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PROCESS-ORIENTED ANALYSIS AND DISPLAY OF CLINICAL LABORATORY DATA 
 

Andrew Ronald Post, MD, PhD 
 

University of Pittsburgh, 2006 
 
 

Background: Disease and patient care processes often create characteristic mathematical and 

temporal patterns in time-stamped clinical events and observations, but existing medical record 

systems have a limited ability to recognize or visualize these patterns. 

System Design: This dissertation introduces the process-oriented approach to clinical data 

analysis and visualization. This approach aims to support specifying, detecting, and visualizing 

mathematical and temporal patterns in time-stamped patient data for a broad range of clinical 

tasks. It has two components: a pattern specification and detection strategy called PROTEMPA 

(Process-oriented Temporal Analysis); and a pattern visualization strategy called TPOD 

(Temporal Process-oriented Display). 

Evaluation: A study in the clinical research domain evaluated PROTEMPA’s ability to identify 

and categorize patients based on diagnosis, disease severity, and disease progression by scanning 

for patterns in clinical laboratory results. A cognitive study in the patient care domain evaluated 

PROTEMPA and TPOD’s ability to help physicians review cases and make decisions using case 

presentation software that displays laboratory results in either a TPOD-based display or a 

standard laboratory display. 

Results: PROTEMPA successfully identified laboratory data patterns in both domains. TPOD 

successfully visualized these patterns in the patient care domain. In the patient care study, 



 v

subjects obtained more clinical concepts from the TPOD-based display, but TPOD had no effect 

on decision-making speed or quality. Subjects were split on which laboratory display they 

preferred, but expressed a desire to gain more familiarity with the TPOD-based display. Subjects 

reviewed data in the standard laboratory display for a variety of purposes, and interacted with the 

display in a complex fashion. 

Conclusions: The process-oriented approach successfully recognized and visualized data 

patterns for two distinct clinical tasks. In clinical research, this approach may provide significant 

advantages over existing methods of data retrieval. In patient care, comparative evaluation of 

novel data displays in context provides insights into physicians’ preferences, the process of 

clinical decision-making by physicians, and display usability. TPOD’s influence on concept 

acquisition is promising, but further research is needed regarding physicians’ use of laboratory 

data for results review in order to determine how a process-oriented display might be deployed 

most beneficially. 
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1.0 INTRODUCTION 

Health care institutions store large volumes of clinical data that are useful for understanding 

processes associated with disease, therapeutic response, and patient care. These processes may 

be reflected as time sequences of laboratory results, medical observations, or physiologic signals 

whose values or timestamps are related. Although the clinical relevance of relationships between 

these values or timestamps is well-recognized (1), common computer-based patient record 

systems have limited capability to query for patients based on these relationships, or to visualize 

these relationships in data displays. Improved support for identifying these relationships may 

help clinicians to make diagnoses, monitor disease progression, and evaluate therapeutic 

response in direct patient care; and may facilitate queries for patient populations in clinical 

research. 

1.1 IDENTIFYING RELATIONSHIPS WITHIN TIME SEQUENCES OF CLINICAL 
DATA 

Relationships between the values or timestamps of clinical data appear to be particularly 

important for interpreting quantitative clinical data (2). Figure 1 shows a time sequence of serum 

phenytoin results that needs correct interpretation. The patient is discharged between day 15 and 

20 with a rising but not yet abnormal phenytoin level. This level will continue to rise unless the 

dose is decreased because phenytoin elimination follows zero-order kinetics in the therapeutic 
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range. Several weeks later the patient becomes symptomatic with phenytoin toxicity and is re-

admitted for treatment. This situation, in which the patient is discharged with rising serum 

phenytoin and without a needed dose adjustment, appears to occur because an abnormal value 

did not yet exist when the patient was discharged, and because these data are usually presented to 

clinicians textually in a manner that makes trends difficult to see. While this example uses drug 

level data, similar considerations apply for other types of quantitative clinical data. Providing 

clinicians with support for identifying such relationships may reduce errors associated with the 

use of clinical data sequences (3). 

Similarly, clinical research and quality assurance tasks may benefit from support for 

identifying populations of patients with specified relationships. Clinical research questions 

frequently have temporal aspects, for example, the duration of time over which a patient 

characteristic is true, or the characteristics of data within a time window relative to some clinical 

event (4, 5). Common clinical data retrieval systems do not support these types of queries (5-10). 

 

Figure 1: Serum phenytoin levels. Phenytoin’s therapeutic range (10-20 mg/l) is shown in gray. 
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Furthermore, some conditions of interest are not represented in commonly used classification 

systems such as ICD-9 (11), and in those situations, the only way to distinguish patients of 

interest may be to identify characteristic relationships within time sequences of test results, 

observations, and clinical events (such as the phenytoin trend described above). 

Temporal abstraction is a method for scanning time sequences of patient data for 

specified relationships between their values or timestamps (12). This approach defines an 

interval data type that represents a period of time over which a clinical state or process exists. 

Intervals have two time-stamps defining their endpoints. Specific states or processes are 

represented by abstractions, which correspond to data sequences satisfying specified constraints 

on the values of their data elements (mathematical patterns), or groups of intervals satisfying 

specified relationships between the timestamps of the intervals’ endpoints (temporal patterns). 

Abstractions corresponding to mathematical patterns are usually defined in terms of a limited set 

of algorithms that define specific types of relationships between a data sequence’s values, such 

as for detecting thresholds in a data sequence’s values (state abstraction), or for identifying 

thresholds in a data sequence’s slope (trend abstraction). Temporal abstraction has been 

successfully applied to identifying intervals in patient monitoring (13-20) and information 

visualization (21-23). 

Though recent temporal abstraction systems provide additional algorithms to support 

basic statistical aggregation (24) or to detect characteristics in longitudinal data (25), they 

generally lack a framework for defining and managing specific algorithms designed for the 

analysis of a broad range of data types. The wide variety of clinical data in electronic medical 

records suggests that these systems should allow substantial flexibility in specifying the 

mathematical and temporal patterns that are used to define data sequences of interest. To be 
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broadly useful for identifying data sequences in individual patients, and retrieving patient 

populations containing those sequences, they should also provide interoperability with existing 

data stores and integration into standard networking environments. This work considers how 

temporal abstraction might be extended to better support these requirements. 

1.2 CLINICAL DATA VISUALIZATION 

Suboptimal data visualization in the medical record has been found to mislead clinicians (26) and 

lead to unnecessary testing (27), slower and less accurate searches for information (21, 22, 28), 

less timely decision-making (29), and wrong decisions (29, 30). The data management capability 

of information technology presents opportunities for improving the visualization of clinical data 

over how data is presented in the paper record, but electronic medical records have generally 

copied their form and organization from paper charts, in which data is typically presented 

textually and is organized according to administrative divisions of a hospital or clinic. While this 

strategy creates a tool that is familiar to users, in general it does not produce substantial 

productivity gains and may actually create systems that are more difficult to use (31). 

The problem of displaying complex data sets in computer-based displays is not unique to 

medicine. Studies in aviation (32), hurricane tracking (33), industrial process control (34), and 

business (35, 36) have proposed displays that organize conceptually-related data elements in 

close proximity, use graphical forms to highlight important relationships between data elements, 

and emphasize critical data through sequencing. Evaluations have found that the techniques used 

by these displays have significant impact on the speed and accuracy of decision-making (32, 33). 



 

5 

Several experimental medical displays have incorporated similar techniques. Concept- or 

problem-oriented displays automatically link clinical problems and diagnoses with relevant data. 

These linkages support the presentation of data from multiple sources together in ways that 

facilitate detection of relationships between multiple data values. Displays organized by concept 

or problem may improve the speed and accuracy of data acquisition and interpretation (28). 

Graphical displays of clinical data have been found to help clinicians find and interpret data as 

well as facilitate timely and accurate decision-making (32-34). Altering the sequence with which 

data is presented may help physicians find important data faster (37). These studies suggest that 

there may be significant advantages to altering the form, organization, and sequence of 

traditional medical data displays. 

In addition to altering a display’s form, organization, and sequence, limited studies 

suggest that physicians may be able to find and interpret data more easily when a results display 

visualizes temporal patterns (21, 22). While these displays have been employed for visualizing 

small data sets in support of guideline-based care (38), it seems reasonable to consider whether 

similar techniques might be applicable to visualizing larger data sets for other patient care tasks 

such as inpatient results review, or for visualizing data of interest in quality assurance and 

clinical research. 

1.3 PROCESS-ORIENTED DATA PROCESSING AND VISUALIZATION 

This dissertation presents an integrated approach to improving the detection and visualization of 

disease and patient care processes for direct patient care, clinical research, and quality assurance. 

Key components of this approach are automated identification of temporal and mathematical 
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patterns, and the use of those patterns to control a display’s form, organization, and sequence. 

This work has yielded software systems that implement each of these components: an automated 

interpretation program called PROTEMPA (Process-oriented Temporal Analysis), and a clinical 

data display program called TPOD (Temporal Process-oriented Display). 

1.3.1 PROTEMPA (Process-oriented Temporal Analysis) 

PROTEMPA is a data processing strategy and software library that allows specification 

and identification of mathematical and temporal patterns in time-stamped clinical data. Design 

considerations included a modular architecture, integration into standard networked computing 

environments, interoperability with existing clinical data stores, and scalability to large data sets. 

PROTEMPA extends existing temporal abstraction systems by supporting creation and 

maintenance of an extensible library of mathematical processing algorithms, called temporal 

abstraction primitives. These algorithms define general mathematical patterns applicable to time 

sequences of clinical data, and may be configurable with parameters constraining them to data 

sequences with particular characteristics. 

1.3.2 TPOD (Temporal Process-oriented Display) 

TPOD is a World Wide Web-based clinical data display that adapts its form, 

organization, and sequence to temporal and mathematical patterns in the data. It visualizes 

clinical data graphically and makes the corresponding numerical values available on demand. It 

explicitly visualizes intervals found by PROTEMPA and aggregates data that are related to 

found intervals, allowing users to quickly review the data that are relevant to a disease or patient 

care process. Existing electronic displays and paper charts may require significant manual 

searching in order to aggregate the same data. 
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1.4 EVALUATION  

Two evaluations of PROTEMPA and TPOD were conducted. Goals were to determine whether 

PROTEMPA can detect and display disease and patient care processes of interest for patient care 

and clinical research tasks; and to determine whether TPOD improves the process and outcome 

of data interpretation and decision-making as compared with standard displays of clinical data. 

These evaluations focus on the processing and visualization of clinical laboratory data, but 

PROTEMPA and TPOD are designed to operate on any kind of clinical time series. 

1.4.1 PROTEMPA for clinical research 

The first evaluation aimed to determine whether PROTEMPA facilitates retrospective 

identification of patient populations containing temporal and mathematical patterns of interest to 

clinical researchers. A software program was written to identify and characterize cases of a 

severe form of pre-eclampsia called HELLP (Hemolytic anemia, Elevated Liver enzymes, and 

Low Platelets) syndrome (39) based on abstractions specifying patterns across multiple 

laboratory tests. This program invoked the PROTEMPA library with database connection 

information and abstraction specifications, and wrote the cases and intervals that PROTEMPA 

found to a text file. A script parsed the output file and categorized the cases into severity and 

outcome groups. The HELLP syndrome cases and outcomes classifications were validated by 

manual case review. 

1.4.2 TPOD for patient care 

The second evaluation aimed to determine whether a clinical data display based on 

TPOD facilitates the process and outcome of data interpretation and decision-making during 

inpatient results review. In this study, physician subjects reviewed and wrote orders on 
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unfamiliar patient cases in which laboratory data were presented using either a process-oriented 

display based on TPOD or a standard tabular numerical display. Subjects were asked to “think-

aloud,” and video screen captures were collected of subjects’ interactions with the displays. The 

“think-aloud” transcripts were coded according to activities related to data acquisition, 

interpretation, and decision-making. A log file recorded the time required to complete the cases, 

the number of visits to the laboratory display, and the time spent using the laboratory display. In 

an exit interview, subjects were asked to describe their reactions to the two laboratory display 

styles. 

1.5 CHAPTER GUIDE 

Chapter 2.0 provides an overview of automated interpretation methods in medicine, descriptions 

of several approaches to visualizing quantitative data both in medicine and in other domains, and 

background on theories of quantitative data display. The chapter continues with an overview of 

methods for evaluating the effects of data displays on the process and outcome of interpretation 

and decision-making. Finally, it provides an overview of clinical laboratory data, how it is 

interpreted, and problems with how it is currently presented. 

Chapters 3.0 through 5.0 report on the design, implementation, and evaluation of the 

process-oriented approach. Chapter 3.0 describes PROTEMPA’s design and implementation. 

Chapter 4.0 describes an evaluation of PROTEMPA for identifying patient populations in 

clinical research. Chapter 5.0 describes TPOD’s design and implementation, and an evaluation of 

PROTEMPA and TPOD in patient care. 
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Chapter 6.0 contains an overall discussion of the process-oriented approach, and suggests 

future work. 

Appendix A contains a glossary that provides definitions of key terms for describing the 

methods used by TPOD and PROTEMPA, and definitions of medical terms used in this 

dissertation. Appendices B, C, D, and E contain documents related to the study in Chapter 5.0. 

Appendix F contains an example “think-aloud” transcript from the study in Chapter 5.0. 
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2.0 BACKGROUND 

Computer-based patient record systems (CPRs) are used in a wide variety of activities, including 

patient care, clinical research, and quality assurance. The volume and scope of data being stored 

in modern CPRs is markedly increased as compared with early systems (40), and is likely to 

increase in the future as new techniques become available (e.g., genetic testing, biomarkers) (41). 

Existing tools for querying and reviewing patient data have not changed substantially, and are 

likely to contribute to clinician “information overload” (42). Two approaches for reducing 

information overload are automating the interpretation of clinical data, and improving clinical 

data displays. This chapter presents these two approaches as they apply to clinical data in 

general, and then discusses their importance in facilitating the interpretation of clinical 

laboratory results in particular. 

2.1 AUTOMATED INTERPRETATION OF CLINICAL DATA 

One strategy for reducing information overload is to provide clinicians with software systems 

that support interpreting and making decisions with clinical data, called clinical decision support 

systems, or CDSSs (43). The prototypical CDSS encodes clinical knowledge, and applies that 

knowledge to patient data in order to provide patient-specific recommendations (e.g., differential 

diagnoses, treatment options). Others are simply information management tools that provide data 

and knowledge for performing a task, but leave it up to clinicians to apply that knowledge to the 
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data. A third kind of decision support system focuses attention, such as data surveillance systems 

that alert clinicians when an abnormal test result has been reported or when a contraindicated 

drug has been ordered. 

Decision-support systems have several components (see Figure 2). A data source 

provides access to a data store that is external to the CDSS. Early CDSSs often required the user 

to enter patient data into the system (i.e., the “external data store” was the user). A knowledge 

base provides storage and retrieval of clinical knowledge that has been elicited from domain 

experts. An inference mechanism encodes a set of algorithms that apply knowledge to data in 

order to make conclusions about those data. Finally, decision-support systems have a mode of 

interaction, which is the means by which users interact with the system. Some decision-support 

systems run continuously, performing periodic surveillance on a data source and communicating 

interpretations and/or decisions to users. Others scan a data source when prompted by a user.  

Some CDSSs are designed to arrive at clinically meaningful conclusions by simulating 

the reasoning of expert clinicians, and thus are called expert systems. Expert systems have been 

successfully applied in experimental settings for diagnosis (44), management of infectious 

disease (45), intensive care unit monitoring (14, 46), guideline-based care (47, 48), computer 

assisted order entry (49), and clinical laboratory quality assurance (50, 51). Expert systems 

typically encode knowledge as sets of situation-action rules that detect changes in patient status 

and perform actions in response, such as displaying a message on a computer workstation’s 

screen or sending an asynchronous message to a physician via pager (3, 52). Modern expert 

systems integrate patient data from multiple sources including laboratory information systems, 

medication administration records, and bedside monitoring devices (3). 
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2.1.1 Representing and reasoning with time 

Early medical expert systems encapsulated the temporal aspects of clinical knowledge, 

such as the duration of a symptom, implicitly in symbols such as 

FEVER_LASTING_MORE_THAN_TWO_DAYS (53). Those expert systems could not use the 

temporal information in such symbols to make conclusions about what might be happening to the 

patient, nor could they specify temporal relationships between the finding described by a symbol 

and other data elements. Despite an implicit model of time, however, these systems performed 

very well for diagnostic tasks (54). 

In contrast to diagnostic tasks, patient management tasks involve clinical reasoning that 

appears to rely more on the temporal sequence of clinical events and findings (54). Reasoning 

with quantitative data such as laboratory results often involves recognizing trends, identifying 

the frequencies with which tests are performed, and comparing contemporaneous results (2). In 

 

Figure 2: Clinical decision support system design. 
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order to identify such relationships in laboratory results and other kinds of data, expert systems 

are needed that can reason with the timestamps of these results. 

To meet this need, recent expert systems in support of patient management can directly 

reason with clinical data’s timestamps. These expert systems may employ a point-based model of 

time similar to that proposed by Vilain and Kautz (55). The point-based model has four main 

concepts: time point, duration, interval, and relationship.  

A time point describes a clinical datum that is valid at a given timestamp, and is typically 

specified as a patient identifier, an attribute of the patient (e.g., a clinical observation), the value 

of the attribute, and the time-stamp at which the given attribute had that value, i.e., <John Doe, 

digoxin, 1.4, 4/2/2004 6:00am>. 

Duration describes the temporal distance between two points (e.g., the distance between 

4/2/2004 6:00am and 4/3/2004 7:30am is 1 day, 1 hour, 30 minutes). 

A time interval describes a patient state or process that has occurred over a period of 

time. Intervals have been defined several ways in the literature. Shahar defined them as an 

ordered pair of time-stamps (56). Other point-based time models have defined them as a six-

tuple specifying the earliest and latest possible starts of the interval, the earliest and latest 

possible finishes of the interval, and the interval’s minimum and maximum possible durations 

(minstart, maxstart, minfinish, maxfinish, mindur, and maxdur) (57, 58). The latter definition 

allows for representing uncertainty in the beginning, end, and total time of a patient state or 

process. 

A relationship describes the time distances between the endpoints of a pair of intervals. 

In the point-based model, relationships have been defined as an eight-tuple specifying the 

minimum and maximum distances between the start of the first interval and start of the second, 
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the start of the first interval and the finish of the second, the finish of the first interval and the 

start of the second, and the finish of the first interval and the finish of the second. 

In the point-based approach, intervals and relationships are typically encoded as temporal 

constraint networks (TCNs, Figure 3, (59)). TCNs are directed graphs in which nodes represent 

the minimum and maximum starts and finishes of an interval, forward arcs represent the 

maximum amount of time between two nodes, and reverse arcs represent the minimum amount 

of time between two nodes. The values of unspecified arcs are determined by applying a 

shortest-path algorithm to the graph such as Bellman-Ford (60). Arcs between start and finish 

nodes of separate intervals specify relative temporal distances between those intervals. By 

adding a special time-zero node t0 that is linked to an actual time, the graph can be anchored in 

real time, and arcs can be drawn between the time-zero node and interval nodes to specify 

 
Figure 3: An example of a Temporal Constraint Network (TCN), as described in (59). A TCN is 
a directed graph in which nodes represent time points and arcs represent durations between 
them. Forward arcs represent the maximum duration between nodes, and reverse arcs represent 
the minimum duration between nodes. Intervals describing patient states may be represented as 
pairs of nodes, one for the start time (s1, s2, and s3) and the other for the finish time (e.g., f1, f2, 
and f3). A special time-zero node (t0, in gray) may be used with distances between it and interval 
nodes (in black) to represent absolute start and finish times. 
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absolute starting and finishing times. In order to specify qualitative relationships within a TCN, 

two special arc values have been defined (58): epsilon ( ), the smallest possible nonzero 

temporal distance; and infinity ( ), the largest possible temporal distance. 

The point-based model works well in clinical domains because specifying quantitative 

time distances between clinical events is possible. Determining if a time sequence is consistent 

with the constraints specified by a TCN’s intervals and relationships has polynomial time 

complexity if at most one temporal relationship is specified between two endpoints of a pair of 

intervals (the “Simple” Temporal Problem, or STP described in (59)). An example TCN is 

shown in Figure 3. 

An alternative model of time is Allen’s temporal logic (61). Allen’s logic has no time 

points, and instead of specifying relationships between intervals as durations between time 

points, it uses a set of qualitative temporal relationship descriptors (e.g., BEFORE, AFTER, 

 

Figure 4: Temporal relations defined in Allen's temporal algebra (61). There are seven basic 
relations and their inverses (not shown). In the case of Equals, the basic and inverse relations are 
identical. 
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DURING), shown in Figure 4. Allen’s logic was originally intended to represent time 

relationships in text documents, and thus supports significant ambiguity in the way these 

relationships are described. This high level of expressivity also makes the computation of 

relationships between events intractable in the worst-case (55). Furthermore, quantitative 

temporal relationships cannot be expressed in Allen’s logic. 

2.1.2 Temporal abstraction 

The point-based time model is employed in one of the dominant strategies for automated 

interpretation of clinical data sequences, called temporal abstraction. Domains in which 

temporal abstraction has been evaluated include summarization of blood glucose monitoring data 

for diabetes management (16, 17), children’s growth assessment (62), validation of high-

frequency monitoring data in intensive care units (63), representing patient care plans (47), drug 

administration data for an expert system (64), clinical event monitoring (15), data mining of 

clinical databases (25), and evaluation of heart transplant patients (15). 

Temporal abstraction distinguishes between two main types of abstractions: simple, and 

complex. Simple abstractions specify the abstraction of time-stamped data into intervals (the 

mathematical patterns introduced in Section 1.1); and complex abstractions specify the 

abstraction of groups of intervals with specified temporal relationships into higher-level intervals 

(the temporal patterns introduced in Section 1.1) (65). Temporal abstraction has been formally 

described by the Temporal-Abstraction Rules (TAR) language (66). The TAR language consists 

of rules and facts. Facts are time-stamped data values and intervals as described above. Rules 

“map” a fact to another fact at the same or higher level of abstraction. A rule is a statement of the 

form: 
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h(D,I,V ) b1 D,I1,V1( ),...,bn C,In ,Vn( ) c1,...,cm{ },ifn,vfn  

where h is the output fact, b1,…,b2 are input facts, c1,…,cm are functions defining constraints on 

the values of the input facts, ifn is a function that computes the start and finish of h, and vfn is a 

function that computes the value of h. For each fact, D is a label, I is a time interval, and V is a 

value. In TAR, time-stamped data values are represented as intervals with the same start and 

finish. A knowledge base of TAR rules is a bottom-up deductive database (66). TAR has been 

used to prove that the temporal abstraction method always terminates (i.e., it never enters an 

infinite loop) (66). 

A number of temporal abstraction systems have been reported for use in the clinical 

domain. The RESUME system is one of the first efforts at creating a temporal abstraction 

framework (56). RESUME supports a fixed set of temporal abstraction primitives: state, trend 

and rate, each of which may have one of a set of qualitative values (e.g., the trend may take the 

values INCREASING, DECREASING, or SAME). RASTA extends RESUME with a scalable 

distributed control algorithm in which each abstraction is evaluated in a separate process (13). 

RASTA has been implemented in a hypertension decision support system. ALMA (67) is a re-

implementation of RESUME in the TAR language. 

T-IDDM was a temporal abstraction system for summarizing patient blood glucose data 

(68). It introduced the concept of using temporal abstraction as part of a processing pipeline. 

This pipeline consisted of 1) a pre-processing stage in which data is transformed in some fashion, 

2) a processing stage in which the transformed data is processed by temporal abstraction, and 3) 

a post-processing stage in which the intervals found by temporal abstraction are statistically 

analyzed. In T-IDDM’s pre-processing stage, Fourier analysis was used to split blood glucose 

measurements into periodic and trend components, which were separately processed by temporal 
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abstraction (65). In the post-processing stage, statistical aggregation techniques were applied to 

calculate useful statistics such as the frequency of certain abstractions within a single patient 

(17). While T-IDDM’s temporal abstraction implementation is not described in detail in the 

published literature, it appears to search for a more limited set of abstraction types than is 

available in RESUME and ALMA. 

M-HTP, a system for abstracting parameters over time for comparing treatment of heart 

transplant patients to a clinical guideline, has many of the features of temporal abstraction, albeit 

implemented in a domain-specific fashion (15). 

These temporal abstraction systems establish the method as a general-purpose tool for 

summarizing patient data through identifying mathematical and temporal relationships. Given 

the success of these systems, it appears that a limited pre-established set of mathematical patterns 

(e.g., state, trend) is sufficient for providing high-level descriptions of clinical data sequences for 

patient care tasks. However, clinical research queries and quality assurance studies may require 

the ability to extend the set of mathematical patterns (see Introduction). Furthermore, as these 

systems are designed to summarize patient data, they search for all possible abstractions in a 

dataset, not necessarily the subset of those required to answer a particular clinical query. 

Temporal abstraction has exponential worst-case time complexity (56) because the temporal 

relationship matching process evaluates all possible pairs of intervals to determine if they satisfy 

a specified relationship. However, complex abstractions typically specify only a few temporal 

relationships, so average case performance is sufficient for performing summarization of 

individual patients’ data. Since temporal abstraction is parallelizable by patient, it can perform 

sufficiently even when summarizing multiple patients at a time. 
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Temporal abstraction is a general-purpose approach to identifying temporal and 

mathematical relationships in patient data. There are other approaches to analyzing time 

sequences of clinical data that have benefits and tradeoffs as compared with temporal abstraction 

that are described below. These systems typically address specific clinical reasoning tasks or 

have performance or pattern detection needs that are not met by the temporal abstraction systems 

described above. 

