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I. Theory of Laser Driven Molecular Wires. 

II. Light Diffraction by Colloidal Crystals – Numerical Simulations for Realistic Finite 

Systems Using Single Scattering Theory. 

Alexander Tikhonov, Ph. D.  

University of Pittsburgh, 2006 

Part I considers electron transport through a molecular bridge coupled to two metal electrodes in 

the presence of a monochromatic ac radiation field. Coherent current flow through the wire is 

calculated within a nondissipative one-electron tight binding model of the quantum dynamics. 

Using Floquet theory, the field-driven molecular wire is mapped to an effective time- 

independent quantum system characterized by a tight-binding Hamiltonian with the same 

essential structure as the nondriven analog. Thus, the Landauer formalism and scattering Green's 

Function methods for computing current flow through the wire, which have been profitably 

applied to the molecular wire problem in the absence of driving, can also be used to analyze the 

corresponding field-driven system.  

The theory developed here is applied to an experimentally relevant system, namely a 

xylyl-dithiol molecule in contact at either end with gold electrodes. Net current through the wire 

is calculated for two – STM and molecular junction - configurations of the electrode-wire-

electrode system for a range of experimental inputs, including   bias and the intensity and 

frequency of the laser. Via absorption/emission of photons, the electron tunneling occurs through 

an interference of many pathways and may lead to a significantly enhanced laser-driven current 

at experimentally accessible laser field strengths.  

 

In Part II we apply a single particle scattering methodology to calculate diffraction efficiencies 

of finite Crystalline Colloidal Arrays (CCA’s). We developed an extension of the well-known 

Kinematic theory and tested it by comparing computed light scattering efficiencies with exact 

results for 1D slab model. We discuss some applications of the method to finite CCA’s of 

different shapes and sizes. In particular, the dependence of diffraction intensities on the incident 

 iv 



angle is analyzed near the Bragg diffraction maximum for several different crystal planes. We 

also study the effect of the incident beam shape and cross sectional profile on the CCA 

diffraction. Finally, the effective penetration depth for the incident light is calculated and 

compared for several incident directions, and the effect of stacking faults on diffraction 

efficiencies is analyzed using the methodology developed herein.. 
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PREFACE 

 

This dissertation contains two separate topics, therefore, I organize them into two separate parts, 

PART 1 and PART 2. Each part contains a separate introduction and separate bibliography list.  

Some of the work presented in this dissertation was published, specifically, for the “Laser 

driven molecular wires”, the material of Chapters 2 and 3 was published in two correspondent 

papers: 

 A. Tikhonov, R. D. Coalson, Y. Dahnovsky, J. Chem. Phys., “Calculating electron 

transport in a tight binding model of a field-driven molecular wire: Floquet theory 

approach”, 116, 10909 (2002). 

 A. Tikhonov, R. D. Coalson, Y. Dahnovsky, “Calculating Electron Current in a Tight-

Binding Model of a Field-Driven Molecular Wire: Application to Xylyl-Dithiol”, J. 

Chem. Phys. 117, 567 (2002). 

The material in Chapter 4 is unpublished. 

 

In the second project “Light Diffraction by Colloidal Crystals – Numerical Simulations for 

Realistic Finite Systems Using Single Scattering Theory” most of the material in Chapters 6 and 

Chapters 7 is unpublished, but there are two relevant publications: 

 S.A. Asher, J.M. Weissman, A. Tikhonov, R.D. Coalson and R. Kesavamoorthy, 

"Diffraction in Crystalline Colloidal-Array Photonic Crystals", Phys. Rev. E, 69, 066619 

(2004). 

 C. Reese, A. Mikhonin, M. Kamenjicki, A. Tikhonov and S.A. Asher, "Nanogel 

Nanosecond Photonic Crystal Optical Switching", J. Am. Chem. Soc., 126, 1493 (2004). 
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Part 1    
Theory of Laser Driven Molecular Wires. 
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Chapter 1. Introduction 

Conduction of electrons through a single molecule connecting two metal electrodes has received 

significant attention recently, fueled by the drive toward further miniaturization of electronics [1-

6]. Simple molecular electronic devices usually consist of individual molecules or small groups 

of molecules sandwiched between metal electrodes. The field of development of such molecular 

electronic devices has been very active lately, and many devices have been proposed. They 

include rectifiers, light-emitting diodes, single-molecule transistors and molecular switch tunnel 

junctions [1, 7-9]. The most basic element of molecular electronics is a single-molecule transport 

junction, and both theoretical and experimental studies of charge transport though the junctions 

are of fundamental importance.  

The nanoscale transport junctions considered most often are a single-molecule junction or 

junction through a self-assembled monolayer of molecules. In the former case the single 

molecule is connecting two metal (typically noble metal) electrodes (Fig. 1.1), in the later case 

many molecules self-assemble on a metallic surface and electronic transport occurs through 

simultaneously several molecules. In Fig. 1.1 we sketch the typical experimental molecular 

junction setup, where organic xylyl-dithiol molecule is attached between two metal leads, and 

electrical current results from the tunneling through the molecular bridge under the driving force 

of external constant voltage potential. 

There are many experimental setups to study charge transport through molecular 

junctions [1]. Depending on type of tunnel junctions typical experimental studies use scanning 

tunneling microscopies (STM) and mechanical break junctions [1, 10, 11]. The experimental 

configuration consisting of an STM tip in proximity to an adsorbate on a metal surface provides 

a good example of an asymmetric electrode-molecular wire-electrode system, where the 

molecule is much closer to one electrode then to another. Current-voltage (I-V) characteristics 

can be recorded when the tip is positioned above the adsorbate. In the case of mechanical break 
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junction the molecule is chemisorbed to both electrodes, resulting in strong interaction between 

molecule and metals. A related problem of recent interest is conductance through mesoscopic 

systems composed of semiconductor heterostructures [6, 7]. Spectroscopic techniques have been 

extensively utilized to probe the features of charge transfer through the molecule-metal lead 

interface and details of electronic structure [14-16].  

The theory of conductance through molecular wires is well developed. For the STM 

geometry of the junction perturbation theory based on the Tersoff-Hamann approach has been 

extensively used [17]. Assuming a weak coupling between the tip and the molecule on the 

surface, the tunneling current is proportional to the local density of surface states, evaluated at 

the position of the tip at the Fermi energy. A non-perturbative approach, in which the relevant 

electron transport is considered as a one-electron scattering process with the molecular bridge 

treated in a tight-binding approximation, has also seen wide application [18-22]. Although 

lacking the sophistication and accuracy of more advanced ab-initio electronic structure methods, 

the tight-binding based scattering formalism was very successful in developing qualitative 

understanding of physical effects affecting the current through molecular wires. In this approach, 

one examines how the molecular orbitals of a bridge line up relative to the Fermi energy of the 

metal leads, which connect to an external (macroscopic) circuit. As a result of attaching the 

molecule to the leads, the electron charge rearranges, the geometry of the molecule reorganizes, 

and an electrostatic potential develops across the junction. Because of the large polarizability of 

the metal, an image charge is formed, thereby affecting the populations and charge distribution 

near the interface with the molecule. Upon applying a constant voltage bias between the 

electrodes, current flows through the junction, its value determined primarily by the relative 

position of the molecular levels with respect to the Fermi energy at the leads and by the 

magnitude of the coupling between the molecule and the leads.  

As a result, the magnitude of the current is largely an interface problem and very 

sensitive to the details of connection between the molecule and the leads. More advanced 

electronic structure methods, usually based on density-functional methods have been applied to 

the problem [23-27], but the agreement between theory and experiment remains tenuous. The 

main problem is argued to lie in the difficulties of experimental reproducibility of the parameters 

of the junction, and the large sensitivity of the current to such parameters. 
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When the bridge molecule is relatively short (on the order of 1 nm or shorter) and the gap 

between the molecular levels and the Fermi energy is larger than the applied voltage bias, the 

charge transfer across the junction is said to be non-resonant, i. e., in the superexchange regime. 

The principal electronic transport mechanism in this case is believed to be coherent elastic 

(ballistic) tunneling and is usually described by the Landauer formalism [12], in which the 

conductance g at the Fermi energy EF is given: 

)(2=
2

FETeg
=

         (1.1) 

where T is the transmission function, and e and =  are the electronic charge and Planck’s 

constant, respectively. The maximum conductance per molecule, corresponding to the T=1 is 

12
)k 9.12(2= −Ω==

eg , and is sometimes called quantum of conductance. The total current I 

flowing through the junction is given in the Landauer formalism by the formula 

(∫ − )()()(= ETEfEfdEeI RL=
)        (1.2) 

where fL and fR are the occupation probabilities (Fermi functions) of states in the left and right 

electrodes.  

During coherent elastic tunneling an electron never localizes on the bridge. This is a 

dominating transport mechanism for relatively short wires, where the “tunneling traversal time” 

is less then ~1 fs and much shorter then the typical time scale for nuclear motion [28]. For longer 

wires and resonant charge transfer (occurring for at small energy difference between the bridge 

molecular levels and Fermi energy) the tunneling time can be substantially lengthened and 

inelastic tunneling/dephasing may become significant. In inelastic electronic “hopping” the 

electron actually resides on the bridge and “hops” between the bridge sites as a result of thermal 

activation [29, 30]. Dynamic localization of the electron on the femtosecond time scale, polaron 

formation and the strength of nuclear-electronic coupling has recently been investigated via two-

photon photoemission [14-15]. 

In the Landauer approach the leads are assumed to be in their own thermal equilibrium, 

characterized by the Fermi population distribution and unaffected by the tunneling process. It is 

also assumed, that the tunneling process is independent on the population distribution on the 

leads, and disregards effect of electron-electron correlations on the tunneling process. Recent 

calculations based on an approach that is more rigorous than the Landauer approach, namely, the 
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non-equilibrium green function (NEGF) formalism [31, 32], have been carried out and the model 

has been extended to include electron-phonon interactions [33]. 
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Figure 1-1. Xylyl-dithiol organic molecule sandwiched between two metal electrodes. Asymmetric connection 

between the molecule and electrodes is shown – the molecule is closer to the left then to the right electrode. 

Electrons tunnel trough the molecule under the driving force of external voltage bias. Illuminating the junction with 

the external laser field modifies the electronic current through the system. 

 

In the present work we explore the prospect of controlling the current through a 

molecular junction by imposing a monochromatic ac electromagnetic field. Previous theoretical 

studies suggest that illumination of a molecular electron transfer system by a laser field can alter 

its conductance properties. Specific motifs that have been studied in this context include: long 

range metal-metal intramolecular electron transfer complexes [34-36], double-barrier 

semiconductor heterostrucures [37], periodically driven scattering in one dimension [38, 39], 

adiabatic pumping [40, 41], quantum coherent control [42] and systems in which the gap 

between a metal surface and an STM tip (with no intervening adsorbate) is illuminated [43]. For 

a recent review of driven quantum transport and an extensive list of references we refer the 

reader to reference [44].  

To date, experimental evidence for ac field modified transfer of electron 

transfer/transport is rather scant. However, one encouraging example is provided by the studies 

of B. J. Keay and coworkers [13]. Upon illumination of a multi quantum well semiconductor 
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heterostructure with an appropriate monochromatic radiation source, they were able to strongly 

alter the current flow through the heterostructure. In particular, these authors were able to reverse 

the direction of current flow relative to the direction dictated by an applied dc bias potential. 

These findings provide some motivation to search for similar effects in molecular wire systems. 

Another experimental achievement in mesoscopic driven transport was reached in coherent 

coupling of quantum dots [45, 46]. Photocurrent measurements in metal-insulator-metal 

junctions under illumination with ultra-short laser pulses reveal that both field-assisted tunneling 

and photoemission of excited electrons are dominant transport mechanisms [47]. 

The purpose of the present report is to develop a scattering theory for the effect of 

radiation on coherent electronic conduction between two metal electrodes. We also apply the 

developed theory to a simple organic molecule (“molecular wire”) connecting two gold 

electrodes, and discuss an interplay of different physical mechanisms affecting the total field-

driven current. 

When an external radiation is applied to the molecular junction, one can distinguish 

several physical processes affecting the electronic transport. Field assisted tunneling can modify 

the probability of the electron transmission through the junction. In another mechanism, a laser 

field can photoemit electrons from one electrode to another. The strong interaction of laser field 

with the metal material of a nano-junction results in strong enhancement of the local 

electromagnetic field, creation of various excitations near the junction and modification of the 

population distribution of electrons [48, 49] and their field-induced localization [50], which may 

also affect the current through the junction. 

We outline here a theoretical framework for understanding field assisted tunneling charge 

transport mechanism through a molecular wire in the presence of a monochromatic ac driving 

field. For linguistic simplicity, we shall refer to this as a “laser field”. We adopt the simple one-

electron theoretical model, assuming, similar to the Landauer picture, the following set of 

simplifications: coherent electronic transport through the junction, no electron-electron 

correlations and the absence of environmental coupling (e.g., disorder, dissipation, etc.). We 

assume the simplest possible model of metal leads electronic population distribution by 

disregarding the effect of the adsorbed molecule on the metal leads population. The last 

assumption can be later corrected by adding into the model more realistic population distribution 

profile, accounting for adsorbate induced population modification, image and surface states. We 
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also disregard the modification of electronic populations by the laser field on both the molecule 

and the leads, and assume the equilibrium Fermi distribution of a non-driven isolated system. 

The importance of both adsorbate and laser field induced modification of the electron population 

distribution in the leads has been demonstrated in two photon photoemission spectroscopic 

studies [14, 15].  

The assumption of coherent electronic transport as a dominating transport mechanism is 

valid for a small molecular chains conducting in non-resonant superexchange regime. A strong 

laser field may open up the resonant conducting channels, where electrons in the lead 

absorb/emit photons and resonantly couple to the molecular levels of the bridge. This resonant 

tunneling may lead to the increase of the “tunneling time” and consequent increase in the 

coupling between the electron and nuclear motion. Thus, reports of many orders of magnitude of 

increase in field-assisted electron transfer rates by considering only coherent one-electron charge 

transport picture should be taken with a “grain of salt” – the dissipation and dephasing as well as 

coulomb blockade effects may considerably change the magnitude of the enhancement effect. 

As a first step toward the understanding of realistic picture of a current through the 

molecular wires illuminated by the laser field, we focus here on the understanding of a field 

assisted tunneling within a nondissipative one-electron tight binding model of the quantum 

dynamics. Using Floquet theory, the field-driven molecular wire is mapped to an effective time- 

independent quantum system characterized by a tight-binding Hamiltonian with the same 

essential structure as the nondriven analog. Thus, the scattering Green's Function methods and 

Landauer formula for computing current flow through the wire, which have been profitably 

applied to the molecular wire problem in the absence of driving, can also be used to analyze the 

corresponding field-driven system.  

For a Hamiltonian with periodic time dependence, one can apply the Floquet theory to 

map the time-dependent problem into the effective time-independent one, at the cost of 

increasing the dimensionality of the relevant effective Hamiltionian. The Floquet theory [51, 52, 

44] is based on the Bloch-Floquet theorem, which states that eigensolutions of differential 

equations with periodic coefficients may be expressed as a product of plane waves and lattice-

periodic functions. Thus any solution for a Schrödinger equation can be expressed as a linear 

combination of Bloch functions  

)(te a
ti a φε =−           (1.3) 
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where the functions )(taφ are time periodic with the same periodicity as the external driving 

field, and the exponential phase factor contains the quasi-energy εa which can be selected to lie 

within the first Brillouin zone.  

Consequently, )(taφ  periodic functions can be expanded into appropriate Fourier series, 

and the arbitrary wave function solution of the Schrödinger equation )(tψ can be expanded in 

corresponding plane waves: 

tim
m

m
ett ωϕψ )(=)(

=
∑

∞

−∞

         (1.4) 

Inserting these expansions into the differential equation results in an infinite matrix-

eigenvalue problem, which, suitably truncated, provides the expansion coefficients mϕ  for every 

quasi-energy mω. Following our main source of the insight about the Floquet method [51], we 

call mϕ as “Floquet states” corresponding to the “Floquet replica” m. We note, that this notation 

is different from the more popular notation [44] denoting )(taφ and εa of the Bloch function (1.3) 

as correspondingly “Floquet states” and “quasienergies”. 

The formalism we develop here is exact for the one-electron tight-binding model, in the 

sense that the scattering Green’s function formula applied to the effective time-independent 

Hamiltonian gives an exact solution for motion under the original time-dependent Hamiltonian. 

We tested this numerically by comparing the tunneling rates obtained by the scattering Green’s 

function formula with those obtained by exact numerical integration of time-dependent 

Schrödinger equation.  

We extensively studied first a simple model “toy” system, with the bridge molecule 

consisting of only several sites (states), and then studied a realistic molecular wire system 

consisting of a xylyl-dithiol molecule coupled electronically to two gold electrodes. We have 

chosen the xylyl-dithiol molecule because it has been extensively studied both experimentally 

[11, 19, 53] and theoretically [19, 54, 55] and provides a concrete example on the basis of which 

to estimate parameters in the system Hamiltonian and to test convergence issues associated with 

the theoretical analysis. 

The current through the molecular wire in the absence of laser field is determined by the 

summation of the tunneling rates of all electrons located in the gap between the Fermi energies 

of the metal electrodes. By illuminating the molecular junction with a laser field we expand the 
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number of electronic states participating in the current. The electrons, even located far bellow the 

Fermi energies of both electrodes, can absorb one or several photons, tunnel through the 

molecular wire and end up on the empty states of the opposite electrode.  

We consider two different geometries of the molecular wire/electrode system: 1) A 

symmetric configuration in which the contacts with the gold electrode on either side of the 

molecule are equivalent. Such a situation obtains, approximately, in molecular break-junction 

experiments. Hence will shall term this the “break junction” configuration. 2) An asymmetric 

configuration in which the left contact distance is small (ca. 2 Å), corresponding to 

chemisorption of the thiol group on one end of the xylyl-dithiol to a gold electrode, while the 

other contact distance is considerably larger (ca. 5 Å), corresponding to the location of an STM 

tip. This will be designated as an “STM” configuration. The geometrical differences in these 

electrode/molecule systems lead to different interactions with the laser field, which in turn results 

in different induced currents, and to the so-called “ratchet” effect – existence of directed 

electronic motion (field-induced current) at zero dc voltage bias as a result of interference of 

many ac field induced tunneling processes. 

We expand our theoretical treatment by developing perturbative theory based on the 

partitioning of the full Floquet Hamiltonian. This perturbation theory expansion allows us to 

simplify the full Floquet Hamiltonian and provides a clear physical description of field-driven 

electron tunneling as an interference of many pathways. Each such process has a specific 

physical interpretation as the electron site to site “hop” accompanied by possible photon 

absorption-emission. We use a diagrammatic technique to identify all possible pathways for 

electron transport and assign specific algebraic term to each such pathway. 

We test this perturbation approach by analyzing tunneling rates through the xylyl-dithiol 

molecule connecting two gold electrodes and show that for a relatively strong laser field 

intensities of less then 107 V/cm by taking into account just the first and second perturbation 

terms the exact tunneling rates are well numerically reproduced. 

Other Floquet based methodogies have been developed [58-61] similar to our approach to 

the problem of driven molecular wires. In ref. [58], the time-dependent part of Hamiltonian was 

considered as a small perturbation, making the approach applicable for only small intensities of 

laser fields. The expression for a current driven by a periodic but otherwise arbitrary ac field was 

derived in [60, 61] and the formulas were extended to include the phonon damping. A rather 
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simple case of the molecular wire was studied – the simple model for a wire consisting of several 

atomic sites, where the energies of the first and last sites of a molecular bridge were placed near 

the Fermi energies of the leads, and other bridge states are placed much higher then the Fermi 

energy. The coupling between the wire and the leads was considered as a small perturbation. As 

a result of these approximations, there is a single dominating tunneling channel which can be 

described simply by the rotating-wave approximation. In contrast, our studies with the realistic 

xylyl-dithiol molecular wire showed that the bridge energy level structure is rather dense and 

complicated, and the current is best described as an interference of many resonant channels. 

Since the electrons in the metal occupy the wide range of states below the Fermi energy, there 

are always many possible electrons in the leads, which can absorb/emit photons and resonantly 

jump to one of the bridge molecular level. Thus, the photon assisted electron transfer between 

the leads and the bridge is important for realistic molecule, and the approximation of weak 

interface coupling is perhaps overly simplistic.  

The outline of this part of the theses is as follows. In chapter 2 we develop methodology 

and test the method on the simple model. In section 2.1 we briefly review the one-electron tight 

binding model of electron transport through a (non-driven) molecular wire connected to two 

metal electrodes, ignoring, for simplicity, dissipative coupling to non-electronic environmental 

degrees of freedom. We summarize the description of current flow through the wire, focusing on 

a well-known Green's function based formula that prescribes the magnitude of this current in 

terms of the properties of the bridge molecule, the metal electrodes, and the electronic coupling 

between them. In Section 2.2, we introduce an applied monochromatic ac electric field (provided 

by a laser), and indicate how this modifies the relevant tight-binding Hamiltonian. Using Floquet 

theory, we then show in Sect. 2.3 how to map the time-dependent Hamiltonian which describes 

the field-driven system precisely into a time independent Hamiltonian corresponding to an 

augmented state space. The essential structure of this Floquet Hamiltonian is identical to that of 

the standard (non-driven) molecular wire problem -- only the details of the effective molecular 

wire, the reservoirs and the coupling between them change. Thus, the Green's function formula 

for current flow through the non-driven wire can be readily adapted to calculate current flow for 

the field driven wire. In Section 2.4, we provide an approximate way to simplify the Floquet 

Hamiltonian associated with the field-driven system which enables the current to be analyzed in 

terms of a physically appealing “independent channel” picture. The conditions of validity of the 
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independent channel approximation (ICA) are discussed. In Section 2.5, prototypical numerical 

illustrations are presented for a simple model of a field-driven wire. Exact numerical integration 

of the time-dependent Schrödinger Equation is compared to Green's function analysis of the 

Floquet Hamiltonian -- good agreement is obtained. In addition, results of the ICA are presented 

to illustrate the range of its accuracy.  

The organization of the chapter 3 is as follows. In Sect. 3.1, elementary quantum 

chemical calculations are performed to determine the parameters which enter into the tight-

binding model of xylyl-dithiol coupled to gold electrodes. Next, in Sect. 3.2, we present some 

tests of the accuracy of the Floquet/Green's function analysis of current flow through the field-

driven wire. It will be seen that this procedure, carried out to full numerical convergence, 

provides an exact description of the field-driven system. This motivates our reliance on 

Floquet/Green's function analysis for the main results of the chapter, which are presented in Sect. 

3.3. Here we compute electric current through the xylyl-dithiol wire for both break-junction and 

STM configurations. A variety of experimental inputs (applied dc voltage, laser amplitude and 

frequency) are considered. We highlight conditions which enable significant laser enhancement 

of electric current through the wires.  

Finally, in chapter 4 we use perturbative approach to structure and analyze the Floquet 

effective Hamiltonian and employ a diagrammatic technique to describe the total tunneling rates 

as an interference of many channels, each channel representing a specific tunneling process 

entailing the absorption/emission of a specific number of photons. Then we test this method by 

comparing the exact and perturbative theories numerical results for both “toy” and realistic 

xylyl-dithiol molecular wires. We show that in the case of an xylyl-dithiol molecular bridge, 

which comprises many tight-binding states, and for the laser field intensities less then 107 V/cm, 

the exact result is numerically reproduced by taking into account just the first two terms in the 

perturbation series. 
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Chapter 2. Calculating electron transport in a tight binding 

model of a field-driven molecular wire: Floquet theory approach 

2.1 TIGHT-BINDING MODEL OF A (NONDRIVEN) MOLECULAR WIRE 

In this section we review relevant features of an electron transfer system consisting of a molecule 

(“molecular wire”) bridging between two metal electrodes in the presence of an applied dc 

voltage. Additional features associated with illumination of this system via monochromatic light 

are discussed in the next section. 

A simple 1-electron (Tight Binding or Hückel) model of a molecular wire [18-21] is 

schematically depicted in Fig. 2.1. It features two reservoirs, Left and Right, which represent 

metal electrodes. Connecting them is a molecular bridge (“wire”). The overall system 

Hamiltonian is defined by the following features. The Left reservoir states are denoted as i  and 

have energy iε . They are not directly coupled to each other. The same is true of the Right 

reservoir states, which are denoted as f  and have energy fε . Left and Right reservoir states 

are not coupled directly to each other. The molecular electronic structure is also represented by a 

Tight Binding Hamiltonian. The  atomic orbitals are denoted N I , with site energies Iε . These 

states are coupled by matrix elements . Finally, coupling between the L-reservoir state i  and 

atomic orbital 

JIV ,

I  on the molecular bridge is designated by . Analogously,  designates 

coupling between R-reservoir state  and bridge atomic orbital 

IiV , IfV ,

f I . 
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Figure 2-1. Energy level and coupling diagram for a non-driven molecular wire coupled to reservoirs of 

metallic states. Positions of Left and Right Fermi levels [for applied voltage ] are indicated. 0)/(= eEEV R
F
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The site energy levels just introduced refer to the system in the absence of any external 

perturbations. In order to get current to flow through the wire, some external field must be 

applied. In the usual case, a static, dc, field is applied across the metal electrodes using a battery 

[1-6, 10-12, 18-23]. Such a static field modifies the electronic Hamiltonian, and in particular, in 

the one-electron picture adopted here, changes the site energies associated with the Tight 

Binding model. We shall term the dc field-dependent site energies as  for the Left reservoir, 

etc. If the electric potential associated with the applied electric field is designated as 

iE

)(rGφ , then: 
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φε

ε
         (2.1) 

 

where  is the magnitude of the electronic charge, and 0e IrIII )(=,
Gφφ . Here the electric 

potential φ  is taken, without loss of generality, to be zero throughout the Left reservoir and have 
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the value  throughout the Right reservoir. The precise functional form of apV φ  is complicated by 

a number of factors [19-21], but does not affect the formal development of the one-electron 

model of molecular wire theory. 

Bearing this shift in the “bare” site energies (i.e., the molecular site energies in the 

absence of applied dc voltage) in mind, the Hamiltonian operator for the system when a static 

voltage is applied across the electrodes reads: 
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with the bridge Hamiltonian given by: 
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≠

+
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I
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Associated with the Hamiltonian H  is a state vector of the form 

 

∑∑∑ ++
f

f
I

I
i

i ftcItcitct )()()(=)(ψ       (2.4) 

 

Thus the time dependent Schrödinger Eq. (SE), )(ˆ=)( tHti ψψ� , is converted into a set 

of first order ODE's of the form )(=)( , tcHtci ββαβα ∑�  with fIi ,,=, βα . [Note: we set  

throughout.] 

1==

The basic dynamical scenario of interest is as follows. The system (electron) is prepared 

at  in a single state  of the L-reservoir. We wish to calculate the time evolution of the 

system for , and in particular the probability that the electron makes a transition to state  

of the R-reservoir, i.e., . From this we can compute the electrical current through the 

wire. 

0=t 0i

0>t 0f

2

0
|)(| tc f
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Formally, 000
)ˆ(exp=)( itHiftc f − , and thus is related to the (retarded) Green's function 

[62] of the system via: 
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with . The structure of the Hamiltonian enables a useful simplification of the overall 

Green's function, namely: 

+→ 0η
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with g  the Green's function for a modified version of the bridge Hamiltonian. Specifically, it is 

the  matrix: NN ×

 

[ 1)(=)( −
−− EEE M ΣHg ]         (2.7) 

 

where  is the matrix representing the bridge Hamiltonian (Eq. (2.3)), and  is an E-

dependent “self-energy” matrix, which decomposes as 

MH Σ
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with elements: 
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and likewise for . Furthermore, the elements of the N-d vector )(ERΣ LvG  are given by , 

and likewise for . 
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L
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The Fourier-Laplace (FL) transform given in Eq. (2.6) can be inverted to yield the time 

evolution of : )(
0

tc f

 

∫∫ ′′−′′−− ′′−′′′′
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where  is the inverse FL transform of )(tg RL vEv GG
⋅⋅ )(g , i.e.: 
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Now, if the set of L,R-reservoir states is dense, the function  will decay to zero after 

some transient time. If the set of reservoir states is infinitely dense,  will then remain zero 

for all time. If it is not, then there will be some “recurrence time” at which  becomes 

nonzero again. However, for a sufficiently dense set of reservoir states this recurrence time can 

be pushed off to (almost) infinity -- longer than the time scale of the experimental measurement. 
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where the arrow recognizes that for sufficiently long time the factor 2
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becomes highly peaked about , with integrated strength 
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= if EE tπ2  [63]. 
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2.1.1  Current through the Molecular Wire 

An important consequence of the discussion above is that the electron transfer in a (nondriven) 

molecular wire is  isoenergetic. An electron with initial energy  can tunnel only into states in 

the R-reservoir with the same energy (cf. Eq. (2.12)). A second important point is that the states 

of the metal reservoirs are all occupied below the Fermi level and unoccupied above (at 

temperature , a condition which we assume applies in the present discussion). When the 

metal reservoirs are connected by a wire with no applied voltage, the Fermi levels of the L and 

R-reservoirs are at the same energy. Thus tunneling from any occupied state of the 

0i
E

0=T

L  reservoir is 

“blocked”, because all isoenergetic states of the R-reservoir are occupied. 

The situation changes when a voltage is applied across the metal contacts (reservoirs). 

