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The renal bumetanide-sensitive Na-K-2Cl cotransporter BSC-1/NKCC2 in essential 

hypertension and its regulation by norepinephrine 

Prajakta Anilkumar Sonalker, PhD 

University of Pittsburgh, 2006

The dissertation is based on the concept that pathogenesis of essential hypertension involves the 

kidney. In this regard, renal sodium ion transporters, responsible for sodium reabsorption and 

fluid balance, may be important candidates in hypertension. Many lines of evidence indicate that 

the sympathetic nervous system, via renal nerves, plays an important role in the pathogenesis of 

essential hypertension. The goals of the dissertation were to: 1) identify whether renal sodium 

ion transporter expression is altered in an animal model of essential hypertension, the 

Spontaneously Hypertensive Rat (SHR) and if so, its physiological significance; 2) determine the 

role of the sympathetic nervous system in regulation of renal sodium ion transporters and 3) 

elucidate the underlying molecular mechanism.  

Among the renal sodium transporters profiled in the SHR, the bumetanide-sensitive Na-

K-2Cl cotransporter (BSC-1) of the thick ascending limb was found to be most elevated; 

suggesting that increase in BSC-1 abundance may contribute to altered tubular function in SHR.  

In support of this conclusion, our results demonstrate that the natriuretic response to furosemide 

is greater in SHR versus its normotensive counterpart the Wistar-Kyoto Rat (WKY), resulting in 

normalization of blood pressure.  Additionally, progression from pre-hypertensive to 

hypertensive state in SHR is accompanied by an increase in steady state protein levels of BSC-1 

and its distribution to plasma membrane. Thus our biochemical and pharmacological data are 

consistent with the hypothesis that BSC-1 is involved in the pathogenesis of hypertension in 

SHR. 

Activation of renal sympathetic efferent nerves releases norepinephrine and, if chronic, 

increases arterial pressure. We hypothesize that long-term exposure of kidney to norepinephrine 

increases expression of renal sodium transport systems. Our results indicate that chronic 14-day 

norepinephrine infusion increased abundance of BSC-1 along with an increase in mean arterial 

blood pressure; an effect that could explain altered sodium handling associated with an over-

active renal sympathetic system. Finally, studies in an immortalized thick ascending limb cell 
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line show that regulation of BSC-1 by norepinephrine involves post-transcriptional control 

mechanisms via the β-adrenoceptor-cAMP-PKA pathway, and involves in part MAP kinases and 

that the α-adrenoceptor negatively regulates BSC-1. Further elucidation of the mechanism would 

suggest new strategies to treat diseases associated with an over-active sympathetic nervous 

system such as essential hypertension.  

 v 



FOREWARD 

“Gurur brahmaa gurur vishnuh 

gurur devo maheshvarah 

gurur saakshaat parabrahma 

tasmai shree gurave namah” 

- Guru Gita, Skanda-Purana 

Salutations to that beautiful and benevolent Guru (teacher) who is Brahma (the Creator), 

Vishnu (the Maintainer), and Shiva (the destroyer through whom all things return to their origin), 

as well as the direct experience of Brahman, the highest Divinity. 

 

 

 

Dedicated to my parents 

Anilkumar and Anuprita Sonalker 

 vi 



ACKNOWLEDGMENTS 

I would like to thank my advisor Dr. Edwin Jackson for his guidance and support throughout my 

graduate student years. He is an extremely talented and brilliant scientist and a great mentor, 

from whom I have learned a great deal. His enthusiasm and passion for science is contagious and 

the freedom that he gives his students to explore new ideas is remarkable. I am also grateful to 

past and present members of the Jackson lab: Ziachuan Mi, Zinchen Zhang, Bill Herzer, Del 

Gillespie, Chong Zhu, Lefteris Zacharia, John Dubinion, Jimmy Porter, Tom Jones, Stevan 

Tofovic and the staff at the Center for Clinical Pharmacology for all their support, help and 

expertise and for making my graduate experience so memorable. 

I would also like to thank my dissertation committee members Dr. Guillermo Romero, 

Dr. Peter Friedman, Dr. Rebecca Hughey and Dr. Daniel Altschuler for taking a keen interest in 

my project and for their direction and guidance during the course of my graduate study. I would 

especially like to thank Dr. Romero, members of the Romero lab and Eric Fluharty for their 

technical expertise and help. I am also thankful to Dr. Charleen Chu and members of the Chu lab 

for their mentorship during the beginning of my graduate career at the University of Pittsburgh. 

I would also like to thank Dr Biff Forbush at Yale School of Medicine, Dr. Glenn 

Nagami at UCLA School of Medicine, Dr. Gerardo Gamba at Universidad Nacional Autónoma 

de México, Dr. Peter Igarashi at University of Texas Southwestern Medical Center and Dr. Mark 

Knepper at National Heart, Lung and Blood Institute for providing reagents, cell lines and most 

of all for their valuable expertise and insight.  

I am especially thankful to Dr. Steven P. Phillips, Dr. John P. Horn, Cindy Duffy, Sandra 

Honick and the rest of the staff members in the Graduate Studies office for their guidance and 

help during my graduate studies. I am also grateful to members of the Department of 

Pharmacology, especially Dr. Don DeFranco, Dr. Bruce Freeman, Jennifer Wong, Jim 

Kaczynski and Patricia Smith for all their support and help through my years at the University of 

 vii 



Pittsburgh. I would also like to thank all the faculty members and colleagues in the Department 

of Pharmcology and at the University of Pittsburgh whom I have had the wonderful opportunity 

to interact with over the course of my graduate studies. I would also like to thank all my friends 

from Pittsburgh, India and Bahrain for all their support and encouragement over these past years.  

Finally, I am indebted to my parents Anilkumar and Anuprita Sonalker, my sister and 

brother-in-law Anuja and Manoj Srivastava, my brother Onkar and my late grand-father Shri. 

Bhau Karandikar for all their love, support and encouragement in all walks of my life. Their love 

is what got me through the most difficult of times and for which I am forever grateful. 

 

 viii 



PREFACE 

One chapter of this dissertation had been published: 

 

Sonalker PA, Tofovic SP and Jackson EK. Increased expression of the sodium transporter 

BSC-1 in Spontaneously Hypertensive Rats. JPET 2004 Dec;311(3):1052-61 

 

 

 

 

 

 

 ix 



TABLE OF CONTENTS 

FOREWARD...............................................................................................................................VI 

ACKNOWLEDGMENTS ........................................................................................................ VII 

PREFACE.................................................................................................................................... IX 

1.0 INTRODUCTION........................................................................................................ 1 

1.1 GENERAL INTRODUCTION........................................................................... 1 

1.2 ESSENTIAL HYPERTENSION AND SHR..................................................... 2 

1.3 SYMPATHETIC NERVOUS SYSTEM AND ESSENTIAL 

HYPERTENSION ................................................................................................................ 3 

1.4 IMPAIRED SODIUM EXCRETION AND HYPERTENSION ..................... 5 

1.5 VASCULAR-DEPENDENT HYPERTENSION .............................................. 6 

1.6 REGULATION OF ARTERIAL BLOOD PRESSURE AND THE ROLE 

OF THE KIDNEY ................................................................................................................ 7 

1.6.1 Short-term control of arterial blood pressure............................................ 8 

1.6.1.1 Renin-Angiotensin-Aldosterone System (RAS) ................................. 9 

1.6.1.2 Sympathetic system and blood pressure regulation .......................... 9 

1.6.1.3 Vasopressin and blood pressure regulation ..................................... 10 

1.6.2 Long-term control of arterial blood pressure .......................................... 11 

1.7 RENAL SODIUM TRANSPORT .................................................................... 13 

1.7.1 Mutations in renal sodium transporters and associated disorders ........ 14 

1.8 THE RENAL BUMETANIDE-SENSITIVE NA-K-2CL 

COTRANSPORTER TYPE-1 (BSC-1/NKCC2) ............................................................. 17 

1.8.1 Regulation of BSC-1 ................................................................................... 20 

1.8.2 BSC-1 and disease ....................................................................................... 22 

1.9 THE DISSERTATION...................................................................................... 23 

 x 



2.0 INCREASED EXPRESSION OF THE SODIUM TRANSPORTER BSC-1 IN 

SPONTANEOUSLY HYPERTENSIVE RATS....................................................................... 26 

2.1 INTRODUCTION ............................................................................................. 26 

2.2 MATERIALS AND METHODS...................................................................... 27 

2.2.1 Animals ........................................................................................................ 27 

2.2.2 Kidney dissection and tissue preparation for immunoblotting .............. 28 

2.2.3 Electrophoresis and immunoblotting........................................................ 28 

2.2.4 RNA isolation and RT-PCR....................................................................... 29 

2.2.5 Effects of furosemide in SHR and WKY rats........................................... 30 

2.2.6 Statistical analysis ....................................................................................... 31 

2.3 RESULTS ........................................................................................................... 31 

2.3.1 Expression of BSC-1 and TSC proteins .................................................... 31 

2.3.2 Expression of NHE-3, Na+-K+-ATPase-α1 and NBC-1 proteins ............. 32 

2.3.3 Expression of ROMK-1 protein................................................................. 34 

2.3.4 Expression of AQP-1 and AQP-2 proteins ............................................... 35 

2.3.5 Expression of BSC-1, AQP-2 and ROMK-1 mRNA................................ 36 

2.3.6 Effects of BSC-1 inhibition......................................................................... 37 

2.4 DISCUSSION..................................................................................................... 41 

3.0 EXPRESSION OF BSC-1 DURING DEVELOPMENT OF HYPERTENSION IN 

THE SHR..................................................................................................................................... 45 

3.1 INTRODUCTION ............................................................................................. 45 

3.2 MATERIALS AND METHODS...................................................................... 46 

3.2.1 Animals ........................................................................................................ 46 

3.2.2 MABP measurement................................................................................... 46 

3.2.3 Kidney dissection and tissue lysate preparation ...................................... 47 

3.2.4 Plasma membrane and intracellular vesicle isolation ............................. 47 

3.2.5 Electrophoresis and immunoblotting........................................................ 48 

3.2.6 RNA isolation and RT-PCR....................................................................... 48 

3.2.7 Statistical analysis ....................................................................................... 49 

3.3 RESULTS ........................................................................................................... 49 

3.3.1 Development of hypertension in the SHR................................................. 49 

 xi 



3.3.2 Steady-state protein levels of BSC-1 increase as hypertension progresses 

in the SHR................................................................................................................... 50 

3.3.3 Distribution of BSC-1 to the plasma membrane increases as 

hypertension progresses in the SHR......................................................................... 51 

3.3.4 Increase in BSC-1 protein is not accompanied by changes in mRNA as 

hypertension progresses in the SHR......................................................................... 53 

3.4 DISCUSSION..................................................................................................... 53 

4.0 REGULATION OF THE RENAL BUMETANIDE-SENSITIVE NA-K-2CL 

COTRANSPORTER BSC-1/NKCC2 BY NOREPINEPHRINE ........................................... 57 

4.1 INTRODUCTION ............................................................................................. 57 

4.2 MATERIALS AND METHODS...................................................................... 59 

4.2.1 Animals and Treatment.............................................................................. 59 

4.2.2 MABP and HR measurement .................................................................... 59 

4.2.3 Kidney dissection and tissue preparation for immunoblotting .............. 60 

4.2.4 Electrophoresis and immunoblotting........................................................ 60 

4.2.5 Statistical analysis ....................................................................................... 61 

4.3 RESULTS ........................................................................................................... 61 

4.3.1 Chronic norepinephrine infusion increases MABP and HR................... 61 

4.3.2 Norepinephrine regulates expression of the apical sodium hydrogen 

exchanger NHE-3 of the proximal tubule ................................................................ 61 

4.3.3 Norepinephrine increases expression of the basolateral sodium 

bicarbonate transporter NBC-1 of the proximal tubule......................................... 63 

4.3.4 Norepinephrine increases expression of the Na-K-2Cl cotransporter 

BSC-1 of the thick ascending limb............................................................................ 64 

4.3.5 Norepinephrine does not alter expression of the inwardly rectifying K 

channel (ROMK-1) of the thick ascending limb ..................................................... 65 

4.3.6 Norepinephrine does not alter the abundance of the thiazide-sensitive 

Na-Cl cotransporter of the distal tubule or the basolateral Na-K-ATPase .......... 66 

4.3.7 Norepinephrine increases abundance of the water channel aquaporin-2 

of the inner medullary collecting duct...................................................................... 68 

4.4 DISCUSSION..................................................................................................... 69 

 xii 



5.0 MECHANISM OF REGULATION OF BSC-1 BY NOREPINEPHRINE .......... 72 

5.1 INTRODUCTION ............................................................................................. 72 

5.2 MATERIALS AND METHODS...................................................................... 74 

5.2.1 Chemicals and reagents.............................................................................. 74 

5.2.2 Cell culture and treatments........................................................................ 74 

5.2.3 RNA isolation and RT-PCR....................................................................... 75 

5.2.4 Protein isolation and immunoblotting ...................................................... 75 

5.2.5 Statistical analysis ....................................................................................... 76 

5.3 RESULTS ........................................................................................................... 76 

5.3.1 Vasopressin, forskolin and 8-Br cAMP regulate BSC-1 protein levels in 

TAL cell line ............................................................................................................... 76 

5.3.2 Norepinephrine does not alter BSC-1 mRNA levels or half-life............. 78 

5.3.3 Norepinephrine increases BSC-1 protein levels following treatment .... 79 

5.3.4 Regulation of BSC-1 by norepinephrine involves both α- and β-

adrenoceptors ............................................................................................................. 80 

5.3.5 Regulation of BSC-1 by norepinephrine proceeds via cAMP dependent 

pathway and involves in part MAP kinases............................................................. 82 

5.3.6 Regulation of BSC-1 proceeds via a PKA dependent pathway............... 83 

5.4 DISCUSSION..................................................................................................... 84 

6.0 SUMMARY AND DISCUSSION ............................................................................. 88 

6.1 BSC-1 AS A CRITICAL LINK IN ESSENTIAL HYPERTENSION .......... 88 

6.2 LINK BETWEEN OVERACTIVE-SYMPATHETIC NERVOUS SYSTEM 

AND BSC-1 EXPRESSION............................................................................................... 90 

6.3 ADDITIONAL FACTORS ............................................................................... 92 

6.3.1 Renin-angiotensin system and hypertension ............................................ 93 

1.1.1 Role of WNK kinases .................................................................................. 94 

6.4 UNIFYING PATHWAY FOR ESSENTIAL HYPERTENSION ................. 95 

6.5 CONCLUSION .................................................................................................. 95 

APPENDIX A.............................................................................................................................. 97 

APPENDIX B ............................................................................................................................ 105 

BIBLIOGRAPHY..................................................................................................................... 107 

 xiii 



 LIST OF TABLES 

 

Table 1. Primers used for RT-PCR analysis of BSC-1, ROMK-1 and AQP-2 ............................ 29 

Table 2. Primers used for RT-PCR analysis of BSC-1................................................................. 49 

Table 3. Effect of chronic norepinephrine infusion on MABP, Systolic BP, Diastolic BP and 

Heart Rate (HR) ............................................................................................................................ 61 

Table 4. Primers used for RT-PCR analysis of BSC-1................................................................. 75 

Table 5. MABP in control and hormone infused rats ................................................................... 99 

 xiv 



LIST OF FIGURES 

 

Figure 1.  Pressure-Natriuresis curve............................................................................................ 12 

Figure 2.  Renal sodium transport mechanisms............................................................................ 14 

Figure 3.  Disorders associated with mutations in renal sodium transport systems ..................... 17 

Figure 4.  Structure of BSC-1 protein........................................................................................... 20 

Figure 5.  Expression of BSC-1 and TSC in the kidney outer cortex, inner strip of outer medulla 

and inner medulla of WKY and SHR rats .................................................................................... 32 

Figure 6.  NHE-3 and Na+-K+-ATPase (α1-subunit) expression in the kidney outer cortex, inner 

strip of outer medulla and inner medulla of WKY and SHR rats................................................. 33 

Figure 7.  NBC-1 and ROMK-1 expression in the kidney outer cortex, inner strip of outer 

medulla and inner medulla of WKY and SHR rats....................................................................... 34 

Figure 8.  Expression of AQP-1 and AQP-2 in the kidney outer cortex, inner strip of outer 

medulla and inner medulla of WKY and SHR rats....................................................................... 36 

Figure 9. BSC-1, ROMK-1 and AQP-2 mRNA expression in the kidney outer cortex, inner strip 

of outer medulla and inner medulla of WKY and SHR rats as determined by RT-PCR.............. 37 

Figure 10.  Mean arterial blood pressure (MABP) and renal blood flow (RBF) (A and C) and 

percent changes in MABP and RBF (B and D) following furosemide administration to WKY and 

SHR rats ........................................................................................................................................ 38 

 Figure 11.  Renal vascular resistance (RVR) and glomerular filtration rate (GFR) (A and C) and 

percent changes in renal vascular resistance and glomerular filtration rate (B and D) following 

administration of furosemide to WKY and SHR rats ................................................................... 39 

Figure 12.  Urine volume (UV) and sodium excretion rate (UNaV) (A and C) and percent changes 

in urine volume and sodium excretion rate (B and D) following administration of furosemide to 

WKY and SHR rats....................................................................................................................... 40 

 xv 



Figure 13.  Fractional sodium (FENa) and potassium (FEK) excretion rates (A and C) and percent 

changes in fractional sodium and potassium excretion rates (B and D) following furosemide 

administration to WKY and SHR rats .......................................................................................... 41 

Figure 14.  MABP in SHR and WKY over time .......................................................................... 50 

Figure 15.  Abundance of BSC-1 protein in the SHR and WKY over time ................................. 51 

Figure 16.  Distribution of BSC-1 protein in plasma membrane and intracellular vesicles in SHR 

and WKY over time ...................................................................................................................... 52 

Figure 17.  Expression of BSC-1 mRNA in inner stripe of outer medulla in SHR and WKY over 

time ............................................................................................................................................... 53 

Figure 18.  Expression of NHE-3 in the renal outer cortex in control and norepinephrine infused 

rats................................................................................................................................................. 62 

Figure 19.  Expression of NBC-1 in the renal outer cortex in control and norepinephrine infused 

rats................................................................................................................................................. 63 

Figure 20.  Expression of BSC-1 in the renal inner stripe of outer medulla in control and 

norepinephrine infused rats........................................................................................................... 65 

Figure 21.  Expression of TSC, Na-K-ATPase, ROMK-1 and AQ-1 in the renal outer cortex, 

inner stripe of outer medulla and inner medulla in control and norepinephrine infused rats ....... 68 

Figure 22.  Expression of AQP-2 in the renal inner medulla  in control and norepinephrine 

infused rats .................................................................................................................................... 69 

Figure 23.  Effect of vasopressin and cAMP activators on BSC-1 protein in TAL cells ............. 77 

Figure 24.  Effect of norepinephrine and actinomycin D on BSC-1 mRNA in TAL cells........... 78 

Figure 25.  Effect of norepinephrine and cycloheximide on BSC-1 mRNA in TAL cells........... 79 

Figure 26.  Effect of norepinephrine and cycloheximide on BSC-1 protein in TAL cells ........... 80 

Figure 27.  Effect of α and β-blockers on BSC-1 protein levels following norepinephrine 

treatment ....................................................................................................................................... 81 

Figure 28.  Effect of MEK and adenylyl cyclase inhibition on BSC-1 protein levels following 

treatment with norepinephrine ...................................................................................................... 83 

Figure 29.  Effect of PKA and PKC inhibition on BSC-1 protein levels following treatment with 

norepinephrine .............................................................................................................................. 84 

Figure 30.  Proposed mechanism of BSC-1 protein regulation by norepineprhine ...................... 92 

 xvi 



Figure 31.  Expression of NHE-3 in the renal outer cortex and medulla in control and hormone-

infused rats .................................................................................................................................. 100 

Figure 32.  Expression of BSC-1 in the renal outer cortex in control and hormone-infused rats101 

Figure 33.  Expression of TSC in the renal outer cortex and medulla in control and hormone-

infused rats .................................................................................................................................. 102 

Figure 34.  Expression of AQP-2 in the renal outer cortex and medulla in control and hormone-

infused rats .................................................................................................................................. 103 

Figure 35.  Expression of ROMK-1 and AQP-1 in the renal outer cortex and medulla in control 

and hormone-infused rats............................................................................................................ 104 

Figure 36.  AQP-1 and VAMP-2 immunoblotting in plasma membrane and intracellular vesicle 

enriched fractions........................................................................................................................ 106 

 xvii 



LIST OF ABBREVIATIONS 

 SHR   Spontaneously Hypertensive Rat 

WKY   Wistar-Kyoto Rat 

DS   Dahl-salt sensitive Rat 

MHS   Milan Hypertensive Strain 

MABP   Mean Arterial Blood Pressure 

HR   Heart Rate 

SNS   Sympathetic nervous system 

RAS   Renin-angiotensin system 

ACE   Angiotensin converting enzyme 

GFR   Glomerular filtration rate 

TGF   Tubuloglomerular feedback 

ECFV   Extracellular fluid volume 

TAL   Thick ascending limb of loop of Henle 

DCT   Distal convoluted tubule 

PCT   Proximal convoluted tubule 

CD   Collecting duct 

BSC-1   Bumetanide-sensitive Na-K-2Cl cotransporter-1 

NKCC2  Type-2 Na-K-2Cl cotransporter or BSC-1 

TSC   Thiazide-sensitive Na-Cl cotransporter 

ROMK-1  Type-1 Inwardly-rectifying K Channel 

AQP-1   Aquaporin-1 

AQP-2   Aquaporin-2 

ENaC   Epithelial Na channel 

NBC-1   Type-1 Na-HCO3 cotransporter 

 xviii 



NHE-3   Type-3 Na-H exchanger 

Na-K-ATPase  Basolateral Na-K-ATPase pump 

PM   Plasma membrane 

IV   Intracellular vesicle 

NE   Norepinephrine 

Ang II   Angiotensin II 

AVP   Arginine vasopressin 

Aldo   Aldosterone 

COX   Cyclooxygenase 

WNK   With no lysine kinase 

MAPK   Mitogen Activated Protein Kinase 

PKA   Protein kinase A 

PKC   Protein kinase C 

DDAVP  1-desamino-[8-D-arginine]vasopressin 

Phe   Phentolamine 

Prop   Propranolol 

Staur   Staurosporine 

 

 

 

 

 

 

 xix 



1.0  INTRODUCTION 

1.1 GENERAL INTRODUCTION 

Hypertension is defined as a systolic blood pressure of 140 mmHg or greater, or a diastolic blood 

pressure of 90 mmHg or greater. It affects 1 billion people worldwide and causes 7.1 million 

deaths per year, making it the third leading killer in the world(1). Importantly, hypertension 

plays a major etiologic role in the development of cerebrovascular disease, ischemic heart 

disease, cardiac and renal failure. In addition, hypertension often coexists with other 

cardiovascular risk factors such as diabetes, hyperlipidemia and obesity, which compound the 

cardiovascular risk attributable to hypertension, resulting in high morbidity and mortality. 

Treatment of hypertension has been associated with about a 40% reduction in the risk of stroke 

and about a 15% reduction in the risk of myocardial infarction and has been shown to extend and 

enhance life. In recent decades it has become increasingly clear that the risks of stroke, ischemic 

heart disease, renal failure and other disease are not confined to a subset of the population with 

particularly high levels (hypertension), but rather continue among those with average and even 

below-average blood pressure (> 115 mmHg). Thus, hypertension and hypertension-related 

cardiovascular diseases continue to be a global health concern.  

Although the exact cause of hypertension is unknown, it is clear from epidemiological 

studies that hypertension arises from a complex interplay between genetic and environmental 

lifestyle exposures including dietary sodium intake, excess alcohol consumption and body 

weight. About 95% of hypertensive patients have high blood pressure due to an unknown cause,  

termed essential hypertension; and only a small percentage have an identifiable cause or 

secondary hypertension. Thus, a better understanding of the pathophysiology of essential 

hypertension would ultimately aid in the development of better therapies for the treatment of 

essential hypertension.  
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1.2 ESSENTIAL HYPERTENSION AND SHR 

Various rodent forms of genetic hypertension have been established for the experimental 

investigation of hypertension genetics and pathophysiology, including spontaneously 

hypertensive rats of the Okamoto-Aoki strain (SHR), Dahl salt-sensitive rats, Milan hypertensive 

rats, Lyon hypertensive rats, and Prague hypertensive rats. Of these, the spontaneously 

hypertensive rat (SHR) has been one of the most extensively used models of human essential 

hypertension. Several pathophysiological features of this rat strain are important for the 

understanding of human hypertension and for preclinical development of antihypertensive drugs. 

