
DEMAND-BASED WIRELESS NETWORK DESIGN

BY TEST POINT REDUCTION

Ph. D. Dissertation Defense

by

Natthapol Pongthaipat

B.E. in Electrical Engineering, Chulalongkorn University, 1997

M.S. in Interdisciplinary Telecommunications, University of

Colorado at Boulder, 2000

Submitted to the Graduate Faculty of

the School of Information Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2007

UNIVERSITY OF PITTSBURGH

SCHOOL OF INFORMATION SCIENCES

This dissertation was presented

by

Natthapol Pongthaipat

It was defended on

November 9, 2007

and approved by

Dissertation Director: Dr. Joseph Kabara, Assistant Professor, DIST

Dr. Richard Thompson, Director and Professor, DIST

Dr. Prashant Krishnamurthy, Associate Professor, DIST

Dr. Marwan Simaan, Professor, ECE

Dr. Michael McCloud, Assistant Professor, ECE

ii

Copyright c© by Natthapol Pongthaipat

2007

iii

DEMAND-BASED WIRELESS NETWORK DESIGN BY TEST POINT

REDUCTION

Natthapol Pongthaipat

University of Pittsburgh, 2007

The problem of locating the minimum number of Base Stations (BSs) to provide sufficient

signal coverage and data rate capacity is often formulated in manner that results in a mixed-

integer NP-Hard (Non-deterministic Polynomial-time Hard) problem. Solving a large size

NP-Hard problem is time-prohibitive because the search space always increases exponentially,

in this case as a function of the number of BSs. This research presents a method to generate

a set of Test Points (TPs) for BS locations, which always includes optimal solution(s). A

sweep and merge algorithm then reduces the number of TPs, while maintaining the optimal

solution. The coverage solution is computed by applying the minimum branching algorithm,

which is similar to the branch and bound search. Data Rate demand is assigned to BSs in

such a way to maximize the total network capacity. An algorithm based on Tabu Search

to place additional BSs is developed to place additional BSs, in cases when the coverage

solution can not meet the capacity requirement. Results show that the design algorithm

efficiently searches the space and converges to the optimal solution in a computationally

efficient manner. Using the demand nodes to represent traffic, network design with the TP

reduction algorithm supports both voice and data users.

iv

TABLE OF CONTENTS

PREFACE . xiii

1.0 INTRODUCTION . 1

1.1 Wireless Evolution . 2

1.2 Third Generation (3G) and Beyond . 3

1.2.1 W-CDMA/HSDPA . 3

1.2.2 CDMA2000 . 4

1.2.3 WiMAX . 5

1.3 Network Design Terminology . 6

1.4 Research Statement . 7

1.5 Outline . 8

2.0 WIRELESS NETWORK DESIGN REVIEW 9

2.1 Coverage Objective . 11

2.2 Capacity Objective . 13

2.3 Cost Objective . 17

2.4 Interference Objective . 20

2.5 Summary . 24

3.0 PATH LOSS MODELS . 25

3.1 Log Normal Model . 25

3.2 Two Ray Model . 26

3.3 Okumura-Hata Model . 28

3.4 Attenuation Factor Model . 29

3.5 Ray Tracing Technique . 30

v

4.0 OPTIMIZATION HEURISTICS . 34

4.1 Simulated Annealing . 35

4.2 Tabu Search . 36

4.3 Genetic Algorithm . 38

4.4 Branch and Bound Algorithm . 39

5.0 TEST POINT REDUCTION . 42

5.1 Demand Node Concept . 43

5.2 Search Space Size . 45

5.3 Definition of Optimality . 48

5.4 Set Coverage Comparison . 51

5.4.1 Raster Sweep . 52

5.4.2 Merging . 56

5.4.3 Proof of Optimality of the Sweep and Merge algorithm 56

5.4.4 Computational Reduction . 57

6.0 DESIGN OPTIMIZATION . 59

6.1 Coverage Optimization . 61

6.1.1 Minimum Branching Algorithm 61

6.1.2 Computational Requirement . 70

6.2 Capacity Validation - Optimal Demand Node Assignment) 73

6.3 Optimization of BS Assignment by Tabu Search 74

6.3.1 Neighborhood Structure . 76

6.3.2 Short Term Memory and Tabu Classification 78

6.3.3 Diversification and Intensification 80

6.3.4 Parameter Selection . 83

7.0 DESIGN RESULTS . 85

7.1 Small Networks . 85

7.1.1 R ≈ ∞ Case . 86

7.1.2 R ≈ 0 Case . 87

7.1.3 Greedy Flaw . 88

7.1.4 TP reduction illustrated . 90

vi

7.2 Large Networks . 97

7.2.1 Random Distribution . 97

7.2.2 Fading Effect . 103

7.2.3 Clustered Distribution . 106

7.2.4 Statistical Analysis . 111

7.3 Design Example: Graz, Austria . 115

7.3.1 Traffic Characterization . 116

7.3.2 Demand Node Generation . 118

7.3.3 Coverage Radius (CDMA2000 EV-DO) 119

7.3.4 BS Capacity (CDMA2000 EV-DO) 119

7.3.5 TP Reduction . 121

7.3.6 Minimum Branching . 122

7.3.7 Capacity Requirement Validation 124

7.3.8 Expanded Network . 127

7.3.8.1 Expanded Network - Greenfield Design 128

7.3.8.2 Expanded Network - Incremental Design 133

8.0 CONCLUSIONS AND FUTURE WORK 137

8.1 Limitations . 139

8.2 Future Work . 140

APPENDIX A. LIST OF NOTATIONS AND SYMBOLS 142

APPENDIX B. CDMA2000 EV-DO TECHNOLOGY 145

B.1 Reverse Link . 145

B.1.1 Signal to Noise Ratio Requirement 146

B.2 Forward Link . 148

B.2.1 Scheduling Algorithm . 150

BIBLIOGRAPHY . 152

vii

LIST OF TABLES

1.1 Network Design Terminlogy . 6

2.1 CDMA Network Designs — a comparison between TS vs. CPLEX 18

6.1 TS Parameters for Capacity Optimization Problem 83

A1 Notations, Symbols, and Variables . 142

B1 Default Data Channel Gain . 146

B2 Modulation Schemes, Codings and SIRs at 1% PER for different data rates . 148

viii

LIST OF FIGURES

1.1 U.S. Cellular Technology Evolution Path . 2

1.2 Possible WiMAX Implementations . 5

2.1 An example of BS placement showing grids, user demand, and SAs. 9

2.2 a) Full-square cell configuration. b) Half-square cell configuration 14

2.3 Triangular-grid base station topology . 15

2.4 Service Area Tesselation & Demand Node 16

2.5 Pareto front — a resulting network design from the GA algorithm 21

2.6 Rectangular array of APs for a multi-floor building 23

3.1 Two slope propagation path loss at 900 MHz 27

3.2 Attenuation Factors of Wall Types . 30

3.3 Ray Tracing - Imaging Method . 31

3.4 Ray Tracing - Ray Shooting Method . 32

4.1 Tree of Subspaces . 40

5.1 TPs as a matrix of grid points G . 45

5.2 Demand Nodes . 46

5.3 Set Coverage Example . 51

5.4 Four Possible Sweeping Directions . 52

5.5 Horizontal Raster Sweep . 53

5.6 Vertical Raster Sweep . 54

5.7 Diagonal Raster Sweeps . 54

6.1 Design Optimization Flowchart . 60

6.2 Subtree of Solutions . 63

ix

6.3 Minimum Branching Illustrated #1 . 65

6.4 Minimum Branching Illustrated #2 . 65

6.5 Minimum Branching Illustrated #3 . 66

6.6 Minimum Branching Illustrated #4 . 66

6.7 Coverage Solution . 67

6.8 Minimum Branching Illustrated #5 . 67

6.9 Minimum Branching Illustrated #6 . 68

6.10 Minimum Branching Illustrated #7 . 68

6.11 Minimum Branching Tree . 70

6.12 A neighborhood structure N (s) consisting of n+ = 4 subsets of h = 5 closest

neighbor TPs. 77

6.13 TS with Modified Choice Rule . 82

7.1 Infinite Coverage Radius . 86

7.2 Zero Coverage Radius . 87

7.3 Greedy algorithm may occasionally produce sub-optimal solutions 88

7.4 TP reduction always yields the optimal solution 89

7.5 The example network used to illustrate the TP reduction process 90

7.6 Grid Point Coverage . 91

7.7 Horizontal Sweep . 92

7.8 Vertical Sweep . 93

7.9 Diagonal Sweep . 94

7.10 Merge Process . 95

7.11 Coverage Solution . 96

7.12 Random Demand Node Example . 97

7.13 TPs computed from the sweep and merge processes 98

7.14 Minimum Branching (Iteration #2) . 99

7.15 BS placement after five recursions . 100

7.16 Minimum Branching Tree . 101

7.17 Optimal Coverage Solution . 102

7.18 New Set of TPs (Fading Margin Included) 104

x

7.19 New Optimal Coverage Solution (Fading Margin Included) 105

7.20 Clustered Demand Node Example . 106

7.21 Test Points (Clustered Demand Node Example) 107

7.22 Coverage Solution Tree (Clustered Demand Node Example) 108

7.23 Coverage Solution (Clustered Demand Node Example) 109

7.24 A Solution BS Placement by TS (Clustered Demand Node Example) 110

7.25 Number of TPs (N∗) vs. Coverage Radius (R) 111

7.26 Normalized Number of TPs (N∗/N) vs. Demand Node Density (M/N) . . . 112

7.27 # of Recursions vs. Coverage Radius (R) . 113

7.28 Number of Recursions (Normalized) vs. Demand Node Density (M/N) . . . 114

7.29 A map of Graz, Austria . 115

7.30 Cell Phone Activity in the City Center, Graz 116

7.31 Approximated Traffic Intensity in Erlang/km2 117

7.32 Demand Node (Graz) . 118

7.33 Maximum # of Users vs Data Rate for HTTP and FTP applications 120

7.34 Test Points (Graz Example) . 122

7.35 Minimum Branching Solution Tree . 123

7.36 Coverage Solution . 124

7.37 Optimal Solution . 125

7.38 Additional Traffic (Graz Example - Expanded Network) 127

7.39 New Demand Nodes (Graz Example - Expanded Network) 128

7.40 New Set of TPs (Graz Example - Expanded Network) 129

7.41 Coverage Solution Tree (Graz Example - Expanded Network) 130

7.42 New Coverage Solution (Graz Example - Expanded Network) 131

7.43 New Optimal Solution (Graz Example - Expanded Network) 132

7.44 New Set of TPs for Added Demand Nodes (Graz Example - Expanded Network134

7.45 New Optimal Solution with Existing BSs (Graz Example - Expanded Network)135

B1 CDMA2000 1xEV-DO Reverse Channel Structure 146

B2 Signal-to-Noise Ratio (SNR) vs. Cell Loading 147

B3 Power distribution of IS-95 vs. CDMA2000 1xEV-DO 149

xi

B4 Multi-slot Physical Layer Packet with Normal Termination 149

xii

PREFACE

I would like to especially thank and express deep appreciation to, Dr. Joseph Kabara, who

has always been my advisor, a mentor, and one-of-a-kind teacher for years that I have been

with him. His patience with my stubbornness, his sincere willingness to push my research to

be among the best of the best, have motivated me all these years to keep on persisting and not

giving up on countless trials and errors to develop new algorithms for my research, to make

the best of out of any possibilities given. Without his invaluable comments, suggestions, and

continual supports, I would never have figured out and finished up my research, and would

have had perhaps gone off track and run into a brick wall of hopelessness of unsolvable

problems. I am also very grateful to all of my committees, which include Dr. Richard

Thompson, Dr. Prashant Krishnamurthy, Dr. Marwan Simanna, and Dr. Michael McClound

for their encouragement and numerous of helpful comments to better my research.

I am also greatly indebted to TOT Public Company Limited for supporting me financially

during my graduate study at the University of Pittsburgh, giving me this wonderful op-

portunity to pursue my Ph.D. in telecommunications. I would like to further acknowledge

and thank the TeleNet at Pitt program for financing me all the stipends and traveling ex-

penses for every conference I have participated. Also, many thanks to Debdhanit, Maria,

and Yuttasart of the SiNE group for always giving wonderful critiques, comments, and lot

of thoughts.

Lastly and most importantly, I forever owe love to my lovely parents and all my family.

With their unconditional loves and supports throughout my life — always empowering me

to move on to the next step — I am now reaching my lifelong dream.

xiii

1.0 INTRODUCTION

Growth in wireless demand is occurring globally at steady pace. Increase in wireless usage

has propelled researchers and standardized bodies to collaboratively develop new technolo-

gies to maximize network capacity with higher and higher data rates. Wireless technologies

have evolved from analog to digital and from voice circuit-switched to data packet-switched.

As a consequence, there exists in parallel a variety of emerging services such as HTTP web-

browsing, file transfer with FTP, and emailing. However, actual network deployments have

not kept pace with the improving technologies. Network designers and researchers still con-

centrate on either providing the coverage or maximizing the total network capacity, but none

considers the data rate requirements or users. In this paper, wireless network designs refer

to the Base Station (BS) placement that can provide sufficient signal coverage and satisfy

user (i.e., with various data rate requirements). The BS placement problem is formulated as

a combinatorial, mixed-integer problem, and categorized as NP-Hard. Convergence time to

the optimal solution increases exponentially with the size of search space (section 5.2). The

search space is typically a set of Test Points (TPs) at which the BSs are placed. The number

of TPs can significantly increase when designing large networks, and therefore it may take

hours if not days or weeks to find the optimal solution. For most network designs, TPs are

either assigned randomly [1], or are assigned as grid points [2], [3]. Too few TPs may result

in sub-optimal solutions, while too many may result in extra computations (chapter 7). This

paper presents a sweep and merge algorithm to rapidly reduce a large number of TPs and

determine a smaller set of TPs which always yields the optimal BS placement solution. The

demand nodes (section 5.1) are also incorporated to represent user traffic in a quantum sum

of voice calls or data bit rates to further minimize the computation.

1

1.1 WIRELESS EVOLUTION

Wireless networks have evolved rapidly to support new services and increasing demands for

mobile wireless communications. Figure 1.1 shows the time line for evolving U.S. cellular

technologies and the increasing data rate supported.

Cingular
AT&T

GSM

TDMA

CDPD

Verizon

IS!95

2.5G2G1G

GPRS

1X

3GPP

3G

IMT!2000

1xEV!DV

Sprint PCS
T!M

obile

01!02Pre!1980s 02!03 05

14.4 64 115 155

EDGE

384 2400

Rev. A

W!CDMA

Rev. 0

3GPP2 ! CDMA2000

1xEV!DO

3100

AMPS

4G

WiMAX

70000
Forward Link Throughput (kbps)

HSDPA

14000

08

Rev. B

Figure 1.1: U.S. Cellular Technology Evolution Path

In early 1980s, the first generation (1G) mobile system was deployed using an analog trans-

mission. 1G systems employed a circuit-switched technology to carry voice calls via Fre-

quency Division Multiple Access (FDMA). Frequency reuse allowed 1G systems to achieve

higher capacity given a limited frequency spectrum. Notable 1G systems are such as Ad-

vanced Mobile Phone Services (AMPS) system used in the United States, Narrowband AMPS

(NAMPS), Total Access Cellular System (TACS), and Nordic Mobile Telephone System

(NMT-900) [4].

2

Second-generation (2G) cellular systems employed digital technology to improve transmis-

sion quality, system capacity, and coverage in addition to 1G systems. Wireless access links

in 2G systems were based on either Time Division Multiple Access (TDMA) or Code Division

Multiple Access (CDMA) to achieve more efficient spectrum utilization. Several commer-

cialized 2G digital systems includes the Global System for Mobile Communication (GSM),

IS-95 (CDMAone), Pacific Digital Cellular (PDC) as well as United States Digital Cellu-

lar (USDC) standards IS-54 and IS-136 (D-AMPS) [4]. Transitions from 2G to 3G (2.5G)

created new services such as Cellular Digital Packet Data (CDPD), General Packet Radio

Service (GPRS), and Enhanced Data rates for Global Evolution (EDGE) to accommodate

the increasing demand in data services [5]. CDPD was the AMPS successor, while GPRS

and EDGE were adapted from the GSM.

1.2 THIRD GENERATION (3G) AND BEYOND

1.2.1 W-CDMA/HSDPA

Radio Access (UTRA), is a promising 3G technology that provides higher capacity to support

higher data rates for voice, video, data, and image transmission. W-CDMA supports data

rates up to 2 Mbps for local area access and 384 kbps for wide area access [6], [7]. W-CDMA

is a spread spectrum technology, adopted as a standard by ITU under the name IMT-2000

spread spectrum. W-CDMA systems employ a Direct Sequence Code Division Multiple

Access (DS-CDMA) as the main access scheme, spreading data signals over a wide 5 MHz

bandwidth (projected for 10 or 20 MHz in the future). There are two different modes namely

• Frequency Division Duplex (FDD): two separated frequency bands are assigned to the

uplink and downlink, and

• Time Division Duplex (TDD): two different time slots in the same synchronized frequency

band are assigned for the uplink and downlink

To compete with CDMA2000 EV-DO, W-CDMA evolves to HSPDA (High-Speed Downlink

Packet Access), aiming to support data rate up to 14.4 Mbps downlink. The improvement in

3

data rate derives from fast packet scheduling and adaptive modulation [8]. The future road

map of W-CDMA track is to include Multiple-Input Multiple-Output (MIMO) antenna sys-

tem employing OFDMA (Orthogonal Frequency Division Multiple Access) with the expected

data rate up to 200 Mbps [9].

1.2.2 CDMA2000

CDMA2000 is the improvement version of IS-95. The CDMA2000 specification was devel-

oped by the Third Generation Partnership Project 2 (3GPP2), a partnership among five

telecommunications standards: ARIB and TTC in Japan, CWTS in China, TTA in Ko-

rea and TIA in North America. CDMA2000 1X is the first phase of CDMA2000, offering

a full backward compatibility with the existing IS-95 technology, but providing twice the

voice capacity with an always on feature and supports higher data rates upto 144 kbps

[10]. CDMA2000 1xEV is the enhancement to 1X systems with two competing technologies:

1xEV-DO (Qualcomm Inc.) and 1xEV-DV (Motorola and Ericsson). 1xEV-DO stands for

Evolution Data Optimized, using a separate carrier to transmit data, while 1xEV-DV stands

for Evolution Data and Voice which integrates voice and data on the same carrier. Adaptive

Modulation and Coding techniques together with the TDM/CDM multiplexing enables both

the 1xEV-DO and 1xEV-DV to achieve higher data rates than the predecessor CDMA2000

1X systems. 1xEV-DO revision 0 supports upto 153.6 kbps on the reverse link and the max-

imum of 2.4 Mbps on the forward link [11]. Last year, 3GPP2 released 1xEV-DO revision A

to improve the maximum reverse and forward data rates to 1.8 and 3.1 Mbps respectively.

1xEV-DV also supports a peak data rate upto 3.1 Mbps in the forward link and allows mul-

tiple users to share spectrum and codes simultaneously [12], while 1xEV-DO dedicates the

entire code space and power to one user at a time to optimize the average throughput on the

forward link [13]. However, 1xEV-DV requires more complex resource allocation due to voice

and data multiplexing with adaptive bandwidth and power management [14]. As reported

by CDG, 147 out of 240 millions of CDMA subscribers worldwide are using CDMA2000 1X

or 1xEV-DO networks [15], [16]. Currently, 112 operators from 6 continents are already ser-

vicing CDMA2000 1X and are upgrading to 1xEV-DO. Qualcomm claimed that CDMA2000

4

1xEV offers the lowest cost to deliver data traffic ($0.022 per MBytes) compared to other

technologies such as GPRS ($0.415/MB) or even the W-CDMA ($0.069/MB) [17]. An up-

coming 1xEV-DO line is the revision B standard, utilizing 5 MHz of bandwidth, and the

data rate is expected to go up to 14.7 Mbps [18].

1.2.3 WiMAX

WiMAX stands for Worldwide Interoperability for Microwave Access, which was developed

by WiMAX Forum as part of the IEEE 802.16 standard. WiMAX offers data rate up to

70 Mbps downlink through Scalable OFDMA with MIMO technology [9], [19]. Multiple

frequency bands are available for WiMAX: 2.3 GHz, 2.5 GHz, 3.3 GHz and 3.5 GHz with

wide range of spectrum bandwidth from 5 to 10 MHz [19]. WiMAX can be implemented in

various ways as shown in figure 1.2 [20], [21].

IP
Network

PSTN
Network

WiMAX
Base Station

WiFi Backhual

Residential/Business
Last Mile Broadband

Mobile
Voice/Video/Data

Figure 1.2: Possible WiMAX Implementations

5

Companies like Sprint Nextel and KDDI are considering WiMAX to enhance speed and to

improve QoS for data-intensive mobile applications [22], [23]. WiMAX is also envisioned to

be the “last mile” broadband access alternative to cable or DSL (Digital Subscriber Line)

for remote areas where cost of wiring is prohibitive and not worth the investment [21].

1.3 NETWORK DESIGN TERMINOLOGY

The following terminologies are used throughout the paper. Table 1.1 explains the meaning

of each terminology.

Table 1.1: Network DesignTerminology

Terminology Definition

Base Station (BS) A set of fixed circuitry equipments including antennas used to

transmit and receive both voice-modulated and data-modulated

signals over the air.

Demand Node A virtual point representing the center of an area containing a

quantum of user traffic.

Test Point (TP) A set of candidate locations for placing BSs.

Reverse Link A communication path or a wireless channel in the direction from

a user to the BS.

Forward Link A communication path or a wireless channel in the direction from

the BS to a user.

Throughput Raw bit rates successfully demodulated at the receiver terminal.

6

1.4 RESEARCH STATEMENT

The goal of this dissertation is to develop a method to reduce the computation requirement

for computing the optimal BS placement that can provide sufficient signal coverage and

satisfy user traffic — the optimal solution. To reduce the computation requirement for

solving the optimal solution, this paper presents:

• A TP reduction algorithm to minimize the number of TPs for placing BSs, while the

optimal solution set is still maintained.

• A minimum branching algorithm, which is an extension of the Depth First Search (DFS)

algorithm, to compute the optimal coverage solution (replacing the exhaustive search).

• An algorithm based on Tabu Search (TS) to locate additional BSs to support excess

capacity requirements (optimization of BS assignment).

• Demand node representation of user traffic (limitations are discussed in chapter 8)

The computation requirement is a function of the search space size, which increases expo-

nentially as the number of TPs increases (section 5.2). The minimum number of TPs that

always guarantee the optimal solution set are computed efficiently by the sweep and merge

algorithm. Then, the coverage solution is first computed by applying the minimum branch-

ing algorithm. Similar to the DFS algorithm, the minimum branching algorithm always

guarantees the optimal coverage solution but requires substantially few number of compu-

tations than the exhaustive search (section 6.1.2). In cases when the coverage solutions can

not support the total demand (i.e., fail to meet the capacity requirement), the design incor-

porated the TS-based algorithm to solve for the new optimal assignment of BSs that can

now satisfy both the coverage and the excess capacity requirements. Also, distributed user

traffic is discretized as demand nodes, representing a quantum of either voice calls or data

rate bit rates, to further reduce the number of coverage requirement tests. Using the TP

reduction algorithm to reduce TPs, the minimum branching algorithm to compute for the

coverage requirement, the TS-based algorithm to solve for the new optimal BS assignment,

and the demand node representation of traffic, the design computation is minimized.

7

1.5 OUTLINE

Chapter 2 and 3 reviews past and present network design methods and path loss models

for the BS placement problem. Chapter 4 provides a brief introduction to several well-

known heuristics which are incorporated in most network design methods to solve the BS

placement problem. Chapter 5 describes the sweep and merge algorithm to reduce TPs

(the TP reduction algorithm), while chapter 6 explains the minimum branching algorithm

used in computing the coverage solution. Chapter 6 also presents the TS-based algorithm

developed specifically to optimize BS assignment when the coverage solution can not meet

the capacity requirement. Chapter 7 provides results from various design examples ranging

from small to large networks, including several design examples for CDMA2000 networks in

Graz, Austria. The final chapter 8 concludes the dissertation, discusses its limitations, and

suggests possible future research work.

8

2.0 WIRELESS NETWORK DESIGN REVIEW

Wireless network design is a process to determine the number of BSs and their placement to

provide sufficient signal coverage and capacity to the designated area. Base station place-

ment involves many constraints and restrictions. Traditional design approaches aim to create

the coverage-based design; that is to ensure that an adequate signal strength is maintained

in the intended Service Area (SA) as shown in figure 2.1.

Figure 2.1: An example of BS placement showing grids, user demand, and SAs.

One simple approach to meet the coverage requirement is to employ a trial and error method,

in which a set of candidate sites are randomly chosen, and the coverage is optimized by tuning

antenna parameters such as azimuth, tilt, and power. However, the trial and error approach

9

consumes an enormous time [24] and usually ineffective since the process may overestimate

the number of BSs or may result in a suboptimal signal strength pattern.

There are several missing components in the coverage-based design. First of all, traffic

demand and user density are not considered. The coverage-based approaches may appear

sufficient for networks where user density is low and traffic load is light. However, the

problem may arise if the network has higher user concentration and applications demanding

larger bandwidth. The coverage-based network may not have sufficient capacity, and as a

result causing delays and interruptions. Capacity requirements and optimization are thus a

primary concern for network designs such as the Tutschku method for TDMA networks and

the Akl method for CDMA networks [25], [26].

Alternatively, one may concern minimizing the cost of deploying BSs. The total cost of

one BS, including equipments, installation, and site acquisition may add up to about five

hundred thousand to one million dollars per site [24]. Consequently, the main objective is to

minimize the total number of BSs instead of either maximizing either the coverage or capac-

ity. Example designs are such as the Amaldi method for power-controlled CDMA systems

and the Hao method for TDMA systems [27], [1].

In some scenarios, excessive interference may occur due to poor BS layouts and frequency

assigments. High interference either from frequency overlapping or frequency reuse usually

results in substantially low data rate and low utilization of the network bandwidth. Minimiz-

ing interference is therefore an alternative approach to increase network utilization and to

maximize the capacity. The Weicker method uses Genetic Algorithm to minimize both the

interference and the deployment cost for TDMA systems [28], while the Hills design method

minimizes interference in order to enhance the coverage in WLAN environments [29]. The

Prommak method for WLAN designs improves on the Hills method by also minimizing the

interference but at the same time satisfying both the coverage and capacity requirements

by employing only a sufficient number of Access Points (APs) [3]. In summary, the network

design or the BS placement problem may be classified into different categories according to

10

the problem objective: Coverage Objective, Capacity Objective, Cost Objective, and Inter-

ference Objective. The following literature review discusses in detail the advantages and

disadvantages of each approach.

2.1 COVERAGE OBJECTIVE

The coverage-based designs are suitable for both indoor and outdoor environments requiring

optimal signal reception. For indoor environments, Sherali and Unbehuan introduce the

concept of Minisum and Minimax to minimize path loss to all receivers in the network [30],

[31]. The Minisum function (f1) minimizes the weighted sum of all the predicted path loss,

while the Minimax function (f2) minimizes the worst path loss receiver. The Sherali method

compromises between the overall coverage and the worst-case coverage by weighting the

Minisum and Minimax using the combined utility function:

f = ψf1 + (1− ψ)f2. (2.1)

Sherali showed that ψ = 0.5 balances equally the average and the worst case coverage [30].

The Sherali method derives an initial solution for the multiple transmitter problem by parti-

tioning the design space at the center of gravity point of its longest dimension. The process

continues iteratively by dividing the resulting partition with the highest cumulative weight

until there are n partitions (number of transmitters) [30]. The Unbehaun method obtains

an initial solution by pruning out the transmitter at each grid point yielding the lowest f

one at a time until there are only n transmitters left [31]. Given the initial solution with

n transmitters, the neighborhood search in the Unbehaun method evaluates every adjacent

grid point to the previous transmitter location and promotes the point producing the lower

f as a new solution. The algorithm finishes when f stops improving. The Sherali method ex-

amines both the gradient-based and line-search techniques to locate the optimal transmitter

placement [30]. The gradient-based approach moves the transmitter in the direction to lower

the gradient of the objective function f . The line-search strategy is similar to the neighbor-

hood search, however the search step is not limited to only the adjacent grid but varies at

11

each iteration. The resulting network design by the Sherali method requires approximately

half the number of transmitters for achieving the same cumulative SIR compared to the

Unbehaun method. The Minisum and Minimax approach can ensure ubiquitous coverage to

all receivers, however since the capacity requirement is ignored, the approach is not suitable

for networks with high traffic concentration — since some BSs may cover traffic higher than

their maximum capacity.

For outdoor environments, the network characteristics are more diverse and the service

areas are typically much larger than those of the indoor environments. Searching where

to place BSs that maximizes the signal coverage may require indefinite amount of time.

To expedite the design process, optimization heuristics for mixed-integer problems such

Simulated Annealing (SA), Genetic Algorithm (GA), and Tabu Search (TS) are applied.

In the Anderson and McGeehan SA implementation [2], the cost function C represents the

coverage quality, which is measured as the square difference between the received signal level

and the desired value. The SA process iteratively selects a new BS configuration at each

iteration k; the updated BS configuration is accepted only if the new cost function C ′ is

lower, however if C ′ is higher, it may still be accepted with probability.

