
 
 

THE INFLUENCE OF DEFORMATION-INDUCED RESIDUAL STRESSES ON THE 
POST-FORMING TENSILE STRESS/STRAIN BEHAVIOR OF DUAL-PHASE STEELS 
 
 
 
 
 
 
 

by 
 

Brandon Michael Hance 
 

B.S. Metallurgical Engineering, Illinois Institute of Technology, 1994 
 

M.S. Metallurgical and Materials Engineering, Colorado School of Mines, 1996 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of the 
 

School of Engineering in partial fulfillment 
 

of the requirements for the degree of 
 

Doctor of Philosophy in Materials Science and Engineering 
 
 
 
 
 
 
 
 

University of Pittsburgh 
 

2005



 
 

UNIVERSITY OF PITTSBURGH 
 

SCHOOL OF ENGINEERING 
 
 
 
 
 
 
 

This dissertation was presented 
 

by 
 
 

Brandon Michael Hance 
 
 

It was defended on 
 

September 22, 2005 
 

and was approved by 
 

John A. Barnard, Professor and Department Chairman 
Materials Science and Engineering, University of Pittsburgh 

 
Anthony J. DeArdo, Professor 

Materials Science and Engineering, University of Pittsburgh 
 

C. Isaac Garcia, Research Professor 
Materials Science and Engineering, University of Pittsburgh 

 
Roy D. Marangoni, Associate Professor 

Department of Mechanical Engineering, University of Pittsburgh 
 

Henry R. Piehler, Professor 
Department of Materials Science and Engineering, Carnegie Mellon University 

 
Dissertation Director: Anthony J. DeArdo, Professor 

Materials Science and Engineering, University of Pittsburgh 
 

 
ii



THE INFLUENCE OF DEFORMATION-INDUCED RESIDUAL STRESSES ON THE 
POST-FORMING TENSILE STRESS/STRAIN BEHAVIOR OF DUAL-PHASE STEELS 
 

Brandon M. Hance, Ph.D. 
 

University of Pittsburgh, 2005 
 
 
It was hypothesized that, in dual-phase (DP) steels, strain partitioning between ferrite (α) and 

martensite (α’) during deformation results in a distribution of post-deformation residual stresses 

that, in turn, affects the subsequent strength, work hardening behavior and formability when the 

strain path is changed.  The post-forming deformation-induced residual stress state was expected 

to depend upon the microstructure, the amount of strain and the prestrain path.  The primary 

objective of this research program was to understand the influence of deformation-induced 

residual stresses on the post-forming tensile stress/strain behavior of DP steels.  Three 

commercially produced sheet steels were considered in this analysis: 1) a DP steel with 

approximately 15 vol. % martensite, 2) a conventional high-strength, low-alloy (HSLA) steel, 

and 3) a conventional, ultra-low-carbon interstitial-free (IF) steel.  Samples of each steel were 

subjected to various prestrain levels in various plane-stress forming modes, including uniaxial 

tension, plane strain and balanced biaxial stretching. 

Neutron diffraction experiments confirmed the presence of large post-forming 

deformation-induced residual stresses in the ferrite phase of the DP steel.  The deformation-

induced residual stress state varied systematically with the prestrain mode, where the principal 

residual stress components are proportional to the principal strain components of the prestrain 

mode, but opposite in sign.  For the first time, and by direct experimental correlation, it was 
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shown that deformation-induced residual stresses greatly affect the post-forming tensile 

stress/strain behavior of DP steels.  As previously reported in the literature, the formability 

(residual tensile ductility) of the IF steel and the HSLA steel was adversely affected by strain 

path changes.  The DP steel presents a formability advantage over the conventional IF and HSLA 

steels, and is expected to be particularly well suited for complex forming operations that involve 

abrupt strain path changes. 

Deformation-induced residual stresses were measured in the IF steel and the HSLA steel; 

however, the magnitudes of which are such that post-forming tensile stress/strain behavior was 

not significantly affected.  Considering the vast differences in mechanical properties, 

microstructure, and composition, the IF steel and the HSLA steel showed remarkably similar 

post-forming tensile stress/strain behavior for all prestrain modes considered.   
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1.0 INTRODUCTION 

Dual-phase steels are a class of high strength, formable steels that evolved from research into 

high strength, low alloy (HSLA) steels in attempts to increase strength and improve formability.  

Hayami and Furukawa of Nippon Steel Corporation produced one of the earliest references to 

dual-phase steels in 1975 (1), where they found that ferrite/martensite microstructures produced 

by intercritical annealing and sufficiently rapid cooling gave rise to an interesting set of 

mechanical properties.  Some features of Hayami and Furukawa’s materials included: 

− Low planar anisotropy. 

− Higher tensile strengths than their batch-annealed, solution-hardened counterparts of 

equivalent composition. 

− Higher elongation values than other steels at a given tensile strength. 

− Low yield strength without a defined yield point (continuous yielding) and a 

characteristically high initial work hardening rate.  

Shortly after Hayami and Furukawa’s work was published, a flood of research into these 

materials emerged as evidenced by several international conferences dedicated to dual-phase 

steels that took place in the late 1970s and early 1980s (2-5).   

The driving force for the application of dual-phase steels today, as it was in the past few 

decades, is the need to address the worldwide legislation for increased automotive safety and fuel 

economy standards (6).  Dual-phase steels offer an attractive combination of enhanced 

formability and high strength that allows “down-gaging” (substituting a thinner material for a 
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certain application) without sacrificing formability or crash energy absorption ability.  While 

many of the composition/ processing/ microstructure/ property relationships of dual-phase steels 

were extensively studied before the mid-1980s, it was ultimately the perceived variability in 

composition and mechanical properties (7), and high production cost (8), that depleted the 

enthusiasm for these materials in the automotive sector.  With more recent advances in 

steelmaking such as ladle metallurgy practices and improved computerized mill feedback 

control, efficient mass production of hot rolled and cold rolled dual-phase steels with sufficient 

uniformity is now feasible.  With these enablers, and stricter-than-ever automotive 

environmental and safety government mandates, dual-phase steels are once again being 

considered for automotive applications where formability and high strength are needed. 

The unique mechanical properties of dual-phase steels are closely related to their work 

hardening characteristics, which are in turn controlled by microstructure.  Speich and Miller (9), 

among others, have shown that the tensile strength and the work hardening rate increase as the 

martensite content or the carbon content (hardness) of the martensite increases.  Balliger and 

Gladman (10) found that, for a given strength level (i.e., a given martensite content), the work 

hardening rate increases as the average martensite “island” size decreases.  The initially high 

work hardening rate and continuous yielding behavior are attributed to high ferrite mobile 

dislocation density near ferrite/martensite boundaries and residual stresses caused by the volume 

expansion of the intercritical austenite during the austenite-to-martensite transformation (9, 11).   

Dual-phase steels also exhibit a relatively large Bauschinger Effect when uniaxial tension 

is followed by uniaxial compression, for example (12, 13).  Also, large deformation-induced 

residual stresses—approaching the magnitude of the original yield strength before forming—

have been measured after straining along various strain paths for dual-phase steels and other 
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multi-phase steels (14, 15).  These deformation-induced residual stresses are attributed to strain 

partitioning between relatively hard and soft microconstituents (martensite and ferrite, 

respectively).  The residual stress state depends upon the deformation mode (strain path) and 

increases with increasing prestrain (14).  The magnitude of the strain partitioning-induced 

residual stresses is likely to depend upon the volume fraction and distribution of martensite (16).  

For efficient and effective application of dual-phase steels, it is important to understand 

the evolution of strength along various strain paths and the effects of strain path changes on 

formability in multi-stage forming processes such as tube hydroforming, where abrupt strain path 

changes are inherent to the process.  Accurate prediction of formability, final part strength and 

springback depends not only upon the effectiveness of computer simulation codes, but also upon 

the constitutive relations used to describe material behavior.   

The effects of strain path on formability of conventional low-carbon steels have been 

extensively studied, but a knowledge base for dual-phase steel (and other multi-phase steels) has 

not been established.  It is anticipated that deformation-induced residual stresses affect the work 

hardening behavior and associated formability of dual-phase steels in complex strain paths (i.e., 

with at least one strain path change), and that dual-phase steels will behave unlike conventional 

steels under such conditions.  In support of this hypothesis, a review of pertinent historical and 

recent literature is given in the following Background (Section 2.0).   
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2.0 BACKGROUND

2.1 CHARACTERISTICS OF DP STEELS 

Dual-phase (DP) steels may be produced by a variety of processing routes including continuous 

annealing, hot rolling and batch annealing.  Table I shows the approximate cooling rates and 

corresponding alloying additions for each process (18). 

 

Table I:  Possible Processing Routes for Dual-phase Steels (18). 

Details CAL* CGL** Hot Rolling Batch 
Annealing 

Cooling Type Water Quench Gas Quench Coil Cooled Furnace Cooled
Cooling Rate > 2000°C/sec 10-30 °C/sec ~0.1 °C/sec ~0.01 °C/sec 

Typical 
Additions 

0.5 Mn, 0.25 Si 
(+P) 

1.5 Mn, 0.5 Si 
(+Cr/V/Nb/Mo)

1.0 Mn, 1.4 Si, 
0.6 Cr, 0.4 Mo 

2.5 Mn, 0.5 Si 

CAL = continuous annealing line; CGL = continuous galvanizing line 
 

 Exact processing conditions and carbon and alloy contents depend on the desired strength 

level and mill capabilities.  Generally, as the expected cooling rate from the intercritical 

temperature decreases, the alloy content (e.g., Mn, Si, Cr, Mo, etc.) must be increased to achieve 

martensite in the final product.  A critical review of the composition/ processing/ microstructure/ 

property relationships of dual-phase steels is beyond the scope of this review; however several 

key microstructure/mechanical behavior relationships will be discussed in detail, with 

appropriate references to composition and processing where applicable.  To begin, two distinct 
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mechanical behavior characteristics of dual-phase steels will be discussed—continuous yielding 

behavior and high initial work hardening rate.  

2.1.1 Continuous Yielding Behavior 

Hansen and Pradhan (19) explained that three criteria are necessary for a material to exhibit 

discontinuous yielding behavior: 1) low density of mobile dislocations prior to deformation, 2) 

rapid dislocation multiplication during deformation, and 3) significant dependence of dislocation 

velocity on the applied stress.  They reasoned that bcc ferrite satisfies conditions 2 and 3, and 

that a high mobile dislocation density must be responsible for the continuous yielding behavior 

that was characteristic of DP steels.  Hahn (20) predicted for bcc metals that mobile dislocation 

densities of 102-104-cm-2 lead to discontinuous yielding, while mobile dislocation densities in the 

range 106-108-cm-2 result in continuous flow.  Although total dislocation densities are often in 

this range for typical hot rolled or annealed steels, Cottrell (21) explained that most of these 

dislocations are immobile, and Rashid (22) postulated that a high degree of mobile dislocations 

was introduced by the austenite-to-martensite transformation during DP steel production.  More 

on the ferrite dislocation density of DP steels is given in Section 2.2.2. 

Gerbase et al. (18) believed that residual stresses caused by the volume expansion of 

austenite during the transformation to martensite are chiefly responsible for the continuous 

yielding behavior of DP steels.  They surmised that these residual stresses play a significant role 

in controlling DP steel flow behavior up to strains of the order of 5 pct.  They proposed a simple 

model where the yield strength in the absence of transformation-induced residual stresses, σY is 

reduced to a flow stress, σf by the presence of transformation-induced residual stresses, as  

RYf fσσσ −= ,                                                            [1] 
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where f is volume fraction of material subject to the residual stress, and σR is an effective 

residual stress term (a positive value).  By assuming arbitrarily that f varies with imposed strain, 

ε such that 

)exp( εAff O −= ,                                                    [2] 

a function of the form 

)exp( εσσσ AfORYf −−= ,                                              [3] 

is obtained, where A is a decay constant.  Figure 1 shows a schematic diagram that illustrates the 

effect of the decaying residual stress effect (rounding of the yield point) in reference to an ideal 

elastic, perfectly plastic material. 

 

 
 

Figure 1:  Schematic diagram showing the rounding of the yield point in DP steels due to non-
homogeneous deformation of ferrite grains, containing transformation-induced residual stresses, 
and a gradual decrease with strain of the number of grains containing the residual stress (18). 

 
Crawley et al. (23) argued against the speculation of Gerbase et al. and concluded, based 

on calculations of internal stresses in DP steels, that residual stresses are not large enough to 

lower the effective yield stress, but rather generate mobile dislocations in ferrite adjacent to 

martensite particles.  Speich (24) summarized his understanding of the yielding behavior of DP 

steels as a combined effect of high mobile dislocation density and high residual stresses caused 
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by the volume expansion of austenite during the transformation to martensite upon cooling from 

the intercritical temperature.  Since plastic flow begins at low strains and applied stresses, and at 

many sites throughout the specimen, discontinuous yielding is suppressed. 

Regardless of the contributions of each proposed mechanism, continuous yielding is 

certainly a distinct and important feature of DP steels.  Hansen and Pradhan (19) showed that, as 

the cooling rate from the intercritical annealing temperature is increased (i.e., more martensite is 

formed), the tensile strength increases and the total elongation decreases.  As an example, Figure 

2 shows stress/strain curves for a 0.11 C, 1.50 Mn, 1.17 Si (wt pct) steel that was intercritically 

annealed at 815°C for 1 min and cooled at rates ranging from air cooling (5°C/sec) to water 

quenching (833°C/sec) (19).  For this composition, a critical cooling rate around 12°C/sec is 

reported, where the yield strength is at a minimum, the uniform elongation is at a maximum, and 

there is a transition from discontinuous to continuous yielding.  In addition to the continuous 

yielding behavior at high cooling rates in Figure 2, note that the initial work hardening rate 

(slope of stress-strain curve) increases as the cooling rate increases. 

 

 
 

Figure 2:  Stress-strain curves for a 0.11 C, 1.50 Mn, 1.17 Si (wt pct) steel that was intercritically 
annealed at 815°C for 1 min and cooled at the indicated rates (19). 
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2.1.2 High Work Hardening Rate and Improved Formability 

Rashid (22) was perhaps the first to illustrate the remarkably high work hardening rates of dual-

phase steels in the context of formability in reference to conventional high strength steels.  

Figure 3 shows a classic series of stress-strain curves from Rashid’s work, where a plain carbon 

steel, two conventional high strength steels (SAE 950X and SAE 980X), and a dual-phase steel 

(GM 980X) are represented.  In Figure 3, SAE 950X and SAE 980X are ferrite/pearlite steels 

with nominal yield strengths of 50-ksi and 80-ksi respectively, and GM 980X is a version of 

SAE 980X that has been heat-treated to produce a dual-phase microstructure (intercritically 

annealed and rapidly cooled).  It is clear that the heat-treated version of SAE 980X (i.e., GM 

980X) exhibits a much higher initial work hardening rate, lower initial flow stress, and higher 

uniform and total elongation—at the same approximate ultimate tensile strength level. 

   

 
 

Figure 3:  Nominal (engineering) stress-strain curves for a plain carbon steel, two conventional 
ferrite-carbide steels (SAE 950X and SAE 980X), and a dual-phase steel (GM 980X) produced 
by heat treating the SAE 980X material (22). 

 
 

Rashid (22) also introduced the concept of instantaneous n-value (ni) or incremental work 

hardening exponent, where ni is the instantaneous slope of the logσ-logε curve (in contrast to the 

average slope of the logσ-logε curve in the conventional definition of n-value).  Figure 4 shows 

 
8



the variation of the ni-value with plastic strain, εp for the as-produced Grade 980X shown in 

Figure 3, along with several variations of Grade GM 980X (dual-phase) cooled at various rates 

from the intercritical temperature.  Rashid noted that the ni-value is a relatively stable function of 

strain for the as-produced Grade SAE 980X; however, ni varies substantially for the heat treated 

dual-phase versions.  For dual-phase (DP) steels, ni decreases rapidly as a function of strain after 

an initial peak.  The representation shown in Figure 4 illustrates the basic relationship between 

work hardening behavior and uniform elongation, where the end of uniform elongation is marked 

by the intersection of the ni curve and the line ni=εp (derived from the condition that dσ/dε = σ at 

necking).  Rashid summarized his findings as follows: 

• The heat-treated, dual-phase versions of SAE 980X have significantly higher work 

hardening coefficients than the non-heat-treated SAE 980X materials over the entire 

uniform elongation range. 

• The true stress-strain curves of DP steels cannot be approximated by the power law 

(σ=Kεn), while those of conventional ferrite-carbide steels can. 

 Use of the n-value as a measure of work hardening rate can be misleading.  By virtue of the 

functional form of the power law, the n-value will decrease as strength increases, even if the 

work hardening rate (dσ/dε) is the same.  Davies and Magee (25) discussed the work hardening 

rates of dual-phase steels in contrast to other high strength steels.  They clarified that superior 

strength/ductility combinations must imply superior work hardening characteristics, especially 

near instability (diffuse necking) where the true stress equals the work hardening rate.  Davies 

and Magee revealed several important aspects of the work hardening behavior of DP steel in 

their research: 
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• In contrast to conventional high strength steels, DP steels show higher work 

hardening rates at all strains by approximately a factor of two. 

• The n-value is physically meaningless in evaluating work hardening behavior, and the 

work hardening behavior (in terms of work hardening rates) of seemingly very 

different DP steels is experimentally indistinguishable. 

• The wide range of conventional steels shows a degree of variation in work hardening 

behavior, but all fall in a band that is well below that of dual-phase steels.   

• The work hardening rates of dual-phase steels and conventional steels show a similar 

dependence with strain, and do not immediately suggest different work hardening 

mechanisms. 

The essence of the findings of Davies and Magee is summarized in Figure 5 (25), where the 

strain hardening rate and true stress are plotted vs. strain for various low-carbon steels and dual-

phase steels.  They emphasize that the improved strength-ductility balance of DP steels is a direct 

result of increased work hardening rates throughout deformation.  They also mentioned that, if 

the work hardening rates at higher strains could be improved, ductility could be further 

enhanced.  Davies and Magee compiled a group of ductility and strength data that showed the 

advantageous strength-ductility balance of DP steels in contrast to other high strength steels.  

Their compilation is shown in Figure 6 as a plot of tensile strength vs. pct total elongation (25) 

for various types of high strength steel. 
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Figure 4:  Variation of ni with εp in as-received and heat treated Grade SAE 980X specimens.  
The intersection of the dotted line and the curves marks the onset of diffuse necking for each 
condition.  SAE 980X is a ferrite-carbide high strength steel, and A through D are dual-phase 
steels (Grade GM 980X) cooled at rates ranging from 5 to 14°C/sec (increasing from A to D) 
(22). 

 
 

Figure 5:  Strain hardening rate and true stress a function of strain for both DP and low-carbon 
steels.  Circles indicate the end of uniform elongation (σ = dσ/dε) (25). 
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Figure 6:  Total elongation as a function of ultimate tensile strength for some commercially 
available high strength steels.  Approximate weight reduction capability was calculated under the 
assumption that base metal fatigue resistance is the controlling factor (25). 

 
 

Speich (24) summarized the work of several other researchers (11, 18, 26) that developed 

an understanding of the various stages of work hardening behavior and helped explain the 

observation of Rashid (22) that DP steels cannot be described by the simple power law 

relationship for the entire stress-strain curve.  The three stages of work hardening observed for 

dual-phase steels in uniaxial tensile tests are as follows. 

• Stage I – (~0.1 to 0.5 pct strain): Rapid work hardening caused by the elimination of 

residual stresses and rapid build up of “back stresses” in the ferrite caused by “plastic 

incompatibility” between α and α’ (ferrite and martensite). 

• Stage II – (~0.5 to 4 pct strain): The work hardening rate of ferrite is reduced as the 

plastic flow of ferrite is constrained by the hard, non-deforming martensite particles. 
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• Stage III – (> 4 pct strain): Dislocation cell structures are formed and further 

deformation of the ferrite is governed by dynamic recovery and cross-slip and by 

eventual yielding of the martensite phase. 

An example from the work of Cribb and Rigsbee (27) is shown in Figure 7, where the three 

stages of DP steel work hardening behavior are shown in various ways.  Figure 7a shows a true 

stress-strain curve; Figure 7b shows the non-linearity of the logσ-logεp curve (varying n-value); 

Figure 7c shows the log(dσ/dεp)-logεp, plot (Jaoult-Crussard plot); and Figure 7d shows the 

log(dσ/dεp)-logσ plot that illustrates the onset of diffuse necking (σ = dσ/dεp). 

   

 
 

Figure 7:  Example of the work hardening behavior of a dual-phase steel.  The three stages of 
work hardening are shown in various ways.  A) true stress-strain, σ-ε curve, B) logσ-logεp curve 
(note the non-linearity), C) Jaoult-Crussard Plot, or log(dσ/dεp)-logεp, and D) log(dσ/dεp)-logσ 
(27). 

2.2 MICROSTRUCTURAL ASPECTS OF DP STEELS 

Dual-phase (DP) steels are a class of high-strength low-alloy (HSLA) steels with microstructures 

that consist primarily of a dispersion of hard martensite (α’) in a soft, ductile ferrite (α) matrix.  
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Although the term “dual-phase” refers to the two primary microconstituents (α and α’), small 

amounts of bainite, pearlite and retained austenite may be present (24).  The two primary 

methods of producing DP steels (controlled hot rolling and intercritical annealing) result in 

inherently different dual-phase microstructures.  With the intercritical annealing method, the 

steel is generally heated to an intercritical temperature (both α and γ are stable), held for some 

time to form the desired amount of austenite, then subsequently cooled rapidly (quenched) to 

convert the intercritical austenite to martensite.  During the intercritical anneal, austenite 

nucleates and grows primarily at ferrite grain boundaries, and a microstructure similar to that 

shown in Figure 8 is obtained (24).  Note that the martensite islands (light grey) are much 

smaller than the ferrite grains (dark grey), and that the martensite islands are situated at the 

ferrite grain boundaries.   

 

 
 

Figure 8:  Typical intercritically-annealed dual-phase (α-α’) microstructure.  (0.06 wt pct C, 1.5 
wt pct Mn, water quenched from 760°C) (24). 

 
 

Repas (28) gave an example of a continuous-cooling-transformation (CCT) diagram for a 

dual-phase steel—reproduced in Figure 9.  To achieve a dual-phase microstructure in a hot rolled 
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steel, the steel must be cooled sufficiently fast to the coiling temperature to avoid the formation 

of significant amounts of pearlite, yet slow enough to pass through the ferrite region of the CCT 

curve.  At the appropriate coiling temperature, no additional ferrite will form after coiling, and 

martensite and bainite will form upon further cooling in the coiled state.  The difference between 

hot rolled and intercritically annealed DP steels is thus the order of phase transformations.  

Unlike the intercritical case discussed above, ferrite must nucleate and grow in austenite until the 

desired amount of austenite is left in the two-phase, high-temperature microstructure.  Once the 

remaining austenite has transformed to martensite upon cooling, a distinctly different dual-phase 

microstructure is obtained (in contrast to the intercritically annealed example in Figure 8), where 

the martensite islands are on the order of the ferrite grain size and are more homogeneously 

distributed (not concentrated at ferrite grain boundaries).  Figure 10 gives examples of hot rolled 

DP steels with various amounts of martensite (29).  A formalized description of two-phase 

microstructures, given in the next section, helps to define the microstructural distinctions 

between intercritically annealed and hot rolled DP steels. 

 

 
 

Figure 9:  Continuous-cooling transformation behavior in Mn-Si-Mo-Cr steel resulting in a dual-
phase microstructure in the as-hot-rolled product (28). 
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Figure 10:  Examples of hot rolled dual-phase steels with different amounts of martensite. Top 
Left—65 pct martensite, Bottom Left—50 pct martensite, Top Right—35 pct martensite, and 
Bottom Right—18 pct martensite (29). 

 

2.2.1 Classification of Two-Phase Microstructures 

Becker et al. (30-31) have devised a system whereby two-phase microstructures may be 

qualitatively described and classified.  A complete description in their classification system 

requires knowledge of the densities of the various types of grain and phase boundaries (i.e., α-α, 

α’-α’ and α-α’), the relative volume fractions (i.e., fvα + fvα’ = 1), and relative grain or island 

sizes [i.e., d(α) and d(α’)].  Figure 11 shows a schematic representation of the basic two-phase 

microstructures in the classification system developed by Becker et al. (31), where the dark 

phase is martensite (α’), and the light phase is ferrite (α).  A dispersion structure has no α’-α’ 

boundaries and consists of a dispersion of α’ islands in an α matrix, regardless of the relative 

volume fractions.  An ideal duplex structure has the following characteristics: 1) equal amounts 

of α-α and α’-α’ grain boundaries, 2) equal volume fractions of ferrite and martensite (fvα = 

fvα’ = 0.5), and 3) the ferrite grain size and the martensite island size are equivalent [d(α) = 
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d(α’)].  A net or network structure has no α-α boundaries and consists of α’ surrounding α with 

the α-α grain boundaries replaced by α-α’ phase boundaries. 

 

 
 

Figure 11:  Schematic representation of basic two-phase microstructures (31).  For dual-phase 
steels, the black or shaded regions are martensite, and the white regions are ferrite. 

 
 

A “dual-phase” microstructure can be defined in the context of the three basic types of 

two-phase microstructures described above by Becker et al. (31).  Like a duplex structure, an 

ideal dual-phase structure has the same number of α and α’ grains (islands) per unit volume (not 

true in all real cases, see Figure 8 and Figure 10).  Like a dispersion structure, α’ islands in a 

dual-phase steel are completely surrounded by α.  At a maximum martensite volume fraction, 

fv(α’) of 0.3, α’-α’ boundaries begin to form (called “percolation”), and at fv(α’) = 0.5, an ideal 

duplex microstructure is formed.  Like a network structure, all of the martensite islands in a dual-

phase structure are connected by α-α grain boundaries. 
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Becker et al. (30) also defined a parameter δ = Cα-α’/Cα-α that describes the degree of 

dispersivity of a dispersion structure, where Cα-α’ and Cα-α are the concentrations of ferrite-

martensite and ferrite-ferrite boundaries, respectively.  Figure 12 shows the effects of δ on the 

dispersion of martensite islands in a two-phase microstructure.  The intercritically annealed 

specimen in Figure 8 appears to have a higher δ-ratio than the hot rolled specimens shown in 

Figure 10.  Thus, in the classification system of Becker et al., intercritically annealed DP steels 

may be classified as a fine dispersion that approaches a network structure as martensite content 

increases, while hot rolled DP steels may be classified as a coarse dispersion that approaches a 

duplex structure as martensite content increases. 

 

 
 

Figure 12:  Characterization of different types of two-phase microstructures.  In this schematic, α 
is the ferrite phase as normal, and γ is the martensite phase (not austenite) (30). 

 

2.2.2 Ferrite Dislocation Density of Dual-phase Steels 

As discussed above in Section 2.1.1, DP steels are characterized by high ferrite mobile 

dislocation density, and this microstructural feature is arguably largely responsible for the 
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characteristic continuous yielding behavior.  Various authors have shown examples of high 

ferrite dislocation density near ferrite/martensite boundaries in transmission electron microscope 

analyses (11, 23, 32-34).  A particularly illustrative example from the work of Rigsbee et al. (34) 

is given in Figure 13 for a hot rolled dual-phase steel.  The dislocation density is relatively low in 

the ferrite grain interiors and near ferrite/ferrite grain boundaries; however, the ferrite dislocation 

density is very high near the ferrite/martensite phase boundary. 

 

 
 

Figure 13:  Transmission electron bright field micrograph of a hot rolled dual-phase steel [0.07 
C, 0.9 Mn, 1.2 Si, 0.6 Cr, 0.3 Mo (wt pct)].  Note the relatively low dislocation density in the 
polygonal ferrite (PF) grains and the relatively high ferrite dislocation density near the 
ferrite/martensite (M) boundary (34). 

 
 

Sherman et al. (32) examined the influence of deformation and martensite content on the 

ferrite dislocation density of DP steels.  They showed that the average ferrite dislocation density 

increased approximately linearly as a function of martensite content in samples that were 

quenched from various intercritical annealing temperatures (martensite contents ranging from 16 

to 60 pct by volume).  The reported dislocation densities ranged from about 0.25x109-cm-2 to 
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about 1.5x109-cm-2 in the as-cooled condition.  An equivalent set of samples was subjected to 7-

pct tensile deformation, and the ferrite dislocation densities increased by a factor between 25 and 

40, where dislocation densities between about 1.8x1010-cm-2 and 3.5x1010-cm-2 were reported.  In 

the 7-pct-strain condition, the average ferrite dislocation density is again a nearly linear function 

of the martensite content.  These results are shown graphically in Figure 14 (32).  Sherman et al. 

explained that, since the increase in the dislocation density (after 7 pct strain) is higher for larger 

martensite contents, the partitioning of plastic strain to the ferrite phase increases as martensite 

content increases. 

 

a) b)  
 

Figure 14:  The dislocation density, measured in the ferrite phase, of dual-phase steels as a 
function of martensite content: a) as cooled from an intercritical temperature, b) after 7 pct 
tensile deformation [0.11 C, 1.4 Mn, 0.5 Si, 0.08 V (wt pct)] (32). 

 

2.2.3 Note on Retained Austenite in DP Steels 

Retained austenite may be present in dual-phase steels (less than 10 volume pct)  as a result of 

the incomplete transformation of intercritical austenite to martensite (24).  In the early days of 

DP steel development some researchers argued that retained austenite was necessary to achieve 

the properties characteristic of dual-phase steels.  In fact, Marder (35) concluded from his studies 

that “…the intercritical annealing treatment must produce a sufficient amount of retained 
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austenite in the martensite patches in order to obtain the strength-ductility-work hardening 

relationships necessary for ‘dual-phase’ alloys.”  Marder was likely alluding to the 

transformation-induced plasticity (TRIP) mechanism, whereby retained austenite transforms to 

martensite during plastic deformation and enhances the work hardening characteristics of the 

alloy.  Today, “TRIP steels” are a separate class of “advanced high strength steels” that optimize 

the TRIP mechanism for increased formability at high strength levels (36).  It is now generally 

recognized that the transformation of retained austenite to martensite during plastic deformation 

of DP steels is not an important consideration for work hardening behavior and ductility because 

of the small volume fractions in “typical” DP steel microstructures (~2 to 4 pct) (9).   The factors 

that control the amount and stability (i.e., against the martensite transformation) of retained 

austenite are numerous and complex, and beyond the scope of this review.  However, it is 

recognized that increased cooling rate from the intercritical annealing temperature, decreased 

intercritical annealing temperature, and decreased carbon content all reduce the amount of 

retained austenite in dual-phase steels (24, 26). 

