
DCT VIDEO COMPOSITING WITH EMBEDDED

ZEROTREE CODING FOR MULTI-POINT VIDEO

CONFERENCING

by

Hakkı Alparslan Ilgın

BS, Ankara University, Ankara, Turkey, 1993

MS, Ankara University, Ankara, Turkey, 1997

Submitted to the Graduate Faculty of

the School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2004



UNIVERSITY OF PITTSBURGH

SCHOOL OF ENGINEERING

This dissertation was presented

by

Hakkı Alparslan Ilgın

It was defended on

December 3, 2004

and approved by

Dr. Luis F. Chaparro, Professor, Department of Electrical and Computer Engineering

Dr. Ching-Chung Li, Professor, Department of Electrical and Computer Engineering

Dr. J. Robert Boston, Professor, Department of Electrical and Computer Engineering

Dr. Heung-no Lee, Professor, Department of Electrical and Computer Engineering

Dr. Michael McCloud, Professor, Department of Electrical and Computer Engineering

Dr. Juan J. Manfredi, Professor, Department of Mathematics

Thesis Director: Dr. Luis F. Chaparro, Professor, Department of Electrical and Computer

Engineering

ii



Copyright c© by Hakkı Alparslan Ilgın

2004

iii



ABSTRACT

DCT VIDEO COMPOSITING WITH EMBEDDED ZEROTREE CODING

FOR MULTI-POINT VIDEO CONFERENCING

Hakkı Alparslan Ilgın, PhD

University of Pittsburgh, 2004

In this thesis, DCT domain video compositing with DCT-based embedded zerotree coding

for multi-point video conferencing is considered. In a typical video compositing system, video

sequences coming from different sources are composited into one video stream and sent using

a single channel to the receiver points. There are mainly three stages of video composit-

ing: decoding of incoming video streams, decimation of video frames, and encoding of the

composited video. Conventional spatial domain video compositing requires transformations

between the DCT and the spatial domains increasing the complexity of computations. The

advantage of the DCT domain video compositing is that the decoding, decimation and en-

coding remain fully in the DCT domain resulting in faster processing time and better quality

of the composited videos. The composited videos are encoded via a DCT-based embedded

zerotree coder which was originally developed for wavelet coding. An adaptive arithmetic

coder is used to encode the symbols obtained from the DCT-based zerotree coding resulting

in embedded bit stream. By using the embedded zerotree coder the quality of the compos-

ited videos is improved when compared to a conventional encoder. An advanced version of

zerotree coder is also used to increase the performance of the compositing system. Another

improvement is due to the use of local cosine transform to decrease the blocking effect at

low bit rates. We also apply the proposed DCT decimation/interpolation for single stream

video coding achieving better quality than regular encoding process at low bit rates. The

bit rate control problem is easily solved by taking the advantage the embedded property of

iv



zerotree coding since the coding control parameter is the bit rate itself. We also achieve the

optimum bit rate allocation among the composited frames in a GOP without using subframe

layer bit rate allocation, since zerotree coding uses successive approximation quantization

allowing DCT coefficients to be encoded in descending significance order.

Keywords: Video coding, multi-point video conferencing, video compositing, DCT transcod-

ing, DCT decimation/interpolation, image resizing, DCT block transformation, motion

estimation, motion compensation, embedded zerotree coding, significance tree coding, hi-

erarchical image coding, set partitioning in hierarchical trees, successive approximation

quantization, adaptive arithmetic coding, bit rate control.

v



TABLE OF CONTENTS

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.0 VIDEO COMPOSITING FOR MULTI-POINT VIDEO CONFERENC-

ING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 MOTION COMPENSATION IN THE DCT DOMAIN . . . . . . . . . . . . 8

2.1.1 Fast DCT Transcoding . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 DECIMATION IN THE DCT DOMAIN . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Fast Transformation of DCT Blocks . . . . . . . . . . . . . . . . . . . 19

2.2.2 Improved DCT Decimation . . . . . . . . . . . . . . . . . . . . . . . . 21

3.0 EMBEDDED ZEROTREE CODING OF DCT COEFFICIENTS . . . 29

3.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 DEFINITION AND FEATURES OF DCT-BASED EMBEDDED ZEROTREE

CODING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 SUCCESSIVE APPROXIMATION QUANTIZATION . . . . . . . . . . . . 37

3.3.1 Dominant Pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2 Subordinate Pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 AN EXAMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 APPLICATION OF DCT DECIMATION/INTERPOLATION WITH EM-

BEDDED ZEROTREE CODING TO A SINGLE VIDEO STREAM . . . . 57

4.0 IMPROVEMENT OF ZEROTREE CODING . . . . . . . . . . . . . . . . 65

4.1 SET PARTITIONING IN HIERARCHICAL TREES . . . . . . . . . . . . . 65

4.1.1 Comparison of DCT-EZT with DCT-SPIHT . . . . . . . . . . . . . . 70

vi



4.2 REDUCTION OF BLOCKING EFFECT AT LOW BIT RATES . . . . . . 78

4.2.1 Theory of Local Cosine Transform . . . . . . . . . . . . . . . . . . . . 80

4.2.2 Comparison of DCT-EZT with LCT-EZT . . . . . . . . . . . . . . . . 87

5.0 BIT RATE CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 RATE-DISTORTION MODEL AND RATE CONTROL PROBLEM . . . . 99

5.2 FRAME DEPENDENCY PROBLEM . . . . . . . . . . . . . . . . . . . . . 102

5.3 USING LAGRANGIAN OPTIMIZATION TO ACHIEVE OPTIMIZED BIT

RATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 COMPARISON OF THE CONVEX R-D MODEL WITH PIECEWISE LIN-

EAR R-D MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4.1 Bit Rate Allocation at Subframe Layer . . . . . . . . . . . . . . . . . 114

6.0 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . 116

APPENDIX A. SPARSE MATRICES IN FAST DCT TRANSCODER . . 120

APPENDIX B. ADAPTIVE ARITHMETIC CODING . . . . . . . . . . . . 123

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

vii



LIST OF TABLES

1 Average speed improvements by DCT transcoder and fast DCT transcoder

over hybrid decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Computational complexity comparisons of four decimation methods for N = 2 26

3 PSNR comparisons of the decimation methods for N = 2 . . . . . . . . . . . 27

4 Computational complexity of our decimation algorithms . . . . . . . . . . . . 27

5 Average PSNR values obtained from three scan methods according to given

constant bit rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Average PSNR values for four composited videos (N = 2) . . . . . . . . . . . 47

7 Average PSNR values for mixed-view composited videos (N = 3, 2/3) . . . . 47

8 Average PSNR comparisons of DCT-EZT and DCT-SPIHT for composited

videos with four subframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

9 Average PSNR comparisons of DCT-EZT and DCT-SPIHT for composited

videos with six subframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

10 PSNR results of reconstructed frames coded with LCT with different bell func-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

11 Average PSNR comparisons of LCT-EZT and DCT-EZT for composited videos

with four subframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

12 Average PSNR comparisons of LCT-EZT and DCT-EZT for composited videos

with six subframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

13 Average PSNR comparisons of rate control with convex R-D model with piece-

wise linear R-D model for composited videos with four subframes . . . . . . . 111

viii



14 Average PSNR comparisons of rate control with convex R-D model with piece-

wise linear R-D model for composited videos with six subframes . . . . . . . 111

15 Average PSNR comparisons of rate control with and without subframe layer

bit rate allocation for composited videos with four subframes . . . . . . . . . 115

16 Average PSNR comparisons of rate control with and without subframe layer

bit rate allocation for composited videos with six subframes . . . . . . . . . . 115

ix



LIST OF FIGURES

1 Hybrid encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Hybrid decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Spatial domain compositing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 DCT domain compositing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 DCT transcoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6 Motion compensation in the spatial and the DCT domains . . . . . . . . . . 11

7 Windowing and shifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

8 Possible positions of optimal DCT block . . . . . . . . . . . . . . . . . . . . . 12

9 Running time comparisons of hybrid decoder, DCT transcoder and fast DCT

transcoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

10 DCT decimation process for N = 2 . . . . . . . . . . . . . . . . . . . . . . . . 16

11 Several video compositing structures . . . . . . . . . . . . . . . . . . . . . . . 18

12 Improved DCT decimation process for N = 2 . . . . . . . . . . . . . . . . . . 24

13 DCT decimation for the rational case, N = 2/3 . . . . . . . . . . . . . . . . . 26

14 PSNR comparisons of different decimation factors for Miss America sequence 28

15 Treating an 8× 8 DCT block as a 3-scale subband structure . . . . . . . . . . 31

16 Conversion of an 8× 8 DCT-frame into 3-scale subband frame . . . . . . . . 32

17 An 8 × 8 DCT-blocks frame, and its rearranged version of 3-scale subband

structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

18 Parent-child relationship of 3-scale DCT subband structure . . . . . . . . . . 35

19 Raster, Morton, and Peano scan paths of a 3-scale subband structure . . . . . 36

20 Flowchart of zerotree coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

x



21 An example of zerotree coding . . . . . . . . . . . . . . . . . . . . . . . . . . 42

22 Dominant and subordinate pass intervals . . . . . . . . . . . . . . . . . . . . 43

23 DCT-EZT encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

24 PSNR comparisons of DCT-EZT coder for Raster, Morton and Peano scan

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

25 PSNR comparisons of DCT-EZT and conventional DCT encoder for four com-

posited videos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

26 Composited video frame samples from the conventional DCT and the DCT-

EZT codings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

27 PSNR comparisons of DCT-EZT and conventional DCT encoder for mixed-

view compositing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

28 Mixed-view composited video frame samples from the conventional DCT and

the DCT-EZT codings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

29 Comparison of DCT-EZT and Wavelet based embedded zerotree coder . . . . 55

30 Comparison of DCT-EZT and embedded zerotree coder with virtual set par-

titioning in hierarchical tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

31 Proposed encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

32 Rate-distortion performances of the proposed encoding vs. regular encoding

for intraframes (from top to bottom: Salesman, Miss America, and Foreman) 60

33 Rate-distortion performances of the proposed encoding vs. regular encoding

for interframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

34 Video frame samples from regular and proposed codings . . . . . . . . . . . . 62

35 Set partitioning examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

36 Flowchart of SPIHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

37 PSNR comparisons of DCT-EZT vs. DCT-SPIHT for composited videos with

four subframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

38 Composited video frame samples with four subframes from DCT-EZT and

DCT-SPIHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

39 PSNR comparisons of DCT-EZT vs. DCT-SPIHT for composited videos with

six subframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xi



40 Composited video frame samples with six subframes from DCT-EZT and DCT-

SPIHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

41 Local cosine transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

42 Consecutive intervals and corresponding bells . . . . . . . . . . . . . . . . . . 80

43 Symmetry property of bell function . . . . . . . . . . . . . . . . . . . . . . . 82

44 Bell functions for several iternums . . . . . . . . . . . . . . . . . . . . . . . . 84

45 Some video frame samples coded with LCT with different bell functions . . . 86

46 LCT-EZT encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

47 PSNR comparisons of composited frames with four subframes coded with LCT-

EZT and DCT-EZT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

48 Composited video frame samples with four subframes from DCT-EZT and

LCT-EZT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

49 PSNR comparisons of composited frames with six subframes coded with LCT-

EZT and DCT-EZT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

50 Composited video frame samples with six subframes from DCT-EZT and LCT-

EZT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

51 Convex R-D model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

52 Rate-Distortion characteristics of first I and P frames from different video

sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

53 Relationship between the variance of the actual residue error and the mean

square error of the original reference frame . . . . . . . . . . . . . . . . . . . 104

54 Piecewise linear R-D model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

55 Comparison of R-D performances of the proposed convex model with piecewise

linear model for composited videos with 4-subframes . . . . . . . . . . . . . . 112

56 Comparison of R-D performances of the proposed convex model with piecewise

linear model for composited videos with 6-subframes . . . . . . . . . . . . . . 113

57 Flowchart of the adaptive arithmetic encoder . . . . . . . . . . . . . . . . . . 125

xii



NOMENCLATURE

DCT Discrete Cosine Transform

LCT Local Cosine Transform

MC Motion Compensation

ME Motion Estimation

Q Quantization

QP Quantization Parameter

EZT Embedded Zerotree Coding

DCT-EZT DCT-Based Embedded Zerotree Coding

EZW Embedded Zerotree Wavelet Coding

SAQ Successive Approximation Quantization

PSNR Peak Signal to Noise Ratio

MSE Mean Square Error

MAD Mean Absolute Difference

CIF Common Intermediate Format

QCIF Quadrature Common Intermediate Format

JPEG Joint Photographic Experts Group

MPEG Moving Picture Experts Group

GOP Group of Pictures

LOT Lapped Orthogonal Transform

xiii



ACKNOWLEDGEMENT

I would like to thank my advisor Dr. Luis F. Chaparro for his guidance, helps and

supports. I also would like to thank my friends and colleagues Abdullah A. Al-Shehri,

Jongchin “James” Chien, Xiaoping Hu, and Jian Xu. Special thanks to Dr. C. C. Li.

Finally, I want to thank my dear wife Hülya Ilgın for always being with me, and my dear

mother Fatma Ilgın for always being there for me, and for their great support, encouragement

and patience during my Ph. D. study. I dedicate this thesis to my wife and my mother. I

am also thankful to the other members of my family; my sister Dilek Hale Şahin, my brother

Muhammet Ilgın, and my grandmother Ahsene Yalnız.

xiv



1.0 INTRODUCTION

Video compression techniques are becoming more advanced and widespread with the in-

creasing demand and popularity of video applications. Since bandwidth or storage media

constrain the data to be transmitted or stored, video compression methods are being im-

proved to reduce the amount of information while providing a higher video quality. Besides

high compression ratio, especially in real-time video applications such as video conferencing,

fast processing of a video sequence without losing much of its quality is required.

The basic principle of video compression is to minimize the redundancies in the video

sequence. These redundancies are spatial redundancy present in a video frame, temporal

redundancy or the similarities between two successive frames, and the redundancy between

the compressed data symbols. The spatial redundancy among pixels is reduced by employing

intraframe compression. Transform coding techniques such as the Discrete Cosine Transform

(DCT), which is commonly used in most of the standard video codecs, reduces the correlation

among the pixels in a video frame. The advantage of using transform coding is that most

of the energy is mainly concentrated in a few low frequency transform coefficients making

the other coefficients less significant. After obtaining transform coefficients, compression

is achieved by using methods such as scalar quantization, vector quantization, embedded

zerotree coding or any other lossy compression technique.

Temporal redundancy is reduced by interframe coding. A predictive coder decreases

the temporal difference between two consecutive frames with help of motion estimation

(ME) and motion compensation (MC). An ME algorithm basically involves displacement

measurement and error calculation. The most complicated part of the algorithm is the

displacement measurement procedure, which searches for the optimal reference block in the

previous frame. MC algorithms simply re-obtain the optimal block by using the motion

1



vectors estimated by the ME algorithm. The quantized transform coefficients are coded by

an entropy coder.

The encoder and the decoder of a basic video coding system is shown in Fig. 1 and 2,

respectively. This hybrid codec implements compression of video sequences in both spatial

and DCT domains. At the encoder, the incoming video frame is subtracted from the motion

compensated previous frame in the spatial domain. The obtained error frame, e, is trans-

formed into the DCT domain and quantized. The quantized error frame, Eq, and motion

vectors, MV , are then entropy-encoded and sent to the decoder. The quantized error frame

is also inverse-quantized and transformed back to the spatial domain to be added to the pre-

vious frame to prevent the errors from being cumulative. The feedback structure is identical

in the decoder except the motion estimation part that does not exist in the decoder.

e
DCT Q

+

Encoder

Entropy 

IQ

IDCT

+
+

Memory

Frame
ME

MC

MV

Bit Stream

−

Video Frame

E

e
~

~

qEE

Figure 1: Hybrid encoder

A conventional hybrid decoder has an entropy decoder that converts bit streams back to

the quantized DCT error frame and motion vectors. The previous frame in the frame memory

is motion-compensated by using the motion vectors. The current frame is reconstructed by

2



adding the inverse-quantized error frame to the motion-compensated previous frame in the

spatial domain.

For video conferencing applications, processing speed is an important factor for real-

time communication. Typically, video conferencing standards such as H.263 and MPEG,

are widely used for low bit rate transmission. But, work on increasing the quality of video

while achieving more compression continues. Furthermore, in real-time applications requir-

ing additional processings, such as multi-point video conferencing, the significance of the

processing speed becomes more important.

e +

+

Entropy 
Decoder

Bit Stream
IQ IDCT

Reconstructed

Frame

Frame
Memory

MV MC

E q
~

E ~

Figure 2: Hybrid decoder

In a typical multi-point video conferencing system [3], the videos coming from different

sources are put together (composited) and sent using a single channel. To composite the

incoming videos the first step is to decode them by using hybrid decoders. The problem here

is the transformation between the DCT and spatial domains which requires high computa-

tional complexity, also possible aliasing is caused by the decimation process in the spatial

domain needed to composite the videos. The composited videos are re-encoded by a hybrid

encoder requiring another transformation from spatial to DCT domain. Finally, bit rate

control of the encoded bit stream is another issue to bear in mind.

The work presented in thesis concentrates on developing fast compositing fully in the

DCT domain with DCT-based embedded zerotree coding for real-time multi-point video

conferencing. We propose a new decimation/interpolation method to resize video frames in

the DCT domain for integer and rational decimation factors. We also use embedded zerotree

3



coding method to code the composited DCT error frames. Beside especially wavelet based

zerotree coding is commonly used for image coding, we implement this method to simplify

the bit rate control problem and improve the quality of the composited videos. We take

advantage of the zerotree coding method to control the bit rate and optimally distribute

the bit budget among the frames and the subframes of composited video sequences. We

also introduce the proposed DCT decimation/interpolation method for single stream video

coding achieving better results than regular coding at low bit rates.

The rest of the material is organized as follows. In the next chapter, multi-point video

conferencing, advantages of compositing in the DCT domain over that in the spatial domain,

and DCT transcoding are explained. DCT domain decimation is also given in this chapter.

In the same chapter, we illustrate DCT decimation algorithms which have less computational

complexity and obtain better results when compared to other DCT decimation algorithms.

In the third chapter, embedded zerotree coding of DCT coefficients in a rearranged structure

is presented. Features of the DCT embedded zerotree coding and the details of successive

approximation quantization are also included in the third chapter. Then a simple example

of embedded zerotree coding is given. Experimental results are also given in details in

this chapter. We show that the DCT-based embedded zerotree coding gives better results

than conventional DCT domain coding in terms of video quality and compression ratio. In

the last section of Chapter 3, we apply the proposed DCT decimation/interpolation and

embedded zerotree coding to single stream video coding at low bit rates achieving better

results compared to conventional coders. In Chapter 4, we investigate an improved version

of zerotree coding called set partitioning in hierarchical trees to improve the coding efficiency.

We also compare the two zerotree coding methods in the same chapter. In the second section

of Chapter 4, we use local cosine transform (LCT) with the proposed codec to reduce the

blocking effect at low bit rates. Bit rate control problem is considered in Chapter 5. We

use convex rate-distortion model to achieve optimized bit rates allocated to each frame in a

group of frames (GOP). Comparison of convex and piecewise linear rate-distortion models

are given in the same chapter. The last chapter consists of conclusions and possible future

work.

4



2.0 VIDEO COMPOSITING FOR MULTI-POINT VIDEO

CONFERENCING

Video compositing for multi-point video conferencing includes decoding, decimation and re-

encoding processes. Video streams received from different locations are composited into one

video stream typically to save bandwidth. Compositing can be done within the network or

at a final receiver point. To transmit the composited video to each viewer site, thus saving

communication bandwidth and reducing connection overhead, compositing must be done

within the network [3].

The most computationally intensive parts of the whole process are inverse and forward

DCT computations, and re-implementation of motion estimation and compensation. There-

fore, the best approach for video compositing is to directly composite videos in the com-

pressed domain instead of the spatial domain. This “compressed input-compressed output”

approach saves calculations by avoiding the complexity of inverse and forward DCT opera-

tions [1, 3, 4, 5, 6].