P = min
{
1, e−A/B

}
(2.2)

where A = (C ′−C)/C, B = (Tk/T0)
2, and T0 is the starting temperature. The SA algorithm

gradually improves the solution by reducing the magnitude of BS movement (probability of

accepting inferior BS configurations) as the temperature Tk decreases, and the final tem-

perature is reached when the cost reduces to near zero. Although the resulting solution

from SA is comparable to the optimal solution from the exhaustive search of all grids (i.e.,

within a few meters [2]), solution convergence is not guaranteed since the algorithm is highly

sensitive to parameters such as the initial temperature, the cooling schedule, etc. Another

method employs GA to maximize the coverage [32]. The Leiska GA method partitions the

service area into a small blocks of subareas instead of grid points, and the number of covered

subareas are maximized accordingly [32]. For each solution (individual), the number of BSs

can vary from 1 to n, where n is the number of candidate sites. The fitness value f(I) is

12

used to indicate the solution quality of each individual such that, for an individual with k

BSs

f(I) =
of covered subareas

|k − n|+ 1
(2.3)

At each iteration, each individual in the population (a pool of solutions) is mutated by

randomly activating or deactivating BSs. The individual I with the best fitness value is then

chosen to produce a new population for the next generation. The convergence property of

GA depends on rules defining how mutation is conducted, and is analogous to the selection

of SA parameters. Both the Anderson and Leiska design methods still do not consider the

capacity requirement.

2.2 CAPACITY OBJECTIVE

Providing ubiquitous and sufficient signal coverage is the minimum requirement for all net-

work designs. The coverage-based designs such the Sherali method for indoor environments

[30] or the Anderson method for outdoor environments [2] work effectively on the condition

that, traffic load is light and uniformly distributed. However, when traffic concentration is

not uniform — i.e., clustered traffic in some spots especially in urban areas and sparse in

suburban areas [33] — the coverage-based network may not be sufficient since high traffic in

certain locations may exceed the maximum capacity of some BSs. Thus, some BSs may carry

excess traffic while some may be responsible for traffic far below their threshold capacity,

which results in suboptimal utilization of the network capacity. To account for the capacity

requirement and to optimize the network capacity, a variety of different design approaches

have been proposed. Alejandro and Hanly develop the analytical method to maximize the

total network capacity for CDMA systems [34], [35]. Their methods are applied to different

environment settings. The Alejandro design method focuses on the effect of irregular propa-

gation in urban environments to the cell capacity. The Alejandro method aims to establish

the optimal relationship between the break point distance Rb and the BS radius Rc for the

full- and half-square cell configurations [34]. As pointed out by [36], radio propagation in ur-

ban environments usually exhibits two slope (n1, n2) path loss separated by the break point

13

distance Rb, which is a function of the BS antenna height hb, the receiver antenna height

hm, and the signal wavelength λ

Rb = 8.41hbhm/λ (2.4)

b)

Full!Square Cell Plan Half!Square Cell Plan

Rc Rc

Base Station Mobile Unit

1 Rb

a)

Rb

Figure 2.2: a) Full-square cell configuration, a BS at point 1 employs an omnidirectional antenna
and the break point distance Rb is shown. The light gray shading is the street area covered by
BS1. The dark areas are buildings; the white areas are roadways. b) shows the half-square cell
configuration. BS power is reduced to half of the full-square cell configuration BS.

If s is the distance between the transmitter and mobile, Lb is the path loss at the break

point in dB, and ζ represents a log-normal shadowing loss component — Guassian random

variable with zero mean and variance = σ2 (dB). The path loss L(s) is expressed as

L(s) = ζ +

 Lb + 10n1 log(s/Rb), s ≤ Rb

Lb + 10n2 log(s/Rb), s > Rb

(2.5)

The full-square cell configuration allocates a BS with an omnidirectional antenna at every

other intersection covering a block in all four directions. The half-square cell configuration

increases network capacity by doubling the number of BSs where each BS covers half a block

14

in all four directions. Alejandro shows that for both full- and half-square cell topologies, the

optimal ratio of the break point distance Rb to the BS radius Rc must be less than 0.7 in

order to maximize the total network capacity, irrespective of traffic density [34].

Hanly alternatively suggests that, in less built-up environments the traffic density ρ (Pois-

son) and cross-correlation of the shadow fading ζ (jointly Guassian distributed) are now

the factors that determine the optimal BS density [35]. In the Hanly design approach, the

triangular grid of BSs configuration as shown in figure 2.3 is used.

d

1

1 1

1 1

2 2 2

22

2

2

2

2 2 2

20

Reference BS

1

d

Figure 2.3: Triangular grid of BSs — with the reference BS0 at the middle, the number above
the BS represents a tier; the distance between BSs is d. Only the 1st and 2nd BSs are accounted
for interference.

Hanly shows that when the distance between BSs is approximated ≈ 1/2/
√
ρ, the network

capacity is maximized. The Alejandro and Hanly design methods are derived from uniform

traffic distribution, but as demonstrated in [33], the assumption may be too ideal for real

world network traffic. To accommodate traffic non-uniformity and to aid the design pro-

cedure, a demand node concept is introduced [37]. The demand node is the center of an

area containing a quantum of demand from a teletraffic viewpoint [25]. The demand node

is generated by recursively bicsectioning the service area into two rectangles with the same

amount of traffic until the traffic of every tessellation piece falls below a threshold. The

15

demand node location is the center of gravity of the traffic within the tessellation. Figure

2.4 illustrates the tesselation procedure.

center of traffic gravity (demand node)

2

4
4

3

6
6

4
6 5 6

5

4
5

6 5
6

4

3
6

5
6

3 5

513

4

2

recursion depth

Figure 2.4: Service Area Tessellation and Demand Node (a curvy red-line represents a road)

The Tutschku design method starts by creating demand nodes, then seeks for the BS cov-

ering the maximum number of demand nodes. The same process is repeatedly applied to

the remaining demand nodes until there is no BS left or all demand nodes are covered. The

Tutschku method is fast compared to Simulated Annealing or Genetic Algorithm, however

the total network capacity is not maximized because the BSs found in earlier iterations may

cause network partitioning, and more BSs are needed to cover the remaining demand nodes.

The Tutschku method is intended for TDMA systems where each BS has a fixed capacity

and a portion of bandwidth is dedicated to each user separately. However in CDMA sys-

tems, the BS capacity is dynamic because users share the entire spectrum bandwidth — each

contributes to the total amount of interference, and the higher the interference, the lower

the BS capacity, and as a result the Tutschku method may fail. The Akl design instead

maximizes the capacity by adjusting both the BS pilot power and the user transmit power

16

[26]. Users in smaller cells are assigned higher transmit power to compensate for excessive

intercell interference from bigger cells. The Akl power compensation strategy helps balanc-

ing each cell capacity, and the net result is the improving in the total network capacity.

Unfortunately, the strategy is based on the assumption that the required SIR is constant,

therefore if the required SIR varies according to the transmit data rate (i.e., CDMA2000

EV-DO), the strategy may not yield the optimal result as expected.

All of the design methods discussed above and in the previous section succeed in either

providing the maximum coverage or the maximum capacity for both indoor and outdoor

environments. These approaches are suitable if the number of BSs are already determined

and financial expense or cost is not a factor. However if the requirement is to provide

sufficient coverage and capacity, the network may need additional number of BSs to satisfy,

which may not be feasible due to cost restriction.

2.3 COST OBJECTIVE

The total cost of deploying BSs, including equipment, installation, and site acquisition is a

key factor determining the feasibility of network designs. Minimizing cost is thus the pri-

mary objective of several network design methods discussed in this section. The Lee and

Gang method minimizes the total cost to support network expansion in CDMA systems [38],

while other design methods such as the Amaldi design and the Hao design not only consider

the total BS cost but aims to maximize the amount of traffic coverage as well. The Amaldi

design method incorporates the composite cost function to minimize the number of BSs

while maximizing the traffic coverage in CDMA systems [1]. The Hao design method further

breaks down the cost into: hardware and installation, antenna, transmitter and receiver, and

the penalty for coverage holes [27]. Each of these methods is presented in more detail next.

The Lee and Gang design method considers only the BS cost, and the design objective is

simply to minimize the total number of BSs needed. The design has two requirements: α

17

portion of traffic must be covered, and each BS must carry traffic less than its maximum

capacity [38]. The method employs Tabu Search (TS) to solve the problem and assumes

that all candidate locations of the new BSs are already determined and are assigned as the

initial solution. Normalized Residual Capacity (NRC) is used as a benchmark to determine

when to drop a BS. If C is the BS cost, M is the maximum BS capacity, then

NRC =
residual capacity

M
× C (2.6)

The TS process randomly adds and drops BSs until the cost is minimized and all traffic is

covered. Table 2.1 compares the resulting network design for 400, 900, 2,500 demand points

using TS vs. the linear optimization solver (CPLEX).

Table 2.1: CDMA Network Designs, showing the required number of BSs, and the computation
time in (second). Total traffic demand is in Erlang.

α = 0.90 α = 0.95 α = 0.99
of Points Total Traffic

Tabu Tabu TabuDemand
Search CPLEX Search CPLEX Search CPLEX

14.6 14.6 17.0 16.8 20.4 18.6400 1988.6
(0.48) (709.97) (0.90) (>10000) (1.40) (>10000)
29.2 28.6 35.6 35.6 46.0 40.2900 4470.3

(5.76) (>10000) (9.09) (>10000) (16.44) (>10000)
81.0 80.0 101.4 98.8 129.2 112.82500 12490.0

(116.99) (>10000) (190.50) (>10000) (304.24) (>10000)

As shown above, for α = 0.9 and α = 0.95, the Lee and Gang method requires approximately

the same number of BSs as the CPLEX solver does, but requires about three orders of

magnitude fewer computations. The method, however, must evaluate all the requirements at

each iteration every time a BS is either added or dropped. The evaluation process consumes

additional computational time and increases the algorithm complexity. To further reduce the

complexity, the Amaldi design method bypass the evaluation by converting the requirement

into one of the cost components in the objective function Cf [1]. If ui represents the traffic

demand at point i and ci is the BS cost, then

Cf =
∑

i

ui −
ct
m
× {# of activated BSs} (2.7)

18

where m is the total number of random candidate sites. By maximizing Cf , it is equiv-

alent to maximizing the coverage and at the same time minimizing the BS cost. Amaldi

also focuses on ensuring that the network must meet either the target power level or the

SIR level (at BSs). Solving for the solutions starts by forming an empty set and iteratively

adding a BS producing the largest Cf until the addition of a new BS no longer increases Cf .

Any demand points causing excessive interference are removed from the objective function

Cf . Similar to the Lee and Gang design, the Amaldi design also employs TS to further

maximize Cf , but in addition to the drop and add moves, a swap move is also defined (a

combination of both the drop and add moves) [1]. The method deliberately assigns higher

priority to sites relatively close to each other in order to reduce the possible number of swap

moves. For small problem instances (number of demand points n = 95, number of candi-

date sites m = 22 in 400 x 400 m2), the resulting solutions are comparable to the optimal

solution from CPLEX in number of activated BSs. However, for large problem instances

(n = 750,m = 200, in 1.5 x 1.5 km2), the solution from the Amaldi method may not always

satisfy the traffic demand since total BS cost may outweigh the coverage cost (the algorithm

is prone to sacrifice the traffic portion in order to maximize the overall objective function Cf).

The Amaldi method assumes that each BS is equipped with antennas transmitting at con-

stant gain and power [1]. However, allowing BSs to have flexible coverage may be advan-

tageous when both geographical areas and land usages are diverse (e.g., rural, suburban,

urban). In the Hao design method, the total cost of BS is assumed to be a linear function

of the antenna gain, the transmit power, and the hardware and installation cost. The entire

design area is divided into equal grids, and the seven-cell frequency-reuse pattern is used

[27]. The first phase of the Hao design estimates the upper-bound number of BSs and their

radiuses to provide full traffic coverage. The second phase employs SA to minimize the

composite cost function Cf , which is now defined as

Cf = # of activated BSk × Ck + traffic violation (2.8)

where Ck is the total cost of activating BSk. The last phase involves frequency assignment to

reduce the interference. The SA process randomly reassigns traffic in each grid to different

19

BSs to minimize Cf at each temperature tk. The new configuration is accepted if the updated

cost C ′
f is better than the current cost Cf or alternatively if

e(C
′
f−Cf)/tk > random[0, 1] (2.9)

In the example network with a total number of 100 traffic grids; traffic density in each point

ranges from 150 - 200 users/hour, the Hao design reduces the number of BSs in the first

phase from 20 to 14. However, similar to the Amaldi design, the total BS cost may dominate

the objective function, and only a small portion of traffic can be covered. Furthermore, the

advantage of flexible BS coverage is offset by fixing the cell pattern, and more than that the

method must loop back to the first phase if excessive interference still persists.

2.4 INTERFERENCE OBJECTIVE

Signal quality is a measure of the receiver’s likelihood to extract the desired signal from

both interfering signals and noise. Excessive interference by sharing either the same fre-

quency channel or the entire spectrum may prevent the receiver to demodulate and recover

the intended signals, thereby reducing the throughput and capacity [39]. Interference level is

critical in a system where extensive frequency reuse is inevitable such as WLANs or picocell

TDMAs. In such systems, the design feasibility is tied to the interference level it produces.

Neither the coverage- nor capacity-based design considers interference, and therefore is not

suitable. Minimizing cost is still mandatory for outdoor environments, but minimizing in-

terference is also necessary because poor frequency assignment may still cause unacceptable

interference level. Several design methods discussed earlier such as Tutschku’s and Hao’s

delay the frequency assignment procedure until the main objective is reached [25], [27]. As

a result, interference is not fully minimized, and feasibility is uncertain.

On the contrary, the Weicker design method weights equally both minimizing the BS cost

and interference for TDMA systems [28]. The BS cost is assumed to be a linear function of

the transmit power and capacity. The Weicker method treats interference as the number of

20

BSs encountering either the adjacent- or co-channel interference. Adjacent-channel interfer-

ence is a result from partial bandwidth overlap among users in a cell. Whereas, co-channel

interference occurs when users in the coverage overlap between two neighboring cells are

assigned the same channel. Similar to the Lee design [38], a feasible solution (individual I)

is a set of BSs located among grid points satisfying the traffic requirement. However, in the

Weicker method, one feasible solution may require fewer BSs but produce higher interference

than the others and vice versa. The solutions that dominate the others (dominating indi-

viduals) must have both the BS cost and interference less than the dominated individuals.

is dominated

f1 (cost)

dominates

Pareto Front
(nondominated set)

f2

(interference)

new

worst

Figure 2.5: Cost and Interference of each individual, the darker shade illustrates a set of individuals
that dominate the new individual. The lighter shade indicates a set of individuals dominated by
the new individual. Dotted-line connects the best individuals known as — the Pareto front

As shown in figure 2.5, the Weicker design objective is to prune out a set of non-domimated

individuals — the Pareto front. GA is used to improve the Pareto front at each iteration

by creating new individuals from a current pool of existing individuals (population). Each

individual is evaluated by the fitness value, which is defined as

f(I) = |individuals dominating I| × Popsize+ |individuals dominated by I| (2.10)

21

At each iteration, the population is randomly divided into groups of individuals. Each group

selects the best individual as its parent to create new individuals by applying either the

permutation or the recombination process [28]. Here, the permutation process adjusts cell

capacity, transmit power, also adds and removes BSs. The recombination process decom-

poses the service area of one individual into two halves and recombines them to produce

a new individual. The worst individual (highest fitness value) of a group is eliminated (as

shown in figure 2.5). Weicker demonstrates that the best Pareto front occurs when the prob-

ability of permutation and recombination are 0.6 and 0.4 respectively [28].

The Weicker method emphasizes on reducing interference and minimizing the BS cost for

outdoor environments (i.e., cellular TDMA systems). However, for indoor environments, the

circumstances are different. Since the unit cost of Access Points (APs) can be neglected,

minimizing the cost or equivalently the number of required APs may no longer be necessary.

Unfortunately, the 802.11 WLAN has only three non-overlapping frequencies, and if the

design approach is still based on the cost-objective, considerable interference may reduce

the total network throughput, and the resulting design may not be feasible. Minimizing

interference is therefore the first priority for several WLAN designs. As examples, the Hills

design method focuses on minimizing interference while maximizing the coverage on a campus

scale network (i.e., entire Carnegie Mellon University campus covering 65 buildings with 3

million ft2 [29]). Hills proposes the linear array and rectangular array layouts for initial

AP placement [29]. The linear array is employed when a floor span is smaller than the AP

coverage radius, or otherwise the rectangular array is employed instead.

22

D

D’

D’

Figure 2.6: Rectangular array of APs in a multi-floor building, a solid circle represents the
coverage area within the same floor, and a dotted circle is for the coverage area of the adjacent
floor. The coverage diameter D and D′ are shown respectively

After intialization, AP locations are further adjusted using feedback from the signal strength

measurement to maximize the coverage. To minimize interference, higher density areas are

given higher priority for frequency assignment than lower density areas, and the coverage map

is used to avoid frequency overlapping. The Hills design is effective and fast for creating a

start-up, coverage-based WLAN network, however the design does not consider the data rate

requirement, and therefore may not have sufficient capacity to support a wide range data rate

demand from various users. As observed by the Prommak design method, the correlation

level between the number of users and traffic activities over the AP varies in accordance

with the building usage space [3]. In the Prommak design approach, the traffic pattern is

classified into two categories according to its data rate and activity level: Private sub-area

and Public sub-area. Users in the private sub-areas such as graduate student offices and dorm

rooms usually demand high data rates and maintain continuous activity, where in the public

sub-areas such as classrooms, auditoriums, and cafeterias with irregularly scheduled usage,

the data rate demand is lower and the activity level is sporadic. The Prommak method

employs both SA and TS at different phases of the design. SA is used to produce frequency

assignments that minimize interference, while TS is incorporated to reduce violations in

23

both the data rate demand and signal coverage by adjusting the AP locations and power

levels. The method was tested on three different networks: the fourth floor of SIS building

(SIS4), multi-floor SIS building, and the Hillman library (HL1), University of Pittsburgh.

Compared with the exhaustive search of all possible grid locations (according to Prommak

[3], the search space is as large as 98,611,128 combinations of AP location and power in

the SIS4 case), TS is able to reduce the search time from 546 to 0.33 seconds for the SIS4

network and in the HL1 network from 10,239 to 84 seconds [3]. These results earn the

Prommak method one the best candidates for WLAN designs. However, since the AP cost

is not involved in the process, neither the Prommak or the Hills method is practical for the

outdoor designs in which the BS cost must be minimized.

2.5 SUMMARY

Wireless network designs can be classified according to their objectives: Coverage, Capacity,

Cost, and Interference. The coverage-based design is suitable in low user-density environ-

ments for which coverage is the minimum requirement. The capacity objective is effective

when higher traffic concentration is present, but on the condition that cost is not a factor.

The cost-objective is appropriate for outdoor designs where minimizing cost is necessary. The

interference objective is more appealing for WLAN designs since minimizing interference is

more important than maximizing either the coverage or capacity. Most design methods dis-

cussed here incorporate various optimization techniques such as SA, TS, and GA to reduce

the computation time. However, none focuses on reducing the computational requirement

directly by minimizing the number of candidate locations for placing BSs or Test Points

(TPs). In determining TPs, all the existing design methods discussed in this paper settle on

a fix number of grid points [25], [28], [3], [30], [2], [35], or occasionally on random points [1],

but do not know if the optimal solution is included or not. Despite of its simplicity, working

over the entire grid points may add extra complexity to the design, and the computational

requirement may increase unnecessarily.

24

3.0 PATH LOSS MODELS

Wireless signals suffer attenuation caused by reflection, diffraction, and scattering from the

surrounding environment. Signal attenuation between the transmitter and the receiver is

referred to as a path loss. In the presence of noise (e.g, thermal), the transmitter must

transmit at sufficiently high power to compensate for the path loss so that the receiver can

receive and demodulate the intended signal correctly. Generally, path loss is a function of

both the signal frequency and the distance between two communication entities. However,

factors such as buildings, streets, and moving objects also largely affect the path loss char-

acteristic as well. Effective network designs require accurate path loss models to predict the

signal coverage without actual measurement (i.e. drive test). However, one given path loss

model may be appropriate for one particular environment type, but may not be suitable for

the others. Models such as the log normal, the two ray, and Okumura-Hata have been proved

to accurately predict the path loss in cellular network environments, while the ray-tracing

technique has gained a growing interest among researchers to provide higher precision and

scalability, at the expense of increased computation. The next section explains these models

in more details.

3.1 LOG NORMAL MODEL

For a relatively flat area, the path loss Pij (in dB) between useri and BSj increases mono-

tonically as a function of the separation distance rij:

Pij = P0 + 10α log10 rij, (3.1)

25

where P0 is the path loss at 1 m, and α is the path loss exponent. The α value typically

ranges from 2 (for free space) to 6 (for heavily built-up areas due to extra attenuation

from buildings). Path loss in (3.1) is an average value observed over a long period of time.

However, the actual path loss fluctuates due to reflection, refraction, and scattering from

moving objects, buildings, mountains etc. Generally, the fluctuation in path loss (shadow

fading) is modeled as a log-normal random variable ζ with zero mean and standard deviation

σ, then

Pij = P0 + 10α log10 rij + ζj, (3.2)

where ζj represents a shadowing loss of BSj. For cellular networks, shadowing losses between

two different BSs and a given user are correlated. To account for this correlation, Viterbi

[40] assumes that ζj is composed of the near field component (ξ) common to all BSs and the

component belonging to a given BSj (ξj), in which

ζj = aξ + bξj, a
2 + b2 = 1, (3.3)

E {ξξj} = E {ξjξj′} = 0, ∀j 6= j′ (3.4)

where a and b are the propagation specific constants. ξ, ξj, ξj′ variables are also log-normal

distributed with the same mean and standard deviation as ζj. Experiments show that the

path loss exponent α ≈ 4, the shadowing loss standard deviation σ ≈ 8, and the constant

a = b = 1/2 are effective and accurate for most open area scenarios [40].

3.2 TWO RAY MODEL

Path loss (in dB) from the log-normal model above increases linearly as a function of distance.

However, in microcell environments where the BS radius is usually less than 1 km., users

located near the BS are likely to receive the signal directly without interference from the

ground-reflected wave, and therefore path loss is less severe (i.e., smaller path loss exponent

α). According to the two ray model, a break point is the distance where the ground reflected

26

wave becomes out of phase relative to the direct wave, resulting in the destructive sum and

a considerably higher path loss exponent. Before the break point distance, the path loss

exponent n1 is approximately 2 as a result from free space propagation mechanism, after the

break point greater path loss exponent n2 between 2 and 7 is observed [36]. The break point

distance df is a function of frequency 1/λ, the receiver antenna height hm, and transmitter

antenna height hb,

df =
1

λ

√
(Σ2 + ∆2)2 − 2(Σ2 + ∆2)(

1

λ
)2 + (

1

λ
)4, (3.5)

where Σ = hb + hm and ∆ = hb − hm. Figure 3.1 illustrates the two ray model path loss as

a function of distances.

100 101 102 103 104
!130

!120

!110

!100

!90

!80

!70

!60

!50

!40

!30

distance (m)

pa
th

 lo
ss

 (d
B)

n1 = 2

n2 = 4

distance ! 189 m.

path loss ! 77 dB

break point distance

@ 900 MHz

hb = 5 m.
hm = 1.5 m.

Figure 3.1: Two slope propagation path loss at 900 MHz. X axis represents the distance between
the transmitter and the receiver. The transmitter height hb and the receiver height hm are = 5m
and 1.5m respectively. The break point distance is ≈ 189 m.

The path loss is then a function of the break point distance which is expressed as:

Pij = P0 + ζj +

 10n1 log10(rij), rij ≤ df

10n2 log10(rij/df) + 10n1 log10 df , rij > df

(3.6)

27

The two ray model can be relatively simple and accurate when applied to the microcell

networks with LOS propagation — i.e, urban areas with BSs located along the street grid

intersections. As an example, Alejandro [34] applied the two ray model to calculate the ratio

between the maximum BS radius and the break point distance that maximizes the capacity.

3.3 OKUMURA-HATA MODEL

For macrocell networks, where the BS radius usually ranges between 1 to 20 km., man-

made structures — such as cluster of buildings, street orientations, and highways — also

greatly influence radio propagation and the path loss. Attenuation from city infrastructures

is included as the initial loss irrespective of the distance, and the subsequent path loss follows

a simple log-normal model formula. Okumura & Hata [41] conducted a series of experiments

to determine the initial loss and the path loss exponent as a function of signal frequency for

various city sizes based on the empirical field measurement data. In general, for a carrier

frequency fc (MHz), the path loss is expressed as:

Pij = 69.55+26.16 log10 fc−13.82 log10 hb−a(hm)+(44.9−6.55 log10 hb) log10 rij +ζj, (3.7)

where a(hm) represents the effective receiver height. For small or medium cities,

a(hm) = (1.1 log10 fc − 0.7)hm − (1.56 log10 fc − 0.8),

1 ≤ hm ≤ 10 m, 150 ≤ fc ≤ 1500 MHz. (3.8)

Alternatively, for large cities,

a(hm) =

 8.29(log10 1.54hm)2 − 1.1, fc ≤ 200MHz

3.2(log10 11.75hm)2 − 4.97, fc ≥ 400MHz
(3.9)

The first two terms in (3.10) account for the average path loss at 1 km. The last term

accounts for additional loss as a function of distances, and the path loss exponent ranges

from 3 - 3.5, depending on the carrier frequency. The Okumura-Hata model is accurate

28

in frequency band ranging from 150 - 1500 MHz [41] . To account for additional losses at

higher frequencies, the COST 231 model extended the Okumura-Hata model aiming for PCS

applications (fc = 1.5 - 2.0 GHz), and the resulting path loss formula changes to:

Pij = 46.3+33.9 log10 fc−13.82 log10 hb−a(hm)+(44.9−6.55 log10 hb) log10 rij+C+ζj, (3.10)

where C is the environment correction factor. C = 0 dB for medium cities and suburban

areas, and C = 3 dB for metropolitan centers.

3.4 ATTENUATION FACTOR MODEL

Both the two-ray and Okumara-Hata models are designed for outdoor environments where

path loss is mostly the result from large object reflectors and scatterers such as buildings,

and streets. However, the path loss mechanism is different when signal propagates inside

the building. There, the radio signal is likely to penetrate through several walls and floors

before reaching at the receiver as shown in figure 3.2. The signal loses its energy each time it

encounters the obstructions (i.e, partitions), resulting in larger path loss per distance trav-

eled. To account for these losses, the attenuation factor model accounts for each obstruction

with different attenuation values ranging from 1−5 dB for soft partitions, and 5−20 dB for

hard partitions [42]. The path loss is calculated by summing up the attenuation factor from

different types of floors and walls standing between a virtual straight line connecting the

transmitter and the receiver. If kfi′ and kwi′ are the number of floor type i′ and the number

of wall type j′, Lfi′ and Lwj′ are the attenuation factors respectively, then the path loss is

Pij = P0 + 10n log rij +
∑

i′

kfi′Lfi′ +
∑
ij

kwj′Lwj′ (3.11)

As shown in figure 3.2, there are three types of walls between the receiver i and transmitter

j: a cubicle, a brick wall, and two wood walls, resulting in

Pij = P0 + 10n log rij + Lw1 + Lw2 + 2Lw3 (3.12)

29

recevier i

transmitter j

cubicle: Lw1

brick: Lw2

wood: Lw3

rij

Figure 3.2: Attenuation Factors of Wall Types

Accuracy of the attenuation factor model relies on estimation of loss characteristic of various

building materials. Some estimation data is difficult to obtain in places like elevator shaft,

requiring further measurement and calibration. The attenuation factor model is used in the

Prommak design method [3].

3.5 RAY TRACING TECHNIQUE

Path loss models discussed so far are based on approximations, ignoring specific details

of surrounding environments (e.g, building facets, street corners, etc). Ray tracing is a

technique adapted from the image rendering method in computer graphics to improve the

path loss accuracy and to provide scalability for any site specific calculation. The ray tracing

technique replaces electromagnetic field radiation by using infinitesimally small tubes called

“rays”. In ray tracing, rays always travel in straight lines, and only direct, reflected and

refracted rays are considered. Building and terrain surfaces are represented by the polygonal

plane facets (e.g, building walls with a four-sided facets, ground with a single facet) and are

stored as vectors (e.g, Cartesian coordinate in a database [43]).

30

The ray tracing technique has two popular implementation methods: imaging method and

ray-shooting method. The imaging method constructs a reflected ray from a virtual source

point or an image behind the reflecting panel. The first order image then becomes a virtual

source point for the second order image and its corresponding reflected ray, and so on until

the ray bounces off with the maximum number of reflections. The resulting images are

tied with the building layouts and the original source location, not the receiver position.

Images are stored in a tree-liked database according to their order of being the virtual source

point as shown in figure 3.3 [44]. The image is invisible if its reflecting point is not in the

illuminating zone of the next lower order image (i.e, obstructed by other objects). Invisible

images is prohibited to form the virtual source point and are deleted from the database.

Checking the image visibility is difficult and requires complex computations [44]. Therefore,

the imaging method is suitable in scenarios where only a few dominant reflectors are present

(e.g., microcell networks). Figure 3.3 illustrates the imaging method.

Source
Destination

Reflecting Panel A

Reflecting Panel B

SAB - 2nd order virtual source

SA - 1st order virtual source

Figure 3.3: Ray Tracing - Imaging Method with the two reflecting panels (A, B) and their virtual
sources SA and SAB respectively (maximum number of reflections = 2).