2.3 MICROSTRUCTURE/PROPERTY RELATIONSHIPS IN DP STEELS 

Generally for dual-phase steels, as the volume fraction of martensite increases, strength increases 

and ductility decreases.  The exact microstructure/property relationships depend upon various 

factors including composition, processing history, and martensite volume fraction and 

distribution.  In the following Sections 2.3.1 and 2.3.2 the various empirical microstructural 

effects on strength and ductility will be discussed for dual-phase steels. 
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2.3.1 Correlation between Microstructure and Strength 

Davies and Magee (25) illustrated that the strength (yield strength and ultimate tensile strength) 

of dual-phase steels is an effectively linear function of martensite content.  This relationship is 

shown in Figure 15 for a series of Fe-Mn-C alloys that were intercritically annealed at 

temperatures between 730°C and 840°C to create a range of martensite contents from about 5 pct 

to 95 pct.  The 0.2 pct offset flow stress ranged from about 200 to 1000-MPa, while the ultimate 

tensile strength ranged from about 400 to 1800-MPa.  Similar relationships were established by 

various other researchers (27, 37-39).  Tseng and Vitovec (38) showed an interesting 

representation of the evolution of flow stress with strain for a series of dual-phase steels with 

martensite concentrations between 20 and 90 pct.  Figure 16 shows this representation, where the 

flow stress, at various strain values also varies linearly with the martensite content.  Also evident 

in Figure 16 is that the majority of the work hardening potential of their materials was achieved 

at 2 pct strain.  Additionally, the total work hardening potential [the difference between the UTS 

and the elastic limit (σp in Figure 16)] increases as the volume fraction of martensite increases. 

 
Figure 15:  The 0.2 pct offset flow stress and ultimate tensile strength as a function of percent 
martensite for a series of Fe-Mn-C alloys (25). 
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Figure 16:  Flow stress at various strains as a function of the volume fraction of martensite (38) 
in a dual-phase steel.  Specimens were intercritically annealed at temperatures between 730°C 
and 865°C for 30 minutes and water quenched.  Composition: 0.1 C, 1.6 Mn, 0.014 P, 0.3 Si, 
0.04 Nb, 0.035 V, and 0.03 Al (wt pct). 

 

While Davies and Magee (25) insisted that the strength of dual-phase steels is a linear 

function of martensite content [i.e, does not depend upon the carbon content (strength) of the 

martensite], Speich et al. (9, 24) and Tamura et al. (40) felt otherwise.  The results of Speich et 

al. (24) are shown in Figure 17, where a clearly non-linear relationship between strength and 

martensite content and a dependence upon the strength of the martensite are shown.  As the 

experimental approaches of Davies and Magee (25) and Speich et al. (24) are nominally similar, 

the reason for the discrepancy (contrast Figure 15 and Figure 17) is uncertain, but may be related 

to variations in analytical technique.  Also, the data in Figure 15 show considerable scatter, and 

the non-linear behavior may have been simply overlooked.  Microstructure-based strength 

prediction of dual-phase steels is discussed in more detail in Section 2.4.1. 
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Figure 17:  Yield and tensile strength of ferrite-martensite mixtures in 1.5 wt pct Mn steels (24).  
C is the ratio between the yield strength of martensite to that of ferrite, and S°Y,m is yield strength 
corresponding to 100 pct martensite. 

 

2.3.2 Correlation between Microstructure and Ductility 

Balliger and Gladman (10) considered not only the influence of martensite content, but also the 

influence of the martensite distribution.  Their results showed that, while the tensile strength of a 

dual-phase steel is determined primarily by the volume fraction of martensite, the work 

hardening rate (dσ/dε) at a given strain is affected by the distribution of martensite [e.g., the 

average martensite “island” diameter, d(α’)].  Specifically, they showed that the work hardening 

rate depends on a factor, df / , where f is the volume fraction of second phase (martensite), 

and d is the average island diameter.  Figure 18 shows this relationship for a series of dual-phase 

steels at a nearly constant volume fraction of martensite (0.19 to 0.23).  Ranging from just over 

5.5 μm to just under 8 μm, d has a tremendous influence on the work hardening rate (at ε = 0.2) 

and corresponding uniform elongation value, with very little influence on ultimate tensile 

strength.  Balliger and Gladman (10) explained that the key to optimizing dual-phase steels for 

maximum formability at a given strength level (martensite content) is to refine the martensite 
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distribution.  The theoretical basis for understanding the work hardening behavior of dual-phase 

steels is discussed in Section 2.4.2. 

   

 
Figure 18:  Effect of mean martensite island diameter on tensile properties and work hardening 
behavior at a nearly-constant volume fraction of martensite [fv(α’) = 0.19 - 0.23] for a series of 
dual-phase steels (10).  Note the significant influence of martensite distribution on uniform 
elongation and work hardening rate and the relative independence of strength. 

 

Speich and Miller (9) developed empirical relationships that relate the uniform and total 

elongation values of dual-phase steels to the carbon concentration in the martensite and the 

volume fraction of martensite.  In the original nomenclature of Speich and Miller (9), the 

prediction of uniform elongation is given as 
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is the ratio between the uniform elongation value of the composite dual-phase 

material and that for 100 pct ferrite, Cm is the carbon content in the martensite, and Pm is the 

martensite content (volume pct).  The martensite carbon content is determined simply by 
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where it is assumed that the total carbon, C0 has partitioned to the austenite at the intercritical 

temperature and that the ferrite carbon content in the finished product is negligible.  A similar 

relationship was developed for the total elongation value, where 
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and O
t

t
e

e
α,

is the ratio between the total elongation value of the composite dual-phase material 

and that for 100 pct ferrite.  Figure 19 shows the excellent correlation between the regression 

analysis results (Equations 4 and 6) to the experimental data.  Apparently, the distribution of 

martensite (mean island diameter) is nearly constant for the series of alloys shown in Figure 19, 

or perhaps the effects of second phase distribution were absorbed in the coefficients of the 

regression analyses given in Equations 4 and 6. 

 

 
 

Figure 19:  Effect of martensite content and martensite carbon content on uniform and total 
elongation (9) for a series of dual-phase steels.  In this figure, “Eqn. 14” is Equation 4 in the text, 
and “Eqn. 15” is Equation 6 in the text. 
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For the same series of alloys represented in Figure 17 and Figure 19, Figure 20 shows 

uniform elongation and total elongation as a function of tensile strength (9).  As for most steels, 

the ductility decreases as strength increases.  However, it appears that lower-carbon martensite 

(i.e., lower strength martensite) favors improved formability.  One interpretation is that, for 

lower carbon martensite, cracking of the martensite particles and/or decohesion of the 

ferrite/martensite interface is suppressed (24).  Rashid (22) offered the explanation that the 

enhanced ductility of dual-phase steels (in contrast to ferrite-carbide steels) is a result of the 

relatively higher plasticity of the martensite phase over pearlite and grain boundary carbides.  

Tseng and Vitovec (38) gave examples of both deforming and non-deforming martensite 

particles.  For steels of a single composition [0.1 C, 1.6 Mn, 0.3 Si, 0.04 Nb and 0.04 V (wt pct)] 

intercritically-annealed to produce 26 pct martensite (higher carbon martensite) and 56 pct 

martensite (lower carbon martensite), non-deformed martensite and deformed martensite, 

respectively, were found in regions of high deformation (tensile specimens). 

 

 
Figure 20:  Relation between ultimate tensile strength and elongation for a series of 
intercritically-annealed, water quenched 1.5 wt pct Mn dual-phase steels (same series as shown 
in Figure 17 and Figure 19) (9).  Note the dependence upon C, the ratio between the martensite 
yield strength and the ferrite yield strength. 
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The effects of martensite distribution or size dispersion [e.g., the classification system of 

Becker et al. (30-31) and the experimental observations of Balliger and Gladman (10)] 

apparently were largely overlooked in most of the early developments of DP steels.  It is likely 

that a more detailed description of two-phase microstructures—beyond martensite volume 

fraction and martensite carbon content—is needed to understand the mechanical properties of 

dual-phase steels.  In the next section (Section 2.4), various methods to describe and predict the 

mechanical properties and work hardening behavior of dual-phase steels are reviewed. 

2.4 MODELING THE MECHANICAL BEHAVIOR OF DP STEELS 

2.4.1 Predicting the Strength of DP Steels  

Tamura et al. (40, 41) estimated the strength of two-phase alloys with a simple rule of mixtures 

model, where the yield strength, SY and tensile strength, ST of the composite material are given 

as  

100/100/ ,, mmYYY PSPSS += αα , and                                        [7a] 

100/100/ ,, mmTTT PSPSS += αα ,                                            [7b] 

where P is the volume percentage of a particular phase, and the subscripts α and m refer to the 

partial properties of the ferrite and martensite phases, respectively, for dual-phase steels.  They 

found that Equation 7a was not obeyed except when the yield strengths of the two phases are 

nearly equal [e.g., a well-tempered ferrite-martensite mixture (24)].  Tamura et al. (40) then 

reasoned that the relationship between SY and Pm depends on the ratio of the yield strengths of 

martensite and ferrite, C where 
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α,, / YmY SSC = .                                                        [8] 

They found that, if C<3 then the law of mixture was nearly obeyed.  For C>3, SY increased 

linearly with Pm at low Pm-values, then deviated strongly from the prediction at a Pm-value that 

increased as the value of C increased.  This relationship is shown graphically in Figure 21 (40). 

 

 
Figure 21:  Effect of the parameter C (ratio between martensite and ferrite yield strength) on the 
variation of yield strength with percent martensite (40).  See text for details. 

 

Speich and Miller (9) further developed the relationship established by Tamura et al., and 

proposed the following predictions for the yield and tensile strengths of dual-phase steels: 

( ) 100/3
1

,,, mYmYYY PSSSS αα −+= , and                                   [9a] 

( ) 100/,,, mTmYTT PSSSS αα −+= .                                        [9b] 

Equations 9a and 9b are similar to Equations 7a and 7b, but use much lower effective stress 

values for the martensite phase where SY,m is replaced by (1/3)SY,m, and ST,m is replaced by SY,m.  

The yield strength of the martensite phase is used in Equation 9b, as it was estimated that, at the 

composite tensile strength, the martensite is strained just beyond yielding, and little work 

hardening of the martensite occurred.  The yield strength of the martensite phase (SY,m in 

Equations 9a and 9b) was calculated based on the work by Leslie and Sober (42), where 
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( ) mmY CMPaS 2585620, +=                                               [10] 

and Cm is the carbon content of the martensite (Equation 5).  Values of 214 MPa and 400 MPa 

were determined for SY,a and ST,α, respectively, for a series of 1.5 wt pct Mn dual-phase steels 

(same series represented in Figure 17 and Figure 19 through Figure 21), and the predictions of 

Equations 9a and 9b are shown in Figure 22.  It appears that the modified rule of mixtures model 

developed by Speich and Miller (9) closely represents the yield and tensile strengths of ferrite-

martensite mixtures when the martensite content is below 50 pct.  They explain that, the marked 

increase in both yield and tensile strength above 50-pct martensite occurs because martensite 

now becomes the matrix phase and supports a major fraction of the load with little or no 

deformation of the occluded ferrite. 

 
 

Figure 22:  Linear approximations for yield strength (left) and tensile strength (right) of ferrite-
martensite mixtures (9).  In this figure, “Equation (7)” is Equation 9a in the text, and “Equation 
(8)” is Equation 9b in the text. 

 

2.4.2 Modeling the Stress-Strain Curves of DP Steels 

Rios et al. (43) extended the analyses of Tamura et al. (40-41) and of Speich and Miller (9) to 

model the stress-strain curves of dual-phase steels with consideration of stress and strain 

partitioning.  They began by assuming that the elastic modulus of ferrite is equivalent to that of 

martensite, and that the material deforms uniformly up to the point where ferrite begins to 
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deform plastically.  This situation is shown schematically in Figure 23 (43) as the line from the 

origin, O to point A (slope = 1) in the plot of Sm vs. Sα (engineering stress in the martensite 

phase and the ferrite phase, respectively). 

 

 
Figure 23:  Stress partitioning between martensite and ferrite in dual-phase steels, after Rios et 
al. (43). 

 

 Assuming that the martensite phase yields when the ferrite phase has reached its ultimate 

tensile strength (UTS) [after Speich and Miller’s suggestion (9)], a second point B was placed on 

the Sm vs. Sα plot in Figure 23.  At B, the ferrite has reached its UTS, and the martensite is at its 

0.2 pct offset flow stress as shown.  The greater slope from A to B than from O to A represents 

the stress partitioning effect, where, at any given plastic strain, the martensite is subjected to 

higher stresses than the ferrite phase.  Rios et al. explained that, for lack of deeper understanding, 

the path from point A to point B is assumed linear.  So, between points A and B, the stress level 

in the martensite phase may be expressed as 
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in the notation of Rios et al. (43), as shown in Figure 23.  The general stress and strain 

partitioning expressions are 

mmVSVSS += αα , and                                          [12a] 

mmVeVee += αα                                               [12b] 

where S and e are the nominal stress and nominal strain of the composite material; Vα and Vm 

are the volume fractions of ferrite and martensite, respectively; eα and em are the partial 

(partitioned) strains in the ferrite and martensite, respectively; and Sα and Sm are as above. 

The approach to predicting the stress-strain curves of dual-phase steels was to solve 

Equations 11, 12a and 12b simultaneously with prior knowledge of the stress-strain curves of the 

individual martensite and ferrite components.  The relation of the individual stress-strain curves 

of ferrite and martensite to that of the composite dual-phase steel is shown schematically in 

Figure 24.  The tie line between the UTS of the ferrite phase and the 0.2 pct offset flow stress of 

the martensite phase passes through the UTS of the dual-phase steel, and the composite stress-

strain curve lies between those of the individual-phases. 

 

 
Figure 24:  Schematic stress-strain curves for individual-phases martensite and ferrite, in 
addition to the predicted stress-strain curve of a composite dual-phase steel (43).  Note the tie-
line between the UTS of the ferrite phase and the 0.2 pct offset flow stress of the martensite 
phase, that passes through the UTS of the dual-phase steel at an effective composite strain 
between the partial (partitioned) strains of the individual-phases. 

 
32



 
The individual stress-strain curves of ferrite and martensite were taken “from the 

literature”, and the results of the estimations of Rios et al. (43) are shown in Figure 25.  Also in 

Figure 25 is a predicted stress-strain curve based on the assumption of Tamura et al. (41) that 

strain partitioning (rather than stress partitioning) is constant throughout deformation.  The strain 

partitioning constant, K = em/eα was chosen such that good agreement was obtained at the 

ultimate tensile strength (i.e., K = 0.56).  It is clear that, for the particular case reported by Rios 

et al., the linear stress partitioning model (Equation 11) provides a good description of the stress-

strain behavior of the dual-phase steel—far better than that provided by the linear strain 

partitioning model. 

 

 
Figure 25:  Experimental and calculated engineering stress-strain curves for a dual-phase steel.  
The continuous curve shows the prediction of Rios et al. (43), while the dashed curve shows the 
prediction based on the work of Tamura et al. (41).  See text for details. 

 

Finally, by virtue of the linear stress partitioning assumption, the resultant calculated 

strain partitioning response is necessarily non-linear, as shown in Figure 26 in contrast to the 

linear strain partitioning model.  The measured martensite content in the material examined by 

Rios et al. was about 32 pct.  The yield strength (~300 MPa) and the tensile strength (~850 MPa) 
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are consistent with the strength/ martensite content relationships shown by Davies and Magee in 

Figure 15 (25). 

 

 
Figure 26:  Linear and non-linear strain partitioning estimations for dual-phase steels given by 
Tamura et al. (41) and Rios et al. (43), respectively.  In this figure, “OUR MODEL” refers to 
that of Rios et al.  Note the difference in ordinate and abscissa scales. 

 

Chang and Asaro (44) suggested that the flow stress, σf of spheroidized ferrite-carbide 

steels might be viewed as a combined effect of various strength components, as 

DBf σσσσ ++= 0                                                     [13] 

where σ0 is the initial flow stress (related to yield strength), σB is a back stress or residual stress 

(related to plastic incompatibility between relatively hard and soft microconstituents), and σD is 

the total true work hardening of the system (the subscript D in Equation 13 refers to dislocation 

based mechanisms).  For dual-phase steels, the total work hardening may be expressed as a root-

squared summation of the matrix effects, σWHM and the extra work hardening caused by the 

presence of the martensite, σWHP, where 

( ) 2
122

WHPWHMD σσσ += .                                                [14] 
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In the original notation of Chang and Asaro (44), the subscript M refers to the matrix (not 

martensite), and the subscript P refers to particles or precipitates (i.e., martensite in dual-phase 

steels).  Gerbase et al. (18) expanded Equation 13 (with σD as in Equation 14) to include the 

contributions of Brown and Stobbs (45) in regard to the back stress, σB and of Ashby (46) in 

regard to σD to obtain 
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where α1, α2 and α3 are constants, μ is the shear modulus of the matrix, b is the Burgers vector 

of the matrix dislocations, f is the volume fraction of martensite, εp is the total plastic strain, and 

ε*p is the unrelaxed strain associated with the  plastic  incompatibility between ferrite and 

martensite.  The origin of the back stress, σB is discussed in detail in Section 2.5.  The general 

form of the Ashby work hardening model (46) for hard, non-deforming particles in a soft matrix 

is 
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where α is a constant, and d is the average particle diameter (or average effective martensite 

island diameter in dual-phase steels).  It is not clear how Gerbase et al. (18) applied Ashby’s 

model to arrive at Equation 15, but the constants α2 and α3 are somehow related to the volume 

fractions of ferrite and martensite, respectively.  However, the σB values were determined 

experimentally with tension/reverse compression tests at various levels of strain (i.e., 

Bauschinger Effect tests—see Section 2.5.2).  An example of the development of back stress in 

dual-phase steels is given in Figure 27 (18).  Gerbase et al. explained that the back stress, σB 

rises very rapidly at small strains and saturates at the onset of an alternative mechanism such as 
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yielding or fracture of the martensite phase.  The rapidly increasing back stress is likely partly 

responsible for the very high work hardening rate of dual-phase steels in the early stages of 

plastic deformation.  Thus, the initial work hardening rate reflects the volume fraction of 

martensite, and the limit of the contribution of σB is determined by the onset of competitive 

processes.  Although vaguely described, Gerbase et al. (18) used measured σB values, along with 

Equation 15, to predict the stress-strain behavior of several dual-phase steels quite successfully, 

as shown in Figure 28.   

 

 
Figure 27:  Example of the development of back stress, σB in dual-phase steels as a function of 
tensile strain (18). 

 

 
Figure 28:  Predicted and experimental true stress-true strain curves for dual-phase steels with 
various martensite contents—after Gerbase et al. (18).  In this figure, “ref. 14” refers to 
Reference 47 of this document.  Also, f % is the volume percent martensite of each steel, and Cm 
% is the wt pct carbon in the martensite of each steel. 
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Interestingly, Balliger and Gladman (10) did not consider the back stress when evaluating 

the microstructure effects on the work hardening behavior of dual-phase steels (see Section 2.3.2 

and Figure 18).  They considered only the Ashby work hardening model (Equation 16)—note the 

df /  dependence of the flow stress and the work hardening rate in Ashby’s classical model.  

As the back stress, σB saturates at a low strain value, σB B is not expected to affect the work 

hardening rate at higher strains, as examined by Balliger and Gladman ( ).  It is likely that, 

because of the initially rapidly-increasing back stress reported by Gerbase et al. ( ), Balliger 

and Gladman would have been less satisfied with their predictions had they considered the work 

hardening behavior of dual-phase steels at low plastic strains.   

10

18

2.5 THE BAUSCHINGER EFFECT IN DP STEELS 

The aforementioned back stress contribution to the flow stress of dual-phase steels, σB may be 

illustrated by a simple reverse strain experiment, as shown in Figure 29 (48).  After an initial 

uniaxial tension prestrain, a sample is uniaxially compressed such that the uniaxial compression 

flow curve (σR vs. ε) may be contrasted with the original uniaxial tension flow curve (σF vs. ε).  

Note that the compression flow curve has been rotated 180° about its intersection with the strain 

axis, and that the subscripts F and R refer to forward and reverse deformation, respectively.  In 

Figure 29, the difference between σF and σR is equal to twice the back stress, σB, and, in the 

absence of a back stress, σF and σR would both be equal to ½(σF + σR).  The lowered flow stress 

after a load reversal is the essence of the Bauschinger Effect, or “BE” [after J. Bauschinger—

1881 (49)].  In the following, the mechanisms responsible for the BE, the most common ways to 

measure the BE, and various observations of the BE in dual-phase steels will be discussed. 
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Figure 29:  Schematic diagram that relates the back stress, σB to the forward flow stress, σF and 
reverse (compression) flow stress, σR after a uniaxial tension prestrain.  In the absence of a back 
stress, the forward and reverse flow stresses at a plastic strain of εP would equal ½(σF+σR) in the 
diagram (48). 

 

2.5.1 Mechanisms of the Bauschinger Effect 

Zhonghua and Haicheng (16) described the Bauschinger Effect as “…a manifestation of 

anisotropic plasticity induced in an isotropic material by plastic deformation,” and divided the 

responsible Bauschinger Effect mechanisms into two classes, namely short-range effects and 

long-range effects.  Short-range dislocation interactions occur in even the purest of 

monocrystalline metals, and Orowan (50) explained that, during plastic deformation, dislocations 

accumulate (i.e., in a pile-up) at barriers in tangles, and eventually form cells.  When the load is 

removed, dislocations do not move appreciably because the structure is mechanically stable (i.e., 

arranged in a low-energy dislocation structure).  Once the loading path is reversed (opposite the 

original deformation or prestrain), some dislocations move easily at a low shear stress since the 

barriers behind the dislocations are fewer and farther between—in contrast to the barriers ahead 

of the dislocations.  The net result is plastic flow at a lower stress level when the loading 

direction is reversed.  As this mechanism of the Bauschinger Effect lies in the structure of the 
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cold-worked state, the Bauschinger Effect is expected to occur in all metals that store cold-work 

energy. 

 Deformation also induces long-range internal stresses in single- and multi-phase materials.  

The primary sources of such long-range internal stresses are reportedly dislocation pile-ups at 

grain boundaries and at subgrain boundaries; plastic incompatibility among neighboring grains; 

and plastic incompatibility between second phase particles and matrices (16).  In polycrystalline 

metals, geometrically necessary dislocations (GNDs) are generated near grain boundaries during 

deformation to maintain physical continuity between neighboring grains of different orientation 

as they undergo slip-related shape distortions (17).  Without GNDs, voids and nonsensical spatial 

overlaps between grains would occur in the aggregate (hence the name “geometrically necessary 

dislocations”).  GNDs produce localized strain gradients within individual grains that result in an 

additional source of deformation-induced internal stresses.  GNDs are typically distinguished 

from statistically stored dislocations (SSDs).  SSDs are those dislocations that encounter and trap 

one another randomly, as in a single crystal.  Furthermore, SSDs have no net effect on lattice 

curvature, and a Burgers circuit taken around a group of SSDs has no net Burgers vector (17).   

It is generally recognized that the Bauschinger Effect is much more pronounced in two-

phase alloys than in single-phase alloys.  It has been surmised (16) that the long-range internal 

stresses in each microconstituent, caused by the misfit strains between them, are much higher in 

contrast to the long-range internal stresses acting over the scale of the grain size in single-phase 

materials.  Stress and strain partitioning (see Section 2.4.2) lead to long-range residual stresses in 

two-phase microstructures (14, 16, 51).  Figure 30 shows various ideal models for stress and 

strain partitioning (51). 
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Figure 30:  Various ideal models for stress and strain partitioning in two-phase alloys (51).  In 
this figure, γ is the relatively hard phase (martensite), and α is the relatively soft phase (ferrite).  
The law of mixtures is a more realistic model, as it allows partial load partitioning and partial 
deformation partitioning. 

 

The Law of Mixtures model (Figure 30a) shows the most realistic representation of stress 

and strain partitioning in dual-phase steels where partial load transfer and partial strain transfer 

are shown.  The Equal Strain and Equal Stress models (Figure 30b and Figure 30c, respectively), 

although oversimplified, are useful in understanding the development of deformation-induced 

residual stresses in dual-phase steels.  For the Equal Strain model, the hard and soft phases are 

strained together in tension, while the stresses are partitioned according to the respective work 

hardening behavior of the individual-phases.  Once the load is removed, full elastic recovery of 

the harder phase is constrained by the limited elastic recovery of the softer phase (assuming 
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similar elastic properties).  So, the Equal Strain model predicts that, for uniaxial tension 

prestrain, the deformation-induced residual stress distribution will be tension in the harder phase 

(martensite) and compression in the softer phase (ferrite).  For the same applied tensile prestrain, 

the Equal Stress model predicts that both phase are under the same local stress conditions, and 

the strains are partitioned according to the respective work hardening behavior of the individual-

phases.  With the assumption that the interfaces between martensite and ferrite remain intact, the 

strain gradients near the interfaces must result in a distribution of residual stresses.  In the 

schematic 2-dimensional layered microstructure shown in Figure 30c, the residual stresses would 

develop normal to the applied tensile axis because the limited strain in the harder phase restricts 

the width-wise contraction of the softer phase.  Thus, both the Equal Strain and Equal Stress 

models (and hence the combined Law of Mixtures model) predict the development of 

deformation-induced residual stresses that contribute to the Bauschinger Effect in dual-phase 

steels.  Examples of calculated and measured deformation-induced residual stresses are given in 

Sections 2.5.3 and 2.6, respectively. 

2.5.2 The Bauschinger Effect Test 

As shown in Figure 29, the Bauschinger Effect (BE) is normally regarded as a decreased flow 

stress in reverse deformation (e.g., uniaxial tension followed by uniaxial compression, or vice 

versa).  As the BE is a complex interaction of several possible residual back stress mechanisms, 

the BE can be manifested in different ways in different materials.  Correspondingly, there are 

several different ways to quantify the BE, as shown in Figure 31 (16), where most of the 

common Bauschinger Effect quantification parameters are defined. 
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Figure 31:  Schematic diagram of the Bauschinger Effect with its various quantification terms 
(16).  See text for details. 

 

The important features of Figure 31 are: 

• σ0: Initial yield strength in uniaxial tension. 

• σp: Flow stress at the end of prestrain, εp in uniaxial tension (“prestress”). 

• σR: Yield strength in reverse deformation (compression)—note that the compressive 

flow curve has been rotated 180° about its intersection with the abscissa. 

• β1.0: The strain required in reverse loading to achieve the prestress, σp.  β0.5 is used 

when the entire reverse flow curve lies below σp. 

• εp: Prestrain energy (area under the stress-strain curve up to εp). 

• Es: Energy gained in reverse deformation by straining to β1.0 (cross-hatched area). 

• ΔσB: Permanent softening parameter defined as the difference between the forward 

and reverse flow stress when the forward and reverse flow curves are “parallel” (note: 
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ΔσB is sometimes defined as 2σB, or two times the back stress; see for example 

Figure 29).   

• ABS: Average Bauschinger Strain defined as the energy gain (Es) normalized by the 

prestress, σp. 

• BEP: Bauschinger Energy Parameter = Es/Ep. 

• βσ: Bauschinger Stress Parameter = (σp + σR)/σp, where βσ = 0 means no BE (σR = -

σp). 

Tseng and Vitovec (38) noted that, in the absence of permanent softening (ΔσB = 0) it may be 

useful to define a term, εRC that defines the amount of reverse deformation required to achieve 

(intersect) the initial forward flow curve.  Other Bauschinger Effect parameters may also exist, 

but those shown in Figure 31 are most common. 

2.5.3 Observations of the Bauschinger Effect in Dual-phase Steels 

Tseng and Vitovec (38) showed for a series of dual-phase steels (see Figure 16) that the 

Bauschinger Effect (BE) increases as prestrain increases (represented by ABS defined above).  

They also showed that, in general, dual-phase steels do not exhibit permanent softening (i.e., 

reverse curve always intersects the initial forward flow curve).  The εRC-values ranged from less 

than 1 pct to about 5 pct strain for uniaxial tension prestrains up to about 10 pct, as shown in 

Figure 32 (38).  In reporting BE data, it is extremely important to convert all stresses and strains 

to true values (not nominal or engineering values).  In many cases it is not specified (as in the 

work by Tseng and Vitovec).  By using engineering values, uniaxial tension stresses would be 

too low, while uniaxial compression stresses would be too high, possibly masking the permanent 

softening effect, if present.  
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Figure 32:  Reverse plastic strain to the point of intersection with the initial forward curve as a 
function of tensile prestrain for a series of dual-phase steels (38). 

 

Zhonghua and Haicheng (16) examined the Bauschinger Effect in a series of ferrite-

martensite steels with conventional reverse deformation (tension/ compression) tests.  The 

forward and reverse curves for their materials are shown in Figure 33.  Included in Figure 33 are 

BE test results for (a) a 100 pct ferrite steel, (b) a 100 pct martensite steel, (c) a 16 pct martensite 

dual-phase steel, and (d) a 40 pct martensite steel.  Their initial observations were: 

• Although all four steels exhibited the Bauschinger Effect, the BE is generally much 

more pronounced in dual-phase steels than in single-phase steels. 

• The dual-phase steels exhibit permanent softening. 

• The 100-pct ferrite steel exhibits no permanent softening. 

• The 100 pct martensite steel exhibits permanent strengthening (negative ΔσB) at low 

prestrains, but permanent softening at high prestrains. 

Again it was unspecified whether nominal or true stress-strain data were used for the curves 

shown in Figure 33. 
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Figure 33:  Forward and reverse stress-strain curves for various ferrite-martensite steels: (a) 100 
pct ferrite, (b) 100 pct martensite, (c) 16 pct martensite dual-phase steel, and (d) 40 pct 
martensite dual-phase steel (16).  Note the abscissa is plastic strain. 

 

Zhonghua and Haicheng (16) developed a rather insightful and illustrative finite element 

method (FEM) model that was used to show the development of “phase stresses” in ferrite and 

martensite during plastic deformation of dual-phase steels.  Their model is based on the von 

Mises yield criterion for effective stress and effective strain (see Section 5.1), and the FEM mesh 

was created to mimic the geometric features of the dual-phase steel microstructures.  Stress and 

strain partitioning were modeled in a way similar to that of Rios et al. (43) shown in Figure 23.  

The details of the FEM model were not disclosed; however, an excellent correlation between 
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calculated residual stresses (phase stresses) and BE parameters was shown.  They concluded that 

the deformation-induced residual stresses were the unique factor that controls the BE in dual-

phase steels.  During tensile prestraining, the internal “phase stresses” promote hardening of the 

ferrite and softening of the martensite.  When the tensile prestrain load is released, residual 

compressive stresses develop in the ferrite, and residual tensile stresses develop in the 

martensite.  Upon reloading in reverse tension, the deformation-induced residual stresses cause 

effective softening of the ferrite and effective hardening of the martensite.  These residual stress 

effects result in the well-rounded nature of the reverse flow curve, yielding at a low flow stress, 

and high work hardening rate.  Unfortunately Zhonghua and Haicheng (16) have placed more 

faith in their FEM predictions than in their experimental results, as one of their conclusions is 

that “…the residual-phase stresses produced by prestraining do not lead to permanent softening.  

