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ABSTRACT

PRECISE MEASUREMENT OF NEUTRINO AND ANTI-NEUTRINO

DIFFERENTIAL CROSS SECTIONS ON IRON

Martin Mihaylov Tzanov, PhD

University of Pittsburgh, 2005

This thesis will present a precise measurement of the differential cross section for charged

current neutrino and anti-neutrino scattering from iron. The NuTeV experiment took data

during 1996-97 and collected 8.6× 105 ν and 2.4× 105 ν charged-current (CC) interactions.

The experiment combines sign-selected neutrino and antineutrino beams and the upgraded

CCFR iron-scintillator neutrino detector. A precision continuous calibration beam was used

to determine the muon and hadron energy scales to a precision of about a factor of two better

than previous experiments. The structure functions F2(x,Q2) and xF3(x,Q2) are extracted

and compared with theory and previous measurements.
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1.0 INTRODUCTION

Deep inelastic scattering (DIS), the scattering of a high energy lepton off a quark inside a

nucleon, has been a proving ground for QCD, the theory of strong interactions. Charged-

leptons and neutrinos have been used to measure parton densities and their QCD evolution

with high-precision over a wide range in Q2. Uniquely, neutrino DIS, via the weak interac-

tion probe, allows simultaneous measurement of two structure functions: F2(x,Q2) and the

parity-violating structure function, xF3(x,Q2).

This thesis presents a new measurement of high-energy neutrino and anti-neutrino differ-

ential cross sections from high-statistics data samples. Previous high-statistics measurements

of the neutrino and anti-neutrino differential cross section have been reported [1], [2]. This

experiment has two improvements: first, a sign-selected beam allowed separate neutrino and

anti-neutrino running and, second, a calibration beam continuously measured the detec-

tor’s response. The largest experimental uncertainties in previous measurements arose from

knowledge of energy scale and detector response functions [3], [4]. NuTeV addressed this by

using a dedicated calibration beam of hadrons, electrons and muons that alternated with

neutrino running once every minute throughout the one year data-taking peroid.

NuTeV’s other improvement was separate neutrino and anti-neutrino running. NuTeV

ran in two modes, (ν and ν), with the muon spectrometer polarity always set to focus the

primary charged-lepton from the interaction vertex (e.g. µ− in ν-mode or µ+ in ν-mode).

In determining the charged-current differential cross sections, this allowed better and more

uniform acceptance in the two running modes and removed ambiguity in the muon sign

determination present in a mixed ν and ν beam.

The first chapter will introduce the Standard Model of particle physics, and will present

the theoretical framework for deep inelastic scattering. The remainder of this thesis is
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organized as follows:

• Chapter 2 describes the neutrino beamline (SSQT) and detector.

• Chapter 3 describes the calibration of the detector, data samples and event selection.

• Chapter 4 provides a detailed description of the event simulator including the neutrino

cross section model and detector response model.

• Chapter 5 presents the method for extraction of the flux and total neutrino cross section.

• Chapter 6 presents the method for extraction of the differential cross section and com-

parisons with previous measurements.

• Chapter 7 presents the measurement of the structure functions, F2 and xF3, and com-

parisons with previous neutrino measurements. Results are also compared with theoret-

ical models

• Chapter 8 gives final remarks and conclusions.

1.1 THE STANDARD MODEL

Particle physics, both theoretical and experimental, studies the elementary particles and

their interactions. The contemporary view is that all matter is built from a number of

fundamental particles, which are considered structureless. These fundamental particles can

be divided into two major groups; fermions and bosons. Most simplistically the fermions are

the building blocks and the bosons mediate the interactions among the fermions. All matter

is composed of these fundamental particles. The atom consists of electrons and a nucleus,

which contains protons and neutrons (nucleons). These nucleons are composed of quarks.

The proton consists of two up and one down quarks, and the neutron consists of one up and

two down quarks.

We can divide the fermions into two groups based on the interactions in which they

participate: quarks and leptons. Quarks participate in all interactions (Table 1.3). Leptons

participate in the gravitational, weak, and electromagnetic (only the ones which carry electric

charge) interactions. Both quarks and leptons are divided in three “generations” of doublets,

which gives six varieties (flavors) of quarks and leptons. The six quarks flavors are up (u),

2



Electric Charge I Generation II Generation III generation

2
3

u c t

−1
3

d s b

Table 1.1: Quarks are ordered in three generations. Electric charge is given as a fraction of

the electric charge of the proton.

down (d), strange (s), charm (c), bottom (b) and top (t). Table 1.1 shows the ordering of

the quarks into generations. The electric charge of the quarks is given as a fraction of the

electric charge of the proton. The electron (e−), the muon (µ−) and the tau (τ−) are the

leptons carrying electric charge. All neutrinos, which include the electron neutrino νe, the

muon neutrino νµ and the tau neutrino ντ , are electrically neutral leptons. Table 1.2 shows

the leptons and their properties.

The second part of the picture is “anti-matter”, which consists of the particles which are

the charge-conjugates of the quarks and leptons we already described. The charge-conjugate

for each fermion has the same mass, but opposite charges.

There are four known interactions through which fundamental particles interact with

each other. Table 1.3 lists the four known forces which govern the interactions among the

fundamental particles: strong, electromagnetic, weak and gravitational. Particles interact by

exchanging gauge bosons. All fermions interact through the weak interaction, which is medi-

ated via the massive gauge bosons Z0,W
±. All fundamental particles carrying electric charge

interact through the electromagnetic interaction, which is mediated by the photon(γ). Only

quarks interact through the strong interaction, because they are the only fermions carrying

color charge (the strong charge) of which there are three types. The strong interaction is me-

diated by a spin-1 gauge boson, gluon, which also carries color charge. This unique property

of the gluons allows them to interact with each other. The Standard Model(SM) of parti-

cle physics unifies three of the four known interactions: strong, electromagnetic and weak.

Gravity does not easily fit this unification. However, the gravitational force is negligible
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Electric Charge I Generation II Generation III generation

0 νe νµ ντ

-1 e µ τ

Table 1.2: Leptons are ordered in three generations. Electric charge is given as a fraction of

the electric charge of the proton.

when interactions between elementary particle are considered.

The Standard Model is accurate at describing known particle interactions. It explains all

existing data and is consistent with results from all subfields of particle physics. However,

there are a number of more fundamental questions for which the Standard model offers no

explanation. For example, it can’t explain the origin of mass, the values of the coupling

constants, the number of fermions or the hierarchy between the generations of quarks and

leptons. Perhaps an elegant theory exists “beyond“ the Standard Model which will give

answers to all these questions.

Interaction Participating particles Mediating boson Relative coupling

Strong Quarks gluon (g) > 1

Electromagnetic Quarks and charged leptons photon (γ) ∼ 1/137

Weak All Z0,W
± 10−5

Gravitational All Graviton 10−42

Table 1.3: Fundamental interactions and their relative strengths.
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EHAD

q

l

P

xP

k k′

l′DIS

γ∗, Z0,W
±

Figure 1.1: DIS is the lepton scattering off the nucleon mediated via one of the electroweak

gauge bosons.

1.2 DEEP INELASTIC SCATTERING

Deep inelastic scattering (DIS) is the process in which a lepton interacts with a quark in

nucleon producing a lepton, and a hadronic system in the final state. This can be written

as:

l + N → l′ + X, (1.1)

where l is the initial state lepton, N is the nucleon, l′ is the final state lepton, and X is

a final hadronic state. The incident lepton scatters inelastically of a quark in the nucleon

via exchange of a vector boson (γ∗,W± or Z0). The excited nucleon fragments (turns into

hadrons) and together with remnant quarks comprises the hadronic final state, composed of

hadronic particles (protons, neutrons, pions, kaons, etc.).
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1.2.1 Kinematics of DIS

Figure 1.1 shows the tree level Feynman diagram for the DIS interaction, where k is the

four-momentum of the incident lepton, k′ and θl′ are the four-momenta and the angle of the

outgoing lepton, P is the four-momentum of the nucleon, and q is the four-momentum of

the virtual gauge boson. In the laboratory frame these vectors have the form

k = (El,
−→p l),

k′ = (El′ ,
−→p l′),

p = (M, 0, 0, 0), (1.2)

q = (ν,−→q ),

p′ = p + q = p + (k − k′),

where El,
−→p l and El′ ,

−→p l′ are the energies and momenta of the incident lepton, l, and the

outgoing lepton, l′, and M is the mass of the nucleon.

We can define the following invariant kinematic quantities evaluated in terms of the lab

frame variables:

• Q2 is the negative of the four-momentum

Q2 = −q2 = −(k − k′)2 = m2
l′ + 2El(El′ − pl′ cos θl′). (1.3)

• ν is the energy transferred to the hadronic system

ν =
p · q
M

= El − El′ = EHAD. (1.4)

• W 2 is the squared invariant mass of the hadronic system

W 2 = (p + q)2 = M2 + 2Mν −Q2. (1.5)
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• y is the inelasticity, or the fraction of energy of the incident lepton transferred to the

hadronic system

y =
p · q
p · k =

EHAD

El

. (1.6)

y can also be expressed in terms of the center of mass (CM) frame muon scattering angle,

θ∗, as

y ' 1− 1

2
(1 + cos θ∗). (1.7)

• x is the Bjorken rescaling variable (introduced by Bjorken [5]), which represents the

fraction of the nucleon momentum carried by the struck quark

x =
−q2

2p · q =
Q2

2Mν
. (1.8)

1.2.2 Neutrino-Nucleon Charge Current Differential Cross Section

In neutrino charged-current (CC) DIS the incident lepton is a neutrino which scatters off a

quark in the nucleon by exchanging the charged gauge boson W+(−). The final state includes

a charged lepton with the same lepton number and hadrons produced in the hadronic final

state (Figure 1.2). An example of such a process is

νµ(νµ) + N −→ µ−(µ+) + X, (1.9)

where a muon neutrino scatters from a nucleon and produces a muon in the final state. The

differential cross section for neutrino DIS can be derived from the matrix element

M =
GF√

2

1

1 + Q2

M2
W

uµγα(1− γ5)uν < X|JCC |N ; p, s >, (1.10)

where GF is the Fermi coupling constant, MW is the mass of W±, uµγα(1 − γ5)uν is the

leptonic current and < X|JCC |N ; p, s > is the hadronic current. Hadrons are not point-like

particles, hence they can not be described with a current similar to the leptonic current.

Summing over all lepton and hadron states the differential cross section can be written as:

d2σν
CC

dΩµdEµ

=
G2

F

2(1 + Q2

M2
W

)2

mνmµ

Eν

Eµ

4π2
LαβWαβ, (1.11)
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EHAD

q

νµ(νµ)

P

xP

k k′

W+(−)

µ−(µ+)

Figure 1.2: Neutrino charge current scattering Feynman diagram.

where Lαβ is the leptonic tensor and Wαβ is the hadronic tensor. The leptonic tensor can

be written in terms of the energy-momentum four-vectors of the leptons participating in the

interaction

Lαβ =
∑

s,s′
uµ(k′, s′)γα(1− γ5)uν(k, s)uν(k, s)γβ(1− γ5)uµ(k′, s′) (1.12)

=
2

mµmν

[k′αkβ + k′βkα − k · k′gαβ ∓ ikγk′δεγδαβ].

The last term (which is parity violating; ‘-’ for ν, ‘+’ for ν) is specific for the weak gauge

boson exchange. The leptonic current for virtual photon exchange does not have this term.

The hadronic tensor is parameterized in the most general form for a second order tensor

constructed from the four-vectors q and p

Wαβ = −gαβW1 +
pαpβ

M2
W2 − i

εαβγδpγpδ

2M2
W3

+
qαqβ

M2
W4 +

pαqβ + pβqα

M2
W5 + i

pαqβ − pβqα

2M2
W6, (1.13)
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where gαβ is the metric tensor of Minkowski space. The hadronic current is conserved

∂µJ
µ = 0, which can be written as

qαWαβ = qβWαβ = 0. (1.14)

Contracting the leptonic and hadronic tensors, neglecting the terms proportional to the

lepton mass, and using general invariance arguments the differential cross section can be

written as

d2σν(ν)N

dxdy
=

G2
F ME

π(1 + Q2

M2
W

)2

[y2M

2
2xW1(ν, Q

2)

+ (1− y − Mxy

2E
)νW2(ν,Q

2)± y(1− y

2
)νxW3(ν, Q

2)
]
, (1.15)

where +(-) the last term is for neutrino (antineutrino) interactions. The change of variables

(Ωµ, Eµ) → (x, y) was performed using the Jacobian form

dΩµdEµ =
2πMν

Eµ

dxdy. (1.16)

The structure functions W1,W2,W3 can be transformed to dimensionless quantities

F1(x,Q2) = MW1(ν, Q
2),

F2(x,Q2) = νW2(ν, Q
2),

F3(x,Q2) = νW3(ν, Q
2). (1.17)

The differential cross section in terms of the dimensionless structure functions 2xF1, F2 and

xF3 is

d2σν(ν)N

dxdy
=

G2
F ME

π(1 + Q2

M2
W

)2

[y2

2
2xF1(x,Q2)

+ (1− y − Mxy

2E
)F2(x,Q2)± y(1− y

2
)xF3(x,Q2)

]
. (1.18)

All of the information about the structure of the nucleon is encoded in the structure functions

2xF1, F2 and xF3.
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We can express the structure functions in terms of the cross sections for absorbing trans-

versely and longitudinally polarized W bosons, σT and σL, respectively

F1 =
MK

πGF

√
2
σT , (1.19)

F2 =
νK

πGF

√
2

Q2

Q2 + ν2
(σT + σL), (1.20)

where K represents the flux of virtual bosons. The ratio of the longitudinal and transverse

cross sections is

R(x,Q2) =
σL

σT

=
F2

2xF1

(
1 +

ν2

Q2

)
− 1. (1.21)

1.3 QUARK PARTON MODEL

The naive parton model [6] offers an intuitive picture of the sub-structure of the nucleon. It

assumes that the nucleon consists of non-interacting point-like constituents called “partons”

(quarks and gluons). The model is valid in the “infinite momentum” frame, in which the

time scale of the interactions between partons (strong interaction) is much longer than the

collision time. In this frame the partons are on-shell particles traveling collinearly with the

nucleon and carrying a fraction, ξ, of nucleon’s momentum. In the context of the parton

model, neutrino-nucleon inelastic scattering becomes elastic scattering of two structureless

on-shell particles. The final state four-momentum of the struck parton is

P ′ = ξP + q,

where P is the momentum of the nucleon.

P ′2 = (ξ2P 2 + q2 + 2ξP · q).

Neglecting the mass of the parton P ′2 and the term ξ2P 2 yields

ξ =
−q2

2P · q = x (1.22)
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which can be identified as the Bjorken scaling variable x. The Bjorken scaling variable can

be interpreted as the fraction of nucleon momentum carried by the struck parton. In the

parton model the structure functions have the form:

2MW point
1 (ν, Q2) =

Q2

2Mν
δ(1− Q2

2Mν
),

νW point
2 (ν, Q2) = δ(1− Q2

2Mν
).

In the limit Q2 → ∞ the structure functions depend only on the dimensionless scaling

variable x,

lim
Q2→∞

Fi(x,Q2) = Fi(x).

This behavior is known as Bjorken scaling [5].

Neutrinos and anti-neutrinos are highly relativistic fermions with spin-1
2
, hence the neu-

trinos are left-handed and anti-neutrinos are right-handed. The V-A nature of the weak

interaction imposes that neutrinos(antineutrinos) can interact only with left(right)-handed

particles and right(left)-handed anti-particles. If we assume that the partons are fermions

with spin 1
2

then there are only two possible helicity configurations for neutrino scattering

and two for antineutrino scattering (see Figure 1.3). The cross section for elastic scattering

of neutrinos with partons can be derived from the requirement that angular momentum is

conserved.

d2σνq

d cos θ∗
=

d2σνq

d cos θ∗
=

G2MEν

π(1 + Q2

M2
W

)
, (1.23)

d2σνq

d cos θ∗
=

d2σνq

d cos θ∗
=

G2MEν

π(1 + Q2

M2
W

)

(
1 + cos θ∗

2

)2

, (1.24)

d2σνk

d cos θ∗
=

d2σνk

d cos θ∗
=

G2MEν

π(1 + Q2

M2
W

)

(
cos θ∗

2

)2

(1.25)

The cross section depends only on the CM energy, s = 2ME, and the angle of the outgoing

lepton in the CM frame, θ∗. Equation 1.23 corresponds to the case with total spin S = 0,

hence there is no preferred direction in the space. Equation 1.24 corresponds to the case

with total spin of the system S = 1. The cross section in this case is suppressed by the
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ν
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q q

q
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Figure 1.3: Helicity configurations allowed by the V-A structure of the weak interaction.

Small arrows indicate the spin of the particles and large arrows, the momenta.

factor (1+cos θ∗
2

)2. If θ∗ = π the cross section is 0, because it violates conservation of the total

angular momentum. Equation 1.25 corresponds to neutrino scattering off spin-0 particle.

The quark parton model (QPM) is the logical combination of the parton model and the

static quark model. In the QPM the spin-1
2

partons are identified as quarks and anti-quarks.

The QPM considers the nucleon to be constructed of 3 valence quarks, which give the nucleon

its flavor and charge properties. The nucleon also contains “sea” quarks (quark-antiquark

pairs), which contribute no net flavor or charge. We can express the quark and antiquark

distributions as

q(x) = qv(x) + qs(x)

q(x) = qs(x) = qs(x).

The probability of finding a quark of type q which carries a fraction of nucleon’s mo-

mentum in the interval (x, x + dx) is q(x)dx, where q(x) is the probability distribution

12



function. The differential cross section for neutrino scattering off a single quark of type q

with momentum distribution xq(x) is

d2σ

dxdy
∝ G2

F ME

π(1 + Q2

M2
W

)2
xq(x). (1.26)

Combining Equations 1.7, and 1.23-1.26 and accounting for all constituents in the nucleon

we obtain the differential cross section for neutrino(anti-neutrino)-nucleon scattering

d2σν

dxdy
=

G2xs

π(1 + Q2

M2
W

)
[q(x) + (1− y2)q(x) + 2(1− y)k(x)],

d2σν

dxdy
=

G2xs

π(1 + Q2

M2
W

)
[q(x) + (1− y2)q(x) + 2(1− y)k(x)], (1.27)

where the distribution k(x) is the density of spin-0 particles. Comparing the y-dependence

of Equations 1.18 and 1.27 yields the structure functions 2xF1, F2 and xF3 in term of the

parton densities

2xF
ν(ν)
1 = 2[xqν(ν)(x) + xqν(ν)(x)],

F
ν(ν)
2 = 2[xqν(ν)(x) + xqν(ν)(x) + 2xkν(ν)(x)],

xF
ν(ν)
3 = 2[xqν(ν)(x)− xqν(ν)(x)], (1.28)

where Mxy/E term is neglected. If the scattering involves only spin-1
2

constituents we obtain

the Callan-Gross relation [7]

2xF1 = F2. (1.29)

However, the quarks can have a small transverse momentum pT , which effectively gives them

spin-0 behavior, in which case the Callan-Gross relation will be violated (see Section 1.4.3).
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Neutrino charge current scattering is mediated by the charged gauge bosons, W±. Con-

servation of the charge and lepton number at the quark vertex requires that neutrino charged-

current interactions involve only d,s,u and c quarks, while antineutrino charged-current scat-

tering involves u,c, d and s. Hence neutrino scattering is sensitive to the flavor of the nu-

cleon’s constituents. The quark distributions contributing to neutrino (antineutrino)-proton

structure functions are

qνp(x) = dp(x) + sp(x) , qνp(x) = up(x) + cp(x),

qνp(x) = up(x) + cp(x) , qνp(x) = d
p
(x) + sp(x). (1.30)

The strong isospin symmetry between the proton and the neutron gives the following sym-

metries between their quark distributions

d(x) ≡ dp(x) = un(x) , d(x) ≡ d
p
(x) = un(x),

u(x) ≡ up(x) = dn(x) , u(x) ≡ up(x) = d
n
(x).

We will also assume the following sea symmetries

s(x) ≡ sp(x) = sn(x) , s(x) ≡ sp(x) = sn(x),

c(x) ≡ cp(x) = cn(x) , c(x) ≡ cp(x) = cn(x).

Accounting for all symmetries, we express neutron quark distributions as

qνn(x) = u(x) + s(x) , qνn(x) = d(x) + c(x),

qνn(x) = d(x) + c(x) , qνn(x) = u(x) + s(x), (1.31)

which yields the quark distributions contributing to the neutrino(antineutrino)-nucleon struc-

ture functions. An isoscalar target consists of an equal number of protons and neutrons. Us-

ing Equations 1.30 and 1.31 we obtain the corresponding quark distributions for an isoscalar

target

qνN(x) =
1

2
[u(x) + d(x) + 2s(x)],

qνN(x) =
1

2
[u(x) + d(x) + 2c(x)],

qνN(x) =
1

2
[u(x) + d(x) + 2c(x)],

qνN(x) =
1

2
[u(x) + d(x) + 2s(x)]. (1.32)
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Finally, using 1.28 and 1.32 the neutrino(antineutrino)-nucleon structure functions 2xF
ν(ν)
1

and F
ν(ν)
2 for an isoscalar target are

2xF νN
1 = 2xF νN

1 = xu + xu + xd + xd + 2xs + 2xc, (1.33)

F νN
2 = F νN

2 = xu + xu + xd + xd + 2xs + 2xc, (1.34)

where the Callan-Gross relation 1.29 is assumed. Using Equation 1.28 and 1.32 we can

express the parity-violating structure function, xF3, in terms of the isoscalar quark distribu-

tions

xF νN
3 = xuv + xdv + 2xs− 2xc,

xF νN
3 = xuv + xdv − 2xs + 2xc, (1.35)

where xuv = xu−xus and xdv = xd−xds are the valence quark distributions of the proton.

The average of both neutrino and anti-neutrino, xF 3, represents the total valence quark

distribution in the proton

xF 3 =
xF νN

3 + xF νN
3

2
= xuv + xdv, (1.36)

where we assume the symmetries s = s and c = c. Under the same assumption, the difference

of xF νN
3 and F νN

3 , ∆xF3 is given by

∆xF3 = xF νN
3 − xF νN

3 = 2x(s + s− c− c) = 4x(s− c). (1.37)

This quantity is sensitive to the strange and charm sea distributions in the proton.

Charged-lepton scattering, which is mediated by a virtual photon, is sensitive to quark

charge, while neutrino scattering is sensitive to the helicity and flavor of the constituents.

The electromagnetic charged-lepton structure functions, 2xF l
1 and F l

2, are given by

2xF l
1 =

∑
i

e2
i [xql

i + xql
i],

F l
2 =

∑
i

e2
i [xql

i + xql
i + 2kl

i(x)], (1.38)

where ei is the charge of the parton i. The parity-violating structure function, xF3, which

arises from the V-A form of the weak interaction, is not present in charged-lepton scattering.
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Electromagnetic structure functions for the proton and neutron can be constructed using the

quark densities and the quark charges

2xF lp
1 =

(
1

3

)2

[xd + xd + xs + xs] +

(
2

3

)2

[xu + xu + xc + xc],

2xF ln
1 =

(
1

3

)2

[xu + xu + xs + xs] +

(
2

3

)2

[xd + xd + xc + xc]. (1.39)

2xF lN
1 for an isoscalar target is

2xF lN
1 =

2xF lp
1 + 2xF ln

1

2
=

5

18
(xu + xu + xd + xd) +

1

9
(xs + xs) +

4

9
(xc + xc). (1.40)

Assuming that the longitudinal structure function RL is the same for the electromagnetic

neutral current and the weak charged current, we obtain
2xF lN

1

2xF νN
1

=
F lN

2

F νN
2

. Comparing F lN
2 and

F νN
2 gives

F lN
2

F νN
2

=
5

18

(
1− 3

5

xs + xs− xc− xc

q + q

)
. (1.41)

where q + q = 2xF lN
1 . This ratio is known as the “5/18th” rule. It will be used to compare

the structure functions from charge-lepton and neutrino experiments.

1.4 QUANTUM CHROMODYNAMICS

The QPM is valid in the infinite momentum frame in which the point-like constituents are on-

shell and quasi-free. This picture explains the scaling of the structure functions observed by

early DIS experiments, but it doesn’t explain the dynamics between the partons. A free quark

has never been observed even though at high Q2 quarks behave like free particles. A detailed

study of the structure functions shows that the scaling behavior is only an approximation

and that there are logarithmic scaling violations. In early DIS experiments (SLAC [8]) it

was found that quarks and anti-quarks carry only half of the nucleon’s momentum. The

other half was assigned to the gluons which mediate the strong interaction and can produce

sea quark-antiquark pairs. A new theory was needed to explain these phenomena.
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Quantum chromodynamics (QCD) is a non-Abelian gauge theory of the strong interac-

tion [9]. It provides a consistent theory of the dynamics of quarks and gluons. There are

several important consequences which arise from the non-Abelian structure of QCD. The

gauge particles (gluons) carry color charge and can interact with each other. As a result,

quarks are confined within hadrons because the self-interaction of the gluons anti-screens

the color charge. The strong force between quarks increases with distance; at short dis-

tances (high Q2) the quarks behave like free particles. This property is know as “asymptotic

freedom”.

Asymptotic freedom allows high-energy scattering to be calculated using a perturbative

expansion. If the strong coupling constant, αS, is small we can expand in orders of αS.

For example the Feynman diagrams shown in Figure 1.4 are the terms of order α1
S in the

expansion or “leading order” (LO) in QCD. Processes of order α2
S are referred to as “next-to-

leading order” NLO in QCD, etc. As the strong coupling constant becomes larger we need to

include higher order diagrams. Cross sections are calculated analytically using perturbative

QCD (pQCD). Experimental measurements of physical quantities include all diagrams of all

orders.

1.4.1 Renormalization

The inclusion of higher order diagrams results in ultraviolet divergences. These divergences

are controlled by a renormalization procedure which depends on an arbitrary parameter µ2,

where µ has the dimension of a mass. The coupling constant is defined to have a fixed finite

value at some scale, µ2, and then the value of the coupling constant at any scale, αS(Q2),

is expressed in terms of this fixed value. Physical quantities should be independent of the

choice of µ2. The renormalization scale dependence of the effective QCD coupling constant,

αs, us given by

µ
dαs(µ

2)

dµ
= − β0

2π
α2

S(µ2)− β1

8π2
α3

S(µ2), (1.42)

where the coefficients β0 and β1 depend on the number of quark flavors nf and are given by

β0 = 11− 2nf/3,

β1 = 102− 38nf/3. (1.43)
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Figure 1.4: LO QCD diagrams.

The solution of this equation gives the scale dependence of the coupling constant. In solving

Equation 1.42 a constant of integration is introduced, αS(µ2
0), the value of the strong coupling

constant at a reference scale µ = µ0 (usually chosen to be µ = MZ). This is a fundamental

constant of QCD which must be determined from experiment. A next to leading order (NLO)

solution gives

αS(Q2) =
4π

β0 ln(Q2/Λ2)

[
1− β1

β2
0

ln(ln(Q2/Λ2))

ln(Q2/Λ2)

]
(1.44)

where Λ is a dimensional parameter which must be determined experimentally. The mea-

surement of Λ is equivalent to measuring α(µ2
0). If Q2 value is much larger than Λ the

effective coupling constant is small. In this region we have quasi-free partons and pQCD is

applicable.
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1.4.2 Factorization

The factorization theorem of QCD [10] states that the structure functions can be factorized

into two parts, a hard-scattering coefficient, C l
a(

x
y
, Q2, µF , αS(µ)), and parton distribution

functions, ql(y, µF )

Fa(x, Q2) =
∑

l

∫ 1

x

dy

y
ql(y, µF )C l

a(
x

y
,Q2, µF , αS(µ)), (1.45)

where the sum is carried over all partons. Here y is the fraction of nucleon’s momentum

carried by the parton and µF is the factorization scale. The factorization scale sets an ar-

bitrary separation between the processes at large distance scale and those at short distance

scale. Below µF , all long-range processes are contained in the parton distribution func-

tions ql(y, µF ), while above µF the physics at short distance is given by the hard scattering

coefficients, C l
a.

The hard-scattering coefficients represent the probability for scattering off a parton of

type l. They are completely calculable in pQCD and depend on the Q2, the renormalization

scale, and the factorization scale. In contrast, the parton distribution functions are universal

and independent of the particular hard scattering process. They depend only on the type of

parton and the factorization scale, µF . The parton distribution functions include all infrared

long distance contributions from phenomena occurring at low energy.

Structure functions are measured experimentally and hard-scattering coefficients are cal-

culable (up to a given order) from Feynman diagrams. Therefore, using the factorization

theorem, the parton distributions can be extracted from measured structure functions.