Alternatively, another approach to implement the ray tracing technique sends out a pin

cushion of rays from the single point source, covering all directions in space — the ray

31

shooting method. Ray paths are traced until they intersect a sphere of radius R, which is

centered at the receiver point. An oversized reception sphere may receive the same ray path

twice, while an undersized reception sphere may not receive any ray at all [45]. To correctly

receive rays, the size of the reception sphere must be

R = αd/
√

3, (3.13)

where α is the angular separation between two adjacent rays at the source, d is the total

path length from the transmitter to the receiver [45]. Figure 3.4 shows the reception sphere

of the ray shooting method.

Adjacent ray

Correct Sphere

Oversized Sphere

Transmitter

Receiver

Test ray

Undersized Sphere

Adjacent ray

Effective distance ! d

α

α

Figure 3.4: Ray Tracing - Ray Shooting Method showing a correct, oversized, and undersized
reception spheres with ray launching angle = α.

Unlike the imaging method, the ray shooting method simply traces each ray path and de-

termines whether it intersects the reception sphere or not. The number of reflectors are less

likely to affect the computation requirement compared to the imaging method. Thus, the

ray shooting method is more favorable when applying to areas with many irregular reflectors

such as the indoor environment [46]. However, since a large number of ray paths must be

traced to obtain the accurate result, the ray shooting method often requires longer execution

time [44]. Nonetheless, the accuracy of both the imaging and ray shooting methods depends

32

heavily on details of the site specific layout and the choice of its electrical properties (e.g,

reflection and refraction parameters).

Path loss models are important for wireless network designs. Accurate path loss calculation

improves the design result and eliminates the need for further calibration. The log-normal

model is simple but only accurate when applying to open areas. The two-ray model is the

extension of the log-normal model and is suitable in the LOS microcell environments. Unlike

the log-normal and the two ray models, both the Okumura-Hata and the COST 231 models

are derived from the empirical data and are suitable for large cell size covering areas upto

20 km in radius. Lastly, to further improve the accuracy, one may apply the ray tracing

technique, but must concern with the tradeoffs for increasing computational requirement

and difficulty in preparing input data.

33

4.0 OPTIMIZATION HEURISTICS

The BS placement problem is known to be NP-hard (Non-deterministic Polynomial-time

hard) [1]. The computational requirement for solving the problem grows exponentially as

the problem size increases [3] (i.e, increasing number of BSs). As illustrated in the Prommak

WLAN design, one example problem requires approximately ≈ 1019 searches to locate the

optimal placement of 6 BSs [3]. Thus, employing the exhaustive search technique may

not be effective and converge to the optimal solution may not be achieved in a reasonable

time period when dealing with large size problems. To facilitate the search and to reduce

the computational time, optimization heuristics such as Simulated Annealing (SA), Tabu

Search (TS), and Genetic Algorithm (GA) were applied with different degrees of complexity

and effectiveness — depending on the problem structure. As examples, The Anderson &

McGeehan design used SA to determine the optimal BS locations to achieve the maximum

coverage [2]. The Lee and Gang design employed TS to minimize the number of BSs in

CDMA systems [38], while the Weicker design applied GA to minimize both the number of

BSs and signal interference simultaneously [28]. Results from the Amaldi design [1], the Akl

design [26], and the Lee and Gang design [38] are validated by comparing with the results

from the IP branch and bound algorithm. The following sections further explains these

heuristics.

34

4.1 SIMULATED ANNEALING

Simulated Annealing (SA) heuristic was proposed by Kirkpatrick [47] as a meta-algorithm.

The problem with simple search heuristics such as the hill climbing method is that, the

search always proceeds toward a better solution, consequently the search is bounded and

likely to get caught in local optima. SA avoids being trapped in local optima by guiding

the search to explore other regions of the search space more thoroughly. The logical idea of

SA is similar to a metallic annealing process in which the heat allows atoms to escape from

a defecting formation (local optima), and a proper cooling stage creates a perfect resulting

crystal. SA imitates the same idea by accepting moves that produce inferior solutions with

some probabilities, increasing the opportunity for the search to find better solutions in other

regions. The choice of neighborhood solutions (candidate solutions) is flexible. As an exam-

ple, the neighborhood solution in TSP (Traveling Saleman Problem) is created by swapping

a pair of adjacent cities in the current tour, but can be to any pair of arbitrarily random

cities as well. The transition probability is a function of the annealing temperature. If C(s)

represents the solution merit (cost), s and s′ are the current solution and neighborhood so-

lution respectively, the classic transition probability with respect to the temperature Tk at

iteration kth is

Pr[accept s′] = Pr[e−(C(s′)−C(s))/Tk > random(0,1)]. (4.1)

Initially, the temperature is set to a high value (T0), allowing high transition probability, but

continues to decrease until reaching zero, then the algorithm stops. The annealing schedule

is usually set as:

Tk = αTk−1, (4.2)

where α is a constant. The pseudo-code to implement SA is described below:

35

Simple Simulated Annealing
s = initial solution;
k = 0; i = 0;
while Tk > Tmin do

while i < imax do
s′ = new neighbor solution of s;
if C(s′) < C(s) or e−(C(s′)−C(s))/Tk > random(0,1)

s = s′; (accept a new neighborhood solution)
i = i + 1;

done;
k = k + 1;
Tk = αTk−1;

done;

imax is the maximum number of iterations at each temperature Tk, where Tmin ≈ 0 is the

final temperature. The neighborhood solution structure, the transition probability, the an-

nealing schedule are subject to different implementations. There are no specific general rule

of thumps for any given problem. As examples, the Prommak method for WLAN designs

employed SA to minimize interference caused by frequency assignments, however the Prom-

mak’s SA approach decreases imax inversely proportional to Tk (normally imax is constant)

[3]. On the other hand (as discussed in the previous chapter), the annealing schedule in the

Lee design method for TDMA networks is an exponential function of the previous temper-

ature Tk−1, not a linear function. Choosing the right parameters for any given problem is

thus critical to the algorithm effectiveness and its convergence property.

4.2 TABU SEARCH

Similar to SA, a Tabu Search (TS) heuristic is also classified as a meta-algorithm that can

incorporate, modify, and guide any local search strategy to reaches other regions containing

better solutions — not trapped in local optima. TS was introduced by Glover and Laguna

[48] to solve a variety of combinatorial optimization problems ranging from job scheduling,

telecommunications network design, to general mixed integer programming. Unlike SA, TS

relies heavily on the use of memory to deviate the search to explore other regions, which

may be more interesting, and to eventually escape from local optima (compared to the

probabilistic-based approach in SA). There are two types of memories used in TS: short

36

term and longer term memories. The short term memory (often in attributive forms —

e.g, move attributes) records a move made previously, and classifies this move as tabu for

some number of iterations (can be either static or dynamic). This tabu status prevents

solution recycling and helps propelling the search to escape from local optima. On the

other hand, the longer term memory (often in explicit forms — e.g, some elite solutions)

maintains parts of the solution properties (or completed solutions) previously visited and

exploits information gathered to diversify the search to unexplored regions — diversification

strategy, or to intensify the search to create a new solution by combining and incorporating

good attributes of the recorded elite solutions — intensification strategy. The neighborhood

structure of the current solution s — N (s), can vary in many forms. Normally, a candidate

list strategy (e.g, specify a threshold for move quality) is used to reduce the number of

neighborhood solution evaluations. A pseudo to implement TS is described as follows:

Simple Tabu Search
s = initial solution; i = 0;
while i < imax do

if all moves s → s′,∀s′ ∈ N (s) are tabu
s = s′ ∈ N (s) with a move that is least tabu;

else
s = optimum[s′ : ∀s′ ∈ N (s) with non-tabu moves];

end;
a move made becomes tabu for tabu tenure iterations;
i = 1 + 1;

done;

As shown above, if all moves to s′ ∈ N (s) are tabu, TS invokes all tabu status of the least

tabu move and selects the move accordingly — aspiration by default. In fact, TS requires

more problem specific knowledge than SA in order to exploit the short term (e.g, tabu tenure,

candidate list) and longer term memories (intensification and diversification) effectively. The

neighborhood structure N (s), tabu classification, aspiration criteria, etc., can be adjusted

and calibrated to fit the context of a particular problem. As examples when TS is applied to

solve the BS placement problem, the Lee and Gang design method created N (s) by dropping

a BS from or adding a new BS to the current solution s, while the Prommak design method

formed N (s) by adjusting both the BS location and power. The Prommak method also

includes an aspiration criteria that forgives any tabu moves yielding the best solution.

37

4.3 GENETIC ALGORITHM

A Genetic Algorithm (GA) heuristic also falls into a class of meta-algorithms similar to SA

and TS. However, GA works differently by mimicking a biological evolution in nature to solve

NP-Hard combinatorial problems. Similar to biological processes, GA employs evolutionary

operators such as natural selection, mutation, and crossover (or recombination) to produce

a new set of feasible solutions (population) in each iteration (generation). The natural

selection process chooses a pool of individuals (solutions) either to represent as a group of

parent individuals of the next generation based on the fitness value. Evaluating the fitness is

problem specific and is critical to the algorithm convergence property (i.e, if handled poorly,

it is likely that the algorithm will converge to local optima [49]). The mutation process

is used to modify certain properties or attributes of parent individuals to create a new

offspring, while the crossover process combines parts of both parent individuals to produce

a new individual. GA invokes either the mutation or the crossover process randomly with

some probabilities (e.g, the Weicker design method in the last chapter used 0.6 and 0.4 for

mutation and crossover probabilities respectively). In summary, the pseudo algorithm to

implement GA is described as follows:

Simple Genetic Algorithm
create a set of feasible solutions --- first generation population;
i = 0;
while i < imax do

- evaluate each individual fitness in the entire (or parts of) population;
- select the best individuals as the candidate parents according to the fitness;
- randomly crossover a pair of parent individuals with some probabilities;
- randomly mutate parent individuals;
i = i + 1;

done;

where imax is the maximum number of generations created. GA implicitly inherits unstruc-

tured form memory similar to TS (partially structural) through its evolutionary processes

(compared to memoryless SA). Similar to TS (e.g., tabu attributes), the randomized mem-

ory operations (mutation and crossover) help GA to escape from local optima, generations

after generations (regions after regions), in which the surviving generation contains the best

individuals (which is approximated to be the global optimal solution).

38

In conclusion, SA, TS, and GA are among the best candidate heuristics for solving NP-

Hard problems. Their applications are very board, covering many areas of interests from

operation research designs to telecommunications network plannings. The common objective

of these heuristics is to locate the global optimal solution in a reasonable time period, using

various forms of techniques to escape from local optima: probabilistic-based in SA, tabu

attributes in TS, and evolutionary processes in GA. Successful implementation of these

heuristics requires careful parameter calibration (e.g, annealing schedule in SA, tabu tenure

value in TS, crossover and mutation probabilities in GA) to match specific contexts of the

problem structure. Results (i.e., BS placement) from SA, TS, or GA are often verified and

compared with the optimal result from the branch and bound algorithm, described next.

4.4 BRANCH AND BOUND ALGORITHM

The branch and bound algorithm is a general search method widely used to solve mixed-

interger NP-Hard problems [50]. The algorithm searches the entire space by recursively

dividing the space into smaller subspaces (branching) until the optimal solution is found.

Each subspace can be considered a node of the branch and bound tree, where the terminating

node is reached when a certain condition or a threshold is met. However, not all subspaces

are generated or searched. The algorithm limits (bounding) the number of subspaces or

nodes by discarding the subspace which is infeasible and the subspace that can not produce

the optimal solution (compared to the current best solution). In general, the branch and

bound algorithm consists of three steps: selection of the subspace to process, calculating

the bound, and branching. Figure 4.1 shows the example tree of subspaces created by the

branch and bound algorithm.

39

Space - S

1(1)

discarded

terminating node
(certain condition is met)

Sub-Space - S1 S2 S3 S4

 S11 S12 S21 S31 S32 S41

 S11...

infeasible
solution

.

.

.

 S12...

discarded

does not contain
the optimal solution

.

.

.
discarded

.

.

.

.

.

.

discarded

optimal
solution

 S31... S41...

2(5)

3(11)

4(15)

5(16)

6(20)

7(6) 11(7)

10(2)

13(8)

12(3)

14(13)

15(18)

16(19)

17(9)

18(4)

19(10)

20(14)

discarded

8(6)

9(17)

.

.

.

.

.

. discarded

Figure 4.1: Tree of Subspaces. Each node except the root represents a subspace — red (infeasible
subspace), yellow (subspace not containing the optimal solution), grey (a threshold or a condition is met),
and green (optimal solution subspace).

Two strategies of subspace selection are also illustrated in figure 4.1 above: Depth First

Search (DFS) and Breadth First Search (BFS). The sequence of DFS is marked by the first

number in the middle of each branch, whereas the number in the parenthesis shows the

sequence of BFS. As implied by the name, DFS traverses down the tree to the deepest level

node as possible before backtracking. On the other hand, BFS keeps extending the search

on the horizontal direction of the tree, in which all neighboring nodes at the same level are

explored from left to right before traversing down to the node on the next level. DFS is

flexible to implement through the use recursion and requires memory at most equal to the

the maximum number of levels of the search tree multiplied by the maximum number of

children of any node. The only disadvantage of DFS is that, if the optimal solution node is

40

located on the other end of the tree, DFS has to traverse all the nodes of all levels before

reaching the optimal node. BFS, however, has only to traverse all the nodes to the level

until the optimal node is found. Unfortunately, in terms of memory requirement or space

complexity, BFS needs to keep memory of all the nodes traversed, therefore BFS works well

only for narrow and deep trees, but not suitable and may be impractical for large trees. On

the other hand, DFS works well for broad and shallow trees. Nevertheless, both BFS and

DFS are not efficient when trees are broad and deep.

41

5.0 TEST POINT REDUCTION

The problem of locating the minimum number of Base Station (BSs) to provide sufficient

signal coverage and to satisfy user demand, is often formulated in a manner that results

in a mixed-integer NP-Hard (Non-Deterministic Polynomial-time Hard) problem. Solving

a large size NP-hard problem (e.g., multiple BSs required) usually consumes time since

the search space always increases exponentially with the problem size. Several well-known

heuristics such as Simulated Annealing (SA), Tabu Search (TS), and Genetic Algorithm

(GA) are incorporated to effectively solve the problem (as already discussed in chapter

2). However, implementing whether SA, TS or GA is not straightforward and is problem

specific. Furthermore, convergence to the optimal solution, in most cases is sensitive to

one or more parameters of the heuristics; a slight change in one parameter may produce

unexpected results and optimal solutions are not guaranteed. Regardless of the heuristic

used, convergence time always increases with the size of search space S. Search space, in

the context of BS placement, is a collection of all solutions both feasible and infeasible; each

solution may contain one or more BSs selected from a set of candidate locations or Test

Points (TPs). The required number of TPs N ensuring optimal solutions, as later discussed,

increases proportionally with the number of users and the size of service area. Since the size

of search space S is an exponential function of N , S can grow very large when N increases,

and in some cases so large that even with the fastest heuristic may never find the optimal

solution in a reasonable time period. This chapter presents a method to reduce the number

of TPs by employing the sweep and merge algorithm. The resulting number of TPs are

substantially less than N , while optimal solutions are still maintained.

42

5.1 DEMAND NODE CONCEPT

Determining N and S requires information on both user distribution and design topology

(service area). User distribution is often random in nature and hard to predict. Mobile

users is assumed to be constantly moving and generating different types of traffic patterns

based on applications they are running (i.e., voice call, web browsing, downloading, etc).

As a consequence, it becomes virtually impossible to statically locate BSs and their fixed

resources (i.e., bandwidth) to fully satisfy traffics from moving users, switching on and off

different kinds of applications from time to time. However, it can be assumed that as one

user departs an area, on average another user enters the area and demand remains constant.

To relieve network designers from dealing with the complexity of traffic estimation, the

demand node concept is introduced [25]. Demand node was previously used in network

design methods such as the Prommak WLAN design [3], the Tutschku TDMA design [25],

and the Almaldi CDMA design [1]. Employing the demand node not only accounts for user

mobility, call behavior, and traffic distribution from both geographical and demographical

variations, but also simplifies the design process substantially (section 7.3). The demand

nodes are generated by discretizing the traffic load into points, where each point represents

the center of an area containing a quantum of demand (e.g., a fixed number of call requests

per time unit). To add granularity, the entire service area is replaced by a collection of

∆x×∆y unit area elements. The traffic intensity λ(x, y, t) (i.e., number of call attempts per

unit time) in each unit area at time t is a function of user mobility or location probability

Pl(x, y, t), and the call arrival probability Pa(t):

λ(x, y, t) =

∫ x+∆x

x

∫ y+∆y

x

Pl(x
′, y′, t)dx′dy′Pa(t) (calls) (5.1)

To estimate the location probability Pl(x, y, t), network designers need to model user move-

ment. User mobility models such as a Markovian model can be used. The model assumes a

random walk for each individual movement (with a transition probability and actual human

movement) to compute for Pl(x, y, t). If A(x, y, t) is the offered traffic at time t then1,

A(x, y, t) = λ(x, y, t)×mean call duration (Erlangs) (5.2)

1Network designers may omit the temporal variation t by considering only the busy hour traffic.

43

After determining the traffic load in each unit area, demand node are generated by recur-

sively bisectioning the design area into two rectangles containing equal amounts of traffic

load until the traffic of every tessellation piece falls below a threshold. The following pseudo

algorithm summarizes the demand node generating function:

Demand Node Generating Function
void dnode(area){

if traffic in area < threshold
return;

else
turn partitioning line 90 degrees;
dnode(left area);
dnode(right area);

}

The resulting demand nodes are dense in areas with high traffic intensity and sparse in

low traffic intensity areas. For a given design area of dimensions XY , if the demand node

generating function produces M demand nodes, define

mk = demand node kth, k ∈ {1, . . . ,M} (5.3)

where mk is located at Xk, Yk, in which

0 ≤ Xk ≤ X and 0 ≤ Yk ≤ Y, ∀k ∈ {1, . . . ,M} (5.4)

where

Xk = i∆x, and Yk = j∆y, i, j ∈ {1, 2, . . .} (5.5)

and Ak is the demand unit (e.g., in Erlangs, kbps, etc) of demand node mk. Limitations of

the demand nodes are discussed in chapter 8.

44

5.2 SEARCH SPACE SIZE

The size of search space influences both the effectiveness and outcomes of optimization

algorithms. Generally, if N is the total number of TPs, and n∗ is the minimum number

of BSs required, it means that n∗ different BSs can be placed at N different locations, it

is equivalent to pick n∗ different things out of N different things. Thus, the total possible

number of candidate BS placement or the search space size S is

S =

(
N

n∗

)
=
N(N − 1) . . . (N − n∗ − 1)

n∗!
≈ Nn∗ (5.6)

According to (5.6), S increases exponentially as N and n∗ increase and could become very

large. As an example, if N = 100 and n∗ = 5, then the size of search space

S ≈ 1005 = 1010 (5.7)

Depending on the distribution of demand nodes mk, the minimum number of N that always

guarantees the optimal solution may vary. The optimal solution (as later discussed) refers

to any set of minimum number of BSs that can satisfy all the requirements of the network

design (i.e., signal coverage, capacity, etc).

x x x

x x x

x x x

gi−1,j−1 gi−1,j gi−1,j+1

gi,j+1gi,jgi,j−1

gi+1,j−1 gi+1,j gi+1,j+1

∆g

∆g

Figure 5.1: TPs as a matrix of grid points G

45

From (5.6), if TPs are continuous variables, N → ∞ and so does the size of search space

S. However, the continuous space may not be necessary for the optimal solution since the

distribution of demand (according to section 5.1) is always discrete, and therefore may as

well be replaced by a matrix of grid points G as shown in figure 5.1. The total number of

grid points N is a function of the grid spacing ∆g and the size of design area, and if the

design area is assumed to be rectangular with width X and length Y , then

N =

⌊
X

∆g
+ 1

⌋ ⌊
Y

∆g
+ 1

⌋
= NxNy (5.8)

where grid point gi,j ∈ G is located on coordinate [x, y], where

gi,j = [(i− 1)∆g, (j − 1)∆g] (5.9)

G = {gi,j}, ∀i ∈ {1, . . . , Nx}, ∀j ∈ {1, . . . , Ny} (5.10)

Selecting the proper TP grid spacing ∆g is important. Too large ∆g may produce suboptimal

solutions, while too small ∆g may result in too many unnecessary TPs (TPs which are not

part of the optimal solutions). To determine the maximum ∆g (the minimum N) that always

yield(s) the optimal solution(s), consider an arbitrary set of demand nodes in figure 5.2

j∆x

mk : [Xk, Yk, Ak]

mk′ : [Xk′, Yk′, Ak′]

Figure 5.2: A given set of demand nodes. (all the demand nodes are on y = Yk = Yk′ plane)

Suppose that all demand nodes shown in figure 5.2 must be assigned to one BS. Also,

assuming that the BS radius 2

R = (|Xk −Xk′|+ δ)/2 (m) (5.11)

2R represents the maximum distance allowed between a BS and any given demand node, presumably
accounting the BS transmit power, receiver sensitivity, path loss, and fading.

46

where δ is any real number and must be ≥ 0 in order for the solution to exist. Thus, a BS

must be placed at [x, Yk], such that

Xk + |Xk −Xk′|/2− δ/2 ≤ x ≤ Xk + |Xk −Xk′|/2 + δ/2 (5.12)

From (5.5), Xk = i∆x thus

(i+ j)∆x/2− δ/2 ≤ x ≤ (i+ j)∆x/2 + δ/2 (5.13)

Equation (5.13) implies that, for any arbitrary set of demand nodes (i.e., as shown in figure

5.2), there can be many solutions depended on δ. The solution range decreases when δ

decreases, and when δ reaches the lower bound (δ = 0), only one solution exists

x = (i+ j)∆x/2, i, j ∈ {1, 2, . . .} (5.14)

Since x in (5.14) is the only possible solution, i and j are both integer numbers, therefore

the resolution of x or equivalently, the possible TP grid spacing is

i∆g = ∆x/2

∆g = ∆x/(2i), i ∈ {1, 2, . . .} (5.15)

According (5.15), the TP grid spacing ∆g that always satisfies the optimal solutions must

be no larger than half the demand node grid spacing ∆x (for any i). Thus, the minimum

number of grid points required to guarantee the optimal solution are

N =

⌊
2X

∆x
+ 1

⌋ ⌊
2Y

∆y
+ 1

⌋
(5.16)

The resulting number of TPs from equation (5.16) can be quite large. As example, if X =

Y = 1000 and ∆x = ∆y = 10, then

N =

⌊
1000

10/2
+ 1

⌋ ⌊
1000

10/2
+ 1

⌋
= 2012 = 40, 401 (5.17)

However, the space is sparsely populated by solutions [3]. Thus, most TPs are redundant

considering the optimal solution, and therefore can be ignored so that the computational

requirement is reduced. The definition of optimality may differ when network environments

change, and therefore must be discussed first.

47

5.3 DEFINITION OF OPTIMALITY

Optimality, for the BS placement, may refer to various design objectives. The coverage-

maximized objective may be suitable when there are few enough users so that the network

capacity is more than sufficient to support the demand. However, when the number of

users and demand increases, several other requirements may also need to be satisfied. As a

result, depending on the type of environment, the definition of optimality will vary and the

importance of the various objectives will vary as well. In this paper, the design criteria is to

provide ubiquitous signal coverage and guarantee sufficient network capacity to all users (or

demand nodes). The primary objective is then to minimize cost, which is in turn equivalent

to minimizing the number of BSs, while satisfying the coverage, capacity, and interference

requirements. Given a set of N TPs, let

initial set of TPs = {TP1,TP2, . . . ,TPN}

in which

TPn = gin,jn , n = {1, . . . , N}

where gin,jn is a grid point at ((in − 1)∆g, (jn − 1)∆g). Define

bn =

 1 : if a BS is installed at TPn

0 : otherwise
(5.18)

Because wireless network standards are so diverse, in which both the technological aspects

and implemation details can differ substantially (e.g., CDMA2000 vs WiFi), thus the design

requirements may also differ accordingly. As examples, CDMA systems employ universal

frequency reuse and exhibit a soft-capacity characteristic [51]. All users share the same

bandwidth, and each contributes to the total noise seen by the others. The total noise

then fluctuates with the number of users increase or decrease — so does the required SNR.

Consequently, the cell size (the coverage radius) either shrinks or expands as a function of the

number of users active at a given moment (cell-breathing effect) [51]. In comparison, static

resource allocation schemes as implemented in FDMA/TDMA systems (AMPS, GSM, etc),

dedicate part of the bandwidth to a given user for the entire communication session. The

48

maximum number of simultaneous connections between a given BS and its users are limited

by the number of frequency channels or time slots allocated priori (hard capacity). The cell

coverage is fix — bounded by path loss and the receiver ability to extract the intended signal.

In general, whether the coverage is dynamic (CDMA) or static (FDMA/TDMA), still the

SNR level at the receiver must be greater than the minimum target in order to guarantee

error-free delivery and successful demodulation of information content [51].

SNR ≥ target level (5.19)

Generally,

SNR ∝ path loss ∝ dkn = distance between mk and bn

where an appropriate propagation model from chapter 3 may be used to compute the path

loss for a particular type of environment, and R is the effective, maximum BS coverage

radius (accounting for the path loss, fading, and the required target-SIR, then (5.19) can be

rewritten as

dkn =
√

(Xk − (in − 1)∆g)2 + (Yk − (jn − 1)∆g)2 ≤ R (5.20)

If

mkn =

 1 : if demand node mk is assigned to bn

0 : otherwise
(5.21)

Combining (5.20) and (5.21), the coverage requirement can be formulated as

mkn ≤ max [0, dR− dkne]bn, (5.22)
N∑

n=1

mkn = 1, ∀k ∈ {1, . . . ,M} (5.23)

Equation (5.22) ensures that each demand node mk must be within the coverage radius R

of bn to which it is assigned, while (5.23) forces a unique assignment between mk ↔ bn.

Similarly for the capacity requirement, if C represents the maximum capacity that the BS

can support, the capacity requirement is also formulated as

M∑
k=1

mkn ≤ C, ∀n ∈ {1, . . . , N} (5.24)

49

In summary, the optimal solution is achieved when

min
N∑

n=1

bn

subject to mkn ≤ max [0, dR− dkne]bn
N∑

n=1

mkn = 1, ∀k ∈ {1, . . . ,M}

M∑
k=1

mkn ≤ C, ∀n ∈ {1, . . . , N}

(5.25)

(5.25) is in fact the design problem formulation. It is important to note that, in soft handoff

individual user keeps a list of candidate BSs for handoff purposes, however data transmission

only occurs between the user and one active BS, thus the soft handoff in CDMA systems

does not impact the problem formulation in (5.25). In section 7.3, R and C are computed

in such a way that they approximately reflect all the physical properties and requirements

of any given wireless system. Using R in place of a complex link-budget calculation (i.e.,

path loss and SNR) enables flexible implementation of the TP reduction algorithm, while

using a constant C is necessary for the design problem formulation. For TDMA or WLAN

networks, C is pre-allocated (i.e., 11 Mbps for 802.11b) and fixed. However, the capacity in

CDMA systems is soft and subject to current interference level in the cell. Thus, C must

be approximated either by setting the interference threshold and assuming uniform loading

distribution (where C may be overestimated [39]) or by averaging the most probable value

from experimental results [52].

50

5.4 SET COVERAGE COMPARISON

As discussed in section 5.2, the required number of TPs (grid points) guaranteeing the

optimal solution is a function of the demand node distribution and can be quite large.

Section 5.2 also discussed why not all TPs are necessary. For each grid gi,j, let define

zi,j = {mk|
√

(Xk − (i− 1)∆g)2 + (Yk − (j − 1)∆g)2 ≤ R} (5.26)

be a set of demand nodes that are within the coverage radius R from grid gi,j, Consider the

coverage requirement, if

|zi′,j′| < |zi,j| and zi′,j′ ⊂ zi,j (5.27)

for example

m3

m5

m9

R

R

gi,j gi,j+1

Figure 5.3: Set Coverage Example

The set coverage zi,j = {m3,m5,m9}, while zi,j+1 = {m3,m5},

|zi,j+1| = 2 < |zi,j| = 3 and {m3,m5} ⊂ {m3,m5,m9}

Since using only grid gi,j is sufficient to cover the demand nodes {m3,m5,m9}, therefore

grid gi,j+1 which covers a subset of demand nodes {m3,m5} is not necessary for the coverage

51

requirement and can be removed. For N grid points, the total number of set comparisons

could be as large as (
N

2

)
=
N(N − 1)

2
≈ N2

However, not all comparisons are necessary. There is no need to compare the set coverage of

grid points separated by a distance greater than 2R, since the two sets are always mutually

exclusive. Alternatively, a raster sweep approach is used instead.