In a spatial domain video compositing system, the incoming video streams are decoded by

conventional decoders such as H.263 decoders (see Fig. 3). After decoding the bit stream by

an entropy decoder, DCT errors, {Ei}, and motion vectors, {MVi} are obtained. An H.263

decoder transforms video error frames from DCT domain to spatial domain. Accordingly,

motion compensation is done in the spatial domain. Then video sequences are decimated and

composited. The composited video sequence needs to be re-encoded before being transmitted

to the users. This is basically performed by an H.263 encoder. The encoded video sequence

is again in the DCT domain. In Fig. 3, compositing of four different video sequences is

displayed. As will be seen later, compositing of different number of incoming video streams

is possible.

5



4,

H.263 DECODER

H.263 DECODER

H.263 DECODER

H.263 DECODER

Video Stream 1

Video Stream 2

Video Stream 3

Video Stream 4

Video Stream
DOMAIN

c

SPATIAL

COMPOSITING

H.263 ENCODER

DCT DOMAIN

1

3

4

2

SPATIAL DOMAIN

Ec

MVc

E1

E2

2MV

1MV

E3

3MV

E4

MV4

DCT DOMAIN

c

c

c

c

c

Composited

DECIMATION

DECIMATION

DECIMATION

DECIMATION

d

d

d

d

c 1,

c 2,

c 3,

c

Figure 3: Spatial domain compositing

The other approach for video compositing is to compose the videos fully in the transform

domain as shown in Fig. 4. This method does not require transformations between spatial

and DCT domains. Consequently a computational speedup occurs. The incoming video

streams are decoded by DCT transcoders directly into JPEG-type of images in the DCT

domain. Then DCT decimation and compositing are performed. Finally, the composited

video is compressed by performing motion estimation and compensation in the DCT domain.

The DCT transcoding procedure decodes the incoming video by utilizing the motion

compensation without converting it back into the spatial domain (see Fig. 5). Differently

from a conventional hybrid decoder, the DCT approach does not allow to view the decoded

videos. However, more importantly it has the advantage of avoiding time delays that occur

during the inverse DCT transformation. Next the basic principles of the DCT transcoding

and DCT motion compensation are explained. We also show the implementation of a fast

transcoder that we used in this work.

6



C
Video Stream 1

Video Stream 2

Video Stream 3

Video Stream 4

Video Stream
DOMAIN

COMPOSITING

DCT DOMAIN

1

3

4

2

DCT

TRANSCODER

TRANSCODER

TRANSCODER

TRANSCODER

DCT

DCT

DCT

DCT

DCT DOMAIN

Ec

MVc

DCT DOMAIN

E1

MV1

E4

E2

2MV

E3

MV3

4MV

DCT
ME & MC

& Q

C

C

C

C

Cc Composited

DECIMATION

DECIMATION

DECIMATION

DECIMATION

DCT

DCT

DCT

DCT

d

d

d

d

1,

C2,

C3,

C4,

Figure 4: DCT domain compositing

Bit Stream
Decoder
Entropy +

+

IMC

IQ

Frame
DCT 

Memory

DCT  TRANSCODER

DCT Frame

MV

Figure 5: DCT transcoder

7



2.1 MOTION COMPENSATION IN THE DCT DOMAIN

As shown, a DCT transcoder has the same structure as a hybrid decoder except it does

motion compensation in the DCT domain. Before explaining the motion compensation first

consider the motion estimation in the spatial domain. Several criteria like Mean Square

Error (MSE), Mean Absolute Difference (MAD), and Sum Absolute Difference (SAD) are

commonly used to obtain the best matched, or namely, the optimal block for the current

block [27, 29]. For instance, if MAD is used for an M ×M block size the following error

MAD(i, j) =
1

M2

M−1∑

k=0

M−1∑

l=0

|ct(x + k, y + l)− ct−1(x + k + i, y + l + j)| (2.1)

is computed between the ct(x+k, y + l) that stands for the pixels of the block in the current

frame at time t, and the ct−1(x+k+ i, y+ l+j) that corresponds to the pixels of the block in

the previous (reference) frame. Here (x, y) and (x+ i, y+j) are the spatial coordinates of the

top left corner of the blocks ct(x, y) and ct−1(x + i, y + j) respectively. The motion vectors

are defined as −M ≤ i ≤ M horizontally, and −M ≤ j ≤ M vertically. If (x + p, y + q) is

found to be the coordinates of the optimal block ct−1(x + i, y + i) for which MAD(i, j) is

minimized, hence the motion vector for the block ct(x, y) is (i, j) = (p, q).

If motion estimation is performed in the DCT domain, the MAD criterion is written as

MADDCT (i, j) =
1

M2

M−1∑

k=0

M−1∑

l=0

|Ct(x + k, y + l)− Ct−1(x + k + i, y + l + j)| (2.2)

where Ct(x + k, y + l), and Ct−1(x + k + i, y + l + j) are the DCT values of the blocks in the

current, and the previous frames respectively.

Now let us consider the spatial domain motion compensation. Basically, in the previous

frame when adding the motion vector to the coordinates of the current block, the optimal

block is located (see Fig. 6). Hence by adding the block in the error frame, et(x, y), to the

optimal block in the motion-compensated frame, ĉt−1(x + p, x + q), we obtain the current

block

ct(x, y) = et(x, y) + ĉt−1(x + p, y + q) (2.3)

8



Eq. (2.3) also can be written in DCT domain as

Ct(x, y) = Et(x, y) + Ĉt−1(x + p, y + q) (2.4)

where Ct(x, y) = DCT{ct(x, y)}, Et(x, y) = DCT{et(x, y)}, and Ĉt−1(x + p, y + q) =

DCT{ĉt−1(x + p, y + q)}. So, the basic idea of motion compensation in the DCT domain is

similar to that in the spatial domain. However, the optimal DCT block Ĉt−1(x+p, y+q) may

not correspond to the DCT block of the previous frame. Therefore it needs to be calculated

by using the DCT blocks in the neighboring area. As displayed in the Fig. 6, for four DCT

blocks, R1, R2, R3, and R4, the optimal DCT block is computed by using the covered parts

of each four blocks.

Let us first consider the spatial domain approach for combining those four blocks

ĉ =
4∑

i=1

virihi (2.5)

where vi, and hi are sparse matrices that are used to window and shift the matrices ri

vertically, and horizontally [5, 7]. For simplicity, the optimal block, ĉt−1(x + p, y + q) is

shown as ĉ.

According to the definition of the DCT and its orthonormality, Eq. (2.5) becomes

Ĉ =
4∑

i=1

ViRiHi (2.6)

where Vi = DCT{vi}, Ri = DCT{ri}, and Hi = DCT{hi}. From the definition and consid-

ering M = 8, the two-dimensional DCT of an 8× 8 block is

Ri = DCT{ri} = S8ri(S
8)t (2.7)

where S8 is 8× 8 DCT operation matrix. Using the orthonormality property of S8

(S8)tS8 = I, (2.8)

we then have from Eq. (2.5)

S8ĉ(S8)t =
4∑

i=1

S8vi(S
8)tS8ri(S

8)tS8hi(S
8)t (2.9)

9



which equals Eq. (2.6). For example, in the spatial domain, the upper left part of the

optimal block, r̃1, in Fig. 7 is computed as

r̃1 =


 0 Ia

0 0


 r1


 0 0

Iw 0


 (2.10)

where the matrix on the left, which is v1, provides vertical windowing and shifting by a,

and the matrix on the right, which is h1, makes a horizontal windowing and shifting by w.

The DCT domain windowing and shifting is obtained by simply using the DCTs of these

matrices as follows

R̃1 = V1R1H1.

In Eq. (2.10), Ia and Iw are identity matrices of dimension a and w. The height a, and

the width w are easily obtained from the motion vector (p, q), and the block size M . For

example, in the Fig. 7, a is equal to |q|, and w is equal to M − p. The DCT domain motion

compensation implies storage of Vi, and Hi matrices for all possible motion vectors. However

only 2M − 2 matrices need to be stored because of the similarities of the matrices Vi, and

Hi [7]. Furthermore, this method is faster than the method that computes the inverse DCT

of each four block, and computes back to the DCT of the optimal block [3].

Even though the matrices vi and hi are sparse, DCTs of these matrices, Vi and Hi, are

not sparse. Thus computational complexity of Eq. (2.6) is more than that of Eq. (2.5).

However, in most cases, this does not keep the DCT transcoder from being faster than

the hybrid decoder since there is no inverse DCT computation in the DCT transcoder.

Furthermore, the position of the optimal block is a factor which affects the decoding time.

The optimal DCT block may be a combination of two DCT blocks instead of four. The other

possibility is that optimal DCT block may be one of the DCT blocks in the search area that

does not require any computation. Possible positions of the optimal DCT block are shown

in Fig. 8. A running time comparison of DCT transcoder versus hybrid decoder is displayed

in Fig. 9 for four CIF (Common Intermediate Format) video sequences of size 288 × 352.

In the next subsection we will introduce a faster transcoder which uses sparse matrices for

windowing and shifting.

10



(x,y)

Search Area

Previous Frame

(x+p,y+q)

Optimal BlockMotion Vector (p,q)

MC IN THE SPATIAL DOMAIN

(x,y)

R 2

R 4

R 1

3R

Previous DCT Frame

Search Area

w a

(x+p,y+q)

R 3

Optimal DCT BlockMotion Vector (p,q)

R 3

MC IN THE DCT DOMAIN

(x,y)

Current Frame

Current Block

Figure 6: Motion compensation in the spatial and the DCT domains

11



1

Windowing Shifting

+

+

+

R 1 R 2

R 3 R 4

a

Optimal DCT Block

w
~
R

Figure 7: Windowing and shifting

R 1 R 2

R 3 R 4

R 2

Combination of Two Blocks Combination of Four Blocks

a R 1

aw

R 1

Aligned Block

Figure 8: Possible positions of optimal DCT block

12



2.1.1 Fast DCT Transcoding

To improve the transcoder and to overcome the latency problem caused by computing the

nonaligned blocks, sparse matrices can be used instead of the nonsparse matrices Vi, and Hi

in Eq. (2.6) [9, 10, 11]. By using the similarities among these matrices and considering that

the block size is 8× 8, which is the block size in video coding standards such as H.26x and

MPEG, Eq. (2.6) is rewritten as

Ĉ = FaR1Gw + FaR2F8−w + G8−aR3Gw + G8−aR4F8−w (2.11)

where Fa = V1 = V2, G8−a = V3 = V4, Gw = H1 = H3, and F8−w = H2 = H4. Hence, by

using the definition of the DCT of a matrix in Eq. (2.7), Eq. (2.11) becomes

Ĉ = S8[fa(S
8)t(R1S

8gw + R2S
8f8−w) + g8−a(S

8)t(R3S
8gw + R4S

8f8−w)](S8)t (2.12)

or

Ĉ = S8[(fa(S
8)tR1 + g8−a(S

8)tR3)S
8gw + (fa(S

8)tR2 + g8−a(S
8)tR4)S

8f8−w](S8)t (2.13)

The 8×8 DCT operation matrix S8 can be written as products of sparse matrices as follows

[9]

S8 = DPB1B2M1A1A2A3 (2.14)

where D is a diagonal matrix, and P , B1, B2, M1, A1, A2 and A3 are sparse matrices, which

their entries are given in Appendix A.

By defining pre-computed matrices

ki = fi(M1A1A2A3)
t, 1 ≤ i ≤ 8

and

li = gi(M1A1A2A3)
t, 1 ≤ i ≤ 8

13



Table 1: Average speed improvements by DCT transcoder and fast DCT transcoder over

hybrid decoder

Average Speed Improvements (%)

DCT Transcoder Fast DCT Transcoder

Trevor 25.4 43.3

Claire 22.8 47.6

Salesman 33.3 43.3

Hall 33.7 43.1

and by using the factorization of S8 in Eq. (2.14), Equations (2.12) and (2.13) are re-

spectively obtained as

Ĉ = S8[kaB
t
2B

t
1P

tD(R1DPB1B2k
t
w + R2DPB1B2l

t
8−w)

+l8−aB
t
2B

t
1P

tD(R3DPB1B2k
t
w + R4DPB1B2l

t
8−w)](S8)t (2.15)

and

Ĉ = S8[(kaB
t
2B

t
1P

tDR1 + l8−aB
t
2B

t
1P

tDR3)DPB1B2k
t
w

+(kaB
t
2B

t
1PtDR2 + l8−aB

t
2B

t
1P

tDR4)DPB1B2l
t
8−w](S8)t (2.16)

The optimal block is computed by using either Eq. (2.15) or (2.16) depending on which

one requires less computations for the given a and w. The running time comparisons of the

hybrid decoder, DCT transcoder and the fast DCT transcoder which includes sparse matrices

are shown in Fig. 9. As shown in the figure, by using the sparce matrices DCT transcoder

becomes faster. On average, the improvements of the speed by the DCT transcoder and the

fast DCT transcoder are about 28.8 % and 44.3 % respectively. Average speed improvements

for each video sequence are shown in Table 1.

14



10 20 30 40 50 60 70
10

1

10
2

10
3

Frame No

N
or

m
al

iz
ed

 T
im

e

CLAIRE SEQUENCE

Running time of Hybrid Decoder
Running time of the DCT Transcoder
Running time of the Fast DCT Transcoder

10 20 30 40 50 60 70
10

1

10
2

10
3

Frame No

N
or

m
al

iz
ed

 T
im

e

SALESMAN SEQUENCE

Running time of Hybrid Decoder
Running time of the DCT Transcoder
Running time of the Fast DCT Transcoder

10 20 30 40 50 60 70
10

1

10
2

10
3

Frame No

N
or

m
al

iz
ed

 T
im

e

TREVOR SEQUENCE

Running time of Hybrid Decoder
Running time of the DCT Transcoder
Running time of the Fast DCT Transcoder

10 20 30 40 50 60 70
10

1

10
2

10
3

Frame No

N
or

m
al

iz
ed

 T
im

e

HALL SEQUENCE

Running time of Hybrid Decoder
Running time of the DCT Transcoder
Running time of the Fast DCT Transcoder

Figure 9: Running time comparisons of hybrid decoder, DCT transcoder and fast DCT

transcoder

15



2.2 DECIMATION IN THE DCT DOMAIN

As in the other stages of multi-point videoconferencing, like decoding incoming video se-

quences in the spatial domain, straightforward techniques for spatial domain scaling of com-

pressed video via inverse DCT transformation and re-transformation are computationally

expensive [8]. Therefore, recently there has been great efforts to develop fast DCT domain

decimation techniques [9, 10, 12, 14]. In this section, we consider fast algorithms for DCT

decimation. To decimate by an integer factor, N , an array of N × N DCT blocks, whose

sizes are 8× 8, is first transformed into an 8N × 8N DCT block and then masked to obtain

the low frequency coefficients that gives the decimated 8 × 8 DCT block. The process is

shown in Fig. 10 for N = 2. Our algorithm can also be used for rational values of N , such

as N = 2/3, or N = 3/4. In this case, some additional computations are needed as will be

explained later in this section.

Masking

Transform

16

16

8

8

8 8

C C

C C

8

8
8

8

C C

11 12

21 22

d

8

16

8

8 8

DCT Block

Figure 10: DCT decimation process for N = 2

The structure of the composited video depends on the decimation factor N [26]. For

example, when N = 2 there is a total of four subframes in the composited video. When

N = 3, the composited video will include a total of nine different video frames in 3 × 3

matrix form. For the rational case, for instance when N = 2/3, six video sequences are

composited into one, five videos being decimated by 3, and the other decimated by 2/3.

Several compositing structures are shown in Fig. 11.

In the spatial domain, decimation is done by low-pass filtering and discarding every other

row and column of the video frames [1, 2]. However spatial domain decimation may cause

16



aliasing resulting in image degradation. Decimation in the DCT domain avoids aliasing

by masking which is a less complicated method than low-pass filtering. The efficiency of

the DCT decimation algorithm can be improved by considering only lower frequency DCT

coefficients in the blocks to be decimated resulting in small quality degradation in the video.

We will explain this later in this section.

For decimation in the DCT domain, an array of DCT blocks first needs to be transformed

into one larger DCT block. This process was recently introduced in [13]. However we will

show a simpler way to obtain the transformation in a matrix form. Consider we have N ×N

DCT blocks of size 8× 8 each. To transform them into an 8N × 8N DCT block we need an

orthonormal transformation matrix, T 8N , i.e. (T 8N)tT 8N = I8N so that

C8N = T 8N




C8
11 · · · C8

1N

· · ·
C8

N1 · · · C8
NN


 (T 8N)t,

where C8
ij, for i, j = 1, · · · , N , are 8 × 8 DCT blocks and C8N is an 8N two-dimensional

DCT block. Since the transformation matrix T 8N is unique for any {C8
ij, i, j = 1, · · · , N}

and the corresponding C8N , we can consider the following simple case. Let C8
ii = I8 and

C8
ij = 0, i 6= j. From the orthonormal property of the DCT operation matrix given in Eq.

(2.8), the expected C8N will be identity matrix I8N as follows

I8N = S8N




(S8)tS8 · · · 0

· · · (S8)tS8 · · ·
0 · · · (S8)tS8


 (S8N)t,

Therefore the transformation matrix is

T 8N = S8N




(S8)t · · · 0

· · · (S8)t · · ·
0 · · · (S8)t


 (2.17)

with orthonormal property such that I8N = T 8N(T 8N)t. To obtain the forward transforma-

tion, let the 8N × 8N DCT operation matrix be separated as follows

S8N =
[
S8N

1 S8N
2 · · · S8N

N

]
(2.18)

17



Thus, the transformation matrix becomes

T 8N =
[
T 8N

1 T 8N
2 · · · T 8N

N

]
, (2.19)

and the subblocks {T 8N
i = S8N

i (S8)t} are of size 8N × 8. Thus the representation of C8N in

terms of the {C8
ij}, or the forward transformation, is

C8N =
N∑

i=1

N∑
j=1

T 8N
i C8

ij(T
8N
j )t. (2.20)

Hence we have a direct way to obtain an 8N × 8N DCT block from an N ×N array of 8× 8

DCT blocks. The inverse transformation of each of the 8 × 8 DCT blocks is obtained by

using the orthonormality of the transformations T 8N
i in Eq. (2.20)

C8
ij = (T 8N

i )tC8NT 8N
j . (2.21)

9−Subframe, N=34−Subframe, N=2 16−Subframe, N=4

Mixed View (6−Subframe), N=3, N=2/3 Mixed View (8−Subframe), N=4, N=3/4

Figure 11: Several video compositing structures

18



2.2.1 Fast Transformation of DCT Blocks

In this section we will show that the DCT block transformation can be further improved

resulting in a faster algorithm. Although the DCT block transformation matrices are sparse,

it is possible to derive sparser matrices. As indicated in [12], the odd rows of S8N
i , for

i = 1, .., N , coincide with the odd rows of S8, and due to the orthonormality of S8, the

matrices T 8N
i = S8N

i (S8)t, for i = 1, ..., N , are such that,

JS8N
1 =


 S8

Z


 (2.22)

where Z is a “don’t care” array, and J is a permutation matrix that separates the odd and

the even rows. For simplicity, consider a decimation factor N = 2. The results can be

extended to other integer factors. From Eq. (2.22) the subblock T 16
1 is

T 16
1 = S16

1 (S8)t = J t


 S8

Z


 (S8)t

= J t


 I8

Z(S8)t


 (2.23)

displaying that half of its entries are zero or one. It is similar for T 16
2 , and therefore the

transformation matrices are very sparse. Furthermore there is a symmetry between T 16
1 and

T 16
2 as follows

T 16
2 (i, j) = (−1)i+jT 16

1 (i, j) (2.24)

for i = 1, · · · , 16 and j = 1, · · · , 8. In fact, by definition

T 16
1 = S16


 I8

0


 (S8)t (2.25)

and

T 16
2 = S16


 0

I8


 (S8)t. (2.26)

19



Also consider M ×M permutation matrices JM , M = 8, 16, given by

JM =




0 0 · · · 0 1

0 0 · · · 1 0

0 1 · · · 0 0

1 0 · · · 0 0




.