This causes the Fermi level of the L-reservoir to be above that of the R-reservoir (by the amount 

of the applied voltage ). Now the electrons in the L-reservoir with energy above the Fermi 

level of the right level can tunnel isoenergetically to the R-reservoir. We want to calculate the 

total rate of electron transfer (current) for a given applied voltage . 

apV

apV

The overall probability to make a transition to the R-reservoir is obtained by summing 

 over final states . This probability is finite and proportional to , thus establishing a 

well-defined transition rate : 
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with  an  “spectral density" matrix given by: RΔ NN ×
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Again, assuming that the temperature is sufficiently low that the  limit of the Fermi 

distribution can be invoked, the total current 

0=T

I  is given as the sum of contributions from all 

incident electronic states in the range : L
Fi

R
F EEE <<

0

 

∫
L
F

R
F

E

E

RL EEEEtrdEI )}()()()({2= †gΔgΔ
π

      (2.15) 

 

with: 

 

∑ −′′
i

iIiIiII
L EEVVE )(=)]([ ,,, δπΔ        (2.16) 

 

 

2.2  TIGHT-BINDING MODEL OF LASER-DRIVEN MOLECULAR WIRE 

 

Suppose that a monochromatic electric field of frequency ω  and amplitude  is applied along 

the axis of the bridge molecule. Because the wavelength of light (typically in the near-IR or 

visible region for the problem of interest here; see below) is much longer than the dimensions of 

the molecular wire, we would naturally expect it to be constant at a given time over the entire 

spatial extent of the molecule, if the latter was “free-standing” (not attached to electrodes). 

0E

This expectation is clouded by the presence of the two metal contacts, which are also 

illuminated by the light. In the present work, we assume the metal contacts are perfect 

conductors, so that the electric field inside them is identically zero [64]. We further assume that 

the electric field imposed by radiation from the light source is not strongly disturbed in the 

region where the molecular wire is situated, and hence can be considered constant and equal to 

its free-space value here. With these assumptions, the Hamiltonian of the system is modified to 

, where  is the spatially dependent electric potential established by the )(cosˆˆ
0 teHH l ωφ−→ lφ
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light source.  is taken to be zero in the Left reservoir, vary linearly across the junction region 

(where the molecule sits), and be constant inside the Right reservoir. Furthermore, its slope in the 

junction region is given by , with 

lφ

0=/ Edxd lφ− x  the direction perpendicular to the electrodes 

(again, we assume the electric field radiated by the light source is polarized in this direction -- 

basically, along the molecular wire). 

Thus, in the junction region, the spatial dependence of the radiated electric field takes the 

form , where 00 = Ee l μφ− μ  is the x  component of the (negative of the) electric dipole operator: 

xe0≡μ . We assume further that the electric dipole operator is diagonal in the basis of atomic 

orbitals (“site-orbitals”), due to the small spatial overlap between different orbitals (this overlap 

falls off exponentially with inter-orbital separation). Moreover, the diagonal dipole matrix 

elements are assumed to be given to a good approximation by the position of the site orbital 

(with all zeroth order states in the L-reservoir characterized by the same position, and likewise 

for the R-reservoir). That is, II xeII 0== μμ , where  is the position of the I'th atomic site 

orbital of the bridge molecule. Finally, since the electric potential is assumed to be constant in 

both reservoirs, we assume that  is diagonal in the reservoir states, and has the same value in 

all L-reservoir states, namely 

Ix

lφ

0== 0 LL xeμ  (taking the position of the surface of the left 

electrode to be at ). Consequently, in the R-reservoir, the diagonal element of  implies a 

value 

0=x lφ

RR xe0=μ , where  is the position of the surface of the metal contact corresponding to 

the R-reservoir. 

Rx

We note that to the extent that the dipole moment operator is not diagonal in the original 

site basis I , one can perform an orthogonal linear transformation which renders it so. This does 

not compromise the essential structure of the tight-binding Hamiltonian under consideration 

here. Further details of this procedure will be given in chapter 3. In the present discussion, we 

shall assume that μ̂  is “naturally diagonal” in the molecular bridge site basis adopted in order to 

specify our Hamiltonian operator. 

The tight-binding Hamiltonian for a general field-driven molecular wire then reads: 
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    (2.17) 

 

with the (driven) bridge Hamiltonian: 

 

∑∑
≠

++
JI

JIII
I

M JIVIItEEtH ,0 ))(cos(=)(ˆ ωμ      (2.18) 

 

As in the non-driven case, associated with this Hamiltonian is a state vector of the form 

indicated in Eq. (2.4), and the time-dependent Schrödinger Eq. (SE), , is 

converted into a set of first order ODE's of the form 

>)(|)(ˆ>=)(| ttHti ψψ�

)()(=)( , tctHtci ββαβα ∑�  with fIi ,,=, βα . 

Furthermore, the basic dynamical problem is the same as in the zero-field case: calculate the 

time-evolution of a system (electron) is prepared at  in a single state  of the L-reservoir. 0=t 0i

The field-off limit of this system, , has been extensively and profitably analyzed 

using Green's function methods (described above). For the field-driven case, it is less obvious 

how to apply Green's function (GF) techniques, since these require a time-independent 

Hamiltonian. However, using Floquet theory ([51-52]), the periodically time-driven Hamiltonian 

of interest here can be mapped to a (modified and augmented) time-independent form with the 

same essential structure as in the field-free case. Thus, the GF method can still be applied, and 

ultimately used to calculate current flow through the wire. 

0=0E

2.3  FLOQUET MAPPING OF FIELD-DRIVEN MOLECULAR WIRE TO AN 

EQUIVALENT FIELD-OFF MOLECULAR WIRE 

To exploit Floquet theory in our analysis of the field-driven wire, it is useful to transform to an 

interaction picture (IP) with respect to the time-dependent driving terms. That is, we introduce 
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the IP coefficients  [i.e., )(tbα )(])/(sin[exp=)( 0 tbtEitc III ωωμ− , etc.]. This removes the driving 

terms from the diagonal elements of the Hamiltonian and puts them into the off-diagonal ones. 

Specifically, 
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,
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tILia
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     (2.19) 

 

with the IP bridge Hamiltonian: 

 

∑∑
≠

−+
JI

tJIia
JI

I
I

M
I eJIVIIEtH )(sin

,=)(ˆ ω      (2.20) 

 

In these expressions, the dimensionless field amplitudes  (αβa fIi ,,=, βα ), are given 

by: 

 

βαβααβ ωμμ aEa −− =)/(= 0         (2.21) 

 

with all Li μμ = , and all Rf μμ =  [65]. The IP Schrödinger then reads: 

 

fIitbtHtbi I ,,=,;)()()(=)( , βαββα
β

α ∑�      (2.22) 

 

Following the procedure prescribed by Floquet theory, the IP Schrödinger coefficients are 

expanded in a Fourier series based on the periodicity of the driving force. That is, 

 

fIietbtb tim
m

m
,,=;)(=)( ,

=
αω

αα ∑
∞

−∞

      (2.23) 
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The auxiliary Floquet coefficients  remain to be determined. This is done by 

substituting Eq. (2.23) into the IP Schrödinger Eq. simultaneously with the following Fourier 

expansion of the driving terms appearing there: 

mb ,α

 

,)(=
=

sin tim
m

m

tia eaJe ωω ∑
∞

−∞

        (2.24) 

 

where  is the Bessel function of order . Identifying the net coefficient of each mJ m )(exp timω  

term generates a set of coupled linear 1st order ODE's for the Floquet coefficients . In fact, 

these ODE's have the form of a Schrödinger Eq. characterized by a time- independent 

Hamiltonian which nevertheless bears an intimate resemblance to the physical Hamiltonian. The 

Floquet Hamiltonian  is associated with an augmented state space. For each physical state 

 in the physical system, there is a discrete manifold of states  in the Floquet system. 

In other words, in the equivalent Floquet system, there are replicas of the physical states shifted 

by all integer multiples of the photon quantum. These Floquet states are thus naturally labelled 

by  two indices 

mb ,α

FH

)(tbα )(, tb mα

),( mα , where, again, fIi ,,=α  describes the physical state which is replicated 

and  labels the replica number. The energy of Floquet state …… 1,0,1= −m ),( mα  (referred to as 

a “quasienergy”, in order to distinguish it from the site energies of the various physical states) is 

 

,=, ωαα mEE m +          (2.25) 

 

Off-diagonal matrix elements in the Floquet Hamiltonian include: coupling of L-reservoir 

Floquet states to bridge Floquet states: 

 

;)(= ,),(,),( LIBkLkIi
F

BkILki aJVH −         (2.26) 

 

coupling of Floquet bridge states to other Floquet bridge states: 

 

;)(= ,),(,),( IIBkBkII
F

BkIBkI aJVH ′′−′′′        (2.27) 
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and, finally, coupling of Floquet bridge states to R-reservoir Floquet states: 

 

)(= ,),(),,( RIBkRkIf
F

BkIRkf aJVH −         (2.28) 

 

It is useful to construct a state/coupling diagram for the effective field-off system 

generated by Floquet analysis, as is done in Fig. 2.2. This diagram shows clearly that the Floquet 

Hamiltonian relevant to the driven system has the same generic structure as that of a  nondriven 

molecular wire: both the bridge and the reservoirs are expanded (augmented) in a straightforward 

manner, and the various couplings coefficients are modified, too. 

To represent the physical initial condition  (all other coefficients equal ), we 

will choose  (all other Floquet coefficients equal 0 ). 

1=(0)
0i

b 0

1=(0)0=,0 Lkib

From Fig. 2.2 and the details presented in the preceding paragraphs, it follows 

immediately that the Green's function analysis utilized in the case of the non-driven molecular 

wire can be applied to the Floquet Hamiltonian for the ac field-driven wire. 
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Figure 2-2. Floquet state diagram for driven molecular wire system. (Site energies of the physical bridge 

molecule and metal states are labeled by , , ). 0=Lk 0=Bk 0=Rk

 

One important aspect of the connection between the quantum dynamics obtained from the 

Floquet Hamiltonian and that of the corresponding physical system should be emphasized. As 

stressed at the outset, for a time-independent Hamiltonian of the type under consideration here, 

i.e. having the essential structure of Eq. (2.2), the principle of energy conservation holds: after 

short time transients, the molecule can only tunnel isoenergetically, i.e. such that the 

(quasi)energy of the final state in the R-reservoir is equal to that of the initially populated 

Floquet state in the L-reservoir. Relating this property to the dynamics of the underlying 

physical, time-driven system is aided by the following observations. 

When one computes (e.g., numerically), dynamics under the time-driven Hamiltonian 

system prescribed by Eq. (2.17), it is found that an electron starting from energy level  can 

end up in the final state 

0i
E

ωnEE if +
00

= , where  is an integer (positive, negative or zero), 

corresponding to net absorption of  photons (with negative values of  corresponding to 

emission). 

n

n n
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To connect the behavior of the time-independent Floquet Hamiltonian to that of the 

underlying time-driven system, one simply has to recognize that different isoenergetic transitions 

in the Floquet dynamics correspond to photon absorption/emission in the physical system (i.e., 

have physical final state energies that are shifted from  by integral multiples of the photon 

quantum). Transitions to the  R-reservoir replica correspond to net zero photon 

absorption, transitions to  correspond to net 1-photon emission, etc., or, equivalently, a 

transition from an L-reservoir state with energy  to an R-reservoir state with energy 

0i
E

0=Rk

1=Rk

0i
E ωnEi +

0
 

corresponds in the Floquet picture to an isoenergetic transition (at energy ) from L-reservoir 

replica  to R-reservoir replica 

0i
E

0=Lk nkR −= . In this way the currents associated with electrons 

arriving at the various allowed final state energies in the field-driven system can be 

quantitatively accounted for via Floquet analysis. 

Finally, we discuss the issue of how to truncate the formally infinite manifold of Floquet 

states. Fortunately, the principle of “state mixing”, i.e., that two zeroth order states couple more 

strongly if they are nearly degenerate than if they are not, assures that only Floquet replicas 

which are nearly iso-energetic with  need be retained. In practice we keep the few “most 

nearly degenerate” Floquet reservoir and bridge replicas and ignore the rest. The number of 

replicas is expanded until numerical convergence is attained. Typically, the number of replicas 

which must be retained is modest -- examples are given in Sect. 2.5. 

0i
E

2.4  AN “INDEPENDENT CHANNEL APPROXIMATION” TO FIELD-

DRIVEN TRANSPORT 

The mapping of the Floquet Hamiltonian given in Sect. 2.3 to a time- independent Hamiltonian 

with the same form as the canonical tight-binding molecular wire Hamiltonian is precise, and 

thus leads to a precise way to calculate current flow through a laser-driven molecular wire. As 

described there, the effective Hamiltonian generated by the Floquet mapping has an augmented 

bridge comprising  sites, where  is the number of sites in the physical bridge molecule NNb N
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and  is the number of Floquet bridge replicas retained in the calculation. Associated with this 

augmented bridge is a Floquet bridge Hamiltonian and a Floquet self-energy matrix (the latter 

being a function of the parameter 

bN

E ). The linear dimension of both matrices is , where the 

value of  is formally infinity, though in practice convergence can be obtained with a finite 

and often modest value (corresponding to  replicas), as noted above. Nevertheless, as the 

calculation gets more complicated, physical insight can become obscured. 

NNb

bN

bN

Some insight can be restored by considering an approximation in which off-diagonal 

terms coupling different Floquet replicas in the  augmented bridge Hamiltonian and self-

energy are neglected. This renders both matrices block diagonal with an  block 

representing each Floquet replica. Consequently, the Green's function attains the same block 

diagonal structure. 

NNb

NN ×

We denote the self-energy modified bridge Green's function associated with the Floquet 

Hamiltonian as . It has the structure indicated in Eq. (2.7), bearing in mind that the 

appropriate bridge Hamiltonian is the augmented (multi-replica) version depicted schematically 

in Fig. 2.2: thus  is an  matrix. Similarly, the appropriate L- and R-reservoirs 

which determine the self-energy matrix that enters into  are the multi-replica versions also 

depicted in Fig. 2.2. (The coupling elements connecting sites of the extended bridge to states of 

the extended reservoirs are specified in Eqs. (2.26)-(2.28). Formally, an infinite number of 

reservoir replicas has to be considered, but in practice the number of contributing replicas is 

modest because  as 

)(EFg

Fg NNNN bb ×

Fg

0|)(| →aJn ∞→n  (for fixed ). The elements of  are explicitly 

prescribed in Appendix A. 

a Fg

In general, the transition probability for an initial state  of the L-reservoir to a final state 

 of the R-reservoir which is nearly on-resonance with a net -photon emission 

(corresponding in the Floquet Hamiltonian system to transitions to the R-reservoir replica 

) is: 

0i

0f pN

pR Nk =

 
2

000

2

0
|)(|)(2|)(| R

i
FL

ipff vEvENEttb GG
⋅⋅−+≅ gωδπ      (2.29) 
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with the  dimensional array  consisting of the coupling elements NNB
LvG

 

BILkIi NkNIaJV 1,2,...,=,1,2,...,=;)(,0
 

Similarly,  consists of elements . RvG )(,0 RIkpNIf aJV −

As noted above, within the ICA the Green's function  becomes block diagonal, each 

block having the dimension  of the physical molecular bridge. Thus, the ICA implies: 

Fg

N

 

∑
∞

−∞=
−⋅−⋅≅⋅⋅

Lk

R

LkpNLi
effL

Lk
R

i
FL vkEvvEv GGGG )()(

00
ωgg      (2.30) 

 

The matrix  on the r.h.s. of this expression is an effective molecular Green's function. 

It has the dimensions of the physical bridge, i.e. 

effg

NN × , and also the same generic structure as in 

the field-off case, namely: 

 
1))((=)( −−− EEE effM

eff
eff ΣHg        (2.31) 

 

In this expression,  is an effective molecular bridge Hamiltonian matrix, dimension 

. Its diagonal elements are the bridge site-energies  and its off-diagonal elements are 

renormalized bridge coupling parameters . The corresponding effective 

M
effH

NN × IE

)(0 IIII aJV ′′ NN ×  

effective self-energy matrix effReffLeff ,,= ΣΣΣ +  is defined as: 

 

,)()()(=)( ,
=

,
, ωmEaJaJE L

JILJmLIm
m

effL
JI −ΣΣ ∑

∞

−∞

     (2.32) 

 
LΣ  being the left reservoir spectral density of the physical (field-off) wire, as prescribed in Eq. 

(2.9); and analogously for . Finally, the elements of the -dimensional vectors )(,
, EeffR
JIΣ N RL

kv ,G  

are given by: 
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  )(=)(         ;)(=)( ,0,0 RIkIfI
R
kILkIiI

L
k aJVvaJVv GG  

 

The decomposition provided by the ICA enables more rapid numerical evaluation 

because of its “divide and conquer” flavor. In particular, the size of the matrices which have to 

be inverted is dramatically reduced (particularly for large ). However, the primary utility of 

the channel decomposition is that it provides a way to anticipate the origin of large contributions 

to the current by associating individual contributions to Eq. (2.30) with specific electron transfer 

pathways or “channels”. This interpretation is discussed next, as is the expected regime of 

validity of the ICA. 

bN

2.4.1 Interpretation and Validity Regime of the Independent Channel Picture 

Each term on the r.h.s. of Eqs. (2.30) can be described as the probability amplitude for the 

electron to make a transition from  of the left reservoir to  of the R-reservoir in three steps, 

namely: (i) emission of  photons to access the molecular bridge from the L-reservoir 

(controlled by the term ), (ii) isoenergetic tunneling across the bridge, i.e. at energy 

0i 0f

Lk

L

LkvG

ωLi kE −
0

 [controlled by the term ], and finally (iii) emission of  photons 

in the transition from the bridge to the R-reservoir (controlled by the term ). Typical 

channels are depicted schematically in Fig. 2.3. The product of the three factors just delineated 

determines the amplitude for the process described. Each integer value of  defines a distinct 

channel, and the contribution from all channels must be included in the sum (at the amplitude 

level). 

)(
0

ωLi
eff kE −g Lp kN −

R

LkpNv −
G

Lk
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Figure 2-3. Schematic illustration of net 1-photon absorption pathways through a molecular bridge in the 

Independent Channel Approximation. 

 

The rationale behind this interpretation is straightforward. The term  is associated with 

k-photon emission. Thus the factor 

kJ

Lv
Lk
G  connects the L-reservoir to the bridge (via  photon 

emission) and the factor  connects the bridge to the R-reservoir (via  photon 

emission). Note further the properties of the effective molecular bridge Green's function . 

The site energies of  are just the site energies of the bridge molecule, while the hopping 

elements are the physical bridge hopping elements slightly modified by an appropriate factor of 

. Usually we will have  for site orbitals which are connected by large values of . 

Thus, the effective molecular bridge closely resembles the physical bridge, and in particular the 

molecular orbital energies are close to the physical bridge MO's. Consequently, resonances in 

 reflect the MO energies of the bridge molecule. In particular, the amplitude (ii) for 

isoenergetic tunneling through the bridge will be significant when 

Lk

R

LkpNv −
G

Lp kN −

)(Eeffg
M
effH

0J 1<<′IIa IIV ′

)(Eeffg

ωLi kE −
0

 is approximately 

equal to an MO energy of the bridge, that is, when emission of  photons brings the energy of 

the tunneling electron into resonance with one of the MO's of the bridge. This interpretation is 

particularly easy to appreciate in the special (but conceptually important) case that the L-

Lk
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reservoir couples only to the orbital 1=I  of the bridge (located closest to the left electrode), and 

the R-reservoir couples only to the orbital  (located closest to the right electrode). In this 

case the ICA transition rate formulae simplify considerably, as discussed in Appendix B. 

NI =

We should stress that this picture of independent electronic channels or pathways 

between the Left and Right metallic contacts is an approximate one, being predicated on the 

neglect of off-diagonal matrix elements in the Floquet Green's function which couple different 

Floquet bridge replicas. It will be thus be most accurate when electronic coupling matrix 

elements are small, the laser-field is weak, or there is a large energy gap between the quasi-

energies of different bridge replicas arising from a high photon frequency. In the first two 

circumstances the elements of the inter-replica coupling blocks go to zero, while in the third 

there is poor “mixing” between the zeroth order states in separate replicas due to the large gaps 

between their zeroth order (quasi)energies. The best way to ensure that the ICA is valid is to 

correct it by coupling several bridge replicas together and verifying that the effects of such 

coupling are small. 

Another way to include inter-replica coupling is to carry out the perturbation expansion 

[62] of the generic form: ...= 000000 −+− VGVGGVGGGG , where  here is the full Floquet 

Green's function,  is the block diagonal part of this and V  is the off-diagonal, inter-replica 

coupling part of the full Floquet Hamiltonian which is neglected in . For sufficiently small V , 

this expansion is convergent, and in such cases, it provides insight by enumerating possible 

pathways for electron transport across the bridge. The  term (ICA approximation) corresponds 

to photon absorption/emission only between L,R reservoirs and the bridge (no photon 

absorption/emission as the electron hops between bridge states), while the  term adds in 

processes that include one photon absorption/emission within the manifold of bridge states, etc. 

A full description of this expansion, its range of validity, and insights that can be gleaned from it 

will be presented elsewhere [66]. 

G

0G

0G

0G

00VGG

As noted above, we have opted in the present work to include inter-replica coupling 

effects by performing basis set inversion with an expanded number of bridge Floquet replicas. 

The basis set method, when convergence can be obtained (which we have found to be the case 

here), avoids any potential errors encountered in truncating the perturbation expansion at some 

finite and often low order. 
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2.5  RESULTS FOR A MODEL SYSTEM 

In this section we present numerical results for a simple model system. Our goal is to illustrate 

the features of the underlying quantum dynamics of ac-field assisted electron transport in a 

molecular electron transfer system attached to metallic reservoirs. We do not attempt to extract 

“realistic” current-voltage characteristics here. This will be done in a chapter 3. Thus, our model 

consists of a symmetric three-site molecule coupled symmetrically to finite-width Left and Right 

metallic reservoirs, as sketched in Fig. 2.4. The reservoir states span the energy regime 

1<<1 E− . All three bridge site energies are taken to have the same value, namely  -- 

thus they lie within the reservoir energy band [66]. We assume only nearest neighbor electronic 

coupling between orbitals in the bridge Hamiltonian. Furthermore, only bridge state 1 interacts 

with the L-reservoir, and only bridge state  interacts with the R-reservoir. The strength of the 

bridge-electrode interaction and reservoir density of states is prescribed by the Newns-Anderson 

spectral density:  

0.8=BE

3

  1|</2|,)/2(1=)( 2
2

γγ
γ

EEVE −Δ      (2.33) 

 where 0.12=
2

γ
V  (and 0.5=γ ). We choose driving field parameters such that the reservoir-

bridge field parameter  throughout, with the parameters 2=,RLa LL aa 1,≡  and  (cf. Eq. 

(2.21) above). For simplicity, and to focus on consequences of the ac-driving field, we set the 

applied dc electric field to zero (i.e., no modification of the one-electron orbital site-energies by a 

static applied voltage). 

,3RR aa ≡
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Figure 2-4. Schematic representation of a molecular wire system corresponding to a 3 state molecular 

bridge. “Blips” associated with  depict allowed final state energy regimes for the indicated laser 

frequency. See text for further details. 

10,= ±Rk

 

In the calculations presented below, we consider the dynamics of an isolated electron 

according to the 1-electron Hamiltonian (2.17). To illustrate how solutions to this time-

dependent Schrödinger Eq. can be obtained using the approach developed in the previous 

sections, we ignore effects due to the presence of other electrons in the reservoirs, including the 

exclusion of the tunneling electron from any occupied R-reservoir state. Clearly, such effects 

have to be included in any complete calculation of current through a molecular wire attached to 

electrodes. We defer this important exercise to chapter 3. 
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Figure 2-5. Rate of transitions to the R-reservoir of the electron initially prepared in state  of the L-

reservoir as a function of the laser field frequency. (In this and subsequent figures, transition rates to the R-reservoir 

from an incident electron at  of the L-reservoir are scaled by the density of states [DOS] at this energy.) 

Results obtained from integration of the Schrödinger Eq. for the (physical) time-driven system are shown via the 

dashed line. Corresponding results obtained by direct integration of (time-independent) Floquet Hamiltonian are 

shown via the solid curve. Results obtained from the Floquet Green's function analysis presented in text are 

indistinguishable from the solid curve. The following parameters were utilized: , , ; 

. 

0=E

0=E

0.1=Ba 0.1=BV 2=,RLa

0=apV

 

Fig. 2.5 shows the rate of transitions to all states of the R-reservoir for a system prepared 

initially in an  state of the L-reservoir, for driving-field parameter choices , where 

, and intra-bridge coupling . (Again, we fix the value  in all 

results presented in this section, and we have set the applied dc bias .) Three different 

calculations are displayed. The dashed line shows the result obtained by direct integration of the 

time-dependent ac-field driven Schrödinger Eq. In practice, this was done by representing the 

Left and Right electronic reservoirs using a finite set of states, evenly spaced in energy, and 

coupled to the bridge via matrix elements  and  (cf. Eq. (2.2)) selected in accordance 

0=E 0.2=Ba

3,22,1 = aaaB ≡ 0.1=BV 2=,RLa

0=apV

,1iV NfV ,
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with the spectral densities . (The formal definition of the spectral densities was given in 

Eq. (2.14), and the specific functional form in Eq. (2.33) above.) Convergence was obtained by 

increasing the number of discrete states in the reservoirs, while maintaining the desired (finite) 

spectral density by reducing the individual reservoir-bridge coupling elements accordingly. 

),( RLΔ

The solid line in Fig. 2.5 shows the result of direct numerical integration of the time-

independent Floquet Hamiltonian, keeping 6 bridge replicas (specifically, ) and 7 L- 

and R-reservoir replicas (specifically, 

4...1= −Bk

3...3=, −RLk ). [The discretization of the reservoir continua 

outlined in the previous paragraph was employed here, too.] This result is identically reproduced 

to within the resolution of the figure by the Green's function formula recorded in Sect. 2.1, as 

implemented for the Floquet Hamiltonian described in Sect. 2.3, including the same range of 

reservoir replicas in the calculation of the relevant self-energies (cf. Appendix A). The 

agreement between direct simulation of the time-driven system and computations based on the 

Floquet mapping to an effective time-independent system is seen to be quite good. Moreover, the 

Green's function analysis of the dynamics of the (time-independent) Floquet Hamiltonian system 

is completely satisfactory. Thus, in the remainder of the numerical studies to be presented in this 

work we will simply use the Green's function formulae to obtain transition rates from the Left to 

the Right reservoirs through the molecular bridge. 

Before considering other illustrations, it is worthwhile to study the results portrayed in 

Fig. 2.5 in more detail. In these plots, the transition rate to the R-reservoir is scanned as a 

function of laser frequency, holding the laser intensity parameters  and  fixed [67]. The 

shape of the spectrum thus generated reflects the details of the molecular bridge Hamiltonian. In 

particular, as discussed above, the molecular Green's function has  resonances at the values of 

the molecular orbital energies. In the present example, the molecular orbital energies of the 

bridge are far from the incident energy of the electron in the L-reservoir. Thus, in the absence of 

the applied laser field, the electron transport (tunneling) is extremely weak. However, by 

absorbing (or in the general case, emitting) an integral number of photons, the energy of the 

tunneling electron is boosted by the appropriate multiple of the photon quantum. This can bring 

it into resonance with the molecular orbitals of the bridge Green's function and thus dramatically 

enhance the Green's function transmission factor. In the system studied in Fig. 2.5, the energy 

difference between the incident electron and the center of the bridge molecule molecular orbital 

RLa , Ba
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energy level distribution is 0.8. Thus, the triplet of peaks at ca. 0.8=ω  is due to 1-photon 

absorption by the incident electron. The triplet of peaks at ca. 0.4=ω  corresponds to 2-photon 

absorption resonance, while that at ca. 0.27=ω  corresponds to a 3-photon absorption resonance. 

 

 
Figure 2-6. Dependence of the current vs frequency curve on the number of Floquet replicas in the Floquet 

Hamiltonian. Solid line shows results with (10,9) (bridge,reservoir) replicas (see text for full details). Long-dashed 

line shows corresponding result for (6,7); short-dashed line shows corresponding result for (3,5). The following 

parameters were utilized: , . 2.0=Ba 0.5=BV

 

The number of Floquet replicas needed to obtain good agreement with the (physical) 

time-driven system dynamics depends on the intra-bridge field parameter  and coupling matrix 

elements . In Figure 6 we present calculations in which the relatively large parameters  

and  are used. In this case, a larger number of Floquet bridge and reservoir replicas (10  

and , respectively) are needed to accurately model the field-on curve, specifically 

a

BV 2=Ba

0.5=BV

9 6...3= −Bk  

and . 4...4=, −RLk

A Green's function calculation utilizing this number of replicas is shown via the solid 

line. The long-dashed curve shows the results of a Green's function calculation for a Floquet 
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Hamiltonian with a smaller number of replicas, specifically 6  for the bridge ( ) and  

for the reservoirs ( ). Using an even smaller number of Floquet replicas, namely 3 

for the bridge ( ) and 5 for the reservoirs (

4...1= −Bk 7

3...3=, −RLk

2...0= −Bk 2...2=, −RLk ) produces an even less 

accurate result, indicated by the dotted line. 

When the applied laser field is weak (hence all a -parameters are small), or the electric 

coupling matrix elements are small, we can approximately set non-diagonal blocks of the Floquet 

Hamiltonian to zero, i.e. invoke the Independent Channel Approximation. In the ICA, once an 

electron “hops” from the L-reservoir to a particular bridge replica, it then hops between states of 

the same replica until it reaches the R-reservoir. The total rate of electron transfer is the sum (at 

the amplitude level) of contributions from all such channels. 

 

 
Figure 2-7. Illustration of the range validity of the Independent Channel Approximation (ICA) for different 

values of intra-bridge field parameter. In each panel, the solid line shows exact result for transition rate to the R-

reservoir vs laser frequency; dashed line shows corresponding result within the ICA. Panel (a) , 0.2=Ba

  36



0.1=BV  (weak coupling); panel (b): ,  (intermediate coupling); panel (c): , 

 (strong coupling). 