2.1.3 Model-based methods 

Kahn contended that no single method of representing time is sufficient for some 

domains (69), and implemented a system called TOPAZ for summarizing important patient-

specific events in cancer chemotherapy treatment that combines two kinds of temporal data 

processing (18). The first method implements a physiological model representing a prototypical 

patient on chemotherapy, and abstracts raw data into intervals representing deviations from a 

normal therapeutic response. The second method scans for temporal relationships between the 

found intervals in order to construct a high-level overview of a case. A problem with using 

physiological models is that many diseases and therapeutic responses are not understood well 

enough to model them accurately, so a method that employs a model is not likely to be suitable 

for general-purpose use (53, 70). TOPAZ appears to be constructed specifically for providing 

decision support in cancer chemotherapy. However, the idea of combining mathematical 

processing of time-stamped data and high-level temporal reasoning is similar in concept to the 

more general-purpose approach described by this dissertation (see Chapter 3.0). 

2.1.4 Trend templates 

Another general purpose method of reasoning with time called trend templates (14) was 

developed in parallel with temporal abstraction. Trend templates denote a time-varying pattern in 
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multiple variables common to a diagnostic population. Predefined patterns of normal and 

abnormal trends represent disease processes as typical patterns of relevant parameters. In 

contrast with temporal abstraction, which outputs a single description of a patient’s data, trend 

templates are organized into sets that represent alternative clinical states, and these sets compete 

for which one best fits the data. 

Trend templates were implemented in TrenDx software (14). TrenDx is based on the 

Temporal-Utilities Package (TUP) (71), which implements a point-based model of time (55) 

using temporal constraint networks (59) to represent relations between time points and intervals. 

TrenDx has been applied to pediatric growth monitoring (72) and ICU data (73) and, in the case 

of pediatric grown monitoring data, reached the same interpretations of the data as a panel of 

experts, at a time no later than the experts (72). 

While the trend template approach is suitable for analysis of a broad range of data 

sequences, it is optimized for monitoring tasks that may require analyzing frequently sampled 

parameters such as those found in the ICU. In doing so, the approach sacrifices flexibility. For 

example, trend templates cannot represent states that are derived from non-numerical data, such 

as drug administration records (e.g., “on digoxin”). Trend templates also cannot be organized as 

hierarchies in which templates contain “sub-templates.” The latter feature would be useful for 

building sets of reusable templates as a way of facilitating knowledge engineering. 

Trend templates are similar in concept to traditional clinical event monitor rules in that 

each template is a completely self-contained unit, and no state is preserved between templates. 

For example, if two templates specify the same threshold on serum potassium result values, both 

need to process the patient’s potassium results. Trend templates have much more sophisticated 

handling of time, however, than the typical event monitor. 
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Despite several positive evaluations in which TrenDx was found to perform at or near the 

level of experts in pediatric growth monitoring (72), research related to trend templates has been 

mostly confined to that done by the original authors. One exception is the SENTINEL intelligent 

anesthesia monitor, which extends trend templates by using fuzzy logic to specify intervals of 

uncertain duration and variables of uncertain value (74). 

2.1.5 Time series analysis 

In the field of time series analysis (75), it is common to identify portions of a time series 

with patterns of interest by moving a window of defined length across the time series and 

analyzing the data in the window at any given time. Gall et al. provides a theoretical treatment of 

the need for a “moving” window when applying temporal reasoning to clinical databases, and 

enumerates a comprehensive list of parameters for controlling such a window’s traversal of a 

time series (76). 

Temporal Coupling Verification (TCV) is an implementation of a sliding window 

designed with stock market analysis in mind (77). TCV provides a mechanism for traversing a 

time series in a sliding window fashion to generate short subsequences called segments that are 

then evaluated for the presence of statistical patterns of interest. Statistical analysis functions are 

pre-defined and include average, max, and min. The basic functions may be combined to specify 

more complex patterns. This mechanism may be thought of as a statistical version of simple 

abstraction. TCV further defines a complex abstraction mechanism that searches for qualitative 

temporal relationships between pairs of statistical patterns. TCV is designed as an extension to 

Structured Query Language (SQL) (78), thus providing a powerful supplement to a standard 

relational database query language. 
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An advantage of TCV as compared with temporal abstraction is that TCV provides a 

broader range of pattern types, both because there are a wider variety of statistical functions 

available, and because the length of the sliding window can be specified. While temporal 

abstraction’s built-in primitives define thresholds on single values or relationships between pairs 

of values, TCV can detect patterns in more than two consecutive values. For example, a function 

for finding increasing and decreasing trends could specify a sliding window length of three 

values. A drawback of TCV is its lack of support for specifying related groups of patterns, as are 

specified by the different possible values of a temporal abstraction STATE or TREND 

abstraction. 

2.1.6 Segmentation 

A signal processing technique called segmentation identifies inflection points in a time 

series in order to partition the time series into piecewise linear segments (79). There are two 

general kinds of segmentation algorithms: inductive and deductive. 

Inductive segmentation statistically identifies segments of a time series with similar 

“shape” using clustering algorithms. Clustering partitions data such that similar data sequences 

belong to the same group and dissimilar data sequences belong to different groups. Similarity is 

measured by a distance function. Dynamic time warping (DTW) is one such method that was 

originally developed for speech recognition (80). DTW is a dynamic programming algorithm 

that attempts to match an input signal to templates that allow for variation in the lengths of 

components of the template. DTW is said to “warp” the time axis so that the distance between 

two time series becomes minimal with respect to a distance function. The cumulative value of 

the distance function yields a measure of similarity. Clusters correspond to basic abstractions in 
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the terminology of temporal abstraction, but DTW does not assign episodes with a semantically 

meaningful label. 

As compared with trend templates and temporal abstraction, DTW may represent patterns 

more naturally in domains characterized by irregularly spaced data and where “normal” differs 

widely from patient to patient. For example, a DTW algorithm was found to detect acute 

rejection for a set of kidney transplant recipients with significantly higher accuracy than a group 

of experienced physicians (81). Acute rejection is detected from a patient’s creatinine course, 

and normal creatinine for a kidney transplant recipient varies widely. DTW can only be used, 

however, in situations in which there are training sets of time series that are classified as normal 

or abnormal. In most patient situations, clinical laboratory data have consistent “normal” ranges 

from patient to patient, and training data are not available. Even if training data are available, 

there may be limited situations in which there is enough homogeneity in normal and abnormal 

patients for DTW to learn all of the relevant boundary conditions. Thus, while promising in 

specific restricted circumstances, DTW does not appear currently to be practical for use in a 

general patient population. 

In contrast to inductive segmentation, deductive segmentation defines a set of shapes 

ahead of time, so segments have semantically meaningful labels. Frequently used shape 

descriptors include CONSTANT, LINEARLY INCREASING, and CONVEXLY 

DECREASING (79). These correspond to concepts identified by simple abstraction. Deductive 

segmentation is intended for analysis of high frequency data, and thus has potential application 

in intensive care unit data analysis. These algorithms aim to detect linear and non-linear curves 

in patient data with better performance than methods such as TrenDx (14). Deductive 

segmentation tends to be hampered by over-sensitivity to local maxima and minima, but may be 
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more robust than simple abstraction for outlier detection. Deductive segmentation has the 

potential to serve as input to a complex abstraction mechanism that could infer higher-level 

patterns (82), but there are no examples of such a system in the literature. 

2.1.7 Probabilistic methods 

Most of the systems described above, including temporal abstraction, are deterministic 

with respect to the concepts they infer from raw data. The clinical state or process represented by 

an interval is either present or absent. It may be possible to perform retrospective studies to 

calculate a positive predictive value for an individual abstraction’s ability to identify a state or 

process of interest, but propagating such probabilities from simple abstractions to complex 

abstractions is likely to be problematic (83). 

Nonetheless, in some domains, it is useful to reason with intervals whose “truth” during a 

period of time is uncertain. In TrenDx (Section 2.1.4), competing trend templates could be 

assigned numerical scores measuring of goodness of fit to the underlying data (14). The template 

that best describes the data is the template with the highest goodness of fit score. TrenDx’s lack 

of support for sub-templates makes this feature feasible, because there is no need to propagate 

goodness-of-fit scores from lower to higher levels of abstraction. 

Another approach is a probabilistic method based on Bayesian networks (84), called 

temporal belief networks (TBNs). TBNs replicate the structure of a belief network for multiple 

time points, and arcs between the same variable at different time points represent how the 

variable changes over time (2). Two problems are that the structure must be replicated at the 

smallest time unit that needs to be represented, and there is no support for different levels of 

abstraction. 
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An alternative temporal formulation of belief networks, called modifiable temporal belief 

networks (MTBNs), aimed to solve the drawbacks of TBNs by 1) providing a condensed 

representation of the network to facilitate construction and review and a mechanism for 

expanding the network to a full TBN upon deployment, 2) expressing temporal relations in 

multiple units, and 3) expressing relations between variables at more than one level of detail (85, 

86). An MTBN for liver transplantation follow-up was implemented and found to have run-times 

significantly faster than traditional TBNs (85). There have been no evaluations of MTBNs in 

which clinicians directly interact with an MTBN-based system, so it is currently unknown what 

the implications of MTBNs are regarding user interactivity and performance. An open research 

question is how to visualize the uncertainty of found concepts, particularly when goals include 

reduction of information overload, focusing attention, and summarization. 

2.1.8 Domain-specific systems 

In addition to the general-purpose algorithms described above, several systems have been 

implemented that are specific to a single task but have features of interest. An electrocardiogram 

monitor was reported (20) in which multiple statistical techniques, trained by machine learning, 

detected different signal patterns in EKG tracings (e.g., P wave, QRS wave), and a temporal 

relationship detector scanned for combinations of these patterns that indicate cardiac 

abnormalities. In another report, software was implemented to detect long-term trends in 

laboratory test results for hepatitis (e.g., liver function tests, hepatitis antibodies) (87). The 

approach was similar to temporal abstraction, but instead of detecting states and trends in the 

data, the software detected changes of state (e.g., peak values, change from normal to elevated). 

These systems illustrate a need for integrating flexible classification strategies into general-

purpose temporal abstraction systems. 
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2.1.9 Summary 

Temporal abstraction is a general-purpose strategy for identifying temporal and 

mathematical relationships that has been successfully applied to several clinical tasks. The 

alternative approaches described above illustrate several potentially useful extensions, including 

1) support for efficient pattern detection in frequently sampled data, 2) uncertainty, and 3) a 

broader array of mathematical pattern detectors. This dissertation addresses the third extension 

(see Chapter 3.0). 

2.2 IMPROVING CLINICAL DATA VISUALIZATION WITH TEMPORAL 
ABSTRACTION 

Another approach for reducing information overload may be to improve the presentation of 

clinical data. This approach involves understanding the cognitive principles behind how 

clinicians acquire clinical data from a display, and determining how different displays might 

facilitate or inhibit efficient data acquisition, interpretation, and decision-making. Common 

clinical data displays tend to adopt static paper display conventions. Given the volume and 

complexity of clinical data, it is likely that no one presentation is optimal for all kinds of data or 

for all tasks in which a kind of data is used. Displays may need to alter their presentations 

according to the meaning of the underlying data in order to maximize the efficiency of data 

acquisition, interpretation, and decision-making. This dissertation proposes the use of temporal 

abstraction (see above) to support such a display. In order to use temporal abstraction in this 

fashion, it is necessary to identify a mechanism by which a data display that can be altered in 

response to the discovery of temporal intervals. 
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2.2.1 Data display characteristics 

A substantial body of work outside of the medical domain has identified a set of three 

component characteristics of data displays: the form of individual data elements, the 

organization of data elements into groups, and the sequence in which data elements appear (35). 

These characteristics appear to affect the nature of decisions made using a display in different 

ways (36). 

In a study in which 60 MBA students evaluated sets of eight loan applications using a 

data display that described applicants on four relevant attributes, the data display’s organization 

strongly affected the speed and accuracy with which subjects found data in the display, while 

form and sequence had a greater effect on data interpretation (36). In a simulated military pilot 

scenario, subjects integrated data for decision-making more effectively when four data elements 

were presented simultaneously on the screen than when the data were presented sequentially, one 

element per second (88). In another study in which subjects chose between alternatives that had 

multiple attributes, the order and style of presentation affected decision-makers’ relative 

weighting of attributes (89). 

Although studies evaluating clinical data presentation and decision-making are limited, 

their results are generally similar to those described above. A group of 315 clinicians who 

reviewed identical chief complaint, history, physical exam, and laboratory data in different 

sequences weighted information viewed late in the sequence more heavily and judged the 

probability of disease differently (37). Physicians’ decisions to stop clinical trials early on the 

basis of negative effects were influenced by the form and organization of aggregate clinical 

response data (30). Displays that provided summary pages of data required for making decisions 

in an outpatient setting about a patient’s microbiological or serum lipid status allowed physicians 
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to interpret data more rapidly with fewer errors than when using data organized by laboratory 

section (29, 90). Grouping data based on a clinical problem or concept tends to aggregate data 

required for a particular decision, and its benefit is consistent with the grouping effects noted 

previously with pilots and others (88, 91). 

2.2.2 Data acquisition from clinical displays 

Behaviors that are employed by physicians for data acquisition using paper charts appears 

to be complex and directly related to the organization of data on the page (92). Data acquisition 

behaviors include obtaining an overview, scanning for evidence of known problems, and 

identifying anomalous findings (93). Physicians may navigate to a page in the chart to satisfy one 

information need, but spontaneously decide to satisfy additional information needs while they 

are there. Furthermore, physicians might use others’ accounts of a patient case in written notes 

rather than look at the “primary data” (e.g., laboratory test results) themselves, particularly for 

obtaining an overview. Given that electronic medical records typically use a similar basic 

organization as paper charts, one would expect similar results. 

2.2.3 Graphical display of numerical data 

Studies of textual numerical versus graphical data presentation suggest that graphics may 

support data interpretation and decision-making more effectively, particularly when quantitative 

comparisons must be made. In an evaluation of a two-dimensional graphical display in which the 

third dimension was expressed either numerically or graphically, airline pilots made more rapid 

decisions and used the third dimension more effectively when it was displayed graphically (32). 

In a hurricane tracking scenario, subjects made more rapid and better evacuation decisions when 

storm data was displayed graphically rather than numerically (33). In a process control study, 

fault conditions involving several variables were detected more effectively in graphical than in 
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purely numerical displays (34). Several studies have shown that the difference between 

numerical and graphical displays is most pronounced under time pressure (33, 94, 95). Similar 

results have been found in the medical domain. In an ICU setting, staff members correctly 

classified the respiratory status of patients in an average of 9 seconds using a metaphor graphics 

display (see below) compared to 18 seconds using a standard numerical flowsheet (96). These 

findings have been interpreted as evidence of “off-loading” some of the cognitive overhead of 

data evaluation to the visual system when graphics are used, allowing redirection of cognitive 

resources to the decision-making task (91, 95). 

Given that a graphical display of quantitative data can outperform a numerical display, a 

question that arises is what kinds of graphics should be used. Graphical perception theory (97) 

attempts to answer this question. This theory views the graphical display of quantitative data as a 

form of data encoding that makes important patterns in multiple data values more explicit. 

Identifying these patterns requires the user to perform one or more perceptual tasks that different 

kinds of graphics support with varying degrees of accuracy. Commonly used perceptual tasks, 

ordered from most to least accurate, include: 

1. Position along a common scale 

2. Positions along nonaligned scales 

3. Length, direction, angle 

4. Area 

5. Volume, curvature 

6. Shading, color saturation 

Using this theory, graphical display techniques can be classified from simpler to more complex 

according to the relative accuracy of the perceptual tasks that they require. Cartesian plots, for 
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example, rely on the tasks of decoding direction and position of points along a common scale. 

Pie charts rely on angle, area, and length, thus making them more challenging with respect to 

decoding quantitative data. One of the most complex kinds of graphics according to this theory is 

the metaphor graphic. A metaphor graphic is designed to evoke a corresponding object in the real 

world (96). Each feature of a metaphor graphic is supposed to represent a different data element, 

and different combinations of values of the component data elements produce different overall 

appearances of the graphic that ideally reflect states of the real-world object. 

This theory does not propose that simpler graphics should be used at all times. Metaphor 

graphics can represent a lot of data in compact form. However, users must remember the 

meaning of each feature even if they use the data display only occasionally (98). Thus, training 

and experience may be an important factor in choosing a graphic. Clinical results displays have 

both everyday users and occasional users, and training on particular medical data displays is 

typically very limited. Therefore, given a choice between employing metaphor graphics that 

convey complex data in compact form and simpler graphics that employ more generic but 

familiar display techniques, theory suggests that simpler graphs may be more appropriate (99). 

2.2.4 Visualization of temporal intervals 

A typical way of displaying temporal intervals is as a horizontal bar with optional vertical 

lines demarcating defined start and finish time points, as shown in Figure 5. Several prototype 

systems have been described that employ this technique to visualize intervals identified by 

temporal abstraction. 
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KNAVE was a tool for displaying automated summaries of a patient case, with the 

automated summaries created by temporal abstraction (22, 100). KNAVE was designed for 

displaying a limited data set related to a patient care plan. For example, a care plan for 

administering a chemotherapy protocol might monitor the patient’s platelet and white blood 

counts, which together can be used to determine if the patient is experiencing a side effect of 

chemotherapy called myelotoxicity. The platelet counts, white blood counts, and episodes of 

myelotoxicity (if any) are displayed in timeline plots one above the other and are all aligned to 

the same horizontal time axis. Interactivity features include the ability to zoom into a period of 

time, display of frequency statistics regarding the fraction of time a concept was true about a 

patient, and the ability to perform sensitivity analysis by modifying a data value and seeing what 

effect it has on the derived concepts. The vertical size of each plot limits the amount of data that 

can be displayed on one screen, making it unsuitable for a general-purpose clinical results 

display. 

A component of T-IDDM (Section 2.1.2) visualized clinically important episodes in a 

patient’s blood glucose measurements alongside the raw data (68). In this case, intervals were 

directly superimposed on top of a plot of blood glucose data. The purpose of this display was 

 

Figure 5: Graphical depiction of a patient state or process that occurs over an interval of time. 
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similar to that of KNAVE, to present a summary of the current status of a patient for a single 

patient care task. 

A visualization tool for TrenDx (Section 2.1.4) called SmartDisplay was reported as 

being under development (23), but the tool does not appear to have been completed or deployed. 

SmartDisplay defined a protocol for communicating interval-based concepts between a temporal 

data analysis framework and the display that allowed it to serve as a front-end for any temporal 

data analysis system, including those that use temporal abstraction rather than trend templates. If 

TrenDx were driving SmartDisplay, data related to the highest-scoring template would be shown 

in the display along with time-line bars showing the intervals of data that have high similarity to 

the template. SmartDisplay appears intended for use as an ICU monitoring system, perhaps as a 

replacement to existing displays of physiological parameters that are usually available at ICU 

nursing stations (11). 

A different class of temporal data displays aims to present a single-screen summary of 

patient status. The first example of such a system is Cousins’ timeline display (101), which has 

the ability to display both interval-based and time-stamped patient data but no mechanism for 

deriving interval-based concepts. Lifelines (102) has similar features. The TimeLine system 

(103) appears only to support time-stamped data but displays informative icons for data items, 

such as a thumbnail of a chest x-ray that can be clicked to view a full-size image. Lifelines and 

TimeLine group data according to source-oriented categories, however TimeLine can display 

separate timelines on separate screens for each of the patient’s clinical problems. These 

monolithic timeline displays may be of value as “consoles” for quickly ascertaining a high-level 

overview a patient. It is unclear, however, how to display the large volume of clinical data for a 
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typical patient, especially a hospitalized patient, without having to summarize some of the raw 

data. Temporal abstraction could serve as an automated summarization tool for this purpose. 

2.2.5 Data display evaluation 

Recent studies in medical informatics have explored the usability of medical information 

systems and their effects on clinical decision-making processes using techniques from the 

cognitive science literature (104). Cognitive science is concerned with the processes of 

perception, reasoning, problem solving and decision-making. The techniques used to explore 

these processes include videotaping user-software interactions; verbal protocol analysis, in which 

software users “think aloud” as they carry out tasks with software and their thoughts are 

classified using a coding scheme; and observing software users directly both in usability 

laboratories and in the field (105). 

Published studies have primarily focused on the usability of information systems. These 

studies evaluate data entry tasks such as entry of coded data (106) and the effect of physician 

interaction with a computerized patient record on the patient interview (107, 108). Coding 

schemes are developed that classify the user’s thoughts and intentions while performing tasks 

with the software and/or interacting with a patient, and users are asked to “think aloud” as they 

perform these tasks. Video is synchronized with recorded codes so that the user’s actions, 

thoughts, and intentions can be correlated. Process measures are developed using the frequencies 

and distributions of codes during the time course of the study. 

Cognitive science techniques have gained wide acceptance in software usability 

engineering (109) because they can provide measures of the success of a software design for a 

particular task, the degree of effort or “cognitive load” required to use the software, and the 

influence of the software on thought patterns and problem-solving strategies. These approaches 
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may also be helpful for observing the effects of alternative software designs on decision-making, 

although these types of studies have not been reported in medical systems. 

Prior to the use of cognitive techniques, outcome measures and debriefing questionnaires 

were the primary sources of data for answering questions about usability and effects of a medical 

system on decision-making. Typical outcome measures include speed and accuracy of 

performing a task, and accuracy of making decisions using the information system. Process 

measures obtained from “think aloud” studies as described above can validate and explain the 

values of such measures. These studies may also bring to light unanticipated consequences of the 

information system, while outcome measures require that all consequences be anticipated (105). 

“Think aloud” studies are also believed to capture users’ impressions of the system more 

accurately and in greater detail than questionnaires or exit interviews (110). 

2.2.6 Summary 

Further study is needed to determine the effects of form, organization, and sequence on 

data acquisition, interpretation, and decision-making. The data displays described above 

visualize limited sets of patient data, and their effects on data acquisition, interpretation, and 

decision-making were only evaluated with limited use cases. Nonetheless, these displays provide 

a validated set of clinical data visualization techniques to incorporate into process-oriented 

displays. Although techniques for visualizing temporal intervals have only been evaluated with 

small data sets, and their effects on clinical decision-making have not been evaluated at all, the 

results of these studies suggest that using temporal abstraction to control the display of clinical 

data may be a useful extension to existing experimental clinical display systems. 
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2.3 LABORATORY RESULTS PRESENTATION 

Clinical laboratory tests provide data for a wide variety of clinical decision-making activities, 

including making diagnoses, monitoring disease progression, and measuring response to therapy 

(111). Laboratory tests are also a major data source for clinical research and medical process 

improvement studies. Laboratory data (both clinical and anatomic pathology data) comprised 

94% of the objective data in one electronic medical record system (112), and it is commonly 

stated that 70% of patient data in a typical medical record originates from the laboratory (113). 

The volume of clinical laboratory testing has increased substantially in the past 30 years (114, 

115), and is likely to continue increasing as genomic and proteomic analyses are incorporated 

into patient care (41, 116). Over 200 clinical laboratory tests are routinely performed at the 

University of Pittsburgh, and over 1000 are available. 

Clinical laboratory data has unique features that complicate its interpretation as compared 

with other components of the medical record (99). Clinical laboratories communicate test results 

primarily through the medical record and usually without interpretive analysis. In contrast, other 

information in the medical record might be directly known to physicians (e.g., history, physical 

exam, progress notes), communicated verbally in addition to being documented in the record 

(e.g. specialist consultant reports, nursing data), or summarized in interpretive form (e.g., 

anatomic pathology, radiology, and consultant reports). Correct interpretation of laboratory 

results often requires identifying patterns in consecutive values of the same test and relationships 

between patterns in multiple tests. Yet, the standard tabular printout of laboratory results in the 

paper chart does little to make temporal changes clear. In inpatient settings, laboratory reports 

are typically organized by laboratory section (e.g. Chemistry, Immunology) and present results 

as numerical tables organized by name and time. The time axis is not proportional in these 
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displays, and test results related to a clinical problem may be spread across multiple sections. 

The spreadsheet-style views in most commercial electronic health records suffer analogous 

problems. 

The majority of clinical laboratory tests performed for inpatients are for following disease 

progression and response to therapy rather than for making diagnoses (116, 117). Particularly 

when the patient’s diagnosis is already known, clinical management may depend upon accurate 

“intermediate-level” (1) interpretations of time-related series of laboratory results. Such 

interpretations include patterns like abnormal and critical flags, delta checks, trends, and 

temporal relationships between patterns across multiple tests (e.g., simultaneously increasing 

blood urea nitrogen and creatinine during renal failure). Manually detecting clinically relevant 

patterns can be a time-consuming and error-prone process (1). Several information systems 

based on temporal abstraction (Section 2.1.2) have been developed for identifying these 

intermediate-level interpretations, and visualization software based on temporal abstraction have 

been successfully applied to interpreting and visualizing clinical laboratory data (Section 2.2). 

Recent studies have identified incorrect interpretation of clinical laboratory data as a 

significant contributor to medical errors (118-120). In one study, “monitoring problems” 

including laboratory data were identified as a cause of 8% of physician ordering errors and the 

third most common cause of patient injury due to medications (118). In an analysis of therapeutic 

drug monitoring (TDM) in pediatric patients, 9% of 152 drug level tests were incorrectly used, 

contributing to medical errors (119). A study of 696 clinically important prescribing errors 

revealed that the most common factors associated with errors were changes in renal or hepatic 

function requiring a dose alteration (120). Indications of problems were found to be present in 

laboratory data but were not acted upon. These results suggest that existing techniques for 
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presenting laboratory data may be inadequate. Given the large volume of clinical laboratory 

tests, the need to identify relationships between multiple test results for correct interpretation, the 

utility of intermediate interpretations, and the relative lack of interpretive analysis in typical 

medical records, unique techniques may be needed to minimize the frequency of errors 

associated with using laboratory data. 