If we pre- and post-multiply a matrix with the permutation matrices J16 and J8, the matrix

is flipped vertically and horizontally, respectively. Therefore


 0

I8


 = J16


 I8

0


 J8. (2.27)

If we replace Eq. 2.27 into Eq. 2.26, and use the orthonormality properties of DCT matrices

(S16)tS16 = I16 and (S8)tS8 = I8, we will have the following symmetry relationship between

T 16
2 and T 16

1 as

T 16
2 = S16J16(S16)tS16


 I8

0


 (S8)tS8J8(S8)t

= K16 T 16
1 K8

where

KM =




1 0 · · · 0 0

0 −1 · · · 0 0

0 0 · · · 0 0

0 0 · · · 0 (−1)M+1




are the DCT of JM , M = 8, 16, as can be easily verified. Due to this symmetry, instead of

T 16
1 and T 16

2 we consider their sum and difference,

D16
1 = 0.5 [T 16

1 + T 16
2 ]

D16
2 = 0.5 [T 16

1 − T 16
2 ], (2.28)

which according to the above symmetry gives that D16
1 (i, j) = T 16

1 (i, j) when (i+ j) are even

and zero otherwise. Similarly, D16
2 (i, j) = T 16

1 (i, j) when (i + j) is odd and zero otherwise.

20



Hence the sparseness and symmetry of the {T 16
i } matrices makes the {D16

i } matrices very

sparse. Therefore forward transformation is very efficient. Replacing the T 16
i in terms of the

D16
i matrices in the direct transformation we have

C16 = [X + Y ](D16
1 )t + [X − Y ](D16

2 )t

X = D16
1 (C8

11 + C8
21) + D16

2 (C8
11 − C8

21)

Y = D16
1 (C8

12 + C8
22) + D16

2 (C8
12 − C8

22) (2.29)

where C16 is 16 × 16 DCT block. Thus we compute the transformation by using the Eq.

(2.29), which is computationally less complex than Eq. (2.20) that uses the transformation

matrices directly.

Similarly for N = 3, 24× 24 DCT matrix is obtained such that

C24 = [X + Y ](D24
1 )t + [W − Y ](D24

2 )t + [X −W ](D24
3 )t

X = D24
1 (C8

11 + C8
21) + D24

2 (C8
31 − C8

21) + D24
3 (C8

11 − C8
31)

Y = D24
1 (C8

12 + C8
22) + D24

2 (C8
32 − C8

22) + D24
3 (C8

12 − C8
32)

W = D24
1 (C8

13 + C8
23) + D24

2 (C8
33 − C8

23) + D24
3 (C8

13 − C8
33) (2.30)

When decimation by a factor N = 4, the transformation equations are obtained as the same

way as in Equations (2.29) and (2.30).

2.2.2 Improved DCT Decimation

In this section we will first introduce masking of the transformed block, then show an im-

proved decimation algorithm. Again for simplicity consider a decimation factor N = 2. It

is also possible to extend the results for other integer and rational cases of the decimation

factor, N . After obtaining the 16× 16 DCT block from 2× 2 array of 8× 8 DCT blocks, the

transformed block is masked to get the top left 8 × 8 part that includes the low frequency

components of the block as follows (see Eq. (2.20)):

Cd = [I8 0]C16[I8 0]t

=
2∑

i=1

2∑
j=1

A8
i C

8
ij(A

8
j)

t (2.31)

21



where A8
i = [I8 0]T 16

i , i = 1, 2, are 8× 8 transformation matrices. If the transformation in

Eq. 2.29 is used, the decimated DCT array will be obtained in a less complex manner as

Cd = [Xd + Yd](E
8
1)

t + [Xd − Yd](E
8
2)

t

Xd = E8
1(C

8
11 + C8

21) + E8
2(C

8
11 − C8

21)

Yd = E8
1(C

8
12 + C8

22) + E8
2(C

8
12 − C8

22) (2.32)

where 8× 8 matrices

E8
1 = [I8 0]D16

1

E8
2 = [I8 0]D16

2 (2.33)

are sparser than the matrices {A8
i }.

To compare the quality of the decimated frame with the original one, we obtain a smooth

version of the the decimated frame by interpolation. Consider forward transformation of the

16× 16 block


 Cd 0

0 0


 =

∑
i,j

T 16
i C̃8

ij(T
16
j )t (2.34)

where {C̃8
ij} are the smooth-out blocks. Hence applying the inverse transformation in Eq.

2.21, we have

C̃8
ij = (T 16

i )t


 Cd 0

0 0


 T 16

j (2.35)

for i, j = 1, 2.

It is also possible to further improve the decimation by obtaining sparser matrices than

the matrices {E8
i }. Typically, most of the high frequency coefficients in a DCT block are

zero, and even when they are set to zero its inverse DCT values are not very different from

22



the original ones. Consider then that the DCT blocks to be decimated have q×q (1 ≤ q ≤ 8)

low-frequency components and the rest are zero

C8
ij =


 Cq

ij 0

0 0


 (2.36)

=


 Iq

0


 Cq

ij

[
Iq 0

]
(2.37)

Replacing these blocks in Eq. (2.31) gives

Cq
d =

∑
i,j

Bq
i C

q
ij(B

q
j )

t (2.38)

where Bq
i = A8

i [I
q 0]t, i = 1, 2, 1 ≤ q ≤ 8. Again, these 8× q matrices are sparse. However,

as before if we use these matrices in 2.32, it will become

Cq
d = [Xq

d + Y q
d ](F q

1 )t + [Xq
d − Y q

d ](F q
2 )t

Xq
d = F q

1 (C8
11 + C8

21) + F q
2 (C8

11 − C8
21)

Y q
d = F q

1 (C8
12 + C8

22) + F q
2 (C8

12 − C8
22) (2.39)

where

F q
1 = E8

1 [I
q 0]t

F q
2 = E8

2 [I
q 0]t (2.40)

are sparser than the matrices {Bq
i }. Also these matrices obviously have fewer entries than

the matrices {D16
i } and {E8

i }. Furthermore, as we decrease q, decimation becomes faster

but at the cost of quality. Also the larger q is, the better the interpolation, but the more

complex the implementation. When q = 4, the complexity of our algorithm, as measured by

the number of additions and multiplications, equals to that of [12]. But in the tested images

we obtain higher PSNR (Peak Signal to Noise Ratio) values, where PSNR for a 256-gray

scale image is given by

PSNR = −10log10(

∑
i,j(cij − ĉij)

IJ2552
) (2.41)

23



where cij and ĉij are the original and the reconstructed pixel values of an image of size I×J .

The improved decimation scheme is illustrated in Fig. 12. Decimation by other factors such

as N = 3 or N = 4 is similar to the decimation by N = 2. For example when N = 3, a

3 × 3 array of 8 × 8 DCT blocks are transformed into one 24 × 24 DCT block, and then

transformed block is masked to obtain the decimated 8 × 8 DCT block. Like in the case

when N = 2, it is also possible to represent each 8 × 8 block with a q × q part and the

rest are zero for faster implementation. The computational complexity depends on q. The

quality of the decimated frames is also related to q. For lower values of q, the quality is less

but implementation is faster.

16

Transform

Masking
16

8

8

8
8

8

C C

q

q

q

q

q

q q

q 8

8

16

C 12

C 21 C 22

q q

q q

q
d

C 11

DCT Block

8

Figure 12: Improved DCT decimation process for N = 2

For the rational case, decimation is still possible with higher complexity operations. To

obtain the decimated blocks, first an array of DCT blocks are transformed to a larger block

which has the size of the sum of the all DCT block sizes. Then masking and re-transformation

is applied to the larger block to obtain the decimated 8× 8 blocks. For instance, if N = 2/3,

a 3 × 3 array of 8 × 8 DCT blocks are first transformed into a 24 × 24 blocks. Then the

24× 24 DCT block is masked to obtain 16× 16 block which is the 2/3 of it. The additional

computational complexity comes from the requirement of obtaining 2×2 array of 8×8 DCT

blocks from the masked 16 × 16 DCT block. The transformation and masking process for

the rational case, N = 2/3 is shown in Fig. 13.

To see the performance of our algorithms we compared the computational complexity of

ours and that of other algorithms. We also obtained some PSNR values in dB to compare the

24



video quality of our and the other methods. In Table 2, we illustrate the number of additions

and multiplications per pixel for our algorithm and other three algorithms: spatial, of Chang

et al. [5] and of Dugad et al. [12] for N = 2. As seen from the table, the computational

complexity of our algorithm is equal to that of the Dugad et al.’s [12] which requires the

least computation.

For comparison of the video quality of our algorithm and Dugad et al.’s we obtain PSNR

values for some video frames. In Table 3, we show the results for six frames from different

video sequences. At the same computational complexity, which is the case when q = 4, our

algorithm always gives slightly better results than those of Dugad et al.’s [12] for all video

frames except the frame from Claire sequence. As shown in the table, our algorithm with

q = 8 always performs better with a slight increase in number of computations. However,

the case of q = 4 is enough to obtain better results without an increase of computational

complexity.

The computational complexity of our algorithms for the integer decimation factors and

also for the rational case of 2/3 are provided in Table 4. In this table, direct method is

the one that uses the matrices {T 8N
i } in Eq. (2.20). For a given decimation factor N , the

improved decimation method with q=8, which requires less computations, gives exactly the

same results with the direct method in terms of PSNR. In Fig. 14, we show some results

for decimation factors N =2, 3, 4, and 2/3 respectively. As seen from these figures, even

if q is less then 8 we still have good PSNR values compared to the case of q = 8. For the

decimation factor N = 4, the results of the two cases of q = 8 and q = 4 are so close that the

lines of PSNR values coincide in the figure. It is also possible to use smaller q to decrease the

number of additions and multiplications. However this will affect the quality to get worse.

25



8

C C

C C

11 12 C

C

C C

13

21 23

31 32 33

8

8

8

8 88

Transform
C

Masking

24

Transform

16

16

Cd,22
8

8 8

C

22

8 8 8

8 8 8

8 88

24DCT Block
24

DCT Block
Inverse d,11C

8
d,12C
8

8

8d,21C

Figure 13: DCT decimation for the rational case, N = 2/3

Table 2: Computational complexity comparisons of four decimation methods for N = 2

Method Multiplications/Pixel Additions/Pixel

Spatial 3.44 9.82

Chang’s 4.00 4.75

Dugad’s 1.25 1.25

Ours (q=4) 1.25 1.25

26



Table 3: PSNR comparisons of the decimation methods for N = 2

Video Frame Dugad’s Ours (q=4) Ours (q=8)

Miss America 39.1569 39.2989 39.6038

Salesman 30.6821 30.7773 31.1708

Foreman 32.6638 32.7484 33.1292

Hall 28.5138 28.6535 29.0496

News 29.7323 29.8972 30.3730

Claire 33.6414 33.5041 33.7074

Table 4: Computational complexity of our decimation algorithms

Decimation Factor (N ) Method Multiplications/Pixel Additions/Pixel

q=4 1.25 1.25

2 q=8 3.38 4.13

Direct 9.00 7.75

q=3 0.91 0.94

3 q=8 3.83 4.72

Direct 9.08 7.97

q=2 0.44 0.44

q=4 1.22 1.41
4

q=8 3.91 4.84

Direct 12.50 11.44

q=6 18.38 17.16

2/3 q=8 21.58 20.81

Direct 39.25 35.47

27



2 4 6 8 10 12 14 16 18 20
38.8

38.9

39

39.1

39.2

39.3

39.4

39.5

39.6

39.7

39.8

Frame Number

P
S

N
R

 (
dB

)

Decimation Factor N=2

q=8
q=4

2 4 6 8 10 12 14 16 18 20
36.2

36.3

36.4

36.5

36.6

36.7

36.8

36.9

37

37.1

Frame Number

P
S

N
R

 (
dB

)

Decimation Factor N=3

q=8
q=3

2 4 6 8 10 12 14 16 18 20

34.3

34.4

34.5

34.6

34.7

34.8

34.9

35

35.1

35.2

Frame Number

P
S

N
R

 (
dB

)

Decimation Factor N=4

q=8
q=4
q=2

2 4 6 8 10 12 14 16 18 20
41.9

41.95

42

42.05

42.1

42.15

42.2

42.25

42.3

42.35

Frame Number

P
S

N
R

 (
dB

)

Decimation Factor N=2/3

q=8
q=6

Figure 14: PSNR comparisons of different decimation factors for Miss America sequence

28



3.0 EMBEDDED ZEROTREE CODING OF DCT COEFFICIENTS

In this chapter we will investigate DCT-based embedded zerotree coding. Zerotree coding is

a progressive coding method which encodes a video or image into a bit stream with increasing

precision. The embedded property is accomplished that all encodings of the same image or

video at lower bit rates are embedded in the beginning of the bit stream for the target bit

rate [15]. The embedded coding scheme depends on coding a symbol by an entropy encoder

as soon as the symbol is obtained by the zerotree coding. A zerotree is a tree whose leaves

correspond to the insignificant transform coefficients which are less than a certain threshold.

A zerotree can be encoded by a single symbol resulting in efficient coding. Zerotree coding

proceeds iteratively producing at each iteration a significance map of all coefficients. Thus

more generally zerotree coding is called significance tree quantization.

3.1 INTRODUCTION

As video applications continue to grow, significance tree based image compression techniques

are becoming more effective and less complex. One of these methods, embedded image cod-

ing using zerotrees of wavelets, was first introduced by Shapiro in 1993 [15]. Dependencies

of wavelet coefficients in subbands are well exploited in this method. Later, beside wavelets,

DCT-based zerotree coding applications were developed and used by several researchers

[18, 19, 20, 33]. This more recent work shows that DCT-based embedded coders can provide

competitive compression rates with a good image quality compared to the wavelet based em-

bedded coders. As a progressive coding method, an embedded zerotree encodes the largest,

most important coefficients first. In this manner, the decoder first receives the coefficients

29



that have the largest content of information yielding the largest distortion reduction. Em-

bedded bitstream obtained by adaptive arithmetic coder representing the symbols of the

zerotree coding indicates the ordered coefficients by magnitude. To measure the distortion

between the original and reconstructed transform coefficients we consider Mean Square Error

given by

MSEC(C − Ĉ) =
1

IJ

∑
i

∑
j

(Cij − Ĉij)
2 (3.1)

where Cij and Ĉij are the original and the reconstructed transform coefficients of an image

or video frame of size I × J respectively. In a progressive transmission scheme, the decoder

initially sets the reconstruction coefficients {Ĉij} to zero and updates them according to

the incoming symbols. After receiving the approximate or exact values of some transform

coefficients the decoder can reconstruct the video frame. From Eq. (3.1), it is clear that

if the exact or approximate value of the transform coefficient Cij is sent to the decoder,

the MSEC of the reconstructed frame decreases. This means that the larger transform

coefficients should be sent first because of their larger content of information.

Beside the progressive property there is another advantage of the embedded zerotree

coding. Since the embedded zerotree encoder can be stopped at any time, it is very easy to

reach the exact target bit rate or the desired quality of image or video without truncating

the lower part of a video frame as in other methods. Analogously, a decoder can cease at

any point where the desired quality or the bit rate is reached.

In the following sections, the idea of the DCT-based embedded zerotree coding and the

details of this method are given and illustrated. The adaptive arithmetic coding is given in

Appendix B.

30



3.2 DEFINITION AND FEATURES OF DCT-BASED EMBEDDED

ZEROTREE CODING

The embedded zerotree coding of DCT coefficients is based on four steps: (1) arranging DCT

coefficients into hierarchical scales similar to the wavelet subband structure, (2) determining

the significant coefficients across scales by exploiting the self-similarity inherent in DCT co-

efficients, (3) successive-approximate quantizing of DCT coefficients, (4) lossless compressing

of the data from the output of the embedded zerotree coder by using an adaptive arithmetic

coder.

C

C C C

C C C

C C C

C C C

C C

C C

C

CC C

CC

C C C C

C

C

C

C

C

C

C

C C C C C C

C C C C C C C C

C C C C C C C

C C C C C C C C

C

21

3 4

5 6

7 8

9 10 

11 12

14

15 16

13

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

49 50 51 52

53 54 55 56

57 58 59 60

61 62 63 64

Figure 15: Treating an 8× 8 DCT block as a 3-scale subband structure

Consider a video frame which is composed of K×L blocks with sizes of M×M , where each

block is 2-D DCT transformed. Each DCT block of size M ×M , including M2 coefficients,

can be treated as a hierarchical subband structure. In Fig. 15, we show an 8× 8 DCT block

with its coefficients treated as 3-scale subband structure and ordered according to raster

scanning, which we will see later. Rearranging all blocks of the frame in this way, a 3-scale

hierarchical subband structure of a DCT frame, which can be seen in Fig. 16, is obtained. In

31



Fig. 16, the subband LL3 includes the DC coefficients of all 8×8 DCT blocks. It is identical

with the highest subband of a wavelet structure. In this layer, the number of coefficients

is equal to the number of DCT blocks of the video frame. All other subbands include AC

coefficients. Since most of the energy is concentrated in the DC coefficients, the quality of the

decoded image depends mostly upon DC coefficients, then on the AC coefficients. Therefore

the rearranged DCT structure is suitable for the zerotree encoding, and flexible to control

the bit rate [33].

2

LL HL

LH HH
HL

LH HH

HL

LH HH

3 3

2 2

1 1

3 3

1

Figure 16: Conversion of an 8× 8 DCT-frame into 3-scale subband frame

Several rearrangements of DCT blocks other than 3-scale structure are also possible

[19, 20]. Individually each one gives comparably good results in terms of the compression

ratio and quality [33]. In Fig. 17, we display an example of an M ×M DCT-blocks frame

and its rearranged version of 3-scale structure.

In the hierarchical subband structure of a DCT frame, from a coarser to the next finer

scale, a relationship can be established between the coefficients of similar orientation forming

a tree structure. If a coefficient at a given coarse scale is called ‘parent’, all the coefficients

at the next finer scale in the same spatial location of similar orientation are called ‘children’.

Specifically, for a given child at a fine scale, all coefficients at the coarser scales of similar

32



orientation at the same spacial locations are called ‘ancestors’. Similarly, for a given parent

at a coarse scale, all coefficients at finer scales of similar orientation are called ‘descendants’.

This parent-child relationship is shown in Fig. 18. In this example, while each coefficient

at LL3 subband has three children, coefficients of LH3, HL3, HH3, LH2, HL2, and HH2

subbands have four children each. During the zerotree coding, each parent is scanned before

its children. In Fig. 18, the dotted lines show the scanning order of the subbands, and each

small square block represents a DCT coefficient.

Zerotree coding depends on transmitting the positions of significant and insignificant

coefficients. After arranging DCT coefficients into 3-scale subband structure, a significance

test is performed. Zerotree maps indicating the positions of the significant and insignificant

coefficients are called significance maps. Zerotree coding ensures a compact multi-resolution

representation of significance maps [15].

A DCT coefficient C is said to be significant with respect to a given threshold Th, if its

magnitude is bigger than the given threshold, i.e., |C| > Th. There are four symbols used

in zerotree coding: (1) T : zerotree root , (2) Z: isolated zero, (3) P : positive significant

coefficient, (4) N : negative significant coefficient. If a parent and all its descendants are

insignificant with respect to a given threshold, then the parent is called a zerotree root.

Instead of coding all elements of a zerotree, only the zerotree root is encoded representing

that the insignificance of the other elements at finer scales are entirely predictable. If a

cofficient at a coarser scale is insignificant, and at least one of its descendants is significant,

the coefficient at the coarser scale is encoded as an isolated zero. If a coefficient is significant,

it is encoded either as positive or negative according to its sign.

Beside the scanning order of the subbands, the obtained zerotree symbols are scanned

according to a predetermined scan path at each subband. With this information, the decoder

will be able to reconstruct the encoded signal by using the same scanning path. Three

scanning examples of the zerotrees using raster, Morton, and Peano methods [23] are shown

in Fig. 19, respectively.

In zerotree coding, coefficients are ordered due to their significance by using successive

approximation quantization, which is explained in the next section.

