300 18

Partial oxidation of propene to acrolein 

C3H6 + O2  C3H4O + H2O 

CuO2 375 19
Partial 

oxidation 

Partial oxidation of monomethylformamide to 

methyl-isocynate 

CH3HNCHO + ½ O2  CH3NCO + H2O 

Ag 300 20

Pt, Zr, V 450 21,22Methane Oxidation 

CH4 + 2O2  CO2 + 2H2O Pt 520 23

Pt 650 Ammonia Oxidation 24-29

NH3 + 5/4O2  NO + 3/2 H2O 

220 30
Oxidation 

Pt 

32,331000 Hydrogen Combustion 

300 341H2 + /2 O2  H2O Pd 

35600 

Propane Reforming  Ru 1000 36

C3H8 + 3H2O  3CO2 + 7H2

Methanol-steam reforming 

CH3OH + H2O  CO2 + 3H2

Pd, Cu 285 37Steam 

Reforming 

Proprietary 670 38Isooctane-steam reforming 

C8H + H18 2O  8CO + 17H2

Pt 1050 Andrussov process 39
Nitration 3CH4 + NH3 + /2 O2  HCN + 3H 2O 

Any reaction Reactor design not for any particular reaction Pt 700 40

Ammonolysis 4NH3(g)+3 SiO(g)  Si3N4(s)+3H2O(g)+3H2(g) - 1600 41
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It has been recently shown that the explosive nature of hydrogen oxidation can be 

reduced by using micro-machined reactors[2, 3, 11]. Numerical simulations were previously 

done by Sudipta Chattopadhyay to differentiate the influences of the heterogeneous and 

homogeneous reaction pathways in the hydrogen oxidation reaction system [5]. She incorporated 

the homogeneous and heterogeneous pathways in the two dimensional boundary layer 

CRESLAF model using CHEMKIN 3.1. From these results the effect of reactor diameter on 

ignition behavior was studied and can be seen in Figure 1. The mole fractions of hydrogen (H) 

radicals and O  are seen in the contour plots. From the O  contour plot it can be seen that the O2 2 2 

is immediately consumed at wall surface, due to the catalyst.  As can be seen in the 1mm 

diameter case, a buildup of H radicals is needed before the immediate consumption of O2 can be 

completed. Since H radicals are a strong indicator of homogeneous reactions, these results 

indicate that the ignition behavior is strongly influenced by homogeneous reactions. As the 

reactor diameter gets smaller (500 micrometers) the H radical concentration drops by 5 orders of 

magnitude and the O2 contour plot shows a broadening of the concentration profile. This 

broadening indicates that the O2 has a chance to diffuse to the catalyst wall and is being 

consumed by the catalyst. This suggests a weakening of the homogeneous reaction. At even 

smaller diameters (300 micrometers) the disappearance of H radicals is seen, indicating that the 

homogeneous reactions have been quenched.  

Veser et al. have also developed a simple microreactor system for high temperature 

microreactor studies (See Figure 2). It consistes of two silicon wafers pressed together with a 

platinum wire which acted as both the catalyst and the heater. Initially these wafers were housed 

in a stainless steel housing as seen in Figure 2 which were later changed to ceramic blocks. 
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Figure 1.  Contour plot of the O2 (top row) and hydrogen radical (bottom row) mole fraction  using Pt wall with a 
1mm (left), 500 µm (middle) and 300 µm (right) microreactor diameters as a function of axial (z) and radial (r) 
distance at 1113K. [5] 

 
 

1.2 AIMS OF PRESENT STUDY 

The aim of this study is to investigate the use of microreactors for high temperature catalytic 

reactions that have potentially explosive nature through detailed numerical simulations and the 

development of a modular silicon microreactor. In this study, simulations will be performed 

using the same two-dimensional boundary layer model and CRESLAF module; however, 

CHEMKIN version 4.0 will be used. The objective of these simulation studies is to identify the 

cause of the inhibition of the homogeneous reactions and discover under what reactor 

dimensions would the quenching of explosions be the greatest. After performing detailed 

numerical simulations, an experimental microreactor will be designed. The development of the 

experimental setup will also be discussed. 
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PPtt
20 mm 

525µm 

 

Figure 2.  Veser et al. previous experimental setup [33]. 
 
 
Chapter 2 discusses the results of modeling hydrogen oxidation in a microreactor using a 

boundary layer model and the full Navier-Stokes equations. This chapter also includes a detailed 

description of the kinetic and reactor model used in both cases. Chapter 3 covers the 

development of a microreactor which will be used to verify the numeric modeling results, and 

Chapter 4 discusses the future and outlook of this project along with a list of improvements that 

can be made on the microreactor. 
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2.0  NUMERICAL SIMULATIONS 

There are several options for modeling reactive flow. In this study we have chosen to study 

ignition behavior of hydrogen oxidation using two models: the boundary layer model in 

CHEMKIN and the Navier-Stokes equations solved using FLUENT. There are several 

conditions that need to be considered before choosing the numerical model which include the 

flow conditions, accuracy of the results, and the computational expense. The two models will be 

used to model the reactive flow in a catalytic microreactor under high temperature conditions.  

These models include convective and diffusive mass transport.  

Generally there are three model choices for modeling reactive flow: Navier-Stokes, 

boundary layer model, and plug flow. Solving the complete Navier-Stokes equations is the most 

comprehensive model and the most computationally expensive option, whereas the plug flow 

model is the least comprehensive. The intermediate option is using the boundary layer model 

which assumes no axial diffusive transport, but focuses on the transport to and from the walls, 

which is important when trying to study the interplay between homogeneous and heterogeneous 

reactions. 
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2.1 2-D BOUNDARY-LAYER SIMULATIONS 

The hydrogen oxidation reaction will be studied using a 2-D boundary layer model in Chemkin. 

This particular model accounts for radial diffusion and the conservation of species, mass and 

energy. Convection is assumed to be dominant in the axial direction along the channel and axial 

diffusion is neglected. The CHEMKIN model used is the cylindrical channel shear-layer flow 

reactor (CRESLAF) and the method of use is seen in Figure 3. This model couples fluid flow, 

gas-phase chemistry, and surface chemistry in a laminar-flow channel. The model predicts gas-

phase temperature, velocity fields, concentration fields, and surface species coverage. Results are 

calculated based on the initial and boundary conditions such as surface temperature, flow-rate, 

partial and total pressures, and reactor dimensions. The range of values tested is seen in Table 2. 

A sample input file can be found in Appendix A 
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Catalyst 

Gas phase kinetics 
Westbrook et al. 

Surface kinetics 
Aghalayam et al. 