1.4.3 Evolution

Parton distribution functions are not calculable in pQCD. However, if the parton distribu-

tions are known at some scale, Q2, QCD can predict their value at any Q2. The evolution of

the parton distributions with Q2 are given by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
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(DGLAP) equations [11]

dqNS(x,Q2)

d ln Q2
=

αS(Q2)

2π

∫ 1

x

dy

y
qNS(y,Q2)Pqq

(
x

y

)
,

dqS(x,Q2)

d ln Q2
=

αS(Q2)

2π

∫ 1

x

dy

y

[
qS(y, Q2)Pqq

(
x

y

)
+ G(y, Q2)Pqg

(
x

y

)]
, (1.46)

dG(x,Q2)

d ln Q2
=

αS(Q2)

2π

∫ 1

x

dy

y

[
qS(y, Q2)Pgq

(
x

y

)
+ G(y, Q2)Pgg

(
x

y

)]
,

where the “splitting functions” Pij(x/y) represent the probability that parton j with mo-

mentum y will be resolved as parton i with momentum x < y. G is the gluon distribution

function, qNS =
∑

i(qi − qi) is the non-singlet, and qS =
∑

i(qi + qi) is the singlet quark

distribution.

Using the factorization theorem 1.45 we obtain the evolution of the structure functions.

F2(x,Q2)

x
=

∫ 1

x

dy

[
Cq

2(
x

y
,Q2, µ2)qS(x, µ2) + Cg

2 (
x

y
,Q2, µ2)G(x, µ2)

]
, (1.47)

F3(x,Q2) =

∫ 1

x

dy

[
Cq

3(
x

y
,Q2, µ2)qNS(x, µ2)

]
, (1.48)

where Ci are the hard scattering coefficients. These evolution equations yield logarithmic

scaling violations of the structure functions.

At leading order the quark hard-scattering coefficients Cq are proportional to δ(1−x/y),

while the coefficient for the gluon term Cg vanishes. Therefore, at leading order

F2(x,Q2) = xqS(x,Q2, µ2), (1.49)

xF3(x,Q2) = xqNS(x,Q2, µ2). (1.50)

The scale dependence at leading order appears only in the parton distribution functions as

a result of the quark splitting functions and is usually chosen to be µ2 = Q2.

Using the factorization theorem we can also calculate the QCD prediction for the longitu-

dinal structure function RL = σL/σT . In the simple QPM (Section 1.3) RL is zero. In leading

order QCD RL = 0. However, in NLO QCD processes like quark-gluon bremsstrahlung and
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qq pair production give the quarks a transverse momentum pT which results in a non-zero

RL. For example a NLO QCD calculation [12] gives

RNLO,QCD
L (x,Q2) =

αs

π

∫ 1

x
dy
y

[∑
i=q,q qi(x)σL(x/y) +

∑
i=q G(x)σL(x/y)

]

∑
i=q,q qi(x) + αs

π

∫ 1

x
dy
y

[∑
i=q,q qi(x)σL(x/y) +

∑
i=q G(x)σL(x/y)

](1.51)

which depends on the longitudinal cross section. RL can be good probe of the gluon distri-

bution if the structure functions are well known.

1.4.4 Non-Perturbative QCD Effects

Non-perturbative QCD effects become important at low Q2, where the resolving power of

the virtual boson is not large enough to probe a single parton. In this region, partons can

not be considered massless non-interacting particles. This can result in, for example, diquark

scattering. In addition, the partons “effective mass” must be considered, leading to higher

order corrections (target mass).

1.4.4.1 Higher Twist Effects At low Q2 lepton-nucleon scattering can involve multiple

partons shown on Figure 1.5. Diagrams for multiple parton scattering can not be calculated

a priori with the means of pQCD to all orders. Compared to the leading twist diagrams

(pQCD) the higher twist diagrams are suppressed by powers of 1/Q2, so they are important

at low Q2. This is also the region where the strong coupling constant is large and pQCD is

invalid.

1.4.4.2 Target Mass Effects In the original derivation of the differential cross section

(Section 1.2.2) the masses of the quarks and the nucleon are neglected. However, at high x

and low Q2 the target mass becomes important. In the Georgi-Politzer calculation [13] the

fractional momentum of the quark is rescaled to account for the nucleon mass M

x → ξ =
2x

(1 + k)
, (1.52)
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W

Figure 1.5: Feynman diagram for scattering from multiple partons.

where k = (1+4M2x2/Q2)1/2. Target mass terms are incorporated in the structure functions

using

F TM
2 =

x2

ξ2

FQCD
2 (ξ, Q2)

k3
+

6M2

Q2

x3

k4
I1 +

12M4

Q4

x4

k5
I2, (1.53)

xF TM
3 =

x2

k2

xFQCD
3 (ξ, Q2)

ξ2
+

2M2

Q2

x3

k3
I3, (1.54)

where Ii are the integrals

I1 =

∫ 1

ξ

du
FQCD

2 (u,Q2)

u2
, (1.55)

I2 =

∫ 1

ξ

du

∫ 1

u

dν
FQCD

2 (ν,Q2)

ν2
, (1.56)

I3 =

∫ 1

ξ

du
xFQCD

3 (u,Q2)

u2
. (1.57)

The target mass effect is often referred to as “kinematic higher twist” because it involves

powers of 1/Q2.
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2.0 DETECTOR AND BEAMLINE

To perform a neutrino experiment we need a high intensity neutrino beam and a large area

target with as many nucleons as possible to increase the probability of neutrino interaction

in our detector. These requirements are a consequence of the fact that neutrinos interact

weakly.

The NuTeV beamline was designed to produce a high flux of neutrinos and anti-neutrinos

using separate high purity beams. The NuTeV detector is a massive, coarse-grained detector.

This design is typical of neutrino detectors used to collect large samples of neutrino inter-

actions. It consists of two parts; a target calorimeter where the neutrino interaction takes

place, and muon spectrometer where the momentum of the muon produced in the interaction

is measured. This chapter describes in detail both the NuTeV beamline and detector.

2.1 NUTEV BEAMLINE

2.1.1 The Tevatron

The Tevatron at Fermilab accelerates protons in several stages (Figure 2.1). Hydrogen ions

(H−) are accelerated to 750 KeV with a five-stage Cockroft-Walton generator. Then a linear

accelerator (Linac) accelerates them to 400MeV in two stages. The first stage operates at

201MHz, and the second more effective stage operates at 805MHz. The pulsed beam of H−

is then injected into booster. On the way to the booster the H− pass through a carbon foil,

which strips off the electrons and produces proton p+ beam. The booster is a synchrotron

140m in diameter operating at 15Hz. It accelerates the protons to 8GeV energy over 0.033s.
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Figure 2.1: A schematic drawing of the NuTeV beamline layout at Fermilab.
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Figure 2.2: Edge view of the SSQT.

The beam is then sent to the Main Ring, 2km diameter proton synchrotron. The Main

Ring uses dipoles and quadrupoles to accelerate protons to 400GeV . Once the proton beam

reaches 150GeV it is injected into the Tevatron. The Tevatron is a superconducting syn-

chrotron which shares the same tunnel with the Main Ring. The magnets of the Tevatron

are made of superconductive material cooled to 4.6K with liquid helium. In the Tevatron

the protons are accelerated to 800GeV and then are sent to the switchyard. The switchyard

distributes the beam to several beamlines, including NuTeV’s neutrino beamline.

2.1.2 Neutrino Beamline

Protons arrive from the Tevatron at a 7.8mrad angle (with respect to the z axis of NuTeV

detector) with 800GeV and hit a low-Z target. The target is a 33cm long BeO (Beryllium

Oxide) rod, situated 1450m upstream from the NuTeV detector. The length of the BeO

target corresponds to one interaction length. The neutrino beam results from the decays of

mesons, mostly π’s and K’s, produced in the primary target.
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Secondary particles produced in the primary target enter the Sign Selected Quadrupole

Train (SSQT) [14] shown in Figure 2.2. A series of strong dipole magnets bend the “right-

sign” mesons towards the NuTeV detector, while the opposite sign “wrong-sign” mesons

are bend to point away and hit the first dump. Upstream neutral particles go forward into

the second upstream dump. The protons which did not interact are stopped in the second

upstream dump. The “right-sign” π, K are allowed to decay in-flight in a 300m decay region

which begins immediately downstream of the last focusing magnet. Muons and other decay

products are stopped in a 900m berm of earth and steel which follows the decay region.

The thick shielding region allows only neutrinos to go through and enter NuTeV detector

situated at Lab E.

As a result of this charge selection in the SSQT, NuTeV has high purity separate neu-

trino νµ and anti-neutrino νµ beams. The wrong-sign contamination in “neutrino mode” is

0.03% anti-neutrinos, and in “anti-neutrino mode” 0.4% are neutrinos. There is also a small

component of electron neutrinos νe and νe, which are a result of the decay K± → π0e±νe(νe).

These amount to about 1.6% of the beam in neutrino mode and 1.7% in anti-neutrino mode.

Another source of νe and νe in high energy neutrino beamlines is K0, which are produced at

poorly known rate in the proton target. As shown in Figure 2.2, because of the vertical bends

in the SSQT the KL point away from the direction of the NuTeV detector and therefore the

SSQT almost completely eliminates this source of uncertainty. This feature is important for

the NuTeV’s precision measurement of sin2θW.

Figure 2.3 shows a prediction for the neutrino and anti-neutrino flux energy spectrum

obtained from beam Monte Carlo.

2.1.3 Beam Timing Structure

The Tevatron operating in fixed-target mode has a 60.1s cycle. The neutrinos arrive in five

“pings” 0.5ms each 5ms apart once per cycle. The calibration beam spill arrives approxi-

mately 1.4s after the neutrino “pings” and has an 18s duration each cycle. The beam timing

structure is shown in Figure 2.4. Due to this timing structure the events are classified as

follows:
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Figure 2.3: Flux prediction from beam Monte Carlo for neutrino (top) and anti-neutrino

(bottom) mode.

Figure 2.4: Beam timing structure.
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Figure 2.5: A schematic drawing of the test beam layout.

• Fast Gate (gates 1-5): Pings last 0.5ms each and deliver 1− 2× 1012 protons on target

(POT) per ping. Five pings in total form the fast spill. This is the neutrino beam gate.

• Slow Gate (gate 6): Starts 1.4s after the last ping of fast spill and stays on for 18s. This

is the calibration beam gate (also called test beam gate). The calibration of the detector

was carried out using this test beam which allowed “continuous” calibration over the

entire run approximately once per minute.

• Cosmic Ray Gate (gate 7): Cosmic ray triggers are accepted during this gate which is

on once per cycle for 5s when the beam is off.

2.1.4 Calibration Beam

In order to calibrate the detector response and measure the absolute muon and hadron energy

scales NuTeV designed the “test beam” beamline [15] shown on Figure 2.5. The test beam

was incident at a 43mrad angle on the NuTeV detector and delivered high purity beams of

hadrons, muons and electrons with a wide energy range (4.8 to 190 GeV). It allowed NuTeV

to calibrate the detector continuously within each cycle during the slow gate.

The test beam consisted of a low mass spectrometer instrumented with drift chambers

for tracking, dipole bend magnets and a Čerenkov detector along with series of transition

radiation detectors (TRDs) for particle identification. The particle ID was used to identify

pions, kaons, electrons, and anti-protons. When particle ID was not needed this section was
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Figure 2.6: The NuTeV detector.

rolled out and replaced by vacuum pipe. The last dipole in the spectrometer magnet string

could be rotated to allow the beam to be directed to any point on the front face of the

NuTeV detector.

The spectrometer is designed to measure the absolute momentum of the test beam par-

ticles to better than 0.3% on an event-by-event basis. This is accomplished by two means.

First, precisely calibrated dipole magnets are used, with
∫

Bd` known to better than 0.1%

in the region traversed by the beam. Also, the bend angle is measured to better than 0.1%

using drift chambers positioned over the 500 m beamline, which provides a long lever arm.

This long length of the spectrometer chamber spacing allows us to tolerate a relative cham-

ber alignment uncertainty of 1 mm. The event-by-event resolution was 0.3%, which was

dominated by multiple Coulomb scattering (MCS).

2.2 NUTEV DETECTOR

The NuTeV detector [15] shown in Figure 2.6 consists of two parts (described below in more

detail). The upstream part is the target calorimeter, where the neutrino interaction takes

place. The target calorimeter measures the energy of the hadron shower, EHAD, produced

in the interaction, and the angle of the muon track, θµ, at the vertex. The downstream
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Figure 2.7: A schematic drawing of one target unit.

part is the muon spectrometer (also called the toroid), which measures the momentum of

the muon, pµ, produced in the neutrino interaction. The kinematics of the interaction are

reconstructed from three variables EHAD, θµ, and pµ.

2.2.1 Target Calorimeter

NuTeV’s target calorimeter has an active area of 3m × 3m and a total length along the

beam direction of 17.7m. It is constructed of 168 steel plates of 5.1cm thickness, 84 liquid

scintillation counters (one every 2 steel plates), and 42 drift chambers (one every 4 steel

plates). The arrangement of one calorimeter unit is shown in Figure 2.7. One unit consists

of 4 steel plates, 2 scintillation counters and one drift chamber. The length, radiation length

X0 and interaction length λI of each of the components in a single calorimeter unit are

given in Table 2.1. The target calorimeter is made up of 42 calorimeter units arranged in 6

carts. A neutrino interacts in a steel plate (high Z). The produced particles deposit signals

in scintillation counters and drift chambers (low Z). Each active component of the detector
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Component Length (cm) Radiation Length (X0) Interaction Length (λI)

4 steel plates 20.7 11.75 1.24

2 scintillation counters 13 0.51 0.16

1 drift chamber 3.7 0.17 0.03

Total 37.4 12.43 1.43

Table 2.1: Length, radiation length and interaction length for the components of one

calorimeter unit. from reference [15].

is described below.

2.2.1.1 Scintillator Counters The energy deposited by charged particles is sampled

by liquid scintillation counters. There are 84 scintillation counters numbered from 84 (most

upstream counter) to 1 (most downstream counter). They are instrumented as a scintillator-

photomultiplier tube (PMT) system. One scintillation counter is 2.5cm thick and contains

roughly 65 gallons of Bicron 517L liquid scintillator oil. The sides of each scintillator are

supported by 3 mm thick vertical Lucite ribs which are spaced approximately 2.5-5 cm

apart and run along the length of the counter. Since the ribs do not scintillate the ribs of

consecutive counters are purposely staggered to avoid creating of dead zones. In addition, to

balance the pressure of the oil in the scintillation counter there are two plastic water-filled

bags on each side of the counter. The counter is viewed by PMTs mounted at the four corners

of the counter. Figure 2.8 shows front and side views of a NuTeV scintillation counter.

When a charged particle passes through the scintillator, it excites the primary fluor,

which emits ultraviolet light. This ultraviolet light excites a secondary fluor which emits

light in the visible spectrum (blue). The emitted blue light dominates the light output

because it has longer attenuation length. In order to improve the response of the PMTs

eight half-inch thick wavelength-shifter bars surround the counter. The wavelength-shifter

bars contain a third fluor which shifts the blue light to a longer wavelength (green). The

green light is then collected via total internal reflection to the phototubes in each of the
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corners of the counter.

NuTeV uses 10-stage Hamamatsu R2154 phototubes with green-extended photocathodes,

which are maintained at approximately 1400V. The photocathode has a 20% probability

of converting a photon to an electron via the photoelectric effect. The single electron is

multiplied by on the order of 106 by a series of dynodes. The signal from a single muon

traversing the center of the counter is about 30 photoelectrons. The signal of a muon

traversing near the edges of the counter is higher.

2.2.1.2 Drift Chambers Drift chambers are used to track muons in the target calorime-

ter and toroid. There are 42 three-wire per cell drift chambers within the target and 19

single-wire per cell chambers within the toroid. Each chamber is constructed from 3m ×
3m Hexcel-covered aluminum walls. Figure 2.9 shows the geometry of one drift chamber.

It consists of two orthogonally oriented planes (X-view and Y-view). Each plane is divided

into 24 cells of 5 inches wide. The upper and lower surfaces of each cell are covered with

copper-clad G10 panels which are milled to form a set of 19 cathode strips per cell. The

strip voltage is held at -4500V. It is supplied by I-beams at the edge of each cell. In order to

maintain a uniform electric field across the drift space the voltage is distributed decremen-

tally to each strip via a resistor card (voltage divider). A charged particle passing through

the chamber ionizes the gas along its path. The electrons drift towards the anode wire.

The electric field near the wire is very high and it accelerates the electrons, liberated by

ionization to amplify the signal (avalanche). If the drift velocity of the electrons is constant,

the drift time is a linear function of the distance to the anode wire. A constant drift velocity

of vD = 52.4µm/ns is achieved by using an equal parts argon-ethane gas mixture for which

the electron drift velocity is independent of the electric field when the field is large. It takes

the electron 1.2µs to cross half a drift cell.

The particle position in one dimension was determined from the difference between the

arrival time of the drift chamber pulse, T 0, and the event time, T , (set by the trigger). This

gives much better resolution than the size of the chamber. The X-Y position of the particle
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Figure 2.8: Front view (top) and cross section (bottom) of a scintillation counter.
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Figure 2.9: Top view of a drift chamber (top) and cross section of three-wire DC (bottom).

in the chamber is determined by:

x = x0 + vD(T − T 0
x ),

y = y0 + vD(T − T 0
y ),

where x0 and y0 are the locations of the sense wires.

2.2.2 Muon Spectrometer

The muon spectrometer consist of three toroidal magnets and five sets of drift chambers.

Each magnet consists of eight steel washers with 3.6m outer diameter and 24cm diameter

inner hole. There are four copper coils with 1200A current, which magnetize each toroid.

The magnetic field was 1.5T near the outer edge and 1.9T near the hole, and is confined

to the volume of the toroids. The polarity of the magnetic field, controlled by the direction

of the current in the coils, is set that during neutrino mode negatively charged particles

are focused (bent towards the center), and during anti-neutrino mode positively charged

particles are focused. Figure 2.10 shows a schematic drawing of the cross section of the

toroid.
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Figure 2.10: Schematic drawing of the cross section view of the toroid. The coil marked with

‘*’ was shunted to ground early in the run and disconnected.
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Figure 2.11: Schematic drawing of the side view of the toroid. Drift chamber layout is shown.

A muon traversing the whole length of the toroid will receive on average a total of

2.4 GeV/c additional transverse momentum. Three sets of five drift chambers, situated in

the space (gap) right after each toroid, provide information about the X-Y position of the

muon, which allows the reconstruction of the muon track. Two sets of 3 chambers (blue

cart), situated on 2.4m and 6.2m downstream of the last chamber in the toroid, provide

an additional lever arm for measurement of high momentum muons. Figure 2.11 shows a

schematic drawing of the drift chamber layout throughout the toroid.

In the beginning of the run one of the coils (shown with asterisk on Figure 2.10) of the

first toroid shorted to ground and was disconnected. In order to compensate for the missing

coil, the current in the remaining three coils was increased to produce the same magnitude

of the magnetic field. Small asymmetry in the magnetic field was present, due to the missing

coil.

NuTeV used magnetic field map which is obtained from a finite-element analysis sim-

ulation program called ANSYS [17]. The detailed geometry of the toroid (including the

missing coil) and the BH hysteresis curve corresponding to the toroid’s steel were inputs to

the ANSYS simulation. Figure 2.12 shows the simulated magnetic field after calibration (see

Section 3.3.3).
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Figure 2.12: Bφ component of the magnetic field in units of GeV/c after calibration.
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2.3 READOUT ELECTRONICS AND EVENT TRIGGERING

2.3.1 Drift Chamber Signal Read-out

The raw signals from the drift chambers are pre-amplified and sent as an ECL logic pulse

to be digitized by the time-to-digital converter (TDC). The TDC digitized the time in 4ns

bins and it was able to buffer 512-bit words, which gives a live time window of 2µs. The

maximum drift time is 1.2µs, hence the TDC is able to buffer the whole drift range of the

drift chamber during the live time window.

2.3.2 PMT Signal Read-out

The raw signal for the energy deposited in a scintillation counter from the phototubes is

integrated and converted by 11-bit ADC (analog-to-digital converter) to “ADC counts”.

There is a wide range of energies registered by a scintillation counter. A muon, for example,

will typically deposit 0.2GeV in a counter, while a hadron shower can deposit 100GeV in

a single counter. This wide range of energies requires three separate ADC gain read-out

streams to convert the raw signal to ADC count. They are HIGH gain, LOW gain and

SUPERLOW gain.

• LOW : For each counter the raw signal from the 4 PMT’s is digitized separately. Hence

there are four LOWS per counter. A muon traversing the center of the counter will

produce approximately 2 ADC counts in a LOW channel.

• COMBINATION LOW : The combined signal of all 4 phototubes is digitized. A

typical muon passing through the center of a counter will produce approximately 8 ADC

counts in a COMBINATION LOW channel.

• HIGH : The combined signal of all 4 phototubes (COMBINATION LOW) is amplified

10 times and digitized. In this case a typical muon will produce 80 ADC counts in a

HIGH channel.

• SUPERLOW : The combined signal of 8 phototubes from 8 different counters (each

separated by 10 counters) is formed. This signal is attenuated by 6 or 12 depending on

the fan-out. A typical muon will produce 0.2 counts in this channel.
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The HIGHs are typically used to measure the muon energy. The LOWs are used to

measure the energy of hadron showers, which usually saturate the HIGHs. For a counter

in which one of the LOWs is saturated, SUPERLOWS are used. COMBINATION LOWs

are used to form event triggers. A schematic drawing of the NuTeV calorimeter read-out

electronics is shown in Figure 2.13. The test beam is used to find the relation between the

ADC counts and the corresponding energy in GeV for each type of particle.

The signals from the phototubes are also discriminated and the timing from each counter

is recorded in TDCs. Logical signals, “bits”, which indicate a minimum signal in a given

counter, were constructed with different discrimination logic as follows:

• Sbit (single particle indicator): The combination of the 4 PMT signals of a single counter

is multiplied by 100 (HIGH × 10) and discriminated with 150mV threshold. This is

designed to identify at least one muon passing through the counter.

• Tbit (more than one particle): The combination of the 4 PMT signals of a single counter

is multiplied by 100 (HIGH × 10) and discriminated with 450mV threshold. This is

designed to distinguish between a shower and a single particle.

• Nbit (shower indicator): The linear sum of the phototube signal from every combination

of 8 consecutive counters is channeled without amplification through a discriminator with

a 55mV threshold (5GeV).

2.3.3 Event Triggers

Event triggers are designed to select the events which will be digitized and recorded. Data

triggers preselect certain event signatures and reduce the amount of background and noise.

NuTeV constructed twelve data triggers:

• Trigger 1 - Charge Current: Designed to select events for which a muon originated

in the target and the passed through part of the toroid. One of the following two

requirements are needed to register the trigger: 1) Hits in 2 of the last 4 counters in the

target and hits in both toroid gaps; 2) Hits in 2 of the last 4 counters in the target or

hits in 2 of counters 9-12 and hits in the first toroid gap only. In both cases a “no veto”
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Figure 2.13: A schematic drawing of the PMT read-out electronics.
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signal was required in the upstream most counter. This trigger selects events for the

charged-current cross section analysis.

• Trigger 2 - Neutral Current: Designed to select a shower with minimum penetration.

This trigger requires the energy in 8 consecutive counters to be at least 5GeV. A ’No

veto’ signal was required as well.

• Trigger 3 - Penetrating Muon: Required 16 counters in the target to be above Sbit

threshold, at least 4GeV deposited energy in any 8 consecutive counters and a ’no veto’

signal.

• Trigger 4 - Redundant Charge Current: Used to check trigger 1, but uses different

hardware and has slightly stricter geometric requirements.

• Trigger 5 - Calibration Beam: Required a charged particle to go through test beam

spectrometer. There was no requirement for energy deposited in the calorimeter.

• Trigger 6 - Straight Through Muon: Selected muons produced upstream of the

detector. Veto signal was required and at least one Sbit in each of the target carts, and

hits throughout the toroid in the same quadrant. This trigger was used for drift chamber

alignment and counter calibration.

• Trigger 8 - Cosmic Ray: selected off-spill cosmic ray muons. Required 40 semi-

consecutive counters and hits in the first toroid gap.

• Trigger 9 - NHL: selected candidates for the neutral heavy lepton (NHL) analysis.

• Trigger 10-12 - Pedestal Triggers: Allowed extraction of information from the de-

tector when there is minimal activity. Pedestals are taken systematically during each

run, when no other triggers have fired.

Table 2.2 shows the number of neutrino gate events for each trigger.
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Trigger Description ν-mode ν-mode

1 Charge Current 2612830 908161

2 Neutral Current 5445024 2804981

3 Penetrating Muon 4306217 3065412

6 Straight Through Muon 1712591 735222

9 Neutral Heavy Lepton 1334675 1616637

10 In-Spill Pedestal 189885 183794

11 Toroid Pedestal 785040 153461

Table 2.2: Number of neutrino gate events for different triggers recorded during NuTeV

run.
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3.0 DETECTOR CALIBRATION AND DATA ANALYSIS

To construct the DIS kinematic variables three physics quantities must be measured: the

energy of the hadron shower, EHAD, the angle of the muon at the vertex, θµ, and the muon

energy, Eµ. To accomplish this, the electronic signals from the detector have to be converted

into energies and track vectors. This chapter describes the event reconstruction and defines

the data samples.

3.1 HADRON ENERGY RECONSTRUCTION AND CALIBRATION

The energy of the hadron shower deposited in the calorimeter is sampled by the energy

deposited in the scintillation counters. The pulse heights (PH) from each phototube is stored

as an ADC count. A shower deposits only a small fraction of its energy in the scintillation

counters. Most of the energy is deposited in the steel plates. For example, a 100 GeV

shower will traverse about 10 counters and it will deposit only about 3% of its energy in the

scintillation counters. The data from the calibration beam and the straight-through muon

sample are used to calibrate the response of the counters. This is needed to convert the ADC

count signal from the LOWs and the HIGHs into energy of a shower in GeV. The energy,

Ecntr(i), in counter ‘i’ is measured from the pulse height, PH(i), which is registered in either

LOW or HIGH channels. For this counter

Ecntr(i) =
h(i) ·G(i, t) · PH(i)

M(i, Vx, Vy, t)
. (3.1)

where G(i, t), M(i, Vx, Vy, t) and h(i) are the counter gain, the counter map correction and

the relative hadron gain function, respectively, which will be discussed below. PH(i) is the
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number of ADC counts from the LOW channel, (if the signal is in the linear region, which

corresponds to more than 35 counts in the LOW channel). If the number of ADC count in

the LOW channel is less than 35 the HIGH channel is used. If one of the LOW channels is

saturated, i.e. more than 1900 ADC counts, the SUPERLOW channel is used. The pedestals,

which register the detectors response when no trigger has fired during the neutrino run, are

subtracted from PH(i).

The counter gain, G(i, t), is used to convert the ADC count to minimum ionizing particles

(MIPs). The mean energy deposited by a muon with an energy of 77 GeV is defined as 1

MIP. To calibrate each counter’s gain, trigger 6 muons are used. These muons are produced

in neutrino interactions in the berm upstream of the NuTeV detector. They illuminate the

detector in a similar way as neutrino interactions in the detector and coincide in time with

the neutrino gate, which makes them an excellent calibration tool. A muon deposits on

average 30 photoelectrons per counter, which corresponds to about 80 ADC counts in a

HIGH channel.

Counter response is different for each counter due to variations in the geometry and

furthermore, it varies over time. The relative hadron gain function, h(i), accounts for these

variations and non-uniformities.

The response of the counters also depends on the location of the traversing muon. This is

due to the geometry of light collection. A muon, traversing near the center of the counter, will

produce fewer ADC counts on average than a muon traversing near the corner(close to one

of the PMT’s). The pulse heights are corrected with a counter map correction, M(i, x, y, t),

which is the ratio of the counter response at coordinates (x, y) to the counter response at

the center (0,0). The straight through muon sample is used to obtain this correction. The

counter map correction has typical values in the range between 0.5 and 3.0. For each counter,

the pulse heights are corrected with M(i, Vx, Vy, t), where Vx, Vy is the transverse vertex for

the event. If the value is outside the range 0.1 < M(i, Vx, Vy, t) < 5.0 no correction is applied.

Figure 3.1 shows the average response of a counter to muons as a function of the position in

the counter.

The conversion factor Cπ converts pulse height, which is in MIPs, to GeV. Cπ is obtained

from hadron test beam data by fitting the means of the event-by-event distributions of the
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Figure 3.1: Average counter response to muons as function of the position.

ratio of the test beam momentum to the energy measured by the calorimeter [15]. The

measured value is Cπ = 0.212 GeV/MIP. This has been adjusted so that the mean ratio of

hadron response from the calorimeter compared to with test beam momentum at 75 GeV is

1.000± 0.001. Cπ is discussed further below.

The detector response is a non-linear function with energy. This small non-linearity is

due to the difference in detector response for hadronic and electromagnetic showers. Figure

3.2 shows a 3% non-linearity over the range from 5 to 190 GeV in hadron energy. π0

produced in hadron showers decay quickly to two photons initiating an electromagnetic

cascade. Electromagnetic cascades have a much shorter characteristic length than hadron

induced cascades. The calibration constant for “real” showers, containing both types of

cascades, is

Cπ = e · fπ0(E) + h · [1− fπ0(E)], (3.2)

where e is the conversion factor for a pure electromagnetic shower, h is the corresponding

factor for pure hadron showers, and fπ0(E) is the fraction of π0’s produced in the shower.
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Figure 3.2: The calibration fit to test beam hadrons, which determines the non-linearity.

The point at 75GeV is adjusted to 1.000± 0.001.

46



Figure 3.3: The width of the Poisson-like response function as a function of energy, obtained

from a fit to the detector response for test beam hadrons.

