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OPTIMAL DESIGN AND ADAPTIVE DESIGN

IN STEREOLOGY

Wei Zhang, PhD

University of Pittsburgh, 2009

Stereology is the science that uses geometric probability to extract the internal quantitative

properties of a three dimensional object based on lower dimensional information. It is a

valuable research tool in biological science and relies heavily on statistical principles. In this

dissertation, we focus on studies that examine the number of neurons in a brain region of

interest using stereological techniques in order to compare subjects in different diagnostic

groups, e. g., subjects with schizophrenia and control subjects. A large number of counting

frames are usually used to obtain a prespecified precision for an individual in these kinds

of studies. Typically, researchers determine the number of counting frames for each indi-

vidual by controlling the coefficient of error for the individual. However, the researchers

from the Conte Center for the Neuroscience of Mental Disorders (CCNMD) at University of

Pittsburgh primarily focus on comparing biomarkers among different diagnosis groups rather

than evaluating individuals. A design goal for such stereological studies is to keep study cost

within budget and time constraints, while maintaining sufficient statistical power to address

the research aims. Statistical power can be increased by either adding more subjects or

more counting frames. And the cost of a study can be approximated by a linear combination

of the number of subjects and number of counting frames. To address this need, we have

developed new technologies that enable researchers to design a cost efficient study balancing

the number of subjects with the number of counting frames for each subject.

We also develop adaptive designs to conduct stereological studies. Adaptive designs allow

the opportunity to look at the data at an interim stage, and to modify the design based on
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the information obtained from the first stage data. In our adaptive design, we estimate

the stereological variance without breaking the blind of the Stage I data, and re-design the

second stage based on the stereological variance estimator obtained from the first stage.

Based on our procedure, we show researchers can cost-effectively modify the design while

maintaining the desired study power.
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1.0 INTRODUCTION

Psychiatrists and neuroscientists devote a considerable amount of effort to explore how bio-

logical structures in various brain regions of persons with mental diseases differ from those

in normal individuals. Studies in animals may also be used to detect the effects of phar-

macologic treatments on various types of brain cells in particular regions. Neuroscientists

in the Department of Psychiatry at the University of Pittsburgh often use post-mortem

tissue samples from the Brain Bank Core of the Conte Center for the Neuroscience of Men-

tal Disorder (CCNMD) to assess biological alterations in subjects with schizophrenia (e.g.,

Dorph-Petersen et al. (2007)), or to understand the neuropharmacologic effects of treatment

by performing animals studies (i.e., Konopaske et al. (2007), (2008)). The neurobiological

measurements, such as the number of particular type of neurons or cells, the volume of brain

regions and the density of specific cell types, are often the main focus of these studies. In this

dissertation, we concentrate on studies that examine the number of neurons in particular

brain regions. Neuron number (N ) is an important indicator of neurobiological alterations

in schizophrenia. A pathologic manifestation of schizophrenia appears to be reflected in the

reduction of the number of functional neurons in particular cortical regions. For example,

subjects with schizophrenia show deficits in visual perception and one of CCNMD studies

(Dorph-Petersen et al. 2007) found a substantial reduction in neuron number of the primary

visual cortex in the postmortem tissue from subjects with schizophrenia.

It would be an intractable task to physically count all the neurons of interest for a subject

in these types of studies. For example, there are about 2 ∼ 5 million neurons in the human

primary visual cortex (Dorph-Petersen et al. (2007)). Therefore, it is necessary to sample

tissue specimens to estimate the neuron number for an individual subject. Usually, the brain

regions to be analyzed are cut into sections in a systematic, uniformly random way, and
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then, counting frames within each section are also collected in a uniformly systematic way.

Stereological techniques are applied to estimate the number of particular type of neurons

or cells (N ) in the brain region of interest for a subject using the chosen sampling scheme.

Stereology uses geometric probability to extract the internal quantitative properties of a

three dimensional object based on lower dimensional information. In particular, stereological

procedures provide the mathematical and statistical framework for developing techniques and

methodologies for constructing estimates of various biological quantities (Jensen (1987)).

Unbiasedness considerations for stereological estimators were studied and discussed by Miles

and Davy (1976), Cruz-Orive (1980), Cruz-Orive and Weibel (1981), Jensen and Sunberg

(1986) and Jensen (1987). But to evaluate the precision of a stereological estimator when

the sampling scheme, as is typical, is based on uniform systematic samples is a complex

problem. There is no simple and exact formula for the stereological variance.

According to the typically used double systematic sampling scheme, the stereological

variance can be decomposed into two parts, between sections variance and within section

variance. The first part of the stereological variance depends on a covariogram function

which is defined by the true distribution of the neuron number in the region of interest.

Gundersen and Jensen (1987), Gundersen et al. (1999) gave two estimators of between sec-

tions variance based on two assumed simple forms of the covariogram. Determination of

the second part of the stereological variance depends on a two dimensional version of the

covarigram which is very difficult to obtain due to the irregularly shaped sections and insuffi-

cient information. In order to obtain an approximation of the second part of the stereological

variance, different procedures have been developed. In Cruz-Orive and Geiser (2004), the

authors suggest a Poisson model to fit stereological data.

From 2005 to 2007, Dr. Konopaske performed a series of studies (i.e., Konopaske et al.

(2007), (2008)) on chronic exposure of macaque monkeys with two antipsychotic treatments

to assess whether or not treatment with antipsychotic medication contributes to the distur-

bances in the number of neurons, glial cells and subtypes of glial cells in individuals with

schizophrenia. There were 18 male macaque monkeys (4.5-5.3 years of age) which were di-

vided into 3 experimental groups (n = 6 per group). Two experimental groups were treated

for 27 months with either haloperidol or olanzapine, and a third was given a sham treatment.
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Haloperidol is an antipsychotic medication that has been used for more than 50 years, while

olanzapine is a fairly new atypical antipsychotic. For each of several studies, Dr. Konopaske

and his colleagues spent a number of months collecting the data. In these studies, the sample

tissues are ready for use; however, they need to decide how much effort they should put in

measuring each subject before beginning a study.

In this dissertation, we further develop the statistical theory behind the current variance

estimator of Cruz-Orive and Geiser (2004) (Sections 2.2 and 2.3). Using the data that formed

the basis for the analysis in Konopaske et al. (2007), we illustrate the methodology (Section

2.4). We then show that the validity of the Poisson assumption of Cruz-Orive and Geiser

(2004) is questionable. The Poisson assumption may be appropriate for some cases but,

as we show, the Konopaske data indicates evidence of overdispersion relative to the Poisson

distribution (Section 2.4). This overdispersion of the data motivates us to find another model

which fits the data better. In our research, we investigate a special Cox process, called the

Ammeter process, to obtain a more accurate estimate of the stereological variance (Section

2.5). Basically, the Ammeter process is a Poisson process on R1 where the parameter λ is a

random parameter instead of a constant. To apply the idea of the Ammeter process to the

stereology setting, we extend the Ammeter process to a two-dimensional version to the tissue

section data to take into account the sampling features of stereology. Based on the Ammeter

process and the estimators of between section variance given by Gundersen and Jensen (1987)

and Gundersen et al. (1999), we obtain a new estimator of the stereological variance (Section

2.5). Then we use the maximum likelihood estimates (MLE) of the Ammeter process model

parameters to derive an improved stereological variance for the Konopaske data. In addition,

as a possible alternative approach to estimate the stereological variance, we briefly consider

a Bootstrap approach (Section 2.6). The stereological variance estimators obtained by the

Cruz-Orive and Geiser method and our two new approaches are compared in Section 2.7.

In Chapter 3, we focus on designing a stereological study, where one of the important

considerations is to select the appropriate number of subjects and number of sampling frames.

In a stereological study, researchers generally decide on the number of sampling frames that

are needed for each subject by what is required to precisely estimate the quantity of interest

for each tissue specimen for a given subject. They do so by controlling the coefficient of
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error (CE = standard deviation / mean) of the stereological estimate of (N ) based on each

individual subject’s tissue sample. In Konopaske et al. (2007), about 1600 counting frames

were used for each animal and this took several months of work to prepare and observe

all the sampling frames using a microscope. For a setting where it is clinically required to

obtain the best estimate of a particular value for a given subject, it is reasonable to focus

on this level of accuracy. However, for studies designed for CCNMD, the interest is more

focused on comparing the biological measurements among different population groups. In the

statistical context, the aim of an experimental design is to ensure that comparisons among

the different populations are unbiased and, moreover, as precise and powerful as possible

given the experimental cost and time constraints.

Our ultimate goal is to develop a procedure for planning a cost efficient stereological

study. Statistical power can be increased by either adding more subjects or more sampling

frames. The cost of a study can be approximated by a linear combination of the number of

subjects and the number of sampling frames (Section 3.1.1). In our research, we consider

designs with a fixed power, and obtain an algorithm to find the the number of subjects and

the number of sampling frames that minimize the cost function (Section 3.1.3.1). Another

approach we obtain considers a fixed cost budget, and we provide the combination of subjects

and sampling frames that provide the maximum statistical power (Section 3.1.3.2). Because a

fairly standard CCNMD design is to use matched pairs, we simplify our power considerations

by examining in detail the paired t-test. In addition, one needs to consider the effect of

unequal stereological variances among groups under the alternative hypothesis.

To design a stereological study, we require the information about the magnitude of the

true stereological variance. However, as shown in Chapter 2, the stereological variance

depends on the shape of the region of interest and also on the neuron density. It is usually

difficult to prespecify the stereological variance before undertaking a study which focuses

on a particular type of neuron. To avoid inefficient use of the resources, we apply adaptive

design in the stereological studies to choose the optimal numbers of sampling frames to

maintain power and keep certain costs as low as possible. In Chapter 4, we first review some

existing literature on the topic of both blinded and unblinded adaptive designs (Proschan

and Hunsberger (1995), Gould and Shih (1998), Kieser and Friede (2001), Shun (2001) and
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Liu and Chi (2001)).

We use the approach of blinded adaptive procedures for stereological studies. Specifically,

in our adaptive approach, we only estimate the stereological variance without breaking the

blind of the Stage I data. We develop an approach that at the end of Stage I allows us

to update the assumptions about the stereological variance that were used in the planning

stage. In the setting, we consider the number of subjects is fixed, and we don’t stop the

study earlier. Based on the updated stereological variance, we change the number of counting

frames to be used in Stage II while maintaining the power. Because stereological variance of

the second stage differs from the first stage whenever the number of sampling frames changes

in Stage II, the statistical procedure used to test group effect needs to be handled with care.

In Section 4.3.5 we obtain an adjusted t-statistic to use for hypothesis testing at the end of

the study. We use simulation to show that the type I error rate of our procedure is protected.
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2.0 STEREOLOGICAL ESTIMATE AND VARIANCE

Stereological methods extract the internal quantitative information of a three dimensional

object based on lower dimensional information. Stereology relies heavily on statistical princi-

ples, especially random sampling and sampling inference (Baddeley and Vedel Jensen (2005)).

In performing an experiment involving tissue sampling using tissue stereological techniques,

researchers usually decide on the number of sampling frames that are needed based on what

is required to precisely estimate the quantity of interest. The coefficient of error (CE =

standard deviation / mean) of the stereological estimate for the quantity of interest based

on a tissue sample is usually controlled to be about 5%. This criterion apparently grew

from the desire to estimate with precision the desired quantitative information for a specific

individual or patient. This has been carried over in studies which compare parameters based

upon samples from different populations. By this CE criterion, thousands of sampling frames

may be required for each individual, which can require researchers to do a large amount of

work requiring the use of programmable microscopes. For example, Dr. Konopaske per-

formed a series of studies in the Lewis lab from 2005 to 2007. He spent about four months

collecting data which consisted of about 25,000 observations (sampling frames) of cell types

in the 18 monkeys that were in each study. One of the studies that was completed in 2005 is

discussed in Section 2.4 in detail. The main goal of these studies in the CCNMD is always

to detect the possible neurobiological difference or the treatment effect between groups of

interest, which means that statistical inference about the population is more important than

the inference about an individual. More specifically, the subject to subject variability of the

primary outcome tends to be more important than the individual subject’s measurement

variability when we power stereological studies.

To do experimental design, we obviously need to connect the study power with the
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stereological variability and the biological variability. To better understand the stereological

variability, we consider and evaluate stereological techniques carefully in this chapter.

2.1 STEREOLOGICAL SAMPLING AND STEREOLOGICAL

ESTIMATION FOR COUNTING

It is a well known fact that there are about a hundred billion neurons in a human brain.

Therefore, it is impossible to physically count all the neurons of a particular type in a region

of interest. It is necessary to sample tissues to estimate the number of neurons. Only

comparatively very small pieces of tissue can be observed. One of the standard sampling

schemes commonly used in stereology to count neurons or other cells within a region is

uniformly systematic sampling, which proceeds in multiple stages. A brain region of interest

with length L is exhaustively divided to M sections with thickness L
M

and m sections are

selected for the study. The location of the initial section related to the one end of the brain

region can for technical cutting reasons be viewed as having a uniform distribution on [0,

L
M

). The first sampled section is chosen from the first M
m

sections with equal probability. For

simplicity, we assume M is an integer multiple of m. We further assume X1 to be the position

of the first selected section relative to the one end of the brain region, and Xj = X1+(j−1) L
m

,

j = 2, . . . , m, to be the positions of the remaining m − 1 sections selected by systematic

sampling. Considering the inherent randomness of where the tissue of interest actually begins

in the first section physically cut, and the independently chosen the first sampled section,

the position of the first selected sample section can be viewed as uniformly randomly chosen

between 0 and L
m

, that is, X1 ∼ U [0, L
m

), and Xj = X1 +(j−1) L
m

, j = 2, . . . , m. The section

sampling fraction (τs) which is sampled using systematic sampling, is m
M

. In Figure 2.1, the

ellipse in the left graph represents a three dimensional region of interest intersected by a

series of systematic uniform random cutting planes, represented by a set of lines. The graph

on the left represents a series of selected sections which are the grey stripes inside the ellipse.

The darkened regions in the right hand graph (Schmitz and Hof (2007)) are the brain region

of interest. In this example, a total of 50 sections (M = 50) were cut, and 10 sections (m =
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10) were systematically selected. The first selected systematic sampling section is at 3L
50

and

then every fifth section (τs = 1/5) subsequently.

Figure 2.1: Section Sampling Fraction τs = m
M

Second, a rectangular lattice grid, which has a fixed distance between cross lines called

the u-step (au) and the v-step (av), is randomly superimposed on each section. The same

u-step and v-step distances are used for all the sections within each individual. Within each

rectangular grid a smaller rectangle is that the number of particles can be obtained for that

smaller piece of tissue. This is done because the larger rectangular grid may include too

many cells to measure. Oftentimes, one chooses this smaller rectangular frame, which is

called the counting frame, to be the upper left corner of the rectangular grid, but in fact

it can be any consistent area within the rectangular grid. The physical frame examined

actually has depth and has a “cubic” structure, that is, it’s three dimensional. The size of

the rectangle is related to the area sampling fraction to be described shortly. The number

of rectangular grids determines the number of counting frames that can be obtained from

that tissue cross-section. Clearly, depending on the area of the cross-section, the numbers

of counting frames may differ from section to section. Furthermore, for a given section,

changing au and av will also change the number of counting frames. For each section j,

we define a random vector (U1j, V1j) as follows. Find the leftmost rectangular grid entirely

within the cross section. If two or more such rectangular grids exist, choose the uppermost.

For this specific grid, let U1j be the distance from the upper left corner to the tissue edge

moving along the u-direction, and V1j be the same in the v-direction. Then the counting
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frame for that grid is the upper-left smaller square, and all other counting frames are chosen

within any rectangular grid, as long as the upper left hand corner of the counting frame

remains within the tissue cross section. The set of upper-most left hand corners of these

counting frames is given by

Pj = {(U1j + kau, V1j + lav) : (U1j + kau, V1j + lav) ∈ Rj : k, l ∈ Z}

where Rj is the range of the jth section, for j = 1, · · · ,m. The position (U1j, V1j) determines

Figure 2.2: Area Sampling Fraction τa = a2
f/(au · av)

the position of the entire grid Pj in the jth section. Note that by construction, U1j, V1j can be

considered to be uniformly randomly selected within [0, au) × [0, av). The initial quantities

U1j and V1j for each tissue cross-section are chosen independently of each other and the

position of the first selected section X1. More specifically, (U11, V11), · · · , (U1,m, V1,m)|X1 =

x are conditionally i.i.d. according to (U, V ) ∼ Unif([0, au) × [0, av)) for any x. Hence

(U11, V11), · · · , (U1,m, V1,m) are independent of X1. The little black square in Figure 2.2

illustrates a counting frame with length af is chosen at the upper left corner of each rectangle,

and as noted is the specific tissue observed under the microscope. The area of the counting

frame is fixed and the area associated with each u, v step (au multiplied by av) is also

given. The area sampling fraction (τa) of this systematic sample can then be calculated as

9



a2
f/(auav), and it is the same among all sections within each individual. Figure 2.2 gives

a two dimensional version of a cross-section with counting frames illustrated, and counting

frames selected within each cross-section is a two dimensional systematic random sampling.

Third, to allow unbiased counting rules based on the thick sections with thickness L
M

, a

smaller thickness h is examined in detail where h ≤ L
M

. The height of the counting frame is

assumed known relative to the thickness of the sections. The height sampling fraction (τh)

can then be calculated as h/ L
M

. The numbers of particular type of neurons or cells within

the selected counting frame between Xj and Xj + h are recorded. Figure 2.3 illustrates a

three dimensional version of a rectangle and a counting frame in Figure 2.2.

Figure 2.3: Height Sampling Fraction τh = h/ L
M

The micrograph in Figure 2.4 is from a study of the neuron number in the primary

visual cortex conducted by Dorph-Petersen et al. (2007). An image of a typical counting

frame is shown with a solid (red) exclusion line and a dotted (green) inclusion line. A

neuron is counted if: (1) its nucleolus is in focus fully or partially inside the counting frame

without touching the exclusion line, and (2) its nucleolus is fully or partially below the top

surface without touching the bottom surface. As shown in Figure 2.4, there are six typical

magnocellular neurons in total. The darker spot marked by “↑ ” within the neuron is the

nucleolus. In this micrograph, the two neurons in the middle with label “S” are counted.

The overall fraction of the brain region sampled from these three sampling fractions is

τs · τa · τh. The number of a particular type of neurons within a counting frame can be

obtained, using a programmable microscope for sampling and visualization of the particular

10



neurons of interest. Let Qj denote the total number of neurons actually counted by using

the microscope in the jth section of this selected random systematic sampling. The total

number of neurons actually counted in all of the counting frames is Q =
∑m

j=1Qj. Then the

total number of neurons in the region is estimated directly from

N̂ = · 1
τs
· 1

τa
· 1

τh
Q. (2.1)

N̂ is called the fractionator estimator, and is a primary outcome of the stereological studies.