Thermodynamic input 
NASA, NIST 

Transport input 
NASA, NIST 

Chemkin 4.0 
Pre-processor 

Output 
T, xi, p, v profiles 

Reaction rates 

 

Figure 3.  A schematic overview the simulations program used to model the microreactor. 
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Table 2.  Parameters tested and initial conditions. 
 

Parameters Tested 

Temperature (K) 1113 
Inlet flowrate 

(m/s) 
9 

Total Pressure 
(atm) 

1 

0-2.71e-9 Site Density 
(Pt/cm2) 

 

2.1.1 Reactor Model 

The characteristic features of our model are high velocities, keeping the Peclet number much 

larger than 1 which ensured convective dominant flow. Small dimensions were also used which 

kept the flow laminar. Diffusive heat and mass transport were only allowed in the radial 

direction. 

2.1.2 Kinetic Model 

To study the ignition behavior and the reason for quenching we used detailed elementary 

reaction mechanisms for the homogeneous reaction mechanism and the surface reaction 

mechanism over Pt.  We wanted to determine if the catalytic reactions are so fast that they 

consume the reactants before the homogeneous radical pool can be built up or if the catalytic 

surface was acting as a radical capturer, capturing and limiting the amount of radicals formed in 
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the gas phase. We can distinguish between these mechanisms by varying the amount of catalyst 

loading which weakens the catalytic activity. 

2.1.3 Gas Phase Chemistry 

These numerical simulations used the Westbrook gas phase mechanism given in Appendix A, 

Table 9. This mechanism is a list of elementary chemical reactions and associated rate constant 

expressions. This detailed chemical reaction mechanism is optimized to represent hydrogen 

flame chemistry. It consists of 8 species and 21 reactions. An inert surface was also simulated; 

however, this is an idealized situation which can be realized only computationally. This surface 

is used as a reference case in our study. 

To correctly identify the interplay between homogeneous and heterogeneous reactions, a 

surface mechanism which contains all possible reactions, reactant and intermediates was used. 

The catalytic wall used was platinum and the mechanism was obtained from Aghalayam (see 

Appendix A). Aghalayam et al. used sensitivity analysis to find kinetic parameters, optimized the 

pre-exponential factors, and also included the adsorbate-adsorbate interaction on activation 

energies. In the mechanism, Pt(S) indicates a free Pt surface site and species followed by (S) 

denote adsorbed species. The site density of the Pt surface is varied from 0 to 2.71*10-9 mol/cm2, 

where zero corresponds to the purely homogeneous inert case. 

2.1.4 Simulation Parameters and Numerics 

The reactor was modeled as an axis-symmetric tubular reaction channel. The pressure was 

maintained at one bar, gas inlet velocity was 9 m/s, and reactants were a stoichiometric mixture 
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of premixed hydrogen in air. The channel diameter was varied between 1 mm and 50 μm. The 

reactant length was adjusted to observe ignition. The surface temperature was maintained at 

1113K. Other temperatures were tested but will not be mentioned in this work because they 

showed similar trends. The temperature was chosen because it was previously shown that at this 

temperature, the reactions in the majority of the reactor diameters were heterogeneously 

dominated. The only variable tested in this reactor study was the surface site density. 

The simulations were performed on an Intel processor 3.2 GHz, utilizing 40-100 mesh 

points in radial direction with non-uniform grid point distribution of 1.2 indicating that the nodes 

are more concentrated near the wall. The program automatically adapts the grid in the axial 

direction to achieve the specified numerical accuracy, which was set to at least 1e-4. Typical 

integration times varied between 1 to 3 minutes for a single run. 

2.1.5 Results and Discussion 

Previous results showed that we could quench homogeneous reactions in a sufficiently small 

reactor simply by adding catalyst; however it is important to identify whether the fast catalytic 

reactions are consuming the reactants before the homogeneous radical pool can be built up or if 

the catalytic surface is acting as a radical capturer, capturing the radicals and limiting the amount 

of radicals formed in the gas phase. By varying the catalyst loading, the catalytic activity is 

weakened and it becomes possible to distinguish between these two hypotheses.  

The contour plots of the oxygen and hydrogen mole fractions are shown in Figure 4. The 

top contour plot corresponds to a completely covered Pt surface, the bottom contour plots 

correspond to the purely homogenous case with no catalytic reactions, and the middle plot 

corresponds to a case with less than 1% catalyst coverage. In the top plots it can be seen that a 
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negligible amount of H radicals are formed indicating that the homogeneous reactions are not 

taking place. In the homogeneous case, again it can be seen that the consumption of the O2 does 

not occur until the hydrogen radical pool has been formed. The intermediate case shows that the 

catalytic reaction has been extremely weakened because the reaction front has been significantly 

increased from 0.2 mm to 5 mm. Also in this case the homogeneous reactions are still not taking 

place. If the fast catalytic reactions were the driving force one would expect a buildup of the 

radical pool and a slight increase in the ignition distance; however, since we still do not see a 

buildup of the radical pool and the ignition has been greatly increased, we can attribute the 

quenching behavior to the wall behaving a radical capturer. 
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Figure 4.  Contour plot of the O2 (left) and hydrogen radical (right) mole fraction using Pt wall with a 300 µm 
microreactor diameters as a function of axial (z) and radial (r) distance at 1113K for various site densities. 
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To quantify the results an ignition distance or delay has been chosen. This ignition 

distance will be defined as the distance along the centerline of the reactor at which 50% of the 

hydrogen has been converted.  

When a catalyst is incorporated into a reactor it is expected that the ignition distance 

would gradually increase as the site density (number of wall capturers) is decreased (as seen in 

red dashed line in Figure 5). However, what we actually find is that as the catalyst loading is 

decreased there is an initial increase in the ignition distance until a maximum is reached where a 

further decrease in catalyst loading results in a decrease in the ignition distance. This decrease is 

due to the homogeneous reactions beginning to kick in. From the plot seen in Figure 5 we have 

turned platinum usually thought of as an ignition promoter into a reaction inhibitor. 
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Figure 5.  Plot of ignition distance as a function of site density, using Pt wall, 300 µm diameter at 1113K. 
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Figure 6 shows a plot of the ignition distance for three different diameters versus site 

density. It can be seen that the maximum ignition distance is inversely proportional to the 

diameter. Also the site density for the maximum ignition distance shifts to lower site densities. It 

is known that the surface to volume ratio increases as the diameter is decreased and therefore the 

maximum ignition distance probably corresponds to the same catalytic surface area. Figure 7 is a 

surface plot, which includes all diameters run, which shows the overall ignition behavior. It can 

be seen that the maximum ignition occurs at the smallest diameter and that at this point the 