Using Groom’s parameterization [16], fπ0(E) = 1− (
EHAD

0.96GeV

)−0.184
, the fit to hadron energy

response gives e
h

= 1.079±0.011. The normalization uncertainty determines the uncertainty

in Cπ, which is 0.43%. This gives the absolute hadronic energy scale uncertainty.

The uncertainty in the measurement of a single hadron shower is given by the hadronic

resolution function of the calorimeter. The detector response to a monoenergetic beam of

hadrons is a Poisson-like function, because the reconstructed energy is proportional to the

number of particles produced in the shower. Statistical fluctuations in the production of

electromagnetic particles makes this distribution Poisson-like and at high energies, Gaus-

sian. The test beam data provides a measure of the resolution function σ(E)/E, which is

parameterized as

σ(E)

E
= A⊕ B√

E
⊕ C

E
, (3.3)

where A is the constant term, B is the stochastic term from the sampling of the shower,

and C is the term associated with the noise due to pedestal subtraction. Data showed no

evidence for noise, hence the term C is removed from the fit. Figure 3.3 shows the fit for the
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width parameter of the resolution function as function of energy. The width of the Poisson

distribution is found to be

σ(E)

E
=

0.86± 0.01√
E

⊕ 0.022± 0.001, (3.4)

For electromagnetic showers the Poisson width is

σ(E)

E
=

0.499± 0.008√
E

⊕ 0.042± 0.002, (3.5)

In charged-current interactions the muon deposits energy in the shower region (about

1MIP per counter on average), which must be subtracted from the pulseheight in Ecntr(i).

The muon energy loss in MIP is subtracted by from the pulseheight using a parameterization

of the restricted muon energy loss, Eloss
µ (i), (due to ionization) per counter in MIPs

Eloss
µ (i) = 0.9315 + 0.02359 ∗ log(Eest

µ ), (3.6)

where Eest
µ is the estimated energy of the muon in GeV. The hadron energy is defined as the

sum

EHAD = Cπ

SHEND−5∑
i=PLACE

(Ecntr(i)− Eloss
µ (i)), (3.7)

where PLACE is the most upstream counter of two consecutive counters with at least 4MIPs

energy deposition. PLACE corresponds to the first counter downstream of the neutrino

interaction vertex. SHEND is the counter downstream of PLACE, which is the first of three

consecutive counters with less than 4MIPs energy deposition. This definition of the hadron

energy differs from the definition used in reference [15] to calibrate and obtain resolution

functions

EHAD = Cπ

PLACE−19∑
i=PLACE

Ecntr(i). (3.8)

With EHAD definition 3.7 the calibration constant is the same, Cπ = 0.212 GeV/MIP.

However, the mean of the ratio of test beam momentum to measured hadron energy for 75

GeV test beam hadrons is 0.997 ± 0.001, and the non-linearity factor is e
h

= 1.099 ± 0.011.

The width of the Poisson-like resolution function is now

σ(E)

E
=

0.89± 0.01√
E

⊕ 0.021± 0.001. (3.9)
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3.2 MUON ANGLE RECONSTRUCTION

The angle of the muon at the vertex is measured from the track by fitting the hits from the

muon in the drift chambers of the target. Muons are highly penetrating particles. A muon

traversed the whole target calorimeter loses roughly 14 GeV of energy on average and its

track will be almost a straight line in the target calorimeter. However, multiple Coulomb

scattering affects the track reconstruction. MCS depends on both the length of the track

and the muon momentum. The tracking algorithm fits for straight-line segments in the most

downstream drift chambers of the target. The fitted line is extrapolated back to the vertex of

the interaction (PLACE). The algorithm searches for hits which can be associated with the

extrapolated line. The muon angle at the vertex is obtained by fitting the track hits close to

the vertex. However, due to the presence of hadron shower, the hits in a number of chambers

immediately after PLACE are not used in the track fit. The number of chambers omitted

from the fit depends on the hadron energy. Showers with higher energy will traverse more

chambers longitudinally. The uncertainty of the muon angle depends on the hadron energy

and the uncertainty due to MCS. The dependence of MCS on momentum correlates the

muon angle and momentum (discussed in next section) measurements. Therefore, the track

fitting procedure is iterated. A GEANT based hit level Monte Carlo is used to parameterize

the angular resolution function (see Chapter 4).

3.3 MUON ENERGY RECONSTRUCTION AND CALIBRATION

The event sample is divided into two categories depending on the length of the muon track:

• TOROID EVENTS are events for which the muon enters the toroid and produces

hits in at least one of the gaps. This sample can be divided into “GAP 1” events, for

which the muon either stops or leaves the toroid after prodicing hits in the first gap, or

“TWO-GAPS” events, which produce hits in at least 2 gaps.

• TARGET EVENTS are events for which the muon does not enter the toroid. These

are subdivided into “RANGEOUTS”, which contain a muon stopping in the target and
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“EXITS”, which contain a muon that exits before counter 1 without stopping.

This analysis uses only the ’TWO-GAPS’ events sample.

3.3.1 Muon Momentum in the Toroid

Muon momentum in the toroid is measured from the muon track curvature in the magnetic

field of the toroid. The bend angle, θ, in a constant magnetic field in vacuum is

θ =
0.3BL

P
, (3.10)

where P is the muon momentum, L = Rθ is the length of the track in the magnetic field,

and R is the curvature of the track. In the toroid, the muon energy loss in steel and MCS

must also be accounted for to measure the muon momentum. Muon momentum, as it enters

the toroid, P FF
µ , is obtained by the following algorithm: Link segments are found in all five

sets of drift chambers in the toroid. Hits in the toroid chambers are fit to the projected

track which is obtained by projecting the muon through the toroid using the muon angle

measured in the target and a model of the magnetic field. Muon energy loss and MCS are

also taken into account in the fit.

3.3.2 Total Muon Energy

Muons produced in neutrino interactions in the target lose part of their energy before entering

the toroid where their momentum is analyzed. In the target, energy loss is calculated in two

pieces: energy loss within the shower region and loss beyond the end of the shower. The

shower region in an event is defined as the counters between PLACE and SHEND. The

muon energy loss downstream of the shower region is calculated from the sum of the map

corrected PH, (converted to GeV), starting for counters six counters downstream of SHEND

to the end of the target (counter number 1)

Etarget
µ =

SHEND−6∑
i=1

Eµ
cntr(i). (3.11)

The muon energy deposited in counter i, Eµ
cntr(i), is reconstructed from the counter PH using

the following algorithm described below. “TCUT” is defined as the counter PH below which
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Cµ(Eµ) (a “low energy” conversion factor) is used, and above which Ce (a “high energy”

conversion factor) is used to convert counter MIPs to GeV. A “low energy” deposition is

attributed primarily to ionization loss. TCUT is set to 4.5 ADC counts. For Ecntr(i) <

TCUT the energy deposited in this counter by the muon in GeV is

Eµ
cntr(i) = Cµ(Eµ)Ecntr(i),

Cµ(Eµ) = 0.1419 + 0.004357 log[min(Eest
µ , 60.)] +

+ 0.00006822 min((Eest
µ − 60), 0). (3.12)

A “high energy” deposition (PH(i) > TCUT ) is attributed to catastrophic energy loss

which triggers an electromagnetic cascade over several counters. The conversion factor for

pure electromagnetic cascade, Ce, is used in this case. The energy of the counter in GeV is

given by

Eµ
cntr(i) = Cµ(Eµ) + Ce(Ecntr(i)− 1.), (3.13)

where Ce = 0.195 GeV/MIP and Cµ(Eµ) is given in Equation 3.12. The first term in

Equation 3.13 corresponds to the average muon ionization energy (1MIP) in GeV, therefore,

1 MIP is subtracted from the PH in the second term.

The energy deposited by the muon can not be separated from the shower energy in the

shower region. A parameterization of the most probable value (MPV) of the muon energy

loss is used to estimate the energy loss Eshower
µ in the shower region

Eshower
µ =

PLACE∑
i=SHEND−5

(0.1668 + 0.00037Eest
µ (i))/ cos(θµ), (3.14)

where θµ is the muon angle and Eest
µ (i) is the estimated muon energy.

The total muon energy is given by the sum of all three contributions

Eµ = EFF
µ + Eshower

µ + Etarget
µ . (3.15)
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3.3.3 Muon Energy Calibration

Calibration of the muon energy was performed using 50 GeV test beam muons to determine

the overall normalization and the radial dependence of the magnetic field. The entire face of

the toroid was mapped with 50 GeV test beam muons. Event selection requirements were:

hits in the drift chambers in all 3 gaps of the toroid, a well defined track in the target, and

to spend the whole time in the steel (excluding events which spent any fraction of time in

the crack or the central region of the toroid). In addition, all events were required to have a

good track and reconstruction in the test beam spectrometer. A total of 45 test beam runs

were used in the calibration analysis. Figure 3.4 shows the location of the beam at the front

face of the toroid for the good test beam map runs.

For each run the fitted mean of the ratio pTB/pTOR is computed, where pTB is the muon

momentum measured by the test beam spectrometer and pTOR is muon momentum measured

by the NuTeV detector. A correction to the magnetic field map is obtained as described

below. For each of the 45 test beam runs we project two “average” tracks. Each “average”

track is obtained by stepping the muon through the toroid. For each run the average front

face position for a muon in the run and the average muon angle are computed and are used

as the track initial position and angle. Average muon energy loss is taken into account and

projected hits are simulated in all 3 gaps of the toroid.

The first “true” track for run i projects a muon with energy EFF
µ (= 〈ETB〉i − 〈Eloss〉)

using the default magnetic field map from ANSYS, where 〈ETB〉i is the truncated mean of

the distribution pTB for run i and 〈Eloss〉 is the average muon energy loss in the target. “True

hits” xtrue
ij are produced for all gaps j = 1, 3. The second track for run i projects a muon with

energy (〈ETB〉i/(〈pTB
i /pTOR

i 〉 − 〈Eloss〉). For this track a position dependent multiplicative

correction of the form Cor(RFF ) = a + bRFF , (RFF =
√

x2
FF + y2

FF is the radius at the

front face of the toroid), is applied to the default magnetic field map. “Corrected hits”

xcorr
ij (a, b) are produced in each gap. The map correction parameters a and b are obtained

by minimizing the difference between true and corrected hits in all gaps over all test beam

runs

χ2 =
45∑
i=1

3∑
j=1

(xtrue
ij − xcorr

ij (a, b))2

σ2
i

. (3.16)
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The uncertainty of the absolute muon energy scale is taken to be the variance of the fitted

means of pTB/pTOR for all 45 map test beam runs after the calibration is applied to the

magnetic field. The event-by-event uncertainty of the test beam spectrometer (0.3%) is

much smaller than the resolution of the toroid and is therefore neglected. The absolute

muon energy scale uncertainty is found from this procedure to be 0.7%.

3.3.4 Muon Energy Resolution Function

Muon momentum is measured from the track curvature in the toroid (Equation 3.10). The

dominating uncertainty is due to MCS, which introduces uncertainty in the bend angle

measurement σMCS
θ ∝ 1/pµ. Therefore, the contribution to the resolution function from

MCS given by σMCS
θ /θ is a constant, because θ ∝ 1/pµ. In addition, the uncertainty due

to chamber resolution σCR
θ is a constant which becomes important at relatively high energy.

The combined resolution function will have the form

σθ

θ
=

σMCS
θ

θ
⊕ σCR

θ

θ
= A⊕B · pµ, (3.17)

where A is determined by MCS and B by chamber resolution. Therefore the momentum res-

olutions function will have the simple form ∆(1/P )
(1/P )

. Catastrophic energy loss and hard single

scattering processes in the toroid are responsible for the asymmetric tails in the resolution

function distributions. Test beam muons with energies ranging from 30 to 170 GeV are used

to parameterize the resolution function of the muon spectrometer, using a fit of the form:

∆ (1/Pµ)

(1/Pµ)
= exp

[
−1

2

x2

σ2
lead(Pµ)

]
+ Rtail(Pµ)exp

[
−1

2

(x− xtail(Pµ))2

σ2
tail(Pµ)

]
, (3.18)

where σlead(Pµ) is the width of the leading Gaussian contribution due to MCS, and Rtail(Pµ),

σtail(Pµ) and xtail(Pµ) are the normalization coefficient, the width and the offset of the asym-

metric tail of the resolution function. The width of the leading Gaussian is parameterized

with the following function according to Equation 3.17:

σlead(Pµ) =
√

A2 + (BPµ)2, (3.19)
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where A and B are constants, determined from a fit. Rtail(Pµ), σtail(Pµ), and xtail(Pµ) are

parameterized with linear functions

Rtail(Pµ) = R0
tail + R1

tailPµ,

σtail(Pµ) = σ0
tail + σ1

tailPµ,

xtail(Pµ) = x0
tail + x1

tailPµ.

The resolution function given by Equation 3.18 is fitted to the distribution

∆ (1/Pµ)

(1/Pµ)
=

1/PDET
µ − 1/P TB

µ

1/P TB
µ

=
P TB

µ − PDET
µ

PDET
µ

, (3.20)

where PDET
µ and P TB

µ are the muon momentum measured by NuTeV detector and the

test beam respectively. The parameters determined from the fit are A = 0.102, B =

0.42×10−3GeV −1, R0
tail = 0.79×10−2, σ0

tail = 0.45, σ1
tail = 1.3×10−4GeV −1, and x0

tail = 0.19.

R1
tail and x1

tail are consistent with 0. For a muon entering the toroid with momentum

Pµ =100 GeV the resolution function parameters have the following values σlead(100) = 0.11,

σtail(100) = 0.46, xtail(100) = 0.19, and Rtail(100) = 0.079. Figure 3.5 shows the response of

the detector to test beam muons with incident energy of 100 GeV (points) and the fit using

the parameterization from Equation 3.20 (curve).

An alternative (linear) parameterization was used for the width of the leading Gaussian

σlead(Pµ) = C + DPµ, (3.21)

to examine the difference in extrapolation of the function to high energy beyond the test

beam data. The fit quality was equally good. The parameters obtained were C = 0.097 and

D = 1.2×10−4 GeV −1 . Figure 3.6 shows both parameterizations of σlead(Pµ) as function of

muon momentum. Both parameterizations perform equally well in the region of test beam

data, but the high energy extrapolation is different. We use this difference as a systematic

uncertainty in our analysis.
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Figure 3.5: Detector response to test beam muons with incident energy of 100 GeV (points)

and the fit (curve).

3.4 EVENT SELECTION AND DATA SAMPLES

The are several types of selection criteria used in defining the data samples. The remainder

of this chapter provides a description of the selection criteria and defines each data sample

used in this analysis.

3.4.1 Quality and Fiducial Volume Cuts

This set of cuts selects events whose vertex was contained well inside the volume of the

detector and which were obtained during periods when the detector and the beamline were

fully operational.

• BAD RUNS - Removes runs for which detector hardware was either non-operational

or poorly understood.

• IGATE - Selects the neutrino gate.
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• NSTIME - Selects single interaction events by requiring the muon track time to be

within 36ns of the hadron shower time.

• PLACE - Requires 20 < PLACE < 80 to ensure longitudinal containment of the shower

within the calorimeter.

• VERTEX BOX - Requires Vx < 1.27m and Vy < 1.27m to ensure transverse contain-

ment of the hadron shower.

3.4.2 Tracking and Geometric Cuts

These cuts ensure good acceptance of the detector and quality of the muon track.

• TRIGGER 1 - Selects events with muon track which starts in the calorimeter and has

produced hits in the toroid drift chambers. These events are charged-current candidates.

• TARGET TRACK - Requires a good muon track in the target, which is important

for an accurate muon angle measurement.

• TOROID CONTAINMENT - Requires the radius at the front face (FF) of the toroid

to be RFF =
√

X2
FF + Y 2

FF < 1.62m, where XFF , YFF are the coordinates of the track

at the FF. Also requires the radius of the fitted track in the first gap (T2) of the toroid

to be RT2 =
√

X2
T2 + Y 2

T2 < 1.35m. This ensures good acceptance of the muon track in

the toroid and constrains the trajectory of the muon to well understood regions.

• TOROID TRACK - Requires a minimum number of hits in the toroid drift chambers

to ensure good reconstruction of the muon track in the toroid.

• HOLE CUT - Requires the radius of the projected track from the vertex to be more

than 15.2cm at the FF of the toroid and the muon angle at the vertex θµ > 0.007 rad.

This ensures the muon will not travel in the toroid hole where the magnetic field (in air)

is poorly modeled.

• 80% STEEL - Requires that the muon track spend more than 80% of its toroid trajec-

tory in steel where the magnetic field is well known.

• GOOD FIT - Requires a fitted muon track in the toroid. The number of degrees of

freedom are the number of chambers which have hits.
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• TWO GAPS - Requires the muon track to have hits in both the first and second

gap drift chambers. This ensures a track of adequate length to obtain a well measured

momentum.

3.4.3 Total Cross Sample

The total cross section sample is used to normalize the neutrino flux and determine the

anti-neutrino to neutrino cross section ratio, defined later. This data sample requires all the

above selection criteria with two additional cuts:

• MUON ANGLE - Requires θµ < 0.15 rad to ensure good acceptance in the toroid.

• MUON ENERGY - Requires 15 < Eµ < 600GeV and EµFF > 3 GeV. If the energy

of the muon is very high, the determination of the track curvature is limited by drift

chamber resolution. In addition, the number of hits from catastrophic energy loss, which

rises linearly with energy, will affect the tracking algorithm. Events with Eµ < 15GeV

are removed, because at very low energy (< 15GeV ) MCS reduces the reconstruction

efficiency.

3.4.4 Flux Sample

The flux sample is used to determine the relative neutrino flux (shape with Eν) from a

subsample of the total cross section sample with the additional requirement of a hadronic

energy cut:

• HADRON ENERGY - Requires EHAD < 20GeV.

3.4.5 Structure Function Sample

The structure function sample is used to extract the DIS differential cross section. It is a

subsample of the total cross section sample with additional kinematic requirements:

• HADRON ENERGY - Requires 10 < EHAD < 600GeV. Events with very low hadron

energy are removed to minimize the correlations with the flux sample and to remove

“quasi-elastic” and resonances events.
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• Q2 CUT - Requires Q2 > 0.5GeV 2/c2. Reduces the contribution from “quasi-elastic”

events.

• NEUTRINO ENERGY - Requires 30 < EHAD < 360GeV.

• DIMUON CUT - Removes events with more than one muon track.
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4.0 MONTE CARLO EVENT SIMULATOR

An ideal detector would give the true value (TRUTH) for each measurable physics quantity.

In real detectors the values of the physics quantities are smeared due to resolution effects;

therefore we measure “SMEARED” kinematic quantities. The physical size of the detector

also limits the “measurable events” to those contained in the defined geometry of the detector.

As a consequence real detectors give the SMEARED value of the physics quantities in a

kinematic region which is limited by the acceptance of the detector. The Monte Carlo

simulation is used to determine a correction which can convert a SMEARED kinematic

distribution measured in the detector to a TRUTH distribution. This chapter discusses the

NuTeV Monte Carlo event simulation.

NUMONTE is the Monte Carlo event simulator used by NuTeV to correct data. It

consists of: 1) an event generator which generates neutrino interaction events according to

an incident neutrino flux and cross section model, and 2) a detector simulator which models

the response of the detector components for each generated event. The event generator

calculates the TRUTH kinematic variables for an inclusive neutrino interaction, and then

processes them through a detector model. NUMONTE doesn’t perform a detailed simulation

of all final state particles interacting in the detector. Instead, it uses a parameterization of the

detector response obtained from test beam data to smear the TRUTH kinematic variables.

Cosmic rays and beam muons are not modeled because they are removed from data.
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4.1 CROSS SECTION MODEL

The charged-current DIS cross section model implements the differential cross section given

by Equation 1.18, which follows the V-A structure of the weak interaction

d2σν(ν)

dxdy
=

G2
F MEν

π(1 + Q2

M2
W

)2

[y2

2
2xF1(x,Q2) + (1− y)F2(x,Q2)±

(
y − y2

2

)
xF3(x,Q2)

]
.

In leading order QCD the structure functions are expressed in terms of the quark densities

by

2xF1(x,Q2) = [xuv(x, Q2) + xdv(x,Q2)

+ 2xus(x,Q2) + 2xds(x,Q2) + 2xss(x,Q2)],

F2(x,Q2) = 2xF1(x,Q2)× 1 + R(x,Q2)

1 + 4M2x2/Q2
,

xF3(x,Q2) = xuv(x, Q2) + xdv(x,Q2).

The foundation of the cross section model are the parton distribution functions. Here,

uv, dv, us, ds and ss are the PDFs for an iron target. There are two types of PDF parame-

terizations that can be used

1. Global fit - a parameterization which is available from a global fit to world data. These

are available from theoretical collaborations which perform QCD-based global fits. These

PDFs are determined for the proton and neutron. For us to use such a parameterization

for our neutrino iron PDFs we must assume a nuclear correction. This presents a problem

because nuclear corrections have not been measured in neutrino scattering. In addition,

a particular global fit parameterization may not describe NuTeV data. This affects the

acceptance correction used to extract the flux and the differential cross section.

2. NuTeV Data fit - a parameterization which is a fit to our data. This approach uses an

iterative procedure to obtain a model which describes NuTeV data. By fitting our data

directly nuclear effects are automatically accounted for in the PDFs, and the result, by

construct, models our data well.

This analysis uses the second approach, which gives more flexibility and involves fewer as-

sumptions.
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4.1.1 PDF Parameterization

The cross section model is based on a leading order parton distribution parameterization

from Buras and Gaemers (BG) [18]. Quark distributions are parameterized as functions of x

at fixed Q2
0 = 12.6GeV2/c2 (NuTeV’s average Q2). The quark distributions are then evolved

to any Q2. The original BG model uses the following parameterization:

• Valence - Valence distributions are of the form xE1(1 − x)E2 . They are constrained so

that the valence quarks are 0 at both x = 0 and x = 1. The d-quark function falls faster

than the u-quark function in the limit x → 1. Hence the softer d-valence is parameterized

as dv = uv(1− x).

• Light quark sea - Sea distributions are parameterized using the form (1− x)ES. This

gives a rising function as x → 0 and at high x the sea terms are suppressed. The model

assumes the symmetry u = d. This assumption is modified to agree with existing data

which finds an asymmetry (see below).

• Heavy quark sea - The model assumes strange sea symmetry, s = s. The parameteri-

zation allows the strange sea to have a different shape than light quark sea by including

a factor (1− x)α. The charm sea is neglected.

• Gluon - Since the model is LO, the gluon distribution is not directly parameterized.

The gluon distribution appears through its moments as missing quarks by satisfying the

sum rules (discussed later).

An enhanced BG model is used for greater flexibility, by adding terms. The parton

distributions are parameterized as follows:

xuv(x) = utot × [xE10(1− x)E20 + AV2x
E30(1− x)E40 ], (4.1)

xdv(x) = dtot × xuv(x)× (1− x), (4.2)

xu(x) = xd(x) =
1

2(κ + 2)
xS(x)

1

2(κ + 2)
(AS(1− x)ES + AS20(1− x)ES20), (4.3)

xs(x) = xs(x) =
κ

2(κ + 2)
xSS(x)

κ

2(κ + 2)

AS

1 + ES
(ES + α + 2)(1− x)(ES+α). (4.4)

The following symmetries are assumed to reduce the number of free parameters:
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• Isospin symmetry

d(x) ≡ dp(x) = un(x) , d(x) ≡ d
p
(x) = un(x),

u(x) ≡ up(x) = dn(x) , u(x) ≡ up(x) = d
n
(x),

s(x) ≡ sp(x) = sn(x) , s(x) ≡ sp(x) = sn(x),

c(x) ≡ cp(x) = cn(x) , c(x) ≡ cp(x) = cn(x).

• Sea symmetries

u = d,

s = s,

c = c.

4.1.1.1 Valence Evolution Valence distributions at any Q2 are given by

xuv(x,Q2) = utot(Q
2)× [xE1(1− x)E2 + AV2x

E3(1− x)E4 ],

xdv(x,Q2) = dtot(Q
2)× xuv(x,Q2)× (1− x). (4.5)

The exponents (E1, E2, E3, E4) vary with Q2 according to the original form proposed by

Buras and Gaemers

E1 = E10 + E11 · s,
E2 = E20 + E21 · s,
E3 = E30 + E11 · s,
E4 = E40 + E21 · s,

where

s = log


 log(Q2

A2
0
)

log(
Q2

0

A2
0
)


 . (4.6)
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The form of s is chosen, so that s = 0 at Q2
0 = 12.6GeV2/c2. Valence normalizations are

obtained from the GLS sum rule which gives the total number of valence quarks

∫ 1

0

xF3(x,Q2)
dx

x
=

∫ 1

0

(xuv(x,Q2) + xdv(x,Q2))
dx

x

= 3
(
1− αs(Q

2)

π

)
= 3

[
1− A1

log(Q2/A2
0)
− A2

[log(Q2/A2
0)]

2

]
. (4.7)

This normalization varies according to the QCD parameter, A0, which parameterizes the ef-

fect of ΛQCD and represents the strength of the scaling violations. The relative normalization

between uv and dv is constrained

∫ 1

0

uv(x, Q2)dx = 2

∫ 1

0

dv(x,Q2)dx = 2
[
1− A1

log(Q2/A2
0)
− A2

[log(Q2/A2
0)]

2

]
. (4.8)

Hence, the normalization utot(Q
2), dtot(Q

2) are

utot(Q
2) = 2

[
1− A1

log(Q2/A2
0)
− A2

[log(Q2/A2
0)]

2

]

β(E1, E2 + 1) + AV2β(E3, E4 + 1)

dtot(Q
2) =

[
1− A1

log(Q2/A2
0)
− A2

[log(Q2/A2
0)]

2

]

β(E1, E2 + 2) + AV2β(E3, E4 + 2)
.

where β(m,n) = Γ(m)Γ(n)
Γ(m+n)

is Euler’s β function. In addition a charge constraint is required

2

3

∫ 1

0

uv(x,Q2)dx − 1

3

∫ 1

0

dv(x,Q2)dx

=
[
1− A1

log(Q2/A2
0)
− A2

[log(Q2/A2
0)]

2

]
.

Here A0, A1, A2, AV2, E10, E20, E30, E40, E11, E12 are parameters varied in cross section model

fit.

65



4.1.1.2 Light Sea Evolution The light sea distribution at any Q2 is

xu(x,Q2) = xd(x, Q2) =
1

2(κ + 2)
xS(x,Q2)

=
1

2(κ + 2)
(AS(1− x)ES + AS2(1− x)ES2). (4.9)

The Q2 evolution of the light quark sea is controlled by the second and the third moments

because they decrease rapidly with x. The ’n − th’ moment of the light sea distribution in

x is defined as

SQn =

∫ 1

0

xn−1S(x)dx. (4.10)

A QCD-like calculation constrains the second and the third moment, but they are allowed

to vary. SQ2 and SQ3 are calculated for 4-flavor SU(3) gauge theory

SQ2 =

∫ 1

0

xSdx =
3

4
D22 +

1

4
D12,

SQ3 =

∫ 1

0

x2Sdx =
3

4
D23 +

1

4
D13.

The values for Dij are completely specified by LO QCD and are given by

D12 = S2e
−0.427·s,

D13 = S3e
−0.667·s,

D22 = [(1− 0.429)(S2 + V82)− 0.429 ·G2]e
−0.747·s

+ [0.429(S2 + V82) + 0.429 ·G2]− V82e
−0.427·s,

D23 = [(1− 0.925)(S3 + V83)− 0.288 ·G3]e
−1.386·s

+ [0.925(S3 + V83) + 0.288 ·G3]e
−0.609·s − V83e

−0.667·s.

where the numerical values are taken from [18], and G2, G3 are the second and the third

moment of the gluon distribution. The second moment of the gluon distribution G2 =
∫ 1

0
xg(x, Q2)dx is obtained from the momentum sum rule as missing momentum evaluated

at Q2 = Q2
0.

G2 +

∫ 1

0

1 + R(x,Q2
0)

1 + 4M2x2/Q2
0

[xuv(x,Q2
0) + xdv(x,Q2

0) + xS(x,Q2
0)]dx = 1
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The sea normalizations, V82 and V83, are calculated from the moments of the valence distri-

butions at Q2
0

V82 = utot[β(E1 + 1, E2 + 1) + AV2β(E3 + 1, E4 + 1)]

+ vtot[β(E1 + 1, E2 + 2) + AV2β(E3 + 1, E4 + 2)],

V83 = utot[β(E1 + 2, E2 + 1) + AV2β(E3 + 2, E4 + 1)]

+ vtot[β(E1 + 2, E2 + 2) + AV2β(E3 + 2, E4 + 2)].

AS2 and ES2 are additional terms added to the original parameterization which are evolved

with Q2 in a semi-arbitrary way

AS2 = AS20 + AS21log(Q2),

ES2 = ES20 + ES21log(Q2).

AS and ES are constrained so that the second and the third moments match SQ2 and SQ3

ES =
S2 − AS2/(ES2 + 1)

S3 − AS2/((ES2 + 1)(ES2 + 2))
− 2,

AS = (ES + 1)
S2 − AS2

ES2 + 1
.