Specific improvements have been proposed for laboratory data displays that may improve 

data acquisition, interpretation, and decision-making (121) with these data. Data acquisition may 

be improved by: grouping data by relatedness in time, organ system, physiologic system, or 

disease hypothesis; emphasizing key findings; eliminating redundancy and excess information; 

and reducing quantitative data to qualitative data. Characteristics that may facilitate data 

interpretation include rescaling and inclusion of derived values. Characteristics that may 

facilitate decision-making include optimizing the order in which data is presented, eliminating 

redundancy, and constructing data summaries. 

One of the earliest systems reported in the literature to make use of these ideas was a 

touch-screen microcomputer system for sub-specialty consultants to find relevant laboratory 

results quickly (117). This system displayed test results of interest to a clinical subspecialty as a 

grid, or panel, of trend plots. Plots within a panel had time axes with the same start and stop 

dates to enable physicians to more easily see relationships across multiple tests. While this 

system was never formally evaluated, it was reported to have high acceptance among physician 

users (117). 

The Clinician’s Workstation (CWS) was a laboratory results display designed to improve 

utilization of laboratory tests in bone marrow transplantation units (27) through enhanced data 

organization. It provided a “console” of laboratory orders and results relevant to those units on a 



 

38 

single screen. Data were displayed numerically by default, although trend plots of one or more 

tests could be displayed on demand. The organization of tests on the screen appears to have been 

hard-coded. CWS was successfully deployed in pediatric bone marrow transplantation units, and 

after its first two years of deployment median charges for laboratory tests were significantly 

reduced (27). 

The Query Clinical Information System (QCIS) used a clinical vocabulary to group 

laboratory data by concepts such as diagnoses (28). Concepts of interest were related by the 

vocabulary to sets of relevant laboratory, drug order, and other data. After a concept was selected 

from a search screen, the system presented a tabular display of laboratory data containing only 

the subset associated with the chosen concept. There was no capacity to associate test results 

with a concept only in the presence of certain test result values. QCIS was found to improve the 

speed and accuracy of data acquisition and interpretation compared to a source-oriented display 

(28). 

A polygon-based laboratory data display was reported in which vertices represented 

individual tests, test values were mapped to a position on the line between the vertex and the 

center of the polygon, and the relative value of each test compared to its reference range was 

visualized against a background of concentric colored bands (122). The polygon served to 

provide a graphical display and to group results that would typically be interpreted together. No 

underlying knowledge base was ever reported for defining groups of data. The display was found 

to improve the speed and accuracy of interpretation of a set of abstract laboratory tests (123, 

124). In contrast, two previous studies found that graphical display of the same laboratory tests 

had no benefit over tabular display when subjects were looking for single abnormal tests (123, 

124), indicating a specific benefit of graphical displays when identification of patterns is 
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important. A drawback of this visualization tool is the lack of support for time sequences of 

laboratory results; the polygon can only display a snapshot of results that all occurred at the same 

time. 

The Physician’s Workstation (PWS) was an experimental outpatient electronic medical 

record that used a qualitative model of physiology to generate alerts related to laboratory test 

results (125). PWS displayed textual messages describing recent alerts in a text box adjacent to 

the results display (126, 127). Laboratory results were displayed graphically with trend plots, and 

tests’ normal ranges were explicitly indicated so that physicians could detect abnormal test 

results at a glance. In addition to displaying alerts and trends, PWS facilitated interpretation of 

laboratory data by providing a selectable list of the patient’s current diagnoses, and by 

highlighting data associated with the currently selected diagnosis. The data associated with a 

diagnosis was dynamic such that laboratory test results could be highlighted only if an abnormal 

value or trend was present. It is possible that dynamic highlighting gave PWS’s graphical display 

added value, although no evaluations of these techniques were ever published. Nonetheless, the 

PWS nonetheless is an example of how automated interpretation, conceptual grouping, and 

graphical display might be used to highlight important patient conditions. 

These systems provide evidence that improved organization and graphical display of 

laboratory data may facilitate earlier and more accurate detection of clinical problems by 

clinicians, although none have addressed the use of laboratory results for clinical research and 

quality assurance activities. The PWS’s integration of graphical display and dynamic data 

organization seems promising, and it may be useful to evaluate the effects of these techniques on 

data interpretation and decision-making. 
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3.0 PROTEMPA: PROCESS-ORIENTED TEMPORAL ANALYSIS 

Chapter 1.0 introduced an integrated approach to improving the detection and visualization of 

disease and patient care processes that are reflected by temporal and mathematical relationships 

in time sequences of clinical data. This chapter presents the design and implementation of the 

temporal abstraction component of this approach. 

3.1 INTRODUCTION 

Clinically important processes in individual patients may be recognized by physicians through 

temporal patterns in data collected from the history, physical examination, and diagnostic tests 

(128). Understanding these patterns and processes is crucial to making correct diagnoses, 

determining treatment, monitoring or predicting response to therapy, and following or predicting 

disease progression. Detecting these processes accurately often requires physicians to identify 

relations between the values and times of multiple data elements within and among data types (1, 

65, 129). Information systems have been designed to assist the physician in performing this 

interpretation task through the method of temporal abstraction (14, 15, 20, 56, 63, 65), which 

may be defined as the process of inferring high-level interpretations from time-stamped data (see 

Introduction and Background). 

Temporal abstraction may be viewed as a two-stage process. The first stage, low-level 

abstraction, is the identification of temporal intervals in raw patient data. The second stage, 
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high-level abstraction, is the process of combining groups of intervals that satisfy defined 

temporal relationships into higher-level abstractions. These stages are analogous to the simple 

abstraction and complex abstraction mechanisms described by Bellazzi et al. (65). 

Low-level abstraction may employ a variety of heuristic, statistical or model-based 

pattern recognition strategies, techniques from the field of time series analysis (75), or 

classifications (state, trend, gradient, and rate) (56, 65, 130). The optimal techniques for a given 

data type or pattern within a data type are not always predictable and may need to be determined 

by experimentation. Figure 6 shows several examples of low-level abstractions inferred from a 

series of digoxin drug levels. 

 

Figure 6: Temporal abstraction of digoxin drug levels. Temporal abstraction is the process of 
inferring high-level concepts from time sequences of raw data. In the example depicted in this 
figure, a patient's serum digoxin measurements are used to infer periods of decreasing values and 
increasing values. A period of normal levels can be inferred from the first eight values because 
they are all within the normal range (between the thin horizontal lines). The last three values are 
above the upper limit of normal and thus indicate that the patient had toxic levels during that time 
period. 
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In contrast, effective high-level abstraction does not require heterogeneous techniques: a 

typical strategy is to define a formalism for describing constraints on the temporal relationships 

between pairs of intervals and a mechanism for determining whether a set of intervals satisfies 

those constraints (59, 61). An example of a high-level abstraction in the clinical laboratory 

domain is shown in Figure 7. A patient with renal failure was treated with digoxin beginning on 

hospital day 5, and serum levels of digoxin quickly rose above the therapeutic range (0.8-2.2 

ng/ml). Digoxin therapy was subsequently discontinued, and the digoxin level declined until 

about day 13, when it began to rise without additional digoxin treatment. A likely explanation is 

that the patient was started on quinidine, a drug that decreases digoxin’s volume of distribution 

and renal clearance. Thus, in the absence of concurrent digoxin therapy, intervals of rising 

followed by high digoxin blood levels early in a quinidine treatment interval could be abstracted 

to an interval of quinidine-digoxin interaction. 

This chapter presents a novel software system that aims to provide flexible low-level 

abstraction and general-purpose high-level abstraction called Problem-Oriented Temporal 

 

Figure 7: Temporal abstraction of serum digoxin drug levels and quinidine administration data. 
Periods of increasing digoxin (labeled Incr.), high digoxin (labeled High), and On-quinidine are 
inferred through the process of simple abstraction. From this information, the complex abstraction 
Digoxin-quinidine interaction may be inferred. 
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Analysis (PROTEMPA). An advantage of PROTEMPA as compared with existing temporal 

abstraction systems is that it provides a framework for defining, storing, executing, and sharing a 

library of general-purpose or task-specific algorithms, called temporal abstraction primitives, 

which employ arbitrary mathematical processing algorithms. These primitives may define 

general mathematical patterns within time-stamped data sequences and are configurable with 

parameters constraining them to sequences with particular characteristics. This framework makes 

it easy to develop, test and deploy heterogeneous algorithms optimized for particular tasks, and 

to aggregate found intervals across these algorithms into complex abstractions. PROTEMPA 

may be used either in a data mining (retrospective) mode to identify temporal patterns in large 

data sets, or in an event monitoring (prospective) mode to identify patterns of interest as they 

develop. 

3.2 DESIGN 

PROTEMPA is an object-oriented software library with a modular architecture that is callable 

through defined Application Programming Interfaces (APIs). It has four modules, shown in 

Figure 8, that provide 1) a framework for defining temporal abstraction primitives and 

processing data with those primitives (the Algorithm Source), 2) a framework for specifying 

algorithm parameters and interval relationships that define abstractions of interest (the 

Knowledge Source), 3) a connection to an existing data store (the Data Source), and 4) a data 

processing environment for finding abstractions in time-stamped data (the Abstraction Finder). 

The first three modules have back ends that implement environment- or application-specific 

features. 
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Figure 8: PROTEMPA architecture. PROTEMPA is a modular software library that implements 
an extension of the temporal abstraction method (56) for retrospective clinical data retrieval. The 
Abstraction Finder controls data processing and is supported by the Data Source, Knowledge 
Source, and Algorithm Source modules. Arrows represent dependencies between modules. A 
PROTEMPA application is a program that calls the PROTEMPA library through defined APIs. 



 

45 

3.2.1 Data model 

PROTEMPA provides a set of classes for representing data values and computed 

intervals, shown in Figure 9. PROTEMPA represents information about a patient as a time 

sequence of parameters. Two types of parameters represent patient data: the time-stamped data 

value, and the constant data value. Time-stamped data values represent any kind of data that has 

a timestamp, and are stored with a temporal granularity unit (tstampUnits in Figure 9) that 

reflects how precisely the value’s timestamp is known. Constant data values represent data that 

do not have a timestamp (e.g., the patient’s gender). A third type of parameter, the interval, 

represents interpretations of patient data that have been computed by PROTEMPA. 

PROTEMPA’s interval representation is based on a point-based model of time (see 

Background), and thus intervals have a starting time and a finishing time. When intervals are 

computed, their starting and finishing temporal granularity units (startUnits and finishUnits in 

Figure 9) are assigned the highest possible level of precision, which corresponds to the lowest 

level of granularity used in the computation. 

3.2.2 Abstraction mechanisms 

A program using PROTEMPA calls an API provided by the Abstraction Finder to scan 

patient data for one or more abstractions over a defined date range. The Abstraction Finder 

retrieves definitions of each abstraction from the Knowledge Source. It then extracts the data 

needed to compute those abstractions from the Data Source, performs temporal abstraction 

(calling the Algorithm Source as required), and returns found intervals to the calling program. 

The sequence of interactions between PROTEMPA’s modules in response to a call to the 

AbstractionFinder API is shown in Figure 10. 
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PROTEMPA’s Abstraction Finder decomposes temporal abstraction into three 

mechanisms: a low-level mechanism that applies algorithms defined in the Algorithm Source to 

time-stamped data, and two high-level mechanisms (discussed below) that apply interval 

relationships defined in the Knowledge Source to previously-identified temporal intervals. The 

low-level mechanism scans a sequence of time-stamped data using a sliding window mechanism 

based on Temporal Coupling Verification (TCV, see Background) to select successive data 

subsequences, as shown in Figure 11. These subsequences are passed to the Algorithm Source 

for processing. The width of the sliding window, identity of the algorithm, and specific 

arguments for the algorithm are defined in the Knowledge Source. When a data subsequence 

matches the mathematical constraints specified by an algorithm and argument set, the low-level 

mechanism returns a named time interval with start and finish times and temporal granularity 

units corresponding to the timestamps and units of the earliest and latest data values in the 

matching subsequence. 
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Processing for the high-level abstraction mechanisms is contained within the Abstraction 

Finder module. The first mechanism, temporal pattern, scans for groups of intervals with 

sequential, overlap, or co-occurrence temporal relationships. Relationships are specified in the 

Knowledge Source as minimum and maximum temporal distances between the endpoints of 

pairs of intervals, and constraints may also be specified in the Knowledge Source on the 

minimum and maximum duration of each interval in the group. These relationships and 

constraints are similar to those described by temporal constraint networks (TCNs, see 

Background and (59)). When a group of intervals are found that are consistent with the defined 

relationships and constraints, a named interval is created that typically encompasses the temporal 

extent of the group but may alternatively be temporally offset relative to one of the intervals in 

the group. The second high-level mechanism, temporal slice, processes all intervals of a given 

type as a chronological list and returns new intervals that are copies of an ordinal range, or 

“slice,” of the intervals in the list. This mechanism can return the first, last or other intervals of 

an abstraction based on arguments specified in the Knowledge Source. The high-level 

mechanisms are similar to the temporal pattern matching (56) and cardinality constraint (24) 

mechanisms described by Shahar and coworkers. 

The Abstraction Finder also implements an interval combination procedure that joins 

pairs of intervals of the same type if their nearest endpoints are within a defined maximum time 

limit, similarly to the previously described horizontal temporal inference and temporal 

interpolation mechanisms (56). When the limit is satisfied, the pair of intervals is replaced by a 

new interval of the same type that spans the two intervals’ temporal extent. These optional 

combination limits are specified for the low-level and temporal pattern mechanisms as part of the 

definition of an abstraction in the Knowledge Source. 
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The Abstraction Finder module implements a data processing sequence that incorporates 

the three abstraction mechanisms (Figure 12). When processing is initiated, the low-level 

mechanism scans time-stamped data and identifies all intervals corresponding to low-level 

abstractions. The temporal pattern and slice mechanisms then operate on intervals found by the 

low-level mechanism, repeatedly scanning for new intervals until no more can be found. As the 

Abstraction Finder identifies new intervals, they become available for further processing. 

Intervals are cached so that subsequent calls to the Abstraction Finder’s API do not cause the 

same intervals to be re-computed. 

 

Figure 11: Illustration of the low-level abstraction mechanism scanning a time series of platelet 
counts. In this example a trend primitive (TREND) is used with criteria for determining if adjacent 
platelet values are increasing (PLT incr) or decreasing (PLT decr). After the intervals are 
identified, the interval combination procedure (see Design) combines adjacent TREND (PLT incr) 
intervals and adjacent TREND (PLT decr) intervals. 
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The Abstraction Finder is supported by the Algorithm Source, Knowledge Source and 

Data Source modules. The Algorithm Source provides a method for storing, and a run-time 

environment for executing, temporal abstraction primitives that support the low-level temporal 

abstraction mechanism described above (class diagram shown in Figure 13). The primitives are 

implemented as algorithms in an arbitrary programming language. Algorithms may be written to 

identify a specific data pattern and be essentially self-contained, or they may describe a general 

pattern (e.g., the state and trend classifications from previous temporal abstraction systems) and 

be passed arguments (starting or ending cutoff values, slope, etc.) that define particular instances 

of the pattern for different settings. When arguments are used, they are specified in the 

Knowledge Source and passed to the Algorithm Source when the algorithm is called. The 

Algorithm Source backend provides the algorithm storage and run-time environment. 

 

Figure 12: Activity diagram of PROTEMPA’s processing sequence. The low-level abstraction 
mechanism scans time-stamped data sequences (A) for time intervals that correspond to low-
level abstractions defined in the Knowledge Source (Figure 8). Found intervals (B) are 
subsequently scanned by the high-level mechanisms, which add new intervals corresponding to 
defined temporal pattern and temporal slice abstractions (C), repeatedly processing all intervals 
until no more are found. 
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The Knowledge Source provides for storage and retrieval of abstractions (class diagram 

shown in Figure 14), each of which specifies an abstraction mechanism to use and a set of 

mechanism-specific parameters. Abstractions that use the low-level mechanism specify the name 

of a temporal abstraction primitive from the Algorithm Source, a set of constraints including 

duration and sequence length limits for the sliding window, and, if appropriate, arguments for the 

primitive’s parameters. Abstractions that use the temporal pattern mechanism specify a set of 

temporal relationships between a group of previously defined abstractions and, if appropriate, 

constraints on the durations of the abstractions in the group (Figure 15). Abstractions that use the 

temporal slice mechanism specify a previously defined abstraction and an ordinal range (Figure 

16). Abstractions that use the low-level or temporal pattern mechanisms also optionally specify 

interval combination limits for use by the interval combination procedure. A Knowledge Source 

backend connects to a knowledge base for storage. 

 

Figure 13: Class diagram of the Algorithm Source’s algorithm model. When the Algorithm 
Source’s readAlgorithm method is called (Figure 10), algorithms are returned as Algorithm 
objects. Values for an algorithm’s parameters are set via an Algorithm object’s 
addParameterAssignment method, and data subsequences are sent to an algorithm for 
processing as Segment objects via an Algorithm object’s compute method. The Algorithm 
Source backend defines concrete implementations of Algorithm. 
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The Data Source provides a connection to a physical database containing time-stamped 

clinical data, and a mapping between the terminology of the database and the terminology used 

in the Knowledge Source (130). The database connection and mapping are implemented in the 

Data Source backend. The Data Source provides data to PROTEMPA as instances of the 

TimestampedDataValue and ConstantDataValue classes shown in Figure 9. 

 

Figure 14: Class diagram of PROTEMPA’s knowledge model. Data type definitions are 
represented by TimestampedDataValueDef objects, and abstractions are represented by 
AbstractionDefinition objects. Subclasses of AbstractionDefinition implement the three 
abstraction mechanisms. When the Knowledge Source’s readAbstractions method is called 
(Figure 10), abstractions are returned as TemporalPatternAbstraction, SliceAbstraction, and 
LowLevelAbstraction objects. 



 

54 

 

Figure 15: Temporal pattern abstraction definition. Abstractions that use the temporal pattern 
mechanism specify a group of abstractions (Input Abstractions 1 to 3), and temporal relationships 
(gray dotted arrows). Relationships are specified as minimum and maximum distances (min, max) 
between the endpoints of pairs of the input abstractions. For example, (0, ) indicates that the 
second time point in the relationship must occur on or after the first point (  = largest possible 
time distance). Constraints may be specified on each input abstraction’s minimum and maximum 
duration (dmin, dmax), offsets of the endpoints of the output abstraction from the endpoints of the 
input abstractions (gray dashed arrows), and the interval combination limit (gapmax) for the output 
abstraction. Constraints in square brackets are optional. 

 
 

 

Figure 16: Temporal slice abstraction definition. Abstractions that use the temporal slice 
mechanism specify a previously defined abstraction, and an ordinal range (from,to). Constraints 
may be specified on the minimum and maximum duration of the input abstraction (dmin, dmax). The 
duration constraints are in square brackets to signify that they are optional. 
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3.3 IMPLEMENTATION 

PROTEMPA was implemented using the Java Software Development Kit version 1.4 

(java.sun.com) on Apple Macintosh hardware running OS X 10.3 (Apple Computer, Inc.), and 

was written in approximately 26,000 physical source lines of code. PROTEMPA’s modules 

(Figure 8) are Java classes, and the PROTEMPA API can be called from any Java program. The 

processing sequence uses the Drools (www.drools.org) rules engine for abstraction finding. 

PROTEMPA has been successfully deployed on both Apple hardware running Mac OS X and 

standard PC hardware running Windows XP (Microsoft Corp.). 

The back ends (Figure 8) are also Java classes; their class names are specified in a 

configuration file and loaded dynamically into the Java virtual machine. The Data Source 

backend implements a connection to a MySQL relational database (www.mysql.com). Two sets 

of Knowledge Source backend and Algorithm Source backend modules have been implemented 

for use in the evaluations of PROTEMPA described in Chapters 4.0 and 5.0. 

3.3.1 Java backends 

The first implementation specifies parameter definitions and algorithms as Java objects 

using PROTEMPA’s knowledge and algorithm object models (Figure 13 and Figure 14), and 

serializes those objects to a file. This implementation was tested in an application of 

PROTEMPA for use in identifying abstractions in patient care (Chapter 5.0). 

3.3.2 Protégé backends 

In the second implementation, the Knowledge Source backend specifies a connection to a 

knowledge base implemented in the Protégé ontology environment (protege.stanford.edu). The 

Algorithm Source backend encodes algorithms as functions written in the R statistical 
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programming language (www.r-project.org), and stores the algorithms’ source code as text in 

another Protégé knowledge base. The two knowledge bases’ ontologies specify PROTEMPA’s 

knowledge and algorithm object models, respectively. Protégé’s ontology editor automatically 

generates user interfaces (not shown) based on these ontologies for creating and editing 

definitions of abstractions, time-stamped data types, and algorithms. Algorithms are read from 

the knowledge base, and executed as shown in Figure 17 using software from the RoSuDa 

project (stats.math.uni-augsburg.de/software/) that supports execution of R source code from 

Java programs. This implementation was tested in an application of PROTEMPA in clinical 

research described in Chapter 4.0. 

3.4 DISCUSSION 

PROTEMPA is a novel temporal abstraction framework that applies a two-stage strategy to 

detecting clinically important temporal patterns in raw patient data. The first stage implements a 

method based on TCV (77) that supports mathematical pattern matching with arbitrary 

algorithms called temporal abstraction primitives to infer low-level abstractions from time series 

data. The second stage applies iterative temporal pattern matching using TCNs (59) to infer high-

level abstractions from groups of previously identified abstractions. In a proof-of-concept 

application of PROTEMPA, a set of simple domain-independent temporal abstraction primitives 

were developed for finding mathematical patterns of interest in clinical laboratory data, and a 

prototype of a web-based clinical laboratory data analysis tool has been implemented that 

visualizes intervals reflecting these patterns. 
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The temporal abstraction primitive framework is designed to: 1) provide a clear 

separation between the mathematical pattern matching and temporal pattern matching 

mechanisms; 2) allow primitives to be evaluated and compared conveniently to determine the 

optimal algorithms for finding mathematical patterns in a particular domain; and 3) allow the use 

of arbitrary mathematical techniques for analyzing time series data. A wide variety of analysis 

techniques may be used to construct primitives, such as moving average (75), autoregressive 

(75), wavelet transform (131), and time series segmentation (82) among many others. This 

 

Figure 17: Illustration of data processing by the Algorithm Source, using the R Algorithm Source 
backend. After PROTEMPA’s low-level abstraction mechanism selects a data subsequence for 
processing, it passes the subsequence into the Algorithm Source along with a set of algorithm-
specific arguments. The Algorithm Source calls the appropriate algorithm and returns success if 
the data subsequence satisfies the algorithm’s constraints. In the R Algorithm Source backend, 
each defined algorithm is executed in its own R session. Vals – the values of the data 
subsequence; tstamps – the timestamps of the data subsequence; types – the types of each data 
element of the subsequence; and param1, param2, etc. – algorithm-specific parameters. 
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implementation of primitives using a “plug-in” architecture is unique. Other temporal abstraction 

systems typically provide internal mechanisms for low-level abstraction with less flexible, pre-

defined processing strategies. 

Temporal abstraction primitives may be domain-independent or domain-specific. The 

state primitive is relatively domain-independent; classification based on value ranges is of 

interest across a wide variety of laboratory and other observations. The ability to set run-time 

parameters specific for primitive instances allows general-purpose domain-independent 

primitives to be tailored to specific needs. Analogous domain-independent primitives might 

evaluate event frequencies or trends in values associated with observations. Domain-dependent 

primitives that provide specific analyses for particular situations are also possible. For example, 

a primitive based on a particular compartmental drug elimination model might use that drug’s 

dosing and blood concentration information to identify evidence for a specific pharmacogenetic 

phenotype. Furthermore, while the examples in this chapter involve clinical laboratory data 

values and drug administration data, it is possible to write primitives that operate across very 

different types of time-stamped data. For example, a primitive might detect patterns based on 

information extracted from free text clinical notes or reports using natural language processing. 

Temporal abstraction primitives can be implemented in an arbitrary programming 

language and executed using an algorithm source backend that provides an appropriate runtime 

environment. Specifying algorithms in Java (Section 3.3.1) provides good performance, but may 

require a significant amount of programming if statistical processing is required. For applications 

that make extensive use of such processing, specifying algorithms in a statistical programming 

language such as R (Section 3.3.2) may provide significant reductions in the amount of time 
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required to implement new primitives. For example, R has a built-in linear regression model, 

making it trivial to implement a primitive for detecting trends. 

PROTEMPA’s separation of abstraction definitions, abstraction mechanisms, and 

algorithms for the low-level abstraction mechanism may significantly facilitate the 

maintainability of large sets of abstraction definitions, as compared with older rule-based expert 

system designs in which domain knowledge and data processing would be mixed together in the 

same rules (132). The separation of “temporal” domain knowledge (i.e. abstraction definitions) 

from mechanisms for computing temporal abstractions has been described previously for the 

RESUME system (Section 2.1.2) (133). PROTEMPA extends that work by separating temporal 

abstraction primitives from the low-level abstraction mechanism, thus making possible the 

independent creation and maintenance of these primitives as described above. Clinical domain 

experts who would define abstractions and raw data types do not need to know how the 

abstraction mechanisms and algorithms are implemented. Similarly, the low-level mechanisms 

and algorithms could be enhanced by software developers without having to modify any clinical 

domain knowledge. Separating domain knowledge from processing may also facilitate linking of 

PROTEMPA’s knowledge base with existing standard clinical vocabularies that define raw data 

types, clinical states, and disease processes, as was implemented in ALMA (130). The Protégé 

environment (Section 3.3.2) facilitates both the entry of domain knowledge by clinicians and 

linking to external vocabularies, as was described by Musen in (134). 