ignition distance has been increased to about 4 centimeters due to the radical capturing of the Pt 

wall.  
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Figure 6.  Plot of ignition distance as a function of site density for 200 µm 300 µm and 400 µm diameters at 1113K. 
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Figure 7. Surface plot of the ignition distance based on the diameter and site density at 1113K. 
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A mathematical fit was conducted to find a generalized formula to describe this ignition 

behavior, so that an ignition distance can be predicted depending on the diameter and site 

density. From Figure 5, it can be seen that there are two distinct regions that need to be fit: the 

left side of the curve is considered homogeneously dominated and the right had side of the curve 

is considered heterogeneously dominated. The homogeneously and heterogeneously dominated 

curves were independently fit using a double power law equation where the sum squared 

residuals were minimized (as seen in Equation 1). This fit provides predictive information about 

the maximum ignition distance and the corresponding site density for any given diameter. 
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Table 3.  Pre-exponentials and exponents for the heterogeneously dominated branch. 
 

Diameter (mm) a b a b1 1 2 2

50 2.05E-06 -1.000 1.55E-05 0 

100 5.87E-08 -1.000 7.81E-07 0 

200 7.79E-06 -1.000 9.51E-05 0 

300 1.57E-05 -1.000 1.63E-04 0 

400 2.25E-05 -1.000 2.78E-04 0 

 
 
Table 3 shows the results of the fitting for the heterogeneously dominated branch. From 

the fitting it was determined that the second exponent was not necessary to minimize the 

residuals and as a result the second exponent drops out or becomes zero. Also it can be seen that 

the ignition behavior is inversely proportional to the site density which makes sense in the 
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heterogeneously dominated branch, because as the site density decreases there are fewer sites for 

the catalytic recombination of radicals and the ignition distance would increase.  

Table 4 shows the results of the fitting for the homogeneously dominated branch. Initially 

it can be seen that the second exponent starts off at zero and becomes nonzero as the diameter 

increases, which is an indication of the strengthening of the homogeneous reactions. For the first 

exponent (b1) the ignition distance is dependent on the square of the site density which indicates 

that the homogeneous ignition is sensitive to the presence of the catalyst. As we increase the 

diameter to 400 µm it can be seen that the value of b1 decreases significantly which corresponds 

to the fact that at larger diameters the effect of the catalyst wall becomes weaker simply because 

it has become farther from the reference point which is defined along the centerline of the 

reactor. 

 
Table 4.  Pre-exponentials and exponents for the homogeneously dominated branch. 

 
Diameter (mm) a1 b1 a2 b2 

50 2.52E+08 2.01 3.23E-04 0 

100 8.52E+08 2.00 2.52E-04 0 

200 1.99E+05 2.02 4.37E-04 0 

300 1.00E+04 2.00 1.00E-03 3.30E-02 

400 1.00E-04 0.50 6.19E-03 2.70E-01 
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2.2 3D NAVIER-STOKES SIMULATIONS  

Because the 2D boundary layer model previously shown is limited to reactors in which the flow 

is convectively dominant, and also the model assumed completely premixed conditions, it is 

important to show that the quenching of the homogeneous reactions could occur using a more 

realistic model. Fluent 6.1, a commercially available computational fluid dynamics program, was 

used to create the three dimensional realistic model of the hydrogen oxidation system in a 

microreactor. This program was used to solve the complete set of Navier-Stokes equations.  

Because of the small dimensions that were needed to quench the homogeneous reactions, 

the flow through the reactor is laminar. Having laminar flow is a problem because the mixing has 

to occur mostly through diffusion processes which are generally slow. Because these simulations 

were also going to be used as the first step in designing a high temperature microreactor, it was 

important to use these simulations to find a microreactor that not only quenches homogeneous 

reactions, but also has good mixing. 

The initial design considerations for a microreactor that will ultimately quench 

homogeneous reactions included designing a reactor that would have two inlets and one outlet. 

This would guarantee that there was no premixing or reactions prior to reaching the reactor 

channel. The two inlets would meet at a nozzle, which shortens the diffusion length and 

increases the mixing characteristics of the reactor (See Figure 8). 
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Nozzle Size 
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Inlet 2

Outlet 

Figure 8.  Typical Gambit mesh. 
 
 

2.2.1 Reactor Model and Kinetics 

The reactor model that will be used is the species and transport and reacting flow models 

within Fluent. The solver used was the segregated, three dimensional, double precision solver, 

because of the complexity of the geometry, incompressible flows, and stiff system of equations. 

The flow conditions will be the same as that mentioned in the boundary layer model; however, 

the reactor geometries tested will be significantly different. The reactor geometry will be more 

realistic with non-premixed conditions. Fluent solver requires three major inputs which include 

the results from the preprocessing program (Gambit, TGrid, etc.), identification of the materials 
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that will be used, and finally the initial and boundary conditions. The structure of the Fluent 

program can be seen in Figure 9. 

 

 

FLUENT 
• Mesh import  
• Physical models 
• Boundary conditions 
• Materials properties 
• Calculation 
• Postprocessing 

GAMBIT 
• Geometry 
• 2D/3D mesh generation 

Figure 9.  Basic program structure for Fluent [43]  
 
 
There were several choices of how to input the geometry into Fluent, but the easiest and 

most versatile was Gambit. Gambit is a preprocessing program which creates the geometry and 

mesh to be used in Fluent. Figure 8 shows a mesh that was created by Gambit.  

The Fluent database provides all the transport and thermodynamic properties needed to 

solve the problem. The reactor initial and boundary conditions are shown in  

 

Table 5. The solver then uses these three major inputs to solve the mass, momentum and 

energy equations seen in Equations (8-12) seen in Appendix A. The GRI mechanism was used 

for the gas phase chemistry kinetics. This mechanism can be seen in Appendix A, Table 11. 
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2.2.2 Simulation Parameters and Numerics 

Only homogeneous reactions were included because of the computational expenses that were 

required to solve the Navier Stokes equations and the stiff reactor kinetics. Each simulation took 

about two days; however, there were several ways to decrease the simulation time which 

includes solving the flow conditions first and then turning on the reactions, also having a 

significantly small mesh helped decrease computational times. The tolerances were set to 1e-6 

for the continuity and momentum equations and 1e-3 for the individual species equations. The 

energy equation was deactivated to run the reactor isothermally.  

 

Table 5.  Initial/Boundary Conditions for Fluent Simulations. 