Because both terms involving AS, ES, AS2 and ES2 are required to match the second and

third moments, this calculation will deviate from ‘QCD-like’ starting at the fourth moment

in x. Sea parameters included in the fit are S2, S3, G3, AS20, AS21, ES20, ES21.
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4.1.1.3 Strange Sea Neutrino scattering dimuon data provides a direct measurement

of the strange sea. The underlying leading order process is inclusive neutrino CC scattering

with two oppositely charged muons in the final state given by

νµ(νµ) +

(
d(d)

s(s)

)
→ µ−(+) + c(c) + X,

where the charm quark decays semi-leptonically to an oppositely charged muon. Scattering

off a d-quark is Cabibbo suppressed, because the CKM matrix element |Vcd|2 = 0.05 is small

[19]. As a result the scattering from s-quarks is a large contribution to the dimuon event

sample.

The strange sea distribution was extracted in a leading-order dimuon analysis from CCFR

dimuon data [20]. It was found that strange sea has different shape in x than the non-strange

sea. The following parameterizations were used for the non-strange sea,

xS(x,Q2) = AS(1− x)ES,

and the strange sea,

xSS(x,Q2) =
AS

ES + 1
(β + 1)(1− x)ES+α = xS(x,Q2)

β + 1

ES + 1
(1− x)α,

where β = ES + α describes the shape of strange sea. The strange sea is then normalized

using ∫ 1

0

xS(x,Q2)dx =

∫ 1

0

xSS(x,Q2)dx,

which gives the relative normalization

κ =
2S

U + D
,

where S =
∫ 1

0
xs(x)dx, U =

∫ 1

0
xu(x)dx, D =

∫ 1

0
xd(x)dx. As a result, the strange sea distri-

bution obtains the form

xs(x) = xs(x) =
κ

2(κ + 2)
xSS(x) =

κ

2(κ + 2)

AS

ES + 1
(ES + α + 1)(1− x)ES+α

=
κ

2(κ + 2)

xu(x) + xd(x)

2
(1− x)α,

The values of κ and α are determined by a fit to the CCFR dimuon data and are given in

Table 4.1.
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4.1.1.4 Modifications to the PDF parameterization Additional corrections are ap-

plied to the PDF parameterization to account for physics not present in our LO model.

Where possible, existing data are used to constrain the model in kinematic regions where

NuTeV has limited or no data.

• dv/uv correction - Our PDF parameterization assumes u(x) = d(x). An asymmetry is

observed by the precise NMC F d
2 /F p

2 data [21]. Neutrino scattering off an isocalar target

is not sensitive to the asymmetry (actually NuTeV iron target has an 5.67% excess of

neutrons). This asymmetry becomes important at high x where the uv and dv are quite

different. A correction to the valence distributions obtained from NMC data is used to

account for this effect. The ratio F d
2 /F p

2 is calculated using the CCFR BG model [2]

and corrected for nuclear effects. Comparison with NMC F d
2 /F p

2 data gives a correction

which is parameterized as a polynomial

δ(d/u) = 0.12079− 1.3303x + 4.9829x2 − 8.4465x3 + 5.7324x4.

The new ratio of the modified valence is

(d′v/u
′
v) = (dv/uv) + δ(d/u), (4.11)

where u′v and d′v are constrained by the measured xF3 to satisfy u′v + d′v = uv + dv.

Therefore the modified valence distributions obtain the form

u′v =
uv

1 + δ(d/u) · uv/(uv + dv)
,

d′v =
dv + uv · δ(d/u)

1 + δ(d/u) · uv/(uv + dv)
.

(4.12)

• d/u correction - A large flavor asymmetry in the proton sea was observed by Drell-Yan

data from E866 [22]. The light quark sea distributions are corrected with the factor

f(d/u) =
1

max(1− x(2.7− 0.14ln(Q2)− 1.9x), 0.1)
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which is obtained from a fit to E866 Drell-Yan data. The modified light sea distributions

u′, d′ are constrained by u′ + d′ = u + d and have the form:

u′ = u

(
u + d

u + d · f(d/u)

)
,

d′ = d

(
u + d

u + d · f(d/u)

)
· f(d/u).

• Low Q2 extrapolation - BG PDFs are not well behaved in the region below Q2 =

1GeV2/c2. Therefore an external PDF set is used to control the shape at low Q2. The

Q2 shape of GRV94LO PDFs [23] is used to extrapolate the BG model down to Q2 =

0.23GeV2/c2. GRV94LO is normalized to have the same value as BG model at Q2 =

1.35GeV2/c2.

• Higher Twist correction - Our PDF parameterization is constrained by a fit to the

NuTeV differential cross section data. Through this fit some of the nonperturbative

effects, present in data are absorbed by the parameterization. However, at high x and

low Q2, there is limited NuTeV data to constrain the Higher Twist contribution (see

Section 1.4.4.1). An empirical model is used to describe the Q2 dependence in the high

x low Q2 kinematic region [24]. This model rescales Bjorken x

x → ξ = x
Q2 + BHT

Q2 + AHT · x.

Charge lepton measurements of F d
2 and F p

2 from SLAC [25], BCDMS [26] and NMC [27]

above x = 0.4 are used to constrain the higher twist parameters AHT and BHT . This is

achieved by including the charge lepton data in the PDF fit after applying correction for

nuclear effects and 5/18th rule. This will be discussed in more detail in Section 4.1.5.
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4.1.2 Longitudinal Structure Function

A parameterization of RL is used to account for NLO processes at low x. RL is determined

from an empirical fit to the combined SLAC proton and deutron scattering data [28].

RL(x, Q2) =
0.0635

ln(Q2/0.04)
Θ(x, Q2) +

0.5747

Q2
− 0.3534

Q4 + 0.09
, (4.13)

Θ(x, Q2) = 1 + 12(
Q2

1 + Q2
)(

0.1252

x2 + 0.1252
).

This parameterization describes the data well for 0.07 < x < 0.7 and 1 < Q2 < 75GeV 2/c2.

RL is implemented in the cross section as a correction to F2 (discussed below).

4.1.3 DIS Differential Cross Section

The DIS cross section is implemented in the Monte Carlo in terms of the PDFs. The quark

parton DIS cross section for neutrino and anti-neutrino scattering off a proton is given by

d2σ0(νµp → µ−X)

dxdy
=

2G2
F ME

π

× [|Vud|2xd(x) + (1− y)2(|Vus|2 + |Vud|2)xu(x) + 2|Vus|2xs(x)
]
,

d2σ0(νµp → µ+X)

dxdy
=

2G2
F ME

π

× [|Vud|2xd(x) + (1− y)2(|Vus|2 + |Vud|2)xu(x) + 2|Vus|2xs(x)
]
,

where quark mixing is taken into account with the Cabbibo-Kobayashi-Maskawa (CKM)

matrix elements Vij [19].

The longitudinal cross section and the target mass term Mxy
2E

are given by

d2σL(νµp → µ−X)

dxdy
=

2G2
F ME

π

[ (
1− y − Mxy

2E

)
· 1 + RL(x,Q2)

1 + 4M2x2/Q2
+ y − 1

]

× (|Vud|2xd(x) + (|Vus|2 + |Vud|2)xu(x) + 2|Vus|2xs(x)
)

d2σL(νµp → µ+X)

dxdy
=

2G2
F ME

π

[ (
1− y − Mxy

2E

)
· 1 + RL(x,Q2)

1 + 4M2x2/Q2
+ y − 1

]

· [|Vud|2xd(x) + (|Vus|2 + |Vud|2)xu(x) + 2|Vus|2xs(x)].
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We can obtain the scattering off a neutron by invoking the isospin symmetry d → u and

u → d. The total DIS cross section for a light quark isoscalar target is

d2σνN
CC

dxdy
=

1

2

[
d2σνp

0

dxdy
+

d2σνp
L

dxdy
+

d2σνn
0

dxdy
+

d2σνn
L

dxdy

]
(4.14)

d2σνN
CC

dxdy
=

1

2

[
d2σνp

0

dxdy
+

d2σνp
L

dxdy
+

d2σνn
0

dxdy
+

d2σνn
L

dxdy

]
. (4.15)

The remaining pieces of the cross section (including charm production which is not included

in Equations 4.14 and 4.15) are described below.

4.1.3.1 Charm Production Cross Section When a neutrino scatters off a d or s quark

it can produce a c quark in the final state. Because mc is not small compared to Q2 the

Bjorken scaling variable x can not be used to describe the fractional momentum carried by

the struck quark. From conservation of four momentum we have

(q + ξp)2 = p′2 = m2
c ,

q2 + 2ξp · q + ξ2M2 = m2
c ,

where ξ is the momentum fraction carried by the struck quark, and mc is the charm mass.

Neglecting the term ξ2M2 and −q2

2Mν
= Q2

2Mν
= x we get

x → ξ = x · (1 +
m2

c

Q2
).

For the case of a massive quark in the final state the modified Bjorken scaling variable

ξ is used. In addition, due to the massive quark in the final state, kinematic production

thresholds must be applied. This leads to a suppression of the charm production cross

section.

This is the LO “slow rescaling” model obtained in references [13] and [29]. The structure

functions are modified to include the massive charm quark effect by rescaling the x → ξ

variable,

2xF1(x,Q2) → x

ξ
2ξF1(ξ,Q

2),

F2(x,Q2) → F2(ξ,Q
2),

xF3(x,Q2) → x

ξ
ξF3(ξ,Q

2),
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F2(ξ,Q
2) =

1 + R(ξ, Q2)

1 + 4M2ξ2/Q2
2ξF1(ξ,Q

2), (4.16)

where R(ξ, Q2) is the structure function RL.

Substituting the structure functions in the DIS cross section we obtain the charm pro-

ducing terms in the cross section

d2σ(νµN → µ−cX)

dxdy
=

G2
F MEν

π

[ (
y2

2

x

ξ
+

1 + R(ξ, Q2)

1 + 4M2ξ2/Q2
(1− y − Mxy

2E
)

)
2ξF1(ξ,Q

2)

±
(

y − y2

2

)
x

ξ
ξxF3(ξ,Q

2)
]
.

This can be rewritten in terms of the PDFs

d2σ(νµN → µ−cX)

dxdy
=

2G2
F ME

π

[xy

ξ
+

(
1− y − Mξy

2E

)
· 1 + RL(ξ,Q2)

1 + 4M2ξ2/Q2

]

·ξ
[

|Vcd|2Θ(W −MΛC
)(dv(ξ) + uv(ξ))

+ |Vcd|2Θ(W −MΛC
−Mπ)(d(ξ) + u(ξ))

+ |Vcs|2Θ(W −MΛC
−MK)s(ξ)

]
, (4.17)

where the thresholds require the invariant mass of the final state, W 2, to be large enough to

produce charmed mesons and baryons. Anti-neutrino DIS scattering can produce a c quark

in the final state when it scatters off sea components d or s. Similar to the neutrino case, the

charm production cross section for anti-neutrino scattering off an isoscaler target is given by

d2σ(νµN → µ−cX)

dxdy
=

2G2
F ME

π

[xy

ξ
+

(
1− y − Mξy

2E

)
· 1 + RL(ξ, Q2)

1 + 4M2ξ2/Q2

]

·ξ
[

|Vcd|2Θ(W −Mp −MD −Mπ)(d(ξ) + u(ξ))

+ |Vcs|2Θ(W −Mp −MD −MK)s(ξ)
]
. (4.18)

If we neglect the target mass and the longitudinal terms, the charm suppression factor is

given by the expression

1− y +
xy

ξ
= 1− m2

c

2MEξ
. (4.19)

73



There are several bounds to ensure the charm production is kinematically possible. We

require ξ ≤ 1 which can be also translated into requirements on the variables x and y

ξ = x ·
(

1 +
m2

c

Q2

)
= x +

m2
c

2MEy
≤ 1, (4.20)

x ≤ 1− m2
c

2MEy
≤ 1− m2

c

2ME
, (4.21)

y ≥ m2
c

2ME(1− x)
≥ m2

c

2ME
. (4.22)

The rescaling variable is bounded from below because x > 0. The bound for ξ is

ξ ≥ m2
c

2MyE
≥ m2

c

2ME
, (4.23)

which implies that to probe small ξ, where the PDFs are large, the energy E should be large

enough to surpass this bound.

The slow rescaling model depends on the charm mass parameter. The value of the

charm mass parameter used in our model is mc = 1.40 ± 0.18, obtained from the weighted

average of leading-order experimental measurements [20],[30]. The variance is taken to be

the uncertainty on the charm mass value.

4.1.3.2 Non-Isoscalar Target Cross Section The NuTeV target is iron which con-

tains an excess of neutrons

N − Z

A
= 0.0567. (4.24)

As a result there are more d-quarks than u-quarks in our target. If we take into account

isospin symmetry un = dp and up = dn, there is about a 2% excess of d-quarks over u-

quarks. Since neutrino CC scattering is sensitive to flavor the cross section for neutrinos will

be larger on iron than for a true isoscalar target, while the cross section for anti-neutrinos

will be smaller. To account for this NUMONTE computes the cross section for protons and

neutrons separately. The weighted average of the proton and neutron cross section gives the

cross section for a non-isoscalar target

d2σ
ν(ν)N
CC

dxdy
=

[Z

A

d2σ
ν(ν)p
CC

dxdy
+

N

A

d2σ
ν(ν)n
CC

dxdy

]
. (4.25)
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Figure 4.1: Diagrams for QED radiative corrections for CC neutrino scattering.

4.1.3.3 Propagator Term A neutrino interacts with matter via the weak interaction,

which for neutrino DIS CC process is mediated by the massive virtual W boson. The effect

of the massive virtual boson is contained in the propagator term

d2σ
ν(ν)
CC

dxdy
=

1

(1 + Q2/M2
W )2

· d2σ
ν(ν)
CC

dxdy
. (4.26)

4.1.4 Radiative Corrections

Radiative corrections are applied to the “Born”-level differential cross section (Equation

1.18) using Bardin’s calculation [31] to account for contributions to the cross section due

to real and virtual photon radiation by the charged particles. Figure 4.1 shows two of the

diagrams included in Bardin’s calculation. Photon radiation by the charged lepton in the

final state has the largest contribution.

Radiative corrections should be applied to each event, but recomputing them for each

event is slow and inefficient. Instead, a table is generated for a number of x,y,E grid points

which contains the 1-loop QED radiative correction for CC neutrino interactions

CRAD =

[(
d2σCC

dxdy

)

QED1−loop

/

(
d2σCC

dxdy

)

Born

]

Bardin

(4.27)

for each point of the grid. This table is used to obtain radiative corrections for any x,y,E by

interpolating between the grid points. Radiative corrections are applied as a multiplicative
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correction to the “Born”-level CC differential cross section

d2σCC

dxdy
= CRAD

(
d2σCC

dxdy

)

Born

. (4.28)

Figures 4.2-4.4 show the 1-loop QED radiative corrections for charged current neutrino

(red solid curves) and anti-neutrino (blue dashed curves) interactions for energies Eν = 45

GeV, Eν = 95 GeV and Eν = 245 GeV respectively. The kinks at low x and low y are due

to the transition between our BG parameterization and GRV94 extrapolation.

4.1.5 Cross Section Fit

An empirical fit to the extracted cross section table (see Chapter 6) is used to determine the

PDF parameters. The fit includes NuTeV data in the kinematic region, 0.001 < x < 0.7,

30 < E < 360 GeV, and Q2 > 1.35GeV 2/c2. In order to constrain the fit at high x and low

Q2, we use charge lepton, F l
2, proton and deuterium data from SLAC [25], BCDMS [26] and

NMC [27] for x > 0.4. F l
2 is converted to F ν

2 using the 5/18th rule (Equation 1.41), using

CTEQ4D PDFs [23]. For the nuclear target correction we use an x dependent parameteri-

zation of F Fe
2 /F d

2 data from charge lepton DIS obtained in reference [32]

f(x) = 1.10− 0.36x− 0.28e−21.9x + 2.77x14.4. (4.29)

Since nuclear effects are not measured for neutrino scattering the standard treatment is to

assume that the nuclear correction is the same for neutrino scattering as for charge lepton

scattering. As a result, the x dependence of charge lepton data may differ from the x

dependence of our data. Therefore, relative normalizations are introduced as parameters in

the fit to make sure the cross section fit follows our data. The fit is performed by minimizing

the χ2 given by

χ2 = χ2
NuTeV + χ2

SLAC + χ2
BCDMS + χ2

NMC , (4.30)

where each individual χ2 was computed using

χ2 =
NDATA∑

i=1

(DATAi −BGi)
2

σ2
i

. (4.31)
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Figure 4.2: 1-loop QED radiative corrections for charged current neutrino (red solid curve)

and anti-neutrino (blue dashed curve) interactions for incident energy E=45 GeV for various

x values.
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Figure 4.3: 1-loop QED radiative corrections for charged current neutrino (red solid curve)

and anti-neutrino (blue dashed curve) interactions for incident energy E=95 GeV for various

x values.
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Figure 4.4: 1-loop QED radiative corrections for charged current neutrino (red solid curve)

and anti-neutrino (blue dashed curve) interactions for incident energy E=245 GeV for various

x values.
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DATAi are the cross section points for the NuTeV data, and F2 for SLAC, BCDMS and

NMC data. BGi represents the cross section model or F2 calculated using our BG model.

The values of the 19 free PDF parameters and their uncorrelated errors, obtained from

the fit to the final cross section table, are given in Table 4.1. Figure 4.5 shows the parton

densities computed with the final PDF parameters at Q2
0 = 12.6 GeV.

4.2 EVENT GENERATION

Event generation starts by setting the type of the beam and the corresponding muon spec-

trometer polarity. The ’TRUTH’ variables or “GENERATED” variables are denoted with

a ‘G’ at the end of the variable’s name. The following procedure is executed to generate

charged-current neutrino(anti-neutrino) interaction events:

• Incident neutrino energy - The incident neutrino energy “ENUG” is randomly se-

lected by sampling the neutrino flux spectrum, Φ(E). The neutrino flux is measured

from data (see Chapter 5).

• Transverse vertex- The transverse position of the neutrino interaction (VXG, VYG)

for a given energy, ENUG, is selected randomly by sampling (in 2-D) the transverse

vertex distribution for this energy which is found from the data.

• Longitudinal vertex - The longitudinal interaction position PLACEG is randomly

selected from a uniform distribution. In each steel plate VZG (the z vertex location)

is generated between the center of counter PLACEG and PLACEG+1 (one counter

upstream from PLACEG) according to the mass distribution in the detector.

• Bjorken x and Inelasticity - Both TRUTH kinematic variable, XG and YG, are gener-

ated by sampling the shape of the differential cross section given by d2σ
Edxdy

(ENUG, XG, Y G).

• Kinematic Variables - All remaining kinematic variables can be computed from XG,

YG, and ENUG using Equations 1.3-1.8. These include EHADG, the TRUTH hadron

energy, THETAMUG the TRUTH muon angle at the vertex, EMUG, the TRUTH muon

energy, QSQG, the TRUTH four momentum transfer. The TRUTH angle, PHIMUG, is

generated from a uniform distribution between 0 and 2π.
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Table 4.1: The final parameters for the best BGPAR fit.

Parameter Description Value Uncertainty

A0 Lambda 0.583 0.017

A1 LO Valence Normalization 0.295 0.013

A2 NLO Valence Normalization 0.17 0.03

E10 1st Valence term x exponent at Q2
0 0.5333 0.0025

E11 Valence x exponents’ slope in Q2 -0.028 0.011

E20 1st Valence term (1− x) exponent at Q2
0 2.61 0.015

E21 Valence (1− x) exponents’ slope in Q2 1.31 0.045

AV2 2nd Valence term constant 637 75.0

E30 2nd Valence term x exponent at Q2
0 4.56 0.14

E40 2nd Valence term (1− x) exponent at Q2
0 12.5 0.35

S2 Total Sea 2nd moment in x at Q2
0 0.1625 0.0013

S3 Total Sea 3rd moment in x at Q2
0 0.01589 0.0004

G3 Gluon 3rd moment in x at Q2
0 0.031 0.003

AS20 2nd SEA term constant at Q2
0 1.06 0.11

AS21 2nd SEA term constant slope in Q2 1.76 0.25

ES20 2nd SEA term (1− x) exponent at Q2
0 185 20

ES21 2nd SEA term (1− x) exponent slope in Q2 8.4 8.0

AHT Higher twist model parameter A 1.187 0.035

BHT Higher twist model parameter B 0.3332 0.02

κ strange sea normalization 0.373

α strange sea shape 2.5
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Figure 4.5: Quark distributions calculated using our final BG model parameters at the initial

Q2
0 = 12.6 GeV.

• Muon energy loss - A muon track at initial angle THETAMUG and energy EMUG is

stepped through the target calorimeter and its energy loss and MCS are simulated for

each step. The new muon energy after each step is obtained by subtracting the energy

loss in the upstream steps. Energy loss for muons less than 1GeV is taken from range-

energy tables. For muons with energy greater than 1GeV , energy loss is simulated by

including ionization loss, pair production, δ-ray production and bremsstrahlung. NU-

MONTE keeps track of the restricted energy loss, RESLOS, and the catastrophic energy

loss, CATLOS, for each step. If the muon stops in the target the last counter is marked as

CEXITG. When the muon reaches the end of the target calorimeter the total energy loss

DEDXG = RESLOS + CATLOS is subtracted from the muon energy at the vertex,

EMUG. This gives the TRUTH energy of the muon at the front face (FF) of the toroid

EMUFFG = EMUG−DEDXG. The TRUTH position of the muon at the front face

of the toroid given by, V XFFG and V Y FFG, also results from the stepping procedure.
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• Hadron shower length - Hadron energy dependent longitudinal shower distributions

are determined from hadron test beam data. The resulting library of hadron showers are

used to generate SHEND. The hadron shower length for the charge-current analysis is

defined as (PLACE - SHEND + 5).

4.3 DETECTOR MODEL

In order to describe data the Monte Carlo simulation must model the response of the de-

tector to muon and hadron interactions in the detector. NUMONTE smears the TRUTH

kinematic variables to simulate detector resolution effects by using a parameterization of

a test beam data in some cases, when possible the response is simulated with a hit-level

GEANT based Monte Carlo (McNuTeV). All physics quantities are then reconstructed us-

ing the same procedure as quantities in real data. For the charged-current analysis EMUG,

EHADG, THETAG, PHIG, EMUFFG, PLACEG and SHENDG are smeared to simulate the

detector response. The corresponding smeared variables are EMU, EHAD, THETA, PHI,

EMUFF, PLACE and SHEND. The resolution for measuring the muon track vertex posi-

tion is small enough (less than 0.25 cm) that the smearing of the transverse vertex position

variables (VXG, VYG) are neglected for the charged-current analysis.

4.3.1 Muon Energy Smearing and Reconstruction

As described in the previous section the muon is projected through the target and NU-

MONTE keeps track of both restricted and catastrophic energy loss. Restricted energy loss,

RESLOS, is smeared as a Gaussian with a width of 0.045 GeV. Catastrophic energy loss,

CATLOS, is smeared according to the resolution function for electromagnetic showers ob-

tained from electron test beam data (Section 3.1). The smearing function for CATLOS is a

Gaussian having width 0.5
√

CATLOS. A pulseheight in MIPS is calculated for each counter

from the smeared CATLOS and RESLOS as follows: RESLOS is converted to MIPS to

give ECTRRES(i) using the muon conversion factor, Cµ. CATLOS is converted to MIPS to
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give ECTRCAT (i), using the conversion factor for electromagnetic showers, Ce. The total

simulated pulseheight for each counter in MIPS is

ECTR(i) = ECTRRES(i) + ECTRCAT (i). (4.32)

The generated muon energy in the toroid EMUFFG is smeared by sampling the toroid

resolution function

R =
1/PMUFF − 1/PMUFFG

1/PMUFFG
, (4.33)

where PMUFFG =
√

EMUFFG2 −m2
µ and PMUFF =

√
EMUFF 2 −m2

µ are the gen-

erated and the smeared muon momenta and EMUFF is the smeared muon energy in the

toroid. Equation 3.20 is used as the resolution function which is obtained by fitting the

detector response to calibration beam muons with energies ranging from 30 to 170 GeV (see

Section 3.3.4).

4.3.1.1 Muon Energy Reconstruction The reconstruction of the muon energy is di-

vided in three components:

• PSHWR is the muon energy deposited in the shower region. It is computed as a sum of

the average muon energy deposition in GeV in counters from PLACE to SHEND − 5

using Equation 3.14.

• PTARG is the muon energy deposition in the target beyond the shower region. It is

computed as the sum of the pulseheights ECTR(i) from SHEND−6 to 1 and converted

to GeV using Equations 3.11-3.13.

• EMUFF is muon energy measured in the toroid.

The total muon energy is EMU = PSHWR + PTARG + EMUFF .
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4.3.2 Muon Angle Smearing

The muon angular resolution depends on the muon momentum and length of the track in

the target because it is dominated by MCS. A number of chambers downstream from vertex

are omitted from the muon track depending on the shower energy therefore, the muon angle

resolution will depend on the hadron energy. McNuTeV simulation is used to parameterize

the angular resolution function

∆θµ = (96.8 + 0.87 PLACE + 0.24 EHADG)/PMUG,

where EHADG is the generated hadron energy, and PMUG =
√

EMUG2 −m2
µ is the

generate muon momentum.

4.3.3 Hadron Energy Smearing and Reconstruction

The generated hadron energy, EHADG, is calibrated to simulate the non-linearity of the

NuTeV calorimeter (see Section 3.1)

EHADG = EHADG× e · fπ0(EHADG) + h · [1− fπ0(EHADG)]

e · fπ0(75) + h · [1− fπ0(75)]
. (4.34)

EHADG is then smeared by sampling the Poisson-like resolution function given by Equation

3.9. The simulated pulseheight, ECTR(i), given by Equation 4.32 is added to account for

the muon energy deposited in the shower region. To simulate the smeared hadron energy

variable, EHAD, the muon energy loss is then subtracted back out from the hadron energy

using the parameterization of the restricted energy loss, Eloss
µ (i), in MIPs given by equation

3.6. The smeared hadronic energy is given by

EHAD = EHADGsmeared + Ch

SHEND−5∑
i=PLACE

(ECTR(i)− Eloss
µ (i)), (4.35)

where Ch = 0.212 GeV/MIP is the hadron conversion factor.

The remaining smeared kinematic variables are computed from EMU,THETAMU, and

EHAD using Equations 1.3-1.8.
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5.0 NEUTRINO FLUX AND NEUTRINO TOTAL CROSS SECTION

In principle, the absolute neutrino flux can be determined by monitoring the secondary

particles in the beam, (π’s and K’s), which decay to produce the beam neutrinos. Hence,

we could obtain the absolute neutrino flux from 2-body decay kinematics applied to the

measured secondary fluxes. However, the high intensity of the beam and the broad-band

energy spectrum makes it very difficult to accurately monitor these secondary particles.

Instead, NuTeV measures “relative” neutrino flux from a sample of charged-current neutrino

interactions. The fixed-ν0 [3, 32] method is used to extract the energy spectrum of the

neutrino and anti-neutrino fluxes, “relative flux”, while the overall normalization is obtained

by comparing the level of the NuTeV total neutrino cross section to existing absolute total

cross section measurements.

5.1 FLUX EXTRACTION METHOD

The relative neutrino flux is extracted from a sample of charge current neutrino interactions

with hadronic energy less than ν0. If we rewrite the DIS charge current differential cross

section in terms of ν, (where ν = EHAD), by substituting yE = ν, we obtain

d2σ

dxdν

ν,ν

=
G2M

π

[(
1− ν

E
− Mxν

2E2
+

ν2

2E2

1 + 2Mx/ν

1 + R

)
F2 ± ν

E

(
1− ν

2E

)
xF3

]
. (5.1)

Integrating over all x for fixed ν gives:

dσ

dν

ν,ν

=
G2M

π
(

∫
F2dx)

[
1− ν

E

(
1∓

∫
xF3∫
F2

)
+

ν2

2E2

(
1∓

∫
xF3∫
F2

+

∫
F2RTERM∫

F2

)]
, (5.2)
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where

RTERM =

(
1 + 2Mx

ν

1 + RL(x)
− Mx

ν
− 1

)
. (5.3)

Multiplying both sides by the flux, Φ(E), will give the number of events in ν-bins

dN

dν
= Φ(E)A

(
1 +

B

A

ν

E
− C

A

ν2

2E2

)
, (5.4)

where

A =
GF M

π

∫
F2(x)dx

B = −GF M

π

∫ (
F2(x)∓ xF3(x)

)

C = B − GF M

π

∫
F2(x)RTERMdx

If we take the limit ν → 0, the number of events are directly proportional to the flux with a

common constant of proportionality, A.

dN

dν
= Φ(E)A

(
1 +

B

A

ν

E
− C

A

ν2

2E2

)
→ Φ(E)A. (5.5)

Substituting for C we get

dN

dν
= Φ(E)A

(
1 +

B

A

(
ν

E
− ν2

2E2

)
+

ν2

2E2

∫
F2RTERM∫

F2

)
, (5.6)

where B
A

= −
(
1±

R
xF3R
F2

)
. The structure functions depend on x and Q2, hence the integrals

of the structure functions over x are independent of energy. However, the scaling violations

introduce an implicit small ν dependence. When we integrate F2 and xF3 over all x at fixed ν

the integral is performed over the values of Q2 given by (x,Q2 = 2xMν). For different fixed

ν we integrate along a different line in the (x,Q2) space. Figure 5.1 shows the ν-dependence

of B
A
, obtained by computing the integrals

∫ 1

0
xF3dx and

∫ 1

0
F2dx, using two different PDF

parameterizations - our BG model and the model from reference [33].