The estimator N̂ can be shown to be an unbiased estimator of the true total number of

neurons N irrespective of tissue shrinkage or swelling that may occur when the tissue is

processed (Dorph-Petersen et al. (2001)).

N - Neurons, S - Counted, ↑ - Nucleolus.

Figure 2.4: Image of a counting frame (Dorph-Petersen et al. (2007))
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2.2 THE DIFFICULTY OF VARIANCE ESTIMATION

From the theory of systematic sampling (Cochran (1977)), it is known that it is impossible

to develop an unbiased estimate of the stereological variance based upon a single system-

atic sample. Since the variance of the fractionator estimator is important for the studies

concerning group differences of the neurobiological measurements, we would like to better

understand the stereological variance. Based on the stereological sampling described in the

previous section, we have two systematic samples for each tissue block: the random system-

atic section sampling and the random systematic area sampling within a section. Therefore,

the stereological variation is from these two sources, which are called the between sections

variation and the within section variation. The first component is due to the random choice

of the first section, i.e., choosing X1, while the second component is due to the random choice

of the position of the first counting frame on the u and v axis, i.e., choosing (U1j, V1j), j = 1,

. . . , m, under the random systematic sampling method.

We now consider the stereological variance problem in further detail. In general, the true

number of a particular type of neurons can be represented as an integral of neuron’s density

function s(x, u, v) in three-dimensions:

N =

∫ L

0

{∫∫
(u,v)∈R(x)

s(x, u, v)dudv

}
dx, (2.2)

where s(x, u, v) is a density function of a particular type of neuron over the section at x, and

R(x) is the range of cross section values of (U, V ) at position x. To simplify the problem,

let us consider the problem of a one-dimension integral first,

N =

∫ L

0

f(x)dx, (2.3)

where f(x) is a nonnegative measurement function over the interval [0, L],

f(x) =

∫∫
(u,v)∈R(x)

s(x, u, v)dudv. (2.4)

The function f(x) represents the number of neurons at position x. Let X1 ∼ U [0, L
m

)

and Xj = X1 + (j − 1) L
m

. Then, if we were to measure f(x) without error at each of

12



X1, X2, · · · , Xm, an approximation of the integral would be given by

Ñ =
L

m

m∑
j=1

f(Xj)

=
L

m

m∑
j=1

f(X1 + (j − 1)
L

m
). (2.5)

Since

E[Ñ ] =

∫ L
m

0

L

m

m∑
j=1

f(x1 + (j − 1)
L

m
)
dx1

L
m

=
m∑
j=1

∫ L
m

0

f(x1 + (j − 1)
L

m
)dx1

=
m∑
j=1

∫ j L
m

(j−1) L
m

f(x)dx

=

∫ L

0

f(x)dx

= N , (2.6)

Ñ is an unbiased estimator of N . Let f̂(X1 + (j − 1) L
m
, U1j, V1j) (which we abbreviate as

f̂j) be the estimator of the total number of neurons per unit of thickness at the section

determined by Xj given both X1 and (U1j, V1j) as the position of the first section and the

first counting frame, respectively. Thus, using the same argument as in Section 2.1, we have

f̂(X1 + (j − 1)
L

m
,U1j, V1j) =

1

τah
Qj, (2.7)

where Qj is the total number of neurons actually counted in all counting frames within the

section between Xj = X1 + (j−1) L
m

and Xj +h = X1 + (j−1) L
m

+h. Then the stereological

13



estimate N̂ in (2.1) can be denoted as,

N̂ =
1

τs
· 1

τa
· 1

τh

m∑
j=1

Qj

=
1
m
M

1

τa

1
h
L
M

m∑
j=1

Qj

=
L

m

m∑
j=1

1

τah
Qj

=
L

m

m∑
j=1

f̂(X1 + (j − 1)
L

m
,U1j, V1j). (2.8)

By a similar argument to that in (2.6), we can show that N̂ is an unbiased estimator of N .

By the standard variance decomposition, the variance of N̂ is,

var[N̂ ] = var[E(N̂ )|X1] + E[var(N̂ |X1)]

= var[E[
L

m

m∑
j=1

f̂(X1 + (j − 1)
L

m
,U1j, V1j]|X1]+

E[var[
L

m

m∑
j=1

f̂(X1 + (j − 1)
L

m
,U1j, V1j]|X1]. (2.9)

In (2.9),

E[
L

m

m∑
j=1

f̂(Xj, U1j, V1j)|X1] =
L

m

m∑
j=1

E[f̂(X1 + (j − 1)
L

m
,U1j, V1j)|X1]

=
L

m

m∑
j=1

∫∫
(u,v)∈R(X1+(j−1) L

m
)

s(X1 + (j − 1)
L

m
, u, v)dudv

=
L

m

m∑
j=1

f(X1 + (j − 1)
L

m
)

= Ñ , (2.10)

so that the first term in the right hand side of (2.9) is var[Ñ ].
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The second term on the right hand side of (2.9) is

E[var[
L

m

m∑
j

f̂(Xj, U1j, V1j)|X1]] = E[(
L

m
)2

m∑
j=1

var[f̂(X1 + (j − 1)
L

m
,U1j, V1j)|X1]] (2.10a)

= (
L

m
)2

m∑
j=1

E[var[f̂(X1 + (j − 1)
L

m
,U1j, V1j)|X1]] (2.10b)

= (
L

m
)2

m∑
j=1

E[var[f̂(X1 + (j − 1)
L

m
,U, V )|X1]] (2.10c)

= (
L

m
)2

m∑
j=1

∫ L
m

0

var[f̂(x1 + (j − 1)
L

m
,U, V )|x1]

dx1

L
m

(2.10d)

=
L

m

m∑
j=1

∫ j L
m

(j−1) L
m

var[f̂(x, U, V )|x]dx (2.10e)

=
L

m

∫ L

0

var[f̂(x, U, V )|x]dx, (2.10f)

where (2.10a) follows from f̂(X1 + (j − 1) L
m
, U1j, V1j) being independent of f̂(X1 + (k −

1) L
m
, U1k, V1k), j 6= k, for given X1. Since (U11, V11), · · · , (U1,m, V1,m) are i.i.d. according to

(U, V ) ∼ Unif([0, au)× [0, av)), (2.10c) follows from the fact that the marginal distribution

of U, V |X does not depend on X. (2.10d) follows from the uniform distribution of X1; and

(2.10e) follows from a change of variables.

Hence, combining (2.10) and (2.10f), we obtain

σst = var[Ñ ] +
L

m

∫ L

0

var[f̂(x, U, V )|x]dx, (2.11)

where we use σst as the notation of the stereological variance of the stereological estimator

N̂ , and where σst1 and σst2 are respectively the notation for the first and second component

terms of the stereological variance in (2.11). Note that the between-section variance σst1

is the same as the variance of Ñ . The estimation of the between section variance can be

examined by considering the variation of approximating the integral of function f(x) over the

interval [0, L] using a systematic sample. To calculate this variance, usually the covariogram

function gf (t) defined by (2.12) is introduced. The within section variance σst2 is the integral

over X of the conditional variance of f̂j given X1 = x and is determined by the shape of the

density function s(x, u, v) in the jth section, j = 1, . . . ,m. Note that this quantity depends
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on the conditional distribution of U1j, V1j|X1. As we later discuss, to compute this variance

would require a notion of a two dimensional covarigram over a complex region, so other

approaches are needed. To be clear, even if we know the true value of f(Xj), which means

the second term on the right hand side of (2.11) is zero, there is still variation in terms of

var[Ñ ].

To calculate the between section variance, var[Ñ ], we need the covariogram function

gf (t) defined as

gf (t) =


∫ L−t

0
f(x+ t)f(x)dx 0 ≤ t ≤ L∫ L

−t f(x+ t)f(x)dx −L ≤ t ≤ 0

0 otherwise.

(2.12)

the function gf (t) reflects in some sense the correlation of the measurement function f

between two slices separated by a distance t.

Then var[Ñ ] is given by

var[Ñ ] =
L

m
gf (0) + 2

L

m

m∑
l=1

gf (l
L

m
)− 2

∫ L

0

gf (y)dy, (2.13)

(see Correa (2001)).

A standard simplifying assumption is that gf (t) has the form at2 + bt + c, b < 0 (see

Gundersen and Jensen (1987)). Then it can be shown that

var[Ñ ] = −1

6
(
L

m
)2b. (2.14)

Alternatively, if it is assumed that gf (t) has the form b3t
3 + b2t

2 + b0 (see Gundersen et al.

(1999)), then it can be shown that

var[Ñ ] =
1

60
(
L

m
)4b3. (2.15)

We denote the variances in (2.14) and (2.15), respectively, by σast1[Ñ ] and σbst1[Ñ ], both

of which can be viewed approximations of σst1. The standard approach is to approximate
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the covariogram function gf (t) at 0, L
m
, 2 L

m
, · · · , (m− 2) L

m
by ĝf (t), where

ĝf (k
L

m
) =

L

m

m−k∑
j=1

fjfj+k. (2.16)

To estimate the coefficients a, b and c in the quadratic function and to obtain an estimate

of σast1[Ñ ], the standard approach uses, the estimates of the first three covariogram terms

and solves

ĝf (0) = ĉ,

ĝf (
L

m
) = â(

L

m
)2 + b̂(

L

m
) + ĉ,

ĝf (2
L

m
) = 4â(

L

m
)2 + 2b̂(

L

m
) + ĉ. (2.17)

The solution for b can be obtained as

b̂ = −
3ĝf (0)− 4ĝf (

L
m

) + ĝf (2
L
m

)

2 L
m

, (2.18)

and hence, we estimate σst1 by

σ̂ast1[Ñ ] =
L2

12m2
(3

m∑
ĵ=1

f 2
j +

m−2∑
j=1

fjfj+2 − 4
m−1∑
j=1

fjfj+1), (2.19)

where fj = f(Xj, U1j, V1j), Xj = X1 + (j − 1) L
m

, and j = 1, . . . ,m.

Similarly, we can obtain the solution for b3 in (2.15) as

b̂3 =
3ĝf (0)− 4ĝf (

L
m

) + ĝf (2
L
m

)

4( L
m

)3
, (2.20)

so that, we can also estimate σst1 by

σ̂bst1[Ñ ] =
L2

240m2
(3

m∑
j=1

f 2
j +

m−2∑
j=1

fjfj+2 − 4
m−1∑
j=1

fjfj+1), (2.21)

where fj = f(Xj, U1j, V1j), Xj = X1 + (j − 1) L
m

, and j = 1, . . . ,m.

We now consider in further detail the second term in the right hand side of the variance
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formula (2.11). Recall that

f(x) =

∫∫
(u,v)∈R(x)

s(x, u, v)dudv, (2.22)

so that

f̂(Xj, U1j, V1j)

= axay
∑∑

{k,l:(U1j+(k−1)ax,V1j+(l−1)ay)∈Rj}
s(Xj, U1j + (k − 1)ax, V1j + (l − 1)ay),

j = 1, . . . ,m. (2.23)

Hence by extending the approximations underlying (2.5) and (2.6) to a two dimensional

systematic sample, we have that f̂(Xj, U1j, V1j) is an unbiased estimator of f(Xj). From

the random systematic sample and the idea of the one dimensional covariogram we see that

the between section variation is a function of the density function s(x, u, v). To compute

var[f̂(X1 + (j− 1) L
m
, U1j, V1j)|X1], we need a two-dimensional version of covariogram and a

method to deal with the problem of irregularly shaped sections. It is very difficult to work

with a two dimensional covariogram. Furthermore, to actually estimate the within section

variance, a bivariate polynomial would be needed to approximate the bivariate covarigram

in the spirit that Gundersen and Jensen (1987) and Gundersen et al. (1999) did for the

univariate case.

To avoid using the two dimensional version of the covariogram function g∗s(x, y), Cruz-

Orive and Geiser (2004) tried to make some simplifying assumptions on the neurons’ distri-

bution within the sections, which we discuss in the following section.

2.3 CRUZ-ORIVE AND GEISER’S STEREOLOGICAL VARIANCE

ESTIMATOR

Cruz-Orive and Geiser (2004) stated that no simple formula has been developed for the esti-

mator of the second component of the stereological variance. In fact, they note in their paper

that the estimation of the within section variance based on a two dimensional systematic
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sample was viewed by Cruz-Orive (1999) as an open problem. To avoid the problem of a two

dimension covariogram function applied on a irregularly shaped section, Cruz-Orive and

Geiser (2004) made the following approximation. Let nj be the number of counting frames

in the jth section and Qjk be the observed number of neurons in the kth counting frame of

the jth section, k = 1, . . . , nj, j = 1, . . . ,m, so that

Qj =

nj∑
k=1

Qjk (2.24)

is the total number of neurons observed in the jth section. Let

K =
m∑
j=1

nj (2.25)

denote the total number of the counting frames in all sections.

They assume that given the first position of X1, the numbers of neurons in each counting

frame in the jth section are i.i.d from a Poisson distribution with parameter λj, i.e., for

each j, that is Qjk|X1, k = 1, · · · , nj ∼i.i.d Poisson(λj). As the counting frames all have

equal size, then Qj|X1, j = 1, · · · ,m,∼indep Poisson(njλj). Their assumption requires that

neurons follow a homogeneous process over the region of interest.

Since the Poisson distribution is independent of the location, this means Qjk is indepen-

dent of U1j and V1j.

Thus, within the jth section,

var[f̂(X1 + (j − 1)
L

m
,U1j, V1j)|X1] =

1

τ 2
ah

2
var[Qj] =

1

τ 2
ah

2

nj∑
k=1

var[Qjk] =
1

τ 2
ah

2
njλj, (2.26)

so that the ML estimator of the variance is

v̂ar[f̂(X1 + (j − 1)
L

m
,U1j, V1j)|X1] =

1

τ 2
ah

2
Qj. (2.27)
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Hence, Cruz-Orive and Geiser (2004) obtained the following estimator of σst2

σ̂C−Ost2 =
L2

m2

m∑
j=1

v̂ar[f̂(X1 + (j − 1)
L

m
,U1j, V1j)|X1]

=
L2

m2

1

τ 2
ah

2

m∑
j=1

Qj

=
1

τ 2
s τ

2
a τ

2
h

Q. (2.28)

Combined with the between section variance estimator (2.19) or (2.21), Cruz-Orive and

Geiser then provided an estimate of the stereological variance σst.

2.4 MOTIVATING DATA

In 2005, Dr. Konopaske performed a study on chronic exposure of macaque monkeys with

two antipsychotic treatments to assess whether or not treatment with antipsychotic med-

ication contributes to the disturbances in the number of a particular type of cells, called

glial cells, previously observed in individuals with schizophrenia (Konopaske et al. (2007)).

In Konopaske’s study, there were 18 male macaque monkeys which had been divided into 3

experimental groups (n = 6 per group): haloperidol, olanzapine and sham, where the mon-

keys were matched across experimental groups as triples. Actually a more simplified cutting

scheme uses large slabs cut initially to make the small width sections cuts feasible and at

the same time produce sections which follow the model. For each monkey, the parietal lobe

was cut in a systematic, uniformly random manner producing 12 ∼ 15 slabs (m = 12 ∼ 15)

with a mean width of L
m

= 2.5mm(= 2500µm). The thickness of a small width section is

80µm. There are about 31 small width sections for each slab, which yield approximately 375

to 469 small width sections for the entire region when the sampled sections are viewed to

be exhaustively cut from the region. The section sampling fraction is 0.0320 (= 80/2500).

The area of the counting frames is always kept as 219.7µm2. The length of u-step (au) and

v-step (av), au = av, was kept constant within each monkey, but may differ across monkeys,

varying from 700 to 900 µm. Dr. Konopaske has kindly provided us access to the individual
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counting frame data from this study, where the number of glial cells was counted in each

counting frame.

Uneven shrinkage in section thickness can introduce biases when using the classical opti-

cal fractionators (West and Gundersen (1991)). However, such potential biases are eliminated

by using the optical fractionators based on a mean section thickness that is number-weighted

(t̄Q) (Dorph-Petersen et al. (2001)). Mean section thickness is number-weighted as follows:

t̄Q = (
∑

j

∑
k(tjkQjk))/(

∑
j

∑
kQjk) where tjk is the local section thickness of the jth section

and kth counting frame having a count of Qjk. The height of the counting frame is fixed,

h = 8µm. Total cell numbers were estimated as:

N̂ =
1

τs
· 1

τa
· 1

τh
·Q, (2.29)

where the section sampling fraction (τs) is m
M

, the area sampling fraction (τa) is
a2
f

axay
, the

height sampling fraction (τh) is h
t̄Q

, and Q is the number of neurons counted in all sampled

counting frames.

We now apply the Cruz-Orive and Geiser (2004) method to estimate the stereological

variance, using monkey #256 as an example. For monkey #256, 12 sections and 1626

counting frames in total were sampled and these data are provided in Table 2.1. The length

of the u-step and v-step are 750 µm and the mean counting frame thickness is 32.5 µm.

The fractions τs, τa and τh were 0.0320 (= 80/2500), 0.0004 (= 219.7/(750*750)) and 0.4065

(= 8/19.7), respectively. A total of 931 neurons were counted in all the sampled counting

frames, so that the estimated number of the glial cells in the parietal lobe by (2.29) was

N̂ =
1

τs
· 1

τa
· 1

τh
·Q =

1

0.0320
· 1

0.0004
· 1

0.4065
· 931 = 183.2 · 106.

Applying (2.21) and (2.28) to calculate the between and within section variance, respectively,

we obtain the stereological variance estimator for monkey #256 as

σ̂st =
1

240

1

τ 2
s τ

2
a τ

2
h

[(3
m∑
j=1

Q2
j −Q)− 4

m−1∑
j=1

QjQj+1 +
m−2∑
j=1

QjQj+2] + (
1

τsτaτh
)2Q = 36.8 · 1012.

Table 2.1 gives the section data of monkey #256.

In this study, there were more than 30,000 counting frames collected over the 18 ani-
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Table 2.1: Details for the Stereological Variance Formula: Monkey #256 (Konopaske et al.

(2007))

Section nj Qj Q2
j QjQj+1 QjQj+2

1 42 25 625

2 77 46 2116 1150

3 92 56 3136 2576 1400

4 89 38 1444 2128 1748

5 95 44 1936 1672 2464

6 141 70 4900 3080 2660

7 181 85 7225 5950 3740

8 245 150 22500 12750 10500

9 218 145 21025 21750 12325

10 212 126 15876 18270 18900

11 177 107 11449 13482 15515

12 57 39 1521 4173 4914

Total 1626 931 93753 86981 74166
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mals. Of interest to us was to examine whether the necessary Poisson assumption is valid

to use Cruz-Orive and Geiser’s approximation for the stereological variance models holds.