1.0=Ba 0.15=BV 2.0=Ba

0.5=BV

In Fig. 2.7 we test the accuracy of the ICA by comparing molecular wire systems with 

different intra-bridge field parameters. The system is the same as that considered in Fig. 2.7 

except for the values of  and , which are varied as follows. In the top panel, which is 

characterized by an intra-bridge field parameter  and intra-bridge coupling  

(both of which are small), the agreement between the exact (solid line) and ICA (dashed line) 

results is good. The bottom panel shows results for the same system, but with a large intra-bridge 

field parameter  and intra-bridge coupling strength  -- here the agreement 

between the exact and approximate curves is poor. The middle panel shows results for an 

intermediate case, where  and . The results presented in Fig. 2.7 demonstrate 

that under appropriate conditions ( vide supra) the ICA is valid and useful. 

Ba BV

0.2=Ba 0.1=BV

2=Ba 0.5=BV

1=Ba 0.15=BV

 

 
Figure 2-8. Contribution of  net photon absorption processes to overall rate of transitions to R-

reservoir. Dotted line corresponds to , long-dashed line to  and short-dashed line to 

10,±

0=pN 1=pN 1= −pN . 

The total transition rate (obtained by summing over contributions from all open channels) is indicated by the solid 

line. System parameters are the same as considered in Fig. 2.5. 
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In Fig. 2.8, for the same molecular wire system considered in Fig. 2.5, we decompose the 

total current to the right electrode (thick solid line) into contributions to various Right reservoir 

Floquet replicas. The dotted line represents the current to the right electrode replica , i.e. 

direct tunneling in the physical system with no net absorption/emission of photons. The long 

dashed line is the current to the replica  (corresponding to accumulation of electrons at an 

energy one photon below the tunneling electron energy; cf. Fig. 2.4), and the dashed line is the 

current to the replica  (corresponding to electron accumulation at an energy one photon 

above the tunneling electron energy). Note that the relative weights of the contributions of the 

 channels change for the 1 vs 2 photon absorption resonance portions of the spectrum. 

These weights are readily explained by the exposition contained in Appendix B. For the one-

photon absorption resonance region near 

0=Rk

1=Rk

1= −Rk

1,0= ±pN

0.8=ω , the dominant term in the ICA rate formula is 

. Thus, since  is a weakly varying function of energy within the region 1= −lk RΔ 1<<1 E− , the 

relative intensities of the 11,0,= −pN  peaks is approximately , , , 

respectively. On the other hand, for the two-photon absorption portion resonance part of the 

spectrum, in the region 

(2)2
2J (2)2

1J (2)2
0J

0.4=ω , the ratio of these peaks is approximately given by , 

, . 

(2)2
3J

(2)2
2J (2)2

1J

In the case of the 1-photon absorption resonance at 0.8=ω , the  channels are 

the only ones possible. (Other values of  correspond to final state energies outside the 

energetic width of the R-reservoir.) Thus, in this portion of the spectrum the sum of the 

intensities for  processes adds up to the total intensity (solid line). For two and higher 

photon absorption resonances, there are other (undisplayed) open final state channels besides 

. Thus, the  intensities shown in Fig. 2.8 do not sum to the total intensity in 

these parts of the spectrum. 

10,= ±Rk

Rk

10,= ±Rk

10,= ±Rk 10,= ±Rk
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2.6  DISCUSSION AND CONCLUSIONS 

In this chapter we have considered the effect of monochromatic light on transport of electrons 

through molecular wires. As has been done before in the field-off limit [18-21], we adopted a 

tight-binding model of the electron transport, neglecting complications due to disorder, 

dissipation, electron correlation, etc. Of course these complications should be incorporated as the 

theory is developed further, but again, following the success of non-dissipative tight binding 

models in describing I-V curves for “standard” (i.e., not light-driven) molecular wires, we expect 

that the same level of description will be useful in the field-driven case. 

In the absence of external ac driving, the current-voltage characteristics of non-

dissipative tight binding models of electron transport through molecular wires can be profitably 

analyzed via a Green's function scattering approach [18-21]. We have shown in this work, using 

Floquet theory, that in the case of the ac driven analog (generated experimentally by illuminating 

the wire/electrode system with a monochromatic laser), the relevant time-dependent Hamiltonian 

can be mapped to a time- independent Hamiltonian in an extended state space and with modified 

interstate couplings. The modified/augmented Floquet Hamiltonian has the same essential 

structure as its field-off analog, and so the Green's function analysis can be directly employed to 

analyze the quantum dynamics of the Floquet system. This dynamics can then be converted to 

dynamics of the physical (time-driven) system. 

Our Floquet analysis is formally exact, and in practice can be numerically converged with 

a relatively modest amount of effort. We also presented an approximate analysis, premised on 

certain weak-coupling assumptions which are clearly set forth above. In this approximation, the 

numerical effort is further reduced, and, more importantly, insight is provided into the 

“channels” of multiphoton absorption/emission which contribute strongly to current flow through 

a wire with particular molecular characteristics under given experimental conditions (applied dc 

voltage, amplitude and frequency of the light source, etc.). We stress that this channel picture 

should be used as a guide, but when in doubt the full Floquet treatment should be carried out to 

numerical convergence. 

Some prototypical illustrations of the theory and methodology were provided in the 

present work. We stopped short of calculating I-V curves for a “real” molecular wire (treated at 

the non-dissipative tight binding level). Such an analysis requires considerable effort, including 
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careful examination of the molecular electronic structure of the molecular bridge, the metal 

electrodes and the coupling between them. This will be described in a chapter 3. The goal of 

such a calculation, from the point of view of outlining a design principle for significantly 

enhancing (and ultimately, controlling) electron transport through molecular wires, is to 

demonstrate how the laser illumination with a cw light source of an appropriate frequency can 

convert non-resonant tunneling processes into resonant ones (by absorption or emission of 

photons to “boost” the tunneling electron to an energy where there are molecular orbital energies 

to assist tunneling through the bridge), thus dramatically enhancing the electron tunneling rate. 

Clearly, the smaller the laser power needed to do this, the more robust the control scheme will 

be. These important issues will also be addressed in chapter 3. 
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APPENDIX A 

ELEMENTS OF THE FLOQUET GREEN’S FUNCTION 

MATRIX 

Even after “integrating out” the reservoir states, the dimension of the Floquet Green's function 

matrix  is formally infinite, since the number of bridge replicas is infinite. If  bridge )(EFg bN
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replicas are retained explicitly, this matrix has finite linear dimension . Its elements are 

given by inverting the appropriate  dimensional matrix: 

NNb

NNb

 

 [ 1=)( −
−− EE F

M
F ΣHg ]         (2.34) 

 

where  is an  dimensional matrix whose elements are prescribed by Eqs. (2.25–2.28) in 

the text. Furthermore, the  dimensional Floquet self-energy matrix 

F
MH NNb

NNb Σ  is the sum of 

contributions from L  and R  electrodes: 

 

)()(=)( EEE RL Σ+ΣΣ  

 

where 

 

)()()(=)( ,'
=

),(),,( ωL
L

JILJBkLkLIBkLk

Lk

L

BkJBkI kEaJaJE −ΣΣ −−

∞

−∞
′ ∑  

 

with  being the (laser-field off) molecular L-reservoir self-energy; LΣ RΣ  is defined analogously. 

It is instructive to comment on the sources of coupling that link the  blocks of the 

inverse Floquet Green's function matrix. First (type i), there are off-diagonal elements of , 

namely  with . Such terms can only couple different bridge base states 

(since ). Inter-channel coupling (type ii) is also provided by self-energy matrix elements, 

noted above, with . Coupling between the same bridge basis state in different Floquet 

replicas is accomplished by these terms. Note that both types of coupling vanish as the laser 

intensity tends to zero. Also, small intra-bridge elements  and small reservoir-bridge 

coupling elements ,  suppress type i and ii coupling, respectively. Finally, all other terms 

being equal, increasing the laser frequency 

NN ×
F
MH

)(, IIBkBkII aJV ′′−′ BB kk ′≠

0=,IIV

BB kk ′≠

IIV ′,

IiV , IfV ,

ω  (with a concomitant increase in the laser 

amplitude to keep all  parameters constant) also suppresses inter-channel coupling, since the a
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diagonal matrix elements of different NN ×  diagonal blocks of that comprise each channel in 

 are separated by multiples of the laser quantum. F
MH

 

APPENDIX B 

PHOTON EMISSION RATES FOR THE CASE OF MINIMAL 

RESERVOIR–BRIDGE COUPLING 

 When only bridge orbital 1 couples to the L-reservoir and only bridge orbital  couples to the 

R-reservoir, the ICA transition probability formulae simplify considerably. In this case we can 

employ simplified notation: , ,  . Then, for net  

photon emission: 

N

,1=
00 ii VV NVV

ff ,=
00 LL aa 1,= , NRR aa ,= pN

 
2

01
=

2

0

2

000

2

0
)()()()(2|)(| RLkpNLi

eff
NLLk

Lk
fiipff aJkEgaJVVENEttb −

∞

−∞

−−+≅ ∑ ωωδπ  (2.35) 

 

Then the rate of  photon emission pN 2

000
|)(|'1 tb

t
R ffi ∑≡ , with the prime on the sum 

indicating restriction to the local energy region near ωpif NEE −
00

= , is: 

 
2

01
=

0

2

00
)()()()(2= R

LpNLi
eff
NLLk

Lk
piRii akJkEgaJNEVR −−−Δ ∑

∞

−∞

ωω    (2.36) 
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A particularly important situation is when the laser is tuned into lk−  photon absorption 

resonance with the molecular orbital energies of the bridge. In this case the  term 

dominates in the above sums, and we can approximate: 

lL kk =

 

)()()()(2 2
2

01
2

0

2

00 RlkpNli
eff
NLlkpiRii aJkEgaJNEVR −−−Δ≅ ωω     (2.37) 

 

Of course, the validity of this formula requires a laser intensity such that the lk−  

absorption process has significant amplitude, i.e., . 0)(2 ≠Llk aJ
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Chapter 3. Calculating Electron Current in a Tight-Binding 

Model of a Field-Driven Molecular Wire: Application to Xylyl-

Dithiol 

We apply Floquet theory-based formalism for computing electron transport through a molecular 

bridge coupled to two metal electrodes in the presence of a monochromatic   radiation field is 

applied to an experimentally relevant system, namely a xylyl-dithiol molecule in contact at either 

end with gold electrodes. In this treatment, a non-dissipative tight-binding model is assumed to 

describe the coherent electric transport, calculated using Landauer formalism. Net current 

through the wire is calculated for two configurations of the electrode-wire-electrode system. In 

one, symmetric, configuration, the electrodes are close (ca. 2 Å) and equidistant from the bridge 

molecule. In the other, asymmetric configuration, one electrode is farther away (ca. 5 Å), 

representing an STM tip at this distance from the bridge molecule (the other end being 

chemisorbed to a gold substrate). For both configurations, electron current is calculated for a 

range of experimental inputs, including   bias and the intensity and frequency of the laser. Via 

absorption/emission of photons, resonant conditions may be achieved under which electron 

transport is significantly enhanced compared to the unilluminated analog. Calculations show that 

this can be accomplished with experimentally accessible laser field strengths. 

3.1 PARAMETRIZATION OF THE MODEL 

 

In order for our estimations of laser-induced modifications of electron tunneling through a 

molecular wire to have at least qualitative value, it is necessary to select a bridge molecule and 
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metal electrodes, and to establish reasonable electronic structure parameters for the one-electron 

tight-binding model introduced above. For this reason, we consider for concreteness the xylyl-

dithiol molecule as our “wire”, and gold electrodes (cf. Fig. 3.1). Xylyl-dithiol is among the 

simplest systems which has been studied in the context of molecular wires. Its electronic 

structure has been characterized, at least at the extended Hückel level of electronic structure 

theory, and it has been shown that this admittedly crude level of treatment produces reasonable 

agreement with measured current-voltage curves, in the absence of laser-induced perturbations 

[7]. (To our knowledge, a systematic experimental study of laser illumination on molecule wire 

performance has not yet been carried out.) 

 
 

Figure 3-1. Chemical structure of xylyl-dithiol molecule connecting two gold electrodes. 

 

In the next subsection, we discuss how to determine the parameters in the bridge 

molecule Tight-Binding Hamiltonian. Then we discuss, in turn, how to estimate the electronic 

coupling between bridge molecule and reservoir, and how to compute the matrix elements of the 

electric dipole operator (needed to include coupling to a static or an ac electric field). 
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3.1.1  Site-basis Representation of the Bridge Molecule 

Following the treatment given in Refs.  [19-21, 54, 55], we have used Extended Hückel (EH) 

theory to estimate site energies and coupling matrix elements in the Tight-Binding Hamiltonian 

for the xylyl-dithiol molecule. The site-orbitals were chosen to be atomic orbitals (AO) (details 

are provided below). The site energy Iε  associated with a given AO was taken to be the negative 

of the ionization potential for removing an electron from that orbital. Specific numerical values 

were taken from Ref. [71]. Intersite coupling elements were determined by invoking the 

Wolfsberg-Helmholtz approximation [72]: 

 

2
= ,,

JI
JIJI

EESV +κ          (3.1) 

 

with  the overlap matrix element for basis atomic orbitals JIS , I  and , and J 1.75=κ  an 

empirically determined scale factor. 

The xylyl-dithiol molecule has eight hydrogen atoms, eight carbon atoms and two sulfur 

atoms. In our calculations we included the  orbital for the hydrogen,  orbitals for carbon, 

and  orbitals for sulfur, bringing the total number of basis functions to . The 

geometric structure of the molecule was obtained by geometry optimization of the isolated 

molecule using GAUSSIAN 94 [73], which was also used to determine the overlap matrix  

in the STO-3G basis set. 

s1 ps22

ps33 48=N

JIS ,

The Extended Hückel (EH) method is based on rather crude approximations. It was 

designed to predict the molecular geometry and charge distribution of limited types of molecules, 

mainly non-polar hydrocarbons [72]. For energy level structure, EH is expected to be only 

qualitatively correct. For more accurate electron transport calculations one would need a more 

realistic tight-binding molecular Hamiltonian. A possible step in this direction would be to use a 

one-electron model with matrix elements deduced from Hartree-Fock theory [74, 75]. Effects 

resulting from the connection of the molecule to the gold surface should also be taken into the 

account: this may alter the equilibrium geometric structure of the xylyl-dithiol molecule. 
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Furthermore, the molecule can acquire additional partial charge which creates an electrostatic 

potential along the molecule-electrode connection [19-21]. 

To calculate the current through the wire it is crucial to know the position of the Fermi 

energy level of the metal with respect to the HOMO-LUMO gap of the bridge molecule. The 

work function of gold metal is 5.3 eV, hence the Fermi energy is -5.3 eV. Our EH calculations 

on xylyl-dithiol molecule yield a HOMO energy of -12.3 eV and a LUMO energy of -8.5 eV. As 

noted above, the Extended Hückel model was not designed to provide accurate absolute orbital 

energies, so we need to decide how to locate the EH orbital molecular energies relative to the 

Fermi energy  of the gold. Determination of the Fermi energy location should in principle 

take into account the possibility of charge transfer occurring as a result of attaching the molecule 

to the electrode. Both experimental and theoretical estimations [7,17] put the Fermi energy of the 

electrodes somewhere in the HOMO-LUMO gap, close to the middle of the gap. An ab initio HF 

calculation on isolated xylyl-dithiol using GAUSSIAN 94 with a STO-3G basis set gives a 

HOMO level energy of about -7 eV, which supports the idea of placing the Fermi energy at the 

center of the gap. 

FE

 

 
Figure 3-2. Extended Hückel (EH) energies for an isolated xylyl-dithiol molecule, after upward shift of EH 

levels by 5 eV. 
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The calculated energy spectrum of the isolated xylyl-dithiol molecule is presented in Fig. 

3.2. Because the molecule has 54 valence electrons, HOMO and LUMO states correspond to 

states 27 and 28, as indicated by the arrow. We shifted the EH energy spectrum up by 5 eV, so 

that the gold Fermi energy lies midway between the HOMO and LUMO states of the molecule. 

The new HOMO and LUMO energies are then -7.3 eV and -3.4 eV. 

3.1.2  Reservoir-Bridge Coupling Matrix Elements: Spectral Density and Self-

Energy Functions 

To obtain estimations of the electronic coupling between the electronic states of the metal and 

those of the molecular wire, we adopt a cluster model for the metal (in our case, gold), and use 

Extended Hückel theory (vide supra). The xylyl-dithiol molecule binds strongly to the gold 

surface through a thiol group [53]. The sulfur atom can bind to the gold either over a hollow site 

on the surface between three gold atoms or directly over a gold atom. Although recent 

experiments and calculations suggest that binding over the hollow site is more energetically 

favorable [55], in the present work we assume the binding takes place over a single gold atom 

since this is somewhat simpler to analyze. Given the crude electronic structure model used here, 

this choice should not qualitatively alter our essential conclusions. 

We also describe the electronic structure of the reservoirs and the molecule-reservoir 

coupling using the Extended Hückel scheme. As noted above, in the model employed here the 

connection between the molecule and the gold pads occurs through the bond between a single 

gold (111) atom and the adjacent molecular sulfur atom. For each gold atom we include nine 

orbitals ( ). The distance between the sulfur atom and the gold atom that it “sits over” is 

taken to be 1.9 Å (as in [19-21]). The sulfur-gold overlap matrix was obtained using GAUSSIAN 

94 with the gold valence basis functions parameters taken from Ref. [76]. Most of the overlap 

between the sulfur and gold occurs through the s  orbital of the sulfur. Thus, we can simplify our 

calculations by assuming only , where 1 corresponds to the 3s orbital of the sulfur atom 

adjacent to the Left electrode (“L-electrode”), and, analogously, only , where  labels 

the 3s orbital of the sulfur atom adjacent to the Right electrode (“R-electrode”). 

psd 665

0,1 ≠iV

0, ≠NfV N
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The gold electrode band structure was obtained from Extended Hückel calculations for a 

5x5x5 gold (111) cluster using tight-binding parameters from Ref. [77]. This was then utilized to 

calculate the spectral density associated with the coupling of the electrode to the 3s orbital of the 

adjacent sulfur atom. Specifically, we computed: 

 

,)(=)( 2∑ −Δ
p

pp EEVE δπ         (3.2) 

 

where the summation was taken over the (Extended Hückel -level) eigenstates p  of the gold 

atom cluster. We assumed that only the 6s orbital of the gold atom over which the sulfur atom is 

“bound” has a nonzero overlap with the 3s orbital of this sulfur atom. The Wolfsberg-Helmholtz 

prescription (3.1) was used to calculate the Hamiltonian matrix element connecting these two 

atomic orbitals, which was then scaled by the appropriate superposition coefficient in each EH 

eigenstate of the gold cluster to obtain  (i.e., the matrix element  in the notation of the 

previous paragraph).  

pV ,1iV

 

 
Figure 3-3. Spectral density of states for the model where sulfur binds to a single gold (111) atom. The 

Fermi Energy is located in a region with almost constant spectral density of states comprised mainly of gold s-band 

states. 
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The resulting spectral density of states is shown in Fig. 3.3. The “crudeness” of the plot 

results from numerical fluctuations of the calculations performed on a finite gold cluster. We 

carried out calculations for three different gold cluster sizes, 3x3x3, 5x5x5 and 7x7x7 -- these 

give similar results for the spectral density (the bigger the size of the cluster the smoother the 

numerical result). We see from Fig. 3.3 that the Fermi Energy corresponds to states in a broad 

band with nearly constant . The largest contribution to the spectral density near 

the Fermi Energy comes from the  gold band, which is a wide band with relatively constant 

local density of states at the Fermi Energy. 

eV4.0)( ≈Δ E

s6

From  we can obtain the self-energy )(EΔ )(EΣ  as [18-21]: 

 

∫
+∞

∞−

Δ+
−′

′′Δ
Σ )()(=)( Ei

EE
EdEPE

π
       (3.3) 

 

Numerical calculation of the principal value integral (3.3) based on the spectral density 

depicted in Fig. 3.3 gives the real part of the self energy to be almost zero within an interval of 

several eV around the Fermi level. Thus, within this energy regime we can approximate:  

 

iE 4.00.0)( +≅Σ          (3.4) 

 

We have just described how we calculated the density of states ,1iΔ , and corresponding 

self energy , where 1 represents the 3s orbital of a sulfur atom which is chemisorbed at a 

distance of 1.9 Å  from the L-electrode. If the sulfur atom on the right hand side of the molecule 

is chemisorbed to the R-electrode, the same density of density of states is used for  and the 

same self energy function for . For the STM configuration, where the right electrode is 5 Å 

from the right sulfur atom, we estimate the relevant spectral density of states using the following 

empirically established property. In simple models of vacuum STM tunneling [78], the current 

decreases by about one order of magnitude when the tip-surface distance changes by one 

Angstrom. Hence we multiply the spectral density of states obtained above for the chemisorbed 

,1iΣ

Nf ,Δ

Nf ,Σ
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sulfur atom by an appropriate coefficient of proportionality, reflecting the change in separation 

between the atom and the R-electrode. 

3.1.3  Basis Transformation to Obtain a Diagonal Dipole Operator 

As discussed above, our model assumes a constant  electric field in the junction region, as 

well as an  field of constant magnitude (at any given instant of time) in this region. Thus, the 

electric dipole operator plays a critical role in our dynamical theory. In particular, if the relevant 

(static and ) external electric fields are polarized perpendicular to the metal electrodes (in the 

dc

ac

ac

x  direction), we need to evaluate xex 0=μ , the (negative of the) x -component of the dipole 

operator. It was tacitly assumed in constructing the relevant tight-binding Hamiltonian (see 

above) that xμ  is diagonal in the molecular site basis. This turns out to be roughly, but not 

precisely true for the AO site basis introduced above. Thus, it is useful to perform a linear 

transformation of the site orbitals to a set of basis states which are strictly diagonal with respect 

to the xμ  operator. Details are given next. 

The dipole matrix, represented in a localized atomic site basis, was obtained as output 

from the Gaussian program. The origin of the coordinate system was chosen at the left electrode, 

hence the dipole moment is zero at the left electrode and increases towards the right electrode. 

Our Floquet analysis of the system Schrödinger Eq. assumes [chapter 2] that the field-wire 

coupling occurs only through the diagonal terms in the Hamiltonian. Thus we wish to construct a 

new orthogonal basis of bridge states in which the bridge dipole matrix is diagonal. We 

accomplish this through two successive basis transformations. First, from the original non-

orthogonal site basis >| jχ ,  we construct an orthonormal basis Nj 1..= jφ ,  via the 

transformation , where  is the overlap matrix in the 

Nj 1..=

>|= 1/2
1= jjk

N

kj S χφ −∑ S χ  (site) basis. Next 

we express the x -component of the electric dipole operator in the orthonormal φ  basis (using 

the known matrix elements of xμ  in the >| jχ  basis). Diagonalization of this matrix determines 

another orthonormal basis, say >| jψ ,  in which the operator Nj 1..= xμ  is diagonal. Finally, 

the Hamiltonian operator can be expressed in terms of the ψ  basis. Inspecting the Hamiltonian 

matrix elements coupling the wire and electrodes in this basis, we find that the main 
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contributions to the left electrode-bridge coupling occur through two wire basis functions, and 

two other wire basis functions interact with the right electrode. Thus, for simplicity, in our 

electric current calculations we set all other small coupling matrix elements to zero. 

Note that since there is more than one bridge basis state that couples to the reservoirs, the 

spectral density and self energy matrices introduced in Sect. 2.1 have more than one non-zero 

element. However, we assume here that only the  orbital of the sulfur atom couples 

electronically to electronic states of the gold electrode. This implies that if we use as bridge basis 

states the 

s3

ψ  states described in the preceding paragraph, then all non-zero spectral density 

matrix elements will be proportional to )(EΔ  computed in Sect. 3.2; likewise, all non-zero self-

energy matrix elements will be proportional to )(EΣ  (again, cf. Sect. 3.2). The relevant 

proportionality constants are obtained from the coefficients utilized to expand the ψ  basis 

functions in terms of the original AO ( χ ) site basis orbitals. 

3.2  TESTS OF THE FLOQUET MAPPING PROCEDURE 

In this section we illustrate the accuracy of the Floquet method developed in chapter 2 to study 

the quantum dynamics of a field-driven molecular wire, moving beyond the simplistic model 

studied in chapter 2, and focusing instead on a realistic (or at least defensible) set of bridge states 

and interstate couplings. We consider for this purpose the STM configuration, in which the left 

end of the xylyl-dithiol molecule is located 1.9 Å from the left electrode, while the right end of 

the xylyl-dithiol molecule is significantly farther, specifically 5 Å, from the right electrode. 

We solved the time-driven Schrödinger Equation corresponding to the Hamiltonian 

(2.17) by direct numerical integration of the appropriate set of linear ordinary differential 

equations. Starting with population in a single state  of the L-reservoir, we calculated the total 

probability to be in a particular energetic region of the R-reservoir (based on energy conservation 

modulo photon absorption/emission). After short-time transients [chapter 2], a linear growth of 

the final-state probability was observed, thus defining a transition rate (cf. Eq. (2.13)). We then 

sought to verify via numerical comparison that the Floquet Green's function method outlined in 

Sect. 2.1 reproduces these rates reliably. 

0i
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[In practice, direct integration of the time-driven system was done by representing the 

Left and Right electronic reservoirs using a finite set of states, evenly spaced in energy, and 

coupled to the bridge via matrix elements  and  selected in accordance with the spectral 

densities specified in the previous section. Convergence was obtained by increasing the number 

of discrete states in the reservoirs, while maintaining the desired (finite) spectral density by 

reducing the magnitude of the individual reservoir-bridge coupling elements accordingly.] 

,1iV NfV ,

For a laser frequency of 3.8=ω  eV and a laser field strength of  V/cm (with 

no applied static voltage, i.e., ), we show via the solid line in Fig. 3.4 the rate of 

transitions from a range of initially populated states below the Fermi energy (-5.3 eV) of the L-

reservoir to all final states in the R-reservoir above the Fermi level (i.e., transitions to final states 

with energies less than  are blocked). These rates are scaled by the density of electronic states 

of the L-reservoir at the Fermi energy, in order to obtain a finite result in the limit of a dense set 

of reservoir states. The shape of this “spectrum” reflects the complicated molecular orbital 

structure of the xylyl-dithiol bridge molecule. 

7
0 102= ×E

0=apV

FE
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Figure 3-4. Tunneling rate dependence on initial energy of the electron in the L-electrode. The solid line in 

both panels shows the result obtained by direct integration of the time-dependent Schrödinger Eq. for the laser-

driven system. In panel a, the dashed line shows the result of a restricted Floquet Green's function that retains only 

one (resonant) replica. See text for details. In panel b, the dashed line shows a Floquet Green's function calculation 

including 6 bridge and 9 L- and R- reservoir Floquet replicas. Note the good agreement with the result obtained by 

direct numerical integration of the time-dependent Schrödinger Equation in this case. Relevant field parameters are: 

3.8=ω  eV,  V/cm, and  in both panels. 7
0 102= ×E 0=apV

 

The dashed line in Fig. 3.4(a) shows a minimum basis attempt to extract the behavior of 

the time-driven system via Floquet analysis. Specifically, only the replicas ,  and 

 are retained in the calculation. This corresponds to the following pathway for the 

incident electron: direct tunneling (without photon absorption/emission) from the L-reservoir to 

0=Lk 0=Bk

1= −Rk
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the bridge, tunneling across the bridge (without photon absorption/emission), then 1-photon 

absorption to a final state of the R-reservoir. It can be seen that this single channel accounts for 

much of the detail in the exact spectrum, but misses some significant features (resonances). To 

correct for this shortcoming, we performed a larger basis Floquet Green's function computation: 

6 bridge replicas (specifically, replicas -3...2) and 9 L- and R- reservoir replicas (specifically, 

replicas -4...4) were employed. The result is shown via the dashed line in Fig. 3.4(b). It 

reproduces the result of direct time-integration of the field-driven Schrödinger Eq. in all essential 

details. Thus, we see that the Floquet-GF method gives a practical way to obtain rates of electron 

transmission through a field-driven molecular wire coupled to two metal electrodes, provided 

proper care is taken to ensure convergence by including a sufficient number of Floquet replicas 

in the calculation. Consequently, in the numerical computations presented below, we use the GF 

method, since it is considerably faster than direct integration of the full set of ordinary 

differential equations required for “brute force” time-evolution of the laser-driven system. 
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Figure 3-5. (a) The exact transition rate as a function of initial electron energy, calculated via the Floquet 

Green’s function method (dashed line) vs the corresponding ICA result (solid line) for the system considered in Fig. 

3.4. For comparison, the ‘‘single channel’’ result shown in Fig. 3.4(a) is also indicated via the dotted line. (b) The 

exact (dashed line) vs ICA (solid line) results for the same system when the dimensionless field strength parameters 

aI,I’ inside the bridge are reduced by a factor of 10. 

 

The minimum basis calculation just described is tantamount to a skeletal approximation 

to the ICA formula (2.30) in which only one term in the sum over amplitudes is retained. We 

show in Fig. 3.5(a) how this single term approximation compares to the full ICA result (using the 

same field parameters employed in Fig. 3.4). There is no substantial difference between the full 

ICA result and the single replica approximation to it in the incident electron energy regime 

considered in Fig. 3.4. Failures of the ICA and the single replica approximation in this regime 

  56



are thus due to inter-(bridge) replica coupling (representing photon absorption/emission on the 

bridge). In Fig. 3.5 we have extended the regime of incident energies above -6.0 eV. We see that 

the full ICA captures the additional peaks in this regime rather well. The origin of these peaks 

can be traced to other terms in the full ICA sum. In particular, the peaks marked 1 and  arise 

from the  term and peak 3 arises from the 

2

1=Bk 2= −Bk  term (in each case we sum over all R-

reservoir replicas  which correspond to final states of the physical R-reservoir lying above the 

Fermi level). As a check on our analysis, we show in Fig. 3.5(b) the comparison between a 

converged multi-replica Floquet Green's function calculation vs the corresponding ICA 

prediction for the case where all the  parameters are reduced by a factor of 10. Setting these 

parameters to zero would imply complete suppression of inter-replica coupling in the Floquet 

Hamiltonian, thus improving the accuracy of the ICA. We see that the trend is in the right 

direction -- agreement between ICA and converged Floquet tunnel rate spectra is much better in 

panel b than in panel a. 