5.4.1 Raster Sweep

Raster sweep in a method to compare the set coverage of grid points in a more efficient

manner than the exhaustive paring. The goal is to compare all adjacent grid points in

all directions (i.e., horizontal, vertical, and diagonal), and to remove any grid point that

contains a subset of demand nodes (compared to the adjacent one) — sweep. Four possible

sweeping directions are used as shown in figure 5.4.

gi,j
horizontal

vertical

down-diagonal

up
-di
ag
on
al

xxx

x x

xx

x

x

Figure 5.4: Four Possible Sweeping Directions

The horizontal sweep starts from the first grid g1,1 at the top left corner, compares it to

the adjacent grid g1,2, moves on to the next grid on the right and so on until reaching the

rightmost grid g1,Nx , then goes down to the lower grid point, turns around to the opposite

direction toward the leftmost grid on the second row and so on, where the raster patten

52

is then repeated until all adjacent grids on the horizontal direction are compared. The

horizontal sweep pattern is shown in figure 5.5. The sweep process maps the matrix of grid

x
start

finish

x x x x x

x x

x x x

x x

x x x

x x x

x x

x

x
x

x
x
x

g1,1

gNx,Ny

∆g
g′

l

g′
1

G

g′
N

Figure 5.5: Horizontal Raster Sweep: from grid g1,1 to gNx,Ny

points gi,j to a virtual straight line, where g′l represents the lth grid point on the line, and

z′l represents the corresponding set coverage. With a line-mapped series of grid points, the

sweep process can be linearly executed as summarized in the pseudo code below

for l = 1 to N,
• compare z′l and z′l−1

if |z′l| < |z′l−1| and z′l ⊂ z′l−1,
delete g′l;

else if z′l
.= z′l−1 and g′l−1 was previously deleted,

delete g′l;

• compare z′l and z′l+1

if |z′l| < |z′l+1| and z′l ⊂ z′l+1,
delete g′l and all of the preceding grids that are equivalent;

end;

The same pseudo code is applied to the other line-mapped of grid points from both the

vertical and diagonal sweeps as shown respectively in figures 5.6 and 5.7.

53

xfinish

start

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x

x x

x

x

x

x
x
x
x

x
x

gNx,Ny

g′
l

g′
1

g′
N

∆g

G

g1,1

Figure 5.6: Vertical Raster Sweep: from grid g1,1 to gNx,Ny

x

x x x x x xx

x

x

x

x

x

x

x

x

x x

x x x x

x

x

xx

x x
gNx,NygNx,1

to gNx,Ny

to g0,Ny

g1,Ny

G

g1,1

Figure 5.7: Diagonal Raster Sweeps: from grid g1,1 to gNx,Ny and from grid gNx,1 to g1,Ny

54

G⇒ horizontal sweep ⇒ G→

G⇒ vertical sweeping ⇒ G↓

G⇒ down-diagonal sweep ⇒ G↘

G⇒ up-diagonal sweep ⇒ G↗

All deleted grids gi,j are assigned an empty set (zi,j = {∅}). Each sweep is a linear operation,

tracing and comparing grid points one by one from start to finish (with occasional reversing

for deletion), therefore requiring O(N) computations. The intermediate result after the

sweep is the intersection of

Gsweep = G→ ×G↓ ×G↘ ×G↗ (5.28)

where × denotes set intersection. However, there are still grid points ∈ Gsweep that can be

removed because they cover a subset of demand nodes. To ensure that these grid points are

eliminated, the recursion process is used. Gsweep is subject to additional grid pairings, which

work repeatedly in a recursive manner — each surrounding grid point is the start of another

paring and comparison — and the recursion terminates when the surrounding grids either

have already all been deleted, or are all non-subset TPs.

Gsweep ⇒ recursive paring ⇒ Grecursion

In the worst case, results from section 7.1 show that when the coverage radius R shrinks to

a point (R ≈ 0), the sweep process only eliminates grid points that cover an empty set, all

other grid points at the locations of demand nodes always cover a different set (in this case

the coverage set is the demand node {mk} itself), and therefore all the grid points at the

demand node locations remain in Gsweep. Since all grid points surrounding the demand node

are removed because they cover an empty set, thus the recursion is only one depth. Assume

that the number of demand nodes M are maximum = N/4 (because ∆g = ∆x/2 = ∆y/2),

therefore the recursion process will require at most O(N) computations.

55

5.4.2 Merging

Both the sweep and recursive pairing only eliminate grid points that are a coverage-subset,

but do not distinguish or separate grid points that are redundant. Including redundant grid

points increases the size of search space — from the optimality standpoint, all redundant grid

points are indistinguishable because each covers the same set of demand node nonetheless.

Therefore, for each group of redundant grid points remaining in Grecursion, only the grid point

that is closest to all the demand nodes it covers (i.e., based on minimum average distance)

is selected.

Grecursion ⇒ merging ⇒ G∗

G∗ is the final matrix of TPs for the design BS placement.

5.4.3 Proof of Optimality of the Sweep and Merge algorithm

Suppose that the network has M demand nodes, where

mk = demand node kth, k ∈ {1, . . . ,M} (5.29)

Given a set of N TPs

set of TPs = {TP1,TP2, . . . ,TPN}

in which

TPn = gin,jn , n = {1, . . . , N}

where gin,jn is a grid point at ((in − 1)∆g, (jn − 1)∆g). Define

bn =

 1 : if a BS is installed at grid TPn

0 : otherwise
(5.30)

mkn =

 1 : if demand node mk is assigned to bn

0 : otherwise
(5.31)

and the distance dkn between mkn and bn

dkn =
√

(Xk − (in − 1)∆g)2 + (Yk − (jn − 1)∆g)2 (5.32)

56

for each grid gin,jn , let zin,jn be a set of demand nodes that are within the coverage radius R

from grid gin,jn

zin,jn = {mk|dkn ≤ R} (5.33)

and let s be an optimal solution set of bn, such that

s = {bn|bn = 1}

For any bn ∈ s, there exists an assignment set zbn between demand node mk and bn in which

zbn = {mk|mkn = 1} (5.34)

Given that gin′ ,jn′
∈ G∗, therefore by definition

zin,jn ⊂ zin′ ,jn′
(5.35)

thus replacing bn by bn′ in the optimal solution set s does not increase the size of the set

and because zbn ⊂ zin,jn , there always exists an equivalent set of demand node assignment

for bn′ , such that

zbn′
.
= zbn = {mk|mkn = 1} (5.36)

and as a result, the demand node assignment of the optimal solution set s does not change

either. In other words, the optimal solution remains unchanged. Therefore, gin′ ,jn′
∈ G∗

resulted from the sweep and merge algorithm always contain the optimal solution.

5.4.4 Computational Reduction

Let N be the total number of grid points required, and N∗ = |G∗| be the total of TPs

resulted from the sweep and merge algorithm. Each sweep requires ≈ N computations, the

recursion process also requires ≈ N computations, while the merge process requires at most

N computations. Thus, in the worst case the computational requirement (C ′) of the TP

reduction algorithm is

C ′ ≈ 4 ∗ sweeps + resursive paring + merge = 4N +N +N = 6N ≈ O(N) (5.37)

57

If n∗ is the minimum number of BSs needed, and because N∗ ≤ N the search space size S

is then reduced by a factor

reduction factor =

(
N

N∗

)n∗

(5.38)

in comparison to the exhaustive search case. There is no closed-form formula to determining

N∗. Since G∗ is derived from set coverage comparison of demand nodes, whose distribution

is often unknown (i.e., random). In fact, N∗ is a function of the total number of demand

nodes M and the coverage radius R,

N∗ ∝ f(M−1, R−1) (5.39)

When R→∞, all grid points are redundant (covering the same set of demand nodes), and

the merge would result in one TP at the center of gravity of all demand nodes, such that

min[N∗] = 1 (5.40)

Discussed later in section 7.2.4, N∗ approaches N/2 as M increases — given that the distri-

bution of demand nodes is random. Thus, it can be concluded that

1 ≤ N∗ ≤ N/2 (5.41)

and S is at least reduced approximately by a factor 2n∗ .

58

6.0 DESIGN OPTIMIZATION

The design optimization presented in this paper consists of three parts: coverage optimiza-

tion, capacity validation, and optimization of BS assignment by Tabu Search (figure 6.1).

Given demand node locations, N initial grid points (TPs) that always guaranteeing the op-

timal solution must be determined first. The sweep and merge algorithm is then applied to

remove grid points that are not part of the optimal solution maintain only the minimum

number of N∗ TPs. The coverage optimization phase determines the minimum number of

BSs to satisfy the coverage requirement. One method to optimize the coverage is to search

through all the possible combination of BS placement from N∗ TPs. However, the exhaustive

search requires extensive computation and as a consequence may consume indefinite time

to complete the search [3]. Alternatively, a minimum branching algorithm is developed to

solve for the coverage solution. The minimum branching algorithm, which is an extension

of the DFS algorithm (section 4.4), builds a tree of solutions whose depth (the complexity

of the algorithm) is bounded by the best solution (i.e., number of BSs needed to satisfy to

coverage requirement) discovered earlier. Compared to the exhaustive search, the minimum

branching algorithm requires fewer computations (section 6.1.2). As shown if figure 6.1, to

validate whether a set of BSs in the coverage solution have sufficient capacity to support

the demand or not, demand nodes are assigned to BSs in a fashion that the total network

capacity is maximized. The optimal demand node assignment is solved by the branch and

bound algorithm (using the CPLEX optimization software package). If the coverage solution

with the optimal demand node assignment has sufficient capacity to support all the demand

nodes, the resulting coverage solution is the optimal solution of the design. However if the

capacity requirement is not meet, the design must reassign or add more BSs to support the

excess capacity requirements.

59

Optimal
Demand

Assignment

Capacity
Test

Pass

Demand Node
Network

TS-based
Algorithm

Minimum
Branching

Optimal
BS Placement

Fail

Test Points

Optimal
Coverage
Solution

Sweep
& Merge

N grid points

*in cases when Tabu Search is applied,
the resulting BS placement is not

guaranteed to be optimal

Coverage
Optimization

TP Reduction

Capacity
Validation

Optimization of
BS assignment

N* TPs

n* BSs

CPLEX
branch and bound

New Solution
n+ BSs

*a new set of TPs are
recursively computed

Figure 6.1: Design Optimization Flowchart

An algorithm based on Tabu Search (TS) is developed to solve the new BS assignment that

can satisfy both the coverage and capacity requirements. TS is more favorable over other

heuristics (chapter 4) because it offers a systematic approach to converge to the optimal

solution. Using both short term and longer term memories, TS is more effective and less

sensitive to changes in parameters than SA or GA, which relies upon random probability to

escape from local optima. The chapter begins with the discussion of the minimum branching

algorithm used to compute the coverage solution.

60

6.1 COVERAGE OPTIMIZATION

The minimum branching algorithm is employed to find the coverage solution. The algorithm,

although more time consuming than TS or SA, always guarantees the optimal solution.

6.1.1 Minimum Branching Algorithm

Let n∗ be the minimum number of BSs required and N∗ be the candidate TPs computed

from the sweep and merge algorithm. The exhaustive search algorithm tests all combinations

of BSs placed at N∗ candidate TPs, and the search stops whenever a combination of BSs

satisfies the coverage requirement. If n∗ is not known a priori, the whole process must begin

with n∗ = 1 and iteratively increases n∗ until finding the optimal combination of BSs that

satisfies the coverage requirement. Note that since n∗ is the minimum number of BS, no

solution will be better. Thus, the size of space S is

S =

(
N∗

1

)
+

(
N∗

2

)
+ . . .+

(
N∗

n∗

)
= N∗ +N∗(N∗ − 1)/2! + . . .+N∗(N∗ − 1) . . . (N∗ − n∗ − 1)/n∗!

≈ N∗(N∗ − 1) . . . (N∗ − n∗ − 1)/n∗! ≈ N∗n∗ (6.1)

Instead of having to place n∗ BSs at N∗ candidate TPs as in the exhaustive search case, the

search process can be reversed by originating the search at any arbitrary demand node mk.

Suppose that the sweep and merge algorithm produces N∗
1 = N∗ candidate TPs that always

satisfies the coverage requirement, thus out of N∗
1 TPs, there are always N∗

1,k TPs within the

coverage distance R from mk. If there exists a coverage solution, the demand node mk must

be assigned with at least one BS. Therefore, one TP from N∗
1,k candidates is certainly the

TP where one of the BSs in the solution must be located at. To ensure the optimal solution,

all of the N∗
1,k candidate TPs must tested by selectively placing a BS at each individually.

Suppose that, TPn1 is selected from the set of N∗
1,k TPs. Let zin1 ,jn1

be the set of demand

nodes covered when bn1 is placed at TPn1

zin1 ,jn1
= {mk|mkn1 = 1} (6.2)

61

Then,

uncovered set of demand nodes = {mk|mk 6∈ zin1 ,jn1
}

A new set of N∗
2 TPs are recomputed from {mk|mk 6∈ zin1 ,jn1

}. Again, for any mk 6∈ zin1 ,jn1

of the uncovered set, there are always N∗
2,k TPs within the coverage distance R. These N∗

2,k

TPs are also the candidate TPs where the second BS in the solution set can be placed at.

If TPn2 is selected from the set of N∗
2,k TPs. Let zin2 ,jn2

be the set of demand nodes covered

when bn2 is placed at TPn2

zin2 ,jn2
= {mk|mkn2 = 1} (6.3)

Now, because two BSs bn1 and bn2 are placed at TPn1 and TPn2 respectively

uncovered set of demand nodes = {mk|mk 6∈ zin2 ,jn2
∪ zin1 ,jn1

}

A new set of N∗
3 TPs are recomputed from {mk|mk 6∈ zin2 ,jn2

∪ zin1 ,jn1
} by the sweep and

merging algorithm again, and the process of selecting arbitrary mk and its associated TPs

recurses until there is no demand nodes remain in the uncovered set.

uncovered set of demand nodes = {∅}

For each arbitrary demand mk selected at each level, there are always a number of candidate

TPs ≥ 0 associated with. These TPs are among the choices for placing BSs. The chosen TP

can be viewed as a node in a tree, branching a new set of TPs or nodes for the next level or

recursion. The tree contains a particular set of feasible soltuions. However, the shape and

the size of the tree created depends on the selection of arbitrary demand node mk at each

level. In other words, there are other trees of different shapes and sizes that can be created

by selecting different demand node mk so that they contain different feasible solution sets.

Thus, the tree created is actually one subtree of the whole possible solution tree (contain all

feasible solution sets). Figure 6.2 shows the example of a particular subtree of solutions

62

virtual root

di
sc

ar
de

d

n = 0

n = 1

n = 2

n = 3

n = 4

n = 5

tr
ee

 d
ep

th

.. .

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

optimal solution
branch

N
∗

1,k

terminating node
(all demand nodes are covered)

N
∗

2,k = 3 N
∗

2,k = 1 N
∗

2,k = 2

N
∗

3,k = 1 N
∗

3,k = 1 N
∗

3,k = 3

N
∗

4,k = 2 N
∗

4,k = 1

N
∗

5,k = 1

Figure 6.2: Subtree of Solutions. TP chosen at each recursion represents a node in the subtree.

The terminating node is always a TP (BS) that covers the remaining demand nodes. Each set

of TPs along the branches to the terminating TP is a feasible solution. The optimal solution

is a set of fewest number of TPs from the root down to the terminating node as shown in

figure 6.2. Similar to the DFS algorithm (section 4.4), any node whose lower bound (i.e.,

order of tree depth) is greater than the upper bound seen previously is discarded. However,

since the entire solution tree may contains so many subtrees (but different shapes and sizes)

similar the one shown in figure 6.2. And in fact, if a particular subtree contains many number

of nodes or branches, searching for the optimal solution may not be efficient. One approach

to reduces the number of possible nodes in the subtree is to reduce the number of nodes

in each level of the subtree by selecting the demand node mk associated with the fewest

number of TPs (i.e., N∗
1,k, N

∗
2,k, . . .). The outermost demand node, which is defined to be the

63

demand node associated with the fewest number of TPs, is selected in each recursion (after

the previous BS is placed and a new set of TPs are computed). The outmost demand node

at the tree level lth can be defined as

outermost demand node = min
mk

[N∗
l,k] ∀mk 6∈

⋃
l−1

zinl−1
,jnl−1

(6.4)

where the last term in (6.4) represents the union of all covered demand nodes for each BS

placed previously before the recursion reaches the lth level. If the outermost demand node

is selected instead of randomly choosing mk, each node of the subtree will have the fewest

number of branches — minimum branching algorithm. However, the total number of nodes

combined in the minimum branching tree may not be the fewest compared to other subtrees

of the entire solution tree (the minimum branching algorithm is similar to the approach in

which the greedy algorithm is used to solve the K-minimum spanning tree). Nevertheless,

the minimum branching subtree will always contain the path (or branch) to the optimal

solution and the number searches (total number of nodes) are reduced compared to most of

the subtrees and the exhaustive search. The following pseudo code describes the mbranch()

routine used to generate the minimum branching subtree of solutions.

• compute TPs by sweeping and merge
depth = 0;
mbranch() {

depth = depth + 1;
• find the outermost mk

for each of its candidated TPs,
• update the remaining mk

if there is no mk remaining,
n∗ = depth;
depth = depth - 1;
return;

endif;
if depth ≥ n∗ − 1

• continue to the next candidate TP
endif;
• compute new TPs by sweeping and merge on the remaining mk

• call mbranch() again
done;
depth = depth - 1;

}

64

x x x

xxxxxxx

xxx

xxxxxxx

xxxTP

TP

(1,0.5)

(0.5,1)

outermost

(0,0)
R = 1.2

demand
node

x TP

1.0

2.0

3.0

1.0 2.0 3.0 4.0

Figure 6.3: 1st recursion. The outermost mk is at (0,0) with two candidate TPs at (1,0.5) and
(0.5,1) respectively.

TP
(2.5,1)

outermost
R = 1.2

demand
node

x

TP

1.0

2.0

3.0

1.0 2.0 3.0 4.0

BS(1,0.5)

BS1

xx

xxxx

x

xxx

x
x

Figure 6.4: 2nd recursion. TP at (1,0.5) from the previous recursion is chosen as BS1. The
outermost mk is at (3,0) with a single candidate TPs at (2.5,1).

65

TP

(2.5,1)

outermost

R = 1.2

demand
node

TP

1.0

2.0

3.0

1.0 2.0 3.0 4.0

BS(1,0.5)

BS1

xx

x

xxx

x
x

BS2

(2,3.5)

Figure 6.5: 3rd recursion. TP at (2.5,1) from the previous recursion is chosen as BS2. The
outermost mk at (3,4) with a single candidate TPs at (2,3.5).

(2.5,1)

demand
node

TP

1.0

2.0

3.0

1.0 2.0 3.0 4.0

BS(1,0.5)

BS1

x
x

BS2

(2,3.5)

BS3

TP

(0.5,3)

Figure 6.6: 4th recursion. TP at (2,3.5) from the previous recursion is chosen as BS3. The sweep
and merge only produces one TP at (0.5,3).

66

(2.5,1)

demand
node

TP

1.0

2.0

3.0

1.0 2.0 3.0 4.0

BS(1,0.5)

BS1
x

BS2

(2,3.5)

BS3

(0.5,3)

BS4

Figure 6.7: Coverage Solution. Only TP at (0.5,3) is chosen as BS4. All demand nodes are
covered, and the coverage requirement is satisfied.

TP

(1,3.5)

outermost

R = 1.2

demand
node

x

TP

1.0

2.0

3.0

1.0 2.0 3.0 4.0

BS

(0.5,1)

BS1

xx

xxx

x

xx

x

x

Figure 6.8: 5th recursion. The other TP at (0.5, 1) from the 1st recursion is now chosen as BS1.
The outermost mk is at (0,4) with a single candidate TPs at (1,3.5).

67

TP

(1,3.5)

outermost

R = 1.2

demand
node

x

TP

1.0

2.0

3.0

1.0 2.0 3.0 4.0

BS

(0.5,1)

BS1

xx

x
BS2

(2.5,1)

Figure 6.9: 6th recursion. TP at (1,3.5) from the previous recursion is chosen as BS3. The
outermost mk at (2,0) with a single candidate TPs at (2.5,1).

(1,3.5)

demand
node

TP

1.0

2.0

3.0

1.0 2.0 3.0 4.0

BS

(0.5,1)

BS1

x
BS2

(2.5,1)

BS3

Figure 6.10: 7th recursion. TP at (2.5,1) from the previous recursion is chosen as BS3. Since any
solution resulted after will never be better than the best solution found earlier (4 BSs are needed
to satisfied to coverage requirement). The algorithm stops.

68

A set of figures from 6.3 - 6.10 illustrate the minimum branching algorithm in progress.

For the first recursion shown in figure 6.3, there are a total of N∗ = N∗
1 = 23 TPs, the

outermost demand node at grid (0,0) is associated with two candidate TPs at (1,0.5) and

(0.5,1) — N∗
1,k = 2 (fewest among other demand nodes). The lower TP at (1,0.5) is selected

as . Since some of the demand nodes are already covered by BS1, the network is different

now and only the uncovered demand nodes are considered. The sweep and merge algorithm

is reapplied to compute a new set of TPs from demand nodes which are not covered by BS1.

For the second recursion, the outermost demand node at grid (3,0) is associated with only

candidate TP at (2.5,1) — N∗
2,k = 1. Thus, the TP at (2.5,1) is chosen as BS2. A new set

of TPs are recomputed from the set of uncovered demand nodes (not covered by BS1 and

BS2). After four recursions, all demand nodes are covered, four BSs are needed, and the first

candidate solution is computed as shown in figure 6.7. For the fifth recursion, the algorithm

recurses back to test and replace BS1 at the other TP node at (0.5, 1) of the first recursion.

After seven recursions, three BSs are placed, but there are still demand nodes uncovered.

Since, the first candidate solution found in the four previous recursions requires four BSs

to satisfy the coverage requirement, any solutions resulted after the seventh recursion will

never be better than the first candidate solution (will require equal to or more than BSs

to satisfy the coverage requirement), thus the algorithm truncates and stops. The optimal

solution requires n∗ = 4 BSs to cover all demand nodes (which is equal to the minimum tree

depth). Compared to the exhaustive search which requires

S =

(
N∗

n∗

)
=

(
23

4

)
= 8, 885

searches to compute the optimal solution, the minimum branching algorithm requires only

7 recursions (searches), which is much more computationally efficient. Figure 6.11 shows

the resulting minimum branching subtree of solutions. Later on, the term ‘subtree’ will

be replaced by just ‘tree’ for abbreviation and simplicity throughout the paper. The next

section describes the computational requirement of the minimum branching algorithm.

69

(1,0.5)

virtual root

1 (14)

2 (10)

3 (4)

4 (0)

5 (14)

6 (8)

7 (2)

(2.5,1)

(2,3.5)

(0.5,3)

(0.5,1)

(1,3.5)

(2.5,1)

optimal solution
branch

no
t n

ec
es

sa
ry

recursion orders
n = 0

n = 1

n = 2

n = 3

n = 4

tr
ee

 d
ep

th

demand nodes
left

the algorithm stops

.

.

.

TP/BS

all demand node
are covered

Figure 6.11: Minimum Branching Subtree.

6.1.2 Computational Requirement

In general, if S is the size of search space, M is the total number of demand nodes, n∗ is the

total number of BSs needed, then the computational requirement C ′ is

C ′ = n∗MS (6.5)

For the minimum branching algorithm, the minimum tree depth is n∗ (which is equal to

minimum # of BSs needed), then

S ≈ N∗
1,k +

∑
N∗

2,k + . . .+
∑

N∗
n∗−1,k + δ

≈ N∗
1,k +N∗

1,kN
∗
2,k + . . .+N∗

1,kN
∗
2,k . . . N

∗
n∗−1,k + δ

≈ N∗
1,k(1 +N∗

2,k(1 + . . .+ (1 +N∗
n∗−1,k) . . .)) + δ (6.6)

70

Note that, N∗
2,k to N∗

n∗,k are the average number of TPs chosen at each recursion depth.

The residue δ is a function of how the minimum branching tree is constructed. The DFS

algorithm (section 4.4) — as shown throughout all the examples — on average results in

larger δ than the BFS implementation. The BFS algorithm (section 4.4), on average, requires

δ ≈
∑
N∗

n∗,k/2, however at the expense of extra memories to store all intermediate solutions

found in each tree depth. Nevertheless, for the sake of approximating S, the BFS algorithm

is assumed. Thus,

S ≈ N∗
1,k(1 +N∗

2,k(1 + . . .+ (1 +N∗
n∗−1,k) . . .)) +

∑
N∗

n∗,k/2

≈ N∗
1,k(1 +N∗

2,k(1 + . . .+ (1 +N∗
n∗,k) . . .)) (6.7)

Since

N = N∗
1 > N∗

2 > . . . > N∗
n∗ (6.8)

because the network has fewer demand nodes when more BSs are placed. Thus, it is likely

that

N∗
1,k > N∗

2,k > . . . > N∗
n∗,k (6.9)

For the worst case, if we assume that

N∗
1,k = N∗

2,k = . . . = N∗
n∗,k (6.10)

Thus, S in (6.7) can be approximated by

S ≈ N∗
1,k(1 +N∗

2,k(1 + . . .+ (1 +N∗
n∗,k) . . .)) < N∗

1,k
n∗ (6.11)

With the minimum branching, a new set of TPs must be recomputed for every recursion.

As discussed in section 5.4.4, the computational complexity of the TP reduction algorithm

is O(N), thus the computational requirement of the minimum branching algorithm can be

approximated as

C ′ = (n∗M +N)S < (n∗M +N)N∗
1,k

n∗ (6.12)

In the worst case, if the demand node density approaches the maximum (M → N/4, because

∆g2 = ∆x2/4), thus

C ′ = (n∗N/4 +N)N∗
1,k

n∗ ≈ n∗NN∗
1,k

n∗ (6.13)

71

Compared to the exhaustive search where,

S ≈ N∗n∗ , C ′ ≈ n∗NN∗n∗ (6.14)

Since, N∗
1,k � N∗, the minimum branching algorithm is much more computationally effi-

cient than the exhaustive search. In conclusion, employing the TP reduction algorithm to

reduce TPs from N to N∗ (while the optimal solution is still maintained) and the minimum

branching to reduce the number searches, the computation requirement for computing the

optimal coverage solution can be reduced approximately by a factor

≈ (N/N∗
1,k)

n∗ (6.15)

72

6.2 CAPACITY VALIDATION - OPTIMAL DEMAND NODE

ASSIGNMENT

The optimal coverage solution resulted from the minimum branching algorithm may or may

not satisfy the capacity requirement. The total capacity in which the network can support

is a function of the assignment between the demand nodes and BSs. To validate whether

the coverage solution has sufficient capacity to support all the demand nodes or not, the

assignment must be done is such a way that the total network capacity of the coverage

solution is maximized. Given a set of N∗ TPs computed from the sweep and merge algorithm

a set of TPs = {TP1,TP2, . . . ,TPN∗}

in which

TPn = gin,jn , n = {1, . . . , N∗}, ∀zin,jn 6= {∅}

where gin,jn is a grid point at ((in − 1)∆g, (jn − 1)∆g). Redefine

bn =

 1 : if a BS is installed at TPn

0 : otherwise
(6.16)

mkn =

 1 : if demand node mk is assigned to bn

0 : otherwise
(6.17)

and the Euclidean distance dkn between demand node mk at (Xk, Yk) and bn

dkn =
√

(Xk − (in − 1)∆g)2 + (Yk − (jn − 1)∆g)2 (6.18)

Let s be the coverage solution resulted from the minimum branching algorithm,

s = {bn|bn = 1}, |s| = n∗ (6.19)

73

The optimal demand node assignment problem is then formulated as

max
N∗∑
n=1

M∑
k=1

mkn

subject to bn ∈ s∗

mkn ≤ max [0, dR− dkne]bn
N∗∑
n=1

mkn = 1, ∀k ∈ {1, . . . ,M}

M∑
k=1

mkn ≤ C, ∀n ∈ {1, . . . , N∗}

(6.20)

(all the variables TPn, bn, mkn, and dkn defined above will be used throughput the chapter).

The optimal demand node assignment problem in (6.20) is solved by the CPLEX optimization

software package (implementing the branch and bound algorithm). If the coverage solution

with the optimal demand node assignment is unable to meet the capacity requirement, it

means that one or more BSs may cover a larger demand than their maximum capacity C.

One approach to fix the capacity problem is to add sufficient number of BSs to cover the

rest of demand nodes (uncovered demand nodes from the coverage solution). However, this

approach may result in too many BSs than necessary. An algorithm based on Tabu Search

(TS) used to optimize BS assignment is described next.

6.3 OPTIMIZATION OF BS ASSIGNMENT BY TABU SEARCH

Optimization of BS assignment is required in cases when the coverage solution (resulted

from the minimum branching algorithm with n∗ BSs) has insufficient capacity to support

the demand (despite of the optimal assignment). The goal of this phase is then to compute

for a new solution that requires minimum BSs and yet able to provide the coverage and

support all the user demand. Started by n+ = n∗ BSs, the design algorithm keeps adding a

BS one by one until the network has sufficient BSs to support the capacity requirement. An

algorithm based on Tabu Search (TS) is developed and incorporated to maximize the total

network capacity, given that n+ ≥ n∗ BSs are to be placed at N∗ TPs. TS is the heuristic of

74

choice for several BS placement designs such as the Amaldi design method [1], the Prommak

design method [3], the Akl design method [26], and the Lee and Gang design method [38]

(as already discussed in chapter 2). Although the principle of TS is the same (section 4.2),

actual implementation may differ from one problem to another due to several factors such as

the objective function, solution neighborhood structure, and how the longer term and short

term memories are incorporated in the diversification and intensification phase. Let revisit

a simple TS procedure

Simple Tabu Search
s = initial solution; i = 0;
while i < imax do

if all moves s → s′,∀s′ ∈ N (s) are tabu
s = s′ ∈ N (s) with a move that is least tabu;

else
s = optimum[s′ : ∀s′ ∈ N (s) with non-tabu moves];

end;
a move made becomes tabu for tabu tenure iterations;
i = 1 + 1;

done;

TS starts by forming a sufficient number of neighborhood solutions N (s). Each solution is

evaluated, and the best non-tabu solution is selected. If all neighborhood solutions are tabu,

TS invokes an aspiration criteria to accept the least-tabu solution and proceeds forward

to the next iteration. A new set of neighborhood solutions are created, and the process

of evaluating and selecting the new current solution repeat for a predetermined number of

iterations. In this paper, the objective function is

max
N∗∑
n=1

M∑
k=1

mkn

subject to
N∗∑
n

bn = n+

mkn ≤ max [0, dR− dkne]bn
N∗∑
n=1

mkn = 1, ∀k ∈ {1, . . . ,M}

M∑
k=1

mkn ≤ C, ∀n ∈ {1, . . . , N∗}

(6.21)

75

An initial solution for TS is computed from a simple greedy algorithm

Simple Greedy Algorithm
while # of BSs ≤ n∗

• install a BS at TP that maximizes the total network capacity
• increase the number of BSs by one

done;

Designed specifically for the problem in (6.21), the neighborhood structure N (s), the short

term memory, the longer term memory with both intensification and diversification strategies

are described next.