To do this, we examined whether or not the Poisson assumption holds within each section

for all animals. As we show, our results indicate that the Poisson assumption seems not

to be appropriate. We considered typical examples of three monkeys, one from each group:

monkey #256 from olanzapine, #261 from sham and #263 from haloperidol group. In Table

2.2 for each monkey, the variables in the first three columns are: animal ID (ID), section

number (Section), and number of sampled counting frames for each section (nj). For each

corresponding section, the fourth to fifth columns are the sample mean Q̄j over counting

frames within that section, and the sample variance s2
j over counting frames of the number

of the glial cells for each corresponding section. The sixth column shows the ratio of the

variance to the mean (s2
j/Q̄j), which under the Poisson distribution assumption should be

approximately equal to 1.0. The variances within each section, however, are about 10-20

percent larger than the means. This suggests that the data have more variability within

each section than the Poisson distribution predicts. Additionally, Pearson χ2 goodness-of-fit

tests are used to check the Poisson assumption and the corresponding p-values obtained by

using Pearson χ2 goodness-of- fit for each section are listed in the last column (p-value) of

Table 2.2. The goodness-of-fit test shows that in about 50% of the sections the p-values are

less than 0.10. Thus, our analyses suggest that we would be underestimating the true vari-

ability by using the Cruz-Orive and Geiser method. This motivates us to seek an approach

to better fit the data.
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Table 2.2: Validation of Poisson Assumption

ID Section nj Q̄j s2
j s2

j/Q̄j p-value

1 42 0.595 0.686 1.15 0.783

2 77 0.597 0.848 1.42 0.123

3 92 0.609 0.724 1.19 0.160

4 89 0.427 0.361 0.85 0.069

5 95 0.463 0.421 0.91 0.384

256 6 141 0.497 0.780 1.23 0.031

7 181 0.470 0.650 1.39 0.010

8 245 0.612 0.755 1.23 0.012

9 218 0.665 0.887 1.33 0.483

10 212 0.594 0.754 1.27 0.022

11 177 0.605 0.899 1.49 0.011

12 57 0.684 0.719 1.05 0.832

1 31 0.871 0.983 1.13 0.728

2 48 0.583 0.546 0.94 0.650

3 62 0.548 0.481 0.88 0.806

4 72 0.583 0.725 1.24 0.664

5 81 0.457 0.726 1.59 0.015

6 103 0.621 0.904 1.46 0.023

7 124 0.589 0.832 1.41 0.029

261 8 176 0.534 0.799 1.50 0.014

9 230 0.504 0.522 1.03 0.075

10 169 0.521 0.549 1.05 0.968

11 239 0.557 0.718 1.29 0.001

12 152 0.599 0.811 1.36 0.061

13 88 0.659 0.664 1.01 0.415

Note, the p-values listed in the last column are obtained by using Pearson χ2 goodness-of- fit.
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ID Section nj Q̄j s2
j s2

j/Q̄j p-value

1 12 0.500 0.455 0.91 0.818

2 50 0.360 0.398 1.11 0.711

3 71 0.592 0.617 1.04 0.736

4 86 0.372 0.425 1.14 0.355

5 110 0.473 0.490 1.04 0.928

263 6 144 0.583 0.720 1.23 0.028

7 156 0.615 0.754 1.23 0.005

8 146 0.699 1.053 1.51 0.092

9 185 0.578 0.713 1.23 0.133

10 299 0.448 0.517 1.15 0.199

11 195 0.564 0.660 1.17 0.071

12 116 0.509 0.896 1.76 0.006

Note, the p-values listed in the last column are obtained by using Pearson χ2 goodness-of- fit.

2.5 AMMETER PROCESS

Due to Konopaske’s data not conforming to the assumption of a Poisson point process, we

would like to find a stochastic point process that would more appropriately fit the data. Since

the counting frame data within sections are collected by a systematical sampling scheme,

ideally we would like to find a non-homogeneous Poisson process which is independent of the

location to avoid the use of two-dimensional covariogram; however, no such process exists.

Instead we suggest the use of a special Cox process which appears to fit the data better than

the Poisson.

A Cox process with a piecewise constant intensity, sometimes called an Ammeter process,

is a Poisson process where λ is generated from a random variable instead of being constant

(see Grandell (1997)). Consider a one dimensional range of interest, and assume that there

are K fixed known mutually exclusive sub-range intervals L1, L2, . . . , LK . Let λ1, λ2, . . . , λK

be i.i.d from a common distribution U . Then the process given λ1, λ2, . . . , λK is a Poisson
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process for each sub-range where the process with intensity parameter λk over the interval

Lk, that is,

λ(t) = λk for t ∈ Lk, k = 1, . . . , K. (2.30)

Denote E[λk] by µA and var[λk] by σ2
A. An instance of the intensity process in the Ammeter

process is illustrated in Figure 2.5.

Figure 2.5: Illustration of the Intensity in the Ammeter Process

For application to the tissue section data, we need to extend the Ammeter process

to a two dimensional version. For the range of interest, we assume that there are I ∗ K

fixed known mutually exclusive square sub-ranges L11, L12, . . . , LIK having common square

length L. Let λ11, λ12, . . . , λIK be i.i.d from a common distribution U . Then the process

given λ11, λ12, . . . , λIK is a two dimensional Poisson process for equal area size with intensity

parameter λik over the square Lik, that is,

λ(t) = λik for t ∈ Lik, i = 1, . . . , I and k = 1, . . . , K. (2.31)

Denote E[λik] by µA and var[λik] by σ2
A.

If the grid length used under the microscope is approximately the same the common

square length L in the Ammeter process, then each systematic sample falls within the square

[iL, (i+1)L]× [kL, (k+1)L]. Moreover, this assumption is still valid, if L is ρ times the grid

length where ρ is an arbitrary positive integer. With these assumptions we can recalculate
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the within section variances based on the Ammeter process assumption. Without these

assumptions, there is the possibility that the counting frame would fall across two or more

sub-ranges, vastly complicating the distribution theory. However, the ratio of the area of the

counting frames to the area of the rectangle is very small, which is about 1/2000, so there

is very little possibility that this happens. The estimate N̂ of the number of neurons would

be given by the same formula as (2.1), and the estimate is an unbiased estimator of N .

To estimate the stereological variance, we calculate the between section variation by

(2.19) or (2.21), only change the calculation of the within section variation.

If we assume that P , the number of neurons counted in a counting frame, follows the

Ammeter process and the distribution of the intensity U is a Gamma distribution, then P

would follow a negative binomial (NB) distribution. The distribution of the resulting P can

be expressed in terms of a mean µ and a dispersion parameter φ, so that the probability of

observing q neurons is

Pr(P = q) =
Γ(φ+ q)

q!Γ(φ)
(

µ

µ+ φ
)q(1 +

µ

φ
)−φ. (2.32)

The variance of this NB distribution is µ(1 + µ
φ
). When φ → ∞, the NB distribution

converges to a Poisson distribution. The maximum likelihood (ML) estimator µ̂ of µ is the

sample mean, and the ML estimator φ̂ of φ is determined by numerical maximization of the

profile log-likelihood function L(µ̂, φ).

Under the Ammeter process assumption, if we assume that Qjik, the observed values

within the counting frame, in the square Lik of the jth section follow a NB distribution with

parameters (µAj, φAj), then we have

var[f̂(X1 + (j − 1)
L

m
,U1j, V1j)|X1] = var(

∑
i,k

1

τah
Qjik)

=
1

τ 2
ah

2
njµAj(1 +

µAj
φAj

). (2.33)

The MLE of µAj is
∑

i,kQjik/nj = Qj/nj. Combining the MLE of var[f̂(X1 + (j −

1) L
m
, U1j, V1j)|X1] in (2.33) with the between section variance estimator (2.19) or (2.21), the
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stereological variance in (2.11) turns out to be

σ̂st = σ̂st1 +
L2

m2
var[f̂(X1 + (j − 1)

L

m
,U1j, V1j)|X1]

= σ̂st1 +
L2

m2

1

τ 2
ah

2

m∑
j=1

njµ̂Aj(1 +
µ̂Aj

φ̂Aj
)

= σ̂st1 +
1

τ 2
s τ

2
a τ

2
h

m∑
j=1

Qj(1 +
Qj

njφ̂Aj
). (2.34)

The Ammeter based estimators of the variance are included in Table 2.3. In Section 2.7,

we compare these variances with the stereological variances obtained under several different

procedures.

2.6 BOOTSTRAP METHOD TO ESTIMATE THE STEREOLOGICAL

VARIANCE

The bootstrap method can be applied to estimate the stereological variance. Without any

distributional assumption, using section as a stratifying variable, independent bootstrap

samples can be selected within the sections based on sampling the counting frame counts

with replacement. It is clear that for homogenous processes and “partially” homogenous

process like Ammeter for neuron development that the bootstrap variance will tend to

overestimate the true variance derived based on the process.

For example, if we have 12 sections, with nj counting frames in the jth section, let

X = (x1,1, x1,2, . . . , x1,n1 , . . . , x12,1, . . . , x12,n12) denote the counting frame level data, so that

xjk is the number of neurons counted in the jth section of the kth counting frame. A boot-

strap sample, X∗ = (x∗1,1, x
∗
1,2, . . . , x

∗
1,n1

, . . . , x∗12,1, . . . , x
∗
12,n12

), is chosen where x∗j,1, . . . , x
∗
j,nj

are selected independently with replacement from
{
xj,1, . . . , xj,nj

}
, j = 1, 2, . . . , 12. From

the bootstrap sample, we can accordingly estimate the total number N ∗. We then simu-

late B independent bootstrap samples X∗1, X∗2 . . . , X∗B and obtain stereological estimates

N̂ ∗1, N̂ ∗2 . . . , N̂ ∗B, respectively. Then the within section variance of the stereological esti-
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mate of N̂ (σ̂BSst2 ) can be estimated by

σ̂BSst2 = var[N̂ ∗], (2.35)

where var[N̂ ∗] is the sample variance of B stereological estimates. Combined with the

between section variance estimator (2.19) or (2.21), the estimated stereological variance in

(2.11) turns out to be

σ̂BSst = σ̂st1 + var[N̂ ∗]. (2.36)

2.7 COMPARING THE STEREOLOGICAL VARIANCE ESTIMATES

Using the Konopaske data, we compare the stereological variance estimates calculated by

the three different methods. Table 2.3 lists the results for each animal. The column σ̂st1 is

the first component of the stereological variance estimator based on (2.21). The columns

σ̂C−Ost2 , σ̂AMst2 and σ̂BSst2 give the second component of the stereological variance estimator based

on the Cruz-Orive and Geiser assumption, Ammeter assumption and Bootstrap approach,

respectively. The column σ̂C−Ost is the sum of σ̂st1 and σ̂C−Ost2 , which is the stereological

variance estimator by the Cruz-Orive and Geiser method. The next column σ̂AMst is the sum

of σ̂st1 and σ̂AMst2 , which is the stereological variance estimator by the Ammeter method. The

last column σ̂BSst is the sum of σ̂st1 and σ̂BSst2 , which is the stereological variance estimator by

the Bootstrap method. Note that when comparing between sections variation with within

sections variation, the between section variance estimator σ̂st1 shows much less section-to-

section variability than within section variability as shown by the estimators σ̂C−Ost2 , σ̂AMst2 or

σ̂BSst2 . The literature indicates that treating random systematic samples as simple random

samples will overestimate the variability. Here, the Bootstrap method treats the counting

frames as simple random samples within sections, and the stereological variance seems to

be overestimated by the Bootstrap method perhaps because of the positive dependence

between counting frames within sections. On the other hand, as our analysis summarized

in Table 2.2 indicates, we believe that for the Konopaske data, the stereological variance is

underestimated by the Cruz-Orive and Geiser method. Note that the stereological variance
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estimators given by the Ammeter method are between these other two methods in most of

the cases. In Table 2.3, we also provide the stereological estimate, the total counted number

of neurons and the coefficient of error (under Cruz-Orive and Geiser assumption) for each

animal (Columns N̂ , Q and CE, respectively).
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Table 2.3: Comparison of Estimates of the Stereological Variance (Konopaske et al. (2007))

ID Triad Group N̂ Q CE σ̂st1 σ̂C−Ost2 σ̂AMst2 σ̂BSst2 σ̂C−Ost σ̂AMst σ̂BSst

260 1 H 141.9 862 0.036 2.4 23.3 27.2 27.6 25.7 29.6 29.9

273 2 H 121.1 525 0.044 0.1 28.0 32.2 33.0 28.0 32.3 33.1

257 3 H 132.1 661 0.040 1.3 26.4 30.7 35.1 27.7 32.0 36.4

266 4 H 170.6 805 0.037 3.9 36.2 42.8 43.8 40.1 46.7 47.7

270 5 H 125.1 607 0.041 0.6 25.8 30.7 32.0 26.4 31.3 32.6

263 6 H 169.9 842 0.035 0.4 34.3 42.9 43.0 34.7 43.3 43.5

259 1 O 165.4 845 0.035 1.5 32.4 37.1 38.5 33.9 38.7 40.0

274 2 O 159.3 734 0.037 0.6 34.6 39.9 38.7 35.2 40.5 39.3

256 3 O 183.2 931 0.033 0.8 36.1 45.9 50.7 36.8 46.7 51.5

267 4 O 138.8 769 0.037 0.8 25.1 29.5 28.7 25.8 30.2 29.5

271 5 O 140.6 771 0.040 5.9 25.6 29.9 31.6 31.5 35.8 37.5

265 6 O 155.5 766 0.036 0.5 31.6 39.5 37.3 32.1 40.0 37.8

261 1 S 192.0 885 0.034 1.7 41.7 52.1 61.0 43.3 53.8 62.7

272 2 S 153.7 737 0.037 0.5 32.1 36.5 37.6 32.6 37.1 38.1

258 3 S 214.9 916 0.034 2.0 50.4 60.3 66.6 52.4 62.2 68.5

268 4 S 122.3 630 0.040 0.2 23.8 27.1 27.8 24.0 27.3 28.0

269 5 S 196.1 772 0.037 3.1 49.8 58.5 61.4 52.9 61.6 64.5

264 6 S 172.5 750 0.037 1.4 39.7 49.1 49.9 41.1 50.5 51.3

Note: H, O and S denote for the haloperidol, olanzapine and sham group, respectively. The units for N̂ is 106 and the units for σ̂st1, σ̂C−O
st2 , σ̂AM

st2 ,σ̂BS
st2 ,

σ̂C−O
st , σ̂AM

st , σ̂BS
st are 1012 in the Table 2.3.
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Table 2.4 lists the summary statistics for the Konopaske data by groups. The biological

variance is estimated by subtracting the stereological variance from the average of group

variances. The stereological variance (by the Cruz-Orive and Geiser method) is estimated

by averaging columns σ̂C−Ost2 in Table 2.3 as 34.7. The estimated variance of the primary

experimental outcome, N̂ , is based on the pooled variance, 620.7, (average of the three within

group variances). Hence, the average biological variance is 586.0 (= 620.7 - 34.7). We see

that the stereological variance is small relative to the biological variance. In implementing

experimental designs like this, researchers usually choose the number of counting frames

for each subject by controlling the coefficient of error (CE) of the stereological estimate

for each subject, in an attempt to assess each individual as precisely as possible. Usually,

they require the CE to be less than 5%. To meet this criterion for the monkey study, Dr.

Konopaske and his colleagues had to collect about 1600 counting frames for each animal.

If the number of counting frames could have been reduced, the research studies could have

saved several months’ laboratory work. This motivates us to consider in the next two sections

more efficient experiment designs which still maintain enough power to detect the treatment

effects of interest. For the biological experiments which test between groups differences,

usually the between-subject variation is larger than within subject variation mainly due to

stereological procedures. Thus a reasonable allocation of sampling effort is to sample a large

number of subjects and spend relatively little effort on measuring the data in each subject.

Gundersen and Osterby (1981) were aware of this reality and described it as “Do More, Less

Well”.

Table 2.4: Summary of Konopaske’s Data.

Group Number Mean Variance

Haloperidol 6 143.46 480.05

Olanzapine 6 157.14 273.24

Sham 6 175.30 1108.89
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3.0 OPTIMAL DESIGN

For obvious reasons of budgetary and time constraints, a goal of research in designing

post-mortem tissue stereological studies is to keep study cost within budget and time con-

straints while maintaining sufficient statistical power to address the research aims. While

the Konopaske study used tissue from a previous study, one could imagine designing a new

monkey study for the sole purpose of a study like Konopaske. For such a study, we note that

macaque monkeys are expensive study subjects, and that numerous labor hours could be

involved in creating and observing the counting frames from each animal. One could reduce

the cost of studies like this by decreasing either the number of subjects or the number of

counting frames for each subject. Increasing the number of counting frames yields more

precise estimates of the neuron number for each animal, and hence increases study powers.

One trade-off would be to reduce the number of subjects, and then add counting frames for

each subject in order to maintain the study power. Alternatively, one could increase the

numbers of subjects and reduce the numbers of counting frames per subject to maintain

power. There appears to be little written in the stereology literature about how to select the

combination of sample size and numbers of counting frames for stereological study designs.

The purpose of this chapter is to create a framework for finding the combination of sample

size and number of counting frames that will not only maintain sufficient power to address

research aim but also minimize the cost of the study.

There is established methodology for general repeated measure designs which deal with

optimal trade-offs between sampling units and replicates for each sample. (For instance, see

Liu and Liang (1992), Mentre et al. (1997), Vickers (2003)). Most of this work focuses on

the covariance structure of the repeated measures. However, this literature is not directly

applicable to the stereological problem due to several specific difficulties that become ap-
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parent as we describe our research. In stereological studies dealing with counting, the first

component of the stereological variance is always unchanged, so that one thing we can do

to maintain power is to change the number of counting frames in order to adjust the within

section variance. Also, we need to take into account the possibility that the stereological

variances are different between groups.

3.1 MATHEMATICAL APPROACH

3.1.1 Cost Function and Power Function

We begin by using the idea of some standard designs employed in the CCNMD, where

we want to compare two groups by using a simple linear model for testing, which for power

considerations can be well approximated by a paired t test. In order to control for covariates,

in human studies for example, each experimental subject and corresponding control subject

are matched by covariates, such as age at death, gender, post-mortem interval and brain pH

value. Pairing also helps to reduce variability due to tissue processing designs, a topic we

don’t discuss further here. A consideration of experimental design takes into account the

stereological variance. Using the results described in Chapter 2 concerning the stereological

variance, we discuss in Section 3.1.2 the amount of increase in the stereological variance

caused by decreasing the number of counting frames. Then taking into account the subject-

to-subject biological variability, we introduce in this section a linear cost function and also a

power function, both of which depend on the number of subjects and the number of counting

frames.