Integration of Equation 5.6 over ν in the interval (0, ν0) gives the number of events, which

are directly proportional to the flux

N(E)ν<ν0 = Φ(E)

∫ ν0

0

dνA

[
1 +

B

A

(
ν

E
− ν2

2E2

)
+

ν2

2E2

∫
F2RTERM∫

F2

]
. (5.7)
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PDF sets. NuTeV BG model (red solid line) and GRV98 with Higher Twist (blue dashed

line).
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The integral over ν has a small energy dependence, which becomes important at low neutrino

energy. Since the proportionality constant is the same for any energy, Equation 5.7 can be

used to determine the energy dependence of the neutrino flux (relative flux). The method

of extracting the flux from our data sample is described in the next section.

5.2 FLUX EXTRACTION

The neutrino flux is extracted from a flux sample which is defined in Section 3.4. To apply

the fixed-ν0 method the choice of ν0 optimizes the following two requirements: 1) high

statistics is needed to determine the flux accurately, which is achieved by making ν0 as large

as possible, and 2) the need to reduce the correlation between the flux and the structure

functions samples, which requires that ν0 not be too large thereby minimizing the sample

overlap.

The total number of events passing the flux cuts is 426803 for neutrinos and 210795

for anti-neutrinos. The events are binned in 17 bins of neutrino energy. The Eν bin size

is chosen to reflect that the number of events and the energy resolution vary with energy.

Table 5.1 shows the number of raw events in energy bins for neutrinos and anti-neutrinos. In

addition, the events in each energy bin Eν are divided into 20 ν bins with bin size of 1GeV.

The size of the ν bins is limited by statistics. The number of events binned in each (ν) bin

represents dN
dν

for a given Eν . Using equation 5.7 the relative flux is

Φ(E) ∝
∫ ν0

0
dN
dν

dν
∫ ν0

0
dν

[
1 + B

A

(
ν
E
− ν2

2E2

)
+ ν2

2E2

R
F2RTERMR

F2

] , (5.8)

where the numerator is a sum of the raw number of events, corrected for detector accep-

tance and smearing, and the denominator is the ν/E correction accounting for the energy

dependence.

We use the NUMONTE simulation to correct the raw number of events dN
dν

DATARAW for

detector acceptance and smearing in each bin. Monte Carlo samples are generated using

as input our cross section model and an initial flux, and events are binned as in data. An
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Energy bin Bin limits Num. of events ν-mode Num. of events ν-mode

1 30-40 GeV 41294 21498

2 40-50 GeV 51746 26889

3 50-60 GeV 53646 28571

4 60-70 GeV 51946 27349

5 70-80 GeV 43680 23070

6 80-90 GeV 32829 17268

7 90-100 GeV 22883 11625

8 100-120 GeV 25992 12882

9 120-140 GeV 14756 6742

10 140-160 GeV 12924 5294

11 160-180 GeV 13328 5000

12 180-200 GeV 11852 4326

13 200-230 GeV 13331 4291

14 230-260 GeV 7910 2296

15 260-290 GeV 3962 1096

16 290-320 GeV 1990 461

17 320-360 GeV 1063 241

Table 5.1: Raw number of events in neutrino energy bins passing flux cuts for neutrinos and

anti-neutrinos.
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acceptance correction, ACFLUX
ij , is applied to data to account for detector acceptance and

smearing, for each Ei, νj bin. The corrected data are then given by

dN

dν

DATACOR

ij
=

dN

dν

DATARAW

ij
· ACFLUX

ij =
dN

dν

DATARAW

ij
·

dN
dν

GENFLUX

ij

dN
dν

SMEFLUX

ij

, (5.9)

where dN
dν

GENFLUX

ij
, is the number of generated events in bin ij, and dN

dν

SMEFLUX

ij
, is the number

of smeared events (the sum of events which stayed in and entered the bin after smearing) in

the bin. Figure 5.2 shows a comparison of dN
dν

DATA

ij
,dN

dν

SMEFLUX

ij
and dN

dν

GENFLUX

ij
for neutrinos

and anti-neutrinos respectively in a typical energy bin (Eν = 75 GeV). NUMONTE models

data well except for at lowest ν. (The low-ν difference is discussed below.)

In order to calculate the ν/E correction (denominator in equation 5.8) we need to obtain

the values of
R

F2RTERMR
F2

and B/A. The value of
R

F2RTERMR
F2

is estimated by performing the

integrals explicitly using Equation 5.3. The structure function F2 is computed from our

PDFs (Section 4.1.5) and RL model given by Equation 4.14. Figure 5.3 shows the value of
R

F2RTERMR
F2

as function of ν. This term depends only on ν, so it is the same for all energies.

The value of B/A used to compute the ν/E correction is obtained by fitting the ν

dependence of the data to the functional form of Equation 5.4, which can be rewritten as

dN

dν

DATA

= AA ·
(

1− ν

E
+

ν2

2E2

(
1 +

∫
F2RTERM∫

F2

))

+ BB ·
(

ν

E
− ν2

2E2

)
. (5.10)

AA and BB are the fit parameters, which in principle correspond to Φ(E)
∫

F2 and Φ(E)
∫

xF3.

We can compute B/A from AA and BB as B
A

= −1 + BB
AA

. Since the flux is a common nor-

malization factor it cancels in B/A. Equation 5.10 is derived from Equation 5.1, which is

the bare DIS differential cross section. Therefore, before fitting, data must be corrected for

radiative effects, charm mass, isoscalar target and propagator. These corrections are com-

puted by integrating our cross section model within the kinematic limits for each (ν, Eν)

bin

CORbare
ij =

∫ 1

0
dxd2σ(iso,mc=0,NoRad.Corr,MW =0)

dxdy
(x, νj/Ei, Ei)∫ 1

0
dxd2σ(Fe,mc=1.4GeV,Rad.Corr,MW =80.4GeV )

dxdy
(x, νj/Ei, Ei)

. (5.11)
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Figure 5.2: Comparison for dN
dν

from data (blue circles), Monte Carlo smeared (red line) and

Monte Carlo generated (light blue line) for E = 75GeV for neutrinos (top) and anti-neutrinos

(bottom).
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Figure 5.4: Physics corrections applied to the flux sample as function of Eν for neutrinos

(top) and anti-neutrinos (bottom).
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Figure 5.2 shows the the physics corrections in Eν bins (integrated also over ν) applied to

the flux for neutrinos (top) and anti-neutrinos (bottom).

Figure 5.2 shows that as ν → 0 the number of events rises rapidly, because at low-ν

there are events due to quasi-elastic, resonance production and the very low-ν part of the

cross section. The cross section for these events is constant with energy, while the DIS cross

section rises linearly with energy. Figure 5.5 shows the differential cross section dσ
dν

at low-ν.

A data sample which includes both DIS and low-ν events will have a different shape than

that derived only for the DIS cross section. As a result low-ν events must be removed from

the fitting sample for B/A. A low-ν cut ν > 5GeV is introduced in the fit to remove the

non-DIS processes.

Since we fit the ν dependence we have to account for all ν dependent terms in the LHS

of Equation 5.10. Previous analyses performed the fit under the assumption AA and BB are

independent of ν, which assumes that the scaling violations have small effect. As described

in the previous section, scaling violations cause AA and BB to have an additional implicit

ν dependence. In order to account for this effect the coefficients multiplying AA and BB

are modified to include the ν dependence in Equation 5.10

dN

dν

DATACOR

= AA ·
(

1− ν

E
+

ν2

2E2

(
1 +

∫
F2RTERM∫

F2

))
·

∫
F2(x,Q2 = 2Mxν)dx∫
F2(x,Q2 = 2Mxν0)dx

+ BB ·
(

ν

E
− ν2

2E2

)
·

∫
xF3(x,Q2 = 2Mxν)dx∫
xF3(x,Q2 = 2Mxν0)dx

. (5.12)

dN
dν

DATACORR is the raw number of events corrected for acceptance and smearing, and for

physics effects as discussed above (isoscalar target, radiative corrections, propagator and

charm mass).

B/A is determined from a fit to dN
dν

DATACOR using Equation 5.12 in the interval 5GeV <

ν < 20GeV for each energy bin. Figure 5.6 shows the B/A fit for a typical energy bin

(E = 75GeV) for neutrinos and anti-neutrinos. The effect of the scaling violations on the

slope is also shown. The fit value for E = 75GeV is B/A = −0.30± 0.10 for neutrinos if the

scaling violations correction is applied and B/A = −0.47± 0.11 without the correction.

In order to minimize the statistical uncertainty a weighted average 〈B/A〉 is obtained for

the energy range 40 < E < 260GeV. The energy bin 30 < E < 40GeV is excluded from the
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Figure 5.5: Differential cross section dσ/dν as function of ν for E = 60 GeV.
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Figure 5.6: B/A fit to data for energy bin (E=75GeV) for neutrinos (top) and anti-neutrinos
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fitting sample because dN/dν from NUMONTE has a different slope than data due to poor

bin population, which is a result of the low energy cuts. 〈B/A〉ν = −0.34±0.04 for neutrinos

and 〈B/A〉ν = −1.68± 0.03 for anti-neutrinos. Figure 5.7 shows the fit values of B/A for all

energy bins for both neutrinos and anti-neutrinos. The line represents the weighted average.

If the fit is performed without the scaling violations correction, 〈B/A〉ν = −0.49 ± 0.04 for

neutrinos and 〈B/A〉ν = −1.71± 0.03 for anti-neutrinos.

Using 〈B/A〉 the ν/E correction is given by

CORν/E =

∫ ν0

0
dν

∫ ν0

0
dν

[
1 +

〈
B
A

〉 (
ν
E
− ν2

2E2

)
+ ν2

2E2

R
F2RTERMR

F2

] . (5.13)

Figure 5.8 shows the size of CORν/E as function of energy for both neutrinos and anti-

neutrinos. CORν/E becomes large at low energy for neutrinos, while for anti-neutrinos it is

large for all energies.

Substituting < B/A > and
R

F2RTERMR
F2

in Equation 5.8 gives the relative flux for both

neutrinos and anti-neutrinos. Figure 5.9 shows the relative flux E · Φ(E).

5.2.1 Flux Systematic Uncertainties

There are six systematic uncertainties which were evaluated for the relative flux measure-

ment; the muon and hadron energy scales, the charm mass mc, the B/A fit value, and

the muon and hadron energy smearing models. The effect of each of these uncertainties is

evaluated as follows:

• Muon and Hadron energy scales - A shift in the muon energy scale will cause events

to migrate to a neighboring kinematic bin and change the shape of the relative flux. In

contrast a shift in the hadron energy scale will cause events near EHAD = 20GeV to

migrate into or out of the flux sample. This effect will be similar for all energy bins,

therefore, the effect on the relative flux will be small. The muon and hadron energy scale

uncertainties are taken to be ±0.7% and ±0.43% respectively.

• 〈B/A〉 fit values - A change in the 〈B/A〉 value, which multiplies ν/E to correct the flux,

will change the energy dependence and therefore change the relative flux shape. There are

two contributions to the 〈B/A〉 uncertainty, the statistical error from the fit (±0.04 for
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neutrinos, ±0.03 for anti-neutrinos), and a model uncertainty in computing the scaling

violations correction. Using an alternative model [33] to compute the scaling violations

corrections and the acceptance correction we obtained a value for 〈B/A〉 = −0.39 for

neutrinos and 〈B/A〉 = −1.72 for anti-neutrinos. The difference between the two models

is taken as the systematic uncertainty in 〈B/A〉.

• Charm mass - The slow rescaling model described in Section 4.1.3.1 is used to model

the charm production cross section. Because charm production introduces an energy

dependence into the cross section we correct dN/dν to remove this effect (Equation

5.11). Thus the extracted flux depends on the charm mass value. Different charm mass

value will change the relative flux shape. The charm mass uncertainty is taken to be

±0.18 (see Section 4.1.3.1).

• Muon and Hadron energy smearing models - Smearing models will affect the

acceptance corrections from our Monte Carlo. The error on the parameters of the hadron

energy smearing model are used as the value for the systematic uncertainty on hadron

energy smearing (see Section 3.1). In order to evaluate the systematic uncertainty due

to the muon smearing model we use an alternative model given by Equation 3.20 which

has the same functional form but the width of the leading Gaussian is parameterized as

a linear function with energy (see Section 3.21).

The uncertainty in the flux due to each of the systematic uncertainties discussed above is

evaluated using the following procedure:

1. If a systematic uncertainty has a symmetric value, (Eµ and EHAD, mc, 〈B/A〉 statis-

tical uncertainty and EHAD smearing), we shift the central value up and down by the

uncertainty size. New fluxes are extracted with the shifted values and the symmetrized

difference is taken to be the evaluated systematic uncertainty on the flux measurement.

2. If a systematic is evaluated using an alternative model, (Eµ smearing, 〈B/A〉 systematic

uncertainty), a new flux is extracted with the alternative model. The difference between

the default and the alternative models is taken to be the systematic uncertainty.
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5.3 TOTAL NEUTRINO CROSS SECTION AND FLUX NORMALIZATION

Total neutrino and anti-neutrino cross sections are extracted by defining a sample with a

good muon track in the detector. There are 1147281 events for neutrinos and 386683 for anti-

neutrinos in the cross section sample (see Section 3.4). The raw number of events, binned in

energy bins, are shown in Table 5.2. An correction, ACXSEC
i , is generated for each energy

bin using our Monte Carlo to correct the raw number of events for detector acceptance and

smearing

NDATACOR
i = NDATARAW

i · ACXSEC
i = NDATARAW

i · NGENXSEC
i

NSMEXSEC
i

, (5.14)

where NGENXSEC
i and NSMEXSEC

i are the generated and the smeared number of events for

this energy bin. Systematic uncertainties for the unnormalized cross section are obtained

with the same procedure used for the flux (Section 5.2.1).

Since we know the relative flux we can extract the total cross section

σ

E i
=

NDATACOR
i

Ei · Φ(Ei)
. (5.15)

Absolute flux is obtained by normalizing the relative neutrino cross section to the world aver-

age neutrino cross section for an isoscalar target
σν

WORLDISO

E
= 0.677±0.014×10−38cm2/GeV .

The world average cross section uncertainty of 2.1%, will be treated as a systematic uncer-

tainty on the flux normalization. In order to normalize the relative neutrino cross section an

isoscalar correction is applied CORISO
i · σ

E i
, where

CORISO
i =

∫ 1

0

∫ 1

0
dxdy d2σ(iso)

dxdy
(x, y, Ei)∫ 1

0

∫ 1

0
dxdy d2σ(Fe)

dxdy
(x, y, Ei)

. (5.16)

Figure 5.10 shows the isoscalar correction applied to the total neutrino and anti-neutrino

cross sections. Since the world average cross section is obtained from data in the en-

ergy range 30-200 GeV, the weighted average of the isoscalar neutrino total cross section〈
σISO

E

〉
30−200GeV

is normalized to
σν

WORLDISO

E
= 0.677 × 10−38cm2/GeV . The same normal-

ization is used for the anti-neutrino flux. Figure 5.11 shows the NuTeV isoscalar neutrino

and anti-neutrino cross sections. The error bars represent the statistical uncertainty and the
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Energy bin Bin limits Num. of events ν-mode Num. of events ν-mode

1 30-40 GeV 42573 21916

2 40-50 GeV 64972 31040

3 50-60 GeV 83586 38036

4 60-70 GeV 97421 42049

5 70-80 GeV 97898 39885

6 80-90 GeV 86619 33606

7 90-100 GeV 69072 25300

8 100-120 GeV 88805 31292

9 120-140 GeV 56394 18028

10 140-160 GeV 58157 16388

11 160-180 GeV 70806 18133

12 180-200 GeV 76444 17692

13 200-230 GeV 99882 20204

14 230-260 GeV 66740 11716

15 260-290 GeV 36883 5715

16 290-320 GeV 17407 2337

17 320-360 GeV 8692 1100

Table 5.2: Raw number of events in neutrino energy bins passing total cross section cuts for

neutrinos and anti-neutrinos.
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yellow band represents the total systematic uncertainty (excluding the flux normalization

uncertainty). Table 5.4 shows the value of the normalized cross section with statistical and

systematic error for all energy bins.

5.4 ANTI-NEUTRINO TO NEUTRINO CROSS SECTION RATIO

Since we use the same normalization for the relative neutrino and anti-neutrino fluxes, it will

cancel when we form the ratio rν = σν

σν . Therefore NuTeV can measure the absolute level of

rν , which is computed for each energy bin, given in Table 5.3.

The weighted average computed using the statistical uncertainty for the energy range

30-360 GeV is

〈rν〉30−360GeV = 0.505± 0.0018(stat)± 0.0029(syst). (5.17)

The systematic uncertainty is computed by propagating the uncertainty in the flux and the

cross section samples. In order to compare with previous measurements we computed the

average for the energy range 30-200 GeV

〈rν〉30−200GeV = 0.505± 0.0018(stat)± 0.0029(syst). (5.18)

The world average before NuTeV is 〈rν〉World
30−200GeV = 0.499 ± 0.007. Figure 5.4 shows the

measured rν as function of energy Eν and 〈rν〉 for the energy range 30-200 GeV compared

with the world average. NuTeV agrees with the world average. NuTeV’s result gives the

most precise measurement of the ratio of anti-neutrino to neutrino total cross sections.
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represent 2.1% uncertainty of the world average cross section.

107



Bin limits in GeV
σν

ISO

E
± Stat± Syst

σν
ISO

E
± Stat ± Syst

30 - 40 0.7021± 0.0054± 0.0065 0.3514± 0.0038± 0.0069

40 - 50 0.6840 ± 0.0043 ± 0.0035 0.3422 0±.0030 ± 0.0041

50 - 60 0.6802 ± 0.0040 ± 0.0030 0.3409 ± 0.0028 ± 0.0028

60 - 70 0.6783 ± 0.0039 ± 0.0012 0.3464 ± 0.0028 ± 0.0024

70 - 80 0.6811 ± 0.0042 ± 0.0023 0.3427 ± 0.0029 ± 0.0017

80 - 90 0.6841 ± 0.0047 ± 0.0029 0.3417 ± 0.0033 ± 0.0031

90 - 100 0.6781 ± 0.0055 ± 0.0042 0.3412 ± 0.0039 ± 0.0020

100 - 120 0.6693 ± 0.0050 ± 0.0050 0.3416 ± 0.0037 ± 0.0034

120 - 140 0.6538 ± 0.0065 ± 0.0041 0.3356 ± 0.0049 ± 0.0023

140 - 160 0.6605 ± 0.0069 ± 0.0044 0.3347 ± 0.0054 ± 0.0053

160 - 180 0.6362 ± 0.0064 ±0.0059 0.3396 ± 0.0055 ± 0.0025

180 - 200 0.6683 ± 0.0070 ± 0.0079 0.3303 ± 0.0057 ± 0.0028

200 - 230 0.6562 ± 0.0064 ± 0.0103 0.3457 ± 0.0059 ± 0.0057

230 - 260 0.6366 ± 0.0081 ± 0.0105 0.3257 ± 0.0076 ± 0.0072

260 - 290 0.6786 ± 0.0121 ± 0.0303 0.3193 ± 0.0107 ± 0.0072

290 - 320 0.6151 ± 0.0155 ± 0.0508 0.3247 ± 0.0173 ± 0.0099

320 - 360 0.6197 ± 0.0213 ± 0.0766 0.3181 ± 0.0250 ± 0.0396

Table 5.3: Neutrino and anti-neutrino total cross sections for all energy bins in units

10−38cm2/GeV . Both the statistical and the systematic errors are shown for each bin

excluding the normalization uncertainty.
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Bin limits in GeV rν = σν

σν Stat. error Syst. error

30-40 0.50046 0.00667 0.00691

40-50 0.50023 0.00544 0.00491

50-60 0.50121 0.00505 0.00356

60-70 0.51066 0.00506 0.00312

70-80 0.50316 0.00528 0.00215

80-90 0.49955 0.00591 0.00395

90-100 0.50313 0.00707 0.00461

100-120 0.51033 0.00667 0.00517

120-140 0.51331 0.00904 0.00293

140-160 0.50667 0.00974 0.01011

160-180 0.53376 0.01020 0.00373

180-200 0.49426 0.01000 0.00412

200-230 0.52675 0.01040 0.00527

230-260 0.51162 0.01356 0.00648

260-290 0.47056 0.01787 0.01416

290-320 0.52787 0.03105 0.04575

320-360 0.51341 0.04401 0.11522

Table 5.4: Anti-neutrino to neutrino total cross section ratio for all energy bins. Both the

statistical and the systematic errors are shown for each bin.
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6.0 DIFFERENTIAL CROSS SECTION

The number of events, N(x0≤x≤x1
y0≤y≤y1

) in the kinematic range x0 ≤ x ≤ x1, y0 ≤ y ≤ y1 depends

on the average differential cross section,
〈

d2σ
dxdy

〉
(x0≤x≤x1

y0≤y≤y1
)

= 1
∆x∆y

∫ x1

x0

∫ y1

y0
dxdy d2σ

dxdy
, and the

flux, Φ(E),

N(x0≤x≤x1
y0≤y≤y1

) = ρLNA∆x∆y

∫
dEΦ(E)

〈
d2σ

dxdy

〉

(x0≤x≤x1
y0≤y≤y1

)

∝
∫

dEΦ(E)

∫ x1

x0

∫ y1

y0

dxdy
d2σ

dxdy
(x, y, E), (6.1)

where ρ is the target density, L is the target length, NA is Avogadro’s number and ∆x =

x1 − x0, ∆y = y1 − y0. In this chapter, a measurement of the differential cross section for

inclusive charge current neutrino iron scattering is presented.

6.1 DIFFERENTIAL CROSS SECTION EXTRACTION

The differential cross section is extracted from the structure function sample which contains

charged-current events with a high energy hadron shower and single muon (see Section 3.4).

There are 866000 neutrino and 240000 anti-neutrino events in this sample. The events are

binned in twelve x bins, eleven y bins and seventeen Eν bins. The energy bins have the same

size and limits as the flux energy bins. The size of the bins in x and y are chosen based

on event population and detector resolution. Table 6.1 shows the bin limits for x,y and E.

The lower limits of the lowest x and y bins take into account the kinematic limits due to

the non-zero mass of the muon. The number of raw events, DATADXEC
ijk , in each x,y,E bin

is corrected for detector acceptance and smearing effects using NUMONTE. A Monte Carlo
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Bin number Eν bin limits x bin limits y bin limits

1 30-40 GeV 0.0001-0.03 0.001-0.05

2 40-50 GeV 0.03-0.06 0.05-0.10

3 50-60 GeV 0.06-0.10 0.10-0.20

4 60-70 GeV 0.10-0.15 0.20-0.30

5 70-80 GeV 0.15-0.20 0.30-0.40

6 80-90 GeV 0.20-0.25 0.40-0.50

7 90-100 GeV 0.25-0.30 0.50-0.60

8 100-120 GeV 0.30-0.40 0.60-0.70

9 120-140 GeV 0.40-0.50 0.70-0.80

10 140-160 GeV 0.50-0.60 0.80-0.90

11 160-180 GeV 0.60-0.70 0.90-0.97

12 180-200 GeV 0.70-0.80

13 200-230 GeV

14 230-260 GeV

15 260-290 GeV

16 290-320 GeV

17 320-360 GeV

Table 6.1: Bin limits for Eν , x and y.
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sample is generated with statistics about 20 times that of data. The acceptance correction

for each bin (i,j,k) is given by

ACDXEC
ijk =

GENDXEC
ijk

SMEDXEC
ijk

, (6.2)

where GENDXEC
ijk is the true number of events and SMEDXEC

ijk is the SMEARED number

of events. The average differential cross section for bin (i,j,k) is

〈
d2σ

Edxdy

〉

ijk

=
1

Ek · Φ(Ek)∆xi∆yj

·DATADXEC
ijk ACDXEC

ijk , (6.3)

where ∆xi = xi+1 − xi and ∆yj = yj+1 − yj. Figures 6.1 and 6.2 show the acceptance,

1/ACDXEC
ijk , for two energy bins E = 65GeV and E = 110 GeV respectively in x bins as a

function of y,

A muon is required to penetrate at least in two gaps in the toroid. This requirement will

affect the acceptance of low energy muons, which scatter at large angles. Therefore we have

poor acceptance at high y. The acceptance at low y is affected by the cut EHAD > 10GeV .

Acceptance corrections for neutrinos and anti-neutrinos are similar, because in both modes

the toroid polarity is chosen so that the primary muon is focused.

The extracted cross section table represents the average differential cross section for each

kinematic bin and therefore is not associated with a specific kinematic point, (x,y,E), in the

bin. In order to associate the cross section with a particular point we apply a bin centering

correction, BCijk, which is calculated using our cross section model. This correction is the

ratio of the cross section value at the center of a bin, (xc
i , y

c
j , E

c
k), to the average cross section

over the bin

BCijk =

d2σ
Edxdy

(xc
i , y

c
j , E

c
k)

1
∆xi∆yj

∫ xi+1

xi

∫ yj+1

yj
dxdy d2σ

Edxdy
(x, y, E)

, (6.4)

where xc
i = (xi+1 + xi)/2, yc

j = (yj+1 + yj)/2 and Ec
k = (Ek+1 + Ek)/2. Figures 6.3 and 6.4

show the bin centering correction in x bins as function of y for E=55GeV and E=110 GeV

respectively. The bin-centered cross section is obtained from

d2σ

Edxdy
(xc

i , y
c
j , E

c
k) =

〈
d2σ

Edxdy

〉

ijk

·BCijk. (6.5)
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Figure 6.1: Acceptance (red solid curve) for E=65 GeV in x bins as a function of y for

neutrinos (solid red curve) and anti-neutrinos (dashed blue curve). The minimum acceptance

of 20% is shown with blue dashed line.
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Figure 6.2: Acceptance (red solid curve) for E=110 GeV in x bins as a function of y for

neutrinos (solid red curve) and anti-neutrinos (dashed blue curve). The minimum acceptance

of 20% is shown with blue dashed line.
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Figure 6.3: Bin centering correction for neutrinos and anti-neutrinos with E=55GeV.
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Figure 6.4: Bin centering correction for neutrinos anti-neutrinos with E=110GeV.
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Figure 6.5: A schematic drawing of the iteration procedure used for cross section extraction.

This represents the differential cross section at the point (xc
i , y

c
j , E

c
k). There is small dif-

ference between the bin centering correction for neutrinos and anti-neutrinos, because the y

dependence of the cross sections differ.

6.2 ITERATION PROCEDURE

Neutrino flux and the cross section model are unknown a priori. An iterative procedure,

(shown schematically in Figure 6.5), is used to obtain the final flux and differential cross

section. For the “0-th” iteration an initial flux from beam Monte Carlo, and Buras-Gamers

parameters from CCFR [2], are used to compute an acceptance correction to extract a “0-th”

flux and “0-th” cross section. The iteration procedure is performed as follow:

• Step 1 - Generate acceptance corrections from NUMONTE using the cross section model

extracted in the previous iteration.
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• Step 2 - Extract a flux and a differential cross section table using the acceptance cor-

rections from Step 1.

• Step 3 - Perform a PDF fit to the differential cross section table from Step 2 (see Section

4.1.5).

• Step 4 - Compute the radiative corrections using the PDF parameters obtained in Step

3 and extract the new flux vertex distribution.

• Reiterate - Start over from Step 1

Iteration continues until the relative change in cross section value averaged over all data

points from one iteration to the next is less than 0.1%, which is achieved within three

iterations. In the final iteration we require at least 20% acceptance for each kinematic bin,

which excludes kinematic regions dominated by resolution smearing. A total of 2618 cross

section bins are included in the final cross section table. The total number of bins for

neutrinos is 1423 and for anti-neutrinos is 1195. The values of the final PDF parameters

obtained from the fit to the final cross section table are given in Table 4.1. Figures 6.6-

6.8 show the NuTeV final cross section and the final cross section model fit for E=55GeV,

E=110GeV and E=245GeV respectively in x bins increasing from top to bottom as function

of y for neutrinos (left) and anti-neutrinos (right). The final goodness of fit χ2 is χ2/dof =

2225/2599 including the systematic uncertainties. If we include in the χ2 calculation the

full point-to-point covariance matrix discussed in Section 6.3 the quality of the fit worsens

χ2 = 3534/2599. For comparison we computed the χ2 with two alternative external PDF

parameterizations; χ2 = 5969/2599 using Bodek-Yang model [33] and χ2 = 5000/2599 using

TR-VFS(MRST99) [34],[35]. Both alternative PDF parameterizations give poorer agreement

with our data. Model dependence of the result was studied and appears to be small. Figure

6.9 shows a comparison between data and NUMONTE simulation using the final PDF fit

parameters for the three physics quantities measured in NuTeV detector Eµ, EHAD and θµ.

NUMONTE models data well (at the 2% level). The yellow band shows the size of the

systematic uncertainty. Highly precise charged lepton data are also included in the PDF fit

(see Section 4.1.5). These data systematically pull the fit to agree with their Q2 dependence,

which worsens the quality of the fit with our data.
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Figure 6.6: NuTeV final cross section and the final cross section model fit for E=55GeV in

x bins increasing from top to bottom as function of y for neutrinos (left) and anti-neutrinos

(right).
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Figure 6.7: NuTeV final cross section and the final cross section model fit for E=110GeV in

x bins increasing from top to bottom as function of y for neutrinos (left) and anti-neutrinos
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Figure 6.8: NuTeV final cross section and the final cross section model fit for E=245GeV in
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Figure 6.9: Monte Carlo compared with data for the muon energy, the hadron energy and

muon angle for neutrinos(top three) and anti-neutrinos (bottom three). The yellow band

represents the systematic uncertainty.