PROTEMPA is a hypothesis-testing system that scans time series data for pre-defined 

mathematical and temporal patterns of interest. This strategy is in contrast to a data mining tool 

that seeks to identify all meaningful patterns in a data set. A PROTEMPA hypothesis is a 

temporal abstraction that can be low-level or high-level, and domain-independent or -dependent; 
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the null hypothesis is the absence of the abstraction in the data set. PROTEMPA also supports 

the notion of simple hypotheses that aggregate to support higher-level hypotheses. This concept 

of hypothesis differs from that of TrenDx (14) in that a TrenDx hypothesis is a single result that 

is inferred to be the most likely explanation for a complex data set. Temporal abstraction systems 

such as RESUME (56, 65) and ALMA (130) do not have an explicit concept of hypotheses as 

such; their usual goal is to summarize a collection of data containing general-purpose, domain-

independent abstractions to yield an accurate high level description of a patient’s state over time. 

Temporal abstraction has a worst-case algorithmic complexity that is exponential in the 

number of temporal relationships specified by a typical high-level abstraction (56). However, 

even systems that calculate all possible abstractions for summarization purposes usually need to 

specify only a limited set of temporal relationships, so average-case complexity is significantly 

better (56). Limiting abstraction definitions to hypotheses of interest may enable performance 

gains over summarization systems. PROTEMPA’s two-stage system can further enhance 

performance over traditional temporal abstraction frameworks by allowing the implementation of 

more efficient algorithms for identifying abstractions than is possible in systems that build 

temporal relationship hierarchies with raw data elements at the leaves. Even TrenDx (14), which 

optimizes pattern detection on high frequency data by fitting raw data to regression models, may 

not be as efficient as time series segmentation algorithms (82), which cannot be implemented in 

TrenDx but can be in PROTEMPA. Finally, temporal abstraction is parallelizable per patient and 

has been successfully implemented on clustered hardware (13). 

PROTEMPA can function as a retrospective analysis tool (scanning population data for 

patients with patterns of interest) or as a prospective data monitor (identifying patterns as they 

develop). The user chooses the “mode” simply by choosing the data; PROTEMPA functions 
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identically in both prospective and retrospective applications. Though a prospective analysis tool 

based on PROTEMPA has not yet been implemented, it would likely be straightforward to assess 

the performance of PROTEMPA pattern detection algorithms against retrospective data before 

deploying them in a prospective setting. 

The abstractions that PROTEMPA detects, like those targeted by RESUME (56) and 

ALMA (130), do not yield a complete diagnosis, but are rather observations of clinically 

meaningful data patterns that are associated with the state of a patient or the nature of a clinical 

process (1). Identification of these abstractions may be useful in support of patient management 

tasks like therapy planning, determining prognosis, or monitoring response to therapy, and may 

be especially helpful for physician decision-support in the management of chronic disease where 

the primary diagnosis is already established. Recognition of intermediate abstractions is also 

likely to be useful in quality assurance or process control analyses, where particular patterns of 

events or values may indicate a process problem, a medical error or a “near-miss” (135, 136) (see 

Figure 7). In these settings, the aggregation of data through intermediate abstractions may 

identify features of the clinical course that are relatively obscure in the raw data, and may reduce 

“information overload” and focus decision-makers’ attention on key issues. 

Temporal abstraction systems lack support for attaching a probability to found intervals 

that the clinical state or process described by the interval actually exists (Section 2.1.7), and 

PROTEMPA is no different in that regard. This limitation is a by-product of temporal abstraction 

systems being of a rule-based expert system design. Using Bayes’ theorem to calculate the 

probability of clinical states or processes occurring would theoretically have this capability, such 

as in the modifiable temporal belief network (MTBN) approach described in Section 2.1.7. 

However, representing states and processes as temporal and mathematical patterns in rules 
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appears to be a natural way of encoding these kinds of clinical knowledge, and assigning 

accurate prior or conditional probabilities of occurrence to many such interpretations would be 

difficult. 

There are several ways in which intermediate abstractions could contribute to clinical 

decision support systems. Processing current clinical data to identify abstractions prospectively 

could support robust clinical alerting that is capable of recognizing developing temporal patterns 

within and across clinical event types. Such a system could support traditional message alerts 

delivered by pager, email or clinical information system user interface elements. Alternatively, 

intermediate abstractions could be used in combination with “presentation hints” or a display 

specification language (e.g., SmartDisplay (23)) to create dynamic clinical user interfaces that 

optimize themselves on-the-fly to most effectively display patterns in retrieved data. This 

potential is tested in the clinical user interface study described in Chapter 5.0. The abstraction 

hierarchies that PROTEMPA generates also support the development of interfaces that allow 

data to be visualized at multiple levels of abstraction (22), and PROTEMPA’s data model 

supports the construction of a temporal reasoning interface for querying the features of 

discovered abstractions (57). 

Although temporal abstraction systems have been shown to enhance medical care in 

several specific domains (16, 20, 65, 137-139), the possible benefits of a general-purpose 

temporal abstraction system in clinical event monitoring, clinical data display, medical quality 

assurance and outcomes research remain speculative. Additional studies are necessary to 

determine clinical situations that are amenable to this kind of analysis and optimize temporal 

abstraction primitives for best performance in those situations. PROTEMPA is designed to 

support these types of studies through a framework that accepts clinical data in a relatively 
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generic form, allows flexible design and iterative optimization of temporal abstraction 

primitives, and provides a principled mechanism for aggregating intervals into high-level 

abstractions. 
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4.0 IDENTIFYING CLINICAL PROCESSES IN RETROSPECTIVE DATA FOR 
PATIENT SELECTION 

This chapter presents an implementation of PROTEMPA (introduced in Chapter 3.0) for 

retrospective data retrieval, and an evaluation study in which PROTEMPA was used to identify 

patients with HELLP syndrome and categorize them by disease severity and progression based 

on the temporal characteristics of multiple laboratory test profiles. 

4.1 INTRODUCTION 

Health care institutions store large volumes of clinical data that are useful for understanding 

processes associated with disease, therapeutic response and patient care (6). These processes may 

be reflected as time sequences of laboratory test results, medical observations, physiologic 

signals and other data that are mathematically and temporally related (1, 20, 25, 140, 141). 

Common clinical data retrieval systems do not provide tools for characterizing such data 

sequences or retrieving groups of patients who show them (5-10). Rather, they query for patients 

primarily by diagnosis, procedure, or billing codes; simple text matching; or limited 

mathematical comparisons of individual data values. Patient characteristics that are not explicitly 

coded, or are represented as mathematical patterns or temporal relationships within data 

sequences, are not easily accessible to these systems and thus are difficult to include in clinical, 

quality assurance or outcomes research studies. 
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The need for an improved ability to represent temporal knowledge and detect temporal 

relationships in clinical data sets has been recognized in previous data retrieval systems, but 

limited support exists in those systems for mathematical data processing. For example, DXtractor 

(4) is a tool for identifying patient populations in clinical databases. It supports specifying 

temporal relationships between time-stamped data values and mathematical constraints on single 

values, but it is not designed to detect mathematical patterns within data sequences. Temporal 

extensions to Structured Query Language (SQL) have been proposed (142) that support storage 

and retrieval of representations of clinical states and processes that occur over periods of time, 

but those systems require modification of existing database schemas. Furthermore, like 

DXtractor they do not detect mathematical patterns within data sequences. The Arden Syntax 

(143, 144) can represent decision rules for patient monitoring (3) that specify temporal 

relationships between individual data values. Detecting some mathematical patterns within data 

sequences is technically possible using the syntax and a limited set of mathematical functions 

defined by the Arden specification, but pattern detection algorithms must be specified separately 

within each rule. Thus algorithms cannot be shared between multiple rules or used as building 

blocks for complex rules. 

Temporal abstraction, described in Section 2.1.2, employs an alternative approach for 

representing and identifying time relationships (12), and has been integrated previously with 

clinical databases. For example, Chronus II (145) is a recently-described temporal database 

architecture and query system that employs temporal abstraction (13) to retrieve patient 

populations from a retrospective data set. Like the temporal abstraction systems described in 

Section 2.1.2, the range of abstractions that can be created to describe patient features is limited 

to what can be constructed from pre-defined temporal abstraction primitives. Thus there remains 
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a need for software that can flexibly specify and identify a broad range of meaningful 

mathematical and temporal relationships within existing large clinical data sets stored as time-

stamped records in standard relational databases. 

To address this need, PROTEMPA (Process-oriented Temporal Analysis, see Chapter 

3.0) has been applied to specifying temporal and mathematical relationships between data 

elements in standard time-stamped databases, and retrieving populations of patients who show 

those relationships. To test the hypothesis that temporal abstraction can be used to identify 

patients with specific disease processes and stratify those patients into disease severity and 

progression categories, this study evaluated PROTEMPA for its ability to 1) identify patients 

with HELLP syndrome in a large clinical data repository and 2) stratify those patients based on 

the characteristics of intervals in their clinical laboratory test results.  

4.2 DESIGN OBJECTIVES 

The goal of applying PROTEMPA to retrospective data analysis was to create tools that identify 

sequences of clinical events and observations based on mathematical constraints and temporal 

relationships, and retrieve patient populations containing those sequences from clinical data 

repositories. These tools should support a variety of tasks, including clinical research, and should 

not constrain future research questions. They should therefore provide substantial flexibility in 

specifying the mathematical and temporal relationships that are used to define data sequences. 

To simplify the maintenance of knowledge about data sequences and to allow reuse of 

definitions across multiple settings, the system should support creation and maintenance of an 

extensible library of temporal abstraction primitives (algorithms). These primitives may define 
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general mathematical patterns applicable to data sequences and should be configurable with 

parameters constraining them to sequences with particular characteristics. Because disease and 

clinical care processes may be reflected by multiple data sequences, each with characteristic 

features (e.g., time courses of change in several laboratory tests following a clinical procedure), 

the system must also support the specification of temporal relationships between groups of data 

sequences and abstraction of those groups into higher-level time intervals. To be broadly useful, 

the design must support interoperability with existing data stores and integration into standard 

networked computing environments. 

4.3 HELLP SYNDROME 

HELLP (Hemolytic anemia, Elevated Liver enzymes, and Low Platelets) is a severe form of pre-

eclampsia that appears during the latter part of the third trimester or after childbirth (39). There is 

no standard diagnosis code (ICD-9) for HELLP. Diagnosis and management are based on 

monitoring clinical symptoms and three clinical laboratory tests: platelet count (PLT), lactate 

dehydrogenase (LDH), and aspartate aminotransferase (AST). HELLP syndrome has been 

defined as pre-eclampsia with PLT < 100,000/μL, LDH > 600 U/L, and AST > 70 U/L (146, 

147), and rising PLT indicates recovery (147). The PLT nadir can be used to classify a HELLP 

patient by disease severity: class 1 HELLP, PLT < 50,000/μL; class 2 HELLP, PLT >= 

50,000/μL and < 100,000/μL (148). There is clinical interest in the characteristics and 

therapeutic circumstances of HELLP patients who show a partial recovery of PLT followed by a 

second suppression. Formerly, identifying these patients required extracting pregnant patients by 

diagnosis code and inspecting their laboratory results by hand. 
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4.4 METHODS 

PROTEMPA’s design and implementation were described in Sections 3.2 and 3.3, respectively. 

For this application of PROTEMPA, the Data Source backend implements a connection to a 

MySQL relational database (www.mysql.com), and the Protégé Knowledge Source and 

Algorithm Source backends were used as described in Section 3.3.2. 

To determine whether PROTEMPA could be used to identify and categorize patients with 

laboratory signs of HELLP, a set of cases was retrieved from the University of Virginia’s 

Clinical Data Repository (CDR) (10) occurring between 2000 and 2005 with ICD-9 codes 

indicating pregnancy and at least one LDH > 300 U/L. All available laboratory test results and 

diagnosis codes for each case were exported from the CDR and imported into the test 

implementation’s data store. Laboratory data were originally obtained as part of routine clinical 

care using standard analysis methods. Institutional Review Board approval was obtained. 

Five temporal abstractions were defined that distinguish between the two disease severity 

categories (HELLP 1 and HELLP 2, as defined above) and four PLT response categories: 1) 

those that recovered after PLT suppression (First recovering), 2) those that partially recovered, 

recurred and then recovered (Recurring with recovery), 3) those that partially recovered, recurred 

and then did not recover (Recurring), and 4) those that showed no evidence of recovery (all 

others). These five abstractions incorporate general temporal abstraction primitives for detecting 

states, trends, and the minimum value in a data sequence, with arguments specific for PLT, LDH, 

and AST. 

The HELLP 1 and HELLP 2 abstractions use the temporal pattern mechanism (Section 

3.2.2), and specify intervals of elevated AST, elevated LDH, and low PLT occurring within 7 

days of each other with a minimum PLT value of less than 50,000/μL or between 50,000/μL and 
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100,000/μL, respectively. The First recovering abstraction uses the temporal slice (Section 

3.2.2) and temporal pattern mechanisms. It specifies the first interval of platelet values, 

beginning after the start of a class 1 or 2 HELLP interval, that shows an increase of more than 

9,000/μL per day and is at least 12 hours in duration. The Recurring abstraction uses the 

temporal pattern mechanism and specifies an interval of First recovering followed by an interval 

of platelet values with a decrease of more than 9,000/μL per day to an endpoint of less than 

100,000/μL. The Recurring with recovery abstraction uses the temporal pattern mechanism and 

specifies an interval of Recurring followed by an interval of platelet values with an increase of 

more than 9,000/μL per day to an endpoint of at least 100,000/μL. An example of a patient case 

showing these abstractions is illustrated in Figure 18, and the definition of the Recurring 

abstraction is illustrated in Figure 19. 
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Figure 18: Example time series of platelet (PLT) counts in class 1 HELLP syndrome (39, 148) 
with the intervals that PROTEMPA identified. Intervals found by the low-level abstraction 
mechanism (solid lines) were inferred from mathematical patterns in the raw time-stamped data 
shown at the bottom of the figure, and are labeled as in Figure 11. Intervals found by the high-
level mechanism (dashed lines) were identified as in Figure 19 and are labeled with the 
corresponding abstraction’s name. Superscripts refer to the ordinal position of the intervals 
accessible through the temporal slice mechanism (see Design). AST and LDH test results and 
associated intervals are omitted for clarity. 
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A simple Java application invoked the PROTEMPA library with database connection 

information, Protégé knowledge base files defining the abstractions and algorithms, and a list of 

abstractions to find; and output found intervals for each case to a text file. The abstraction 

definitions were adjusted after a preliminary processing run to optimize patient categorization 

and accommodate typical variations in laboratory values. After PROTEMPA identified a set of 

cases and their abstractions, its output file was passed to a post-processing script, which 

categorized the cases according to the types and sequence of intervals found (Table 1). The 

HELLP cases found by PROTEMPA, and their categorizations, were compared for accuracy 

against manual review of the data set by the author. The HELLP cases found by PROTEMPA 

were also compared to those identified by a standard SQL query looking for cases with at least 

one elevated value of AST, one elevated value of LDH, and one suppressed PLT result. This 

query is intended to be representative of the way existing clinical data retrieval systems would be 

used to search for HELLP cases. 
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Figure 19: Composition of the Recurring abstraction (see Methods), defined as an interval of 
decreasing platelet values (PLT decr) occurring after the first interval of recovering platelets (First 
recovering) and overlapping an interval of platelet values less than 100,000/μL (PLT low). 
Intervals are illustrated as in Figure 18. Gray dotted arrows denote temporal relationships defined 
between endpoints of intervals and are labeled with minimum and maximum time constraints (see 
Figure 15 for details on the temporal relationship notation). When First recovering, TREND(PLT 
decr), and STATE(PLT low) intervals are found with these relationships, a Recurring interval is 
created with the same endpoints as the contributing TREND(PLT decr) interval (gray dashed 
arrows). 

Table 1: HELLP syndrome cases categorized by laboratory result profile. 

Severity Category Number (percent of total) 
Recurring2 5 (6.2%) 
Not recurring3 33 (40.7%) 

HELLP 21 

Total 38 (46.9%) 
Recurring with recovery4 7 (8.7%) 
Recurring without recovery5 4 (4.9%) 
Not recurring with recovery3 31 (38.3%) 
Not recurring without recovery6 1 (1.2%) 

HELLP 11 

Total 43 (53.1%) 
All HELLP Total 81 (100%) 
1Patients were categorized as HELLP 1 or HELLP 2 based on co-occurring intervals of elevated 
LDH and AST, and suppressed platelet count (see Evaluation). All HELLP 2 patients recovered 
based on normalization of platelet counts. 
2Final platelet interval is Recurring or Recurring with recovery 
3Final platelet interval is First recovering 
4Final platelet interval is Recurring with recovery 
5Final platelet interval is Recurring 
6All patients not classified as above 
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4.5 RESULTS 

There were 761 eligible cases (pregnancy and elevated LDH) of which 190 included an ICD-9 

code for severe pre-eclampsia. PROTEMPA took five minutes to process the 761-case data set, 

and identified 81 cases as likely HELLP. All of the cases that PROTEMPA found were 

confirmed by manual inspection as consistent with HELLP. The post-processing step correctly 

classified the 81 potential HELLP cases into severity and platelet response pattern categories 

(see Table 1), as compared with manual inspection of each case’s PLT data sequence. Overall, 

PROTEMPA identified the “recurring” pattern (partial platelet recovery followed by a 

subsequent platelet suppression) in about 20% of HELLP patients (6.2% of HELLP 2 and a total 

of 13.6% of HELLP 1 patients, Table 1). 

The standard SQL query identified 87 of these 190 cases as potential HELLP diagnoses 

based on the presence of at least one low PLT, high AST, and high LDH consistent with the 

HELLP definition. In all six SQL-identified cases that PROTEMPA did not identify, laboratory 

results meeting the required thresholds were more than 7 days apart and thus were likely to be 

unrelated. It was not possible to classify response patterns using SQL queries because SQL does 

not offer the capability to distinguish time course details. 

4.6 DISCUSSION 

PROTEMPA is a data processing strategy and software library that allows specification and 

identification of mathematical and temporal relationships in clinical data, and recognition of 

patients in retrospective clinical data repositories based on these relationships. This study tested 

PROTEMPA in a proof-of-concept implementation that accurately identified patients with 



 

74 

laboratory signs of HELLP syndrome, a disease with no ICD-9 code, and accurately assigned 

severity and disease progression categories based on the temporal characteristics of laboratory 

test profiles (platelet count, AST, and LDH; see Figure 18 and Figure 19). The ability to 

automate identification of patients and processes of interest based on the temporal characteristics 

of clinical data may substantially decrease the effort required to retrieve and classify patients for 

a wide range of clinical studies, outcomes research, and quality assurance evaluations. This is 

particularly pertinent in cases involving patient features that do not have standard codes, in 

which coding may not be complete or accurate, or which require discrimination of clinical 

severity, disease progression or response to therapy. Though some previous data retrieval 

systems allowed queries with temporal features (4, 5, 142), PROTEMPA is unique in supporting 

the identification of patient populations based on multiple data sequences with defined 

characteristics and temporal relationships. 

The comparison of patients identified by PROTEMPA versus those identified by a 

standard data retrieval system query illustrates how existing methods of identifying patients by 

setting constraints on the values of multiple laboratory tests do not take the temporal distance 

between results into account. In this data set, the SQL query described above resulted in six false 

positive HELLP cases, but there might be more in a different patient population or clinical 

problem. These illustrate the type of false positives that can occur if temporal patterns are not 

considered. Another significant advantage of PROTEMPA is its ability to identify patterns in 

laboratory result profiles that are indicative of disease severity and progression, a capability that 

SQL does not support. 

The temporal abstraction primitives that PROTEMPA uses in its low-level mechanism 

(Figure 11) are particularly suited to identifying mathematical patterns for retrospective data 
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retrieval. Primitives may be fully specified (“hard coded”) algorithms, or they may be designed 

to receive parameters that define the features of the data sequences they match. The latter 

supports the identification of data sequences that have similar general features (e.g., state, trend, 

peak, trough, frequency) but may vary in specific characteristics such as cutoff values, slopes, 

total number of data elements and duration in different clinical settings. PROTEMPA primitives 

are designed to be flexible; in addition to identifying relatively short mathematical patterns, they 

could also target longer data sequences using a variety of analysis techniques. Algorithms may 

be of arbitrary complexity and may be implemented in any programming language, as long as an 

appropriate algorithm specification and runtime environment are provided by the Algorithm 

Source backend (Figure 8). The R statistical processing environment (Figure 17) proved flexible 

and convenient for the purposes of this study. Other interpreted or compiled programming 

environments designed for statistical, scientific or modeling applications could also be 

implemented as Algorithm Source back ends as appropriate for particular tasks. 

PROTEMPA’s performance characteristics for retrospective data analysis have not yet 

been fully evaluated. As described in Chapter 3.0, its data processing mechanism (Figure 12) has 

exponential worst-case complexity, but is expected to have significantly better average case 

complexity. Previous studies have found that patient summarization and monitoring tasks usually 

require searching for a limited set of abstractions (56), and the abstractions developed for 

identifying HELLP cases in this study indicate that clinical research questions may be similar in 

that respect. For large data sets or high search volumes, PROTEMPA’s algorithms are 

parallelizable by patient (13) and could be implemented in a straightforward manner on clustered 

hardware. Performance might be further enhanced by parsing the abstraction definitions for 
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value constraints that might be used to limit the amount of data extracted from the Data Source 

backend. 

4.7 CONCLUSIONS 

PROTEMPA is a temporal abstraction system that can be used as a flexible, extensible 

retrospective data retrieval system and can accomplish tasks beyond the capabilities of other 

software for retrospective query of clinical systems. In this preliminary study, it correctly 

identified and categorized patients with a complex disease based on temporal relationships 

between multiple laboratory results. Temporal abstraction has not been commonly applied to 

clinical data retrieval, but it may provide significant advantages when used to augment standard 

data retrieval methods in clinical research, outcomes studies and quality assurance. It is likely to 

be particularly useful in situations where the patient characteristics of interest are not easily 

coded or are expressed as changes in data over time, temporal relationships between multiple 

data elements, or frequencies of events. 
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5.0 CLINICAL DECISION-MAKING USING A PROCESS-ORIENTED DATA 
DISPLAY 

This chapter introduces a clinical data display that implements the visualization component of 

the process-oriented approach for improving the detection and visualization of disease and 

patient care processes (see Chapter 1.0). After describing the display’s design and 

implementation, this chapter describes an evaluation of the effects of a process-oriented display 

of clinical laboratory data on data acquisition, interpretation, and decision-making by physicians, 

as compared with a traditional numerical laboratory data display. 

5.1 INTRODUCTION 

Clinical laboratory results support many clinical decision-making activities, including diagnosis, 

monitoring disease progress, and measuring response to therapy. Existing production medical 

record systems typically present laboratory results similarly to the static presentations found in 

the paper chart, and thus do not take advantage of computer systems’ capacity for data 

processing and dynamic visualization. Such presentations of laboratory data are probably 

suboptimal and may contribute to medical errors (see Section 2.3). 

Previously reported interview data (described in (93), and discussed in Section 2.2.2) 

suggests that physicians reviewing real cases primarily use other physicians’ accounts of a 

patient in physician-written documents for the purpose of obtaining an overview, and use 
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“primary” data sources such as laboratory displays for evidence seeking. These results suggest a 

need for evaluating data displays in a full medical record context to ensure that each component 

of the display is optimized for its real use in clinical workflows. 

Displays with concept-oriented organization and/or graphical display of clinical data have 

been found in limited studies to improve interpretation and decision-making by physicians (see 

Sections 2.2.1 and 2.3). Clinical data displays that graphically visualize intervals found by 

temporal abstraction have been prototyped (21-23) (see Section 2.2.1), and limited evaluations in 

highly controlled settings suggest that they improve the speed of data acquisition and 

interpretation by physicians (see Section 2.2.4 and 2.3). A medical record system, the 

Physician’s Workstation (126), dynamically highlights clinically relevant trends and states in 

laboratory results (see Section 2.3), but the effects of emphasizing these patterns on decision-

making has never been evaluated. Concept-oriented organization, graphical display, and pattern 

visualization have the effect of highlighting relationships in the time-stamps and values of 

clinical data that are reflected by clinically relevant patient processes. There is a need to 

determine whether emphasizing data reflecting these processes improves clinical decision-

making by physicians in context. 

To evaluate whether the process-oriented approach improves data acquisition and/or 

clinical decision-making by physicians, a data display was developed for results review called 

TPOD (Temporal Process-oriented Display). TPOD dynamically analyzes clinical data and 

adapts its form, organization, and sequence to highlight clinically relevant patient processes. It 

graphically visualizes temporal and mathematical patterns within time sequences of patient data, 

organizes data related to these patterns in close proximity, and sequences data to prioritize the 

display of found patterns. TPOD is implemented in a web-based case presentation software 
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system that dynamically organizes the display of clinical laboratory data based on temporal and 

mathematical patterns found by PROTEMPA. 

To evaluate TPOD’s effects on the process and outcome of data acquisition, data 

interpretation, and clinical decision-making by physicians, a study was conducted in which 

resident physicians evaluated a set of real patient cases and wrote orders using case presentation 

software that includes a variety of clinical data, and presents laboratory data with either a TPOD-

based display or a tabular numerical display. Subjects were asked to “think-aloud” while 

reviewing cases, and their verbal utterances and on-screen actions were recorded. The case 

presentation software recorded subjects’ orders, navigations from screen to screen, and time 

spent on each case. 

Two analyses of these data were performed. Given the lack of previous studies evaluating 

clinical data displays in context, a preliminary analysis examined “think-aloud” transcripts 

collected from the cases assigned to the tabular display in order to ascertain how physicians use 

laboratory results during case review and decision-making. As physicians appear frequently to 

use others’ accounts of a patient case for obtaining an overview (see above), this initial analysis 

hypothesized that components of the medical record that provide primary data may be more 

often used for obtaining evidence of known problems and identification of anomalous findings 

than they are for overview. 