The spontaneously hypertensive rat (SHR) of the Okamoto strain was developed by selective 

inbreeding of Wistar rats exhibiting elevated blood pressure(2) and exhibits spontaneous 

hypertension with many features in common with human essential hypertension(3). These 

include elevated peripheral resistance, increased cardiac output, elevated sympathetic activity 

and cardiovascular hypertrophy(4, 5). Furthermore, as in humans, its blood pressure is readily 

lowered with peripheral vasodilators, calcium channel antagonists and blockers of the renin–

angiotensin system. Although factors responsible for increased blood pressure in the SHR are not 

fully understood, studies indicate both renal and non-renal mechanisms to be involved(6-8). In 

the SHR, blunting of the pressure-natriuresis curve is observed, such that greater perfusion 

pressures are required to achieve the same level of diuresis compared to its normotensive 

counterpart, the Wistar-Kyoto rat (WKY)(9).The pressure-natriuresis curve is altered even in 

very young SHR, indicating that the resetting of kidney function occurs very early and may be 

necessary for the development of hypertension in the SHR(10). In addition to intrarenal 

mechanisms, neuroendocrine factors may contribute to the development of arterial hypertension 

in the SHR. Sympathetic nerve activity is elevated in this strain, and neurohumoral reactivity to 

environmental stress is enhanced compared with normotensive rats. Brief angiotensin-converting 

enzyme inhibition in juvenile SHR, as well as neonatal interruption of peripheral sympathetic 

innervation, chronically reduces arterial pressure associated with a reduction in peripheral 

vascular resistance(11, 12). These effects may be at least in part due to interference with renal 

development and function.  

Renal transplantation studies have been extremely helpful in understanding the renal 

contribution to the development of hypertension in the SHR. Transplantation of an SHR kidney 
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in WKY rats following removal of both native kidneys, causes the recipients to develop 

hypertension(13). However, transplantation of a WKY kidney into SHR rats does not induce 

hypertension suggesting that an intrinsic defect in the SHR kidney is responsible for the 

development of hypertension(14). Although no differences in daily water intake, plasma urea 

concentration, glomerular filtration rate, renal blood flow, and weight of transplanted kidneys 

have been observed between the two groups, renal sodium retention in recipients of an SHR 

kidney is higher compared with controls transplanted with a WKY kidney(6). Data on the renin-

angiotensin system do not suggest that its activation is a major contributor to the development of 

renal post-transplantation hypertension in recipients of an SHR kidney(15) and sympathetic re-

innervation of SHR kidney grafts does not contribute to renal post-transplantation 

hypertension(16). Thus, data on renal transplantation studies support the hypothesis that a renal 

factor(s) is involved in the development/maintenance of hypertension in the SHR. 

1.3 SYMPATHETIC NERVOUS SYSTEM AND ESSENTIAL HYPERTENSION 

Evidence drawn from a number of sources, utilizing both electrophysiologic and neurochemical 

techniques, provides compelling evidence that over-activity of the sympathetic nervous system is 

commonly present in younger patients with essential hypertension. In borderline and established 

hypertension, nerve firing rates in postganglionic sympathetic fibers passing to skeletal muscle 

blood vessels are increased. There is also increased spillover of the sympathetic neurotransmitter 

norepinephrine from the heart and kidneys, providing evidence of stimulated sympathetic 

outflow to these organs(17-20). The increased cardiac and renal sympathetic nerve firing provide 

a plausible mechanism for the development of hypertension, through the regulatory influence of 

the sympathetic nervous system on renin release, glomerular filtration rate, and renal tubular 

sodium reabsorption, and on cardiac growth and pump performance. Furthermore, normotensive 

offspring of hypertensive patients frequently show exaggerated increases in sympathetic nerve 

activity and plasma norepinephrine concentration in response to mental stress as well as 

increased sympathetic nerve activity and total body norepinephrine spillover in resting states(21). 

Because the activation occurs in prehypertensive or initial stages of hypertension, it is possible 
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that the sympathetic nerve activation has a causative relation with the development of essential 

hypertension in association with genetic backgrounds.  

It has been largely unresolved whether the sympathetic nervous system plays a role in the 

long-term regulation of arterial blood pressure and hypertension. Guyton concluded from a 

quantitative mathematical systems analysis that increasing the total peripheral resistance without 

altering the kidney's capability to excrete salt and water will not cause sustained hypertension 

because of counter-regulatory pressure-natriuresis(7). The kidney itself, however, can be 

controlled by other factors such as nervous and humoral factors. The renal sympathetic nerves 

can promote antinatriuresis directly through renal tubular innervation and indirectly by neurally 

mediated increases in renin release and renal vascular resistance(22). Increased renal sympathetic 

nerve activity causes a parallel shift of the pressure-natriuresis relationship to higher renal 

perfusion pressures in dogs. Chronic renal sympathetic nerve stimulation and norepinephrine 

infusion into the renal artery produced sustained hypertension in dogs and rats(22). In sinoaortic 

denervated rabbits, NaCl feeding produced hypertension that was prevented by prior renal 

denervation(23). An increase in renal vascular resistance and a decrease in renal blood flow are 

the most consistent abnormalities in benign essential hypertension. In many patients with 

essential hypertension of recent onset, the increased renal vascular resistance represents a 

functional abnormality that is sympathetically mediated(24). Genetic and environmental (high 

salt diet and stress) factors interact to disturb neural control of renal function. Normotensive 

offspring of hypertensive parents were reported to respond to mental stress with enhanced 

decreases in renal blood flow and sodium excretion(21). In borderline hypertensive subjects, 

dietary salt loading produced greater decreases in renal blood flow, enhanced renal 

vasoconstriction, and enhanced water retention during sympathetic activation; and salt-sensitive 

hypertensive patients exhibited blunted decreases in plasma norepinephrine concentration during 

salt loading(21). Taken together with other extensive evidence, there is little doubt that increased 

activity of the sympathetic nervous system could be the cause of essential hypertension sustained 

by a sympathetic effect and later permanent renal changes to elevate the set point level of the 

kidney-body fluid pressure-regulating mechanism(25). Another mechanism by which the 

sympathetic nervous system may contribute to the long-term regulation of arterial pressure is a 

trophic effect on vascular smooth muscle, which promotes increasing vascular resistance and 

response to vasoconstrictor stimuli(21). 
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Thus, there is increasing evidence that essential hypertension, at least in early stages, is 

accompanied by increased sympathetic activation. The sympatho-renal interactions in 

conjunction with genetic and environmental factors may play roles in the long-term control of 

arterial blood pressure. The causes, however, of sympathetic activation and its precise 

mechanisms leading to the pathogenesis of essential hypertension remain to be determined. 

1.4 IMPAIRED SODIUM EXCRETION AND HYPERTENSION 

The kidney is usually histologically normal in the early stages of essential hypertension. 

Nevertheless, a wealth of data obtained from both humans and experimental models suggests that 

inadequate sodium excretion is a risk factor for essential hypertension.  

A variety of approaches have found that an inability to excrete sodium leads to increased 

blood pressure in humans and experimental animals(26). On intravenous infusion of saline, renal 

sodium excretion is markedly blunted in patients with essential hypertension(27). In a subset of 

essential hypertensive patients, the "salt retention" is associated with impaired pressure 

natriuresis response(28) and numerous studies also point to a causal link between a chronically 

high salt intake and the development of hypertension when the kidneys have a reduced ability to 

excrete salt(29).  

Cross-transplantation of kidneys between normotensives and hypertensives have 

provided strong evidence that the kidney plays a key role in primary hypertension(30). Studies in 

humans show a normalization of blood pressure in six hypertensive patients who, following 

bilateral nephrectomy, received kidney transplants from normotensive cadaver donors(31). These 

patients, in whom high blood pressure was resistant to a four-drug antihypertensive treatment, 

showed a prolonged (4 yr) lowering of MABP without the need for therapeutic intervention. 

Conversely, it is noted that the incidence of hypertension in transplant recipients correlated 

strongly with the familial incidence of hypertension in the donor’s family(32).  

Several independent groups performed rodent cross-transplantation studies in the 1970s. 

Dahl’s original findings(33), confirmed later in a number of studies(34-36), found that on a 0.3% 

salt diet, blood pressure was "determined by the genotype of the donor kidney rather than by the 

genotype of the recipient." Interestingly, the insertion of a control kidney into a Dahl-salt 

 5 



sensitive (DS) rat did not prevent blood pressure increases evoked by a high-salt diet (8%), 

indicating that extrarenal factors also exert a significant influence on MABP. One possible 

criticism of these experiments is that they demonstrate the effect of transplanting a kidney 

already damaged by exposure to sustained hypertension. This issue was addressed in young 

Milan hypertensive (MH) rats studied before the onset of hypertension. Insertion of a 

normotensive control kidney into a bilaterally nephrectomized MH rat prevented development of 

hypertension, whereas insertion of an MH kidney into a control rat induced chronically elevated 

MABP(37). Likewise, cross-transplantation of kidneys from spontaneously hypertensive (SHR) 

rats, given life-long antihypertensive therapy by angiotensin converting enzyme (ACE) 

inhibition, and never therefore exposed to high perfusion pressure, conferred hypertension on the 

genetically normotensive recipient(6).  

The studies described above suggest that 1) blood pressure can be set by the kidney and 

2) the renal defect is genetically determined. Congenic approaches have been used to localize the 

genomic region responsible for setting of blood pressure by the kidney. For example, congenic 

SHR rats carrying a segment on chromosome 1 from the normotensive Brown-Norway rat have 

markedly lower blood pressures than noncongenic SHR rats(38). Elegant cross-transplantation 

studies between progenitor SHR rats and the congenic strain revealed that the Brown-Norway 

fragment of chromosome 1 lowered blood pressure. It is important to note that the hypotensive 

effect was observed whether the fragments were present renally or extrarenally, indicating again 

that other factors exert powerful influences on MABP(39).  

1.5 VASCULAR-DEPENDENT HYPERTENSION 

It can be difficult to envisage a central role for the kidney in the onset of hypertension since 

gross renal abnormalities are mostly absent in the early stages of the disease. Moreover, volume 

expansion and increased cardiac output would be expected if blunted natriuretic capability plays 

a primary role in essential hypertension, but neither of these are cardinal features. Guyton’s 

hypothesis argues that the period during which blood pressure is volume-dependent may only be 

transitory since elevation of MABP would increase renal salt excretion to restore sodium 

balance(7). Failure to return blood pressure to normal is attributed to autoregulatory 
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vasoconstriction in the peripheral vascular beds, triggered locally in response to prolonged 

exposure to high perfusion pressure. Despite the fact that chronic hypertension, under this model, 

is maintained by the vasculature, impaired renal sodium excretion remains the initiating event. 

Data in support of this hypothesis, show that prevention of volume expansion following salt 

loading in DS rats prevents the development of hypertension(40).  

Nevertheless, other studies in salt-sensitive hypertensive models do not find volume 

expansion to be a key hypertensive event(41, 42). It is known, for example, that an increase in 

sympathetic nervous system (SNS) activity is often observed in the early stages of 

hypertension(43). It has been proposed that this increase in sympathetic drive is the initiating 

hypertensive event(44). These data suggest that repeated intermittent bouts of sympathetic 

hyperactivity cause renal vasoconstriction and promote subclinical changes to the renal structure, 

particularly the afferent arteriole, which in turn leads to altered salt handling(45). Impaired renal 

sodium excretion persists as a key feature for hypertension but is no longer the initiating event. 

Instead, the hypertension adheres to the Guytonian paradigm only after the kidney is subjected to 

repeated ischemic episodes following vasoconstriction and reduced renal plasma flow(46). 

Moreover, this may be a vicious circle in that small increases in plasma sodium concentration 

can exert a central pressor effect via activation of both the RAS and SNS(47).  

1.6 REGULATION OF ARTERIAL BLOOD PRESSURE AND THE ROLE OF THE 

KIDNEY 

Regulation of arterial blood pressure is a complex phenomenon, with many intervening genetic 

and environmental factors. Blood pressure is a function of cardiac output, which is influenced by 

extracellular fluid volume, and the kidneys play a major role in the long-term control of this 

volume by matching urinary sodium and water output to dietary intake. The second parameter 

that determines blood pressure is peripheral vascular resistance, which is continuously regulated 

by the arterioles to adjust blood flow to the metabolic needs of each tissue. Blood pressure is thus 

expressed as: 

Blood Pressure= Cardiac Output X Total Peripheral Vascular Resistance 
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Finally, the functions of the kidneys, heart, and blood vessels are tightly coordinated by multiple 

regulatory systems acting via endocrine and paracrine pathways.  

1.6.1 Short-term control of arterial blood pressure 

The control of arterial blood pressure is a complex mixture of the long- and short-term influences 

of hormones, local vascular factors, and neural mechanisms. Short-term control of arterial blood 

pressure is mediated by three different nervous pressure control mechanisms: the baroreceptor 

feedback mechanism, the central nervous system ischemic mechanism (responds to diminished 

blood flow to the brain), and the chemoreceptor mechanism (responds to lack of oxygen)(48). 

Thus, the first line of defense against abnormal pressures is subserved by neural mechanisms.  Of 

these, the baroreceptor reflex is the best known mechanism for short-term control of arterial 

blood pressure(48, 49). Baroreceptors are stretch-sensitive receptors located in the arterial wall 

of the carotid sinus, the aortic arch and the large vessels of the thorax, that buffer abrupt 

transients of blood pressure by providing the afferent input to a medullary circuit that controls 

sympathetic drive to the heart and peripheral vasculature. Baroreceptor activity is related directly 

to the level of arterial pressure and baroreceptor activation results in vasodilatation throughout 

the peripheral vasculature (via inhibition of the medullary vasoconstrictor center) and decreased 

heart rate and strength of contraction (via excitation of the vagal center). Thus, excitation of the 

baroreceptors by pressure in the arteries reflexively causes the arterial blood pressure to decrease 

and conversely, low pressure has the opposite effects, reflexively causing the pressure to rise 

back to normal. Arterial baroreceptors are therefore vitally important in the short term (seconds 

to minutes) control of mean arterial pressure (MAP), and provide a tonic inhibitory influence on 

sympathetic tone, controlling peripheral vasoconstriction and cardiac output. However, arterial 

baroreceptors are not involved in the long-term control of mean arterial blood pressure since: 1) 

baroreceptors have little effect on the absolute level of MAP chronically; 2) baroreceptors adapt 

to imposed changes in pressure and therefore cannot provide an error signal to drive a change in 

MAP; and 3) the gain of the baroreceptor mechanism is insufficient to account for the long-term 

stability of MAP(50).  

In addition to the rapidly acting nervous mechanisms for control of arterial pressure, there 

are at least three hormonal mechanisms that also provide either rapid or moderately rapid control 
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of arterial pressure: 1) the norepinephrine-epinephrine vasoconstrictor mechanism, 2) the renin-

angiotensin vasoconstrictor mechanism and 3) the vasopressin vasoconstrictor mechanism(48). 

1.6.1.1 Renin-Angiotensin-Aldosterone System (RAS) 

The hormone angiotensin II is one of the most potent vasoconstrictors known. Whenever the 

arterial blood pressure falls to very low levels, large quantities of angiotensin II appear in the 

circulation, resulting from a special mechanism involving the kidneys and the release of the 

enzyme renin from the kidneys. Thus, when blood flow to the kidneys is decreased, the 

juxtaglomerular cells secrete renin into the blood, which acts on plasma proteins, called renin 

substrate, to release the decapeptide, angiotensin I. Renin persists in the blood for as long as 1 

hour and continues to cause formation of angiotensin I during the entire time. Within a few 

seconds after formation of angiotensin I, two additional amino acids are split from it to form the 

octapeptide angiotensin II, which occurs almost entirely in the small vessels of the lungs, 

catalyzed by the enzyme converting enzyme. During its persistence in the blood, angiotensin II 

has several effects that can elevate arterial blood pressure. One of these occurs very rapidly- 

vasoconstriction of the arterioles and to a lesser extent of the veins, resulting in an increase in 

peripheral vascular resistance and thereby raising arterial blood pressure back to normal. The 

other effects of angiotensin II are related to body fluid volumes: 1) angiotensin II has a direct 

effect on the kidneys to cause decreased excretion of salt and water; and 2) angiotensin II 

stimulates the secretion of the hormone aldosterone by the adrenal cortex, which also acts on the 

kidneys to cause decreased excretion of both salt and water. Both these effects tend to elevate 

blood volume- an important factor in the long-term regulation of arterial blood pressure.  

1.6.1.2 Sympathetic system and blood pressure regulation 

It is widely recognized that the sympathetic nervous system is pivotal to the short-term 

regulation of blood pressure. Recently, studies have suggested that in addition to the role of the 

sympathetic nervous system in regulation of blood pressure in the short-term, the sympathetic 

system may play an important role in the long-term control of arterial blood pressure as well. 

The sympathetic nervous system contributes importantly to arterial pressure control under 

varying conditions by modifying cardiac output, peripheral vascular resistance and renal 

function. The system can exert powerful acute pressor actions and participates in the 
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pathophysiology of chronic arterial hypertension. The renal volume/pressure control system is 

regarded to dominate physiological long-term arterial pressure regulation because of its infinite 

capability to return altered arterial pressure to its original level by increasing or decreasing water 

and electrolyte excretion in response to elevated or reduced systemic arterial pressure(51). 

Activation of sympathetic nerves to the kidney increases tubular sodium reabsorption, renin 

release and renal vascular resistance(22). These actions contribute to long-term arterial pressure 

elevations by shifting the pressure-natriuresis curve to the right. Signals generated in renal 

sensory receptors and conducted via renal afferent nerves modify efferent sympathetic nerve 

activity with consequences for arterial pressure regulation. 

1.6.1.3 Vasopressin and blood pressure regulation 

When arterial blood pressure falls, the hypothalamus secretes large quantities of vasopressin by 

way of the posterior pituitary gland. Vasopressin in turn has a direct vasoconstrictor effect on 

blood vessels, thereby increasing both the total peripheral resistance and the mean circulatory 

filling pressure, raising the arterial pressure back to normal(48). Studies have established that 

vasopressin is an even more potent vascular constrictor than angiotensin, and plays a very 

important role to re-establish normal arterial pressure when pressure falls acutely to dangerously 

low levels(52). 

 Vasopressin also plays an indirect role in the long-term control of arterial pressure 

through its effect on the renal collecting duct to cause decreased excretion of urine via water 

channels (aquaporins)(53). Because of this effect, vasopressin is called antidiuretic hormone. 

Even when minute quantities of vasopressin are secreted, kidney excretion of water decreases to 

a minimal amount, an effect that helps to increase blood volume when arterial pressure falls too 

low. Thus, vasopressin plays an important role in both acute and long-term regulation of arterial 

pressure. However, when excess vasopressin is secreted for long periods of time, the acute effect 

to decrease urinary output is not sustained since other factors such as arterial pressure, colloidal 

osmotic pressure and concentrations of glomerular filtrate change-leading to a re-establishment 

of the balance between body fluid intake and output. Thus long-term secretion of excess 

vasopressin plays only a small role in the regulation of body fluid volume(48).  
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1.6.2 Long-term control of arterial blood pressure 

The neural regulators of arterial pressure, though acting very rapidly and powerfully to correct 

acute abnormalities of arterial pressure, generally lose their power to control arterial pressure 

after a few hours to days. The neural mechanisms therefore do not play a major role in long-term 

regulation of arterial pressure. Long-term regulation of arterial blood pressure, instead, is 

regulated by a renal-body fluid-pressure control mechanism also called the pressure-diuresis-

natriuresis mechanism(48). This mechanism is intimately associated with extracellular fluid 

volume (ECFV) homeostasis that in turn is determined by sodium content. Sodium balance, i.e., 

the equalizing of sodium intake by sodium output, is critical to ECFV, and the kidneys, as the 

principal route through which sodium is eliminated from the body, are therefore central to the 

long-term stability of mean arterial blood pressure (MABP). Guyton’s "renal-body fluid 

feedback" hypothesis used a systems analysis approach to demonstrate the primary importance 

of the kidney. Kidney perfusion studies, exemplified in renal function curves (Fig.1), show that a 

rise in MABP (or renal perfusion pressure) is matched by increased renal excretion of sodium, or 

pressure natriuresis, which reduces ECFV and cardiac output, and returns MABP to normal 

(Fig.1, point A). In other words, the kidney strives to protect against perturbation from the 

equilibrium set point, and sodium balance is thus restored by a feedback system displaying 

infinite gain. Likewise, if MABP falls below the equilibrium point, the resulting antinatriuresis 

increases ECFV and MABP. Thus the two primary factors that determine the long-term level of 

arterial pressure are: 1) the pressure range of the renal output curve, and 2) the net rate of fluid 

intake.  
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Figure 1.  Pressure-Natriuresis curve 

Renal function curve showing the effect of mean arterial blood pressure (MABP) on renal sodium 

excretion. A: the equilibrium pressure that is maintained through adjustment in sodium balance. B: on sustained 

increases in salt intake, function curve shifts to the left to give a higher level of excretion at any given pressure. C: if 

these adjustments fail, curve shifts to the right so that a higher equilibrium pressure is required to match sodium 

output to input(54) 

In addition, factors that increase the effectiveness of the renal-body fluid system of 

pressure control include: 1) the renin-angiotensin-aldosterone system, and 2) the sympathetic 

nervous system. 

Thus according to the Guyton hypothesis, hypertension results from either a failure to 

increase sodium output in response to an increase in intake (i.e., a failure to shift the renal 

function curve to the left to produce a higher level of excretion at any given pressure; Fig.1, 

point B) or a shift in the renal function curve to the right so that a higher equilibrium pressure is 

required to match sodium output to intake (Fig.1, point C). All forms of hypertension are 

predicted to be a consequence of abnormal pressure natriuresis responses(55); blood pressure 

homeostasis is sacrificed to preserve sodium balance, thus highlighting a crucial role for renal 

sodium ion transporters in the long-term control of arterial blood pressure. 

 12 



1.7 RENAL SODIUM TRANSPORT 

Sodium is freely filtered at the glomerulus, with 99% of the filtered load being reabsorbed along 

the nephron, by an integrated system of ion channels, ion exchangers and ion transporters (Fig. 

2A). Sodium reabsorption across the nephron follows a general rule, i.e., Na+ entry across the 

apical membrane is the primary determinant of the intracellular Na+ concentration in epithelial 

cells. In turn, the intracellular Na+ concentration directly controls the activity of the Na+-K+-

ATPase responsible for Na+ extrusion across the basolateral membrane(56). Therefore, apical 

Na+ entry is limiting for transepithelial Na+ and fluid transport, and any change in the quantity 

and/or activity of the proteins mediating this entry should affect the reabsorption rate. For this 

reason, fluid transport regulatory systems usually act primarily on these apical Na+ transport 

proteins.  

In the proximal convoluted tubule, 50% of filtered sodium is reabsorbed. Although there 

are 20 different sodium transporters in the apical membrane, most of these couple to "substrates" 

(such as amino acids and carbohydrates), and collectively they mediate only 10% of the proximal 

tubule sodium reabsorption. The sodium-hydrogen exchanger, NHE-3, mediates the majority of 

Na+ reabsorption (Fig. 2B).  

The loop of Henle as a whole reabsorbs considerable amounts of sodium (30–40% of the 

filtered load). It is a heterogeneous nephron segment, consisting of the straight portion of the 

proximal tubule (pars recta), the descending and ascending thin limbs, and the thick ascending 

limb (TAL). In the TAL, sodium is reabsorbed (20% of the filtered load) but water is not, 

thereby creating a steep osmotic gradient in the medullary interstitium, which permits 

vasopressin-dependent water reabsorption in the collecting duct. In the TAL, almost all sodium 

transport results directly or indirectly from Na+-K+-2Cl– cotransport(57). Efficient operating of 

this transporter (BSC-1/NKCC2) requires K+ to recycle across the apical membrane through a K+ 

channel (ROMK) and chloride to exit basolaterally through a chloride channel (CLCNKB; Fig. 