Inlet Velocity Inflow, 9 m/s 

Temperature 1473 K 

Mole fractions Inlets: H2=1, O2=1 

Pressure 1 atm 

Outlet Outflow 

 

2.2.3 Non-reactive mixing simulations 

Since we wanted to design a reactor that had the best mixing conditions, we chose to test several 

parameters to identify a reactor which could be tested further, experimentally. The parameters 

varied were the inlet angle and the nozzle size. 
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Figure 10.  Mixing as a function of inlet angle:  Contour plot of hydrogen mole fraction with nozzle of 100 µm, at 
1473K and H2:O2=1. 

 
 
The effect of the varying inlet angle can be seen in Figure 10. Qualitatively there appears 

to be no significant difference between the mixing lengths of these three different geometries. To 

quantify the mixing quality of the reactors, a mixing length was defined. It is defined as the point 

in the microchannel when the mole fraction of hydrogen was within 10% of the perfectly mixed 

state value of 0.5 across the reactor channel. The effect of the inlet angle on mixing can be seen 

in Table 2: as the inlet angle is varied the mixing length is shortest for the inlet angle zero. 

 
Table 6.  Mixing length produced at inlet angle. 

Inlet Angle (o) Mixing length (cm) 

0 1.04 

22.5 1.24 

45 1.82 

 
 

The nozzle size was also varied to see its effect on the mixing length. Figure 11 shows 

the contour plots of the hydrogen mole fraction for two reactors with inlet angles of 45 degrees. 
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It can be seen that the mixing is better in the reactor with the smaller nozzle. This is expected 

because the diffusional path has been significantly decreased in this area. The mixing length was 

also quantified and the results can be seen in Figure 12. The results indicate that as the nozzle 

size is increased the mixing length is also increased, although less dramatically as the nozzle size 

becomes greater than 200 micrometers. This is expected because decreasing the nozzle size 

decreases the diffusion length and increases the mixing in these nozzles and would increase the 

amount of mixing in the laminar flow regime.  

 

 

Figure 11.  Mixing as a function of nozzle size:  Contour plot of hydrogen mole fraction with nozzle size of 50 µm 
(left) and 350 µm (right), both with inlet angle of 45 degrees, 1473K and H2:O2=1.  
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Figure 12.  Mixing length as a function of nozzle size with inlet angle 45 degrees and nozzle depth 100 μm. 

 

2.2.4 Reactive mixing simulations with homogeneous reactions 

Since not only pure mixing will be occurring within the reactors it is important to see what kind 

of effect the reactions will have on the mixing. In Figure 13, the top contour plots show the 

hydrogen mole fraction of two reactors with significantly different mixing lengths. It can be seen 

that the reactor on the left shows homogeneous mixing whereas the reactor on the right shows 

very little mixing except along the interface of hydrogen and oxygen. It is necessary to determine 

if the homogeneity of the reactor will be worsened with the incorporation of homogeneous 

reactions or if the mixing length limits the conversion.  
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reactions and mixing as a function of nozzle size:  Contour plot
ion (bottom) with nozzle size of 50 µm (left) and 350 µm (right

Figure 13. Homogeneous  of hydrogen mole fraction 
(top) and water mole fract ), inlet angle of 45 degrees, 
at 1473K and H2:O2=1. 
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It can be seen in Figure 13 that complete conversion is obtained in the well mixed case 

and has not been achieved in the poorly mixed case. Qualitatively, it can be seen that the reactive 

length is shorter than the mixing length for the well mixed case as compared to Figure 11. The 

reaction in this case also seems to be very homogeneous. The poorly mixed case shows non-

homogeneity in the reactor and has not reached complete conversion. 

To quantify the results, it was necessary to develop a method to calculate the conversion 

in the reactor. The conversion was calculated using molar flowrates. To get the molar flowrates, 

2 and 3. 

 

an area-weighted average of the molar concentration, density and mass flowrate were used. The 

conversion was calculated using Equations 
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It can be seen in Figure 14 that conversion in the well mixed reactor (red dots) indicates that 

100% conversion can be achieved with a nozzle size of 100 um, whereas less than 100% 

conversion is achieved in the reactor with a nozzle size of 350 um. The mixing has been 

improved due to reactions which could be attributed to the gradient for diffusion processes in this 

area of the induced flow caused by the reduction in the total the number of moles for hydrogen 

oxidation. 
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Figure 14. Conversion as a function of distance with nozzle size of 100 µm (red) and 350 µm (black), inlet angle of 
45 degrees, at 1473K and H2:O2=1. 
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2.3 SUMMARY 

W le to determine that quenching in a microreactor is 

due to the catalyst acting as a radical capturer. Also it was found that the platinum could act as 

both a promoter and an inhibitor in the hydrogen oxidation reaction. When using a complex 

reactor geometry, the results showed that having reactions actually induces mixing in the reactor. 

Since we determined that the mixing distance was on the order of a few millimeters in most 

reactors, we created an initial microreactor design which will be discussed further in the next 

chapter. 

 

ith the use of reactive modeling we were ab



3.0  EXPERIMENTAL 

eveloping a microreactor that is both easy to fabricate, setup and use and is stable over 

a wide range of operating conditions is a significant challenge. There is also the desire to reuse 

all of the parts and make them interchangeable to ensure a modular reactor design. There are 

several options to consider when deciding how to fabricate the reactor. These options include dry 

etching, soft lithography, wet etching, and laser ablation, among others. Silicon etching 

techniques were chosen because they are readily available at the JASMIN microfabrication 

laboratory at the University of Pittsburgh and also at Carnegie Mellon’s Nanofabrication facility. 

The facilities at these laboratories provide all the necessary tools to do photolithography and 

DRIE etching. 

3.1 REACTOR DESIGN CONSIDERATIONS 

Since some key parameters have been identified to the design of the microreactor (eg. nozzle size 

and inlet angle), it is important to test these numerical results using experiments. The first step is 

Because of the many advantages of microreactors which have already been mentioned, the 

following study will use a microreactor as a tool to study high temperature catalytic reactions. 

The reactor design and fabrication will be discussed, as well as preliminary studies on hydrogen 

oxidation in air and pure oxygen. 

D
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to fabricate the microreactor. The microreactor will be fabricated on a (100) Si wafer using deep 

reactive ion etching (DRIE). DRIE is used here over wet-etching because wet-etching has 

isotropic etching patterns and the complex geometry will significantly increase the complexity of 

the mask design. Figure 15 shows the complete microfabrication procedure which starts from a 4 

inch (100) silicon wafer (University Silicon) which has 1 µm thermally grown silicon oxide. A 

. 