123



6.3 SYSTEMATIC UNCERTAINTIES

There are 7 systematic uncertainties found to contribute to the total uncertainty; the muon

and hadron energy scales, charm mass mc, B/A fit value, muon and hadron energy smearing

models, and the flux normalization. All of these uncertainties were described in Section 5.2.1.

Each uncertainty is evaluated separately by propagating it through the whole cross section

extraction procedure. The contribution from each systematic uncertainty (except muon

energy smearing) is evaluated by shifting the central value of the systematic parameter by

±σ. Cross sections are re-extracted for both shifts and the symmetrized difference in each

cross section point is taken to be the systematic uncertainty due to this parameter. The

muon energy smearing uncertainty is evaluated by comparing the default model (Equation

3.20) with an alternative parameterization of the leading Gaussian (Equation 3.21). The

cross section is re-extracted with this model. The difference from the default, for each cross

section point, is taken to be the systematic uncertainty due to the muon energy smearing

model.

The muon and hadron energy scale uncertainties, which give the largest contribution

to the systematic uncertainty, affect both the flux and the cross section extraction. The

2.1% flux normalization uncertainty (see Section 5.3) is treated as an overall normalization

uncertainty in the cross section.

We evaluated the cross section model uncertainty using fit parameter errors. New ac-

ceptance corrections were generated using a model which was obtained from the default by

shifting up or down each parameter by its fit error. Flux and cross section were extracted

for each fit parameter shift. The size of the systematic uncertainty in the cross section due

to each fit parameter was taken to be the symmetrized difference of the cross sections. This

contribution to the uncertainty was neglected because the resultant shifts in the acceptance

corrections were consistent with statistical fluctuations. (The Monte Carlo samples were

generated with 20 times the statistics of data).

A point-to-point covariance matrix is calculated to account for the correlations between
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data points. The full covariance matrix Mαβ is given by

Mαβ =
7∑
i

δi|αδi|β,

where δi|α is the 1σ shift in data point α due to systematic uncertainty i. The 2.1% flux

normalization uncertainty can be included in the covariance matrix by adding a term

M ′
αβ = Mαβ + (0.021)2 d2σ

dxdy

D

α

d2σ

dxdy

D

β

The statistical uncertainty is added in quadrature to the diagonal elements of the data

covariance matrix. Previous cross section measurements from reference [1] and [2] did not

provide such data correlation matrix.

Separate data vectors and covariance matrices are obtained for the neutrino and antineu-

trino cross sections. A χ2 with respect to a theoretical model can be calculated using

χ2 = (6.6)

=

Nν
DATA∑

α,β=1

[
d2σ

dxdy

th

α

− d2σ

dxdy

D

α

]
(M−1

ν )αβ

[
d2σ

dxdy

th

β

− d2σ

dxdy

D

β

]

+

Nν
DATA∑

α,β=1

[
d2σ

dxdy

th

α

− d2σ

dxdy

D

α

]
(M−1

ν )αβ

[
d2σ

dxdy

th

β

− d2σ

dxdy

D

β

]
,

where d2σ
dxdy

D

α
is the measured differential cross section and d2σ

dxdy

th

α
is the model prediction for

data point α.
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6.4 RESULTS AND COMPARISON WITH CCFR AND CDHSW

Figures 6.10 - 6.12 show the extracted differential cross section for three energy bins E=65GeV,

E=150GeV and E=245GeV. The plot shows x bins increasing from top to bottom (x =0.08,

0.225, 0.45, and 0.75 bins are not shown) as function of y for neutrinos (left) and anti-

neutrinos (right). Our data are compared with two previous measurements by the CDHSW

(CERN-Dortmund-Heidelberg-Saclay-Warsaw) collaboration [1] and the CCFR collabora-

tion [2].

CDHSW used a detector for which the entire iron was magnetized. They used combined

neutrino and anti-neutrino beam with energy in the range 20 < E < 212 GeV. Their data

sample contained 640,000 neutrino and 550,000 anti-neutrino events. CCFR used combined

neutrino and anti-neutrino beam with energy in the range 30 < E < 360 GeV. Their final

data sample contained 1,030,000 neutrino and 179,000 anti-neutrino events. Both previous

experiments used detectors similar to the NuTeV detector and had data samples which are

statistically comparable and have similar energy range.

Our result is in reasonable agreement with CDHSW (except perhaps at lowest x). The

CDHSW measurement has a known y shape difference with the CCFR, and thus also with

this result. However, it is difficult to perform a direct comparison between NuTeV and

CDHSW data, because CDHSW cross section data points represent the average cross section

for the bin (not bin-centered).

Our result agrees well with CCFR for x < 0.4 over the full energy and y range of the

data, both in level and in shape. NuTeV and CCFR differential cross sections differ at

x > 0.40 where CCFR’s measurement for both neutrino and antineutrino cross sections are

consistently below our result for all energies. Figure 6.13 shows the weighted average over E

and y of the point-to-point ratio of CCFR and NuTeV cross sections in x bins for neutrinos

(top) and anti-neutrinos(bottom). The level difference in the cross sections at high x is

constant over the full y range of the data. The difference in the neutrino cross sections are

4±1% at x = 0.45, 9±2% at x = 0.55, and increases with x up to 18±2% at x = 0.65, (and

similarly for antineutrinos). CCFR did not report data above x = 0.7, because the muon

and hadron energy smearing were not well modeled there.
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Figure 6.10: Differential cross sections in x bins for neutrinos (left) and anti-neutrinos (right)

at E = 65 GeV. Points are NuTeV (filled circles), CCFR (open squares), and CDHSW

(crosses). Error bars show statistical and systematic errors in quadrature. Solid curve shows

fit to NuTeV data. (x =0.08, 0.225, 0.45, and 0.75 bins are not shown).

127



 0.5
 1

 1.5
 2

(E=150 GeV)

Neutrino Anti-Neutrino

Y

1/
E

 d
2 σ/

dx
dy

 (
x 

10
-3

8  c
m

2 /G
eV

)

Y

 0.5
 1

 1.5
 2

(E=150 GeV)

Neutrino Anti-Neutrino

Y

1/
E

 d
2 σ/

dx
dy

 (
x 

10
-3

8  c
m

2 /G
eV

)

Y

 0.5
 1

 1.5
 2

(E=150 GeV)

Neutrino Anti-Neutrino

Y

1/
E

 d
2 σ/

dx
dy

 (
x 

10
-3

8  c
m

2 /G
eV

)

Y

 0.5
 1

 1.5
 2

(E=150 GeV)

Neutrino Anti-Neutrino

Y

1/
E

 d
2 σ/

dx
dy

 (
x 

10
-3

8  c
m

2 /G
eV

)

Y

 0.5

 1

 1.5

(E=150 GeV)

Neutrino Anti-Neutrino

Y

1/
E

 d
2 σ/

dx
dy

 (
x 

10
-3

8  c
m

2 /G
eV

)

Y

 0.5

 1

 1.5

(E=150 GeV)

Neutrino Anti-Neutrino

Y

1/
E

 d
2 σ/

dx
dy

 (
x 

10
-3

8  c
m

2 /G
eV

)

Y

 0.2

 0.4

(E=150 GeV)

Neutrino Anti-Neutrino

Y

1/
E

 d
2 σ/

dx
dy

 (
x 

10
-3

8  c
m

2 /G
eV

)

Y

 0.1

 0.2

 0.3

 0  0.2  0.4  0.6  0.8  1

(E=150 GeV)

Neutrino Anti-Neutrino

Y

1/
E

 d
2 σ/

dx
dy

 (
x 

10
-3

8  c
m

2 /G
eV

)

Y(E=150 GeV)

x=0.015

Neutrino Anti-Neutrino

Y

1/
E

 d
2 σ/

dx
dy

 (
x 

10
-3

8  c
m

2 /G
eV

)

Y(E=150 GeV)

x=0.045

Neutrino Anti-Neutrino

Y

1/
E

 d
2 σ/

dx
dy

 (
x 

10
-3

8  c
m

2 /G
eV

)

Y(E=150 GeV)

x=0.125

Neutrino Anti-Neutrino

Y

1/
E

 d
2 σ/

dx
dy

 (
x 

10
-3

8  c
m

2 /G
eV

)

Y(E=150 GeV)

x=0.175

Neutrino Anti-Neutrino

Y

1/
E

 d
2 σ/

dx
dy

 (
x 

10
-3

8  c
m

2 /G
eV

)

Y(E=150 GeV)

x=0.275

Neutrino Anti-Neutrino

Y

1/
E

 d
2 σ/

dx
dy

 (
x 

10
-3

8  c
m

2 /G
eV

)

Y(E=150 GeV)

x=0.35

Neutrino Anti-Neutrino

Y

1/
E

 d
2 σ/

dx
dy

 (
x 

10
-3

8  c
m

2 /G
eV

)

Y(E=150 GeV)

x=0.55

Neutrino Anti-Neutrino

Y

1/
E

 d
2 σ/

dx
dy

 (
x 

10
-3

8  c
m

2 /G
eV

)

Y
 0  0.2  0.4  0.6  0.8  1

(E=150 GeV)

x=0.65

Neutrino Anti-Neutrino

Y

1/
E

 d
2 σ/

dx
dy

 (
x 

10
-3

8  c
m

2 /G
eV

)

Y

Figure 6.11: Differential cross sections in x bins for neutrinos (left) and anti-neutrinos (right)

at E = 150 GeV. Points are NuTeV (filled circles), CCFR (open squares), and CDHSW

(crosses). Error bars show statistical and systematic errors in quadrature. Solid curve shows

fit to NuTeV data. (x =0.08, 0.225, 0.45, and 0.75 bins are not shown).
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Figure 6.12: Differential cross sections in x bins for neutrinos (left) and anti-neutrinos (right)

at E = 245 GeV. Points are NuTeV (filled circles), CCFR (open squares). (CDHSW does

not have data above 190GeV). Error bars show statistical and systematic errors added in

quadrature. Solid curve shows fit to NuTeV data. (x =0.08, 0.225, 0.45, and 0.75 bins are

not shown).
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Figure 6.13: Point-to-point ratio of CCFR and NuTeV cross sections weight averaged over

E and y as function of x for neutrinos (top) and anti-neutrinos(bottom).
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6.5 NUTEV-CCFR HIGH X DISCREPANCY

NuTeV and CCFR used similar detectors and analysis techniques, thus the difference in the

results is suprising. In fact, NuTeV used the refurbished CCFR detector. The scintillator

oil was replaced and the drift chambers were reconditioned. The precise calibration beam

allowed NuTeV to understand better the response of the detector. Differences in analysis

method and calibration differences were studied to find the source of the discrepancy.

The largest single contribution to the discrepancy between NuTeV and CCFR is found

to be due to the model of the magnetic field of the toroid used. Both CCFR and NuTeV

used the same magnet to analyze the muon momenta. The magnitude of the magnetic field

depends on the current and the total number of turns of the coils, but the radial dependence

depends only on the geometry of the toroid. Therefore the radial dependence of the magnetic

field for both CCFR and NuTeV models should be the same, while the magnitude of the

field could be different. In principle, the magnitude of the field could be different due to

difference in the actual current in the coils. To make a meaningful comparison one can

choose a location on the face of the toroid for which both magnetic fields are known with

high certainty.

NuTeV used ANSYS to compute the magnetic field map and compared the prediction to

precision test beam mapped data (see Section 3.3.3). NuTeV test beam mapped the entire

toroid with continuous high statistics 50 GeV muon map runs, which provided calibration

points for both the absolute muon energy scale and the radial dependence of the magnetic

field (see Section 3.3.3). CCFR used POISSON [36] to model the magnetic field map. CCFR

calibration beam data were taken twice [37]; in a series of low statistics runs with various

energies and locations during E744, and at the end of E770 in one high statistics run at one

location on the toroid’s face. The second high statistics run was used to set the overall muon

energy scale. The event by event precision of CCFR test beam was 1.0%. Figure 6.14 shows

the ratio of the magnetic field maps. The value of the ratio is adjusted to be 1.0 at the

region where both experiments have high statistics calibration beam data. The difference

between the magnetic field models ranges from -6% near the hole to 3% at the edge of the

detector. The average of the ratio in Figure 6.14 over the working surface of the toroid is
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Figure 6.14: Ratio of CCFR and NuTeV magnetic field maps as function of the (x,y) position.

The ratio is adjusted to have value 1.0 at the position where both NuTeV and CCFR have

high precision calibration beams.
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0.992, which corresponds to an effective 0.8% shift down in the muon energy scale. NuTeV

data was processed with CCFR magnetic field map and the cross section was extracted. This

difference accounts for 6% of the 18% difference at x = 0.65.

Additional, small sources of the discrepancy were studied. Both NuTeV and CCFR use

an iterative fit to determine the acceptance corrections. As a result the cross section models

are different, because they fit the corresponding data set. Therefore at x = 0.65, NuTeV

cross section model is 20% higher than the model used by CCFR. NuTeV flux and cross

section were extracted using the CCFR cross section model. The difference between the

cross section extracted with the CCFR and the NuTeV cross section models accounts for

3% of the 18% discrepancy at x = 0.65. The different muon and hadron energies smearing

models were also studied and the cross section was extracted using the CCFR smearing

models to generate acceptance corrections. The effect of smearing model differences is 2%

at x = 0.65. Hadron energy response of NuTeV calorimeter was found to have a small non-

linearity due to the ranging with energy π0 fraction in the shower [15]. This non-linearity

was taken into account in NuTeV but not in CCFR. The effect of incorporating the hadron

energy scale nonlinearity is small and contributes mainly to the Q2 dependence.

All together these studied contributions account for about two thirds of the high-x cross

section difference seen. This brings the two measurements within 1.2 sigma agreement at

x = 0.65.

Another difference results from the different beam running modes of NuTeV and CCFR.

NuTeV used high purity separate neutrino and anti-neutrino beams (see Section 2.1.2), which

allowed the toroid polarity to be set to focus µ−, in neutrino mode, and µ+, in anti-neutrino

mode. CCFR used a beam with an 11% anti-neutrino component and took neutrino and

anti-neutrino data simultaneously. The polarity of the toroidal magnetic field was reversed

periodically (50% running in each toroid mode) to obtain high statistics for anti-neutrino

interactions. As a result, CCFR had four different samples; focusing and defocusing for both

neutrino and anti-neutrino data. Detector acceptance is better in focusing mode compared

to defocusing mode, because in the latter the muons are bent out of the toroid resulting in a

shorter track. The detector has poorer acceptance in the high-x and high-y kinematic region,

especially in defocusing mode since large angle muons spend less time in the toroid. To study

133



the effect of this we would need to separate CCFR data into four samples. Unfortunately,

there is not enough information to quantify the effect of the difference on the cross section

measurement further.
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7.0 STRUCTURE FUNCTIONS

7.1 STRUCTURE FUNCTION FROM ONE PARAMETER FITS

The structure functions can be measured from linear combinations of the neutrino and anti-

neutrino cross sections. The sum of the differential cross sections gives

d2σ

dxdy

ν

+
d2σ

dxdy

ν

=
G2

F ME

π

[(
1− y − Mxy

2E
+

y2

2

1 + 4M2x2/Q2

1 + RL

)
2F2 + y

(
1− y

2

)
∆xF3

]
, (7.1)

where 2F2 = F ν
2 + F ν

2 and ∆xF3 = xF ν
3 − xF ν

3 . Equation 7.1 is obtained from the ’bare’

cross section for neutrino scattering off an isoscalar target. The cross section table extracted

in the previous chapter is the differential cross section for scattering off an iron target, which

is a heavy nuclear target with small non-isoscalarity. To extract the structure functions

we correct the measured cross section for radiative effects, massive propagator and for non-

isoscalarity. We apply the multiplicative correction

CBare(x, y, E) =

d2σ
dxdy

(Iso, MW = 0, NoRad.Corr)(x, y, E)

d2σ
dxdy

(Fe,MW = 80.4GeV, Rad.Corr)(x, y, E)
, (7.2)

which is obtained from our Monte Carlo cross section model, to each cross section point.

We re-bin the cross section from (xc, yc, Ec) → (xc, yc, Q
2
c) to express the structure functions

as functions of x and Q2. The limits and centers of the Q2 bins are given in table 7.1. In

general, the Q2 of the rebinned data points do not coincide with the bin centers, Q2
c . A bin

centering correction is applied to each new Q2 point to move it to the bin center

CQ2
c

=

d2σ
dxdy

(x, y, Q2
c)

d2σ
dxdy

(x, y, Q2 = 2MxyE)
. (7.3)
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Q2 bin Bin limits log10 Q2GeV 2/c2 Bin centers log10 Q2GeV 2/c2

1 0 - 0.2 0.1

2 0.2 - 0.4 0.3

3 0.4 - 0.6 0.5

4 0.6 - 0.8 0.7

5 0.8 - 1.0 0.9

6 1.0 - 1.2 1.1

7 1.2 - 1.4 1.3

8 1.4 - 1.6 1.5

9 1.6 - 1.8 1.7

10 1.8 - 2.0 1.9

11 2.0 - 2.2 2.1

12 2.2 - 2.4 2.3

13 2.4 - 2.6 2.5

14 2.6 - 2.8 2.7

Table 7.1: Q2 bin limits and centers given in log10 Q2 (GeV).
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After correcting all energy bins entering a given Q2 bin using (Equation 7.3) a weighted

average is computed to obtain the value of the cross section in bin (xc, yc, Q
2
c).

The structure functions F 2, RL and ∆xF3 can be determined from the y-dependence of

the cross section sum, using equation 7.1. However, due to large correlations between RL and

∆xF3 at low x it is important that our data cover a large range in y. Detector acceptance for

this toroid analyzed muon sample is limited in the the low-x and high-y kinematic region.

Cross section data from a future target muon sample will provide additional data points

in the low-x and high-y kinematic region. In this analysis we present a 1-parameter fit to

the y-dependence to determine the structure function F 2, which requires models for RL and

∆xF3 as inputs. The input model for RL is obtained from a parameterization of world data

from reference [28], given by Equation 4.14. If we assume charm and strange sea symmetry,

in leading order ∆xF3 = 4(s− c). For x < 0.1 we use TRVFS(MRST99) [34, 35] prediction

for ∆xF3, while for x > 0.1 ∆xF3 is negligible.

The difference of the cross sections gives

d2σ

dxdy

ν

− d2σ

dxdy

ν

=
G2

F ME

π

[(
1− y − Mxy

2E
+

y2

2

1 + 4M2x2/Q2

1 + RL

)
∆F2 + y

(
1− y

2

)
2xF 3

]
,(7.4)

where ∆F2 = F ν
2 −F ν

2 and 2xF 3 = xF ν
3 +xF ν

3 . The term ∆F2 is very small and is neglected.

xF 3 is determined from a 1-parameter fit to the y-dependence of the difference of the neutrino

and anti-neutrino cross sections.

Figures 7.1 and 7.2 show the extracted F 2 and xF 3 structure functions for neutrino

scattering off an isoscalar iron target. Both structure functions are compared with previous

neutrino iron measurements: F2 is compared with CCFR [2] and CDHSW [1], and xF3

with CCFR97 [32] and CDHSW. Both statistical and systematic uncertainties are added in

quadrature and shown in the plots.

The systematic uncertainty for the NuTeV structure functions is obtained by propagating

the uncertainty of the differential cross section (see Section 6.3). For the F 2 measurement,

we evaluated the additional contributions to the systematic uncertainty due to the input

models for RL and ∆xF3. The 1-σ uncertainty in the RL parameterization to the world data
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Figure 7.1: NuTeV measurement of F2(x,Q2) (solid circles) compared with previous ν-Fe

results; CCFR (open circles) and CDHSW (triangles). The data are corrected to an isoscalar

(iron) target and for QED radiative effects as described in the text. The curve show the

NuTeV model.
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Figure 7.2: NuTeV measurement of xF3(x,Q2) (solid circles) compared with previous ν-Fe

results; CCFR (open circles) and CDHSW (triangles). The data are corrected to an isoscalar

(iron) target and for QED radiative effects as described in the text. The curve show the

NuTeV model.
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is 15%. New F2 fits were obtained by shifting the value of RL by ±σ and the symmetrized

difference for each F2 point was taken to be the systematic uncertainty from the RL model.

An alternative model for ∆xF3 is used to evaluate the contribution to the uncertainty. The

difference between the F2 value obtained with the default (TRVFS) and the alternative

(ACOTFFS) model gives the ∆xF3 model systematic uncertainty.

Within errors, our result agrees in level with CDHSW but not in shape, as is the case

for the differential cross section. At x < 0.4, this result agrees well with CCFR over the

x and Q2 range of the data, both in level and in shape. NuTeV structure functions for at

x > 0.4 are consistently above CCFR’s for all Q2 values. This propagates directly from the

difference in the cross sections discussed in Section 6.5. The results will be compared with

theory models in Section 7.3.

7.2 STRUCTURE FUNCTIONS FROM TWO PARAMETER FIT

In order to use both F2 and xF3 together in a QCD analysis one needs the correlation

between them. A simultaneous fit to the y dependence of the neutrino and anti-neutrino

cross sections is performed to obtain both F 2, xF 3 and their correlation using the equations

d2σ

dxdy

ν

=
G2

F ME

π

[(
1− y − Mxy

2E

+
y2

2

1 + 4M2x2/Q2

1 + RL

) (
F 2 +

∆F2

2

)
+ y

(
1− y

2

) (
xF 3 +

∆xF3

2

) ]
, (7.5)

d2σ

dxdy

ν

=
G2

F ME

π

[(
1− y − Mxy

2E

+
y2

2

1 + 4M2x2/Q2

1 + RL

) (
F 2 − ∆F2

2

)
+ y

(
1− y

2

) (
xF 3 − ∆xF3

2

) ]
, (7.6)

where 2F2 = F ν
2 + F ν

2 , ∆F2 = F ν
2 − F ν

2 , 2xF 3 = xF ν
3 + xF ν

3 and ∆xF3 = xF ν
3 − xF ν

3 . As

described in the previous section ∆F2 is small and is therefore neglected. RL and ∆xF3, as

before, are used as input. The cross section points are rebinned using the same procedure

described in the previous section. The combined χ2

χ2 = χ2
ν + χ2

ν , (7.7)
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which is constructed using both Equations 7.5 and 7.6 is minimized. The systematic uncer-

tainties are obtained using the same procedure as for the F 2 1-parameter fit (see Section 7.1).

The central values for F 2 and xF 3 for the 1-parameter and 2-parameter fits are very simi-

lar. Tables 7.2-7.5 give the values from the 2-parameter simultaneous F 2 and xF 3 fits, the

combined (statistical and systematic) uncertainty and the correlation between the structure

functions for each x and Q2 bin.

7.3 COMPARISON WITH THEORY AND QCD

Figures 7.3 and 7.4 show a comparison of NuTeV and CCFR data with two theory models.

The plot in Figure 7.3 shows the ratio of F2(x,Q2) to the TRVFS(MRST2001E) all x bins.

The 1σ error band from the PDF set is also shown. The second theory curve shown on

the plot is ACOTFFS(CTEQ5HQ1). Similarly, the plot in Figure 7.4 shows the same com-

parison for xF3(x,Q2). All theory models have been corrected for target-mass effects using

the Georgi-Politzer model [13]. These are important at high-x and low-Q2. For example,

they increase the theory prediction by about 5% at x = 0.65 and Q2 = 15 GeV2. To make

a direct comparison, the theory curves are also corrected for nuclear target effects. A stan-

dard treatment of nuclear effects, which are not well determined for neutrino scattering, is

to apply corrections measured in charged-leptons scattering from nuclear targets. We use a

multiplicative correction factor given by Equation 4.29 obtained from a fit to charged-lepton

scattering on nuclear targets. The correction is independent of Q2 and is small at interme-

diate x but is large at low and high x, (10% at x = 0.015 and increases from 7% at x = 0.45

to 15% at x = 0.65).

The data is in agreement with NLO QCD calculations for intermediate x. At low x (x =

0.015 and x = 0.045) both data sets have different Q2 shapes than theoretical predictions. At

high-x (x > 0.5) our data are systematically above the theory predictions. Compared with

the ACOTFFS(CTEQ5HQ1) model, our data has a similar Q2 dependence, but in level is

10% higher at x = 0.65, and 15% at x = 0.75. In comparison with the TRVFS(MRST2001E)

prediction at high-x, (x = 0.65 and x = 0.75), our data has a different Q2 dependence and
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x Q2 F2 F2 Uncertainty xF3 xF3 Uncertainty Correlation

0.0150 1.2589 1.1534 0.0250 0.1843 0.0389 -0.1148

0.0150 1.9953 1.3332 0.0308 0.2183 0.0417 -0.1582

0.0150 3.1623 1.4724 0.0397 0.2679 0.0470 -0.2252

0.0150 5.0119 1.5661 0.0591 0.3226 0.0575 -0.2393

0.0150 7.9433 1.6393 0.1822 0.2756 0.1626 -0.3664

0.0450 1.2589 1.0901 0.0246 0.3803 0.0866 -0.0426

0.0450 1.9953 1.2283 0.0233 0.4098 0.0526 0.0079

0.0450 3.1623 1.3476 0.0243 0.4640 0.0443 -0.0010

0.0450 5.0119 1.4714 0.0275 0.4746 0.0399 0.0096

0.0450 7.9433 1.5303 0.0333 0.5000 0.0455 -0.0934

0.0450 12.5893 1.5785 0.0447 0.5374 0.0491 -0.1220

0.0450 19.9526 1.7131 0.1085 0.5692 0.1049 -0.1893

0.0800 1.2589 1.0646 0.0671 0.4008 0.4714 -0.1067

0.0800 1.9953 1.2169 0.0222 0.5394 0.0811 0.0003

0.0800 3.1623 1.3032 0.0221 0.6070 0.0550 0.0525

0.0800 5.0119 1.3665 0.0211 0.6611 0.0411 0.0835

0.0800 7.9433 1.3885 0.0217 0.6372 0.0337 0.1116

0.0800 12.5893 1.4391 0.0274 0.6596 0.0388 0.0468

0.0800 19.9526 1.4412 0.0326 0.6788 0.0387 0.0158

0.0800 31.6228 1.5139 0.0614 0.7280 0.0631 -0.0002

Table 7.2: F2 and xF3 values from simultaneous two parameter fit. Correlation between the

structure functions are also provided. The quoted uncertainty includes both the statistical

and systematic uncertainties.
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x Q2 F2 F2 Uncertainty xF3 xF3 Uncertainty Correlation

0.1250 1.9953 1.1336 0.0631 0.7089 0.4465 -0.0677

0.1250 3.1623 1.2334 0.0198 0.6327 0.0740 0.0165

0.1250 5.0119 1.2512 0.0193 0.6906 0.0492 0.1099

0.1250 7.9433 1.2614 0.0171 0.7353 0.0332 0.1605

0.1250 12.5893 1.2904 0.0196 0.7598 0.0309 0.2111

0.1250 19.9526 1.2776 0.0233 0.7580 0.0335 0.1628

0.1250 31.6228 1.2659 0.0267 0.7659 0.0322 0.1593

0.1250 50.1187 1.3359 0.0553 0.7886 0.0586 0.1438

0.1750 3.1623 1.1246 0.0366 0.5863 0.1922 -0.0296

0.1750 5.0119 1.1205 0.0193 0.7508 0.0703 0.0716

0.1750 7.9433 1.1576 0.0164 0.7746 0.0376 0.1854

0.1750 12.5893 1.1543 0.0175 0.7929 0.0339 0.2218

0.1750 19.9526 1.1389 0.0183 0.7779 0.0280 0.2842

0.1750 31.6228 1.1311 0.0225 0.7667 0.0315 0.2304

0.1750 50.1187 1.0945 0.0266 0.7843 0.0308 0.3463

0.1750 79.4328 1.1521 0.0830 0.8030 0.0861 0.3541

Table 7.3: F2 and xF3 values from simultaneous two parameter fit. Correlation between the

structure functions are also provided. The quoted uncertainty includes both the statistical

and systematic uncertainties.
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x Q2 F2 F2 Uncertainty xF3 xF3 Uncertainty Correlation

0.2250 5.0119 1.0330 0.0221 0.7713 0.1014 0.0535

0.2250 7.9433 1.0257 0.0173 0.7582 0.0523 0.1415

0.2250 12.5893 1.0002 0.0155 0.7483 0.0335 0.2449

0.2250 19.9526 0.9956 0.0171 0.7646 0.0288 0.3485

0.2250 31.6228 0.9545 0.0185 0.7380 0.0287 0.3163

0.2250 50.1187 0.9246 0.0211 0.7118 0.0278 0.3358

0.2250 79.4328 0.9121 0.0346 0.6938 0.0385 0.4089

0.2750 5.0119 0.9046 0.0331 0.6478 0.1758 0.0266

0.2750 7.9433 0.8831 0.0163 0.7323 0.0556 0.1529

0.2750 12.5893 0.8751 0.0155 0.6952 0.0387 0.2369

0.2750 19.9526 0.8424 0.0154 0.6615 0.0315 0.2618

0.2750 31.6228 0.8244 0.0162 0.6654 0.0269 0.3419

0.2750 50.1187 0.7680 0.0199 0.6425 0.0285 0.3719

0.2750 79.4328 0.7539 0.0249 0.6400 0.0303 0.4588

0.3500 7.9433 0.6850 0.0131 0.5490 0.0611 0.0825

0.3500 12.5893 0.6721 0.0100 0.5713 0.0321 0.1804

0.3500 19.9526 0.6320 0.0096 0.5561 0.0229 0.2740

0.3500 31.6228 0.5922 0.0095 0.5332 0.0172 0.3948

0.3500 50.1187 0.5630 0.0116 0.5214 0.0190 0.4014

0.3500 79.4328 0.5415 0.0119 0.5037 0.0162 0.4878

0.3500 125.8925 0.5202 0.0258 0.4785 0.0301 0.6140

Table 7.4: F2 and xF3 values from simultaneous two parameter fit. Correlation between the

structure functions are also provided. The quoted uncertainty includes both the statistical

and systematic uncertainties.
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x Q2 F2 F2 Uncertainty xF3 xF3 Uncertainty Correlation

0.4500 7.9433 0.4467 0.0168 0.3817 0.0897 0.0537

0.4500 12.5893 0.4236 0.0087 0.3838 0.0348 0.1406

0.4500 19.9526 0.3950 0.0079 0.3735 0.0230 0.2461

0.4500 31.6228 0.3615 0.0075 0.3425 0.0170 0.3342

0.4500 50.1187 0.3417 0.0086 0.3222 0.0167 0.3376

0.4500 79.4328 0.3130 0.0086 0.2990 0.0143 0.3491

0.4500 125.8925 0.3038 0.0136 0.2884 0.0180 0.4808

0.5500 12.5893 0.2548 0.0077 0.2347 0.0383 0.0768

0.5500 19.9526 0.2248 0.0057 0.2121 0.0210 0.1793

0.5500 31.6228 0.2075 0.0055 0.2044 0.0154 0.2163

0.5500 50.1187 0.1772 0.0061 0.1843 0.0128 0.3785

0.5500 79.4328 0.1607 0.0061 0.1622 0.0125 0.2576

0.5500 125.8925 0.1569 0.0104 0.1347 0.0159 0.2513

0.6500 12.5893 0.1362 0.0067 0.1330 0.0340 0.0966

0.6500 19.9526 0.1150 0.0042 0.1206 0.0177 0.1804

0.6500 31.6228 0.0985 0.0035 0.1126 0.0117 0.2456

0.6500 50.1187 0.0876 0.0039 0.0832 0.0103 0.2288

0.6500 79.4328 0.0786 0.0043 0.0719 0.0107 0.1101

0.6500 125.8925 0.0707 0.0062 0.0696 0.0117 0.2309

0.7500 12.5893 0.0626 0.0051 0.0499 0.0293 0.0305

0.7500 19.9526 0.0495 0.0026 0.0479 0.0134 0.1028

0.7500 31.6228 0.0382 0.0020 0.0352 0.0075 0.0904

0.7500 50.1187 0.0333 0.0020 0.0343 0.0077 0.0541

0.7500 79.4328 0.0308 0.0030 0.0254 0.0100 -0.1176

Table 7.5: F2 and xF3 values from simultaneous two parameter fit. Correlation between the

structure functions are also provided. The quoted uncertainty includes both the statistical

and systematic uncertainties.
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is 15-20% higher in level at x = 0.65, and 25-40% at x = 0.75.