We consider a paired analysis to compare the difference of the number of neurons between

two groups, control and treatment (or experimental). Let N be the number of pairs used

in the study and K be the number of counting frames collected for each subject, assuming

each subject has the same number of counting frames. We define a cost function as follows:

Cost(N,K) = C0 + 2C1N + 2C2NK. (3.1)
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In the cost function, C0 is the setup cost for a study. C1 is the cost for each subject, i.e.,

the cost of tissue preparation in a post-mortem tissue study; in the animal studies, also

including animal cost, treatment cost and nursing cost. We assume the cost is the same

for each subject in the treatment group and control group. C2 is the cost for each counting

frame which includes constructing the counting frame, delineating the appropriate neurons

and counting them. Since C0, C1 and C2 are positive constants, it is sufficient to know the

relative cost C1/C2 in order to minimize the study cost. Invariably the subject cost C1 is

relatively large compared to the counting frame cost C2 .

We now provide a model for analyzing a paired study using paired differences. Let Xik be

the true number of neurons of subject k in group i, i = c (control group) or i = t (treatment

group), k = 1, · · · , N , then the typical model in such a study assumes

Xik ∼i.i.d N(µi + pk, σB), (3.2)

where µi is the mean of group i, pk is the effect of pair k (with
∑N

k=1 pk = 0) and σB is

the biological variance. We assume that the biological variance is the same for treatment

and control. Obviously, we cannot observe Xik for any subject, but must use stereological

methods to “estimate”this quantity.

Let N̂ik be the stereological estimate of Xik. For simplicity, we assume the shape of the

brain region of interest is the same among subjects. In this chapter, we continue to use σst as

the notation for the stereological variance, σst1 and σst2 as the notations of the two parts of

the stereological variance in (2.11), respectively. The within section variance may be based

on either Cruz-Orive and Geiser or Ammeter assumptions. Given Xik, we assume that N̂ik
is approximately normally distributed, and

E[N̂ik|Xik] = Xik,

var[N̂ik|Xik] = σist, i = c or t, (3.3)

where σcst and σtst are the stereological variances of control and treatment groups, respectively.

From the stereological variance formula in Chapter 2, we know that if there is a group

difference the stereological variances are most likely different between groups.
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The unconditional distribution of N̂ik is as follows

E[N̂ik] = E[E[N̂ik|Xik]] = E[Xik] = µi + pk,

var[N̂ik] = var[E[N̂ik|Xik]] + E[var[N̂ik|Xik]] = var[Xik] + E[σist] = σB + σist. (3.4)

Hence,

N̂ik ∼i.i.d N(µi + pk, σB + σist), i = c or t, k = 1, · · · , N, (3.5)

so that the pairwise difference Dk = N̂ck−N̂tk ∼i.i.d N(µc−µt, 2σB+σcst+σ
t
st), k = 1, · · · , N .

The sample variance of Dk given by s2
D = 1

N−1

∑N
k=1(Dk−D̄)2 has the following distribution:

(N − 1)s2
D ∼ (2σB + σcst + σtst)χ

2
N−1.

The hypotheses are

H0 : µc = µt,

Ha : µc 6= µt. (3.6)

It is well known that to test H0 based on(3.5), we use the usual paired t-test statistic

T =
¯̂Nc· − ¯̂Nt·√

s2D
N

. (3.7)

Hence, the power function for the 0.05 level test of (3.6) is given by

Power = Pr(reject H0| Ha)

= Pr

| T | > t0.975,N−1| ξ =
δ√

2
N

(σB +
σcst+σ

t
st

2
)

 , (3.8)

where the test statistic T follows a noncentral t distribution with N − 1 degrees of free-

dom, and noncentrality parameter ξ, and where t0.975,N−1 is the 0.025 critical value of the t

distribution with N − 1 degrees of freedom, and δ is the pre-specified alternative.

Under the null hypothesis µc = µt, so that the stereological variances are the same

for control and treatment group, that is, σcst = σtst. But under the alternative hypothesis

µc 6= µt, the stereological variances are different for control and treatment group according to
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the stereological variance formula (2.11). P-values are obtained based on the null hypothesis

being true; thus, the paired t test gives the correct p-values. Statistical power is based on

the alternative hypothesis, so the test statistic needs to account for the unequal variances.

However, for the paired study, no matter whether the variances are equal or not between

groups, the paired t statistic is appropriate to use, since the difference statistic depends on

the sum of stereological variance of two groups.

3.1.2 Stereological Variance and Number of Counting Frames

In this section, we present the mathematical relationship between number of counting frames

and stereological variance. Consider two stereological designs on the same region of interest

with length L, where one has K and the other has K∗ counting frames, respectively. We

suppose the number of the sections respectively m and m∗ to be the same between the

two designs. The sizes of the square counting frames are the same among the sections and

between designs, so that af = a∗f . The height is also the same within and between designs, so

that h = h∗. The difference between these two stereological designs is that they use different

lengths of grids, where au 6= a∗u and av 6= a∗v. The grid lengths are the same among sections

in the same design. This difference in grid lengths allows us to vary the number of sampling

frames.

Thus, the section sampling fraction and the height sampling fraction are the same for

these two designs:

τs = τ ∗s ,

τh = τ ∗h . (3.9)

Let the ratio of two numbers of counting frames be p, i.e., p = K
K∗ , and nj = pn∗j for

j = 1, · · · ,m. Since the area of the jth section, Areaj = njauav, is fixed, then

auav = Areaj/nj

= Areaj/(p · n∗j)

=
1

p
· a∗ua∗v. (3.10)
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Hence,

τa = a2
f/(auav) = a2

f/(
1

p
· a∗ua∗v) = p · τ ∗a . (3.11)

Recall that in the stereological variance formula in (2.11) (σst = var[Ñ ] + ( L
m

)2
∑m

j=1

var[f̂(X1 + (j − 1) L
m
, U1j, V1j)|X1]), the first term on the right hand side is the between

section variation (σst1 = var[Ñ ]). Hence,

Ñ =
L

m

m∑
j=1

f(Xj)

=
L

m∗

m∗∑
j=1

f(Xj)

= Ñ ∗, (3.12)

where f(Xj) is the true number of neurons at Xj for j = 1, · · · ,m, so that the between

section variances are the same for two designs when the two designs have the same number

of sections, that is, σst1 = var[Ñ ] = var[Ñ ∗] = σ∗st1.

The between section variance only depends on region length L, section number m and the

f(Xj)’s. It is important to understand that the values of L, m and f(Xj)’s are unchanged

under these two stereological designs, and thus the between section variance component will

be the same no matter how many counting frames are sampled.

The second component of the stereological variance in (2.11) is σst2 = ( L
m

)2
∑m

j=1 var[f̂(X1+

j L
m
, U1j, V1j)|X1].

Under the Cruz-Orive and Geiser assumption, we have

σst2 = (
L

m
)2

m∑
j=1

1

τ 2
ah

2
njλj

= (
L

m∗
)2

m∗∑
j=1

1

(pτ ∗a )2h∗2
pn∗jλj

=
1

p
(
L

m∗
)2

m∗∑
j=1

1

τ ∗2a h
∗2n

∗
jλj

=
1

p
σ∗st2. (3.13)

38



Similarly, assuming we were to use our Ammeter model, we would have

σst2 = (
L

m
)2

m∑
j=1

1

τ 2
ah

2
njµAj(1 +

µAj
φAj

)

= (
L

m∗
)2

m∗∑
j=1

1

(pτ ∗a )2h∗2
pn∗jµAj(1 +

µAj
φAj

)

=
1

p
(
L

m∗
)2

m∗∑
j=1

1

τ ∗2a h
∗2n

∗
jµAj(1 +

µAj
φAj

)

=
1

p
σ∗st2. (3.14)

Hence, for both the approaches the second component of the stereological variance (σst2)

is inversely proportional to the number of counting frames.

In order to obtain our cost considerations, we make a number of simplifying assumptions.

We assume that the shape and the length of brain region of interest are the same for all the

subjects. In the stereological study, we also assume the same number of sections will be

selected for all subjects. In practice, the size and height of the counting frames will be

kept the same through the study. Then the between section variation (σst1) is unchanged

according to the number of counting frames, while the remaining part of the stereological

variance (σst2) and the number of counting frames have an inversely proportional relationship.

The two parts of the stereological variance are assumed to be the same within each group,

but not necessary to be the same between groups.

3.1.3 Theoretical Results

In the last section, we obtained the relationship between the number of counting frames and

the stereological variance. The first term on the right hand side of (2.11) is unchanged under

the systematic sampling design when the number of sections is the same. The second term on

the right hand side of (2.11) and the number of counting frames are inversely proportionally

related. In this section, we use the notation σist1,K0
to be the first term, and σist2,K0

to be the

second term where the number of counting frames is K0 for each subject in both groups the

control and experimental.

When the number of pairs and the number of counting frames are N and K respectively,
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the noncentrality parameter in the power function (3.7) is given by

ξ =
δ√

1
N

(
2σB + (σcst,K + σtst,K)

)
=

δ√
1
N

(
2σB + (σcst1,K0

+
K0σcst2,K0

K
) + (σtst1,K0

+
K0σtst2,K0

K
)
)

=
δ√

1
N

(
2σB + (σcst1,K0

+ σtst1,K0
) +

K0(σcst2,K0
+σtst2,K0

)

K

) . (3.15)

Hence the power function in (3.8), viewed as a function of N and K, is

Power(N,K) = P (reject H0| Ha)

= P

|T | > t.975,N−1| ξ =
δ√

2
N

(
σB +

σcst1,K0
+σtst1,K0

2
+

K0(σcst2,K0
+σtst2,K0

)

2K

)
 ,

(3.16)

where δ is the pre-specified alternative, and σB, σcst1,K0
, σcst2,K0

, σtst1,K0
, and σtst2,K0

are known

parameters.

Thus the power function and cost function both depend on the number of pairs N and

the number of counting frames K used in the study. Combining these two functions together,

we have
Power(N,K) = P

|T | > t.975,N−1| ξ = δvuut 2
N

 
σB+

σc
st1,K0

+σt
st1,K0

2
+
K0(σc

st2,K0
+σt

st2,K0
)

2K

!


Cost(N,K) = C0 + 2C1N + 2C2NK.

In the next section we consider two ways to optimize cost, two types of optimizations:

I. for a certain power, to minimize the cost of study;

II. for a fixed budget, to maximize the power of study.

3.1.3.1 The Type I Optimization For the type I optimization, let Ωβ be the set of all

possible combinations of numbers of pairs and numbers of counting frames satisfying power
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function ≥ 1− β, at the alternative δ, that is

Ωβ = {(N,K) : Power(N,K) ≥ 1− β}. (3.17)

Denote the type I optimal combination as (N,K)opt,I which is the combination minimiz-

ing the cost function Cost(N,K) in Ωβ.

Given δ and β, let σδ,β(N) denote the variance of the pairwise difference in order for

a study of N pairs subjects to reach at least 1 − β power. σδ,β(N) can be obtained from

noncentral t power calculates for a given number of pairs N . When the number of counting

frames for each subject is K, σδ,β(N) in the power function (3.16) can be given in terms of

σB, K0, σcst1,K0
, σtst1,K0

, σcst2,K0
, and σtst2,K0

, that is

σδ,β(N) = 2σB + (σcst1,K0
+ σtst1,K0

) +
K0(σcst2,K0

+ σtst2,K0
)

K
. (3.18)

Note that σδ,β(N) is a function of N , so that the solution of K is obtained as a function

of N

K(N) =

[
K0(σcst2,K0

+ σtst2,K0
)

σδ,β(N)− 2σB − (σcst1,K0
+ σtst1,K0

)

]
, (3.19)

where [a] is the smallest integer larger than a and K > 0. For a given N , K is adjusted

to change the stereological variance, and hence the variance of the primary outcome (N̂ ) in

order to achieve the desired power. Thus, among all the possible combinations of (N,K)

that satisfy the statistical power, the optimal combination of (N,K) is given by

(N,K)opt,I = argminΩβCost(N,K(N))

= argminΩβ {C0 + C1N + C2NK(N)}

= argminΩβ {C2(C1/C2N +NK(N))}

= argminΩβ {C1/C2N +NK(N)} , (3.20)

where C0, C1 and C2 are positive constants in the cost function. Note that to find the

optimal combination, it is sufficient to know C1/C2 which is the relative cost of a subject to

the cost of a counting frame.

To illustrate the Type I optimal results one can obtain from the optimization approach,
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Table 3.1: Type I Optimal Combination of Number of Pairs and Number of Counting Frames

(N,K)opt,I .

C1/C2 1− β = 0.70 1− β = 0.75 1− β = 0.80 1− β = 0.85 1− β = 0.90

10 (26, 52) (28, 54) (34, 49) (38, 50) (42, 53)

20 (22, 64) (24, 66) (26, 69) (29, 70) (34, 69)

50 (15, 110) (17, 106) (19, 106) (21, 109) (23, 118)

100 (13, 138) (14, 144) (15, 153) (17, 151) (19, 158)

500 ( 9, 286) ( 9, 395) (10, 350) (11, 361) (13, 329)

1000 ( 8, 391) ( 8, 514) (9, 472) (10, 471) (11, 516)

10000 ( 6,1506) ( 7, 906) ( 7, 1591) (8,1209) (9, 1203)

we consider an example where the results are given in Table 3.1. In this example, the param-

eters used for the optimal calculation are δ = 20, σB = 100, K0 = 1000, σcst1,K0
= 1, σtst1,K0

=

2, σcst2,K0
= 30 and σtst2,K0

= 40 in Table 3.1. The range of power is (0.70, 0.75, 0.80, 0.85, 0.90)

and a relatively large range of relative costs C1/C2 (= 10, 20, 50, 100, 500, 1000, 10000) are

considered. The optimal results in Table 3.1 show that at a fixed level of power as the relative

cost C1/C2 increases, then the optimal number of pairs decreases and more counting frames

are added. When the relative cost is small, the number of pairs is what mostly changes in

order to achieve different levels of powers. When the relative cost is large, the number of

counting frames is mostly adjusted for different powers. Clearly, for any relative cost and

required statistical power, we can provide the optimal design for a stereological study.

Since the number of counting frames K is a function of the number of pairs N , the core

part of the cost function (C1/C2N+NK(N)) can also be considered as a function of N . The

core part of the cost function versus the number of pairs for three different β’s are illustrated

in Figure 3.1, where the relative cost C1/C2 is 100. The diamond, circle and triangle denote

power levels of 0.9, 0.8 and 0.7 respectively. The three dots mark the optimal combination

for each power level. Figure 3.1 shows when the number of pairs is small, the cost of study is
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large, because a huge amount of counting frames is required for each subject. On the other

hand, too many pairs also increase the cost of study. The optimal cost and optimal number

of pairs both increase as the desired power goes large.

Figure 3.1: The Core Part of Cost Function vs. the Number of Pairs for Power(=

0.9, 0.8, 0.7) and Relative Cost C1/C2 (= 100).

3.1.3.2 The Type II Optimization For the type II optimization, let ΩC be the set

including all possible combinations of group size and numbers of counting frames satisfying

the cost function ≤ C. ΩC can be denoted as

ΩC = {(N,K) : Cost(N,K) ≤ C}. (3.21)

The Type II optimal combination is the (N,K)opt,II which maximizes the power function

Power(N, K) in ΩC .
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For a fixed budget C,

C = Cost(N,K) = C0 + 2C1N + 2C2NK = C0 + 2N(C1 + C2K), (3.22)

so that the group size N can be expressed as a function of the number of counting frames

K, where

N(K) =
C − C0

2(C1 + C2K)
. (3.23)

The stereological variance σst also depends on the number of counting frames, given the

relationship in Section 3.1.2.

Hence, the noncentral parameter ξ can also be given as a function of K,

ξ(K) =
δ√

2
N(K)

(σB +
σcst(K)+σtst(K)

2
)
. (3.24)

Now, the power function can be described as

Power(N,K) = P (|T | > t0.975,ν |ξ)

=

∫ t0.025,ν

−∞
f(t)dt+

∫ ∞
t0.975,ν

f(t)dt, (3.25)

where f(t) = νν/2√
πΓ(ν/2)

e−ξ
2/2

(ν+t2)ν+1

∑∞
j=0

ν+j+1
2

ξj

j!

(
2t2

ν+t2

)j/2
, and ν = N − 1 = C−C0

2(C1+C2K)
− 1.

Since the power function now only depends on K, to maximize the power function, it is

equivalent to solving 
dPower(K)

dK
= 0

d2Power(K)
dK2 < 0.

When we consider the type II optimization, this algorithm requires more information

about the three cost coefficients C0, C1 and C2 than was needed for Type I optimization.
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3.2 EXAMPLE

We consider an example which shows how to extend some of the ideas in Section 3.1 and

how to potentially apply if we were to repeat a study like Dr. Konopaske. In the Konopaske

study, 18 monkeys were matched by their body weights as triads and then within triads

assigned at random into the three treatment groups: haloperidol, olanzapine, and sham

control. Using the CE criterion, about 1600-1800 counting frames were collected from each

animal.

In Konopaske et al. (2007) a two-way ANOVA model (with additive effects of group

and triad) was used for the data set consisting of each monkey’s stereologically estimated

total glial cell number in its parietal lobe, in order to assess the effect of chronic antipsy-

chotic exposure. The contrast of the combined antipsychotic-exposed groups vs the sham

group was used to evaluate the effect of chronic antipsychotic exposure. One-sided testing

of the contrast was done due to the directionality of expected reduction glial number in

antipsychotic-exposed monkeys.

To first explore how the number of counting frames affects the final test statistic and

resulting inference, we systematically deleted different proportions of counting frames within

each animal and analyzed the reduced data set. First, we decreased the number of counting

frames K in the data set by 10%. To roughly keep the systematical sampling characteristic,

we systematically deleted the counting frames. Ten subsets for each animal were generated.

For subset i, the ith counting frame of each section was deleted and then every 10th thereafter

is also deleted, i = 1, · · · , 10. All the ith subsets of each animal are combined together as

a new sample of 18 animals. Therefore, ten such samples are generated. Then the two-way

ANOVA model described in Konopaske et al. (2007) is applied to each sample. The estimate

and statistical inference about the contrast between the combined antipsychotic-exposed and

controls from the sample data sets do not change much comparing to the original data set.

Table 3.2 lists the estimate of the average effect of the two chronic antipsychotic exposure

groups minus that of the sham group, the test statistic and the p-values.