33



50 100 150 200 250 300 350

50

100

150

200

250

50 100 150 200 250 300 350

50

100

150

200

250

Figure 17: An 8× 8 DCT-blocks frame, and its rearranged version of 3-scale subband struc-

ture

34



LL HL

HL

HL

HHLH

LH

LH

3

3 3

3

2

2 HH2

1

1 HH1

Figure 18: Parent-child relationship of 3-scale DCT subband structure

35



Figure 19: Raster, Morton, and Peano scan paths of a 3-scale subband structure

36



3.3 SUCCESSIVE APPROXIMATION QUANTIZATION

Successive approximation quantization (SAQ) is implemented in two consecutive passes. At

each pass, it produces embedded code parallel to the binary representation of an approxi-

mation to a real number [15]. The SAQ is applied iteratively for each new threshold. The

initial threshold Th0 is chosen as

Th0 = 2n (3.2)

where n = blog2Cmaxc, and Cmax = max(Ci,j) for i = 1, ..., I and j = 1, ..., J , for an I × J

DCT frame. Starting from Th0, at each successive step the other thresholds are obtained

according to Thi = Thi−1/2, i ≥ 1. For each threshold two passes are performed: dominant

pass and subordinate pass. They will be detailed in the following two subsections.

3.3.1 Dominant Pass

Dominant pass is an implementation of the zerotree coding. The dominant pass is performed

from the coarsest to the finest subband (see the dotted lines in Fig. 18). During the dominant

pass, the set of coordinates of insignificant coefficients, which is called dominant list, is used.

Initially, all DCT coefficients are considered as insignificant and put in the dominant list.

Coefficients with coordinates on dominant list are compared with the threshold Thi. If a

coefficient is found to be significant, its sign is determined. The obtained significance map

is zerotree coded as explained in the previous section. The magnitudes of the coefficients

which have been found to be significant during the dominant pass are removed from the

dominant list and put in subordinate list, which is the topic of the next subsection. To

avoid the occurrence of these coefficients on future dominant passes, they are replaced with

zeros in the DCT frame. Significant coefficients determined during a dominant pass are

reconstructed in the decoder according to Ĉ = 1.5 × Thi, corresponding the center of the

uncertainty interval [Thi, Thi−1).

37



3.3.2 Subordinate Pass

The magnitudes of the coefficients found to be significant are now the contents of the signifi-

cant list. After the dominant pass, to add more precision to the quantized DCT coefficients,

a subordinate pass is performed. For the subordinate pass, the width of the quantization step

size is cut in half. More clearly, cutting in half a previous uncertainty interval, [Ina, Inb),

two new uncertainty intervals, [Ina, Inm) and [Inm, Inb), where Inm = median(Ina, Inb),

are obtained. All of the previous intervals are halved in this way. Subordinate pass refines

the significant coefficients by setting them as the center of one of the new intervals, adding

a precision of one bit. If a significant coefficient is in the lower interval a “0” symbol, if it is

in the upper one “1” symbol is generated for the refinement.

By using the dominant pass, the coefficients are automatically ordered in importance.

However, since the coefficients on the subordinate list are sent to the decoder in the same

scan order of the dominant list, they are not ordered according to their magnitude. In this

case while adding negligible complexity, it increases coding efficiency.

The passes alternate between dominant and subordinate passes until either the desired

bit budget or quality is reached. Stopping the encoding of an embedded bit stream at any

point gives a precise rate control. However this is not the case for non-embedded coders,

which results in a truncation at the bottom part of the video frame. The flowchart of the

SAQ algorithm is shown in Fig. 20.

38



YES

CCoordinates of

j=1,2,...,Ji=1,2,...,I

Dominant List

Th=2Output 2
log  max(|C      |)i,j

Empty Subordinate List

|C   | > Th ?i,j

i,j

[Th, 2Th) ? )( |C   | εi,j

Output P , if sign(        )=+C

N Ci,j

NO

YES Significant

Insignificant

Ci,j
descendant of

a zerotree ?

Is coefficient 

i,jCDoes

has a significant

descendant ?
Ci,jRemove coordinates of

from Dominant List and add

to Subordinate Listi,j

DOMINANT SCAN

|C   |

, if sign(        )=−
i,j

Divide previous intervals by 2

[In  ,In  )a b a m
medianwhere In  =             (In  ,In  )m

from Subordinate List

Read coefficient |C   |k,l

Which interval

does k,l

belong to ?
Upper

|C   |

[In  ,In  )b

Interval

m

Output ZOutput T for zerotree for Ci,j

Output 1 for |C   |k,l

Output 0 for |C   |k,l

Lower

Interval
[In  ,In  )a m

coefficients

in Subordinate List

NO

Th=Th/2

coefficients

in Dominant List

NO

YES

YES

NO

Do not code

STOP ENCODING

Have all the

Have all the

been read ?

been read ?

SUBORDINATE SCAN

NO YES

[In  ,In   ), [In  ,In   )m b

a b

INITIALIZATION

Figure 20: Flowchart of zerotree coding

39



3.4 AN EXAMPLE

Consider the 8×8 DCT block of an image shown on the top left of Fig. 21. The other blocks

on the first column of the figure are modified versions of the DCT block where significant

coefficients are replaced with zeros during the previous dominant passes. In this example,

four dominant and subordinate passes of embedded zerotree coding are shown. To give more

precision to the coefficients, the number of passes can be increased. The initial threshold

is founded to be 64 according to Eq. (3.2). According to the first threshold, only two

coefficients, 109 and -75, are significant. The symbols for these significant coefficients are

P , and N , respectively. Since the parent 21 at the scale HL3, its children at the scale HL2,

and its grandchildren at the scale HL1 are all less than 64, a zerotree T symbol stating the

insignificance of the HL family is generated and is put at the coordinates of the ancestor 21.

Another T symbol is generated for the LH family, since all of them are insignificant. The

HH family has a different structure because of the significant parent -75, which is encoded

with the symbol N . The parents at the HH2 have T symbols individually since their children

are insignificant like they are.

The significance map obtained and shown in the second column is scanned by using

one of the methods shown in Fig. 19. The raster scan is used. Then zerotree array of

first dominant pass will be PTTNTTTT . This array is encoded by using a four-symbol

adaptive arithmetic encoder. Essentially, as soon as a symbol is generated, it is encoded

by an adaptive arithmetic encoder for embedded bit propose and due to the possibility of

ceasing encoding at any point. Since the first uncertainty interval is [T0, 2× T0) = [64, 128)

and the center of it is 96, the significant coefficients of the first dominant pass are decoded

as 96, and -96 at the decoder. The blocks at the third column display the reconstruction of

the DCT block after each dominant pass. The positions of the significant coefficients 109,

and -75 are removed from the dominant list. For the next possible passes they are replaced

with zeros so as not to be compared with the smaller thresholds.

After the dominant pass is performed, two significant coefficients which their magnitudes

are appended to subordinate list are compared with a decision boundary. Subordinate pass

cuts in half the uncertainty interval into two new uncertainty intervals, [64, 96) and [96, 128).

40



Thus decision boundary here is 96. Since 109 is bigger than the decision boundary 96, it

is quantized to 112 which is the center of the upper interval, and will be encoded with the

symbol “1”. The magnitude of -75 is in the lower interval. Thus it is encoded with the

symbol “0”, and its quantized value is refined from 96 to the center of first interval, 80. The

refined DCT block after the first subordinate pass is shown at the last column of the first

line of the figure. The scanning order of subordinate list is the same as the dominant list.

Thus the array of the first subordinate pass is “10”. This is encoded by a 2-symbol adaptive

arithmetic coder.

At the second row of the figure, the first block has zeros in the coordinates of significant

coefficients from the first dominant pass. The coefficients of the modified DCT block is

now compared with the new threshold 32. In this case, 33, 61, and -43 are significant

coefficients. Thus, the symbols P , P , and N are generated respectively. Since the ancestor

of the all coefficients, DC coefficient, is now zero and three of its descendants are significant,

Z symbol is generated for the DC coefficient. The other symbols for the other coefficients

are shown in the second column of the second row. Since we add a new interval at each

dominant pass, the significant coefficients are decoded to 48 at the decoder, which is the

center of the new interval [32, 64). After raster scanning of the zerotree symbols, array

ZZTZPTTTZTTTTPTTNTT is formed.

Three significant coefficients are appended to the subordinate list, giving total five coef-

ficients to be refined by the subordinate pass. Until now, there are three intervals obtained.

The second subordinate pass divides each interval into two new intervals. Thus there exists

total of six intervals for the subordinate pass, which are [32, 48), [48, 64), [64, 80), [80, 96),

[96, 112), and [112, 128). For this example, all of the intervals, centers, and the symbols for

subordinate passes are shown in Fig. 22. The arrowheads show the centers of the intervals.

The second subordinate pass obtains “00001” array at the output. The third and fourth

dominant and subordinate pass results and zerotrees are also shown in Fig. 21. Additional

passes are also possible in order to achieve better quality.

41



AND ITS MODIFIED VERSIONS

 0 21 33 9 11 61 −19 7

27   0 −13 15 5 0 0

11 −17 5 7 9 11−9

−5

−13

11 −15 13 9 −11 0 0 5

117 0 31 −43 9 0 0

0 −5 0 0 0 0 0 5

0 7 −5 0 5 0 7 5

7 −9 0 5 7 0 0 0

 0 21 0 9 11  0 −19 7

27   0 −13 15 5 0 0

11 −17 5 7 9 11−9

−5

−13

11 −15 13 9 −11 0 0 5

117 0 31   0 9 0 0

0 −5 0 0 0 0 0 5

0 7 −5 0 5 0 7 5

7 −9 0 5 7 0 0 0

 0 0 0 9 11  0   0 7

0   0 −13 15 5 0 0

11   0 5 7 9 11−9

−5

−13

11 −15 13 9 −11 0 0 5

117 0  0   0 9 0 0

0 −5 0 0 0 0 0 5

0 7 −5 0 5 0 7 5

7 −9 0 5 7 0 0 0

0000000112

000000−800

00000000

00000000

000 00000

00000000

00000000

00000000

000000096

0000000

00000000

00000000

00000000

00000000

00000000

00 00000 0

T

T N

T T

TT

P

Zerotree Subordinate

109 21 33 9 11

−96

61 −19 7

27 −75 −13 15 5 0 0

11 −17 5 7 −13 11

11 −15 13 9 −11 00

9

−5

−9

5

7 11 0 31 −43 9 0 0

0 −5 0 0 0 0 5 0

0 7 −5 0 5 0 7 5

7 −9 0 5 7 0 0 0

Zerotree

Z Z

Z

P PT T

T Z T T T T

T

T T

N T

T T

112 0 48 0 0 0 0

0

0

0

0

0

0

00000000

0 0 0 0 0 0 0

0000000

00

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0

−80

48

−48

104 40

−72

−40

560 0 0 0 0

0 0 0 0 0 00

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Subordinate

Zerotree

Z P T Z

P T T T

N T

TT

T N

T T

T P

T T

Dominant

Dominant

Dominant

First

Second

Pass

Pass

Second

First

Pass

Pass

Third Third

Subordinate

Pass

104 40 56 −24

24 −72

−24

24 −40

0 0 0

0 0 0 0 0 0

0

0 0

0 0

00

0 0 0 0

000

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0

0000000

Pass

108 20 36

28 −76

−20

28 −44

0 0

0 0 0 0 0 0

0

0 0

0 0

0 0

0 0 0 0

0000

0 0 0 0 0 0

0

0

0

0 0 0 0 0 0 0

0

00

00

0

00

0

00

0 0

Zerotree

Z Z Z

Z Z

Z

P P

P

P P P

P

T T T

T T T T

TTT

P

PP

P

N

N

N

N

N

T T

T

T T

T

T T

T T T T

T T T T

T T T T

T T TN

Dominant

Pass

Fourth

Pass

Fourth

Subordinate

0

108 20 36 12 12 60 −20 0

28 −76 −12 12 0 0 0 0

12 −20 0 0 −12 −1212 12

12 −12 12 12 −12 0 0 0

0 28012 −44 12 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

110 22 34 10 10 62 −18 0

26 −74 −14 14 0 0 0 0

10 −18 0 0 −14 10 −10 10

10 −14 14 10 −10 0 0 0

0 10 0 30 −42 10 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0−12 −10

60 −20 024

0

ZEROTREE MAPS
RECONSTRUCTED BLOCKS

AFTER DOMINANT PASSES

RECONSTRUCTED BLOCKS

AFTER SUBORDINATE PASSES 

ORIGINAL DCT BLOCK (TOP)

Th =64
0

Th =32
1

Th =16
2

Th =8
3

Figure 21: An example of zerotree coding

42



Fourth Subordinate Pass Intervals

128

6432 48

32 40 48

0

56 64

1 0

72 80 88

1

96 104

0

112 120

1

0

8064 96 112

1

9664 128

128

16 24 32

16 20 24 12812011210496888072645648403228 36 44 52 60 68 76 84 92 100 108 116 124

0 1 0 1 0 1 0 1 0 1 0 1 0 1

168 12

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128

0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 01 1 1 1 1 1 1 1 10 0 0 0 0

Symbols:

Symbols:

Symbols:

Symbols:

First Dominant Pass Interval

First Subordinate Pass Intervals

Second Dominant Pass Interval

Second Subordinate Pass Intervals

Third Dominant Pass Interval

Third Subordinate Pass Intervals

Fourth Dominant Pass Interval

Figure 22: Dominant and subordinate pass intervals

43



3.5 EXPERIMENTAL RESULTS

In the experiments, we first use the conventional DCT domain video compositing system,

which exploits regular scalar quantization, in Fig. 4 with several decimation factors. Then

we replace it with the DCT-based embedded zerotree (DCT-EZT) coder. We compare the

results of both compositing systems in terms of PSNR at the same bit rate to see the

quality improvement by the DCT-EZT coding. For the conventional DCT compositing, the

adaptive arithmetic coder is used instead of the conventional Huffman coder to permit a fair

comparison. The first video frame is coded as intra (I), and rest are coded as interframes

(P) forming a typical structure of group of pictures (GOP).

−

+

+
+

Memory

Frame
ME

MC

MV

Bit Stream

IEZT

Rearrangement

Coefficientsof DCT

BlocksBack to 8x8

EZT

Arrangement of DCT 

Coefficients into

Hierarchical Structure

Adaptive

Arithmetic

Encoder

MV2

MV1

MV

MV

3

4

c

Video Frame

Composite DCT

Figure 23: DCT-EZT encoder

To use the DCT-EZT encoder with the proposed compositing, DCT coefficients are

rearranged into hierarchical structure with ten subbands as explained in Chapter 3. We

also subtract the average of the DC values in the coarsest subband, LL3, and transmit as

44



an overhead in order to improve the coding efficiency. Because the correlation of the DC

coefficients of neighboring blocks is very high this method decreases the unnecessary scanning

of the zerotrees [20]. We also treat the coefficients in the coarsest subband as if they do not

have any children. Accordingly, after zerotree coding of the coarsest subband we obtain an

array consisting of three symbols, Z, P, and N for this subband, in this way we do not use

the four symbols-alphabet for all zerotree coding. This improves the coding efficiency of

adaptive arithmetic coder. Furthermore, all other symbols in the finer subbands except the

ones in the finest scales are encoded by using the four symbol-alphabet adaptive arithmetic

coder. In the finest scale subbands, there are only three symbols since the coefficients do

not have any children. Thus the zerotree array of these subbands are encoded by a three

symbols-adaptive arithmetic encoder.

Then the binary symbols obtained from the subordinate pass are encoded by two-symbol

alphabet adaptive arithmetic encoder. The dominant and subordinate passes are subse-

quently used until the desired bit budget is reached. For motion estimation and compen-

sation, DCT coefficients are inverse EZT coded and reformed to their initial 8 × 8 block

structure. Motion compensation is done by either estimating the motion vectors from the

incoming streams, or by computing the motion vectors directly from the composite video.

The initial threshold, Th0, is also sent to the decoder. Then the decoder starts to decode

incoming zerotree symbols according to Th0 as the way explained in the example in Section

3.4. The proposed DCT-EZT encoder is shown in Fig. 23.

Before comparing the conventional and DCT-EZT compositing systems we first investi-

gate if the scanning path of the EZT coefficients have any influence on the final compression

result or quality. For this, we compare three of the scan paths, raster, Morton and Peano,

which are shown in Fig. 19. In this comparison, we use four different video sequences, Claire,

Miss America, Salesman, and Trevor, in CIF format, which have the size of 288 × 352, and

decimate them with the decimation factor, N = 2. After compositing the four decimated

frames into one, we encode the composited video frames by using DCT-EZT encoder with

using each of three scanning methods. In Table 5, we illustrate the average PSNR results

of seventy frames for each scanning methods. We also show the individual PSNR values in

Fig. 24. As seen from Table 5 and Fig. 24 there is no major effect of the scanning methods

45



Table 5: Average PSNR values obtained from three scan methods according to given constant

bit rates

Bit Rate (bits/frame) Raster Scan Morton Scan Peano Scan

20000 34.9523 dB 34.9524 dB 34.9480 dB

40000 38.5217 dB 38.5275 dB 38.5170 dB

60000 39.2390 dB 39.2288 dB 39.2525 dB

80000 40.6408 dB 40.6315 dB 40.6327 dB

on the performance. Thus we chose raster scan to use with the proposed DCT-EZT coder

for the rest of the experiments.

For the comparison of conventional DCT compositing and DCT-EZT based compositing

methods, we use two different decimation methods, one using integer factor and the other

a rational factor. For the integer case, N = 2, four video sequences are composited into

one, while in the mixed-view six video sequences are composited into one, five videos being

decimated by 3, and the other decimated by a rational number, 2/3. In both cases, we obtain

better results by using the DCT-EZT coding than by using the conventional DCT encoder.

For conventional DCT encoder we use four different Quantization Parameters (QP ), which

are QP =3, 5, 8, and 10. We also use syntax based adaptive arithmetic coder to encode the

symbols obtained from the conventional DCT encoder. These symbols in the block layer are

the combination of (LAST, RUN, LEVEL), namely TCOEFs (Transform Coefficients), and

individually, LAST, RUN, LEVEL, SIGN for both intra- and interframe, and INTRADC

for intraframe. The LAST symbol is the indication of the remaining non-zero coefficients

in a DCT block. If LAST is 0, there are more non-zero coefficient(s) in the DCT block,

if 1, it means that this is the last non-zero coefficient in the block, thus there is no need

to look further for the other coefficients in the block. The RUN symbol stands for the

number of successive zeros preceding the coded coefficient. The LEVEL is the non-zero

value of the quantized coefficient. These symbols and the initial cumulative frequencies

for adaptive arithmetic coding were taken from H.263 recommendation in [26]. For the

46



most commonly occurring events a table of combinations of (LAST, RUN, LEVEL), which

are called TCOEFs, were used. Unlike Huffman coding, the predetermined variable length

codes (VLC) of each TCOEF with fixed length, which are supplied in [26], are not used

in the adaptive arithmetic coding case. Consequently adaptive arithmetic coding results in

better performance. For the remaining combinations of LAST, RUN, and LEVEL, they are

coded separately. Thus for each of them different histograms are used to track the changing

probabilities of the symbols. The signs of the coefficients, SIGN, and the itraframe DC

coefficients, INTRADC are also encoded in the same way by using their own histograms.

In the Fig. 25, we show the PSNR results of compositing four video streams (N=2) each

with seventy frames for both DCT-EZT and conventional DCT encoder using the changing

bit rate given by the regular quantizer with quantization factors, QP=3, 5, 8, and 10. Some

of the composite video frames from each conventional DCT and DCT-EZT encoder systems

are shown in Fig. 26. We also show the PSNR results for the mixed-vied composited videos

(N=3, 2/3) in Fig. 27. The mixed-view video samples are shown in Fig. 28.

As seen from both PSNR comparisons and subjective tests of video frames the proposed

DCT compositing with DCT-EZT encoder outperforms the DCT compositing system with

the conventional DCT encoder using regular scalar quantizer. The average PSNR values for

the four composited and mixed view video sequences are shown in Tables 6 and 7 respectively.