 

mask is created on a 4’’ Si (100) substrate with a 1µm SiO2 layer through photolithography. The 

SiO2 mask is then etched using BOE (buffered oxide etching) to be used in DRIE-ICP. An STS 

Induced Couple Plasma Deep Reactive Ion Etcher using the gases C F , SF , Ar, O , N4 8 6 2 2, and He 

was used to etch for 3 hours to achieve a depth of 250 µm
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1.  Spin coat photoresist (AZ4210 and adhesion promoterHMDS).  

2.  Expose photoresist to UV light. 

3.  Dissolve photoresist (AZ400K developer). 

4.  Etch SiO2 (BOE etchant). 

5.  DRIE etch Si. 

6.  Remove remaining photoresist and SiO2 using HF. 

Photoresist Silicon SiO2

 

Figure 15.  Microfabrication Procedure. 
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3.2 MICROREACTOR CHIPS 

An etched reactor chip can be seen in Figure 16. Each reactor was etched to a depth of 250 µm 

where the width of the inlets are approximately 350 µm, the reactor channel is approximately 

1mm, the length of inlet channels are approximately 20 mm and the length of reactor channel is 

32 mm. Nozzle sizes are approximately 175 µm. The roughness seen in Figure 16 is simply a 

result of the roughness on the mask. A different mask was purchased and this roughness of the 

channels was eliminated. The new mask was able to achieve better resolution due to the 

increased dpi value of the mask printer.  

Initially a thermocouple channel was incorporated into the microreactor wafer. Since we 

wanted to get an accurate temperature reading having the thermocouple close to the channel was 

important; however, it was noticed that the thermocouple channel would disappear during the 

developing process. Because we were unable to create a thermocouple channel extremely close 

to the reactor channel, a different method was used to measure the temperature in the reactor 

channel. 
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Figure 16.  Image of microreactor. 

Catalyst incorporation is a significant issue when developing a microreactor setup. Some of the 

most common ways to introduce the catalyst into the microreactor is to use powders, thin films 

produced by chemical vapor deposition (CVD), or solution methods (eg. sol-gel). The powders 

are not a good choice for catalysts because they cannot be added to the channel easily, they clog 

and cause increased pressure drops. The thin film created by CVD is not a viable option because 

these films are expensive to produce and once the films are deposited, the reactor cannot be 

reused. The best option would be a solution method because of the ease of the deposition and the 

thickness can be controlled based on the number of depositions. Initially, a very inexpensive 

solution-based method was used which did not allow for the reuse of the reactor; however it was 

switched out for a Pt thin foil. The Pt thin foil allowed for the reuse of the silicon wafer after 

182 um182 um
20 mm 

32 mm 

3.3 CATALYST 
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reaction, provided a specific surface area, and can be easily replaced after the catalyst is spent. 

The catalyst used was a 0.025 mm thick Pt foil (AlfaAesar, Pure 99.9%) which was cut to 

microchannel size. 

3.4 REACTOR HOUSING/SETUP 

The reactor setup can be seen in Figure 17. The microchannel is defined by the channel that is 

formed by stacking two silicon chips together. The top wafer has three drilled holes which match 

up to the two inlets and one outlet of the microchannel as seen in Figure 16. The two separate 

inlets are provided to ensure that the hydrogen and oxidant were not mixed prior to entering the 

channel. The two wafers are held together by pressing the two wafers between a ceramic 

housing, which ensures a gas tight enclosure by using Kalrez® o-rings. This ceramic housing 

(Macor ®) was chosen because of the ease of machinability and its high temperature stability. 

Two stainless steel tubes are sealed into the ceramic using a fire resistant silicone sealant. These 

tubes use Swagelok connections which provide an easy connection point to our standard 

laboratory equipment (Agilent micro GC 3000). 
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Figure 17.  Experimental Setup. 
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3.5 EXPERIMENTAL MEASUREMENTS 

To test the reaction system, the platinum foil was incorporated into the reaction channel. The 

reaction gases are fed through the two separate stainless steel tubing lines using two mass flow 

controllers (179A Mass-Flo® General Purpose Mass Flow Controller, MKS instruments). The 

feed gases are kept separate until they reach the nozzle, which can be seen in Figure 16. Since 

the mixing does not occur until the beginning of the catalyst zone, it helps to prevent 

homogeneous reactions between the reactants in the inlet tubing which would cause a problem in 

the future once the reactor can achieve higher temperatures. The reactor is heated from the 

bottom using a resistance heater made of molybdenum disilicide (MHI Inc). The temperature is 

controlled by varying the power output of the transformer using a controller provided by MHI. 

The temperature was measured using a K infrared thermocouple (VARIO-ZOOOM™ Model 

5000.2ZH, Everest Interscience). The temperature was measured over the entire reactor using a 

raster setup. A grid was setup to get the best resolution of the temperature without too many 

points. The effluent gases were analyzed by the microGC. To investigate the reaction, the 

conversion was calculated using Equation 25 as seen in Appendix B. 

3.6 HYDROGEN/AIR 

The initial mixture that was used was hydrogen and air. Initially the catalyst that was used in this 

case was a Pt thin film produced by depositing a 0.007 M Pt in 25% HF solution on the silicon 

sited by a proposed method which etches away the naturally formed 

silicon oxide and replaces it with platinum. Several different ratios of hydrogen to air were tested 

wafer. This catalyst is depo
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at a total flowrate of 20 sccm. ted: room temperature 

and the heater temperature of 500 degrees Celsius which corresponds to a heater power output of 

Two different temperature regimes were tes

55%. The 55% power output was chosen because above this power output the o-rings began to 

melt. 

One of the temperature profiles from a mixture of hydrogen and air at 55% power output 

can be seen in Figure 18. A background temperature profile was measured to determine how the 

temperature varied from the temperature profile created from the heater and can be seen in 

Figure 19. From this highly exothermic reaction we would expect to see a temperature rise 

greater than what was seen. Because nitrogen acted as a diluent and decreased the adiabatic 

temperature increase, the system was switched to using hydrogen and pure oxygen. 
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Figure 18.  Contour plot of temperate raster using hydrogen/air at a power output of 55% at different hydrogen to 
oxygen ratios at a total flowrate of 20 sccm.  
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Figure 19.  Contour plot of background temperature profile which corresponds to a power output of 55% and no 
flow. 

3.7 HYDROGEN/OXYGEN 

3.7.1 Premixed 

Because there had been no significant temperature increase and the reaction did not seem to be 

occurring (no water in outlet) premixed hydrogen and oxygen was fed into the reactor. The 

catalyst was also changed to the platinum foil which would guarantee ample reaction sites, 

ensure that a reaction would occur at any temperature, and also allow for the reuse of the 

microreactor. 