We then proceeded to decrease the number of counting frames by 20% and 30% sequen-

tially. The statistical inference changed little (see Appendix A).
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Table 3.2: Comparing the Original Data Set and 10 Samples with 10% Reduction.

Dataset Estimate StdErr t-stat p-value

Original -25.0 12.94 -1.93 0.0413

Sample1 -24.5 12.85 -1.91 0.0427

Sample2 -25.8 13.60 -1.90 0.0436

Sample3 -23.2 12.63 -1.84 0.0479

Sample4 -26.4 12.90 -2.05 0.0339

Sample5 -24.5 13.06 -1.87 0.0453

Sample6 -23.7 12.66 -1.87 0.0454

Sample7 -26.2 12.95 -2.02 0.0355

Sample8 -25.1 13.46 -1.86 0.0460

Sample9 -25.1 12.49 -2.01 0.0364

Sample10 -25.4 13.11 -1.93 0.0410

Note: The degree of the t statistics is 10 and the p-value is based on a one-sided testing.
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A second approach to exploring this issue used the bootstrap method to resample the

data set. To obtain a bootstrap sample with 100p% counting frames of the original data

of each animal using section as a strata variable, p · nj counting frames are independently

selected within the jth sections with replacement, for j = 1, · · · ,m. For each animal, we

obtained a bootstrap sampling with p · K counting frames. We combined the bootstrap

sampling from each animal to get a new sample of 18 monkeys, and performed the two-way

ANOVA analyses. The results of this method are consistent with these obtained from the

preceding systematic deletion (see Appendix B).

Both systematic reduction and bootstrap methods demonstrate that reducing the number

of counting frames will only cause a slight loss of power. Moreover, in an actual study the lost

power could by compensated for by increasing slightly the number of animals. Decreasing

the number of counting frames by 30% in the Konopaske study means reducing 500 counting

frames for each animal, which in turn translates into a reduction of more than a month of

lab work in this study. We will later show in this chapter using the Konopaske data how we

would provide an optimal design which also maintains the original data set’s power.

3.2.1 Paired Design

In Konopaske study, we can estimate the stereological variance from the data set. If someone

wants to repeat the study, we could provide the optimal design based on the information

obtained from the Konopaske’s study. For simplicity, suppose that we only have two groups

matched as pairs in the new study, for example, haloperidol and sham groups. Due to the

directionality of the treatment effect, a one-sided test is considered.

The hypotheses are

H0 : µH = µS,

Ha : µH < µS. (3.26)
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The test statistic in (3.7) is

T =
¯̂NH· − ¯̂NS·√

1
N

( 1
N−1

∑N
k=1((N̂H,k − N̂S,k)− (

¯̂NH· − ¯̂NS·))2)
, (3.27)

and the power function for the one-sided test is

Power = P (reject H0|Ha)

= P (T < t.05,N−1| ξ =
δ√

1
N

(2σB + σHst + σSst)
), (3.28)

where N̂i,k is the stereological estimate of the total glial number in the parietal lobe for the

monkey of pair k in group i,
¯̂Ni· is the mean of the stereological estimate of group i, σist is

the stereological variance of group i, i = H (haloperidol) or i = S (sham), and σB is the

biological variance, and δ is the numerical difference in total number that is to be detected.

In the data set, the average numbers of total counting frames used in haloperidol and

sham groups are 1676 and 1646 respectively. We have estimated the two components of

stereological variance for each group by averaging the two components of stereological vari-

ances of subjects within group, respectively. The estimates of σHst1 and σSst1 are 1.5 and 1.5,

respectively, and the estimates of σHst2 and σSst2 are 29.0 and 39.6 (under the Cruz-Orive and

Geiser assumption), respectively, where

σ̂Hst1 =
2.4 + 0.1 + 1.3 + 3.9 + 0.6 + 0.4

6
= 1.5

σ̂Hst2 =
23.3 + 28.0 + 26.4 + 36.2 + 25.8 + 34.3

6
= 29.0

σ̂Sst1 =
1.7 + 0.5 + 2.0 + 0.2 + 3.1 + 1.4

6
= 1.5

σ̂Sst2 =
41.7 + 32.1 + 50.4 + 23.8 + 49.8 + 39.7

6
= 39.6,

and the numbers can be obtained in Table 2.3.
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The estimated noncentrality parameter for N pairs and K counting frames is

ξ̂ =
δ√

1
N

(2σB + (σ̂Hst1 + 1676
K
σ̂Hst2) + (σ̂Sst1 + 1646

K
σ̂Sst2))

=
δ√

1
N

(2σB + (1.7 + 29.21676
K

) + (1.4 + 38.81646
K

))

=
δ√

1
N

(2σB + 3.1 + 112804
K

)
. (3.29)

Based on the information obtained from the data set, we are able to decide the number

of counting frames and sample size for a new study. The following table lists the numerical

results for different pre-specified alternatives and relative costs of a study with 80% power.

Table 3.3: Optimal Combination (N,K)opt,I for Konopaske Study - Paired Case.

δ σB C1/C2 N K

-20 202 100 29 116

1000 19 342

10000 16 821

-30 202 100 14 112

1000 9 398

10000 8 828

-20 152 100 20 153

1000 12 500

10000 10 1176

-30 152 100 11 123

1000 7 338

10000 6 610

In Konopaske data, the observed difference for haloperidol and sham group is -31.8 and

the observed biological variance is 760.4. The optimal combination for the study is (12, 574)

when the relative cost is 10000.
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3.2.2 Matched Triads

In this section, we consider the issue involving in repeating the Konopaske’s study exactly.

Due to the assumption of unequal stereological variance among groups under the alternative

hypothesis, the triad case is more complex than the paired case. We use Sattherwaite’s

approximation to adjust the test statistic.

The hypothesis of interest here is

H0 :
µH + µO

2
= µS

Ha :
µH + µO

2
< µS. (3.30)

Let σ denote var[
¯̂
NH·+

¯̂
NO·

2
− ¯̂
NS·], so that

σ =
1

4
var[

¯̂
NH·] +

1

4
var[

¯̂
NO·] + var[

¯̂
NS·]

=
1

4
(σB + σHst ) +

1

4
(σB + σOst) + (σB + σSst)

=
3

2N
σB +

1

4N
σHst +

1

4N
σOst +

1

N
σSst. (3.31)

Let MSi = 1
N−1

∑N
k=1(N̂ik − ¯̂

Ni·)
2, then (N − 1)MSi ∼ var[

¯̂
Ni·]χ

2
N−1, i = H,O and S.

Using the Satterthwaite approximation, we have

v̂ar[
¯̂
NH· +

¯̂
NO·

2
− ¯̂
NS·] =

1

4N
MSH +

1

4N
MSO +

1

N
MSS, (3.32)

so that v̂ar[
¯̂
NH·+

¯̂
NO·

2
− ¯̂
NS·]/σ can be approximated as a χ2 distribution with degrees of

freedom given by

df =
( 1

4N
MSH + 1

4N
MSO + 1

N
MSS)2

( 1
4N

MSH)2+( 1
4N

MSO)2+( 1
N
MSS)2

N−1

=
(1

4
MSH + 1

4
MSO +MSS)2

( 1
4
MSH)2+( 1

4
MSO)2+MSS)2

N−1

. (3.33)
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A suitable test statistic of hypothesis (3.30) would be

T =

¯̂NH·+
¯̂NO·

2
− ¯̂NS·√

v̂ar[
¯̂NH·+

¯̂NO·
2

− ¯̂NS·]
. (3.34)

The resulting power function is

Power(N,K) = P (reject H0|Ha)

= P (T < t.05,df | ξ̂), (3.35)

where given the alternative δ, T has a noncentral t distribution with a df given in (3.33) and

the estimated noncentral parameter being

ξ̂ =
δ√

1
N

(3σB + 1
4
(σ̂Hst1 + K0

K
σ̂Hst2) + 1

4
(σ̂Ost1 + K0

K
σ̂Ost2) + (σ̂Sst1 + K0

K
σ̂Sst2)

. (3.36)

The optimal algorithm is similar as the paired case, where we need the two components

of stereological variances of the three groups. Optimal results for the triads case can be

obtained as Table 3.3.
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4.0 ADAPTIVE DESIGN

4.1 INTRODUCTION

Chapter 3 shows that to plan an optimal design we need the information about the sizes of

the biological and stereological variances, which are unknown prior to study. Traditionally,

researchers estimate such values from previous experience for the experimental design. We

know from Chapter 2 that the stereological variance depends on the shape of the region of

interest and on the number of neurons in it. Hence, it is difficult to prespecify the stereological

variance before a study that is interested in a particular type of neuron. When the design

parameters are incorrectly prespecified in the optimality calculation, the number of subjects

and the number of counting frames may be incorrect. To avoid inefficient use of resources

in stereological studies, we propose to introduce ideas from adaptive designs that have been

widely studied and implemented in clinical trials during the past decade. An adaptive design

allows us the opportunity to look at the data at an interim stage, and to modify the design

based on the information obtained from the first stage data. The flexibility of adaptive design

allows adjusting the sample size and the number of counting frames when the variability is

mis-specified. Adaptive procedures can have cost advantages over standard fixed procedures.

In this chapter we apply two stage adaptive procedures in stereology. While in the literature

both blinded and unblinded procedures have been considered, we focus on blinded adaptive

design procedures.

Several different unblinded adaptive procedures are described by Proschan and Huns-

berger (1995), Shun (2001), Liu and Chi (2001). These designs unblind the treatment as-

signments at the end of Stage I, so that the group means and common variance can be

estimated and used in the design of Stage II.
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Blinded adaptive procedures (e.g., Stein (1945), Gould and Shih (1991), Gould and Shih

(1998), Kieser and Friede (2001)) do not break the blind at the end of Stage I. Typically

for these designs, only the common within-group variance is attempted to be estimated, and

usually the sample size of Stage II is re-estimated based on the estimate of the variance.

In our adaptive procedure, we only estimate the stereological variance without breaking

the blind of the Stage I data. Our goal is to design Stage II with the information obtained

from Stage I. At the end of Stage I, we estimate the stereological variance, and adjust the

number of counting frames in Stage II. We develop the appropriate test procedure and show

that the type I error rate is controlled.

4.2 ADAPTIVE PROCEDURE

In the current chapter, we develop a blinded adaptive procedure in which the diagnostic codes

for the subjects remain blinded until the end of the stereological study. Unlike traditional

blinded procedure, we only estimate the stereological variance based on the blinded Stage

I data instead of the variance of the primary outcome (number of neurons), which involves

both biological variance and stereological variance components. Particularly, we consider

the situation in which the design of Stage II, such as the number of counting frames for

each subject and/or the sample size, depends on Stage I observations. In our procedure,

we always assume that the biological variance is known and kept the same between stages.

However, adjusting the number of counting frames in Stage II creates the difficulty that the

variances at the subject level will be different between two stages . The usual paired t test

is not appropriate for our procedure, and we propose to use an adjusted t-statistic.

The motivation for developing a two-stage adaptive procedure for the stereological study

is due to the fact that it is difficult to prespecify the design parameters concerning the

stereological variances prior to the beginning of the study which focuses on a particular type

of neurons. The stereological variances can vary from study to study, since the stereological

variation depends on the number of counting frames, and adjusting the number of counting

frames changes the stereological variation.
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A stereological study based on our adaptive design gives us the opportunity to look at

the blinded data without revealing the treatment and pair assignments at the end of Stage

I. The design of Stage II depends on the updated information concerning the stereological

variance. We find that our two-stage adaptive procedure presents an advantage in terms of

efficient use of resource with claimed power. One of the challenges for our statistical method

is to maintain appropriate control of Type I error rate while permitting adaptation.

4.3 ADJUSTING THE NUMBER OF COUNTING FRAMES (K2) OF

STAGE II

4.3.1 Introduction

In this section, we consider only adjusting the number of counting frames for Stage II, while

keeping the sample size of a study fixed. In fact, the total number of subjects that are

available to be used in a study is often fixed by the budget or the available resources for

many studies. For example, Dr. Konopaske’s study had a fixed number of monkeys that

were available. However, the number of counting frames can be adjusted to assure improved

power for detecting a treatment effect under a proposed alternative. Under the uniformly

→ →

Figure 4.1: Uniformly Systematic Sampling Scheme

systematic sampling scheme of a stereological study (Figure 4.1), the section sampling step

and the height sampling step remain unchanged for the two stages of the adaptive design,

and only the area sampling step is adjusted to adjust the number of counting frames. The
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way to adjust the number of counting frames is by altering the distances between the crossing

lines which are called u-step (au) and v-step (av) of the grid. The other characteristics of

the stereological design, such as the number of sections, the area of a counting frame and

the thickness of a counting frame in a stereological study, are kept the same though the

entire study. An advantage of keeping a fixed number of sections across stages is that the

researchers can prepare the section slices in advance and don’t need to wait until Stage I is

finished. Figure 4.2 given by (Schmitz and Hof (2007)) illustrates a series of selected sections

of brain tissues.

Figure 4.2: Section samplings (Schmitz and Hof (2007))

Let us suppose that the study is interested in a brain region with length L. The region

is cut into M sections and m sections will be systematically chosen for examination. The

thickness and the area of the counting frame are h and a2
f , respectively. The areas of

each section selected are denoted by (Area1, ...., Aream), respectively. The section sampling

fraction (τs) and height sampling fraction (τh) are given by

τs =
m

M

τh =
h

L/M
.

In an actual stereological study, the researchers choose the u-step (au) and v-step (av) in

order to obtain the required number of counting frames. They can decrease the number of
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counting frames by enlarging the distances between the cross lines and making the rectangle

larger, so that fewer number of counting frame are observed, and to increase the number of

counting frames they decrease the relevant distances. The area sampling fraction is given by

τa =
a2
f

auav
,

and the corresponding numbers of counting frames in each section are

nj =
Areaj
auav

, j = 1, · · · ,m. (4.1)

Hence

nj
τa

=
Areaj
a2
f

, j = 1, · · · ,m. (4.2)

Area1, · · · , Aream, and a2
f are fixed and known for a study; thus, the number of counting

frames K =
∑m

j=1 nj and the sampling fraction τa have a proportional relationship.

Following the simple Cruz-Orive and Geiser approach, we assume that the number of

neurons counted in each counting frame follows a Poisson distribution with the same λ among

sections (see Section 2.3). Based on the Poisson assumption, the measurement function given

by (2.4) on each section is fj = 1
τah
njλ = λ

a2
fh
Areaj, j = 1, ...,m. Then the two components

of the stereological variance are given by

σst1 =
L2

240m2
(3

m∑
j=1

f 2
j +

m−2∑
j=1

fjfj+2 − 4
m−1∑
j=1

fjfj+1)

=
L2λ2

240m2h2a4
f

(3
m∑
j=1

Area2
j +

m−2∑
j=1

AreajAreaj+2 − 4
m−1∑
j=1

AreajAreaj+1), (4.3)

and

σst2 =
1

τ 2
s τ

2
a τ

2
h

λ
m∑
j=1

nj

=

[
L2λ

m2h2a4
f

m∑
j=1

Areaj

]
auav. (4.4)

As previously noted, for a stereological study, L, m, h, af and Areaj, j = 1, · · · ,m are

known and fixed. Thus, the first component (4.3) of the stereological variance is fixed for a
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study, and the second component (4.4) of the stereological variance depends on the distance

between the cross lines of the grid (au and av). The number of counting frames is determined

by au and av.

In designing a stereological study one choses au and av based on pre-specified design

parameters: type I error rate α, type II error rate β, total pairs of subject N , biological

variance σB, alternative δ, and λ0, where λ0 is the initial guess of the true parameter λ.

These will determined the number of counting frames, K1, in the Stage I. The details for

this calculation are discussed in Section 4.3.2. Let K2 denote the number of counting frames

re-calculated for Stage II. The procedure of choosing K2 will be discussed in Section 4.3.3.

4.3.2 Planning Stage

In a matched pair study, the numbers of control and treatment subjects are balanced within

each stage. In fact, the tissue specimens are often processed in batches and that pairs always

appear in the same batch (to protect against batch to batch variation). We assume that

the region of interest is basically the same among subjects for both treatment and control

groups. We also assume that the stereological design parameters, such that the section

sampling fraction, the area sampling fraction and the height sampling fraction, are the same

for both stages. Hence, the same number of counting frames for each subject are collected

within each stage.

In a study designed for CCNMD, control and treated subjects are pair-matched by co-

variates, such as age at death, gender, post-mortem interval and brain pH value. Let N̂i,γ
be the stereological estimate of the neuron number of pair γ from i = control or treatment

groups, respectively. Then

N̂i,γ ∼i.i.d N(µc + pγ, σB + σist), (4.5)

where µi is the mean of group i (i = c or i = t), pγ is the effect of pair γ satisfying∑N
γ=1 pγ = 0 and σB is the biological variance. We assume that the biological variance is the

same for treatment and control groups, but the stereological variances may be different due
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to the differing neuron numbers for treatment and control. The hypotheses that one test are

H0 : µc = µt

Ha : µc 6= µt. (4.6)

To design a stereological study with a fixed number of pairs, the number of counting

frames needs to be decided. It is important to note that the difference statistic only depends

on the average of the stereological variances of treatment and controls for the paired studies

(see Section 3.1.1). An initial guess of the average intensity of the Poisson distribution of

treatment and control is λ0. A simple paired t test is used to determine au and av. The

power function for a two-sided α level test of (4.6) can be expressed by

Power = P (reject H0| Ha)

= P

| T | > t1−α/2,N−1| ncp =
δ√

1
N

((σB + σcst1 + σcst2) + (σB + σtst1 + σtst2))


= P

| T | > t1−α/2,N−1| ncp =
δ√

2
N

(σB + σ̄st1 + σ̄st2)

 , (4.7)

where α denotes the nominal type I error rate, 1− β denotes the planned power, t1−α/2,N−1

denotes the 1 − α/2 critical value of the t distribution with N − 1 degrees of freedom, δ

is the pre-specified alternative, σB is the biological variance, ncp the corresponding non-

centrality parameter of the noncentral t-distribution for T , and σ̄st1 (= (σcst1 + σtst1)/2) and

σ̄st2 (= (σcst2 + σtst2)/2)are the average of the two components of the stereological variances

(i.e., (4.3) and (4.4)) for treatment and control groups, respectively. Substituting (4.3) and

(4.4) for the two components of the stereological variance in the power function (4.7), we

have that the resulting equations directly, relates power to auav with all parameter values

fixed by design, so that by a suitable choice of auav, we can obtain the desired power.

Note, there can be situations when σB is too large, so that power is unachievable. For a

fixed N pairs subjects, to detect a difference of δ, ξ{δ,β,N} which is the effect size to achieve

1−β power is also fixed. If the biological variance is relative large compared to the alternative

δ, such that δ/
√

2σB ≤ ξ{δ,β,N}, the study power can’t be obtained by adjusting the number

58



of counting frames, even with a very large number of counting frames. Also, when the

average of the first component of the stereological variance σ̄st1 is too large, the study power

can be unachievable.