2C). Potassium recycling creates an electrical potential difference, which drives the reabsorption 

of cations through the paracellular pathway.  

Sodium reabsorption in the early distal tubule (DCT1 and DCT2) is mediated by the 

thiazide-sensitive NaCl cotransporter (TSC) (Fig. 2D) and also, to a lesser extent, by sodium-

hydrogen exchange (NHE-2). The remaining reabsorption is achieved in the connecting tubule 
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and cortical collecting duct via ENaC, and it is this segment in which the fine-tuning of sodium 

reabsorption occurs, under the control of aldosterone (Fig. 2E).  

 
Figure 2.  Renal sodium transport mechanisms 

(A): percentage sodium reabsorption over the length of the nephron. Principal mechanisms of sodium 

reabsorption are shown in the proximal tubule (B), the thick ascending loop of Henle (C), the distal convoluted 

tubule (D), and the collecting duct (E). Adapted from Mullins LJ et al.(58) 

1.7.1 Mutations in renal sodium transporters and associated disorders 

Since apical Na+ entry is limiting for transepithelial Na+ and fluid transport, any change in the 

quantity and/or activity of the proteins mediating this entry affects the reabsorption rate, fluid 

transport regulatory systems usually act primarily on these apical Na+ transport proteins.  

NHE-3: The Na+-H+ exchanger, NHE3, is the major pathway for sodium reabsorption in 

the proximal tubule (Fig. 2B) and accounts for about 60% of sodium reabsorption. As such, 

knockout of the exchanger would be expected to impair tubule function and result in renal salt 
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loss. However, despite a significant (50–60%) reduction in proximal tubule fluid reabsorption, 

NHE-3 knockouts have only mild volume depletion and hypotension(59, 60).  

BSC-1/NKCC2: BSC-1/NKCC2 reabsorbs approximately 30% of the filtered Na+ load 

in the thick ascending limb of Henle's loop and is selectively inhibited by diuretic agents such as 

bumetanide and furosemide(61, 62). Mutations in the gene encoding NKCC2 or any of the genes 

encoding ion channels required for its operation (ROMK, CLCNKB) in human subjects have 

been shown to cause Bartter's syndrome, presumably by inducing a loss of function of the 

transporter(63). Patients with Bartter's syndrome exhibit, at an early age, severe urinary Na+ and 

water-wasting associated with extracellular fluid volume depletion, hypokalemic metabolic 

alkalosis, and increased urinary Ca2+ excretion(64). The importance of BSC-1 is demonstrated by 

the fact that homozygous knockout mice die within two weeks of birth from severe volume 

depletion(65). Indomethacin (a potent nonselective COX inhibitor), administered from birth, 

rescues the phenotype, implicating prostaglandins in the regulation of renal salt excretion(65). 

Surviving adults exhibit all the features of Bartter’s syndrome and develop severe 

hydronephrosis.  

TSC: Sodium reabsorption in the distal convoluted tubule (DCT) occurs via the apical 

thiazide-sensitive NaCl cotransporter (TSC/NCC), mutations of which cause Gitleman’s disease 

(Figure 3). Patients with Gitelman’s syndrome often present at adolescence with hypokalemia, 

metabolic alkalosis, and mild hypotension(66). In contrast to Bartter’s syndrome, hypocalciuria 

is observed as a consequence of an increased driving force for Ca2+ reabsorption in the DCT. 

Mice lacking TSC have no overt salt wasting phenotype unless sodium restricted(67).  

Patients with Gordon’s syndrome (pseudohypoaldosteronism type II, a rare autosomal 

dominant condition) exhibit low-renin low-aldosterone hypertension, hyperkalemia, and 

metabolic acidosis(68). The syndrome can be corrected with thiazide diuretics, suggesting 

increased TSC activity as the underlying cause. There is, however, no significant linkage 

between Gordon’s syndrome and the TSC gene locus(68). The clinical features, in a subset of 

these patients, arise from independent mutations in two members of a serine-threonine kinase 

family, WNK4(69), and WNK1(70), which regulate sodium and potassium transport proteins in 

the distal nephron. The hypertension stems from both impaired retrieval of NCC from the apical 

membrane of the DCT cell(71) and increased paracellular chloride flux(72). The hyperkalemia 

arises from a gain-of-function mutation in WNK4 (independent of its kinase activity), which 
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increases the inhibition of K+ secretion via endocytotic retrieval of ROMK(73). Thus WNK4 has 

a dual role in controlling renal sodium and potassium excretion(74). The association between a 

single-nucleotide polymorphisim near the WNK1 promoter and severity of hypertension suggests 

that increased WNK1 expression might also contribute to increased blood pressure(70).  

ENaC: ENaC is the primary target of diuretic agents such as amiloride and its 

derivatives, which selectively inhibit channel activity in the micromolar range. The channel is 

composed of three different subunits α, β and γ, which likely form a tetrameric pore with a 

stoichiometry of 2α:1β:1γ(75), although other stoichiometries have been proposed(76-81). β and 

γ subunit mutations associated with functional defects of the channel have been identified in 

human subjects with pseudohypoaldosteronism type 1 and Liddle's syndrome(63). The 

autosomal recessive form of human pseudohypoaldosteronism type I is caused by loss-of-

function mutations in any of the three ENaC subunits (α, β and γ; Fig. 4). It is characterized by 

salt wasting, hyperkalemia, and high mortality immediately after birth(82, 83). Unlike patients 

with the autosomal dominant form of pseudohypoaldosteronism type 1, patients fail to improve 

with age and require massive salt supplementation. Mice with knockout mutations in the Scnn1b 

or Scnn1g genes encoding the β or γ subunits of the sodium channel die shortly after birth from 

dehydration and hyperkalemia(84, 85). 

Liddle’s syndrome is characterized by early-onset hypertension, hypokalemic alkalosis, 

suppressed plasma renin activity, and low plasma aldosterone levels. The autosomal dominant 

syndrome is caused by mutations at the conserved PY motif in either the β or the γ subunit of 

ENaC, which delete or modify their cytoplasmic COOH termini, resulting in increased ENaC 

activity(86), and increased water and salt reabsorption in the renal collecting tubules. The 

number of channels in the membrane is effectively increased due to their reduced clearance from 

the cell surface. Normally, a ubiquitin-protein ligase, Nedd4, binds to the PY motif of ENaC 

subunits leading to ubiquitination and degradation(87). In cells derived from the mouse 

collecting duct, it has been shown that Nedd4–2 is the isoform responsible for binding to the 

ENaC complex and negatively regulating it(88, 89). No knockout models of Nedd4l have as yet 

been published, but in-vitro analysis has shown that siRNA against Nedd4–2 specifically 

increases amiloride-sensitive Na+ current, while the mutation associated with Liddle’s syndrome 

(βR566X) abolishes the effect of the siRNA(90).  
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Thus, in summary, loss of function of sodium transporters tends to have severe 

consequences; the more distally the loss occurs, despite the fact that, in absolute terms, the distal 

transporters account for a small proportion of overall sodium reabsorption. This may reflect the 

loss of compensatory capacity; there are no more lines of defense for the body to fall back 

on(91).  

 
Figure 3.  Disorders associated with mutations in renal sodium transport systems 

Mutations in genes encoding for TSC result in Gitelman’s syndrome; mutations in genes encoding for 

either NKCC2 or ROMK, or CLCNKb cause Bartter’s syndrome and finally, mutations in the gene encoding ENaC 

result in pseudohypoaldosteronism. Adapted from Mullins LJ et al.(58) 

1.8 THE RENAL BUMETANIDE-SENSITIVE NA-K-2CL COTRANSPORTER 

TYPE-1 (BSC-1/NKCC2) 

The bumetanide-sensitive Na+-K+-2Cl– cotransporter is the major salt transport pathway in the 

apical membrane of the mammalian thick ascending limb of Henle's loop (TAL). The function of 
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this cotransporter in the TAL is critical for salt reabsorption, for the production and maintenance 

of the countercurrent multiplication mechanism, and is also involved in the regulation of the 

acid-base and divalent mineral cation metabolism(92). The disruption of the Na+-K+-2Cl– 

cotransporter gene in humans(93) and mice(65) produces Bartter's syndrome, an autosomal 

recessive disease characterized by metabolic alkalosis, hypokalemia, hypercalciuria, and severe 

volume depletion, accompanied by a reduction in arterial blood pressure. In addition, the Na+-

K+-2Cl– cotransporter protein in the TAL is the main pharmacological target of loop diuretics, 

which are used extensively in the treatment of edematous states.  

The primary structure of the kidney-specific, bumetanide-sensitive Na+-K+-2Cl– 

cotransporter (BSC-1 or NKCC2) has been elucidated by cloning cDNA from rat(94), rabbit(95), 

mouse(96), and human kidney(93). BSC1 belongs to the superfamily of electroneutral cation-

coupled chloride cotransporters (SLC12A) for which nine genes have been identified(97). Two 

of these genes encode Na+-K+-2Cl– cotransporters: BSC-1, a kidney-specific cotransporter 

expressed only at the apical membrane of the TAL, and BSC-2 (also known as NKCC1), a 

ubiquitously expressed gene at the basolateral membrane of epithelial cells and in several 

nonepithelial cells. The degree of identity between these proteins is ~60%, and ~50% between 

these genes and the thiazide-sensitive Na+-Cl- cotransporter (TSC), the other Na+
-coupled to 

chloride transporter of the SLC12 family. The basic topology of BSC-1, shown in figure 4, has 

been deduced from hydropathy analysis of the 3,825 bp coding segment of BSC-1 cDNA and 

predicts a NH2-terminal hydrophilic region of 174 amino acids, followed by a central 

hydrophobic domain with 12 putative membrane-spanning helices, and a long hydrophilic 

COOH terminus of 454 amino acids.  

Additionally BSC-1 or NKCC2 has four splice variants: NKCC2F, A and B formed as a 

result of alternative splicing of three cassettes of exon 4 giving rise to a variable 96 base pair 

sequence that encodes the second transmembrane domain and 11 amino acids of the following 

connecting segment, and NKCC2AF, which possesses both A and F exons in tandem(95, 96, 98, 

99). Each of the variants is differentially distributed along the thick ascending limb (TAL), with 

some degree of overlap, and has different kinetic properties(95, 96, 100-102). F displays the 

lowest affinity for ions under controlled conditions and B the highest (Kms: F>A>B), whereas A 

displays the highest transport capacity and B the lowest (Vmax: for A>F>B). Regarding AF, 

intriguingly, influx studies in the Xenopus laevis oocyte expression system have shown that this 
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variant is nonfunctional even if it is able to reach the cell surface(99). B is expressed 

predominantly in macula densa cells, F in the inner stripe of outer medulla and A in the cortex 

and outer stripe of outer medulla. It is believed that the differential localization and kinetic 

properties of the variants contribute to the fine tuning mechanism for the control of sodium 

transport in the TAL.  

BSC-1 and BSC-2 form dimers although each monomer is thought to be fully functional. 

The predicted core molecular weight of NKCC2 monomer is ~120kDa, although western blot 

analysis of proteins extracted from rat kidneys show an apparent molecular weight of 

~160kDa(103, 104). The rBSCl protein sequence contains six potential N-linked glycosylation 

sites(94); two are located in the hydrophilic loop between membrane-spanning segments M7 and 

M8 (Asn-442 and Asn-452); of the four other potential N-linked glycosylation sites, two are 

positioned within potential membrane-spanning segments (Asn-396 and Asn-79) and two (Asn-

864 and Asn-875) are located in the putative cytosolic COOH terminus. Recently, studies have 

confirmed that BSC-1 is a glycosylated protein and that prevention of glycosylation reduces its 

functional expression by affecting both the insertion into plasma membrane and the intrinsic 

activity of the transporter(105). Finally, BSC-l protein contains seven potential protein kinase C 

phosphorylation sites(94): two in the NH2, terminus (Ser-57 and Thr-75) and five in the COOH 

terminus (Thr-639, Thr-927, Ser-983, Ser-999, and Ser-1029). In addition, three potential cAMP-

dependent protein kinase phosphorylation sites are present in the putative cytosolic COOH 

terminus of rBSC1: Ser-874, Ser-1013, and Ser-1060(94). In addition, the phosphoregulatory 

domain in the NH2-terminal domain of BSC-2 containing three threonines (T-184, T-189, T-

202), is highly conserved in both rat (T-101 corresponding to T-189 of BSC-2)(94) and rabbit 

BSC-1 (T-99, T-104, T-107 corresponding to T-184, T-189, T-202 in BSC-2)(106). Recently, 

studies confirmed that BSC-1 is phosphorylated in vivo and that phosphorylation increases both 

trafficking of BSC-1 to the plasma membrane and its activity(106, 107).  
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Figure 4.  Structure of BSC-1 protein 

1.8.1 Regulation of BSC-1 

The thick ascending limb plays a central role in the regulation of water excretion by 

concentrating the renal medulla (the countercurrent multiplier mechanism) and by diluting the 

tubule fluid delivered to the distal convoluted tubule. Thus, regulation of BSC-1 is implicated in 

the maintenance of water balance. Increasing net NaCl reabsorption in TAL by hormones 

generating cAMP via their respective Gs-coupled receptors such as vasopressin, glucagon, 

parathyroid hormone, β-adrenergic, and calcitonin is a fundamental mechanism for regulating 

salt transport in this nephron segment. Of these hormones, the most widely studied is the 

antidiuretic hormone vasopressin(108, 109). As demonstrated in isolated perfused tubule studies 

mediated by cAMP, vasopressin increases NaCl absorption by TAL(108, 110, 111) following a 

mechanism that appears to involve trafficking of Na+-K+-2Cl– cotransporter BSC-1, from an 
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intracellular vesicular pool to apical plasma membrane(107, 112, 113). In a recent study using a 

polyclonal antibody that recognizes BSC-1 when phosphorylated at threonine residues located in 

the amino-terminal domain, Gimenez and Forbush observed that vasopressin’s effect in mouse 

TAL may be dependent in part on phosphorylation of BSC-1 and that vasopressin action in TAL 

induces phosphorylation of Na+-K+-2Cl– cotransporter protein that is associated with migration 

of cotransporter-containing vesicles to apical membrane(106, 107). Other hormones that generate 

cAMP via their respective Gs-coupled receptors stimulate concomitant increases in NaCl 

absorption rate, such as parathyroid hormone, calcitonin, and glucagon, presumably using similar 

mechanisms to those demonstrated for vasopressin(114-116). Prostaglandin E2 has been 

demonstrated to have a short-term inhibitory effect on NaCl absorption in TAL(117), 

presumably via its ability to inhibit cAMP production in TAL cells(118). Another mediator that 

regulates TAL NaCl transport via effects in BSC-1 is nitric oxide, which directly inhibits NaCl 

absorption in isolated perfused preparations(119). 

In addition to the short-term effect of vasopressin on BSC-1 trafficking or activity, long-

term increases in vasopressin levels have been demonstrated to upregulate BSC-1 protein 

expression in TAL cells(120). This action results in long-term potentiation of NaCl transport in 

TAL, as demonstrated by Besseghir et al. in isolated perfused tubule studies, in which the 

investigators observed that chronic in-vivo administration of antidiuretic hormone to Brattleboro 

rats significantly increased basal voltage and chloride transport in TAL(121). In addition, long-

term change in prostaglandin E2 levels appears to modulate BSC-1 expression levels in TAL 

because the cyclooxygenase inhibitors indomethacin or diclofenac increased BSC-1 abundance, 

an effect that was reversed by misoprostol, a prostaglandin E2 analog(122). Supporting this 

observation, Escalante et al. previously showed in isolated rabbit mTAL cells that arachidonic 

acid metabolites produced a concentration-dependent inhibition of Na+-K+-2Cl– cotransporter 

activity, an effect that was prevented by selective inhibition of cytochrome P-450 

monooxygenases(123). In addition to actions of hormones that generate cAMP in TAL, 

regulatory mediators using other signal mechanisms also modulate BSC-1 expression in TAL. 

Glucocorticoids increase BSC-1 mRNA and protein expression by a mechanism that requires 

vasopressin, while aldosterone has no effect on BSC-1 expression levels(124). By stimulating 

cGMP production, nitric oxide increases BSC-1 expression, as observed by Turban et al. as a 

marked decrease in this cotransporter abundance in response to inhibition of nitric oxide 
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synthases by NG-nitro-L-arginine methyl ester (L-NAME)(125). In addition, although 

angiotensin II infusion was found to increase BSC-1 abundance in TAL(126), absence of AT1a 

receptors in mice(127) or blockade of angiotensin II AT1 receptors by candesartan(128) did not 

produce opposite effects, suggesting that the angiotensin II effect on BSC-1 expression is 

indirect and related to local changes in nitric oxide or PGE2 levels. Finally, expression of BSC-1 

is also regulated by acid-base status. Chronic metabolic acidosis has been shown to enhance 

expression of BSC-1 mRNA and protein in medullary TAL(129) by glucocorticoid-dependent 

and -independent mechanisms(124). In this regard, it has been recently reported that metabolic 

acidosis increases the stability of BSC-1 mRNA, without affecting SLC12A1 transcription 

rate(130). Under physiological conditions, most of the ammonium produced in the proximal 

tubule is reabsorbed in TAL to be later secreted in medullary collecting ducts and excreted into 

urine(131, 132). Thus, during acidosis, in which production of ammonium by proximal tubule is 

increased, enhancing of BSC-1 expression arises as a compensatory mechanism to increase 

ammonium reabsorption. Finally chronic hypercalcemia has been shown to cause a reduction in 

BSC-1 abundance, likely to play a major role in the urinary concentration defects associated with 

hypercalcemia(133).  

1.8.2 BSC-1 and disease 

The physiological importance of BSC-1 in regulation of salt (and water) transport and counter 

current multiplication has been well established with the use of loop diuretics bumetanide and 

furosemide that act as functional blockers of BSC-1. Because BSC-1 is the principal apical Na+ 

entry pathway in the thick ascending limb of Henle, it is a prime candidate for long-term 

dysregulation of arterial blood pressure.  The absence of functional BSC-1 protein resulting from 

mutations or deletion of the NKCC2 gene is associated with a serious salt-wasting disorder and 

low blood pressure(134). Decreased abundance of BSC-1 has also been observed in a rodent 

model of ischemia-induced acute renal failure, characterized by impaired renal tubular sodium 

reabsorption(135). On the other hand, excessive BSC-1 activity has been linked with inherited 

hypertension in humans and rodent models. Recent studies demonstrate that enhanced expression 

of BSC-1 in the thick ascending limb causes sodium retention in rats with congestive heart 

failure (CHF)(136).  Moreover, BSC-1 is up-regulated in rats with small-to-moderate myocardial 
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infarctions(137), dehydration, cardiac failure(138) and liver cirrhosis(139), suggesting that high 

BSC-1 expression underlies edema formation. An increased abundance of BSC-1, however, has 

also been noted in rats with the syndrome of inappropriate secretion of antidiuretic hormone, 

hyponatremia without edema. Recently, studies in an animal model of brain infarction, showed 

increased NKCC2 abundance and enhanced body fluid accumulation, likely via the sodium 

loading-dependent concentration of the urine(140). Aquaporin-2 levels in the animal model of 

brain infarction remained unaltered, suggesting that the physiological process of edema 

formation is based on specific BSC-1 expression. Increased levels of BSC-1 mRNA and protein 

have also been reported in an experimental model of prenatal programming of hypertension in 

the rat, induced by a maternal low-protein diet during pregnancy(141). Increased expression and 

activity of BSC-1 have also been reported in isolated thick ascending limb tubules of Dahl-salt 

sensitive rats, thus explaining, at least in part, their genetic renal inability to excrete 

sodium(142). Increased BSC-1 activity could be accounted for by changes in the regulatory 

mechanisms, by changes in protein abundance, or by a combination of both. The molecular 

mechanisms controlling BSC-1 gene transcription and regulation in response to chronic 

challenges, however, are not known; nor has it been explored how they interact with the 

regulatory mechanisms.  

1.9 THE DISSERTATION 

The present study is based on the concept that the pathogenesis of hypertension involves the 

kidney. In this regard, transporters in the apical (and basolateral) membranes of epithelial cells in 

nephrons are responsible for sodium reabsorption and fluid balance, and therefore may be 

important candidates for involvement in the development of hypertension. Additionally, many 

lines of evidence indicate that the sympathetic nervous system, via the renal nerves, plays an 

important role in the pathogenesis of essential hypertension. The goals of the dissertation were 

to: 1) identify whether renal sodium ion transporter expression is altered in essential 

hypertension and if so, its physiological significance in an animal model of essential 

hypertension, the Spontaneously Hypertensive Rat (SHR); 2) determine the role of the 
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sympathetic nervous system (and norepinephrine) in regulation of renal transport systems; and 3) 

elucidate the underlying molecular mechanism.  

Our results show that the abundance of sodium transporters BSC-1, Na-K-ATPase-α1, 

NHE-3, NBC-1; the potassium channel ROMK-1 and the water channel AQP-2 are elevated in 

the SHR, suggesting that the pathophysiology of altered renal excretory function in essential 

hypertension may involve alterations in several transporters located along the nephron. Further, 

these alterations in protein levels are not accompanied by changes in mRNA, suggesting that a 

post-transcriptional mechanism(s) is responsible for the over-expression of these transporters.  

Among the renal sodium transporters profiled in the SHR, BSC-1 was found to be 

elevated more than the other transporters, suggesting that the increase in BSC-1 abundance may 

be the most important contributing factor to altered tubular function in SHR.  In support of this 

conclusion, our results also demonstrate that the natriuretic response to furosemide is greater in 

SHR versus WKY, and normalizes blood pressure in the SHR.  Thus, both our biochemical and 

pharmacological data are consistent with an important role of BSC-1 in the pathophysiology of 

hypertension in SHR. Additionally, the progression from pre-hypertensive to hypertensive state 

in the SHR is accompanied by a proportional increase in both steady-state protein levels of BSC-

1 as well as its distribution to the plasma membrane, indicating that BSC-1 expression and 

distribution are stage dependent and increase as hypertension progresses. The increased 

presentation of BSC-1 at the plasma membrane could result in increased sodium reabsorption 

and thereby contribute to the pathogenesis of hypertension in the SHR, and drugs that target/alter 

BSC-1 expression or alternatively block BSC-1 function may be useful for the treatment of 

essential hypertension. 

The renal sympathetic nervous system promotes sodium and water retention by directly 

enhancing renal epithelial cell transport; however the mechanisms are unclear. We hypothesized 

that long-term exposure of the kidney to norepinephrine upregulates the expression of key renal 

epithelial transport systems.  To test this hypothesis, we used immunoblotting of renal cortical 

and medullary tissue to investigate the abundance of major transport systems expressed along the 

renal tubule in response to chronic infusions of norepinephrine. Our results indicate that 

norepinephrine infusion significantly increased protein abundance of BSC-1, along with modest 

increases in NHE-3, NBC-1 and aquaporin-2. We conclude that norepinephrine-induced 

increases in the expression of NHE-3, NBC-1, BSC-1 and aquaporin-2 are likely to play an 
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important role in the regulation of salt and water transport by norepinephrine in the kidney and 

may partially explain the altered renal sodium and water handling associated with over-activation 

of the sympathetic system. 