Table 6: Average PSNR values for four composited videos (N = 2)

QP=3 QP=5 QP=8 QP=10
Conventional DCT Encoder

39.0713 36.5549 34.3038 32.8692

DCT-EZT Encoder 40.9160 38.7932 36.8879 35.4929

Table 7: Average PSNR values for mixed-view composited videos (N = 3, 2/3)

QP=3 QP=5 QP=8 QP=10
Conventional DCT Encoder

38.5867 35.5643 33.0410 31.5754

DCT-EZT Encoder 40.4920 37.9544 35.1252 34.0327

47



0 10 20 30 40 50 60 70

33

33.5

34

34.5

35

Frame Number

P
S

N
R

 (
dB

)

Bit Rate = 20000 bits/frame

Raster Scan
Morton Scan
Peano Scan

0 10 20 30 40 50 60 70
36.5

37

37.5

38

38.5

Frame Number

P
S

N
R

 (
dB

)

Bit Rate = 40000 bits/frame

Raster Scan
Morton Scan
Peano Scan

0 10 20 30 40 50 60 70
38.7

38.8

38.9

39

39.1

39.2

39.3

39.4

39.5

39.6

Frame Number

P
S

N
R

 (
dB

)

Bit Rate = 60000 bits/frame

Raster Scan
Morton Scan
Peano Scan

0 10 20 30 40 50 60 70
39.6

39.8

40

40.2

40.4

40.6

40.8

41

41.2

Frame Number

P
S

N
R

 (
dB

)

Bit Rate = 80000 bits/frame

Raster Scan
Morton Scan
Peano Scan

Figure 24: PSNR comparisons of DCT-EZT coder for Raster, Morton and Peano scan meth-

ods

48



0 10 20 30 40 50 60 70
37

37.5

38

38.5

39

39.5

40

40.5

41

41.5

42
PSNR Comparison of DCT Compositing (EZT vs. Reg. Quant. (QP=3)) at the same bit rate

Frame Number

P
S

N
R

 (
dB

)

DCT Compositing with EZT
DCT Compositing with Regular Quant.(QP=3)

0 10 20 30 40 50 60 70
34

35

36

37

38

39

40
PSNR Comparison of DCT Compositing (EZT vs. Reg. Quant. (QP=5)) at the same bit rate

Frame Number

P
S

N
R

 (
dB

)

DCT Compositing with EZT
DCT Compositing with Regular Quant.(QP=5)

0 10 20 30 40 50 60 70
32

33

34

35

36

37

38

39

Frame Number

P
S

N
R

 (
dB

)

PSNR Comparison of DCT Compositing (EZT vs. Reg. Quant. (QP=8)) at the same bit rate

DCT Compositing with EZT
DCT Compositing with Regular Quant.(QP=8)

0 10 20 30 40 50 60 70
30

31

32

33

34

35

36

37

38

Frame Number

P
S

N
R

 (
dB

)

PSNR Comparison of DCT Compositing (EZT vs. Reg. Quant. (QP=10)) at the same bit rate

DCT Compositing with EZT
DCT Compositing with Regular Quant.(QP=10)

Figure 25: PSNR comparisons of DCT-EZT and conventional DCT encoder for four com-

posited videos

49



50 100 150 200 250 300 350

50

100

150

200

250

(a) Original composited frame (Frame # 5)

50 100 150 200 250 300 350

50

100

150

200

250

50 100 150 200 250 300 350

50

100

150

200

250

(b) Conventional DCT (QP=3), 74352 bits (c) DCT-EZT, 74352 bits

PSNR=39.4793 dB PSNR=41.1532 dB

Figure 26: Composited video frame samples from the conventional DCT and the DCT-EZT

codings

50



50 100 150 200 250 300 350

50

100

150

200

250

50 100 150 200 250 300 350

50

100

150

200

250

(d) Conventional DCT (QP=5), 51480 bits (e) DCT-EZT, 51480 bits

PSNR=36.9644 dB PSNR=39.2019 dB

50 100 150 200 250 300 350

50

100

150

200

250

50 100 150 200 250 300 350

50

100

150

200

250

(f) Conventional DCT (QP=10), 30042 bits (g) DCT-EZT, 30042 bits

PSNR=33.4238 dB PSNR=36.3004 dB

Figure 26 (Cont.): Composited video frame samples from the conventional DCT and the

DCT-EZT codings

51



0 10 20 30 40 50 60 70
36

37

38

39

40

41

42

Frame Number

P
S

N
R

 (
dB

)

PSNR Comparison of DCT Compositing (EZT vs. Reg. Quant. (QP=3)) at the same bit rate

mixed−view DCT Compositing with EZT
mixed−view DCT Compositing with Regular Quant.(QP=3)

0 10 20 30 40 50 60 70
33

34

35

36

37

38

39
PSNR Comparison of DCT Compositing (EZT vs. Reg. Quant. (QP=5)) at the same bit rate

Frame Number

P
S

N
R

 (
dB

)

mixed−view DCT Compositing with EZT
mixed−view DCT Compositing with Regular Quant.(QP=5)

0 10 20 30 40 50 60 70
30

31

32

33

34

35

36

37

Frame Number

P
S

N
R

 (
dB

)

PSNR Comparison of DCT Compositing (EZT vs. Reg. Quant. (QP=8)) at the same bit rate

mixed−view DCT Compositing with EZT
mixed−view DCT Compositing with Regular Quant.(QP=8)

0 10 20 30 40 50 60 70
29

30

31

32

33

34

35

36

Frame Number

P
S

N
R

 (
dB

)

PSNR Comparison of DCT Compositing (EZT vs. Reg. Quant. (QP=10)) at the same bit rate

mixed−view DCT Compositing with EZT
mixed−view DCT Compositing with Regular Quant.(QP=10)

Figure 27: PSNR comparisons of DCT-EZT and conventional DCT encoder for mixed-view

compositing

52



50 100 150 200 250 300

50

100

150

200

250

(a) Original composited frame (Frame # 5)

50 100 150 200 250 300

50

100

150

200

250

50 100 150 200 250 300

50

100

150

200

250

(b) Conventional DCT (QP=3), 93174 bits (c) DCT-EZT, 93174 bits

PSNR=38.9412 dB PSNR=40.9455 dB

Figure 28: Mixed-view composited video frame samples from the conventional DCT and the

DCT-EZT codings

53



50 100 150 200 250 300

50

100

150

200

250

50 100 150 200 250 300

50

100

150

200

250

(d) Conventional DCT (QP=5), 64231 bits (e) DCT-EZT, 64231 bits

PSNR=35.9628 dB PSNR=38.4407 dB

50 100 150 200 250 300

50

100

150

200

250

50 100 150 200 250 300

50

100

150

200

250

(f) Conventional DCT (QP=10), 33959 bits (g) DCT-EZT, 33959 bits

PSNR=32.1421 dB PSNR=34.7676 dB

Figure 28 (Cont.): Mixed-view composited video frame samples from the conventional DCT

and the DCT-EZT codings

54



We also compare our embedded zerotree coder with the other zerotree coders. In the

first comparison, we show the PSNR results of our DCT-based embedded zerotree coder

(DCT-EZT) for a frame from QCIF (Quadrature Common Intermediate Format) Foreman

sequence in Fig. 29. The other PSNR values in the same figure is from a wavelet based

embedded zerotree coder (EZW) based on Shapiro’s work in [15]. As seen from the figure,

we obtain better PSNR values. However it must be stated that in the wavelet based method

there are 2- scales of wavelets while in our method we use 3-scale structure.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

x 10
4

28

29

30

31

32

33

34

35

36

37

Number of Bits

P
S

N
R

 (
dB

)

EZW (2 Level)
DCT−EZT

Figure 29: Comparison of DCT-EZT and Wavelet based embedded zerotree coder

We make another comparison with the results in [22] where 3-scale wavelet and addition-

ally a virtual decomposition of the coarsest subband are used for Salesman CIF sequence.

The results are shown in Fig. 30. Here our algorithm performed well enough so the results

from both our algorithm and the one in [22] are very close to each other. However since

55



the other algorithm has enlarged zerotrees using virtual decomposition and uses a modified

version of embedded zerotree coding it has slightly better results as seen from the figure.

0 0.5 1 1.5 2 2.5

x 10
5

28

30

32

34

36

38

40

42

44

Number of Bits

P
S

N
R

 (
dB

)

Other
DCT−EZT

Figure 30: Comparison of DCT-EZT and embedded zerotree coder with virtual set parti-

tioning in hierarchical tree

As a result we see that our embedded zerotree coding algorithm does well enough when

comparing it to other zerotree coding algorithms. Beside it is also possible to improve our

algorithm by using different strategies for obtaining zerotrees as stated in [21].

56



3.6 APPLICATION OF DCT DECIMATION/INTERPOLATION WITH

EMBEDDED ZEROTREE CODING TO A SINGLE VIDEO STREAM

In this chapter, motivated by the compositing of several video sources in multi-point video

conferencing we come up with a method for single video streams that uses the proposed

DCT-decimation in the encoder and the corresponding interpolation in the decoder. Our

codec performance is illustrated using different decimation factors, and showing that it is

particularly efficient for low bit rates. We run our algorithms for different CIF video se-

quences. Here in the figures and tables, regular encoding stands for H.263 video coding,

but the difference is we use embedded zerotree coding instead of regular scalar quantization.

Consequently adaptive arithmetic coding is used after zerotree coding. This way we use the

same encoding methodology to encode the DCT coefficients and the data symbols with the

proposed system with DCT decimation and interpolation. We also use full pixel motion es-

timation and compensation in both systems. So the comparison results are fair. Our system

is shown in Fig. 31.

Error frames can be decimated by different decimation factors. We investigate the effect

of decimation factor to the reconstructed image quality for given bit rates. We also use only

q × q, (q ≤ 8), part of the 8 × 8 DCT blocks as before in compositing. So the number of

computations required to decimate an image is decreased.

We use integer and rational decimation factors with our proposed video coding system.

The effects of each decimation factor differ with the number of bits used to encode each

frame. For lower bit rates we obtain better PSNRs for an interpolated intrafame from a

video sequence as shown in Fig. 32. Starting from the lowest bit rate, coding with the

highest decimation factor obtains better results than the others since it has the smallest

decimated video frame. However as the number of bits increases the efficiency of the high

decimation factor decreases. This is because decimated frames requires only small number of

bits to be encoded. So after a certain number of bits, decimated video frame will no longer

require more bits and extra bits be wasted. Therefore the PSNR of the reconstructed video

frame will saturate. As shown in Fig. 32 these PSNR saturations approximately occur after

PSNR curves of regular and the proposed codings coincide at a particular bit rate. Thus the

57



maximum bit rate for an intraframe for a particular decimation factor can be accepted this

coincidence point. For a GOP including an intraframe and interframes, PSNR comparisons

of the proposed method with decimation factor, N = 2, and regular encoding are shown

in Fig. 33. As seen from this figure, average PSNRs of a video sequence strongly depends

on the bit rate of the intraframe. If intraframe is encoded with a low bit rate, which is

our aim in this work, the proposed method gives better results than regular encoding. In

Fig. 33 from left to right intraframes are encoded with 10000, 15000, and 20000 bits. In

this example, we encode 30 frames/second and each GOP (Group of Picture) includes an

intraframe and 49 interframes. For the video coding standart H.263, number of interframes

can be up to 131 in a GOP. For example in the Salesman sequence, on the graphs on the

left hand side and in the middle, our method gives better PSNRs from 7.47 kilobits/second

up to 45 kilobits/second. However, we obtain worse results for the case where intraframe is

encoded with 20000 bits as shown on the graph on the right hand side.

Reconstructed video frame samples are shown in Fig. 34 for regular and the proposed

encoding with the decimation factor N = 2. Beside the objective results, the reconstructed

frames are also subjectively better than the ones from regular coding. Blocking effects are

especially more visible in intraframe-coded Salesman and Foreman video frames for regular

encoding as seen in Fig. 34. However for the proposed encoding there is no disturbing

blocking effects. In the proposed method, since we lose some high frequency information

because of the decimation, some blurring occurs on the detailed part of the images like books

on the shelves in Salesman frame. Nevertheless for video conferencing sequences background

information is not important since the viewers are only interested in people talking.

58



Video +

Frame

Memory

Motion Estimation

& Compensation

Motion Vectors

DCT 
DCT 

Decimation

Arrangement of

DCT Blocks into DCT−EZT

Rearrangement of

DCTs into Block 

Structure

DCT
Interpolation

Inverse

DCT 

Arithmetic

Adaptive 

Encoder

Inverse

DCT−EZT

Hiearchical Structure

+ +

−
Frame

Figure 31: Proposed encoder

59



0.5 1 1.5 2 2.5

x 10
4

19

20

21

22

23

24

25

26

27

28

29

Rate−Distortion(PSNR)−−Salesman Intraframe−−

Bit Rate (Bits/Frame)

P
S

N
R

 (
dB

)

Regular Encoding
Proposed Encoding N=2,q=4
Proposed Encoding N=3,q=3
Proposed Encoding N=4,q=2
Proposed Encoding N=2/3,q=6

0.5 1 1.5 2 2.5

x 10
4

24

26

28

30

32

34

36

38

Rate−Distortion(PSNR) −Miss America Intraframe−

Bit Rate (Bits/Frame)

P
S

N
R

 (
dB

)

Regular Encoding
Proposed Encoding N=2, q=4
Proposed Encoding N=3, q=3
Proposed Encoding N=4, q=2
Proposed Encoding N=2/3, q=6

0.5 1 1.5 2 2.5

x 10
4

15

20

25

30

Rate−Distortion(PSNR) −Foreman Intraframe−

Bit Rate (Bits/Frame)

P
S

N
R

 (
dB

)

Regular Encoding
Proposed Encoding N=2, q=4
Proposed Encoding N=3, q=3
Proposed Encoding N=4, q=2
Proposed Encoding N=2/3, q=6

Figure 32: Rate-distortion performances of the proposed encoding vs. regular encoding for

intraframes (from top to bottom: Salesman, Miss America, and Foreman)

60



1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

x 10
4

27.2

27.4

27.6

27.8

28

28.2

28.4

28.6

28.8
−−Salesman Sequence−− Rate−Distortion Performance (intraframe:10000 bits)

bits per second

P
S

N
R

 (
dB

)

Regular Encoding
Proposed Encoding (N=2)

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

x 10
4

27.6

27.8

28

28.2

28.4

28.6

28.8

29
−−Salesman Sequence−− Rate−Distortion Performance (intraframe:15000 bits)

bits per second
P

S
N

R
 (

dB
)

Regular Encoding
Proposed Encoding (N=2)

2 3 4 5 6 7

x 10
4

28.2

28.4

28.6

28.8

29

29.2

−−Salesman Sequence−− Rate−Distortion Performance (intraframe:20000 bits)

bits per second

P
S

N
R

 (
dB

)

Regular Encoding
Proposed Encoding (N=2)

(a) Salesman Sequence

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

x 10
4

34.5

35

35.5

36

36.5

37

−−Miss America Sequence−− Rate−Distortion Performance (intraframe:10000 bits)

bits per second

P
S

N
R

 (
dB

)

Regular Encoding
Proposed Encoding (N=2)

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

x 10
4

36

36.2

36.4

36.6

36.8

37

37.2

37.4

−−Miss America Sequence−− Rate−Distortion Performance (intraframe:15000 bits)

bits per second

P
S

N
R

 (
dB

)

Regular Encoding
Proposed Encoding (N=2)

2 3 4 5 6 7

x 10
4

36

36.2

36.4

36.6

36.8

37

37.2

37.4

37.6

37.8
−−Miss America Sequence−− Rate−Distortion Performance (intraframe:20000 bits)

bits per second

P
S

N
R

 (
dB

)
Regular Encoding
Proposed Encoding (N=2)

(b) Miss America Sequence

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

x 10
4

28.6

28.8

29

29.2

29.4

29.6

29.8

30

30.2

30.4

30.6

−−Foreman Sequence−− Rate−Distortion Performance (intraframe:10000 bits)

bits per second

P
S

N
R

 (
dB

)

Regular Encoding
Proposed Encoding (N=2)

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

x 10
4

29

29.2

29.4

29.6

29.8

30

30.2

30.4

30.6

30.8

−−Foreman Sequence−− Rate−Distortion Performance (intraframe:15000 bits)

bits per second

P
S

N
R

 (
dB

)

Regular Encoding
Proposed Encoding (N=2)

2 3 4 5 6 7

x 10
4

29.4

29.6

29.8

30

30.2

30.4

30.6

30.8

31

−−Foreman Sequence−− Rate−Distortion Performance (intraframe:20000 bits)

bits per second

P
S

N
R

 (
dB

)

Regular Encoding
Proposed Encoding (N=2)

(c) Foreman Sequence

Figure 33: Rate-distortion performances of the proposed encoding vs. regular encoding for

interframes

61



50 100 150 200 250 300 350

50

100

150

200

250

(a) Original Salesman Frame (Frame # 1)

50 100 150 200 250 300 350

50

100

150

200

250

50 100 150 200 250 300 350

50

100

150

200

250

(b) Regular, 0.5 bits/pixel (c) Proposed, 0.5 bits/pixel

PSNR=27.56 dB PSNR=27.88 dB

Figure 34: Video frame samples from regular and proposed codings

62



50 100 150 200 250 300 350

50

100

150

200

250

(d) Original Miss America Frame (Frame # 1)

50 100 150 200 250 300 350

50

100

150

200

250

50 100 150 200 250 300 350

50

100

150

200

250

(e) Regular, 0.5 bits/pixel (f) Proposed, 0.5 bits/pixel

PSNR=37.40 dB PSNR=37.88 dB

Figure 34 (Cont.): Video frame samples from regular and proposed codings

63



50 100 150 200 250 300 350

50

100

150

200

250

(g) Original Foreman Frame (Frame # 1)

50 100 150 200 250 300 350

50

100

150

200

250

50 100 150 200 250 300 350

50

100

150

200

250

(h) Regular, 0.5 bits/pixel (i) Proposed, 0.5 bits/pixel

PSNR=28.79 dB PSNR=29.74 dB

Figure 34 (Cont.): Video frame samples from regular and proposed codings

64



4.0 IMPROVEMENT OF ZEROTREE CODING

In this chapter, we investigate another approach of zetotree coding to improve the coding effi-

ciency. Details of this approach and comparison with the zerotree coding method explained

in Chapter 3 is given in the following two sections. Another improvement is achieved by

application of local cosine transform (LCT) at low bit rates. This method is used together

with zerotree coding to decrease the blocking effect, which is visible at low bit rate coding.

Theory of this method and comparison with the DCT-based zerotree coding is given in the

second section of the chapter.

4.1 SET PARTITIONING IN HIERARCHICAL TREES

Besides embedded zerotree coding being superior to regular scalar quantization based coding,

it is still possible to improve this method further by using the approach in [21], originally

derived for wavelet. This method is called set partitioning in hierarchical trees (SPIHT) and

is performed in two passes: sorting pass and refinement pass. Different from the original

zerotree coder, SPIHT obtains completely binary symbols at the output. Thus using only

a single alphabet with two symbols increases the performance of the adaptive arithmetic

coder.

To implement the method, DCT coefficients in 8× 8 blocks are first rearranged into the

subband structure as stated in Section 3.2. There are three lists maintained in the SPIHT

algorithm: list of insignificant coefficients (LIC), list of significant coefficients (LSC), and list

of insignificant sets (LIS). At the initial stage, LIC contains all the coefficients in the highest

subband, and LIS includes the set of descendants of each such coefficient. LSC is initially

65



empty. In the LIS, descendants are categorized in two types as Type A and Type B : The set of

all descendants of node (i, j) is labeled as D(i, j) or Type A. Offsprings (direct descendants)

of node (i, j) is identified as O(i, j). So L(i, j) = D(i, j)−O(i, j) is descendants of node (i, j)

except the direct ones and labeled as Type B. Initially all nodes with descendants are added

to the LIS as Type A entries. For a given threshold, the relationship between magnitude

comparisons and outputted bits can be shown as follows:

STh(SET ) =





1, max{|Ci,j|} ≥ Th

0, otherwise
(4.1)

Here SET is either D(i, j) or L(i, j). In the same manner, significance of a coefficient Ci,j

can be defined such that STh(Ci,j) = 1, if |Ci,j| ≥ Th; STh(Ci,j) = 0, otherwise. During the

sorting pass if a set is found to be significant it is partitioned into subsets as will be explained.