6.3.1 Neighborhood Structure

The neighborhood structure N (s) consists of a set of candidate solutions surrounding the

current solution s, where

s = {bn|bn = 1}, |s| = n+ (6.22)

The candidate solution s′ is created by dropping one bn ∈ s and adding a new bn′ selected

from the remaining TPs.

s′ = s− {bn = 0}+ {bn′ = 1} (6.23)

To limit the number of possible swapping/bn, only the h closest TPs are considered, such

that

N (bn) = {s′|∀bn′ activated from the closest h TPs}, bn′ /∈ s (6.24)

The neighborhood structure of the current solution s is thus a union of

N (s) =
∑

N (bn), ∀bn ∈ s (6.25)

It is possible that N (bn) may intersect, but since each bn ∈ s is distinct, there are never-

theless a total of n+ × h distinct neighbor solutions. Figure 6.12 show one example of the

neighborhood structure N (s).

76

TP

neighbor TPs

current solution

X

X

X

X

X

X

X

X

X

BS

BS

BS

BS

X

X

X

X

X

X

X
X

X
X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

Figure 6.12: A neighborhood structure N (s) consisting of n+ = 4 subsets of h = 5 closest

neighbor TPs.

The neighborhood structure N (s) described above is one alternative to implement a candi-

date list strategy in TS [48]. One approach to construct a candidate list (neighbor solutions)

is to include all solutions created from all the possible swaps. However, if the number of TPs

in the pool is very large, the number of neighbor solutions to be evaluated will grow pro-

portionally. Some of these neighbor solutions may not be a good candidate, and examining

all of them could undermine the algorithm effectiveness. The proposed N (s) isolates a set

of good candidate solutions and includes only the h closest solutions for each bn ∈ s, which

is similar to N (s) used in the Amaldi’s TS implementation [1]. The neighborhood size h

is problem-sensitive and must be carefully determined — not too large to ensure that the

neighbor solutions in N (s) still retain most of the features belonging to the current solution

s, but not too small to prevent the algorithm from exploring other regions of the search

space. Forming N (s) is convenient compared to other candidate list strategies suggested

77

in [48], and applying the proposed N (s) for the BS placement problem proves to produce

sufficiently high quality results (discussed later). As the algorithm proceeds, the tabu status

may change, and some neighbor solutions in N (s) may be tabu (moves to these solutions

are prohibited). Tabu classification is a rule for determining whether a move to a particular

candidate solution is tabu or not. It is part of the short term memory implementation. Both

the short term memory and tabu classification are discussed next.

6.3.2 Short Term Memory and Tabu Classification

TS employs short term memory to drive the search away from local optima, giving the

algorithm opportunity to uncover regions that may contain the optimal solution. Solution

recycling indicates the possibility that the search is confined in suboptimal regions. The

cause may either inherit from the characteristic of the search space itself or from adopting

unsuitable N (s). A simple remedy to prevent solution recycling is to memorize solutions

previously visited, and for some iterations, exclude them from consideration until their tabu

status are revoked [48]. Beside keeping a complete solution attribute (i.e., a whole set of

TPs), a move attribute is used instead — which is more flexible and less complicated. Using

N (s) defined in section 6.3.1, a move form one solution involves

drop (deactivate) bn = 0

add (activate) bn′ = 1, selected from N (s)

to form a new solution s′. For each added or dropped bn, there associates a tabu status

called “TabuEnd(bn)”, which signals the last iteration on which tabu activation is imposed.

Tabu-active operations (either added or dropped) are suspended until the algorithm proceeds

beyond iteration “TabuEnd(bn)”. Generally, the tabu status is simply expressed as

TabuEnd(bn) = Iter + TabuTenure (6.26)

where Iter is the current iteration number that either an added or a dropped move is exe-

cuted upon, and TabuTenure is the number of tabu iterations applied to bn. Determining the

78

effective TabuTenure is problem-dependent: too small TabuTenure may result in higher oc-

currences of solution recycling, whereas too large TabuTenure may inadvertently preclude

moves leading to good solutions, resulting in solution quality deterioration [48]. The ex-

pression in (6.26) assumes that each added or dropped move is equally likely in chances.

However, since n+ � N∗ (BSs � TPs), therefore any bn′ — dropped out earlier from the

previous solution — is more likely to reenter the solution again compared to the possibility

that bn ∈ s is dropped. As a consequence, TabuAddTenure (# of tabu iterations for added

move) should be higher than TabuDropTenure (# of tabu iterations for dropped move).

For dropped bn,

TabuEnd(bn) = Iter + TabuAddTenure (6.27)

on the other hand, for added bn′ ,

TabuEnd(bn′) = Iter + TabuDropTenure (6.28)

where TabuAddTenure > TabuDropTenure. In general, any move to the candidate solution

s′ by dropping bn ∈ s and adding bn′ ∈ N (s) is classified tabu if

max[TabuEnd(bn), TabuEnd(bn′)] ≤ Iter (6.29)

Following a series of added and dropped moves, it is possible that all TPs are now tabu, and

all the corresponding next moves can not be made. For such case, the best move associated

with the least tabu TPs is selected — aspiration by default. Evaluation is based on the total

capacity cs′ in which the candidate solution s′ can support, where

cs′ =
N∗∑
n=1

M∑
k=1

mkn

subject to bn ∈ s′

mkn ≤ max [0, dR− dkne]bn
N∗∑
n=1

mkn = 1, ∀k ∈ {1, . . . ,M}

M∑
k=1

mkn ≤ C, ∀n ∈ {1, . . . , N∗}

(6.30)

79

(for each evaluation, cs′ can be maximized by employing the optimal demand node assign-

ment). Without tabu activation, the candidate solution s∗ that yields the highest cs′

cs∗ = max
s′

[cs′], ∀s′ ∈ N(s) (6.31)

is chosen to be a new current solution s = s∗ for the next iteration. The algorithm repeats

to form a new set of neighbor solutions, selects the best move and so on for some number of

predefined iterations, which must be large enough to allow the algorithm to roam through

and cover as many regions of the search space. Unfortunately, there are unknown factors that

may prevent the algorithm to penetrate more deeper into some uncharted regions that may

contain the optimal solution. To enhance the search capability, TS also exploits longer term

memory with intensification and diversification schemes. The best solution from the short

term memory is used as a new starting solution for the longer term memory implementation.

6.3.3 Diversification and Intensification

Longer term memory is incorporated in TS as a mechanism to extend the scope of the search

beyond capability of the short term memory. As pointed out in [48], diversification and inten-

sification schemes are the two main components of the longer term memory implementation.

Both schemes exploit information such as residence and transition frequencies collected from

solutions encountered during iterations of the short term memory. Diversification is a pro-

cess aiming to elude the search away from the regions frequently visited. Among a number

of choices to implement diversification, restarting and modified choice rule are preferred [48].

Restarting is the most simple form of diversification strategies. Initially, moves are evaluated

fairly (except their tabu classification). The new starting solution is simply the best solution

found so far. Tabu status is refreshed, and only the residence frequency f(bn) is carried

forward

f(bn) =
of times bn ∈ s

total # of iterations
(6.32)

bn with high residence frequency is likely to be an anchor that holds back the search from

escaping to other regions. High occurrence bn must be avoided at all cost in order to diversify

the search. One possibility is to modify the rule for evaluating candidate solutions. The new

80

rule weights in both f(bn) and the total capacity to assess the move. Any candidate solutions

containing bn with high residence frequency are penalized more heavily than the candidate

solutions with lower residence frequency. The penalty ps′ associated with the candidate

solution s′ is thus computed as

ps′ = w
∑

f(bn′), bn′ ∈ s′ (6.33)

where w is a weight. With the penalty ps′ , the rule for selecting the best candidate solution

in (6.31) is then modified to

cs∗ = max
s′

[cs′ − ps′], ∀s′ ∈ N (s) (6.34)

such that s∗ is the best solution in N (s). Diversification is the most effective when ps′ and

cs′ are in the same order. Too large w may overweight the evaluation and may divert the

problem objective, while too small w may subdue the diversification effect. As a compromise,

one approach used in this paper sets the weight w as function of the total number of demand

nodes M and the number of BSs n+, such that

w ≈ n+M

2
(6.35)

Diversification is not the only strategy to improve solution quality. Intensification is also

needed when the focus is on specific regions in which high quality solutions may reside. Some

particular regions are searched more thoroughly again in order to squeeze out a better so-

lution. A variety of schemes such as intensification by decomposition or combining features

from elite solutions are suggested by [48]. However, these schemes are complex and not

suitable for the BS placement problem. One strategy is to increase the number of iterations,

for which diversification is repeated until the solution quality stops improving. Other strate-

gies to incorporate intensification and diversification include strategic oscillation, such that

diversification is induced by allowing the search to cross a target level back and forth (i.e.,

crossing between the number of BSs or the maximum BS capacity), while intensification is

initiated each time the oscillation arrives at the target level (by increasing the number of

iterations at this level). In this paper, only diversification by modifying choice rule with

intensification by repeated restarts is implemented as summarized in figure 6.13.

81

last N(s)?

form new
N(s)

TabuEnd* >
Current

Iteration?

select move
& update max

last iteration?

best move?
(cap > max*?)

update
tabu status &

frequency

compute cap
with penalty

next N(s)

NO

YES

YES

YES

NO

invoke
aspiration

criteria

NO

FINISH

START

N(s) - solution neighborhood
TabuEnd* - maximum between

TabuEnd of added TP
TabuEnd of dropped TP

cap - capacity supported with penalty
max* - maximum cap seen so far

clear all tabu
status and
frequency

YES

NO

Figure 6.13: TS with Modified Choice Rule

82

6.3.4 Parameter Selection

Implementation of TS is problem-specific — the neighborhood structure, tabu classification,

aspiration criteria, etc., must be adjusted to fit the context of a particular problem. In this

paper, the problem is to search for the optimal placement of n+ BSs that maximizes the

total capacity as described in (6.21). To solve (6.21), TS with modified choice rule as shown

in figure 6.13 is employed. Table 6.1 lists all relevant parameters.

Table 6.1: TS Parameters for Capacity Optimization Problem

Parameter Description Function
|N (s)| # of neighbor solutions N (s) construction

TabuAddTenure tabu tenure for added TP tabu classification
TabuDropTenure tabu tenure for dropped TP tabu classification

w penalty weight for TP diversification

TabuAddTenure and TabuDropTenure must be chosen properly. Too large TabuTenure

may result in degradation of solution quality because most candidate moves are prohibited,

whereas too small TabuTenure may result in frequent solution recycling.

TabuAddTenure = 2, TabuDropTenure = 1

(as suggested by [48] to produce high solution quality for most problems). For each candidate

solution s, the maximum number of neighbor solutions allowed are

|N (s)| = 0.2n+N∗

so that sufficient number of candidate solutions are evaluated but not too many to cause

unnecessary computational burden. Lastly, as already discussed in section 6.3.3, the penalty

weight w is set as a function of the total number of demand nodes M and the number of

BSs n+ in s

w ≈ 0.5n+M

83

so that the diversification works effectively (most effective when the penalty and the objective

function are in the same order). If the total number of α iterations are executed (including

restarts), the TS-based algorithm presented in this paper will have to evaluate

S = 0.2αn+N∗ (6.36)

possible candidate solutions (search space size). These parameter values are applied to all

the examples in section 7.2.3 and section 7.3 of the next chapter.

84

7.0 DESIGN RESULTS

The design objective is to employ the minimum number of BSs to satisfy both the cover-

age and capacity requirements. Accomplishing this goal requires that the computational

requirement must be reduced, so that the optimal solution could be determined in a useful

period of time. In this paper, a variety of example networks ranging from small to large are

presented. Small network examples are used to illustrate the TP reduction algorithm. Large

size examples convince how large the search space can be, and the need to incorporate the

TP reduction algorithm to reduce the computation requirement. The minimum branching

algorithm is applied to compute the coverage solution, while demand nodes are assigned

to BSs in such a fashion that the total network capacity is maximized (optimal demand

node assignment). The example designs of CDMA2000 networks supporting various data

requirements are also illustrated.

7.1 SMALL NETWORKS

The examples presented in this section consider various example network topologies. The

focus is on the TP reduction mechanism (the sweep and merge algorithm). Demand nodes

are computed from user traffic assumed to have equal unit amplitude (i.e.,1 Erlang). Two

extreme cases where R ≈ ∞ and R ≈ 0 are demonstrated first. The next example shows

that the TP reduction algorithm always produces the optimal solution. The last example of

this section illustrates step by step how the sweep and merge algorithm works.

85

7.1.1 R ≈ ∞ Case

As discussed earlier, the number of TPsN∗ is a function of both the demand node distribution

and the coverage radius R. If R is larger than the entire service area,

Demand Node

TP
x

x Test Point

X = Y
R ≥ X

√
2

X

Y

mk

Figure 7.1: Infinite Coverage Radius, R ≈ ∞

(R = ∞) and only one TP at the CoG is always the result irrespective of the demand node

distribution. In this case, the sweep process does not change or reduce the number of initial

grid points, since every grid point shares the same set of demand node coverage. Thus, only

one grid point closest to all demand nodes is selected by the merge process. The coverage

requirement is satisfied.

86

7.1.2 R ≈ 0 Case

The other extreme case occurs when the coverage radius is infinitesimally small, so small

that the coverage area shrinks to a point.

x Test Point

Demand Node
x x x x

x x x x

x x x x

x x x x

X

Y

Figure 7.2: Zero Coverage Radius, R ≈ 0

As a consequence, TPs only appear at the locations of the demand nodes as illustrated in

figure 7.2. In this case, the sweep process is responsible for removing all the grid points.

Both the coverage and capacity requirements are satisfied. BS must be located at each TP,

and the minimum number of BSs n∗ needed will be equal to the number of demand nodes M .

When demand node density reaches the maximum and R ≈ 0 (figure 7.2), the number of TPs

approaches N∗ = N/4. In most networks, demand nodes are either random or clustered in

some spots, while the coverage radius R is finite (i.e., due to path loss). Thus, the resulting

number of TPs N∗ � N .

87

7.1.3 Greedy Flaw

Consider

demand
node

BS1

BS2

BS1

BS3

1st iteration

2nd & 3rd iteration

R

Figure 7.3: Greedy algorithm may occasionally produce sub-optimal solutions

the network of six demand nodes illustrated in figure 7.3. If a Greedy Algorithm is employed,

then BSs are placed in such a fashion that the first BS always covers the maximum number

of demand nodes and so on until all the demand nodes are covered. In this case, three BSs

are needed — BS1, first to be located, covers the maximum demand, while BS2 and BS3

cover the remaining left and right demand nodes respectively. The solution shown in the

lower half of figure 7.3 is, however, not optimal. In contrast, the sweep and merge algorithm

88

yields,

x
Demand Node

Test Point
Base StationxxxBS1 BS2TP

R

Figure 7.4: TP reduction always yields the optimal solution

three TPs as shown in figure 7.4. For this case, two BSs located on the left and on the right

TPs are sufficient to satisfy the coverage requirement. This is the optimal solution because

one BS is not sufficient to provide coverage to all demand nodes, and three BSs (as in the

Greedy case) are more than necessary.

89

7.1.4 TP reduction illustrated

The example shown in figure 7.5 is used to illustrate step by step the progression TP reduction

algorithm. The size of network (rectangular in this case) and the number of demand nodes are

arbitrarily chosen. Since the TP reduction process is not trivial, thus only M = 13 demand

nodes are used and randomly placed in a small rectangular area of size X = 700, Y = 1000

m. For simplicity, each demand node is assumed to have 1 unit of demand (i.e., 1 Erlang).

0

100

200

300

400

500

600

700

100 200 300 400 500 600 700 800 900 1000 m.

∆x

∆y

∆g

∆g

m1 m2

m3 m4

m5 m6 m7

m8

m9 m10 m11

m12 m13

x

y

Figure 7.5: The example network used to illustrate the TP reduction process (adapted from [53])

The demand node grid spacing is set to ∆x = ∆y = 100 m to limit the number of TPs. To

guarantee the optimal solution, the TP grid spacing must be ∆g = ∆x/2 = 50 m.

90

1 1 2 3 3 3 4 4 4 4 3 2 3 3 2 2 3 2 1

1

1

1

1

1 1

1

1

1

1

1

1

1

2

1

2

2

2

2

2

2

2

1

2

1

22 2

1

1

1

1

2

2

1

2

3

3

1

2

2

4

1

2

3

3

2

2

3

4

2

2

2

33

2

2

2

2

3

3

31 1 2 2 3

2

3

2

1

2

2

1

1

1

1

1

1

1

1

1

2

00122233342353 4 443222

000122233333454332332

001121223443444322422

001222212433333323332

011222 22 2332233443332

011122221122223323322

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

1

1

1

10

0

11

0

0

1

1

0

1

1

0

212222222

1111112

100

2

2 11 11
0

100

200

300

400

500

600

700

100 200 300 400 500 600 700 800 900 1000 m.

x

y
1

12

2

2

2

0 0 1 0 0 1 2 1 1 1 1 1 0 0 11 1 1 1 1 1

m1 m2

m3 m4

m5 m6 m7

m8

m9 m10 m11

m12 m13

Figure 7.6: Grid Point Coverage. The figure shows the total number of demand nodes covered
by each grid point, assuming that the coverage radius R = 200 m.

Figure 7.6 shows the total number of demand nodes covered by each grid point. The number

highlighted in the upper left corner is the total number of demand nodes within the coverage

radius R from that grid point. The dark blue color indicates zero coverage, while red indicates

the maximum coverage, which is equal to 5 demand nodes in this case. To compute the TPs,

the sweep process is applied first. As discussed earlier, four sweeping directions are used:

horizontal, vertical, up-diagonal, and down-diagonal sweeps.

91

3 3 3 4 4 4 4 3 3 3

2

2

2

2

2

2

2

2

2

2

22

3

2

4

3

2

3

4

2

3

22

3

3

33

2

3

2

1454 44

3335333

22444444

22224333333

222 223344

22223333

1

1

1

1

1

1

1

11

2

1

1

1

1

11

22222222

1112

1

2

2
0

100

200

300

400

500

600

700

100 200 300 400 500 600 700 800 900 1000 m.

x

y

12

2

2

2

1 2 11 1 1 1 1 1

m1 m2

m3 m4

m5 m6 m7

m8

m9 m10 m11

m12 m13

right >

< left

< left

< left

< left

< left

< left

< left

right >

right >

right >

right >

right >

right >

right >

g7,4

2

start

finish

g7,3

Figure 7.7: Horizontal Sweep. The sweep starts from the upper left corner grid at (0,0), moves to the
right toward the grid at (0, 1000), turns around and moves to the left and so on. This alternate pattern
repeats until the sweep reaches the final grid at the lower right corner. The resulting matrix of grid points
G→ after the sweep are shown. Grid points not highlighted are removed by the sweep.

Figure 7.7 shows grid points remaining after applying the horizontal sweep. The sweep

process compares the set coverage of all adjacent grid points. As an example, let consider

the set coverage of grid g7,3 and grid g7,4 shown in the above figure. The set coverage zi,j at

grid g7,3 is (demand nodes within the coverage radius R form grid g7,3)

z7,3 = {m1,m3,m5,m9}

whereas grid g7,4 covers

z7,4 = {m3,m5}

Clearly, z7,4 ⊂ z7,3, and therefore grid g7,4 is not necessary and is eliminated.

92

3 3 4 4 4 3 3 3 2 3 2

1

1

1

1

1

2

2

2

2

2

2

2

2

22

3

343

3

3

32 3

3

22333453 4 432

233354332

12344344242

222243332

1222 22 244332

1222232

11

1

1

2122

2

2
0

100

200

300

400

500

600

700

100 200 300 400 500 600 700 800 900

x

y

1

m1 m2

m3 m4

m5 m6 m7

m8

m9 m10 m11

m12 m13

down >

down >

down >

down >

down >

down >

down >

down >

down >

down >

down >

up
 >

up
 >

up
 >

up
 >

up
 >

up
 >

up
 >

up
 >

up
 >

up
 >

start

3

g7,7

g6,7

g8,7

finish

1000 m.

Figure 7.8: Vertical Sweep. The sweep starts down from the upper left corner grid at (0,0) toward the
lower grid at (700, 0), turns around, moves up and so on. This alternate pattern repeats until the sweep
reaches the final grid at the lower right corner. The resulting matrix of grid points G↓ after the sweep are
shown. Grid points not highlighted are removed by the sweep

Figure 7.8 shows the result after applying the vertical sweep. Similar to the horizontal sweep,

the set coverage of all adjacent grid points are compared but now on the vertical direction

(either up or down). Let consider grid points g6,7, g7,7, and g8,7. The corresponding set

coverage of each grid point are

z6,7 = {m4,m5,m6}

and

z7,7 = z8,7 = {m4,m5,m6,m10}

Since, z6,7 ⊂ z7,7, thus the grid g6,7 is not necessary and is removed. On the other hand,

93

z7,7 = z8,7 (covering the same set of demand nodes), both grids g7,7 and g8,7 are therefore

not eliminated by the sweep. The intersection result G↘×G↗ of the up- and down-diagonal

sweeps are shown in the front pane of figure 7.9.

horizontal sweep

vertical sweep

3 3 4 4 3 3 3 2

2

2

2

2

2

2

22

34

3

43

3

3

33

3

2

2333453 4 43

234543

24444

222243

1222 223344333

22223

1

2

1

2

0

100

200

300

400

500

600

700

100 200 300 400 500 600 700 800 900

x

y

2

2

2

2

m1 m2

m3 m4

m5 m6 m7

m8

m9 m10 m11

m12 m13

diagonal sweeps

start

finish

1000 m.

Figure 7.9: Diagonal Sweeps. The front pane shows the resulting matrix G↘×G↗ from both the up- and
down diagonal sweeps. Only the down-diagonal sweeping pattern is illustrated here. Two of the background
panes again show the results from the previous vertical and horizontal sweeps respectively.

The intermediate result is the intersection of all the sweeps, in which all the grid points

removed from the horizontal, vertical, or diagonal sweep are also removed from the interme-

diate result Gsweep .

Gsweep = G→ ×G↓ ×G↘ ×G↗

where × denotes set intersection.

94

Recursion is also applied to Gsweep to ensure that, the grid points remaining cover demand

nodes not a subset of demand nodes covered by other grid points. Figure 7.10 shows the

resulting grid points after the recursion.

4

4 3

43

3

3

3

3

54

5

2444

22224

222 2244

2222

2

0

100

200

300

400

500

600

700

100 200 300 400 500 600 700 800 900

x

y

m1 m2

m3 m4

m5

m6
m7

m8

m9 m10 m11

m12 m13

g7,11 g7,12

g6,12

TP

TP

TP

TP TP

TP

TP

TP

TP

TP

TP

TP

TP

141.42

100 200

100

x x

x x
x

x
x
x

x

x

x
x

x

1000 m.

Figure 7.10: Merge Process. The process selects one grid point (closest to all demand nodes within the
coverage radius) from a group covering the same set of demand nodes.

Since the grid points ∈ Gsweep may still cover the same set of demand nodes (redundant grid

points). As shown in figure 7.10, grid points g6,12, g7,11, and g7,12, all cover demand nodes

{m4,m6,m7,m8}. Thus, selecting either g6,12, g7,11, or g7,12 does not effect the demand node

coverage. By comparing the average distance from the demand nodes {m4,m6,m7,m8} to

these grid points:

avg. distance to grid g7,11 = (141.42 + 100 + 200 + 100)/4 ≈ 135 m

95

is the closest to all demand among the three (to grid g7,12 ≈ 148 m, and to grid g6,12 ≈ 158

m). Grid g7,11 is then selected as a TP. The merge process produces N∗ = 13 TPs. Figure

7.11 shows the resulting TPs and the coverage solution.

0

100

200

300

400

500

600

700

100 200 300 400 500 600 700 800 900

x

y

m1 m2

m3 m4

m5 m6 m7

m8

m9 m10 m11

m12 m13

BS

BS

BS

BS

TP

TP

TP

x x
TP

TP

TP

TP

TP

TP
x

x

x
x x

x

x

1000 m.

Figure 7.11: Coverage Solution

Using the exhaustive search, four BSs are needed to satisfy the coverage requirement, which

in this case is the optimal solution (n∗ = 4). The total number of grid points initially needed

are

N =

⌊
X

∆g
+ 1

⌋ ⌊
Y

∆g
+ 1

⌋
=

⌊
700

50
+ 1

⌋ ⌊
1000

50
+ 1

⌋
= 15 ∗ 21 = 315

Computing the optimal solution by employing the TP reduction thus reduces computations

by a factor (
N

N∗

)n∗

=

(
315

13

)4

≈ 3.5× 105

96

7.2 LARGE NETWORKS

Two types of networks are considered, one with random distribution of demand nodes, and

the other with clustered distribution of demand nodes. The minimum branching algorithm

is applied to both cases to compute for the coverage solution (instead of the exhaustive

search).

7.2.1 Random Distribution

Figure 7.12 shows the example network with random demand node distribution. M = 60

demand nodes are chosen to represent moderate user density. For simplicity, let assume that

0

100

200

300

400

500

600

700

100 200 300 400 500 600 700 800 900 1000

x

y

800

900

1000
∆x = ∆y = 10

demand
node

BS

R
=

300

Figure 7.12: Random Demand Node Example

each demand node mk has one unit of demand (i.e., 1 Erlang). Demand node grid spacing

is set to ∆x = ∆y = 10 m to limit the number of computations needed, and therefore the

97

required TP grid spacing ∆g = ∆x/2 = 5 m in order to guarantee the optimal solution. The

coverage radius R = 300 m is used to mimic the coverage of a picocell [54]. Applying the

sweep and merge algorithm then produces the TPs shown in figure 7.13

0

100

200

300

400

500

600

700

100 200 300 400 500 600 700 800 900 1000 m.

x

y

800

900

1000

Test Point

Demand
Node

(295, 175)

(240,300)

(160,375)

296.06

283.02

276.09

outermost

TP

TP

TP

x

x

x
x

x xx xxx
x

x
x

x

xx xx xx xx xx x

x

x xxxx x xx x x
x

x x
xx

xx
x

x
x x

xx

x

x xx x
x

xx
x

x

xx
xx

xx

xxx
x xx

x

x

xxxxx xx x x xx x

x

x x

xxxxxx xx x xxx
xxx

x

x
x

xx
x

x

xx

Figure 7.13: TPs computed from the sweep and merge processes

There are a total of 111 TPs throughout the space, compared to N = 40, 401 initial grid

points. The resulting set of 111 TPs is guaranteed to contain the optimal solution. Figure

7.13 also illustrates the minimum branching algorithm in progress. The minimum branching

algorithm locates the demand node associated with the fewest number of TPs — the outer-

most demand node. In figure 7.13, the outermost demand node is the demand node at (0,

150), associated with only three TPs at (295, 175), (240, 300), (160, 375). The minimum

98

branching algorithm builds a tree of coverage solutions by first selecting the TP at (295,

175) as the first BS1. Demand nodes covered by BS1 are ignored. Reapplying the sweep and

merge processes to the uncovered demand nodes then produces a new set of TPs shown in

figure 7.14.

BS1

(295, 175)

0

100

200

300

400

500

600

700

100 200 300 400 500 600 700 800 900

x

y

800

900

1000

Test Point

Demand
Node

outermost

TP

Base
Station

(770, 280)

299.67

x

xx
x x xx xxx

x

x

x
x

x

x
x

x x
xx

x
x

x

x
x

xx

x

x
x

xx
x

x x

x

x
x

x

x

1000 m.

Figure 7.14: Minimum Branching in Progress (2nd recursion).

The TP at (295, 175) selected in the first recursion is now BS1 in the second recursion. Since

there are fewer demand nodes (40), there are also fewer TPs (40) as a result. The demand

node at (640, 10) in figure 7.14 is associated with one TP at (770, 280) (only TP within the

coverage radius), and therefore is the outermost demand node. The TP at (770, 280) is then

chosen as the next BS2 in the solution tree. For the third recursion, demand nodes associated

with BS2 are again removed, the sweep and merge process is applied to compute a new set

of TPs, the minimum branching algorithm then searches for the outermost demand node,

the next BS, and so on until all demand nodes are removed. After five recursions, there are

99

no demand nodes left in the network, and the first feasible solution is found (assuming that

the BS capacity, C = ∞). Figure 7.15 shows the resulting BS placement after the first five

recursions.

0

100

200

300

400

500

600

700

100 200 300 400 500 600 700 800 900

x

y

800

900

1000

BS1

(295, 175)

BS2

(770, 280)

(300,720)

BS3

(825,790)

BS4

(990,500)

BS5

Demand
Node

Base
Station

2nd recursion

1st recursion

3rd recursion

4th recursion

5th recursion

1000 m.