Finally, to understand the underlying mechanism of regulation of renal transporters by 

sympathetic activation, we focused our attention on the regulation of BSC-1 by norepinephrine 

since we hypothesize that BSC-1 may be one of the critical players in the 

progression/maintenance of increased sodium handling and hypertension in the SHR along with 

an overactive sympathetic system. Our studies with an immortalized thick ascending limb cell 

line show that the effect of norepinephrine on BSC-1 involves post-transcriptional control 

mechanisms via the β-adrenoceptor-cAMP-PKA pathway that involves at least in part the MAP 

kinases. Finally, we found that the α-adrenoceptor negatively regulates BSC-1. Further 

elucidation of the mechanisms involved could eventually lead to the identification of new targets 

and the development of therapies that could help better treat diseases associated with over-

activation of the sympathetic nervous system such as essential hypertension. These studies are a 

necessary first step in this direction.  
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2.0  INCREASED EXPRESSION OF THE SODIUM TRANSPORTER BSC-1 IN 

SPONTANEOUSLY HYPERTENSIVE RATS 

2.1 INTRODUCTION 

The kidneys play an important role in regulating blood pressure by controlling sodium balance(7, 

54). Although many systems can influence blood pressure in the short term, the long-term blood 

pressure setting ultimately depends on renal sodium excretion. In this regard, transporters in the 

apical and basolateral membranes of epithelial cells in nephrons are responsible for sodium 

reabsorption and fluid balance and are therefore important candidates for involvement in the 

development of hypertension(143). 

The results of renal transplantation experiments in genetically hypertensive and 

normotensive rat strains are consistent with the concept that the kidneys regulate long-term 

levels of arterial blood pressure and that a defect in the kidney is importantly involved in the 

pathogenesis of genetic hypertension(6, 144, 145).  Moreover, studies using isolated perfused 

kidneys from spontaneously hypertensive rats (SHR) reveal an intrinsic renal abnormality in Na+ 

excretion that may contribute to the maintenance of hypertension in SHR(146).   Furthermore, 

examination of the pressure-natriuresis relationship and the effect of furosemide (an inhibitor of 

the bumetanide-sensitive Na+-K+-2Cl- cotransporter, also called BSC-1 or NKCC2) on this 

relationship demonstrates a resetting of the pressure-natriuresis process in SHR by a mechanism 

involving in part BSC-1(147).    

BSC-1 in the thick ascending limb of Henle’s loop mediates reabsorption of 

approximately 25% of the filtered Na+ load and is selectively inhibited by loop diuretics(61, 62). 

Because BSC-1 is the principal apical Na+ entry pathway in the thick ascending limb of Henle, it 

is a prime candidate for long-term dysregulation of arterial blood pressure.  In support of this 

concept, recent studies demonstrate that enhanced expression of BSC-1 in the thick ascending 
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limb causes sodium retention in rats with congestive heart failure (CHF)(136).  Moreover, BSC-

1 is up-regulated in rats with small-to-moderate myocardial infarctions(137), dehydration and 

cardiac failure(138).  Finally, mutations in the NKCC2 gene, which encodes BSC-1, presumably 

by inducing a loss of function of the transporter, result in Bartter's syndrome, an inherited disease 

characterized by hypokalemic metabolic alkalosis, hypercalciuria, salt wasting, and volume 

depletion resulting in hypotension(93, 148).  Clearly alterations in BSC-1 activity can influence 

long-term levels of arterial blood pressure. 

Because BSC-1 influences arterial blood pressure, it is conceivable that increases in 

BSC-1 activity and/or expression contribute to genetic hypertension. The expression of BSC-1 in 

SHR has not been previously examined, but it can be hypothesized that changes in BSC-1 

expression may play a critical role in the development of altered sodium handling in the SHR 

thereby contributing to the pathogenesis of genetic hypertension.  Accordingly, in the present 

study, we determined the expression of BSC-1 protein and mRNA in the outer cortex, inner strip 

of outer medulla and inner medulla of kidneys obtained from both SHR and Wistar-Kyoto 

(WKY) normotensive rats. To determine the specificity of any observed changes in BSC-1 

expression, we also compared protein expression of the thiazide sensitive Na+-Cl- cotransporter 

(TSC), the type-3 Na+-H+ exchanger (NHE-3), Na+-K+-ATPase-α1, the inwardly rectifying K+ 

channel (ROMK-1), the type-1 Na+-HCO3
--cotransporter (NBC-1), aquaporin-1 and aquaporin-2.  

Finally, because we observed a marked increase in the expression of BSC-1 protein in the inner 

strip of the outer medulla of SHR, we also compared the acute effects of the loop diuretic 

furosemide on hemodynamics and renal function in SHR versus WKY. 

2.2 MATERIALS AND METHODS 

2.2.1 Animals 

Male WKY rats (11-13 weeks of age) and age-matched SHR were obtained from Taconic Farms 

(Germantown, NY).  Rats were allowed to acclimate to the University of Pittsburgh Animal 

Facility for at least 1 week before initiation of the experimental protocols.  Protocols were 

approved by the Institutional Animal Care and Use Committee. Animals were divided into two 
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groups: one to be used for the immunoblotting and RT-PCR experiments and the other group for 

the furosemide infusion study. 

2.2.2 Kidney dissection and tissue preparation for immunoblotting 

Blood pressures in WKY and SHR rats were measured as described below; following which 

kidneys were rapidly excised and washed in ice-cold PBS. The left kidneys were dissected to 

obtain outer cortex, inner stripe of outer medulla and inner medulla and the dissected tissues 

were homogenized in lysis buffer containing (Tris HCl, 2% SDS, glycerol, PMSF and protease 

inhibitors).  Protein concentrations were measured using the BCA protein assay. Whole 

homogenates from the cortex, outer medulla and inner medulla were used to study the specific 

regional expression of the different proteins. 

2.2.3 Electrophoresis and immunoblotting 

Proteins were solubilized at 60°C for 15 min in Laemmli sample buffer. SDS-PAGE was 

performed on gradient polyacrylamide gels (4-12%) loaded with 20µg protein per lane. For 

immunoblotting, proteins were transferred electrophoretically to PVDF membranes.  Membranes 

were blocked in 5% milk for 2 hours, probed overnight at 4°C with the respective primary 

antibodies in PBS containing 1% milk: BSC-1 (1:2000), thiazide sensitive Na+-Cl- cotransporter 

(TSC; 1:600), aquaporin-1 (AQP-1; 1:2000) and aquaporin-2 (AQP-2; 1:2000), type-1 Na+-

HCO3--cotransporter (NBC-1; 1:1000), type-3 Na+-H+ exchanger (NHE-3; 1:1000), Na+-K+-

ATPase-α1 (1:5000) and inwardly rectifying K+ channel (ROMK-1; 1:1000). Membranes were 

probed with β-actin (1:10,000 Sigma Chemical Co., St. Louis, MO) for 1 hour to determine 

loading efficiency. BSC-1, TSC, AQP-1 and AQP-2 were the kind gift of Dr. M.A Knepper 

(NIH). All other primary antibodies were from Chemicon (Temecula, CA). All antibodies were 

found to be highly specific for the protein of interest and their specificity has been extensively 

characterized. Subsequently, membranes were exposed to a secondary HRP conjugated donkey 

anti-rabbit polyclonal antibody (1:5000, Pierce Biotechnology Inc., Rockford, IL) in PBS 

containing 1% milk for 1 hour at room temperature.  Bound antibodies were visualized using a 

luminol-based enhanced chemiluminescence substrate (SupersignalWest Dura Extended 
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Duration Substrate, Pierce Biotechnology Inc., Rockford, IL) before exposure to X-ray film 

(Kodak 165-1579; Eastman Kodak Co., Rochester, NY).  Densitometric analysis was performed 

using ImageQuant TL (Amersham Biosciences, Piscataway, NJ) and band densities were 

normalized to β-actin.  

2.2.4 RNA isolation and RT-PCR 

The right kidneys were used for RNA isolation. Kidneys were dissected to obtain outer cortex, 

inner stripe of outer medulla and inner medulla. RNA was isolated from the dissected tissues 

using TRIzol reagent (GIBCO Life Technologies, Carlsbad, CA) as per the manufacturer’s 

instructions. By using the primer sequences listed in table 1, RNA (0.5 µg) was reverse 

transcribed and amplified using Titanium One-step RT-PCR kit (Clontech, Palo Alto, CA). Each 

PCR cycle (total 30 cycles) consisted of denaturing at 94°C for 30 seconds, annealing at 64°C for 

30 seconds, and extension at 68°C for 60 seconds. RT-PCR products were separated on a 1.2% 

agarose gel and visualized by incorporating ethidium bromide in the gel. Densitometric analysis 

was performed using ImageQuant TL and band densities were normalized to β-actin. 
 

 

Table 1. Primers used for RT-PCR analysis of BSC-1, ROMK-1 and AQP-2 

 Accession 

number 

Primer Sequence (5′-3′) Nucleotides Product 

size 

Forward:GCATTGTCTTAACAGGAGGACC 2254 BSC-1 U10096 

Reverse:GAACTGGAGAGATGTCAAACCC 2676 

464 

Forward:AGCTCTATAAGGCTGCATACGG 1305 ROMK-1 AF081365 

Reverse:ACCTTGGGTTCAGAGAGGTACA 1725 

421 

Forward:AAGAGAAAGAGAGAGGGAGGGA 46 AQP-2 NM01209 

Reverse:GGGGAACAGCAGGTAGTTGTAG 798 

753 

 29 



2.2.5 Effects of furosemide in SHR and WKY rats 

Acute renal and hemodynamic responses to the loop diuretic furosemide (Sigma Chemical Co., 

St. Louis, MO) at bolus doses of 3 and 50 mg/kg were measured in SHR and WKY.  Each rat 

was anesthetized with pentobarbital (45 mg/kg; Research Biochemicals, Natick, MA) and placed 

on an isothermal pad.  Temperature was monitored with a rectal probe thermometer and kept at 

37 degrees C with a heat lamp.  A short section of polyethylene tubing (PE-240) was placed in 

the trachea to facilitate respiration.  The left carotid artery was exposed and cannulated with PE-

50 tubing for blood sample collections and for mean arterial BP (MABP) and heart rate (HR) 

measurements via a digital BP analyzer (Micro-Med, Inc., Louisville, KY).  A PE-50 catheter 

was placed in the left jugular vein for infusion of [14C] inulin (0.5 µCi bolus and 0.035 µCi/100 

µl of 0.9% saline/min; NEN, Boston, MA).  A PE-20 catheter also was inserted into the jugular 

vein to administer bolus doses of furosemide.  An incision was made in the rat's abdomen, and a 

PE-10 catheter was placed in the left and right ureters to facilitate collection of urine.  A flow 

probe (model 1RB; Transonic Systems, Inc., Ithaca, NY) was placed on the left renal artery for 

determination of renal blood flow (RBF).  

Infusions of saline and [14C] inulin were initiated, and following a 2-hr stabilization 

period, a urine sample and mid-point blood sample were collected during a 30-min baseline 

clearance period.  MABP, HR, and RBF were recorded at 5-min intervals, and averaged.  A bolus 

dose of furosemide (3 mg/kg) was administered, a 10-min stabilization period was allowed, 

following which, MABP, HR, and RBF were recorded, and a urine sample and mid-point blood 

sample were collected during an additional 30-min clearance period.  Another bolus dose of 

furosemide (50 mg/kg) was administered, and the above procedure repeated. 

Rats were euthanized and the left kidneys were weighed.  Urine volume (UV) was 

determined gravimetrically for each of the collection periods, and samples were analyzed for 

[14C] inulin radioactivity (model 2500TR liquid scintillation analyzer; Packard Instrument 

Company, Downers Grove, IL) and sodium/potassium concentrations (Model IL943 flame 

photometer; Instrumentation Laboratory, Lexington, MA).  Renal clearance of [14C] inulin was 

used as an estimate of glomerular filtration rate (GFR).  The RBF, GFR, UV, and excretion rates 

of sodium (UNaV), and potassium (UKV), were corrected to kidney weight measured in grams (g 

kid).  
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2.2.6 Statistical analysis 

All data are presented as mean ± SEM. Comparisons between groups were made by unpaired t-

test. Group comparisons for the furosemide study were performed using analysis of variance and 

Fisher's least-significant difference (LSD) test. P values <0.05 were considered significant. 

2.3 RESULTS 

2.3.1 Expression of BSC-1 and TSC proteins 

BSC-1 and TSC are sodium transporters that are expressed predominantly in the apical 

membranes of the thick ascending limbs and distal tubules, respectively.  Semi-quantitative 

immunoblotting showed that the expression of BSC-1 protein was found to be significantly 

higher in the outer medulla of the SHR compared to WKY (6-fold, P< 0.05; Figure 5).  We could 

not detect expression of BSC-1 in the outer cortex and inner medulla of either group.  In contrast 

to BSC-1, TSC protein was expressed primarily in the outer cortex, and the expression in SHR 

versus WKY was similar (Figure 5).  
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Figure 5.  Expression of BSC-1 and TSC in the kidney outer cortex, inner strip of outer medulla and 

inner medulla of WKY and SHR rats 

In Panel A, each lane was loaded with 20 µg of protein from a different rat. Blots were probed with rabbit 

anti-BSC-1, rabbit-anti-TSC and mouse-anti-β-actin antibodies. Panel B summaries densitometric analysis of BSC-1 

and TSC normalized to β-actin. Densitometric analysis revealed that expression of BSC-1 was significantly higher 

in the outer medulla of SHR, while expression of TSC in the cortex was similar in SHR and WKY.  *Indicates P< 

0.05 compared with WKY.  Values represent means ± SEM for 7 observations. 

2.3.2 Expression of NHE-3, Na+-K+-ATPase-α1 and NBC-1 proteins 

Previous studies have shown that expression of NHE-3 in the proximal tubule and Na+-K+-

ATPase in the collecting duct are upregulated in the SHR kidney(149, 150). Semi-quantitative 

immunoblotting revealed expression of NHE-3 protein in the outer cortex, outer medulla and 

inner medulla with significantly higher expression in the cortex and inner medulla of SHR 

kidneys (2-fold, P< 0.05; Figure 6).  Na+-K+-ATPase-α1 protein expression was detected in the 
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outer cortex and outer and inner medulla, and Na+-K+-ATPase-α1 protein expression was 

significantly, albeit modestly (approximately 25%), higher in the outer and inner medulla of the 

SHR compared to WKY (P< 0.05; Figure 2). We also detected expression of NBC-1 protein, 

which is localized to basolateral membranes of proximal tubules in the outer cortex, but not outer 

or inner medulla, and found the expression of NBC-1 protein to be higher in the outer cortex of 

the SHR compared to WKY (2-fold, P< 0.05; Figure 7).   

 

Figure 6.  NHE-3 and Na+-K+-ATPase (α1-subunit) expression in the kidney outer cortex, inner strip 

of outer medulla and inner medulla of WKY and SHR rats 

In Panel A, each lane was loaded with 20 µg of protein from a different rat. Blots were probed with rabbit-

anti-NHE-3, rabbit-anti-Na+-K+-ATPase-α1 subunit and mouse-anti-β-actin antibodies. Panel B summaries 

densitometric analysis of NHE-3 and Na+-K+-ATPase normalized to β-actin.  Densitometric analysis revealed that 

expression of NHE-3 was higher in the cortex, outer medulla and inner medulla in SHR, and expression of α1-Na+-

K+-ATPase was slightly higher in the outer and inner medulla in SHR.  *Indicates P< 0.05 compared with WKY.  

Values represent means ± SEM for 7 observations. 
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Figure 7.  NBC-1 and ROMK-1 expression in the kidney outer cortex, inner strip of outer medulla 

and inner medulla of WKY and SHR rats 

In Panel A, each lane was loaded with 20 µg of protein from a different rat. Blots were probed with rabbit-

anti-NBC-1, rabbit-anti-ROMK-1 and mouse-anti-β-actin antibodies.  Panel B summaries densitometric analysis of 

NBC-1 and ROMK-1 normalized to β-actin. Densitometric analysis revealed that expression of NBC-1 was higher 

in the cortex of the SHR and that expression of ROMK-1 was higher in the inner medulla of SHR.  *Indicates P< 

0.05 compared with WKY.  Values represent means ± SEM for 7 observations. 

2.3.3 Expression of ROMK-1 protein 

ROMK-1 in the apical membranes of the thick ascending limb allows for apical K+ recycling for 

the efficient functioning of BSC-1, and ROMK-1 in the distal convoluted tubule and collecting 

duct participates in K+ secretion. Semi-quantitative immunoblotting detected ROMK-1 

expression in the outer cortex and outer and inner medulla, which is consistent with its 

localization.  Although ROMK-1 has been originally cited as being a 45 kDa protein (151), 
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under our experimental conditions, the band of interest was found to be around 85 kDa which is 

approximately double the size of the ROMK monomer, and is believed to represent homodimeric 

and/or heterodimeric complexes formed by ROMK isoforms(152).  Expression of ROMK-1 

protein in the outer cortex and outer medulla was similar between both groups. However, 

expression of ROMK-1 in the inner medulla was significantly higher in the SHR compared to 

WKY (2-fold, P< 0.05; Figure 7). 

2.3.4 Expression of AQP-1 and AQP-2 proteins 

Several studies have demonstrated altered expression and apical targeting of aquaporins in water 

balance disorders(136, 153).   AQP-1 and AQP-2 protein expression was detected in the outer 

cortex and outer and inner medulla.  The expression of AQP-2 was significantly higher in the 

inner medulla, but not outer cortex or outer medulla, of the SHR compared to WKY (2-fold, P< 

0.05; Figure 8). Expression of AQP-1 between both groups was similar in all three kidney 

regions (Figure 8).  
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Figure 8.  Expression of AQP-1 and AQP-2 in the kidney outer cortex, inner strip of outer medulla 

and inner medulla of WKY and SHR rats 

In Panel A, each lane was loaded with 20 µg of protein from a different rat. Blots were probed with rabbit 

anti-AQ-1, anti-AQ-2 and mouse-anti-β-actin antibodies. Panel B summaries densitometric analysis of AQP-1 and 

AQP-2 normalized to β-actin. Densitometric analysis revealed that expression of AQP-1 was not different in SHR 

compares with WKY, while expression of AQP-2 was higher in the inner medulla in SHR. *Indicates P < 0.05 

compared with WKY.  Values represent means ± SEM for 7 observations. 

2.3.5 Expression of BSC-1, AQP-2 and ROMK-1 mRNA 

To determine whether the increases in BSC-1, AQP-2 and ROMK-1 protein expression were 

accompanied by similar increases in mRNA expression, we examined the mRNA expression for 

these proteins in outer cortex, outer medulla and inner medulla using RT-PCR. RT-PCR 

demonstrated that levels of BSC-1, ROMK-1 and AQP-2 mRNA in both groups were similar 

 36 



(Figure 9), suggesting that post-transcriptional events are likely to be responsible for the increase 

in the expression of these proteins.   

 

Figure 9. BSC-1, ROMK-1 and AQP-2 mRNA expression in the kidney outer cortex, inner strip of 

outer medulla and inner medulla of WKY and SHR rats as determined by RT-PCR 

2.3.6 Effects of BSC-1 inhibition 

As an index of the relative activity of the BSC-1 transporter, we measured the response to low 

and high doses of furosemide (3 and 50 mg/kg, respectively) in WKY and SHR.  Administration 

of furosemide lowered the mean arterial blood pressure significantly and resulted in 

normalization of blood pressure in SHR (Figure 10A and 10B). The effects of furosemide on 

renal blood flow (figure 10C and 10D) and renal vascular resistance (Figure 11A and 11B) in 

WKY and SHR were similar.  However the reduction in glomerular filtration rate (Figure 11D) 

was greater in SHR compared with WKY with both doses of furosemide (44.4 and 69.6% versus 
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20.6 and 49.7%, respectively).  In contrast, diuretic responses to both low and high doses of 

furosemide (Figure 12B) were augmented in WKY (1099 and 1043%) compared with SHR (740 

and 904%). Furosemide also increased absolute (Figure 12C and 12D) and fractional (Figure 

13A and 13B) sodium excretion in the SHR and WKY.  However the percentage increase in 

absolute and fractional sodium excretion with 50 mg/kg furosemide was higher in the SHR 

compared with WKY (1350% versus 766%, respectively). 

 
Figure 10.  Mean arterial blood pressure (MABP) and renal blood flow (RBF) (A and C) and percent 

changes in MABP and RBF (B and D) following furosemide administration to WKY and SHR rats 
aP< 0.05 versus baseline; bP< 0.05 versus corresponding value in WKY.  Values represent means ± SEM 

for 6 observations 
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Figure 11.  Renal vascular resistance (RVR) and glomerular filtration rate (GFR) (A and C) and percent 

changes in renal vascular resistance and glomerular filtration rate (B and D) following administration of 

furosemide to WKY and SHR rats 
aP< 0.05 versus baseline; bP< 0.05 versus corresponding value in WKY.  Values represent means ± SEM 

for 6 observations 
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Figure 12.  Urine volume (UV) and sodium excretion rate (UNaV) (A and C) and percent changes in 

urine volume and sodium excretion rate (B and D) following administration of furosemide to WKY and SHR 

rats 
aP< 0.05 versus baseline; bP< 0.05 versus corresponding value in WKY.  Values represent means ± SEM 

for 6 observations 

 40 



 
Figure 13.  Fractional sodium (FENa) and potassium (FEK) excretion rates (A and C) and percent 

changes in fractional sodium and potassium excretion rates (B and D) following furosemide administration to 

WKY and SHR rats 
aP< 0.05 versus baseline; bP< 0.05 versus corresponding value in WKY.  Values represent means ± SEM 

for 6 observations 

2.4 DISCUSSION 

The present study was based on the concept that the pathogenesis of sustained hypertension 

involves the kidneys. Altered renal sodium handling in the SHR has been previously reported(9, 

154); however, the factors contributing to this effect are unknown. We have shown through 

semi-quantitative immunoblotting that the expression of sodium transporters BSC-1, Na-K-

ATPase-α1, NHE-3, NBC-1, the potassium channel ROMK-1 and the water channel AQP-2 are 
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elevated in the SHR, suggesting that the pathophysiology of altered renal excretory function in 

genetic hypertension may involve alterations in several transporters located along the nephron. 

TSC protein expression was not changed, suggesting that the distal convoluted tubule sodium 

transport mediated by TSC is not affected in this genetic model of hypertension.  

In the present study, expression of BSC-1 protein was elevated in the SHR more so than 

any other protein examined. This finding suggests that the increase in BSC-1 expression may be 

the most important contributing factor to altered tubular function in SHR.  In support of this 

conclusion, our results also demonstrate that when the response to furosemide (an inhibitor of 

BSC-1) is expressed as a percentage of the baseline sodium excretion (either absolute or 

fractional), the natriuretic response to furosemide is greater in SHR versus WKY.  Thus, both our 

biochemical and pharmacological data are consistent with an important role of BSC-1 in the 

pathophysiology of hypertension in SHR. 

In the present study, acute administration of furosemide lowered arterial blood pressure 

in SHR, but not WKY.  Generally, changes in renal excretory function do not alter arterial blood 

pressure within the time frame of the current study.  However, anesthetized rats are more 

sensitive to volume depletion.  Therefore, it is possible that the acute reduction in blood pressure 

induced by furosemide in SHR was secondary to more severe volume depletion following 

furosemide-induced natriuresis.  At any rate, it is important to note that despite the greater 

reduction in renal perfusion pressure (which would tend to attenuate sodium excretion), 

furosemide still had a greater effect on sodium excretion in SHR.  

Importantly, the increase in steady-state levels of BSC-1, ROMK-1 and AQP-2 proteins 

in the SHR were not accompanied by an increase in their respective steady state mRNA levels, 

suggesting that a post-transcriptional mechanism is responsible for the heightened-expression of 

these transporters. In this regard, our findings are consistent with previous reports demonstrating 

that post-transcriptional mechanisms are responsible for the increase in protein expression and 

activity of the NHE-3 transporter as well as Na-K-ATPase in the SHR(155, 156).  Whether 

higher steady state levels of BSC-1, ROMK-1 and AQP-1 in SHR are due to greater translational 

efficiency or enhanced stability of the proteins or both cannot be deduced from the present study.  

Our study is consistent with the idea that an intrinsic abnormality in sodium handling by 

the kidney contributes to the pathogenesis of hypertension in SHR. Studies in an experimental 

model of prenatally-programmed-hypertension suggest that prenatal programming of 
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hypertension involves transcriptional upregulation of sodium transporters BSC-1 and TSC in the 

thick ascending limb and distal convoluted tubule, respectively(141). Also, development of gene-

targeting techniques in mice has enabled direct assessment in vivo of the roles of different apical 

renal Na+ transporters in the control of extracellular fluid volume and blood pressure(65, 157). In 

this regard, gene targeting experiments show that the most detrimental mutation is the 

inactivation of NKCC2 gene, which directly affects the countercurrent urine-concentrating 

mechanism and triggers profound disorganization of renal tissue.  