Rk

IIa ′,

Note that none of the transitions indicated in Figs. 3.4 and 3.5 would take place in the 

absence of the laser field, since they correspond to initial states of the L-reservoir below the 

Fermi level. By absorption of photons, electrons initially in these states can “get above” the 

Fermi energy and access an unoccupied state of the R-reservoir. 

In fact, it is possible to employ a perturbative expansion for the Floquet Green's function 

to systematically correct for the deficiencies of the ICA and to provide insight into the specific 

intra-bridge photon absorption/emission events that contribute to the tunneling rate under various 

conditions. As noted above, the ICA corresponds to neglect of matrix elements in the inverse of 

 which connect different Floquet replicas, thus resulting in a block diagonal Floquet bridge 

Hamiltonian matrix, a block diagonal Floquet self-energy matrix, and hence a block diagonal 

approximation to . Treating the neglected matrix elements as the perturbation, a standard 

Green's function perturbation expansion can be invoked [62]. The first correction to the ICA 

provides the contribution of all process that involve one-photon absorption/emission between 

bridge states, etc. In a chapter 4 we will present full details of this expansion and demonstrate 

that it can correct the ICA into an essentially exact calculation, except at extremely high laser 

intensities, where the perturbation expansion diverges. 

Fg

Fg
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3.3  CURRENT THROUGH AN AC DRIVEN MOLECULAR WIRE 

Here we present numerical calculations of the electrical current through an ac field-driven xylyl-

dithiol molecular wire for a variety of externally tunable parameters. Having shown in Sect. 2.3 

that the Floquet Green's function method enables us to accurately compute the quantum 

dynamics of the field-driven system, we use it to deduce the current through the wire in all 

calculations to be presented in the remainder of this chapter. (Care was taken to ensure that 

enough replicas were included in the numerical calculation to obtain converged results for the 

output current.) 

In Section 3.3.1, we show the predicted current for fixed laser field strength and 

frequency as a function of applied dc voltage for the (symmetric) break-junction configuration. 

In Section 3.3.2, we present analogous calculations for the (asymmetric) STM configuration. 

Then, in Sect. 3.3.3, we investigate in more detail how weak the laser-field can be and still 

produce a significant enhancement of the electron current. 

3.3.1  Break-Junction (Symmetric) Configuration 

Here we consider a symmetric (“break-junction”) system, corresponding to chemisorption 

(covalent bonding) of the xylyl-dithiol molecule at both ends to gold electrodes. For concreteness 

we take the electrode molecule distance to be 1.9 Å. Also for concreteness, we choose a laser 

frequency of 1.9 eV, which corresponds to one-half the HOMO-LUMO energy gap. 

Furthermore, we fix the laser field amplitude at the value  V/cm. 7
0 102= ×E
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Figure 3-6. Laser-assisted current (in Amperes) through a xylyl-dithiol wire in the break-junction 

(symmetric) configuration. As a function of applied  voltage (in Volts), forward (Left to Right) current is shown 

via solid line, backward (Right to Left) current via short-dashed line, and the absolute value of the net current is 

shown via long-dashed line. The following field parameters apply: 

dc

1.9=ω  eV, and laser field strength 

 V/cm. 7
0 102= ×E

 

In Fig. 3.6 we show the forward (Left to Right) and backward (Right to Left) currents as 

a function of applied  bias [79]. Their difference (forward minus backward) gives the net Left 

to Right current through the wire. [Because a logarithmic scale is used in the graph, vanishing of 

net current is indicated by the sharp dip (towards 

dc

∞− ) at zero bias. Note also that the absolute 

value of the net current is plotted. Current flows in the direction of the applied bias, that is Left 

to Right for positive bias and Right to Left for negative bias.] Notice that due to the geometrical 

symmetry of the break-junction configuration, the roles of forward and backward currents should 

simply be switched when the dc  voltage polarity is reversed. Some artificial “symmetry-

breaking” is apparent in these figures, due to slight asymmetry in the numerical placement of the 
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xylyl-dithiol atoms with respect to the metal electrodes. However, this asymmetry is minor, 

particularly as regards the net, experimentally observable current. 

 

 
Figure 3-7. Current-voltage characteristic for the molecular wire system in the symmetric, break-junction 

geometry: the curve without the applied laser field is represented by the solid line, and the curve for the field-driven 

system is shown by the dashed line. The following field parameters apply: 1.9=ω  eV, and laser field strength 

 V/cm. 7
0 102= ×E

 

In contrast to the field-off case, where for small bias only electrons near the Fermi energy 

participate in the tunneling process, in the field-on case, electrons outside the energy regime 

bracketed by the Fermi levels of the L- and R- reservoirs participate as well (assisted by photon 

absorption/emission). Even for zero  bias, many electrons in the metal reservoirs having 

energy well below the Fermi level contribute to forward and backward currents. 

dc

It is interesting to remark here that the vanishing of the net current at zero bias is due in 

the field-on case to perfect cancellation (for a symmetric electrode-wire-electrode configuration) 

of forward and backward currents. In Fig. 3.7, we again plot the net field-on current, and 

compare this to the current obtained when the laser field is turned off, all other system 

characteristics being unchanged. Two points about the magnitude of the current drawn through 

the wire are relevant. First, for the laser-off system with a modest applied voltage of ca. 1 V, the 
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current is ca.  Amps, a value which is in order of magnitude agreement with experimental 

measurements on break-junction systems [11]. Furthermore, it is clear that  large enhancement 

of current flow are obtained over a wide range of  voltages when a laser field of the amplitude 

and frequency noted above is applied. 

910−

dc

3.3.2  STM (Asymmetric) Configuration 

Here we consider an asymmetric, (STM) system, in which the left electrode - 

chemisorbed molecule distance is 1.9 Å and the STM tip - molecule distance is 5 Å. Again we 

choose a laser frequency of 1.9 eV, which corresponds to one-half the HOMO-LUMO energy 

gap. Furthermore, we again fix the laser field amplitude at the value  V/cm. 7
0 102= ×E

 

 
Figure 3-8. Laser-assisted current through a xylyl-dithiol wire in the (asymmetric) STM configuration. As 

a function of applied  voltage, forward current is shown via solid line, backward current via short-dashed line, 

and the absolute value of the net current is shown via long-dashed line. The following field parameters apply: 

dc

1.9=ω  eV, and laser field strength  V/cm. 7
0 102= ×E
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In Fig. 3.8 we show the forward (Left to Right) and backward (Right to Left) currents as 

a function of applied  bias. Their difference (forward minus backward) gives the net Left to 

Right current through the wire. Notice that due to the asymmetric geometry of the STM 

configuration, the symmetry between forward and backward currents found in the break-junction 

case (vide supra) is broken. In particular, it is interesting to note that the forward and backwards 

do not precisely cancel at zero  voltage. In Fig. 3.9, we show via the dashed line the net 

current obtained under the input conditions just described as a function of applied  bias. 

Again, this current represents the difference between forward current and backward current 

through the wire. The analogous result in the absence of the laser field is indicated via the solid 

line. We note that the value of current obtained for the “standard” wire (no laser field) is ca  

Amps for a ca. 1 V  bias, which agrees in order of magnitude with experimental 

measurements on xylyl-dithiol systems using an STM apparatus [19-21]. And, as in the break-

junction case, it is clear that large enhancement of current flow (in fact, even larger than for the 

break-junction system studied in Sect. 3.3.1) is obtained with a laser field of the amplitude and 

frequency noted above. 

dc

dc

dc

1110−

dc
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Figure 3-9. Current-voltage characteristic for the molecular wire system in the asymmetric, STM 

geometry: the result in the absence of the applied laser field is shown via the solid line; the corresponding result with 

the applied field is shown via the dashed line. The following field parameters apply: 1.9=ω  eV, and laser field 

strength  V/cm. 7
0 102= ×E

3.3.3  Estimation of Laser Field Strengths Needed for Significant Current 

Enhancement 

Here we tune the laser to resonance with the Fermi-Level to HOMO (and thus the Fermi-level to 

LUMO) energy gap, i.e. choose 2.0=ω  eV. Then, for fixed applied voltage  V, we 

study the dependence of the net electric current on laser field strength. Results are shown for 

both STM (asymmetric) and break-junction (symmetric) configurations in Fig. 3.10. In both 

cases we see that the backward current is much larger than the forward current, and hence 

accounts for almost the entire net current. For comparison, we also show the result obtained in 

the ICA approximation. The latter is seen to be reasonably good in the STM case and less so in 

the break junction case. (In the STM case, the large STM tip molecule distance causes photon 

assist in the “tip to molecule” step of the electron tunneling transition to dominate intra-bridge 

transitions; the latter require inter-replica coupling and hence are not contained in the ICA.) It is 

clear that for both configurations substantial enhancement relative to the non-driven (laser-off) 

system is observed. For a moderate field strength of  eV [80] (located by the dashed 

vertical line), an enhancement of over one order of magnitude relative to the laser-free limit is 

obtained for the break-junction geometry, while an enhancement of more than two orders of 

magnitude is obtained for the STM configuration. 

0.4= −apV

6102×
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Figure 3-10. Dependence of electron current on laser field strength for the STM case (top panel) and 

break-junction case (bottom panel). In each panel, the full Floquet Green's function result for forward current is 

shown via the solid line, backward current via the short-dashed curve, and net current via the long-dashed curve. Net 

current computed within the ICA is shown via dotted line. The dashed vertical line highlights the large 

enhancements in net electric current obtained with a moderate laser field strength of  V/cm. Relevant 

parameters include: bias  V and field frequency 

6102×

0.4= −apV 2=ω  eV. 

 

The essential effect of laser field illumination is to open up resonant photon-assisted 

conductance channels. The resultant resonant electron transfer processes depend only weakly on 

the number of sites through which the hopping takes place, i.e. the length of the molecular wire. 

In contrast, off-resonant electron transfer decreases exponentially with molecular wire length 

[18]. Since the Fermi level of the metal contacts lies in the (multi-eV) gap between HOMO and 
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LUMO orbitals of organic molecular wires like xylyl-dithiol and its multi-benzene analogs, 

current through this class of molecular wire system is predicted, in the absence of laser 

illumination, to fall off dramatically (exponentially) with the length of the molecular wire 

(neglecting dissipative effects associated with coupling to a condensed phase environment [81]). 

Thus we expect a larger field-induced enhancement factor for the electronic current as the 

molecular wire length increases. 

 

3.4  DISCUSSION AND CONCLUSION 

In this chapter we have applied the formalism developed in chapter 2 to study electron transport 

through  field-driven molecular wires in the particular case of xylyl-dithiol connected at either 

end to gold electrodes. The simplest possible level of description has been invoked, namely a 1-

electron tight-binding model for the electron dynamics. Dissipative coupling to an environment 

(for example, vibrations in the bridge molecule, phonons in the metal electrodes, and dipolar 

forces in a liquid solvent) has been neglected. Electron correlation effects, which would require a 

level of electronic structure theory considerably beyond the tight-binding model, are also 

ignored. Indeed, even if explicit electron-electron are ignored, the fermionic nature of the multi-

electron system involved here has only been treated crudely (via a one-electron model in which 

certain transitions are blocked based on the expected prior occupancy of the final states accessed 

by these transitions). Despite the success of this approach in understanding electron transport 

through non-driven molecular wires [19-21, 54, 55], a more rigorous treatment of Fermi statistics 

would be of interest in the field-driven case, which is further complicated by photon-assisted 

transitions. A related issue, unaddressed here, is the importance of hole current in the overall 

charge carrier transport process. 

ac

We showed in chapter 2 that a molecular wire coupled to a monochromatic ac  driving 

field such as results under laser illumination can be mapped, using Floquet theory, to an 

equivalent  field-free (“ordinary”) molecular wire system that corresponds to an augmented 

(formally infinite) electronic state space and appropriately renormalized inter-state couplings. 

With this mapping, standard Green's function methods, applicable in the field-off case, can be 

ac
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applied to compute the electron dynamics in the field-driven system. If a sufficiently large 

number of Floquet replica states are included in the calculation, a numerically exact solution of 

the field-driven dynamics can be obtained. We also presented in chapter 2 an approximation 

scheme, termed the Independent Channel Approximation (ICA), which simplifies the analysis of 

the Floquet Hamiltonian by neglecting certain inter-Floquet state couplings. 

In the present chapter this methodology was used to compute the net electric current 

through a xylyl-dithiol molecular bridge attached at either end to gold electrodes. Two geometric 

configurations were considered. One was symmetric with respect to the placement of electrodes 

on either side of the xylyl-dithiol molecule. A small electrode-molecule distance of 1.9 Å was 

employed in order to represent chemisorption of the sulfur atom from the xylyl-dithiol with gold 

atom(s) of the adjacent metal electrode. This was termed the “break junction” configuration. A 

second configuration considered one of the gold electrodes to be significantly farther (5 ) from 

the adjacent sulfur atom of the molecule. This asymmetric configuration was chosen to model an 

STM experiment, in which the STM tip is at this distance from the molecule; hence it was 

termed the “STM” configuration. The geometric differences between these two configurations 

generate different electron-laser coupling, and hence lead to different induced currents when the 

same external fields are applied. 

Å

The parameters entering into the tight-binding model for this system were taken largely 

from Extended Hückel level electronic structure calculations. While these are crude, they have 

provided useful qualitative estimations in previous studies on similar systems [19-21]. Of course, 

improved electronic structure calculations would provide a valuable refinement of the overall 

theoretical treatment of electron transport through molecular wires, with or without laser driving. 

The Fermi level of the electrodes (in the absence of applied  voltage) lies near the 

middle of the HOMO-LUMO gap in xylyl-dithiol. This gap is almost 4 eV. In the absence of 

laser driving, and for modest applied dc  bias, the tunneling electrons have energies 

approximately equal to the Fermi energy. Thus, tunneling is nonresonant and hence very 

inefficient, and the electron current is very small in the absence of any applied laser field. It is 

therefore desirable to illuminate the molecular wire/electrode system with light of frequency 

which brings occupied electrode states into resonance with particular bridge molecular orbital 

energies. This dramatically increases the tunneling. Of course, one has to check that the final 

energy state of the R-reservoir thus accessed is unoccupied and to balance (subtract) forward and 

dc
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backward currents. But, we showed in several examples that this is possible to do in such a 

manner as to obtain a dramatically enhanced overall electric current through the wire, relative to 

the field-off analog. 

Some testing of the accuracy of the ICA approximation in the context of the xylyl-dithiol 

molecular wire problem was carried out. The ICA was seen to be qualitatively successful in most 

cases -- successful enough to be used as a rough guide to the mechanism of current enhancement. 

However, for this particular molecule/model, the ICA was not successful at a quantitatively 

level. In particular, photon absorption/emission within the bridge molecule itself, rather than 

during the hopping of the electron from electrode to bridge or vice versa, is significant under the 

experimental conditions considered here. Thus, the ability to converge the Floquet Green's 

function analysis by coupling together several bridge replicas proved important in obtaining an 

accurate evaluation of electron transport for this periodically time-driven system. 

We cannot be absolutely sure that other effects, not considered in the present model, will 

not substantially modify these conclusions. Dissipation, the full constraints of fermion statistics, 

and electron correlation, mentioned above, are three such effects. We were also naive in our 

treatment of the influence of the laser field on the metal electrodes themselves. We assumed that 

this laser field did not excite direct electronic transitions between metal states. For real metals, it 

is well established that light does in general induce such transitions [82]. The effect of such 

processes on the overall tunneling current remains to be ascertained. Clearly, much work remains 

to be done on this complex but intriguing problem. 
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Chapter 4. Diagrammatic approach to express the laser driven 

current through molecular wires as interference of many tunneling 

pathways. 

A single molecule connecting two metal electrodes (molecular wire) is an important molecular 

electronics system which lately has attracted considerable experimental and theoretical attention 

[1-33]. Applying electromagnetic fields to the molecular wire systems provide an interesting 

possibility to enhance and control the current flow through them. In chapters 2 we developed the 

theory of alternating current (ac) field driven electron transport through a molecular wire and in 

chapter 3 applied this theory to the realistic case of a xylyl-dithiol molecule connected two gold 

electrodes. We based this theory on a simple non-dissipative one-electron tight-binding model of 

molecular wire and describe coherent electronic transport by using the Landauer formula for the 

current. Floquet methodology [51] was used to construct a time-independent effective 

Hamiltonian from the original time-dependent Hamiltonian describing field-driven molecular 

wire. Then, electronic tunneling through the molecular wire system described by the time-

independent Floquet Hamiltonian was calculated by using a standard Green's Function based 

scattering approach. Some insight on physical description of field-assisted electron tunneling was 

obtained by neglecting appropriate terms in the Floquet Hamiltonian [we called this Independent 

Channel Approximation (ICA)]. We tested the ICA on a system comprised of a xylyl-dithiol 

molecule connecting two gold electrodes to show that unfortunately ICA provides only 

approximate solution to the full quantum dynamics associated with the relevant tight-binding 

Hamiltonian. We would like to note here that contrary to the statement in ref. [60], our approach 

is exact for a model one-electron tight-binding Hamiltonian considered, and we fully take into 

account interference between different Floquet replicas: we use the independent channel 

approximation only to help to develop physical interpretation of the field-assisted tunneling. 
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In this chapter we expand our theoretical treatment by developing a perturbation theory 

approach to calculate electron tunneling rates. We partition the full Floquet Hamiltonian and 

utilize perturbation theory in a way that provides a clear physical description of field-driven 

electron tunneling as an interference of many pathways. Each such process has a specific 

physical interpretation as an electron site-to-site “hop” accompanied by possible photon 

absorption-emission. We use a diagrammatic technique to identify all possible pathways for 

electron transport and assign a specific algebraic term to each such pathway. 

We test this method by comparing the exact and perturbative theories numerical results 

for both “toy” and realistic xylyl-dithiol molecular wires. We show that in the case of a xylyl-

dithiol molecular bridge, which comprises many tight-binding states, and for the laser field 

intensities less then 107 V/cm, the exact result is numerically reproduced by taking into account 

just the first two terms in the perturbation series. 

4.1  FLOQUET BASED THEORY OF LASER-DRIVEN COHERENT 

ELECTRON TRANSPORT THROUGH MOLECULAR WIRE 

A molecular junction consists of a single molecule connecting two metal electrodes. 

Monochromatic electromagnetic field of frequency ω  and amplitude  is applied along the 

axis of the bridge molecule. The one-electron tight-binding Hamiltonian is used and coherent 

electron transport is described by using Landauer formula (details of the model and formalism 

used can be found in chapter 2). We assume that metal electrodes are perfect conductors and thus 

disregard the generation of field-induced excitations inside the metal. 

0E

The essence of our theoretical approach (described in chapter 2 and just briefly reviewed 

in this section) is the application of Floquet methodology to the Schrödinger Equation written in 

Interaction Picture representation. This removes the time dependence from the original molecular 

wire Hamiltonian H  and defines a new time-independent Floquet Hamiltonian . The state 

diagram corresponding to the new Hamiltonian  has the following strucure: for each basis 

state of the physical molecular wire system there is a discrete manifold of (quasi) states 

FH
FH
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(“replicas”) of the effective Floquet system, shifted by ω=⋅n  from the energy of the original 

physical state, where the n is an integer number. 

The exact mapping of the effective time-independent Floquet Hamiltonian to the original 

time-dependent Hamiltonian is provided by the following scheme (we follow the notation of 

chapter 2 throughout): The original molecular wire Hamiltonian (Eq. 2.17) is defined by the 

following features. The Left reservoir basis states are denoted as  and have energy . They 

are not directly coupled to each other. The same is true of the Right reservoir states, which are 

denoted as  and have energy . Left and Right reservoir states are not coupled directly to 

each other. The bridge molecule is represented by a Hückel type Hamiltonian. The bridge  

atomic orbitals are denoted as , with energies . These atomic states are coupled by matrix 

elements . Finally, the coupling between any L-reservoir state i  and a bridge atomic orbital 

>| i iE

>| f fE

N

>| I IE

JIV ,

I  is designated by . Analogously,  designates the coupling between the R-reservoir state 

 and the bridge atomic orbital 

IiV , IfV ,

f I . 

Quasi-states of the effective Floquet system are defined by two indices ),( mα , where the 

index fIi ,,=α  denote the physical state of the original Hamiltonian and the …… 1,0,1= −m  

labels the replica. Specifically we use labels  for the replicas of correspondingly left 

reservoir, bridge and right reservoir quasi-states. The energy of Floquet state 

RBL kkk ,,

),( mα  [referred to 

as a “quasi-energy” to distinguish it from the physical site energies associated with the original 

molecular wire basis states], is 

 

,=, ωαα mEE m +          (4.1) 

 

The off-diagonal matrix elements in the Floquet Hamiltonian represent the bridge-bridge 

and bridge-electrode coupling. The coupling between the L-reservoir Floquet states (i, kL) and 

bridge Floquet states (I, kB) is B

 

;)(= ,),(),,( LIBkLkIi
F

BkILki aJVH −         (4.2) 
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where  is the Bessel function of order n  and the field parameter nJ ωμμ βααβ =)/(= 0 −Ea  

( fIi ,,=, βα ) specifies the appropriate dimensionless field-mater interaction strengths. The 

laser field interaction with the molecular junction is described (the details are provided in chapter 

2) through by using the full dipole moment matrix with the elements (we assume them diagonal) 

αμ  corresponding to the atomic state α . The coupling between the bridge Floquet states is 

 

;)(= ',)',(),,( IIBkBkII
F

BkIBkI aJVH ′−′′        (4.3) 

 

and finally, the interaction between the bridge and R-reservoir Floquet states is 

 

)(= ,),(),,( RIBkRkIf
F

BkIRkf aJVH −         (4.4) 

 

The laser field driven coherent charge transfer across a molecular junction we describe as 

an electron transfer in an effective system described by time-independent Floquet Hamiltonian. 

Applying the scattering formalism to the Landauer formula we obtain the one-electron rate of the 

isoenergetic transition from an initial L-reservoir Floquet state  to the manifold of all final 

Floquet states of the R-reservoir as: 

),( Lki

 

 )(|)(|2= ),(),(
2

),(
,

),( LkiRkf
R

Lki
L

Rkf
Lki EEvEvr −⋅⋅∑ δπ GG

=
G     (4.5) 

 

Here the vectors  and LvG RvG  describe the coupling between the molecule and the 

electrodes and vector elements of  are given by  and likewise for LvG F

LkiBkI
L

BkI Hv ),(),,(),( = RvG . The 

Green's function matrix G  of the molecular junction Floquet Hamiltonian  can be calculated 

as: 

FH

 

[ 1)(=)( −
−− EEE B ΣHG ]         (4.6) 
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where  is the bridge Floquet Hamiltonian matrix and  is the E-dependent “self-energy” 

matrix, which decomposes as 

BH Σ

 

,)()(=)( EEE RL ΣΣΣ +         (4.7) 

 

with elements: 
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η
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and . Similar expression may be easily written for . By using the self-energy 

defined for an original Hamiltonian of the physical system 

+→ 0η )(ERΣ
bridgeRbridgeLbridge ,,= Σ+ΣΣ  we can 

write: 

 

)()()(
=

=)( ,
,')',(),,( ω=L
bridgeL
IIILBkLkLIBkLk

Lk

L

BkIBkI kEaJaJE −Σ
∞

−∞
Σ ′′−−′ ∑    (4.9) 

 

The total current  is the difference between the forward (Left electrode to the Right 

electrode) current  and the backward current  and composed from all possible one-

electron contributions. We assume that initially electrons are distributed according to the 

equilibrium Fermi distribution and tunnel from the occupied states of one electrode to the 

unpopulated states of the opposite electrode. The driven electron transport is accompanied by 

photon absorption and emission and thus is not necessarily isoenergetic. In our effective Floquet 

system the electronic transport occur isoenergetically, and photon absorption-emission processes 

are described as electron tunneling between different Floquet replicas.  

totI

forI backI

To determine the forward current we need to sum all individual contributions from the 

electrons occupying the L-electrode (as an initial condition we choose that only the L-electrode 

replica  is occupied) tunneling to the unoccupied quasi-states of R-electrode. The electron 

with energy  occupying the zero replica  state of the L-electrode may absorb/emit  

0=Lk

iE 0=Lk n
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net photons and end up at the R-electrode replica nkR −=  (  in case of emission) state 

with final energy 

nkR =

ω=nEi + . If (assuming the temperature ) this final energy is below the 

R-electrode Fermi energy, than these final states are already occupied and the tunneling to them 

is blocked. The forward current thus takes the form: 

0=T
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0=,

LkiRkf
R

Lki
L

RkfLki
Lki

Lki
for EEvEvrI −⋅⋅∑∑∑ δπ GG

=
G   (4.10) 

 

where the first sum is performed over occupied L-reservoir quasi-states  located in replica 

 and the second sum is performed over only unblocked 's. Likewise we can write the 

similar expression for the backward current . We note here the important difference between 

field-on and field-off case: in the presence of a laser driving field any electron has a non-zero 

probability to tunnel to the opposite electrode. In the language of the effective Floquet system 

this means that for any electron located at one electrode there always exist possible isoenergetic 

transitions to unoccupied states of some replicas of another electrode. Physically this can be 

interpreted that even if the electron is initially located far below the Fermi energy, it can still end 

up at an unoccupied state of another electrode by net absorption of an integer number of photons. 

Determination of the total field-driven current should consist of careful summation of all 

possible tunneling channels (pathways) for all electrons in the system (chapter 3). For a not very 

strong laser field, the bigger the number of photons that are involved in specific tunneling 

pathway, the less probable is the transition

i

0=Lk Rk

backI

1. The electrons located far below the Fermi energy 

have to absorb many photons to be able to end up at the empty states of the opposite electrode 

and their tunneling rates are generally lower then the rates from the electrons closer to the Fermi 

                                                 
1 The typical distance between any two interacting atomic sites  and i j  is not bigger then 

several Angstroms. Then the corresponding field parameter  is (much) less then 1 for a field 
strength smaller than that needed to break chemical bonds. In the effective Floquet system, the 
tunneling pathway involving absorbing-emitting of  photons is described by the coupling 
matrix elements between the quasi-states of two different replicas with the replica numbers 
difference equal . The coupling between such two replicas is proportional to the Bessel 
function element  and rapidly decreases with increasing . 

ija

n

n
)( ijn aJ n
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energy. In practice we calculate the total current by including the contributions from all initially 

occupied electronic states located above a preset cutoff energy  and disregarding the 

negligible (checked numerically) contribution to the net current from the electrons located below 

. 

cutoffE

cutoffE

In contrast with driven molecular wire, when there is no laser field only limited number 

of electrons participate in current as determined by applied voltage bias and the electron Fermi 

distribution in the electrodes. In the limit of zero temperature only the electrons having energies 

between the electrodes Fermi levels participate in current. 

We can simplify the “accounting” process of deciding which R-electrode replicas are 

blocked and which are allowed for tunneling from the L-electrode by noting that the tunneling 

rate from state i  on the L-electrode to the state  on the R-electrode is equal to the rate of 

opposite process of tunneling from the  to the . If both states  and  are already occupied, 

their contributions are equal and opposite to each other and thus cancel in the total current. We 

introduce new forward current  as a sum of contributions from all electrons from the L-

electrode allowed to tunnel to all possible (assumed empty) states of R-electrode. In the new 

forward current we do not block the transport to the previosly occupied states of R-electrode. 

Mathematically we use all possible 's in the second sum in Eq. (4.10). In the limit of 

temperature  and truncating the summation below energy value  we can replace the 

sum by an integral: 

f

f i i f

'forI

Rk

0=T cutoffE
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with: 
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and a similar expression for . We define a new backward current  in the same 

manner as the new forward current, and the total current is: 

)(ERΔ 'backI

 

'         (4.13) '== backforbackfortot IIIII −−

 

 

4.2  PERTURBATION THEORY APPROACH TO ELECTRONIC 

TRANSPORT THROUGH THE EFFECTIVE FLOQUET MOLECULAR WIRE 

 

The central problem in the scattering approach to calculate electronic tunneling rates through a 

molecular wire system is the calculation of Green's function matrix G  determined by Eq. (4.6). 

Let us assume the bridge tight-binding set of basis functions consist of  functions (states). The 

bridge Floquet Green's function matrix G  and the corresponding Floquet Hamiltonian matrix 

 are formally infinite because of the infinite number of bridge Floquet replicas. In chapter 2 

and chapter 3 we retained the finite number of replicas containing quasi-states having quasi-

energies closest to the energy of tunneling electron. Numerically we were increasing the number 

of replicas till converging to a self-consistent result for the electronic tunneling rate. If  bridge 

replicas are retained, the matrixes  and  have dimensions 

N

BH

bN

BH G NNNNb b×  where N is the 

number of bridge atomic basis states. Thus the numerical overload to diagonalize this matrix 

quickly   increases with the increase of the number of replicas. 

It is possible to reduce the size of the effective Floquet Hamiltonian matrix by 

partitioning this Hamiltonian and then applying the perturbation theory to simplify it. The 

Floquet bridge Hamiltonian matrix consist of the blocks representing individual bridge replicas. 

For example, the truncated Floquet Hamiltonian matrix of dimension  consist of  

diagonal blocks representing the replicas of physical bridge, and the 

NNNN bb × bN

BBB NNN −×  non-diagonal 

blocks representing the coupling between the bridge replicas. 
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Dynamics of electron transport through the molecular wire is described by the effective 

bridge Floquet Hamiltonian , which is just the bridge Floquet Hamiltonian with added self-

energy (which takes into account coupling of the bridge molecule with the reservoirs of metal 

states), . We choose (we explain this choice later) as a zero order Hamiltonian 

 the block diagonal part of the effective bridge Hamiltonian H  consisting of only the replicas 

of the bridge molecule with corresponding self-energy terms. The perturbation  is chosen as 

the off-diagonal inter-replica part of the same Hamiltonian and so . 