Now, we give a simple hypothetical example to demonstrate how to select the u-step

(au) and v-step (av) of grid for a stereological study. Table 4.1 gives an example of a set of

Table 4.1: An Example

N σB δ L(mm) a2
f (µm

2) h(µm) m λ0

20 400 20 25 512 30 10 0.636

Note: The units for σB and δ are 1012and106, respectively.

parameters for a stereological study. The length of the region of interest is 25 mm and 10

sections will be used in the study. The areas of the 10 sections are 204.8 mm2, 230.4 mm2,

256.0 mm2, 281.6 mm2, 307.2 mm2, 307.2 mm2, 281.6 mm2, 256.0 mm2, 230.4 mm2 and

204.8 mm2, respectively. The area and the thickness of a counting frame are 512 µm2 and

30 µm, respectively.

With the initial guess of the average intensity of the Poisson distribution being 0.636,

the average of the first components of the stereological variance is

σ̄st1 =
L2λ2

0

240m2h2a4
f

(3
m∑
j=1

Area2
j +

m−2∑
j=1

AreajAreaj+2 − 4
m−1∑
j=1

AreajAreaj+1)

=
(25 ∗ 103)2 ∗ 0.6362

240 ∗ 102 ∗ 302 ∗ 5122
(3 ∗ 668467.2 ∗ 1012 + 564920.3 ∗ 1012 − 4 ∗ 623902.7 ∗ 1012)

= 3.3 ∗ 1012.

And the average of the second component of the stereological variance is

σ̄st2 = [
L2λ0

m2h2a4
f

m∑
j=1

Areaj]auav

=
(25 ∗ 103)2 ∗ 0.636

102 ∗ 302 ∗ 5122
∗ 2560 ∗ 106auav

= 43131510auav.

In this example, the total number of pairs N and the biological variance σB are assumed
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to be 20 and 400 ∗ 1012, respectively. To detect a difference of δ for a study with N pairs

subjects, ξ{δ,β,N} is the effect size to achieve 1 − β power. ξ{δ,β,N} can be obtained from

noncentral t power calculates. and is 0.66 in our case. Accordingly the effect size is related

to auav by

ξ{20,0.2,20} =
δ√

2(σB + σ̄st1 + σ̄st2))

=
20√

2(400 + 3.3 + 43131510auav ∗ 10−12)
.

Usually, we use the same u-step (au) and v-step (av), so that

au = av =

√√√√(( 20

.66

)2

/2− 400− 3.3

)
/(43131510 ∗ 10−12)

= 1.131 mm.

When the u-step and v-step is 1.131 mm, then the number of counting frames to be

collected is

K1 =

∑m
j=1 Areaj

auab

=
2560

1.131 ∗ 1.131

= 2000.

Thus, we use the u-step and v-step being 1.131 mm and have 2000 counting frames in

this study. This example will also be used in the simulation study in Section 4.3.6.

Note that in the planning stage, we use the average intensity of treatment and control in

the calculation for simplicity. In fact, for the second component of the stereological variance

σst2,

σ̄st2 =
σcst2 + σtst2

2

= (
L2λc
m2h2a4

f

m∑
j=1

Areajauav +
L2λt
m2h2a4

f

m∑
j=1

Areajauav)/2

=
L2λ0

m2h2a4
f

m∑
j=1

Areajauav,
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where λc and λt is the intensity for control and treatment group, respectively. And the

average intensity λ0 = (λc+λt)/2. But the average of the first component of the stereological

variance,

σ̄st1 =
σcst1 + σtst1

2

=
L2

240m2h2a4
f

(3
m∑
j=1

Area2
j +

m−2∑
j=1

AreajAreaj+2 − 4
m−1∑
j=1

AreajAreaj+1)(λ2
c + λ2

t )/2,

which requires the specification of both λc and λt. However, σst1 is usually small compare

with the σst2. In the previous example, σst1 and σst2 are 3.3∗1012 and 55.8∗1012, respectively.

4.3.3 Details of the Blinded Adaptation

The two components of the stereological variance in (4.7) are never known exactly in practice,

and so in planning a study can only be guessed from previous experiments. Clearly, the

number of counting frames will be either too large or too small when an initial choice of

stereological variance is mis-specified. It is wasteful of time and money using more counting

frames than necessary, and using an inadequate number of counting frames will increase the

likelihood of an inconclusive study, which also wastes time and money.

Countering the uncertainty of the initial guess of stereological variance motives us to

apply adaptive procedures to stereological studies. After obtaining first N1 pairs subjects,

the data are kept blinded and the two components of the stereological variance are estimated

using interim observations. Unlike some blinded sample size re-estimation procedures used

in clinical trials, such as Gould and Shih (1992), the biological variance is not re-estimated

in our procedure. At the end of Stage I, we don’t have any information about the treatment

and pair assignments. Only the counted number of neurons in each of the K1 counting

frames is available for each subject. However, this information is sufficient for us to estimate

the stereological variance, because the variance of pairwise difference depends on the average

of treatment and controls stereological variance components , and the average stereological

variance components can be estimated from the paired Stage I data without breaking the

blind. Our goal in using blinded data is to avoid paying the typical penalties caused by

breaking the blind. As in clinical trials, procedures for estimating variability based on

61



blinded data before the completion of the study tend to be more scientifically acceptable.

Also, in the clinical trials literature, a number of authors have found that the inflation of

type I error rate is at most slight when modifying designs using blinded data. We employ

blinded estimation of the stereological variance to adjust the number of counting frames in

Stage II, if necessary, to provide the required power against the null hypothesis when the

alternative hypothesis is true.

4.3.4 Two Stage Data Structures

Before we present the strategy for picking the number of counting frames for Stage II, we

give the structure of the two stage data. Note that the stereological variances in the two

stages are different wherever the number of counting frames changes in Stage II. At this

point to establish the appropriate notation, we are assuming that K2 doesn’t depend on the

first stage data. Also assumed is that the distribution of the stereological estimates follows

a normal distribution. N1 and N2 denote the numbers of pairs in two stages, respectively,

and N = N1 +N2. N , N1 and N2 are all fixed in our procedure. Let N̂ ζ
i,γ be the stereological

estimates of neuron number for control or treatment subjects (i = c or t), in the ζth Stage,

ζ = 1, 2, for the γth pair, γ = 1, · · · , Nζ , where

N̂ ζ
i,γ ∼ N(µi + pζ,γ, σB + σist,Kζ), (4.8)

Then the pairwise differences between treatment and control subject within a pair in each

of the two stages are

Dζγ = N̂ ζ
c,γ − N̂

ζ
t,γ ∼ N(µc − µt, 2σB + σcst,Kζ + σtst,Kζ), γ = 1, · · · , Nζ , ζ = 1, 2, (4.9)

and their average

D̄ζ =
1

Nζ

Nζ∑
γ=1

Dζγ ∼ N
(
µc − µt, (2σB + σcst,Kζ + σtst,Kζ)/Nζ

)
, ζ = 1, 2. (4.10)

where Kζ denotes the number of counting frames used in Stage ζ, ζ = 1, 2.
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The difference between treatment and control at the end of study is

D̄ =
¯̂Nc − ¯̂Nt =

1

N
[(N1

¯̂N 1
c +N2

¯̂N 2
c )− (

¯
N1N̂ 1

t +N2
¯̂N 2
t )]

=
N1

N
(

¯̂N 1
c −

¯̂N 1
t ) +

N2

N
(

¯̂N 2
c −

¯̂N 2
t )

=
N1

N
D̄1 +

N2

N
D̄2, (4.11)

so that

var[D̄] =
N1

N2
(2σB + σcst,K1

+ σtst,K1
) +

N2

N2
(2σB + σcst,K2

+ σtst,K2
). (4.12)

Hence,

D̄ ∼ N(µc − µt,
N1

N2
(2σB + σcst,K1

+ σtst,K1
) +

N2

N2
(2σB + σcst,K2

+ σtst,K2
)). (4.13)

If K1 = K2, then D̄ ∼ N(µc−µt, 1
N

(2σB+σcst,K1
+σtst,K1

)), which has the same distribution

as the simple paired case.

In the next section we show how to choose K2, but now we are proposing the test statistic

which will be used after the completion of the study. Since the variances in the two stages

are different, the simple paired t-test which is the basis for the power calculation in (4.7) is

not appropriate. The distribution given in (4.13) suggests to consider a linear combination

of sample variances in the two stages to estimate the variance of D̄.

The sample variances of difference in each of the two stages are

s2
Dζ

=
1

Nζ − 1

Nζ∑
γ=1

(Dζγ − D̄ζ)
2, (4.14)

where
Nζ−1

2σB+σcst,Kζ
+σtst,Kζ

s2
Dζ
∼ χ2

Nζ−1, for ζ = 1, 2.

Then E[s2
Dζ

] = 2σB + σcst,Kζ + σtst,Kζ and V ar[s2
Dζ

] =
2(2σB+σcst,Kζ

+σtst,Kζ
)2

Nζ−1
follow from the

moments of the χ2 distribution.

Now let

s2 =
N1

N2
s2
D1

+
N2

N2
s2
D2
, (4.15)
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then

E[s2] =
N1

N2
E[s2

D1
] +

N2

N2
E[s2

D2
]

=
N1

N2
(2σB + σcst,K1

+ σtst,K1
) +

N2

N2
(2σB + σcst,K2

+ σtst,K2
). (4.16)

Thus s2 is an unbiased estimate of the variance of D̄.

Then we have

V ar[s2] =

(
N1

N2

)2

V ar[s2
D1

] +

(
N2

N2

)2

V ar[s2
D2

]

=

(
N1

N2

)2 2(2σB + σcst,K1
+ σtst,K1

)2

N1 − 1
+

(
N2

N2

)2 2(2σB + σcst,K2
+ σtst,K2

)2

N2 − 1
. (4.17)

So s2 can be used as the denominator of an approximate t-statistic. We want to find the

degree of freedom df such that df ·s2
E[s2]

has approximately χ2
df distribution. The Satterthwaite

is one such approximation, and attempts to choose df such that the variance of df ·s2
E[s2]

matches

that of the χ2
df distribution where

V ar

[
df · s2

E[s2]

]
=
df 2 · V ar[s2]

E2[s2]

= 2 · df. (4.18)

Note that by definition, the mean of df ·s2
E[s2]

already matches that of the χ2
df distribution.

Then

df =
2 · E2[s2]

V ar[s2]

=

[
N1

N2 (2σB + σcst,K1
+ σtst,K1

) + N2

N2 (2σB + σcst,K2
+ σtst,K2

)
]2(

N1

N2

)2 (2σB+σcst,K1
+σtst,K1

)2

N1−1
+
(
N2

N2

)2 (2σB+σcst,K2
+σtst,K2

)2

N2−1

. (4.19)

Thus, the test statistic

T =
D̄√
s2

(4.20)

has approximately a tdf distribution with df defined by (4.19).
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When K1 = K2, the degrees of freedom df is

df =

[
N1

N2 (2σB + σcst,K1
+ σtst,K1

) + N2

N2 (2σB + σcst,K1
+ σtst,K1

)
]2(

N1

N2

)2 (2σB+σcst,K1
+σtst,K1

)2

N1−1
+
(
N2

N2

)2 (2σB+σcst,K1
+σtst,K1

)2

N2−1

=

(
N1

N2 + N2

N2

)2(
N1

N2

)2 1
N1−1

+
(
N2

N2

)2 1
N2−1

=
N2

N2
1

N1−1
+

N2
2

N2−1

.

Hence when N1 = N , df = N − 1 which is the same as simple paired study. When

N1 = 0.5N , df = N − 2 which is 1 degree of freedom less than the paired one, which is the

cost for carrying out a two stage procedure.

For the moment ignoring the adaptation, we are able to assume s2
D1

and s2
D2

are inde-

pendent random variables. When performing an unblinded adaptive design, the concern is

doing the analysis at the end of the study ignoring the adaptation might inflate the type I

error rate. Nonetheless, even after K2 is chosen adaptively based on blinded Stage I data we

propose in Section 4.3.5, to use the t-test in (4.20) to test whether or not the treatment and

control population neuron counts differ. However, in related settings with blinded sample

size adjustments, other researchers have found no inflation of the type I error in an approach

like ours. For example, Gould and Shih (1991) described an approach to recalculating sample

size that allowed estimating the variance without unblinding the data at the end of the first

stage, and the approach protected type I error rate. The type I error rate for our procedure

is discussed in Section 4.3.6.1.

4.3.5 Choice of K2

In this section we show how to choose the number of counting frames K2 for Stage II. We

note that the power function for the t-statistic in (4.20) assuming K2 is not a function of

Stage I is

1− β = Power = P (|T | > t0.975,df |ncp). (4.21)
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Under the alternative δ, the non-centrality parameter is

ncp =
δ√

N1

N2 (2σB + σcst,K1
+ σtst,K1

) + N2

N2 (2σB + σcst,K2
+ σtst,K2

)
, (4.22)

and the degrees of freedom is defined by (4.19).

Our adaptive approach uses the stereological variance estimators based on Stage I and

combines the two stages data using the t-test of (4.20), ignoring the fact that we have done

an adaptation. The stereological design for Stage II is adjusted according to the Stage I

estimates. In particularly, the estimated stereological variance at the end of Stage I will be

used in determining the number of counting frames of Stage II. Our approach is to adjust the

number of counting frames for Stage II by updating the stereological variance components

in the power function (4.7). The power function with this estimation is now given by

1− β = P (|T | > t1−α/2, bdf(K2)|n̂cp(K2)), (4.23)

where

n̂cp(K2) =δ/{N1

N2
[2σB + (σ̂cst1,K1

+ σ̂tst1,K1
) + (σ̂cst2,K1

+ σ̂tst2,K1
)]+

N2

N2
[2σB + (σ̂cst1,K1

+ σ̂tst1,K1
) +

K1

K2

(σ̂cst2,K1
+ σ̂tst2,K1

)]}−
1
2 , (4.24)

and estimated degrees of freedom

d̂f(K2) ={N1

N2
[2σB + (σ̂cst1,K1

+ σ̂tst1,K1
) + (σ̂cst2,K1

+ σ̂tst2,K1
)]

+
N2

N2
[2σB + (σ̂cst1,K1

+ σ̂tst1,K1
) +

K1

K2

(σ̂cst2,K1
+ σ̂tst2,K1

)]}2

/{
(
N1

N2

)2 [2σB + (σ̂cst1,K1
+ σ̂tst1,K1

) + (σ̂cst2,K1
+ σ̂tst2,K1

)]2

N1 − 1

+

(
N2

N2

)2 [2σB + (σ̂cst1,K1
+ σ̂tst1,K1

) + K1

K2
(σ̂cst2,K1

+ σ̂tst2,K1
)]2

N2 − 1
}. (4.25)

Note that the number of counting frames K1 in Stage I cannot be changed, but that

we can change the number of counting frames K2 in Stage II, based on our estimate of the

average stereological variances from Stage I. Observe that both the non-centrality parameter

(n̂cp(K2)) and degrees of freedom (d̂f(K2)) are functions of K2. For the pre-specified alter-
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native δ and fixed sample size, the power function only depends on the number of counting

frames of Stage II (K2). Our adaptive design for the second stage of the study selects K2 to

satisfy the power equation (4.23). In essence, we are estimating one of the design parame-

ters which we may have mis-specified in the initial study design, and then recomputing the

power taking into account that the number of counting frames in Stage I is already fixed.

Simulation results which are provided in Section 4.3.6 indicate that our approach preserves

the type I error rate well.

In order to obtain K2 counting frames for each subject in Stage II, the u-step and v-step

are adjusted to
√

K1

K2
au and

√
K1

K2
av, respectively. Consider the example in Section 4.3.2, if K2

required in Stage II is 1000, then the u-step and v-step are adjusted to
√

2000/1000∗1.131 =

1.599 mm.

It is important to reiterate that the distribution (4.13) of the difference statistic only

depends on the average of the stereological variances of treatment and controls. Thus, the

two stereological variance components can be estimated by the average of the treatment and

control components from the paired Stage I data which can be done without breaking the

blind. Applying the method described in Chapter 2, the two components of the stereological

variance can be obtained separately for each animal using (2.20) and (2.27). Then the two

components of the stereological variance estimate is given by the average, for υ = 1, 2,

σ̂st,υ,K1 =
¯̂σ
c

st,υ,K1
+ ¯̂σ

t

st,υ,K1

2
=

∑N1

γ=1 σ̂
cγ
st,υ,K1

+
∑N1

γ=1 σ̂
tγ
st,υ,K1

2N1

, (4.26)

where σ̂iγst,υ,K1
is the υth component (υ = 1 corresponds to between section variance and

υ = 2 to within section variance) of the stereological variance estimate of the γth pair in the

group i (i = c or i = t), and ¯̂σ
i

st,υ,K1
is the average of the υth component of the stereological

variance estimate of the group i (i = c or i = t). The stereological variance estimates in

(4.26) are the updated stereological variances at the end of Stage I and used for designing

of Stage II. The two components of the stereological variance are used in the power function

(4.23).
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4.3.6 Simulation

To demonstrate that the null hypothesis distribution of the proposed test statistic (4.20) is

appropriately approximated by the corresponding t distribution with df defined in (4.19),

we conduct a simulation study. Our simulation continues the example in Section 4.3.2. The

parameters used in the simulation are listed in Table 4.2. Following Section 4.3.2, for a

fixed sample size stereological study, we pick K1 = 2000 based on our initial guess (λ0 =

0.636) of the average intensity of Poisson distribution under the Cruz-Orive assumption.

The numbers of counting frames in each section are calculated based on (4.1), which are

(160, 180, 200, 220, 240, 240, 220, 200, 180, 160), respectively, in Stage I.

4.3.6.1 Type I error rate In the simulation study, we generate the counting frame data

for each subject. Under the null hypothesis, the population numbers of neurons in the control

and experimental groups are the same and two groups have the same population intensities.

Note that the true stereological variability depends on the true population intensity, λ, of

neurons in each counting frame which as noted under the null is the same for both treatment

and control groups. In this simulation study, we explore the effects of differing λ (= 0.4, 0.5,

0.6, 0.7,0.8) on the type I error rate. For each subject, the numbers of neurons counted in

each counting frame is independently generated according to Poisson(λ).

First, we generate the counting frame data for Stage I with N1 pairs. In the simulation,

we explore the effects of various choices of N1 from 5 = 25%N to 15 = 75%N .