The objective is to obtain new partitions such that subsets expected to be insignificant

contain a large number of coefficients, and subsets expected to be significant contain only

one element [21]. This way the number of magnitude comparisons and therefore number of

outputted bits is reduced.

The sorting pass is made for LIC and LIS. The algorithm works its way down the LIC

first, comparing magnitudes of coefficients with the current threshold. If a coefficient is

found to be significant, first a “1” bit for its significance, and then according to its sign

“0” for negative or “1” for positive are outputted, and the coefficient is moved to the LSC.

If the coefficient is insignificant a “0” bit is sent. After testing the LIC, the LIS is tested.

During the LIS test, as stated in Eq. 4.1, if all the descendants in a set are insignificant, it is

indicated by just outputting one bit, “0”. If a set contains at least one significant coefficient,

a “1” is sent to decoder and the set is partitioned into subsets. If the set of (i, j) node is of

Type A then D(i, j) is partitioned into L(i, j) and four single coefficients Ck,l ε O(i, j). Then

node (i, j) is moved to the end of the LIS as of Type B to be compared with the current

threshold after completing the comparison of the sets in turn. Later each of four Ck,l ε O(i, j)

is tested for significance. If one is found to be significant a “1” and corresponding bit for its

sign are outputted, and the coefficient is added to the LSC. If the coefficient is insignificant,

it is added to the end of the LIC and a “0” is sent to decoder. If the set of (i, j) node

66



is of Type B and is significant, first a “1” is outputted and L(i, j) is partitioned into four

sets D(k, l) with (k, l) ε O(i, j). Then each (k, l) ε O(i, j) is added to the end of the LIS

as an entry of Type A and (i, j) is removed from the LIS to be compared with the current

threshold after finishing the comparison of the sets in turn. An example of partitioning Type

A or Type B entries is shown in Fig. 35.

After the sorting pass is completed, the refinement pass for LSC, which is the same with

the subordinate pass explained in Chapter 3, is performed. After an entire pass is made,

the threshold is halved. As seen the idea of the SPIHT in [21] is derived from the embedded

zerotree coding in [15]. The crucial differences are the partitioning of the coefficients and

how the significant information is conveyed to the decoder. The flowchart of the algorithm

is given in Fig. 36. As in the other zerotree coding each symbol is encoded by an adaptive

arithmetic encoder as soon as it is outputted. The algorithm continues until the desired bit

rate is reached.

67



1

node 

Test for significance

L(i,j)

O(i,j)

D(i,j)

Th
S    (D(i,j)) = 1

L(i,j)
Test for significance

S    (L(i,j)) =
Th

1

(i, j)

node (i, j)

Type A(k, l)

(i, j)
Remove

node 

{ D(k,l)}

nodes

(k, l)nodes Type A

Test for significance

Th

{ Test for

significance

If significant
move to LSC

move to LIC
If insignificant

Remove
node (k  , l  )1 1

D(k  ,l  )

D(k  ,l  )

1S    (D(k  ,l  )) =

2 2

4 4

D(k  ,l  )

D(k  ,l  ) D(k  ,l  ) D(k  ,l  )

D(k  ,l  )1 1

3 3

2 2

3 3 4 4

Type A

Type B

L(i,j)

C k,l { }

node (i, j) Type B

Test for
If significant
move to LSC

significance If insignificant
move to LIC

1

Figure 35: Set partitioning examples

68



(i, j)

INITIALIZATION

Ci,j| |ε LIC > Th ?

YES

Output i,j

Move        to the LSCCi,j

S(C    )= 1

Output Ci,jsign(      ): 0 for (−),     for (+)1

NO
Output S(C    )=i,j 0

been read ?

in the LIC

coefficients

Have all the

NO

YES

in the LIS

Type A or

?Type B

Type A

Type B

YES

NO

Output 1S(D(i, j))=

YES

NO

Output k,lS(C    )= 1

Output 1Ck,lsign(       ):0 for (−),     for (+)

k,lCMove         to the LSC

Output S(C    )=k,l 0

end of the LIC

Ck,lMove         to the

Output S(D(i, j))= 0

(k,l)(for each          )

C| k,l | ε O(i, j) > Th ?

0L(i, j) = ?

Th ?L(i, j) >

D(i, j) > Th ?

NO

0Output S(L(i, j))=

YES

Type Bthe LIS as an entry of 

(i, j)Move         to the end of YES
Remove entry (i, j)

NO
from the LIS

(i, j) been compared to

Th?(including the entries

added to the end

of the LIS)

(k,l) ε O(i, j)Add each                       to the end

Output S(L(i, j))= 1

of the LIS as an entry of Type A

(i, j)Remove          from the LIS

Have all entry

YES

TESTING LIC

TESTING LIS

SORTING PASS

for each            in the LSC|Ci,j |

sorting pass)

(except those added in the last

Th = Th / 2

REFINEMENT PASS

Output next MSB (right side)

Output Th =2 2 i,jlog    (max(|C     |))

EmptyLSC

( Type A )
LIS Coeff.s with descendants

Coeff.s in highest scaleLIC

NO

Is entry

Figure 36: Flowchart of SPIHT

69



4.1.1 Comparison of DCT-EZT with DCT-SPIHT

In this section, we compare the improved embedded zerotree coding with the regular zerotree

coding. Since the improved one is called SPIHT, we will call the DCT-based method DCT-

SPIHT. For composited videos with four subframes the comparison results are shown in

Table 8. Here average PSNR values for 50 frames are given at corresponding certain bit

rates. The first frames are always encoded as intraframe at the bit rate of four times of

the bit rate of interframes. We also show individual PSNR values for each frame of the

composited video sequence at certain bit rates in Fig. 37. As seen from Table 8 and Fig. 37,

we obtain higher PSNR values with DCT-SPIHT at each bit rate. Some reconstructed frame

samples with four subframes are shown in Fig. 38 for both methods. As seen from these

samples DCT-SPIHT also subjectively gives better results than DCT-EZT. It is especially

visible in Salesman subframe, which is the most detailed one among four subframes.

For composited videos with six subframes, the average PSNR values of the DCT-SPIHT

and DCT-EZT are given in Table 9. In this case, DCT-SPIHT gives higher PSNRs than

DCT-EZT does at most bit rates except 20000 bits/frame. At this bit rate, we obtain slightly

better results with DCT-EZT. In Fig. 39, PSNR values of each frame at certain bit rates

are shown. We display some video frame samples with six subframes from both methods

in Fig. 40. As seen from the composited video frame samples, quality of the reconstructed

video frames from DCT-SPIHT is visually better than those from DCT-EZT.

70



Table 8: Average PSNR comparisons of DCT-EZT and DCT-SPIHT for composited videos

with four subframes

Bit Rate (bits/interframe) DCT-EZT DCT-SPIHT

2500 27.0877 dB 27.7065 dB

5000 28.6256 dB 29.2535 dB

10000 31.6341 dB 32.1707 dB

15000 33.4862 dB 34.0600 dB

20000 35.3069 dB 35.6364 dB

25000 35.7594 dB 36.3797 dB

Table 9: Average PSNR comparisons of DCT-EZT and DCT-SPIHT for composited videos

with six subframes

Bit Rate (bits/interframe) DCT-EZT DCT-SPIHT

2500 25.0518 dB 25.6902 dB

5000 27.8878 dB 28.3520 dB

10000 31.0797 dB 31.1779 dB

15000 31.8695 dB 32.4798 dB

20000 34.9613 dB 34.8213 dB

25000 35.6623 dB 36.0816 dB

71



0 5 10 15 20 25 30 35 40 45 50
28.2

28.4

28.6

28.8

29

29.2

29.4

29.6

29.8

30

Frame Number

P
S

N
R

 (
dB

)

Bit Rate = 5000 bits/interframe (Intraframe:20000 bits)

EZT−DCT
Improved EZT−DCT

0 5 10 15 20 25 30 35 40 45 50
31.2

31.4

31.6

31.8

32

32.2

32.4

32.6

32.8

33
Bit Rate = 10000 bits/interframe (Intraframe:40000 bits)

Frame Number

P
S

N
R

 (
dB

)

EZT−DCT
Improved EZT−DCT

0 5 10 15 20 25 30 35 40 45 50
32.5

33

33.5

34

34.5

35

Frame Number

P
S

N
R

 (
dB

)

Bit Rate = 15000 bits/interframe (Intraframe:60000 bits)

EZT−DCT
Improved EZT−DCT

0 5 10 15 20 25 30 35 40 45 50
35.2

35.4

35.6

35.8

36

36.2

36.4

36.6

36.8

37

37.2

Frame Number

P
S

N
R

 (
dB

)

Bit Rate = 25000 bits/interframe (Intraframe:100000 bits)

EZT−DCT
Improved EZT−DCT

Figure 37: PSNR comparisons of DCT-EZT vs. DCT-SPIHT for composited videos with

four subframes

72



50 100 150 200 250 300 350

50

100

150

200

250

(a) Original composited frame (Frame # 10)

50 100 150 200 250 300 350

50

100

150

200

250

50 100 150 200 250 300 350

50

100

150

200

250

(b) DCT-EZT, 5000 bits (c) DCT-SPIHT, 5000 bits

PSNR=28.9220 dB PSNR=29.6105 dB

Figure 38: Composited video frame samples with four subframes from DCT-EZT and DCT-

SPIHT

73



50 100 150 200 250 300 350

50

100

150

200

250

50 100 150 200 250 300 350

50

100

150

200

250

(d) DCT-EZT, 10000 bits (e) DCT-SPIHT, 10000 bits

PSNR=31.9405 dB PSNR=32.5713 dB

50 100 150 200 250 300 350

50

100

150

200

250

50 100 150 200 250 300 350

50

100

150

200

250

(f) DCT-EZT, 15000 bits (g) DCT-SPIHT, 15000 bits

PSNR=33.7740 dB PSNR=34.4821 dB

Figure 38 (Cont.): Composited video frame samples with four subframes from DCT-EZT

and DCT-SPIHT

74



0 5 10 15 20 25 30 35 40 45 50
26

26.5

27

27.5

28

28.5

29

Frame Number

P
S

N
R

 (
dB

)

Bit Rate = 5000 bits/interframe (Intraframe:20000 bits)

EZT−DCT
Improved EZT−DCT

0 5 10 15 20 25 30 35 40 45 50
29.5

30

30.5

31

31.5

32

32.5

Frame Number

P
S

N
R

 (
dB

)

Bit Rate = 10000 bits/interframe (Intraframe:40000 bits)

EZT−DCT
Improved EZT−DCT

0 5 10 15 20 25 30 35 40 45 50
31

31.5

32

32.5

33

33.5

Frame Number

P
S

N
R

 (
dB

)

Bit Rate = 15000 bits/interframe (Intraframe:60000 bits)

EZT−DCT
Improved EZT−DCT

0 5 10 15 20 25 30 35 40 45 50
35

35.5

36

36.5

37

37.5

Frame Number

P
S

N
R

 (
dB

)

Bit Rate = 25000 bits/interframe (Intraframe:100000 bits)

EZT−DCT
Improved EZT−DCT

Figure 39: PSNR comparisons of DCT-EZT vs. DCT-SPIHT for composited videos with

six subframes

75



50 100 150 200 250 300

50

100

150

200

250

(a) Original composited frame (Frame # 10)

50 100 150 200 250 300

50

100

150

200

250

50 100 150 200 250 300

50

100

150

200

250

(b) DCT-EZT, 5000 bits (c) DCT-SPIHT, 5000 bits

PSNR=28.2981 dB PSNR=28.8940 dB

Figure 40: Composited video frame samples with six subframes from DCT-EZT and DCT-

SPIHT

76



50 100 150 200 250 300

50

100

150

200

250

50 100 150 200 250 300

50

100

150

200

250

(d) DCT-EZT, 10000 bits (e) DCT-SPIHT, 10000 bits

PSNR=31.5297 dB PSNR=32.0487 dB

50 100 150 200 250 300

50

100

150

200

250

50 100 150 200 250 300

50

100

150

200

250

(f) DCT-EZT, 15000 bits (g) DCT-SPIHT, 15000 bits

PSNR=32.4553 dB PSNR=33.1812 dB

Figure 40 (Cont.): Composited video frame samples with six subframes from DCT-EZT and

DCT-SPIHT

77



4.2 REDUCTION OF BLOCKING EFFECT AT LOW BIT RATES

At low bit rates, the main problem of the DCT-based image and video coding is the block-

ing effect in reconstructed images or video frames. This unwanted natural consequence is

caused by the independent processing of each block. It is seen as discontinuities across block

boundaries. Viewers can easily notice the blocking effect at low bit rate codings.

There is a method to reduce the blocking effect such as Lapped Orthogonal Transform

(LOT) [34], [35], [36]. The optimal LOT is concerned with DCT-II in such a way that a fast

LOT algorithm can be obtained [36]. However even a fast LOT algorithm requires 20-30%

more computations than DCT-II does [37]. The other disadvantage of the LOT is that it was

derived in order to replace DCT-II as the kernel of the transform coding [36], [37]. Therefore

it is not convenient to be plugged into our method, since our method is completely based on

DCT-II coding.

Another method to reduce the blocking effect is introduced with the idea that can be used

with existing DCT-based encoders by applying a preprocessing stage to the source images

or video frames directly [37]. Accordingly a postprocessing stage is added to the decoder to

obtain the reconstructed images or video frames after inverse DCT is taken. This method is

called Local Cosine Transform (LCT) [37]. In this method, transform bases are formed of a

cosine or sine multiplied by a smooth bell (cutoff) function that overlaps contiguous blocks.

Consequently discontinuities across the block boundaries are reduced and smoothed.

As seen from Fig. 41, the preprocessing stage is the folding process, which is the ap-

plication of the bell function to the blocks of the error frame in the spatial domain at the

encoder. Then DCT is applied to each block. These two processes are together called LCT.

At the decoder, inverse LCT includes the inverse DCT and unfolding operations.

78



Error Frame

Preprocessing
(Folding)

DCTError Frame

DCT
Inverse Postprocessing

(Unfolding)

INVERSE LCT AT DECODER

LCT AT ENCODER

Recontructed 

Figure 41: Local cosine transform

79



4.2.1 Theory of Local Cosine Transform

In LCT, bell function is used to fold adjacent blocks to each other. Properties of one

dimensional bell functions bj(x) defined over the intervals Ij = [mj,mj+1] are given [37] as





0 ≤ bj(x) ≤ 1, for all x,

bj(x) = 1, x ∈ [mj + εj,mj+1 − εj],

bj(x) = 0, x /∈ [mj − εj,mj+1 + εj+1],

bj−1(x) = bj(2mj − x) and b2(x) + b2
j−1(x) = 1, x ∈ [mj − εj,mj + εj].

(4.2)

Eq. 4.2 states that the two bells bj−1(x) and bj(x), which are supported over the consecutive

intervals Ij−1 and Ij, are orthogonal and have a mutual symmetry with respect to mj as

shown in Fig. 42.

 m0 m1 m2 m3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 42: Consecutive intervals and corresponding bells

80



Let us now consider a one dimensional bell function b(x) based on the function β that is

given as

β(x) =





0, if x < −1,

1
2
(1 + sin(π

2
x)), if − 1 ≤ x ≤ 1,

1, if x > 1

(4.3)

To implement LCT on video frames, frames are divided into blocks of size N ×N , where N

is an integer. Then a one dimensional discrete symmetric bell of size of 2N is centered in

the middle of each column and row block. By moving the bell from a block to its neighbor

the two contiguous bells are overlapped by N pixels. Folding equation is given as

f−(x) =
b(x)f(−x)− b(−x)f(x)

b(x)− b(−x)
, x ∈ [−εj, 0], (4.4)

f+(x) =
b(x)f(x)− b(−x)f(−x)

b(x)− b(−x)
, x ∈ (0, εj]

where x is a continuous variable in both intervals [−εj, 0] and (0, εj]. Here f−(x) and f+(x)

are left and right folded functions within the intervals [−εj, 0] and (0, εj], respectively. As

seen from this equation, function f(x) is folded across 0 onto the intervals [−εj, 0] and

(0, εj] by using the bell b(x), and since the bell is symmetric, also by using b(−x). Symmetry

property of the bell function b(x) is shown in Fig. 43. Original function f(x) is reconstructed

by using the unfolding equation given as follows:

f(x) =





b(x)f+(−x) + b(−x)f−(x), x ∈ [−εj, 0],

b(x)f+(x) + b(−x)f−(−x), x ∈ (0, εj].
(4.5)

Instead of using the bell of size 2N , a discrete bell of size N can be used as given [37]:

b(n) = β
(

n+1/2
N/2

)
, (4.6)

where n = −N/2,−N/2 + 1, ..., N/2 − 1, and β is the function defined in Eq. 4.3. In our

case since we use 8 × 8 blocks (N = 8), particularly the values of the bell b(n) for n =-4,

81



-3,...,3, 4 are the values of the function β(x) for x =-7/8, -5/8, -3/8, -1/8, 1/8, 3/8, 5/8, 7/8.

Therefore the folding equation will be obtained as follows:

f−(n) =
b(n)f(−n)− b(−n)f(n)

b(n)− b(−n)
, n = −4,−3,−2,−1, (4.7)

f+(n) =
b(n)f(n)− b(−n)f(−n)

b(n)− b(−n)
, n = 0, 1, 2, 3.

In the same manner, unfolding will be applied as

f(n) =





b(n)f+(−n) + b(−n)f−(n), n = −4,−3,−2,−1,

b(n)f+(n) + b(−n)f−(−n), n = 0, 1, 2, 3.
(4.8)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

b(x)
b(−x)

Figure 43: Symmetry property of bell function

In the folding operation the bell is positioned in the center of two contiguous blocks. For

example, for two vertically contiguous blocks, the four pixels of the left block will be folded

into the four pixels of the right block at the same row. In the same manner, four pixels of the

82



right block will be folded into the left block. The bell is moved across the boundary of the

two contiguous blocks to fold other pixels of each block to the other’s. The same operations

are also applied to the horizontally contiguous blocks. After applying the folding operations

to the all blocks of the image, forward DCT is applied to the resulting folded blocks.

The bell function defined on the basis of the function β(x) may affect the reconstructed

image quality (or the compression ratio). In order to obtain the optimal bell function an

iterative method is used empirically in [37]. In this method the function β is given as

β(x) =





0, if x < −1,

1
2
(1 + z), if − 1 ≤ x ≤ 1,

1, if x > 1

(4.9)

where z is described as follows:

begin

z = x

for i = 1 to iternum

z = sin(π
2
z)

end

The optimal iternum is found to be 3 [37]. Thus the optimal bell is based on the function β

β(x) =





0, if x < −1,

1
2
(1 + sin(π

2
sin(π

2
sin(π

2
)))), if − 1 ≤ x ≤ 1,

1, if x > 1.

(4.10)

As displayed on the Fig. 44, as internum increases the bell function becomes flatter.

Namely for large values of iternum, left half side of the bell function gets closer to 0 while

right half side of the bell gets closer to 1. If left half side and right half side are exactly 0

and 1 respectively, then folding operation does nothing. Physically, the smaller the iternum,

the smoother the resulting image or vice versa. However since smoother images do not mean

optimal quality, in our experiments, we use the bell function with iternum 3 to obtain the

optimal quality with LCT. Also as shown in Table 10, the PSNR results of some reconstructed

83



intraframes coded with LCT at several bit rates verifies that the best bell function is obtained

with iternum 3.