H

)(= EB ΣHH +

0H

V

VHH +0=

We partition the effective bridge Floquet Hamiltonian  into  blocks, where NH BB NN × B 

is the number of bridge replicas. Every diagonal block (i,i) with dimensions  contains all 

matrix elements of the specific bridge replica i, and N is the number of bridge states. Each 

individual block  we label as , where i  and  are the bridge replica numbers.  We use a 

similar partitioning scheme and notation for other relevant matrixes, i. e., , , . Indices  

and  here label the bridge replica number. We label by  the blocks corresponding to 

individual bridge replicas  , where . We label matrices denoting off-diagonal 

blocks of the H  by . 

B

(

NN ×

),( ji ijH j

G V 0H i

j (i)h

),( ii iii Hh =)

ijV

If the total (truncated) Floquet Hamiltonian VHH +0=  consist of only three bridge 

replicas, i. e., , then the explicit expressions for the  and V  matrixes are: 3=bN 0H
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Now we calculate molecular wire full Floquet Green's function G  by carrying out the 

perturbation expansion: 

 

...= 0 +++ 00000 GVGVGGVGGG       (4.15) 
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where  is the Green's function for unperturbed Hamiltonian . By performing the necessary 

matrix algebra we can obtain the expressions for each term in the expansion for G . Using our 

example with  replicas we can write the first and second terms of the expansion as: 

0G 0H

3=bN
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where  matrixes  denote Green's function matrixes for individual bridge replicas 

. In general we can express individual blocks  of the full matrix  by using 

the blocks  and  as: 

NN ⋅ )(ig
1)()( )(= −− ii E hg ijG G

ij
0G ijV

 

...)(= )()()()()(
0 +⎟

⎠

⎞
⎜
⎝

⎛
++ ∑ j

k

kjkikijijiijij gVgVggVgGG      (4.17) 

 

As a reminder we note that off-diagonal blocks  (0=0
ijG ji ≠ ), diagonal blocks  and 

. 

)(
0 = iii gG

0=iiV

We carry out further development of the perturbation approach by considering a simple 

model of the bridge molecule which consists of only three localized atomic states. We assume 

that only the first bridge state couples with the left electrode and only the third bridge state 

couples with the right electrode. Inside the bridge we adopt nearest-neighbor interaction model: 

only adjacent bridge states couple to each other; thus, the first bridge state couples with the 

second and the second state couples with the third.  
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Figure 4-1. Floquet state diagram for field-driven three state bridge molecular wire. Only two replicas of 

the bridge are shown. Thin red lines depict all coupling matrix elements between the L-electrode states of the replica 

, states belonging to the two bridge replicas, and states of the 0=Lk 1= −Rk  replica of the R-electrode.. 

 

The Floquet state diagram for this model is depicted in Fig. 4.1. For simplicity, we start 

our analysis by taking into consideration only two bridge replicas  and . We wish 

to calculate the tunneling rates for the electron, initially located at the L-reservoir quasi-state of 

replica  to the states of the replica  of the R-reservoir. The bridge first replica  

consists of three (quasi) states labeled as  while the second replica has states labeled as 

. In Fig. 4.1 we plot by red lines the matrix elements of the full Floquet Hamiltonian 

corresponding to the coupling between the quasi-states of these two bridge replicas, between the 

bridge and L-reservoir quasi-state i  and between the bridge and R-reservoir quasi-state .  The 

appropriate coupling matrix elements are given by: 

0=Bk 1= −Bk

0=Lk Rk 0=Bk

1,2,3=I

4,5,6=I

f

 
F

BkILkiIi Hv ),(0),=,(, =          (4.18) 
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F

BkIBkIII Hv )',(),,(, = ′′          (4.19) 

F

RkfBkIfI Hv ),(),,(, =          (4.20) 

 

The tunneling rate r from the quasi-state i  of the left electrode to the quasi-states  of 

right electrode replica  is determined by: 

f

Rk

 

∑ −
f

if EETr )(2= 2δπ
=

        (4.21) 

 

where T  is: 

 

,f,i,,f,i,,f,i,,f,i, vGvvGvvGvvGvT 3344661166443311= +++      (4.22) 

 

Next we calculate matrix elements of the full Green function G  in Eq. (4.22) by using 

the perturbation expansion (4.15) and the perturbation terms expressions (4.16) and (4.17). We 

approximate the full Green function by truncating the expansion after several perturbation terms. 

We call this approximation Independent Channels Approximation (ICA), and it is an extension 

of the approximation introduced in chapter 2, where we approximated full Green's function by 

only zeroth order perturbation term . We use the following terminology: ICA0 approximates 

the full Green's function by keeping only the zeroth order term  in the expansion; in ICA1 we 

add the first order perturbation term  to the , in ICA2 – the second, and so forth. The 

calculation of the tunneling rate 4.5 can be performed by expanding the total Green function G  

as a sum of perturbation terms (4.17).  Based on this infinite series (4.17), the final analytical 

expression for the tunneling rate would include the summation over infinite number of terms, 

each of them containing the matrix elements of bridge replicas Hamiltonian , Green's 

function matrix  and elements of the inter-replica blocks . The explicit expressions for 

matrices  and  for our simple model consisting of the 6 bridge Floquet states are (similar 

expressions for  and  can be easily written): 
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where  are the quasi-states energies of the bridge replica . 321 ,, EEE 0=Bk
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Figure 4-2. Perturbation diagrams: diagram 1 represent coupling scheme between six bridge Floquet states 

and left and right electrodes. Perturbation terms contributing to the electron tunneling rates are represented by the 
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diagrams 2a-2b (zero order perturbation) and 3a-3f (first order perturbation). Each continuous line in the 

perturbation diagram corresponds to a specific term, indicated nearby. 

 

Substituting (4.23) into the expansion (4.17) and then into the tunneling rate expression 

(4.22), we express the total tunneling rate T as a sum of the infinite number of algebraic terms. 

Next we introduce the pictorial diagrams corresponding to the every term from this expansion. 

We build the diagrams sequentially, first for the ICA0 zeroth order perturbation term of Eq. 4.17, 

then for the ICA1 first order perturbation. In Fig. 4.2 we plot the diagrams corresponding to the 

all algebraic terms contributing to the ICA0 and ICA1. The T  of Eq. (4.22) in the ICA0 

approximation consists of only the first two terms and is represented by diagrams 2a and 2b (we 

explain later the details of our diagram construction). The ICA1 contribution for these two terms 

is zero, while keeping only the zero-order perturbation terms (ICA0) gives: 

 

,= 3,
(1)
1,3,13,1,3,1 fifi vgvvGv         (4.24) 

,= 6,
(2)
1,3,46,4,6,4 fifi vgvvGv         (4.25) 

 

The diagrams 3a-3f represent terms responsible for the first order perturbation 

contribution in the third term of Eq. (4.22): 
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and the last term appearing in expression for T  in Eq. (4.22) is: 
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The diagram 1 presents the coupling scheme for the six bridge Floquet states 

 (smaller dots on the diagram) and two electrodes (larger dots). Straight lines 

represent the coupling between the specific states. According to the coupling scheme 1 we build 

61,2,3,4,5,=I
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the diagrams, representing all possible pathways between the two electrodes. The diagrams 2a-3f 

provide pictorial representation of different terms appearing in tunneling rates formula for T  by 

using the following rules: straight red lines connecting the dots I  and I ′  represent the coupling 

terms  between the correspondent Floquet states, vertical straight red lines correspond to the 

indirect coupling between the states adjacent to electrodes through self-energy terms. Non-

straight red lines connecting the dots belonging to the same bridge replica represent the Green's 

function matrix elements for this replica. Thus the continuous red line connecting the 

(electrode's) dots and consisting of alternating straight and non-straight lines represents the 

specific algebraic term of the Eq. (4.24-4.26). 

IIv ′,

By using the diagrammatic representation we can easily generate algebraic expressions 

contributing to the total tunneling rate T . All terms contributing to the T  can be expressed as a 

combination of all possible pathways connecting two electrodes (represented by large dots). 

Every pathway consists of alternating straight and curved lines. Different orders of perturbation 

correspond to the different number of straight lines connecting different bridge replicas: ICA0 

approximation does not include any transitions between replicas and thus possible pathways are 

represented by two diagrams 2a and 2b. By including possible one-photon transitions between 

bridge replicas (represented by a single straight line connecting states from different replicas), 

we construct the possible pathways representing ICA1 first-order perturbation terms. Half of the 

possible pathways are depicted by the diagrams 2a-2f and correspond to the terms of Eq. (4.26). 

The other half of the diagrams denoting the terms of the equation Eq. (4.27) can be similarly 

generated by mirror interchange between these two bridge replicas. 

The use of diagrams can be easily generalized to any number of Floquet replicas and 

therefore describes all possible photon-assisted tunneling channels. For the second order 

perturbation (ICA2), all algebraic terms in the total tunneling rate can be similarly deduced by 

elucidating all possible pathways involving two inter-replica transitions and writing the 

corresponding algebraic terms. A similar procedure can be developed for the perturbations of 

higher orders. 
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4.3  CASE STUDY: THE BRIDGE MOLECULE CONSISTS OF THREE 

ATOMIC STATES. 

The suggested procedure of expressing the total tunneling rate as a sum of algebraic terms 

connected to a specific pictorial diagram provides an interpretation of the laser field coherent 

tunneling as an interference of many channels. Next we utilize this interpretation to explain the 

specific peaks in calculated tunneling rates as a result of resonant enhancement of a specific 

channel. In Fig. (4.3) we calculate tunneling rates vs tunneling energy for the molecular bridge 

consisting of three atomic states. On the top panel, all bridge states have the same energy of  

(a. u.) while at the bottom panel the first bridge state has the energy of 0.2  and other two states 

energies are . Other parameters, common for both panels are: the field frequency is , the 

intra-bridge and inter-bridge field parameters are correspondingly  and , the inter-

bridge coupling between the adjacent sites is 

0.8

0.8 0.6

1=a 0.2=a

0.07− . For the exact calculations we use 5 bridge 

replicas with  and 7  replicas of each electrode. 2..2= −Bk

 

  83



 
Figure 4-3. Tunneling rates vs electron incident energy are calculated for the two different bridge 

molecules, each consisting of three atomic states. The top calculations are performed for the bridge with all states 

having the same energy  (a. u.). The bridge utilized at the bottom panel has the energy 0.2  of the first state, 

while other two states have the same energy of . The solid black line represents the exact result, the dashed blue 

line depicts ICA0 result and the blue long-dashed line shows ICA1 result and practically coincides with the black 

line. 

0.8
0.8

 

We plot the exact tunneling rate dependence vs. incident energy of the electron by the 

solid black line, the result of ICA0 approximation is plotted by a red dashed line. In the top panel 

the ICA0 and exact results are very close to each other, hence we can explain the tunneling 

spectrum by using only ICA0 diagrams. The left-most three peaks are the result of the dominant 

contribution of the following tunneling pathway: the electron “hops” from the left electrode to 

the first site of the bridge accompanied by the absorption of one photon, then it tunnels through 

the bridge and hop to the right electrode states. Positions of the peaks approximately correspond 

to the eigenenergies of the appropriate 1= −bk  bridge replica. The right-most three peaks can be 
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attributed to a pathway involving the electrons tunneling from left electrode zero replica to the 

bridge replica  and thus do not involve photon absorption-emission during the hop from 

the left electrode to the bridge. The good agreement between the ICA0 and the exact calculations 

is the result of the weak laser field strength and the specific structure of the bridge. The 

eigenenergies for the different bridge replicas (shown by stars for  and circles for 

0=bk

0=bk 1= −bk ) 

are well separated from each other, with the result that the tunneling pathways involving the 

(photon assisted) transitions between the Floquet bridge states corresponding to different replicas 

(and described by higher then zero order perturbation terms)  are relatively unimportant.  

The structure of the bridge molecule used in calculations at the bottom and top panel is 

very similar, except that the second bridge molecule has the energy of the first state changed to 

the  value. As a consequence, the eigenergies of the different bridge replicas overlap 

resulting in larger contributions of inter-replica pathways. The ICA0 curve (red dashed curve) is 

no longer in good agreement with exact result.  Including the pathways involving one-photon 

transitions between the bridge replicas by using the ICA1 approximation (blue curve) improves 

the agreement with the exact result. The following ICA1 specific pathway dominates for the 

electrons with tunneling energies near 

0.2

0.40 − : the electron tunnels from the left electrode to the  

first bridge site, then absorbs one photon and hop to the second bridge state and then tunnel 

through to the right electrode. The dominating ICA1 pathway for the electrons starting in the 

range of energies  involves the tunneling from the left electrode to the first bridge site 

with emission of one photon, then hopping to the second bridge site accompanied by absorption 

of one photon and then tunneling through to the right electrode. We checked numerically that 

these resonant ICA1 channels are dominant and provide most contribution into the total rate.  

10.6 −

In the method developed in this section, the total driven-tunneling rate is calculated by 

the standard scattering formula applied to the (time-independent) effective Floquet Hamiltonian 

and requires calculation of the matrix elements of the full Green function  corresponding to 

this Hamiltonian. By using the proposed partitioning, these (effective Floquet) Green function 

matrix elements can be expressed as a sum of infinite number of terms, where every term 

consists of multiplication of the 1) coupling inside the bridge 2) Green function matrix elements 

of the physical bridge Hamiltonian 3) Bessel functions and field parameters. By using the 

diagrams it is easy to write down all these individual terms in the expansion for the matrix 

elements of the effective Green function. 

G
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These diagrams provide a useful interpretation of the driven electron transfer across a 

molecular junction. The individual electron tunneling pathway is interpreted as a series of hops 

between the bridge sites accompanied by photon absorption/emission. The total tunneling rate is 

the interference of all available pathways. By using the diagrams one can explain why the 

specific pathways dominate in electron transport, and predict which pathways can be resonantly 

important for a specific molecular junction system. In favorable cases, by simple inspection of 

the energy level structure of a molecular wire one can predict the dominant tunneling pathways 

and provide the corresponding analytical formula of this pathway. 

 

4.4  APPLICATION OF THE FORMALISM TO THE XYLYL-DITHIOL 

MOLECULE CONNECTING TWO GOLD ELECTRODES. 

 

   

In Fig. 4.4 we illustrate the accuracy and convergence of the perturbation expansion by 

calculating the tunneling rates through the realistic molecular wire system consisting of xylyl-

dithiol molecule connecting two gold electrodes. The matrix elements (including self-energy) of 

this molecular wire Hamiltonian were determined in chapter 3. Fig. 4.4(a) represents the case of 

relatively strong laser field of  V/cm. The results of ICA0 (short dashed) and ICA2 (long 

dashed) curves are not in good agreement with the solid curve representing the exact solution, 

although they capture most of the peaks positions and amplitude. Taking more perturbation 

expansion terms into consideration does not improve the agreement - the perturbation series thus 

does not converge for this field strength. For a weaker, but still strong field of  V/cm the 

perturbation expansion does converge, and by taking into account two perturbation terms (using 

ICA2) we obtain almost perfect agreement with the exact result. We checked numerically that 

for weaker field strengths than the one used in panel (b) the convergence is even better, as 

expected, because the perturbation becomes smaller for weaker field intensities. 

7102×

6108×
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Figure 4-4. Tunneling rate dependence on initial energy of the electron in the L-electrode. The molecular 

junction consist of the xylyl-dithiol molecule connecting two gold electrodes. The solid black line in both panels 

shows the exact transition rate, dashed red line shows ICA0 result and the long-dashed blue line shows the ICA2 

result. Panel a represents tunneling rates obtained under the strong laser field strength of  V/cm and panel b 

represents the lesser, but still strong laser field strength of  V/cm. 

7102×
6108×

 

The Fig. 4.4 ICA0 and ICA2 rates were calculated by diagonalizing the matrixes 

representing several Floquet bridge replicas. This is a numerically straightforward and simple 

way to estimate the Green's function matrix elements of the full effective Floquet Hamiltonian 

and the tunneling rates. The perturbative partitioning of the Floquet Hamiltonian reduces the 

dimensionality of the matrixes that needs to be diagonalized, reducing the numerical time 

required for calculations. 

Based on our calculations for the xylyl-dithiol molecular wire we can explain our specific 

choice of what part of the total Floquet Hamiltonian to use as a perturbation. The typical distance 

between the strongly coupled bridge atomic states is about one-two angstroms, resulting of very 

small values of field parameter  for realistic values of laser field. Thus for small a the effective a
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coupling between the states of the same replica is multiplied by 1)(0 ≈aJ , while the effective 

coupling between the replicas contains the Bessel functions of higher order and thus close to 

zero. Thus the non-diagonal blocks of Floquet Hamiltonian included in V  contain the matrix 

elements describing the coupling between the different replicas and thus can be used as a small 

perturbation (proportional to , n=1,2…).  )(aJn

 

4.5 CONCLUSIONS 

 

In this chapter we partitioned the effective Floquet Hamiltonian for the laser field driven 

molecular wire and then used perturbation theory to calculate tunneling rates. By partitioning the 

Floquet Hamiltonian we obtained the analytical expression for the total tunneling rate as a sum 

of terms representing different tunneling pathways. We suggest the usage of pictorial diagrams to 

account for all these possible pathways. 

Using as an example a simple model of the bridge molecule consisting of three atomic 

states, we calculated the tunneling rates and explained them in terms of interference of specific 

resonant pathways, with every pathway interpreted as a “hopping” between the states 

accompanied by the photons absorption/emission. The use of diagrams helps us to visualize these 

pathways and understand which of them are important. This understanding may be helpful in 

design the molecular electronic devices with specific required properties. 

We tested the applicability and limits of the perturbative approach for a realistic 

molecular wire (xylyl-dithiol) and concluded that for a reasonable laser field strength of less then 

107 V/cm the perturbation theory produces numerically accurate results for this system. 
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Part 2. 

 
Light Diffraction by Colloidal Crystals – Numerical Simulations 

for Realistic Finite Systems Using Single Scattering Theory. 
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Chapter 5. Introduction. 

 

5.1 PHOTONIC CRYSTALS AND THEIR APPLICATIONS. THE SEARCH 

FOR THE FULL PHOTONIC BAND-GAP MATERIALS. 

 

 

Propagation of waves through a medium containing a periodically or almost periodically 

arranged collection of scatterers is a very popular motif arising in different branches of physics. 

There is a deep analogy between the propagation of electrons through an atomic lattice, 

diffraction of X-rays from atomic lattices and propagation of light through a medium with 

dielectric constant periodically modulated on a scale smaller then the wavelength of light. The 

last research field, often referred to in this context “nanophotonics”, has recently experienced 

explosive development. Its beginning is often associated with the proposal of E. Yablonovich to 

use photonic bandgap (PBG) materials to inhibit the spontaneous emission [1] and the idea by S. 

John to use modulated dielectric media for coherent localization of photons [2].  

PBG materials, or “photonic crystals”, are dielectric periodic structures designed to form 

energy band gaps for photons, which allow or prohibit the propagation of electromagnetic waves 

in certain ranges of frequencies and directions [3]. Similar to electrons in a periodic potential, the 

electromagnetic field in a periodic dielectric media can be expressed as a superposition of Bloch 

waves, where each Bloch wave form a separate solution for the master wave equation derived 

from Maxwell equations. The dispersion relationships for these waves form the structure of 

bands, specifying allowed frequencies for every Bloch wave direction. The band structure for the 

  95



photons arises from finding the Bloch type solution for Maxwell equations, which can be used to 

derive the master wave equation for the electric field vector ωE
G

 in CI units as [3]: 

)()()( 2

2

rEr
c

rE GGGGGGG
ωω εω

=×∇×∇  

where ε is the dielectric function specifying the material properties of the medium, ω is the 

frequency and c is the velocity of light in the vacuum. This equation was obtained from the 

assumption that the magnetic permeability is unity everywhere, and the dielectric function ε is a 

local and linear function. Note that there is no time dependence in the equation, since it was 

obtained by Fourier transformation of the Maxwell equations from time to frequency domain. 
ωE
G

 is the Fourier component of the full time-dependent electromagnetic field corresponding to 

the frequency ω. Another assumption we invoke here is that the dielectric function is frequency 

independent. This assumption is valid for many dielectric structures in the visible and infra-red 

frequency ranges, but cannot be used for metals or for dielectrics having resonant interaction of 

light near the frequencies under consideration.  

Since its inception, research in nanophotonics has focused heavily on design, 

manufacturing and characterization of complete PBG materials, i.e., possessing an 

omnidirectional band gap in some frequency range. This forbidden gap has no propagating Bloch 

states over this range, and PBG materials can exhibit novel optical properties. Besides the 

already mentioned inhibition of spontaneous emission, these materials can lead to a confinement 

and molding of light in engineered waveguides channels and cavities. Development of photonic 

materials enabling generation, localization, amplification and processing of light is central for 

creation of new devices for information and communication technologies [4]. The ability to 

manage photons similar to the way in which semiconductors manipulate electrons could lead to 

the creation of a photonic chip [5]. A photonic crystal with a complete PBG located around 1.55 

mm – the wavelength region important for optical communications, was successfully produced 

[6, 7]. Many other materials, possessing a complete PBG in the infrared, microwave and visible 

regions were experimentally developed [8-12]. 

The development of complete PBG materials proved to be a challenging task, since it 

depends delicately on the symmetry of the crystal lattice, shape and type of the structural unit 

and the magnitude of the dielectric contrast. Scalar waves, such as electronic wavefunctions or 

sound waves, can readily form a complete PBG for such a simple structure as an fcc lattice of 
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spherical scatterers [13]. But the vector nature of electromagnetic radiation leads to more 

restrictive conditions. For the fcc lattice of spherical scatterers, exhaustive band structure 

calculations showed that this system does not posses a complete bandgap, but only a number of 

pseudo gaps. This pseudo gaps have bandgaps that exist for only a certain range of propagation 

directions. The existence of a complete PBG in such a system is inhibited primarily by 

symmetry-related band degeneracy near the W and U points, and this degeneracy is impossible 

to eliminate by increasing the dielectric constant or changing the volume fraction occupied by 

the particles [14].  

But for the inverted system, the so called “inverse opals” which are prepared by filling 

the media between the spheres with higher dielectric constant materials, it is possible to lift this 

degeneracy and create the complete PBG. It was shown that for the closed-packed fcc inverted 

system the minimum dielectric contrast of approximately 2.8 is required for a complete PBG  

(between the 8th an 9th bands) [15]. In general the existence and characteristics of complete PBG 

depends on many factors, and for an inverted opal structure one can optimize the dielectric 

contrast, the volume fraction ratio between two different dielectric materials, and the geometrical 

shape of the lattice structural unit. It was found, that the sintering procedure increases the width 

of the complete stop band. But the nature and dependencies of the factors affecting the existence 

of complete PBG are not clearly established. Typically, separate band structure calculations are 

performed for each specific photonic crystal structure, and then the results of calculations are 

organized into  “maps” showing the location and the width of PBG for different parameters. 

These maps of complete PBGs were obtained in [16] for different fcc space groups as a function 

of volume fraction of air spheres in an inverted structure.  

Another approach toward the complete PBG proposes to reduce the symmetry of the 3D 

lattice from the fcc to the diamond structure. In this case, a complete gap forms between the 2nd 

and the 3rd bands. An inverse diamond lattice of overlapping air spheres in a high refractive 

index material exhibits a much larger gap [17]. Unfortunately, to the best of my knowledge, it 

has been impossible to fabricate the diamond type structure by utilizing spherical particles. In the 

microwave regime, the diamond symmetry structures were successfully manufactured by drilling 

cylindrical holes in a bulk dielectric material with a refractive index of 3.5, and the bandgap 

width to center frequency ratios as large as 20% were demonstrated [18].  
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Unlike the case of an fcc lattice of spherical particles immersed in the media of lower 

dielectric contrast, it is possible to obtain the complete PBG in the fcc lattice of non-spherical 

scatterers. The examples of such individual scatterers include the dimer, consisting of two 

interconnecting spheres [19], and the peanut shaped particles [20]. Besides the fcc and diamond 

lattices, other types of lattices can be used in photonic crystals. The calculations showed that the 

body centered type lattice as well as simple cubic lattice structure could exhibit large photonic 

omnidirectional band gap [21].  

Although the search for theoretical characterizations and experimental manufacturing of 

photonic crystals with a complete PBG is important motif of the nanophotonics, there are many 

practical applications requiring less then complete PBG’s. Some of these applications include 

creation of novel optical switches and filters, chemical sensors, optical fibers and other optical 

devices [22-25]. 

The evolution of photonics will depend on the development of new photonic crystal 

materials. Driven by the needs of applications in telecommunications and optoelectronics, 

computing, manufacturing of novel coatings, etc, recently there has been considerable progress 

in fabrication of photonic crystals. Fabrication of 1D and 2D photonic crystals is relatively 

straightforward and therefore these materials are widely used in many commercial devices. 1D 

systems can be easily manufactured by the deposition of alternating layers of different dielectric 

materials [26], while 2D systems can be produced by a variety of techniques, for example by 

selective etching of the substrate through the masks [27]. However, the efficient, large scale 

fabrication of the 3D photonics crystals remains a major materials science challenge.  

To obtain photonic band gap materials, it is necessary to create periodic ensembles of 

scatterers with lattice parameters that are roughly half the relevant wavelength of light. There are 

several competing technologies to manufacture photonic crystals, including the sequential 

method of layer by layer microlithography [28], photoelectrochemical etching [29] and 

holographic lithography [30].  

Another class of methods is based on the self-organization of a large group of individual 

particles, typically a spherical colloidal particles organized in a colloidal crystal array (CCA). A 

CCA is comprised of a periodic arrays of colloidal particles immersed in a dielectric medium. 

Various methods have been developed to fabricate photonic crystals by utilizing close-packing of 

spherical colloidal particles and creating artificial opals [31-33]. To fabricate opals, the spheres 
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are usually sequentially sedimented by gravitational or capillary force to create ordered 

arrangements of particles. In these structures the long range ordering is limited by the standard 

deviation in the size and shape of the constituent colloidal particles as well as limitations of self-

organizing packing processes. The search for materials with a complete PBG fueled the study of 

the inverse opals, where the gaps between the closed packed colloidal particles are infiltrated by 

a high refractive index material, with the subsequent particles removed by etching leaving behind 

the spherical voids [34-35].  

An alternative approach to the closed-packed system are CCA’s where the colloidal 

particles self-assemble into the crystal structure in a low ionic strength aqueous solution [36, 37]. 

This procedure involves self-organization of previously negatively charged particles, which 

electrostatically repel each other to adopt a minimum energy configuration, typically with the fcc 

lattice structure. By altering the concentration of colloidal particles in the solution it is possible 

to manufacture CCA’s with a desired lattice constant not restricted to closed packed systems. 

Stacking 
Fault

Stacking 
Fault
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Figure 5-1 FCC colloidal crystal array, consisting of the (111) planes stacked together in according to the 

…ABCABC… order. A, B, C layers are shown in different colors. The location of the stacking fault is shown by the 

arrow. 

 

Colloidal crystals obtained by this latter self-assembly method predominantly form an fcc 

type of lattice with the (111) planes oriented along the surface of the confining container (Fig. 5-

1). The resulting (111) layered structure consists of alternating layers of three types - 

..ABCABC.., shown in Fig. 5-1 in different colors. The change in layer ordering leads to a very 

common type of defect – namely, the stacking fault defect, shown in the figure by the arrow. 

Other defects typical for these structures come from the variations of colloidal particles sizes and 

shapes and locations in the crystal lattice. 

The main purpose of this work is to develop a numerical tool to analyze a scattering of 

light by finite CCA, consisting of many (106-108) particles. Driven by practical experimental 

needs, we aimed to numerically simulate the full 3D map of light intensities scattered by a 

realistically macroscopic CCA. We don’t restrict the incident light to be a plane wave, and the 

distribution of particles inside the CCA to be periodic.  

 

5.2  THEORETICAL APPROACHES AND METHODS FOR CALCULATING 

DIFFRACTION OF LIGHT FROM FINITE ASSEMBLIES OF SCATTERERS. 

 

There are many theoretical approaches to calculate interaction of light with photonic crystals. 

Methods derived from different areas of physics have found their applications in this field. Band 

structure theory, originally developed for electrons in an infinite periodic potential, was used to 

solve the vector Maxwell equations in periodic dielectric media [38, 39, 3]. Band gap theory is 

most often implemented via the plane wave expansion method, where the optical field Bloch 

solution for the wave equation (1) is expanded in many, typically hundreds of plane waves. 

Dispersion relations obtained for the Bloch waves were plotted as band structure diagrams and 

analyzed using standard concepts of band gap theory. When the frequency of light lies inside the 
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band gap, the dispersion relation ω(k) has no solutions for real k, thus no propagating wave 

solutions. But the solutions with the non-zero imaginary part k still exist inside the gap and 

correspond to the exponentially decaying Bloch waves. The total (complex) band structure of 

photonic crystals can be used to derive the boundary conditions for the electromagnetic field at 

the interface. Then the reflectance and transmission properties for a finite crystal can be 

calculated by matching the light fields inside and outside of the crystal through the boundary 

conditions [40, 41]. The disadvantage of this Fourier based method is that it requires many plane 

waves to expand the dielectric constant of spherically symmetric particles. This method 

calculates the ω(k) and not k(ω), and is not well suited for a transmission and reflection 

calculations at a fixed frequency, since it requires the calculation of full dispersion ω(k) for all 

frequencies.  

A more efficient (and also more widely used) method for calculating diffraction and 

transmission properties is based on relating the electromagnetic field components at the opposite 

sides of a thin slab of dielectric material through a so-called transfer matrix [42-44]. This is done 

by dividing the space in each slab into parallelepiped cells with a coupling between these cells. 