The second analysis compared the process and outcome of decision-making in cases with 

a TPOD-based laboratory display versus cases with a tabular display. Specifically, this analysis 

compared the quality of the orders that subjects wrote, the time required to complete the review 

and order set for each case, the time spent using the laboratory display, the frequency with which 

the laboratory data display was used, the cognitive steps that subjects took while reviewing the 
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cases, and subjects’ opinions of the laboratory displays. Hypotheses of this analysis were that 

TPOD would improve the speed and accuracy of orders, decrease the ratio of information 

acquisition to information integration and evaluation steps, decrease the time required to evaluate 

a case, and decrease the total number of cognitive steps as compared with the tabular display of 

laboratory results. 

5.2 TPOD: TEMPORAL PROCESS-ORIENTED DISPLAY 

TPOD has a client-server architecture (see Figure 20). The client is a web browser. On the server 

side, a patient database stores time-stamped patient data. A knowledge base specifies how the 

display dynamically alters its form, organization, and sequence in response to PROTEMPA 

abstractions. A process detector implements PROTEMPA’s Abstraction Finder (see Section 

3.2.2). The display server uses the intervals identified by PROTEMPA and information about 

those intervals in the knowledge base to format a patient’s data for display. 

The knowledge base specifies TPOD’s form, organization, and sequence as clusters of 

data that are displayed if a specified group of temporal and mathematical patterns is present (see 

Figure 21). These data clusters are specified as: a PROTEMPA abstraction that must be present 

in order for the cluster to be displayed, a collection of supporting data types that may be 

optionally present and may help clinicians understand the significance of the cluster, and a 

priority rank that determines how prominently the display should present the cluster. Constraints 

may be specified on the minimum and maximum length of the abstraction. Data clusters may 

contain overlapping primary or supporting data, in which case the data would be visualized in all 

clusters in which they are specified. When an abstraction specified by a data cluster is present, 
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the cluster is displayed as a graphical visualization of the patterns specified by the abstraction, 

graphical presentations of the data from which those patterns were derived (primary data), and 

additional data that may help clinicians understand the significance of the patterns (supporting 

data). Cluster displays are designed to aggregate data related to a clinical process or problem, 

graphically reveal temporal relationships between those data, and sequence data so as to 

highlight a patient’s current clinical problems. 

When the client requests data on a patient, the data server retrieves the set of defined data 

clusters from the knowledge base, and the process detector finds all instances of the abstractions 

 

Figure 20: Architecture of TPOD. TPOD has a client-server architecture. The client is a web 
browser. The server has four components: a knowledge base for specifying display organization, 
form, and sequence; a patient database; a process detector for identifying abstractions in patient 
data; and a display server that presents intervals and data in graphical form. 
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defined in the data clusters, accessing the patient database as needed. For the data clusters whose 

abstraction has been identified, supporting data are retrieved from the patient database, graphs 

are created to visualize the data clusters, and a web page is returned to the client that displays 

data clusters in rank order. 

TPOD is implemented as a collection of Java Servlets and JavaServer Pages 

(java.sun.com) generating HTML. Visualizations are created as image files using a customized 

version of the open-source JFreeChart charting software (www.jfree.org/jfreechart). TPOD’s 

Process Detector implements PROTEMPA as described in Section 3.3. PROTEMPA’s Data 

Source is used by TPOD for connecting to a patient database. The Knowledge Source and 

 

Figure 21: Class diagram of TPOD’s knowledge model. This model extends PROTEMPA’s 
knowledge model (see Figure 14) by including a DataCluster class, which represents a cluster of 
data that is displayed only if a specified abstraction is present. 
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Algorithm Source backends are implemented as described in Section 3.3.1. A Java applet (not 

shown) provides a user interface for specifying data clusters. 

An example TPOD display is shown in Figure 22. The patient has six data clusters, 

displayed in rank order. The mostly highly ranked cluster, Cholestatic Liver Disease, is shown at 

the top and is fully displayed by default. Remaining clusters are initially hidden, but can be 

revealed by clicking on either the cluster’s name or on the disclosure triangle to the left of the 

cluster’s name. 

The Cholestatic Liver Disease cluster is displayed if PROTEMPA identifies an 

abstraction specified as an interval of contemporaneous elevated values of ALT, Alkaline 

Phosphatase (AlkPhos), and GGT (the definition of this cluster is discussed below and is shown 

in Table 2). As shown Figure 22, the temporal extent of the interval is visualized as a horizontal 

bar (see Section 2.2.4 and Figure 5), and the data contributing to the interval are visualized as 

trend plots. Reference ranges and abnormal test results are highlighted. The Cholestatic Liver 

Disease cluster specifies four associated tests (see Table 2) that may be useful for interpreting 

the cholestatic liver disease process, and these are visualized as vertically compressed graphs 

(see Figure 22) that can be expanded to full-size by clicking on the magnifying glass to the right 

of each graph. The vertically compressed graphs have additional highlighting behind abnormal 

values so that clinicians can determine if the associated tests are abnormal at a glance, and 

multiple closely spaced abnormal results are given further emphasis with darker highlighting. 



 

84 

 

Figure 22: Screenshot of TPOD showing a Cholestatic Liver Disease data cluster (defined in 
Table 2), which is displayed because PROTEMPA found an interval of High Alk, AlkPhos, and 
GGT (purple bar). Data contributing to this interval are shown in full-size graphs, and associated 
tests are shown in compressed graphs. Each test’s normal range is indicated in blue. Abnormal 
high tests are indicated with upward-pointing red triangles, and abnormal low tests are indicated 
with downward-pointing blue triangles (not shown). In the compressed graphs, abnormal results 
are further highlighted with gradient backgrounds that “coalesce” if sequential abnormal results 
are closely spaced to give those results greater emphasis. The mouse pointer is closest to a total 
bilirubin test result, and the result’s timestamp (5/27/2005 4:00 AM) and value (3.2mg/dL) are 
displayed in boxes above the graph. Clicking the same bilirubin result causes a sticky-note 
widget to appear below and to the right of the result with detailed information. 
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While TPOD visualizes laboratory results graphically by default, access is also provided 

to numerical results. Moving the mouse pointer over a graph causes the timestamp and value of 

the laboratory result closest to the pointer to be displayed in the gray boxes over the graph 

(shown in Figure 22). Alternatively, by clicking on a test result, a “sticky-note” box pops up with 

detailed information about a result (Figure 22). 

Data clusters only show the subset of a patient’s data that is relevant to the abstractions 

that PROTEMPA has identified. Access to the rest of a patient’s data is provided underneath the 

data clusters in a section of the display called Labs by Group (Figure 22). This section visualizes 

all of a patient’s laboratory results as compressed graphs organized in static groups similarly to 

typical production laboratory displays. 

If a cluster’s abstraction is a high-level abstraction (see Section 3.2.2), TPOD can reveal 

the found interval’s component intervals graphically to explain the basis for identifying the 

cluster. Figure 23A shows a cluster called Developing Anemia (defined in Table 2 and illustrated 

in Figure 28) that was displayed because PROTEMPA found an interval of Declining 

Hemoglobin and Hematocrit (defined in Table 2) using the temporal pattern mechanism (Section 

3.2.2). By clicking on the magnifying glass to the right of the purple bar, TPOD shows all of the 

intervals from which Declining Hemoglobin and Hematocrit was derived (Figure 23B). 

Thus, TPOD organizes clinical data according to temporal and mathematical patterns that 

have been found by PROTEMPA. It graphically visualizes the temporal extent of these patterns, 

the data contributing to these patterns, and additional data that may be useful for determining the 

clinical significance of these patterns. Data presented in these clusters are sequenced at the top of 

the display to give those data emphasis. TPOD also provides visual explanation for why a cluster 

has been displayed. 
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A 
 

 
B 

Figure 23: Screenshot of TPOD showing a Developing Anemia data cluster (defined in Table 2). 
A. Initial visualization of the cluster, showing an interval of Declining Hemoglobin and 
Hematocrit (purple bar). Clicking on the magnifying glass icon to the right of the interval reveals 
an expanded visualization. B. The expanded visualization, which is read from top to bottom. It 
shows that the interval of Declining Hemoglobin and Hematocrit was derived from intervals of 
Declining Hematocrit and Declining Hemoglobin; Declining Hematocrit was derived from 
intervals of Decreasing Hematocrit and Low Hematocrit; and Declining Hemoglobin was derived 
from intervals of Decreasing Hemoglobin and Low Hemoglobin. The two Low Hematocrit and 
two Low Hemoglobin intervals on the right-hand-side of the visualization did not contribute to the 
Declining Hemoglobin and Hematocrit interval. 
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5.3 METHODS 

5.3.1 Case construction 

Cases were real, de-identified patient data extracted from the University of Pittsburgh 

Medical Center’s data warehouse, MARS (Medical Archival System, www.mars-systems.com). 

Institutional Review Board approval was obtained. An honest broker obtained a frequency 

distribution of ICD-9 discharge codes for all hospital admissions of at least seven days duration. 

From that distribution, twelve ICD-9 codes were selected based upon two criteria: 1) a diagnosis 

for which laboratory testing is important for patient management; and 2) a code for which at least 

 

Figure 24: Screenshot of the case presentation software’s Summary tab. 
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80 cases were present. Eight cases were randomly chosen for each ICD-9 code, for a total of 96 

candidate cases. 

The candidate cases were screened for several criteria: 1) a complete admit note or a first 

progress note sufficiently detailed to be used as an admit note; 2) a discharge summary; 3) a 

reasonably complete set of progress notes, laboratory results, and consultation reports; 4) visit of 

sufficient complexity to test the two display styles. Complexity was calculated as the sum of the 

number of lines of text, number of orders and number of laboratory results for each case. Twelve 

cases met these criteria. 

Four internal medicine attending physicians were each given two or three cases, with 

instructions to select a stopping point to make each case between six and eleven days in length 

 

Figure 25: Screenshot of the case presentation software’s Radiology tab. The H & P, Progress 
Notes, Micro (Microbiology), EKG (Electrocardiogram), and Other Documents tabs have a 
similar appearance. 
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with an optimal length of between seven and nine days, and to generate a problem list and set of 

orders for the selected stopping point (see Appendix B). A good stopping point was defined as a 

point at which it would be reasonable to end the case and ask for orders, and at which the time 

course of changing laboratory values would contribute in some way to the recommended order 

set. The physicians estimated that 15 minutes would be required to allow sufficient time for 

reviewing each case and writing orders. Six cases were chosen for use in this study with a range 

of complexities. Details of the cases are presented below. 

 

Figure 26: Screenshot of the case presentation software’s numerical laboratory data tab 
(“Labs”). 
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5.3.2 Case presentation software 

The case presentation software was implemented as a collection of Java Servlets 

(java.sun.com) generating HTML, with case data stored in a MySQL (www.mysql.com) 

relational database. The software is intended to be similar in style to how production results 

review applications organize clinical data. Multiple tabs display case data in source-oriented 

categories. The leftmost tab, “Summary,” (Figure 24) which is open when the software first 

displays a case, contains a one-sentence summary and problem list. Several document tabs 

(Figure 25) contain the history and physical exam report, progress notes, consultation reports, 

radiology reports, and EKG reports. 

The Laboratory (“Labs”) tab displays laboratory results either in tabular numerical form 

or with TPOD. The tabular numerical form organizes tests into static categories with results 

displayed in reverse chronological order, as shown in Figure 26. These categories are similar to 

those used in production electronic medical records. Disclosure triangles next to each category’s 

name allow data to be hidden or revealed. Abnormal results are displayed in boldface and 

annotated as H (High) or L (Low). Clicking on a result causes a pop-up box to appear with the 

test’s normal range and laboratory comments, if any. The TPOD-based display is described in 

Section 5.2. 
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A hyperlink in the upper-left corner of the screen leads users to a New Orders screen, 

shown in Figure 27, where users can write orders into a text area. Users can move between the 

New Orders screen and results review without losing previously written orders. 

The software was deployed on an Apple Xserve G5 computer (www.apple.com) running 

JBoss Application Server (www.jboss.org). 

 

Figure 27: Screenshot of the case presentation software’s New Orders screen. 
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5.3.3 Knowledge base construction 

An expert physician who was familiar with TPOD and PROTEMPA reviewed the 

laboratory data in the cases and created a set of 18 data clusters (textual descriptions are shown 

in Table 2 and Table 3). Cluster definitions were given to the author, who entered their 

specifications into TPOD’s knowledge base. Of the 18 clusters, 14 specify low-level abstractions 

and 5 specify temporal pattern abstractions. The low-level abstractions incorporate general 

temporal abstraction primitives for detecting states, trends, and variability in a data sequence, 

with arguments specific for particular laboratory tests. The Developing anemia cluster’s 

abstraction is illustrated in Figure 28. A total of 26 associated laboratory tests are specified by 

these clusters. 

5.3.4 Study protocol 

Internal medicine and family practice residents in the PGY-2 or PGY-3 year were invited 

to participate for a gift certificate from Amazon.com. Subjects were recruited using flyers posted 

in Presbyterian, Montefiore, and Shadyside hospitals, a presentation at the Shadyside Hospital 

Family Practice residency program’s morning rounds, and cooperation from the Internal 

Medicine and Family Practice residency directors in informing residents about this study. 
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The author ran all of the study sessions. Informed consent was obtained (see Appendix 

C), and instructions were presented verbally according to a prepared script (see Appendix D). 

Subjects were told that they are covering patients for another colleague, and they are rounding on 

each patient for the first time. They were told that they had 15 minutes for each case to determine 

the current status of the patient and write a set of orders for what to do next. In order to introduce 

time pressure, they were also told that the subject who writes most complete and accurate set of 

orders in the least amount of time would receive an additional gift certificate. Subjects were 

asked to “think aloud” as they review the cases and write orders. Instructions and practice in 

“thinking aloud” were provided. The first two cases (cases 1 and 5, described in Table 4) were 

used as practice cases for gaining familiarity with the software and the numerical and TPOD 

laboratory data display styles. The four remaining cases (cases 2, 3, 4, and 8, described in Table 

5) were used as test cases. The laboratory data display style for the first test case was chosen 

randomly, and subsequent cases alternated display styles. Test cases were shown in random 

order. 

Subjects viewed cases on a Windows PC with a 1024x768 LCD display running the 

Firefox web browser (www.mozilla.org). Subjects were only shown data up to the expert-

selected stopping point for each case. Camtasia Studio software (www.techsmith.com) recorded 

subjects’ verbal utterances and on-screen actions and stored them together as an AVI movie file. 

The case presentation software logged which cases subjects encountered, subjects’ navigations 

from screen to screen, orders, and time spent on each case. Sessions were conducted in a quiet 

conference room. 
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Upon completion of the cases, subjects completed a brief exit interview (see Appendix E) 

during which they were asked for feedback about the software and about the laboratory data 

display in particular. Subjects’ answers were recorded by Camtasia Studio. 

5.3.5 Orders 

An expert physician evaluated the orders blinded to the laboratory display style used for 

each case. Only orders to be carried out in the short term were considered. Orders meant for 

 

Figure 28: Developing anemia temporal pattern abstraction (Table 2). In box A, an immediately 
followed by relationship is specified between decreasing hemoglobin and low hemoglobin low-level 
abstractions, which if found, creates a Declining hemoglobin abstraction that spans the temporal 
extent of the component abstractions. Similarly, an immediately followed by relationship is specified 
between decreasing hemoglobin and low hemoglobin abstractions (box B), which if found, creates a 
Declining hematocrit abstraction. In box C, an overlapping relationship is specified between the 
Declining hemoglobin and Declining hematocrit abstractions, which if found, creates a Developing 
anemia abstraction. Relationships are specified as described in Section 3.2.2 and Figure 15. 
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future days and orders for consults were discarded. Doses and operational details of therapy or 

test drawing were ignored, unless the dose given by the subject indicated a substantially different 

use of a therapy. The remaining orders were classified as primary therapeutic (addresses a 

patient’s active problem list), secondary therapeutic (e.g., supportive measures, comfort), 

diagnostic (e.g., chest x-ray), nursing, or other (e.g., diet, discharge planning, administrative). 

The nursing and “other” orders were discarded. 

The diagnostic and therapeutic orders were each assigned a goal, and these goals were 

used for subsequent comparisons. For example, the order Digoxin .5 mg IV now in a setting of 

cardiac failure was assigned the goal inotropic agent. This approach allowed drug substitutions 

or different approaches to the same clinical problem to be scored as correct orders. 

Table 4: Descriptions of training cases. 

Case # # days # of 

lines 

# of 

orders 

# of 

labs 

Active problems 

1 4 1641 28 247 • Cirrhosis 
• History of esophageal varices s/p banding 
• Acute renal failure with history of chronic renal 

insufficiency 
• Pulmonary edema 
• Pancytopenia 
• Urinary tract infection 
• Diabetes 
• Hypertension 
• Depression and anxiety 
• Chronic low back pain 

5 3 418 10 122 • Diverticulosis 
• GERD 
• Esophageal ulcer 
• COPD 
• Mild CHF 
• Hypothyroidism 
• Elevated WBC 
• Anemia 
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Orders were scored as concordant (order/goal is consistent with the therapeutic goals of 

the gold standard order set), discordant (order/goal is in conflict with the goals of the gold 

standard order set), omitted (the subject omitted an order/goal in the gold standard order set), or 

added (the subject’s order/goal is not in the gold standard order set). 

5.3.6 Verbal protocol coding for analysis 1 

The “think-aloud” data were transcribed in conjunction with the video screen captures 

and logs. For the preliminary analysis, the author coded these transcripts in order to document 

the purpose for which subjects navigated to the laboratory display as one of: 

1. Overview: scanning for new information with no problem- or test-specific purpose. 

2. Evidence seeking: confirmation of a specific problem, test result, or test battery. 

3. Completeness: scanning for anomalous data to ensure that nothing has been missed. 

For navigations to the “Labs” tab that were for the purpose of evidence seeking, the subject’s 

information was additionally recorded (e.g., “Recent surge in white count?”). 

5.3.7 Verbal protocol coding for analysis 2 

 For the TPOD evaluation, the transcripts were coded by the author according to a 

modified version of a previously reported scheme for identifying cognitive steps in decision-

making (36). The original scheme is designed for evaluating a data display with a single screen 

that presents only raw data, and contains 21 types of cognitive steps from three categories. The 

first category, information acquisition, is for coding when subjects scan a display or read data 

from a display. The other categories, information combination and evaluation, are for coding 

when subjects interpret data in a display, or make a decision with data in a display. 
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Table 5: Descriptions of test cases. 

Case # # days # of 

lines 

# of 

orders 

# of 

labs 

Active problems 

2 13 1335 53 396 • S/p I&D of right elbow 
• Anemia 
• History of hypercoagulable state 
• History of CAD and CHF 
• ESRD 
• Hypertension 
• Lupus ? stable/inactive 
• Recent septic right shoulder joint 

3 10 2232 83 472 • CHF 
• Morbid obesity 
• Type 2 diabetes 
• Hypertension 
• History of atrial fibrillation 
• Ascending cholangitis 
• Right upper lobe pneumonia 
• Deconditioning 
• Stage II decubitus ulcer buttock 

4 8 865 45 317 • Fever 
• Urinary tract infection 
• Hypertension 
• Chronic Renal Failure 
• Diabetes Type 2 
• Malnutrition 
• Deconditioning 

8 6 857 53 238 • ARF 
• Hypercarbic Respiratory Failure 
• Rib Pain secondary to fx 
• PVD 
• Hx TIA 
• Spinal Stenosis 
• COPD 
• S/p AICD 
• CAD s/p CABG 
• Hx DVT 
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Several changes were made to this scheme (shown in Table 6 and Table 7) in order to 

adapt it to evaluating a multi-screen data display that presents both raw data and interpreted 

concepts (patterns). A new category of screen navigation codes was added for associating a 

cognitive step with a screen or tab (Table 6). New codes were added to the information 

combination and evaluation category (Table 7) for coding when a subject reads a concept from 

the display, and for differentiating between cognitive steps taken while viewing the numerical 

laboratory data display and cognitive steps taken while viewing the TPOD-based display. Codes 

were created for reading a concept from a laboratory display (RCG, RCN, RRCN and RRCG in 

Table 7), and for inferring a concept from a laboratory display (ICG and ICN in Table 7), in 

order to compare the total number of concepts read or inferred between the TPOD-based 

laboratory display (in which concepts may be read from the display or inferred from raw data) 

and a tabular numerical laboratory display (in which concepts must mostly be inferred). Finally, 

sub-codes were created for describing cognitive steps identified with an information combination 

and evaluation code in more detail (Table 7). See Appendix F for an example of a coded 

transcript. 

5.3.8 Statistical analysis 

In Analysis 1, subjects’ navigations to the tabular numerical laboratory data display were 

compared by purpose (overview, evidence seeking, or completeness). Results were fit to a 

marginal Poisson regression model using General Estimating Equation (GEE) (149) in order to 

compare counts in the setting of small sample size. Comparisons of evidence seeking versus 

overview and evidence seeking versus completeness were performed using an alpha level of .05. 
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Table 6: Updated coding scheme for think-aloud protocols (continued in Table 7). 

Code Explanation 
Screen navigation 

GS-S Go to screen – Summary 
GS-H Go to screen – H&P 
GS-PN Go to screen – Progress Notes 
GS-L Go to screen – Labs 
GS-M Go to screen – Micro 
GS-C Go to screen – Current Rx 
GS-PO Go to screen – Previous Orders 
GS-R Go to screen – Radiology 
GS-E Go to screen – EKG 
GS-O Go to screen – Other Documents 
GS-NO Go to screen – New Order 

Information acquisition 
RE Read a value from the display 
RC Read a concept from clinical data 
BR Browse the display (followed by SE or GS-NO) 
CBR Complete browsing 
SE Search against a criterion (followed by CSE or ISE) 
CSE Complete search 
ISE Interrupt search 
RV Review 
CRV Complete review 
RS Refer to a search mentioned previously 
AL Refer to an alternative mentioned previously 
AT Refer to an attribute mentioned previously 
VA Refer to a value mentioned previously 
EV Refer to an evaluation of an alternative mentioned previously 
RRC Refer to a read concept from clinical data 
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Analysis 2 employed a one-factor within-subject design in which the factor was display 

style. This analysis compared 1) the total time spent on each case; 2) the total time spent viewing 

the laboratory display; 3) the proportion of information acquisition versus information 

combination and evaluation steps; 4) the number of cognitive steps while viewing the laboratory 

display; 5) the number of navigations to each screen; 6) the proportion of orders that were 

concordant; and 7) the raw counts of concordant, discordant, omitted, and added orders. The 

results of analyses 1, 2, 3, 5, and 7 were fit to a marginal Poisson regression model using General 

Estimating Equation (GEE) (149). The results of analysis 4 and 6 were each evaluated using a 

paired t-test (36) with an arcsine transformation to stabilize the variance (36, 150). All statistical 

tests used an alpha level of .0045 (Bonferroni correction with 11 comparisons for a total alpha 

level of .05). 

5.4 RESULTS 

Seven subjects completed a total of twenty-eight test cases. The introductory script and practice 

cases took between 35 and 40 minutes to complete. The test cases and exit interviews resulted in 

18 hours and 12 minutes of audio and video. One subject ran out of time in one case with the 

TPOD display style, but otherwise subjects completed all cases. Subjects viewed two test cases 

in each display style. 
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Table 7: Updated coding scheme for think-aloud protocols (continued from Table 6). 

Code Explanation 
Information combination and evaluation 

IC Infer a concept (not from laboratory displays) 
ICN Infer a concept from the numerical laboratory display 
RCG Read a concept from the graphical laboratory display (explicitly identified) 
ICG Infer a concept from the graphical laboratory display (not explicitly identified) 
RCP Read about a care plan 
RRCP Refer to read care plan 
RIC Refer to a concept (not from laboratory displays) 
RCN Refer to a concept from the numerical laboratory display 
RRCN Refer to a concept from the numerical laboratory display 
RRCG Refer to a concept from the graphical laboratory display 
RICG Refer to an inferred concept from the graphical laboratory display 
AC Compare diagnostic decision alternatives 
MAC Compare management decision alternatives 
CA Cancel (ignore) an insignificant value or attribute 
EMA Express evaluation of a management alternative 
EDA Express evaluation of a diagnostic alternative 
IC, ICN, RCG, and ICG may have one of the following sub-codes: 

-DI Refer to the difference between two values 
-CN Count occurrences of some value 
-AD Refer to the sum of two or more values 
-QO Refer to the quotient of two values 
-IN Refer to inconsistent values for two or more attributes 
-OC Otherwise compare two values 
-TC Note a time course 
-T Note a trend 
-MV Otherwise compare multiple values 
-ST Refer to a cutoff or standard value for an attribute 
-STM Refer to a cutoff or standard value for an attribute (over multiple values) 
-WT Refer to the weight or importance given to an attribute 
-PS Refer to patient-specific cutoff or standard value for an attribute 
-PSM Refer to patient-specific cutoff or standard value for an attribute (over multiple 

values) 
-TR Refer to a trade-off between values or attributes, or to a compensatory 

combination of values or attributes 
-HV Hypothesize about value of an unseen attribute 
-RV Refer to a value 

Other 
QD Question why previous decision was made 
OT Other (anything else) 
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5.4.1 Results of analysis 1 

In cases with the tabular numerical laboratory display, subjects navigated to the “Labs” 

tab 74 times. Subjects’ purpose for navigating there could be determined in all cases. Repeated-

measures analysis revealed that subjects navigated to the laboratory display primarily for 

evidence seeking (see Figure 29), and the difference in terms of mean count of navigations per 

subject was statistically significant compared to both overview (p = 0.010) and completeness (p 

< 0.001). 

Subjects navigated to the tabular numerical laboratory display for evidence seeking 41 

times (55% of total navigations to the “Labs” tab). Subjects either explicitly stated their 

information need (e.g., “Why were they thinking C. diff when no diarrhea and no micro 

reported?”) or the need was implicit in statements they made and/or the test results they 

reviewed. Table 8 shows an example of an implicit information need “Confirm high INR (while 

on coumadin).” 