Instead, the phase stresses are progressively relaxed during reverse loading.  After a whole 

relaxation of these stresses during further reverse loading, the distribution of phase stresses in the 

two phases is similar to those developed in the forward plastic prestrain stage leading to reverse 

hardening.”  This message is not only unclear, but also in direct contradiction to their own 

experimental results.  Regardless of the interpretation, their FEM modeling exercise predicts 

some interesting features of dual-phase steels, as follows. 

• Figure 34 shows the calculated residual effective stress in the ferrite phase, along with 

the experimental βσ parameter, for two-dual-phase steels as a function of prestrain.  

The effective ferrite residual stress is compressive and increases with strain and 

martensite content.  The functional form of the dependence of βσ (experimentally 

determined) on prestrain is the same as that of the calculated residual stress. 
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• Figure 35 shows various calculated and experimental Bauschinger Effect parameters, 

including ferrite residual stress calculations, as a function of martensite content.  

Regardless of the measure of BE, it is predicted that the BE will be a maximum at 

around 50 pct martensite, while the ferrite residual stress is expected to increase 

monotonically.  When normalized by the prestress, the ferrite residual stress follows a 

similar relationship with martensite as the other BE parameters. 

• Figure 36 shows that the ferrite residual stress level is expected to increase 

monotonically with strain for all martensite contents, and the residual stress level 

increases as martensite content increases. 

• Figure 37 shows the anticipated effects of martensite island size.  It is expected that 

refining the martensite islands will lead to a higher ferrite residual stress level, for a 

given prestrain and martensite content.  These results are consistent with the results of 

Balliger and Gladman (10).   

In a recent analysis of the Bauschinger Effect in high strength steels, Sriram et al. (12) reported 

that the BE depends upon: the amount of plastic prestrain, strength level, and microstructure.  

They found that “advanced high strength steels” (fancy name for DP and TRIP steels) showed 

the largest BE of all of the steels studied.  In contrasting DP and TRIP steels, Sriram et al. 

explained that DP steels show a larger BE because of the ferrite + martensite microstructure, and 

that the lower BE in TRIP steels is related to the presence of retained austenite (or more 

appropriately, related to the strain-induced transformation of retained austenite to martensite).  

The development of significant residual stresses during deformation was offered as an 

explanation for the enhanced BE in dual-phase steels.  Also, similar to the experimental findings 
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of Zhonghua and Haicheng (16), a fully martensitic high strength steel showed a reduced BE in 

contrast to dual-phase steels. 

 

 

Figure 34:  Calculated residual effective stress, 
F
erσ in the ferrite phase and experimental 

Bauschinger Stress Parameter, βσ as a function of plastic prestrain for two dual-phase steels (16). 

 

 
Figure 35:  Experimental and calculated Bauschinger Effect parameters for dual-phase steels as a 
function of martensite content at a prestrain, εp = 0.008 (16). 
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Figure 36:  Effects of martensite content and prestrain on the calculated residual effective stress, 

F
erσ in the ferrite phase of dual-phase steels (16).  

 
 

 

Figure 37:  Calculated average residual effective stress, 
F
erσ  in ferrite (b) as a function of 

martensite island diameter (a) for 25 pct martensite dual-phase steels (16). 
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2.6 RESIDUAL STRESS MEASUREMENTS IN DP STEELS 

While Zhonghua and Haicheng (16) performed a detailed simulative analysis, actual 

experimental deformation-induced residual stress data for dual-phase steels are scarce, and a 

literature search on this topic has proved disappointing.  In fact, the only two pertinent references 

found to date discuss x-ray residual stress calculations on deformed TRIP-steels (see Section 

2.2.3 for more on TRIP steels).  Sugimoto et al. (52) showed that if the retained austenite is 

stable against the martensite transformation during deformation (at higher deformation 

temperatures), high tensile residual stresses develop in the austenite particles, while compressive 

residual stresses develop in the ferrite.  Thus, the relatively harder austenite particles act like 

martensite in a dual-phase steel.  These results of Sugimoto et al. are summarized in Figure 38 

(unfortunately, the paper is in Japanese, and of poor reproduction quality).  The σX values shown 

in Figure 38 are effective X-ray residual stresses (hence the “X”) calculated from diffraction 

data. 

 

 
 

Figure 38:  Residual stresses determined by X-ray analysis, σX for austenite (γ) and ferrite (α) in 
three TRIP-assisted dual-phase steels prestrained in tension (52).  See text for discussion. 
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Streicher (14) showed perhaps the most interesting and important (for this research 

program) X-ray residual stress data, where strain paths other than uniaxial tension were 

considered.  Figure 39 summarizes Streicher’s data, where the evolution of deformation-induced 

ferrite residual stresses is shown in plane strain and balanced biaxial deformation modes.  The 

experimental technique is a bit unclear, however, the data suggest that the residual stresses 

develop differently along different strain paths and that the residual stress distribution has 

directional qualities—as shown by the plane strain prestrained specimens evaluated in the major 

strain axis direction (Φ = 90°) and in the minor strain axis direction (Φ = 0°).  Streicher reported 

significant experimental difficulties in obtaining “reasonable” residual stress measurements for 

the uniaxial tension prestrain condition; however, the reason is not known. 

 

 
 

Figure 39:  Residual stresses determined by X-ray analysis for ferrite in a TRIP steel (mixture of 
ferrite, bainite, retained austenite, and martensite) for plane strain and balanced biaxial stretching 
prestrain (14).   
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2.7 STRAIN PATH EFFECTS IN SHEET METAL FORMING 

2.7.1 The Concept of Strain Path  

During metal forming, the strain path may be defined as the locus of successive strain 

increments followed by an element of material as it undergoes plastic deformation.  For sheet 

metal forming, the strain path is often represented in two-dimensional “surface strain” space.  

The surface strains are the larger (major strain, εmaj) and smaller (minor strain, εmin) principal 

strains in the plane of the sheet metal.  For any given combination of major and minor strain, the 

thickness strain is known by virtue of the constant volume assumption [i.e., thickness strain = - 

(εmaj + εmin)].  The strain path during forming is a complex function of material properties (e.g., 

normal and planar anisotropy) and externally applied loads, or more generally:  Strain Path = 

f1(material response) · f2(imposed stresses).  Imposed stress variables include loading conditions, 

specimen and die geometry and interfacial friction (53).  Crystallographic-texture-based material 

deformation models have advanced to the point where adequate prediction of plastic anisotropy 

and strain path response to applied stresses has been achieved.  For example, Chan and Lee (53) 

have developed such a model that predicts nearly linear strain paths in uniaxial tension and 

“curvilinear” (non-linear) strain paths under applied biaxial tension stress states.  This behavior 

implies that the annealing or recrystallization texture (before forming) is more stable under 

uniaxial tension and that biaxial tension leads to altered deformation textures that are different 

from the annealing texture.  Chung and Lee (54) showed such texture changes in a low carbon 

steel.  The results of their analysis are summarized in Figure 40, where deformation textures 

resulting from uniaxial tension, plane strain and balanced biaxial stretching deformation are 

shown in contrast to the annealing texture.  In a similar manner, Lopes et al. (56) showed that 
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preferred orientation (annealing texture) is the chief contributor to anisotropic work hardening 

behavior in aluminum alloys. 

 

 
Figure 40:  Orientation distribution function (ODF) “slices” and (110) pole figures showing the 
recrystallization texture (a) and deformation textures (b through d) of a low carbon steel 
prestrained in various deformation modes (54).  For uniaxial tension (b) and plane strain (c) 
prestrain, the (111) fiber texture (intensity at Φ = 55°, φ2 = 45°) of the as-produced material is 
disturbed, while, for balanced biaxial stretching (d), it is strengthened.  The angles 0°, 45° and 
90° indicate the φ1 angle for each ODF slice [φ1, Φ and φ2 are Euler angles (55)]. 

 

Strain paths in sheet metal forming are often simplified as linear relations between 

principal surface strains.  The principal surface strain ratio, β = εmin/εmaj, is a convenient way to 

approximate a strain path during deformation (assumed linear) (54).  In practice [in the context 

of forming limit diagrams (FLDs), for example—see Section 2.7.3], εmaj is commonly plotted 

against εmin for practical and conceptual reasons, and as such, the “slope” of the strain path is 

1/β.  The problem arises, however, that the “slope” of the plane-strain strain path (εmaj/εmin) is 

infinity (∞), and this singularity makes strain path representation difficult and awkward.  For this 
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reason, when dealing with experimental data obtained for different deformation modes, β is 

usually the preferred index of strain path, in the academic environment. 

Figure 41 illustrates the major/minor strain relationships for three ideal linear strain paths 

that are commonly considered in sheet metal forming analyses—uniaxial tension (UT), plane 

strain (PS) and balanced biaxial stretching (BB).  This group of strain paths represents the range 

of plane stress (σ3 = 0) forming conditions from σ2 = 0 to σ2 = σ1.  Subscripts 1, 2 and 3 refer to 

the principal directions, where σ1 is applied in the direction of ε1 (εmaj), σ2 in the direction of ε2 

(εmin), and σ3 (zero for plane stress conditions) in the direction of ε3 (sheet normal or thickness 

direction).  The plane strain deformation path is a special case of unbalanced biaxial tension (σ1 

> σ2), where εmin (ε2) is zero.  Note that the strain path associated with uniaxial tension (UT) 

depends on normal anisotropy (R = ε2/ε3) as shown in Figure 41.  The required principal stress 

ratios (α = σ2/σ1) for plane strain and balanced biaxial stretching deformation also depend on 

material anisotropy.  In terms of the principal strain ratio, the strain path associated with plastic 

deformation under an applied uniaxial tension stress state is β = - 0.5, for an isotropic material.  

Plane strain deformation is described by β = 0, and balanced biaxial stretching is described by β 

= 1.  The characteristics of these primary plane-stress strain paths are summarized in Table II.  

 

Table II:  Ideal Linear Strain Paths for Plane Stress Deformation (σ3 = 0) 

Strain Path εmaj (ε1) εmin (ε2) Thickness Strain (ε3) β = εmin/εmaj = ε2/ε1
Uniaxial Tension* ε1 -ε1R/(R + 1) -ε1/(R+1) -R/(R+1) 

Plane Strain ε1 0 -ε1 0 
Balanced Biaxial ε1 ε1 -2ε1 1 

*For isotropic material (R = 1), εmin = ε2 = ε3 = -0.5ε1 (β = - 0.5). 
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Figure 41:  Various ideal linear strain paths for plane stress stretch-forming. 

 

2.7.2 Complex Strain Paths 

Deformation modes that involve at least one strain path change may be generalized as complex 

strain paths.  There are two basic types of complex strain paths: 1) continuous, and 2) sequential 

(53).  Continuous complex strain paths occur in almost every sheet metal forming operation, and 

are characterized by gradual or “continuous” strain path changes with no interruption in the 

forming process.  A clear example is the application of draw beads in stretch forming binders.  

While the material is pulled through the draw bead configuration, it is bent and unbent, then bent 

again in the opposite direction.  Sequential complex strain paths in real forming operations are 

less common, yet certainly not rare.   

A sequential complex strain path is one that consists of abruptly changing imposed stress 

conditions with a break in the deformation between “sequences”.  The various processing steps 

in tube hydroforming are a good example of a real world sequential complex forming operation 

(tube making, pre-bending, hydroforming, etc.).  Also, continuous complex strain paths are 
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experimentally difficult to analyze, and thus sequential complex strain paths are usually 

evaluated in experimental analyses of sheet metal forming.  The effects of sequential complex 

strain paths (hereafter: complex strain paths) on material properties have been extensively 

studied for low-carbon steels and other conventional materials. 

2.7.3 Complex Strain Path Effects on Forming Limits 

An example of the effects of complex strain paths on forming limits is shown in Figure 

42 from the classic FLD representation of Kikuma and Nakazima (59).  This figure shows the 

drastic influence of prestrain path on the subsequent stretch-forming limits of low-carbon steel.  

It is generally regarded that biaxial tension prestrain lowers the subsequent formability after an 

abrupt strain path change and that uniaxial tension prestrain raises the subsequent formability 

after a strain path change.  Note that in Figure 42, the curve marked “Forming limits of simple 

deformation path” shows the characteristic “V” shape of the forming limit curve (FLC) of steel, 

with the plane-strain forming limit (FLC0) at the minimum.  By “simple deformation paths”, 

Kikuma and Nakazima are referring to proportional or linear strain paths as discussed in Section 

2.7.1.  The “Maximum forming limits curve” shows the influence of uniaxial tension prestrain on 

the subsequent forming limit along a balanced biaxial stretching strain path.  The “Minimum 

forming limits curve” shows the influence of balanced biaxial stretching prestrain on the 

subsequent forming limit in uniaxial tension.  Ronde-Oustau and Baudelet (60) generalized this 

behavior by recognizing that, for a given prestrain condition, the subsequent forming limit is 

diminished more as the secondary strain path deviates further from the primary strain path on the 

tension side of the FLD (negative minor strain—see Figure 41).  As a corollary, they explained 

that the effects of prestrain are less important when the secondary strain path is far from the 

primary strain path on the biaxial stretching side of the FLD (positive minor strain).  
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Figure 42:  Schematic forming limit diagram for low-carbon steel that shows the effects of 
primary strain path on forming limits in two-stage sequential complex strain paths.  The α 
parameter is the ratio of principal applied stresses within the plane of the sheet, σ2/σ1, where α=0 
corresponds to uniaxial tension, and α=1 corresponds to balanced biaxial stretching (59).  In this 
figure, eY is the minor strain, and eX is the major strain. 

 

Ronde-Oustau and Baudelet (60) also revealed distinctly different dislocation 

substructure and cell development along different strain paths.  The transmission electron 

microscope (TEM) images in Figure 43 give examples of cell networks that develop during 

uniaxial tension and during balanced biaxial stretching.  Regular, elongated bricklike cells with 

thin walls tend to form during uniaxial tension deformation, while equiaxed cells with thick, 

densely tangled walls are characteristic of balanced biaxial deformation.  While the terminal cell 

size for both deformation modes is similar (dimensions on the order of 1 to 2 microns), the mean 

free path of mobile dislocation motion is intrinsically different.  It was explained that the 

dislocation configuration generated by biaxial stretching leads to shorter mean free dislocation 
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paths (the effective cell diameter) with up to four slip systems activated.  The development of 

these highly tangled, multiple-slip-system structures hinders subsequent deformation in tension, 

which requires longer mean free paths to be sustainable—with only two primary active slip 

systems.  The cell structures associated with biaxial stretching are also mechanically stable.  

Ronde-Oustau and Baudelet commented that the cell structures of biaxially stretched samples 

remained visible near the very edges of TEM foil specimens, while the substructures of uniaxial 

tension prestrained samples tend to disappear or “run out” near the edges.  Additionally, after 

balanced biaxial stretching (large enough to establish a cell network), the equiaxed nature of the 

cells does not change with subsequent deformation in uniaxial tension. 

 

(A)   (B)  

Figure 43:  Distinctly different dislocation substructures (cell networks) formed by (A) uniaxial 
tension deformation and (B) balanced biaxial stretching (60). 

 

Examples of the influence of biaxial stretching prestrain on subsequent tensile flow 

behavior are given in Figure 44 and Figure 45 (61).  Figure 44 shows the rapid work hardening 

(strength evolution) and loss of tensile ductility in low-carbon steels caused by balanced biaxial 

stretching prestrain.  In this figure, the tensile flow curves (true stress/strain curves) of the 

prestrained samples have been shifted to account for the forming strain (see Section 5.2) and are 
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plotted to the end of uniform deformation.  For a given amount of effective strain, balanced 

biaxial stretching results in a much higher subsequent tensile flow stress than does uniaxial 

tension deformation.  Figure 45 shows the effect of balanced biaxial stretching on the residual 

uniform strain in tension for the same low carbon steel shown in Figure 44.  The top curve in this 

figure represents the predicted values based on consideration of effective strain (again, see 

Section 5.2).  The middle curve shows the adjusted prediction after the flow curves were shifted 

to coincide tangentially with the reference flow curve (the true stress/strain curve in the as-

produced condition).  The lowest curve (experimental data) reveals the severe reduction in 

residual tensile ductility of low-carbon steels caused by balanced biaxial tension prestrain (61). 

 

 
Figure 44:  Effects of balanced biaxial stretching on subsequent tensile flow behavior of a low-
carbon steel (batch-annealed bake-hardenable, BABH).  The flow curves of the prestrained 
samples are shifted along the strain axis to account for the forming strain (effective strain)  (60). 

 

2.7.4 Differential Hardening Behavior 

The relationships shown in Figure 44 and Figure 45 are expected to be relatively 

independent of the direction of applied tension after forming in the balanced biaxial stretching 

mode.  That is, as the forming strain is radially symmetric within the plane of the sheet metal, it 
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follows that the subsequent response in uniaxial tension be symmetric within the plane of the 

sheet.  This extrapolation is certainly made in the context of assumed planar isotropy.  

Crystallographic texture variations and other directional microstructural features would alter the 

symmetry of the subsequent forming response, even when the pre-strain mode is nominally 

symmetric. 

 

 
Figure 45:  Effects of balanced biaxial stretching on the residual uniform strain in tension for a 
low carbon steel (same as in Figure 44).  The top curve represents the predicted values based on 
consideration of effective strain.  The middle curve shows the prediction after the flow curves are 
shifted to coincide with the reference flow curve (i.e., shifted so that the flow curve is tangent to 
that of the as-produced material).  The lowest curve shows the actual experimental data that 
reveal the severe reduction in residual ductility of low-carbon steels caused by biaxial tension 
prestrain (60). 

 

Just as balanced biaxial stretching (εmaj = εmin) leads to a symmetric subsequent 

deformation response, unbalanced stretching (εmaj > εmin, including uniaxial tension) leads to an 

asymmetric subsequent deformation response.  An example of this differential hardening 

behavior from the recent work of Yan et al. (62) is shown in Figure 46.  In this figure there are 

five stress/strain curves shown on a single plot.  The “As-Received” curve represents the 

 
60



behavior of an interstitial free (IF) steel in the as-produced condition (no prestrain).  The other 

curves represent tensile stress strain behavior after plane strain deformation with the major strain 

axis aligned in the sheet rolling direction or longitudinal (L) direction.  Two prestrain conditions 

are shown, where “8x0” is 8% major strain, and “12x0” is 12% major strain.  The designations 

(L) and (T) refer to the directions of subsequent tensile deformation.  Clearly, when the material 

is tested in the T direction (90° to the major prestrain direction), the yield strength is greater, and 

the residual ductility is diminished, in contrast to the case of tension applied in the L direction.  

This behavior could not be attributed solely to intrinsic material anisotropy. 

 

 
Figure 46:  Example of differential hardening in low carbon steel (62) after plane strain prestrain 
(major strain in the longitudinal, L direction).  Tensile tests are in the L direction and the T 
direction (90° to the L direction).  Prestrain conditions are 8% (8x0) and 12% (12x0) major 
strain.  Note the higher flow stress and the diminished residual ductility in the T direction.   

 

Toyoda et al. (63) showed similar results for rolling prestrain (also plane strain 

deformation) and explained the behavior qualitatively with a macroscopic simplification of 

dislocation interaction mechanisms.  Figure 47 (63) illustrates schematically the interpretation of 

Toyoda et al.  Shown in Figure 47A are tensile stress/strain curves in the rolling direction (RD) 
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and transverse direction (TD) after cold rolling in the RD (unspecified amount of reduction).  

Note the very different behavior in the orthogonal directions.  The slab diagrams above the 

stress/strain diagram show the different tensile direction orientations with respect to the prestrain 

path.  The TD tensile test (labeled “C” for “cross”) is marked by the phrase “Hard to slip”, while 

the RD tensile test (labeled “L” for “longitudinal”) is marked by the phrase “Easy to slip”.  The 

“maximum shear stress planes” are also shown in each slab diagram and represent the active slip 

planes during cold rolling.  If tension is applied in the RD, further slip is possible on the 

previously activated slip planes. For tension applied in the TD, new slip planes must be 

activated, as those activated during cold rolling are not properly aligned for continued slip under 

perpendicularly applied tension.  The associated phenomenon shown in the stress/strain curves is 

called latent work hardening or cross-hardening.  Also labeled in Figure 47A are σ1 values 

(engineering stress in tension at 1% tensile strain) in both the RD and TD orientations.  Toyoda 

et al. (63) used  

RD,1TD,11 σ−σ=σΔ                                                             [17] 

as the index of differential hardening caused by latent work hardening, where Δσ1 > 0 implies 

“cross-hardening” and Δσ1 < 0 implies “cross-softening”. 

The implications of such cross-hardening are further illustrated schematically in Figure 

47B, where the observed stress/strain behavior is a combination of “normal” work hardening 

with superimposed latent work hardening.  In essence, the latent work hardening presents a 

barrier to uniform deformation in the early stages of plastic deformation that must be “pulled 

through” to establish “normal” stress/strain behavior.  The type of behavior shown in Figure 47B 

is truly unusual in the context of typically observed stress/strain curves.  Specifically, the stress 

at maximum load (ultimate tensile strength) occurs at a very low strain value and is followed by 
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a region of upward curvature and another local maximum on the engineering stress/strain 

diagram at a larger strain value.  With these nuances, the definition and meaning of uniform and 

post-uniform elongation should be carefully reconsidered (this is discussed further in Section 

6.1.7). 

 

(A) (B)  
 

Figure 47:  Illustration of the cross-hardening effect caused by latent work hardening (63).   

 

Hasebe (64) showed similar results for IF steel, where uniaxial tension prestrain was 

followed by secondary tension in the original prestrain direction and in various other directions 

within the plane of the sheet.  It was shown that the cross-hardening effect is itself a directional 

property.  It was shown that the maximum latent hardening effect for uniaxial tension prestrain is 

observed when the subsequent tensile direction is about 45° to the tensile axis of the primary 

deformation (although a measurable effect was observed in the 90° orientation).  It was 

explained that, for tensile prestrain followed by transverse tension, there is a “Bauschinger-like” 

effect, caused by the strain reversal in the orthogonal direction that partially alleviates the cross-

hardening in this orientation.  
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Sugimoto et al. (65) illustrated perhaps the most important and interesting results, with 

respect to this current research program.  The experimental setup was similar to that of Toyoda et 

al. (63) and that of Hasebe et al. (64) above, but the test material was a dual-phase (DP) steel 

with approximately 10 vol. pct martensite.  Sheet samples of the DP steel were prestrained 

various amounts in both uniaxial tension and rolling (plane strain) deformation modes.  Then, 

sub size tensile specimens were extracted from the prestrained panels at various angles with 

respect to the original major prestrain axis.  Figure 48 illustrates the tensile stress/strain behavior 

in various orientations with respect to the rolling direction (major prestrain direction).  In Figure 

48, εp is the amount of prestrain (effective strain—see Section 5.2), and α is the angle between 

the major prestrain axis (εmaj) and the subsequent applied tension axis.  In contrast to the results 

of Toyoda et al. (63) (Figure 47) and Hasebe (64) for “single-phase” low carbon steels, the DP 

steel exhibits a unique response with respect to differential hardening, where the transverse (90°) 

direction flow stress is significantly lower than the longitudinal (0°) flow stress, especially in 

terms of the initial yielding behavior.  Thus, rather than “cross-hardening”, DP steels show a 

“cross-softening” response.  Sugimoto et al. (65) noted that the cross-softening effect increases 

as the amount of prestrain increases, and that the effect is more pronounced for uniaxial tension 

prestrain than for plane strain (rolling) prestrain.  They also noted that the difference in flow 

stress between the 0° and 90° direction diminishes as tensile deformation continues beyond 

yielding.  That is, the 0° and 90° tensile flow curves tend to converge.  The specific differential 

hardening behavior of DP steels was attributed to deformation-induced residual stresses imparted 

to the ferrite and the martensite during prestraining.   
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Figure 48:  Resultant tensile stress/strain curves for a dual-phase steel after (a) uniaxial tension 
prestrain and (b) plane strain rolling prestrain (65)].  In this figure, εp is the amount of prestrain 
(effective strain), and α is the angle between the direction of the secondary applied tension and 
the major strain axis of the primary deformation (prestrain). 

 

More recently, Wasilkowska et al. (66), showed similar results for a TRIP steel (see 

Section 2.2.3) that was prestrained in uniaxial tension [εmaj = 0.1 = εTD (transverse direction)].  

Their results are summarized in Figure 49.  In this figure, Rp0.2 is the tensile yield strength (0.2% 

offset flow stress), σn is the ultimate tensile strength, εn is the necking strain (true uniform 

strain), n is the work hardening exponent, and the angles (degrees) represent the difference 

between the applied tension axes in the prestrain step and the secondary tension step.  In this 

unorthodox yet effective representation, the dashed curve shows the directional properties of the 

as-produced material (before prestraining); the continuous curve shows the corresponding 

properties of the prestrained sample; and the shaded regions show changes in each parameter 

caused by the uniaxial tension prestrain.  While there exists a mild directionality of the 

subsequent formability parameters (εn and n), the greatest deformation-induced anisotropy is 

seen in the yield strength (Rp0.2), and to a lesser extent, in the ultimate tensile strength (σn).  For 
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example, the 0.2% offset tensile flow stress in the original prestrain direction is about 850 MPa, 

while that in the orthogonal direction is about 600 MPa (a cross-softening effect of about 250 

MPa). 

 

 
Figure 49:  Anisotropic tensile properties in a TRIP steel induced by pre-deformation in uniaxial 
tension (66).  The angles (degrees) mark the difference in the directions of applied tension during 
the prestrain step and during the secondary tensile deformation.  See text for explanation. 

 

Wasilkowska et al. (66) mentioned that the strongly anisotropic flow behavior could not 

be attributed to measured crystallographic texture changes induced by forming, and they loosely 

attributed this cross-softening effect to the austenite-to-martensite transformation characteristics 

of the metastable retained austenite.  A corresponding strain-path-dependent dislocation 

substructure was cited as another possible contributing factor.  No evidence was presented, 

however, to support this claim, or to suggest that dissimilar mechanisms are responsible for the 

observations of Wasilkowska et al. (66) and of Sugimoto et al. (65) [recall the significant 

presence of deformation-induced residual stresses in TRIP steels reported by Streicher (14) and 

by Sugimoto et al. (52)].  Further discussion about the development of residual stresses in DP 

steels during forming, based on the theoretical treatment of Sugimoto et al. (65), is given in 

Section 6.2.1. 
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2.7.5 Flow Softening Behavior 

Cross-hardening (latent work hardening) behavior in low carbon steels has been linked to 

differences in slip plane activity during primary (prestrain) and secondary deformation modes 

[Toyoda et al. (63)].  Often in the literature, the peculiar “cross-hardening” stress/strain behavior 

illustrated in Figure 47 is referred to as flow softening, work softening, or simply softening, thus 

adding to the potential of confusion.  This paradox in nomenclature arises from the particular 

experimental approach and emphasis that each group of researchers has applied toward its 

investigations.  Some researchers (primarily Japanese) have examined the in-plane directionality 

of subsequent tensile properties after prestrain in a particular deformation mode, such as in the 

works of Toyoda et al. (63) and Hasebe (64), where “cross-hardening” describes the relative 

tensile yield strength difference in the directions of the major and minor prestrain axes.  A 

separate group of researchers (mostly European) has focused more on the apparent negative 

work hardening rate or “softening” that occurs after the initial “cross-hardening” effect.  Thus, as 

a point of clarification, the cross-hardening effect is subsequently followed by flow softening, as 

shown by the transition region in Figure 47B.   

Van Houtte et al. (67) described this flow softening behavior as potentially “disastrous” 

in sheet metal forming, as it would trigger a plastic instability that would likely lead to failure 

immediately after a strain path change.  It was also generalized that this type of behavior occurs 

when the strain path change is intermediate between a full strain reversal (Bauschinger Effect) 

and monotonic loading (i.e., where the secondary deformation mode is a continuation along the 

prestrain path).  This distinction is shown schematically in Figure 50, where the “cross effect” 

(cross-hardening followed by flow softening) is shown in reference to monotonic loading and 

reverse loading (67).   
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Figure 50:  Schematic illustration of the influence of strain path changes on flow behavior [after 
(67)—modified].  The “Monotonic” curve represents continued deformation along the same 
strain path as the “Prestrain” step.  The “Reversed” curve illustrates the Bauschinger Effect, 
where a complete strain reversal results in a lowered flow stress.  The “Cross” curve shows the 
initial hardening and subsequent flow softening commonly observed in orthogonal strain path 
sequences. 

 

An example of the evolution of flow softening behavior in a low carbon steel, from the 

work of Lopes et al. (68), is shown in Figure 51.  Shown are shear stress/strain (τ/γ) curves for 

the complex strain path of plane strain rolling (εmin = 0) followed by pure shear deformation 

(zero thickness strain) in the transverse direction (90° to the rolling direction).  Clearly, as the 

amount of rolling prestrain increases, the tendency for flow softening and negative work 

hardening increases.  It is important to realize that, for pure shear deformation, true stress/strain 

data are obtainable over a large range of plastic strain, as geometric necking instabilities (as 

observed in tension tests) are not physically possible.  Thus, the shear stress/strain curves in 

Figure 51 are indeed a real reflection of the work hardening behavior that is unperturbed by 

sample thinning during tensile deformation.  As such, shear stress/strain tests may be more 

appropriate for a mechanistic analysis of work hardening behavior at large strains, albeit 
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conceptually more difficult to appreciate.    On the other hand, as most sheet metal failures occur 

by excessive thinning and strain localization, it is more practical to consider stretching modes of 

deformation in the context of forming limits and general formability.   

 

 
Figure 51:  Orthogonal shear stress/strain curves for a low carbon steel prestrained by rolling 
(68).  The shear direction is perpendicular to the rolling direction. 

 

While Sharp and Makin (69) may have been the first to illustrate latent work hardening 

and flow softening in copper single crystals, Rauch and G’Sell (70) were likely the first to 

identify a possible contributing mechanism of flow softening in complex strain paths involving 

polycrystalline engineering metals.  They attributed this phenomenon to the concurrence of shear 

microband localization and destabilization of the dislocation substructure established during the 

prestrain step.  Examples of such shear band localization are shown in Figure 52 from the works 

of Lopes et al. (68) and of Bacroix et al. (71).  Figure 52A, shows a TEM micrograph of shear 

band localization for the case of rolling prestrain followed by shear strain (γ = 0.15) in the 

direction perpendicular to the prior rolling direction, as indicated by the diagram in the bottom 

right corner.  For this particular image, it is explained that two adjacent ferrite grains share the 
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same (101) slip plane, as indicated by the white line parallel to the localized shear bands.  The 

offset or jog in the grain boundary reflects the sharp strain localization associated with the 

microbanding (68) (note: the grain boundary is the irregular feature situated approximately 45° 

from the white line and the corresponding shear microbands).  The microbands are aligned 

parallel to the slip planes, and correspond to single slip on a severely stressed slip system.  