Stage I Simulation In Stage I, for subject l1 in group i , the counted number Q1,l1,i
jk in kth

counting frame jth section follows a distribution of Poisson(λ), where i = c, t, l1 = 1, · · · , N1,

k = 1, · · · , nj and j = 1, · · · , 10, and K1 =
∑m

j=1 nj.

• We generate Q1,l1,i
jk independently from Poisson(λ).

• The counting frame observation for the (l1, i)
th subject is (Q1,l1,i

11 , · · · , Q1,l1,i
1,n1

, · · · , Q1,l1,i
10,1 , · · · ,

Q1,l1,i
10,n10

),

• The stereological estimate N̂ 1,l1,i for the (l1, i)
th subject is estimated directly from (2.1),
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Table 4.2: Simulation Parameter List

L (mm) 25

m 10

(Area1, · · · , Aream)

(mm2)

(204.8, 230.4, 256.0, 281.6, 307.2, 307.2, 281.6, 256.0,

230.4, 204.8)

a2
f (µm2) 512

h (µm) 30

au = av (mm) 1.131

α 0.05

β 0.20

δ(106) 20

σB(1012) 400

λ0 0.636

N 20

K1 2000
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N̂ 1,l1,i =
1

τsτaτh

10∑
j=1

nj∑
k=1

Q1,l1,i
jk

=
Laxay
mha2

f

10∑
j=1

nj∑
k=1

Q1,l1,i
jk .

Note σB is fixed by the example.

• To generate the primary outcomes, the biological variability (4.8) should be taken into

account. To do so we generate a random number ε1,l1,i independently from N(0, σB),

and add that value to the stereological estimate N̂ 1,l1,i to obtain the primary outcome

N̂ ∗1,l1,i, that is

N̂ ∗1,l1,c = N̂ 1,l1,c + ε1,l1,c,

N̂ ∗1,l1,t = N̂ 1,l1,t + ε1,l1,t.

Note, in reality, the data we obtain in the Stage I is N̂ ∗1,l1,i which includes the biological

variation, and N̂ 1,l1,i is never known. One wary to actually generate the data is using

the random intensity λ for each subject. The variation of the intensity would be the

source of the biological variance. However, since such a simulation is under Cruz-Orive

and Geiser assumption where the counting frame data follows a Poisson distribution,

the validity of normality distribution assumption in (4.8) would be in doubt. In our

adaptation procedure, since our focus is to re-estimate the stereological variance, we use

the approximation of adding the biological variance to the stereological estimators of the

neuron number to avoid the conflict with distribution assumption of primary outcome.

• The two components of the stereological variance of the simulated stereological sample

are calculated based on formula (2.20) and (2.27) in Chapter 2,
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σ̂1,l1,i
st1,K1

=
1

240τ 2
s τ

2
a τ

2
h

(
3

10∑
j=1

(Q1,l1,i
j )2 +

8∑
j=1

Q1,l1,i
j Q1,l1,i

j+2 − 4
9∑
j=1

Q1,l1,i
j Q1,l1,i

j+1

)

=
L2a2

ua
2
v

240m2h2a4
f

(
3

10∑
j=1

(Q1,l1,i
j )2 +

8∑
j=1

Q1,l1,i
j Q1,l1,i

j+2 − 4
9∑
j=1

Q1,l1,i
j Q1,l1,i

j+1

)
,

σ̂1,l1,i
st2,K1

=
1

τ 2
s τ

2
a τ

2
h

10∑
j=1

Q1,l1,i
j

=
L2a2

ua
2
v

m2h2a4
f

10∑
j=1

Q1,l1,i
j ,

where Q1,l1,i
j (=

∑nj
k=1Q

1,l1,i
jk ) is the sum of the counted neuron in jth section for subject

l1 in group i.

At the end of Stage I, use the average of the 2 · N1 stereological variance estimates as

the estimated stereological variance for each component,

σ̂st1,K1 =

∑
i=c,t

∑N1

l1=1 σ̂
1,l1,i
st1,K1

2N1

,

σ̂st2,K1 =

∑
i=c,t

∑N1

l1=1 σ̂
1,l1,i
st2,K1

2N1

.

Then we can calculate the number of counting frames of the second stage (K2) based on

(4.23) with the two components of the stereological variance σ̂st1,K1 and σ̂st2,K1 . Thus, K2

solves the power equation

1− β = P (|T | > t1−α/2, bdf |n̂cp),
where

n̂cp(K2) =
δ√

N1

N2 [2(σB + σ̂st1,K1 + σ̂st2,K1)] + N2

N2 [2(σB + σ̂st1,K1 + K1

K2
σ̂st2,K1)]

,

and estimated degrees of freedom

d̂f(K2) =

[
N1

N2 (σB + σ̂st1,K1 + σ̂st2,K1) + N2

N2 (σB + σ̂st1,K1 + K1

K2
σ̂st2,K1)

]2

(
N1

N2

)2 (σB+bσst1,K1
+bσst2,K1

)2

N1−1
+
(
N2

N2

)2 (σB+bσst1,K1
+
K1
K2
bσst2,K1

)2

N2−1

.
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Then, we generate the counting frame data for Stage II with N2 = N −N1 pairs.

Stage II Simulation In Stage II, the counted number Q2,l2,i
jk is also from Poisson distribution

with same λ, where l2 = 1, · · · , N2, and the steps are essentially the same as Stage I, except

the number of counting frames is adjusted.

• We generate Q2,l2,i
jk independently from Poisson(λ).

• The counting frame observation for the (l2, i)
th subject is (Q2,l2,i

11 , · · · , Q2,l2,i

1,
K2
K1

n1
, · · · , Q2,l2,i

10,1 ,

· · · , Q2,l2,i

10,
K2
K1

n10
).

• The stereological estimate N̂ 2,l2,i for the (l2, i)
th subject is estimated directly from (2.1),

N̂ 2,l2,i =
1

τsτaτh

10∑
j=1

K2
K1

nj∑
k=1

Q2,l2,i
jk

=
Laxay
mha2

f

10∑
j=1

K2
K1

nj∑
k=1

Q2,l2,i
jk .

• To generate the primary outcomes, the biological variability is again accounted for, and

we generate random numbers ε2,l2,i independently from N(0, σB) and appropriately add

them to obtain the primary outcomes.

Combining Stage At the end of Stage II, we calculate the p-value for the stereological

study based on the combined data sets of (N̂ ∗1,l1,c, N̂ ∗1,l1,t) and (N̂ ∗2,l2,c, N̂ ∗2,l2,t), where the

test statistic is defined by (4.20).

This process is repeated 1000 times, so that the type I error rate of our procedure is

estimated by the proportion of p-value less than α = 0.05. The average number of counting

frames K2 is also obtained. Table 4.3 gives the estimated type I error rates for different true

λ’s and varying values of N1, the Stage I sample size. No substantive impact of λ and N1

on the type I error rate is found in this simulation study.

4.3.6.2 Power The power under blinded adaptive procedure can be obtained analogously

to the type I error rate by simulation. Under the alternative hypothesis, the population

numbers of neuron in the control and experimental groups are different , so that the two

72



Table 4.3: Simulation – Type I Error Rate (1000 times, λ0 = 0.636)

N1

λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7

α K2 α K2 α K2 α K2

5 0.052 1083 0.048 1445 0.047 1866 0.051 2369

6 0.046 1050 0.049 1417 0.045 1857 0.046 2398

7 0.051 1012 0.051 1386 0.048 1845 0.049 2435

8 0.053 972 0.053 1352 0.051 1834 0.056 2479

9 0.048 929 0.046 1312 0.052 1821 0.049 2538

10 0.052 881 0.053 1270 0.047 1808 0.051 2605

11 0.047 831 0.048 1219 0.045 1787 0.053 2693

12 0.051 774 0.042 1164 0.053 1763 0.047 2818

13 0.047 711 0.053 1097 0.049 1732 0.050 2990

14 0.045 642 0.051 1020 0.046 1696 0.044 3259

15 0.046 565 0.048 930 0.051 1646 0.048 3732
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groups have different true population intensities. In simulating the power, we assume that

the true population intensities of neurons in each counting frame for treatment and control

group are λt and λc, respectively. Since

δ = µc − µt

=
1

τsτaτh

m∑
j=1

njλc −
1

τsτaτh

m∑
j=1

njλt

=
L

mha2
f

[
m∑
j=1

Areaj

]
(λc − λt), (4.27)

the difference of the two intensities has a proportional relationship with the alternative δ.

According to (4.27), the difference of λc and λt is δ
L

mha2
f

Pm
j=1 Areaj

, which is independent

of the number of counting frames. In our simulation, we assume the alternative δ is 20 ∗ 106,

then

λc − λt =
δ

L
mha2

f

∑m
j=1 Areaj

=
20 ∗ 106

25∗103

10∗30∗512
∗ 2560 ∗ 106

= 0.05.

On the other hand, the overall mean density for the paired study is

λ =
λc + λt

2
.

Then we select the following pairs of parameters (λc = 0.425, λt = 0.375), (λc =

0.525, λt = 0.475), (λc = 0.625, λt = 0.575) and (λc = 0.725, λt = 0.625). The power is

estimated by the proportion of times that we reject the null hypothesis in 1000 tests. The

expected number of counting frames is very similar as the number we obtained in type I

error rate simulations.

We also generate the counting frame data for each subject of treatment and control

groups from Poisson distribution with λt and λc, respectively. However, all other parameters

remain the same including σB and N1. Table 4.4-4.7 give the desired power of the study

under the alternative. Consider the case when the true λ is 0.4 so that there is about a
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60% over-estimate of the intensity parameter used in the planning stage. If there are 5 pairs

of subjects in Stage I, we find that on average 1083 counting frames are required in Stage

II, which is about 55% of the number used in Stage I. If we followed the original design

without an adaptation, the number of counting frames is 80000, while the average number

of counting frames is 52490 in our procedure. On the other hand, when the initial guess of

λ is too low, the number of counting frames is required to be increased to maintain power.

When the true λ is 0.8, there is about a 20% under-estimate of the intensity parameter used

in the design. If there are 5 pairs of subjects in Stage I, we find that on the average 2975

counting frames are required in Stage II in order to obtain the desired power, which is about

50% increase of number used in Stage I. This increase in the numbers of counting frames

occurs because the original design is under powered.

Table 4.4: Simulation - Power 1 (λc = 0.425, λt = 0.375)

N1 5 6 7 8 9 10 11 12 13 14 15

Power 0.833 0.825 0.829 0.818 0.845 0.836 0.827 0.826 0.797 0.825 0.815

K2 1084 1048 1012 972 929 882 830 774 711 642 566

Table 4.5: Simulation - Power 2 (λc = 0.525, λt = 0.475)

N1 5 6 7 8 9 10 11 12 13 14 15

Power 0.830 0.849 0.815 0.823 0.800 0.808 0.816 0.823 0.814 0.839 0.814

K2 1445 1417 1387 1351 1313 1269 1220 1163 1097 1021 930
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Table 4.6: Simulation - Power 3 (λc = 0.625, λt = 0.575)

N1 5 6 7 8 9 10 11 12 13 14 15

Power 0.844 0.817 0.822 0.827 0.831 0.844 0.832 0.816 0.811 0.826 0.817

K2 1866 1858 1847 1835 1821 1806 1787 1762 1734 1696 1645

Table 4.7: Simulation - Power 4 (λc = 0.725, λt = 0.675)

N1 5 6 7 8 9 10 11 12 13 14 15

Power 0.819 0.838 0.823 0.831 0.828 0.849 0.817 0.841 0.828 0.823 0.828

K2 2367 2397 2433 2480 2536 2603 2694 2819 2994 3264 3737
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5.0 CONCLUSIONS AND FUTURE WORK

In Chapter 2, we develop a new procedure based on the Ammeter process for estimating the

variance of the fractionator estimator obtained using uniformly systematic sampling. The

assumption for our approach is that the density of the neurons is a random variable instead

of being a constant. In fact, the distribution of neurons in the brain region is always non-

homogenous. The Konopaske data shows the evidence of the overdispersed Poisson process.

We also compare the stereological variance estimator using the Ammeter method with the

estimators obtained by Cruz-Orive and Geiser’s method and the Bootstrap method.

In Chapter 3, we consider experimental design for a stereological study. We develop

procedures for planning a cost efficient study considering two types of optimization. For the

standard paired studies designed for CCNMD, the research aim is to compare the number of

neurons between two groups instead of evaluating individuals’ neuron numbers. We provide

an algorithm to find the the number of subjects and the number of counting frames that

minimize the cost function while maintaining sufficient power to address the research aim.

We also consider an algorithm to maximize statistical power for a fixed budget.

In Chapter 4, we introduce the idea of adaptive design to stereological studies. For the

optimal designs considered in Chapter 3, we require the information about the magnitudes of

the true stereological variance. Stereological variances vary from study to study. It is usually

difficult to pre-specify before a study which is interested in a particular type of neurons. We

apply the approach of blinded adaptive design procedures to stereological studies specially

to the case of a fixed number of subjects pairs, but where we can change the number of

sampling frames. We develop an approach which at the end of Stage I allows us to update

the assumption about the stereological variance used in the planning stage. Based on the

update, we change the number of counting frames to be used in Stage II. We propose an
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adjusted t-statistic to use for hypothesis testing at the end of the study. Simulation is used

to show that the type I error rate of our procedure is protected, and also appropriate power

is maintained.

5.1 FUTURE WORK

5.1.1 Adjusting Both the Counting Frames and Group Size of Stage II (K2 and

N2)

In the future, we will consider the situation that the number of pairs can also be adjusted.

Both K2 and N2 will be allowed to depend on Stage I data. The difference D̄ = 1
N

[(N1X̄1 +

N2X̄2)− (N1Ȳ1 +N2Ȳ2)] then will have data dependent weights. The adjusted t-statistic we

proposed in (4.21) may not be appropriate to use.

Then, we would consider an alternative test statistic, which is a combination of Z-

statistics,

Z =
√
φZ1 +

√
1− φZ2, (5.1)

where Z1 and Z2 are the Z-statistics for Stage I and Stage II respectively, and φ is a pre-

specified constant. This test statistic has a normal distribution and type I error rate is

guaranteed. However, the strategy to pick φ need to be discussed. Under the alternative,

Z ∼ N(ξ, 1), where ξ =
√
φ δr

2σB+σc
st,K1

+σt
st,K1

N1

+
√

1− φ δr
2σB+σc

st,K2
+σt

st,K2
N2

.

Consider the total cost for the study:

Cost = C0 + 2C1N + 2C2N1K1 + 2C2N2K2

= (C0 + 2C1N1 + 2C2N1K1) + 2C1N2 + 2C2N2K2

= C∗0 + 2C1N2 + 2C2N2K2. (5.2)

where C∗0 = C0 + 2C1N1 + 2C2N1K1. The cost of the first stage is fixed with fixed (N1, K1),

so that to obtain an optimal design we need to optimize the second stage.

We plan to develop the strategy to pick K2 and N2 as part of our future research goals.
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5.1.2 Ammeter assumption validity

We estimated the stereological variance under the Ammeter assumption in Chapter 2. How-

ever, the assumption’s validity has to be checked. We note that the assumption of an

Ammeter process can be compared to a Poisson model using a likelihood ratio test. To do

this, we use α = 1/φ in the NB distribution. Because α→ 0 implies that the NB distribution

goes to a Poisson distribution, the validity test can be represented as testing α = 0.

5.1.3 Matched Triads Design

Dr. Konopaske uses a triads study to detect the antipsychotic exposure effect on the number

of glial cells. Due to the unequal stereological variances among groups under the alternative

hypothesis, to apply the adaptive procedure in designing a triads study is more complex.

Furthermore, the two components of the stereological variance can’t be estimated by blinded

data. The unblinded approach may be considered in triads case. We will examine this

situation more carefully in the future.
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APPENDIX A

SYSTEMATIC DELETION

A.1 SYSTEMATIC DELETION OF DATA SET WITH 20% REDUCTION

Table A1: Comparing the Original Data Set and 45 Samples with 20% Reduction

Dataset Estimate StdErr t-stat p-value
Original -25.0 12.94 -1.93 0.0413
Sample1 -27.9 13.55 -2.06 0.033
Sample2 -27.4 13.03 -2.10 0.031
Sample3 -26.6 13.28 -2.01 0.036
Sample4 -24.5 13.54 -1.81 0.050
Sample5 -25.6 13.60 -1.89 0.044
Sample6 -27.0 13.93 -1.93 0.041
Sample7 -27.6 14.21 -1.94 0.040
Sample8 -27.2 13.75 -1.98 0.038
Sample9 -24.3 12.65 -1.92 0.042
Sample10 -27.0 12.47 -2.16 0.028
Sample11 -26.2 12.72 -2.06 0.033
Sample12 -24.1 12.99 -1.85 0.047
Sample13 -25.2 13.07 -1.93 0.041
Sample14 -26.5 13.34 -1.99 0.037
Sample15 -27.2 13.63 -1.99 0.037
Sample16 -26.8 13.19 -2.03 0.035
Sample17 -23.9 12.07 -1.98 0.038
Sample18 -25.7 12.13 -2.12 0.030
Sample19 -23.6 12.51 -1.88 0.044
Sample20 -24.7 12.58 -1.97 0.039
Sample21 -26.0 12.79 -2.04 0.034
Sample22 -26.7 13.20 -2.02 0.035
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A1: (continued) Comparing the Original Data Set and 45 Samples with 20% Reduction.