One of the temperature profiles from running premixed hydrogen and oxygen at 55% 

power output can be seen in Figure 20. Again the temperature profiles do not show any 
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significant increase in temperatures; however it was seen in the effluent stream that water was 

being formed.  



 

 

Figure 20.  Contour plot of temperate raster using hydrogen/oxygen at a power output of 55% at different hydrogen 
to oxygen ratios at a total flowrate of 20 sccm. 
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From the GC measurements, the conversion was calculated using Equation 25 from 

Appendix B for the range of hydrogen to oxygen ratios tested. This can be seen in Figure 21. It 

can be seen that the conversion is highest for the stochiometric ratio of hydrogen and oxygen.  
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Figure 21.  Conversion plot at different hydrogen to oxygen ratios at a total flowrate of 20 sccm at a power output 
of 55%. 

 

To determine if the reaction front would shift inside the reactor, it was necessary to 

change the flowrates within the reactor. The flowrates were changed from 5-25 sccm, which are 

the limits of the currently installed mass flow controllers. It was expected that the reaction front 

would shift based on the flowrate and would be indicated by a change in the contours of the 

temperature; however, as it can be seen in Figure 22, the flowrates did not significantly change 

the position of the reaction front. 
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Figure 22.  Contour plot of temperate raster using hydrogen/oxygen at a power output of 55% at different flowrates 
keeping the hydrogen/oxygen ratio of 2.0. 
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3.7.2 Conclusions 

It was found that the reaction occurs in the microreactor when the gases are mixed outside of the 

reactor; however, it is definitely necessary to test the reactor in a non-premixed case. Several 

changes have to be made to the reactor to achieve the ultimate goal of having a high temperature 

modular microreactor. A few of these changes will be discussed in Section 4:  Future and 

Outlook.  
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4.0  FUTURE AND OUTLOOK 

There are several aspects of the modeling and experimental microreactor development that need 

of time necessary to solve the model of the microreactor. In terms of the experimental 

microreactor development there are several changes that need to be made to the current 

experimental setup. 

4.1 NUMERICAL SIMULATIONS 

Since we are attempting to increase the complexity of the simulations, the focus of the future and 

outlook of numerical simulations will be based on Fluent. Since only the homogeneous reactions 

were included into the model, it is important to include the surface reactions and see quenching 

behavior in complex geometries. To create a more realistic model, heat transfer must be 

incorporated into the model. Heat transfer would need to be tested to see if it worsens the non-

homogeneity of the reaction in the microchannel. With the added influence of heterogeneous 

reactions and heat transport, the computational demand will be increased and it would be 

beneficial to examine whether or not two dimensional simulations in Fluent can achieve the same 

accuracy in these microreactor geometries. With the switch to two dimensions not only will the 

simulations be shorter but the initial geometry meshing will also be less time consuming.  

to be addressed. First would be to increase the complexity of the model and to reduce the amount 
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4.2 EXPERIMENTAL 

Experimentally there are several changes that can be made here not only for the ease of use but 

to improve the reactor’s oper . O e absence of significant heat 

generated from the reactor which is expected from the hydrogen oxidation reaction. This could 

be due to the fact that the reactor is a large heat sink or that not enough heat is generated by the 

reaction. To increase the heat production, a larger flowrate should be used. This can be 

accomplished by creating a larger reactor volume, an example of this can be seen in Figure 23. 

This larger reactor would still consist of two inlets and one outlet, similar to the setup before; 

however, these inlets would then be connected to a set of diffusers which would split the one 

stream into several streams to increase the contact area between the two inlet streams. These 

streams would be fed into a large reaction channel where the catalyst would be incorporated. 

ation ne issue that was seen was th
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 (b) 

 (c) 

 (d) 

Figure 23.  Proposed re-design of reactor (a-c) top view (d) side view. 
 

 (a) 

H2O H2 O2

H2 +O2 H2O 
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Another one of the problems with the reactor is that the reactor cannot handle extreme 

temperatures which are necessary to study the homogeneous reaction quenching. These 

improvements would require a change in the overall design of the reactor. Previously designed 

high temperature reactors have many things in common. First, they use high temperature 

materials and have good heat transport. Many of these reactors have resistive heating from both 

sides. Suggestions for improvements on the current microreactor design are listed b

 

1.

e orings into the 

 must be developed. Both 

the Si wafer and Macor can handle the compression of 200 psi 

ay be a useful 

n to be effective up to 

temperatures 700 degrees Celsius. Again the problem would arise of having 

proper compression on these seals.  

c. Glass seals have been shown to be effective to temperatures up to 700 degrees 

Celsius because silicon and glass have low therma ismatch up to 700 

degrees Celsius [50]. 

Because most seals won’t seal beyond a certain temperature, it will be important to keep 

istive heating. The use of thin film 

elow: 

 Seals should be made of high temperature material (eg. gold, mica, glass). 

a. Gold would be a good choice due to its high temperature stability which has 

been shown by Metzler et al [48]. In order to incorporate thes

current setup a better way to compress the system

[correspondence with IB Moore Representative]; however, this cannot be 

achieved in the current setup without cracking the silicon reactor. 

b. The use of mica has been shown in solid oxide fuel cells and m

alternative for seals [49]. They have been show

l m

the heating localized, which can be achieved through res
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platinum and high doped polysilicon has been shown to be effective resistive heaters and 

sensors. Platinum can be used as a heater up to about 650 degrees Celsius at which point 

degradation of the platinum thin film occurs [14]. Highly doped poly silicon which was 

passivated with silcon nitride was shown to work up to 950 degrees Celsius. 
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APPENDIX A 

MODEL DESCRIPTION & DETAILED KINETICS 

The model used was the CRESLAF model from Chemkin 4.0. The model allows for the flow to 

be coupled with gas phase and surface chemistry in laminar flow channels. The limitations of the 

model are that the model can only be used when there is a dominant flow direction and that it is 

two dimensional. In this model the effects of radial diffusion are simulated; however, axial 

diffusion is considered negligible. The boundary layer equations are derived from the general 

conservation equations. However, they are simplified for a two dimensional system. The 

boundary layer approximation is a simplification of the Navier Stokes equations. These 

equations become easier to solve because they become parabolic instead of elliptical and the 

computational efficiency is increased. The boundary layer model equations from Chemkin are 

listed in Table 7. The Navier Stokes equations which are solved in Fluent are listed in Table 8. 
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Table 7.  Governing equations of the boundary layer model [42] 
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State equation [Ideal gas law]: 
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Table 8.  Governing equations of the Navier Stokes model [43]. 