Figure 7.15: BS placement. 5 BSs are needed to satisfy the coverage requirement

The third and fourth recursion produce 8 and 2 TPs, and the results are BS3 and BS4 re-

spectively. For the fifth recursion, since there is only one demand node left at (990, 500),

this will be the location of the last TP and BS5. The first five recursions are executed step

by step down the tree depth.

100

The minimum branching requires a total of 19 recursions as shown in figure 7.16 below.

Recursion #0 is always a root of the tree. The tree depth represents the total # of BSs

(295,175)

root

1 (40)

2 (25)

3 (11)

4 (1)

6 (41) 13 (44)

7 (27)

8 (13) 10 (13)

11 (4)

14 (31)

15 (13) 17 (13)

18 (4)

(770,280)

5 (0)

9 (0)

12 (0)

16 (0)

19 (0)

(300,720)

(825,790)

(990,500)

(240,300)

(335,800)

(715,235)

(875,690)

(660,285)

(910,440)

(835,840)

(160,375)

(690,225)

(875,690)

(395,860)

(660,285)

(910,440)

(835,840)

1st
 fe

as
ib

le
 s

ol
ut

io
n

optimal solution
branch

no
t n

ec
es

sa
ry

TPTP/BS

recursion ordersn = 0

n = 1

n = 2

n = 3

n = 4

n = 5

tr
ee

 d
ep

th

demand nodes
left

Figure 7.16: Minimum Branching Tree

needed. The tree produces five feasible solutions (# of branches from the root node to the

terminating node), two of which are the optimal solution (require fewest # of BSs to satisfy

the coverage requirement). The optimal solution branch and its TP nodes are shown in red,

and only n∗ = 4 BSs are needed to cover all the demand nodes. To reduce the number

of recursions, the algorithm discards nodes that are at equal or higher than the tree depth

n∗ = 4, reducing the number of recursions to 14. The optimal solution is shown in figure

7.17

101

0

100

200

300

400

500

600

700

100 200 300 400 500 600 700 800 900

x

y

800

900

1000

BS1

(240, 300)

BS3

(715, 235)

(335, 800)

BS2

(875,690)
BS4

Demand
Node

Base
Station

1000 m.

Figure 7.17: Optimal Coverage Solution. Only 4 BSs are needed to satisfy the coverage require-
ment

Employing the minimum branching algorithm, the search space size S is reduced from(
N∗

n∗

)
=

(
111

4

)
= 5, 989, 005 = to 14 (total number of recursions)

Together, the TP reduction and the minimum branching algorithms reduces the computation

requirement by a factor (section 6.1.2)

C ′(exhaustive search)

C ′(minimum branching)
≈M

(
N

n∗

)
/14N = 60

(
40, 401

4

)
/(14 ∗ 40, 401) ≈ 1.18× 1013 (7.1)

102

7.2.2 Fading Effect

To illustrate the effect of fading, the following example is considered. The same network

with M = 60 demand nodes randomly located in 1000× 1000 m2 from the previous example

is used. However, to compensate for the shadowing loss ζk, which is modeled as a log-normal

random variable with zero mean and standard deviation σ dB [40], the fading margin γ

must be added so that the coverage radius is reduced. As an example, using the two-ray

model described in section 3.2 (which is suitable for the coverage radius R less than 1 km)

to determine the path loss

Pkn = P0 + ζk +

 10n1 log10(rkn), r ≤ df

10n2 log10(rkn/df) + 10n1 log10 df , r > df

(7.2)

where n1 and n2 is the path loss exponent before and after break point distance df , and

rkn is the distance between BSn and demand node mk. Without the fading, the previous

example assumes that the coverage radius = R, which translates to the maximum path loss

Pmax = P0 + 10n2 log10(R/df) + 10n1 log10 df (7.3)

Including the fading margin γ, then

Pkn + γ = Pmax (7.4)

Thus, the new coverage radius R′ can be computed as

P0 + 10n2 log10(R
′/df) + 10n1 log10 df + γ = Pmax

10n2log(R
′/df) = 10n2log(R/df)− γ

R′ = R10
γ

10n2 (7.5)

As shown by [40] (when soft handoff is employed), to achieve 90% coverage, if σ = 8 dB,

the fading margin must be at least γ = 6.2 dB. Therefore, for R = 300 m in the previous

example, n2 = 4 [36], using (7.5) the new coverage radius is

R′ = 300 ∗ 10(6.2/40) ≈ 210 m (7.6)

103

To account for the fading, the coverage radius shrinks from R = 300 to R′ = 210 m. Since

the same demand nodes from the previous example is used, the initial number of grid points

needed to guarantee the optimal solution does not change (N = 40, 401). However, with the

new coverage radius R′ = 210 m, a new set of TPs must be recomputed. Figure 7.18 shows

the resulting new set of TPs from the sweep and merge algorithm when R′ = 210 m.

0

100

200

300

400

500

600

700

100 200 300 400 500 600 700 800 900

x

y

800

900

1000

1000 m.

New TPs
(R' = 210)

Demand
Node

x

x
x

x
x

xxxx x
x x

xx
x

x
xx x

x
x

xxxx x
x

x
x

x

x
x

xx
x

x xxx xxx xxx x
x

xxx xxx
x

xx
xx

xx xx
x

x

x xx x

x

xx
xxx xx x

x xxx x xxx x
x xx

x
x

x
x

x

x

x
xx

x xxx
xxx x

xx

x
x

xx

xx

xx
xx

x

x

x

x

x

x
x

x
x xx xx

x

x
x

x

x
xx

x

x

xx x x x x
x

x
x

xxx
x x

xx

x

x
x

x

xx
x

x

xxx x

x
x x

x

x

xxx xx x x xx x

x

x x

xxxx xx xx

xxx

x

x
xx

x

x

xx

x Old TPs
(R = 300)

R =
 30

0 m
.

R'
 =

 2
10

 m
.

fading margin = 6.2 dB

Figure 7.18: New Set of TPs (Fading Margin Included). A new set of N∗ = 93 TPs (as shown in red x)
when R′ = 210 m with fading margin included, compared to 111 TPs (as shown in green x) when R = 300
m.

With the coverage radius reduced to R′ = 210 to compensate for the fading margin γ = 6.2

dB, the sweep and merge algorithm results in a new set of N∗ = 93 TPs, 18 TPs fewer than

when R = 300 m. The new set of N∗ = 93 TPs are also distributed throughout the space,

104

but are more spread out than the previous set of TPs — since the coverage radius R′ < R.

Figure 7.19 shows the corresponding new coverage solution.

0

100

200

300

400

500

600

700

100 200 300 400 500 600 700 800 900

x

y

800

900

1000

BS1

(140, 270)

Demand
Node

Base
Station

1000 m.

BS2

BS3

(435, 885)

BS4

(825, 765)

(220, 670)

BS5

(605, 205)

BS6

(565, 455)

BS7

(950, 355)

Figure 7.19: New Optimal Coverage Solution (Fading Margin Included) Now, 7 BSs are needed to satisfy
the coverage requirement when R′ = 210 m.

As expected, since the new coverage radius is smaller, more BSs are needed to provide the

coverage. With R′ = 210, the minimum branching algorithm (20 recursions in total) now

produces 7 BSs, 3 more BSs when no fading margin is included (as in the case when R = 300

m). In summary, adding the fading margin in the path loss equation results in a smaller

coverage radius, a new set of TPs must be recomputed, and additional BSs are needed to

satisfy the coverage requirement.

105

7.2.3 Clustered Distribution

The previous examples considered the networks with random distribution of demand nodes.

As a result, TP distribution is also random. Now consider the case where demand nodes are

clustered as might be seen in urban environments. To be more general than the previous

example, a larger network with M = 200 is used; three clustered of demand nodes are ran-

domly generated and placed in a rectangular area with size X = 1500 and Y = 2500 m. One

cluster is located at the middle, the other two on the top and lower right respectively. Since

the network is larger, the demand node grid spacing is set to ∆x = ∆y = 20 m to limit the

number of computations so that the solution can be computed in a reasonable time period.

To guarantee the optimal solution, the TP grid spacing must therefore be ∆g = ∆x/2 = 10

m. Figure 7.20 shows the example network.

0

200

400

600

800

1000

1200

1400

200 400 600 800 1000 1200 1400 1600 1800 2000

x

y

2200 2400 m.

demand
node

cluster #1

cluster #2

cluster #3

∆x = ∆y = 20

Total Demand
= 200

optimal solution set s
∗ = {∅}

Figure 7.20: Clustered Demand Node Example. M = 200 demand nodes are randomly generated.
However, three areas are weighted more than the others, resulting in three clusters of demand nodes.

106

In this example, the BS radius is set to R = 500 m to represent the coverage of a small

microcell [54], which includes all the margins required to compensate for the shadow fading

and path loss, while the BS capacity C = 40 is chosen to limit the total number of BSs

needed. The total number of initial grid points N = (1500/10+1)∗ (2500/10+1) = 37, 901.

Applying the sweep and merge algorithm reduces the number of grid points from N = 37, 901

to N∗ = 459 TPs. The resulting TPs are shown in figure 7.21.

0

200

400

600

800

1000

1200

1400

200 400 600 800 1000 1200 1400 1600 1800 2000

x

y

2200 2400 m.

cluster #1

cluster #2

cluster #3

∆x = ∆y = 20

x

x

x
xxx x

x
x

xx xxxx xx
x

xx xx xx
x

xxx xxxx xxx xx
x

xx xxxxx xxxxx xxxx xxx xxxxxxxx xxxx xxxxxxxx xxx xxxxxxxxx
xxxxxxx xxxxxx xxxx xxxxxx xxxxx xxxxx xxxxx xxx

x
xxx xx xxxxxx xxxx xx

xx
xxxx

x
x

x
xxx xxxxxx xxxxxxx xxx xxxxxx xxxxxxxx

x
xxxxxxxxxxxxxxxxx xxxxxxx xxxxxxxxxx

x

xxxxxxx
xxxxxxxxxx xxx xxxxxxx xxxxxxxx

x
xxxxxxxx

x
xxxxxx

xxxxxxxxx xxxxxxxxxx xxxxxxxxxxxx
xxxxx xxxxxxxxxxxx xxxx xxxxxxxxxx xxxxxxxx xxxxxxxx

x
xxxxx

xxxxxxx
x

xxx xxx xxxxxxxx xx
x

xxxxxxxx xxx

x

xxxxxxxxxxxx xxx xxxx
xxxx xx xxxxx

x
xxx

xxxxxx xxx
x

xx
xxx

xxx
x

x
x x

x

x
x x

x x demand
node

TP

Figure 7.21: Test Points (Clustered Demand Node Example). Out of N = 37, 901 grid points, the sweep
and merge algorithm removes unnecessary grid points that are not required for the optimal solution, reducing
the total number to only N∗ = 459 TPs.

Since demand node are clustered, TPs are also clustered, and most of them are located in

the middle among the three clusters of demand nodes. These TPs are guaranteed to contain

the optimal solution. The design first employs the minimum branching algorithm to solve

for the coverage solution. Figure 7.22 shows the corresponding coverage solution tree.

107

of

 T
Ps

1/459/151

12/459/151

2/211/88

3/80/47

4/21/16

6/21/17

8/21/15

n
=

 0

n
=

 1

n
=

 2

n
=

 3

n
=

 4

n
=

 5

55
0,

33

0
54

0,

35
0

53
0,

37

0
52

0,
38

0
10

00
,

73
0

85
0,

73

0

12
30

,
20

50

re
cu

rs
io

n
or

de
rs

de
m

an
d

no
de

s
re

m
ai

ni
ng

0/
0/

20
0

27
0,

19

40

44
0,

11

20

11
40

,
55

05/1/0

7/21/15

38
0,

10

60

10/24/17

9/80/48

11/24/12

11
30

,
21

30

13/237/89

27
0,

19

40

14/87/48

44
0,

11

20

55
0,

33

0
54

0,

35
0

53
0,

37

0
52

0,
38

0

15/25/17

16/25/18

17/25/16
18/25/16

38
0,

10

60

19/87/49

20/25/33
10

20
,

10
90

21/237/90

18
0,

19

00

22/87/87

76
0,

19

80

23/78/30

24/78/29

52
0,

10

10
50

0,

98
0

25/459/151

10
60

,
21

60 26/259/90

27
0,

19

40 27/98/49
44

0,

11
20

55
0,

33

0
54

0,

35
0

53
0,

37

0
52

0,
38

0

28/31/18

29/31/19

30/31/17
31/31/17

32/98/50 38
0,

10

60

55
0,

33

0
54

0,

35
0

53
0,

37

0
52

0,
38

0

33/31/20

34/31/21
35/31/19
36/31/18

37/259/91 18
0,

19

00

81
0,

19

90

38/98/87 39/78/30
40/78/29

52
0,

10

10
50

0,

98
0

10
40

,
22

40

41
/4

59
/1

50

42/258/91

27
0,

19

40

43/100/50

44
0,

11

20

11
40

,
13

6044/32/45

38
0,

10

60

45/100/51
46/32/45

11
30

,
13

50

47/258/91

18
0,

19

00

48/99/88
49/80/31

80
0,

19

80

50/80/30

52
0,

10

10
50

0,

98
0

10
00

,
23

80

51
/4

59
/1

57
52/285/97

18
0,

19

00

53/107/87

14
00

,
19

40

54/78/30

55/78/29

52
0,

10

10
50

0,

98
0

90
0,

22

90

56
/4

59
/1

54

57/281/95

18
0,

19

00

58/107/87

52
0,

10

10
50

0,

98
0

59/78/30
60/78/29

13
30

,
18

30

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

discard

op
tim

al
 c

ov
er

ag
e

so
lu

tio
n

tr
ee

 d
ep

th

Figure 7.22: Coverage Solution Tree (Clustered Demand Node Example)

108

The minimum branching algorithm requires 60 recursions to complete. The first 5 recursions

(as shown in figure 7.22) yield the optimal solution, therefore n∗ = 5 BSs are needed to satisfy

the coverage requirement. Figure 7.23 shows the resulting coverage solution.

unsatisfied
demand

0

200

400

600

800

1000

1200

1400

200 400 600 800 1000 1200 1400 1600 1800 2000

x

y

2200

(1230, 2050)

BS1 (40)

(270,1940)

BS2 (40)

(440,1120)

BS3 (34)

BS4 (30)

(550,330)

BS5 (28)

(1140,500)

Maximum Demand Satisfied
= 172

unsatisfied
demand

R = 500

Demand Satisfied

2400 m.

Figure 7.23: Coverage Solution (Clustered Demand Node Example) The minimum branching produces
5 BSs, sufficient satisfied the coverage requirement to all demand nodes. However, two BSs on the top and
lower right side cover more demand > C = 40. Therefore, the capacity requirement is not met, and the
solution is infeasible.

When demand nodes are randomly assigned to n∗ = 5 BSs, 167 demand units are satisfied.

After solving for the optimal assignment, the maximum demand units satisfied then improve

to 172. However, it is still insufficient for the total of 200 required. Both BS1 and BS2 cover

demand modes more than the maximum capacity C = 40. The coverage solution shown

in figure 7.23 is thus unable to meet the capacity requirement. The TS-based algorithm

described in section 6.3 is then employed to maximize the capacity and if it is necessary,

search for additional BSs to satisfy the excess demand. In this paper, 100 TS iterations

109

(forming and selecting new candidate solutions) are executed, which is repeated 10 times

(restart) to improve the solution quality through intensification and diversification processes.

For n+ = n∗ = 5 BSs, with N∗ 459 TPs computed earlier from the minimum branching

algorithm, TS is able to relocate BSs and achieves the maximum capacity = 194, which

is still insufficient. Therefore, one more BSs is needed (n+ = n∗ + 1 = 6). Now, with

n+ = 6 BSs, TS achieves the maximum capacity = 200, and thus the capacity requirement

is satisfied. Figure 7.24 shows the resulting BS placement. The solution in figure 7.24 is

0

200

400

600

800

1000

1200

1400

200 400 600 800 1000 1200 1400 1600 1800 2000

x

y

2200 2400 m.

demand
node

∆x = ∆y = 20

Total Demand Satisfied
= 200

BS1 (40)

(1230, 2050)

BS2 (39)

(290, 1880)

BS3 (34)
(610, 2210)

BS4 (28)

BS6 (19)

BS5 (40)

(500, 980)(520, 380)

(1040, 400)

BS

Figure 7.24: A Solution BS placement Solution by TS (Clustered Demand Node Example). A total of
n+ = 6 BSs are needed to satisfy the capacity requirement = 200.

computed from the minimum number TPs, otherwise it would be difficult to locate the

solution scattered in the search space size of about N7 = 37, 9016 ≈ 1027. With N∗ = 459

TPs, the TS algorithm only searches the space of size 103 × n+N∗/5 ≈ 5.5 × 105 (section

6.3.4), the computation requirement is thus reduced by a factor of 1021.

110

7.2.4 Statistical Analysis

The sweep and merge algorithm reduces the size of search space S by removing grid points

that are not part of the optimal solution from N to N∗ TPs (where N∗ � N), thereby

reducing the computation requirement accordingly. As discussed earlier, N∗ can not be

determined as a closed-form formula. N∗ increases or decreases when the coverage radius

shrinks or expands. Figure 7.25 plots N∗ as a function of the coverage radius R.

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600 700

Nu
m

be
r o

f T
Ps

 (N
*)

Coverage Radius (R)

M = 60
M = 20

M = 100

Figure 7.25: Number of TPs (N∗) vs. Coverage Radius (R)

Demand nodes are randomly generated in a square km2 area. Each curve corresponds to

the average number of TPs (with 95% c.i.) produced from the sweep and merge algorithm.

When R ≈ 0, N∗ is exactly equal to M , as R increases, N∗ gradually increases, reaches the

peak point, and decreases — similar to a bell-shaped curve. N∗ keeps increasing at small R

because it is more likely that two larger sets (demand node set coverage) are distinct than

two smaller ones are. However, when R is large, the set coverage is less sensitive to grid

point displacement (likely to cover the same set of demand nodes), as a result there will

be fewer TPs (redundant grid points are removed). Indeed, when more demand nodes are

111

involved, the average N∗ also increases proportionally (i.e., M = 60 vs. M = 100). Figure

7.26 plots N∗ as a function of demand node density.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.05 0.1 0.15 0.2 0.25 0.3

No
rm

al
ize

d
Nu

m
be

r o
f T

Ps
 (N

* /N
)

Demand Node Density (M/N)

R = 300
R = 100
R = 500

Figure 7.26: Normalized Number of TPs (N∗/N) vs. Demand Node Density (M/N)

As shown in figure 7.26, N∗ increases monotonically as the demand node density increases.

N∗ is normalized by N (total number of grid points), and the density is measured as the

ratio between M and N . The three plots (R = 100, 300, 500) in figure 7.26 shows that N∗

increases more rapidly at low demand node density, but is stable when networks are denser.

The statistics are collected from 30 independent tests per each density point. Each test

generates a different set of random demand nodes based on the density given. Results from

both figure 7.25 figure 7.26 lead to the conclusion that, N∗ is a complex function of both R

and M . As observed from figure 7.26 above, when M is large, N∗ will approach ≈ 0.5N .

112

As shown in section 6.1.2, the computational requirement of the minimum branching al-

gorithm can be measured as the total number of recursions needed. Figure 7.27 shows the

computational requirement as a function of the coverage radius R — where the total number

of recursions decrease when the coverage area πR2 is larger because fewer BSs n∗ are needed.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

Nu
m

be
r o

f R
ec

ur
sio

ns

Normalized Coverage Area (!R2/XY)

M = 60

Figure 7.27: Number of Recursions vs. Normalized Coverage Radius (πR2/XY)

113

When the demand node density increases, the variance is also large (large error bar) because

more BSs are needed and there are more TPs in each recursion. Due to large error bars

shown in figure 7.28, the confidence intervals of 19 out of 20 points are overlapped. The

computational requirement, which is now measured as the total number of recursions nor-

malized by S (search space size), is likely to be independent to the demand node density.

Employing the minimum branching algorithm reduces the computational requirement by 6

to 14 orders of magnitude.

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

 0 0.05 0.1 0.15 0.2 0.25

Nu
m

be
r o

f R
ec

ur
sio

ns
 /

S
(lo

g
sc

al
e)

Demand Node Density (M/N)

R = 300

Figure 7.28: Number of Recursions (Normalized) vs. Demand Node Density (M/N)

114

7.3 DESIGN EXAMPLE: GRAZ, AUSTRIA

We now consider the actual network example to test the design algorithm. Graz, Austria is

chosen because it represents a medium size city (similar to Pittsburgh), and more importantly

the cell phone usage data is available through “Mobile Landscape | Graz in Real Time”,

SENSEable City Lab, MIT [55]. Graz is the second largest city in Austria. It has a population

around 290,000 and a total area of about 128 km2. Graz is also a student city, with 6

universities and over 40,000 students [56]. The size, population, and its being the academic

center is very similar to the city of Pittsburgh (151 km2 with 310,000 population [57]). Figure

7.29 shows a map of Graz from Google Maps.

08/02/2007 02:15 AMgraz, austria - Google Maps

Page 1 of 1http://maps.google.com/maps?f=q&hl=en&geocode=&q=graz,+austria…TF8&ll=47.0679,15.441713&spn=0.041333,0.093727&z=14&om=1&pw=2

Address Graz

Austria

CITY CENTER3.2 km

3.2 km

x

y

North

South

EastWest

Figure 7.29: A map of Graz, Austria. A 3.2× 3.2 km2 square represents the city center.

115

7.3.1 Traffic Characterization

0 0.5 1.0 1.5 2.0 2.5 3.0 km y

0.5

1.0

1.5

2.0

2.5

3.0 km

University
Park

Park

Park
River

River Hospital

x

North South

East

West

Peak Activity

Figure 7.30: Cell Phone Activity in the City Center, Graz

Figure 7.30 illustrates an axonometric view of cell phone activity inside the city center. The

activity varies from high to low, where red indicates high activity and green indicates low

activity. High usage activity is concentrated at places such as universities and hospitals,

while low usage activity occurs in parks, and none for most parts of the river. Location

and usage statistics were collected from A1 Mobicom (Austria) by pinging one thousand

cell-phones simultaneously as they move through the city [55]. The usage activity shown in

figure 7.30 is, however, dimensionless: it differentiates between high and low usage, but no

actual traffic volume or intensity is given. To compute the traffic intensity, we need to know

or assume parameters such as population density and proportion of users active during the

busy hour. The population density in Graz is approximately 2,000/km2 [56]. If 20% of users

are assumed to be active during the busy hour, thus the highest traffic intensity is

= 0.2 ∗ 2, 000 = 400 Erlangs/km2

116

Matchng the 400 Erlangs/km2 to the peak activity in figure 7.30, the actual traffic intensity

for the entire city center can be mapped proportionally. Figure 7.31 shows the approximated

traffic intensity.

 0 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

dem
and distribution

x

y

University

HospitalRiver

River
Park

Park

Park

West

East

North South

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

demand distribution

x

y

420 Erlangs/km2

0

70

140

210

280

350

x

y0 0.5 1.0 1.5 2.0 2.5 3.0 km

0.5

1.0

1.5

2.0

2.5

3.0

unit area
∆x × ∆y

50 × 50 m
2

Figure 7.31: Approximated Traffic Intensity in Erlangs/km2

The approximated traffic intensity is created by assuming Guassian distribution of user

movement [53]. Areas with higher usage activity shown in figure 7.30 (i.e., university and

hospital) are populated with more users to simulate higher traffic intensity. The total traffic

is 273.38 Erlangs. The traffic load in each unit area (∆x × ∆y = 50 × 50 m2) can be

computed, and the demand nodes are generated accordingly.

117

7.3.2 Demand Node Generation

University

Hospital

River River
Park

Park

Park

West

East

North South

x

y0 0.5 1.0 1.5 2.0 2.5 3.0 km

0.5

1.0

1.5

2.0

2.5

3.0

demand
node

Figure 7.32: Demand node in each tessellation represents cell phone traffic in Graz, ranging from 1 to ∆q
= 6 Erlangs. The larger the demand node, the larger traffic it carries.

The demand nodes in shown figure 7.32 is recursively generated by bisectioning the design

area into two halves (i.e, rectangles) with equal amount of traffic. The bisectioning turns 90◦

for each recursion until the traffic in every tessellation piece falls below a threshold ∆q = 6,

which is chosen so that the smallest demand node carries traffic more than one Erlang, or

equivalently at least one user. There are a total of 72 demand nodes generated, with traffic

ranging from 1 to 6 Erlangs (limitations are discussed in chapter 8). The sweep and merge

algorithm is then applied to compute TPs, described next.

118

7.3.3 Coverage Radius (CDMA2000 EV-DO)

Before computing TPs, the coverage radius R must be determined. As discussed earlier,

the coverage radius R is a function of the path loss and the required SNR at the receiver.

The required SNR may vary, depending on which technology is implemented. In this case,

the CDMA2000 EV-DO technology is chosen. CDMA2000 EV-DO is among the leading

technologies for 3G networks, supporting burst data rate upto 153.6 kbps on the reverse

link and 2,457.6 kbps on the forward link [11]. For the coverage requirement, the constraint

is on the reverse link because the maximum mobile transmit power is limited to 23 dBm,

compared to 43 dBm available to the BS [11]. As shown in the Appendix, the minimum

SNR required to guarantee the maximum date rate 153.6 kbps at 0.7 loading factor must

be greater than -98 dBm. If the BS antenna gain is 15 dB [58], the maximum path loss

PL = 23− (−98) + 15 = 136 dB (symmetric in both directions). Using the COST 231 path

loss formula described in chapter 3,

PL = 46.3 + 33.9 log fc − 13.82 log hb + (44.9− 6.55 log hb) logR + 3

where the carrier frequency fc = 2, 000 MHz, and the BS antenna height hb = 32 m [58],

then

136 = 46.3 + 33.9 log 2000 +−13.82 log 32 + (44.9− 6.55 log 32) logR + 3

and the coverage radius R ≈ 750.

7.3.4 BS Capacity (CDMA2000 EV-DO)

The BS capacity C, is the maximum number of users (Erlangs) that can be supported

simultaneously. Assuming that the upload traffic is negligible compared to the download

traffic [59], therefore only the forward link capacity requirement is considered. For data

services, C is a function of the average forward link throughput Rd, the target user-percieved

data rate r, the distribution of packet size SM , and the mean reading time Dpc (the average

time users take to process data after receiving the packet). Several field experiments and

simulation studies showed that, the EV-DO forward link throughput Rd ranges between 500

to 1225 kbps [52], [60], [61]. Dominant data applications for EV-DO networks are such as

119

HTTP (including WAP), FTP [58], [62]. The mean packet size SM for HTTP is 55 kB vs 2

MB for FTP applications, and the mean reading time is 30 and 180s respectively [58]. The

service time is also random because the forward link throughput fluctuates due to fading.

Using the m/m/1 queuing model (only one server because the BS transmits to one user at

a time), the BS capacity C (maximum number of users) is computed as [52]

C =
RdDpc

SM

[
SM/r − 0.5− SM/Rd

SM/r − 0.5

]
(7.7)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 200 400 600 800 1000

C
(m

ax
im

um
 #

 o
f u

se
rs

)

user-percieved data rate, r (kbps)

HTTP
FTP

Figure 7.33: Maximum # of Users vs Data Rate for HTTP and FTP applications at 1225 kbps average
forward link throughput. The mean reading time Dpc is 30 and 180s for HTTP and FTP respectively.

As shown figure 7.33, the EV-DO BS can support upto 80 HTTP users or 12 FTP users [52].

Using (7.7), if the required user-perceived data rate r is 64 kbps for HTTP applications [62],

Chttp =
1225 ∗ 30

55 ∗ 8

[
55 ∗ 8/64− 0.5− 55 ∗ 8/1225

55 ∗ 8/64− 0.5

]
≈ 79

120

about 79 HTTP users can be supported (at Rd = 1225 kbps), while if FTP applications

require r = 256 kbps (equivalent to basic ADSL service),

Cftp =
1225 ∗ 180

2000 ∗ 8

[
2000 ∗ 8/256− 0.5− 2000 ∗ 8/1225

2000 ∗ 8/256− 0.5

]
≈ 11

about 11 FTP users can be supported. Suppose that approximately 70% of users are HTTP

users (including WAP) and the remaining 30% are FTP users [58], [62], then the BS capacity

is averaged to be

C = 0.7Chttp + 0.3Cftp = 58

The BS capacity C must be recomputed when either the traffic proportion or the required

data rate changes. As an example, if the required data rate for HTTP users increases to 256

kbps (equal to FTP), then Chttp reduces to 59 users. With the same traffic proportion (70%

HTTP / 30% FTP), the average BS capacity C decreases from 58 to 44 users. However, for

the Graz design case, HTTP data rate is fixed to 64 kbps, and C = 58 is used.

7.3.5 TP Reduction

Demand nodes shown in figure 7.32 are separated no closer than ∆x = ∆y = 50 m, equal to

the dimension of unit area used in the traffic quantization process. According to (5.15), the

required TP grid spacing ∆g must be no larger than half the demand node grid spacing in

order to guarantee the optimal solution.

∆g = ∆x/2 = 25 m

The design area is a rectangular with size X = 3200 and Y = 3200 m, therefore the total

number of initial grid points required are

N =

⌊
X = 3200

25
+ 1

⌋ ⌊
Y = 3200

25
+ 1

⌋
= 1292 = 16, 441

The sweep and merge algorithm is applied to reduce N . There are 72 demand nodes with

the total traffic of 273.38 Erlangs. The smallest demand node carries 1.09 Erlangs and the

largest demand node has 5.81 Erlangs. Using the coverage radius R = 750 m derived in the

previous section, the sweep and merge algorithm produces N∗ = 99 TPs as shown in figure

7.34.