Four categories of information needs were identified: evidence of a problem (e.g., 

“Dehydration?”), the results of specific tests (e.g., “Recent surge in white count?”), information 

to help decide whether to change an order (e.g., “Is K-dur needed?”), or information about tests 

related to an organ system (e.g., “Endocrine”). Table 9 shows the percentage break down of 

information needs by these categories. 

Only one subject navigated to the Labs for seeking information about an organ system. 

This individual read the Assessment and Plan sections of the progress notes, which were 

generally organized by organ system, and then scanned the labs by organ system. Thus, it 

appears that this subject was seeking evidence in support of prior physicians’ assessments and 

plans. 
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Figure 29: Analysis of purpose for navigating to the tabular numerical laboratory data display 
(error bars calculated using a Poisson distribution). 

 
 
 

Table 8: Implicit statement of an information need. 

Time Actions and verbalizations 
5:10 Action: navigate to Current Rx tab. 
5:11 Verbalization: “Okay, so her current meds that she’s on. She’s on 

coumadin.” 
5:16 Action: navigate to Labs tab. 
5:17 Verbalization: “I thought her INR was a little bit high. I’m not sure why 

they started that again.” 
5:19 Action: open Coags section of labs. 
5:20 Verbalization: “Yeah, coumadin should be stopped.” 

 



 

106 

Otherwise, subjects exhibited a complex method of examining labs. Of the 41 times that 

subjects navigated to the laboratory data for evidence seeking, they reviewed additional data 

unrelated to the stated information goal 9 times (22%). In the excerpt shown in Table 10, the 

subject navigated to the Labs tab to determine why previous physicians were considering the 

diagnosis of C. difficile when there was no diarrhea and no microbiology results. The subject 

first reviewed relevant information (CBC and Diff), but then continued reviewing labs down the 

page (see Figure 26 for section order). The subject reviewed Coags, noted with surprise that a 

Hepatitis panel had been ordered, reviewed the patient’s Urinalysis, and noted again with 

surprise that Urine Tox had been ordered. Subjects’ use of the laboratory data appeared to be 

influenced by the order in which the sections were presented. In all subjects, 9 laboratory data 

sections were reviewed in which the subject expressed surprise that those tests had been ordered, 

for an average of 0.64 unexpected findings per case. 

5.4.2 Results of analysis 2 

Analysis 2 concerned all twenty-eight test cases. 

Time required to review cases 

Subjects used the entire 15 minutes for half of the cases. Results are shown in Table 11. 

There was no statistically significant difference between display styles with respect to the time 

spent on each case (p = .70), or with respect to the time spent viewing the laboratory display (p = 

.89). 
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Table 9: Categories of information needs. 

Confirmation category Count 
(percent) 

Confirming a problem 19 (46%) 
Results of specific tests 14 (34%) 
Determining whether to change an order 6 (15%) 
Tests related to an organ system 2 (5%) 

 

Table 10: Discovery of an unexpected finding. 

Time Actions and verbalizations 
11:46 Action: navigate to labs 

11:47 Verbalization: “Let us see what we have here. Why were they thinking C. diff if 
there was no diarrhea? And let us see.” 

11:58 Action: open CBC section of labs. 

11:58 Verbalization: “The CBC is not high. I don’t think … WBC is normal. I don’t 
think they should think about that.” 

12:04 Action: open Diff section. 

12:05 Verbalization: “Differential… I don’t see anything here. It is all normal.” 

12:14 Action: open Coags section. 

12:14 Verbalization: “Coags is fine.” 

12:16 Action: open Hepatitis section. 

12:19 Verbalization: “Was a hepatitis panel done on her? The items are all negative.” 

12:25 Action: open Urinalysis section. 

12:25 Verbalization: “Okay, urinalysis. Let’s see what her urinalysis that was initially 
done…I’m not going to chase that at this time.” 

12:50 Action: open Urine Tox section. 

12:51 Verbalization: “Was a U-tox done? I’m not sure (why)…” 
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Cognitive steps 

There was no statistically significant difference between display styles with respect to the 

proportion of information acquisition to information combination and evaluation steps, either 

overall or just while viewing the laboratory display (see Table 11). However, subjects made 

more cognitive steps for reading or inferring concepts while using the TPOD-based laboratory 

display (codes ICG, RCG, and RRCG in Table 7) than while using the numerical display (codes 

ICN, RCN, and RRCN in Table 7), and the difference was statistically significant (p < .001, see 

Figure 30 and Table 11). 

Log analysis 

Subjects navigated to the laboratory display more frequently in cases with the numerical 

display style than in cases with TPOD (shown in Table 11), and while the difference was 

statistically significant at the .05 level (p = .016), it was not significant after Bonferroni 

correction. 

Orders 

Subjects wrote slightly more added orders in cases with the TPOD-based display than in 

cases with the numerical laboratory display (see Table 12), and while the difference was 

statistically significant at the .05 level (p = .026), it was not significant after Bonferroni 

correction. There was no statistically significant difference between display styles with respect to 

the number of concordant, discordant, or omitted orders, or with respect to the proportion of 

orders that were concordant (see Table 12). Similar results were obtained when just considering 

each subject’s therapeutic orders. 
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Table 11: Within-subject comparison of the numerical versus graphical laboratory data displays, 
overall and by display style. 

Measure per 
display style 
within subject 

Overall (SD) Graphical (SD) Tabular (SD) p 

Total time 13.27 min (.47) 13.40 min (.47) 13.14 min (.47) .70 
Time viewing 
labs 

2.70 min (.21) 2.67 min (.21) 2.73 min (.21) .89 

# cognitive steps 158.89 (12.61) 162.14 (12.73) 155.64 (12.48) .49 
Proportion of 
steps for 
acquisition 

0.69 (.10) 0.69 (.10) 0.67 (.10) .53 

# navigations to 
laboratory data 
display 

10.57 (3.25) 7.57 (2.75) 13.57 (3.68) .016 

# of concepts 
read or inferred 

26.64 (5.16) 30.86 (5.56) 22.43 (4.74) < .001 

 

 

Figure 30: Plot of mean number of times subjects read or inferred a concept from TPOD-based 
display of laboratory data versus the tabular numerical display (error bars calculated using a 
Poisson distribution). 
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User reactions 

Subjects commented about the case presentation software and laboratory displays during 

case review. Five subjects verbalized which laboratory display style they preferred: three 

preferred the TPOD-based display, and two preferred the numerical display. 

One subject was particularly enthusiastic about the TPOD-based display, and commented 

while using the display: 

This is the one I like. See, that — there's hypernatremia — that's common in 

patients like that. Hypokalemia. Patient has renal failure. I'm not going to push 

any potassium, it's not that low. 3.4 High BUN, and creatinine has been high. 

Associated with ... I like this stuff, I like this display a lot. It tells me that the 

sodium is low… 

Another subject was particularly unenthusiastic about the TPOD-based display, and 

commented while using the display, “I have no idea what this means. Oh, I see. This is really 

very non-helpful. I mean, I don’t think we need that pointed out for us but I could be wrong.” 

Two subjects expressed discomfort with using the downward and upward pointing arrows 

of the TPOD-based display’s compressed graphs (see Figure 22) in order to determine if results 

were high, low, or normal. One subject commented, “Thyroid studies — apparently based on 

glancing for arrows — is [sic] negative.” The other commented, “I just rely on this black dot 

rather than (the) number.” 

Exit interview 

Three subjects expressed a preference for the TPOD-based display, three subjects 

expressed a preference for the numerical display, and one was undecided. Five subjects 
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expressed a preference both in the exit interview and during case review, and their preferences 

were consistent. 

Subjects who preferred TPOD, when asked why, responded: 

• It helps focus on pertinent laboratory values and determine when in the patient’s 

time course certain events occurred (n=2). 

• Good for when a patient has a trend (n=1). 

• Colors were “more exciting” (n=1). 

• Easier to find data (n=1). 

• Tabular display only shows you a few days of data on a screen (n=2). 

Subjects who preferred the numerical display, when asked why, responded: 

• Can see the TPOD-based display’s potential value but need more time with it to 

decide (n=2). 

• The TPOD-based display would be more useful for long hospitalizations (n=1). 

Table 12: Within-subject comparison of orders with the numerical versus graphical laboratory 
data displays, overall and by display style. 

Order categories 
per display style 
within subject 

Overall (SD) Graphical (SD) Tabular (SD) p 

Concordant1 15.36 (3.92) 15.14 (3.89) 15.57 (3.95) .71 
Discordant2 1.07 (1.03) 1.14 (1.07) 1.00 (1.00) .87 
Omitted3 9.14 (3.02) 8.71 (2.95) 9.57 (3.09) .58 
Added4 6.57 (2.56) 7.86 (2.80) 5.29 (2.30) .026 
Ratio of 
concordant to 
inaccurate 

1.56 (.13) 1.53 (.13) 1.59 (.13) .51 

1Order in subject list consistent with order in gold standard list. 
2Order in subject list inconsistent with order in gold standard list. 
3Order in gold standard list and but not in subject list. 
4Order in subject list but not in gold standard list. 
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• Desired to “see the numbers” (n=3). 

• The TPOD-based display is not needed (n=2). 

• Concerned that they were just looking for the upward-pointing and downward-

pointing triangles rather than looking for the numbers (n=1). 

• The graphical display would be more useful for educational purposes (n=2). 

• The TPOD-based display would be more useful in an ICU setting (n=1). 

• Not trained to analyze the data the way it is presented with the TPOD-based 

display (n=1). 

5.5 DISCUSSION 

Existing production electronic medical record displays do not optimally support problem solving 

in patient care. The organization, form, and sequence of these displays are the same regardless of 

the patient’s underlying problems (see Section 2.2). Displays that identify patterns in time 

sequences of patient data that are related to active problems and processes might help physicians 

to make timely and accurate decisions. No studies have evaluated the effects of these display 

features on clinical decision-making in the context of real patient cases. 

This study evaluated physicians’ data acquisition behaviors while using a standard 

tabular laboratory data display during case review, and compared the effects of a process-

oriented display of laboratory data (TPOD) on decision-making by physicians. Analysis 1 

characterized the information needs that laboratory displays satisfy, and the data acquisition 

behaviors that physicians use to review data in laboratory displays. The results complement prior 

research suggesting that physician-written notes are often used for overview (93), in that subjects 
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more often navigated to the laboratory data display for evidence seeking. When subjects 

navigated to the laboratory display for evidence seeking, they were primarily interested in known 

problems, but they also frequently sought information related to other kinds of concepts. This 

finding suggests that there might be benefits to decision-making for displays that support data 

acquisition using a wide variety of concepts, not just by problem. 

The organization of the Labs tab in the numerical display (see Figure 26) allowed 

discovery of additional data and unexpected results. It is unclear whether physicians consciously 

scan for anomalous findings, or if the organization of the display subconsciously encourages it. 

Regardless, discovery of unexpected results might provide insight into prior physicians’ thought 

processes, even if those results are negative (e.g., a negative Hepatitis panel). A potential 

challenge with designing concept-oriented results review displays may be how to make 

unexpected results that are not part of any known problem or concept easily discoverable. 

A limitation of Analysis 1 is relatively small counts of navigations to the laboratory data 

display. The schema for coding navigations (see Section 5.3.6) appears to have face validity, as it 

is consistent with descriptions of data acquisition behaviors in the literature. However, it would 

benefit from reliability testing with additional coders. 

These results may inform the design of novel data displays, such as TPOD, by 

highlighting the relationship between display organization, data acquisition behaviors, and 

information needs. Novel displays will likely need to support the same information needs as 

existing displays, although they may do so by supporting different data acquisition behaviors. 

TPOD is a novel data visualization strategy and software tool that dynamically assembles 

evidence of clinical processes, and aggregates data that may be useful for drawing conclusions 

about a patient’s status. TPOD adapts its organization, form, and sequence entirely based upon 
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automated analysis of the underlying data. In contrast, existing concept- or problem-oriented 

displays rely on an external problem list to determine a display’s organization (103), or require 

the user to specify what concepts or problems are of interest (28). Unlike existing systems, 

TPOD supports “intermediate” concepts (see Section 2.3) such as patterns in laboratory results, 

which may be integral to identifying disease processes but are not typically part of diagnostic 

problem lists. Thus, TPOD supports visualization of a wider variety of clinical concepts than 

existing systems. 

The rank field specified by each data cluster assigns a priority to each cluster, and is 

intended to help physicians identify important patient-specific patterns that require their 

attention. Ranking would be expected to help physicians obtain overviews of laboratory data and 

discover unexpected data interpretations. Since Analysis 1 was not carried out using the TPOD-

based laboratory display, it is unknown at this time whether subjects actually used data clusters 

to satisfy those needs. The ranking system employed in this study is preliminary. A complete 

mechanism for assigning priority to data clusters might take into account the patient’s underlying 

conditions, what data the user has already reviewed, and the user’s role. Such a mechanism 

might also involve further changes to how clusters of different priority are displayed besides 

hiding or revealing, such as displaying data at different levels of detail, or changing the size of 

graphics. 

TPOD’s use of graphics is designed to facilitate data interpretation in several ways. 

Relationships between test results are more easily identified. Data is displayed more compactly, 

so limited horizontal scrolling is required in order to see data from the past. Abnormal test results 

can be easily spotted by color and arrow direction without having to manually compare each test 

result to its normal range. While traditional laboratory data displays also annotate individual test 
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results to indicate abnormal results, several subjects reported in the exit interview that TPOD 

made it easier to identify abnormal results and trends. 

The organization of data in TPOD is less predictable than with traditional laboratory 

displays that organize tests into static groups. User interface design guidelines frequently 

articulate the desirability of user interface consistency in a display’s organization (e.g., 

information and actions should always be in the same place on the screen). On the other hand, 

slavish adherence to consistency may be a detriment to usability when consistency is given 

priority over users’ work environments (151). TPOD is designed with the latter approach in 

mind. While TPOD does dynamically reorganize data, processes are all visualized using the 

same basic form and internal organization, and users interact with each process using the same 

user interface techniques (e.g., vertical magnification, sliding the mouse over graphs, pop-up 

boxes for details). 

Subjects obtained more concepts from the TPOD-based display, as measured by verbal 

protocol analysis of subjects’ cognitive steps. This result suggests that the TPOD based display’s 

visualizations were readable despite limited training time. However, no statistically significant 

differences were found in decision-making speed, the proportion of information acquisition 

cognitive steps, or in measures of order quality. 

The lack of a difference in measures other than concepts might be due to an insufficient 

number of subjects. There is little precedent in the literature for determining the power of studies 

such as this. A minimum sample size of 12 subjects was originally aimed for, with the intent of 

recruiting additional subjects if needed. Only 7 subjects could be recruited. Given the results of 

Analysis 2, a power of .9, and a study-wide Type I error controlled at the .05 level, a sample size 

of 32 subjects would have been needed. 
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An alternative explanation is the fact that the tabs in the two display conditions were 

identical except for the Labs tab. Subjects spent most of their time viewing tabs other than the 

laboratory displays. Furthermore, at least in the cases with the numerical display, subjects 

obtained laboratory results from clinical documents as well as from the laboratory display. 

Constraining the study, such as by completely removing laboratory results from the clinical 

documents, might have increased the likelihood of seeing a difference in decision-making. 

However, such constraints would have forced subjects to use the laboratory display for obtaining 

an overview of the case, even though physicians do not appear to use the laboratory display for 

that purpose in reality. 

Lack of familiarity with the TPOD-based display might have also contributed to the lack 

of difference. More training time might have reduced the number of subjects who felt this way, 

but it was felt that two hours was the maximum session length that subjects could have 

reasonably been expected to undertake. 

Requiring subjects to perform an action in order to see the numbers might have also 

inhibited subjects’ performance with TPOD, given that several subjects complained in the exit 

interview about not being able to “see the numbers” easily. Given that two subjects expressed 

uncertainty while reviewing cases about relying on the upward and downward pointing arrows 

instead of looking at the numbers, and that subjects expressed a lack of familiarity with TPOD in 

the exit interview, subjects might have not seen this as a problem had they been more familiar 

with TPOD. Practically, displaying all of the numbers alongside the graphs would create too 

much screen clutter, potentially obscuring the trends and patterns that TPOD aims to visualize. 

An alternative approach might be to display the numbers that clinicians most often use (e.g., the 

most recent result for each test, the results of admission labs). 
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Verbal protocol analysis was a useful method of measuring cognitive steps in this study, 

although it appears to be limited in its ability to detect data acquisition steps for displays with 

large volumes of quantitative data. While subjects did read aloud a large proportion of the data 

that they appeared to be reviewing in the document displays, they tended not to read aloud a 

laboratory result unless it was particularly interesting. Verbal protocol analysis may need to be 

supplemented with other techniques such as eye tracking (152), in which a camera records 

subjects’ eye movements as they look at a display, in order to obtain an accurate count of the 

number of data elements being read in the laboratory displays. 

Despite issues regarding the ability of verbal protocol analysis to measure information 

acquisition steps in the laboratory displays, the proportion of information acquisition versus 

information combination and evaluation steps obtained in this study is similar to those reported 

by the authors of the original coding scheme (a 2:1 ratio of information acquisition to 

information combination and evaluation steps) (36). This similarity of results lends validity to 

the modified coding scheme’s ability to detect the desired cognitive steps. Nonetheless, the 

modified scheme would benefit from reliability testing with additional coders. 

A challenging use case, results review of unfamiliar cases, and relatively long and 

complex inpatient cases were purposefully chosen in order to stress the capabilities of the data 

displays and induce time pressure. Previous studies in other domains suggest that graphical 

displays show benefit especially in time pressured scenarios (see Section 2.2.3). Other use cases 

may exhibit variations in information needs and data acquisition behaviors with which clinicians 

browse components of the record. 
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5.6 CONCLUSIONS 

This chapter describes a process-oriented data display, TPOD, and a comparative study of a 

laboratory display based on TPOD versus a tabular numerical laboratory display in the context of 

real patient cases. A preliminary analysis of the tabular display suggests that physicians use 

laboratory displays for multiple information needs while reviewing unfamiliar patient cases. 

Evaluations of clinical displays that only provide access to a part of the medical record out of 

context may bias results by forcing subjects to use a display for information needs that they 

would normally satisfy in other parts of the medical record. These results need to be confirmed 

in a larger study for other laboratory data display styles, for displays of other kinds of clinical 

data, and for different decision-making tasks. 

TPOD successfully visualized a set of complex temporal and mathematical patterns in 

clinical laboratory results. While no differences in decision-making quality and speed were found, 

subjects acquired more concepts from the TPOD-based display. The increased communication of 

concepts is consistent with improved decision-making. Why improved decision-making was not 

detected is unclear. Nonetheless, comparative evaluation of novel data displays in context 

appears to be a useful methodology that provides insights into physicians’ preferences, the 

process of clinical decision-making by physicians, and display usability. More subjects, 

improved ways of detecting cognitive steps in complex data displays, and more training time on 

novel displays may be needed in order to detect differences in decision-making speed and 

accuracy in these kinds of studies. 
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6.0 DISCUSSION 

The preceding chapters describe the development and evaluation of a process-oriented approach 

to specifying, identifying, and visualizing temporal and mathematical patterns in clinical data 

sequences. This chapter summarizes the main findings and contributions to biomedical 

informatics, and describes potential future work. 

6.1 SUMMARY 

Identifying relationships between the values and timestamps of clinical data sequences is 

important for correct interpretation of the data in a diverse range of clinical tasks (Section 2.1.1), 

but is hampered by clinician information overload (Chapter 2.0). Previous approaches to 

reducing information overload include automated interpretation (Section 2.1) and improved 

visualization (Section 2.2) of time-stamped patient data. A few software systems have combined 

temporal and mathematical pattern detection with pattern visualization (Section 2.2.4), but these 

systems have been developed and evaluated primarily for results review. Evaluations of such 

displays have involved limited data sets, and subjects in these studies were not asked to use these 

displays in the context of reviewing and making decisions about reasonably complete inpatient 

cases. 

The preceding chapters introduce an integrated process-oriented approach to reducing 

information overload. The data processing component of the process-oriented approach, 
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PROTEMPA (Chapter 3.0), extends temporal abstraction (Section 2.1.2) with a flexible 

framework for defining, storing, executing, and sharing a library of general-purpose or task-

specific temporal abstraction primitives (Section 3.2.2). The contribution of this framework is to 

facilitate the use of temporal abstraction in domains besides data summarization and monitoring. 

PROTEMPA has successfully identified such patterns in patient care and clinical research tasks 

(Chapters 4.0 and 5.0). These patterns, shown in Table 13, are not all supported by the standard 

set of temporal abstraction primitives (e.g., state, trend, rate) provided by existing temporal 

abstraction systems. An application of PROTEMPA for identifying populations of patients for 

medical process improvement has been partially evaluated and is described in Future Directions 

below. 

The data visualization component of the process-oriented approach, TPOD (described in 

Section 5.2), has been developed and evaluated for its ability to enhance decision-making during 

results review (Section 5.3). TPOD successfully visualized patterns identified by PROTEMPA 

for prospective analysis of individual patients, and in an evaluation of the effects of a TPOD-

based laboratory display on decision-making speed and accuracy as compared with a tabular 

numerical laboratory display in the context of complete patient cases, subjects read or inferred 

Table 13: Patterns and processes identified by PROTEMPA, and the temporal abstraction 
primitives that were required to identify these patterns. 

Process type Pattern examples Temporal 
abstraction 
primitives 

Described in  

Disease states HELLP syndrome, cholestatic 
liver disease 

State, trend Figure 18 and 
Table 2 

Disease progression 
and outcomes 

HELLP syndrome disease 
severity and outcome 

State, trend, 
minimum 

Table 1 

Therapeutic response Electrolyte status, coagulation 
status, renal function 

State, trend, 
variability 

Table 2 and 
Table 3 
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more concepts from the TPOD-based display than from the tabular display, although no effects 

on decision-making speed or accuracy were found. 

The main contribution of TPOD is as a novel adaptive concept-oriented display, in which 

concepts are only visualized if the patient’s data satisfies certain constraints. The comparative 

evaluation of TPOD is also a contribution as it extends cognitive data display evaluation methods 

(Section 2.2.5) in order to compare a novel data display to a control display in the context of 

complete patient cases. This kind of evaluation may be useful for determining a novel display’s 

effects on the process and outcome of clinical decision-making, and for defining how clinicians 

use clinical data displays in context. 

Previous authors have described a method of evaluating decision-support systems that 

starts with a laboratory evaluation of the system’s technical performance, and concludes with a 

field trial in which the system is evaluated for its effects on clinical practice and outcomes (70, 

153). The evaluation methodology described in Chapter 5.0 may serve as an intermediate step 

between the performance evaluation and the final evaluation in the field. In particular, it may 

identify usability issues and user reactions that, if addressed, may increase the likelihood of a 

successful field trial, and improve the chances that users will accept the system when it is 

deployed in production. 

6.2 FUTURE DIRECTIONS 

Several areas of future work are planned to demonstrate the applicability of PROTEMPA and 

TPOD to a diverse set of clinical tasks, in addition to the future work described in the Discussion 

sections of Chapters 3.0, 4.0, and 5.0. 
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6.2.1 Clinical database query 

Chapter 4.0 describes prototype software for retrieving patients of interest from clinical 

data repositories who are described by mathematical and temporal patterns in data sequences. A 

complete retrospective data retrieval sequence would initially identify a subset of patients 

appropriate for processing from a data repository using coded, demographic or other data with 

standard query tools. PROTEMPA would extract corresponding data from the repository as 

necessary and create a database of found patients and associated temporal intervals. This 

database would be passed to a final stage that categorizes the patients based on the found 

intervals and query requirements, and presents the data in a form that is appropriate for users. A 

user interface that provides an integrated workflow would be implemented to construct queries 

and review the patient populations that are found. 

6.2.2 Knowledge discovery 

Identification of temporal and mathematical patterns in large data sets may enhance 

knowledge discovery. Machine learning and data mining (154) techniques identify relationships 

between elements in these data sets that may improve understanding of the incidence and 

progression of disease as well as response to therapy (155). However, conventional methods are 

not designed to recognize relationships between data elements as such and thus may regard a 

temporal sequence as an unrelated aggregate of individual data elements rather than an entity 

with intrinsic clinical meaning. Identification of abstractions within large data sets using 

PROTEMPA may reveal these clinically-meaningful temporal patterns as distinct entities and 

thus render them accessible for unsupervised and supervised machine learning approaches (87). 
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6.2.3 Medical process improvement 

An improved capability to identify errors in patient care processes is recognized (156) as 

important for enhancing patient safety (157). In the clinical laboratory, bedside or point-of-care 

testing (158) is a focus for process improvement. Bedside testing has become a routine part of 

managing hospitalized patients. Because the bedside is a less controlled environment than the 

central laboratory, bedside testing may be more susceptible to errors due to operator variability 

or equipment malfunctions (159, 160). Error detection may require specialized calculations on 

time sequences of laboratory results, and comparisons between the values of multiple tests. 

Identifying these patterns by hand can be challenging because the volume of bedside test results 

is large, typical laboratory displays do not facilitate detection of relationships between multiple 

test results (see Section 2.3), and existing software systems are not designed to correlate bedside 

monitoring data with results from the central laboratory. These challenges are similar to those 

encountered when interpreting data for diagnosis and patient monitoring, as discussed in 

Chapters 4.0 and 5.0. 

Preliminary work has been done to extend PROTEMPA and TPOD for identifying and 

visualizing patient care process problems in bedside testing. Specific goals for monitoring 

bedside testing for process problems include 1) ensuring that new operators are correctly 

administering the test, 2) detecting equipment malfunction, and 3) facilitating follow-up of 

problem patterns (e.g., equipment maintenance, in-service training for equipment operators, or 

process re-design). 
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The American Diabetes Association (ADA) provides guidelines for ensuring that bedside 

testing of blood glucose has similar precision and accuracy to central laboratory testing (161). 