Momentum Balance: 
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Energy Balance: 
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State equation [Ideal gas law]:   

∂ r

P WRT /ρ=  12  
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5.08 x 104  2.67 6.292 

3. 2.16 x 108 1.51 3.43 

4. && +↔+
5.a 4.57 x 1019 -1.40 105.1 

2 +  6.17 x 1015 -0.50 0.00 

7.c 4.72 x 1018 -1.00 0.00 
8.d,e 4.5

9.f,g 3.48 x 10  -0.41 -1.12 

OH &  1.48 x 1012 0.60 0.00 

10.  1.66 x 1013 0.00 0.82 

11. 7.08 x 1013 0.00 

12. 3.25 x 1013 0.00 

13. 2.89 x 1013 0.00 -0.50 

 4.2 x 1014 0.00 11.98 

 + &&  1.3 x 1011 0.00 

15.i,f 1.27 x 1017 0.00 -1.629 

 2.95 x 1014 0.00 

16. 2.41 x 1013 0.00 45.5 

17. 6.03 x 1013 0.00 48.4 

18. 9.55 x 106 2.00 3.97 

19.h 1.0 x 1012 0.00 0.00 

 5.8 x 1014 0.00 9.56 

a.) Efficiency factors are: H2O = 12.0, H2 = 2.5 
b.) Efficiency factors are: H2O = 12.0, H2 = 2.5, Ar = 0.83, He = 0.83 
c.) Efficiency factors are: H2O = 12.0, H2 = 2.5, Ar = 0.75, He = 0.75 
d.) Original pre-exponential A factor is multiplied by a factor of two 
e.) Efficiency factors are: H2O = 12.0, H2 = 0.73, Ar = 0.38, He = 0.38 
f.) Troe parameters, reaction 9: a = 0.5, T*** = 1.0 x 10-30, T* = 1.0 x 1030, T** = 1.0 x 10100; 
 reaction 15: a = 0.5, T*** = 1.0 x 10-30, T* = 1.0 x 1030

g.) Efficiency factors are: H2 = 1.3, H2O = 14, Ar = 0.67, He = 0.67 
h.) Reactions 14 and 19 are expressed as the sum of the two rate expressions 
i.) Efficiency factors are: H2O = 12.0, H2 = 2.5, Ar = 0.45, He = 0.45 

Table 9.  Gas phase kinetics for H2-O2  Connaire [44]. 

No.  Reactions k0 [mol,cm,s] β E [cal/mol] 

1. HOOOH 2
&&& +↔+  1.91 x1014  0.00 16.44 

2. HOHHO 2
&&& +↔+  

OHHHHO 22 +↔+ &&  

H&  2.97 x 10OHOOHO 2
6 2.02 13.4 

MHHMH2 ++↔+ &&  

6.b MOO ↔++ && MO
MHOMHO +↔++ &&&  

MOHMHOH 2 +↔++ &&   x 1022 -2.00 0.00 
16MOHMOH 22 +↔++ &&  

 2OH& ↔+
&&

2

222 OHHOH +↔+
HOHOHOH 2
&&&& +↔+  0.30 

0.00 22 OHOOOH +↔+ &&&  

222

14.

OOHHOOH +↔+ &&  
h 2222 OOHOHOH +↔+ &&

2

22222 OOHOHOH +↔
MHOHOMOH 22 ++↔+ &&  

HOHOOH 22
&& +↔  

HOOHHOH 222
&& +↔+  

2222 OHHHOH && +↔+  

222 OHHOOOH &&& +↔+  

2222 OHOHHOOH && +↔+  

2222 OHOHHOOH && +↔+  
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Table 10.  S  et.al [45]. 

 [mol,cm,s] β E [cal/mol] 

H2 + 2PT(S) 2H(S)  0
2H(S)  H2 + 2PT(S)  

2 + PT(S)  O2(S) 0.03 
O2(S)  O2 + PT(S)  

H + PT(S)  OH(S) 1
H(S)  OH + PT(S)  
2O + PT(S)  H2O(S) 0
2O(S)  H2O + PT(S)  

  + PT(S)  H(S) 1
(S)  H + PT(S)   

1. O + PT(S)  O(S) 1
O(S)  O + PT(S)  

 O(S) + H(S)  
H(S) + O(S)  OH(S) + PT(S)  
H2O(S) + PT(S)  H(S) + OH(S)  
H(S) + OH(S)  H2O(S) + PT(S)  

2O(S) + O(S)  2OH(S)  
 H2O(S) + O(S)   

For catalytic wall (Pt), the surface chem

tions and the elementary step kinetics i loped the 

eters for platinum

is calculated using  

urface reaction steps and rate parameters by Aghalayam

 
No.  Reactions k0

1. .48  0.0 ↔
2. 9.4E+11 84.0 
3. O  0.0 

 ↔
↔

4. 1.0E+13 214.2 ↔
5. O .00  0.0  ↔
6. O 1.0E+13 264.6  ↔
7. H .75  0.0 ↔
8. H 1.0E+13 42.0 
9. H .00  0.0 

 ↔
↔

10. H 1.0E+13 252.84  ↔
1 .00  0.0 ↔
12. 1.E+13 281.4 
13. OH(S) + PT(S) 102.48 

 ↔
↔ 6.1E+11 

14. 1.7E+10 50.82  ↔
15. 1.2E+10 77.28 ↔
16. 3.5E+11 52.08  ↔
17. H 1.E+11 52.92 
18. 2OH(S) 1.E+11 79.38 

 ↔
↔

 

istry consists of 6 species and 18 reversible 

reac s listed in Table 10. Aghalayam et al. deve

kinetic equations and rate param  which are used in this study [45]. The reaction 

rate 

⎟⎜= Tkk b
o exp   ⎞

⎠⎝ RT
⎛ − E

13 

ce reaction rate is in terms of  (sec-1) and E(kJ/mol). To ensure that the surfawhere ko

(m 2sec) it is necessary multiply k  with Γ1-mol/cm , where m is the reaction order. o
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Table 11.  Gas-phase kinetics of H2 – air mixture GRI[46]. 

No.  Reactions l] 

.  1.2 x1017 -1.0 0.0 

+&  

H+  2.0 x 1013 .0 

M +   1018 -0.86 

+ OH 22   x 10 0.76 

2 ++  2.6 x 1019 1.24 

  x 10 0.6707 

1.0 x 108 -1.0 
9.0 x 1016 0.6 
6.0 x 1019 1.25 

2.2 x 1022 -2.0 
.