Unfortunately, the dislocation substructure generated during the rolling prestrain step is barely 

visible in this particular image. 

(A)  
 

(B)  

Figure 52:  Examples of shear band localization in complex deformation modes—(A) plane 
strain rolling followed by orthogonal shear (68) and (B) uniaxial tension followed by shear 
applied parallel to the original tensile axis (71).  See text for details. 
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A similar situation is shown in Figure 52B for the sequence of uniaxial tension prestrain 

(10% strain) followed by applied simple shear (10% strain) parallel to the major prestrain 

direction (original tensile axis).  For clarity, the small diagram in the lower right corner of Figure 

52B illustrates the direction of applied tension during the prestrain step (TD), and the subsequent 

applied shearing direction (SD) is shown parallel to TD.  In this figure, the regular, brick-like 

dislocation cell structure typical of uniaxial tension deformation (see Figure 43A) is aligned 

approximately 55° from TD, and the shear microbands are parallel to TD and SD.  This 

particularly clear example shows that the array of dislocations established during the prestrain 

step is not suited for sustained deformation in the secondary pure shear deformation mode, and 

that a micro-deformation mode of lesser resistance was assumed in response to the applied shear.  

It is not known whether such shear band localizations occur for other types of subsequent 

deformation (e.g., subsequent uniaxial tension rather than simple shear). 

Although it is generally accepted (68-74) that flow softening effects (negative work 

hardening rates) occur after an initial latent work hardening effect (see Figure 47 and Figure 51), 

there is considerable disagreement regarding the conditions under which this phenomenon 

occurs, and regarding the responsible mechanisms.  Rauch and G’Sell (70), in 1989, observed 

shear microband localization in steel (and associated flow softening) in orthogonal strain path 

changes only at very high prestrain levels; while at low prestrains, only a “transient stagnation of 

the stress/strain curve” (an inflection in the stress/strain curve, but no negative work hardening 

rate) was observed—with no associated shear band localization.  Recall that an orthogonal strain 

path change is one where the major strain axis of the primary and secondary deformation modes 

are perpendicular, or at least unparallel.  Rauch (74) recently proclaimed, in 1997, that such 

behavior is strictly unrelated to dislocation substructure, but rather that dislocation density is 
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most important.  More recently (in 1999), Lopes, Rauch and Gracio (68) concluded that flow 

softening has a structural (dislocation based) origin in steels, but is related to crystallographic 

texture effects in aluminum alloys.  Just a few years later, in 2005, the same group of researchers 

(73) concluded that texture effects are not responsible for flow softening in aluminum alloys.  

The point of the preceding summary of contradictory statements is to illustrate the lack of a 

definitive explanation for the observed behavior illustrated in Figure 47 and Figure 51 and to 

emphasize the fertility of this particular aspect of material behavior in terms of future research.  

Additionally, and perhaps more importantly, is the observation made by Sugimoto et al. (65) and 

by Wasilkowska et al. (66) (section 2.7.4) that multiphase steels (DP steels and TRIP steels) are 

apparently devoid of latent work hardening effects and subsequent flow softening effects in 

orthogonal strain path changes. 
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3.0 STATEMENT OF OBJECTIVE 

It is hypothesized that, in dual-phase steels, strain partitioning between ferrite (α) and martensite 

(α’) during deformation results in a distribution of post-deformation residual stresses that, in 

turn, affects the subsequent strength, work hardening behavior and formability when the strain 

path is changed.  The deformation-induced residual stress state is expected to depend upon the 

microstructure, the amount of strain and the strain path associated with the primary deformation 

(prestrain).  In complex forming processes that involve strain path changes, it is anticipated that 

the effects of the residual stresses formed during primary deformation will depend upon the 

strain path of the subsequent deformation (secondary strain).  The primary objective for this 

research program is given below. 

 

PRIMARY OBJECTIVE 

To understand the influence of deformation-induced residual stresses on the post-forming tensile 

stress/strain behavior of dual-phase steels. 
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4.0 EXPERIMENTAL PROCEDURES

4.1 MATERIAL SELECTION 

Selection of an appropriate group of test materials was the important first step toward reaching 

the objectives of this research program.  Although the focus of this study is on the behavior of 

dual-phase (DP) steels, it is important to have control materials as a basis for comparison and 

contrast.  A dual-phase (DP) sheet steel, a conventional high-strength low-alloy (HSLA) sheet 

steel, and a conventional ultra-low-carbon interstitial free (IF) steel—all produced commercially 

by United States Steel Corporation (USS)—were included in this analysis.  Commercially 

produced materials were chosen, as a large amount of material with uniform properties was 

required for the experiments.  The nominal compositions of the test materials are given in Table 

III. 

Table III:  Nominal Steel Compositions (weight percent) 

Steel C Mn Al N Ti Nb Cr Mo 
IF 0.003 0.1 0.04 0.003 0.06 -- -- -- 

HSLA 0.070 0.5 0.03 0.007 -- 0.04 -- -- 
DP 0.075 1.9 0.05 0.006 -- -- 0.2 0.2 

 
 

The IF steel has a soft, single-phase ferrite microstructure (inasmuch as a DP steel has a 

two-phase microstructure), and represents the ferrite behavior in the absence of martensite.  If the 

effects of a dual-phase microstructure are to be understood, the single-phase case must be 
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appreciated first.   The as-produced mechanical properties of the IF steel and the DP steel are 

very different, as they were developed to meet two very different engineering needs.  That is, the 

IF steel is designed for maximum formability, while the DP steel is designed to achieve a 

compromised strength/ductility balance to meet the safety and environmental demands discussed 

in the Introduction (Section 1.0).  It is therefore necessary to consider a conventional high 

strength steel at a similar strength level as the dual-phase steel.  The HSLA steel (strengthened 

primarily by grain size refinement) was selected as the second control material.  Like the IF steel, 

the HSLA steel has essentially a single-phase microstructure (in contrast to the DP steel), albeit 

with a finer ferrite grain size; a dispersion of fine, spheroidized cementite particles; a solid 

solution strengthening addition of Mn; and a dispersion of very fine microalloy (Nb) carbo-

nitrides (various conventional strengthening mechanisms employed during the grade 

development). 

The IF steel [gage: 2 mm (0.079 in)] and the HSLA steel [gage: 1.7 mm (0.067 in)] were 

continuously cast, hot rolled, cold rolled, batch annealed and temper rolled at USS Gary Works 

in Gary, Indiana.  The DP steel [gage: 1.6 mm (0.063)] was processed through cold rolling at 

Gary Works, and subsequently in-line annealed, coated and temper rolled on a continuous hot-

dip galvanizing line at PRO-TEC Coating Company of Leipsic, Ohio.  A general description of 

each steel is given in Table IV, and further characterization of the IF, HSLA and DP steels is 

provided in Section 5.1.  The presence of the hot-dip galvanized Zn coating is not expected to 

influence the behavior of the DP steel significantly, in terms of tensile stress/strain behavior.  

The relatively soft Zn coating (~ 7 μm thick on each surface) comprises less than 1% of the total 

cross section of the DP steel.  The surface characteristics of each material influence primarily the 

practical limits of deformation in the prestraining stage of the analysis (next section). 
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Table IV:  Description of Commercially Produced Steels 

Steel Gage 
(mm) 

Coating 
Type 

Annealing 
Process 

Average Ferrite 
Grain Diameter General Description  

IF 2.0 None BA 15 μm Ultra-low carbon, Ti-stabilized 
interstitial free steel. 

HSLA 1.7 None BA 5 μm 

Low-carbon steel microalloyed 
with Nb. 
Uniform low-volume-fraction 
dispersion of spheroidized 
cementite (<0.5 μm). 

DP 1.6 HDGI CA 7 μm 

Dual-phase steel alloyed with C, 
Mn, Cr and Mo. 
About 15 vol. % martensite 
(~1μm) primarily concentrated at 
ferrite grain boundaries. 

HDGI = hot dip galvanized; BA = batch annealed; CA = continuous annealed (CGL) 

4.2 PRESTRAINING 

Prestraining was achieved by binder-constrained stretch forming on an MTS Systems 

Corporation Model 866 Metal Formability System at the U.S. Steel Research & Technology 

Center, Monroeville, Pennsylvania.  The forming tools consist of a cylindrical Marciniak-type 

200 mm (8-in) diameter recessed punch and a 305 mm (12 in) outer diameter lock bead binder.  

All tests were run with an 890 kN (200 kip) binder clamp force with a servo-hydraulic punch 

(actuator) displacement rate of 12.7 mm/min (0.5 in/min).  MoS2 grease was used as lubricant 

between the punch and the testpiece. 

For the balanced biaxial stretching (BB) condition, a 305 x 305 mm (12 x 12 in) square 

specimen was used (fully constrained in the binder).  Trial-and-error was used to determine the 

appropriate specimen dimensions for uniaxial tension (UT) and plane strain (PS) prestrain.  For 

the PS deformation mode, a 305 x 264 mm (12 x 10-3/8 in) rectangular panel was used; and for 

the UT deformation mode, a 305 x 152 mm (12 x 6 in) rectangular panel was used.  For all 
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prestrain conditions, the sheet rolling direction (or longitudinal, L, direction) was aligned with 

the major deformation axis (εmaj = εL), and the major and minor surface strains (εL and εΤ) were 

determined from the dimensional changes of a 50 mm diameter circle scribed in the center of 

each panel before deformation.  Samples were prestrained to various levels along each strain 

path, and Table V lists the maximum achievable major strain for each material/strain path 

combination (i.e., the limit above which splitting failures were observed at the forming punch 

shoulder radius).  After prestraining, tensile specimens were machined from the center of each 

panel in the longitudinal (rolling), L, direction or the transverse, T, direction.  A compilation of 

all the prestrain conditions is given in Table VI.  The general testing methodology is shown 

schematically in Figure 53, and Figure 54 shows the complex strain paths associated with this 

methodology in surface strain space (εmaj-vs-εmin)—see Sections 2.7.1 and 2.7.2. 

 
Table V:  Summary of Prestrain Conditions 

Maximum εmajPrestrain Mode 
(εmaj = εL)* Code Specimen Width 

mm (in) IF HSLA DP 
Uniaxial Tension UT 152 (6) 0.180 0.074 0.096 

Plane Strain PS 264 (10.375) 0.127 0.092 0.099 
Balanced Biaxial BB 305 (12) 0.103 0.071 0.073 

*εL = Strain in the longitudinal (L) direction (sheet rolling direction) 

4.3 TENSILE TESTING 

Sub size ASTM-E8 tensile specimens were used for all tensile tests.  Specimen length is 152-mm 

(6-in), and the width of the grip section is 12.7-mm (0.5-in).  The reduced section is 31.8-mm 

(1.25-in) long and 6.4-mm (0.25-in) wide with a 0.025-0.076-mm (0.001-0.003-in) taper (to 

encourage localized necking within the gage section).  The gage length is 25.4-mm (1-in), and 

the servo-hydraulic actuator speed during testing was 2.5-mm/min (0.1-in/min) to failure.  R-
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values (normal anisotropy parameters) were determined at 10% tensile elongation with non-

tapered specimens according to ASTM Standard E517.  For each test stress/strain data were 

recorded digitally with commercially available MTS data acquisition/test control software. 

 

Table VI:  Compilation of Prestrained Specimens*

Secondary Tension in L-direction Secondary Tension in T-direction 
UT Prestrain PS Prestrain BB Prestrain UT Prestrain PS Prestrain BB PrestrainSteel 
εmaj εmin εmaj εmin εmaj εmin εmaj εmin εmaj εmin εmaj εmin

0.028 -0.021 0.016 0.002 0.011 0.013 0.031 -0.018 0.018 0.001 0.012 0.012
0.053 -0.038 0.035 0.002 0.027 0.029 0.053 -0.039 0.036 0.002 0.029 0.028
0.090 -0.062 0.065 0.001 0.053 0.052 0.088 -0.061 0.067 0.004 0.051 0.050
0.134 -0.090 0.090 0.002 0.074 0.077 0.135 -0.089 0.088 0.001 0.079 0.075

IF 

0.176 -0.115 0.126 0.001 0.103 0.101 0.180 -0.113 0.127 0.001 0.101 0.100
β-ave -0.70 0.05 1.05 -0.66 0.05 0.98 

0.017 -0.009 0.012 0.000 0.010 0.009 0.020 -0.011 0.014 0.000 0.009 0.009
0.043 -0.020 0.031 0.001 0.023 0.023 0.045 -0.018 0.034 0.000 0.022 0.020
0.054 -0.028 0.054 0.000 0.035 0.029 0.055 -0.026 0.054 0.000 0.031 0.031
0.073 -0.035 0.080 0.000 0.041 0.033 0.074 -0.037 0.080 0.000 0.052 0.037

HSLA 

-- -- 0.089 -0.002 0.071 0.054 -- -- 0.092 0.000 0.066 0.064
β-ave -0.51 0.01 0.87 -0.49 0.00 0.92 

0.020 -0.013 0.012 0.000 0.006 0.006 0.020 -0.013 0.012 0.000 0.006 0.006
0.039 -0.023 0.040 0.000 0.024 0.019 0.041 -0.024 0.039 0.000 0.022 0.019
0.064 -0.032 0.057 0.000 0.031 0.032 0.060 -0.034 0.057 0.000 0.034 0.031
0.076 -0.043 0.073 -0.001 0.045 0.042 0.080 -0.041 0.074 0.000 0.047 0.046

DP 

0.095 -0.052 0.099 0.001 0.070 0.070 0.096 -0.051 0.092 -0.001 0.073 0.071
β-ave -0.57 0.00 0.94 -0.56 -0.01 0.94 
*For all conditions, the major strain (εmaj) is in the longitudinal (L) direction (rolling direction). 

 
78



RD 

RD 

RD 

L 

T 

L 

T 

L 

T 

Starting 
Condition 

Deform 
Panel 

Extract 
Specimens

Tensile 
Tests 

UT

BB

PS

 
Figure 53:  Test methodology for complex deformation sequences.  For each prestrain condition, 
the major strain (εmaj) is in the longitudinal, L direction (sheet rolling direction or RD).  The 
prestrain deformation modes are uniaxial tension (UT), plane strain (PS) and balanced biaxial 
stretching (BB).  Subsequent tensile tests were run in L direction and in the transverse, T 
direction (90° to the sheet rolling direction). 
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Figure 54:  Schematic illustration, in surface strain space, of the various complex (2 stage) 
deformation modes considered in this analysis.  The primary deformation (prestrain) modes are 
uniaxial tension (UT), plane strain (PS) and balanced biaxial stretching (BB).  Note that, for the 
various prestrain modes, the major strain is in the longitudinal (sheet rolling) direction (εmaj = εL) 
by convention.  Correspondingly, the minor strain is in the transverse direction (εmin = εT).  These 
complex strain paths are represented in the test methodology in Figure 53 above. 
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4.4 RESIDUAL STRESS DETERMINATION BY NEUTRON DIFFRACTION 

4.4.1 Brief Background on Neutron Diffraction 

Neutron diffraction stress measurement utilizes the phenomenon of neutrons scattering in 

crystalline media.  If a neutron beam with wavelength λ passes through a crystalline material it 

produces so-called Bragg reflections (or peaks) at specific angles (measured relative to the 

direction of the incident beam), described by Bragg’s law 

θ=λ sind2n hkl                                                              [18] 

where dhkl is the lattice plane spacing, θ is the angle of incidence to the reflecting planes, and n is 

the order of reflection (79). Stresses affect lattice spacing by stretching or contracting the lattice 

so that slight changes of lattice plane spacings (not more than the elastic limit of the material—

usually <0.1% change) causes a corresponding small shift in position of a diffraction peak (i.e., 

Bragg’s law is satisfied at a different angle, θ).  Modern neutron diffraction techniques allow 

routine measurement of these small shifts with an accuracy of 0.001% or better (80).  Stress 

estimates can be made with an uncertainty of a few MPa.  Depending on experimental 

requirements, the neutron sampling (gage) volume can be changed from several tenths of mm3 to 

several hundreds of mm3 to provide the necessary accuracy over the required material mass. 

The measurement of stress by means of neutron diffraction has several advantages over 

other methods.  Thermal neutrons (with wavelength on the order of 1 Å) have very high 

penetration with respect to typical diffraction-regime X-rays.  In steel, for example, the half-

value thickness (or the thickness for half-attenuation) for a thermal neutron beam is 

approximately 6 mm (in contrast to 3 μm for 1.54Å x-rays) while aluminum is even more 

neutron transparent with a half-value thickness around 70 mm (50 μm for 1.54 Å X-rays).  
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Because of this high penetration, subsurface measurements (up to 10 cm) are possible with 

neutrons, while conventional X-ray diffraction is limited to surface measurements (several tenths 

of a micron deep). This makes neutron stress measurements a more attractive nondestructive 

method, compared with destructive relaxation methods that involve cutting and drilling (80).  

High penetration also allows determination of the entire strain tensor by measuring 

changes in lattice plane spacing and calculating elastic strains as 

1
d
de)e1ln(

0

−=≈+=ε , (small e)                                               [19] 

in various directions in the sample (d0 is some reference state value normally regarded as the 

“stress free” lattice plane spacing).  From the measured strains, the complete stress tensor can be 

reconstructed by employing (81) 

( )( ) ijkk
hklhkl

hklhkl
ij

hkl

hkl
ij 211

E
1

E
δε

ν−ν+
ν

+ε
ν+

=σ .                                      [20] 

Expansion of Equation 20 gives three equations for normal stress and six equations for shear 

stress (77).  In contrast, X-ray techniques, being surface methods, are planar and thus provide 

information only on normal and shear stresses in the surface plane of the sample (80). 

The appropriate choice of E (Young’s modulus) and v (Poisson’s ratio) in Equation 20 is 

not a trivial matter.  The subscript “hkl” refers to the specific set of lattice planes (Laue indices) 

for which the d-spacings were determined for strain calculations.  Ehkl and vhkl are the elastic 

proportionality constants for a stress that is applied normal to a particular set of {hkl} planes.  

For cubic-lattice crystals, a lattice direction [uvw] is normal to a lattice plane (hkl) when u = h, v 

= k, and w = l.  As an example, E211 is the Young’s modulus in any of the <211> directions, and 

the d-spacings (for strain calculations) are for the {211} family of reflecting planes.  The so-
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called “diffraction elastic constants” are typically measured experimentally, estimated or 

calculated (80). 

4.4.2 Neutron Diffraction at NIST 

Neutron diffraction experiments were performed at the National Institute of Standards 

and Technology (NIST) in Gaithersburg, Maryland.  Samples were sent to the NIST Center for 

Neutron Research (NCNR) where the BT8 Residual Stress Neutron Diffractometer and the 

reactor are housed.  One sample of each material (IF steel, HSLA steel and DP steel) was 

prepared in each of the following conditions: 

- As-produced (no prestrain) 

- Prestrained to 5% major strain in uniaxial tension (UT) 

- Prestrained to 5% major strain in plane strain (PS) 

- Prestrained to 5% major strain in balanced biaxial stretching (BB). 

For each of the prestrain conditions above, the major strain axis was aligned with the sheet 

rolling direction [or longitudinal (L) direction] and was prepared according to the procedures 

outlined in Section 4.2 above.  The reflecting plane spacings in ferrite for the {200} and {211} 

families of planes were determined by NIST in the assumed principal directions: 1 – longitudinal 

(L) direction or sheet rolling direction, 2 – transverse (T) direction (90° to the rolling direction), 

and 3 – the sheet normal or thickness direction.  Altogether, seventy-two d-spacings were 

determined (3 materials x 4 conditions x 3 principal directions x 2 reflection types = 72 d-

spacings).  An approximate gage volume of 7 mm3 was sampled for each measurement. 
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4.4.3 Calculation of Deformation-Induced Residual Stress 

In addition to selecting the appropriate diffraction elastic constants, it is also important to 

determine the appropriate reference d-spacing (d0) of the often hypothetical “unstressed lattice” 

(in Equation 19), especially when one is interested in absolute values of residual stresses.  

Unfortunately, for neutron diffraction the d0-value is usually unknown or cannot always be easily 

measured precisely (82).  This condition is made worse by the inevitable elemental 

compositional variability within a phase within a material.  However, for this analysis, 

deformation-induced residual stress components are of specific interest. Assuming linear 

elasticity, the d-spacings of each of the “as-produced” samples of each material in each 

respective principal direction may be used as the respective reference d0-values.  In addition, if 

one is primarily interested in the deviatoric residual stress components that affect yielding 

behavior, then the selection of d0-values is actually arbitrary.  In perspective, as long as 

“appropriate” diffraction elastic constants are used for stress calculations, any “reasonable” d0-

value may be used as long as it is used consistently and as long as hydrostatic or mean stress 

values are not needed for the analysis.  With this simplification, Equation 19 becomes 

1
d

de)e1ln(
producedas

−=≈+=ε
−

, (small e).                                     [21] 

Once the strains in each of the assumed principal directions are determined, Equation 20 leads to 

the following equations for the principal stress components: 
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where the subscripts 1, 2 and 3 again refer to the assumed principal directions defined by sample 

symmetry [1 – longitudinal (L) or rolling direction, 2 – transverse (T) direction, and 3 – sheet 

normal (thickness) direction].  Alternatively, principal directions 1, 2 and 3 may be called the x, 

y and z directions.  The subscript prefix “dr” refers to deformation-induced residual stresses.  

This designation will be propagated throughout the discussion to distinguish these calculated 

stresses from more general residual stress components that exist in the materials in the as-

produced condition.  For calculating the σdr components, the following diffraction elastic 

constants were reported by NIST (80): 

For {200} reflections: E200 = 175,199 GPa, ν200 = 0.331 

For {211} reflections: E211 = 224,593 GPa, ν211 = 0.284. 
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5.0 RESULTS 

5.1 AS-PRODUCED MATERIAL CHARACTERIZATION 

5.1.1 Microstructures 

Example scanning electron microscope (SEM) images of the microstructures of each test 

material are given in Figure 55 at 400X and 1000X original magnification.  Clearly, the IF steel 

microstructure is much coarser than those of the HSLA steel and DP steel, as the latter 

microstructures are barely resolvable at the lower magnification.  The average ferrite grain 

diameter of the IF steel is about 15 microns, while the HSLA has an average grain diameter of 

about 5 microns, and the DP steel ferrite grain structure is slightly coarser at about 7 microns 

average grain diameter.  The average ferrite grain diameters were determined by Jeffries’ 

Planimetric method (75) from the average of five independent fields of view at 1800X 

magnification (HSLA and DP steel) and 700X magnification (IF steel).  Figure 56 shows higher 

magnification images of the HSLA steel and the DP steel (5000X original magnification), where 

the microstructural features are clearly observed.  The HSLA steel consists of equiaxed ferrite of 

non-uniform size distribution with a low-volume-fraction dispersion of spheroidized Fe3C 

(cementite) particles.  The cementite (light gray/white) is distributed evenly throughout the 

ferrite matrix (dark gray) at both intragranular and intergranular locations.  The DP steel in 
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Figure 56B has a similar ferrite structure (dark gray) as the HSLA steel with a significant 

presence of martensite (lighter grey) that nearly occludes the ferrite grains.  The volume fraction 

of martensite in the DP steel is approximately 0.15 (15 pct)—determined by 100-point counting 

with a 90 mm by 90 mm translucent square grid at 1800X magnification (average of five 

independent fields of view).  A similar analysis for the HSLA steel determined that the volume 

fraction of cementite is less than 1 pct.  It is anticipated that the fine grain size and dispersion of 

spheroidized cementite in the HSLA steel will enhance the work hardening behavior in contrast 

to the coarser-grained, carbide-free IF steel (76). 

5.1.2 Tensile Properties and Work Hardening Behavior 

The as-produced tensile properties in both the longitudinal (rolling) direction and the 

transverse direction are given in Table VII.  The IF steel is significantly softer and more ductile 

than both the HSLA and DP steel with lower yield strength and ultimate tensile strength; and 

higher uniform elongation and total elongation.  The HSLA steel and the DP steel have similar 

yield strengths with higher yield strength in the T direction.  The HSLA has slightly higher 

uniform and total elongation values than the DP steel.  The major difference between the HSLA 

and DP steel is that the DP steel has a much higher ultimate tensile strength (YS/UTS = 0.6) than 

the HSLA steel (YS/UTS = 0.8).  In the strain interval from 10 pct elongation to the end of 

uniform elongation (10/U), the work hardening exponents (n-values) of the DP steel and the 

HSLA steel are similar, but, in the interval from 4 pct to 6 pct elongation (4/6), the n-value of the 

DP steel is noticeably greater—a reflection of the high initial work hardening rate of the DP steel 

at low strains.  In practice, n-values are typically determined and specified for DP steels in the 4 

pct to 6 pct strain interval as an arbitrary measure of “dual-phase” behavior. 
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(A)  (B)  
 

(C)  (D)  
 

(E)  (F)  
 

IF Steel IF Steel

HSLA SteelHSLA Steel 

DP Steel DP Steel

Figure 55:  Microstructures of (A and B) IF Steel, (C and D) HSLA Steel, and (E and F) DP 
steel.  Left column: 400X original magnification; Right column: 1000X original magnification.  
Polished longitudinal cross-sections etched with nital/picral mixture.  SEM secondary electron 
images. 
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(A)  

HSLA Steel 

 

(B)  

DP Steel 

Figure 56:  Higher magnification images of (A) HSLA steel and (B) DP steel.  5000X original 
magnification.  Same sample preparation as in Figure 55. 
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Table VII:  As-Produced Basic Tensile Properties 

Steel Direction YS 
(MPa) 

UTS 
(MPa) 

YPE 
(%) 

UEL 
(%) 

TEL 
(%) 

n 
(4/6) 

n 
(10/U) 

L 161 299 0.0 27.7 49.3 0.30 0.25 IF 
T 166 298 0.0 26.9 48.8 0.30 0.24 
L 350* 462 0.5 18.0 29.9 0.18 0.17 HSLA 
T 387* 478 1.9 16.9 29.4 0.17 0.16 
L 344 612 0.0 16.9 26.5 0.21 0.16 DP 
T 368 620 0.0 16.6 26.6 0.20 0.16 

L = longitudinal (rolling) direction; T = transverse direction 
YS = yield strength [0.2% offset flow stress or (*) lower YS]; UTS = ultimate tensile strength 
UEL = uniform elongation; TEL = total elongation 
n(4/6) = work hardening exponent (σ = Kεn) from 4 to 6% elongation; n(10/U) = work hardening 
exponent from 10% elongation to the end of uniform elongation   

 

Example engineering tensile stress/strain (s/e) curves of the IF steel, the HSLA steel and 

the DP steel in the as-produced condition are shown for the longitudinal (L) direction in Figure 

57 and for the transverse (T) direction in Figure 58.  Overall, the materials appear to be 

reasonably isotropic in terms of stress/strain behavior in the L and T directions.  Minor 

differences are observed upon closer inspection at lower strains, especially for the HSLA 

material, where the yield point is more sharply defined in the T direction.  Both the IF steel and 

the DP steel exhibit continuous yielding (no inflection in the s/e curve after yielding).  Table VII 

also shows the greatest degree of L-vs-T anisotropy for the HSLA steel in terms of the reported 

tensile properties.  The measured normal anisotropy parameters (R-values) are listed in Table 

VIII, where the anisotropy of the HSLA material is further exemplified.  The DP steel is the least 

anisotropic material in terms of R-values with an Rm-value near 1.0 and ΔR value near 0.0, 

thereby epitomizing the essence of normal and planar isotropy.  The IF steel is the most 

anisotropic in terms of average R-value (Rm = 1.8), while the HSLA steel shows the largest (i.e., 

in magnitude) planar anisotropy (ΔR = -0.4).  It is likely that inherent anisotropy will play a role 
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in determining the post-forming properties of the HSLA steel and the IF steel.  The low planar 

anisotropy exhibited by the DP steel is consistent with the early experimental results reported by 

Hayami and Furukawa (1) in 1977. 
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Figure 57:  As-produced tensile engineering stress/strain curves in the longitudinal (L) direction 
(rolling direction, RD)—(A) full curves to failure, and (B) magnified at yielding. 
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Figure 58:  As-produced tensile engineering stress/strain curves in the transverse (T) direction 
(90° from the RD)—(A) full curves to failure, and (B) magnified at yielding. 

 

Table VIII:  Normal Anisotropy Parameters (R-Values*) 

Steel R0 R45 R90 Mean Normal Anisotropy 
Rm = ¼(R0+2R45+R90) 

Planar Anisotropy 
ΔR = ½(R0-2R45+R90) 

IF 1.74 1.66 2.14 1.80 0.28 
HSLA 0.70 1.29 1.02 1.08 -0.43 

DP 0.97 1.04 1.07 1.03 -0.02 
*Determined at 10% elongation 
Subscripts 0, 45 and 90 refer to the angle with respect to the sheet rolling direction 
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The characteristic “dual-phase” behavior of the DP steel is shown in Figure 59 where the 

work hardening rate (WHR) or tangent modulus (dσ/dε) is plotted against true tensile strain, ε, 

up to the end of uniform deformation (necking).  Note that at low strains (< 0.05), the WHR is 

several times greater than that of either the HSLA steel or the IF steel.  At higher strains, the 

WHR of the DP steel decreases in a similar way as the other materials, albeit still higher at all 

strains.  As expected from grain size and microstructure differences, the HSLA steel shows a 

slightly higher WHR than the IF steel at all strain levels. 
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Figure 59:  Work hardening rate (dσ/dε) or tangent modulus as a function of tensile strain. 

 

As the diffuse necking condition in a sheet tensile test is satisfied when the WHR is equal 

to the flow stress, dσ/dε = σ (77), the WHR may be normalize to the flow stress to determine the 

“work hardening potential”.  Higher work hardening potential indicates the ability to sustain 

uniform plastic deformation at high strength levels.  Figure 60 shows the normalized WHR of 

each material as a function of true tensile strain, condensed on log-log scale for clarity.  Shown 

in this way, ln[(dσ/dε)/σ] = 0 means that the necking condition, dσ/dε = σ has been satisfied 
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since ln(1) = 0 (i.e., the work hardening potential is zero).  This representation shows that the 

work hardening potential of the IF steel is initially high and remains high because of its low yield 

strength and low ultimate tensile strength.  The actual (non-normalized) WHR of the IF steel is 

lowest among the three materials for all strain levels (Figure 59), but the high normalized WHR 

results in the large uniform elongation value for this material.  The work hardening potential of 

the HSLA steel is initially low and remains low because of its high YS/UTS ratio.  The DP steel 

initially exhibits a high work hardening potential at low strains because of its low YS/UTS ratio 

and extremely high actual work hardening rate (dσ/dε).  The combination of high tensile strength 

and rapidly diminishing WHR results in a rapidly diminishing work hardening potential as 

shown by the convergence of the HSLA and DP curves in Figure 60. 
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Figure 60:  Normalized work hardening rate [(dσ/dε)/σ] as a function of tensile strain. 