121

University

Hospital

River River
Park

Park

Park

West

East

North South

x

y0 0.5 1.0 1.5 2.0 2.5 3.0 km

0.5

1.0

1.5

2.0

2.5

3.0

demand node

Test Point

R = 0.75 km

x

x

xx

x
x

xx x
xx x

xxxx xxx
x xxxx x

xxxx x
x

x
xxx x

xxx xxxxx xxxxx xxx xxxxxx xxx xxxxx xx xxxx xxxxx x xxxx xx x
xxx

x x
x xxxx xxx

x
x

Figure 7.34: TPs resulted from the sweep and merge algorithm (Graz Example)

Figure 7.34 shows the resulting TPs. The sweep and merge algorithm reduces the total

number of TPs to N∗ = 99 TPs, compared to N = 16, 441 initial grid points. Most TPs

appear among demand nodes, while few TPs are present below the river and above the parks.

These TPs are used to compute the coverage solution described next.

7.3.6 Minimum Branching

The first recursion of the minimum branching algorithm selects TP at (0.7, 2.5) km as the

first BS in the solution tree as shown in figure 7.35.

122

root

1/99/57

6/77/34

7/14/223/25/12

4/4/1 8/1/0

5/1/0

(0.700, 2.500)

(1.125, 0.425)

(1.800, 1.900)

(2.175, 0.350)

(2.150, 0.650)

(1.000, 1.150)

(1.775, 1.925)

1st
 fe

as
ib

le
 s

ol
ut

io
n

br
an

ch

op
tim

al
 s

ol
ut

io
n

br
an

ch

TP

recursion orders

n = 0

n = 1

n = 2

n = 3

n = 4

n = 5

tr
ee

 d
ep

th

demand nodes remaining

2/77/31

(1.250, 0.300)

0/0/72

of TPs

Figure 7.35: Minimum Branching Solution Tree. Two feasible solutions: the first one requires 5 BSs,
while the second one, which is the optimal solution, needs n∗ = 4 BSs to cover all demand nodes.

15 demand nodes within range of BS1 are removed. Thus, the network now consists of

72−15 = 57 uncovered demand nodes, and a new set of TPs must be recomputed. Applying

the sweep and merge algorithm to the network of 57 uncovered demand nodes then produces

a new set of 77 TPs. Out of 77 new TPs, 2 TPs at (1.250, 0.300) and (1.125, 0.425) km

are selected to create a new branch of solution. The TP at (1.250, 0.300) leads to the first

feasible solution requiring 5 BSs, whereas the TP at (1.125, 0.425) forms the optimal solution

branch thereafter, requiring one fewer BS to satisfy the coverage requirement.

123

7.3.7 Capacity Requirement Validation

The coverage solution resulted from the minimum branching algorithm is shown in figure

7.36. Using CPLEX to obtain the optimal demand node assignment, the coverage solution

University

Hospital

River River
Park

Park

Park

West

East

North South

x

y0 0.5 1.0 1.5 2.0 2.5 3.0 km

0.5

1.0

1.5

2.0

2.5

3.0

demand node

Base Station

BS4

(0.700,2.500)

R = 0.75 km

BS2

(1.125,0.425)

BS3

(1.800,1.900)

BS1

(2.175,0.350)

assigned to BS2

unassigned
demand node

unassigned

assigned to BS4

Maximum Demand Satisfied
= 218.4 Erlangs

Figure 7.36: Coverage Solution: n∗ = 4 BSs are needed to satisfy the coverage requirement. However,
since BS1 and BS2 cover demand nodes with traffic more than the maximum capacity C = 58 Erlangs,
therefore the excess demand nodes are not assigned.

with n∗ = 4 BSs in figure 7.36 is able to support 218.4 Erlangs, still insufficient to support

the total demand 273.38 Erlangs. Both BS1 and BS2 are among a large group of demand

nodes. BS1 alone covers demand nodes with the total traffic close to 99 Erlangs, more than

its maximum capacity C = 58 Erlangs, thus some demand nodes are left unassigned and

the capacity requirement is not met. In fact, n∗ = 4 BSs will never be sufficient to satisfy

124

the capacity requirement, since 4 × 58 = 232 ≤ the total 273.38 Erlangs. The TS-based

algorithm (described in section 6.3) is then employed to solve for a new solution with one

additional BS, such that n+ = n∗ + 1 = 5 BSs are to be placed at N∗ = 99 TPs computed

earlier from the sweep and merge algorithm in figure 7.34. TS manages to locate n+ = 5 BSs

so that the network can support the total capacity requirement = 273.38 Erlangs, and all

the BSs are assigned with demand nodes fewer than the maximum capacity C = 58 Erlangs.

Figure 7.37 shows the resulting BS placement from the TS-based algorithm.

University

Hospital

River River
Park

Park

Park

West

East

North South

x

y0 0.5 1.0 1.5 2.0 2.5 3.0 km

0.5

1.0

1.5

2.0

2.5

3.0

demand
node

Base
Station

BS4 (53.7)

(0.700,2.500)

BS5 (56.5)

(1.650,0.775) BS3 (48.8)

(1.750,1.950)

BS1 (57.0)

(2.150,0.650)

Maximum Demand Satisfied
= 273.4 Erlangs

optimal solution set s* = {(2.150,0.650), (1.125,0.450), (1.750,1.950), (0.700,2.500), (1.650,0.775)}

BS2 (57.4)

(1.125,0.425)

assigned to BS3

as
sig

ne
d

to
 B

S 5

Figure 7.37: Optimal Solution: 5 BSs are needed to satisfy both the coverage and capacity requirements.

The optimal demand node assignment is applied here. Traffic is distributed more evenly

among BSs with BS3 cover the minimum traffic with 48.8 Erlangs. The new solution with

n+ = 5 BSs satisfies both the coverage and capacity requirements, and therefore is the

125

optimal solution. The TS algorithm needs to evaluate S = 1, 000 × 0.2n+N∗ = 9.9 × 104

possible candidate BS placement (section 6.3.4), as opposed to S = Nn+
= 16, 4415 ≈ 1021

as in the exhaustive search case. Therefore, the design algorithm with TP reduction reduces

the computational requirement substantially by a factor 1016. The resulting design supports

273.38 Erlangs of cell phone traffic, assuming that 70% are HTTP users requiring 64 kbps

data rate and the remaining 30% FTP users requires 256 kbps data rate.

126

7.3.8 Expanded Network

Suppose that additional traffic is created (on top of the existing network) from the new

university complex on the outskirts of the main university and from the extended hospital

facilities just below the river as shown in figure 7.38

 0 0.05

 0.1

 0.15

 0.2

 0.25

dem
and distribution

x

y

University

Hospital

River River
Park

Park

Park

West

East

North South

x

y0 0.5 1.0 1.5 2.0 2.5 3.0 km

0.5

1.0

1.5

2.0

2.5

3.0

existing
demand

node

 0

 0.05

 0.1

 0.15

 0.2

 0.25

demand distribution

x

y

225 Erlangs/km2

180

135

90

45

0

New University
 Complex

Extended Hospital
 Facilities

BS4

BS3

BS2

BS5

BS1

existing
BSs

Figure 7.38: Additional Traffic (Graz Example - Expanded Network). There are two sources of additional
traffic: one from the new university complex and the other from the extended hospital facilities.

The additional traffic from both the new university complex and the extended hospital

facilities is 49.76 Erlangs. Combined with the traffic from existing demand nodes, the total

network traffic now increases to 323.14 Erlangs. Clearly, with 5 existing BSs (C = 58

Erlangs), the maximum traffic that can be supported is = 58 ∗ 5 = 290 < the new 323.14

127

Erlangs required. Thus, the existing network with 5 BSs is not sufficient to support the

increased traffic. There are two options to design a new network: one is to redesign the

network from the scratch again without existing BSs (greenfield design), while the alternative

is to locate fewest more BSs on top of the existing BSs to support the excess capacity

requirements. The greenfield design is illustrated first.

7.3.8.1 Expanded Network - Greenfield Design Demand nodes of the additional

traffic are computed. Figure 7.39 shows the resulting new demand nodes.

University

Hospital

River River
Park

Park

Park

West

East

North South

x

y0 0.5 1.0 1.5 2.0 2.5 3.0 km

0.5

1.0

1.5

2.0

2.5

3.0

existing
demand

node

New University
 Complex

Extended Hospital
 Facilities

new
demand

node

Figure 7.39: New Demand Nodes (Graz Example - Expanded Network). 14 new demand nodes (in
addition to the existing demand nodes) is generated by the recursive bisectioning process (the bisectioning
line is in orange). The new demand nodes are shown in yellow, while the existing demand nodes are in black.

128

The recursive bisectioning process (described in section 5.1) creates 14 new demand nodes.

With the previous 72 demand nodes from the existing network, the total number of demand

nodes in the expanded network are now 86. Since the 14 new demand nodes are placed at

different locations, using the previous set of TPs (as shown in figure 7.34) of the existing

network may not guarantee the optimal solution. To ensure the optimal solution for the

expanded network, a new set of TPs must be recomputed. Figure 7.40 shows the new 122

TPs resulted from the sweep and merge algorithm. Out of the new 122 TPs, 96 TPs appear

x
xx

xx
x

xx x x xx x

University

Hospital

River

Park
Park

Park

West

East

North South

x

y0 0.5 1.0 1.5 2.0 2.5 3.0 km

0.5

1.0

1.5

2.0

2.5

3.0

existing
demand

node

New University
 Complex

Extended Hospital
 Facilities

new
demand

node

x

Test Point
x

x xx

x
x

xxx x
xx x

xxx xx xxx
x xxxx x

xxxx x
x xxx x
xxx xxxxx x

x
xxxxx xxxx xxx xxxx xxx xxxxx xx x

xxxx xxxxxxx x xxxx xx xx
x xxx

x

x xxxx xxx
x

x

River

x

Figure 7.40: New Set of TPs (Graz Example - Expanded Network). 122 new TPs are recomputed from
the sweep and merge algorithm.

at the previous locations as computed from the existing network (as shown in x), whereas the

other 26 TPs are created at different locations (as shown in x) to support the new demand

129

nodes added. The next step is to compute for the coverage solution, in which the minimum

branching is applied. The corresponding solution tree for the expanded network is shown in

figure 7.41.

root

1/122/63

6/57/25

7/3/8

3/57/22

4/8/3

5/1/0

(0.725, 2.625)

(1.125, 0.425)

(1.775,0.875)

(1.250, 0.300)

(1.250, 1.350)

(2.150, 0.650)

op
tim

al
 s

ol
ut

io
n

br
an

ch

TP

recursion orders

n = 0

n = 1

n = 2

n = 3

n = 4

n = 5

tr
ee

 d
ep

th

demand nodes remaining

2/79/48

(1.975, 2.300)

0/0/86

of TPs

.

.

.
discarded

Figure 7.41: Coverage Solution Tree (Graz Example - Expanded Network). The first 5 recursions are the
optimal solution branch, requiring 5 BSs (nodes) to satisfy the coverage requirement.

The minimum branching algorithm requires a total of 7 recursions to complete. The first

5 recursions already result in the optimal solution. At the seventh recursion (4 BSs are

already employed, and there are still 8 demand nodes uncovered), therefore the coverage

solution belong to this branch will not be better than the solution found from the first

five recursions, thus the nodes that come after are discarded, and the algorithm stops. The

expanded network requires at the minimum n∗ = 5 BSs to provide coverage to all the demand

nodes. Figure 7.42 shows the resulting BS placement of the coverage solution.

130

University

Hospital

River River
Park

Park

Park

West

East

North South

x

y0 0.5 1.0 1.5 2.0 2.5 3.0 km

0.5

1.0

1.5

2.0

2.5

3.0

New University
 Complex

Extended Hospital
 Facilities

existing
demand

node

new
demand

node

BSs

BS4
(0.725,2.625)

BS3

(1.975,2.300)

BS2

(1.250,0.300)

BS1

(2.150,0.650)

BS5

(1.250,1.350)

Figure 7.42: New Coverage Solution (Graz Example - Expanded Network) At minimum n∗ = 5 BSs are
needed to satisfy the coverage requirement.

Since the maximum BS capacity C = 58 — irrespective of the demand node assignment,

n∗ = 5 can only support upto = 5 ∗ 58 = 290 Erlangs — which are not sufficient for the

total demand required = 323.14 Erlangs. Thus, more BSs are needed (n+ > n∗). The TS-

based algorithm (described in section 6.3) is then employed to compute for the new optimal

assignment of BSs. With the total 323.14 Erlangs, the minimum number of BSs needed are

= d323.14/58e = 6. Given n+ = n∗ + 1 = 6 BSs and N∗ = 122 candidate TPs computed

from the sweep and merge algorithm (as shown in figure 7.40), the TS-based algorithm

rearranges all the BS placement and (together with the optimal demand node assignment -

section 6.2) searches for the set that will maximize the total network capacity. The resulting

131

BS placement form the TS-based algorithm is able to support the total demand = 323.14

Erlangs, meeting the capacity requirement of the expanded network. Therefore, the BS

placement solution from TS is the optimal solution of the design (requires the minimum

number of BSs n+ = 6 to satisfy both coverage and capacity requirements). Figure 7.43

shows the optimal BS placement computed from TS.

University

Hospital

River River
Park

Park

Park

West

East

North South

x

y0 0.5 1.0 1.5 2.0 2.5 3.0 km

0.5

1.0

1.5

2.0

2.5

3.0

New University
 Complex

Extended Hospital
 Facilities

existing
demand

node

new
demand

node

BSs

BS4 (56.4)
(0.725,2.625)

BS1 (55.3)

(2.150,0.650)

BS5 (57.8)

(1.650,0.775)

BS2 (57.0)

(1.125,0.425)

BS3 (51.8)
(1.450, 1.750)

BS6 (44.9)

(1.775,2.725)

optimal solution set s* = {(2.150,0.650), (1.125,0.450), (1.450,1.750), (0.725,2.625), (1.650,0.775), (1.775,2.725)}

Figure 7.43: New Optimal Solution (Graz Example - Expanded Network) At least n+ = 6 BSs are needed
to supports the total demand of 323.14 Erlangs.

Compared with the previous design of the existing network (figure 7.37), three BSs which are

BS1, BS2 and BS5 remain at the same locations (the coverage is shown in red). However, the

locations of BS3 and BS4 change, and the new BS6 is added to accommodate the increased

demand (the coverage is shown in blue). Note that, the BS4 and BS6 are placed at the new

132

TPs at (0.725, 2.625) of (1.775, 2.725) km (as shown in x in figure 7.40). In each iteration of

the TS-based algorithm, 0.2n+N∗ candidate neighbor solutions are evaluated (section 6.3.4).

In this case, 1,000 iterations are used, thus the total number of evaluations or the search

space size S = 1, 000 × 0.2n+N∗ ≈ 1.46 × 105. Alternatively, if the initial number of grid

points N = 16, 441 are used instead (TP reduction not applied), together if the exhaustive

search is applied, the search space S could be as large as S ≈ 16, 4416 ≈ 2×1025. Thus, both

the TP reduction and the TS-based algorithms helps reduce the computation requirement

by at least a factor 2.5× 1025/1.46× 105 ≈ 1020.

7.3.8.2 Expanded Network - Incremental Design As discussed earlier, the second

approach to design the new network (alternative to the greenfield design described in the

previous section) to meet the increased demand is to employ the fewest more BSs on top

of the existing BSs (BS1 to BS5 in figures 7.37 and 7.38) — the incremental design. The

first step of the incremental design approach, again is to locate the minimum number of

candidate TPs. All 72 demand nodes of the existing network are ignored, and the TPs are

only computed for the 14 newly added demand nodes (for all the yellow dots shown in figure

7.39) responsible for the additional traffic from both the new university complex and the

extended hospital facilities. Then, together with the existing BSs (BS1 to BS5 in figures 7.37

and 7.38), additional BSs must be located from the candidate TPs (computed from the new

14 demand nodes) to satisfy both coverage and capacity requirements of the entire network.

Note that, by adopting the assumption above since the solution is already fixed with 5 BSs

which are BS1 to BS5 located respectively at {(2.150, 0.650), (1.125, 0.450), (1.750, 1.950),

(0.700, 2.500), (1.650, 0.775)} km, the solution derived after adding fewest BSs to satisfy the

requirements may or may not be the optimal solution, compared to when all the demand

nodes are considered and there is no constraint to include all the existing BSs in the solution

as in the greenfield design approach (the total additional number of BSs required plus the

existing BSs might be equal to or greater than n+ = 6 BSs of the greenfield design case).

Nevertheless (following the incremental design approach), the candidate TPs accounting for

the 14 new demand nodes must be computed first. Figure 7.44 shows the resulted new set

of TPs from the sweep and merge algorithm.

133

University

Hospital

River

Park
Park

Park

West

East

North South

x

y0 0.5 1.0 1.5 2.0 2.5 3.0 km

0.5

1.0

1.5

2.0

2.5

3.0

New University
 Complex

Extended Hospital
 Facilities

existing
demand

node

new
demand

node

New TPs
x

BS4

BS3

BS5

BS2

BS1

existing
BSs

xxxx

x

River

Figure 7.44: New Set of TPs for Added Demand Nodes (Graz Example - Expanded Network). Only 5
TPs are the result when only the 14 new demand nodes are considered.

Since there are only 14 new demand nodes, the sweep and merge algorithm only results in

N∗ = 5 TPs. For small N∗, the total number possible solutions (or the search space size

S) are also small (i.e., n+ = 6, S =
(

N∗

n+−n∗

)
=

(
5
1

)
= 5). Thus, an exhaustive search is

reasonable for this case. When one more BS is added to the existing 5 BSs, the best solution

is to place the new BS at TP (1.800, 2.900) km, as shown in figure 7.45.

134

xx

University

Hospital

River

Park
Park

Park

West

East

North South

x

y0 0.5 1.0 1.5 2.0 2.5 3.0 km

0.5

1.0

1.5

2.0

2.5

3.0

New University
 Complex

Extended Hospital
 Facilities

existing
demand

node

new
demand

node

new TPs
x

BS4 (51.3)

BS3 (54.0)
BS5 (56.5)

BS2 (57.4)

BS1 (57.0)

existing
BSs

x

x

River

(1.125,0.425)

(1.650,0.775)

(2.150,0.650)

(1.750,1.950)

(0.700,2.500) new
BS

BS6 (49.9)

(1.800, 2.900)

Maximum Demand Satisfied
= 323.14 Erlangs

optimal solution set s* = {(2.150,0.650), (1.125,0.450), (1.750,1.950), (0.700,2.500), (1.650,0.775), (1.800,2.900)}

Figure 7.45: New Optimal Solution with Existing BSs (Graz Example - Expandedd Network). The new
BS6 is added and placed at TP (1.800, 2.900) km. The new network with n+ = 6 BSs now can support the
total demand = 323.14 Erlangs, meeting the capacity requirement.

Employing the optimal demand node assignment (described in section 6.2), the network with

the newly installed BS6 (including the existing BS1 to BS5) can support all the demand 323.14

Erlangs. Compared to previous optimal solution of the existing network with 273.38 Erlangs

of traffic (figure 7.37), the demand assignment for BS1, BS2, and BS5 remains unchanged,

however the demand node assignment for the two existing BS3 and BS4 (also covering the new

demand nodes) differ slightly — BS3 are assigned with more demand than the previous from

48.8 to 54.0 Erlangs, while the demand assigned to BS4 drops from 53.7 to 51.3 Erlangs.

In this case, the solution in figure 7.45 is the optimal solution of the design (since the

135

minimum 6 BSs are needed to satisfy both the coverage and capacity requirements). Despite

the fact that BS3, BS4, and BS5 are placed differently from the greenfield design result

(compare figure 7.45 and figure 7.43), the solution resulted from the incremental design

approach described in this section matches the result from the greenfield design approach

(employing equal number of BSs). Only 5 candidate solutions are needed to be evaluated

(since N∗ = 5 TPs, and only one BS is added), therefore the computational requirement for

the incremental design approach is tremendously less than the greenfield design approach

(by a factor 1.46 × 105/5 ≈ 104). In general, the incremental design approach will produce

an optimal solution when additional demand does not exceed a BS capacity and the existing

BSs still have sufficient spare capacity to support the demand that can not be covered or

exceed the capacity of the added BS(s). Otherwise, there is no solution to the incremental

design unless more BSs are added.

136

8.0 CONCLUSIONS AND FUTURE WORK

Designing an optimal cellular network requires that a minimum number of Base Stations

(BSs) must be employed, so that cost is minimized. To accomplish this objective, the concept

of a demand node was incorporated to represent a quantum of user demand. An algorithm

for computing a grid of Test Points (TPs) was developed so that the optimal solution is

always guaranteed. The initial number of TPs (N) is usually very large since the required

TP grid spacing (∆g) must be no larger than half the demand node grid spacing (∆x). The

sweep and merge algorithm was then developed to reduce TPs from N initial grid points

to N∗ TPs, while maintaining the optimal solutions. In most cases, N∗ � N , therefore

the corresponding search space size S ≈ Nn∗ (where n∗ is the number of BSs needed) or

equivalently the computation requirement, is reduced from Nn∗ to N∗n∗ . However, when

user traffic is distributed over the entire space, N∗ approaches N/2 (section 7.2.4). Demand

nodes were employed to further reduce N∗. The demand node represents a point in the

center of an area containing a quantum of user traffic, which can represent either voice calls

or data bit rates. The minimum branching algorithm was developed to replace an exhaustive

search to find the coverage solution, as the first step of the design optimization. Given

demand node locations with N∗ � N TPs computed from the sweep and merge algorithm,

the minimum branching algorithm always results in the optimal coverage solution in a more

computationally efficient manner than an exhaustive search. In the worst case, the minimum

branching algorithm reduces the computational requirement by a factor ≈ (N/N∗
1,k)

n∗ where

N∗
1,k � N∗ � N . Results from section 7.2.4 show a reduction (N/N∗

1,k)
n∗ of 6 to 14 orders

of magnitude.

137

Demand node assignment to a BS is also optimized, to maximize the total network capacity

(section 6.2). However, even with an optimal demand node assignment, the coverage solution

with n∗ BSs computed from the minimum branching algorithm may or may not satisfy the

capacity requirement. An algorithm based on Tabu Search (TS) was developed (section

6.3) to compute a new set of demand node to BS assignments (with n+ ≥ n∗ BSs) in cases

when the coverage solution fails the capacity requirement test. Results from the Graz design

examples in section 7.3 require the minimum number BSs to satisfy both the coverage and

capacity requirements.

Results from various network topologies (i.e., random, clustered demand node distribution)

and constraint requirements (i.e., voice call or data rate capacity, path loss and fading) in

the previous chapters confirm that, the design algorithm efficiently searches the space and

produces the optimal solution in a computationally efficient manner. Even with a moderate

network size from the example in section 7.3, the computational requirement is reduced by

a factor at least 1014, while retaining the optimal solution.

The design algorithm was tested to measure its performance in producing an incremental

design (section 7.3.8) when additional traffic arises and new demand nodes must be added to

an existing network. The incremental design approach retains all existing BSs in the solution,

then computes the fewest additional BSs needed to satisfy the increase in demand. Exist-

ing demand nodes are ignored when computing TPs, and only the new demand nodes are

considered — resulting in fewer TPs than what is required by a greenfield design approach.

Together with fewer BSs to place (because all existing BSs are assumed to be already in the

solution), the incremental design approach requires an incremental number of computations.

The result of the incremental design approach was compared against the greenfield design

approach which employed the sweep and merge algorithm to compute a new set of N∗ TPs

considering both the existing and new demand nodes (where all BSs needed to satisfy both

the coverage and capacity requirement of the new network are recomputed from the begin-

ning). Since the incremental design must retain all existing BSs, which may or may not be

138

part of the optimal solution of the new network, therefore the solution from the incremental

design approach is not guaranteed to be optimal. However, results show that the incremental

design approach can produce the optimal solution as well as the greenfield design approach.

In general, the incremental design will be optimal when the increased demand is less than

the capacity of the added BS(s), and the existing BS(s) have sufficient spare capacity to

support the excess demand.

8.1 LIMITATIONS

Incorporating demand nodes into the design algorithm introduces several tradeoffs. Demand

nodes are calculated by quantizing the traffic load into points, where each point represents

the center of an area containing a quantum of demand (i.e., Erlangs, kbps). Employing the

demand node not only simplifies the design process, but it is a practical mean to account

for user mobility, coverage granularity, and traffic classification. There are two parameters

involved in calculating the demand nodes: traffic sampling resolution ∆x, and quantization

of demand ∆q. The sampling resolution ∆x determines the minimum grid spacing between

demand nodes, while the quantization threshold ∆q determines the maximum quantum

of traffic that each demand node point can represent. When ∆x is infinitesimally small

(∆x ≈ 0), the demand node point becomes a continuous space, and the number of demand

nodes are infinite. Thus, choosing a small ∆x provides finer granularity to both the aspects

of signal coverage requirement and user movement, however demand nodes will no longer

be stationary and the number of computations will increase because more evaluations are

needed as the number of demand nodes increase. In the opposite case, choosing a larger ∆x

results in fewer demand nodes, decreases computations, and increases the likelihood that

demand nodes remain stationary. However, the larger ∆x is, the larger the area and the

amount of traffic it represents, and therefore from the perspective of mobility, user movement

and coverage granularity is reduced — some areas or points may not receive sufficient signal

coverage. Similar to ∆x, when the quantization of demand ∆q approaches zero (∆q → 0), it

means that each of the demand nodes will account for the smallest unit of traffic from every

139

application employed by each individual user. Due to user movement and the bursty nature

of data applications, choosing too small ∆q may create more demand nodes than needed.

However, when ∆q is too large, fewer demand nodes are present, and the corresponding

demand may be so large that it can no longer differentiate traffic from various users in

different geographical topologies. In the design algorithm, a specific combination of ∆x and

∆q must be chosen in order to calculate the demand nodes, and as discussed earlier, both

the coverage granularity and traffic classification must be compromised. However, the choice

of ∆x and ∆q may differ when a demand space (section 8.2) is used instead of the demand

node point.

In some situations, the coverage radius R may not be the same for all BSs (i.e., to reduce

interference). However, when the problem size is large and more BSs are needed, the de-

sign process can be computationally excessive because the computation requirement (C ′)

increases exponentially as a function of the number of BSs (n∗) multiplied by the choices of

R (r), where C ′ ∝ N∗(n∗r).

8.2 FUTURE WORK

There are several possibilities to improve the design algorithm. One possibility is to better

approximate the BS capacity by accurately mapping the data-bit-rate requirement to Erlangs

through a complete of analysis of traffic queueing from various applications (i.e., HTTP,

FTP, SMS, MMS, voice and video streaming, etc) with different usage distributions and

data rate requirements. Using accurate approximation of the BS capacity, the minimum

number of BSs needed can be pre-computed, and it is also possible to determine under

what conditions the incremental design is optimal. To address the excessive interference

problem, especially in CDMA systems, resulting from multiple coverage overlap among BSs,

one may add the interference constraint in the problem formulation on top of the coverage

and capacity requirements, when computing for the optimal BS placement. Additionally,

140

the demand node may be calculated so that it represents a demand space instead of a point,

which will provide coverage granularity to the design results. The concept of demand node

space is plausible by taking account the signal fading (fluctuation of signal strength over

space and time) — such that with equal probability every point in a particular space in the

design area may receive statistically the same average signal strength. Furthermore, since

different grid points may be located on different geographical regions and environments, the

sweep and merge algorithm may employ other path loss models to more accurately compute

the demand node set coverage for each individual grid point. Lastly, to account for the fact

that the candidate locations for placing BSs or TPs may not be just a simple grid points due

to several factors such as natural obstructions, city regulations, spacing conflicts etc., the

sweep and merge algorithm may be modified to work on any configuration of TP locations

(not restricted only to the equally spaced grid points) and may also include a probability-

based capacity requirement to further reduce TPs.

141

APPENDIX A

LIST OF NOTATIONS AND SYMBOLS

All important notations, symbols, and variables used throughout chapter 5 to chapter 7 of

this paper are listed in the table below (in order of appearance).