In Fig. 45, we show some reconstructed composited video frames from Table 10 coded

with LCT using three different bell functions. As seen from the figure, bell function with

iternum 1 gives the smoothest but the worst frames. The bell function with iternum 6 supplies

the least folding, thus blocking effects are clearly visible in the reconstructed frames. The

best frames are obtained with the bell function with iternum 3.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Bell Functions for LCT−II , N=8

β (Iternum=1)
Optimal β (Iternum=3)
β (Iternum=6)

Figure 44: Bell functions for several iternums

84



Table 10: PSNR results of reconstructed frames coded with LCT with different bell functions

Video Frame Bit Rate β w. iternum=1 β w. iternum=3 β w. iternum=6

15000 bits 35.2117 dB 36.4817 dB 35.6040 dB
Miss America

30000 bits 35.5935 dB 39.8523 dB 39.4684 dB

15000 bits 25.7274 dB 26.7295 dB 26.3428 dB
Salesman

30000 bits 27.4089 dB 29.6320 dB 29.1936 dB

15000 bits 26.9506 dB 28.0002 dB 27.2803 dB
Foreman

30000 bits 28.8500 dB 31.6424 dB 30.8868 dB

15000 bits 24.3859 dB 26.0539 dB 25.5081 dB
News

30000 bits 28.2275 dB 30.4650 dB 29.6693 dB

15000 bits 30.3215 dB 32.0418 dB 31.2249 dB
Claire

30000 bits 35.5232 dB 38.1987 dB 37.7871 dB

15000 bits 24.8939 dB 26.4207 dB 25.8662 dB
Hall

30000 bits 29.0896 dB 31.1133 dB 30.2664 dB

15000 bits 24.9371 dB 27.1013 dB 26.7383 dB

Comp. (4-subfr.)
30000 bits 27.3984 dB 30.1373 dB 29.9104 dB

15000 bits 22.6630 dB 24.6238 dB 24.4627 dB

Comp. (6-subfr.)
30000 bits 24.8404 dB 27.6161 dB 27.5538 dB

85



β with iternum 1

Composited (4−sub.) Frame # 1 (Intraframe), 15000 bits 

50 100 150 200 250 300 350

50

100

150

200

250

β with iternum 3

Composited (4−sub.) Frame # 1 (Intraframe), 15000 bits 

50 100 150 200 250 300 350

50

100

150

200

250

β with iternum 6

Composited (4−sub.) Frame # 1 (Intraframe), 15000 bits 

50 100 150 200 250 300 350

50

100

150

200

250

β with iternum 1

Composited (4−sub.) Frame # 1 (Intraframe), 30000 bits 

50 100 150 200 250 300 350

50

100

150

200

250

Composited (4−sub.) Frame # 1 (Intraframe), 30000 bits 

β with iternum 3
50 100 150 200 250 300 350

50

100

150

200

250

β with iternum 6

Composited (4−sub.) Frame # 1 (Intraframe), 30000 bits 

50 100 150 200 250 300 350

50

100

150

200

250

β with iternum 1

Composited (6−sub.) Frame # 1 (Intraframe), 15000 bits 

50 100 150 200 250 300

50

100

150

200

250

Composited (6−sub.) Frame # 1 (Intraframe), 15000 bits 

β with iternum 3
50 100 150 200 250 300

50

100

150

200

250

β with iternum 6

Composited (6−sub.) Frame # 1 (Intraframe), 15000 bits 

50 100 150 200 250 300

50

100

150

200

250

β with iternum 1

Composited (6−sub.) Frame # 1 (Intraframe), 30000 bits 

50 100 150 200 250 300

50

100

150

200

250

β with iternum 3

Composited (6−sub.) Frame # 1 (Intraframe), 30000 bits 

50 100 150 200 250 300

50

100

150

200

250

β with iternum 6

Composited (6−sub.) Frame # 1 (Intraframe), 30000 bits 

50 100 150 200 250 300

50

100

150

200

250

Figure 45: Some video frame samples coded with LCT with different bell functions

86



4.2.2 Comparison of DCT-EZT with LCT-EZT

In this section, we compare the performance of the DCT-based embedded zerotree coding

(DCT-EZT) with the LCT-based embedded zerotree coding (LCT-EZT) in our compositing

system. To perform the LCT-EZT with the proposed compositing, we first need to obtain the

LCT of the composited error frames. To do so, we take the inverse DCT of the error frames,

then we apply LCT to the 8 × 8 blocks of the error frame. Then 8 × 8 LCT coefficients

are arranged into hierarchical subband structure as explained before. The coefficients in

hierarchical form are encoded by embedded zerotree coding. Resulting binary symbols are

encoded by an adaptive arithmetic encoder. In the feedback loop, which is identical to the

decoder, the coefficients are rearranged into the 8× 8 block structure to apply inverse LCT.

Then composited error frame is fed to the DCT operation. Obtained DCT error frame is

added to the previous DCT-motion compensated frame, and the resulting frame is put in

DCT frame memory. The proposed LCT-EZT encoder is shown in Fig. 46. Since we consider

that the incoming video sequences are in the DCT domain we take the inverse and forward

DCT in the compositing system at the appropriate places since the folding and unfolding

are only applied in spatial domain. However, if incoming frames are in the LCT domain;

DCT and inverse DCT are excluded resulting in decrease of number of computations in the

proposed encoder.

We first implement LCT-EZT with composited frames with four subframes. Average

PSNR of the reconstructed video frames are shown in Table 11. At lower bit rates LCT-EZT

gives better PSNR values than DCT-EZT does. However, as bit rate increases performance

of LCT-EZT decreases. The reason is that the blocking effect decreases with the increment

of bit rate. Individual PSNR results for each reconstructed frames with four subframes are

shown in Fig. 47. In the PSNR plots, the first values are for intraframes while the others

are for interframes. As seen from this figure, decoded intraframes of LCT-EZT gives better

PSNR values than DCT-EZT up to 60000 bits/intraframe. However interframe performance

of LCT-EZT is worse than that of DCT-EZT even at 5000 bits/interframe coding bit rate.

This implies that motion estimation/compensation helps to improve the quality of the in-

terframes decreasing the objective performance of LCT. Although LCT-EZT gives fewer

87



PSNR values, subjectively it decreases the blocking effect so that the reconstructed frames

look smoother (see Fig. 48 (e), (f)). In Fig. 48, there are some reconstructed video frame

samples from both LCT-EZT and DCT-EZT coding.

We also apply LCT-EZT algorithm to the composited frames with six subframes. The

average PSNR results for this case is shown in Table 12. PSNR values of each reconstructed

frames are shown in Fig. 49. Some reconstructed frame samples are given in Fig. 50. As in

the four subframes case, we achieve better PSNR values with LCT-EZT than with DCT-EZT

at low bit rates.

c

+

Video Frame

Composite DCT

−

IDCT LCT
Arrangement

intoCoefficients
of LCT

Hierarchical Structure
LCT−EZT Arithmetic

Encoder

Adaptive
Bit Stream

LCT−EZT

Inverse

Rearrangement
of LCT Coefficients

BlocksBack to 8x8

ILCT

DCT

+
+

DCT Frame
Memory

ME

MV

MV1

MV

2

N

MC

MV

Figure 46: LCT-EZT encoder

88



Table 11: Average PSNR comparisons of LCT-EZT and DCT-EZT for composited videos

with four subframes

Bit Rate (bits/interframe) LCT-EZT DCT-EZT

2500 25.9283 dB 25.5151 dB

5000 27.7735 dB 27.8819 dB

10000 29.5911 dB 30.5675 dB

15000 31.5364 dB 32.0396 dB

20000 32.6391 dB 33.5928 dB

25000 33.3722 dB 34.9117 dB

Table 12: Average PSNR comparisons of LCT-EZT and DCT-EZT for composited videos

with six subframes

Bit Rate (bits/interframe) LCT-EZT DCT-EZT

2500 24.9675 dB 24.6405 dB

5000 26.0938 dB 26.6767 dB

10000 28.1851 dB 28.9139 dB

15000 29.5181 dB 30.4907 dB

20000 30.7313 dB 31.4579 dB

25000 31.5801 dB 32.9231 dB

89



0 5 10 15 20 25 30 35 40 45 50
22.5

23

23.5

24

24.5

25

25.5

26

26.5

Frame Number

P
S

N
R

 (
dB

)
Bit Rate = 2500 bits/interframe (Intraframe:10000 bits)

LCT−EZT
DCT−EZT

0 5 10 15 20 25 30 35 40 45 50
26

26.5

27

27.5

28

28.5
Bit Rate = 5000 bits/interframe (Intraframe:20000 bits)

Frame Number

P
S

N
R

 (
dB

)

LCT−EZT
DCT−EZT

0 5 10 15 20 25 30 35 40 45 50
29

29.5

30

30.5

31

31.5

Frame Number

P
S

N
R

 (
dB

)

Bit Rate = 10000 bits/interframe (Intraframe:40000 bits)

LCT−EZT
DCT−EZT

0 5 10 15 20 25 30 35 40 45 50
30.5

31

31.5

32

32.5

33

33.5

Frame Number

P
S

N
R

 (
dB

)

Bit Rate = 15000 bits/interframe (Intraframe:60000 bits)

LCT−EZT
DCT−EZT

0 5 10 15 20 25 30 35 40 45 50
32

32.5

33

33.5

34

34.5

35

Frame Number

P
S

N
R

 (
dB

)

Bit Rate = 20000 bits/interframe (Intraframe:80000 bits)

LCT−EZT
DCT−EZT

0 5 10 15 20 25 30 35 40 45 50
32.5

33

33.5

34

34.5

35

35.5

36

36.5

37

Frame Number

P
S

N
R

 (
dB

)

Bit Rate = 25000 bits/interframe (Intraframe:100000 bits)

LCT−EZT
DCT−EZT

Figure 47: PSNR comparisons of composited frames with four subframes coded with LCT-

EZT and DCT-EZT

90



50 100 150 200 250 300 350

50

100

150

200

250

(a) Original composited frame (Frame # 10)

50 100 150 200 250 300 350

50

100

150

200

250

50 100 150 200 250 300 350

50

100

150

200

250

(b) DCT-EZT, 2500 bits (c) LCT-EZT, 2500 bits

PSNR=25.6832 dB PSNR=26.0236 dB

Figure 48: Composited video frame samples with four subframes from DCT-EZT and LCT-

EZT

91



50 100 150 200 250 300 350

50

100

150

200

250

(d) Original composited frame (Frame # 4)

50 100 150 200 250 300 350

50

100

150

200

250

50 100 150 200 250 300 350

50

100

150

200

250

(e) DCT-EZT, 5000 bits (f) LCT-EZT, 5000 bits

PSNR=27.3693 dB PSNR=27.1654 dB

Figure 48 (Cont.): Composited video frame samples with four subframes from DCT-EZT

and LCT-EZT

92



50 100 150 200 250 300 350

50

100

150

200

250

(g) Original composited frame (Intraframe, Frame # 1)

50 100 150 200 250 300 350

50

100

150

200

250

50 100 150 200 250 300 350

50

100

150

200

250

(h) DCT-EZT, 40000 bits (i) LCT-EZT, 40000 bits

PSNR=29.7942 dB PSNR=30.0435 dB

Figure 48 (Cont.): Composited video frame samples with four subframes from DCT-EZT

and LCT-EZT

93



0 5 10 15 20 25 30 35 40 45 50
22.5

23

23.5

24

24.5

25

25.5

P
S

N
R

 (
dB

)

Frame Number

Bit Rate = 2500 bits/interframe (Intraframe:10000 bits)

LCT−EZT
DCT−EZT

0 5 10 15 20 25 30 35 40 45 50
25.4

25.6

25.8

26

26.2

26.4

26.6

26.8

27

27.2

27.4

Frame Number

P
S

N
R

 (
dB

)

Bit Rate = 5000 bits/interframe (Intraframe:20000 bits)

LCT−EZT
DCT−EZT

0 5 10 15 20 25 30 35 40 45 50
27.5

28

28.5

29

29.5

30

30.5

Frame Number

P
S

N
R

 (
dB

)

Bit Rate = 10000 bits/interframe (Intraframe:40000 bits)

LCT−EZT
DCT−EZT

0 5 10 15 20 25 30 35 40 45 50
28.5

29

29.5

30

30.5

31

31.5

32

Frame Number

P
S

N
R

 (
dB

)

Bit Rate = 15000 bits/interframe (Intraframe:60000 bits)

LCT−EZT
DCT−EZT

0 5 10 15 20 25 30 35 40 45 50
29.5

30

30.5

31

31.5

32

32.5

33

33.5

Frame Number

P
S

N
R

 (
dB

)

Bit Rate = 20000 bits/interframe (Intraframe:80000 bits)

LCT−EZT
DCT−EZT

0 5 10 15 20 25 30 35 40 45 50
30.5

31

31.5

32

32.5

33

33.5

34

34.5

35

35.5

Frame Number

P
S

N
R

 (
dB

)

Bit Rate = 25000 bits/interframe (Intraframe:100000 bits)

LCT−EZT
DCT−EZT

Figure 49: PSNR comparisons of composited frames with six subframes coded with LCT-

EZT and DCT-EZT

94



50 100 150 200 250 300

50

100

150

200

250

(a) Original composited frame (Frame # 7)

50 100 150 200 250 300

50

100

150

200

250

50 100 150 200 250 300

50

100

150

200

250

(b) DCT-EZT, 2500 bits (c) LCT-EZT, 2500 bits

PSNR=24.7484 dB PSNR=24.9976 dB

Figure 50: Composited video frame samples with six subframes from DCT-EZT and LCT-

EZT

95



50 100 150 200 250 300

50

100

150

200

250

(d) Original composited frame (Frame # 5)

50 100 150 200 250 300

50

100

150

200

250

50 100 150 200 250 300

50

100

150

200

250

(e) DCT-EZT, 5000 bits (f) LCT-EZT, 5000 bits

PSNR=26.9467 dB PSNR=26.4999 dB

Figure 50 (Cont.): Composited video frame samples with six subframes from DCT-EZT and

LCT-EZT

96



50 100 150 200 250 300

50

100

150

200

250

(g) Original composited frame (Intraframe, Frame # 1)

50 100 150 200 250 300

50

100

150

200

250

50 100 150 200 250 300

50

100

150

200

250

(h) DCT-EZT, 40000 bits (i) LCT-EZT, 40000 bits

PSNR=28.8369 dB PSNR=28.9007 dB

Figure 50 (Cont.): Composited video frame samples with six subframes from DCT-EZT and

LCT-EZT

97



5.0 BIT RATE CONTROL

In this chapter, we implement bit rate control for composited videos. Rate control problems

can be generally characterized as the determination of the appropriate coding parameters by

precoding and decoding processes so that the decoded video quality is optimized according

to a certain bit rate.

Rate control for video compositing is generally different from rate control for the single

video stream case. In such a case, the joint effect of each incoming video stream should be

considered in the composited video. For instance, if one of the video streams contains more

activity than the others, the number of bits assigned to this stream should be larger than

those given to the others.

Depending on the channel conditions there are several bit rate control schemes for video

coding. Most of them typically adopt a rate control scheme by adjusting the quantization

step based on buffer occupancy. Some methods encode each image block several times with

different quantization parameters (QP), and then select the best quantization parameter

[38, 39]. However because of the high computational complexity these methods are not

suitable for real-time applications [41]. Another method given in [40], selects the quantizers

according to a formula derived from a model of the encoder. However, this approach does not

achieve the exact target bit rate, and can suffer from frequent frame skipping and wasting

of channel bandwidth in real time applications [41]. The embedded property of the zerotree

coding greatly simplifies rate control since the coding control parameter is the allocated bit

rate for each frame rather than the quantization parameter [42]. Additionally embedded

zerotree coding gives better rate-distortion tradeoff while the encoded bit stream can be

stopped at any point without a significant distortion [15, 20, 22, 42]. Thus we use the

flexibility of embedded zerotree coding for bit rate control.

98



As shown in the previous chapters, the embedded property of the zerotree coding allows

us to control the bit rate of each frame instantly. Therefore it is very easy to adapt the

bit rate of a GOP to a given constant or variable channel bit rate. This can be basically

done by allocating a fixed number of bits to each intraframe (I-frame) and interframe (P-

frame). However, this scheme does not necessarily give the best average PSNR value for

the decoded videos since it does not consider the rate-distortion performance of each frame.

To improve the decoded video quality, the bit rate control problem can be formulated as a

constrained optimization problem. This problem can be solved by Lagrangian method as

will be explained later in this chapter.

5.1 RATE-DISTORTION MODEL AND RATE CONTROL PROBLEM

To solve the rate control problem, one needs to first obtain the rate-distortion model (R-

D model) of a video frame. For this propose, each video frame is encoded and decoded

at particular bit rates. Then one can easily find an approximation function for the R-D

performance curve of each frame by using the obtained distortion versus bit rate graphics

of decoded videos. Considering that R-D model of a frame is convex [42, 43], it can be

formulated as

D = σ22−γR (5.1)

where D is the distortion, R is the bit rate, σ2 is the variance of the DCT coefficients, and γ

is the coding efficiency parameter. The variance σ2 is also the coding distortion when bit rate

R equals zero. This model can be easily verified by using experimental data for any video

sequence. We show an example for convex R-D model of an I-frame from composited videos

with four subframes in Fig. 51. The coding efficiency parameter γ specifies the decaying

rate of the distortion as the bit rate increases. Generally coding efficiency parameter γI of

I-frames are larger than the coding efficiency parameter γP of P-frames [42]. It is easy to

see that the larger the coding efficiency parameter the more efficient the coding, because as

bit rate increases distortion decays quickly with a higher coding efficiency parameter. We

99



show some R-D characteristics and coding efficiency parameters of some I and P frames in

Fig. 52.

We know that a GOP has an I-frame followed by N−1 P-frames. If the channel capacity

is given by B bits/sec, and duration of a GOP is T seconds, target bit rate of a GOP will be

RTarget = BT bits. (5.2)

Then the rate-control problem is given as follows:




minimize D =
∑N

i=1 Di

according to R =
∑N

i=1 Ri = RTarget

(5.3)

where Di is the distortion, and Ri is the corresponding bit rate, the coding control parameter,

of the frame fi.

0 0.5 1 1.5
0

20

40

60

80

100

120

140

160

180

200
CONVEX R−D MODEL −I Frame from Composited Videos with 4−subframes−

M
S

E

Bit Rate (bits/pixel)

Experimental
Approximation

Figure 51: Convex R-D model

100



0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

−News Sequence− Rate−Distortion Characteristics of I and P Frames

Bit Rate (bits/pixel)

lo
g 2(M

S
E

)

γ
I
=4.1208

γ
P
=2.3731

I−frame Experimental
I−frame Approximation
P−frame Experimental
P−frame Approximation

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

−Salesman Sequence− Rate−Distortion Characteristics of I and P Frames

Bit Rate (bits/pixel)

lo
g 2(M

S
E

)

γ
P
=1.9238

γ
I
=2.7649

I−frame Experimental
I−frame Approximation
P−frame Experimental
P−frame Approximation

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

8

9

10
−Composited Videos with 4−subframes− Rate−Distortion Characteristics of I and P Frames 

Bit Rate (bits/pixel)

lo
g 2(M

S
E

)

γ
I
=3.3519

γ
P
=1.7928

I−frame Experimental
I−frame Approximation
P−frame Experimental
P−frame Approximation

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

8

9

10

−Composited Videos with 6−subframes− Rate−Distortion Characteristics of I and P Frames

Bit Rate (bits/pixel)

lo
g 2(M

S
E

)

γ
I
= 3.3735

γ
P
=2.4787

I−frame Experimental
I−frame Approximation
P−frame Experimental
P−frame Approximation

Figure 52: Rate-Distortion characteristics of first I and P frames from different video se-

quences

101



5.2 FRAME DEPENDENCY PROBLEM

In order to solve the bit rate constraint optimization problem in Eq. 5.3, one first performs

the experiments to find the R-D characteristics of each frame given in Eq. 5.1, and then

solves it via Lagrangian optimization. However, R-D curve of each frame is dependent on the

R-D curve of previously coded frames. In other words, the prediction error corresponding the

current frame depends on how previous frame has been encoded. Actually, for each (Ri, Di)

point in currently encoded frame, there is a different R-D curve for the next frame [44, 45].

This is called frame dependency problem.

Typically allocating more bits to an I frame improves the quality of motion compensa-

tion resulting in reducing the bit rates for the following P frames [42]. However bit rate

distribution should be optimized to have the best average PSNR of a GOP.