The mechanisms mediating the upregulation of BSC-1 expression in genetic hypertension 

in SHR are yet to be determined.  Several hormones such as vasopressin, angiotensin, 

prostaglandins, catecholamines and atrial natriuretic factor (ANP) may be involved in BSC-1 

regulation. In this regard, our finding that the water channel AQP-2 is also upregulated in the 

SHR may implicate vasopressin.  Both BSC-1 and AQP-2 are vasopressin-regulated proteins, 

and administration of vasopressin increases sodium and water reabsorption in the thick ascending 

limb and the collecting ducts(120, 158). The vasopressin-induced expression of BSC-1 in the 

thick ascending limb may be responsible for the enhanced urinary concentrating ability 

associated with sustained antidiuresis.  Moreover, vasopressin regulates water permeability 

across the collecting duct by trafficking AQP-2 from intracellular vesicles to the apical plasma 

membrane(159).  Thus, the increased expression of BSC-1 and aquaporin-2 could well be a 

vasopressin-mediated response.  However, our finding that AQP-2 is only elevated in the inner 

medulla, not outer medulla, weighs against this conclusion because vasopressin increases AQP-2 

expression all along the medullary collecting duct. 

The renin-angiotensin system also regulates expression of epithelial transporters and 

could be involved in upregulation of transporter expression in SHR. Studies by several groups 

demonstrate that administration of angiotensin II increases BSC-1 expression in rat kidneys(126) 

and that expression of BSC-1 is reduced in mice lacking angiotensin converting enzyme(160). 

Additionally, studies with angiotensin converting enzyme inhibitors in rats with cardiac failure 

show that blockade of angiotensin II synthesis normalizes both BSC-1 expression and renal 

sodium excretion suggesting that angiotensin II influences renal sodium handling in 

cardiovascular disease via BSC-1(161).  
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Prostaglandins may also regulate renal sodium excretion in SHR.  Recent studies with 

cyclooxygenase inhibitors show that COX-2 inhibitors increase BSC-1 expression in rat kidneys, 

thus implicating a role for prostaglandins in BSC-1 regulation(122).  

Although our study demonstrates a role for BSC-1 in hypertension in the SHR, it does not 

rule out the involvement of other sodium transporters. Previous studies show that sodium 

reabsorption in the proximal tubule is increased in the SHR(154, 162). Studies also demonstrate 

that sodium transporters of the proximal tubule, namely the NHE-3, and Na+-K+-ATPase  are 

upregulated in the SHR kidney(150, 155). Our data are in concordance with these findings. In 

addition, our studies indicate that expression of the potassium-channel ROMK-1 is also higher in 

the inner medulla of the SHR. Thus, it appears that the pathophysiology of genetic hypertension 

is complex and that several transporters located along the nephron may be involved. 

As noted above, previous studies clearly indicate that sodium reabsorption in the 

proximal tubule is increased in the SHR. Thus, it is conceivable that the observed increases in 

BSC-1 expression in the inner strip of the outer medulla (corresponding to the thick ascending 

limb) in SHR are merely secondary to increased proximal tubular transport in SHR.  However, 

this seems unlikely because numerous studies with loop and thiazide diuretics indicate that in 

normal animals and humans, changes in sodium transport in one nephron segment are always 

accompanied by opposite changes in sodium transport in all other nephron segments.   For 

example, chronic inhibition of sodium transport in the thick ascending limb with loop diuretics 

or in the distal convoluted tubule with thiazide diuretics causes a compensatory increase in 

sodium reabsorption and/or transporters in other nephron segments(163-165). This phenomenon 

provides the basis for the synergy that is achieved when diuretics acting at different nephron 

segments are combined to provide sequential blockade(166).  Therefore, it is unlikely that 

increases in proximal tubule transport would cause increases in BSC-1 expression in the thick 

ascending limb because the expected response would be a decrease, not an increase, in BSC-1 

expression.  

In summary, the present study demonstrates a marked increase in the expression of BSC-

1 and more modest increases in the expressions of Na-K-ATPase-α1, NHE-3, NBC-1, ROMK-1 

and AQP-2 in the SHR kidney. Therefore, dysregulation of the steady state levels of renal 

epithelial transporters may importantly contribute to the pathogenesis of hypertension in genetic 

hypertension.  

 44 



3.0  EXPRESSION OF BSC-1 DURING DEVELOPMENT OF HYPERTENSION IN 

THE SHR 

3.1 INTRODUCTION 

The Spontaneously Hypertensive Rat (SHR) is one of the most widely used animal models of 

essential hypertension. These rats were developed in the 1950s by selective inbreeding of Wistar 

Kyoto Rats (WKY) with increased blood pressure and exhibit symptoms similar to human 

essential hypertensive populations such as spontaneous elevation of blood pressure with age, 

sensitivity to antihypertensive drugs effective in humans, and involvement of the renin-

angiotensin and sympathetic nervous systems in the development and maintenance of 

hypertension. Several lines of evidence suggest that altered renal functions may play a role in the 

pathogenesis of essential hypertension in the SHR. This has been documented by the 

development of high blood pressure in normotensive rats after renal cross-transplantation 

between normotensive and hypertensive strains where the genetic predisposition of hypertension 

is transferred with the donor kidney from the hypertensive strains(6, 30, 31, 36, 167). Moreover, 

this was demonstrated not only in adult rats with established hypertension(168) but also in young 

prehypertensive rats(169). These data therefore support the hypothesis that altered renal 

functions contribute significantly to the development and maintenance of primary hypertension. 

Our previous results indicate that in the adult SHR kidney as compared to WKY rats, 

protein levels of several sodium ion transporters are altered, namely the type-1 bumetanide 

sensitive cotransporter (BSC-1), type-1 inwardly rectifying potassium channel (ROMK-1), type-

3 sodium-hydrogen exchanger (NHE-3), type-1 sodium-bicarbonate cotransporter (NBC-1), Na-

K-ATPase and the water channel aquaporin-2. Since protein levels of BSC-1 were found to be 

most altered in adult SHR compared to WKY (170), we hypothesized that BSC-1 may play an 

important role in the pathogenesis of hypertension. In support of this hypothesis, our results also 
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demonstrate that when the response to furosemide (an inhibitor of BSC-1) is expressed as a 

percentage of the baseline sodium excretion (either absolute or fractional), the natriuretic 

response to furosemide is greater in SHR versus WKY(170).  

The present study was initiated to further characterize the expression of BSC-1 in SHR 

prior to and during the development of hypertension. Our results show that BSC-1 protein 

abundance increases as hypertension progresses in the SHR and remains elevated in the SHR 

after the development of mild or severe hypertension as compared to age-matched normotensive 

WKY rats. The increase in BSC-1 steady state protein level in the SHR is additionally 

accompanied by increased presentation of BSC-1 at the plasma membrane, suggesting a 

physiological significance.  

3.2 MATERIALS AND METHODS 

3.2.1 Animals 

Male WKY rats (4-13 weeks of age) and age-matched SHR were obtained from Taconic Farms 

(Germantown, NY).  Rats were allowed to acclimate to the University of Pittsburgh Animal 

Facility for at least 1 week before initiation of the experimental protocols.  Protocols were 

approved by the Institutional Animal Care and Use Committee.  

3.2.2 MABP measurement 

Each rat was anesthetized with pentobarbital (45 mg/kg; Research Biochemicals, Natick, MA) 

and placed on an isothermal pad.  Temperature was monitored with a rectal probe thermometer 

and kept at 37 degrees C with a heat lamp.  A short section of polyethylene tubing (PE-240) was 

placed in the trachea to facilitate respiration.  The left carotid artery was exposed and cannulated 

with PE-50 tubing for for mean arterial blood pressure (MABP) and heart rate (HR) 

measurements via a digital BP analyzer (Micro-Med, Inc., Louisville, KY).  Following a 30 
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minute stabilization period, MABP and HR were recorded at 1-minute intervals for 20 minutes 

and averaged. 

3.2.3 Kidney dissection and tissue lysate preparation 

Blood pressures in age-matched WKY and SHR rats were measured as described; following 

which kidneys were rapidly excised and washed in ice-cold PBS. Kidneys were dissected to 

obtain cortex and inner stripe of outer medulla. Dissected tissues were divided into three groups 

for: 1) preparation of tissue lysates, 2) isolation of plasma membrane and intracellular vesicles, 

and 3) RNA isolation. Tissue lysates were prepared by homogenizing the dissected tissues in 

lysis buffer containing Tris HCl, 2% SDS, glycerol, PMSF and protease inhibitors.  Protein 

concentrations were measured using the BCA protein assay method.  

3.2.4 Plasma membrane and intracellular vesicle isolation 

Plasma membrane and intracellular vesicles were isolated by differential ultracentrifugation. 

This protocol has been shown to yield fractions that contain exclusively plasma membrane (at 

17,000g) and membranes associated with intracellular vesicles (at 200,000g)(159, 171) 

(Appendix B). Cortex and inner stripe of outer medulla were dissected from each kidney, minced 

finely, and homogenized in isolation solution (250 mM sucrose/10 mM triethanolamine, pH 7.6) 

containing protease inhibitors (1 µg/ml leupeptin, 0.1 mg/ml phenylmethylsulfonyl fluoride). For 

subcellular fractionation, sequential centrifugations of the homogenates were carried out at 1000 

x g for 10 min at 4°C, discarding the pellet and centrifuging the supernatant at 4,000 x g for 20 

min at 4°C, discarding the pellet and centrifuging the supernatant at 17,000 x g at 4°C for 20 min 

to yield plasma membrane pellet, and 200,000 x g for 60 min to obtain fractions enriched in 

intracellular vesicle. The resulting pellet was resuspended in isolation solution and protein 

concentrations determined using the BCA Protein Assay method. Following total protein 

concentration determination, pellets from these centrifugations were solubilized in Laemmli 

sample buffer. 
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3.2.5 Electrophoresis and immunoblotting 

Proteins were solubilized at 60°C for 15 min in Laemmli sample buffer. SDS-PAGE was 

performed on gradient polyacrylamide gels (4-12%) loaded with 20µg protein (whole cell 

lysates) or 2µg protein (fractionation lysates) per lane. For immunoblotting, proteins were 

transferred electrophoretically to PVDF membranes.  Membranes were blocked in 5% milk for 2 

hours, probed overnight at 4°C with the BSC-1 primary antibody (1:2000) in PBST containing 

1% milk or with β-actin (1:10,000 Sigma Chemical Co., St. Louis, MO) for 1 hour to determine 

loading efficiency. BSC-1 antibody was the kind gift of Dr. Mark A. Knepper, NIH. 

Subsequently, membranes were exposed to a secondary HRP conjugated donkey anti-rabbit 

polyclonal antibody (1:5000, Pierce Biotechnology Inc., Rockford, IL) in PBST containing 1% 

milk for 1 hour at room temperature.  Bound antibodies were visualized using a luminol-based 

enhanced chemiluminescence substrate (SupersignalWest Dura Extended Duration Substrate, 

Pierce Biotechnology Inc., Rockford, IL) before exposure to X-ray film (Kodak 165-1579; 

Eastman Kodak Co., Rochester, NY).   

3.2.6 RNA isolation and RT-PCR 

RNA was isolated from the dissected tissues using TRIzol reagent (GIBCO Life Technologies, 

Carlsbad, CA) as per the manufacturer’s instructions. By using the primer sequences listed in 

table 2, RNA (0.5 µg) was reverse transcribed and amplified using Titanium One-step RT-PCR 

kit (Clontech, Palo Alto, CA). Each PCR cycle (total 30 cycles) consisted of denaturing at 94°C 

for 30 seconds, annealing at 64°C for 30 seconds, and extension at 68°C for 60 seconds. RT-PCR 

products were separated on a 1.2% agarose gel and visualized by incorporating ethidium bromide 

in the gel. 
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Table 2. Primers used for RT-PCR analysis of BSC-1 

 Accession 

number 

Primer Sequence (5′-3′) Nucleotides Product 

size 

Forward:GCATTGTCTTAACAGGAGGACC 2254 BSC-1 U10096 

Reverse:GAACTGGAGAGATGTCAAACCC 2676 

464 

3.2.7 Statistical analysis 

All data are presented as mean ± SEM. Comparisons between groups were made by unpaired t-

test. P values <0.05 were considered significant. 

3.3 RESULTS 

3.3.1 Development of hypertension in the SHR 

Previous studies in young SHR showed that SHR and Wistar-Kyoto rats (WKY) had similar BP 

at or before 4 wk of age, with hypertension developing at or around 6 weeks of age(155, 172). 

Our results are consistent with these findings. At about 4-6 weeks of age, there was no difference 

in the mean arterial blood pressures between the SHR and WKY. However, there was a marked 

difference in mean arterial blood pressures as the animal aged, at about 6-8 weeks, MABP was 

significantly higher in the SHR compared to WKY and continued to increase from there on. At 

14-16 weeks, SHR animals exhibited severe hypertension with MABP in the range of 190mmHg 

compared to WKY, which remained constant at 100 mmHg (Figure 14).  
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Figure 14.  MABP in SHR and WKY over time 

3.3.2 Steady-state protein levels of BSC-1 increase as hypertension progresses in the SHR 

Our results indicated that in the pre-hypertensive stage, there was no difference in the steady-

state abundance of BSC-1 between the two strains. However, as hypertension progressed in the 

SHR, the levels of BSC-1 protein also increased proportionally, i.e. the abundance of BSC-1 

protein mirrored the onset/development of hypertension in the SHR. At 8 weeks of age, BSC-1 

protein abundance in the SHR was about 3-fold higher (P<0.05) and as the animal became 

severely hypertensive at about 14-16 weeks of age, steady-state protein levels of BSC-1 became 

5-fold higher (P<0.05) compared to WKY. These results indicate that the abundance of BSC-1 

protein is stage dependent and increases as hypertension progresses in the SHR (Figure 15).  
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Figure 15.  Abundance of BSC-1 protein in the SHR and WKY over time 

Top panel: each lane was loaded with 20 µg of protein and blots were probed with rabbit anti-BSC-1 and 

mouse-anti-β-actin antibodies. Bottom panel: densitometric analysis of BSC-1protein in outer medulla normalized to 

β-actin. Values represent means ± SEM. *denotes P < 0.05 vs. Control (n=4, each group) 

 

3.3.3 Distribution of BSC-1 to the plasma membrane increases as hypertension progresses 

in the SHR 

With respect to the distribution of BSC-1 to the plasma membrane, our results showed that in the 

pre-hypertensive stage, there was no significant difference in the distribution of BSC-1 between 

the two strains as determined by the ratio of BSC-1 protein in plasma membrane to intracellular 

vesicles. However, as hypertension progresses, we observed a marked increase in the localization 

of BSC-1 to the plasma membrane, resulting in a plasma membrane to intracellular vesicle ratio 
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(PM: IV) of 4:1 in SHR as compared to 1.4:1 in the WKY. In the severely hypertensive stage, 

the ratio was further increased, with the SHR exhibiting a PM: IV ratio of 6:1 compared to the 

PM: IV ratio of WKY at 2:1. This suggests that in addition to an increase in steady-state protein 

levels, there is an increased presentation of BSC-1 at the plasma membrane as hypertension 

progresses in the SHR. Thus, both the increase in steady-state protein levels of BSC-1 and the 

alteration in distribution (increased presentation of BSC-1 to plasma membrane) correlate with 

the development of hypertension in the SHR (Figure 16). 

 
Figure 16.  Distribution of BSC-1 protein in plasma membrane and intracellular vesicles in SHR and 

WKY over time 

Top panel: each lane was loaded with 2 µg of protein following isolation of plasma membrane and 

intracellular vesicles and blots were probed with rabbit anti-BSC-1 antibody. Bottom panel: densitometric analysis 

of BSC-1 protein abundance in outer medulla expressed as a ratio of plasma membrane (PM) to intracellular vesicle 

(IV). Values represent means ± SEM. *denotes P < 0.05 vs. Control (n=4, each group) 
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3.3.4 Increase in BSC-1 protein is not accompanied by changes in mRNA as hypertension 

progresses in the SHR 

Finally, these changes in steady state BSC-1 protein levels and increased distribution to the 

plasma membrane were not accompanied by corresponding changes in BSC-1 mRNA at any age. 

Thus, levels of BSC-1 mRNA in SHR and WKY were found to be similar in each of the three 

groups, irrespective of age and degree of hypertension (Figure 17).  

 
Figure 17.  Expression of BSC-1 mRNA in inner stripe of outer medulla in SHR and WKY over time 

RT-PCR analysis of BSC-1 mRNA levels in outer medulla of WKY and SHR rats at various stages of 

hypertension. (n=4, each group) 

3.4 DISCUSSION 

Essential hypertension results from the culmination of a series of pathological changes in the 

body that leads to a sustained elevation of blood pressure. The spontaneously hypertensive rat 

(SHR) is a suitable model to study hypertension development because it is similar to humans 
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with essential hypertension. These similarities include a genetic predisposition to high BP 

without specific etiology, increased total peripheral resistance without volume expansion, and 

similar responses to drug treatment(4). A precise knowledge of the defect(s) in early blood 

pressure development is essential to understand hypertension. For a causal role to be ascribed to 

a defect, this defect should occur at the initiation of blood pressure elevation. Defects that occur 

only after large blood pressure elevations should be considered secondary to the disease 

process(173). 

The present study is based on the hypothesis that hypertension in the SHR tracks the 

kidney and that a defect(s) in the kidney is responsible for the development of hypertension. We 

had previously shown that in the adult SHR, expression of several renal sodium ion transporters 

and water channels are elevated, with the Na-K-2Cl cotransporter BSC-1 expression being the 

most altered(170). We therefore examined the expression of the renal bumetanide-sensitive Na-

K-2Cl cotransporter BSC-1 in the SHR before and after the onset of hypertension. Our data show 

that the progression from pre-hypertensive to hypertensive state in the SHR is accompanied by a 

proportional increase in both steady-state protein levels of BSC-1 as well as its distribution to the 

plasma membrane, indicating that BSC-1 expression and distribution are stage dependent and 

increase as hypertension progresses. We hypothesize that the increased presentation of BSC-1 at 

the plasma membrane results in increased sodium reabsorption and thereby contributes to the 

pathogenesis of hypertension in the SHR.  

These results are in agreement with the previous studies using isolated perfused kidneys 

from spontaneously hypertensive rats (SHR) that reveal an intrinsic renal abnormality in Na+ 

excretion may contribute to the maintenance of hypertension in SHR(146). An examination of 

the pressure-natriuresis relationship and the effect of furosemide (an inhibitor of BSC-1) on this 

relationship demonstrates a resetting of the pressure-natriuresis process in SHR by a mechanism 

involving BSC-1(147).    

Thus, the strong stimulation of BSC-1 could potentially contribute to the significant rise 

in blood pressure. Several lines of evidence support this hypothesis. First of all, the thick 

ascending limb (TAL) is an important site of sodium transport; roughly 30% of the filtered 

sodium load is normally reabsorbed at this level. Second, apical sodium entry in the TAL is 

mainly mediated by BSC-1 (92) as demonstrated by the natriuresis associated with the use of 

loop diuretics, an effect that is enhanced by their inhibiting action on tubuloglomerular feedback 
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(TGF)(174). Third, patients carrying a mutation with a loss of function of the BSC-1 gene (type I 

Bartter's syndrome) are characterized by orthostatic hypotension(175). Finally, mice lacking the 

BSC-1 gene suffer from severe salt wasting resulting in rapid death(65). It is noteworthy to 

underline that upregulation of BSC-1 has been also reported in the early phase of prenatally 

programmed hypertension induced by a maternal low-protein diet during pregnancy(141) and in 

the early phase of hypertension in the Milan strain of rats (MHS) rats(176), a model in which 

hypertension develops because of a primary alteration in renal tubular sodium reabsorption(168, 

177). 

The stimulation of BSC-1 may also be involved in the increased glomerular filtration rate 

(GFR) found in the SHR. In fact, activation of ion transport along the TAL is expected to 

decrease the delivery of sodium chloride to the macula densa, thus enhancing GFR through the 

TGF mechanism. In young SHR rats, the alteration of TGF, together with an increase in net 

interstitial pressure, has already been described(178, 179), and the present studies identify a 

molecular mechanism involved in this process. 

An important unresolved question is the modulatory mechanism of BSC-1 regulation in 

the SHR. Our results show that the increased protein levels of BSC-1 in the SHR are not 

accompanied by changes in mRNA, suggesting that post-transcriptional mechanisms might be 

involved. A post-transcriptional mechanism has been similarly proposed for the over-expression 

of NHE-3 protein in the SHR(155, 180). However the underlying signaling mechanism(s) 

responsible for this effect are unknown and several factors could be involved such as 

vasopressin, angiotensin II, prostaglandins, catecholamines and sympathetic activation, atrial 

natriuretic factor (ANP), nitric oxide (NO), reactive oxygen species (ROS), cAMP,  or could 

result from morphological changes in the kidney and tubular cells. Regulation of BSC-1 by 

vasopressin, angiotensin II, cAMP, nitric oxide and prostaglandins has been documented(113, 

120, 122, 125, 126, 181, 182). Regulation of BSC-1 by the sympathetic system has been 

implicated in studies using an animal model of liver cirrhosis induced by common bile duct 

ligation(CBL), which showed that renal denervation attenuated the sodium retention in CBL rats, 

and was associated with normalization of the natriuretic effect of furosemide, as well as a 

significant reduction in the expression of BSC-1, suggesting an important role for renal 

sympathetic nerve activation in BSC-1 regulation(183). Recently, it has been demonstrated that 

the TAL is the major source of superoxide production(184); in addition, superoxide stimulates 
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sodium chloride absorption along the TAL(185, 186), and the kidney of SHR generates more 

superoxide compared to WKY(187). Together, these studies may indicate a role of superoxide in 

the modulation of the function of BSC-1. Additionally, increased sodium reabsorption by TAL 

could be related to morphological changes in the kidney and tubular cells; it has been 

demonstrated that the size of the kidneys and the volume of the tubular cells in SHR are smaller 

than WKY rats and SHR rats have decreased nephron number(188, 189). This would necessitate 

a higher GFR-to-kidney size ratio to filter the blood; it is therefore reasonable to postulate that 

the increased single-nephron sodium load may trigger the reported upregulation of TAL sodium 

reabsorption. These findings are intriguing, because in rats with low birth weight induced by a 

maternal low-protein diet, the development of hypertension has been related to upregulation of 

BSC-1(141). 

In summary, the present study demonstrates an increase in BSC-1 protein levels, in the 

absence of mRNA level changes, as hypertension progresses in the SHR and may explain at least 

in part the inappropriate sodium handling of the kidney in this model of essential hypertension.  
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4.0  REGULATION OF THE RENAL BUMETANIDE-SENSITIVE NA-K-2CL 

COTRANSPORTER BSC-1/NKCC2 BY NOREPINEPHRINE  

4.1 INTRODUCTION 

The sympathetic nervous system plays a fundamental role in the homeostatic control of blood 

pressure. Decreases in arterial pressure or effective arterial blood volume increase sympathetic 

activity, whereas increases in pressure suppress activity, thus regulating blood pressure in the 

short term. In addition to regulating short-term blood pressure, the sympathetic system also 

participates in the long-term control of blood pressure.  Both chronic increases and decreases in 

renal adrenergic activity alter renal excretory function and produce sustained elevations and 

reductions in arterial pressure, respectively. For example, chronically increased activity of the 

sympathetic nervous system produces hypertension and chronic intrarenal norepinephrine 

infusion increases arterial pressure(190, 191). Other studies show that sustained electrical 

stimulation of sympathetic nerves produces hypertension(192-194). These results suggest that 

chronic, inappropriate increases in sympathetic activity can produce sustained increases in 

arterial pressure.  