Then the whole system is represented as a stack of slabs by using the multiple scattering formula 

familiar in the theory of low-energy diffraction [42]. This method belongs to the category of the 

so called on-shell methods, since it calculates k(ω) in contrast to the ω(k) calculated in the plane 

wave expansion method. It is sufficient to calculate all possible Bloch waves for only one 

frequency ω, and then obtain transmission and diffraction coefficients. The transfer matrix 

method is essentially a real-space finite-element method of computational electrodynamics, 

adopted for a system with a periodic dielectric function. The numerical solution for this system is 

a time-consuming process, and the disadvantage of the method is that it is restricted to the 

systems built from slabs infinite in lateral dimension. Recently, within the general framework of 

transfer matrix method, in addition to the real space implementation, different types of basis 

functions were used to represent electromagnetic fields, including Rayleigh multipoles and 

plane-waves [45, 46]. 

In the special case of dielectric spheres periodically arranged inside infinite slabs the 

layer-multiple-scattering method was developed [47, 48]. In this method spherical vector basis 

functions were used to expand the electromagnetic field around each particle, and these fields 

were summed for periodically spaced spherical scatterers in an infinite slab. Transfer matrices 
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were then utilized to couple fields between the different slabs. Recent extension of the method 

enables application to nonspherical particles, with scattering properties of individual particles 

calculated through the evaluation of the T-matrix [49]. All of these approaches include multiple 

scattering processes inside the crystal into the theoretical and numerical framework, but require 

either periodicity of the system or infinite extent in some dimension.  

The idea to use localized Wannier-like functions constructed from the Bloch states was 

used to calculate the defect states of photonic crystals [50, 51]. The approximate perturbative 

behavior of electromagnetic wavepackets was obtained in the envelope-function approximation.  

A number of computational electrodynamics techniques were developed to calculate the 

light scattering properties of arbitrary shaped, non-periodic systems [52, 53, 54]. These include 

the finite difference time domain method [55], the multiple multipole [56] and the generalized 

field propagator [57] methods, which have been utilized to calculate transmission and diffraction 

for photonic crystals containing various non-periodicities and defects. These methods are 

numerically expensive and are currently able only to treat systems with relatively small number 

of scattering particles.  

There are methods which were developed specifically for systems consisting of arbitrary 

located spheres, including the T-matrix superposition method [58] and the generalized 

multisphere-Mie theory [59]. The total field scattered by a collection of spheres is represented as 

a superposition of individual sphere contributions, where each contribution is expanded in vector 

spherical harmonics. The multiple scattering between spheres is taken into account by 

representing the total field incident at each sphere as a sum of the initial incident wave and 

scattering contributions from every other sphere of the system. To perform the summation the 

method utilizes the translation addition theorem, where a vector spherical wave centered at one 

sphere is expressed through the spherical waves centered at other sphere. Currently these 

methods numerical overload allow the analysis of only small clusters of spheres (hundreds) [60], 

and cannot simulate realistic CCA’s. 

Scattering of light by photonic crystals can be understood as the interplay between two 

different scattering mechanisms. One is the single-particle scattering from individual colloidal 

particles comprising the CCA. In the case of non-CCA photonic crystals, where the dielectric 

material is distributed continuously in the volume, one can consider the single unit cell of 

photonic crystal as a single particle. The typical size of this single particle is about half of the 
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wavelength or smaller, resulting in possible resonance behavior of the light interacting with the 

dielectric volume confined inside the specific shape of the particle. Second mechanism is the 

macroscopic Bragg type interference between the contributions scattered from all particles of the 

system. In an ideal crystal the particles are periodically arranged, and the scattering of plane 

waves by the crystal results in a Bragg type diffraction maximums. There is a connection 

between the band-structure picture and the description utilizing the language of Bragg 

diffraction. The Bragg law connects the wavevector of incident plane wave k
G

 and reciprocal 

wave vector G
G

 by the relation 2
2

1 GGk
GGG

=⋅ . Thus, the Bragg law states that when the incoming 

wavevector k
G

 lies on the surface of the Brillouin zone and the incident light Bragg diffracts, 

these wavevector values in the band diagram correspond to the opening of a band gap near the 

reduced zone edge. 

The interaction of light with a photonic crystal can be understood as a scattering process, 

where the total amplitude of scattered light is the result of interference of all scattering 

contributions from particles of the system. The electromagnetic field incident at every particle, is 

the superposition of the incident light wave and the secondary waves originating from 

rescattering by all other particles. In this thesis, we assume the all scattering events are elastic: 

the wavelength of the light is not changed by the scattering. 

The Bragg diffraction description is a simple picture based on a single scattering 

simplification of the whole scattering process. In a single scattering model, the scattered light 

results from the interaction of incident light with each scatterer. Secondary waves, arising from 

light scattered by all other particles are disregarded. Thus, in the single scattering picture we 

disregard all multiple scattering events, where the incident wave, scattered once by an individual 

particle, can be scattered again by another particle, as if “bouncing” around between scattering 

events.  

The average distance that light travels between the consecutive scattering events is called 

the mean free path. Multiple scattering contributions are small when the mean free path is much 

larger then the size of the whole system. The mean free path depends on how efficient the 

individual particles scatter, and the smaller this efficiency the larger the mean free path. There 

are many factors responsible for a magnitude of individual particle scattering efficiency, 

including the value of the dielectric contrast between inside and outside of the particle, the 
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particle size and shape, and the direction of scattering. Single scattering is the dominant 

scattering mechanism for a low contrast dielectric media. 

The opposite limit is a strongly scattering medium, where multiple scattering is 

important. For randomly and strongly scattering media, setting aside the wave nature of light and 

interference effects, the multiple scattering can be described as a random walk; the light is called 

diffuse and is described by a diffusion equation [61, 62]. Interference in multiple scattering of 

light in the random strongly scattering media leads to such interesting effects as the localization 

of light, speckles, enhanced backscattering and Anderson localization. In a realistic photonic 

crystal with disorder, where multiple scattering is important, scattering of light results in the 

interplay between the diffuse and Bragg type scattering [63, 64].  

Many theoretical methods briefly described above, such as photonic band structure or 

transfer matrix derived methods, are focused on the numerical computation of total scattering 

intensity by solving master wave equation. Their conceptual framework does not distinguish 

between the single and multiple scattering, or between Bragg interference effects of collections 

of particles and scattering features of individual particles. Thus, the physical picture as an 

interplay between these different processes is largely lost, and although the quantitative 

description is rather accurate, the qualitative picture is unclear. Interpretation and prediction of 

light interaction with photonic crystals requires a richer conceptual basis describing the physical 

process involved. The practical theoretical description would benefit from the extensive use of 

such concepts as single and multiple scattering, Bragg interference and individual particle 

scattering resonances.  

Another group of methods often applied to photonic crystals are focused on the single 

particle scattering properties, and then total scattering for the collection of particles is obtained in 

some suitable approximation [52, 65-67]. The shape and material dependent scattering properties 

of spherical and ellipsoidal particles, core-shell particles and particles built from the dielectric 

and metallic materials, are significant in the understanding of photonic crystals. The analysis of 

scattering from collections of particles is mainly based on independent particles approximation, 

where the particles forming the group can be considered as independent scatterers. This means 

that the scattering contributions between different particles are considered to be non-coherent, 

and the intensities of these contributions can be added without the regard to the phase. Multiple 

scattering in this approach is traditionally taken into account by a so-called radiative transfer 
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equation. Although the independent particles approximation misses the essential coherent 

properties of the photonic crystals, it is used in understanding the nature and properties of the 

diffused light resulting from incoherent scattering by real, disordered crystals.  

Interference of light by the periodically arranged collection of weak scatterers is the 

subject of the methods utilized in the field of X-ray diffraction by solid state crystals [68, 69]. 

The main emphasis of X-ray diffraction theories is on the collective effects of constructive and 

destructive interference from collection of scatterers, and less on the properties of single 

scatterers. The dielectric contrast of the system is very weak, and multiple scattering effects are 

relatively less important. The light intensity diffracted by an atomic crystal can be calculated in 

the single scattering approximation and in the X-ray literature this approach is called kinematic 

theory. 

In the regime of very weak dielectric contrast, the result of scattering of a plane wave by 

a macroscopic ideal crystal consist of predominantly the diffracted wave (or several waves for 

special incident conditions), directed in Bragg direction. The dynamical diffraction theory (DDT) 

[68, 69], often used to calculate the intensities of diffracted X-ray light, assumes that the self-

consistent electromagnetic field inside a crystal can be represented as a superposition of just two 

(can be easily generalized to several) plane waves: propagating and diffracted. The propagating 

 and diffracted  wavevectors are connected through the Bragg law . Taking 

into the account some of the multiple scattering in the form of allowing coupling between the 

diffracted and propagating waves, the equations of DDT can be derived. The DDT equations 

result from solving Maxwell equations for a periodic dielectric function under the assumption 

that inside the crystal the electromagnetic field can be represented as a sum of propagating and 

diffracted plane waves. Superposition of these two waves form Bloch solution for the wave 

equation and from this observation follows the connection with the band gap theory. In the band 

structure calculations, based on the plane wave expansion, each Bloch wave 
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The DDT retains only two plane waves from this expansion, neglecting other terms. Then 

the total field inside the crystal is represented as a sum of just two Bloch waves, and transmission 
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and reflection coefficients are obtained by matching the field outside and inside the crystal on the 

crystal boundary.  

The DDT was applied to the photonic crystals in special case, when the incident direction 

is tuned to Bragg diffract light from the specific crystal planes. The light diffracted by this 

crystal planes dominates and approximated by a plane wave in the framework of DDT. The DDT 

theory was applied to model the photonic crystal experimental transmission spectra [70, 71], and 

it was shown that Applicability of DDT is restricted to systems with weak dielectric contrast 

[72]. 

At first glance the DDT seems to be a better theory then the kinematic theory, since it 

takes into account the coupling between the incident and diffracted waves. But the kinematic 

theory does not assume that total scattered light consist of a single plane wave, thus it provides a 

more complex description of the scattered light as distributed over all space directions. Also, the 

kinematic theory can be used for an arbitrary distribution of scattering particles, not just the ideal 

fully periodic crystals to which DDT theory is restricted. 

 

5.3 SINGLE SCATTERING APPROACH. KINEMATIC THEORY AND ITS 

EXTENSIONS. 

 

All existing theoretical methods which take into account multiple scattering effects, are not 

suitable for the analysis of finite, realistic, macroscopic non-ideal CCA. Exact methods require 

large amount of computational time, and only relatively small systems can be analyzed. Other 

methods require either periodicity or some simplification of the scattering process. We chose to 

utilize a single scattering method based on kinematic theory for several reasons. First, it can be 

applied to the macroscopic finite CCA characterized by arbitrary locations of spherical particles 

in a medium and arbitrary illuminating incident beam. Second, it allows calculating scattered 

intensities for all 3D directions. Third, the scattering results can be interpreted though an 

interplay of individual particle scattering and collective Bragg type interference.  
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Even when the system can be analyzed by other, more accurate multiple scattering 

method, application of the single scattering approach can be used to provide better understanding 

of physical processes and in particular the importance of multiple scattering by comparing with 

multiple scattering methods, and can be used as a benchmark and limiting case for more exact 

methods.   

The kinematic theory is based on two approximations: 

 1) Single-scattering approximation, where the total diffracted light consists of interference 

between incident plane wave scattered by all individual particles. This approach disregards 

multiple scattering. 

 2) Neglecting extinction of the incident wave - all particles in the system are illuminated by 

an incident wave field of constant amplitude.  

An obvious flaw in the standard kinematic theory (“KNM” theory) is the assumption of a 

constant electric field amplitude of incident light propagating through the CCA crystal. This 

results in an unrealistically large value of the diffracted intensity for geometrically large CCA’s. 

We modified the kinematic theory to take into account extinction by considering attenuation of 

incident wave, and call it the “extended kinematic” (“EXKNM”) theory. The incident plane 

wave, after entering the crystal, gradually decays while transferring the energy into the scattered 

light. 

This simple method is applicable for relatively low-contrast systems where multiple 

scattering effects are small. It represents the diffraction of light from a system of periodically 

spaced scatterers in terms of the interplay between the resonances of individual particles and 

Bragg type interference.  

A similar method based on KNM theory was previously used [73] to analyze light 

diffraction by a system of stacked together infinite slabs. The main difference between that 

method and ours is that we treat arbitrary shaped finite 3D systems and take into account 

attenuation of the incident light. 

In a recent paper [74] we applied our method to examine the differences in integrated 

intensities of light diffracted by different crystal planes of a CCA. We also applied the method to 

investigate the influence of stacking faults on the scattering. In this thesis we provide the details 

of the method, and test its validity. We examine the importance of multiple scattering by 
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constructing an effective 1D system consisting of many dielectric slabs and analyzing diffraction 

from the stack of (111) layers of an ideal fcc CCA. 

In Section 6.1 we briefly describe how to apply the kinematic method to calculate and 

interpret the scattering intensities from a finite perfectly ordered CCA. The extended kinematic 

theory is also presented. In Section 6.2 an effective 1D slab system was constructed and used to 

examine the importance of multiple scattering.  

Section 6.3 explores how the integrated intensity of specific Bragg peak derives from the 

contribution of several different factors. We discuss some applications of the method to finite 

CCA’s of different shapes and sizes. The dependence of diffracted intensities on the incident 

angle was analyzed near the Bragg diffraction maximum for several different crystal planes. We 

also studied the effect of the incident finite beam shape and crossectional profile on the CCA 

diffraction. Effective penetration depth for the incident light was calculated and compared for 

several incident directions, three CCA’s with different volume fraction were studied. 

In Chapter 7 we use single scattering methodology to analyze stacking faults in CCA’s.  
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Chapter 6. Numerical Simulations for the Diffraction by CCA 

Using Single Scattering theory. 

6.1 METHODS – KINEMATIC THEORY AND ITS EXTENSION. 

When light illuminates a collection of scattering particles the overall amplitude of scattered light 

at any point in space is simply the sum of contributions from individual particles. In a single 

scattering approximation, we ignore multiple scattering between the particles by assuming that 

each particle is excited by only the external incident field, but not by the secondary fields 

scattered by other particles. Assuming the external incident light wave to be a plane 

monochromatic wave, the total scattered amplitude scE
G

 at some distant point rG  in the far-field 

approximation is 

)exp()()()( ∑∑ Δ==
j

jjj
j

jsc kirFArErE ρ
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                     (6.1) 

where jE
G

is the amplitude of light at rG  scattered from individual particle j with coordinates jρ
G , 

and the summation is performed over all particles of the system. We can express every individual 

contribution as a product of the absolute value of the electric field amplitude of the incident 

propagating wave , a single sphere scattering form factor jA )(rFj
GG

and phase factor )exp( ki j Δρ
G

, 

where kΔ  is the difference between the wave vectors of the incident and scattered light. We 

assume our colloidal particles to be spheres of uniform dielectric constant embedded in a 

medium of another dielectric constant. We can calculate the form factor )(rFj
GG

exactly from Mie 

Theory for scattering of a plane wave by a spherical particle [56]. 

In standard kinematic (KNM) theory the amplitude of the incident propagating wave is 

constant along the propagation direction in a media, constAj = , and does not decay while 
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propagating through the crystal. This approximation assumes that the amplitude of the diffracted 

light is much smaller then that of the incident light.  

In our EXKNM approach we assume that the CCA medium can be represented as a stack 

of layers with the amplitude of the incident propagating wave constant along each layer, but 

gradually attenuating while propagating. We determine the internal propagating wave amplitude 

by subtracting from the initial incident light the amount of light diffracted. Specifically, we 

calculate the amplitude of the light which propagates forward from the condition that the 

intensity of light after n layers equals the intensity of incident light minus the intensity of light 

scattered by all previous n layers. We determine amplitude An+1 after layer n from the condition 
22

0
2

1 nn RAA −=+  where A0 is the amplitude of the incident wave before entering the CCA, and 

Rn is the effective amplitude of light diffracted by all layers from 1 through n.  We calculate Rn 

by calculating the integrated intensity of all light scattered by the first n layers, then determine Rn 

as the square root of this integrated intensity. We assume that the incident wave is completely 

attenuated with all energy transferred to the diffracted light when Rn exceeds  after layer 

n=N

0A

eff. The effective number of layers, Neff  determines the penetration depth available for the 

incident light. When this number is larger then the actual number of layers in CCA sample, then 

some of the light is transmitted through the CCA, otherwise all incident light decays inside the 

sample over the effective number of layers Neff. 

The calculation procedure assumes that the CCA is a finite crystal consisting of P layers. 

Unless specified otherwise, each layer has the shape of a parallelepiped and contains MxN 

spheres, where M and N are the number of spheres along each parallelepiped side. These spheres 

are periodically arranged in …ABCABC… layers as the (111) planes of an fcc crystal, although 

the method can be easily generalized for any possible arrangement of spherical particles.   

For a finite CCA consisting of a stack of ideal crystal layers having the same shape 

and size, we can write the coordinates of the CCA spheres as  

              bnamM p

GGGG
++=ρ  

where  and baG
G

are the layer lattice vectors and pM
G

is the vector specifying the location of layer 

p. Integers m and n define the locations of individual spheres inside the layer, and in case of 

layers shaped as an identical parallelepipeds MxN, these indices run through the set of integers 

m=1..M, n=1..N. 
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We calculate the total scattering amplitude by summing contributions from all P layers 

stacked together to form the CCA.  

∑
=

=
P

p
psc rErE

1

)()( )111( GGGG
                                 (6.2) 

Assuming that all spheres are identical and the amplitude of the incident wave is the 

same for all particles in each layer, the scattering contribution from the individual layer p we can 

write as: 

pA
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In this formula both sums can be easily performed analytically, making calculations very 

fast for the case of layers shaped as parallelograms. 

This computational procedure simulates diffraction from any stacking pattern of ideal 

(111) layers. In particular, it allows the study of how stacking faults in finite CCA’s effect 

diffraction efficiencies, and it can be easily generalized to investigate other disorder in the CCA. 

In Fig. 6-1 we show the scattering intensities for an incident plane light wave diffracted 

by a perfect colloidal crystal consisting of P=45 (111) layers with each layer containing 60x50 

spherical particles organized in a parallelogram plane layer. Here the stacking sequence of (111) 

planes is of type …ABCABC… corresponding to an fcc crystal.  

 

Incident light

(200)

(020)

(220)

(b)(a) Incident light (b)(a)

(200)

(020)

(220)
 

Figure 6-1 Spherical surface logarithmic scale color map (“scattering sphere”) on panel (a) shows the 

scattered light intensity from a crystalline colloidal array (CCA). The large red arrow indicates the direction of the 
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incident light. The crystal was rotated about the z-axis to achieve diffraction by the (220) planes: the corresponding 

diffraction spot is shown at the center of (a). Two other diffraction spots correspond to Bragg diffraction from the 

(020) and (200) crystal planes. The diameter of the colloidal spheres is 270 nm, the lattice constant L=805 nm, the 

wavelength of incident light is 367 nm. Panel (b) plots the reflection (Ewald) sphere in reciprocal space. Reciprocal 

lattice points are shown by the blue dots, and the reciprocal points marked by the magenta circles are located near 

the surface of the reflection sphere and indicate the positions of the Bragg diffraction spots. 

 

We simulated the diffraction of an incident plane wave (with direction shown by large 

magenta arrow in Fig. 6-1a of wavelength 367 nm by the crystal rotated such that it fulfills the 

Bragg condition for diffraction maximum from (200) planes, shown by the red spot in the middle 

of the scattering sphere. We define a Bragg angle as an incident glancing angle satisfying the 

Bragg condition. There are an infinite number of ways to orient the crystal such that the Bragg 

diffraction condition is satisfied for a particular crystal plane; all directions of incident light 

satisfying the Bragg condition occupy the surface of a cone whose axis is normal to the crystal 

planes. The diffracted intensity depends on the specific direction chosen along this Bragg cone 

surface, so one has to specify the exact orientation of the CCA relative the direction of incident 

light. In our calculations we assume the incident wave electric field is polarized perpendicular to 

the scattering plane, which contains the incident and Bragg scattering directions. 

We choose a CCA orientation relative to the incident light for this calculation via the 

following procedure. The direction of incident light occurs along the z coordinate axis. Initially 

we orient the CCA such that the z axis is parallel to the [111] direction and the x axis is parallel 

to one of the sides of (111) layer parallelogram. Then we perform two rotations of the CCA: 

First, one around the z axis such that the normal to a particular diffracting plane occurs in the (xz) 

plane. A second rotation is done along the y axis until the glancing angle between the directions 

of incident light and the normal to the crystal plane fulfill the Bragg condition. The two rotation 

angles for the Fig. 6-1 calculation are π/2 and 0.2546 radians, respectively. 

Some incident light directions along the (220) Bragg cone can also be diffracted by other 

crystal planes. For the specific CCA orientation in Fig. 6-1 367 nm incident light is Bragg 

diffracted simultaneously by the (220), (020) and (200) planes. The corresponding diffraction 

maxima are shown by the bright red spots and indicated by red arrows. This simultaneous 

diffraction by these crystal planes occurs only for this specific wavelength and direction of 

incident light.  
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A convenient way to determine the Bragg scattering directions is by using the Ewald 

sphere construction in reciprocal space (Fig. 6-1b). The yellow parallelepiped denotes the shape 

and orientation of the CCA crystal, while the blue dots are calculated points of reciprocal space 

labeled by their Miller indices. The grey cube indicates the cubic unit cell of the bcc reciprocal 

lattice. The length of the red arrow along the radius of the Ewald reflection sphere is equal to the 

wavevector of the incident light. The magenta reciprocal lattice points on the reflection sphere 

surface satisfy the Bragg diffraction condition. 

The scattering sphere in Fig. 6-1a shows the values of the scattered intensities. Each point 

of the surface denotes a specific 3D direction whose color represents the logarithm of light 

intensity scattered into this direction by the crystal. The intensity at each point of the scattering 

sphere was calculated for a sphere of radius r=1. 

We analyze the calculated CCA light scattering results and identify Bragg bright spots on 

the scattering sphere by plotting the scattering sphere together with the reflection Ewald sphere 

in reciprocal space. Thus, in Fig. 6-1 we would combine the plots (a) and (b) into a single plot, 

overlap the scattering and reflection sphere, and from the known positions of Bragg maxima in 

the reflection sphere identify the locations of bright spots in the scattering sphere. 

For a perfect or nearly perfect crystal, the diffraction pattern consists of discrete 

“diffraction spots” that arise from the Bragg diffraction conditions. Each Bragg diffraction spot 

corresponds to constructive interference of light scattered by all individual particles. A Bragg 

maximum corresponds to simultaneous fulfillment of the three Laue equations for three lattice 

vectors , aG b
G

, c , and any integer number q, m, n. 
G

qka π2=Δ⋅
G , mkb π2=Δ⋅

G
, nkc π2=Δ⋅
G       (6.4) 

However, when only one or two of these equations are satisfied, only some of the 

colloidal particles in the crystal scatter light in phase, resulting in partial constructive 

interference. For a finite crystal this “partial constructive interference” is responsible for the 

appearance of bright lines and circles on the scattering sphere in Fig. 6-1a.  

The CCA consists of stacked (111) crystal parallelograms layers, and each layer is 

represented by two 2D lattice vectors a′G  and b ′
G

 along the parallelogram layer (these two vectors 

are not 3D fcc primitive translational lattice vectors, since not every lattice translation can be 

formed using these vectors). When either condition qka π2=Δ⋅′
G or mkb π2=Δ⋅′

G
 is met, we 
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observe a bright circle on the surface of the scattering sphere as a result of partial constructive 

interference. When both of these conditions are simultaneously true, constructive interference 

occurs for every sphere from the same layer and results in 2D diffraction spots formed at the 

intersection of both lines. The identical (111) layers stacked together results in appearance of the 

“standard” 3D Bragg diffraction maximum. 

The maximum intensity at the center of each Bragg peak results from the condition that 

scattering from every particle constructively interferes. Thus the total amplitude in this direction 

is just the single scattering form factor (calculated from Mie theory), times the total number of 

all particles in the crystal. Although the intensity value divided by the single sphere scattering 

form factor of the peak maximum is the same at the center of each Bragg diffraction spot, the 

area and the shape of the spots differ, resulting in a different values for the total integrated 

intensity for every peak. 

For ideal periodic large crystals, the diffraction spots are very sharp peaks in specific 

Bragg directions, with very little light outside of these regions. We define the “integrated 

intensity of the diffraction from (nml) crystal planes” as the integrated intensity calculated over a 

solid angle large enough to contain the diffraction spot and then divided by the area of a single 

(111) layer.  

The “Intensity”, which refers to the square of the amplitude of the electric field at a point 

on the scattering sphere, is proportional to the electromagnetic energy irradiated into a specific 

direction.  

6.2 VALIDITY OF THE METHOD: COMPARISON WITH THE EXACT 

SOLUTION FOR A 1D SLAB SYSTEM. ROLE OF MULTIPLE SCATTERING.  

 

We tested the validity of our kinematic approach and the importance of multiple scattering by 

utilizing a 1D slab model and comparing the diffracted intensities calculated using kinematic 

theory with the exact results. First we modeled our 3D CCA set of (111) layers as a 1D array of 

slabs. It is generally accepted that the scattering efficiencies of light Bragg diffracted by (111) 

CCA planes can be modeled by scattering of light by 1D slabs [70]. To exactly determine the 
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light transmission and diffraction (the diffracted wave is simply a reflected wave in case of 1D 

slabs) in the 1D system we used the transfer matrix method (Appendix D). 

When the Bragg diffraction condition is approximately satisfied for the (111) layers of a 

weak contrast fcc CCA crystal we can model the diffraction by replacing each (111) CCA layer 

with two slabs of different dielectric constant. The first slab with width L1 and an effective 

refractive index neff marked as 1 in Fig. 6-2a represents the CCA particles layer depicted as a row 

of spheres, while the second “water” slab 2 has width L2 and represents a water layer of 

refractive index nw. The total width of both slabs equals the distance between (111) layers.  

We define our effective 1D slab system by considering the diffraction of light by a single 

CCA (111) plane. The angular distribution of the light scattered intensities by a single (111) 

plane results from its 2D diffraction pattern, which in turn results from the hexagonally ordered 

spheres. Most of the light is concentrated in the narrow range of angles near the 2D Bragg 

maxima. Since we are modeling the Bragg diffraction from CCA (111) planes, we are consider 

only the light specularly reflected from the (111) planes at the zero order 2D maximum.  It has 

previously been shown [75] that the scattering efficiency in the specular directions by a single 

plane of spherical particles can be approximated by the reflection from a single 1D slab.  

We assigned the 1D slab system parameters, such as widths and refractive indexes of the 

slabs, by adjusting them until the intensities of light back-diffracted by a single (111) crystal 

layer was equal to that of a single colloidal slab of the 1D slab system. Specifically, the 

scattering by a CCA layer was calculated using kinematic theory and compared with exact result 

calculated for a 1D slab. The refractive index nw of the water slab 2 was fixed to the value of the 

refractive index of bulk water, and the water slab width L2 was fixed from the condition that the 

L1+L2 was the same as the distance between CCA (111) planes. The best match for a case of 

normal incidence was obtained for the L1/L2 ratio of 89/102 nm. 
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Figure 6-2 (a) CCA colloidal particles of a single (111) fcc CCA layer and the corresponding two slabs of 

the modeled 1D slab system. Colloidal particles have a refractive index nc and are located in a water environment 

with a refractive index nw. The 1D slab system consists of a bilayer of slab 1 with refractive index neff and the slab 2 

with the refractive index of water. The total thickness of the two 1D slabs is the same as the distance between CCA 

(111) planes. (b) Integrated intensity of back-diffracted light by a single (111) crystal plane of 150x140 particles  

(blue solid curve) and by the 1D slab system (red dashed curve)  is shown as a function of the wavelength of 

normally incident light. (c) same as (b), but for the light incident at glancing angle of 30°. 

 

In Fig. 6-2b we plot the back-diffracted integrated intensity vs. wavelength of incident 

light of a single (111) layer of CCA (blue solid line) obtained in the KNM approximation, and by 

a corresponding slab of the effective 1D system (red dashed curve), obtained by an exact 

calculation. Incident light impinges normally on the (111) plane in Fig. 6-2b and at a 30° 

glancing angle of in Fig. 6-2c. The diffracted integrated intensity was obtained by integrating 

over the diffraction spot and ratioed to the integrated incident light intensity. The incident light 

energy flux is the intensity of the incident light multiplied by the area of the CCA layer. In the 

case of 1D slabs the normalized back-diffracted integrated intensity is simply the reflectance 

value.  

The CCA crystal parameters used in calculations are as follows: the diameter of colloidal 

particles is 120 nm, and they constitute a 10% volume fraction giving a lattice constant of 330.8 

nm.  The refractive index of the colloidal particles and the surrounding medium (water) are 

nc=1.6 and nw =1.33, respectively.  

At the Bragg direction of the exact reflection from the (111) plane all particles in this 

plane scatter coherently in phase for all wavelengths of the incident light wave. As a result, the 
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single sphere scattering efficiency dependence on the wavelength of light is the main factor 

contributing to the specific shape of the intensity curve in Fig. 6-2.  The maximum of this curve 

results from a maximum of single sphere scattering efficiency at a particular wavelength.  

Our calculated diffracted integrated intensities are proportional to the lateral size of the 

crystal layer and number of colloidal particles it contains. The width of the diffraction peak 

becomes narrower as the total number of colloidal particles in the crystal layer increase. 

In the case of normal incidence we varied only the width L1, and we were able to obtain a 

good fit between the two intensity curves. But this procedure would not work for angles of 

incidence other then normal. The dependence of the diffraction intensity vs. angle of incidence 

differs for a sphere compared to a 1D slab. The first dependence is determined by a single sphere 

Mie scattering amplitude dependence on the incident angle, while the later is determined by an 

interference of light scattered by a slab two plane boundaries. The single sphere scattering 

amplitude increases with the scattering angle much faster then the amplitude scattered from the 

1D slab. Thus, if we simply increase the incident angle, the single (111) plane would scatter 

much more efficiently (for the spheres diameter comparable with the wavelength) then the 1D 

slab constructed for the case of normal incidence.  