 

Stout and Rollett (78) explained that, for two-phase alloys (e.g., DP steels), the work 

hardening rate at low strains is much higher than that which can be attributed to conventional 

work hardening mechanisms associated with dislocation multiplication mechanics and 
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dislocation/particle interactions.  It was suggested that the extreme apparent work hardening 

rates are a direct reflection of the development of long-range internal stresses caused by plastic 

incompatibility and strain partitioning between relatively hard and soft phases.  Furthermore, as 

deformation continues, the rate of internal stress development diminishes, and work hardening 

behavior is dominated by more conventional mechanisms.  This interpretation is certainly 

consistent with the WHR-vs-ε curves in Figure 59.  Figure 61 illustrates the work hardening 

behavior near necking in reference to the true stress/strain (σ/ε) curves (L-direction).  Although 

the work hardening rate of the DP steel has severely diminished at larger strains (ε > 0.1), it is 

sufficiently high to sustain uniform deformation similar to that of the HSLA steel, yet at a 

significantly higher strength level.  
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Figure 61:  Example true stress/strain curves plotted to the end of uniform deformation.  For each 
material, intersection of the true stress/strain curve with the work hardening rate (dσ/dε) curve 
marks the necking criterion (dσ/dε = σ). 
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5.2 NOTE ON EFFECTIVE STRESS AND EFFECTIVE STRAIN 

Mechanical properties are often obtained by uniaxial tensile tests, as a large amount of useful 

information can be obtained regarding strength, ductility and work hardening behavior.  

However, sheet metal forming rarely involves uniaxial tension, and the effective strain concept 

has been developed to extrapolate uniaxial tension test data to more general stress states and 

strain paths (83).  Conventionally, effective strain (εeff) is defined in terms of an effective stress 

(σeff) that is based upon a uniquely defined yielding criterion.  In terms of principal components, 

effective strain may be defined such that the increment of plastic work per unit volume is  

332211 εσεσεσεσ dddddw effeff ++== .                                    [23] 

An expression for effective strain is obtained by substituting an effective stress term into 

Equation 23 and solving for εeff with consideration of the flow rules for plastic deformation (84). 

The maximum shear stress or Tresca yield criterion results in perhaps the simplest 

practical effective stress and effective strain relationships.  The Tresca yield criterion states that 

yielding occurs when the maximum shear stress reaches a critical value, τc.  The maximum shear 

stress in a unique stress state is equal to one half of the difference between the maximum and 

minimum principal stress (77) components.  Thus, the yield criterion may be written as 

minmaxc2 σ−σ=τ ,                                                            [24] 

and the corresponding effective stress is  

minmaxeff σ−σ=σ .                                                           [25] 

For uniaxial tension, the effective stress is the applied yield stress, σY, where 

Yminmax σ=σ−σ ,                                                            [26] 
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since σmin is zero.  Thus, yielding is predicted for any arbitrary stress state when the difference 

between the largest and smallest principal stress components is equivalent to the yield strength in 

uniaxial tension.  From this yield criterion, the following equations for effective stress and strain 

may be deduced by substituting Equation 25 into Equation 23 (84), 

maxieff ε=ε ,                                                               [27] 

where εi represents the set of three principal strains.  The effective strain is equivalent to the 

absolute value of the principal strain of largest magnitude.  For the three primary plane stress 

deformation modes (recall Figure 41 and Table II), Equation 27 gives (assuming isotropic 

material): 

 For uniaxial tension (UT): 1eff ε=ε  

 For plane strain (PS): 31eff ε−=ε=ε  

 For balanced biaxial stretching (BB): 213eff 22 ε=ε=ε−=ε . 

With effective stress and strain defined as in Equations 25 and 27, the uniaxial tension flow 

stress after non-uniaxial-tension deformation may be estimated with knowledge of the uniaxial 

tension flow curve (in the as-produced or reference state) and the strain history.  The prestrain 

conditions given in Table VI were converted to effective strain for the following analysis. 

5.3 RESIDUAL TENSILE DUCTILITY 

For all of the prestrain conditions listed in Table VI, tensile tests were run in either the 

longitudinal, L-direction (rolling direction, RD) or the transverse, T-direction (90° to RD) as 

indicated in the table.  For each condition, the major prestrain (εmaj) axis is in the L-direction, by 

convention.  The following results pertain to the residual tensile ductility after various degrees of 
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pre-deformation along various strain paths.  The measures of residual tensile ductility are the 

uniform elongation (UEL), total elongation (TEL) and post-uniform elongation (PUEL) 

measured during the tensile tests—all expressed in percent engineering strain.  Note that PUEL 

is simply the difference between TEL and UEL (PUEL = TEL – UEL) and represents the amount 

of deformation sustained after the peak stress in the stress/strain (s/e) curve.   

5.3.1 Residual Tensile Ductility after UT Prestrain 

The sequential complex strain path of uniaxial tension (UT) prestrain followed by UT 

deformation in the same direction may seem redundant or unnecessary; however, this 

progression serves as a useful conceptual reference when considering other modes of 

deformation.  Figure 62 shows the influence of UT prestrain (εmaj = εL) on the residual ductility 

of the IF, HSLA and DP steels, in both the L-direction (left column) and the T-direction (right 

column).  For the L-direction tests (Figure 62A, C and E), the residual ductility parameters vary 

as expected for all three materials, where UEL and TEL decrease proportionally with increasing 

prestrain, and the PUEL remains essentially unchanged.  The PUEL would begin to decrease 

once the prestrain exceeded the UEL value of the as-produced material (0% prestrain condition 

in Figure 62). 

For the T-direction tests, strikingly different behavior is observed.  For the IF steel and 

the HSLA steel (Figure 62B and D), a gradual decrease in UEL and TEL occurs up to an 

effective prestrain of about 0.05 (note the difference in scale), while, beyond this prestrain level, 

the UEL decreases precipitously effectively to zero, and the PUEL “suddenly” increases to 

approximately the TEL value and then decreases with the TEL value with increasing prestrain.  

Thus, there are two types of stress/strain behavior observed for uniaxial tension prestrain 

followed by transverse tension, with a transition occurring at an effective prestrain level 
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somewhere between 0.06 and 0.07.  Type 1 behavior (small prestrains) is the “normal” response 

where the TEL is more or less comprised of similar UEL and PUEL contributions (as for the 

case of the L-direction tests for the entire UT prestrain range).  Type 2 behavior is characterized 

by grossly unbalanced contributions of uniform and post-uniform elongation to the total 

elongation, where the UEL is severely diminished, and PUEL is nearly equivalent to TEL.  This 

behavior is a reflection of the cross-hardening effect described in Section 2.7.4.  The 

implications of cross-hardening are discussed further in Section 6.1. 

For the DP steel, Type 2 behavior is not observed for the T-direction tensile tests (Figure 

62F) for any of the UT prestrain conditions.  In fact, for all prestrain levels, the UEL, TEL and 

PUEL values for the T-direction tensile tests are equal to or slightly higher than the 

corresponding values for the L-direction tensile tests (Figure 62E).  This unique response 

represents an advantage of DP steels over conventional steels in terms of residual ductility in this 

particular two step forming mode—uniaxial tension prestrain followed by transverse 

(orthogonal) uniaxial tension. 

5.3.2 Residual Tensile Ductility after PS Prestrain 

For the complex strain path of plane strain (PS) prestrain (εmaj = εL) followed by 

subsequent uniaxial tension (UT) deformation, the residual ductility parameters are shown in 

Figure 63 for all materials as a function of effective prestrain for both L-direction and T-

direction tensile tests.  Considering first the IF steel (Figure 63A: L-direction tension tests, and 

Figure 63B: T-direction tension tests), a transition from Type 1 to Type 2 behavior (see Section 

5.3.1) is observed in both directions (L and T) with that in the L-direction being more gradual.  

The HSLA steel shows similar behavior as the IF steel in the T-direction (Figure 63D), but 

appears to have no detrimental transition in the L-direction (Figure 63C), within the prestrain 
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interval examined.  This may be, in part, a symptomatic reflection of the relative anisotropy of 

the IF steel in contrast to the HSLA steel. 

By considering the influence of R-value on the strain path associated with uniaxial 

tension (see Figure 41), the effective difference between the plane strain prestrain path and the 

subsequent uniaxial tension (L-direction) strain path can be assessed.  Assuming that the tensile 

R-value in the L-direction (R0 in Table VIII) does not change significantly with plane strain 

prestrain, the angle (θ) between the uniaxial tension (UT) secondary strain path and the plane 

strain (PS) prestrain path (β=0) in surface strain space (Figure 41) is  

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=β=θ −−

1R
Rtantan
0

01
UT

1
UT/PS .                                             [28] 

For the IF steel, θ = 32°, and for the HSLA steel, θ = 22°.  In perspective, the strain paths 

associated with plane strain (εmaj = εL) and uniaxial tension (εmaj = εL) differ by about 50% more 

(in terms of θ) for the IF steel than for the HSLA steel.  Recall that Ronde-Oustau and Baudelet 

(60) explained that, when the strain path is changed, formability (or in this case residual 

ductility) decreases more in the secondary strain path if the secondary strain path is further from 

the primary path on the tension side of the surface strain diagram (Figure 41).  For the T-

direction tensile tests, the prestrain path and the secondary deformation strain path are extremely 

different (more than 90° apart in surface strain space) such that the residual ductility is reduced 

for both the IF steel and the HSLA steel in this complex strain path. 

For the DP steel, the residual tensile ductility after plane strain (PS) prestrain is shown in 

Figure 63E and Figure 63F for the L-direction and T-direction tension tests, respectively.  For 

reference, θ (Equation 28) for the DP steel is about 26° (R0 = 0.97)—an intermediate value 

between that of the IF steel and that of the HSLA steel.  In the L-direction tests, the DP steel 
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shows behavior similar to that of the HSLA steel.  In the T-direction tensile tests, however, the 

DP steel exhibits much greater retention of residual ductility within the tested prestrain range.  

For example, at the largest PS prestrain level attained (εeff ~ 0.09), the DP steel retained more 

than 3% tensile uniform elongation (UEL) in the T-direction, while the residual UEL of the IF 

steel and the HSLA steel are less than 1%.  Additionally, the residual total elongation (TEL) of 

the DP steel is higher than that of the HSLA steel and approaches that of the highly formable IF 

steel.  Again, the DP steel shows a distinct advantage over conventional steels in terms of 

residual ductility in this particular two step forming mode—plane strain prestrain followed by 

transverse (orthogonal) uniaxial tension. 

5.3.3 Residual Tensile Ductility after BB Prestrain 

For the complex strain path of balanced biaxial (BB) stretching (εmaj = εmin) followed by 

subsequent uniaxial tension (UT) deformation, the residual ductility parameters are shown in 

Figure 64 for all materials as a function of effective prestrain for both L-direction and T-

direction tensile tests.  For the IF steel (Figure 64A and B) and the HSLA steel (Figure 64C and 

D), similar behavior is observed for both directions, L and T, where a transition from Type 1 

behavior to Type 2 behavior occurs at an effective prestrain level between 0.05 and 0.10.  This 

type of “symmetric” response is expected from the in-plane symmetry of balanced biaxial 

stretching deformation.  The DP steel also shows a symmetric response in the L-direction and T-

direction tensile tests; however, the response is different than that of the IF steel and HSLA steel, 

where the deterioration in residual ductility at higher BB prestrain levels is less severe.  In fact, 

at the same effective prestrain level (e.g., εeff = 0.1), the measured residual ductility is similar to 

that observed for uniaxial tension (UT) prestrain (Figure 62E and F). 
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Figure 62:  Residual tensile ductility after uniaxial tension (UT) prestrain (εmaj = εL)—(A and B) 
IF steel, (C and D) HSLA steel, and (E and F) DP steel.  Left column: tensile test in L (rolling) 
direction; Right column: tensile test in T direction (90° to rolling direction). 
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Figure 63:  Residual tensile ductility after plane strain (PS) prestrain (εmaj = εL)—(A and B) IF 
steel, (C and D) HSLA steel, and (E and F) DP steel.  Left column: tensile test in L (rolling) 
direction; Right column: tensile test in T direction (90° to rolling direction). 
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Figure 64:  Residual tensile ductility after balanced biaxial stretching (BB) prestrain—(A and B) 
IF steel, (C and D) HSLA steel, and (E and F) DP steel.  Left column: tensile test in L (rolling) 
direction; Right column: tensile test in T direction (90° to rolling direction). 
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5.4 STRENGTH EVOLUTION 

In addition to the residual ductility parameters discussed above, the subsequent tensile flow 

stress (yield strength) was measured for each of the prestrain conditions listed in Table VI, in 

either the longitudinal, L-direction (rolling direction, RD) or the transverse, T-direction (90° to 

RD) as indicated in the table.  Recall that, for each condition, the major prestrain (εmaj) axis is in 

the L-direction, by convention.  The following results pertain to the strength evolution after 

various degrees of pre-deformation along various strain paths.  The measures of yield strength 

used in this analysis are the conventional 0.2% offset tensile flow stress (σ0.2%OFS) and the flow 

stress at 1% tensile strain (σ1%FS), as suggested by Toyoda et al. (63) in their analyses of the 

differential hardening behavior of conventional steels (see Figure 47A, where σ1 = σ1%FS).  For 

the following analysis, recall that “cross-hardening” means that the post-forming tensile yield 

strength is larger along the minor prestrain axis (T-direction) than along the major prestrain axis 

(L-direction); “cross-softening” means that the post-forming tensile yield strength is higher along 

the major prestrain axis than along the minor prestrain axis.  “Isotropic hardening” refers to the 

condition where the post-forming tensile yield strength is the same along the minor and minor 

prestrain axes. 

5.4.1 Tensile Yield Strength after UT Prestrain 

The tensile flow stress, measured by σ0.2%OFS and by σ1%FS, as a function of uniaxial tension (UT) 

prestrain (εmaj = εL), is shown for both the L-direction and the T-direction tensile tests in Figure 

65A (σ0.2%OFS) and in Figure 65B (σ1%FS).  The IF steel, HSLA steel and DP steel data are shown 

together, as the intrinsic strength differences between materials allows such simultaneous 

uncluttered representation (for all prestrain modes).  Note that, to avoid confusion, it was 
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necessary to plot the residual tensile ductility data (Section 5.3) on separate axes for each 

material in each tensile test direction. 
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Figure 65:  Tensile flow stress (yield strength) as a function of uniaxial tension (UT) prestrain for 
the IF steel, the HSLA steel and the DP steel—(A) based on the 0.2% offset flow stress 
(σ0.2%OFS), and (B) based on the flow stress at 1% tensile strain (σ1%FS). 
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 In Figure 65A, it appears that both the IF steel and the HSLA steel exhibit isotropic tensile 

yield strength evolution or isotropic hardening (that is, for each UT prestrain level, the 

subsequent L and T direction tensile yield strengths are the same in terms of σ0.2%OFS).  The DP 

steel shows a unique response, where the T-direction yield strength (σ0.2%OFS) is significantly 

lower than that measured in the L-direction.  For the case where the subsequent yield strength in 

tension is lower in the T-direction than in the L-direction after prestraining (e.g., DP steel 

prestrained in the UT deformation mode), the response will be called “cross-softening”, to 

distinguish from the “cross-hardening” effect discussed in Section 2.7.4.  The cross-softening 

effect increases for the DP steel as the amount of UT prestrain increases and is nearly 250 MPa 

at an effective prestrain of 0.1.  These results agree with the data reported by Sugimoto et al. (65) 

and reproduced in Figure 48. 

In Figure 65B, where σ1%FS is the measure of yield strength, a different conclusion is 

drawn when assessing the anisotropy of tensile yield strength evolution for the IF and HSLA 

steels.  It is now clear that these conventional “single phase” materials indeed exhibit cross-

hardening (σ1%FS,T > σ1%FS,L) caused by UT prestrain, as shown for plane strain (PS) prestrain by 

Yan et al. (62) in Figure 46 and by Toyoda et al. (63) in Figure 47.  The extent of differential 

hardening increases with increasing UT prestrain for the IF steel and the HSLA steel.  The 

unique behavior of the DP steel persists with the alternate measure of yield strength, σ1%FS; 

however, the cross-softening is much less than that suggested by the conventional measure of 

tensile yield strength, σ0.2%OFS. 
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5.4.2 Tensile Yield Strength after PS Prestrain 

For plane strain (PS) prestrain, the IF steel, HSLA steel and DP steel show tensile yield 

strength evolution that is respectively similar to that shown for the UT prestrain mode, with a 

few minor differences.  These results are shown in Figure 66A for σ0.2%OFS and in Figure 66B for 

σ1%FS.  The first difference between the UT and PS prestrain modes is that cross-hardening is 

revealed in terms of σ0.2%OFS for the IF steel and HSLA steel.  Secondly, the cross-hardening 

response is greater for PS prestrain than for UT prestrain at any given εeff value.  The cross-

softening behavior of the DP steel persists in the PS prestrain mode, but the extent of which is far 

less than that observed for the UT prestrain mode. 

5.4.3 Tensile Yield Strength after BB Prestrain 

Tensile yield strength evolution for the balanced biaxial (BB) prestrain mode is shown 

for the IF, HSLA and DP steels in (Figure 67).  The IF steel and DP steel show isotropic 

hardening in terms of both  σ0.2%OFS and σ1%FS (that is, the yield strength, measured by either 

index, is the same in the L-direction and T-direction).  This occurrence is an extension of the 

argument presented in Section 5.3.3 in the context of residual ductility, where the symmetry of 

the prestrain path leads to a symmetric response in subsequent uniaxial tension.  For the HSLA 

steel, however, the T-direction yield strength is consistently higher than that in the L-direction.  

Additionally, the difference neither increases nor decreases as prestrain increases.  It appears that 

the intrinsic anisotropy of mechanical properties is propagated through the prestrain deformation.  

In the as-produced condition (see Table VII), the HSLA steel shows the greatest difference in 

yield strength (YST – YSL = 37 MPa) and in ultimate tensile strength (UTST – UTSL = 16 MPa) 

among the three steels.  The important observation for the HSLA steel is that the L-direction 
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yield strength and the T-direction yield strength evolve similarly (although offset by intrinsic 

anisotropy) when the prestrain mode is balanced biaxial stretching (BB). 
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Figure 66:  Tensile flow stress (yield strength) as a function of plane strain (PS) prestrain for the 
IF steel, the HSLA steel and the DP steel—(A) based on the 0.2% offset flow stress (σ0.2%OFS), 
and (B) based on the flow stress at 1% tensile strain (σ1%FS). 
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Figure 67:  Tensile flow stress (yield strength) as a function of balanced biaxial stretching (BB) 
prestrain for the IF steel, the HSLA steel and the DP steel—(A) based on the 0.2% offset flow 
stress (σ0.2%OFS), and (B) based on the flow stress at 1% tensile strain (σ1%FS). 
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5.4.4 Differential Hardening Behavior 

For the L-direction tensile tests and the T-direction tensile tests after prestraining, separate series 

of prestrained panels were created.  As the tensile specimens were extracted from the center 

portion of each panel, it was not possible to obtain L-direction and T-direction tensile specimens 

from a single test panel.  As such, for each nominal prestrain condition, the L-direction tests and 

the T-direction tests were associated with slightly different prestrain conditions, as shown in the 

compilation of prestrained specimens in Table VI (note the separate columns for subsequent 

tension in the L-direction and subsequent tension in the T-direction).  With the inherent 

variability of the experimental prestraining method, it is not directly possible to compare the L 

and T tensile response for each specified prestrain condition.  For this reason, the regression 

equations of the curve fits (Y = AXB, where A and B are coefficients) of the data shown in 

Figure 65 through Figure 67 were used to calculate the differential hardening response (i.e., ΔYS 

= YST – YSL) as a function of prestrain, for each prestrain mode.  The calculated differential 

hardening behavior for the three materials is summarized in Figure 68 (uniaxial tension prestrain, 

UT), Figure 69 (plane strain prestrain, PS), and Figure 70 (balanced biaxial stretching prestrain, 

BB), for both measures of tensile yield strength,  σ0.2%OFS and σ1%FS, up to an effective strain of 

0.1. 

 Figure 68 shows the intense “cross-softening” behavior of the DP steel and the mild “cross-

hardening” behavior of the IF and HSLA steels, for UT prestrain.  Considering the DP steel 

behavior in Figure 68 (UT prestrain), for example, it appears that the mechanism responsible for 

the cross-softening behavior affects the initial yield behavior (at 0.2% offset) more than the gross 

plastic deformation behavior shortly after yielding (at 1% strain).  Conversely, the cross-

hardening mechanism in the IF steel and the HSLA steel affects the post-yielding behavior (at 
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1% strain) more than the initial yielding behavior (0.2% offset).  This basic difference implies 

different responsible mechanisms for cross-hardening and cross-softening.  The impact on the 

initial yielding behavior implies that the cross-softening effect in the DP steel is influenced by an 

existing, static (elastic) phenomenon such as residual stresses induced by prestraining.  The post-

yielding influence of the cross-hardening mechanism in the IF and HSLA steels implies a 

dynamic phenomenon that is manifested by dislocation interactions during plastic deformation. 
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Figure 68:  Differential hardening for the uniaxial tension (UT) prestrain mode.  See text for 
details. 

 

It is certainly possible that both mechanisms are operating in all three materials, but at 

different intensities.  It may be that the cross-softening mechanism in the DP steel serves to 

alleviate or mask the underlying cross-hardening mechanism displayed by the IF steel and the 

HSLA steel.  It is also likely that the cross-softening response diminishes as secondary tensile 

deformation continues—assuming an elastic distribution of prestrain-induced residual stresses 
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being the responsible mechanism.  This notion is similar to the behavior commonly observed in 

Bauschinger Effect tests for DP steels.  For example, Figure 31 (16) shows that the initial 

yielding behavior upon strain reversal (compression) occurs at a very low stress value (σr), but 

the “reverse curve” approaches the “forward curve” as compressive deformation progresses. 

Figure 69 summarizes the differential hardening behavior for plane strain (PS) prestrain.  

For this prestrain mode, the cross-hardening effect of the IF steel and the HSLA steel is more 

pronounced than for the UT prestrain mode—apparent for both the Δσ0.2%OFS and the Δσ1%FS 

measures of differential hardening.  Additionally, the cross-softening response of the DP steel is 

less prominent, yet still dominates the initial yielding and post yielding behavior.  For the UT 

prestrain mode discussed above, the cross-softening effect increases monotonically at an ever-

decreasing rate; however, it appears that the magnitude of the cross-softening effect saturates at a 

low level of PS prestrain.  It could also be that that the underlying (masked) cross-hardening 

mechanism in the DP steel increases with increasing PS prestrain and serves to lessen the effect 

of the cross-softening mechanism. 

For the BB prestrain mode (Figure 70), only a minor differential hardening effect is 

observed for the IF steel, the HSLA steel and the DP steel.  Again, the consistent, steady cross-

hardening effect of the HSLA steel is conceivably related to the intrinsic anisotropy of the 

material.  It should be mentioned, in the context of balanced biaxial stretching (BB) prestrain, 

that a minimal differential hardening response does not necessarily mean that the mechanisms 

associated with cross-softening and cross-hardening are inoperative for this prestrain mode.  It 

means rather that the effects of these mechanisms are acting similarly to affect the L-direction 

and the T-direction tensile response, owing to the symmetry of the prestrain deformation mode. 
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Figure 69:  Differential hardening for the plane strain (PS) prestrain mode.  See text for details. 
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Figure 70:  Differential hardening for the balanced biaxial stretching (BB) prestrain mode.  See 
text for details. 
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5.4.5 Effective Strain Analysis 

As discussed in Section 5.2, effective stress and strain were developed, in part, so that uniaxial 

tension stress/strain relationships can be extrapolated to more general modes of deformation, and 

it follows that post-forming tensile test behavior (e.g., strength) may be predicted for any 

prestrain mode, as long as the primary strain history is defined by an effective strain function and 

the reference uniaxial tension behavior of the as-produced material (before prestraining) is 

known.  The Tresca yield criterion, and its corresponding effective stress and effective strain 

relationships (Equations 25 and 27) are by no means the most advanced or accurate descriptors 

of material behavior.  There are many other available material models that address such material 

characteristics as normal and planar anisotropy, the Bauschinger Effect, and differential 

hardening in general—all of which are assumed negligible in the Tresca material model.  A 

number of these classic and recently developed material models have been reviewed by 

Stoughton (85) and by Banabic et al. (86).  For the following exercise, the purpose is not to 

illustrate or define the most appropriate material model for each material (beyond the scope of 

this work), but rather: 1) to emphasize the need to address such factors as differential hardening 

and plastic anisotropy, and 2) to illustrate the basic behavioral differences of the DP steel in 

contrast to more conventional materials such as the IF steel and the HSLA steel. 

In Figure 71 through Figure 73, the tensile yield strength evolution data (σ0.2%OFS) 

discussed in Section 5.4 are shown for all three experimental prestrain paths (UT, PS and BB 

prestrain) combined on single plots (i.e., one plot for each material).  In this way, the effects of 

strain path on strength evolution and differential hardening (cross-hardening and cross-softening) 

can be seen more clearly for each material.  For illustrative purposes, the complex strain path 

sequence of uniaxial tension (εmaj = εL) followed by additional tension in the L-direction is 
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shown as the reference curve (symbols connected by a fitted curve).  The strength evolution data 

for the other complex strain paths are shown as symbols only (no connecting fitted curve).  For 

added clarity of presentation, the L-direction tensile yield strength data are shown as filled 

symbols, while those for the T-direction are displayed as open (unfilled) symbols.  The Tresca 

effective strain function (Equation 27)—hereafter, “effective strain function”—predicts that all 

of the tensile yield strength data (for both L-direction and T-direction tensile tests) will lie along 

the reference curve, for all prestrain modes. 

For the IF steel and the HSLA steel (Figure 71 and Figure 72, respectively), the effective 

strain function sufficiently predicts the tensile yield strength in both the L and T directions after 

uniaxial tension (UT), as the L-direction data define the reference curve, and these materials 

show nearly-isotropic hardening for this prestrain mode (Figure 65).  For the IF steel, the tensile 

yield strength evolution is greatly under-predicted by the effective strain function for plane strain 

(PS) and balanced biaxial stretching (BB) prestrain modes, with the worst prediction pertaining 

to the sequence of PS prestrain (εmaj = εL) followed by uniaxial tension in the T-direction.  Recall 

that the cross-hardening effect is greatest for this complex strain path sequence.  For the HSLA 

steel, the effective strain function gives a reasonable prediction of the subsequent L-direction 

tensile yield strength for both PS and BB prestrain modes (only slightly under-predicted by the 

effective strain function).  For the T-direction tensile tests, however, the tensile yield strength is 

again significantly under-predicted.  It is likely that these minor differences between the IF steel 

and HSLA steel are dictated by statistically preferred crystal orientation (both the annealing 

textures and deformation textures, see Section 2.7.1) and by other microstructural differences 

such as grain size and precipitate/carbide dispersions. 
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Figure 71:  Tensile yield strength evolution of the IF steel along various prestrain paths (εmaj = 
εL)—UT = uniaxial tension; PS = plane strain; and BB = balanced biaxial tension.  The filled 
symbols represent tensile tests in the L direction (parallel to major prestrain axis), while the open 
symbols represent tensile tests in the T-direction (parallel to minor prestrain axis). 
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Figure 72:  Tensile yield strength evolution of the HSLA steel along various prestrain paths (εmaj 
= εL)—UT = uniaxial tension; PS = plane strain; and BB = balanced biaxial tension.  The filled 
symbols represent tensile tests in the L direction (parallel to major prestrain axis), while the open 
symbols represent tensile tests in the T-direction (parallel to minor prestrain axis). 
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The DP steel (Figure 73) presents an entirely unique effective strain relationship for the 

various prestrain paths, in terms of strength evolution.  First, the effective strain function tends to 

over-predict the subsequent tensile yield strength for all prestrain modes, except of course, the 

reference strain path of UT prestrain (εmaj = εL) followed by tension in the L-direction (i.e., the 

defined reference curve).  Secondly, for UT prestrain (εmaj = εL) followed by tension in the T-

direction, the worst prediction is made, where, for the IF steel and HSLA steel, the best 

prediction corresponds to this sequence.  Interestingly, for the T-direction tensile tests, the 

effective strain prediction improves as the prestrain path deviates further from uniaxial tension 

(untrue for the IF steel and HSLA steel).  As the strength evolution is over-predicted for the 

balanced biaxial stretching (BB) prestrain mode, it is further apparent that the mechanism(s) 

responsible for the cross-softening effect (UT and PS prestrain) indeed affect the tensile response 

after BB prestrain, albeit symmetrically, as mentioned at the end of Section 5.4.4. 

5.5   NEUTRON DIFFRACTION AND RESIDUAL STRESS ANALYSIS 

5.5.1 Neutron Diffraction Results 

Recall (Section 4.4.2) that twelve samples were sent to NIST for neutron diffraction analysis.  

One sample of each of the three steels was examined in the following conditions: 

- As-produced (no prestrain) 

- Prestrained to 5% major strain in uniaxial tension  

- Prestrained to 5% major strain in plane strain 

- Prestrained to 5% major strain in balanced biaxial stretching 
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Figure 73:  Tensile yield strength evolution of the DP steel along various prestrain paths (εmaj = 
εL)—UT = uniaxial tension; PS = plane strain; and BB = balanced biaxial tension.  The filled 
symbols represent tensile tests in the L direction (parallel to major prestrain axis), while the open 
symbols represent tensile tests in the T-direction (parallel to minor prestrain axis). 

 

The ferrite interplanar spacings (d-spacings) were reported (for both {200} and {211} 

reflections) in the three principal directions (1, 2 and 3) for each sample with the following 

convention:  

- 1 – the longitudinal (L) direction or sheet rolling direction (RD), also corresponding 

to the major strain direction for each prestrain condition 

- 2 – the transverse (T) direction (90° to the RD) 

- 3 – the sheet normal or thickness direction 

All seventy-two ferrite d-spacing measurements are shown in Figure 74.  For the {200} d-

spacings (left column of Figure 74), relatively minor disturbances (dilation and contraction) in 

the reflecting plane spacings are observed for the IF steel and the HSLA steel when comparing 

the various prestrained samples to the reference (“Ref”) samples in each principal direction. 
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Figure 74:  Interplanar spacings ({200} and {211}) for various prestrain conditions (εmaj = εL = 
0.05) measured by neutron diffraction—(A, B) IF steel, (C, D) HSLA steel and (E, F) DP steel.  
The designations 1, 2 and 3 refer to the principal directions and correspond to the longitudinal 
(L), transverse (T) and thickness dimensions of the samples. 
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For the DP steel, the d-spacing changes are more systematic and generally of larger 

magnitude.  For the major strain direction (principal direction 1), consistent contraction of the 

{200} d-spacings (compressive strain) is shown for all prestrain modes, while, in the thickness 

direction (principal direction 3), consistent expansion of the {200} d-spacings (tensile strain) is 

shown for all prestrain modes.  For the minor strain direction (principal direction 2), the sign of 

the {200} d-spacing change depends on the prestrain path and ranges from significant expansion 

for the UT prestrain mode to significant contraction for the BB prestrain mode, where only a 

minor contraction is shown for the PS prestrain mode.  For the {211} d-spacings, (right column 

in Figure 74), similar trends in d-spacing changes are apparent for each material.   