Many lines of evidence indicate that the sympathetic nervous system, via the renal 

nerves, plays an important role in the pathogenesis of essential hypertension in humans and 

laboratory animals(22, 195). Patients with established essential hypertension have increased 

sympathetic nervous system activity, as evidenced by increased plasma and urinary 

norepinephrine levels, elevated excretion of catecholamine metabolites, and an exaggerated 

depressor response to centrally acting sympatholytic agents(196-199). The observation that 

converting enzyme inhibitors can cause both blood pressure and plasma norepinephrine levels to 

return to normal in patients with essential hypertension is consistent with the interpretation that 

activation of the sympathetic nervous system in these subjects is, at least in part, dependent on 
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angiotensin(200-202). In the spontaneously hypertensive rat of the Okamoto strain (SHR) and in 

the DOCA/NaCl hypertensive model, increased renal efferent nerve activity contributes to the 

development of hypertension by causing increased renal sodium retention(203, 204). In both of 

these experimental models, renal denervation delays the development and blunts the severity of 

hypertension and is associated with increased urinary sodium excretion, suggesting a renal 

efferent mechanism(205-207). 

At the level of the kidney, sympathetic nerves innervate the tubules, the vessels, and the 

juxtaglomerular apparatus and changes in renal sympathetic nerve activity can directly influence 

the functions of these innervated renal effector units(208). An increase in renal sympathetic 

nerve activity increases renal tubular water and sodium reabsorption throughout the nephron, 

decreases renal blood flow and glomerular filtration rate by constricting the renal vasculature, 

and increases activity of the renin-angiotensin system by stimulating renin release from 

juxtaglomerular granular cells(22).  

The vast majority of in vivo and in vitro studies directed at elucidating the role of the 

adrenergic/sympathetic system in the kidney focus on the regulation of renal blood flow and 

glomerular filtration(209, 210).  In contrast, few studies address the direct effects of the 

adrenergic system on salt and water transport across the nephron. Adrenergic receptors exist on 

most nephron segments, including proximal tubule, the thick ascending limb, distal convoluted 

tubule and the inner medullary collecting duct, indicating that epithelial function is under some 

degree of control by the adrenergic system(22, 211-213). Norepinephrine released from renal 

sympathetic nerve terminals or reaching the kidney from the circulation may thus importantly 

modulate salt and fluid transport. The observation that low-level adrenergic stimulation of renal 

adrenergic nerves or infusion of low doses of the adrenergic agonist norepinephrine produces an 

increase in renal tubular sodium reabsorption without alterations in renal hemodynamics, and 

independent of contributions from humoral factors such as angiotensin II or prostaglandins(214, 

215), suggests that the adrenergic system is capable of direct regulation of renal tubular sodium 

transport.  

The precise molecular downstream targets that mediate the direct effects of 

norepinephrine on renal excretory function are unknown. However, integral membrane proteins 

in renal epithelial cells that mediate transport of ions and water are attractive candidates because 

they are responsible for salt and water balance and are involved in the urinary concentrating 
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mechanism. In this regard, several transporters exist in the kidney and are localized to specific 

segments of the nephron, mediating the entry of sodium across the apical membrane(216).   

Moreover, water transport across the apical surface of the nephron occurs via specialized 

channels called aquaporins that are selective for water and are located along the proximal tubule, 

distal convoluted tubule and collecting duct(53).  

The present study was initiated to test the hypothesis that norepinephrine, the principal 

neurotransmitter of the sympathetic/adrenergic system, modulates the expression of renal 

epithelial transport systems. To test this hypothesis, we utilized semi-quantitative 

immunoblotting in a rat model of chronically elevated norepinephrine (via infusion).  

4.2 MATERIALS AND METHODS 

4.2.1 Animals and Treatment 

Pathogen-free male Sprague-Dawley rats (200-300 g body wt) were used. Rats were allowed to 

acclimate to the University of Pittsburgh Animal Facility for at least one week before initiation of 

the experimental protocols.  Protocols were approved by the Institutional Animal Care and Use 

Committee. Initially, all rats were maintained in filter-top microisolator cages with autoclaved 

feed and bedding, and free access to drinking water. Rats were divided into 2 groups (n=6) and 

given either norepinephrine (600 ng/min) or saline (control) for a period of 15 days with 

implanted osmotic mini pumps (Alzet). 

4.2.2 MABP and HR measurement 

At the end of treatment, each rat was anesthetized with pentobarbital (45 mg/kg; Research 

Biochemicals, Natick, MA) and placed on an isothermal pad.  Temperature was monitored with a 

rectal probe thermometer and kept at 37° C with a heat lamp.  A short section of polyethylene 

(PE)-240 tubing was placed in the trachea to facilitate respiration.  The left carotid artery was 

exposed and cannulated with PE-50 tubing for blood sample collections and for mean arterial BP 
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(MABP) and heart rate (HR) measurements via a digital BP analyzer (Micro-Med, Inc., 

Louisville, KY). Infusion of saline was initiated, and following a 30-minute stabilization period, 

mean arterial blood pressure and heart rate were recorded at one-minute intervals and averaged 

and reported in the table 2. 

4.2.3 Kidney dissection and tissue preparation for immunoblotting 

Blood pressures in control and hormone-infused rats were measured as described above; 

following which kidneys were rapidly excised and washed in ice-cold PBS. The left kidneys 

were dissected to obtain outer cortex and inner stripe of outer medulla and inner medulla, and the 

dissected tissues were homogenized in lysis buffer containing (Tris HCl, 2% SDS, glycerol, 

PMSF and protease inhibitors).  Protein concentrations were measured using the BCA protein 

assay.  

4.2.4 Electrophoresis and immunoblotting 

Proteins were solubilized at 60° C for 15 min in Laemmli sample buffer. SDS-PAGE was 

performed on gradient polyacrylamide gels (4-12%) loaded with 20 µg protein per lane. For 

immunoblotting, proteins were transferred electrophoretically to PVDF membranes.  Membranes 

were blocked in 5% milk for 2 hours, probed overnight at 4° C with the respective primary 

antibodies in PBS containing 1% milk: BSC-1 (1:2000), thiazide-sensitive Na+-Cl- cotransporter 

(TSC; 1:600), aquaporin-1 (AQP-1; 1:2000) and aquaporin-2 (AQP-2; 1:2000), type-1 Na+-

HCO3
--cotransporter (NBC-1; 1:1000), type-3 Na+-H+ exchanger (NHE-3; 1:1000), Na+-K+-

ATPase-α1 (1:5000) and inwardly rectifying K+ channel (ROMK-1; 1:1000). Membranes were 

probed with β-actin (1:10,000 Sigma Chemical Co., St. Louis, MO) for 1 hour to determine 

loading efficiency. BSC-1, TSC, AQP-1 and AQP-2 were the kind gift of Dr. Mark A. Knepper 

(NIH). All other primary antibodies were from Chemicon (Temecula, CA). Subsequently, 

membranes were exposed to a secondary HRP conjugated donkey anti-rabbit polyclonal antibody 

(1:5000, Pierce Biotechnology Inc., Rockford, IL) in PBS containing 1% milk for 1 hour at room 

temperature. Bound antibodies were visualized using a luminol-based enhanced 

chemiluminescence substrate (SupersignalWest Dura Extended Duration Substrate, Pierce 
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Biotechnology Inc., Rockford, IL) before exposure to X-ray film (Kodak 165-1579; Eastman 

Kodak Co., Rochester, NY).  Densitometric analysis was performed using ImageQuant TL 

(Amersham Biosciences, Piscataway, NJ) and band densities were normalized to β-actin. 

4.2.5 Statistical analysis 

All data are presented as mean ± SEM. Comparisons between groups were made by unpaired t-

test. P values <0.05 were considered significant. 

4.3 RESULTS 

4.3.1 Chronic norepinephrine infusion increases MABP and HR 

Chronic infusion of norepinephrine significantly increased mean arterial blood pressure (MABP) 

and heart rate (HR) over control (Table 3), consistent with the physiological actions of 

norepinephrine.  

 
Table 3. Effect of chronic norepinephrine infusion on MABP, Systolic BP, Diastolic BP and Heart Rate (HR) 

Values represent means ± SEM. * denotes P < 0.001 vs. Control  

Treatment MABP 

(mm Hg) 

Systolic 

(mm Hg) 

Diastolic 

(mm Hg) 

Heart Rate 

(beats/min) 

Control 88.8± 3.0 107.8± 8.3 74.4± 0.9 375.5± 13.7 

Norepinephrine 128.3± 10.4 * 165.0± 15.8 * 105.2± 11.3 * 492.5± 15.5 * 

4.3.2 Norepinephrine regulates expression of the apical sodium hydrogen exchanger 

NHE-3 of the proximal tubule 

Sodium transport in the proximal tubule has been shown to be a target for the adrenergic system 

in several physiological studies.  In the proximal tubule, the sodium hydrogen exchanger NHE-3 
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is the principal regulator of sodium uptake and studies have shown that the adrenergic system 

can modulate its activity in the short-term(217, 218). However, the long-term/chronic effects of 

norepinephrine on the expression of the transporter have not been examined. Our results show 

that chronic 15-day norepinephrine infusion resulted in a significant increase in NHE-3 protein 

levels (2.5-fold; P=0.0142, n=5) (Figure 18). 

 

Figure 18.  Expression of NHE-3 in the renal outer cortex in control and norepinephrine infused rats 

Top panel: each lane was loaded with 20 µg of protein and blots were probed with rabbit anti-NHE-3 and 

mouse-anti-β-actin antibodies. Bottom panel: densitometric analysis of NHE-3 expression in cortex normalized to β-

actin. Values represent means ± SEM. *denotes P < 0.05 vs. Control (n=5, each group) 
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4.3.3 Norepinephrine increases expression of the basolateral sodium bicarbonate 

transporter NBC-1 of the proximal tubule 

The Na+–HCO3
− cotransporter NBC-1 mediates bicarbonate absorption from renal proximal 

tubules. About 85% of the filtered load of HCO3
− is reabsorbed in the renal proximal tubules. 

This transepithelial flux is accomplished by the apical membrane Na+/H+ exchanger (NHE-3) 

and the basolateral Na+-HCO3
− co-transporter NBC-1. Adrenergic stimulation has been shown to 

regulate HCO3− reabsorption in the proximal tubule(219), however the long-term effects of 

adrenergic/sympathetic activation are unknown. Our results show that chronic 15-day 

norepinephrine infusion, results in a significant increase in NBC-1 protein levels (2-fold, P= 

0.0067, n=5) over control (Figure 19). 

 

Figure 19.  Expression of NBC-1 in the renal outer cortex in control and norepinephrine infused rats 
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Top panel: each lane was loaded with 20 µg of protein and blots were probed with rabbit anti-NBC-1 and 

mouse-anti-β-actin antibodies. Bottom panel: densitometric analysis of NBC-1 expression in cortex normalized to β-

actin. Values represent means ± SEM. *denotes P < 0.05 vs. Control (n=5, each group) 

4.3.4 Norepinephrine increases expression of the Na-K-2Cl cotransporter BSC-1 of the 

thick ascending limb 

The bumetanide-sensitive-Na-K-2Cl cotransporter BSC-1 is the principal apical sodium 

transporter of the thick ascending limb and accounts for 25% of sodium reabsorption in the 

kidney. Studies in isolated perfused tubules, have shown that adrenergic stimulation (by 

application of catecholamines) promotes sodium and chloride reabsorption in the thick ascending 

limb, thus supporting a physiological role for adrenergic innervation of the thick ascending 

limb(220). Our results show that chronic 15-day norepinephrine infusion significantly increased 

protein abundances of BSC-1 of the thick ascending limb (3-fold; P=0.0020, n=5) (Figure 20) in 

the renal medulla.  
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Figure 20.  Expression of BSC-1 in the renal inner stripe of outer medulla in control and 

norepinephrine infused rats 

Top panel: each lane was loaded with 20 µg of protein and blots were probed with rabbit anti-BSC-1 and 

mouse-anti-β-actin antibodies. Bottom panel: densitometric analysis of BSC-1 expression in inner stripe of outer 

medulla normalized to β-actin. Values represent means ± SEM. *denotes P < 0.05 vs. Control (n=5, each group) 

4.3.5 Norepinephrine does not alter expression of the inwardly rectifying K channel 

(ROMK-1) of the thick ascending limb 

The inwardly rectifying potassium channel (ROMK) of the thick ascending limb is responsible 

for the recycling of potassium ions that enter the cell via BSC-1/NKCC2. Since we observed 

changes in protein levels of BSC-1 following norepinephrine infusion, we wished to determine 

whether changes in BSC-1 were accompanied by similar changes in ROMK-1 expression or not. 
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Our results of immunoblotting show that, at least in our model, changes in BSC-1 expression are 

not accompanied by any changes in the expression of ROMK-1 (Figure 21B).  

4.3.6 Norepinephrine does not alter the abundance of the thiazide-sensitive Na-Cl 

cotransporter of the distal tubule or the basolateral Na-K-ATPase 

The thiazide-sensitive Na-Cl cotransporter (TSC) accounts for about 3-5% of sodium 

reabsorption in the distal tubule and has been shown to be an aldosterone-induced protein(138). 

While studies in isolated distal tubules have shown that salt transport in this segment may be 

regulated by adrenergic stimulation, the precise targets remain unknown. Studies have implicated 

a role for the basolateral Na-K-ATPase pump as a driving force for increased sodium 

reabsorption following adrenergic stimulation that may involve the Na-Cl cotransporter(221). 

Long-term infusion of norepinephrine did not alter protein abundance of TSC of the distal tubule 

(Figure 21A). Additionally, chronic norepinephrine infusion did not alter protein levels of the 

Na-K-ATPase pump of the basolateral membrane in any renal regions (Figure 21A, B and C).   
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Figure 21.  Expression of TSC, Na-K-ATPase, ROMK-1 and AQ-1 in the renal outer cortex, inner 

stripe of outer medulla and inner medulla in control and norepinephrine infused rats 

Each lane was loaded with 20 µg of protein and blots were probed with rabbit anti-TSC, anti-Na-K-

ATPase-α1, anti-ROMK-1, anti-AQ-1 and mouse-anti-β-actin antibodies (n=5).  

4.3.7 Norepinephrine increases abundance of the water channel aquaporin-2 of the inner 

medullary collecting duct 

Aquaporins are a family of small membrane proteins that facilitate the reabsorption of water 

across the nephron. Of the different isoforms, aquaporin-2 is the principal water channel of the 

inner medullary collecting duct that is involved in both short-term and long-term regulation of 

water transport by the antidiuretic hormone vasopressin. Altered levels of renal aquaporins have 

been found to be associated with several diseases involving abnormal water handling by the 

kidney including essential hypertension, diabetes insipidus, dehydration and chronic heart 

failure(170, 222-224). Chronic norepinephrine infusion increased abundance of the water 

channel aquaporin-2 of the inner medullary collecting duct (2-fold; P=0.0039, n=5) (Figure 22). 

The effect was specific for aquaporin-2 since norepinephrine did not alter the protein levels of 

aquaporin-1 (Figure 21B, C). 
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Figure 22.  Expression of AQP-2 in the renal inner medulla  in control and norepinephrine infused 

rats 

Top panel: each lane was loaded with 20 µg of protein and blots were probed with rabbit anti-AQP-2 and 

mouse-anti-β-actin antibodies. Bottom panel: densitometric analysis of AQP-2 expression in cortex normalized to β-

actin. Values represent means ± SEM. *denotes P < 0.05 vs. Control (n=5, each group) 

4.4 DISCUSSION 

The major conclusion from this study is that efferent renal sympathetic nerve activity may play 

an important role in the regulation of renal function by directly influencing renal tubular sodium 

and water reabsorption via changes in key transporter systems.  The support for this conclusion is 

our finding that mimicking long-term over-activation of the sympathetic system via chronic 

norepinephrine infusion strongly upregulates expression/abundance of the sodium hydrogen 
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exchanger NHE-3 and the sodium-bicarbonate co-transporter NBC-1 of the proximal tubule, the 

bumetanide-sensitive Na-K-2Cl cotransporter BSC-1 of the thick ascending limb, and the water 

channel aquaporin-2 of the inner medullary collecting duct.  In contrast to the aforementioned 

transport systems, our data show that norepinephrine has no effect on the expression of the 

thiazide-sensitive NaCl cotransporter TSC, the inwardly rectifying potassium channel ROMK-1, 

the water channel aquaporin-1 or Na+-K+-ATPase-α1.  This suggests that the effects of 

norepinephrine are specific and that the mechanisms by which norepinephrine regulates renal 

sodium transporters and water channels may be different than those involved in regulation by 

vasopressin, aldosterone or angiotensin II. 

The molecular mechanism for upregulation of NHE-3, NBC-1, BSC-1 and aquaporin-2 

by norepinephrine is unknown. Previous studies show that in epithelial cells, regulation of NHE-

3 activity by norepinephrine proceeds via activation of the MAPK cascade(225) and regulation 

of NBC-1 by cholinergic agonists (angitotensin II and CO2) may be mediated by Src family 

kinases (SFKs) and MAPKs(226). Whether any of these signaling molecules (SFK and/or 

MAPK) are involved in the long-term regulation of NHE-3 and NBC-1 by norepinephrine is 

unknown. Studies aimed at elucidating the regulation of BSC-1 and aquaporin-2 by vasopressin 

show that the regulation involves activation of  adenylyl cyclase and cAMP via V2 receptors(120, 

227). Norepinephrine is also known to increase intracellular cAMP levels via activation of the β-

adrenergic receptor in the proximal straight tubule, thick ascending limb and the collecting duct 

(212, 228-230), and we hypothesize that regulation of BSC-1 and aquaporin-2 abundance by 

norepinephrine may involve at least in part cAMP. However, it is possible that long-term 

regulation of BSC-1 and aquaporin-2 involves additional components such as those of the renin-

angiotensin system(231) or the protein synthesis and/or degradation machinery. Additional 

experiments are required to address these mechanisms. 

Recently studies in an animal model of liver cirrhosis induced by common bile duct 

ligation (CBL), which is associated with increased sodium retention and edema, showed that 

there was an increase in BSC-1 expression in CBL rats accompanied by an increased natriuretic 

response to furosemide and that renal denervation attenuated the sodium retention in CBL rats, 

and resulted in normalization of the natriuretic effect of furosemide, as well as a significant 

reduction in the expression of BSC-1, suggesting an important role for renal sympathetic nerve 

activation in BSC-1 regulation(183, 232). It has been suggested that approximately 40% of the 
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renal sodium retention in edema-forming conditions such as liver cirrhosis(233), congestive heart 

failure(233), nephrotic syndrome(234) and essential hypertension, characterized by an over-

active sympathetic nervous system and increased renal sympathetic nerve activity, is dependent 

on intact renal sympathetic innervation. 

Even though investigators have not yet elucidated the mechanisms leading to the over-

activation of the sympathetic nervous system in human and animal models of disease such as 

essential hypertension, our study is the first to show that norepinephrine regulates the 

expression/abundance of several key renal sodium transporters of the proximal tubule and thick 

ascending limb of Henle and the water channel aquaporin-2 of the medullary collecting duct, an 

effect that can explain the mechanism by which norepinephrine contributes to the enhancement 

of urinary concentrating ability and sustained antidiuresis in the long-term.  

Thus, to our knowledge, this is the first study that highlights a direct relationship between 

long-term exposure to norepinephrine and increased expression of renal sodium transporters 

NHE-3, NBC-1 and BSC-1 and water channel aquaporin-2.  Our results suggest that the renal 

sympathetic nervous system may regulate renal excretory function in large part by affecting the 

expression of transport systems in the nephron. Regulation of sodium transporter and water 

channel abundances by norepinephrine could additionally explain the abnormal salt and water 

balance associated with certain pathological disease states involving increased norepinephrine 

levels such as essential hypertension. A better understanding of how norepinephrine upregulates 

renal transporters should suggest alternative strategies for the treatment of essential hypertension. 
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5.0  MECHANISM OF REGULATION OF BSC-1 BY NOREPINEPHRINE 

5.1 INTRODUCTION 

 

The thick ascending limb (TAL) of the kidney plays an important role in maintenance of NaCl 

homeostasis. This segment reabsorbs 25–30% of the filtered NaCl load and generates the 

corticomedullary osmotic gradient necessary for urine concentration. The bumetanide-sensitive 

Na-K-2Cl co-transporter (BSC-1/NKCC2) is the major apical Na+ carrier of the thick ascending 

limb of the loop of Henle (TAL) and is abundantly expressed in the apical membrane of cortical 

and medullary TAL and macula densa(103, 104). Because BSC-1 is the principal apical Na+ 

entry pathway in the TAL, it is a prime candidate for long-term dysregulation of arterial blood 

pressure.  In support of this concept, recent studies demonstrate that enhanced expression of 

BSC-1 in the TAL causes sodium retention in rats with congestive heart failure (CHF)(136). 

Moreover, BSC-1 is up-regulated in rats with small to moderate myocardial infarctions(137), 

dehydration and cardiac failure(138) and in an animal model of liver cirrhosis(183).  Our results 

in the spontaneously hypertensive rat (SHR), showed that expression of BSC-1 was also elevated 

in this animal model of essential hypertension and that the natriuretic response to furosemide 

(which blocks BSC-1) was significantly higher in the SHR compared to its normotensive 

counterpart, suggesting that BSC-1 could be involved in the development and/or maintenance of 

hypertension in the SHR(170). Although we were able to establish a role for BSC-1 in regulation 

of blood pressure in the SHR, the underlying factors responsible for this increase are unknown. 

Extensive evidence points to the renal nerves as a link between the sympathetic nervous 

system and long-term blood pressure control by the kidneys(235). Activation of the renal nerves 

stimulates renin release(236). Studies in the SHR suggest that the sympathetic nervous system, 

particularly renal sympathetic nerves, may play an important role in the development of 
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hypertension in the SHR. Studies have shown that the male SHR has increased sympathetic 

outflow(237, 238) and renal sympathetic nerve activity compared with normotensive rats(239) 

and that renal denervation attenuates hypertension in male SHR(205).  

In this regard, our studies in the chronic norepinephrine infusion model showed that 

norepinephrine, the principal neurotransmitter or the sympathetic nervous system regulates BSC-

1 protein levels in vivo and that administration of norepinephrine resulted in a significant 

increase in both mean arterial blood pressure and BSC-1 protein levels. Regulation of BSC-1 

expression by the sympathetic neurotransmitter norepinephrine could explain the renal effects of 

the sympathetic nervous system on salt and water excretion and could additionally explain the 

role of the sympathetic nervous system in a number of disease states associated with altered renal 

function such as essential hypertension. The present study was thus initiated to determine the 

underlying molecular mechanism responsible for the regulation of BSC-1 by norepinephrine in 

an immortalized TAL cell line.  

Although studies in whole animals, isolated kidneys or isolated tubules could be used to 

address the mechanism of regulation of BSC-1 by norepinephrine, each of these techniques has 

several limitations. Studies involving expression of BSC-1 in oocytes have largely contributed to 

the understanding of BSC-1 functional kinetics, however it becomes difficult to use such systems 

to study BSC-1 regulation in the long-term since the endogenous regulators are absent or 

unknown (102, 112). As a complementary approach to elucidate the underlying mechanism, we 

used a murine immortalized thick ascending limb cell line, a stable cell line derived from 

microdissected loops of Henle of the Tg(SV40E)Bri7 mouse, which exhibits furosemide-

sensitive Na-K-2Cl activity and endogenous BSC-1 transcript (240). Our results indicate that in 

the immortalized TAL cell line, norepinephrine regulates BSC-1 levels at the post-transcriptional 

level via the β-adrenoceptor-cAMP-PKA pathway that involves at least in part the MAP kinases 

and that the α-adrenoceptor negatively regulates BSC-1 protein levels.  
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5.2 MATERIALS AND METHODS 

5.2.1 Chemicals and reagents 

All chemicals and reagents were obtained from Sigma-Aldrich Corporation (St. Louis, MO) 

unless otherwise indicated. 

5.2.2 Cell culture and treatments 

Studies were performed using an immortalized TAL cell line obtained from a transgenic mouse 

carrying the SV40 large T antigen (courtesy of Dr. Glenn T. Nagami, UCLA)(240, 241). Cells 

were grown in T-25 flasks in DMEM/F-12 supplemented with 10% FCS, 1mM HEPES, 

antibiotics and incubated in a humidified 5% CO2/95% air atmosphere at 37°C. Under these 

conditions, TAL cells are able to maintain their differentiated state and spontaneously express 

BSC-1 mRNA and protein (personal communication Dr. Glenn T. Nagami, UCLA). Studies 

were performed on cells between passages 12-15. Prior to treatment, cells were washed with 

PBS, trypsinized and plated in 6-well plates in regular cell culture media for 24-48 hrs to reach 

60-70% confluence. Cells were serum starved for an additional 24-48 hrs, media was changed 

everyday, following which cells were treated with various pharmacological agents for 1hr-24 hrs 

and finally harvested for RNA and protein isolation for RT-PCR and immunoblotting, 

respectively. 