We use a different method to model the slabs scattering for light not normally incident. 

The increase in single sphere scattering efficiency at non-normal incidence we model by using 

1D colloidal slab with higher refractive index, then in the case of normal incidence. Thus, in the 

case of non-normal incidence we vary two parameters of the 1D slab system, the colloidal slab 

refractive index neff and width L1 until we obtain a good match between the 3D and 1D curves. 

For light incident at the glancing angle of α=30° the best fit value was neff=1.837. The 1D slabs 

width L1/L2 ratio was chosen by the fitting to be 78/113. 

For perpendicularly polarized light a single CCA layer of colloidal spheres scatters 10-

fold more light at α=30° incidence then at normal incidence (compare Fig. 6-2b and 6-2c). Thus 

as the incident glancing angle decreases, the dielectric contrast of the effective 1D slab system 

must increase.  
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Figure 6-3  Integrated diffracted intensity scattered by a 150x140x15 particles 3D CCA (blue curve which 

overlaps the red curve) and by 1D system (red and green curves) versus wavelength of incident light. Red dashed 

curve was calculated using 1D KNM theory, while the green dotted curve is the 1D exact solution. (a)  back-

diffracted for normal incidence, (b)  30° glancing angle of incidence.  

 

In Fig. 6-3 we compare the integrated intensity of light back-diffracted by a CCA of 15 

(111) layers, each consisting of 150x140 colloidal particles, calculated in KNM theory using Eq. 

(6.1) and including all CCA layers. Light is incident normal to the crystal surface in Fig. 6-3a, 

while Fig. 6-3b shows the result for a 30° glancing angle of incidence. The results obtained for 

3D CCA was compared with the results for the corresponding effective 1D slab system. We 

chose the range of wavelengths such as to analyze the spectral region around the 1st order Bragg 

diffraction maximum. 

The back-diffracted and transmitted integrated intensity for the 1D system were 

calculated by the 1D exact and the 1D KNM methods. In the 1D KNM method (Appendix C) we 

simply calculate the reflection amplitude  for a single 1D unit (consisting of two, colloidal and 

water, slabs)  of thickness d and then summed contributions from all N units cells of the multi-

slab system with the appropriate phase factor to obtain the total reflection amplitude 

1r
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        (6.5) 

 

The red dashed curve shows the KNM theory result for the 1D slab system, where 

attenuation of the incident light in the crystal is ignored. The 3D and 1D KNM calculations give 
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almost identical results; the blue solid and the red dashed curves overlap. Since the KNM results 

for 3D and 1D case are so close, in the following analysis we examine the importance of multiple 

scattering and compare KNM and EXKNM results by utilizing only the 1D slab system.  

The exact solution for diffraction from the 1D slab system calculated by using the 

transfer matrix method (see Appendix D) is shown in the Fig. 6-3 via the green dotted curve. By 

comparing the exact, KNM and EXKNM approximations we can examine the validity of 

kinematic theory and the relative importance of multiple scattering.  
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Figure 6-4 Reflectance versus wavelength of the incident light for a 1D slab system. Exact solution is 

plotted in the blue line, red dashed curve results from KNM theory with no attenuation of incident light, while the 

green dotted curve shows the EXKNM result. (a) normal incidence, 50 slabs, (b) 30° glancing angle for a system 

containing 30 slabs. 

 

Fig. 6-4a shows the diffracted intensities for light normally incident on 1D slab system 

consisting of 50 slabs, while Fig. 6-4b shows the intensities for 30 slabs for a glancing incidence 

angle of 30°. The blue curve is the exact solution for the integrated intensity of the reflected 

light. The red dashed curve and the green dotted curve are the results of the KNM and EXKNM 

approximations respectively. KNM gives a reflectance greater then 1, because the intensity of 

incident light is not attenuated. EXKNM theory generates a much more accurate result.  

The diffraction in Fig. 6-3b and 6-4b is much larger then in Fig. 6-3a and 6-4a, because 

the single spheres here scatter more efficiently for shorter wavelengths and for a larger scattering 

angle, resulting in more efficient Bragg diffraction. The increase in single scattering efficiency 

results in creation of stronger secondary rescattered waves and stronger multiple scattering. As a 
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result, the width of the diffraction peak, modeled by exact methods, becomes wider and the 

kinematic theory becomes less accurate.  
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Figure 6-5 Diffracted intensities vs wavelength is plotted for 1D slab system consisting of 180 slabs, thick 

enough such that there is no transmitted light at the Bragg wavelength. Blue curve shows the exact result, while the 

red curve is calculated in accordance with EXKNM model. (a) normal incidence, (b) 30° glancing incidence angle. 

 

Fig. 6-5 shows the diffracted intensities from a larger 1D slab system consisting of 180 

slabs. The exact result is plotted in blue, while the EXKNM result is plotted in red.  

KNM works well when the system is thin with a low dielectric contrast, where the total 

diffraction is significantly less then 1.  Thus, good agreement between the exact and kinematic 

results was obtained in Fig. 6-4a, especially in the wings of the main Bragg diffraction peak, 

where the reflected intensity is small.  

EXKNM results in a value of the Bragg peak width 2-fold less then the exact result (Fig. 

6-4b, 6-5a). In Fig. 6-5b, the Bragg peak widths are similar for both the exact and EXKNM 

calculations. The center of the exact result peak is slightly blueshifted relative to the EXKNM 

result. 
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Figure 6-6 Wavelength dependence of diffracted intensities for disordered 1D slab system consisting of 

180 slabs. Blue solid curve is the exact result. Red dotted curve is the EXKNM result. (a) single configuration of the 

disordered system, (b) diffracted intensities averaged over 80 random configurations. In (b) the exact result for a 

periodic system (dotted green curve) is compared to the exact and EXKNM results for the average over a disordered 

system (blue solid and red dashed lines). 

 

Disorder in the 1D slab system broadens the Bragg peaks and increases the intensity of 

diffuse scattering. The total light scattering and the Bragg diffraction becomes more diffuse, the 

incident wave is less attenuated. We compare the exact and EXKNM calculations for a 

disordered 1D slab system (Fig. 6-6) and normally incident light. Disorder is included in both the 

high and low refractive index slabs into by assigning slabs thickness uniform random variations 

of 20% magnitude. We only varied the thickness of slabs comprising the system, but the 

refractive index of the slabs was kept constant at the value employed for the perfectly periodic 

system of Fig. 6-5. 

Fig. 6-6a shows the diffracted intensities of a single configuration of a disordered 1D slab 

system. We see that the Bragg peak subdivides into a series of narrow peaks which are spread 

over a wider spectral region. Smaller features in the wings became more intense.  

As a simple model of disorder we simply calculated a random ensemble of many 

configurations of 1D slab systems with random width slabs and averaged the diffracted 

intensities over this ensemble. In Fig. 6-6b we averaged the diffracted intensity over 80 random 

configurations and plotted the exact result in blue and the EXKNM result in red. As a reference, 

the exact result for a non-disordered periodic system is plotted in green.  Averaging the disorder 

widens the Bragg peak and decreases its maximum value, the wings “smooth out”. The exact and 
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EXKNM results are very similar. A more realistic model of a disorder in a system of many slabs 

would also include imperfection in the individual slabs, i.e., the boundaries of a slab would no 

longer be shaped as parallel planes resulting in thickness fluctuations within the slab. 

6.3 LIGHT INTENSITIES SCATTERED BY DIFFERENT CRYSTAL 

PLANES OF CCA – WHICH FACTORS ARE IMPORTANT. 

Perfect CCA’s with a weak dielectric contrast diffract incident monochromatic plane waves into 

very small spots on the scattering sphere. In kinematic theory, the intensity of light diffracted 

exactly in the Bragg directions is simply the result of constructive interference of scattering 

contributions from all individual particles. The maximum total amplitude is thus proportional to 

the product of the single sphere scattering form factor and the total number of scattering particles 

in the crystal. The useful experimental quantity is the integrated intensity obtained by integrating 

over the diffraction spot on the scattering sphere.  

A recent experimental study [74] examined the integrated intensities diffracted by 

different CCA planes for the same frequency of incident light (the crystal was rotated to achieve 

the Bragg condition for the different crystal planes). The intensities significantly differed for 

diffraction from different crystal planes. To explain this difference and analyze which factors 

affect the value of the integrated intensity, we calculate here the integrated intensities of light 

scattered by a CCA with the parameters similar to that of this study.  

Our numerical model consist of an ideal fcc crystal consisting of several stacked (111) 

layers of a parallelogram shape and dimensions MxN. Unless specified otherwise, each colloidal 

particle has a diameter of 270 nm and we set the CCA fcc lattice constant at 805 nm, 

corresponding to a 10% particle volume fraction. We assume the refractive index of colloidal 

particles and the water as 1.6 and 1.33 correspondingly. The wavelength of incident light in the 

medium (water) was 337 nm. 

We examined a thin CCA with a small dielectric contrast between colloidal particles and 

the surrounding media. We analyzed the integrated intensities diffracted by the (111), (222), 

(200), (220), and (311) planes. The monochromatic incident wave was oriented to meet the 

Bragg condition.  
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The factors affecting the integrated intensity over a diffraction spot include the magnitude 

of the single scattering form factor, the shape and the size of the diffraction spot, the effective 

number of layers, the shape and cross-sectional intensity profile of the incident light  

Another important factor stems from the fact that often the size of CCA used in 

experiments is larger then the diameter of the incident beam. Upon changing the angle of 

incidence, we change the area of the CCA illuminated by the incident light and consequently 

change the number of colloidal particles participating in the scattering. This area is inversely 

proportional to the cosine of the angle β between the [111] and the incident direction. In what 

follows we assume for simplicity that the diameter of the incident beam is larger then the CCA 

size, although the opposite case can be easily treated by taking into account the mentioned above 

dependence from the cosine of the angle between the [111] and incident direction. 

 

 

6.3.1 Single scattering form factor.  

The single scattering contribution (the form factor of kinematic theory) of the colloidal particles 

depends on the scattering angle and the polarization of the incident light and thus will be 

different for diffraction from different crystal planes which have different Bragg diffraction 

angles. 
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Figure 6-7 Spherical sphere color map shows the Mie scattering efficiency from a single spherical particle. 

We show the Bragg diffraction directions for several crystal planes, labeled by the Miller indices of corresponding 

crystal planes.  Incident wavelength is 337 nm and sphere diameter is 270 nm. 

 

We plot the 3D Mie scattering diagram (Fig. 6-7) for the light scattered by a single sphere 

and indicate the scattering directions for Bragg diffraction of specific crystal planes, for a light 

polarized perpendicular to the incident plane. The crystal was rotated about the z-axis to achieve 

diffraction by the different crystal planes. Different colors on the scattering sphere surface (Fig. 

6-7) represent different scattered intensities as labeled in the color map (not the logarithmic 

scale). The ratios of diffracted intensities scattered by a single sphere at the Bragg directions for 

(111), (222), (200), (220) and (311) plane differ by relative proportions 1, 0.02, 0.75, 0.18 and 

0.04 respectively. 

This Mie scattering diagram shows that much more light is scattered in the forward 

direction then in the backward direction. This asymmetry becomes stronger as the ratio of the 

particle diameter to the wavelength of light increases. Exact formulas for Mie single sphere 

scattering in the far field approximation are given in Appendix E. 
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Figure 6-8 (a) intensity of the backscattered light from a single sphere is plotted vs wavelength (in water) 

of an incident light for three different sphere diameters: 120, 150 and 200 nm. The sphere refractive index is 1.6, the 

water refractive index is 1.33. (b) extinction efficiency is plotted for the same three spheres. 

 

The distribution of intensities in the Mie scattering diagram at a fixed wavelength of the 

incident light is a function of the sphere diameter and the ratio between the refractive indices of 

spheres and the surrounding media. As a result, the scattering intensity at a specific direction 

depends on the sphere diameter and the dielectric contrast. In Fig. 6-8a we plot the dependence 

on the wavelength of incident light of the scattered intensity in the direction of exact 

backscattering for three different sphere diameters: 120, 150 and 200 nm.  

The wavelength of the incident light in Fig. 6-8 is defined as a wavelength in water with 

refractive index 1.33. The green color light of 510 nm in vacuum corresponds approximately to a 

wavelength of 350 nm in water. At this wavelength a sphere with diameter 150 nm scatters 

backward most efficiently, approximately twice more efficiently then both 120 and 200 nm 

spheres. At approximately 310 nm the scattering intensity from the 200 nm sphere reaches a 

minimum, and is almost an order of magnitude smaller then the intensity from the 150 nm 

sphere. 

Although the backward intensity oscillates as a function of wavelength in Fig. 6-8a, the 

extinction efficiency is monotonically increases with the decrease of the wavelength (Fig. 6-8b). 

The extinction efficiency (defined in in Appendix E) shows how much light is removed from the 

incident beam as a result of scattering in all 3D directions. The total amount of light scattered by 

the sphere is larger for a larger sphere, and increases with the decrease of the wavelength. But as 
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a result of interference effects, the intensity in a specific direction doesn’t follow this monotonic 

trend observed for the extinction efficiency. 

6.3.2 Shape of the diffraction spot. 

Given an ideal crystal illuminated by a plane wave that is larger in area then the crystal, the 

single scattering theory predict that the total scattered light intensity at the exact Bragg direction 

is just the sum of intensities originating from all particles of the crystal, scattering perfectly in 

phase. But the integrated intensity taken over the entire Bragg diffraction spot on the scattering 

sphere depends on the area and shape of the diffraction spot and the distribution of intensity 

inside the spot. The shape and distribution of light intensities inside a diffraction spot are 

strongly dependent on the relative orientation of the crystal in space with respect to the incident 

and scattering light directions.  

In this section we are going to study the dependence of the shape and area of a diffraction 

spot from the crystal orientation by utilizing KNM theory, where the simple analytical 

expression for the amplitude of scattered light can be derived. This understanding can be applied 

to the more realistic EXKNM approach, by assuming that the thickness of a finite CCA is 

determined by the effective number of layers calculated in EXKNM. We assume that the size of 

the CCA is smaller then the diameter of the incident beam. We assume that the incident beam is 

a plane wave, uniformly illuminating entire of the CCA surface at some glancing angle. In this 

situation, the shape and size of the Bragg diffraction spot is defined by the size and shape of the 

CCA. The results here are not relevant for experimental observations, since the size of CCA is 

always larger then the incident beam, in which case the shape and the size of the diffraction spot 

is determined by only the part of the CCA that is illuminated. Nevertheless, the study of the 

diffraction by a CCA smaller than the beam is important since it provides an understanding of 

how the finite size of the scattering volume of a CCA affects its diffraction properties. Another 

possible utility is the study of the "mosaic" crystals, which consist of many small crystals 

organized into a large polycrystalline sample. 

The diffraction of an electromagnetic plane wave by M spheres along a 1D periodic array 

can be described by the interference function 
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of this function is 2M , and the width of the principal maximum is proportional to λ/M: thus for 

large M the integrated intensity is approximately proportional to M. 

For a CCA shaped as a parallelepiped and having the dimensions MxNxP along the lattice 

vectors , aG b
G

 and c , the angular dependence of intensities is proportional to the Laue 

interference function  
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and thus depends on the angles between the vector kΔ  and crystal lattice vectors , aG b
G

 and cG .  

From the form of the interference function it is easy to define a “diffraction spot”: an exact 

Bragg direction is defined as the center of a diffraction spot and corresponds to the maximum of 

this function, which satisfies the Laue conditions (6.4). The first minimum of the interference 

function near the Bragg maximum defines the edges of the diffraction spot and can be easily 

obtained from the interference function. 

If we plot the Laue interference function in reciprocal space, the volume around a 

primary maximum is bounded by the first minimum of the interference function, and all 

corresponding values of kΔ  inside this volume occupy a parallelepiped in reciprocal space with 

surface faces perpendicular to the crystal lattice vectors with dimensions proportional to λ/M, 

λ/N, λ/P. Thus the size of the reciprocal parallelepiped is proportional to the wavelength of light 

and inversely proportional to the size of the real crystal. We can determine the range of solid 

angles forming the diffraction spot by plotting the Ewald reflection sphere and the reciprocal 

parallelepiped having its center at the reciprocal lattice point location. The diffraction spot area is 

the intersection of the sphere of reflection with the reciprocal parallelepiped.  

In our calculations the model of the CCA is comprised of stacks of parallelograms made 

out of (111) crystal planes, stacked according to the …ABCABC… pattern. All crystal layers of 

the same type are stacked exactly as one on a top of another, but the layers of different types are 

shifted relative to each other in a direction parallel within the (111) plane. Thus, this CCA is not 

aligned along primitive lattice vectors of FCC crystal, and its diffraction intensity is not 

represented by the Laue interference function (6.5). This CCA can be represented as consisting 

of three parts, each part consists of the layers of only the same type either A, or B, or C and has a 

shape of a parallelepiped and can be represented by the Laue interference function. The 
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scattering amplitude of light diffracted by the whole CCA can be represented as a sum of these 

three partial amplitudes resulting from each part and taken into account with the correct phase 

difference. Assuming that there is the same number of A, B and C layers, the interference 

function for the whole CCA can be represented as Laue interference function of one part times 

the sum of three phase factors. These phase factors do not depend on the size of the crystal. Thus 

the Bragg spot for the stacked CCA is the result of interference of three contributions, each 

represented by a reciprocal parallelepiped still approximately inversely proportional to the size of 

the CCA. 

 

 

(200)(111) (222)

(311)(220) (200) EXKNM, Neff=12

(200)(111) (222)

(311)(220) (200) EXKNM, Neff=12

 
 
Figure 6-9 Small section of the scattering sphere around the Bragg maxima for the (111), (222), (200), 

(311) and (220) crystal planes. The color of the plot represents the logarithm of the light intensity. The number of 

particles in the crystal is 150x140x45 and the wavelength of incident light is 367 nm. All but the bottom right figure 

was calculated using KNM theory. The bottom right figure was calculated by using EXKNM theory.  
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Figure 6-10 The shape and size of diffraction spots are determined by the intersection of a specific 

reciprocal lattice parallelepiped with the sphere of reflection. On the left we schematically plot individual reciprocal 

parallelepiped. Red arrows shows the approximate direction of the Bragg diffracted light relative to the specific 

CCA orientation, indicated at the figure. 

 

In Fig. 6-9 we plot the small area of the scattering sphere near the Bragg diffraction 

maxima of the (111), (222), (200), (311) and (220) planes. The CCA parallelepiped consists of 

45 (111) hexagonal layers of 160x150 spheres. To obtain Bragg diffraction from specific planes 

we rotate the CCA to the relevant Bragg diffraction condition and calculate the intensity around 

the diffraction spot. The diffraction spot occurs at intersection of three bright lines. For example, 

the long and narrow shape of the Bragg spot from (220) planes occurs as a result of two narrow 

bright lines intersecting at a small angle. All plots except the bottom right plot of Fig. 6-9 are 

obtained in the KNM approximation, and illustrate how the calculation of diffractions intensities 

using the Laue interference function (6.5) results in specific shape and size of the diffraction spot 

for different crystal planes.  

More realistic EXKNM calculations would result in a different diffraction pattern: we 

study this pattern by comparing the diffraction spot obtained in KNM and EXKNM 

approximations. The bottom right panel of Fig. 6-9 shows an area of the scattering sphere near 

the (200) Bragg maximum calculated using the EXKNM approximation. In the EXKNM 
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approximation the amplitude of the propagating wave diminishes as it moves through the crystal, 

and for the case shown in Fig. 6-9 it decays to zero after Neff =12 layers.  

Since only 12 layers participate in the scattering and the incident propagating light decays 

from layer to layer, the spacing between the dark and bright interference lines becomes larger 

while the contrast between them “smooth out” compared to the KNM case. 

The shape and size of a diffraction spot is obtained by analyzing the intersection of the 

reflection sphere with the reciprocal parallelepiped. In Fig. 6-10 we plot the reflection sphere and 

the reciprocal parallelepipeds for all crystal planes under consideration and indicate by the 

arrows the orientation of the scattering angle relative to the [111] direction (indicated in the 

diagram as perpendicular to the CCA parallelepiped). 

The typical CCA used in experiments typically has the shape of a rectangular thin film of 

a small number P of rather wide MxN layers, where M =N >> P. The corresponding reciprocal 

space parallelepiped is a long, narrow parallelepiped much longer in the [111] then the two other 

directions. Intersection of such a cylindrically shaped narrow parallelepiped with the reflection 

sphere for angles α  not very close to π/2 is approximately proportional to )cos(/1 α , where α  is 

the angle between the diffracted light and the [111] directions. 

Another geometric interpretation of a Bragg diffraction spot shape and size follows from 

the understanding of Bragg spot as an intersection of three bright lines (see, for example, Fig. 6-

9). These lines are the result of the CCA finite size and specific shape, and each bright line 

represents the principal maximum of one of the three terms of the Laue interference function 

(6.5). In the case depicted in Fig. 6-9 two lines occurs as a result of the 2D diffraction from a 

single (111) plane shaped as a parallelogram MxN. The third line arises as a result of stacking 

together many (P) identical (111) layers. The width of each line scales inversely proportionally 

with the corresponding number of particles M, N and P. By increasing both M and N we decrease 

the widths of two of the bright lines comprising the Bragg spot.  

 
Table 1. Integrated intensity W for the light diffracted from different crystal planes of CCA with 

dimensions 160x150x45 and 1800x1800x45 calculated in KNM theory. The single sphere scattering factor F is 

normalized relative to the value obtained for the [111] direction. Neff is the EXKNM effective number of layers, 

obtained for a CCA of 1800x1800x100. 
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 160x150x45 (KNM) 1800x1800x45 (KNM) (EXKNM) 

Crystal planes F/ F111 W W/F cos(α)*
W/F 

W W/F cos(α)*
W/F 

Neff 

(111) 1 37.21 24.43 9.65 44.81 29.43 11.62 6 
(222) 0.02 0.383 13.99 11.05 0.407 14.87 11.74 97 
(200) 0.75 22.21 19.48 9.03 28.42 24.93 11.55 12 
(220) 0.18 9.085 32.23 2.74 33.95 120.6 10.27 10 
(311) 0.04 1.380 23.55 7.9 1.994 34.05 11.43 48 

  

 

The calculated values of the integrated intensity W for different crystal planes of a CCA 

with dimensions 160x150x45 and 1800x1800x45 was calculated using KNM theory for the same 

367 nm wavelength of incident light (Table I). The quantity describing the geometrical shape and 

size of the diffraction spot in the KNM approximation is the intensity integrated over the 

diffraction spot and divided by single scattering efficiency F at the Bragg direction. We report 

this value as the W/F in Table I. Larger areas of diffraction spots results in the larger W/F values. 

The shape and area of the diffraction spots can be understood by analyzing an intersection of 

reflection sphere and reciprocal parallelepiped. For the wide and thin CCA with dimensions 

1800x1800x45 the values of cos(α )*W/F are close to each other, giving a simple formula for the 

scattering efficiency at specific Bragg directions. For the smaller CCA with dimensions 

160x150x45 the intersection of the reciprocal parallelepiped and the reflection sphere has a 

complicated shape and area of the diffraction spot cannot be approximated by the simple relation 

cos(α )*W/F. 

The practical utility of the area of the diffraction spot is that together with the single 

scattering form factor, it determines the scattering efficiency in the direction of Bragg diffraction 

from specific crystal planes. When a CCA is thin and some of the incident light is transmitted, 

then the amount of diffracted light is proportional to the diffraction spot area. For a thicker 

CCA’s, when all incident light is diffracted and nothing is transmitted, then the scattering 

efficiency determine the effective number of layers after which the incident light completely 

decays. We have shown in this section, that when the CCA dimensions satisfy M,N>>P and the 

diameter of the incident beam is larger then the CCA size, then the scattering efficiency is simply 

proportional to the )cos(/ αF  When the CCA is larger then the diameter of the incident beam, 

then the scattering efficiency is proportional to the ( ))cos()cos( βαF , where α is the angle 
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between the [111] and scattering Bragg direction, β is the angle between the [111] and incident 

direction. 

6.3.3 Effective number of layers. 

In order to determine the effect of finite size and geometry on the diffraction we utilize the 

EXKNM theory. In Table I we report the effective number of layers involved in the diffraction 

Neff, calculated using EXKNM for a CCA with dimensions 1800x1800x100. We use this large 

number of layers P=100  to ensure that the incident light completely decays inside the crystal at 

the chosen Bragg direction. This number of layers Neff effectively determines the penetration 

depth available for the incident light and depends on the scattering efficiency of the CCA at the 

specific direction. The larger is the scattering efficiency W, the smaller is the penetration depth 

Neff. 

 
Table 2. EXKNM results were obtained for three different diameters D of colloidal particles organized in 

the CCA with dimensions 400x400x60 with lattice constant 380 nm. Effective number of layers Neff was calculated 

for the light incident normally to the specific set of crystal planes. The single sphere scattering factor F is 

normalized relative to the value obtained for the [111] direction. 

400x400x60, 
L=380 nm 

D=100 nm D=150 nm D=200 nm 

crystal 
planes 

λ(nm)= 
2dnml 

F N_eff F N_eff F N_eff 

(111) 438.79 0.0016 78 0.0108 29 0.0221 20 
(222) 219.39 0.0221 85 0.0155 102 0.1401 33 
(200) 380 0.0033 43 0.0174 18 0.0176 18 
(220) 268.70 0.0146 59 0.0121 66 0.0590 28 
(311) 229.15 0.0213 72 0.0060 145 0.1522 26 
  

 

We calculated Neff for the three different CCA’s comprised of the colloidal particles of 

different diameters. The 400x400x60 dimensions and lattice constant 380 nm were used for all 

CCA’s (Table II). The direction of incident light was tuned to be normal to the specific set of 

crystal planes, and the wavelength of light was chosen to satisfy the Bragg condition for these 

planes. The main factor responsible for the determined value of Neff is the single scattering 

efficiency F obtained from the Mie theory for spheres. For diffraction from the (111) planes the 
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Table II single scattering efficiency increases with the size of the particles decreasing the 

penetration depth of the incident light, while in case of diffraction from (220) and (311) planes in 

Table II the F first decrease then increase with the increase of the D.  

Another factor affecting the diffraction efficiency and the value of Neff is the area of the 

diffraction spot, which is proportional to the wavelength of the diffracted light. In Table II, the 

value of Neff=20 is smaller for the light back-diffracted by (111) planes made of spheres with 

D=200 nm, compared to the value of Neff=85 in the case of diffraction by (222) planes made of 

spheres of D=100 nm, although the single scattering factor F is the same in both cases. But in the 

later case of diffraction by (222) planes the incident light has a smaller wavelength, therefore, 

smaller area of the diffraction spot and thus smaller value of the integrated intensity over the 

(222) diffraction spot, resulting in larger Neff.  

6.3.4 Dependence on crystal geometry. 

So far in our presentation we have assumed that a CCA is a ...ABCABC... stack of (111) 

identical layers shaped as parallelepipeds and the incident plane wave uniformly illuminates the 

whole crystal. In this case the finite crystal geometry acts as a source of scattered light restricted 

by the aperture of CCA size, and the final scattering distribution of light is the combined effect 

of light diffraction on this solid aperture and coherent interferences of light coming from all 

colloidal particles regularly distributed inside the CCA. If we change the shape of the CCA, we 

would change the shape of the aperture and the light scattering pattern. 

 

(a) (b) (c)(a) (b) (c)
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Figure 6-11 Small area of the scattering sphere around the backscattering direction is plotted using 

logarithmic scale for a CCA consisting of 21 (111) layers. (a) represents intensity distribution for a light diffracted 

by a CCA with (111) layers shaped as a 29x29 parallelograms, while (b) and (c) show the light distribution for (111) 

layers shaped as a circles.  (c) was calculated for a Gaussian distribution of incident light, while (a) and (b) figures 

were calculated for a incident plane wave of constant amplitude. 

 

In Fig. 6-11 470 nm light is normally incident to a CCA surface. We plot part of the 2D 

projection of the scattering sphere (with radius equal to one). The center of the picture 

corresponds to the direction of exact backscattering. 

Light intensities diffracted by two CCA’s were compared. In Fig. 6-11a each CCA (111) 

layer is a parallelogram of 29x29 spheres organized in hexagonal array. Diffraction from a CCA 

with (111) layers shaped as a circles is calculated in Fig. 6-11b and Fig. 6-11c. Each circular 

layer contains 823 colloidal particles. In (a) and (b) figures the incident light is a plane wave of 

constant amplitude, while for the figure (c) the incident beam crossectional profile has a 

Gaussian intensity distribution ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

32
exp)( 2

2

D
rrf , where r is the distance from the center of 

the CCA layer, and D is the layer diameter. 

When a single layer shaped as a parallelepiped diffracts a constant amplitude plane wave 

the diffraction pattern on the scattering sphere can be described by the Laue interference function 
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 and consists of series of primary and subsidiary maxima, 

which are visible in the left figure as straight bright lines. The textbook example of the 

diffraction of a plane wave going through a parallelepiped hole reveals a similar pattern of 

straight bright lines (fringes) parallel to the edges of the parallelogram. Continuing the analogy, 

the angular width of the main diffraction maximum of the CCA layer is approximately D
λ , 

where  is the length along one of the dimensions of the parallelogram. The angular 

width of the light after transmitting through the hole is the same value. When we stack together 

several of the layers, another set of lines in the shape of the rings appear in Fig. 6-11a, visible as 

circular dark lines. The width and the spacing of these rings depend on the total number of 

layers. The value 

aMD ⋅=

D
λ  for the width of the Bragg spot is the same as a width of the reciprocal 

parallelepiped. 
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A CCA layer of circular shape results in the set of circular fringes in the diffraction 

pattern in Fig. 6-12b, similar to diffraction from a circular hole. Both Fig. 6-11a  and Fig. 6-11b 

contain large dark rings as a result of multi-layer structure of  the CCA.  