5.5.2 Residual Stress Calculations based on Neutron Diffraction Data 

The d-spacing measurements were converted to elastic strains with Equation 21, and the 

deformation-induced residual stress components in each principal direction (1, 2 and 3) were 

calculated with Equations 22a through 22c with the diffraction elastic constants supplied by 

NIST (80) (see Section 4.4.3 for more background).  The calculated deformation-induced 

residual stress components (σdr,ij) are summarized in Table IX for the {200} reflection data and 

in Table X for the {211} reflection data.  As the principal axes are assumed from sample 

symmetry, all shear stress components of σdr,ij are assumed zero, and as such, only the principal 

components of σdr,ij (i.e., σdr,1, σdr,2 and σdr,3) are shown in the summary tables.  In reviewing 

Table IX and Table X (columns under the heading “σdr,ij”), it appears that the deformation-

induced residual stress components are highly variable.  Recall, however, that the magnitude 

(and in some cases the sign) of the residual stress depends almost entirely upon the choice of the 

reference d0-value (Equation 19), and that the d-spacings of the “as-produced” samples (non-
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prestrained) were used for lack of specific information pertaining to the true “unstressed” d0-

value.  Also, the residual stress calculations depend, to a lesser extent perhaps, upon the choice 

of diffraction elastic constants.  With these uncertainties in mind, and considering the end-use of 

the information generated by the neutron diffraction analysis, it is more appropriate to consider 

the deviatoric components of σdr,ij, as the hydrostatic or mean stress value for each deformation-

induced residual stress state is not needed for this particular analysis.  The hydrostatic stress 

components for each deformation-induced residual stress state that was calculated for each of the 

prestrained samples is listed under the heading “σdr,m” where  

33
3,dr2,dr1,drkk,dr

m,dr

σ+σ+σ
=

σ
=σ , and                                              [28] 

ij,drm,drij,drij,dr' δσ−σ=σ                                                            [29] 

where σ’dr,ij refers to the deviatoric stress tensor of the deformation-induced residual stress state, 

shown under the corresponding heading in Table IX and Table X.  Again, as the shear stress 

components are assumed zero, only the principal stress components are shown in the summary 

tables. 

With this transformation, a meaningful pattern develops in the deviatoric components of 

the deformation-induced residual stresses.  It also is clear that, for the different reflections 

({200} and {211}), the calculated residual stress states in each sample differ effectively by only 

a hydrostatic stress component.  As such, it is reasoned that, for each deviatoric component of 

deformation-induced residual stress, the average of the results given by the {200} reflections and 

the {211} reflections can be used for subsequent analyses.  For example, from Table IX and 

Table X, σ’dr,1 for the IF steel in the UT prestrain condition is –18.3 MPa based on {200} data, 
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and –18.8 MPa based on {211} data, where the average value, -18.6 MPa, will be used in further 

discussions about deformation induced residual stress components.  

 

Table IX:  Deformation Induced* Residual Stresses Based on {200} Reflections 

σdr,ij σ'dr,ijSteel Prestrain
Mode σdr,1 σdr,2 σdr,3

σdr,m
σ'dr,1 σ'dr,2 σ'dr,3

UT 98.6 110.7 141.3 116.9 -18.3 -6.1 24.4 
PS 40.2 32.1 49.8 40.7 -0.5 -8.6 9.1 IF 
BB -9.8 -36.8 22.9 -7.9 -1.9 -28.9 30.8 
UT 154.9 207.7 214.7 192.5 -37.6 15.3 22.3 
PS 64.8 65.8 61.7 64.1 0.7 1.7 -2.4 HSLA 
BB -84.8 -109.5 -63.8 -86.0 1.2 -23.5 22.3 
UT -11.9 143.0 181.9 104.3 -116.2 38.6 77.6 
PS -95.9 -36.2 53.8 -26.1 -69.8 -10.1 79.9 DP 
BB -154.4 -144.5 41.6 -85.7 -68.7 -58.7 127.4 

*After 5 pct major strain in the longitudinal (1) direction – all values in MPa. 
 
 

Table X:  Deformation Induced* Residual Stresses Based on {211) Reflections 

σdr,ij σ'dr,ijSteel Prestrain
Mode σdr,1 σdr,2 σdr,3

σdr,m σ'dr,1 σdr,2 σdr,3

UT -4.1 19.0 29.3 14.7 -18.8 4.3 14.6 
PS 19.0 14.1 45.2 26.1 -7.1 -12.0 19.1 IF 
BB 33.7 23.1 48.3 35.1 -1.3 -11.9 13.3 
UT -13.9 12.3 22.3 6.9 -20.8 5.4 15.4 
PS 49.7 23.7 53.8 42.4 7.3 -18.7 11.4 HSLA 
BB 56.7 30.3 54.2 47.0 9.6 -16.8 7.1 
UT -104.7 68.9 58.9 7.7 -112.4 61.2 51.2 
PS -93.1 6.0 72.5 -4.9 -88.2 10.8 77.4 DP 
BB -73.4 -55.8 70.5 -19.6 -53.9 -36.2 90.1 

*After 5 pct major strain in the longitudinal (1) direction – all values in MPa. 
 

Figure 75 shows the calculated deviatoric residual stress components (σ’dr) for each 

material in each prestrain condition [εmaj = εL = ε1 = 0.05; for uniaxial tension (UT), plane strain 

(PS) and balanced biaxial stretching (BB) prestrain]. 
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Figure 75:  Deviatoric components of σdr (deformation-induced residual stress) for various 
prestrain paths —(A) IF steel, (B) HSLA steel and (C) DP steel.  The designations 1, 2 and 3 
refer to the principal directions and correspond to the longitudinal (L), transverse (T) and 
thickness dimensions of the samples.  For each case, εmaj = εL = ε1 = 0.05. 
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The IF steel and the HSLA steel (Figure 75A and B, respectively) show very similar 

residual stress distributions, where the principal stress components of σ’dr,ij (σ’dr,1, σ’dr,2 and 

σ’dr,3) fall within a ~ 50 MPa band for all prestrain modes (UT prestrain: β ~ -0.5; PS prestrain: β 

~ 0; and BB prestrain: β ~ 1).  The σ’dr,1 component [longitudinal (L) direction or sheet rolling 

direction—parallel to εmaj] increases slightly as β increases, while the σ’dr,2 component 

[transverse (T) direction—parallel to εmin] decreases proportionately.  The σ’dr,3 component 

(thickness direction) shows a minimum for the plane strain deformation mode (β ~ 0).  Note that 

the deviatoric components of the deformation induced residual stresses reflect the {200} and 

{211} interplanar spacing changes shown in Figure 74A through D. 

The DP steel (Figure 75C) shows a tremendously different residual stress distribution in 

contrast to the IF and HSLA steels (i.e., in terms of the magnitude of the deformation induced 

residual stress components for each prestrain mode).  As for the IF and HSLA steels, the σ’dr,1 

component increases (becomes less negative) as β increases, while σ’dr,2 decreases.  The 

thickness direction component, σ’dr,3, increases as β increases.  It has become clear that, for the 

DP steel, the deviatoric components of the deformation-induced residual stress state are 

proportional to and opposite in sign to the principal strain components associated with each 

prestrain mode.  For example, for each prestrain mode, the major strain (εmaj = εL = ε1) is always 

positive, and σ’dr,1 is always negative.  Similarly, the thickness direction strain (ε3) is always 

negative, while σ’dr,3 is always positive.  Furthermore, regarding the minor strain (εmin = εT = ε2), 

σ’dr,2 changes from positive to negative as β (and εmin) increases from negative to positive.  

Further evidence of the interdependence of σ’dr,ij and εij is given by the following observations: 

- σ’dr,2 ~ σ’dr,3 when ε2 ~ ε3 (UT prestrain: β ~ -0.6), 
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- σ’dr,2 ~ 0 when ε2 ~ 0 (PS prestrain: β ~ 0.0) and 

- σ’dr,2 ~ σ’dr,1 when ε2 ~ ε1 (BB prestrain: β ~ 1.0). 

The results shown in Table IX and Table X and in Figure 75 are a testament to the importance of 

neutron diffraction methods in the characterization of residual stresses.  Specifically, had another 

near-surface method been used (e.g., X-ray diffraction), the large thickness direction components 

of the deformation-induced residual stresses (in principal direction 3) would not have been 

detected for the DP steel.   It would not have been possible to factor out the hydrostatic stress 

component, σdr,m, from the total stress tensor, σdr,ij, to arrive at the deviatoric stress components, 

σ’dr,ij.  The implications of the calculated deformation-induced residual stresses shown in Figure 

75, in the context of post-forming tensile properties, are discussed in Section 6.3. 
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6.0 DISCUSSION

In this chapter, the post-forming tensile properties and work hardening behavior will be directly 

related to the calculated prestrain-induced residual stresses (based on neutron diffraction 

experiments).  Specifically, the 5% major strain (εmaj = εL = 0.05) condition will be considered 

for each material for each of the experimental plane stress prestrain modes (uniaxial tension, 

plane strain and balanced biaxial stretching).  First, in Section 6.1, the post-forming L-direction 

and T-direction tensile stress/strain behavior will be discussed.  Then the anticipated 

relationships between deformation-induced residual stresses and post-forming tensile yield 

strength and differential hardening will be explored in Section 6.2.  Then, in Section 6.3, a 

comparison between the predicted material behavior and the experimental results is made.  

Finally, various practical implications of this work are illustrated in Section 6.4. 

6.1 TENSILE STRESS/STRAIN BEHAVIOR OF PRESTRAINED SAMPLES 

 

In Sections 5.3 and 5.4, the residual tensile ductility and yield strength evolution, as a function of 

prestrain, were shown for the IF steel, the HSLA steel and the DP steel.  In this section, the 

subsequent tensile stress/strain behavior, after prestraining, is examined more closely.  For this 

analysis, the 5% major strain condition (εmaj = εL = 0.05), for each prestrain mode, was chosen to 

correlate with the neutron diffraction residual stress analysis (see Section 5.5).  L-direction 
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tensile specimens were machined from the same prestrained panels from which the neutron 

diffraction specimens were extracted.   As mentioned in Section 5.4.4, it was necessary to 

prepare separate prestrained panels for subsequent L-direction and T-direction tensile tests.  

Table XI summarizes the 5% major strain samples used for the neutron diffraction experiments 

and the duplicate samples used for T-direction tensile tests.  Although all of the samples listed in 

Table XI were nominally prestrained to a major strain of 5%, there are unavoidable minor 

variations between “duplicate” samples.  It is not expected that these minor variations play a 

significant role in dictating the directional tensile stress/strain behavior discussed in the 

following. 

 

Table XI:  5 % Major Strain Samples used in Neutron Diffraction Analysis 

Neutron Diffraction Samples: 
L-direction Tensile Tests 

Duplicate Samples: 
T-direction Tensile Tests 

UT Prestrain PS Prestrain BB Prestrain UT Prestrain PS Prestrain BB PrestrainSteel 

εmaj εmin εmaj εmin εmaj εmin εmaj εmin εmaj εmin εmaj εmin

IF 0.051 -0.032 0.050 0.001 0.052 0.052 0.050 -0.031 0.050 0.000 0.049 0.051
HSLA 0.050 -0.024 0.052 0.001 0.050 0.044 0.049 -0.026 0.051 0.000 0.051 0.049

DP 0.048 -0.026 0.050 0.000 0.049 0.048 0.049 -0.029 0.051 0.001 0.048 0.047
 

6.1.1 UT Prestrain Mode: Post-Forming Tensile s/e Curves  

Figure 76 summarizes the post-forming tensile stress/strain (s/e) behavior after uniaxial tension 

(UT) prestrain (εmaj = εL = 0.05).  In this figure, the post-forming tensile s/e curves of the IF, 

HSLA and DP steels are shown together for both L-direction and T-direction tensile tests.  For 

this prestrain condition, all materials exhibit Type 1 tensile s/e behavior in the L-direction and T-

direction tensile tests (see Section 5.3.1 for review of Type 1 and Type 2 tensile s/e behavior). 
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Figure 76:  Post-forming tensile stress/strain curves (L and T directions) after uniaxial tension 
(UT) prestrain (εmaj = εL = 0.05). 

 

The IF steel and the HSLA steel exhibit a mild cross-hardening response, where the T-

direction flow stress is initially higher than the L-direction flow stress.  Recall that (Figure 62B 

and D), for the UT prestrain mode, the transition from a Type 1 to a Type 2 tensile response, in 

the T-direction, occurs at an effective prestrain between 0.05 and 0.1 for the IF steel and the 

HSLA steel (εmaj = εL).  Before the transition, the T-direction total elongation (TEL), uniform 

elongation (UEL) and post-uniform elongation (PUEL) values are similar to the corresponding 

L-direction values.  After the transition, the T-direction UEL and TEL values are below the 

corresponding L-direction values for a given prestrain condition.  At about 3% tensile elongation 

(Figure 76), the L-direction and T-direction tensile s/e curves intersect for the IF steel, and the L-

direction flow stress exceeds the T-direction flow stress as tensile deformation continues.  As 

discussed in Section 5.4.3, the HSLA steel has intrinsically greater anisotropy in mechanical 
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properties (in the as-produced condition, the T-direction yield strength and ultimate tensile 

strength are significantly greater than the corresponding L-direction values).  Because of the 

inherently greater anisotropy, the HSLA steel shows no crossover point (the tensile flow stress is 

higher in the T-direction throughout the tensile test).  For this particular prestrain condition, the 

overall T-direction residual ductility is not significantly affected by the mild cross-hardening 

effect; however, the cross-hardening effect (latent work hardening) dominates the T-direction 

residual ductility for larger UT prestrains (see Figure 62B and D). 

Similar to the IF steel and the HSLA steel, the overall residual tensile ductility after UT 

prestrain (εmaj = εL = 0.05) is similar for the L-direction and T-direction tensile tests (Figure 76) 

for the DP steel.  Recall that, for the DP steel (Figure 62F), there is no distinct transition from 

Type 1 to Type 2 T-direction tensile stress/strain behavior for the UT prestrain mode in the range 

examined.  Also recall that the cross-softening effect is greatest in the DP steel for the UT 

prestrain mode.  For the particular example shown in Figure 76, it is clear that the intense cross-

softening effect diminishes quickly as tensile deformation continues (i.e., the L-direction and T-

direction s/e curves converge).  It is possible that the cross-softening mechanism in the DP steel 

serves to alleviate or mask the underlying cross-hardening (latent work hardening) mechanism 

displayed more prominently by the IF steel and the HSLA steel.  It is also likely that the 

mechanism responsible for the cross-softening response diminishes as secondary tensile 

deformation continues—assuming that an elastic distribution of prestrain-induced residual 

stresses is the responsible mechanism (also discussed in Section 5.4.4).   

6.1.2 PS Prestrain Mode: Post-Forming Tensile s/e Curves 

The post-forming tensile stress strain curves after plane strain (PS) prestrain (εmaj = εL = 

0.05) are shown in Figure 77.  For the IF steel and the HSLA steel, the most significant 
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difference between L-direction and T-direction tensile behavior is observed after PS prestrain.  

Recall that the cross-hardening effect is most pronounced for the PS prestrain mode (see Figure 

69).  While the L-direction tensile test reveals “normal” stress/strain behavior (Type 1 behavior) 

for the IF and HSLA steels, the T-direction tensile tests reveal the characteristic effects of latent 

work hardening discussed in Section 2.7.4 (Type 2 behavior), and the overall tensile ductility is 

decreased in contrast to the L-direction.  Recall that, for the IF steel and the HSLA steel, the 

transition from Type 1 to Type 2 tensile stress/strain behavior occurs at an effective prestrain 

around 0.05 for PS prestrain followed by tension in the T-direction (Figure 63B and D).  The net 

result of the intense cross-hardening response is that the TEL is almost entirely comprised of 

post-peak-stress deformation in the T-direction.  That is, the ultimate tensile strength (UTS) 

occurs at a very low strain value, and thus the post-uniform elongation (PUEL) is very large.  

The difference in L-direction and T-direction tensile behavior, for the IF and HSLA steels in the 

PS prestrain condition, is very similar to that reported by Yan et al. [62] for a low-carbon steel 

(see Figure 46).  For this particular complex strain path (PS prestrain followed by transverse 

tension), the tensile work hardening behavior of the IF steel and the HSLA steel are discussed in 

more detail in Section 6.1.7 (in contrast to the DP steel). 

In contrast to the IF steel and the HSLA steel, the DP steel shows Type 1 tensile 

stress/strain behavior in both L-direction and T-direction tensile tests after PS prestrain.  Recall 

that the cross-softening response in the DP steel is less intense for the PS prestrain mode than for 

the UT prestrain mode (Figure 68 and Figure 69), but still appears to be strong enough to 

counteract the underlying latent work hardening effect that dominates the low-strain T-direction 

tensile stress/strain behavior of the IF and HSLA steels after PS prestrain.  The T-direction 

tensile flow stress of the DP steel exceeds that in the L-direction after approximately 2% tensile 
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deformation (i.e., there is a crossover point at about 2% elongation).  Again, as for the UT 

prestrain mode, the cross-softening effect is diminished as tensile deformation continues. 
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Figure 77:  Post-forming tensile stress/strain curves (L and T directions) after plane strain (PS) 
prestrain (εmaj = εL = 0.05). 

 

6.1.3 BB Prestrain Mode: Post-Forming Tensile s/e Curves 

The post-forming tensile stress strain curves after balanced biaxial stretching (BB) prestrain (εmaj 

= εmin = 0.05) are shown in Figure 78.  The IF steel and the HSLA steel show similar tensile 

responses in the L and T directions (Type 2 behavior—see Section 5.3.1), as expected from the 

planar symmetry of the prestrain mode.  However, it should be noted that the tensile response is 

similar to that shown in the T-direction for the PS prestrain condition.  Therefore, it seems that, 

for the IF and HSLA steels, the cross-hardening mechanism (latent work hardening) is operative 

in both directions (L and T) for tensile deformation following BB prestrain. 
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Figure 78:  Post-forming tensile stress/strain curves (L and T directions) after balanced biaxial 
stretching (BB) prestrain (εmaj = εL = 0.05). 

 

Unlike the IF steel and the HSLA steel, the DP steel shows Type 1 tensile stress/strain 

behavior in both the L and T directions after BB prestrain.  Additionally, there appears to be no 

latent work hardening effect, in either the L or T direction, for the BB prestrain mode (or 

possibly the effects of latent work hardening are masked).  It is suspected that the large 

deformation-induced residual stresses (see Figure 75C), generated during prestraining, are 

responsible for the unique post-forming tensile stress/strain response of the DP steel (for all 

prestrain modes considered in this study).  The persistence of Type 1 tensile stress/strain 

behavior after BB prestrain suggests that the mechanism responsible for cross-softening after UT 

and PS prestrain also affects the tensile response after BB prestrain, albeit symmetrically.  The 

relationships between post-forming tensile properties and prestrain-induced residual stresses are 

discussed further in Sections 6.2 through 6.3. 
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 The IF steel and the HSLA steel show remarkably similar subsequent tensile stress/strain 

behavior for all prestrain modes considered.  This observation is especially remarkable 

considering the vast differences in mechanical properties (including anisotropy), microstructure, 

and composition between the two steels.  More important, in the context of the objective stated in 

Section 3.0, is the strikingly unique behavior exhibited by the DP steel.  The observations 

concerning the overall post-forming tensile stress/strain behavior of the IF steel, HSLA steel and 

DP steel are summarized in Table XII.  The greatest differences in post-forming tensile 

stress/strain behavior between materials (and between tensile test directions in a given material) 

occur in low tensile strain intervals (at and immediately after yielding).  As such, a closer look at 

post-forming tensile yielding behavior is taken in sections 6.1.4 through 6.1.6. 

 

Table XII:  Summary of Post-Forming Tensile s/e Behavior (Prestrain: εmaj = εL = 0.05) 

UT Prestrain Mode PS Prestrain Mode BB Prestrain Mode Steel 
L-Direction T-Direction L-Direction T-Direction L-Direction T-Direction

IF Type 1 Type 1 Type 1 Type 2 Type 2 Type 2 
HSLA Type 1 Type 1 Type 1 Type 2 Type 2 Type 2 

DP Type 1 Type 1 Type 1 Type 1 Type 1 Type 1 
White: Cross-Softening; Grey: Nearly Isotropic Hardening; Black: Cross-Hardening 
 

6.1.4 Tensile Yielding Behavior after UT Prestrain 

To illustrate the post-forming tensile yielding behavior more clearly, the tensile stress/strain 

curves from Figure 76 through Figure 78 are re-plotted in Figure 79 over the strain interval from 

0 to 2% engineering strain.  The post-forming tensile stress/strain curves associated with each 

prestrain mode are grouped separately (Figure 79A – UT prestrain; Figure 79B – PS prestrain; 

and Figure 79C – BB prestrain), and the L-direction and T-direction curves are shown together 

for the IF, HSLA and DP steels in each case. 
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Figure 79:  Post-forming tensile yielding behavior (L and T directions) for various prestrain 
modes—(A) uniaxial tension (UT) prestrain; (B) plane strain (PS) prestrain; and (C) balanced 
biaxial stretching (BB) prestrain.  For each prestrain mode, the IF steel, HSLA steel and DP steel 
curves are shown together as indicated. 
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For the UT prestrain condition (εmaj = εL = 0.05), the IF steel and the HSLA steel show 

nearly identical behavior, where the T-direction tensile flow stress is lower than that in the L-

direction at very small strains (e < 0.3%).  A crossover occurs between 0.3% and 0.4% strain, 

where the T-direction flow stress exceeds the L-direction flow stress at larger strains.  It appears 

that the observed cross-hardening effect is preceded by a very mild cross-softening effect—

similar to the DP steel, but of much smaller intensity.  It is believed that this behavior is an 

original observation that was previously unreported in the literature for conventional “single 

phase” steels.  Interestingly, the 0.2% offset flow stress occurs approximately at the crossover 

point for both the IF steel and the HSLA steel.  Recall the observed nearly isotropic hardening 

response for the UT prestrain mode for these two materials (see Figure 65A).  It is clear that, 

depending on the method by which the “yield strength” is measured, one would conclude 

isotropic hardening, cross-softening, or cross-hardening, when assessing the subsequent tensile 

response of the IF and HSLA steels after UT prestrain.  Figure 79A reveals the complex nature 

of low strain yielding and post-yielding tensile stress/strain behavior and further supports the 

idea that multiple mechanisms dictate the post-forming tensile response (that is, both cross-

hardening and cross-softening mechanisms operate simultaneously at various intensities).  It is 

believed that the initial yielding behavior (plastic strain below e ~ 0.3%) is influenced by a 

transient elastic phenomenon such as the prestrain-induced residual stresses shown in Figure 75A 

and B (recall that the measured deformation-induced residual stresses in the IF steel and the 

HSLA steels are small in contrast to the DP steel, yet non-zero).  The observed crossover implies 

that latent work hardening takes effect only after yielding in the T-direction and/or that the initial 

effects of deformation-induced residual stresses are diminished as tensile deformation proceeds.  

Note that, for the IF steel, two crossover points are observed—the first occurs at about 0.3% 
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elongation (Figure 79A), and the second occurs at about 3% elongation—after the latent work 

hardening effect is “pulled through” (Figure 76).   

For the DP steel (Figure 79A), there is no crossover point, and the T-direction tensile 

flow stress is lower than that in the L-direction throughout the entire tensile test.  Recall that, for 

the DP steel, the cross-softening effect is strongest for the UT prestrain mode (see Figure 65, 

Figure 68 and Figure 73).  Also recall that there is no transition from Type 1 to Type 2 tensile 

behavior in the T-direction at higher UT prestrain levels, within the range examined—in contrast 

to the IF and HSLA steels (see Figure 62B, D and F).  While the low-strain cross-softening effect 

is much more prominent for the DP steel (in contrast to the IF and HSLA steels), the difference 

between the L-direction and T-direction tensile flow stress diminishes rapidly as tensile 

deformation continues.  Thus, there is some ambiguity regarding the relative contributions of 

latent work hardening and prestrain-induced residual stresses to the transient cross-softening 

effect. 

It is reasonable to assume that, since the cross-hardening effect is relatively weak for the 

IF steel and the HSLA steel for the subject prestrain condition, the differential low-strain tensile 

behavior of the DP steel is a direct reflection of a decaying residual stress pattern (established 

during UT prestraining in the L-direction) that is disturbed by tensile deformation in the T-

direction.  Conversely, the prestrain-induced residual stress pattern is reinforced by further L-

direction tensile deformation.  It is likely that, if the T-direction tensile deformation were 

interrupted after a few percent elongation, a new deformation-induced residual stress pattern 

would be measured in the ferrite phase—similar to that developed during the prestrain step, but 

aligned with respect to the principal strain axes of T-direction tensile deformation (see Figure 

75c).  That is, a compressive residual stress would develop in the T-direction (principal direction 
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2), and positive residual stresses would be measured in the L-direction and the thickness 

direction (principal directions 1 and 3, respectively). 

This supposition could be verified (or possibly invalidated) by additional neutron 

diffraction residual stress measurements of samples subjected to two-stage prestrains.  Additional 

valuable insight would be gained not only by measuring deformation-induced residual stresses 

after deformation in simple strain modes (as done in this research program), but also by 

monitoring the changes in the residual stress distribution that occur once the strain path is 

changed, and as deformation progresses along the secondary strain path.  For example, 

considering the post-forming tensile s/e curves of the DP steel after UT prestrain (Figure 79A), it 

would be interesting to examine the deformation-induced residual stresses at 0.5%, 1% and 2% 

tensile deformation in the L and T directions (for starters).  It remains uncertain whether the 

apparent diminishing cross-softening effect of the DP steel (convergent L-direction and T-

direction tensile s/e curves in Figure 79A) is caused by a decaying residual stress pattern, or by 

the evolution of a new residual stress pattern during secondary T-direction tensile deformation, 

or both. 

6.1.5 Tensile Yielding Behavior after PS Prestrain 

Figure 79B shows the post-forming tensile yielding behavior for the PS prestrain mode 

(εmaj = εL = 0.05).  The aforementioned cross-hardening behavior of the IF steel and the HSLA 

steel clearly prevails over other low-strain phenomena, such as the initial mild cross-softening 

observed after UT prestrain (Figure 79A). 

As for the UT prestrain condition (Figure 79A), the DP steel initially shows a clear cross-

softening response after PS prestrain (Figure 79B) that diminishes quickly with increasing tensile 

deformation.  As shown in Figure 77, there is a crossover at about 2% tensile elongation, where 
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the T-direction flow stress exceeds that in the L-direction as tensile deformation continues.  It 

appears that the cross-softening response in the DP steel is relatively insignificant for the PS 

prestrain condition (in contrast to the UT prestrain condition).  However, it is important to realize 

that the mechanism responsible for the cross-softening effect likely affects the L-direction tensile 

behavior after PS prestrain (εmaj = εL), as the strain path has been changed between the prestrain 

step and the secondary tensile deformation.  For the UT prestrain condition (Figure 79A), the L-

direction tensile test is merely a continuation of the prestrain mode of deformation—with no 

strain path change.  As such, the difference between the L-direction and T-direction low-strain 

tensile response after PS prestrain may not reflect the magnitude of the influence of prestrain-

induced residual stresses on post-forming tensile stress/strain behavior, for example.  This is 

especially true for balanced biaxial stretching prestrain, as the prestrain deformation is 

symmetric (next section).  The anticipated effects of prestrain-induced residual stresses on post-

forming tensile yielding behavior are discussed in Section 6.2. 

6.1.6 Tensile Yielding Behavior after BB Prestrain 

The post-forming tensile yielding behavior for the BB prestrain mode (εmaj = εmin = 0.05) is 

shown in Figure 79C.  Clearly, the symmetric post-forming tensile response is a reflection of 

symmetry of the prestrain mode.  That is, as the materials were deformed equally in the L and T 

directions during the prestrain step, it follows that the deformation response is similar for tension 

applied in the L and T directions.  The minor variations in L-direction and T-direction yielding 

behavior for each material reflect the intrinsic anisotropy in mechanical properties reported for 

the as-produced condition (Table VII). 

Again, it is important to consider that the IF steel and the HSLA show Type 2 behavior in 

the L and T directions after BB prestrain, while the DP steel exhibits Type 1 behavior in both 
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directions.  Latent work hardening appears to affect symmetrically the post-forming tensile 

response of the IF and HSLA steels after BB prestrain, while latent hardening is either absent or 

masked (by large prestrain-induced residual stresses, for example) in the case of the DP steel. 

6.1.7 A Closer Look at Post-Forming Tensile Work Hardening 

In reviewing Table XII, it is clear that the PS prestrain mode reveals the most interesting post-

forming tensile response behavior—in terms of both material differences and directionality in 

tensile behavior (L-direction vs. T-direction).  For the particular PS prestrain condition 

considered in this portion of the analysis (εmaj = εL = 0.05), it was found that the IF steel and the 

HSLA exhibit the characteristics of latent work hardening during subsequent T-direction tensile 

deformation.  The cross-hardening effect results in Type 2 tensile behavior (Section 5.3.1) that is 

characterized by grossly unbalanced contributions of uniform elongation (UEL) and post-

uniform elongation (PUEL) to the total elongation (TEL), where the UEL is severely diminished 

(around 1% or less), and PUEL is nearly equivalent to TEL.  The characteristics of cross-

hardening and flow softening, along with their associated mechanisms, are discussed in Sections 

2.7.4 and 2.7.5.  Perhaps more importantly, the DP steel shows no such latent work hardening 

effect and, in fact, reveals a distinct cross-softening behavior, where the T-direction flow stress is 

lower than that in the L-direction—at and immediately following yielding.  In the following, the 

T-direction post-forming tensile stress/strain behavior, after PS prestrain (εmaj = εL = 0.05), will 

be examined more closely. 

The T-direction post-forming tensile stress/strain curves for the PS prestrain mode 

(Figure 77) are re-plotted in Figure 80A.  For each curve the ultimate tensile strength (UTS) is 

marked as “Max. Stress” on the diagram, where the UTS is defined as the maximum engineering 

stress recorded during a tensile test.  The engineering strain corresponding to the UTS (the UEL 
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value) usually marks the beginning of diffuse necking, where the work hardening rate is matched 

by the geometrical thinning associated with tensile deformation (77).  Note that, for the IF steel 

and the HSLA steel, the maximum stress (UTS) occurs at 0.5% and 1.1% tensile engineering 

strain, respectively.  Correspondingly, the post-uniform elongation (PUEL) values are 

respectively 39.8% and 17.9% (significantly higher than the T-direction PUEL values reported 

for the as-produced condition, Table VII).  In reviewing the as-produced tensile stress/strain 

curves of the IF steel, the HSLA steel and the DP steel (Figure 57A and Figure 58A), “normal” 

engineering tensile stress/strain behavior (Type 1 behavior) may be characterized by more or less 

balanced contributions of uniform and post-uniform elongation to the total elongation.  