These guidelines were implemented as PROTEMPA abstractions for detecting intervals of 1) 

excessive variability in sequential bedside glucose results (a test for precision), and 2) excessive 

variability in contemporaneous bedside glucose and laboratory glucose results (a test for 

accuracy) (see Table 14). Additional low-level abstractions were created for detecting 1) all 

bedside glucose results with another contemporaneous bedside glucose result (More than 1 POC 

glucose within 10 minutes), and 2) all bedside glucose results with a contemporaneous laboratory 

glucose result (Lab and POC glucose within 30 minutes) (Table 14). The latter two clusters 

provide a baseline from which to determine the proportion of a patient’s contemporaneous 

bedside and laboratory glucose results that have excessive variability, and the proportion of a 

patient’s contemporaneous bedside glucose results that have excessive variability. These 

Table 14: Abstraction definitions implementing the American Diabetes Association (ADA) 
guidelines for bedside glucose testing, with the temporal abstraction primitive (algorithm) for each 
low-level abstraction shown in parentheses. 

Name Abstraction (algorithm) 

Lab and POC glucose 
within 30 minutes 

Lab and bedside glucose that are within 30 minutes of each other 
(delta check) 

Inconsistent Lab/POC 
glucose (Lab glucose > 70) 

Lab and bedside glucose that are within 30 minutes of each other, 
the lab glucose is > 70, and the first and last values are > 10% 
apart (delta check) 

Inconsistent Lab/POC 
glucose (Lab glucose <= 
70) 

Lab and bedside glucose that are within 30 minutes of each other, 
the lab glucose is <= 70, and the first and last values are > 15 apart 
(delta check) 

More than 1 POC glucose 
within 10 minutes 

> 1 bedside glucose within 10 minutes (frequency) 

Inconsistent POC glucose > 
70 

> 1 bedside glucose within 10 minutes in which the first value is > 
70, and the first and last values are > 10% apart (delta check) 

Inconsistent POC glucose 
<= 70 

> 1 bedside glucose within 10 minutes in which the first value is 
<= 70, and the first and last values are > 15 apart (delta check) 
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abstractions incorporate general temporal abstraction primitives for detecting the following 

patterns: 

• Frequency: more than or fewer than a specified number of values within a given time 

span. 

• Complex delta-check: two numerical values whose absolute or percent difference is more 

than a specified value and/or less than a specific value. The two values may from the 

same test or two comparable tests, and they must occur within a specified time span. 

PROTEMPA took 7 minutes to process a 28-day data set of bedside glucose results and 

central laboratory glucose results. This data set included 10,782 laboratory glucose results on 

Table 15: Intervals found in 28 days of bedside glucose and laboratory glucose data (see Table 14 
for abstraction definitions). POC = point-of-care (bedside). 

Group Category Number 

(percent 

of total) 

% of 

Total 

Total patients with excessive variability in 
lab/bedside glucose results1 

281 5.4 

Total patients with excessive variability in bedside 
glucose results2 

89 1.7 

Total patients with intervals 319 6.1 

Total patients 5219 100 

By patient 

Average number of new patients identified per day 11.4 — 

Instances of excessive variability in lab/bedside 
glucose results3 

506 82.5 

Instances of excessive variability in bedside glucose 
results4 

107 17.5 

By abstraction 

Total intervals 613 100 
1Total number of patients with at least one Inconsistent Lab/POC glucose (Lab glucose > 70) or 
Inconsistent Lab/POC glucose (Lab glucose <= 70) interval. 
2Total number of patients with at least one Inconsistent POC glucose > 70 or Inconsistent POC 

glucose <= 70 interval. 
3Total number of Inconsistent Lab/POC glucose (Lab glucose > 70) and Inconsistent Lab/POC 

glucose (Lab glucose <= 70) intervals. 
4Total number of Inconsistent POC glucose > 70 and Inconsistent POC glucose <= 70 intervals. 
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5,219 patients. It identified 319 patients with 613 intervals. This amounts to an average of 11 

new patients a day. Summary statistics are shown in Table 15. Manual inspection of the results 

by the author found that all were consistent with the abstraction definitions and the ADA 

guidelines. 

These preliminary results illustrate how PROTEMPA supports detection of a broad range 

of temporal and mathematical patterns within data sequences, including the detection of patterns 

in the results of multiple tests. The complex delta check temporal abstraction primitive that was 

implemented for this study (described above) is not one of the standard set of primitives 

provided by existing temporal abstraction systems (see Section 2.1.2), and is needed for 

detecting excessive variability between bedside and central laboratory results. 

In cooperation with the bedside glucose QA manager at the University of Pittsburgh, a 

user interface based upon TPOD has been constructed for displaying patients with these 

intervals, called PatientPatterns (Figure 31). When a user logs in, the display server (Figure 20) 

retrieves the set of patients with abstractions from the process detector (Figure 20), and returns a 

web page with a list of the abstractions found and the names and ids of the patients in which they 

were found. When a patient is selected from the list, the data server retrieves the set of defined 

data clusters (Section 5.2) from the knowledge base (Figure 20), and for the data clusters whose 

abstractions have been identified, supporting data are retrieved from the local database cache. 

Graphs are created to visualize the data clusters, and a web page is returned to the client that 

displays data clusters in rank order. 
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Figure 31: Screenshot of the PatientPatterns user interface. Data is de-identified in this figure, but 
would be fully identified in a production setting. On the left, four clusters in three sample patients 
are shown. Selecting a patient shows the clusters and laboratory data for that patient on the right. 
In the selected patient, there are two instances of contemporaneous laboratory and bedside glucose 
results (shown in the Lab and POC glucose within 30 minutes cluster), and one of them is 
inconsistent (shown in the Inconsistent Lab/POC glucose (Lab glucose > 70)) cluster. Underneath 
the two clusters for this patient, the Other Abnormal/Critical Tests and Normal Tests sections 
show the rest of the patient’s data (Normal Tests not visible). At the top of the screen, a drop-
down box labeled Date range sets how far back in time data is shown (1 day, 1 week, etc.). 
Another drop-down box labeled Display style allows switching between the default “Graphical” 
display based on TPOD, and a standard tabular display of laboratory data (similar to Figure 26). 
POC = Point of care (bedside). 
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In PatientPatterns, TPOD functions as a task-specific data display “console” in which 

only a subset of a patient’s data is of primary interest. Development of clinical data displays that 

support non-patient care activities is a relatively unexplored area of research as compared with 

research on data displays for results review. As clinical data warehouses become more 

commonly available as sources of data for clinical research and medical process improvement 

studies (see Section 4.1), user interfaces to these systems will be needed for querying, retrieving, 

and analyzing large populations of patients. 

PatientPatterns is a prototype. A complete system would include support for automated 

uploading of bedside test results into the local database cache. It would have the ability to create 

summaries of entire patient sets for reporting purposes. Optimally, a user interface would be 

implemented for laboratory personnel to define data clusters for particular QA activities. In this 

preliminary study, it correctly identified a population of patients with patterns in time sequences 

of bedside glucose test results that indicate patient care process problems, and visualized the 

patterns found in each patient. These results are promising, but additional development is needed 

to create a truly useful production quality QA tool. 
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APPENDIX A 

 

 

 

GLOSSARY 

 

 

Anemia: a lower than normal number of red blood cells. 

Aspartate aminotransferase (AST): an enzyme that is normally present in heart and liver cells. 

Low levels are also present in the blood. When liver or heart is diseased or damaged, additional 

AST is released into the blood. A laboratory test for AST levels in the blood is used to check for 

liver damage. 

Bedside testing: Bedside or point-of-care testing is the analysis of blood samples at the bedside, 

instead of sending samples to the central laboratory for processing. 

Blood urea nitrogen (BUN): the amount of nitrogen in the blood that comes from the waste 

product urea. BUN is produced in the liver, and eliminated by the kidneys. If the kidneys are not 

able to remove urea from the blood normally, BUN level increases. A BUN test is done to 

estimate kidney function. 

Chloride (Cl): An electrolyte in the blood. 

Cholestatic liver disease: liver disease resulting in impairment of bile flow. 

Creatinine (Cr, or Creat): Creatinine is a breakdown product of creatine, which is an important 

component of muscle. Creatinine is eliminated by the kidneys. If the kidneys are not able to 

remove creatinine from the blood normally, creatinine level increases. A creatinine test is done to 

estimate kidney function. 
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Data cluster: part of the temporal process-oriented display. A group of data that are displayed 

only if a specified group of mathematical and temporal patterns is present. 

Digoxin: a drug for treatment of various heart conditions, such as arrhythmias and congestive 

heart failure. Patients on digoxin have periodic blood tests done to monitor the drug’s serum 

concentration. 

HELLP Syndrome: HELLP (Hemolytic anemia, Elevated Liver enzymes, and Low Platelets) 

syndrome is a severe form of pre-eclampsia that is reflected by abnormalities in laboratory test 

profiles. 

Hematocrit (Hct): the percent of whole blood that is composed of red blood cells. Abnormal 

hematocrit can be an indication of a variety of conditions, including anemia, blood loss, and 

dehydration. 

Hemoglobin (Hgb): The component of red blood cells that carries oxygen from the lungs to 

body tissues. A low concentration of hemoglobin in the blood is an indicator of anemia. 

Hemolytic anemia: anemia caused by excessive red blood cell breakdown. 

Interval: A period of time over which a temporal or mathematical pattern exists, with 

timestamps specifying the period’s start and finish. 

Lactate dehydrogenase (LDH): an enzyme found in a variety of human cells, especially in the 

heart, kidney, liver, and muscle. A test for LDH levels in the blood is used to evaluate the 

presence of tissue damage. 

Mathematical pattern: the specification of a time sequence of clinical data satisfying a set of 

constraints defined by a mathematical algorithm. 

Mathematical relationship: a relationship between the values of two or more clinical data 

elements. 
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Na: see Sodium. 

Phenytoin: a drug for treatment of epilepsy. Patients on phenytoin have periodic blood tests 

done to monitor the drug’s serum concentration. 

Platelets (PLT): a type of blood cell that plays a key role in blood clotting. Platelet count can be 

affected by many disorders, including hemolytic anemia such as is found in HELLP syndrome. 

Process-oriented approach: an integrated approach to improving the detection and visualization 

of disease and patient care processes that has two components 1) automated identification of 

temporal and mathematical patterns, and 2) the use of those patterns to control a data display’s 

form, organization, and sequence. 

Quality assurance (QA): the process of ensuring reproducible results that are clinically 

meaningful. 

Quinidine: a drug for treatment of cardiac arrhythmias. 

Reference range: the desired range of values for a test. The reference range is a property of a 

test, but may vary for different patients depending on age, gender, or physiologic status. A result 

out of this range indicates that follow-up investigation is needed. 

Sodium (Na): An electrolyte in the blood. 

Temporal abstraction: a method for identifying temporal and mathematical patterns within time 

sequences of clinical data. 

Temporal abstraction primitive: a mathematical processing algorithm that specifies constraints 

on the values of a time sequence of clinical data, potentially with parameters that configure the 

algorithm for use with specific data types. 

Temporal pattern: the specification of a group of intervals with minimum and maximum 

temporal distances between their endpoints. 
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Temporal relationship: a relationship between the timestamps of two or more clinical data 

elements. 
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CASE GUIDELINES 

 

 

Clinical Case Development Guidelines 
 
These guidelines are written for the expert physicians group collaborating in the research project, 

“Clinical decision-making using a data-driven display.” The project is supported by the National Library 

of  Medicine and runs through September, 2006. 

 
Primary investigator contact information: 

James H. Harrison, Jr., MD, PhD 

Associate Professor, Pathology Informatics, Department of Pathology 
University of Pittsburgh 

5230 Centre Ave., 3rd Fl. UPMC Cancer Pavilion 

Pittsburgh, PA 15232 

office: 412-647-5529 | fax: 412-647-5380 | cell: 412-445-0836 
jhrsn@pitt.edu 

 

Project background 

We contend that current clinical information system displays are not optimal for working with large 
amounts of time-series data, such as is typically found in patient records. There is a body of work from 

outside medicine that suggest specific strategies for optimizing these types of displays, but the 

applicability of this information in medical environments has not been critically evaluated. We have a 
long-term goal of improving medical displays by critically evaluating the strengths and weaknesses of 

current displays and testing the effects of new display strategies on medical decision-making, using 

standard techniques from human-computer interactions (HCI) studies. 

 

Current study 

In this initial study, we will evaluate strategies for improving the display of “valued” time-series data, 

focusing primarily on laboratory results. This data will be presented in the context of a patient case that 

includes a history and physical exam, lab results, consultant reports, progress notes and orders. The cases 
are real, de-identified patient data extracted from UPMC’s medical archival system (MARS). The case 

information will be presented to clinician-subjects using several computer interfaces that differ in key 

characteristics. The clinicians will be audio-taped and the computer screens will be captured as they 

review the data using a “think-aloud” style. The recorded events will be coded using a standard HCI 
approach. At the end of the case review, clinicians will write a set of orders appropriate for the status of 

the patient at that point in the case. Evaluation will include the effect of the clinical interfaces on both the 

approach to the case indicated in tapes and screen captures, and the accuracy and completeness of the 
orders. 

 



 

134 

Task of the Expert Physician Group 

The case data extracted from MARS includes complete cases consisting of H&P, labs, orders, consultant 

reports, progress notes and discharge summaries. To provide an adequate amount of data to test the 
interfaces and to make the cases comparable, we recommend that the clinical courses presented to the 

subjects should be 6-11 days long, with an optimal duration of about 7-9 days. The MARS cases are 

generally 10-20 days in length, so that a reasonable order-writing point in the middle of the case can be 

identified. The primary task of the physicians group is to identify this point and validate the orders that 
should be written then. Although some cases are long and complex, events occurring after the identified 

order-writing point will not be shown to subjects and are not directly pertinent to this study. The design of 

the study requires a total of 15 cases, with an initial phase requiring 10 cases. We have 5 members in the 
physicians group and thus each physician will receive two cases immediately and one additional case as 

that data becomes available. In addition to creating the three cases, each physician will be asked to review 

the orders for a total of three cases created by other physicians (so that two physicians see each order set). 
 

Case files 
Each case will be supplied as a single plain text file. This file can be opened with Notepad, WordPad, MS 

Word, or any other word processor or text editor. A text editor that supports line numbering (such as the 

freeware SciTE <http://www.scintilla.org/SciTE.html> [Windows and Linux/Unix] or TextWrangler 
<http://www.barebones.com/products/textwrangler/index.shtml> [Mac]) may be useful in discussing the 

cases. Files will be supplied with Windows/DOS line endings, but Unix or Mac line endings are available 

on request. The data in the files are arranged chronologically by day and within each day in the sequence: 
reports/labs/micro/orders. These files are built automatically from multiple MARS output files using a 

script. Occasionally, you may find typographical errors, duplicate entries or other odd elements. 

Proofreading is not a task for the physicians group, but if you do encounter a problem, please make a note 

of it and report it to Jim Harrison (the PI, contact info above). 
 

There is a header at the top of each file, but don’t pay too much attention to it because it’s mostly for our 

use and may be confusing. It displays the de-identified “identifier” that is meaningless except that it 
connects a particular patient’s data within the several files that we receive. The end date is the date of the 

last entry we receive. This may be a discharge summary that’s dictated after the patient was discharged. 

The actual d/c date in the summary, or the date of the last order set, is more reliable. The diagnosis listed 
in the header is the name of the ICD-9 code that we searched to find the case. It may not be the patient’s 

major diagnosis (the discharge summary is a better source for this). 

 

In each file, there should be a history and physical note early in admission and a discharge summary at the 
end of the case. These, consultant notes, progress notes and microbiology reports are set off before and 

after with asterisks and a title indicating the type of report with its date and time. Reports without a 

specified time are shown as 12:00. Labs and orders are shown as single line entries starting with “Lab:” 
and “Ord:,” respectively. Both start and stop orders are shown. Within the file, the days are shown with a 

line of equal signs (“=”) containing the date. 

 

There is current an overlap between the one-line lab results and the microbiology reports. Ignore this for 
the moment. We’re planning to present the micro reports as text reports, so they won’t appear in the 

display as standard lab values. 

  

Creating the case 
Please review each case and determine a point at which it’s reasonable to end the case and ask for orders 

(ideally after a 7-9 day course). This might be the time of an existing order set that could form the basis 

for the recommended orders. Because this part of the study is particularly concerned with displaying time 
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course data, it would be beneficial if cases could be ended at a point where the time course of change in 

lab values contributes in some way to the recommended order set. 
 

If some case data are confusing or otherwise problematic, we would consider deleting them or changing 

them to a more appropriate value. We would also consider adding data that would improve a case. 

Finally, if a useful time course could be created by modifying or adding data, we would consider that. 
However, our preference is to use the actual data as it stands, so we would only change data if it truly 

contributed to the case. If a case is particularly problematic and really does not suit the purposes of the 

study, please let Jim Harrison know. We have several cases in reserve that we can use for substitutes if 
needed. 

 

What should be returned from each case? 
1. The case file name 
2. The stop time 

3. The recommended order set that should be issued at the stop time 

4. A problem list that’s correct for the stop time would be helpful 

5. The key data elements most important in supporting the recommended orders 
6. If present, a time course in one or more data elements that is important to recognize 

7. Any typos, apparent omissions, or other problems that were noticed (just what you noticed in 

working with the case, don’t worry about proofreading) 
8. Any changes you recommend in the case data (if needed) 

 

What happens after that? 
1. Once the cases are complete, the text files containing the case data should be deleted. Even 

though these cases have been de-identified, it is good practice (and required by the IRB) that we 
do not keep the original data. 

2. The physicians group will be paid as consultants. We’ve discussed general amounts that are 

consistent with the project’s funding, and this can be finalized with Jim Harrison. 
3. I think it might be nice to get together for a presentation later in the summer. This could occur at 

UPMC or we could set up something in a local restaurant in the evening if the group would prefer 

that. This would give us a chance to go over the study and our preliminary results with you in 
detail. 

4. Once this preliminary phase is complete, I’d like to provide opportunities for those interested to 

continue to collaborate. 

 

Please feel free to call or email questions or comments to Jim Harrison. 
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IRB CONSENT FORMS 
 

 

Approval Date: 08/26/04 

         Renewal Date:   08/25/05 

University of Pittsburgh 

Institutional Review Board 

IRB Number:  0407099 

                                    

CONSENT TO ACT AS A SUBJECT IN A RESEARCH STUDY 

 
TITLE:      Clinical Decision-making Using a Data-driven Display  
 

PRINCIPAL INVESTIGATOR:   James H. Harrison, Jr., MD, PhD, Assoc. Professor of Pathology 

     UPMC Cancer Pavilion, #310 

5230 Centre Avenue, Pittsburgh, PA 15213; Phone:  412.647.5529 
     e-mail:  harrisonjh@upmc.edu 

 

CO-INVESTIGATORS:  Valerie Monaco, PhD, MHCI, Asst. Professor of Medicine 
     UPMC Cancer Pavilion, #303 

5230 Centre Avenue, Pittsburgh, PA 15213; Phone: 413.647.3064 

e-mail: monacov@upmc.edu 
 

SOURCE OF SUPPORT:   National Library of Medicine  

 

Why is this study being done? 

The purpose of this study is to better understand the ways that physicians use computers to care for 

patients and the characteristics of computer displays that help physicians make correct decisions. 

  

Who is being asked to take part in this study? 

UPMC Internal Medicine and Family Practice residents beyond the internship year are invited to 

participate in this study. 

  

What are the procedures of this study? 

If you agree to participate in this research study, you will receive a brief orientation and then you will be 
asked to complete 6 simulated clinical cases using a computer. The cases will be presented using several 

different types of computer display and will include a clinical history, presenting symptoms, laboratory 

tests and results, and a one-week hospital course. You will be asked to analyze the cases using the 



 

137 

computer display and speak your thoughts aloud as you do so. When you have analyzed each case, you 

should enter a set of clinical orders that best meet the simulated patient’s needs. Each case will have a 
time limit of 15 minutes by which all orders must be entered. To help us more accurately evaluate your 

use of the computer, we will video/audio tape your actions and verbal responses during each case. When 

you have completed the cases, there will be a brief “exit interview” in which you will be asked questions 

about the usability of the computer displays. The testing session should require about two hours to 
complete. 

 

How will my eligibility for the study be determined? 

Medicine or Family Practice residents who are beyond the internship year in UPMC residency programs 

are eligible to take part in this study. 

 

What are the possible risks and discomforts of this study? 

There is little risk involved in this study.  No invasive procedures or medications are included.  The major 
potential risk is a breach of confidentiality, but we will do everything possible to protect your privacy.  To 

reduce the likelihood of a breach of confidentiality, all researchers have been thoroughly trained to 

maintain your privacy. If you are uncomfortable continuing at any point in a session, you are free to stop 
participating. 

 

Will I benefit from taking part in this study? 

You will receive no direct benefit from participating in this study.  However, you may learn more about 

alternative computer displays and the way that you interact with them if you complete the study.   

 

Are there any costs to me if I participate in this study? 

There are no costs to you for participating in this study. 

 

How much will I be paid if I complete this study? 

If you complete the case simulation session, you will receive a gift certificate from Amazon.com for 

$100. In addition, the subject with the most accurate clinical orders across all cases will receive a second 

gift certificate for $100. In the event of a tie in order accuracy, the second gift certificate will go to the 

subject completing the cases in the least time. 
  

Will anyone know that I am taking part in this study? 

All records pertaining to your involvement in this study are kept strictly confidential (private) and any 
data that includes your identity will be stored in locked files at all times.  A number will be assigned to 

your information and your name will be separated from this coded information during storage.  At the end 

of this study, any records that personally identify you will remain stored in locked files and will be kept 
for a minimum of five years.  Your identity will not be revealed in any description or publications of this 

research.  Although we will video/audio tape the case simulation sessions, the camera will be oriented so 

as to show the computer screen and not to show your face. We will not refer to you by name during the 

taping. Most tapes will be transcribed and then destroyed. Some sections of tapes may be preserved for 
educational purposes if they display important features of physician-computer interaction particularly 

well.  

 
In unusual cases, your research records may be released in response to an order from a court of law.  It is 

also possible that authorized representatives from the University of Pittsburgh Research Conduct and 

Compliance Office, the University of Pittsburgh IRB, or the sponsors of this research study (National 
Library of Medicine) may review your data for the purpose of monitoring the conduct of this study.  Also, 
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if the investigators learn that you or someone with whom you are involved is in serious danger of 

potential harm, they will need to inform the appropriate agencies, as required by Pennsylvania law. 
 

Is my participation in this study voluntary? 

Yes!  Your participation in this study is completely voluntary.  You may refuse to take part in it, or you 

may stop participating at any time, even after signing this form.  Your decision will not affect your 
relationship with the University of Pittsburgh or the University of Pittsburgh Medical Center, nor will you 

lose any benefits that you might be eligible for because of your decision.  You may be withdrawn from 

the study at any time by the investigators: for example, if you were subsequently found to meet any of the 
study criteria that would exclude you from participating. 

 

How can I get more information about this study? 

If you have any further questions about this research study, you may contact the investigators listed at the 

beginning of this consent form.  If you have any questions about your rights as a research subject, please 

contact the Human Subjects Protection Advocate at the University of Pittsburgh IRB Office, 1-866-212-

2668. 
 

****************************************************************************** 

 
SUBJECT’S CERTIFICATION 

 

• I have read the consent form for this study and any questions I had, including explanation of all 
terminology, have been answered to my satisfaction.   

• I understand that I am encouraged to ask questions about any aspect of this research study during 

the course of this study, and that those questions will be answered by the researchers listed on the 

first page of this form. 
• I understand that sessions will be video/audio taped.    

I agree ____  I do not agree ____ to the taping 

• I understand that some portions of these tapes may be preserved for educational purposes 
I agree ____  I do not agree ____ to possible preservation of portions of the tapes 

• I understand the researchers are often seeking subjects for other studies.   

I agree ____ I do not agree ____ to allow these researchers to contact me about the 

possibility of participating in other research projects 
• I understand that my participation in this study is voluntary and that I am free to refuse to 

participate or to withdraw my consent and discontinue my participation in this study at any time 

without affecting my future care at this institution. 
• I agree to participate in this study. 

_____________________________    _______________________ 

Participant's Signature      Date     

   

CERTIFICATION of INFORMED CONSENT  

 
I certify that I have explained the nature and purpose of this research study to the above-named 

individual(s), and I have discussed the potential benefits and possible risks of study participation. Any 

questions the individual(s) have about this study have been answered, and we will always be available to 
address future questions as they arise.  

 

___________________________________  ________________________  
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Printed Name of Person Obtaining Consent  Role in Research Study  

 
_________________________________  ____________  
Signature of Person Obtaining Consent    Date 
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As part of the research project we will make a digital movie recording of the computer screen 
and your voice while you participate in the experiment.  Your face does not appear in these 
digital movies. This recording will be studied by the research team for use in the research 
project.  We would also like you to indicate below what other uses of these digital movies you 
are willing to consent to.  In each of the uses listed below, portions of the digital movie will be 
used for the purpose of describing the research procedures, and in discussion of research 
findings.   This is completely up to you and your response will in no way affect your payment for 
participating.  We will only use the movies in ways that you agree to.  In any use of these 
movies, your name would not be identified; however, such use does present a risk for loss of 
confidentiality.  

 
 

1. The digital movies can be shown at meetings of scientists.   _______ 
initials 

 
2. The digital movies can be shown in classrooms to students.   _______ 

initials 
 

3. The digital movies can be shown in public presentations to nonscientific groups. _______ 
initials 

 
4. The digital movies can be used on television and radio.    _______ 

initials 
 

5. The digital movies can be used on a public website maintained by the research group.  _______ 
initials 

 
 
 

 
I have read the above description and give my consent for the use of the digital movies as 
indicated above. 

 
                
Participant’s Signature      Date 
 

                

Witness Signature        Date 
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APPENDIX D 

 

 

 

TRIAL INTRODUCTORY SCRIPT 

 

 

Open Camtasia and run through setup. 