Because of the Gaussian distribution profile of the incident beam in Fig. 6-11c the CCA 

acts as a “soft” aperture as the incident light gradually decreases in intensity toward the edges of 

the aperture. This tends to smooth out the whole diffraction picture and suppress the sharp 

variations of the diffracted light resulting from the sharp CCA boundaries. Notice that the larger 

rings originating from the multi-layer structure are still visible in Fig. 6-11c, but their intensity is 

much smaller due to the fact that there is very little scattered light in the dark regions beyond the 

bright 2D diffraction spots. The complex scattering pattern of diffracted light as the intersection 

of a large number of bright and dark lines forming subsidiary maxima and minima at their points 

of intersection is the result of the boundaries of the illuminated finite crystal: these lines are 

partially suppressed when the intensity of incident light is decreasing toward the CCA 

boundaries.  

6.4 CONCLUSION. 

In this chapter we used the single scattering approach to investigate light diffraction by weak 

dielectric contrast CCA’s, consisting of a stack of (111) crystal layers. Although this method 

does not take into account multiple scattering effects, it can be used to analyze the 

macroscopically large CCA’s consisting of many particles. The kinematic approach provides 

clear treatment of the effect of CCA finite size and specific shape on its diffraction properties. 

Another advantage of the method is its ability to treat arbitrary shapes of the incident light beam.  

We extended the standard kinematic theory by including the attenuation of the incident 

light intensity while propagating through the crystal. This extension allows to calculate the 

effective depth of penetration of the incident light inside the CCA and is important in 

understanding the diffraction properties of realistic systems. The effective penetration depth was 

calculated and explained for several crystal planes of several CCA’s. 

We tested the impact of multiple scattering by comparing a results obtained by both 

kinematic methods with exact solutions for a 1D slab system. We suggested a method for 
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constructing an effective 1D system of dielectric slabs to model the diffraction from a (111) 

planes of a 3D CCA. We showed that for low contrast CCA’s the diffracted intensities calculated 

by a EXKNM are close to the exact result obtained for an effective 1D slab system. Although 

modeling of 3D CCA by an effective 1D system is too simplistic, and does not account for all 

multiple scattering inside CCA, this model works reasonably well for analyzing the diffraction of 

(111) planes and provides a good benchmark of the validity of kinematic theories. 

Kinematic methods can be used to study the large varieties of realistic experimental 

systems. Finite CCA’s with the arbitrary size and shape and arbitrary distribution of colloidal 

particles inside the CCA can be easily incorporated intro the numerical model.  

As the first step toward the study of arbitrary disordered CCA’s, we focused in this 

chapter on the numerical study of the finite CCA’s with perfect crystal structure. We studied the 

effects of the CCA finite size and shape on its diffraction properties. The different factors 

affecting the diffraction efficiencies were studied, including the single scattering form factor, the 

area and the shape of the diffraction spot, the shape and the intensity distribution in the incident 

light beam. 

We showed that for the experimentally relevant CCA configuration of M, N>>P that the 

area of the diffraction spot and thus the scattering efficiency is proportional to the )cos(/1 α , 

where α is the angle between the [111] and scattering Bragg direction. We have also studied how 

deep the incident light penetrates into the CCA depending on the CCA shape and size, direction 

of the incident light and the diameter of the colloidal particles.  
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Chapter 7. Effect of stacking faults on diffraction by CCA, 

kinematic theory approach. 

 
 

7.1 STACKING FAULTS IN CCA’S. 

 

Stacking fault defects are probably the most common type of defects in CCA’s manufactured by 

self-organization methods [32]. Most often fcc CCA’s consist of a stack of (111) crystal layers 

characterized by an ABCABC.. stacking sequence. When this ideal crystal stacking order is 

destroyed, i.e. after C the next layer becomes B instead of A, we have a stacking fault at position 

C. Thermodynamics studies showed, that free energy differences between these two 

configurations are very small, resulting in a high possibility of stacking fault occurrences [77]. A 

stacking fault changes a (111) layer stacking order from ABCABC… (ABC)  to ACBACB… 

(ACB), and there are only these two possible stacking sequences for a fcc crystal stacked from 

(111) layers. An ACB type crystal can be obtained from ABC type by rotation around [111] axis 

by 60° and the two sections on the opposite sides of the fault are referred to as twins. 

The effect of stacking faults on the diffraction by CCA is to broaden the stop bands while 

at the same time reducing the peak diffracted intensities. The effect of stacking faults is much 

weaker in the case of diffraction by (111) planes compared to other crystal planes [32, 78]. The 

first stop band of (111) planes remains practically unaffected by the stacking faults, while the 

  137



higher order stop bands experience a considerable distortion [78]. In general, stacking faults, as 

the other types of disorder, affect more strongly the higher energy band gaps. 

Kinematic theory has been applied to study X-ray diffraction by atomic crystals with 

stacking faults [79-81]. We will utilize a similar kinematic approach and derive the expressions 

for intensities diffracted by CCA and study the effect of stacking faults on the diffraction by 

different crystal planes. Here we investigate the effect of the number of stacking faults and their 

location inside CCA on diffracted intensities from several crystal planes. 

Because we have defined the stacking fault as a change in stacking order of (111) planes 

but the distance between these planes has not changed, there is no stacking faults effect on 

diffraction efficiencies from (111) planes in standard kinematic (KNM) theory. Stacking faults 

may have considerable effects on intensity of scattering from other crystal planes, since the 

stacking faults in the [111] direction alter the periodic arraignment of crystal planes along 

directions other than [111]. 

In extended kinematic theory (EXKNM) the stacking faults can affect the diffraction 

efficiencies from the (111) planes through the mechanism of coupling with light Bragg diffracted 

from other crystal planes. When the Bragg condition is satisfied for other crystal planes in 

addition to (111) planes, the incident wave attenuates faster by diffracting in several 

simultaneous Bragg directions. This effect explains the results of reference [78], when the 

transmission spectrum calculated for the normal incidence was practically unaffected by stacking 

faults in the spectral range near the first stop band, but was strongly affected at the frequencies 

corresponding to higher stop bands. Since near the (111) first stop band there are no other planes 

satisfying the Bragg condition, the transmission spectra is then dominated by the diffraction from 

(111) planes and is unaffected by stacking faults. Near the second stop band, planes other then 

(111) start to diffract, resulting in a transmission spectrum affected by stacking faults.  

 

 

  138



7.2 GENERAL SOLUTION FOR DIFFRACTION INTENSITIES AT BRAGG 

DIRECTIONS FOR A CCA WITH STACKING FAULTS. 

 

We represent a CCA having stacking faults as a combination of several crystal parts stacked on 

top of each other (Fig. 7-1a). Each part is an ideal crystal of either ABC or ACB type, and the 

change from one type to another occurs at the specific stacking fault in a (111) plane. The total 

diffraction amplitude R
G

 scattered from a whole CCA is the interference of scattered 

contributions from all these parts: 
CBAABC RRR
GGG

+=          (7.1) 

where ABCR
G

  ( CBAR
G

) is the contribution from all parts of ABC (CBA) type. 

Note: Our definition of a stacking fault (as a change from ABC to CBA type) is 

completely general, and can be applied to any stacking order of A, B and C type layers. But, 

when the whole faulted crystal has many stacking faults, the description of the crystal as a 

combination of only ABC and CBA types is rather limited. If the distance between two stacking 

faults is only one or two (111) layers, then the part between the fault consists of only one or two 

layers. The diffraction maximums from such a small crystal can occur at all 2D Bragg directions 

of a (111) hexagonal crystal layer, and not only at the directions of ABC and CBA fcc crystals. 

For example, the Bragg directions corresponding to the hcp crystal structure can be significant 

for the crystal with stacking faults. We focus in this chapter on studying only Bragg directions of 

ABC and CBA fcc types crystals, assuming that the whole CCA is relatively weakly faulted and 

only these directions are important.  
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Figure 7-1 (a) CCA crystal with stacking faults along [111] direction can be represented as a stacked 

together several twinned parts, of ABC and CBA types. Each twinned pair is separated by a stacking fault. (b) 

Several points of reciprocal lattice are plotted for both ABC and CBA crystals. The twinned crystal is rotated by 60° 

relative to the [111] direction, and some reciprocal points for the twinned crystal (indicated in magenta) coincide 

with the reciprocal points of the regular crystal (in black). For example, the 0-22 reciprocal point coincides with the 

2-20 reciprocal point for the twin. 

 

Let’s first analyze the ABCR
G

 contribution. At Bragg directions this contribution consists 

of only three terms: 
dkidkiii

ABC eReRReReRRR
GG GGGGGGG

2
321321

32 ⋅Δ⋅⋅Δ⋅ ⋅+⋅+=⋅+⋅+= φφ     (7.2) 

The first term 1R
G

 is the amplitude of light diffracted from all ABC parts interfering 

constructively with the top part of the CCA in Fig. 7-1a. The diffraction contributions from the 

different parts are in phase when the number of layers N separating these parts (indicated in the 

Fig. 7-1a) is divisible by 3 and can be expressed as N=3n, where n is an arbitrary integer. The 

second term represents the contributions from all ABC parts, with the number of layers 

separating them and the top part being N=3n+1 and phase difference dk
G

⋅Δ=2φ , where the kΔ  

is the difference between the incident and diffracted wavevectors and d
G

 is the vector in the [111] 

direction with the magnitude of distance between the (111) layers. The third term sums the 

contributions from all ABC parts separated from the top part by N=3n+2 layers, and with a 

phase difference of dk
G

23 ⋅Δ=φ .  
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Expressing the Bragg condition as hklGk
G

=Δ , noting that the reciprocal vector 

corresponding to the (hkl) planes is ( lkh )
L

Ghkl ,,2
⋅=

πG
, and using ( )1,1,1

3
⋅=

Ld
G

 we 

obtain:  

)(3
2 lkhdGdk hkl ++⋅=⋅=⋅Δ π

GGG
       (7.3) 

Now, depending on the Miller indices h, k, l, there are three possible options for a phase 

dk
G

⋅Δ=2φ  in the interval between –π and + π: 

⎪
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nlkh

nlkh
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π
π

G
      (7.4) 

here n is any integer number. Therefore, the total contribution from all ABC parts depends on 

Miller indices h, k, l and take be one of the three values: 
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   (7.5) 

When the Miller indices of the (hkl) planes satisfy h+k+l=3n, contributions from all 

ABC parts are always in phase at the Bragg direction, and stacking faults have no effect on the 

diffraction from (hkl) planes of all ABC parts.  

The reciprocal points of the twinned CBA crystal can be obtained by the rotation of the 

ABC crystal reciprocal points by 60° around the [111] axis. An additional fact that can be 

derived by inspecting on the same plot the reciprocal space of both ABC and twinned CBA 

crystals is that some of the reciprocal points for both types coincide, while others don’t. 

Specifically, when the condition h+k+l=3n is satisfied for ABC crystal, for every reciprocal 

point (hkl) there is always reciprocal point (h’,k’,l’) of the twinned CBA crystal coinciding with 

it (non-primes are for the ABC crystal, primes indicate reciprocal points of the CBA crystal). 

These (h’,k’,l’) reciprocal points of a twinned crystal satisfy the similar relationship 

h’+k’+l’=3n. As an example we calculate and plot at Fig. 7-1(b) several coinciding reciprocal 

points for both ABC and twinned CBA crystals. The conclusion that follows is that, when the 

condition h+k+l=3n holds, contributions from all ABC and all CBA parts are in phase at the 

  141



Bragg direction, and the stacking faults have no effect. The examples of these special planes 

include the (111), (2-20), (3-11), etc. 

For all other crystal planes satisfying the condition h+k+l=3n+1 or h+k+l=3n+2, the 

contributions from different ABC parts are not necessarily in phase, and in general can be 

combined into three terms, depending on how many layers separate these parts. The absolute 

amplitude values of these terms are R1, R2 and R3, and since we are calculating amplitudes in an 

exact Bragg direction, every amplitude is simply a scattering efficiency of an individual particle 

multiplied by the number of particles contained in the corresponding crystal section. The 

diffraction contributions absolute values R1, R2, R3 are constant, the phase differences between 

them are constant, and therefore they do not depend on the crystal plane, or parameters of 

incident light. We conclude that the stacking faults affect the diffracted intensity at Bragg 

directions similarly for all crystal planes, and the diffracted intensities at these Bragg directions 

are the same. 

These conclusions were obtained using KNM methodology. Including the attenuation of 

the incident wave in the framework of EXKNM theory does not change the final diffracted 

amplitude in expression (7.5). But in EXKNM the absolute values R1, R2 and R3 are no longer 

independent of the crystal planes. The contribution of each individual ABC part depends on the 

intensity of the propagating wave reaching this part, and thus depends on how efficiently the 

specific crystal planes scatter. Crystal planes with high diffraction efficiency attenuate incident 

light faster, with the result that there are an effective number of layers of the CCA surface region 

participate in scattering. Only the stacking faults located within the relevant attenuation length 

(defined as effective number of layers) affect diffraction efficiencies. And, if the Miller indices 

of the crystal planes satisfy h+k+l=3n, the stacking fault(s) have no effect on the diffraction 

efficiencies. 
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7.3 EFFECT OF THE NUMBER AND LOCATIONS OF STACKING FAULTS 

ON INTEGRATED INTENSITIES DIFFRACTED BY (111), (200), (220) AND 

(311) PLANES. 

We numerically studied (using the KNM approach) the diffraction efficiencies from the crystal 

planes with Miller indices satisfying the condition h+k+l=3n and confirmed that these 

intensities, as expected, are unaffected by stacking faults. The planes we studied include (111), (-

220) and (3-11) planes. In contrast, the directions and intensities of scattered light by other 

planes strongly depend on the exact location of the stacking faults within the CCA. In Fig. 7.2 

we illustrate this dependence by plotting the ratios of integrated diffraction intensities from 

different crystal planes relative to the diffraction intensity from the (111) plane as a function of 

specific locations of the stacking faults inside the crystal. Fig. 7.2(a) is a calculation for a single 

stacking fault. Here, a single stacking fault splits the CCA into two parts, of ABC and CBA twin 

type, where the ABC part is on the top and CBA part is at the bottom of the CCA. The CCA 

consists of 60 stacked together (111) layers and every layer is a parallelogram 1900x1800 of 

colloidal particles. The CCA lattice constant is 805 nm and the wavelength of the incident light 

is 367 nm. 

We calculate light intensities near the Bragg diffraction direction from the (111), (200), 

(220) and (311) crystal planes of the ABC type crystal. These directions are not Bragg directions 

of the CBA twin, thus the twin part does not produce appreciable intensities at these directions. 

Moving the stacking fault from the top layer (1) to the bottom layer (60), we increase the number 

of layers in the single ABC part of the crystal and therefore monotonically increase the total 

diffracted intensity. 
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Figure 7-2 Diffraction integrated intensity from (200), (220) and (311) planes relative to that from the 

(111) plane as a function of a number and locations of stacking faults. (a) For the single stacking fault diffracted 

intensity are plotted vs. the number of layers in ABC part of the crystal. (b), (c) and (d) - calculations were 

performed for 3 and 5 stacking faults which were randomly placed inside 60 (111) layers, and then repeated for 400 

different configurations. In (b) the diffracted intensities were plotted vs the total number of layers in all ABC parts. 

In (c) the same results as in (b) are plotted by sorting all configurations in the direction such that intensities 

diffracted by (220) planes are monotonically increasing. (d) the same as (c) calculated for 5 stacking faults. 

 

Fig. 7-2(b) and (c) plots the ratios of diffraction integrated intensities for each of 400 

possible locations of three randomly placed stacking faults within the 60 (111) layers. As the 

absicca in Fig. 7-2(b) we use the total number of layers of all crystal parts of ABC type. When 

we have 3 stacking faults, our crystal consists of four parts, two of type ABC and other two parts 

are of type CBA. We see that by using the number of ABC layers as a plotting parameter for the 

X axis, we calculate multiple values for the diffracted intensity ratio depending on the sites of the 

stacking faults. Diffracted intensity in this case results from the interference between 
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contributions arising from two parts of ABC type, and hence depends strongly on the exact 

locations of the faults inside the crystal.  

The same diffracted integrated intensity data as in Fig. 7-2(b) is plotted in Fig. 7-2(c) but 

here we use a different plotting parameter for the absicca. We sorted all 400 configurations of 

characterized random fault locations such that the diffraction intensity from (220) planes 

monotonically increases. Fig. 7-2(d) represents similarly sorted diffracted intensities obtained for 

the CCA with 5 stacking faults.  

The data plotted at Fig. 7-2 indicates a very strong dependence of the intensity of light 

scattered by different crystal planes from the locations of the stacking faults. But for any specific 

stacking fault configuration inside the CCA, for any point of the abscissa in Fig. 7-2(c) and (d) 

the ratio between the integrated intensities diffracted by different crystal planes is similar. 

Diffracted efficiencies from different crystal planes in figures (c) and (d) are reduced by stacking 

faults, and the reduction ratio is very similar for all planes in accordance with our conclusions 

from the theory of stacking faults. 

Although the diffraction efficiencies for (220) planes increase monotonically in (c) and 

(d), the results from other planes deviates from the exact monotonic increase. This is easily seen 

for the (200) plane as a distribution of intensities in contrast with the monotonically increasing 

curve for the (220) plane. This effect can be explained as follows. We plot the diffraction 

intensities integrated over the diffraction spot intensity, which depends not only on the amplitude 

at the exact Bragg direction, but also on the width of the spot and the distribution of intensities 

inside the diffraction spot. The kinematic theory expression for the amplitude at the exact Bragg 

direction (7.5) results in the same reduction of amplitude for all crystal planes (except the planes 

satisfying h+k+l=3n). Outside this exact Bragg condition the effect of the stacking faults on the 

scattered amplitudes is different. For a small width Bragg spot we would expect that the value of 

the integrated intensity is mainly determined by the amplitude in the center of the diffraction 

spot, resulting in similar ratios between different planes diffracted efficiencies in Fig. 7-2(c) and 

(d). Another factor that could affect the diffracted efficiencies from different planes is the 

contributions from the twinned CBA part. Although in the Bragg direction of the ABC crystal 

the scattering amplitude from the (111) planes of the CBA parts are not perfectly in phase, still, 

they can partially constructively interfere to produce some finite amount of light scattered in 

Bragg ABC directions, especially for a small total number of (111) layers in the CCA. 
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Comparing Fig. 7-2(c) and (d) we conclude that the number of stacking faults has 

relatively less effect on the diffraction efficiencies than does the exact location of the stacking 

faults. The shapes of the curves in (c) are similar to those obtained in (d), but curves in (d) on 

average correspond to lower scattering efficiencies than the results presented in (c).  

We investigated the impact of the number of stacking faults on the diffraction efficiencies 

from different crystal planes by calculating the average diffraction intensity as a function of the 

percentage of stacking faults (Fig. 7-3). Zero percent stacking faults corresponds to a perfect fcc 

crystal. Two stacking faults within 60 layers correspond to 3.33% of stacking faults.  We take the 

average of all diffracted intensities from the (200), (220) and (311) planes obtained in Fig 7-2 to 

extract the average value of intensities for 3.33 % of stacking faults and plot this single value in 

Fig 7-3. 

 

 
Figure 7-3. Dependence of  the diffraction intensity from the (200), (220) and (311) planes on the 

percentage of stacking faults for a CCA containing 60 layers stacked along z with 250 x 240 particles in each layer. 

The value plotted is the average intensity ratio relative to the intensity diffracted by the (111) planes. The average 

values were calculated by averaging the effect of 400 possible configurations of the indicated number of stacking 

faults.  The triangles indicate the diffraction from a random stacked CCA. 

 

The average diffraction efficiencies from the (200), (220) and (311) planes decrease with 

the number of stacking faults. The impact of a stacking fault depends strongly on its location, as 
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we illustrated in calculations in Fig. 7-2.  For example, a single stacking fault located in the 

middle of the crystal reduces the diffraction efficiencies by more then 2-fold. Fig. 7-3 plots the 

average diffraction intensity calculated from 400 randomly selected stacking fault 

configurations.  In the case of a single stacking fault only 60 configurations are possible.  For 

two faults, 60 x 59 configurations occur, etc. 

These (111) plane stacking faults affect the diffraction of different Miller index planes to 

a similar degree - the ratio between the average diffraction efficiencies of (200), (220) and (311) 

planes remains practically the same for different numbers of stacking faults (taken at the same 

value of abscissa). 

We also calculated the diffraction intensities for a CCA with complete random stacking 

of the (111) planes. The diffraction efficiencies ratios for the (111), (200), (220) and (311) planes 

in a random stacked CCA were calculated to be 1, 0.0131, 0.0165 and 0.0009, respectively.  

These values are indicated by triangles in Fig. 7-3, and again, the relative ratios between them 

are the same as the ratio between the curves of Fig. 7-3.  

 

7.4 EFFECT OF STACKING FAULTS ON DIFFRACTION PEAKS SHAPES, 

WIDTH AND MAXIMUM INTENSITIES.  

 

In this section we study how the stacking faults affect the spectrum of light diffracted by a CCA. 

We calculated the dependence of diffraction intensities integrated over the backward scattering 

hemisphere on the wavelength of incident light for a CCA consisting of 45 stacked together 

(111) layers, where each layer has a parallelogram shape containing 60x50 colloidal particles. 

We define the backward hemisphere as the half of the 3D space containing the incident 

wavevector and delineated by the infinite (111) plane. 

In Fig. 7-4(a) we calculate the diffraction spectrum for an ideal crystal, in Fig. 7-4(c) the 

CCA contain the single stacking fault located in the middle of the crystal, while in Fig. 7-4(b) 

and (d) the CCA contains two stacking faults, located at different positions inside the crystal, 

specifically at 15 and 29 layers in (b), and at the 12 and 26 layers in (d). 
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Figure 7-4 Total integrated intensity scattered at backward hemisphere vs wavelength of incident light. 

CCA dimensions are 60x50x45, colloidal spheres diameter 270 nm, incident light is oriented along [200] direction. 

(a) – ideal crystal with no stacking faults, (c) – there is a single stacking fault in the middle of the CCA. (b) and (d) 

are the diffraction spectra for the CCA with two stacking faults, and the locations of the faults are at 15 and 29 

layers in (b), and at 12 and 26 layers in (d). Individual peaks resulting from the diffraction by the planes of ABC 

type crystal are labeled in red, and from the diffraction by the planes of CBA type - in blue. 

 

The calculations in Fig. 7-4 were performed for incident light oriented along the [200] 

direction, and the diffraction spectrum consist of a series of peaks. For an ideal crystal each 

diffraction peak corresponds to the Bragg diffraction from specific set of crystal planes, which 

we label in red in Fig. 7-4(a). The large peak near 800 nm results from the diffraction by (200) 

planes, and the diffraction light is directed exactly backwards with respect to the incident light. 

The three peaks in the blue range of the spectrum result from simultaneous diffraction by several 

crystal planes. We assume that the CCA in (a) is of the ABC type. Introducing a single stacking 

fault in the middle of the CCA dramatically changes the diffracted intensity spectrum (Fig. 7-

  148



4(c)). The diffraction spectrum now consist of peaks of two types, in addition to the peaks 

diffracted by a crystal part of ABC type there are also peaks produced by the planes of the CBA 

crystal part, indicated by blue labels. As a result of the stacking fault, the intensity of the peaks 

from the ABC part decreases relative to the ideal crystal peak intensities shown in (a), since there 

are a smaller number of ABC layers. 

 Diffracted intensity for the CCA with two stacking faults is calculated in Fig. 7-4(b) and 

(d). The CCA with two stacking faults consist of the three parts, two of ABC type separated by a 

part of CBA type. As a result of the interference of light diffracted by the two parts of ABC type, 

the corresponding diffraction peaks might broaden and split into double peaks, as is visible for 

the (200) peak. The specific shape of the resulting double peak depends on the phase difference 

between the two contributions, and thus is sensitive to the exact location of the stacking faults, as 

illustrated by comparing figures (b) and (d). 

The effect of the stacking faults on the intensity distribution over the Bragg spot is 

studied in Fig. 7-5. The small area of the scattering sphere around the (200) diffraction spot is 

plotted, for the same CCA and direction of incident light as in Fig. 7-4. The wavelength of the 

incident light corresponds to the Bragg maximum, and is the same as the middle of the (200) 

peak in Fig. 7-5.  

 

1 Stacking faultNO faults 2 Stacking faults(b)(a) (c)1 Stacking faultNO faults 2 Stacking faults(b)(a) (c)

 
 

Figure 7-5 Small area of the scattering sphere around the (200) Bragg maxima, corresponding to the 

diffraction peak from the (200) planes of Fig. 7-4. (a) Ideal crystal with no stacking faults. (b) Single stacking fault 

in the middle of the CCA. (c) Two stacking faults located at 15 and 29 layers. 

 

Inserting the single stacking fault in the middle of the CCA increases the width of the 

diffraction spot in Fig. 7-5(b) relative to the CCA without the stacking faults in Fig. 7-5(a). The 
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increase of the width is the simple result of the smaller number of diffracting layers contained in 

the crystal part of ABC type. When the CCA has a two stacking faults, the interference between 

the two parts of ABC type results in the splitting of the (200) spot into two, illustrated in Fig. 7-

5(c).  

The calculated diffraction spectrum of Fig. 7-4 can be used to explain the colors of the 

CCA’s under ordinary lighting conditions. Imagine that we position the observer’s eye to look at 

the CCA along the (200) direction. In the situation where there is diffuse white light incident to a 

CCA at every direction, only the light with frequencies corresponding to the peaks of the 

spectrum in Fig. 7-4 will reach the eye. Thus, the observed color would be determined by the 

combination of light frequencies from all peaks of the spectrum.  

In this chapter we studied the effect of stacking faults on the diffraction by a CCA’s. We 

subdivided all possible cases into two classes: the first, with Miller indices satisfying the 

condition h+k+l=3n, where there is no effect of the stacking faults at the Bragg directions. Other 

crystal planes are strongly affected by stacking faults, resulting in decreased diffraction 

efficiencies and broadened diffraction spots. However, the change of diffraction efficiencies due 

to the stacking faults is the same for different planes.  

 

 

APPENDIX C 

Kinematic 1D theory. 

We developed a 1D analog of KNM theory and used these formulas to investigate the role of 

multiple scattering in the 1D case by comparing the result to the exact expressions for scattering 

intensities of a 1D slab system. We assume that each unit cell is the combination of two physical 
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layers, one with high and another with low refractive index. This two physical layers form a 

repeating unit cell of the relevant 1D periodic structure. 

We assume that our 1D slab system consists of N units each of length d. In KNM theory, 

we further assume there is no extinction of the incident propagating wave; amplitude remains 

constant everywhere inside the system. Then far-field scattering amplitude is single unit 

scattering factor r1 times the phase factor dkie
G

⋅Δ  summed over all N units as geometric series. We 

obtain for the total scattered amplitude r: 

)(sin
)(sin||||
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2
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We calculate single cell scattering factor r1 by using exact Transfer Matrix 1D theory 

applied to a single dielectric layer. 

 

 

APPENDIX D  

Exact solution by the transfer matrix method for the problem of 

light scattering by 1D periodic layers system. 

We solved Maxwell equations for 1D layered (along z) system by the standard transfer matrix 

method [76]. Reflection and transmission coefficients can be obtained by solving Maxwell 

equations for either the H or E field. Here we examine it for the H field. In the case of TM modes 

(magnetic field H vector is parallel to the interface between layers) we solve the wave equation 

for the H(z) field: 
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The solution for the magnetic field inside each layer can be represented as a combination 

of two plane waves, one is in the forward and another is in the backward direction: 
zi

n
zi

nn eBeAzH 11)( αα −⋅+⋅=  

For a layered 1-D system consisting of a finite number of identical unit cells (each unit 

cell contain two layers) we can connect coefficients An and BBn for two arbitrary cells. For 

example, we can connect cell n=0 and cell n=N separated by N cells with the matrix equation: 
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where L  and T  are 2x2 matrices (the exact expression for these matrices are complex and can 

be found in reference [76], where d is the unit cell length and ( ) 2
1

2

1 xkc −⋅= εωα . 

 The exact result for the transmission r and reflection t amplitudes then can be obtained 

from: 
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The reflection intensity  can be calculated by  2|| r
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where 1λ  and 2λ  are the eigenvalues of matrix L . The reflection coefficient  (used in 1D 

kinematic theory) for just one cell is obtained by 

1r

11

212
1 ||

L
Lr =  

In the case of TE modes we can solve a similar wave equation but for the E electric field 

vector, resulting in slightly different matrix elements for matrix L  but otherwise the same 

formulas for the reflection and transmission coefficients. 
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APPENDIX E 

Scattering of light by single sphere. 

It is well known that when a plane electromagnetic wave is scattered by a dielectric sphere, it is 

possible to obtain exact analytical solution for the scattered intensity by solving Maxwell 

equations [65-66].  

When an incident plane wave of amplitude  is polarized along the x axis we can 

calculate the single sphere 3D scattering amplitude 

0E

),,( ϕθrEs

G
(form factor for sphere j in 

formula 1) as a function of spherical coordinates r, θ and ϕ  with the coordinate origin at the 

sphere center as 
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Asymptotic far-field expressions for parallel and perpendicular polarization scattered 

effective intensities  and  are given by 2
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where  are associated Legendre polynomials, and the expressions for the scattering 

coefficients  and  can be found, for example, in [65-66]. 
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The extinction cross-section of the single sphere can be obtained as  
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where the scattering coefficient )0()0()0( 21 °=°=° SSS  is taken in forward direction at °= 0θ . 

The ratio between the extinction cross section and the sphere cross-sectional area projected onto 

a plane perpendicular to the incident beam is called the extinction efficiency and is equal to: 

2a
CQ ext

ext π
=  

for a sphere of radius a.  
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