Additionally, “normal” stress/strain behavior is characterized by downward curvature of the 

engineering stress/strain curve at all points after the UTS (during post-uniform elongation).  In 

this context, the IF steel and the HSLA steel certainly do not show “normal” tensile stress/strain 

behavior after the maximum engineering stress (UTS). 

For the IF steel, the s/e curve exhibits upward curvature immediately after the maximum 

stress and, upon further tensile deformation, shows a transition toward downward curvature, and 

a second local maximum occurs in the s/e curve at 16.1 %.  At all points after the second local 

maximum, the curvature of the s/e curve is downward (characteristic of a true diffuse necking 

response and “normal” post-uniform elongation behavior).  This behavior is similar to the 

“8x0(T)” curve in Figure 46 reported by Yan et al. (62) and the schematic illustration of latent 

work hardening behavior in Figure 47 given by Toyoda et al. (63).  The HSLA steel exhibits 

behavior similar to that of the IF steel, where the s/e curve assumes upward curvature 

immediately after the maximum stress value.  No second local maximum is observed for the 

HSLA steel however, and an inflection toward downward curvature occurs at about 5% 
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engineering strain.  This behavior is similar to the “12x0(T)” curve in Figure 46 (62).  For the DP 

steel, the maximum stress (UTS) occurs at approximately 10.8% and the s/e curve has downward 

curvature throughout the entire tensile test (typical Type 1 tensile stress/strain behavior). 
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Figure 80:  A closer look at the transverse (T-direction) tensile stress/strain behavior after plane 
strain (PS) prestrain (εmaj = εL = 0.05) for the IF steel, HSLA steel and DP steel.  In (A), the s/e 
curves are shown with maximum stress values as marked, and (B) shows the true stress/strain 
(σ/ε) behavior up to ε = 0.2 (maximum engineering stress values marked by stars).  Also in (B) 
are the work hardening rate (dσ/dε-vs-ε) curves.  See text for details. 
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The engineering stress/strain (s/e) curves from Figure 80A were converted to true 

stress/strain (σ/ε) curves and are shown in Figure 80B (up to ε = 0.2), along with the respective 

work hardening rate curves (dσ/dε-vs-ε) that correspond to each material.  For each σ/ε curve, 

the maximum engineering stress (UTS) values from Figure 80A are marked by stars (first 

instance where dσ/dε = σ).  For the IF steel, the work hardening rate falls below zero (dσ/dε is 

negative) after the maximum stress value, but rises shortly thereafter (the initial portion of the 

work hardening rate curve has been omitted for clarity).  As tensile deformation continues, dσ/dε 

rises above σ at ε = 0.046 (4.7% elongation); then reaches a local maximum value at ε  = 0.079 

(8.2% elongation); then decreases to intersect σ again at ε ~ 0.15 (16.1% elongation).  In the 

context of “normal” stress/strain behavior, the end of uniform elongation (the start of diffuse 

necking) in a sheet tensile test is normally uniquely defined by dσ/dε = σ.  For the particular 

example shown in Figure 80B for the IF steel, the condition that dσ/dε = σ is apparently satisfied 

three times in a single tensile test as follows: 

- dσ/dε = σ at 0.5% elongation (dσ/dε decreasing—maximum engineering stress), 

- dσ/dε = σ at 4.7% elongation (dσ/dε increasing—inconsequential), and  

- dσ/dε = σ at 16.1% elongation (dσ/dε decreasing—true necking begins?). 

In essence, it can be said that, after the initial latent work hardening and flow softening effects, 

the IF steel “recovers” and displays a “normal” tensile response in the T-direction.  For the IF 

steel, the transition from Type 1 to Type 2 post-forming tensile behavior (T-direction) occurs at 

an effective prestrain around 0.05 (εmaj = εL) for the PS mode of prestrain (see Figure 63B).  As 

such, it is rather fortuitous that the unique behavior illustrated by the IF steel in Figure 80 was 

captured and observed here.  For lower amounts of PS prestrain, the T-direction tensile s/e 

curves of the IF steel resemble that for the UT prestrain condition (IF steel: T-direction tensile 
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test) shown in Figure 76, where the cross-hardening effect is merely a bump or inflection shortly 

after yielding.  At higher amounts of PS prestrain, the T-direction tensile s/e curves show no 

second local maximum in the s/e curve after the UTS (true Type 2 behavior).  Characteristics of 

both Type 1 and Type 2 behavior are clearly observed for the IF steel in Figure 80.  For instance, 

if the second local maximum were considered the end of uniform elongation (UEL = 16.1%, 

rather than 0.5%), the post-uniform strain would be 24.2%, rather than 39.8%. 

Regardless of one’s preferred interpretation of “uniform elongation”, it is certainly true 

that the IF steel exhibits a great deal of residual tensile ductility beyond the maximum stress 

value at 0.5% engineering strain.  Furthermore, it is not unusual that dσ/dε = σ multiple times 

during a tensile test.  Take, for instance, the case of the HSLA steel in the as-produced condition 

(T-direction tensile test shown in Figure 58).  The post-yielding inflection is large enough such 

that a local maximum in engineering stress occurs at about e = 0.3% (dσ/dε = σ), while the 

necking strain (UEL) reported in Table VII is 16.9% elongation (where again, dσ/dε = σ).  

Another instance where dσ/dε = σ must occur between these two strain values.  In this type of 

analysis, it may be more appropriate to qualify the definition of the necking strain (or uniform 

elongation, UEL) as the last local maximum on the engineering tensile stress/strain curve.  The 

reason that the IF steel behavior in Figure 80 appears so unusual is that the last local maximum 

occurs after the maximum stress value. 

For the HSLA steel (Figure 80B), the T-direction tensile work hardening behavior after 

PS prestrain (εmaj = εL = 0.05) is relatively easier to describe in terms of the qualified definition 

of uniform elongation (above).  For the HSLA steel in this particular prestrain condition, the last 

local maximum in the engineering tensile s/e curve corresponds to the maximum engineering 

stress (UTS).  As such, after the UTS, dσ/dε < σ throughout the remainder of the tensile test, as 
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shown in the diagram (dσ/dε = σ only at 1.1% elongation).  However, it is clear that the HSLA 

steel behaves very similarly to the IF steel after the maximum engineering stress (marked by the 

star).  The work hardening rate (dσ/dε) drops below the true flow stress (σ), but begins to rise 

shortly thereafter (again the initial portion of the work hardening curve has been omitted for 

clarity).  Unlike the case of the IF steel, the work hardening rate never exceeds the true flow 

stress after the UTS and reaches a maximum at ε = 0.053 (5.4% elongation).  Although the work 

hardening rate of the HSLA steel is higher than that of the IF steel in this strain interval, the 

higher inherent strength level of the HSLA steel precludes the incidence of further intersection 

between the dσ/dε-vs-ε curve and the σ-vs-ε curve.  Recall that, for the HSLA steel, the 

transition from Type 1 to Type 2 post-forming tensile behavior (T-direction) occurs at an 

effective prestrain of less than 0.05 (εmaj = εL) for the PS mode of prestrain (see Figure 63D).  At 

some lower undetermined PS prestrain level (greater than 0.035, but less than 0.05), the unique 

transitional behavior shown by the IF steel would likely be observed.  In a future analysis, it 

would be interesting to explore these tensile deformation vagaries in greater detail, in the context 

of micromechanical deformation mechanisms, and the implications toward plastic instability, 

strain localization, and necking behavior in tension. 

However, for this research program, the most interesting result is the rather uninteresting 

post-forming tensile response of the DP steel.  For the PS prestrain condition (εmaj = εL = 0.05), 

the DP steel exhibits true Type 1 tensile stress/strain behavior in the T-direction tensile test, 

where yielding is followed by significant uniform elongation—the limit of which being defined 

by the intersection of a monotonically decreasing work hardening rate and the true tensile flow 

stress (dσ/dε = σ).   
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6.2 POST-FORMING RESIDUAL STRESS DISTRIBUTIONS IN DP STEELS 

Throughout the discussion of the post-forming tensile stress/strain behavior (Section 6.1) various 

references were made to the possible influence of deformation-induced residual stresses, such as 

those listed in Table IX and Table X and shown graphically in Figure 75.  In this section, the 

anticipated relationships between prestrain-induced residual stresses and post-forming tensile 

yield strength and differential hardening will be explored.  The concept of stress state 

superposition will be drawn upon, and Mohr’s circle of stress will be used as a conceptual 

visualization tool. 

6.2.1 Internal Stress Development in DP Steels  

Sugimoto et al. (65) proposed a model that describes internal stress development in DP steels 

during plastic deformation.  The model is similar in form to that developed by Zhonghua and 

Haicheng (16)—discussed in Section 2.5.3 in the context of the Bauschinger Effect.  Sugimoto et 

al. began by recognizing that, during plastic deformation of a DP steel, the magnitude of the 

plastic strain in the ductile ferrite phase, , exceeds that of the much harder martensite phase, 

 (strain partitioning—see Section 

F
ijε

M
ijε 2.4.2).  As a result, internal stresses develop, and the total 

applied stress tensor, , is partitioned between the ferrite phase ( ) and the martensite phase 

( ) as follows: 

A
ijσ F

ijσ

M
ijσ

( )M
ij

F
ij

A
ij

F
ij fK ε−ε−σ=σ  and                                                  [30a] 

 ( ) ( )M
ij

F
ij

A
ij

M
ij Kf1 ε−ε−+σ=σ ,                                                   [30b] 

where f is the volume fraction of martensite in the DP steel, and K is an elastic property factor 

defined as  
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( )
( )2115

57EK
ν−
ν−

= ,                                                                [31] 

where E and ν are Young’s modulus and Poisson’s ratio, respectively.  Then it was assumed that, 

after prestraining and full relaxation of externally applied stresses, the ferrite and martensite 

phases have respective plastic strains of and  after elastic recovery (the superscript “p” 

means plastic or permanent deformation).  The resultant deformation-induced residual stresses in 

the ferrite phase ( ) and the martensite phase ( ) are given as follows (in light of 

Equation 30): 

p,F
ijε p,M

ijε

F
ij,drσ M

ij,drσ

( )p,M
ij

p,F
ij

F
ij,dr fK ε−ε−=σ  and                                                       [32a] 

( ) ( )p,M
ij

p,F
ij

M
ij,dr Kf1 ε−ε−=σ .                                                      [32b] 

Now, if it is assumed that the martensite phase is unyielding ( = 0), Equation 32 becomes p,M
ijε

( )p
ij

F
ij,dr fK ε−=σ  and                                                              [33a] 

( ) ( )p
ij

M
ij,dr Kf1 ε−=σ ,                                                              [33b] 

where  is the total plastic strain tensor of the DP steel (  = ).  It should be noted that the 

components of  and  must balance over the entire volume of material with respect to 

the volume fractions of ferrite and martensite.  From Equation 33, it is predicted that the 

components of the deformation-induced residual stress tensor in the ferrite phase ( ) are 

proportional to the components of the prestrain tensor ( ), but opposite in sign.  Conversely, 

the components of  are proportional to the components of , and of the same sign (note 

that f and K are positive values). 

p
ijε p,F

ijε p
ijε

F
ij,drσ M

ij,drσ

F
ij,drσ

p
ijε

M
ij,drσ p

ijε
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Now, with Equation 33a, it is possible to estimate the types of post-forming, deformation-

induced residual stress distributions that develop in DP steels for various prestrain modes.  

Recall that, in Table II, the principal strain relationships associated with uniaxial tension (UT), 

plane strain (PS) and balanced biaxial stretching (BB) modes of prestrain are given.  From Table 

II and Equation 33a, the following ferrite phase residual stress distributions are anticipated 

(assuming an isotropic material):  

For UT prestrain: 

12
1

12
1

1
F

ij,dr

12
1

12
1

1
p
ij

fK00
0fK0
00fK

00
00
00

ε
ε

ε−
=σ⇒

ε−
ε−

ε
=ε ,            [34a] 

For PS prestrain: 

1

1
F

ij,dr

1

1
p
ij

fK00
000
00fK

00
000
00

ε

ε−
=σ⇒

ε−

ε
=ε , and                   [34b] 

For BB prestrain: 

1

1

1
F

ij,dr

1

1

1
p
ij

fK200
0fK0
00fK

200
00
00

ε
ε−

ε−
=σ⇒

ε−
ε

ε
=ε .             [34c] 

A similar exercise would reveal the anticipated residual stress distributions of the martensite 

phase.  The relationships given in Equation 34 are shown schematically by Mohr’s circle 

representation in Figure 81.  For this figure, DP steel samples have been hypothetically 

prestrained to the same major strain level (εmaj = ε1) in each of the UT, PS and BB prestrain 

modes.  The Mohr’s circle representation is a convenient way of visualizing a three-dimensional 

stress state in two dimensions (77).  The principal components of  (hereafter called σF
ij,drσ dr,ij as 

in Section 4.4.3) for each residual stress state are marked by the appropriate principal directions 

(1, 2 and 3) along the normal stress (σ) axis in Figure 81.  Note that σdr,1 is the same for each 

prestrain mode (as εmaj = ε1 is the same for each prestrain mode).  The dotted lines above and 
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below the normal stress axis mark the critical shear stress, τc, (defined in Section 5.2).  For this 

analysis, it is assumed that τc is the same for each prestrain condition.  The following elements of 

Mohr’s circle representation are important for this analysis. 

- For each stress state in Figure 81, three circles are drawn: one that passes through 

σmax and σmin (σdr,3 and σdr,1, respectively); one that passes through σmax and the 

intermediate principal stress (σdr,2); and one that passes through σmin and the 

intermediate principal stress.  

- If the intermediate principal stress is equal to σmax (or σmin), the corresponding circle 

that connects the intermediate principal stress to σmax (or σmin) reduces to a point on 

the Mohr’s circle diagram (Examples: Figure 81A and C).   

- For any given stress state, the area bound by the largest circle, but outside the other 

two circles, defines all possible alternate representations of each stress state (after an 

appropriate stress axis rotation).   

- If the largest circle on the diagram (that which passes through σmin and σmax) touches 

the lines marked τc, yielding is predicted (note that this another way of expressing the 

Tresca yield criterion). 

- The intermediate principal stress component (less than σmax, but greater than σmin) has 

no anticipated effect on yielding (another reflection of the Tresca Yield Criterion). 

- The principal directions 1, 2 and 3 refer to the original principal strain directions for 

each prestrain mode: 1 – major strain direction, 2 – minor strain direction, and 3 – 

thickness strain direction.  
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Figure 81:  Schematic Mohr’s circle representation of the anticipated effects of strain path on the 
deformation-induced ferrite residual stress state in a dual-phase steel—(A) uniaxial tension 
prestrain, (B) plane strain prestrain, and (C) balanced biaxial stretching prestrain.  See text for 
details and assumptions made. 
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The Mohr’s circle representation of σdr,ij for the UT, PS and BB prestrain modes are shown 

schematically in Figure 81A, B and C, respectively.  Note that, as the principal strain ratio, β, of 

the prestrain mode increases, the following are observed: 

- The σdr,1 component is negative and does not change with β (because ε1 = εmaj is 

positive, and also does not change with β, by convention). 

- The size of the largest circle increases (the maximum residual shear stress approaches 

the critical shear stress). 

- The σdr,2 component moves from right to left on the diagram (changes from positive 

to negative as β changes from negative to positive, and is zero when β = 0). 

- The σdr,3 component moves from left to right on the diagram (becomes increasingly 

positive) as the magnitude of the thickness strain (negative) increases for a fixed 

major strain value. 

As a hypothetical example, consider a DP steel that is prestrained to a specified major strain 

level in the UT, PS and BB prestrain modes (εmaj = ε1).  Also assume that the resultant 

deformation-induced residual stress component in principal direction 1 (-fKε1) is –100 MPa 

(same for all prestrain modes).  From Equation 34, the remaining prestrain-induced residual 

stress components can be calculated for each prestrain mode.  The results of this hypothetical 

example are shown in Figure 82.  Note the similarity between Figure 82 and Figure 75C. 

 From this analysis, it is clear that the distribution of deformation induced residual stresses 

in the ferrite phase is expected to depend greatly upon the mode of prestrain.  Furthermore, it is 

expected that the post-forming tensile response depends not only upon the prestrain mode, but 

also upon the direction of applied subsequent tension (e.g., parallel or perpendicular to the major 

prestrain axis).  In the following section, the Mohr’s circle representation is extended to illustrate 

 
150



the expected ways in which deformation-induced residual stresses affect the post-forming tensile 

yield strength for DP steels. 
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Figure 82:  Schematic illustration of the influence of strain path on post-forming residual stress 
components in a dual-phase steel.  The numbers 1, 2 and 3 refer to the principal directions and 
correspond to the longitudinal (L), transverse (T) and thickness dimensions.  See text for details. 

 

6.2.2 Superposition of Residual and Applied Stresses 

Now that the anticipated influence of prestrain path on post-forming, deformation-induced 

residual stress distributions in DP steels has been established (Equations 33 and 34 and Figure 

81), the principle of stress state superposition can be used to illustrate the expected influence of 

various prestrain-induced residual stress states on the directionality of post-forming tensile yield 

strength.  The principle of superposition (77) is that two independent stress states (  and ) 

can be combined by direct superposition, where the individual components of which are added 

linearly to arrive at a third composite stress state, .  Or, in tensor notation: 

1
ijσ 2

ijσ

3
ijσ
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Specifically,  may be a prestrain-induced residual stress state, and  may be a post-forming 

applied elastic stress such as uniaxial tension in a tensile test.  Now consider that, for each of the 

deformation-induced residual stress states shown in 

1
ijσ 2

ijσ

Figure 81, an elastic uniaxial tensile stress (< 

2τc) is applied in either the sheet longitudinal (L) direction (principal direction 1) or the sheet 

transverse (T) direction (principal direction 2).  Using the principle of superposition, the 

composite stress states are shown schematically in Figure 83 through Figure 85 for the UT 

prestrain mode, the PS prestrain mode and the BB prestrain mode.   

For the case of UT prestrain (εmaj = ε1 = εL), the superposition of an elastic uniaxial 

tension stress over the prestrain-induced residual stress state is shown schematically in Figure 

83A for L-direction tension (tension axis in principal direction 1) and in Figure 83B for T-

direction tension (tension axis in principal direction 2).  Note that, although the L-direction and 

T-direction applied tensile stresses are of the same magnitude, very different composite stress 

states are realized by the respective superpositions.  For tension applied in the L-direction, the 

maximum shear stress, after stress state superposition (top of the circle on the Mohr’s circle 

diagram), is well below the critical shear stress, τc (i.e., the material is far from yielding).  

However, for the same tensile stress applied in the T-direction, yielding is expected, where the 

largest circle on the Mohr’s circle diagram (after stress state superposition) is tangent to the line 

marked by τc.  Thus, the essence of the cross-softening effect in DP steels is predicted by this 

simplified treatment.  The applied tensile stress in the L-direction would need to be increased 

significantly for the yielding criterion to be met (i.e., such that τmax = τc). 

 
152



 
153

A similar analysis is shown for the case of PS prestrain in Figure 84A for L-direction 

tension (tension axis in principal direction 1) and in Figure 84B for T-direction tension (tension 

axis in principal direction 2).  The same conclusion is reached, as for UT prestrain condition, 

where a cross-softening effect is predicted, albeit smaller than that predicted for the UT prestrain 

condition.  In contrasting Figure 83A [L-direction tension after UT prestrain (εmaj = ε1 = εL)] and 

Figure 84A [L-direction tension after PS prestrain (εmaj = ε1 = εL)], the maximum shear stress 

(top of largest circle on the Mohr’s circle diagram, after superposition) is greater for the latter 

case.  Hence the L-direction tensile yield stress after PS prestrain would be lower than that after 

UT prestrain (assuming τc is the same for both prestrain conditions).  Following a similar 

argument (contrasting Figure 83B and Figure 84B) it is expected that the T-direction yield stress 

after PS prestrain would be higher than that after UT prestrain.  It appears that, as the minor 

strain (εmin = ε2 = εT) of the prestrain mode increases, the L-direction post-forming tensile yield 

stress decreases while that in the T-direction increases (again, it is assumed for this exercise, that 

τc is the same for all prestrain conditions).   

For the BB prestrain condition (Figure 85), the superposition of deformation-induced 

residual stresses and applied tension predicts isotropic hardening in the context of the post-

forming tensile yield strength.  As the prestrain mode exhibits planar symmetry, it follows that 

the post-forming tensile response is symmetric. 

The results of the preceding simplified analysis of the effects of prestrain mode on post-

forming residual stress distributions and the stress state superposition exercise are consistent with 

the observations of differential hardening for the DP steel (see Figure 68 through Figure 70).  In 

the next section, the expected relationship between deformation-induced residual stresses and 

post-forming tensile yield strength will be examined more closely. 



         Residual Stress State           Applied Tension                 Superposition 

(A) 

1 2
3 σ

τ
τc

τc

UT Prestrain, εmaj = ε1

+

 

12
3 σ

τ
τc

τc

L (1) Direction

 

=

 

12

3 σ

τ
τc

τc

 

(B) 

1 2
3 σ

τ
τc

τc

UT Prestrain, εmaj = ε1

+

 

21
3 σ

τ
τc

τc

T (2) Direction

 

=

 

1 23
σ

τ
τc

τc

 

Figure 83:  Superposition of applied tension and residual stress states for (A) uniaxial tension prestrain followed by uniaxial tension in 
the longitudinal direction (< 2τc), and (B) uniaxial tension prestrain followed by uniaxial tension in the T direction (< 2τc).  [1 = 
longitudinal (L) direction; 2 = transverse (T) direction; and 3 = thickness direction.] 
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Figure 84:  Superposition of applied tension and residual stress states for (A) plane strain prestrain followed by uniaxial tension in the 
longitudinal direction (< 2τc), and (B) plane strain prestrain followed by uniaxial tension in the T direction (< 2τc).  [1 = longitudinal 
(L) direction; 2 = transverse (T) direction; and 3 = thickness direction.] 
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Figure 85:  Superposition of applied tension and residual stress states for (A) balanced biaxial prestrain followed by uniaxial tension in 
the longitudinal direction (< 2τc), and (B) balanced biaxial prestrain followed by uniaxial tension in the T direction (< 2τc).  [1 = 
longitudinal (L) direction; 2 = transverse (T) direction; and 3 = thickness direction.] 
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6.2.3 Prestrain-Induced Residual Stresses and Differential Hardening 

Recall the maximum shear stress (Tresca) yield criterion (discussed in Section 5.2), where 

cminmax 2τ=σ−σ .                                                                 [36] 

Clearly, in order to predict yielding, by this or any other similar yield criterion, knowledge of the 

critical shear stress, τc, is essential.  In simple cases such as non-previously-deformed, isotropic 

materials, such knowledge becomes readily available simply by doing a tensile test, where the 

measured yield strength in tension is equal to twice the critical shear stress (Equation 26).  

However, once a material is deformed, the critical shear stress changes as the material undergoes 

work hardening.  The evolution of the critical shear stress with deformation along various strain 

paths may be estimated by measuring the stress/strain response in tension and extrapolating the 

behavior, with consideration of effective stress and effective strain, to other modes of 

deformation (also discussed in Section 5.2).  However, with effects such as latent work 

hardening, the Bauschinger Effect and deformation-induced residual stresses, precise 

determination of the critical shear stress becomes increasingly dubious in situations involving 

significant deformation along complex strain paths (84).  In the presence of a triaxial 

deformation-induced residual stress distribution, it is a non-trivial task to predict the post-

forming tensile yield strength, for example.   With a few simplifying assumptions, however, the 

difference in the tensile yield strength (i.e., differential hardening) between two principal 

directions may be estimated if knowledge of the prestrain-induced residual stress distribution is 

known, as discussed below.   
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 With the convention that principal direction 1 is the longitudinal (L) direction (rolling 

direction); principal direction 2 is the transverse (T) direction; and principal direction 3 is the 

sheet thickness direction, the following two expressions follow from the Tresca yield criterion 

and the principle of superposition: 

( ) ( ) c3,dr2,dr1,drL 2,minYS τ=σσ−σ− , and                                        [37a] 

( ) ( ) c3,dr1,dr2,drT 2,minYS τ=σσ−σ− ,                                               [37b] 

where YSL and YST are the measured (applied) tensile yield stresses in the L-direction and in the 

T-direction, respectively, and σdr,1, σdr,2 and σdr,3 are the principal components of σdr,ij. The 

expression “min(A, B)” means the minimum value between principal residual stress components 

A and B.  In Equation 37a, (YSL – σdr,1) is σmax at yielding during an L-direction tensile test (see 

Equation 36).  Similarly, in Equation 37b, (YST – σdr,2) is σmax at yielding during a T-direction 

tensile test.  So, with no specific knowledge of the critical shear stress, τc, for a general 

prestrained condition, Equation 37 results in two equations with three unknowns (i.e., YSL, YST 

and τc).  However, as the difference in tensile yield strength in the L-direction and the T-direction 

is of interest here, Equations 37a and 37b may be combined to get 

( ) ( )3,dr2,dr3,dr1,dr2,dr1,drLT ,min,minYSYSYS σσ−σσ+σ−σ=−=Δ ,                  [38] 

where ΔYS is the difference between the tensile yield strength in the T-direction and in the L-

direction.  So, with this convention, ΔYS > 0 means cross-hardening, while ΔYS < 0 means 

cross-softening.  In formulating Equation 38, it was assumed that, in the absence of a 

deformation-induced residual stress distribution, the material is isotropic (no crystallographic 

texture effects, for example).  It was also assumed that the only source of post-forming 
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anisotropy is a distribution of deformation-induced residual stresses (no latent work hardening, 

for example). 

If the hypothetical deformation-induced residual stress distributions of Figure 82 are 

assumed, estimations of differential hardening (ΔYS) can be made.  For example, the 

hypothetical UT prestrain condition (β = -0.5) has the following principal components of 

deformation induced residual stress: σdr,1 = -100 MPa, σdr,2 = σdr,3 = 50 MPa.  Inserting these 

values into Equation 38 gives ΔYS = (-100) – 50 – 50 + (-100) = -300 MPa (strong cross-

softening effect).  Similarly, for the PS prestrain condition, ΔYS = -200 MPa (milder, yet 

significant cross-softening effect), and for the BB prestrain condition, ΔYS = 0 (isotropic 

hardening).  The predicted influence of prestrain path on differential hardening behavior is 

shown in Figure 86.  In this figure, a critical shear stress of 250 MPa is assumed for each 

prestrain condition, for illustrative purposes.  As discussed above in Section 6.2.2, the magnitude 

of the cross-softening effect in DP steels is expected to decrease and approach isotropic 

hardening as the surface strain ratio, β, increases. 

6.3 IMPLICATIONS OF NEUTRON DIFFRACTION RESULTS  

In this section, the calculated deformation-induced residual stresses, based on neutron diffraction 

data (Section 5.5.2) are directly related to the post-forming tensile yield behavior of prestrained 

samples of IF steel, HSLA steel and DP steel.  Specifically, the 5% major strain condition (εmaj = 

εL = 0.05) is considered for the prestrain modes of uniaxial tension (UT), plane strain (PS) and 

balanced biaxial stretching (BB).   
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Figure 86:  Schematic illustration of the influence of prestrain path on the post-forming tensile 
yield strength (YS) of a dual-phase steel.  A critical shear stress, τc, of 250 MPa and the 
hypothetical residual stress distributions shown in Figure 82 are assumed. 

 

6.3.1 Predicted Differential Hardening Based on Diffraction Data 

The deviatoric components, σ’dr,ij, of the calculated deformation-induced residual stresses 

(shown in Figure 75) were entered into Equation 38 to predict the differential hardening behavior 

(ΔYS) for each prestrain condition listed in Table XI.  For this portion of the analysis, recall that 

the average values based on {200} and {211} reflections were used for the residual stress 

calculations (see Section 5.5.2).  To account for the large concentration of martensite (0.15 

volume fraction—see Section 5.1.1) the deformation-induced residual stress components were 

multiplied by 0.85 for the DP steel, as the measured stresses pertain only to the ferrite phase.  

The predicted differential hardening behavior, based on neutron diffraction residual stress 

measurements, is summarized in Figure 87.  For all materials in the 5% prestrain condition (UT, 

PS and BB prestrain modes), the predicted differential hardening response (ΔYS) increases as β 

increases (as the minor strain increases), as predicted in Section 6.2.3. 
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Figure 87:  Predicted differential hardening behavior for various prestrain modes (εmaj = εL = 
0.05).  Predictions are based on deformation-induced residual stress calculations that are based 
on neutron diffraction measurements.  See text for details of the analysis. 

 

For the UT prestrain condition (β ~ -0.5), negative differential hardening (cross-

softening) is predicted for the IF steel, the HSLA steel, and the DP steel.  The DP steel is 

expected to exhibit the largest cross-softening effect (as was shown experimentally in Section 

5.4.4).  For the IF steel and the HSLA steel, nearly isotropic hardening (based on the 0.2 % offset 

flow stress, σ0.2%OFS) or even a mild cross-hardening response (based on the flow stress at 1% 

tensile elongation, σ1%FS) was observed experimentally for the UT prestrain mode (see Figure 

68).  Recall the unique and unexpected initial cross-softening effect (immediately after yielding) 

exhibited by the IF steel and the HSLA steel for the UT prestrain condition (see Figure 79A).  It 

appears that this behavior is reflected in the neutron diffraction measurements, and that the initial 

post-forming tensile yielding behavior (i.e., at very low tensile strains) is strongly influenced by 
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residual stresses induced by prestraining.  An alternate way to characterize the initial yielding 

behavior, in light of this observation, is discussed in 6.3.2 below. 

For the PS prestrain condition (β ~ 0 in Figure 87) it is predicted that the IF steel and the 

HSLA steel exhibit a mild cross-hardening effect and that the DP steel exhibits a significant 

cross-softening response (albeit smaller than that predicted for the UT prestrain condition)—

consistent with experimental observations (see Figure 69).   

For the BB prestrain condition (β ~ 1 in Figure 87) a cross-hardening response is 

predicted for the IF steel and the HSLA steel (larger than that predicted for the PS prestrain 

condition) and a small cross-softening response is predicted for the DP steel.  These observations 

generally conflict with experimental observations for the IF steel and the DP steel, where the 

post-forming tensile response after BB prestrain is generally isotropic (ΔYS ~ 0, see Figure 70).  