 

Introduce self. 

 
“My name is <name>.  I’m a <title> in the Centers for Oncology and Pathology Informatics, and 
I’m testing alternative computer displays that present clinical information.” 
 
Give general overview. 

 

“These computer displays have been developed to test how physicians use computers in making 
patient care decisions. I’m going to ask you to use two different displays to review and write 
orders on simulated patients. The purpose of the study is to determine how the differences in the 
displays affect the way you analyze the cases and make decisions about the orders that need to be 
written for these patients.” 
 
“I am testing the computer displays. I am not testing you.  I’m looking for places where the 
displays might be difficult to use or might influence your approach to a case, so if you can’t do 
some things, please don’t feel bad. That sort of thing is exactly what we are looking for.” 
 
“In this observation, I am interested in what you think about as you do the task.  I’m going to ask 
that you ‘think aloud’ while you are using the display. This means that you will say what you are 
thinking out loud while you analyze each case and write orders. I’m going to give you more 
information about thinking aloud in a few minutes.” 

 
“During the session, we will be making a video recording of what is happening on the computer 
screen.  We will also be recording your voice.” 

 
“Remember, this is completely voluntary, so if you feel uncomfortable at any time, feel free to 
stop. Also, your identity will be kept confidential unless you indicate on the consent form that we 
may present the digital recordings from this session in different settings. Presenting the 
recordings may present a risk for loss of confidentiality.” 
 
“In addition to the case simulations, we will ask you to participate in a brief exit interview.” 
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“The entire session should take about 2 hours to complete.” 
 
“You will be provided with a $100 gift certificate if you complete the session.” 
 
Give consent form. 

 

“Please read over this consent form.  It tells you in more detail about what will happen at today’s 
session. If you sign it, it means you understand the purpose of the study and how the data will be 
used.  You will receive a copy of this form with contact information, if you wish to discuss or 
report any issues that arise from your participation in the study.” 
 
“The last page of the consent form asks for permission to use the digital movie in different 
settings. This is completely up to you and your response will in no way affect your payment for 
participating.  We will only use the movies in ways that you agree to.” 
 
If consent is signed, then… 

 

Deliver think-aloud instructions. 

 
“What I mean by ‘think aloud’ is that I want you to tell me everything that you are thinking 
from the first time you view each case display until you finish.  I would like you to speak 
constantly from the time I give you the task until you have completed it.  I don’t want you to try 
to plan what you say, or try to explain to me what you are saying.  Just act as if you are alone, 
speaking to yourself…just a little louder.” 
 
Demonstrate thinking aloud. 

 
“Let me demonstrate thinking-aloud for you as I try to multiply 42 x 22 in my head.” 
<demonstrate> 

 
“Now you try thinking aloud:  Here’s a problem: please think aloud while you answer the 
question, How many windows are there in the place where you live?” 
 
“Now, those problems were solved entirely in our heads. However, when you are working on the 
computer, you’ll also be looking for things and seeing things that catch your attention.  These 
things you are searching for and things that you see are as important for our observation as 
thoughts you are thinking from memory, so please verbalize these too.  For example, listen to the 
types of things I say as I think-aloud when I disable the screen saver on this computer.” 
<demonstrate> 
 
“Do you have any questions about thinking aloud?” 
 
Case simulation instructions. Login to the system using the subject’s username and password. 

Ask subject to sit down in front of computer. 
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“Imagine the following scenario. It is June 1, and you are covering six patients for another 
colleague. You are rounding on them for the first time. For each case, you have 15 minutes to 
determine the current status of the patient and write a set of orders for what to do next. All you 
have to work with is the information presented to you in the simulated case. Unlike a real case, 
you cannot take your own history or do your own physical exam.” 
 
“At the beginning of the session, the computer will display a ‘Home’ window prompting you to 
begin the session. The first two cases are for orientation and practice, the last four are the test 
cases. You must complete the cases in order. After you complete each case, you will return to the 
Home window to start the next case.” 
 
“As you do the practice cases, I will introduce you to the interface, and I will be able to answer 
any questions that you have about the operation of the display. However, as you do the test cases, 
I won’t be able to answer any further questions.  But if you do have questions, go ahead and ask 
them anyway so I can learn more about what questions are prompted by the computer displays.  
I’ll answer your questions after we’re finished.  Also, if you forget to think aloud, I’ll say, 
‘Please keep talking.’” 
 
“You have 15 minutes to review each test case and write orders for it. I will announce the time 
remaining two minutes and one minute before the end of each case. After 15 minutes, the 
computer will return you to the Home window.” 
 
Open first practice case (spend no more than 15 minutes on it). Check time on watch. 

 
“The case display screen shows patient demographic information at top in the center. The time 
you have left is displayed to the left of the demographics. This field will turn red when you have 
one minute left. The admit date and current date for the case are also displayed near the top. 
There are tabs for ‘Summary’, ‘H & P, ‘Progress notes.’ ‘Labs’, ‘Micro’, ‘Current Rx’, ‘Previous 
Orders’, ‘Radiology,’ ‘EKG,’ and ‘Other Documents.’ The ‘Summary’ tab is the first tab 
displayed by default. It contains a 1-2 sentence summary of the case and a problem list. ‘Other 
Documents’ contains consultation reports, surgical pathology, vascular lab, etc. All information 
except the laboratory studies is presented as text. <demonstrate>”. At the top-left of the screen is 
a hyperlink called ‘Orders’, which you click to get to the order-writing page. <demonstrate> 
Click the button ‘Return to case’ to return to the case. <demonstrate>” 
 
“The ‘Progress Notes’, ‘Micro’, ‘Radiology’, ‘EKG’, and ‘Other Documents’ tabs all contain 
documents. A document list on the left side of the tab shows the available documents in reverse 
chronological order (most recent document at the top, and the current document highlighted in 
yellow). Note that some progress notes may be missing from the case. The ‘Current Rx’ tab 
shows orders that are currently valid. The ‘Previous Orders’ tab shows one-time orders and 
orders that have been stopped. Both show orders in reverse chronological order (most recent 
orders at the top). Note that we were unable to obtain blood bank order and administration data 
for this study, so they are not present in the display.” 
 
“In some cases, laboratory results will be presented using a combination of graphs and timelines. 
<demonstrate> All results in this display are aligned to a time axis at the top of the screen that is 



 

144 

in forward chronological order (most recent results are on the RIGHT side of the graph). At the 
top of the laboratory display, some results will be organized according to problem patterns found 
in the data by our software. Patterns are shown according to a ranking chosen by our software 
(most important pattern first). The first pattern is fully revealed. Subsequent patterns are 
collapsed; clicking on the name of the pattern will reveal it. Timelines show the temporal extent 
of patterns and delimit the raw data values in which they were found. Raw data values are shown 
in standard XY plots (time on the x-axis). ‘Associated data’ show other data elements that may 
be useful in interpreting the pattern. Underneath these patterns, in the ‘Labs by Group’ section, 
you will find labs organized similarly to production electronic medical records. Clicking on the 
name of a group will reveal it.” 
 
“In the graphical display, upward-pointing red triangles signify high values. Downward-pointing 
blue triangles signify low values. Dark-gray circles signify normal values. A blue background in 
a graph signifies the normal range. The magnifying glass next to each graph may be clicked to 
vertically expand the graph to see more detail. Running the cursor along the graph will cause the 
timestamps and numerical values for each point to be displayed in boxes at the top of the current 
group. You can tell which value is currently ‘selected’ by the presence of a vertical black line. 
Clicking on a value will reveal a popup box with more details about the value (numerical value, 
timestamp, normal range, etc.).” 
 
“Graphs of associated data and all of the graphs in the ‘Labs by Group’ section are initially 
shown in compressed form. No line is drawn between the points, and there is additional red or 
blue shading behind abnormal values. To expand these to full XY plots, click the magnifying 
glass icon.” 
 
“When you are ready to write an order, click the ‘Orders’ button. A text entry box will appear in 
which you should type your orders. Two buttons below the text box, ‘Submit and go to next 
case’ and ‘Return to case’, will bring you to the next case and return you to the current case, 
respectively. Orders may be entered or deleted at any time prior to completing the case by 
editing the text in this window. Orders will accumulate until the case is finished, so you may 
enter orders as you go, or all at the end, as you desire.” 
 
“When you feel your orders are complete, click “Submit and go to next case” and the orders will 
be stored in the system for that case. You will then return to the ‘Home’ window and may start 
the next case.” 
 
If there is time remaining, subject may use the remaining time to explore the interface. 

 
Advance to the practice tabular case (spend no more than 15 minutes on it). Check time. 

 
“In other cases, laboratory studies may be presented in a spreadsheet-like display with columns 
of results organized by date and group. The type of display used for a particular case is chosen 
by the system. Your task is to use these displays to understand the simulated patient and then 
write orders appropriate for that patient. Be sure that you speak your thoughts aloud as you use 
the display. In the tabular display, values are grouped as in production laboratory results 
software. Groups may be revealed or hidden by clicking on the header text <demonstrate>. 
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Results are displayed in reverse chronological order (most recent results are on the LEFT side of 
the table). Abnormal values are bold-faced with an ‘H’ for high and a ‘L’ for low. The patterns 
revealed in the graphical display are not visible in the tabular display.” 
 
Subject may use the remaining time to explore the interface and write orders for this case. Be 

sure to warn at 2-minute and 1-minute mark. 

 
 “After you complete all the cases in the session, I will interview you briefly to record your 
reactions to the cases and the computer displays.” 
 
“As an incentive to work quickly but accurately, the resident with the greatest accuracy of orders 
in the least time will receive an additional $100 gift certificate.” 
 
“A final word before we begin: some of the cases are complex and may not be able to be finished 
completely in 15 minutes. This is intended and will help to highlight the differences in the two 
laboratory display styles. You should just try to do your best, verbalize your thoughts, try not to 
get bogged down, and keep in mind that the study is not meant to evaluate you personally. 
 
“Do you have any questions about the case simulations?” 
 
Begin recording. Make sure to watch screen for the 2-minute and 1-minute marks. 

 
“You may begin now.” 
 
In between cases, tell the subject, “Please proceed to the next case when you are ready.” 



 

146 

 

 

 

 

 

APPENDIX E 

 

 

 

TRIAL EXIT SCRIPT 

 

 

Thank you for participating in our study. As you know the primary purpose of these sessions is 
to record your detailed thoughts and responses as you review simulated cases using the computer 
displays. We are also interested in any general reactions you have to the cases and displays that 
might not be clearly captured in the think-aloud session. For example: 
 
What is your overall reaction to the clinical displays? 
 
Which display would you rather work with on a regular basis? 
 
Have you worked with electronic clinical displays previously? Which ones? 
 
What is your reaction to the simulated cases? 
 
Do you believe the simulated cases provided a reasonable test of the displays? If not, why not? 
 
Are there features in these displays that you particularly liked? Which ones and why? 
 
Are there features in the displays that you disliked? Which ones and why? 
 
Are there any other comments you would wish to make about the study? 
 
Stop recording (press F10). 
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APPENDIX F 

 

 

 

CODED “THINK-ALOUD” TRANSCRIPT 

 
 

The following is a transcript of a subject reviewing case 3 (Table 5). Codes are in square 
brackets. Numbers in angle brackets followed by ¤ are timestamps in seconds since the start of 

the case. Two-minute and one-minute time warnings are printed in italics. 
 

[BR][RE]75-year-old with [RC]cholangitis, [RC]pneumonia, [RC]diabetes and 
[RC]hyperglycemia. [RC]Morbid obesity, [RC]type II diabetes, [RC]hypertension, [RC]Afib, 
[RC]ascending cholangitis, [RC]right upper lobe pneumonia, [RC]deconditioning, [RC]stage II 
decubitus ulcer and he's [VA]75. [RE]The 23rd and this is the [IC-DI]8th today.[CBR] 

¤<17116>[GS-H][BR]He presented  [SE]it doesn't say the chief complaint -- [RE]by way of 
paramedics because of [RE]upper abdominal discomfort and [RE]fullness. [RE]Tried to belch, 
[RE]could not pass it. [RE]Began substernal chest discomfort, [RE]shortness of breath, [RE]no 
diaphoresis. 

Okay, [RE]these are our history which [VA]I already reviewed -- [RE]positive for breast 
lumpectomy, [RC]family history positive for myocardial infarction. [RE]Medications: 
[RE]cardizem, [RE]Zocor, [RE]neurontin, [RE]axid, [RE]hydralazine, [RE]lexapro and 
[RE]enteric-coated aspirin. [RE]Negative for jaundice, [RE]night sweats, [RE]bruising, 
[RE]pyrosis, [RE]odynophasia, [RE]no swollen ..., __________ -- [IC-MV]all was negative. 

 [RE]Vital signs: blood pressure [RE]113, [IC-STM]she's stable hemodynamically. 
[RE]Fundi's... there is no... there doesn't appear to be . . . [RE]they don't mention any jaundice 
here, [RE]basilar crackles, [RE]no wheezing. [RE]S1 [RE]S2 present, [IC-MV]cardiac is 
normal, [RE]abdomen is obese, [RE]no dominant mass, [RE]negative HSM. [RE]Tenderness in 
epigastrium and [RE]right upper quadrant, [RE]both without rebound. [IC-RV]The breast is 
normal. [IC-MV]Neuro exam is normal. [RE]Pelvic deferred. [IC-MV]Significant edema  
[RE]2+ extending [RE]1 + to upper calves bilaterally. [RE]Both feet, okay. [RC]Chronic venous 
stasis, [RE]changes of integument over the skin, [RC]which is a chronic problem for this patient. 
[RRC]Chronic venous stasis, [RRC]changes of the integument, okay. 

Found to have [RE]on CT chest to [RC]right upper lobe infiltrate, [RC]pneumonia, [RC]bilateral 
atelectasis. [RC]Start treatment azithro and [RC]cefurox. [RE]Did have nitrous sprays which did 
[RE]cause her to have some relief of substernal discomfort. [RE]White cell count was 64,000 or 
6.4 thousand  I can't make that out. [RE]74 polys, [RE]1 eosinophil, [RE]H&H of 37.8 and 
[RE]12.8  that's reversed. Platelets are [RE]177. [RE]Troponin 0.1 and a [RE]total bili of 3.3. 
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[RE]PLT 210, [RE]AST, [RE]alkaline phosphatase is 289 and [IC-ST]GGTP is high, I think 
likely. 

[RE]She was admitted, [RE]monitored, [RC]evaluation of chest pain syndrome, [RE]troponin 
serially, [RE]pulse oximetry, [RC]she has pneumonia, [RC]placed on antibiotics, [RC-
STM]elevated liver function, [RC]serial LFT, [RC]diabetes mellitus, okay. So [CBR] 

¤<165403>[GS-PN1][BR][RE]problem list 

¤<167206>[GS-PN11][RE]So this was her admission and at that time, let me go straightaway to 
the evaluation. She was on ______ [RE]ERCP. There was [RE]stone, [RE]sludge and [RE]pus 
as well, so [EDA]she did have ascending cholangitis  that was definitely there. 

¤<182219>[GS-PN10][RE]Recent episode of ERCP  [IC-MV]marked improvement. She is 
[RE]sitting up, [RE]joking with the hospital staff  [EDA]that's excellent. So she was [RC]started 
on Zosyn, [RC]heparin, [RC]propanolol, [RC]protonix, okay. [RRC]Ascending cholangitis, 
[VA]ERCP, [VA]she was doing better. Prior to going to the operating room, [RE]request that 
she be given cardiac clearance. 

¤<206869>[GS-PN9]So back to her service  [RC]acute cholangitis [RE]pending clearance 
surgical intervention. [RC]Recommended cardiac catheterization, [RC-STM]her vital signs are 
stable  let us seen. Patient does have [RC]positive MI and is [RC]for cardiac catheritization. Has 
[RC]cholangitis too, has [RC]diabetes mellitus, has [RC]hypertension [RC]thought to be 
stabilized on present regime.[CBR] 

¤<232667>[GS-PN1][SE]Let us see what she is doing now. [RE]The GI service is currently 
following [RC]ascending cholangitis and [RC]choledocholithiasis, who underwent 
[RC]successful [RE]ERCP and [RE]stone extraction. [RE]Resting comfortable and [RE]easily 
arousable. [IC-ST]Temperature is fine, [IC-ST]pulse good, [IC-ST]respiration good, [IC-
STM]blood pressure good. [RE]Sodium or [IC-STM]electrolyte here as per record look good, 
[IC-CN]no positive cultures. [VA]She's on the same medication I saw earlier. [IC-
MV]Examination appears normal. [RC]She has venous stasis also, which is . . . and [RE]she 
underwent on 31st her cardiac catheterization. [RC]No significant disease.[CSE] 

[BR][RC]History of ascending but has [RE]ecently undergone left heart catheterization which 
was [RC]negative.... [RE]Followup outpatient evaluation scheduled in either a [RE]laparascopic 
or [RE]open chole. During that time she will undergo [RC]preoperative testing to prepare her for 
that. We'll sign off for now. [RE]Please reconsult if needed.[CBR] 

¤<291835>[GS-L][BR]So let us quickly review her labs  okay. It's taking time. [CBR][BR]Let 
me in fact 

¤<302319>[GS-C]review her current therapies. So she's on [RE]Lasix, [RE]she's on 
diphenhydramine, [RE]diazepam [QD]why is she on diazepam 5mg? [RE]Glipizide, 
[RE]lisinopril, [RE]pantoprazole, [RE]aspirin, [RE]propranolol, [RE]simvastatin, [RE]heparin  
she's q8 hr. [RE]Dextrose. She's on [RE]Zosyn and she's on [RE]sodium chloride. [CBR] 
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¤<326175>[GS-PO][BR][RE]Previous orders ___________. There's too much here to review for 
me. [CBR] 

¤<332758>[GS-R1][BR] 

¤<335340>[GS-R4][IC-MV]So her initial chest x-ray was normal. 

¤<338390>[GS-R3]Her [RE]CT abdomen did show that she had [RC]right upper lobe 
pneumonia and [RC]mild dilitation of... [RC]pulmonary artery hypertension and 
[RC]cholelithiasis. 

¤<347879>[GS-R2][RE]Ultrasound showed [RC]cholelithiasis [RC]without evidence of 
cholecystitis and that was [RE]done on the 24th. 

¤<353340>[GS-R1]And just on [RE]1st showed [RC]mild edema, findings compatible with 
[RC]CHF and [RC]cardiac enlargement. Okay, [CBR] 

¤<360826>[GS-E1][BR][RE]EKG [RC]normal sinus, [RC]right bundle branch block, [RC]left 
anterior fascicular block, [RC]T wave, okay. [CBR] 

¤<367941>[GS-O1][BR]Is there any other document? [RE]Cardiac catheterization. She had 
[RC]no significant epicardial CAD, [RC]normal LV function, [IC-ST]troponin elevation. 
[RE]That's all Cardiology has written.[CBR] 

¤<382399>[GS-E1][RV][CRV] 

¤<383714>[GS-R1][RV]I've already reviewed this. [CRV] 

¤<386009>[GS-PO][RV]I've already reviewed this. [CRV] 

¤<387335>[GS-C][RV][RE]Her current therapy is this. [CRV][SE]Let us see if she is on aspirin. 
[RE]Okay. [CSE] 

¤<393867>[GS-M][RV][CRV] 

¤<395325>[GS-L][RV][CRV] 

¤<397127>[GS-PN1][SE]Let me see the progress right now, what is she having? [RE]So she's 
comfortable and [RE]easily arousable. [CSE] 

¤<406736>[GS-PN2][QD]Why is that? [SE]Let us see what happened to her on the day earlier. 
[ISE][BR]So she has [RC]stage II decubitus ulcer in the buttocks,  okay, she will need a consult 
for... [RE]cardiac cath scheduled today for [RE]clearance, [RE]GI surgery which will be 
[RE]done after holidays. 

So [RE]Zosyn is to 8. [RC]Change to levaquin po d/c, [RE]follow up January. [RC]Possible 
UTI. [RE]Urine cloudy in foley, [IC-ST]patient afebrile. [RE]Will obtain . . . so they did that. 
[RC]Possible C. diff. [QD]Why are they thinking C. diff? [RC]Deconditioning. [RC]Will order 
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home care. [RE]PT/OT to eval, _______ needs change and ______________. [RC]Plan is to 
discharge patient home tomorrow. [EMA]So the day before yesterday, 

¤<455386>[GS-PN1]the plan was to discharge. [CBR][SE]And what is the plan today? Plan 
today  [RE]follow up as an outpatient. During that time she will undergo preoperative testing, 
will sign off for now. [CSE][RV]So I believe that she's doing well. 

¤<477972>[GS-C]So her current regimen, I will change her orders . . . let us see. [VA]She's 
eating well. And we can change her orders and [EMA]we can discharge this patient home. 
[CRV] 

¤<493026>[GS-NO]Okay, let's see. 

¤<496715>[GS-S] 

¤<498264>[GS-C][RV]First of all, [EDA]she did have some pulmonary edema [EDA]but she 
has CHF too.[CRV][MD] [EMA]I'll give her 40 mg b.i.d. just po. So 

¤<511889>[GS-NO][RE]orders  [EMA]d/c IV, change, [EMA]start 40 mg po b.i.d. [CMD] 

¤<537397>[GS-S] 

¤<539644>[GS-C][RV]What she needs. [RE]Diphenhydramine [EMA]I don't have any 
problem.[CRV][MD] [EMA]I'll d/c the 

¤<543749>[GS-NO]diazepam. [EMA]This doesn't need that. [CMD] 

¤<552445>[GS-S] 

¤<554479>[GS-C][RV][EMA]And glipizide is fine with me, [RE]lisinopril is 10 mg. 
[EMA]Pant... Protonix is okay, [EMA]aspirin is fine, though [EMA]she can reduce it at [RE]325 
but she's in ________. [RE]Propranolol 20, [RE]simvastatin 20, [RE]heparin  [EMA]heparin can 
be d/c'ed now since she is going out. [RE]Dextrose and [RE]pip/taz. -- [EMA]we can change the 
pip/taz to . . . [CRV][SE]what did they say? 

¤<591053>[GS-PN1][RRC]They said to change it to levaquin? Was it levaquin? Let me see 
here. 

Where is the . . .[RE]assessment and plan,  [RE]outpatient evaluation, [RE]laparascopic chole 
and 

¤<605982>[GS-PN2][RE]it was on 31st, [RRC]I believe they said that they would [RC]change 
to levaquin po 4 d/c, then [RE]follow up in January. [EDA]Because she's pain free okay. [CSE] 

¤<616207>[GS-C] 

¤<617230>[GS-NO][MD][EMA]So we will d/c the Zosyn, [EMA]start levaquin 100 mg. She's 
also  [EMA]]give her only 250 po q day and to 7 days.[CMD] 
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¤<648663>[GS-S][RV]What else she needs? 

¤<650516>[GS-C][SE]Let me see her 

¤<651709>[GS-S]current medications. Medications on admission were [RE]cardizem, 
[RE]Zocor, [RE]neurontin, [RE]Axid, [RE]hydralazine, [RE]lexapro, [RE]enteric-coated aspirin. 

¤<663930>[GS-C]Right now she's [RE]on the cardizem, where was it? [IC-CN]She's not on any 
. . . calcium channel blockers. 

¤<674650>[GS-H] ______ start her . . . So it was [RE]cardizem... [CRV][MD]I don't know to do 
this but [EMA]I'll just write for it that she resume all medication. [RE]Zocor, [RE]neurontin, 
[RE]hydralazine, [RE]lexapro, 

¤<686955>[GS-NO][RE]enteric-coated aspirin.[CMD] 

¤<688756>[GS-S]Return to case. [RV][SE]Let me see the 

¤<690906>[GS-PN1]progress note. [SE]Let me see . . . 

¤<695229>[GS-PN2][RE]31st, okay. [RC]Possible UTI, [RC]possible C. diff.[CRV] 

¤<703876>[GS-M][SE][QD]But they said C. diff but [IC-CN]I didn't see any microbiology 
report. [CRV] 

¤<706965>[GS-L]Let us see if there is anything here. [QD]Why were they thinking C. diff if 
there was [RC]no diarrhea. And let us see  [ICN-STM]the CBC is not high. I don't think . . . 
[ICN-ST]WBC is normal. [EDA]I don't think they should think about that. [RE]Differential . . . I 
don't see anything here. [ICN-STM]It is all normal. 

[ICN-STM]Coags is fine. [CSE][BR]___ hepatitis. Was a hepatitis panel _____ done on her? 
[ICN-MV]The items all negative. Okay, [RE]urinalysis... let's see what her urinalysis that was 
initially done. Okay. What is this? [RE]White blood cells was 37 but that was [RE]at the time of 
her admission, I believe, when she was admitted. [EMA]She has been very nicely treated for 
that. [EMA]So I'm not going to chase that at this time. Three minutes, okay. [QD]Was a U-tox 
done? I'm not sure. [CBR]Okay, [RV]let us 

¤<777807>[GS-PN1]go back to the progress note and 

(2 minutes) 

Okay, thank you. 

¤<784452>[GS-PN3]Just make sure I'm doing everything, so. . . [RE]accuchecks and 

¤<790714>[GS-PN2]so what all they said? [RC]Change to levaquin  [EDA]I'm not thinking of 
C. diff at this time. [SC]PT/OT  [CRV][MD][EMA]I'll give her home PT/OT, [EMA]follow up 
with GI clinic. PT/OT follow up with GI clinic and  as an outpatient, okay. 
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¤<815342>[GS-NO][EMA]PT/OT therapy consult. [EMA]Home consult. [EMA]Follow up with 
GI clinic in one month.  

(1 minute) 

She also needs . . . what is that . . . [EMA]wound care consult prior to d/c. [EMA]Followup PCP 
in 14 days. [EMA]D/c to home after seen by appropriate people. And what else should be 
_____? Let's see. [EMA]Home care consult. Okay.[CMD] 
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