A different theoretical treatment of nuclear effects could make a sizable difference at

small and large x. We assume the same correction as in charged lepton data. Our result

perhaps indicates that neutrino scattering favors smaller nuclear effects at high-x than are

found in charged-lepton scattering. At small x, new theoretical calculations show that in

the shadowing region the nuclear correction has Q2 dependence [42, 43]. The standard

nuclear correction obtained from a fit to charged lepton data implies a suppression of 10%

independent of Q2 at x = 0.015, while for x = 0.015, reference [43] finds a suppression of

15% at Q2 = 1.25GeV2 and a suppression of 3.4% at Q2 = 7.94GeV2. Figure 7.5 shows

the comparison with theory for the two lowest x bins (x = 0.015 and x = 0.045). If the

TRVFS(MRST2001E) prediction is calculated using the nuclear correction from reference

[43] at low x (≤ 0.045) instead of the standard nuclear correction agreement with data

improves. Theory models shown here have, in part, a correlation with CCFR data, which is

used in the global PDF fits. NuTeV data will be included in the next generation PDF fits.

7.4 LOGARITHMIC SLOPES

The logarithmic slope of the non-singlet quark evolution depends on αs(Q
2)

d ln qNS

d ln Q2
∝ αs(Q

2). (7.8)

However, over the limited kinematic range of our data it can be approximated very well with

constant C

d ln qNS

d ln Q2
= C. (7.9)

We can obtain the logarithmic slopes from the measured xF3, which gives the non-singlet

quark distribution, for each x bin. Figure 7.6 shows the logarithmic slope compared with

two NLO theoretical predictions TRVFS(MRST2001E) and ACOTFFS(CTEQ5HQ1). The

logarithmic slope for the non-singlet structure function xF3 depends on Q2. Therefore, for

the theoretical predictions we take the average logarithmic slope in the Q2 range of our
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Figure 7.3: F2(x,Q2) fractional difference
F2−F TRV FS

2

F TRV FS
2

with respect to the

TRVFS(MRST2001E) model. Data points are NuTeV (solid dots) and CCFR (open

circles). Theory curves are ACOTFFS(CTEQ5HQ1) (solid line) and TRVFS(MRST2001E)

±1σ (dashed lines). Theory curves are corrected for target mass and nuclear effects.
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cles). Theory curves are ACOTFFS(CTEQ5HQ1) (solid line) and TRVFS(MRST2001E)
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data. Both theoretical models are corrected for target mass and nuclear effects. In order to

minimize the effect of non-perturbative QCD effects we use data above Q2 > 5GeV 2/c2. Our

result is in reasonable agreement with NLO QCD predictions. At low x a Q2 dependence of

the nuclear correction (discussed in the previous section) will change the logarithmic slopes.

Figure 7.7 shows a comparison of the logarithmic slopes obtained from the xF3 struc-

ture function measured by NuTeV, CCFR and CDHSW. For each experiment the fit was

performed in the Q2 range specific to the experiment with the requirement Q2 > 5GeV 2/c2.

The two theoretical predictions TRVFS(MRST2001E) and ACOTFFS(CTEQ5HQ1) are also

shown in the plot. For this plot the logarithmic slope for the theoretical predictions are the

average logarithmic slope for the Q2 range 5 < Q2 < 200GeV 2/c2. The difference in the Q2

ranges for different experiments explains partially the observed difference in the logarithmic

slopes between them.

These logarithmic slopes provide a visual comparison between structure functions and

theory of QCD. NuTeV result agrees with QCD theory.
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8.0 CONCLUSIONS

This thesis presents a new measurement of the differential cross section for neutrino and anti-

neutrino deep inelastic scattering off an iron target. This measurement is the most precise

measurement to date, which was achieved by having better control over the systematic

uncertainties compared with previous measurements. For the first time, a complete point-

to-point covariance matrix is obtained to account for the correlations between data points.

This measurement is in agreement with the previous measurements of the differential

cross section at intermidiate x (x < 0.4) for neutrino DIS. At high x this measurement

is systematically above the CCFR measurement for both neutrino and anti-neutrino cross

sections. The discrepancy is 4 ± 1% at x = 0.45, 9 ± 2% at x = 0.55, and increases with

x up to 18 ± 2% at x = 0.65. Experimental improvements implemented by NuTeV for this

measurement account for a large fraction of the difference seen. After accounting for all

known experimental differences both experiments are in 1.2σ agreement.

This thesis presents a measurement of the ratio of the total anti-neutrino to neutrino

iron cross section. The value for an isoscalar iron target is σν/σν = 0.505 ± 0.0018(stat) ±
0.0029(syst) for the energy range between 30 and 360 GeV. This value gives the most precise

measurement of this quantity to date.

The structure functions F2 and xF3 have been determined from the y-dependence of the

differential cross sections. These structure functions are important inputs for determining

the parton distributions and to better constrain global PDF fits. The measurement agrees

with neutrino iron structure functions for x < 0.4. As is the case for the differential cross

sections, the result gives a higher value for F2 and xF3 at high x than previous results.

The source of a large fraction of this difference is understood and due to improvements

in NuTeV’s measurement. F2 and xF3 are in good agreement with NLO QCD predictions
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in the intermediate x range (0.1 < x < 0.5). For x < 0.1 the Q2 shape differs from

the shape of the theoretical predictions. This may indicate that the nuclear correction for

neutrino scattering is Q2 dependent. New theoretical calculations of the nuclear correction for

neutrino iron scattering in this region predict a Q2 dependence. At x > 0.5 the measurement

is systematically above NLO QCD predictions, which indicates that perhaps the nuclear

correction at high x is different for neutrino scattering compared to that for charge lepton

scattering.

In the future a high-y differential cross section from the sample with target analyzed

muon will be added to this cross section sample. This will give us additional cross section

points at low x and high y which are needed to constrain better the two parameter fits for

F2 and RL structure functions. The strong coupling constant αS will be measured from the

evolution of the non-singlet structure function, xF3(x,Q2), and from the combined evolution

of the singlet and non-singlet structure functions, F2(x,Q2) and xF3(x,Q2), at high x.

The neutrino cross section is well measured at high energy. However, at low energy the

neutrino cross section is poorly known. The MINOS collaboration will use a high intensity

low energy beam to measure the neutrino cross section, the knowledge of which is of great

importance for the precise measurement of neutrino oscillations. MINERvA collaboration

will use the same beam but different detector to measure neutrino cross section at low energy.

Their detector is designed to measure the cross section for different nuclear targets. This

will allow to obtain the nuclear effects for neutrino scattering. Then the measured nuclear

correction for neutrino scattering will be used to compare the existing neutrino DIS data

with charge lepton DIS data.
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I. INTRODUCTION

Deep inelastic scattering (DIS), the scattering of a high
energy lepton off a quark inside a nucleon, has been a
proving ground for QCD, the theory of strong interac-
tions. Charged-leptons and neutrinos have been used to
measure parton densities and their QCD evolution with
high-precision over a wide range in Q2. Uniquely, neu-
trino DIS, via the weak interaction probe, allows simulta-
neous measurement of two structure functions: F2(x, Q2)
and the parity-violating structure function, xF3(x, Q2).

In this paper we present a new measurement of high-
energy neutrino and anti-neutrino differential cross sec-
tions from high-statistics data samples. The differen-
tial dependence of neutrino and anti-neutrino cross sec-
tions on Bjorken scaling variable, x, and inelasticity,
y, provide the most model-independent physics observ-
able for this process [1]. Previous high-statistics mea-
surements of the neutrino and anti-neutrino differential
cross section have been reported [2], [3]. This experi-
ment has two improvements: first, a sign-selected beam
allowed separate neutrino and antineutrino running and,
second, a calibration beam continuously measured the
detector’s response. The largest experimental uncer-
tainties in previous measurements arose from knowledge
of energy scale and detector response functions [4], [5].
NuTeV addressed this by using a dedicated calibration
beam of hadrons, electrons and muons that alternated
with neutrino running once every minute throughout the
one year data-taking peroid. The calibration beam was
used to measure the detector response for hadrons and
muons over a wide range of energies (5-200 GeV). De-
tector response functions and energy scales for muons
and hadrons were mapped over the full active area of the
detector. Energy scales for muons and hadrons were de-
termined to a precision of 0.43% for hadrons and 0.7%
for muons [6]. NuTeV’s other improvement was separate
neutrino and antineutrino running. NuTeV ran in two
modes, (ν and ν), with the muon spectrometer polarity
always set to focus the primary charged-lepton from the
interaction vertex (e.g. µ− in ν-mode or µ+ in ν-mode).
In determining the charged-current differential cross sec-
tions, this allowed better and more uniform acceptance
in the two running modes and removed ambiguity in the
muon sign determination present in a mixed ν and ν
beam.

The rest of this paper is organized into four parts; Sec-
tion II describes the NuTeV detector, Section III gives the
cross section extraction method and results, and Section

νµ

νµ

νµ

νµ

neutrino
mode

antineutrino
mode

FIG. 1. Predicted energy
spectrum of interacted muon-neutrinos anti-neutrinos when
the SSQT is set to select neutrinos (top) and antineutrinos
(bottom).

IV presents the extracted structure functions and the re-
sults are discussed in Section V.

II. NUTEV EXPERIMENT

The NuTeV experiment collected data during 1996-97
using separate high-purity νµ and νµ beam produced by
the Sign-Selected Quadrupole Train (SSQT) beamline. A
dipole magnet after the one-interaction-length beryllium
oxide production target allowed the sign of secondary
particles to be selected. Neutrinos (or anti-neutrinos)
are produced when sign-selected secondary pions and
kaons decay in the 440 m decay region located just down-
stream of SSQT optics. The NuTeV neutrino detector is
1.4 km downstream of the beryllium oxide production
target. Neutrino energies ranged from 30-500 GeV. Fig-
ure 1 shows a prediction of the interacting νµ and νµ

flux in each mode with it’s small contribution from the
wrong-sign background. The interacted neutrino fraction
from ν(ν) in ν(ν)-mode is 3 × 10−4 (4 × 10−3).

The NuTeV/CCFR detector consisted of an 18 m
long, 690 ton target calorimeter with a mean density of
4.2 g/cm3, followed by a 420 ton iron toroidal spectrom-
eter. The target was composed of 168 steel plates, each
3m × 3m × 5.15cm, instrumented with liquid scintillator
counters placed every two steel plates and drift chambers

2
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FIG. 2. Sketch of calibration beam spectrometer configu-

ration. The calibration beam ran alternating with neutrinos

once a minute for the entire NuTeV data-taking period.

spaced every four plates. NuTeV refurbished the CCFR
detector by replacing the scintillator oil and recondition-
ing the drift chambers.

Immediately downstream of the target-calorimeter was
a magnetized iron toroidal spectrometer with inner ra-
dius 12.5 cm and outer radius 175 cm used to measure the
momentum of high-energy muons exiting the downstream
end of the target. The toroid spectrometer consisted of
three magnetized sections each followed by a drift cham-
ber station. Two additional drift chamber stations were
located a few meters downstream of the last magnetic
section to analyze the highest momentum muons. The
magnetic field in each toroidal section (∼15 kG) was
produced by four copper coils which emerged through
the center hole. The magnetic field is azimuthal every-
where except for a small radial component in the region
of the supporting feet and air gap between top and bot-
tom halves of the washers. The azimuthal component of
the field in the first toroid had an additional small asym-
metry (with respect to vertical) due to a shorted coil on
the west side. The detailed geometry of the spectrom-
eter, (including the missing coil), was input to ANSYS
simulation [7] to compute the magnetic field map.

A dedicated in situ calibration beam was used to de-
termine the energy response of the calorimeter and spec-
trometer to hadrons, muons, and electrons and to map
the response over the face of the detector. The tolerance

of the calibration spectrometer to measure a beam parti-
cle’s absolute momentum was 0.3%. The configuration is
shown in Figure 2. Details of the calibration and response
measurements are given in [6]. The hadronic resolution

of the calorimeter was determined to be σ
E

= 86%
√

E
⊕2.2%

with an absolute scale uncertainty of δE
E

= 0.43%. The
latter uncertainty is dominated by the statistical preci-
sion in calibrating the time dependence of the counter
response over a transverse grid for each counter.

The absolute scale of the toroid spectrometer was cali-
brated with muons that were steered over the active area
of the spectrometer. The magnetic field map from the
ANSYS simulation was checked with the 50 GeV muon
calibration beam. The mean reconstructed muon mo-
mentum compared with the muon calibration beam had
a 1σ variation of 0.63% over the active area of the toroid.
This field map uncertainty is attributed to variation in
magnetic susceptibility and thickness of the steel. The
field map determination dominates the absolute muon
energy scale uncertainty of 0.7%.

III. CROSS SECTION MEASUREMENT

In charged-current (CC) neutrino DIS the ν scatters off
a quark in the nucleon via exchange of a virtual W -boson.
The cross section can be expressed in terms of structure
functions, 2xF1(x, Q2), F2(x, Q2), and xF3(x, Q2)

d2σν(ν)

dxdy
=

G2
F ME

π

([

1 − y(1 +
Mx

2E
) +

y2

2

1 + ( 2Mx
Q

)2

1 + RL

]

(1)

F2(x, Q2) ±
[

y −
y2

2

]

xF3(x, Q2)
)

where GF is the Fermi weak coupling constant, M is the
proton mass, Eν is the incident neutrino energy in the
lab frame, and y, the inelasticity, is the fraction of en-
ergy transferred to the hadronic system. The xF3 term is
added for neutrino interactions and is subtracted for an-
tineutrinos. RL(x, Q2), the ratio of the cross section for
scattering from longitudinally to transversely polarized
W-bosons relates F2(x, Q2) and 2xF1(x, Q2)

2xF1 = F2

( 1 + ( 2Mx
Q

)2

1 + RL(x, Q2)

)

.

Structure functions depend on x, the Bjorken scaling
variable, and Q2, the four momentum squared of the vir-
tual W-boson.
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Relativistic invariant kinematic variables, x, y, and Q2

can be evaluated in the lab frame using the three exper-
imentally measured quantities: Eµ, energy of the outgo-
ing primary charged-lepton, EHAD the energy deposited
at the hadronic vertex, and θµ, the scattering angle of
the primary muon.

x =
4EνEµsin2 θµ

2

2MEHAD

,

y = EHAD/Eν , and

Q2 = 2MxyEν

where the neutrino energy, Eν = Eµ + EHAD, is recon-
structed from the measured final state particle energies.

A. Event Reconstruction

Events used in this analysis were triggered by the pres-
ence of a penetrating muon track determined by in-time
hits in scintillation counters in the most downstream re-
gion of the target calorimeter and in the first station
of the toroid spectrometer. This allowed acceptance for
charged current events down to zero hadron energy.

EHAD is determined by summing the pulse heights of
consecutive counters from just downstream of the event
vertex to five counters beyond the end of the shower re-
gion. Longitudinal position of the event vertex is de-
fined as the first of at least two consecutive counters with
greater than four times the energy deposited by a min-
imum ionizing particle (MIP). 1 The end of the shower
region is the last counter before three consecutive coun-
ters with less than four MIP’s. Energy deposited by the
primary muon in this region is removed by subtracting
the most probable energy loss for each counter in the
sum. This energy is included in the reconstructed muon
energy.

Eµ at the event vertex is reconstructed in two parts:
energy deposited in the target calorimeter (typically less
than 10 GeV) and remaining energy that is measured

1The definition of one MIP used in NuTeV is the following:
the mean energy deposited by a 77 GeV muon in one counter
determined using a truncated mean procedure see [6].

in the downstream toroid spectrometer. Energy de-
posited in the target calorimeter includes the muon en-
ergy within the shower region (discussed above) and en-
ergy deposited beyond the shower region before the muon
exits the calorimeter. The latter is determined from
the pulse height of energy deposited in each counter
by the muon. For small pulse heights, (< 5 MIPs),
the muon energy loss is assumed to arise from ioniza-
tion processes and is converted to GeV using an Eµ de-
pendent conversion function which was optimized using
GEANT to reproduce both the most probable value and
the width of this component of the energy loss (see [6]).
For larger pulse heights (> 5 MIPs), the energy is as-
sumed to have a contribution from catastrophic processes
(i.e. bremsstrahlung, pair production). Therefore, the
additional amount above 5 MIPs is converted to GeV us-
ing a calibration constant determined from the calorime-
ter’s electromagnetic response. The contribution to the
muon energy resolution from determination of energy loss
in the target is small for high energy muons and domi-
nated by a long tail produced by catastrophic energy loss
processes.

Muons that enter the toroid spectrometer are focused
and tracked through the spectrometer where they are mo-
mentum analyzed. Figure 3 shows the momentum reso-
lution for the toroid spectrometer determined using test
beam muons. The Gaussian contribution is dominated
by multiple Coulomb scattering (MCS) and is indepen-
dent of momentum (∼ 11%). The high-end tail is due to
catastrophic energy loss processes. Test beam data are
used to parameterize the resolution functions using a fit
of the form

∆ (1/Pµ)

(1/Pµ)
= exp

[

−

1

2

x2

σ2
lead(Pµ)

]

+ Rtail(Pµ)exp

[

−

1

2

(x − xtail(Pµ))2

σ2
tail(Pµ)

]

, (2)

where σlead(Pµ) is the width of the leading Gaussian
contribution due to MCS, and Rtail(Pµ), σtail(Pµ) and
xtail(Pµ) are the normalization coefficient, the width and
the offset of the asymmetric tail of the resolution func-
tion. These parameters are found to have small energy
dependences. The width of the leading Gaussian is pa-
rameterized with the following function

σlead(Pµ) =
√

A2 + (BPµ)2, (3)

where A = 0.10 and B = 4.2 × 10−3. Rtail(Pµ),
σtail(Pµ), and xtail(Pµ) are parameterized with linear
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FIG. 3. Test beam data (points) with muon momentum of
100 GeV measured in the toroid spectrometer compared with
double Gaussian fit parameterization curve.

functions. For a muon entering the toroid with momen-
tum Pµ =100 GeV the resolution function parameters
have the following values σlead(100) = 0.11, σtail(100) =
0.47, xtail(100) = 0.18, and Rtail(100) = 0.079.

Muon angle is determined using the track vector in the
target calorimeter extrapolated back to the event vertex.
Resolution on muon angle is dominated by multiple scat-
tering in the target and is determined from GEANT hit-
level simulation of the detector. Angular resolution (in
mRad) is parameterized as

∆θµ = (96.8 + 0.87 L + 0.24 EHAD)/Pµ

for a muon with momentum Pµ (in GeV) where L is
the track length in the target in units of counters, and
EHAD is the shower energy in GeV. The small dependence
on hadron energy comes from an EHAD dependent cut
excluding tracking chambers near the event vertex due
to the presence of additional hits in the shower region.

B. Data Selection

The following criteria were used to select the events for
the cross section sample:

(1) Event containment: transverse vertex within
125 cm from detector center and longitudinal ver-
tex at least four counters beyond the upstream end

of the detector and beginning at least twenty coun-
ters from the downstream end.

(2) Reconstructed muon energy: A single muon in the
event with minimum energy, Eµ > 15 GeV.

(3) Reconstructed muon track in toroid: transverse po-
sition within, 15 < radius < 160 cm upon entering;
minimum penetration of track to the second cham-
ber station; and minimum fraction of integrated
track in steel ≥ 80%.

(4) Reconstructed hadronic energy: EHAD > 10 GeV.

(5) Reconstructed neutrino energy: 30 < Eν <
360 GeV, is required to ensure that the flux is well
understood and the muon momentum well recon-
structed.

(6) Reconstructed Q2: Q2 > 1 GeV2, is required to
ensure that non-perturbative contributions in our
cross section model are small.

(7) Reconstructed Bjorken-x: x < 0.8. Data at higher
x are excluded because smearing effects are large
and our model is not well constrained in this region.

The final samples passing these cuts contained 8.6× 105

neutrino (νµ) and 2.4 × 105 anti-neutrino (νµ) events.
The differential cross section is determined from the

differential number of events and the flux, Φ(E), at a
given neutrino energy,

d2σ
ν(ν)
ijk

dxdy
∝

1

Φ(Ei)

∆N
ν(ν)
ijk

∆xj∆yk

. (4)

The quantity
d2σ

ν(ν)

ijk

dxdy
represents the average differential

cross section in bin ijk. The absolute flux was not mea-
sured in NuTeV. The flux was normalized so that the
average NuTeV total cross section from 30-200 GeV is
equal to the world average value (see section III C).

The number of events in a given bin, N
ν(ν)
ijk , must be

corrected for bin acceptance due to detector geometry
and kinematic cuts, and for bin migration caused by ex-
perimental resolution. The cross section measured in
Equation 4 is corrected to the bin-center value

d2σν(ν)

dxdy
(Ec

i , x
c
j , y

c
k) =

d2σ
ν(ν)
ijk

dxdy
×

S(Ec
i , x

c
j , y

c
k)

Sijk

5



where S(Ec
i , x

c
j , y

c
k) is the differential cross section eval-

uated at the bin-center values Ec
i , x

c
j , y

c
k and Sijk is the

average value of the cross section determined from the
integral over the bin

Sijk =
1

∆xj∆yk

∫ xj+1

xj

∫ yk+1

yk

d2σ(Ei, x, y)

dxdy
dx dy.

This correction is calculated by integration of the Monte
Carlo model (described in section III D) and is most im-
portant at low and high x.

C. Neutrino Flux

The neutrino (and antineutrino) relative flux as a func-
tion of energy is determined using the “fixed νo” method
[4]. Integrating the differential cross section given in eq. 1
over x gives

dσ

dν
= A

(

1 +
B

A

ν

E
−

C

A

ν2

2E2

)

(5)

where ν = EHAD and E is the incident neutrino energy.
The coefficients are given by,

A =
GF M

π

∫

F2(x)dx

B = −
GF M

π

∫

(

F2(x) ∓ xF3(x)
)

dx

C = B −
GF M

π

∫

F2(x)RTERMdx

where, RTERM =
(

1+ 2Mx
ν

1+RL
− Mx

ν
− 1

)

, depends on the

longitudinal structure function, RL(x). Multiplying both
sides of eq. 5 by the flux Φ(E) gives the number of events

dN

dν
= Φ(E)A

(

1 +
B

A

ν

E
−

C

A

ν2

2E2

)

.

As ν → 0 the cross section (eq. 5) is independent of
energy and therefore the number of events at low ν is
proportional to the flux, dN

dν
→ Φ(E)A. To minimize

the statistical uncertainty, data up to ν = 20GeV are
included in our flux sample. Therefore a correction is
applied to account for the energy dependence as discussed

below. Substituting for the coefficient C, the relative flux
is then given by

Φ(E) =

∫ ν0

0

dN(E)
dν

1 + 〈B
A
〉
(

ν
E
− ν2

2E2

)

+ ν2

2E2

∫

F2(x)RTERM
∫

F2(x)

dν.

The term
∫

F2(x)RTERM/
∫

F2(x) is obtained by integrat-
ing the structure functions, calculated using our Monte
Carlo model.

In reference [4] it was assumed that the coeficients A
and B do not depend on ν. The integration over x at
fixed ν gives an implicit Q2 dependence, Q2 = 2Mxν.
For different values of ν the integral will be over different
ranges in Q2. A ν-dependent scaling violations correction
is applied to account for this effect. The correction is
obtained by integrating the structure functions F2 and
xF3 over x at fixed ν, using our Monte Carlo model. As
described below, this correction shifts the measured value
of B

A
and has a small effect on the extracted flux.

The flux data sample consists of events which are con-
tained in the detector, have a well constructed muon
with minimum energy Eµ > 15 GeV, neutrino energy
in the range 30 < E < 360 GeV, and EHAD < 20 GeV.
The EHAD cut makes this sample orthogonal to the sam-
ple used to measure the cross sections. The data are
corrected for acceptance and detector effects using our
Monte Carlo model. Corrections were also applied to re-
move QED radiative effects using [12] and for the charm
production threshold using a leading-order slow rescaling
model with the charm mass parameter, mc = 1.40± 0.18
(see Appendix). Radiative corrections range from -2% at
30 GeV to 4% at 290 GeV. The charm production correc-
tion decreases with energy and is about 5% for the flux
sample at 30 GeV.

The coefficient B
A

is determined from a fit to dN
dν

over
the range 5 < ν < 20 GeV. Limiting ν to above 5 GeV re-
duces the contribution from quasi-elastic and resonance
processes, which are difficult to model. The coefficients of
the fit parameters A and B are modified to remove the
ν dependence due to scaling violations. The fit is per-
formed for each energy and the average value of 〈B

A
〉 over

all energy bins is used. We obtain 〈B
A
〉 = −0.34±0.04 for

neutrinos and −1.68±0.03 for anti-neutrinos. The effect
of scaling violations is to shift the average value of 〈B

A
〉

by +0.13 for neutrinos and +0.03 for anti-neutrinos. The
effect on the extracted neutrino flux ranges from 3.5% at
35 GeV and is negligible above 120 GeV for neutrinos.
For anti-neutrinos the correction to 〈B

A
〉 is small and the
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effect on the flux is less than 0.8% for all energies. Be-
cause the scaling violations correction is calculated from
a model we estimate a systematic uncertainty in 〈B

A
〉 to

be 0.05(0.04) for neutrinos(anti-neutrinos). This theoret-
ical uncertainty is obtained by using an alternative model
[13] to evaluate the scaling violations and to extract 〈B

A
〉.

The value of B
A

computed directly from the NuTeV cross
section model (at ν = 20 Gev) gives -0.29 for neutrinos
and -1.66 for antineutrinos which compares well with the
value computed for the alternative cross section model
(Bodek-Yang) from reference [13] which gives -0.28 and
-1.68, respectively.

The total cross section is used to normalize the flux. A
sample of events are selected which are contained in the
detector and have well constructed muon with minimum
energy Eµ > 15 GeV. The total neutrino(antineutrino)
cross section is

σν(ν)(E)

E
=

Nν(ν)(E)

E · Φ(E)
,

where Nν(ν)(E) is the number of total cross section
events, corrected for acceptance and detector effects, and
Φ(E) is the relative flux.