2 3.92 x 10 0.0 

16. 
⋅

17.  8.40 x 10  0.0 635 

13

22 +  7.40 x 1013 -0.37 0.0 

22.  3.57x 104 2.4 -2110 

23. ↔+ &&  1.45 x 1013 0.0 -500 

24 2.0 x 1012 0.0 427 

11

0 

28. 5.00 x 1015 0.0 17330 

a.) Efficiency factors are: H2O = 20.0 
b.) Efficiency factors are: H2O = 6.0, = 2.0, H2 = 3.0 
c.) Efficiency factors are: H2O = 21.0, H2 = 3.3, O2 = 0, N2 = 0 

 k0 [mol,cm,s] β E [cal/mo

MOMO 2 +↔+&1

2. MHO ↔++& 5.0 x 1017 MHO  -1.0 0.0 

3. +↔+ OHHHO 2
&&  3.87 x 10

⋅
4 2.7 6260 

4. 2 OHOOO +↔ &&  0 0.0 2

5. 22 HOOO ↔ 2OHH && ++
⋅

 9.63 x 106 2.0  4000.0 

6. HOOH ↔++
⋅

& 2.8 xM  0.0 22
⋅

7. 222 OHOO2H +↔+&  2.08 x 1019 -1.24 0.0 

8. ↔+ OHOH 22 1.13
⋅⋅

+ OH& 19 - 0.0 

9. OHMOH 2 ↔+ && M  - 0.0 

10. 
⋅⋅

+↔+ OOHOH& 2.65 16 17042  - 1 
⋅

 

11. MHMH 2↔+  0.0 +
12. 2H2H2H ↔+   - 0.0 2

13. OHOH2H +↔+  H  - 0.0 222
..

14. MOHMOHH 2 +↔++   0.0 

15. OHOHH 2+↔+
⋅

&  12O  671 

222 HOHOH +↔+  4.48 x 10
.

13 0.0 1068 
&&&& +↔+ 13

18. 2222 OHHHOH && +↔+  1.21 x 10

 HOHOHOH 2
7 2.0 5200 

19. OHOHHOH 222 +↔+ 1.0 x 10  0.0 3600 

20.  OHHHHO +↔+ &&  2.16 x 10

&  
8

22  1.51 3430 

21. MHOHO ↔++ && MOH
OOHHO2 2
&& +↔

222 OOHH OOH +

2222 OHOHHOOH && +↔+  

25. 2222 OHOHHOOH && +↔+  1.70 x 1018 0.0 29410 

26. 22222 OO HOHOH 1.30 x 10  0.0 -1630 

27. OO HOHOH +↔+ &&  4.2 x 10

+↔+ &&  
14 0.0 12000 22222

222 OOHH OOH +↔+ &&  

H&  

 59 



A.1.1 Example Input

XTMP 1.0E-6   ! Ramp-up Distance for Surface Temperature (cm) 
E 0.01   ! Reactor Rad us (cm) 

NPTS 100.0   ! Number of Grid Points 

XEND 2.00! Ending Axial Position (cm) 
K PT(B) 1.0   ! Bulk Activity (mo ion) 

REAC H2 0.29577465   ! Reactant Fraction (mole fraction) 

L 0.0001   ! Abs lute Tolerance 
L 0.001   ! Relative T lerance 
C 1.0   ! Gas Reaction Rate Multi

 
 

 File 

ICRD RAD   ! Cylindrical Coordinates 
MULT   ! Use Multicomponent Transport 
PRES 0.986923   ! Pressure (atm) 
TINL 700.0   ! Inlet Temperature (K) 
TSRF 700.0   ! Surface Temperature (K) 
VEL 900.0   ! Axial Velocity (cm/sec) 

HIT i

STCH 1.2   ! Stretch Parameter for Non-uniform Grid 

BUL  le fract

REAC N2 0.55633803   ! Reactant Fraction (mole fraction) 
REAC O2 0.14788732   ! Reactant Fraction (mole fraction) 
SURF H(S) 0.395   ! Surface Fraction (site fraction) 
SURF H2O(S) 8.5E-5   ! Surface Fraction (site fraction) 
SURF O(S) 0.000977   ! Surface Fraction (site fraction) 
SURF OH(S) 0.000538   ! Surface Fraction (site fraction) 
SURF PT(S) 0.6034   ! Surface Fraction (site fraction) 
ATO o
RTO o
GFA  plier 
SFAC 1.0   ! Surface Reaction Rate Multiplier 
END
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APPENDIX B 

TOR 

ithin the reactor using the 

ctor. 

system is given by:  

14 

 

The total flow of moles exiting the system and entering the GC is given by:  

 15 

 

The total flow of moles exiting the system and condensing:  

16 

 

An atomic balance over hydrogen gives the following equations: 

 17 

Since generally no water is measured at the GC the equation simplifies to: 

MASS BALANCES IN MICROREAC

The following describes how to calculate the hydrogen conversion w

molar concentration (yi) detected by the GC at the outlet of the microrea

The total flow of moles entering the 

inOinHin NNN ,, 22

•••

+=  

GCOHGCtOGCtHGC NNNN ,,, 222

••••

++=

outOHout NN ,2

••

=  

••••
∗+∗+∗=∗ outoutOHGCGCOHGCGCHininH NyNyNyNy ,,,,, 2222
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•••
∗+∗=∗ outoutOHGCGCHininH NyNyNy ,,,, 222

 18 

 

An atomic balance over oxygen gives the following equation: 

••••

∗+∗+∗=∗ outoutOHGCGCOHGCGCOininO NyNyNyNy ,,,,, 2222 2
1

2
1

 19 

Since generally no water is measured at the GC the equation simplifies to: 

 

•••

∗+∗=∗ outoutOHGCGCOininO NyNyNy ,,,, 222 2
1

 20 

Since the condensing stream only contains water outOHy ,2
 equals 1. 

•••

+∗=∗ outGCGCOininO NNyNy 1
,,,  

222
21 

 22 

 Eliminating Nout: 

23 

 

The hydrogen conversion is defined as: 

 

•••
+∗=∗ outGCGCHininH NNyNy ,,, 22

••••
∗−∗+∗=∗ GCGCHininHGCGCOininO NyNyNyNy ,,,,,, 2222

*2*2  

ininH

GCGCH

inH

H
H

Ny

Ny

N

NX
,,

,

,
2

2

2

2

2
1

•

••

•
∗

∗
−=

Δ
=  24 

in

GC

N

N

,

•

From the above equation 24 and substitution of • : 
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)*2(
),, 22 inHinO yy −*2(

11
,,,

,

,,

,

222

2

2

2

2
GCHGCOinH

GCH

ininH

GCGCH
H yy

y

Ny

Ny
X

−∗

∗
−=

∗

∗
−= •

•

 25 

 The conversion can be calculated simply from the values obtained from the GC and also 

the initial conditions. 

y
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