For RNA measurements, cells were pretreated with actinomycin D or cycloheximide for 

30 min-1hr, followed by treatment with norepinephrine for 1hr-24 hrs. At various time points 

during the norepinephrine treatment, RNA was isolated for RT-PCR.  

For protein measurements, cells were pretreated with various inhibitors for 30 min, 

followed by overnight incubation with norepinephrine, following which, cell lysates were 

prepared for immunoblotting. In a separate set of experiments, cells were treated overnight with 

vasopressin analogs (AVP, DDAVP) and various cAMP activators (forskolin, 8-Br-cAMP) 

following which cells were lysed for subsequent immunoblotting.  

 74 



5.2.3 RNA isolation and RT-PCR 

Following treatment, cells were washed with PBS and RNA was isolated using TRIzol reagent 

(GIBCO Life Technologies, Carlsbad, CA) as per the manufacturer’s instructions. By using the 

primer sequences listed in table 3, RNA (1 µg) was reverse transcribed and amplified using 

Titanium One-step RT-PCR kit (Clontech, Palo Alto, CA). Each PCR cycle (40 cycles) consisted 

of denaturing at 94°C for 30 seconds, annealing at 64°C for 30 seconds, and extension at 68°C 

for 60 seconds. RT-PCR products were separated on a 1.2% agarose gel and visualized by 

incorporating ethidium bromide in the gel. 
Table 4. Primers used for RT-PCR analysis of BSC-1 

 Accession 

number 

Primer Sequence (5′-3′) Nucleotides Product 

size 

Forward:GCATTGTCTTAACAGGAGGACC 2254 BSC-1 U10096 

Reverse:GAACTGGAGAGATGTCAAACCC 2676 

464 

5.2.4 Protein isolation and immunoblotting 

Following treatment, cells were washed twice with cold PBS, lysed in lysis buffer (10mM Tris 

HCl, pH 7.4, 1% TritonX-100, 2mM EDTA, 10µg/mL aprotonin, 1µg/mL leupeptin, 1mM 

PMSF, 50mM Na4P2O7, 50mM NaF and 1mM NaV3O4). The lysate was then centrifuged at 

14,000 rpm for 20 minutes and the supernatant collected for protein concentration determination 

and sample preparation. Protein concentration was measured using the BCA protein assay 

method. Proteins were solubilized at 60° C for 15 min in Laemmli sample buffer. SDS-PAGE 

was performed on gradient polyacrylamide gels (4-12%) loaded with 10µg protein per lane. For 

immunoblotting, proteins were transferred electrophoretically to PVDF membranes.  Membranes 

were blocked in 5% milk for 2 hours, probed for 2 hrs at 37° C with the respective primary 

antibodies in PBS containing 1% milk: rabbit anti-BSC-1 monoclonal antibody (1:5000, gift of 

Dr. Biff Forbush, Yale University, New Haven, CT) or mouse anti-β-actin  monoclonal antibody 

(1:3000, A5441 Sigma Chemical Co., St. Louis, MO). Subsequently, membranes were exposed 

to a secondary HRP conjugated donkey anti-rabbit or sheep-anti-mouse polyclonal antibody 
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(1:5000, Pierce Biotechnology Inc., Rockford, IL) in PBS containing 1% milk for 1 hour at room 

temperature.  Bound antibodies were visualized using a luminol-based enhanced 

chemiluminescence substrate (SupersignalWest Dura Extended Duration Substrate, Pierce 

Biotechnology Inc., Rockford, IL) before exposure to X-ray film (Kodak 165-1579; Eastman 

Kodak Co., Rochester, NY).  Densitometric analysis was performed using ImageQuant TL 

(Amersham Biosciences, Piscataway, NJ) and band densities were normalized to β-actin.  

5.2.5 Statistical analysis 

All data are presented as mean ± SEM. Where appropriate, comparisons between groups were 

made by unpaired t-test or one-way analysis of variance (ANOVA) followed by Bonferroni’s 

multiple comparison post-test to determine statistical significance. P values <0.05 were 

considered significant. 

5.3 RESULTS 

5.3.1 Vasopressin, forskolin and 8-Br cAMP regulate BSC-1 protein levels in TAL cell 

line 

Previous studies show that vasopressin regulates BSC-1 protein levels via the V2 receptor(120). 

Additionally, studies have also shown that BSC-1 protein levels, trafficking and function are 

regulated by cAMP(112, 113, 182). To determine whether the immortalized TAL cell line is an 

effective model system to study regulation of BSC-1, cells were treated with arginine 

vasopressin (AVP) and the selective V2 receptor vasopressin analog DDAVP. Additionally, cells 

were also treated with the adenylyl cyclase activator forskolin and the cell permeable cAMP 

analog 8-Br cAMP. Our results show that in the TAL cell line, both AVP and DDAVP increased 

BSC-1 protein levels over control (Figure 23). Treatment with cAMP activator forskolin and 8-

Br cAMP also increased BSC-1 protein levels over control (Figure 23). Thus in the immortalized 

TAL cell culture model we were able to reproduce the effects of vasopressin and cAMP on BSC-
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1 protein, as had been previously reported in the chronic vasopressin infusion model and in 

oocytes transfected with BSC-1 mRNA, validating the use of the TAL cell line to study the 

effects of norepinephrine on BSC-1 regulation.  

 
Figure 23.  Effect of vasopressin and cAMP activators on BSC-1 protein in TAL cells 

Immunoblot analysis of BSC-1 protein levels in serum-starved TAL cells treated overnight with control (C) 

or 1µM arginine vasopressin (AVP), 1µM vasopressin receptor type-2 selective analog DDAVP, 10µM adenylyl 

cyclase activator forskolin or 0.5mM cell-permeable analog 8-Br cAMP. Following treatment, cells were washed in 

cold PBS and protein was isolated for immunoblotting. Top panel: Immunoblot for BSC-1 protein in TAL cells 

following treatment. Bottom panel: densitometric analysis of BSC-1 protein in TAL cells following treatment. Band 

densities were normalized to β-actin. Values represent means ± SEM, P values <0.05 were considered significant, 

n=4. 
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5.3.2 Norepinephrine does not alter BSC-1 mRNA levels or half-life 

To determine the cellular mechanism responsible for the regulation of BSC-1 by norepinephrine, 

TAL cells were treated with norepinephrine in the presence or absence of actinomycin D or 

cycloheximide. Treatment with norepinephrine alone had no effect on BSC-1 mRNA compared 

to control (Figure 24A). Additionally inhibition of transcription with actinomycin D or 

translation with cycloheximide failed to alter BSC-1 mRNA levels (Figure 24 B and 25B) 

suggesting that regulation of BSC-1 by norepinephrine proceeds  via a post-transcriptional 

mechanism and does not involve regulation at the mRNA level. 

 
Figure 24.  Effect of norepinephrine and actinomycin D on BSC-1 mRNA in TAL cells 

RT-PCR analysis of BSC-1 mRNA in serum-starved TAL cells treated with control (vehicle) or 1µM 

norepinephrine (NE) for 1hr-24hrs in the presence or absence of actinomycin D (0.5µg/mL). At each time point 

following treatment, cells were washed in cold PBS and RNA was isolated for RT-PCR. Top panel: TAL cells 

treated with control or norepinephrine alone. Bottom panel: TAL cells treated with control (vehicle) or 

norepinephrine (1µM) in the presence of actinomycin D (0.5µg/mL, added 1hr prior to norepinephrine treatment). 
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Figure 25.  Effect of norepinephrine and cycloheximide on BSC-1 mRNA in TAL cells 

RT-PCR analysis of BSC-1 mRNA in serum-starved TAL cells treated with control (vehicle) or 1µM 

norepinephrine (NE) for 1hr-24hrs in the presence or absence of cycloheximide (5µg/mL). At each time point 

following treatment, cells were washed in cold PBS and RNA was isolated for RT-PCR. Top panel: TAL cells 

treated with control or norepinephrine alone. Bottom panel: TAL cells treated with control (vehicle) or 

norepinephrine (1µM) in the presence of cycloheximide (5µg/mL, added 30min prior to norepinephrine treatment). 

5.3.3 Norepinephrine increases BSC-1 protein levels following treatment 

Since norepinephrine did not alter BSC-1 mRNA levels, we wished to determine whether 

norepinephrine could regulate BSC-1 protein levels in the immortalized TAL cell line. Treatment 

with 1µM norepinephrine significantly increased BSC-1 protein levels compared to control 

(70%, P= 0.012 n=4) (Figure 26). Pretreatment of TAL cells with the protein synthesis inhibitor 

cycloheximide blocked the effects of norepinephrine on BSC-1 protein, while having no effect 
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on control-treated cells (Figure 26) suggesting that norepinephrine regulates BSC-1 protein 

levels via a translational mechanism and/or involves additional proteins or factors.  

 
Figure 26.  Effect of norepinephrine and cycloheximide on BSC-1 protein in TAL cells 

Immunoblot analysis of BSC-1 protein levels in serum-starved TAL cells treated overnight with control (C) 

or 1µM norepinephrine (NE) in the presence or absence of cycloheximide (5µg/mL, added 30min prior to 

norepinephrine treatment). Following treatment, cells were washed in cold PBS and protein was isolated for 

immunoblotting. Top panel: Immunoblot for BSC-1 protein in TAL cells treated with control or norepinephrine in 

the presence or absence of cycloheximide. Bottom panel: densitometric analysis of BSC-1 protein in TAL cells 

following treatment. Band densities were normalized to β-actin. Values represent means ± SEM, P values <0.05 

were considered significant, n=4. 

5.3.4 Regulation of BSC-1 by norepinephrine involves both α- and β-adrenoceptors 

The TAL is important for salt and water homeostasis and possesses both α and β adrenoceptors. 

The endogenous neurotransmitter norepinephrine activates both types of adrenergic receptors. To 
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determine the role of each receptor subtype in regulation of BSC-1, TAL cells were pretreated 

with 5µM of the α-blocker phentolamine or 5 µM of the β-blocker propranalol for 30 minutes, 

followed by treatment with 1 µM norepinephrine. Pretreatment with propranolol completely 

blocked the effect of norepinephrine on BSC-1 protein (Figure 27), while pretreatment with 

phentolamine resulted in a significant increase in BSC-1 protein levels compared with 

norepinephrine alone (30%, P= 0.02, n=4) (Figure 27). These results indicate that in TAL cells, 

BSC-1 protein levels are positively regulated by the β-adrenoceptor and negatively regulated by 

the α-adrenoceptor.   

 
Figure 27.  Effect of α and β-blockers on BSC-1 protein levels following norepinephrine treatment 

Immunoblot analysis of BSC-1 protein levels in serum-starved TAL cells treated overnight with control (C) 

or 1µM norepinephrine (NE) in the presence or absence of α-blocker phentolamine (Phe) or β-blocker propranolol 

(Prop) (5µM each, added 30min prior to norepinephrine treatment). Following treatment, cells were washed in cold 

PBS and protein was isolated for immunoblotting. Top panel: Immunoblot for BSC-1 protein in TAL cells treated 

with control or norepinephrine in the presence or absence of phentolamine and propranolol. Bottom panel: 
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densitometric analysis of BSC-1 protein in TAL cells following treatment. Band densities were normalized to β-

actin. Values represent means ± SEM, P values <0.05 were considered significant, n=4. 

5.3.5 Regulation of BSC-1 by norepinephrine proceeds via cAMP dependent pathway and 

involves in part MAP kinases 

To elucidate the mechanism of regulation of BSC-1 by norepinephrine, TAL cells were treated 

with 1µM norepinephrine in the presence of an adenylyl cyclase inhibitor SQ22536 (50µM) and 

a MEK inhibitor PD090859 (25µM) to determine the role of cAMP and MAP kinases 

respectively. Treatment with the adenylyl cyclase inhibitor inhibited the effect of norepinephrine 

on BSC-1 protein (Figure 28), suggesting that activation of cAMP by norepinephrine is the 

mechanism involved. Treatment with the MEK inhibitor, however only partially inhibited the 

effect of norepinephrine (40% decrease, P=0.03, n=4) (Figure 28), suggesting that in addition to 

MAP kinases, additional factors are involved in mediating the effects of norepinephrine.  
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Figure 28.  Effect of MEK and adenylyl cyclase inhibition on BSC-1 protein levels following 

treatment with norepinephrine 

Immunoblot analysis of BSC-1 protein levels in serum-starved TAL cells treated overnight with control (C) 

or 1µM norepinephrine (NE) in the presence or absence of MEK inhibitor PD090859 (PD) or adenylyl cyclase 

inhibitor SQ22536 (SQ) (25µM and 50µM respectively, added 30min prior to norepinephrine treatment). Following 

treatment, cells were washed in cold PBS and protein was isolated for immunoblotting. Top panel: Immunoblot for 

BSC-1 protein in TAL cells treated with control or norepinephrine in the presence or absence of PD090859 and 

Q22536. Bottom panel: densitometric analysis of BSC-1 protein in TAL cells following treatment. Band densities 

were normalized to β-actin. Values represent means ± SEM, P values <0.05 were considered significant, n=4. 

5.3.6 Regulation of BSC-1 proceeds via a PKA dependent pathway 

BSC-1 protein contains potential cAMP dependent kinase and PKC phosphorylation sites in the 

C and N-terminal domains, thus supporting the hypothesis that PKA and/or PKC could be 

involved in regulation of BSC-1 by norepinephrine (94). To determine the role of PKA and PKC 

in regulation of BSC-1 protein by norepinephrine, TAL cells were treated with a PKA inhibitor 

H-89 and a PKC inhibitor stuarosporine prior to norepinephrine treatment. Treatment with the 

PKA inhibitor H-89 abolished the effect of norepinephrine on BSC-1 (Figure 29), while 

treatment with the PKC inhibitor staurosporine had no effect on BSC-1 protein levels (Figure 

29), suggesting that at least in TAL cells, PKC may not be involved in regulation of BSC-1 by 

norepinephrine. PKC inhibition resulted in a slight increase in BSC-1 protein levels in the 

presence of norepinephrine, although this failed to reach statistical significance. 
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Figure 29.  Effect of PKA and PKC inhibition on BSC-1 protein levels following treatment with 

norepinephrine 

Immunoblot analysis of BSC-1 protein levels in serum-starved TAL cells treated overnight with control (C) 

or 1µM norepinephrine (NE) in the presence or absence of PKA inhibitor H-89 or PKC inhibitor Staurosporine 

(Staur.) (15µM and 10nM respectively, added 30min prior to norepinephrine treatment). Following treatment, cells 

were washed in cold PBS and protein was isolated for immunoblotting. Top panel: Immunoblot for BSC-1 protein in 

TAL cells treated with control or norepinephrine in the presence or absence of H-89 and Staurosporine. Bottom 

panel: densitometric analysis of BSC-1 protein in TAL cells following treatment. Band densities were normalized to 

β-actin. Values represent means ± SEM, P values <0.05 were considered significant, n=4. 

5.4 DISCUSSION 

As an alternative approach to study the regulation of BSC-1 by norepinephrine, we employed an 

immortalized TAL cell line derived from the kidney of a mouse transgenic for SV40 T antigen. 
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These cells have been extensively characterized and display characteristics of differentiated TAL 

cells; they form polarized monolayers with distinct apical and basolateral domains, have few 

microvilli at their apical surface, form tight junctions, exhibit numerous mitochondria, a pattern 

related to an active metabolism, express Tamm-Horsfall protein on the apical membrane and 

endogenous BSC-1 transcript(240-242). As a preliminary approach to validate the use of the 

TAL cell line, we examined whether known regulators such as vasopressin and cAMP affect 

BSC-1 protein levels. Our results indicate that we were able to reproduce the effects of 

vasopressin and cAMP on BSC-1 protein as had been previously reported in the chronic 

vasopressin infusion model and in oocytes transfected with BSC-1 mRNA(113, 120). Thus, we 

were able to establish that the TAL cell line was a good model system to study the effects of the 

native sympathetic neurotransmitter norepinephrine on BSC-1 mRNA and protein levels and 

accordingly used specific agonists and antagonists to determine the underlying molecular 

mechanisms involved in the regulation of BSC-1 by norepinephrine. 

Treatment of TAL cells with norepinephrine, resulted in an increase in BSC-1 protein, 

the effect on BSC-1 mRNA was not significant, suggesting that the effect of norepinephrine 

proceeds via a post-transcriptional mechanism. Although, the BSC-1/NKCC2 promoter contains  

consensus binding sites for transcription factors such as cAMP-response element binding protein 

(CRE), NF-ĸB, interferon-γ activation factor, interferon-α-stimulated gene factor-3, activator 

protein-1 and activator protein-2, that could function as effector molecules in signal transduction 

pathways (240), norepinephrine failed to regulate BSC-1 mRNA levels. Thus, in TAL cells, we 

were unable to establish a transcriptional mechanism of regulation of BSC-1 by norepinephrine 

since treatment with actinomycin D did not alter levels of BSC-1 mRNA over control. 

Pretreating cells with cycloheximide completely inhibited the effect of norepinephrine on BSC-1 

protein, suggesting that regulation of BSC-1 by norepinephrine proceeds via post-transcriptional 

mechanisms and that additional proteins may be involved in regulation of BSC-1. Altered 

degradation/recycling has been proposed to be the mechanism responsible for increased 

expression and/or function of several renal transporters and proteins such as the water channel 

aquaporin-2 (243) and the epithelial sodium channel (ENaC) of the collecting duct (244). Altered 

degradation/recycling of BSC-1 has been proposed to be the mechanism involved in regulation 

of BSC-1 by vasopressin (120) and could be the mechanism involved in regulation of BSC-1 by 

norepinephrine.  

 85 



Studies in isolated thick ascending tubules have shown that norepinephrine stimulates 

cAMP generation via the β-adrenergic receptor (212, 245, 246) with β1 being the predominant 

subtype(247). Treatment with a β-blocker propranolol, adenylyl cylase inhibitor SQ22536, and 

PKA inhibitor H-89 completely blocked the effects of norepinephrine on BSC-1, suggesting that 

the β-adrenoceptor-cAMP-PKA pathway is involved in regulation of BSC-1. Treatment with the 

MAPK inhibitor PD098059 partially blocked the effect of norepinephrine on BSC-1, suggesting 

that MAPK are partially involved, along with additional signaling molecules in regulation of 

BSC-1. Recently studies identified WNK kinases as the integrative upstream regulators of renal 

sodium transport systems(68, 248, 249). WNK, with no lysine (K) kinases, are serine-threonine 

protein kinases that have been linked to regulation of a number of renal transporters, particularly 

WNK3 kinase was identified as a positive regulator of  NKCC2(250). It remains to be 

determined whether WNK kinases act downstream of norepinephrine and cAMP activation in the 

regulation of BSC-1 abundance. 

Treatment with the PKC inhibitor staurosporine had no effect on BSC-1 protein levels, 

suggesting that at least in immortalized TAL cells, PKC may not be involved in the regulation of 

BSC-1. A similar observation was made in oocytes transfected with BSC-1 cRNA, where PKC 

activation was found to inhibit BSC-1 function, an effect that could not be inhibited by either the 

specific PKC inhibitor Gö6976 or the non-specific PKC inhibitors staurosporine and H-7, 

suggesting that a novel PKC isoform may be involved in regulation of BSC-1(251). Novel PKCs 

and atypical PKCs have been reported to be expressed in TAL(252), however it is yet to be 

determined whether such novel or atypical PKCs could be involved in regulation of BSC-1 by 

norepinephrine.  

Pretreatment with the α-adrenoceptor blocker phentolamine resulted in a small but 

significant increase in BSC-1 protein levels, suggesting that the α-adrenoceptor may negatively 

regulate BSC-1. Negative regulation of BSC-1 function by the α-adrenoceptor has been 

previously reported in TAL, where selective α-2 adrenoceptor activation inhibits chloride flux 

(JCl) and selective β-adrenoceptor activation stimulates JCl (245). However, additional studies 

would be required to characterize the role of α-adrenoceptors in the regulation of BSC-1 

abundance. 

Thus, in summary, norepinephrine was found to regulate BSC-1 protein levels in an 

immortalized thick ascending limb cell line via a β-adrenoceptor-cAMP-PKA dependent 
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pathway that involves MAP kinases. The importance of a role for β-adrenoceptors in regulation 

BSC-1 abundance is especially relevant in essential hypertension. β-adrenergic blockers are 

frequently used in antihypertensive therapy because of their effect on myocardial contractility 

and cardiac output. The results of the present study indicate that there may be additional benefits 

to β-adrenergic blocker therapy via alterations in renal tubular transporter systems and tubular 

function, particularly with respect to inhibition of BSC-1 abundance and/or function in the thick 

ascending limb, that would promote natriuresis and diuresis, thus aiding in the management of 

inappropriate salt and water retention associated with essential hypertension.  
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6.0  SUMMARY AND DISCUSSION 

This dissertation focuses on the role of the renal bumetanide-sensitive Na-K-2Cl cotransporter 

BSC-1/NKCC2 in the pathogenesis of essential hypertension and its regulation by the 

sympathetic nervous system, the over-activation of which is believed to be an initiating factor in 

essential hypertension. It has been proposed that the kidneys are normal in the prehypertensive 

state, but renal alterations are induced by a variety of factors, such as a hyperactive sympathetic 

nervous system or alterations in the renin-angiotensin system, induced by stress, environmental 

or genetic factors. The net effect of these factors would be increased sodium retention as a 

consequence of tubular (increased sodium reabsorption) and glomerular (decreased glomerular 

filtration rate) mechanisms, resulting in a volume-dependent rise in blood pressure as postulated 

by Guyton. A better understanding of the underlying molecular mechanisms may lead to 

improved treatment approaches. 

6.1 BSC-1 AS A CRITICAL LINK IN ESSENTIAL HYPERTENSION 

The spontaneously hypertensive rat (SHR) is one of the most extensively used genetic models of 

human essential hypertension. The factors responsible for increased blood pressure in the SHR 

are not fully understood, although studies indicate both renal and non-renal mechanisms to be 

involved (6-8). In the SHR, blunting of the pressure-natriuresis curve is observed, such that 

greater perfusion pressures are required to achieve the same level of diuresis compared to its 

normotensive counterpart, the Wistar-Kyoto rat (WKY)(9).The pressure-natriuresis curve is 

altered even in very young SHR, indicating that the resetting of kidney function occurs very 

early and may be necessary for the development of hypertension in the SHR(10). Additionally, 

sympathetic nerve activity is elevated in this strain and neurohumoral reactivity to environmental 
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stress is enhanced compared with normotensive rats (12). Also, brief angiotensin-converting 

enzyme inhibition in juvenile SHR, as well as neonatal interruption of peripheral sympathetic 

innervation, chronically reduces arterial pressure associated with a reduction in peripheral 

vascular resistance (11). Finally, the results of renal transplantation experiments in SHR and 

normotensive rat strains (WKY) are consistent with the concept that the kidneys regulate long-

term levels of arterial blood pressure and that a defect in the kidney is importantly involved in 

the pathogenesis of genetic hypertension (6, 144, 145). Moreover, studies using isolated perfused 

kidneys from spontaneously hypertensive rats (SHR) reveal an intrinsic renal abnormality in Na+ 

excretion that may contribute to the maintenance of hypertension in SHR (146).   

Our studies show that BSC-1 protein expression is higher (6-fold, P<0.001) in the adult 

SHR compared to its normotensive counterpart the WKY (170), and the progression from pre-

hypertensive to hypertensive state in the SHR is accompanied by a proportional increase in both 

steady state protein levels of BSC-1 as well as its distribution to the plasma membrane 

(moderately hypertensive 4-fold; severely hypertensive 6-fold, each P<0.001), indicating that 

BSC-1 expression and distribution are stage dependent and increase as hypertension progresses. 