The flux is normalized using the world average neu-
trino cross section from 30-200 GeV [8].

σν

E
= 0.677± 0.014 × 10−38 cm2

GeV

The cross section normalization uncertainty, 2.1%, arises
from the quoted errors on the world average absolute
neutrino cross section. Figure 4 shows the energy de-
pendence of the total cross section, σ

E
. The total neu-

trino and antineutrino cross sections are linear with en-
ergy to better than 2% over our energy range. The

relative ν to ν cross section, r = σν

σν
, can be mea-

sured from NuTeV data alone which gives a value of
r = 0.505 ± 0.0018(stat)±0.0029(syst). This measure-
ment is the most accurate determination to date and
it agrees with the previous world average value of r =
0.499± 0.007.

D. Cross Section Extraction

The Monte Carlo simulation, used to account for ac-
ceptance and resolution effects, requires an input cross
section model which is iteratively tuned to fit our data.
Our cross section model, described in the Appendix, is
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FIG. 4. Total cross section, σ

E
, as a function of energy

for neutrino (circles) and anti-neutrino (squares) interactions.
The error bars are statistical uncertainty and the yellow band
shows the size of the systematic uncertainty.

based on a leading order prescription from Buras and
Gaemers [9] that is modified to incorporate higher-order
corrections such as RL(x, Q2), charm mass, and higher-
twist effects which are important at low Q2. Cross sec-
tion data are fit to determine empirically a set of parton
distribution functions. To model regions at the edge of
our data sensitivity we use additional input to constrain
the cross section. At high-x and low Q2 we model higher-
twist contributions following reference [10] by incorporat-
ing charged-lepton data in the fit. At low x and low Q2,
(below 1.35 GeV2), where the Buras-Gaemers parame-
terization is not well behaved, the shape of GRV94LO
[11] is used.

The cross section, flux, and the model parton distribu-
tion functions (PDF s) are obtained by a reiterative ex-
traction and refitting proceedure. An initial set of model
parameters from CCFR [3] are used to extract an initial
flux and cross section. From these we perform a fit to
obtain a set of PDF s which are then used to extract a
new flux and cross section. The proceedure is reiterated
until the relative change in cross section value from one
iteration to the next averaged over all the data points is
less than 0.1% (this occurs within three iterations). New
radiative corrections calculated from [12] are computed
for each new cross section fit. After the final iteration,
we exclude kinematic bins where the number of events
generated in that bin account for less than 20% of the
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events. This reduces the contribution from the high Eµ

tail where smearing dominates the distribution.
Figure 5 shows a comparison of the distributions of

the three kinematic variables measured in data with
those determined from the Monte Carlo model. The
data versus model χ2 including systematic uncertain-
ties is χ2/dof = 2225/2599. If full point-to-point data
correlations are included in the χ2 the fit quality wors-
ens to χ2/dof = 3534/2599. (The data correlation ma-
trix is discussed in Section III F). The inclusion of the
extremely precise charged-lepton data in our model fit
(see Appendix) has the effect of systematically pulling
the Q2 dependence of the model into agreement with
the charged-lepton data and worsens the quality of the
model fit with NuTeV data. Alternative models based on
global parton distribution fits give a significantly poorer
χ2 with our data; the Bodek-Yang model from reference
[13] gives χ2 = 5969/2599 and TRVFS(MRST99) [14]
gives χ2 = 5000/2599. Model sensitivity in the cross
section measurement is small (see section III F).

E. Results

Figures 6-8 show the extracted ν−Fe and ν−Fe cross
sections plotted as a function of y for a representative
sample of x bins at neutrino energies of 65 GeV, 150 GeV,
and 245 GeV respectively. The NuTeV data are com-
pared with measurements from CCFR [3] and at lower
energies with CDHSW data [2]. The curve shown is the
parameterization fit to the NuTeV data. The three data
sets are in reasonable agreement in both level and shape
at low and moderate x. There are differences in NuTeV
and CCFR cross sections at x > 0.40 where CCFR’s mea-
surement for both ν and ν cross sections are consistently
below the NuTeV result over the entire energy range.
The level difference in the cross sections for these bins at
a given x is constant over the full y range of the data.
The difference in the neutrino cross sections are 4 ± 1%
at x = 0.45, 9± 2% at x = 0.55, and increases with x up
to 18±2% at x = 0.65, (and similarly for antineutrinos).
This discrepancy and its probable source are discussed in
Section V.

F. Systematic Uncertainties

We evaluated the contribution from seven experimen-
tal systematic uncertainties on the cross section measure-
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FIG. 6. Differential cross sections in x bins for neutrinos

(left) and anti-neutrinos (right) at E = 65 GeV. Points are
NuTeV (filled circles), CCFR (open squares), and CDHSW
(crosses). Error bars show statistical and systematic errors in
quadrature. Solid curve shows fit to NuTeV data. (x =0.08,
0.225, 0.45, and 0.75 bins are not shown).
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FIG. 7. Differential cross sections in x bins for neutrinos

(left) and anti-neutrinos (right) at E = 150 GeV. Points are
NuTeV (filled circles), CCFR (open squares), and CDHSW
(crosses). Error bars show statistical and systematic errors in
quadrature. Solid curve shows fit to NuTeV data. (x =0.08,
0.225, 0.45, and 0.75 bins are not shown).
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FIG. 8. Differential cross sections in x bins for neutrinos

(left) and anti-neutrinos (right) at E = 245 GeV. Points are
NuTeV (filled circles), CCFR (open squares), and CDHSW
(crosses). Error bars show statistical and systematic errors in
quadrature. Solid curve shows fit to NuTeV data. (x =0.08,
0.225, 0.45, and 0.75 bins are not shown).

ment error. These include uncertainties in the following:
muon and hadron energy scales, muon and hadron en-
ergy smearing, the charm mass value mc and B

A
(both

used in the flux determination), and the cross section
model which is used to perform acceptance corrections.
Each uncertainty is evaluated separately and then prop-
agated through the fitting proceedure. The contribution
to the cross section uncertainty from each systematic er-
ror (except the muon momentum smearing model which
is described below) is evaluated by re-extracting the cross
section with the value of the systematic parameter varied
alternately by ±1σ. The symmetrized difference in each
cross section point is taken to be the 1σ systematic error
due to the uncertainty in the parameter.

The largest experimental systematic uncertainties are
due to the muon and hadron energy scale which for
NuTeV are 0.7% and 0.43% respectively. The neutrino
and antineutrino fluxes are sensitive to the charm mass
value mc, used in the charm production model (see Ap-
pendix), and the value of B

A
used to correct the flux

data sample. The uncertainty in the charm mass pa-
rameter is taken to be δmc = 0.18, which is obtained
from the weighted average of leading-order experimental
measurements [25], [26]. The values of B

A
for neutrino

and antineutrino cross sections and their uncertainties
are obtained from fits to the NuTeV flux sample data as
described in III C. An uncertainty of 2.1% in the abso-
lute flux determination arises from the normalization to
the world average neutrino cross section. This is treated
separately as an overall normalization uncertainty in the
cross section.

Detector resolution functions for muon and hadron en-
ergy reconstruction also contribute to the systematic un-
certainty since a different smearing model will generate
different acceptance corrections from our Monte Carlo.
The hadron energy response was determined from a fit
to calibration beam data [6]. The response function is
varied using the one sigma error from this fit as described
above. The muon momentum smearing model is given by
Equation 2. An estimate of the uncertainty due to the
model is obtained using two different functional forms
for the parameters of the leading Gaussian: the default
model (Equation 3) and a second model which assumes
a linear dependence with energy. Although both models
describe the test beam data reasonably well their extrap-
olations differ at higher energies (pµ > 200GeV). The al-
ternative models are used to re-extract the flux and cross
section. The uncertainty is taken to be the point-to-point
difference between the extractions. The flux is manifestly
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independent of the muon angle smearing model and the
cross section is highly insensitive. We, therefore, neglect
this systematic uncertainty.

To estimate the uncertainty from the cross section
model we vary the errors in the model fit parameters
(see Appendix) by one sigma from their fit values. The
resulting uncertainties on the cross section are smaller
than the statistical precision on a Monte Carlo sample
with approximately twenty times the data statistics. The
effect of the model uncertainty on the cross section error
is very small and is neglected.

The NuTeV data are presented along with a full point-
to-point covariance matrix that provides the correlation
coefficient between any two cross section data points. We
have found that these correlations are large for neighbor-
ing bins. Previous measurements by [2] and [3] did not
provide such a data correlation matrix. The covariance
matrix, Mαβ , is given by

Mαβ =

7
∑

i

δi|αδi|β ,

where δi|α is the 1σ shift in data point α due to systematic
uncertainty i. The 2.1% flux normalization uncertainty
can be included in the covariance matrix by adding a
term

M ′
αβ = Mαβ + (0.021)2

d2σ

dxdy

D

α

d2σ

dxdy

D

β

The statistical uncertainty is added in quadrature to the
diagonal elements of the data covariance matrix.

Separate data vectors and covariance matrices are ob-
tained for the neutrino and antineutrino cross sections.
There are 1423 (Nν

DATA = 1423) neutrino and 1195
(Nν

DATA = 1195) antineutrino data points. A χ2 with
respect to a theoretical model can be calculated using

χ2 = (6)

=

Nν

DAT A
∑

α,β=1

[

d2σ

dxdy

th

α

−

d2σ

dxdy

D

α

]

(M−1

ν )αβ

[

d2σ

dxdy

th

β

−

d2σ

dxdy

D

β

]

+

Nν

DAT A
∑

α,β=1

[

d2σ

dxdy

th

α

−

d2σ

dxdy

D

α

]

(M−1

ν
)αβ

[

d2σ

dxdy

th

β

−

d2σ

dxdy

D

β

]

,

where d2σ
dxdy

D

α
is the measured differential cross section

and d2σ
dxdy

th

α
is the model prediction for data point α.

IV. STRUCTURE FUNCTIONS

Structure functions, F2(x, Q2) and xF3(x, Q2), can be
determined from fits to linear combinations of the neu-
trino and antineutrino differential cross sections. The
sum of the differential cross sections can be expressed as

d2σ

dxdy

ν

+
d2σ

dxdy

ν

=
G2

F ME

π

[

2
(

1 − y −

Mxy

2E
(7)

+
y2

2

1 + 4M2x2/Q2

1 + RL

)

F2 + y
(

1 −

y

2

)

∆xF3

]

.

where F2 is the average of F ν
2 and F ν

2 . The last term is
proportional to the difference in xF3 for neutrino and an-
tineutrino probes, ∆xF3 = xF ν

3 − xF ν
3 , which at leading

order is 4x (s − c), (assuming symmetric s and c seas).
Cross sections are corrected for the excess of neutrons
over protons in the iron target (5.67%) so that the pre-
sented structure functions are for an isoscalar target. A
correction was also applied to remove QED radiative ef-
fects [12]. To extract F2(x, Q2) we use ∆xF3 from a
NLO QCD model as input (TRVFS [14]). The input
value of RL(x, Q2) comes from a fit to the world’s mea-
surements [15]. The NuTeV measurement of F2(x, Q2)
on an isoscalar-iron target is shown in Figure 9. The
structure function, F2(x, Q2) is compared with previous
measurements from CDHSW [2] and CCFR [3].

The difference of neutrino and anti-neutrino differen-
tial cross sections is proportional to the structure func-
tion xF3(x, Q2),

d2σν

dxdy
−

d2σν

dxdy
=

2G2

F ME

π

[

y −

y2

2

]

xF AV G
3 (x, Q2) (8)

where xF AV G
3 = 1

2
(xF ν

3 + xF ν
3 ), and the difference be-

tween F ν
2 (x, Q2) and F ν

2 (x, Q2) is assumed to be neg-
ligible. Figure 10 shows the NuTeV measurement of
xF3(x, Q2) from fits to the cross section difference. The
structure function, xF3(x, Q2) is compared with previous
measurements from CDHSW [2] and CCFR97 [16].

V. DATA COMPARISONS

At moderate x, this result agrees well with CCFR over
the full energy and y range of the data, both in level
and in shape, and agrees in level with CDHSW. The
CDHSW measurement has a known Q2 shape difference
with CCFR [3], and thus also with this result. There

11



 0.1

 1

 1  10  100  1000

F 2
(x

,Q
2 )

Q2 (GeV/c)2

x=0.015 (X3)

x=0.045 (X1.8)

x=0.080 (X1.3)

x=0.125
x=0.175
x=0.225

x=0.275

x=0.35

x=0.45

x=0.55

x=0.65

x=0.75
NuTeV
CCFR

CDHSW
NuTeV fit
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previous measurements; CCFR97 (open circles) and CDHSW
(triangles). The data are corrected to an isoscalar (iron) tar-
get and for QED radiative effects as described in the text.
The curve shows the NuTeV model.
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are differences in NuTeV and CCFR at x > 0.40 where
CCFR’s measurement for both neutrino and antineutrino
cross sections are consistently below our result for all
energies. This is suprising since NuTeV used the refur-
bished CCFR detector and the analysis methods used by
the two experiments were very similar. We discuss below
several sources which may contribute to the high-x cross
section difference.

We have determined that the largest single contribu-
tion to the discrepancy is due to a mis-calibration of the
magnetic field map of the toroid in CCFR. NuTeV per-
formed thorough calibrations of muon and hadron re-
sponses in the detector, including mapping the response
over the detector active area and measuring the energy
scale over a wide range of energies [6]. This allowed
NuTeV to measure precisely the radial dependence of
the magnetic field in the toroid. Both experiments used
the same muon spectrometer; therefore, the model of the
magnetic field could have a different overall normaliza-
tion, but the radial dependence (which is determined by
the geometry of the muon spectrometer) should be the
same for both. CCFR used one high statistics muon test
beam run aimed at a single point in the spectrometer
to set the absolute energy scale and modeled the radial
dependence of the magnetic field using POISSON [17].
NuTeV used ANSYS to model the field and compared the
prediction to a precision test beam map data. The width
of the residual fractional difference distribution over the
45 test beam points is the main contribution to the ab-
solute muon energy scale uncertainty (0.7%). If NuTeV
uses the CCFR model the result is shifted to within 1.6
sigma agreement with CCFR at x = 0.65. This accounts
for 6% of the 18% difference at x = 0.65. The field model
differences can also be translated into an effective 0.8%
difference in the muon energy scales by integrating the
difference in the field models over the toroid.

The cross section model contributes an additional ∼3%
to the discrepancy seen at x=0.65. Both experiments de-
termine acceptance corrections using an iterated fit to the
cross section data. Because the measured cross sections
are different, this necessarily requires that the respective
cross section models reflect the data differences. For ex-
ample, the NuTeV model is above CCFR by ∼ 20% at
x=0.65. We have extracted cross sections using CCFR
cross section model [3] and find that this contributes ∼3%
to the discrepancy seen at x=0.65.

Other smaller sources for the difference come from
muon and hadron energy smearing models which can also
contribute to extracted cross section differences through

acceptance corrections. We have determined that using
the CCFR muon and hadron smearing models results in
a difference of ∼ 2% at x = 0.65. In NuTeV the hadron
energy response was found to have a small nonlinearity
due to the shower π0 fraction dependence on energy [6].
This nonlinearity was taken into account in NuTeV but
not in CCFR. The effect of incorporating the hadron en-
ergy scale nonlinearity is small and contributes mainly to
the Q2 dependence.

All together these three contributions account for
about two thirds of the high-x cross section difference
seen. This brings the two measurements within 1.2 sigma
agreement in the high-x region.

Another significant difference in the two experiments is
that, while both used wide-band beams, NuTeV’s beam
was sign-selected. In NuTeV, neutrino and anti-neutrino
data were taken using separate high-purity beams. This
allowed NuTeV to run the detector’s toroidal magnetic
field polarity always set to focus the “right-sign” of muon
produced in charged-current interactions. In CCFR, the
beam had an 11% anti-neutrino component and neutrino
and anti-neutrino data were taken simultaneously. The
toroidal field polarity was reversed perodically to alter-
nately focus either µ+ or µ−. To obtain adequate an-
tineutrino statistics CCFR ran approximately half the
time in focussing mode for each muon sign. This has
two effects on the CCFR analysis that are not present
in NuTeV. First, the acceptance corrections are differ-
ent depending on whether the toroid is set to focus or
defocus the muon. Second, in defocussing mode accep-
tance corrections are larger and consequently need to be
more accurately determined. Acceptance falls off rapidly
with y at high-x, especially in defocussing mode where
low-energy and wide-angle muons are deflected outward
and spend less time the toroid magnetic field. CCFR
had no test beam data for defocussing mode and, while
acceptance corrections were modeled with a field simula-
tion, the smearing model was assumed to be the same in
both modes. We speculate that this difference may also
contribute to the discrepancy seen.

VI. THEORY COMPARISONS

Figures 11 and 12 show a comparison of NuTeV and
CCFR data with two theory models. The plot on Figure
11 shows the ratio of F2(x, Q2) to the Thorne-Roberts
variable-flavor scheme (TRVFS) NLO QCD model [14]
using the MRST2001 NLO PDF set [18] for all x bins.
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The 1σ error band from the PDF set is also shown.
The second theory curve shown on the plot is ACOT
fixed-flavor scheme (ACOTFFS) NLO model [19] using
CTEQ5HQ1 [20] PDF s. Similarily, the plot on Figure
12 shows the same comparison for xF3(x, Q2). All the-
ory models have been corrected for target-mass effects
using the Georgi-Politzer model [21]. These are impor-
tant at high-x and low-Q2. For example, they increase
the theory prediction by about 5% at x = 0.65 and
Q2 = 15 GeV2. To make a direct comparison, the the-
ory curves are also corrected for nuclear target effects.
A standard treatment of nuclear effects, which are not
well determined for neutrino scattering, is to apply cor-
rections measured in charged-leptons scattering from nu-
clear targets [4]. We use a multiplicative correction factor
of the form [8]

f(x) = 1.10− 0.36x − 0.28e−21.9x + 2.77x14.4 (9)

obtained from a fit to charged-lepton scattering on nu-
clear targets. The correction is independent of Q2 and is
small at intermediate x but is large at low and high x,
(10% at x = 0.015 and increases from 7% at x = 0.45 to
15% at x = 0.65).

The data show reasonable agreement with both the
TRVFS(MRST2001E) and the ACOTFFS(CTEQ5HQ1)
NLO QCD calculations for most of the x and Q2 range.
At low x (x = 0.015 and x = 0.045) both NuTeV and
CCFR results have different Q2 dependence than theo-
retical predictions. At high-x (x > 0.5) our data are
systematically above the theory predictions. Compared
with the TRVFS(MRST2001E) model the data are 15-
20% high at x = 0.65 and 25-40% at x = 0.75. The
data are about 10% higher at x = 0.65 and 15% at
x = 0.75 than the ACOTFFS(CTEQ5HQ1) model pre-
diction. The Q2 dependence of the high-x data is simi-
lar to the prediction from the ACOTFFS(CTEQ5HQ1)
model. A different theoretical treatment of nuclear ef-
fects could make a sizable difference at small and large
x. NuTeV perhaps indicates that neutrino scattering fa-
vors smaller nuclear effects at high-x than are found in
charged-lepton scattering. At small x, new theoretical
calculations show that in the shadowing region the nu-
clear correction has Q2 dependence [22,23]. The standard
nuclear correction obtained from a fit to charged lepton
data implies a suppression of 10% independent of Q2 at
x = 0.015, while for x = 0.015 reference [23] finds a sup-
pression of 15% at Q2 = 1.25GeV2 and suppression of
3.4% at Q2 = 7.94GeV2. This effect somewhat improves
agreement with data at low-x.

VII. DATA ACCESS

The NuTeV neutrino and antineutrino cross sections
and point-to-point covariance matrix can be downloaded
from reference [24]. The tar file contains an unpacking
routine and information on how to use the results.
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APPENDIX: NUTEV CROSS SECTION MODEL

The NuTeV cross section model is inspired by the LO
parameterization prescribed by Buras and Gaemers in
reference [9]. The leading order model is modified to
include non-leading order effects from RL, higher-twist
contributions, and the charm mass as described below.
Because the quark densities used in the model are ob-
tained from fits to neutrino-iron scattering data, no ex-
ternal model for nuclear effects is required to describe the
NuTeV data. The cross section model described here is
the ‘Born’-level neutrino DIS cross section for an isoscalar
target. In addition, we correct for radiative effects using
reference [12].

The neutrino isoscalar structure functions are given by

2xF1(x, Q2) = xuv(x, Q2) + xdv(x, Q2)

+ 2[xus(x, Q2) + xds(x, Q2) + xss(x, Q2)],

F2(x, Q2) = 2xF1(x, Q2) ×
1 + RL(x, Q2)

1 + 4M2x2/Q2
,

xF3(x, Q2) = xuv(x, Q2) + xdv(x, Q2).

The CKM matrix elements are used in the above for-
mula to account for the mixing between the quarks, even
though they are not shown here. RL(x, Q2) is obtained
from an empirical fit to world data as described in refer-
ence [15]

RL(x, Q2) =
0.0635

ln(Q2/0.04)
Θ(x, Q2)

+
0.5747

Q2
−

0.3534

Q4 + 0.09
,

Θ(x, Q2) = 1 + 12(
Q2

1 + Q2
)(

0.1252

x2 + 0.1252
).

The charm production cross section is calculated us-
ing the slow rescaling model [4]. The Bjorken scaling
variable, x, is rescaled

x → ξ = x · (1 +
m2

c

Q2
).

The charm production differential cross section is sup-

pressed by the factor 1 −
m2

c

2MEξ
. The value of the charm

mass parameter used, mc = 1.40±0.18, is obtained from
the weighted average of leading-order experimental mea-
surements [25], [26].
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To account for higher-twist effects at high x and low
Q2 an empirical model is used to constrain the Q2 de-
pendence of the PDF s by rescaling x following reference
[10].

x → ξHT = x
Q2 + BHT

Q2 + AHT · x
,

where AHT and BHT are fit parameters in the model.
The shape of GRV94L0 [11] PDF s is used to extrapolate
the model for Q2 < 1.35GeV 2/c2. The normalizations
are constrained by matching the PDF s to the Buras-
Gaemers PDF s at Q2 = 1.35GeV 2/c2.

The form for the parton distribution functions fol-
low the Buras-Gaemers parameterization in reference [9].
The valence distributions are given by

xuv(x) = utot × [xE1(1 − x)E2 + AV2x
E3(1 − x)E4 ]

xdv(x) = dtot × xuv(x) × (1 − x),

with parameters AV2, E1, E2, E3, and E4. The Q2-
dependence for the valence is given by

Ei = Ei0 + Ei1 · s, i = 1, 4

s = ln





ln(Q2

A2

0

)

ln(
Q2

0

A2

0

)





where the reference Q2

0
is set to 12.6 GeV 2/c2 and the

QCD scale, A0, is a parameter in the fit.
The constraints on the valence distributions include

the normalization of the valence densities, which is de-
termined from a variant of the Gross-Llewllyn-Smith sum
rule, and the relative normalization between uv and dv,
which is determined from quark counting

∫ 1

0

xF3(x, Q2)dx = 3
(

1 −

αs(Q
2)

π

)

= 3
(

1 −

A1

log(Q2/A2
0
)
−

A2

[log(Q2/A2
0
)]

2

)

∫

1

0

uv(x, Q2)dx = 2
(

1 −

A1

log(Q2/A2

0
)
−

A2

[log(Q2/A2
0
)]

2

)

∫ 1

0

dv(x, Q2)dx =
(

1 −

A1

log(Q2/A2

0
)
−

A2

[log(Q2/A2

0
)]

2

)

In addition a charge constraint is required

2

3

∫

1

0

uv(x, Q2)dx −

1

3

∫

1

0

dv(x, Q2)dx

=
(

1 −

A1

log(Q2/A2

0
)
−

A2

[log(Q2/A2

0
)]

2

)

,

where the fit parameters A1 and A2 describe the nor-
malization of the leading order and next-to-leading order
terms respectively.

The light quark sea distributions are given by

xu(x) = xd(x) =
1

2(κ + 2)
xS(x)

=
1

2(κ + 2)
(AS(1 − x)ES + AS2(1 − x)ES2),

where S(x) is the light-quark sea density. AS, AS2, ES,
and ES2 are defined in terms of fit parameters below,
and the parameter κ is the relative normalization to the
strange sea, also defined below. The light quark sea dis-
tributions can be determined from the first two moments,
because they decrease rapidly with x

S2 =

∫

1

0

xSdx =
3

4
D22 +

1

4
D12,

S3 =

∫ 1

0

x2Sdx =
3

4
D23 +

1

4
D13,

where the values for Dij , which are completely specified
by LO QCD, are given in [9]. AS2 and ES2 are evolved
with Q2 in the following way

AS2 = AS20 + AS21ln(Q2),

ES2 = ES20 + ES21ln(Q2).

S2, S3, AS20, AS21, ES20, and ES21 are parameters in
the fit. AS and ES are constrained to match the mo-
ments S2 and S3.

ES =
S2 − AS2/(ES2 + 1)

S3 − AS2/((ES2 + 1)(ES2 + 2))
− 2,

AS = (ES + 1)
S2 − AS2

ES2 + 1
.

The strange sea distribution can be measured from the
dimuon inclusive cross section. The parameterization of
the strange sea is a LO fit to the CCFR dimuon differ-
ential cross section [25],

xs(x) = xs(x) =
κ

2(κ + 2)
xSS(x)

(A1)
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where SS(x) is the strange sea density. The relative nor-
malization to the light quark seas is determined by the
parameter κ,

xs(x) ∝ κ
xuR(x) + xdR(x)

2
(1 − x)α,

where α describes the shape of the strange sea. Here the
light quark sea densities uR(x) and dR(x), and the values
of α = 2.5 and κ = 0.373 are obtained from reference [25].

Momentum sum rule is constrained by the second mo-

ment of the gluon distribution G2 =
∫ 1

0
xg(x, Q2)dx

G2 +

∫ 1

0

1 + R(x, Q2)

1 + 4M2x2/Q2
[xuv(x, Q2)

+ xdv(x, Q2) + xS(x, Q2)]dx = 1

Additional small corrections are used to modify u and d
distributions to account for the u, d asymmetry observed
in muon DIS and Drell-Yan data. Drell-Yan data from
E866 [27] is used to constrain the u, d asymmetry by the
factor

f(d/u) =
1

max(1 − x(2.7 − 0.14ln(Q2) − 1.9x), 0.1)

The modified light sea distributions u′, d′ are constrained
by u′ + d′ = u + d and have the form

u′ = u

(

u + d

u + d · f(d/u)

)

,

d′ = d

(

u + d

u + d · f(d/u)

)

· f(d/u).

The valence distributions are also modified for the uv, dv

asymmetry. The modified valence distributions u′

v
, d′

v
are

constrained by u′

v + d′

v = uv + dv and have the form [3]

u′

v
=

uv

1 + δ(d/u) · uv/(uv + dv)
,

d′

v
=

dv + uv · δ(d/u)

1 + δ(d/u) · uv/(uv + dv)
,

δ(d/u) = 0.12079− 1.3303x + 4.9829x2

− 8.4465x3 + 5.7324x4.

The model fit parameters are obtained after an itera-
tive loop in which the nth loop flux and cross section are
re-extracted with the (n−1)th loop model fit parameters.
The nth loop model then determines new acceptance and

smearing corrections which are used for the (n+1)th cross
section and fit. New radiative corrections are computed
to correspond to each new model. The initial flux and
cross section are determined using a starting model with
the Buras-Gaemers PDF parameters from the best fit to
CCFR data [3]. The process is iterated until the average
relative change in the cross section data points compared
to the previous iteration is less than 0.1% (within 3 iter-
ations).

To constrain the high-x and low Q2 part of the model,
which is important in order to model our flux data sam-
ple, we include data from charged-lepton scattering in
the fit. The SLAC [28], BCDMS [29], and NMC [30]
overlap with the kinematic range of our data set but ex-
tend to lower-Q2. The charged-lepton data for x in the
range 0.4 < x < 0.7, are included in the fit χ2 func-
tion along with the NuTeV data set to determine the
best fit parameters. The charged-lepton data must first
be corrected to F ν

2
using our model and corrected to an

A = 56 iron target using Equation 9. The normalization
of the charged-lepton data relative to the NuTeV data is
unconstrained in the fit.

Table I gives the NuTeV cross section model fit values
for each parameter and their estimated uncertainties. A
total of 19 parameters are fit in the model. Note that
we do not expect that the parameterization extrapolated
beyond the region of the NuTeV data set will be a good
description of data there.
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TABLE I. The final fit parameters for the NuTeV cross

section model.

Parameter Value Estimated Error

A0 0.583 0.017

A1 0.295 0.013

A2 0.17 0.03

E10 0.5333 0.0025

E11 -0.028 0.011

E20 2.61 0.015

E21 1.31 0.045

AV2 637.0 75.0

E30 4.56 0.14

E40 12.5 0.35

S2 0.1625 0.0013

S3 0.0159 0.0004

G3 0.031 0.003

AS20 1.06 0.11

AS21 1.76 0.25

ES20 185.0 20.0

ES21 8.4 8.0

AHT 1.187 0.035

BHT 0.33 0.02
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