The experimentally observed cross-hardening response of the HSLA steel, for the BB prestrain 

mode, was attributed to larger intrinsic anisotropy (Table VII).  The correlation between 

predicted and experimental differential hardening behavior is discussed in further detail in 

Section 6.3.3. 

6.3.2 Various Measures of Tensile Yield Stress 

In Section 6.1.4 through 6.1.6, the post-forming tensile yielding behavior was discussed.  It was 

recognized that, depending upon the method used to measure the yield strength, different 

conclusions might be reached when assessing the relative intensities of the various differential 

hardening effects observed in this analysis.  Figure 79A (UT prestrain condition, εmaj = εL = 0.05) 

gives the clearest example, where, for the IF steel and the HSLA steel, one might measure a 

cross-softening response (at very low tensile strains—immediately after yielding); or an isotropic 
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hardening response (when the 0.2% offset flow stress is considered); or a mild cross-hardening 

response (when the flow stress at 1% tensile strain is considered).  For the DP steel, the cross-

softening response is very large initially (a few hundred MPa, by inspection), but diminishes 

very quickly as tensile deformation continues.  It is recognized that an alternate measure of 

“yield strength” is needed to account for the very-low-strain differential hardening effects that 

may be overlooked by conventional measures of “yield strength”. 

In evaluating and assessing the connection between prestrain-induced residual stresses 

and the post-forming tensile yielding response, it is important to consider the flow behavior 

immediately after yielding for the following two reasons: 1) as tensile deformation continues 

beyond yielding, the residual stress distributions induced during prestraining are likely disturbed, 

and other internal stress distributions develop as a result of the tensile deformation (see 

discussion in Section 6.1.4), and 2) other competing phenomena such as latent work hardening 

are manifested by dislocation interactions and become more prominent as deformation 

continues—thereby obscuring the connection between the measured post-forming tensile 

response and the measured residual stresses induced by prestrain (see discussion in Section 

5.4.4). 

As an alternative measure of tensile yield strength, the flow stress at a specified tangent 

modulus value (the instantaneous slope of the stress/strain curve) may be used to reflect the 

transition from elastic deformation to plastic deformation in cases of continuous yielding.  As an 

example for the DP steel, the post-forming L-direction and T-direction tensile s/e curves from 

Figure 79A (UT prestrain condition: εmaj = εL = 0.05) are re-plotted in Figure 88, where various 

ways to measure differential hardening (ΔYS = YST – YSL) are shown.  Figure 88A shows ΔYS 

based on the 1% tensile flow stress (σ1%FS), where ΔYS (Δσ1%FS) = -80 MPa—a significant 
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cross-softening effect.  A substantially larger cross-softening effect is measured (Figure 88B) 

when ΔYS is based on the 0.2% offset flow stress (σ0.2%OFS), where ΔYS (Δσ0.2%OFS) = -189 

MPa.  However, it appears that the cross-softening effect, at very low strains (immediately after 

yielding) is even larger than that determined by Δσ0.2%OFS.  Because of the gradual, continuous 

transition from elastic deformation to plastic deformation, it is difficult to define the precise 

stress value that defines “yielding”.  As such, the stress value that corresponds to a tangent 

modulus (TM) value of 100 GPa (half of the bulk Young’s modulus) was arbitrarily chosen to 

reflect the very-low-strain elastic-to-plastic transition in the post-forming tensile stress/strain 

curves.  This alternate definition of “yield stress” is called σTM=100, and ΔσTM=100 is the difference 

between the T-direction and L-direction tensile flow stresses at TM = 100 GPa.  Thus, ΔσTM=100 

is a truer reflection of the initial differential hardening response at very low strains and is 

expected to relate more directly to the measured residual stress distributions in the prestrained 

samples.  Figure 88C shows how ΔσTM=100 is calculated, where ΔYS = ΔσTM=100 = -250 MPa in 

this example.  In the following section, the predicted differential hardening behavior, based on 

the neutron diffraction residual stress measurements (Figure 87), is compared to the 

experimentally determined ΔYS values based on Δσ1%FS, Δσ0.2%OFS, and ΔσTM=100. 

6.3.3 Predicted vs. Experimental Differential Hardening 

The experimental differential hardening behavior (UT, PS and BB prestrain modes: εmaj = εL = 

0.05) is shown in contrast to the predicted behavior (based on neutron diffraction data) in Figure 

89 (a separate plot for the IF steel, the HSLA steel and the DP steel).  For each material, the 

predicted ΔYS values from Figure 87 are shown along with the experimental ΔYS values based 

on σ1%FS, σ0.2%OFS, and σTM=100 (see section 6.3.2 above for explanation of these terms). 
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Figure 88:  Various ways to measure differential hardening (ΔYS = YST –YSL)—(A) Δσ1%FS, (B) 
Δσ0.2%OFS, and (C) ΔσTM=100.  Here, the DP steel prestrained in uniaxial tension (εmaj = εL = 0.05) 
is used as an example (see Figure 79A). 
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Figure 89:  Predicted and experimentally measured differential hardening for (A) IF steel, (B) 
HSLA steel and (C) DP steel.  The predictions are those shown in Figure 87 (based on neutron 
diffraction data), and the various measures of differential hardening are illustrated in Figure 88. 
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For the IF steel (Figure 89A) and the HSLA steel (Figure 89B), nearly identical 

relationships are shown.  For the UT prestrain condition (β ~ -0.5), ΔσTM=100 (negative) < 

Δσ0.2%OFS (~ 0) < Δσ1%FS (positive), and the predicted ΔYS value (dashed curve) corresponds 

most closely to ΔσTM=100 (recall the complex post-forming tensile yielding behavior of the IF 

steel and the HSLA steel for the UT prestrain condition: Figure 79A).  For the PS prestrain 

condition (β ~ 0), ΔYS depends much less on the choice of yield strength measurement than in 

the UT prestrain case.  For the PS prestrain condition, the deformation-induced residual stress 

distribution is expected to contribute very little to the overall differential hardening response of 

the IF and HSLA steels (the predicted ΔYS value, based on neutron diffraction, is effectively 

zero).  The differential hardening behavior is dominated by latent work hardening for the PS 

prestrain condition (not reflected in the residual stress measurements).   For the BB prestrain 

condition, the neutron diffraction based predictions of ΔYS tend to overestimate the 

experimental values by about 30 MPa.  Considering the assumptions made (e.g., Tresca yield 

criterion, superposition of residual and applied stress states, isotropic materials) and the 

arbitrariness of σTM=100 as a measure of the initial flow stress, the agreement between the 

predicted ΔYS values and the experimentally determined ΔσTM=100 values for the IF steel and the 

HSLA steel is very encouraging.  Although the deformation-induced residual stresses are small 

in comparison to those measured for the DP steel, the trends in differential hardening behavior, 

with respect to prestrain mode, are satisfactorily predicted by the neutron-diffraction based post-

forming residual stress measurements. 

   For the DP steel (Figure 89C), the predicted trends in differential hardening, with 

respect to overall prestrain mode effects, are again in satisfactory agreement with experimental 

values.  It is also clear that the experimental ΔYS value depends very strongly on the choice of 
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yield strength parameter, and that ΔσTM=100 generally correlates best to the predicted values.  The 

very large initial cross-softening effects (negative ΔσTM=100 values) for the UT and PS prestrain 

conditions, and the isotropic hardening response for the BB prestrain condition, are predicted to 

within 50 MPa by use of Equation 38 (YSL = σTM=100,L and YST = σTM=100,T).  Again, these 

results are extremely encouraging, as the large deformation-induced mechanical anisotropy of 

DP steels has been directly related to measured deformation-induced residual stresses for the first 

time.  It is also now understood how residual stresses affect post-forming tensile behavior in DP 

steels (and to a lesser extent, in convention single phase steels).  Prestrain induced residual 

stresses affect primarily the initial tensile yielding behavior and diminish as tensile deformation 

progresses and other mechanisms (e.g., latent work hardening) become more important.  It 

appears that the deformation-induced residual stresses in the DP steel are of such large 

magnitude (in contrast to the IF steel and the HSLA steel) that the effects of latent work 

hardening (e.g., cross-hardening and the associated Type 2 tensile stress/strain behavior) are 

masked. 

As discussed in Section 5.5.2, the average deformation-induced residual stress 

measurements (i.e., the average values given by the {200} and {211} reflections) were 

considered throughout the discussion for clarity (see Figure 75, Figure 87 and Figure 89).  In 

reviewing Table IX and Table X, there are, in some instances, significant differences between 

the calculated deviatoric residual stress components (σ’dr,ij) based on {200} reflections and those 

based on {211} reflections.  In Figure 90 through Figure 92, the experimental ΔσTM=100 values 

are re-plotted along with the predicted values of ΔYS based on neutron diffraction data, for each 

material (IF steel: Figure 90; HSLA steel: Figure 91; and DP steel Figure 92).  Included in each 

figure are the average {200}/{211} predictions (shown earlier) along with the individual 
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predictions based on {200} and {211} reflections (dashed curves).  The separation between the 

individual {200} and {211} prediction curves attests to the uncertainty of the residual stress 

measurements as they are applicable to the bulk behavior of the materials.  The predicted ΔYS 

values based on {200} reflection data are consistently higher than the corresponding predictions 

based on {211} reflections.  This occurrence may be related, in part, to the choice of diffraction 

elastic constants used in Equation 22 to calculate residual stresses (Section 4.4.3).  Considering 

the uncertainty related to the type of reflection used for the residual stress measurements, the 

measured ΔσTM=100 values are within 25 MPa of the “nearest” predicted value (either based on 

{200} or {211} reflection data) for each material in each prestrain condition.   

Van Houtte et al. (67) made the astute and seemingly inarguable observation that, for 

prediction of deformation behavior in complex (changing) strain paths, a crystallographic 

texture-based (anisotropic) yield criterion must be used that also takes the effect of dislocation 

substructure development on work hardening (and work softening) into account.  Based on the 

results of this research program, it is clear that deformation-induced residual stresses must also 

be included in any appropriate, advanced material deformation model.  This assessment is 

especially true for DP steels (and likely for other multiphase steels).  The aforementioned texture 

and substructure development effects are seemingly overshadowed in DP steels by the effects of 

deformation-induced residual stresses.  For the conventional steels considered in this analysis 

(the IF steel and the HSLA steel), the measured deformation-induced residual stresses, and their 

associated effects on post-forming tensile behavior are relatively small in magnitude, albeit 

measurable.  It seems that, for these materials, residual stresses induced by prestrain only affect 

the initial yielding response (at very low plastic strains) during subsequent deformation, and that 

the overall strength evolution and residual ductility are dominated by other factors. 
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Figure 90:  Predicted and experimentally determined differential hardening (ΔσTM=100) for 
various prestrain modes (IF steel, εmaj = εL = 0.05).  Here, the individual {200} and {211} 
predictions are shown by dashed curves as indicated, and the average values (from Figure 87 and 
Figure 89A) are shown by the continuous curve. 
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Figure 91:  Predicted and experimentally determined differential hardening (ΔσTM=100) for 
various prestrain modes (HSLA steel, εmaj = εL = 0.05).  Here, the individual {200} and {211} 
predictions are shown by dashed curves as indicated, and the average values (from Figure 87 and 
Figure 89B) are shown by the continuous curve. 
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Figure 92:  Predicted and experimentally determined differential hardening (ΔσTM=100) for 
various prestrain modes (DP steel, εmaj = εL = 0.05).  Here, the individual {200} and {211} 
predictions are shown by dashed curves as indicated, and the average values (from Figure 87 and 
Figure 89C) are shown by the continuous curve. 
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As an extension of this research program, it would be appropriate to consider the 

statistically preferred ferrite crystallographic orientation (i.e., orientation distribution function, 

ODF) of the DP steel.  In conjunction with grain size and grain shape distributions for the 

various textural components (such as those obtainable by electron back-scattered diffraction 

techniques), one could conceivably determine the most appropriate {hkl} reflections to use for 

calculating deformation-induced residual stresses over the bulk of the deformed sample.  In other 

words, with a complete knowledge of deformation texture and grain size/shape distributions in a 

prestrained DP steel, an abundance algorithm could be applied to the individual residual stress 

values determined by various {hkl} reflections.  Additionally, with greater knowledge of 

crystallographic texture (annealing texture and deformation texture), intrinsic mechanical 

anisotropy could be factored into the relationship between deformation-induced residual stresses 

and post-forming tensile stress strain behavior. 

6.4 PRACTICAL CONSIDERATIONS 

The findings of this research program bear several implications toward the practical application 

of DP steels in terms of formability, manufacturability, and in-service performance.  Each of 

these aspects is addressed separately in the following sections (Sections 6.4.1 through 6.4.3).  

6.4.1 Formability 

The enhanced work hardening behavior and excellent formability of DP steels have been known 

since the earliest references to these unique materials were made (Section 2.1.2).  The analysis of 

post-forming residual tensile ductility for the IF steel, the HSLA steel, and the DP steel (Section 

5.3) suggests a potential advantage of DP steels in complex strain paths where abrupt strain path 
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changes occur.  In cases of orthogonal strain path changes (i.e., the major strain direction of the 

prestrain path is perpendicular to the major strain direction of the secondary strain path), the 

most severe reductions in post-forming tensile ductility were observed for the IF steel and the 

HSLA steel.  Such orthogonal strain path changes have very little effect on the residual tensile 

ductility of DP steels.  It is anticipated that DP steels are particularly well suited for sequential 

multi-stage forming operations—such as tube hydroforming—where strain path changes are 

inherent to the process.  The enhanced post-forming ductility (formability) of DP steels likely 

will improve design flexibility where, otherwise, design limits are dictated by the deterioration of 

formability in complex strain modes.  A particularly important and natural extension of this 

research program would focus on the specific strain modes associated with the various stages of 

tube hydroforming such as tube making, pre-bending, and hydroforming (with and without end 

feeding) (90).    

6.4.2 Manufacturability 

With the increasing application of DP steels in the automotive sector, springback and springback 

variability awareness have heightened throughout the industry.  Much attention has recently been 

focused on predicting, controlling and reducing springback (and springback variability) in high 

strength steel forming applications.  The significant deformation-induced residual stresses 

measured in the DP steel (and to a lesser extent in the IF and HSLA steels) are expected to 

influence elastic recovery mechanics.  Another level of complexity (and uncertainty) is 

introduced by the realization that post-forming residual stress distributions depend highly upon 

the deformation mode (strain path).  Springback itself is expected to be a directional property in 

the presence of deformation-induced residual stresses.  In real world situations, where sheet 

metal is fabricated into three-dimensional shapes, the distribution of residual stresses in DP 
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steels, and the associated effects on springback, would likely become exceedingly complex.  The 

results of this analysis suggest that deformation-induced internal stresses must be considered in 

any material model used to predict and understand springback displacements.  The respective 

analyses of Zhongua and Haicheng (16) and of Sugimoto et al. (65) are certainly good 

benchmarks for the development of advanced material models that are capable of addressing the 

effects of stress and strain partitioning in DP steels and other multi-phase advanced high strength 

steels. 

6.4.3 In-Service Performance 

It was shown in Figure 71 through Figure 73 that conventional effective strain models (e.g., that 

based on the Tresca yield criterion) are incapable of predicting tensile yield strength evolution in 

deformation modes other than uniaxial tension.  Factors such as intrinsic anisotropy (associated 

with annealing texture and microstructural variations, for example), evolution of deformation 

textures, dislocation interactions (e.g., latent work hardening), and deformation-induced residual 

stresses, must all be taken into account when constructing an appropriate constitutive material 

model.  More importantly however, in the context of this research program, is the observation 

that conventional effective strain models tend to over predict the post-forming tensile yield 

strength of DP steels, while they under predict the post-forming tensile yield strength of 

conventional steels (e.g., the IF steel and the HSLA steel).  The implication is that the post-

forming yield strength of a component made from DP steel may be lower than expected from 

experience based on conventional high strength steel behavior.  From a practical standpoint, 

automotive design engineers need to consider not only incoming materials properties (before 

forming) but also final part strength (after forming)—especially for load-bearing structural 

components, for example.  Additionally, as residual stresses generally are known to have a 
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profound effect on fatigue performance (77), it is foreseeable that deformation-induced residual 

stresses affect the in-service fatigue performance of DP steels (and of other steels—to a lesser 

extent).   
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7.0 CONCLUSIONS

The primary objective of this research program was to understand the influence of deformation-

induced residual stresses on the post-forming tensile stress/strain behavior of dual-phase (DP) 

steels.  The following commercially produced materials were included in the analysis: 1) a DP 

steel with approximately 15 vol. % martensite, 2) a conventional high-strength, low-alloy 

(HSLA) steel, and 3) a conventional, ultra-low-carbon interstitial-free (IF) steel. 

Samples of each material were prestrained to various levels in the uniaxial tension (UT), 

plane strain (PS) and balanced biaxial stretching (BB) prestrain modes, where the major strain 

axis (εmaj) was aligned in the longitudinal (L) direction (sheet rolling direction), and the minor 

strain axis (εmin) was aligned in the sheet transverse (T) direction.  For each prestrain condition, 

the post-forming tensile stress/strain behavior was examined in L-direction and T-direction 

tensile tests.  Additionally, for each material, neutron diffraction residual stress measurements 

were made in the 5% major strain condition (εmaj = 0.05) for the UT, PS and BB prestrain modes.  

The following major conclusions were drawn from this analysis. 

• Neutron diffraction experiments confirmed the presence of large post-forming 

deformation-induced residual stresses in the ferrite phase of the DP steel. 

• The deformation-induced residual stress state in the ferrite phase of the DP steel 

depends upon the prestrain mode, where the principal residual stress components are 
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generally proportional to the principal strain components of the prestrain, but opposite 

in sign. 

• Deformation-induced residual stresses greatly affect the post-forming tensile 

stress/strain behavior of DP steels.  

• As previously reported in the literature, the formability (residual tensile ductility) of 

the IF steel and the HSLA steel was adversely affected by strain path changes. 

• The DP steel displays an advantage over the conventional IF and HSLA steels, in 

terms of post-forming residual tensile ductility and is expected to be particularly well 

suited for complex forming operations that involve abrupt strain path changes. 

• For the UT and PS prestrain modes, the IF, HSLA and DP steels exhibit directional 

(anisotropic) hardening behavior, where the post-forming tensile yield strength is 

different in the L and T directions (parallel and perpendicular to the major prestrain 

axis, respectively). 

- The DP steel exhibits cross-softening behavior, where the post-forming tensile 

yield strength is lower in the T-direction (perpendicular to the major strain).  The 

degree of cross-softening increases as prestrain increases, and is more pronounced 

for the UT prestrain mode. 

- The IF steel and the HSLA steel exhibit cross-hardening behavior, where the post-

forming tensile yield strength is higher in the T-direction (as reported previously 

for other conventional steels).  The degree of cross-hardening increases as 

prestrain increases, and is more prominent for the PS prestrain mode. 

• The IF, HSLA and DP steels exhibit nearly isotropic hardening behavior for the BB 

prestrain mode—a reflection of the symmetry of the prestrain mode.   
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• Two distinct types of post-forming tensile stress-strain behavior were observed: 

- Type 1 Tensile Behavior – “Normal” stress/strain behavior where the total 

elongation is more or less comprised of similar contributions of uniform and post-

uniform elongation. 

- Type 2 Tensile Behavior – Characterized by grossly unbalanced contributions of 

uniform and post-uniform elongation, where the ultimate tensile strength occurs at 

a very low strain value. 

• The DP steel showed Type 1 behavior for all prestrain conditions, in both L-direction 

and T-direction tensile tests. 

• The IF and HSLA steels exhibited Type 1 and Type 2 behavior—depending on the 

amount of prestrain, the prestrain mode, and the tensile test direction.  The tendency 

toward Type 2 tensile stress/strain behavior increases as the amount of prestrain 

increases and the minor strain (εmin) increases (for a given major strain, εmaj).  Type 2 

behavior is more prominent in T-direction (orthogonal) tensile tests. 

• Deformation-induced residual stresses were measured in the IF steel and the HSLA 

steel; however, the magnitudes of which are such that post-forming tensile 

stress/strain behavior is not significantly affected.  

• The IF steel and the HSLA steel showed remarkably similar post-forming stress/strain 

behavior for all prestrain modes considered.  This observation is especially 

remarkable considering the vast differences in mechanical properties (including 

anisotropy), microstructure, and composition between the two steels.   
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	Figure 51:  Orthogonal shear stress/strain curves for a low carbon steel prestrained by rolling (68).  The shear direction is perpendicular to the rolling direction. 
	Figure 52:  Examples of shear band localization in complex deformation modes—(A) plane strain rolling followed by orthogonal shear (68) and (B) uniaxial tension followed by shear applied parallel to the original tensile axis (71).  See text for details. 
	Figure 53:  Test methodology for complex deformation sequences.  For each prestrain condition, the major strain (maj) is in the longitudinal, L direction (sheet rolling direction or RD).  The prestrain deformation modes are uniaxial tension (UT), plane strain (PS) and balanced biaxial stretching (BB).  Subsequent tensile tests were run in L direction and in the transverse, T direction (90° to the sheet rolling direction). 
	Figure 54:  Schematic illustration, in surface strain space, of the various complex (2 stage) deformation modes considered in this analysis.  The primary deformation (prestrain) modes are uniaxial tension (UT), plane strain (PS) and balanced biaxial stretching (BB).  Note that, for the various prestrain modes, the major strain is in the longitudinal (sheet rolling) direction (maj = L) by convention.  Correspondingly, the minor strain is in the transverse direction (min = T).  These complex strain paths are represented in the test methodology in Figure 53 above. 
	Figure 55:  Microstructures of (A and B) IF Steel, (C and D) HSLA Steel, and (E and F) DP steel.  Left column: 400X original magnification; Right column: 1000X original magnification.  Polished longitudinal cross-sections etched with nital/picral mixture.  SEM secondary electron images. 
	Figure 56:  Higher magnification images of (A) HSLA steel and (B) DP steel.  5000X original magnification.  Same sample preparation as in Figure 55. 
	Figure 57:  As-produced tensile engineering stress/strain curves in the longitudinal (L) direction (rolling direction, RD)—(A) full curves to failure, and (B) magnified at yielding. 
	Figure 58:  As-produced tensile engineering stress/strain curves in the transverse (T) direction (90° from the RD)—(A) full curves to failure, and (B) magnified at yielding. 
	Figure 59:  Work hardening rate (d/d) or tangent modulus as a function of tensile strain. 
	Figure 60:  Normalized work hardening rate [(d/d)/] as a function of tensile strain. 
	Figure 61:  Example true stress/strain curves plotted to the end of uniform deformation.  For each material, intersection of the true stress/strain curve with the work hardening rate (d/d) curve marks the necking criterion (d/d = ). 
	Figure 62:  Residual tensile ductility after uniaxial tension (UT) prestrain (maj = L)—(A and B) IF steel, (C and D) HSLA steel, and (E and F) DP steel.  Left column: tensile test in L (rolling) direction; Right column: tensile test in T direction (90° to rolling direction). 
	Figure 63:  Residual tensile ductility after plane strain (PS) prestrain (maj = L)—(A and B) IF steel, (C and D) HSLA steel, and (E and F) DP steel.  Left column: tensile test in L (rolling) direction; Right column: tensile test in T direction (90° to rolling direction). 
	Figure 64:  Residual tensile ductility after balanced biaxial stretching (BB) prestrain—(A and B) IF steel, (C and D) HSLA steel, and (E and F) DP steel.  Left column: tensile test in L (rolling) direction; Right column: tensile test in T direction (90° to rolling direction). 
	Figure 65:  Tensile flow stress (yield strength) as a function of uniaxial tension (UT) prestrain for the IF steel, the HSLA steel and the DP steel—(A) based on the 0.2% offset flow stress (0.2%OFS), and (B) based on the flow stress at 1% tensile strain (1%FS). 
	Figure 66:  Tensile flow stress (yield strength) as a function of plane strain (PS) prestrain for the IF steel, the HSLA steel and the DP steel—(A) based on the 0.2% offset flow stress (0.2%OFS), and (B) based on the flow stress at 1% tensile strain (1%FS). 
	Figure 67:  Tensile flow stress (yield strength) as a function of balanced biaxial stretching (BB) prestrain for the IF steel, the HSLA steel and the DP steel—(A) based on the 0.2% offset flow stress (0.2%OFS), and (B) based on the flow stress at 1% tensile strain (1%FS). 
	Figure 68:  Differential hardening for the uniaxial tension (UT) prestrain mode.  See text for details. 
	Figure 69:  Differential hardening for the plane strain (PS) prestrain mode.  See text for details. 
	Figure 70:  Differential hardening for the balanced biaxial stretching (BB) prestrain mode.  See text for details. 
	Figure 71:  Tensile yield strength evolution of the IF steel along various prestrain paths (maj = L)—UT = uniaxial tension; PS = plane strain; and BB = balanced biaxial tension.  The filled symbols represent tensile tests in the L direction (parallel to major prestrain axis), while the open symbols represent tensile tests in the T-direction (parallel to minor prestrain axis). 
	Figure 72:  Tensile yield strength evolution of the HSLA steel along various prestrain paths (maj = L)—UT = uniaxial tension; PS = plane strain; and BB = balanced biaxial tension.  The filled symbols represent tensile tests in the L direction (parallel to major prestrain axis), while the open symbols represent tensile tests in the T-direction (parallel to minor prestrain axis). 
	Figure 73:  Tensile yield strength evolution of the DP steel along various prestrain paths (maj = L)—UT = uniaxial tension; PS = plane strain; and BB = balanced biaxial tension.  The filled symbols represent tensile tests in the L direction (parallel to major prestrain axis), while the open symbols represent tensile tests in the T-direction (parallel to minor prestrain axis). 
	Figure 74:  Interplanar spacings ({200} and {211}) for various prestrain conditions (maj = L = 0.05) measured by neutron diffraction—(A, B) IF steel, (C, D) HSLA steel and (E, F) DP steel.  The designations 1, 2 and 3 refer to the principal directions and correspond to the longitudinal (L), transverse (T) and thickness dimensions of the samples. 
	Figure 75:  Deviatoric components of dr (deformation-induced residual stress) for various prestrain paths —(A) IF steel, (B) HSLA steel and (C) DP steel.  The designations 1, 2 and 3 refer to the principal directions and correspond to the longitudinal (L), transverse (T) and thickness dimensions of the samples.  For each case, maj = L = 1 = 0.05. 
	Figure 76:  Post-forming tensile stress/strain curves (L and T directions) after uniaxial tension (UT) prestrain (maj = L = 0.05). 
	Figure 77:  Post-forming tensile stress/strain curves (L and T directions) after plane strain (PS) prestrain (maj = L = 0.05). 
	Figure 78:  Post-forming tensile stress/strain curves (L and T directions) after balanced biaxial stretching (BB) prestrain (maj = L = 0.05). 
	Figure 79:  Post-forming tensile yielding behavior (L and T directions) for various prestrain modes—(A) uniaxial tension (UT) prestrain; (B) plane strain (PS) prestrain; and (C) balanced biaxial stretching (BB) prestrain.  For each prestrain mode, the IF steel, HSLA steel and DP steel curves are shown together as indicated. 
	Figure 80:  A closer look at the transverse (T-direction) tensile stress/strain behavior after plane strain (PS) prestrain (maj = L = 0.05) for the IF steel, HSLA steel and DP steel.  In (A), the s/e curves are shown with maximum stress values as marked, and (B) shows the true stress/strain (/) behavior up to  = 0.2 (maximum engineering stress values marked by stars).  Also in (B) are the work hardening rate (d/d-vs-) curves.  See text for details. 
	Figure 81:  Schematic Mohr’s circle representation of the anticipated effects of strain path on the deformation-induced ferrite residual stress state in a dual-phase steel—(A) uniaxial tension prestrain, (B) plane strain prestrain, and (C) balanced biaxial stretching prestrain.  See text for details and assumptions made. 
	Figure 82:  Schematic illustration of the influence of strain path on post-forming residual stress components in a dual-phase steel.  The numbers 1, 2 and 3 refer to the principal directions and correspond to the longitudinal (L), transverse (T) and thickness dimensions.  See text for details. 
	Figure 83:  Superposition of applied tension and residual stress states for (A) uniaxial tension prestrain followed by uniaxial tension in the longitudinal direction (< 2c), and (B) uniaxial tension prestrain followed by uniaxial tension in the T direction (< 2c).  [1 = longitudinal (L) direction; 2 = transverse (T) direction; and 3 = thickness direction.] 
	Figure 84:  Superposition of applied tension and residual stress states for (A) plane strain prestrain followed by uniaxial tension in the longitudinal direction (< 2c), and (B) plane strain prestrain followed by uniaxial tension in the T direction (< 2c).  [1 = longitudinal (L) direction; 2 = transverse (T) direction; and 3 = thickness direction.] 
	Figure 85:  Superposition of applied tension and residual stress states for (A) balanced biaxial prestrain followed by uniaxial tension in the longitudinal direction (< 2c), and (B) balanced biaxial prestrain followed by uniaxial tension in the T direction (< 2c).  [1 = longitudinal (L) direction; 2 = transverse (T) direction; and 3 = thickness direction.] 
	Figure 86:  Schematic illustration of the influence of prestrain path on the post-forming tensile yield strength (YS) of a dual-phase steel.  A critical shear stress, c, of 250 MPa and the hypothetical residual stress distributions shown in Figure 82 are assumed. 
	Figure 87:  Predicted differential hardening behavior for various prestrain modes (maj = L = 0.05).  Predictions are based on deformation-induced residual stress calculations that are based on neutron diffraction measurements.  See text for details of the analysis. 
	Figure 88:  Various ways to measure differential hardening (YS = YST –YSL)—(A) 1%FS, (B) 0.2%OFS, and (C) TM=100.  Here, the DP steel prestrained in uniaxial tension (maj = L = 0.05) is used as an example (see Figure 79A). 
	Figure 89:  Predicted and experimentally measured differential hardening for (A) IF steel, (B) HSLA steel and (C) DP steel.  The predictions are those shown in Figure 87 (based on neutron diffraction data), and the various measures of differential hardening are illustrated in Figure 88. 
	Figure 90:  Predicted and experimentally determined differential hardening (TM=100) for various prestrain modes (IF steel, maj = L = 0.05).  Here, the individual {200} and {211} predictions are shown by dashed curves as indicated, and the average values (from Figure 87 and Figure 89A) are shown by the continuous curve. 
	Figure 91:  Predicted and experimentally determined differential hardening (TM=100) for various prestrain modes (HSLA steel, maj = L = 0.05).  Here, the individual {200} and {211} predictions are shown by dashed curves as indicated, and the average values (from Figure 87 and Figure 89B) are shown by the continuous curve. 
	Figure 92:  Predicted and experimentally determined differential hardening (TM=100) for various prestrain modes (DP steel, maj = L = 0.05).  Here, the individual {200} and {211} predictions are shown by dashed curves as indicated, and the average values (from Figure 87 and Figure 89C) are shown by the continuous curve. 
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