The increased presentation of BSC-1 at the plasma membrane could result in increased sodium 

reabsorption and thereby contribute to the pathogenesis of hypertension in the SHR.  

Finally, our studies show that adult SHR rats are more sensitive to the effects of 

furosemide, resulting in a 3-fold increase (P<0.05) in sodium excretion along with normalization 

of blood pressure and that the effect of furosemide is specific for SHR, with no effect on mean 

arterial blood pressure in WKY (170), thus supporting our hypothesis that BSC-1 is  involved in 

the pathogenesis of hypertension in the SHR. Additional data supporting this hypothesis come 

from a study by Kiprov et al., where long-term administration of furosemide to pre-hypertensive 

SHR resulted in a delay in the development of hypertension compared to untreated SHR(253). 

Studies with other diuretic agents such as thiazide diuretics (which block the thiazide-

sensitive Na-Cl cotransporter of the distal tubule) show that thiazide diuretics alone have no 

effect on mean arterial blood pressures in SHR, while treatment with thiazide diuretics along 

with other antihypertensive drugs has little or no effect on mean arterial blood pressures in SHR 

depending on the antihypertensive drug used (254, 255). Thus both the biochemical as well as 

pharmacological data supports the hypothesis that BSC-1 is involved in the pathogenesis of 
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essential hypertension and drugs that target/alter BSC-1 expression or alternatively block BSC-1 

activity may be useful for the treatment of essential hypertension. 

6.2 LINK BETWEEN OVERACTIVE-SYMPATHETIC NERVOUS SYSTEM AND 

BSC-1 EXPRESSION 

Over-activation of the sympathetic nervous system has been associated with several 

disorders such as essential hypertension (195, 199, 256) and chronic heart failure (198), all of 

which are characterized by increased salt and water retention by the kidney. However, the 

precise molecular mechanism of this is poorly understood. Many lines of evidence indicate that 

the sympathetic nervous system, via the renal nerves, plays an important role in the pathogenesis 

of essential hypertension in humans and laboratory animals(22, 195). Patients with established 

essential hypertension have increased sympathetic nervous system activity, as evidenced by 

increased plasma and urinary norepinephrine levels, elevated excretion of catecholamine 

metabolites, and an exaggerated depressor response to centrally acting sympatholytic 

agents(196-199). In the SHR and in the DOCA/NaCl hypertensive model, increased renal 

efferent nerve activity contributes to the development of hypertension by causing increased renal 

sodium retention(203, 204). In both of these experimental models, renal denervation delays the 

development and blunts the severity of hypertension and is associated with increased urinary 

sodium excretion, suggesting a renal efferent mechanism(205-207). 

Our results show that chronic administration of norepinephrine, the principal 

neurotransmitter of the sympathetic nervous system, increases mean arterial blood pressures in-

vivo (145 mmHg vs. control 115 mmHg, P<0.001) and the increase in blood pressure is 

accompanied by an increase in protein expression of BSC-1 (4-fold, P<0.001 over control). The 

regulation of BSC-1 expression by the sympathetic neurotransmitter norepinephrine is a novel 

finding that may help explain the renal effects of the sympathetic nervous system on salt and 

water excretion (22) and highlights a crucial role for the sympathetic nervous system in a number 

of disease states associated with altered renal function such as essential hypertension. 

Further elucidation of the mechanism of BSC-1 regulation by norepinephrine in an 

immortalized thick ascending limb cell line showed that regulation of BSC-1 proceeds via post-
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transcriptional mechanisms via activation of the β-adrenergic receptor-adenylyl cyclase-cAMP-

PKA pathway that utilizes in part MAP kinases (Figure 30). Studies in isolated tubules have 

previously shown that norepinephrine stimulates cAMP generation in thick ascending limb of 

Henle via the β-adrenergic receptor (212, 245) with β1 being the predominant subtype (246, 

247). An important finding of the study is the possible role of the α-adrenergic receptor in 

regulation of BSC-1. Our results indicate that the α-adrenergic receptor negatively regulates 

BSC-1 protein levels, although additional studies would be necessary to further elucidate the role 

of the adrenergic receptor and the underlying molecular mechanisms. This result is also 

consistent with in-vivo data that showed intrarenal administration of selective α-2 agonist 

clonidine increased osmotic and free water clearance in rats(257). The importance of a role for 

selective α-2 adrenoceptor stimulation of the TAL can be expressed in the condition of human 

arterial hypertension. α-2 adrenoceptor agonists are frequently used in antihypertensive therapy, 

specifically to inhibit central sympathetic outflow. The results of the current study and previous 

reports(245, 258) indicate that there may be additional benefits to β-blocker and α-2 agonist 

therapy via alterations in renal tubular function. These include the inhibition of BSC-1 

expression and sodium chloride absorption from the TAL that would promote natriuresis and, 

because of the primary role of the TAL in the generation of the corticomedullary solute gradient 

and urinary concentrating mechanism, water excretion as well. Both alterations in renal function 

would aid in the management of inappropriate salt and water retention in essential hypertension.  
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Figure 30.  Proposed mechanism of BSC-1 protein regulation by norepineprhine 

6.3 ADDITIONAL FACTORS 

Although our studies demonstrate a role for BSC-1 (under the influence of an over-active 

sympathetic nervous system) in hypertension in the SHR, it does not rule out the role of other 

factors such as the renin-angiotensin system, circulating vasopressin, reactive-oxygen species 

and inflammatory responses, all of which have also been implicated to play a part in the 

progression or maintenance of hypertension, or the genetic component to essential hypertension. 

Recent studies have shown that BSC-1 activity and expression are regulated by 

vasopressin(120), glucocorticoids(124), angiotensin II(259-261), superoxides(186, 262), nitric 

oxide(119, 263), prostaglandins(122), metabolic acidosis(129) and chronic saline loading(103) 

and is down-regulated by potassium depletion(264). Our study also does not rule out the 
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involvement of other sodium transporters. Previous studies have show that sodium reabsorption 

in the proximal tubule is also increased in the SHR(154, 162). Studies also show that sodium 

transporters of the proximal tubule, namely the NHE-3, and Na+-K+-ATPase  are upregulated in 

the SHR kidney(150, 155). Our data are in concordance with these findings. In addition, our 

studies indicate that expression of the potassium-channel ROMK-1 is also higher in the inner 

medulla of the SHR. Thus, it appears that the pathophysiology of essential hypertension is 

complex and that several transporters and factors may be involved. Nevertheless, our studies also 

highlight a crucial role for BSC-1 in the development and/or maintenance of hypertension.  

 

6.3.1 Renin-angiotensin system and hypertension 

There is extensive adrenergic innervation of the renal vasculature and renal tubules, and it is well 

established that renal nerves play an important role in the control of renin release and renal 

function. Additionally, both norepinephrine released from adrenergic nerve terminals and 

angiotensin II generated in response to renal nerve stimulation have potent direct effects on real 

hemodynamics and sodium excretion. Additionally, high plasma levels of angiotensin II are 

almost always present in patients and animal models of essential hypertension and since 

blockade of the renin-angiotensin system may temporarily attenuate some of the symptoms of 

hypertension, it would appear that the renin-angiotensin system is critically involved in the 

pathogenesis of the vicious cycle of essential hypertension. The decisive action of angiotensin II 

in this vicious cycle may include any one or a combination of the following pathological 

(structural) of physiological (functional) events: progressive pathological narrowing of renal 

blood vessels, progressive afferent arteriole constriction, progressive efferent arteriole 

constriction, or increased tubular reabsorption of sodium. In this regard, studies in dogs 

pretreated with the angiotensin converting enzyme inhibitor captopril indicate that the 

hypertensive crisis associated with intrarenal norepinephrine infusion is critically dependent on 

the renin-angiotensin system(265). Thus, there is an important interaction between the renin-

angiotensin system and the sympathetic nervous system in the control of renal function and 

arterial blood pressure that may be especially relevant to the pathogenesis of essential 

hypertension. Recently, studies showed that angiotensin II infusion increases BSC-1 protein 
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abundance in vivo(126) and that angiotensin II controls BSC-1 function in TAL tubules via 20-

HETE and PKC(261). Thus, the specific contribution of the renin-angiotensin system to the 

regulation of renal transport systems (BSC-1) under the influence of an over-active sympathetic 

system, as seen in essential hypertension remains to be determined.  

1.1.1 Role of WNK kinases 

The role of BSC-1 and other renal transport systems in blood pressure regulation has been well 

established: loss of function mutations in genes encoding NKCC2, ROMK or the basolateral 

chloride channel ClC-Kb cause Bartter’s syndrome, and loss of function mutations in genes 

encoding thiazide sensitive Na-Cl cotransporter NCC are responsible for Gitelman’s syndrome, 

both inherited disorders featuring low blood pressure due to salt wasting. Although our studies, 

as well as previous reports, show that hormones such as norepinephrine vasopressin, aldosterone, 

angiotensin II and glucocorticoids regulate these transporter proteins, thereby maintaining 

sodium chloride, water and blood pressure homeostasis, until recently the transducers that link 

hormonal signaling to the downstream targets (transporters) were unknown. Recent studies 

identified WNK kinases as the integrative upstream regulators of renal sodium transport 

systems(68, 248, 249). WNK, with no lysine (K) kinases, are serine-threonine protein kinases 

that have been linked to regulation of a number of renal transporters, particularly WNK3 kinase 

was recently identified as a positive regulator of both NKCC2 and NCC(250). Mutations in 

WNK1 and WNK4 have been found to cause pseudohypoaldosteronism type II (PHA II), a 

disease characterized by hypertension and hyperkalemia, due to a coupled increase in NaCl 

reabsorption and deficiency in renal K+ secretion(69). It remains to be determined whether 

WNK kinases act downstream of norepinephrine and cAMP activation in the regulation of BSC-

1 abundance. It is also unknown at present whether the activity and/or expression of WNK 

kinases are altered in the SHR. The role of WNK kinases in essential hypertension has not been 

previously studied, but we hypothesize that WNK kinases play an important role in the 

pathogenesis of hypertension in the SHR and further studies are needed to explore this 

possibility. 
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6.4 UNIFYING PATHWAY FOR ESSENTIAL HYPERTENSION 

According to the Guytonian paradigm, long-term control of arterial pressure takes place via renal 

mechanisms (pressure-natriuresis mechanisms) and that all factors that are believed to play a role 

in the long-term regulation (or dysregulation) of arterial blood pressure would do so via the 

kidney. We propose a unifying pathway for essential hypertension that unites many of the 

previous hypotheses, including our hypothesis. In the prehypertensive state, the kidneys are 

believed to be normal, but that renal alterations and/or injury are initiated in most circumstances 

by repeated and intermittent renal vasoconstriction induced by a variety of factors, with an 

overactive sympathetic nervous system being at the forefront. Our hypothesis is that renal-

catecholamine interactions are the triggering factor for the pathogenesis of hypertension 

produced by an overactive sympathetic nervous system that is, in turn, induced by stress, 

environmental or genetic factors. Activation of the SNS would additionally result in activation of 

the renin-angiotensin system resulting in elevated circulating angiotensin II levels, enhanced 

vasoconstriction, vascular damage and inflammation, renal ischemia and renal dysfunction due 

to direct effects of circulating hormones (including norepinephrine) on renal vasculature and on 

renal tubular transport systems (BSC-1), resulting in the development and maintenance of a 

persistent hypertensive state, as is the case in essential hypertension.  

6.5 CONCLUSION 

The present studies were based on the concept that the pathogenesis of sustained hypertension 

involves the kidneys. Altered renal sodium handling in the SHR has been previously reported(9, 

154); however, the factors contributing to this effect are unknown. Our studies show that in the 

SHR, there is increased expression of the renal sodium transporter BSC-1, the inhibition of 

which results in normalization of blood pressure, suggesting that BSC-1 could be a key player in 

the development and maintenance of hypertension in the SHR. Studies in an experimental model 

of prenatally-programmed-hypertension suggest that hypertension involves transcriptional 

upregulation of sodium transporters BSC-1 and TSC in the thick ascending limb and distal 

convoluted tubule, respectively(141). Also, gene targeting experiments show that inactivation of 
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NKCC2 gene directly affects the countercurrent urine-concentrating mechanism and triggers 

profound disorganization of renal tissue(65, 157).  

Many lines of evidence indicate that the sympathetic nervous system, via the renal 

nerves, plays an important role in the pathogenesis of essential hypertension in humans and 

laboratory animals(22, 195). Patients with established essential hypertension have increased 

sympathetic nervous system activity, as evidenced by increased plasma and urinary 

norepinephrine levels, elevated excretion of catecholamine metabolites, and an exaggerated 

depressor response to centrally acting sympatholytic agents(196-199). In the SHR and in the 

DOCA/NaCl hypertensive model, increased renal efferent nerve activity has been shown to 

contribute to the development of hypertension by causing increased renal sodium retention(203, 

204). In both of these experimental models, renal denervation delays the development and blunts 

the severity of hypertension and is associated with increased urinary sodium excretion, 

suggesting a renal efferent mechanism(205-207). Recently, studies showed that increased renal 

sympathetic activity known to be present in an animal model of liver cirrhosis plays a significant 

role in sodium retention by stimulating sodium reabsorption in the TAL via increased renal 

abundance of BSC-1(183). 

Even though investigators have not yet elucidated the mechanisms leading to the over-

activation of the sympathetic nervous system in human and animal models of essential 

hypertension, our study is the first to show a direct link between the sympathetic nervous system 

and renal sodium ion transporters. Our studies show that norepinephrine regulates the 

expression/abundance of one of the key renal sodium ion transporters identified to be involved in 

the pathogenesis of hypertension in the SHR, namely BSC-1, via a β-adrenoceptor-cAMP-PKA 

dependent pathway, an effect that can explain the mechanism by which norepinephrine and/or 

the sympathetic nervous system contributes to the enhancement of urinary concentrating ability 

and sustained antidiuresis in the long-term. Regulation of the sodium transporter abundance by 

norepinephrine could additionally explain the abnormal salt and water balance associated with 

certain pathological disease states involving increased norepinephrine levels such as essential 

hypertension and further elucidation of the mechanisms involved, could lead to the development 

of newer therapies that could better help treat the progression of diseases associated with over-

activation of the sympathetic nervous system such as essential hypertension. These studies are an 

essential first step in this direction. 
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APPENDIX A 

REGULATION OF RENAL TRANSPORT SYSTEMS 

A.1 INTRODUCTION 

The regulation of ion and water transport in the kidney is important for maintenance of 

extracellular fluid volume and arterial blood-pressure regulation. The major ion transporters and 

water channels in individual renal tubule segments have been identified via physiological 

techniques, and complementary DNAs for all of the key sodium transporters and channels 

expressed along the renal tubule have been cloned and antibodies are now being used to 

investigate the molecular basis of renal tubule sodium-transport regulation. These include the 

apical transporters: sodium-hydrogen exchanger (NHE-3) of the proximal tubule, the 

bumetanide-sensitive Na-K-2Cl cotransporter (BSC-1) and the inwardly-rectifying K channel 

(ROMK-1) of the thick ascending limb,  the thiazide-sensitive Na-Cl cotransporter (TSC) of the 

distal tubule, epithelial Na channel (ENaC) and the water channels aquaporin1-4 of the collecting 

duct; and the basolateral transporters such as Na-K-ATPase (located along entire nephron) and 

sodium-bicarbonate transporter (NBC-1) of the proximal tubule.  

The present study was initiated to validate a chronic hormone infusion model to study the 

regulation of renal sodium ion transporters and water channels by norepinephrine, the principal 

neurotransmitter of the sympathetic nervous system. We utilized semi-quantitative 

immunoblotting in a rat model of chronically elevated norepinephrine (via infusion) and as 

positive controls, we included rat models of chronically elevated vasopressin, angiotensin II and 

aldosterone, all of which are well known to modulate the expression of sodium ion transporters 

and water channels along the nephron. 
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A.2 METHODS 

Rats were randomly divided into 5 groups (n=3): Angiotensin II (200 ng/min), aldosterone (150 

ng/min), arginine vasopressin (50 ng/min), norepinephrine (600 ng/min) or vehicle-treatment 

groups. All animals received either the hormones or saline by means of osmotic minipumps 

(Alzet) for a period of 15 days. Following treatment, blood pressures were measured and kidneys 

excised for tissue isolation and immunoblotting as previously described in detail in Chapter 4. 

A.3 RESULTS AND DISCUSSION 

Chronic infusions of norepinephrine, angiotensin II, arginine vasopressin and aldosterone 

significantly increased arterial blood pressure (Table 5).  In this regard, norepineprhine, arginine 

vasopressin and aldosterone caused similar increases in arterial blood pressure, whereas 

angiotensin II caused the greatest increase.  Chronic norepinephrine infusion resulted in a 

significant increase in the abundance of NHE-3 in the cortex, but not medulla (Figure 31). In 

contrast, chronic infusions of arginine vasopressin, angiotensin II and aldosterone did not 

significantly increase NHE-3 protein expression (Figure 31).  Chronic norepinephrine infusion 

resulted in a 3-fold increase in the protein abundance of the Na-K-2Cl cotransporter BSC-

1/NKCC2 (P<0.05) in the renal medulla.  Similarly, chronic vasopressin and angiotensin II 

infusions also resulted in an increase in BSC-1 expression by 3-fold and 2-fold respectively, 

(P<0.05) (Figure 32).  Aldosterone, on the other hand, did not have any effect on BSC-1 

expression.  Changes in BSC-1 expression were not accompanied by any changes in the 

expression of ROMK-1 (Figure 35A). Norepinephrine did not increase the expression of TSC in 

the cortex (Figure 33). TSC expression, however, was induced by aldosterone and angiotensin II 

infusions (Figure 33).  Although none of the treatments significantly altered the expression of 

aquaporin-1 (Figure 35B), chronic norepinephrine and vasopressin infusions resulted in a 2-fold 

increase in aquaporin-2 protein levels in the medulla (P<0.05) (Figure 34) 

An important aspect of the current study was the inclusion of other hormones 

(aldosterone, angiotensin and arginine vasopressin) known to regulate renal transport systems in 

addition to their effects on mean arterial blood pressures.  Results from these positive controls 
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are consistent with previously published results by other laboratories(120, 259, 266, 267).  In our 

experimental set-up, chronic vasopressin infusion upregulated BSC-1 and aquaporin-2 protein 

abundance in the medulla, aldosterone infusion induced TSC protein abundance and angiotensin 

II infusion increased BSC-1 and TSC levels as has been previously reported. Vasopressin and 

angiotensin II have been previously shown to regulate expression of the bumetanide-sensitive 

Na-K-2Cl cotransporter of the thick ascending limb(120, 259). Vasopressin additionally 

regulates expression of the water channel aquaporin-2 of the collecting duct(267, 268) and the 

antidiuretic mineralocorticoid hormone aldosterone regulates expression of the thiazide-sensitive 

NaCl cotransporter of the distal tubule(266), thereby validating our experimental set-up and 

protocol. 

 
Table 5. MABP in control and hormone infused rats 

Effects of chronic hormone infusions on mean arterial blood pressure (MABP), systolic blood pressure, 

diastolic blood pressure and heart rate (HR) in rats. Values represent means ± SEM recorded at one-minute intervals. 

* denotes P < 0.001 vs. Control  

Treatment MABP 

(mm Hg) 

Systolic 

(mm Hg) 

Diastolic 

(mm Hg) 

Heart Rate 

(beats/min) 

Protocol 1     

     Control 119.6± 6.5 129.4± 1.0 109.8± 3.1 376.7± 7.6 

     Norepinephrine 142.8± 2.7 * 168.1± 9.6 * 117.5± 2.5 * 487± 37.3 * 

     Angiotensin II 182.2± 4.0 * 203.2± 8.4 * 161.0± 2.6 * 474.1± 22.9 * 

     Arginine vasopressin 143.6± 5.0 * 153.8± 3.6 * 133.3± 6.8 * 440± 9.0 *  

     Aldosterone 143.8± 8.0 * 153.2± 7.2 * 134.4± 8.8 * 423.7± 61.1 * 
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Figure 31.  Expression of NHE-3 in the renal outer cortex and medulla in control and hormone-

infused rats 

Top panel: each lane was loaded with 20 µg of protein and blots were probed with rabbit anti-NHE-3 and 

mouse-anti-β-actin antibodies. Bottom panel: densitometric analysis of NHE-3 expression in cortex normalized to β-

actin. Values represent means ± SEM. *denotes P < 0.05 vs. Control (n=3, each group). 
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Figure 32.  Expression of BSC-1 in the renal outer cortex in control and hormone-infused rats 

Top panel: each lane was loaded with 20 µg of protein and blots were probed with rabbit anti-BSC-1 and 

mouse-anti-β-actin antibodies. Bottom panel: densitometric analysis of BSC-1 expression in medulla normalized to 

β-actin. Values represent means ± SEM. *denotes P < 0.05 vs. Control (n=3, each group). 
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Figure 33.  Expression of TSC in the renal outer cortex and medulla in control and hormone-infused 

rats 

Top panel: each lane was loaded with 20 µg of protein and blots were probed with rabbit anti-TSC and 

mouse-anti-β-actin antibodies. Bottom panel: densitometric analysis of TSC expression in cortex normalized to β-

actin. Values represent means ± SEM. *denotes P < 0.05 vs. Control (n=3, each group). 
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Figure 34.  Expression of AQP-2 in the renal outer cortex and medulla in control and hormone-

infused rats 

Top panel: each lane was loaded with 20 µg of protein and blots were probed with rabbit anti-AQP-2 and 

mouse-anti-β-actin antibodies. Bottom panel: densitometric analysis of AQP-2 expression in medulla (average of 

both bands) normalized to β-actin. Values represent means ± SEM. *denotes P < 0.05 vs. Control (n=3, each group). 
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Figure 35.  Expression of ROMK-1 and AQP-1 in the renal outer cortex and medulla in control and 

hormone-infused rats 

Each lane was loaded with 20 µg of protein and blots were probed with rabbit anti-ROMK-1, rabbit anti-

AQP-1 and mouse-anti-β-actin antibodies.  
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APPENDIX B 

PLASMA MEMBRANE AND INTRACELLULAR VESICLE ISOLATION BY 

DIFFERENTIAL ULTRACENTRIFUGATION 

Isolation of plasma membrane and intracellular vesicle fractions by successive differential 

centrifugation at 17,000g followed by centrifugation of the resulting supernatant at 200,000g 

yields fractions that contain exclusively plasma membrane and membranes intracellular vesicles 

respectively(159, 171). Cortex and inner stripe of outer medulla were dissected fro each kidney, 

minced finely and homogenized using a saw-toothed homogenizer in isolation buffer (250 mM 

sucrose/10 mM triethanolamine, pH 7.6) containing protease inhibitors (1 µg/ml leupeptin, 0.1 

mg/ml phenylmethylsulfonyl fluoride). This homogenate was centrifuged at 4,000g for 15 min 

and the supernatant was collected for subsequent centrifugation. To increase the yield of 

membrane vesicles, the resultant pellet was rehomogenized in fresh isolation buffer, and the 

centrifugation repeated as described above. The supernatents were pooled, and plasma 

membrane and intracellular vesicle fractions were prepared consecutively by centrifugation of 

the supernatant at 17,000g (17,000 rpm Beckman JA-17 rotor) for 30 min and 200,000g (56,800 

rpm Beckman Type 90 Ti rotor) for 1 hr, respectively. The resulting pellets were resuspended in 

100 µl of isolation buffer and assayed for protein concentration by BCA method. Samples were 

solubilized in Laemmli sample buffer containing 2.5% SDS.  Isolation of protein fractions was 

verified by immunoblotting with the following markers: water channel AQP-1 (gift of MA 

Knepper, NHLBI) and vesicle-associated membrane protein VAMP-2 (Chemicon, Temecula, 

CA) for plasma membrane and intracellular vesicles respectively (Figure 36). 
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 Figure 36.  AQP-1 and VAMP-2 immunoblotting in plasma membrane and intracellular 

vesicle enriched fractions 

Each lane was loaded with 1 µg of protein and blots were probed with rabbit anti-AQP-1 and, rabbit anti-

VAMP-2 antibodies for plasma membrane and intracellular vesicle respectively. 
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