Table A1: Notations, Symbols, and Variables

Symbol Definition

∆x (x-axis) demand node grid spacing (m)

∆y (y-axis) demand node grid spacing (m)

X (x-axis) design area dimension (m)

Y (y-axis) design area dimension (m)

M total number of demand nodes

k, k′ demand node index, k, k′ ∈ {1, . . . ,M}

mk demand node kth

Xk mk (x-axis) coordinate (m)

Yk mk (y-axis) coordinate (m)

Ak mk demand unit (e.g., in Erlangs, kbps, etc)

i, i′ grid point (x-axis) index i, i′ ∈ {1, 2, . . .}

j, j′ grid point (y-axis) index j, j′ ∈ {1, 2, . . .}

∆g TP grid spacing (m)

gi,j grid point located at ((i− 1)∆g, (j − 1)∆g)

142

S search space size

N total number of grid points

n∗ minimum number of BSs needed to satisfied the coverage requirement

Nx maximum (x-axis) grid index

Ny maximum (y-axis) grid index

G matrix of grid points {gi,j}, ∀i ∈ {1, . . . , Nx}, ∀j ∈ {1, . . . , Ny}

δ any real number (chapter 5)

R effective BS coverage radius (m)

n, n′ TP index, n, n′ ∈ {1, 2, . . .}

in grid point (x-axis) index corresponding TPn

jn grid point (y-axis) index corresponding TPn

gin,jn grid point located at ((in − 1)∆g, (jn − 1)∆g)

bn

 1 : if a BS is installed at grid TPn

0 : otherwise

dkn distance between mk and bn (m)

mkn

 1 : if demand node mk is assigned to bn

0 : otherwise

C maximum BS capacity (e.g., in Erlangs, kbps, etc)

zi,j a set of demand nodes mk within R from grid gi,j

G∗ matrix of grid points resulted from the sweep and merging algorithm

s, s′, s∗ a set of solution {bn|bn = 1}

zin,jn a set of demand nodes mk within R from grid gin,jn

zbn a set of demand nodes assigned to bn

N∗ size of matrix G∗ (total number of TPs)

C ′ computational requirement

N∗
1,k 1st level average number of TPs (nodes) in the (minimum branching) tree

N∗
2,k 2nd level average number of TPs (nodes) in the (minimum branching) tree

N∗
n∗,k n∗th level average number of TPs (nodes) in the (minimum branching) tree

δ residual number of nodes in the deepest level (chapter 6)

n+ number of BSs

143

N (s) a set of neighborhood solutions belong to the current solution s

h number of closest TPs to each bn

cs′ total network capacity in which the candidate solution s′ can support

ps′ penalty associated with the candidate solution s′

w weight associated with ps′

144

APPENDIX B

CDMA2000 EV-DO TECHNOLOGY

The 1xEV-DO system was proposed by 3GPP2 to improve data rates from the original

CDMA2000. Through different modulations and codings, 1xEV-DO can support upto 153.6

and 2,457.6 kbps in the reverse and forward links respectively [11]. The reverse link exploits

the pilot channel transmitted by a MS to coherently demodulate data signals. The forward

link allocates all code spaces and transmits at a full power to each MS regardless of the data

rates. The forward link employs a TDM technique to transmit data packets to different MSs,

but does not specify the scheduling algorithm.

B.1 REVERSE LINK

The 1xEV-DO reverse link consists of the Access Channel and the Traffic channel. Figure

B1 illustrates the 1xEV-DO reverse link channel diagram. A MS uses the Access channel

to initiate communication with the BS. The traffic channel consists of the pilot, data, MAC

(Medium ACess), and ACK (ACKnowledgement) channels. The physical layer packets of

the reverse channel define a frame length of 16 slots, 1.67 ms per slot. A MS transmits on the

pilot and data channels simultaneously. The pilot assists the BS in coherently demodulating

the packets. Esteves measured values of the required pilot bit energy-to-total noise ratio ε

to achieve a 1% PER (Packet Error Rate) for various reverse data rates to range from -24.8

to -22.8 dB [63]. In this paper, ε is modeled as a lognormal random variable with mean

145

22.75 dB and standard deviation 1.3 dB as suggested by Esteves [63]. The transmit power

Access

Reverse

Traffic

DataPilotACKDataMACPilot

RRI DRC

Figure B1: CDMA2000 1xEV-DO Reverse Channel Structure

on the data channel is proportional to the data rate and is measured as a gain over the pilot

channel — data channel gain. Table B1 lists the required data channel gain for different

transmit data rates [11].

Table B1: Default Data Channel Gain

Data Rate (kbps) Data Channel Gain (dB)
Null −∞
9.6 3.75
19.2 6.75
38.4 9.75
76.8 13.25
153.6 18.50

B.1.1 Signal to Noise Ratio Requirement

The region serviced by the BS is determined by the received SNR (Signal to Noise Ratio).

The SNR must be high enough to overcome signal fluctuations from channel fading while

maintaining the minimum required bit energy-to-total noise density ratio (Eb/Nt) under the

146

loaded condition. For CDMA2000 1xEV-DO, the required SNR is a function of the transmit

data rate and the cell loading factor ρ. Figure B2 shows SNR as a function of the loading

factor ρ for various data rates. CDMA2000 system designers generally limit the cell loading

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
!20

!15

!10

!5

0

5

10

15

20

25

Cell Loading Factor ! !

R
eq

ui
re

d
SN

R
 (

dB
)

9.6 kbps
19.2 kbps
38.4 kbps
76.8 kbps
153.6 kbps

Figure B2: Signal-to-Noise Ratio (SNR) vs. Cell Loading (ρ) for various data rates ranging from
9.6 to 153.6 kbps by assuming that the required ε is fixed at the median value = -22.75 dB.

factor (ρ) between 0.5 to 0.7 to ensure a stable total noise level in a system [51], [60]. For

the worst case when the transmit data rate = 153.6 kbps and the data channel gain = 18.5

dB, the corresponding SNR at (ρ = 0.7) ≈ -0.27 dB. In addition to the cell loading, the

minimum SNR requirement must also include for the channel fading effect. Viterbi showed

that a fading margin ς = 6.2 dB is sufficient to ensure that 90% of the time the SNR

received from the cell edge meets the requirement [40]. Furthermore, to allow for increasing

cell loading, additional margin = 4.07 dB (arbitrary) is also added. The minimum SNR

requirement used in this paper is thus set to = -0.27 + 6.2 + 4.07 = 10 dB.

147

B.2 FORWARD LINK

The forward link channel supports data rates ranging from 38.4 kbps upto 2,457.6 kbps

through different modulation and coding schemes [64]. Unlike the reverse link in which the

data rate is regulated by the cell loading level, the data rate available for the forward channel

depends on the channel condition. The higher the received SIR, the higher the data rate

a BS can transmit. Table B2 shows a set of 1xEV-DO forward data rates, modulations,

codings, and the required SIR [11], [13]. The CDMA2000 1xEV-DO employs both the TDM

Table B2: Modulation Schemes, Codings and SIRs at 1% PER for different data rates

Data Rate (kbps) Modulation Coding # of slots SIR (dB)
38.4 QPSK 1/5 16 -11.5
76.8 QPSK 1/5 8 -9.2
153.6 QPSK 1/5 4 -6.5
307.2 QPSK 1/5 2 -3.5
614.4 QPSK 1/3 1 -0.5
921.6 8PSK 1/3 2 2.2
1228.8 16QAM 1/3 2 4.0
1843.2 8PSK 1/3 1 8.0
2457.6 16QAM 1/3 1 10.3

and CDM (Time Division Multiplex and Code Division Multiplex) operating at a full power

transmission per one user at a time. Wu and Esteves showed that allocating full power and

the entire code space to one user per transmission maximizes the average BS throughput [13].

Figure B3 compares the IS-95 and CDMA2000 1xEV-DO forward channel power distribution.

The TDM operation on the forward channel defines a frame length of 26.67 ms, 16 slots in

a frame, 2,048 chips/1.67 ms duration per slot [11]. A MS constantly monitors the BS pilot

burst transmitted twice a time slot and calculates the pilot SIR accordingly. The MS then

maps the calculated pilot SIR to the maximum data rate given in table B2 and issues a

corresponding data rate request to the BS via the reverse DRC channel. Upon receiving the

data rate request via the DRC channel, the BS invokes its scheduling algorithm to determine

a time slot allocation for each MS. Transmission of the data packet occurs once every four

148

fraction of time

Sync Channel

Paging Channel

Pilot Channel

Total Traffic

Unused Margin

BS Power

timeIS!95 Forward Channel

Pi
lo

t C
ha

nn
el

M
AC

 C
ha

nn
ce

l

Co
nt

ro
l C

ha
nn

el

To
ta

l T
ra

ffi
c

BS Power

Max. PowerMax. Power

CDMA2000 EV!DO Forward Channel

Figure B3: Power distribution among different channels of IS-95 vs. CDMA2000 1xEV-DO
(adapted from [64]).

slots regardless of the rate. BS either transmits a multiple-slot packet in a successive manner

or using a 4-slot interlacing technique. The interlacing technique enables the receiving MS

to partially decode the packet — if encoded with enough redundancy — and to notify the

BS via the ACK channel for early termination if the decoding is successful. Alternatively for

a successive slot operation and a normal termination mode, a successful decoding requires a

completed reception of multiple slots of a packet.

ACK Channel

Slot 1

(Estimate data rate)

DRC

DRC Channel

Forward Traffic
Channel

Pilot Bursts

Requesting
153.6 kbps

Transmissions with 153.6 kbps
Normal Termination = 4 slots

Transmission

Transmit
Slot 2

Transmit
Slot 4

NAK NAK ACK

One Slot
Successful
Decoding

Transmit

Figure B4: Multi-slot Physical Layer Packet with Normal Termination

149

Figure B4 depicts the forward link normal termination mode with the pilot burst and the

DRC channel [11]. Unlike TDMA systems where different users sharing the same frequency

channel but are assigned a fixed time slot allocation, the 1xEV-DO TDM operation does

not mandate a specific time slot allocation or scheduling algorithm, thus allowing a flexible

implementation. The next section briefly explains various scheduling algorithms proposed

for 1xEV-DO systems.

B.2.1 Scheduling Algorithm

Various TDM scheduling algorithms were proposed to schedule data transmission and to

allocate the number of slots for multiple users with various data rate requests. Qualcomm

recommends a proportional fairness scheduling to maximize user’s moving average through-

put [64]. The algorithm delivers data transmission only when a user’s DRC request is greater

or equal to its running average throughput computed over the last — e.g., 1,024 time slots.

Qualcomm claimed that moving users achieve a higher throughput than their average DRC

requests when employing the proportional fairness scheduling. However, the algorithm re-

quires long observation time to compute the running average and does not consider the delay

problem.

Alternatively, the simple round robin algorithm schedules a transmission to different users in

a first come first serve basis. Whenever there is a DRC request, the round robin scheduler just

delivers a transmission at the data rate according to the request. If for every DRC request

the scheduler allocates a constant number of slots regardless of the data rate, users with poor

channel conditions will suffer longer delay than users with better channel conditions. In the

extreme case, only a small number of users may receive at or near the maximum throughput,

while the rest may not receiver at all (due to considerable packet delay). Nevertheless, the

overall network throughput is maximized. To compromise between throughput and latency,

Bender proposed a method that divides data rate request into two classes of latency — any

data rate requests below the threshold are assigned the maximum latency, while the rest

150

above the threshold are assigned the minimum latency [65]. Bender’s bimodal algorithm

achieves the fairness by limiting the maximum latency ratio among all data rates. However,

the latency distribution is not smooth — two adjacent data rates are assigned the minimum

and the maximum latency respectively. The problem is undesirable in the situation for

example, when these rates are the two most favorable modes of transmission. Kim extended

Bender’s work and fixed this problem by allowing a smooth transition in latency between

two adjacent data rates. Instead of limiting to only the maximum and minimum delay

assignments, Kim’s proposed an algorithm that provides multiple delay assignments for

different data rates — multimodal algorithm. The resulting average throughput reduces

when compared with the Bender’s scheme. However, the fairness in latency (e.g., waiting

time) between two data rates improves.

In conclusion, determining a proper scheduling algorithm for the 1xEV-DO forward link

involves several factors such as throughput, latency, and DRC probability distribution. The

proportional fairness or the simple round robin with equal slot allocation may be effective

for maximizing throughput. However, if the fairness in latency is concerned, either the

Bender or the Kim algorithm should be more appropriate, depending on the DRC probability

distribution.

151

BIBLIOGRAPHY

[1] E. Amaldi, A. Capone, and F. Malucelli, “Planning UMTS Base Station Location: Opti-
mization Models with Power Control and Algorithms,” IEEE Trans. Wireless Commun.,
vol. 2, no. 5, September 2003.

[2] H. R. Anderson and J. P. McGeehan, “Optimizing Microcell Base Station Locations Us-
ing Simulated Annealing Techniques,” in Proc. 44th IEEE VTC Conference, September
1994, pp. 858–862.

[3] C. Prommak, “Demand-Based Network Planning for WLANS,” Ph.D. dissertation,
School of Information Sciences, University of Pittsburgh, June 2004.

[4] D. J. Goodman, Wireless Personal Communications Systems. Reading, MA: Addison-
Wesley, 1997.

[5] J. Schiller, Mobile Communications. London: Addison-Wesley, 2000.

[6] E. Dahlman et al., “UMTS/IMT-2000 Based on Wideband CDMA,” IEEE Commun.
Mag., pp. 70–80, September 1998.

[7] ——, “WCDMA — The Radio Interface for Future Mobile Multimedia Communica-
tions,” IEEE Trans. Veh. Technol., vol. 47, no. 4, pp. 1105–1118, November 1998.

[8] “HSDPA for Improved Downlink Data Transfer,” Qualcomm Inc, Tech. Rep., October
2004.

[9] “How to Realise the Benefits of Mobile Broadband Today,” GSM Association, February
2007.

[10] D. N. Knisely et al., “Evolution of Wireless Data Services: IS-95 to cdma2000,” IEEE
Commun. Mag., pp. 140–149, October 1998.

[11] cdma2000 High Rate Packet Data Air Interface Specification, 3rd Generation Partner-
ship Project 2 (3GPP2) Std. C.S20 024 v2.0, October 2000.

[12] “Technical Overview of 1xEV-DV,” Motorola, Inc., September 2002.

152

[13] Q. Wu and E. Esteves, “The CDMA2000 High Rate Packet Data System,” Qualcomm
Inc., Tech. Rep. 80-H0593-1, March 2002.

[14] V. P. Mhatre, “CDMA 2000: 1xEVDO and 1xEVDV, An Overview,” April 2004.

[15] “CDMA2000: Market Facts,” CDG, March 2005.

[16] “4Q 2004 CDMA Subscribers Statistics,” CDG, December 2004.

[17] “The Economics of Mobile Wireless Data,” Qualcomm Inc.

[18] “Delivering Voice and Data: Comparing CDMA2000 and GSM/GPRS/EDGE/UMTS,”
The CDMA Development Group, December 2005.

[19] “Mobile WiMAX Part I: A Technical Overview and Performance Evaluation,” WiMAX
Forum, Tech. Rep., August 2006.

[20] “Fixed, Nomadic, Portable and Mobile Applications for 802.16-2004 and 802.16e
WiMAX Networks ,” WiMAX Forum, Tech. Rep., November 2005.

[21] “Business Case Models for Fixed Broadband Wireless Access based on WiMAX Tech-
nology and the 802.16 Standard,” WiMAX Forum, Tech. Rep., October 2004.

[22] Sprint Nextel Announces 4G Wireless Broadband Initiative with Intel, Motorola and
Samsung. [Online]. Available: http://www2.sprint.com/mr/news dtl.do?id=12960

[23] “KDDI and WiMAX Convergence in the Land of the Rising Sun,” WiMAX Forum,
August 2006.

[24] C. Smith, Practical Cellular & PCS Design. New York: McGraw-Hill, 1997.

[25] K. Tutschku and P. Tran-Gia, “Spatial Traffic Estimation and Characterization for
Mobile Communication Network Design,” IEEE J. Select. Areas Commun., vol. 16,
no. 5, June 1998.

[26] R. G. Akl et al., “Multicell CDMA Network Design,” IEEE Trans. Veh. Technol., vol. 50,
no. 3, May 2001.

[27] Q. Hao et al., “A Low-Cost Cellular Mobile Communication System: A Hierarchical
Optimization Network Resource Planning Approach,” IEEE J. Select. Areas Commun.,
vol. 15, no. 7, September 1997.

[28] N. Weicker, G. Szabo, K. Weicker, and P. Widmayer, “Evolutionary Multiobjective
Optimization for Base Station Transmitter Placement with Frequency Assignment,”
IEEE Trans. Evol. Comput., vol. 7, no. 2, April 2003.

[29] A. Hills, “Large-Scale Wireless LAN Design,” IEEE Commun. Mag., November 2001.

153

http://www2.sprint.com/mr/news_dtl.do?id=12960

[30] H. D. Sherali, C. M. Pendyala, and T. S. Rappaport, “Optimal Location of Transmitters
for Micro-Cellular Radio Communication System Design,” IEEE Trans. Veh. Technol.,
vol. 14, no. 4, May 1996.

[31] M. Unbehaun and M. Kamenetsky, “On the Deployment of Picocellular Wireless Infras-
tructure,” IEEE Wireless Communications, December 2003.

[32] K. Lieska et al., “Radio Coverage Optimization with Genetic Algorithms,” in Proc.
IEEE, September 1998, pp. 318–322.

[33] C. Ratti et al., “Mobile Landscapes: Graz in Real Time,” SENSEable City Lab, MIT,
2005.

[34] F. Alejandro et al., “Full- and Half-Square Cell Plans in Urban CDMA Microcellular
Networks,” IEEE Trans. Veh. Technol., vol. 52, no. 3, May 2003.

[35] S. Hanly and R. Mathar, “On the Optimal Base-Station Density for CDMA Cellular
Network,” IEEE Trans. Commun., vol. 50, no. 8, pp. 1274–1281, August 2002.

[36] M. J. Feuerstein et al., “Path Loss, Delay Spread, and Outage Models as Functions of
Antenna Height for Microcellular System Design,” IEEE Trans. Veh. Technol., vol. 43,
no. 3, pp. 487–498, August 1994.

[37] K. Tutschku, “Demand-based Radio network Planning of Cellular Mobile Communica-
tion Systems,” in Proc. IEEE INFOCOM (3), 1998, pp. 1054–1061.

[38] C. Y. Lee and H. G. Kang, “Cell Planning with Capacity Expansion in Mobile Com-
munications: A Tabu Search Approach,” IEEE Trans. Veh. Technol., vol. 49, no. 5,
September 2000.

[39] A. J. Viterbi, CDMA: Principles of Spread Spectrum Communication. Reading, MA:
Addison Wesley, 1998.

[40] A. J. Viterbi et al., “Soft Handoff Extends CDMA Cell Coverage and Increase Reverse
Link Capacity,” IEEE J. Select. Areas Commun., vol. 12, no. 8, pp. 1281 – 1288, October
1994.

[41] M. Hata, “Empirical Formula for Propagation Loss in Land Mobile Radio Services,”
IEEE Trans. Veh. Technol., vol. 29, pp. 317–235, August 1980.

[42] J. M. Keenan and A. J. Motley, “Radio Coverage in Buildings,” British Telecom Tech-
nology, vol. 8, no. 1, pp. 19–24, January 1990.

[43] M. F. Catedra and J. Perez-Arriaga, Cell Planning for Wireless Communications.
Artech House, 1999.

[44] J. W. McKown and R. L. Hamilton, “Ray Tracing as a Design Tool for Radio Networks,”
IEEE Network Magazine, pp. 27–33, November 1991.

154

[45] S. Y. Seidel and T. S. Rappaport, “Site-Specific Propagation Prediction for Wireless In-
Building Personal Communication System Design,” IEEE Trans. Veh. Technol., vol. 43,
no. 4, pp. 879–891, November 1994.

[46] K. Pahlavan and A. Levesque, Wireless Information Networks. Wiley, 1995.

[47] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,”
Science, vol. 220, no. 4598, pp. 671–680, 1983.

[48] F. Glover and M. Laguna, Tabu Search. Norwell, MA: Kluwer Academic, 1997.

[49] Z. Michalewicz and D. B. Fogel, How to Solve It: Modern Heuristics. Berlin, Germany:
Springer, 2000.

[50] J. Clausen, “Branch and Bound Algorithms - Principles and Examples,” March 1999.

[51] V. K. Garg, Wireless Network Evolution: 2G to 3G. Upper Saddle River, NJ: Prentice
Hall, 2002.

[52] Q. Bi, “A Forward Link Performance Study of the 1xEV-DO Rev.0 System Using Field
Measurements and Simulations,” Bell Labs Technical Journal, vol. 10, no. 2, pp. 5 – 19,
2005.

[53] N. Pongthaipat and J. Kabara, “Designing Wireless Networks by Test Point Reduction,”
in Proc. ISWPC ’07, February 2007, pp. 307–310.

[54] J. C. S. Cheung et al., “Network Planning for Third-Generation Mobile Radio Systems,”
IEEE Commun. Mag., pp. 54–59, November 1994.

[55] C. Ratti et al. Mobile Landscape | Graz in Real Time. [Online]. Available:
http://senseable.mit.edu/projects/graz/graz.htm

[56] Graz. [Online]. Available: http://en.wikipedia.org/wiki/Graz

[57] Pittsburgh, Pennsylvania. [Online]. Available: http://en.wikipedia.org/wiki/
Pittsburgh, Pennsylvania

[58] cdma2000 Evaluation Methodology — Revision 0, 3rd Generation Partnership Project
2 (3GPP2) Std. 3GPP2 C.R1002-0, December 2004.

[59] “3G Offered Traffic - All Services,” UMTS Forum, June 2003.

[60] Q. Bi et al., “Performance of 1xEV-DO Third-Generation Wireless High-Speed Data
Systems,” Bell Labs Technical Journal, vol. 7, no. 3, pp. 97 – 107, 2003.

[61] “All-IP 1xEV-DO Wireless Data Networks,” Airvana Inc., Tech. Rep., August 2004.

[62] K. L. D. Staehle and P. Tran-Gia, “Source Traffic Modeling of Wireless Applications,”
Lehrstuhl für Informatik III, Universität Würzburg, Tech. Rep., June 2000.

155

http://senseable.mit.edu/projects/graz/graz.htm
http://en.wikipedia.org/wiki/Graz
http://en.wikipedia.org/wiki/Pittsburgh,_Pennsylvania
http://en.wikipedia.org/wiki/Pittsburgh,_Pennsylvania

[63] E. Esteves, “On the Reverse Link Capacity of cdma2000 High Rate Packet Data Sys-
tems,” in Proc. IEEE ICC, vol. 3, April 2002, pp. 1823 – 1828.

[64] “1xEV: 1x EVolution IS-856 TIA/EIA Standard,” Airlink, Tech. Rep. Rev. 7.2, Novem-
ber 2001.

[65] P. Bender et al., “CDMA/HDR: A Bandwidth Efficient High Speed Wireless Data Ser-
vice for Nomadic Users,” IEEE Commun. Mag., vol. 38, no. 7, pp. 70–77, July 2000.

156

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1.1. Network Design Terminlogy
	2.1. CDMA Network Designs --- a comparison between TS vs. CPLEX
	6.1. TS Parameters for Capacity Optimization Problem
	A1. Notations, Symbols, and Variables
	B1. Default Data Channel Gain
	B2. Modulation Schemes, Codings and SIRs at 1% PER for different data rates

	LIST OF FIGURES
	1.1. U.S. Cellular Technology Evolution Path
	1.2. Possible WiMAX Implementations
	2.1. An example of BS placement showing grids, user demand, and SAs.
	2.2. a) Full-square cell configuration. b) Half-square cell configuration
	2.3. Triangular-grid base station topology
	2.4. Service Area Tesselation & Demand Node
	2.5. Pareto front --- a resulting network design from the GA algorithm
	2.6. Rectangular array of APs for a multi-floor building
	3.1. Two slope propagation path loss at 900 MHz
	3.2. Attenuation Factors of Wall Types
	3.3. Ray Tracing - Imaging Method
	3.4. Ray Tracing - Ray Shooting Method
	4.1. Tree of Subspaces
	5.1. TPs as a matrix of grid points G
	5.2. Demand Nodes
	5.3. Set Coverage Example
	5.4. Four Possible Sweeping Directions
	5.5. Horizontal Raster Sweep
	5.6. Vertical Raster Sweep
	5.7. Diagonal Raster Sweeps
	6.1. Design Optimization Flowchart
	6.2. Subtree of Solutions
	6.3. Minimum Branching Illustrated #1
	6.4. Minimum Branching Illustrated #2
	6.5. Minimum Branching Illustrated #3
	6.6. Minimum Branching Illustrated #4
	6.7. Coverage Solution
	6.8. Minimum Branching Illustrated #5
	6.9. Minimum Branching Illustrated #6
	6.10. Minimum Branching Illustrated #7
	6.11. Minimum Branching Tree
	6.12. A neighborhood structure N(s) consisting of n+ = 4 subsets of h = 5 closest neighbor TPs.
	6.13. TS with Modified Choice Rule
	7.1. Infinite Coverage Radius
	7.2. Zero Coverage Radius
	7.3. Greedy algorithm may occasionally produce sub-optimal solutions
	7.4. TP reduction always yields the optimal solution
	7.5. The example network used to illustrate the TP reduction process
	7.6. Grid Point Coverage
	7.7. Horizontal Sweep
	7.8. Vertical Sweep
	7.9. Diagonal Sweep
	7.10. Merge Process
	7.11. Coverage Solution
	7.12. Random Demand Node Example
	7.13. TPs computed from the sweep and merge processes
	7.14. Minimum Branching (Iteration #2)
	7.15. BS placement after five recursions
	7.16. Minimum Branching Tree
	7.17. Optimal Coverage Solution
	7.18. New Set of TPs (Fading Margin Included)
	7.19. New Optimal Coverage Solution (Fading Margin Included)
	7.20. Clustered Demand Node Example
	7.21. Test Points (Clustered Demand Node Example)
	7.22. Coverage Solution Tree (Clustered Demand Node Example)
	7.23. Coverage Solution (Clustered Demand Node Example)
	7.24. A Solution BS Placement by TS (Clustered Demand Node Example)
	7.25. Number of TPs (N*) vs. Coverage Radius (R)
	7.26. Normalized Number of TPs (N*/N) vs. Demand Node Density (M/N)
	7.27. # of Recursions vs. Coverage Radius (R)
	7.28. Number of Recursions (Normalized) vs. Demand Node Density (M/N)
	7.29. A map of Graz, Austria
	7.30. Cell Phone Activity in the City Center, Graz
	7.31. Approximated Traffic Intensity in Erlang/km2
	7.32. Demand Node (Graz)
	7.33. Maximum # of Users vs Data Rate for HTTP and FTP applications
	7.34. Test Points (Graz Example)
	7.35. Minimum Branching Solution Tree
	7.36. Coverage Solution
	7.37. Optimal Solution
	7.38. Additional Traffic (Graz Example - Expanded Network)
	7.39. New Demand Nodes (Graz Example - Expanded Network)
	7.40. New Set of TPs (Graz Example - Expanded Network)
	7.41. Coverage Solution Tree (Graz Example - Expanded Network)
	7.42. New Coverage Solution (Graz Example - Expanded Network)
	7.43. New Optimal Solution (Graz Example - Expanded Network)
	7.44. New Set of TPs for Added Demand Nodes (Graz Example - Expanded Network
	7.45. New Optimal Solution with Existing BSs (Graz Example - Expanded Network)
	B1. CDMA2000 1xEV-DO Reverse Channel Structure
	B2. Signal-to-Noise Ratio (SNR) vs. Cell Loading
	B3. Power distribution of IS-95 vs. CDMA2000 1xEV-DO
	B4. Multi-slot Physical Layer Packet with Normal Termination

	PREFACE
	1.0 INTRODUCTION
	1.1 Wireless Evolution
	1.2 Third Generation (3G) and Beyond
	1.2.1 W-CDMA/HSDPA
	1.2.2 CDMA2000
	1.2.3 WiMAX

	1.3 Network Design Terminology
	1.4 Research Statement
	1.5 Outline

	2.0 WIRELESS NETWORK DESIGN REVIEW
	2.1 Coverage Objective
	2.2 Capacity Objective
	2.3 Cost Objective
	2.4 Interference Objective
	2.5 Summary

	3.0 PATH LOSS MODELS
	3.1 Log Normal Model
	3.2 Two Ray Model
	3.3 Okumura-Hata Model
	3.4 Attenuation Factor Model
	3.5 Ray Tracing Technique

	4.0 OPTIMIZATION HEURISTICS
	4.1 Simulated Annealing
	4.2 Tabu Search
	4.3 Genetic Algorithm
	4.4 Branch and Bound Algorithm

	5.0 TEST POINT REDUCTION
	5.1 Demand Node Concept
	5.2 Search Space Size
	5.3 Definition of Optimality
	5.4 Set Coverage Comparison
	5.4.1 Raster Sweep
	5.4.2 Merging
	5.4.3 Proof of Optimality of the Sweep and Merge algorithm
	5.4.4 Computational Reduction

	6.0 DESIGN OPTIMIZATION
	6.1 Coverage Optimization
	6.1.1 Minimum Branching Algorithm
	6.1.2 Computational Requirement

	6.2 Capacity Validation - Optimal Demand Node Assignment)
	6.3 Optimization of BS Assignment by Tabu Search
	6.3.1 Neighborhood Structure
	6.3.2 Short Term Memory and Tabu Classification
	6.3.3 Diversification and Intensification
	6.3.4 Parameter Selection

	7.0 DESIGN RESULTS
	7.1 Small Networks
	7.1.1 R Case
	7.1.2 R 0 Case
	7.1.3 Greedy Flaw
	7.1.4 TP reduction illustrated

	7.2 Large Networks
	7.2.1 Random Distribution
	7.2.2 Fading Effect
	7.2.3 Clustered Distribution
	7.2.4 Statistical Analysis

	7.3 Design Example: Graz, Austria
	7.3.1 Traffic Characterization
	7.3.2 Demand Node Generation
	7.3.3 Coverage Radius (CDMA2000 EV-DO)
	7.3.4 BS Capacity (CDMA2000 EV-DO)
	7.3.5 TP Reduction
	7.3.6 Minimum Branching
	7.3.7 Capacity Requirement Validation
	7.3.8 Expanded Network
	7.3.8.1 Expanded Network - Greenfield Design
	7.3.8.2 Expanded Network - Incremental Design

	8.0 CONCLUSIONS AND FUTURE WORK
	8.1 Limitations
	8.2 Future Work

	APPENDIX A. LIST OF NOTATIONS AND SYMBOLS
	APPENDIX B. CDMA2000 EV-DO TECHNOLOGY
	 B.1 Reverse Link
	 B.1.1 Signal to Noise Ratio Requirement

	 B.2 Forward Link
	 B.2.1 Scheduling Algorithm

	BIBLIOGRAPHY