Dataset Estimate StdErr t-stat p-value
Sample23 -26.3 12.62 -2.09 0.032
Sample24 -23.4 11.60 -2.02 0.036
Sample25 -22.8 12.69 -1.80 0.051
Sample26 -24.0 12.83 -1.87 0.046
Sample27 -25.3 13.05 -1.94 0.041
Sample28 -25.9 13.34 -1.94 0.040
Sample29 -25.6 12.94 -1.98 0.038
Sample30 -22.6 11.82 -1.91 0.042
Sample31 -21.8 13.17 -1.66 0.064
Sample32 -23.1 13.38 -1.73 0.057
Sample33 -23.8 13.75 -1.73 0.057
Sample34 -23.4 13.19 -1.77 0.053
Sample35 -20.5 12.19 -1.68 0.062
Sample36 -24.3 13.42 -1.81 0.050
Sample37 -24.9 13.83 -1.80 0.051
Sample38 -24.6 13.30 -1.85 0.047
Sample39 -21.6 12.28 -1.76 0.054
Sample40 -26.2 14.02 -1.87 0.045
Sample41 -25.9 13.55 -1.91 0.043
Sample42 -22.9 12.40 -1.85 0.047
Sample43 -26.5 13.78 -1.92 0.042
Sample44 -23.6 12.80 -1.84 0.048
Sample45 -23.2 12.32 -1.89 0.044

Note: The degree of the t statistics is 10 and the p-value is based on a one-sided testing.
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A.2 SYSTEMATIC DELETION OF DATA SET WITH 30% REDUCTION

Table A2: Comparing the Original Data Set and 120 Samples with 30% Reduction

Dataset Estimate StdErr t-stat p-value
Original -25.0 12.94 -1.93 0.0413
Sample1 -29.2 13.11 -2.23 0.025
Sample2 -28.3 13.42 -2.11 0.031
Sample3 -25.8 13.63 -1.90 0.044
Sample4 -27.2 13.68 -1.99 0.038
Sample5 -28.7 14.14 -2.03 0.035
Sample6 -29.4 14.39 -2.04 0.034
Sample7 -29.0 13.94 -2.08 0.032
Sample8 -25.6 12.62 -2.03 0.035
Sample9 -27.7 12.72 -2.18 0.027
Sample10 -25.3 13.07 -1.93 0.041
Sample11 -26.6 13.12 -2.03 0.035
Sample12 -28.1 13.49 -2.08 0.032
Sample13 -28.8 13.89 -2.07 0.032
Sample14 -28.4 13.27 -2.14 0.029
Sample15 -25.1 12.06 -2.08 0.032
Sample16 -24.4 13.29 -1.84 0.048
Sample17 -25.7 13.42 -1.92 0.042
Sample18 -27.2 13.81 -1.97 0.038
Sample19 -27.9 14.06 -1.99 0.037
Sample20 -27.5 13.66 -2.02 0.036
Sample21 -24.2 12.34 -1.96 0.039
Sample22 -23.3 13.73 -1.70 0.060
Sample23 -24.8 14.10 -1.76 0.055
Sample24 -25.5 14.46 -1.76 0.054
Sample25 -25.1 13.86 -1.81 0.050
Sample26 -21.7 12.67 -1.71 0.059
Sample27 -26.1 14.10 -1.85 0.047
Sample28 -26.8 14.52 -1.85 0.047
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Table A2: (continued) Comparing the Original Data Set and 120 Samples with 30% Reduc-

tion.

Dataset Estimate StdErr t-stat p-value
Sample29 -26.4 13.95 -1.89 0.044
Sample30 -23.1 12.74 -1.81 0.050
Sample31 -28.3 14.86 -1.90 0.043
Sample32 -27.9 14.37 -1.94 0.040
Sample33 -24.6 13.01 -1.89 0.044
Sample34 -28.6 14.56 -1.97 0.039
Sample35 -25.3 13.40 -1.89 0.044
Sample36 -24.9 12.90 -1.93 0.041
Sample37 -27.3 12.10 -2.25 0.024
Sample38 -24.8 12.46 -1.99 0.037
Sample39 -26.1 12.53 -2.09 0.032
Sample40 -27.6 12.82 -2.15 0.028
Sample41 -28.3 13.25 -2.14 0.029
Sample42 -27.9 12.64 -2.21 0.026
Sample43 -24.6 11.41 -2.15 0.028
Sample44 -23.9 12.68 -1.89 0.044
Sample45 -25.3 12.83 -1.97 0.039
Sample46 -26.8 13.15 -2.03 0.035
Sample47 -27.5 13.41 -2.05 0.034
Sample48 -27.1 13.04 -2.08 0.032
Sample49 -23.7 11.70 -2.03 0.035
Sample50 -22.8 13.15 -1.73 0.057
Sample51 -24.3 13.45 -1.81 0.051
Sample52 -25.0 13.82 -1.81 0.050
Sample53 -24.6 13.24 -1.86 0.046
Sample54 -21.3 12.05 -1.76 0.054
Sample55 -25.6 13.47 -1.90 0.043
Sample56 -26.3 13.90 -1.89 0.044
Sample57 -25.9 13.35 -1.94 0.040
Sample58 -22.6 12.13 -1.86 0.046
Sample59 -27.8 14.18 -1.96 0.039
Sample60 -27.4 13.71 -2.00 0.037
Sample61 -24.1 12.32 -1.96 0.040
Sample62 -28.1 13.90 -2.03 0.035
Sample63 -24.8 12.73 -1.95 0.040
Sample64 -24.4 12.25 -1.99 0.037
Sample65 -23.4 12.04 -1.94 0.040
Sample66 -24.7 12.18 -2.03 0.035
Sample67 -26.2 12.40 -2.11 0.030
Sample68 -26.9 12.83 -2.10 0.031
Sample69 -26.5 12.28 -2.16 0.028
Sample70 -23.2 11.04 -2.10 0.031
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Table A2: (continued) Comparing the Original Data Set and 120 Samples with 30% Reduc-

tion.

Dataset Estimate StdErr t-stat p-value
Sample71 -22.2 12.65 -1.76 0.055
Sample72 -23.7 12.85 -1.85 0.047
Sample73 -24.4 13.38 -1.83 0.049
Sample74 -24.0 12.62 -1.90 0.043
Sample75 -20.7 11.55 -1.79 0.052
Sample76 -25.1 12.87 -1.95 0.040
Sample77 -25.8 13.46 -1.92 0.042
Sample78 -25.4 12.73 -1.99 0.037
Sample79 -22.0 11.64 -1.89 0.044
Sample80 -27.3 13.64 -2.00 0.037
Sample81 -26.9 13.00 -2.07 0.033
Sample82 -23.5 11.71 -2.01 0.036
Sample83 -27.6 13.34 -2.07 0.033
Sample84 -24.2 12.29 -1.97 0.038
Sample85 -23.8 11.63 -2.05 0.034
Sample86 -21.4 12.86 -1.66 0.064
Sample87 -22.9 13.09 -1.75 0.056
Sample88 -23.6 13.47 -1.75 0.055
Sample89 -23.2 12.93 -1.79 0.052
Sample90 -19.8 11.74 -1.69 0.061
Sample91 -24.2 13.19 -1.83 0.048
Sample92 -24.9 13.62 -1.83 0.049
Sample93 -24.5 13.12 -1.87 0.046
Sample94 -21.2 11.91 -1.78 0.053
Sample95 -26.4 13.82 -1.91 0.043
Sample96 -26.0 13.41 -1.94 0.041
Sample97 -22.7 12.01 -1.89 0.044
Sample98 -26.7 13.59 -1.97 0.039
Sample99 -23.4 12.42 -1.88 0.045
Sample100 -23.0 12.00 -1.91 0.042
Sample101 -21.7 13.58 -1.60 0.070
Sample102 -22.4 14.11 -1.59 0.071
Sample103 -22.0 13.41 -1.64 0.066
Sample104 -18.7 12.35 -1.51 0.081
Sample105 -23.9 14.31 -1.67 0.063
Sample106 -23.5 13.69 -1.72 0.058
Sample107 -20.2 12.45 -1.62 0.068
Sample108 -24.2 13.98 -1.73 0.057
Sample109 -20.9 12.97 -1.61 0.069
Sample110 -20.5 12.33 -1.66 0.064
Sample111 -25.3 14.33 -1.76 0.054
Sample112 -24.9 13.75 -1.81 0.050
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Table A2: (continued) Comparing the Original Data Set and 120 Samples with 30% Reduc-

tion.

Dataset Estimate StdErr t-stat p-value
Sample113 -21.5 12.48 -1.72 0.058
Sample114 -25.6 14.10 -1.81 0.050
Sample115 -22.2 13.06 -1.70 0.060
Sample116 -21.8 12.46 -1.75 0.055
Sample117 -27.1 14.35 -1.89 0.044
Sample118 -23.7 13.13 -1.81 0.050
Sample119 -23.3 12.61 -1.85 0.047
Sample120 -24.0 12.94 -1.86 0.046

Note: The degree of the t statistics is 10 and the p-value is based on a one-sided testing.
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APPENDIX B

BOOTSTRAP DELETION

B.1 BOOTSTRAP DELETION OF DATA SET WITH 10% REDUCTION

Table B1: Comparing the Original Data Set and 50 Bootstrap Samples with 10% Reduction

Dataset Estimate StdErr t-stat p-value
Original -25.0 12.94 -1.93 0.0413
Bootstrap1 -25.0 15.12 -1.66 0.064
Bootstrap2 -28.7 12.28 -2.34 0.021
Bootstrap3 -27.5 14.25 -1.93 0.041
Bootstrap4 -29.1 13.31 -2.19 0.027
Bootstrap5 -29.0 12.74 -2.28 0.023
Bootstrap6 -23.4 10.82 -2.16 0.028
Bootstrap7 -23.6 12.88 -1.83 0.049
Bootstrap8 -29.8 15.14 -1.97 0.039
Bootstrap9 -23.4 12.04 -1.95 0.040
Bootstrap10 -26.6 13.77 -1.93 0.041
Bootstrap11 -24.0 12.70 -1.89 0.044
Bootstrap12 -23.5 10.85 -2.17 0.028
Bootstrap13 -29.7 11.07 -2.69 0.011
Bootstrap14 -25.2 11.44 -2.20 0.026
Bootstrap15 -24.5 13.38 -1.83 0.049
Bootstrap16 -29.7 14.15 -2.10 0.031
Bootstrap17 -29.6 13.90 -2.13 0.029
Bootstrap18 -23.3 13.38 -1.74 0.056
Bootstrap19 -22.2 12.04 -1.84 0.047
Bootstrap20 -26.7 14.40 -1.86 0.046
Bootstrap21 -29.7 13.84 -2.14 0.029
Bootstrap22 -28.1 12.99 -2.16 0.028
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B1: (continued) Comparing the Original Data Set and 50 Bootstrap Samples with 10% Re-

duction.

Dataset Estimate StdErr t-stat p-value
Bootstrap23 -25.0 12.06 -2.07 0.033
Bootstrap24 -28.6 13.39 -2.14 0.029
Bootstrap25 -27.8 14.22 -1.95 0.040
Bootstrap26 -27.7 11.48 -2.41 0.018
Bootstrap27 -29.4 14.16 -2.07 0.032
Bootstrap28 -26.7 13.36 -2.00 0.037
Bootstrap29 -26.1 14.72 -1.78 0.053
Bootstrap30 -26.4 13.37 -1.97 0.038
Bootstrap31 -25.9 14.03 -1.85 0.047
Bootstrap32 -26.0 13.58 -1.91 0.042
Bootstrap33 -29.5 13.20 -2.23 0.025
Bootstrap34 -24.3 13.73 -1.77 0.054
Bootstrap35 -25.8 12.81 -2.02 0.036
Bootstrap36 -22.9 11.39 -2.01 0.036
Bootstrap37 -30.7 13.53 -2.27 0.023
Bootstrap38 -30.1 13.92 -2.16 0.028
Bootstrap39 -28.2 13.25 -2.13 0.030
Bootstrap40 -23.5 13.86 -1.70 0.060
Bootstrap41 -31.2 11.81 -2.64 0.012
Bootstrap42 -25.8 12.01 -2.14 0.029
Bootstrap43 -26.0 13.02 -1.99 0.037
Bootstrap44 -23.8 13.01 -1.83 0.049
Bootstrap45 -25.8 13.43 -1.92 0.042
Bootstrap46 -32.3 12.68 -2.55 0.014
Bootstrap47 -31.7 12.90 -2.45 0.017
Bootstrap48 -25.0 12.75 -1.96 0.039
Bootstrap49 -22.7 11.21 -2.02 0.035
Bootstrap50 -26.4 12.79 -2.07 0.033

Note: The degree of the t statistics is 10 and the p-value is based on a one-sided testing.
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B.2 BOOTSTRAP DELETION OF DATA SET WITH 20% REDUCTION

Table B2: Comparing the Original Data Set and 50 Bootstrap Samples with 20% Reduction

Dataset Estimate StdErr t-stat p-value
Original -25.0 12.94 -1.93 0.0413
Bootstrap1 -24.3 13.44 -1.81 0.050
Bootstrap2 -26.3 14.37 -1.83 0.048
Bootstrap3 -30.0 15.05 -1.99 0.037
Bootstrap4 -28.6 13.23 -2.16 0.028
Bootstrap5 -26.7 12.51 -2.14 0.029
Bootstrap6 -25.7 13.32 -1.93 0.041
Bootstrap7 -27.4 13.68 -2.01 0.036
Bootstrap8 -26.6 13.73 -1.93 0.041
Bootstrap9 -23.8 12.27 -1.94 0.040
Bootstrap10 -24.9 14.19 -1.75 0.055
Bootstrap11 -26.6 13.24 -2.01 0.036
Bootstrap12 -26.3 14.30 -1.84 0.048
Bootstrap13 -28.8 12.76 -2.25 0.024
Bootstrap14 -24.9 11.19 -2.22 0.025
Bootstrap15 -22.7 15.21 -1.50 0.083
Bootstrap16 -23.8 12.20 -1.95 0.040
Bootstrap17 -31.4 13.84 -2.27 0.023
Bootstrap18 -24.6 12.23 -2.01 0.036
Bootstrap19 -29.1 13.18 -2.21 0.026
Bootstrap20 -26.9 12.80 -2.10 0.031
Bootstrap21 -29.4 12.67 -2.32 0.021
Bootstrap22 -25.5 13.22 -1.93 0.041
Bootstrap23 -32.0 12.29 -2.60 0.013
Bootstrap24 -26.8 15.37 -1.75 0.056
Bootstrap25 -28.7 14.77 -1.95 0.040
Bootstrap26 -29.8 11.78 -2.53 0.015
Bootstrap27 -22.2 12.12 -1.83 0.049
Bootstrap28 -29.7 14.48 -2.05 0.034
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Table B2: (continued) Comparing the Original Data Set and 50 Bootstrap Samples with 20%

Reduction.

Dataset Estimate StdErr t-stat p-value
Bootstrap29 -25.4 13.85 -1.83 0.048
Bootstrap30 -24.2 12.03 -2.01 0.036
Bootstrap31 -23.6 11.64 -2.03 0.035
Bootstrap32 -25.0 13.07 -1.91 0.042
Bootstrap33 -28.1 12.76 -2.20 0.026
Bootstrap34 -21.5 11.68 -1.84 0.047
Bootstrap35 -21.5 13.73 -1.57 0.074
Bootstrap36 -28.4 11.28 -2.52 0.015
Bootstrap37 -29.2 13.78 -2.12 0.030
Bootstrap38 -22.7 13.06 -1.74 0.056
Bootstrap39 -25.9 14.19 -1.83 0.049
Bootstrap40 -26.6 13.38 -1.99 0.037
Bootstrap41 -22.9 12.35 -1.86 0.046
Bootstrap42 -31.0 15.08 -2.05 0.034
Bootstrap43 -27.7 12.82 -2.16 0.028
Bootstrap44 -27.2 13.88 -1.96 0.039
Bootstrap45 -23.6 15.27 -1.55 0.076
Bootstrap46 -32.1 12.99 -2.47 0.016
Bootstrap47 -30.4 12.89 -2.36 0.020
Bootstrap48 -24.7 15.29 -1.61 0.069
Bootstrap49 -27.7 12.20 -2.27 0.023
Bootstrap50 -23.0 11.72 -1.97 0.039

Note: The degree of the t statistics is 10 and the p-value is based on a one-sided testing.
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B.3 BOOTSTRAP DELETION OF DATA SET WITH 30% REDUCTION

Table B3: Comparing the Original Data Set and 50 Bootstrap Samples with 30% Reduction

Dataset Estimate StdErr t-stat p-value
Original -25.0 12.94 -1.93 0.0413
Bootstrap1 -23.9 12.06 -1.98 0.038
Bootstrap2 -27.1 13.51 -2.01 0.036
Bootstrap3 -26.8 14.73 -1.82 0.049
Bootstrap4 -21.3 13.01 -1.64 0.066
Bootstrap5 -27.0 13.07 -2.07 0.033
Bootstrap6 -23.3 10.74 -2.17 0.027
Bootstrap7 -24.9 14.06 -1.77 0.053
Bootstrap8 -26.2 13.40 -1.95 0.040
Bootstrap9 -26.3 13.42 -1.96 0.039
Bootstrap10 -31.9 14.37 -2.22 0.025
Bootstrap11 -27.0 11.82 -2.28 0.023
Bootstrap12 -30.9 14.07 -2.20 0.026
Bootstrap13 -23.7 12.83 -1.84 0.048
Bootstrap14 -25.3 10.89 -2.33 0.021
Bootstrap15 -27.7 12.62 -2.19 0.027
Bootstrap16 -23.3 12.16 -1.91 0.042
Bootstrap17 -26.8 13.98 -1.91 0.042
Bootstrap18 -30.8 14.88 -2.07 0.033
Bootstrap19 -23.5 12.36 -1.90 0.043
Bootstrap20 -29.4 13.92 -2.11 0.031
Bootstrap21 -35.3 12.76 -2.77 0.010
Bootstrap22 -26.8 14.03 -1.91 0.043
Bootstrap23 -24.7 13.54 -1.82 0.049
Bootstrap24 -26.6 12.69 -2.10 0.031
Bootstrap25 -31.2 15.66 -1.99 0.037
Bootstrap26 -24.7 12.80 -1.93 0.041
Bootstrap27 -24.6 11.97 -2.05 0.034
Bootstrap28 -35.2 16.57 -2.12 0.030
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Table B3: (continued) Comparing the Original Data Set and 50 Bootstrap Samples with 30%

Reduction.

Dataset Estimate StdErr t-stat p-value
Bootstrap29 -26.5 12.34 -2.14 0.029
Bootstrap30 -27.0 12.56 -2.15 0.029
Bootstrap31 -25.7 12.65 -2.03 0.035
Bootstrap32 -19.1 12.06 -1.59 0.072
Bootstrap33 -25.5 14.16 -1.80 0.051
Bootstrap34 -32.1 14.51 -2.21 0.026
Bootstrap35 -24.7 11.74 -2.10 0.031
Bootstrap36 -25.6 13.31 -1.93 0.042
Bootstrap37 -24.6 12.71 -1.94 0.041
Bootstrap38 -27.7 12.89 -2.15 0.029
Bootstrap39 -22.5 13.08 -1.72 0.058
Bootstrap40 -26.4 12.98 -2.04 0.035
Bootstrap41 -31.2 12.69 -2.46 0.017
Bootstrap42 -18.9 14.43 -1.31 0.110
Bootstrap43 -29.2 12.04 -2.43 0.018
Bootstrap44 -29.0 14.91 -1.94 0.040
Bootstrap45 -26.0 14.10 -1.84 0.048
Bootstrap46 -20.7 12.21 -1.69 0.061
Bootstrap47 -27.0 13.08 -2.06 0.033
Bootstrap48 -26.7 11.15 -2.40 0.019
Bootstrap49 -27.8 13.06 -2.13 0.030
Bootstrap50 -29.9 15.49 -1.93 0.041

Note: The degree of the t statistics is 10 and the p-value is based on a one-sided testing.
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