Now first consider the error of motion compensation with respect to original frame which

is given as

e(i, j) = c(i, j)− r(m[i, j]) (5.4)

where r(m[i, j]) is motion compensated reference frame, and c(i, j) is its predictively coded

frame. Here m[i, j] is the motion compensation vectors. Then the variance of the motion

compensated residue is given as

σ2
r = E[e(i, j)2] = E[{c(i, j)− r(m[i, j])}2]. (5.5)

Since at the decoder we only have encoded reference frame r̂(i, j) the actual residual variance

will be

σ̂2
r = E[ê(i, j)2] = E[{c(i, j)− r̂(m[i, j])}2] (5.6)

where ê(i, j) is the actual residual error. This error can also be written as the summation

of the residue of motion compensation with respect to the original reference frame and the

error of the motion compensated reference frame as follows:

ê(i, j) = {c(i, j)− r(m[i, j])}+ {r(m[i, j])− r̂(m[i, j])}. (5.7)

102



In the same manner, we can also rewrite the variance of the motion compensated residue as

σ̂2
r = σ2

r + E[{r(m[i, j])− r̂(m[i, j])}2] (5.8)

where the second component is the mean square error of the motion compensated reference

frame.

There is a linear relationship between the mean square error of the motion compensated

reference frame and that of the original reference frame as

E[r(m[i, j])− r̂(m[i, j])2] ∼= αE[{r(i, j)− r̂(i, j)}2] (5.9)

where α is frame dependency parameter [42]. Finally we can rewrite Eq. 5.8 as

σ̂2
r = σ2

r + αD (5.10)

where D stands for coding distortion, which is the mean square error of the original reference

frame given in Eq. 5.9. The linear relationship between the variance of the actual residue

error and the mean square error of the original reference frame in Eq. 5.10, was also verified

by the experiments as shown in Fig. 53.

103



0 10 20 30 40 50 60 70 80 90
20

30

40

50

60

70

80

90

100
−News Sequence− Frame #1 & Frame #2

σ2  o
f t

he
 a

ct
ua

l r
es

id
ue

 e
rr

or

MSE of the original reference frame

α=0.8399
Experimental
Approximation

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

100
−Salesman Sequence− Frame #1 & Frame #2

σ2  o
f t

he
 a

ct
ua

l r
es

id
ue

 e
rr

or

MSE of the original reference frame

α=0.8915

Experimental
Approximation

0 20 40 60 80 100 120 140
20

40

60

80

100

120

140
−Composited Videos with 4−subframes− Frame #1 & Frame #2

σ2  o
f t

he
 a

ct
ua

l r
es

id
ue

 e
rr

or

MSE of the original reference frame

α=0.8402

Experimental
Approximation

0 50 100 150
20

40

60

80

100

120

140

160
−Composited Videos with 6−subframes− Frame #1 & Frame #2

σ2  o
f t

he
 a

ct
ua

l r
es

id
ue

 e
rr

or

MSE of the original reference frame

α=0.7827

Experimental
Approximation

Figure 53: Relationship between the variance of the actual residue error and the mean square

error of the original reference frame

104



5.3 USING LAGRANGIAN OPTIMIZATION TO ACHIEVE OPTIMIZED

BIT RATE

Considering that the R-D functions of each frame are convex, the optimization problem

given in Eq. 5.3 can be solved by using Lagrangian optimization. Now the problem can be

rewritten as

minimize J(R1, ..., RN) =
N∑

i=1

Di + λ
( ∑N

i=1 Ri −RTarget

)
(5.11)

where J is called Lagrangian or R-D cost, and λ is Lagrangian multiplier. Lagrangian

multiplier λ is the absolute value of the slope of the tangency point of the R-D curve at

where minimum distortion is achieved at given target bit rate. In Eq. 5.11, if λ is fixed, the

rates that minimize this equation can be found. Now the constraint optimization in Eq. 5.3

becomes an unconstraint optimization problem which is easier to solve [42, 43, 44, 45]. From

R-D models, having the rates {Ri(λ)}N
i=1, Eq. 5.11 can be solved by searching a λ0 such that

N∑
i=1

Ri(λ0) = RTarget. (5.12)

Clearly from here, our aim is to find these optimized bit rates {Ri(λ)}N
i=1 allowing minimum

average distortion of a GOP.

Let us consider the partial derivatives of the Lagrangian cost with respect to bit rates

Ri, which are zero at the optimum points, such as

∂J

∂Ri

= 0, i = 1, 2, ..., N (5.13)

Also for each individual frame, R-D equation from Eq. 5.1 can be written as

Di = σ̂2
i 2
−γiRi (5.14)

where the actual residual variance of frame fi, σ̂i, is

σ̂2
i = σ2

i + αiDi−1. (5.15)

105



Now consider the partial derivative in Eq. 5.13 for the last frame fN in GOP,

∂J

∂RN

=
∂DN

∂RN

+ λ = 0 (5.16)

therefore

∂DN

∂RN

= −λ = −σ2
N2−γNRN ln(2) (5.17)

and since the last frame fN is not a reference frame for other frames one can easily obtain

the distortion of the frame fN as

DN =
λ

γN ln(2)
. (5.18)

Similarly to Eq. 5.16, partial derivative of Lagrangian cost with respect to RN−1 can be

found as

∂J

∂RN−1

=
∂DN−1

∂RN−1

+
∂DN

∂RN−1

+ λ = 0 (5.19)

and by using the Eq. 5.14 and Eq. 5.15, we get

∂DN−1

∂RN−1

(1 + αN2−γNRN ) = −λ. (5.20)

and therefore distortion of the frame fN−1 will be

DN−1 =
λ

γN−1ln(2)(1 + αN2−γNRN )
. (5.21)

Since

2−γNRN = DN/σ2
N

= λ
γN ln(2)σ2

N

Eq. 5.21 becomes

DN−1 =
λ

γN−1ln(2)(1 + αN
λ

γN ln(2)σ2
N

)
. (5.22)

If we consider the partial derivative of Lagrangian cost with respect to Ri, for i ≤ N − 2,

∂J

∂Ri

=
∂Di

∂Ri

+
∂Di+1

∂Ri

+ ... +
∂DN

∂Ri

+ λ = 0 (5.23)

106



we will have that

∂J

∂Ri

=
∂Di

∂Ri

+
∂Di+1

∂Ri

Xi+1 + λ = 0 (5.24)

where

Xi+1 =
λ

γi+1ln(2)Di+1

. (5.25)

From Eq. 5.14 and Eq. 5.15,

Di+1 = σ̂2
i+12

−γi+1Ri+1

= (σ2
i+1 + αi+1Di)2

−γi+1Ri+1 (5.26)

then Eq. 5.24 becomes

∂J

∂Ri

=
∂Di

∂Ri

Xi + λ = 0 (5.27)

where

Xi = 1 + αi+12
−γi+1Ri+1Xi+1. (5.28)

If we put Eq. 5.14 and Eq. 5.25 into Eq. 5.28 we will have

Xi = 1 +
αi+1λ

σ̂2
i+1γi+1ln(2)

(5.29)

and from Eq. 5.27, Di will be

Di =
λ

γiln(2)Xi

. (5.30)

Finally, by putting Eq. 5.15 and Eq. 5.29 into Eq. 5.30 a second order distortion function

is obtained:

aiD
2
i + biDi + ci = 0, i = 1, 2, ..., N − 2 (5.31)

where

ai = αi+1γiγi+1

bi = σ2
i+1γiγi+1 + αi+1(γi − γi+1)λ/ln(2)

107



ci = σ2
i+1γi+1λ/ln(2) .

Solving Eq. 5.31, distortions will be

Di =
−bi +

√
b2
i − 4aici

2ai

, i = 1, 2, ..., N − 2. (5.32)

Now since we have the distortions, finally we can find the bit rates {Ri}N
i=1 for each frame

in a GOP by using the Eq. 5.14 and Eq. 5.15 as follows:

Ri =





1
γ1

log2
σ2
1

D1
, i = 1

1
γi

log2
αiDi−1+σ2

i

Di
, i = 2, ..., N

(5.33)

To obtain the bit rates, one first needs to find the distortions given by Eq. 5.18, Eq. 5.22

and Eq. 5.32. Also Lagrangian multiplier λ is needed to be found. There are several simple

algorithms to find λ, which one of them is bisection iteration method whose details can be

found in [42].

This rate control scheme with the explained solution to the frame dependency problem

has been shown to be very efficient for wavelet zerotree coders [42]. In the next section, we

will compare this method with a piecewise linear R-D model scheme to show its effectiveness

when used with the proposed DCT-based embedded zerotree coder.

5.4 COMPARISON OF THE CONVEX R-D MODEL WITH PIECEWISE

LINEAR R-D MODEL

In [44], Silva et al. investigates rate control problem by using piecewise linear R-D model for

embedded wavelet zerotree coding. In this section, we will compare this method by using

it with DCT-based embedded zerotree coding against the method we use which has convex

R-D model.

To solve the Lagrangian rate control optimization problem given in Eq. 5.11 by using the

piecewise linear model, first R-D characteristics of each frame are estimated. Each piece of

linear curve as shown in Fig. 54 is obtained by considering the beginning and the end point

of each linear curve lies between the boundaries of consecutive dominant and subordinate

passes [44]. Therefore to estimate the R-D characteristics of a frame, decoder decodes the

108



encoded frame for the rates corresponding to the breakpoints. Then following algorithm is

used to find the optimum bit rate for given GOP:

1. For each frame find the tangency point (Ri(λ), Di(λ)) for given λ,

2. Compute the total bit rate R(λ),

3. If the total bit rate, R(λ), is not equal to the target bit rate, Rtarget, vary λ and go to

Step 1, else the optimal bit rates are given by{Ri(λ)}N
i=1, and stop.

The values of λ here are found by determining the negatives of the set of slopes of all the

linear pieces of the R-D curves of every frame [44]. In [44], Silva et al. propose an iterative

method that copes with the frame dependency problem. In their method, they apply the

rate control strategy described above and have the reconstructed frames for iteration n.

Then rate allocation for the iteration n + 1 is computed and so the reconstructed frames for

iteration n + 1 is obtained. This process is continued until the change in the distortion is

below a threshold. However since this method requires several times encoding and decoding

the frames of a GOP, we use the frame dependency parameter explained in the previous

section.

The comparison results between the rate control method that uses convex R-D model and

the one that uses piecewise linear R-D model are given in Fig. 55 and 56. In Fig. 55, PSNR

results of the reconstructed composited video frames with four subframes are compared. In

Fig. 56 PSNR values for the compositing case with six subframes are displayed. As shown in

Table 13 and Table 14, average PSNR values obtained from convex R-D models are slightly

better than the ones from piecewise R-D models. Therefore convex R-D model with the

solution to the frame dependency problem generally achieves a better PSNR performance.

109



0 0.2 0.4 0.6 0.8 1 1.2
0

50

100

150

200

250

300

350

M
S

E

Bit Rate (bits/pixel)

PIECEWISE LINEAR R−D MODEL −I Frame from Composited Videos with 4−subframes−

Experimental
Approximation

Figure 54: Piecewise linear R-D model

110



Table 13: Average PSNR comparisons of rate control with convex R-D model with piecewise

linear R-D model for composited videos with four subframes

Bit Rate (bits/pixel) Convex R-D Model Piecewise Linear R-D Model

0.25 35.7915 dB 35.5865 dB

0.50 37.9902 dB 37.8615 dB

0.75 38.7083 dB 38.5828 dB

1.00 39.4099 dB 39.0432 dB

Table 14: Average PSNR comparisons of rate control with convex R-D model with piecewise

linear R-D model for composited videos with six subframes

Bit Rate (bits/pixel) Convex R-D Model Piecewise Linear R-D Model

0.25 33.1050 dB 32.9113 dB

0.50 36.2953 dB 36.0333 dB

0.75 39.1545 dB 39.2050 dB

1.00 40.3763 dB 40.3048 dB

111



0 5 10 15 20 25 30
34

34.5

35

35.5

36

36.5

37

37.5

38

38.5

39
−Composited Videos with 4−subframes− 0.25 bits/pixel

Frame Number

P
S

N
R

 (
dB

)

Average PSNR
c
=35.7915 dB

Average PSNR
l
=35.5865 dB

Convex
Piecewise Linear

0 5 10 15 20 25 30
37

37.5

38

38.5

39

39.5

40
−Composited Videos with 4−subframes− 0.50 bits/pixel

Frame Number

P
S

N
R

 (
dB

)

Average PSNR
c
=37.9902 dB

Average PSNR
l
=37.8615 dB

Convex
Piecewise Linear

0 5 10 15 20 25 30
38

38.2

38.4

38.6

38.8

39

39.2

39.4

39.6

39.8

40
−Composited Videos with 4−subframes− 0.75 bits/pixel

Frame Number

P
S

N
R

 (
dB

)

Average PSNR
c
=38.7083 dB

Average PSNR
l
=38.5828 dB

Convex
Piecewise Linear

0 5 10 15 20 25 30
38

38.5

39

39.5

40

40.5

41
−Composited Videos with 4−subframes− 1 bit/pixel

Frame Number

P
S

N
R

 (
dB

)

Average PSNR
c
=39.4099 dB

Average PSNR
l
=39.0432 dB

Convex
Piecewise Linear

Figure 55: Comparison of R-D performances of the proposed convex model with piecewise

linear model for composited videos with 4-subframes

112



0 5 10 15 20 25 30
30

31

32

33

34

35

36

37

38

39

40
−Composited Videos with 6−subframes− 0.25 bits/pixel

Frame Number

P
S

N
R

 (
dB

)

Average PSNR
c
=33.1050 dB

Average PSNR
l
=32.9113 dB

Convex
Piecewise Linear

0 5 10 15 20 25 30
34

35

36

37

38

39

40

41

42

P
S

N
R

 (
dB

)

Frame Number

−Composited Videos with 6−subframes− 0.50 bits/pixel

Average PSNR
c
=36.2953 dB

Average PSNR
c
=36.0333 dB

Convex
Piecewise Linear

0 5 10 15 20 25 30
37

38

39

40

41

42

43
−Composited Videos with 6−subframes− 0.75 bits/pixel

Frame Number

P
S

N
R

 (
dB

)

Average PSNR
c
=39.1545

Average PSNR
l
=39.2050

Convex
Piecewise Linear

0 5 10 15 20 25 30
38

39

40

41

42

43

44
−Composited Videos with 6−subframes− 1 bit/pixel

Frame Number

P
S

N
R

 (
dB

)

Average PSNR
c
=40.3763

Average PSNR
l
=40.3048

Convex
Piecewise Linear

Figure 56: Comparison of R-D performances of the proposed convex model with piecewise

linear model for composited videos with 6-subframes

113



5.4.1 Bit Rate Allocation at Subframe Layer

In this subsection, we investigate if subframe layer bit rate allocation is necessary for the

proposed DCT-based embedded zerotree coding in the DCT compositing system. For this

propose; after allocating the bit rates {Ri}N
i=1 to each frame in a GOP, we divide the number

of bits to the each subframe according to variance of each one such as,

Ri,j = wi,jRi (5.34)

where Ri,j is the allocated bit rate to subframe fi,j of frame fi, and wi,j is the weight of the

bit rate of subframe fi,j obtained from the variances of each subframe as

wi,j =
σi,j∑K

k=1 σi,k

(5.35)

where σi,j is the variance of subframe fi,j of frame fi consisting of K subframes. By using

this approach we distribute the bit rates among the subframes according to the activities in

each one. The average PSNR results are shown in Table 15 and Table 16 for composited

videos with four subframes and with six subframes, respectively. As seen from the tables

subframe layer bit rate allocation does not have any advantages on improving the quality

of composited videos. The reason is that since embedded zerotree coding uses successive

approximation quantization, DCT coefficients are encoded by significance importance elim-

inating the evaluation of subframe layer bit rate allocation.

114



Table 15: Average PSNR comparisons of rate control with and without subframe layer bit

rate allocation for composited videos with four subframes

Bit Rate (bits/pixel) Rate Cont. w./ Sub. Bit Allo. Rate Cont. w.o./ Sub. Bit Allo.

0.25 35.0012 dB 35.7915 dB

0.50 37.7122 dB 37.9902 dB

0.75 38.5595 dB 38.7083 dB

1.00 39.0206 dB 39.4099 dB

Table 16: Average PSNR comparisons of rate control with and without subframe layer bit

rate allocation for composited videos with six subframes

Bit Rate (bits/pixel) Rate Cont. w./ Sub. Bit Allo. Rate Cont. w.o./ Sub. Bit Allo.

0.25 32.9707 dB 33.1050 dB

0.50 36.2666 dB 36.2953 dB

0.75 37.6953 dB 39.1545 dB

1.00 39.7483 dB 40.3763 dB

115



6.0 CONCLUSIONS AND FUTURE WORK

In this work we implement a DCT domain video compositing system with DCT-based embed-

ded zerotree coding for multi-point video conferencing. Operating the compositing process

fully in the DCT domain decreases the overall computational complexity and improves the

composited video quality. We use DCT domain transcoders to decode different incoming

video sequences. Motion compensation in the DCT domain is processed faster than the

one in the spatial domain, because inverse DCT transform is not used. Also sparse matri-

ces, which are used for windowing and shifting of the DCT blocks for motion compensation

propose, decrease decoding time in the transcoding process.

For resizing, we come up with a new DCT decimation/interpolation method, which

can be used with different decimation factors including rational numbers beside integers

according to the number of incoming video streams to be composited. Decimation with

rational decimation factor is applied with an increment of number of computations. We

compare our PSNR results for the decimation factor of N = 2 with those of [12] of Dugad et

al. since they only have the results for this decimation factor. The computational complexity

of the other decimation factors are also shown. For the decimation by N = 2, our algorithm

has the least computational complexity with the one in [12]. Furthermore we obtain slightly

better PSNRs than those in work of Dugad et al. With a small increase in the number of

computations we get higher PSNRs. In this case, our algorithm is still better than other

algorithms such as [5] and spatial domain algorithm in terms of computational complexity.

The composited videos are encoded efficiently by using the DCT-based embedded ze-

rotree coder which was originally developed for wavelet coding [15], and also used with

DCT-based image and video coding [18, 20]. To use the zerotree coder with DCT coef-

ficients they are rearranged into a hierarchical structure similar to the wavelet subbands.

116



Adaptive arithmetic coding is used to encode the symbols obtained from dominant and

subordinate passes considering the usefulness of the arithmetic coding when dealing with

sources with small alphabets. We also use the advantage of the embedded bit stream prop-

erty of the zerotree coding. As each symbol is encoded by adaptive arithmetic encoder, the

number of the bits at the output is counted, so when the desired bit budget is reached the

coding is terminated. We obtain better results by using the DCT embedded zerotree coder

than conventional DCT encoder that uses regular scalar quantizer. The improvement of the

composited videos are 1-2.7 dB on average.

We also introduce the proposed DCT decimation/interpolation and zerotree coding to

encode single video streams. We use integer and rational decimation factors with the pro-

posed coding. For intraframe case, we show that coding with the highest decimation factor

obtains better results than the others at very low bit rates since it has the smallest decimated

video frame. However as the number of bits increases the efficiency of the high decimation

factor decreases. This is because decimated frames requires less bits than the full frames to

be encoded. So after a certain number of bits, decimated video frame does not require more

bits and any additional bits will not increase the quality of the decimated video resulting

saturation in PSNR of the reconstructed video. For both intraframe and interframe cases,

our method gives better PSNRs than the regular coding from 7.47 kilobits/second up to 45

kilobits/second for the case where the decimation factor N = 2. Therefore the proposed sin-

gle stream video coding with the introduced DCT decimation/interpolation is very efficient

at low bit rates. Also other decimation factors can be applied to to both intraframe and

interframe coding cases.

We also use another zerotree coding method implemented for embedded wavelet coders

in [21] to our compositing system in order to increase the efficiency. Beside the efficiency of

the encoder, since data symbols obtained at the output of the encoder is completely binary,

the performance of adaptive arithmetic encoder increases. Consequently the quality of the

reconstructed frames are improved.

To decrease the blocking effects at low bit rates, we implement LCT [37] based embedded

zerotree coding. Since LCT already includes DCT, we easily adopt this method into our

system with an increase in computational complexity. However, since we consider that the

117



incoming video streams are in the DCT domain, we apply inverse DCT to obtain frames in the

spatial domain. The reason for this is that the folding operation is only applied in the spatial

domain. This increases the computational complexity. Nevertheless if the incoming frames

are in the LCT domain, the inverse DCT operation is excluded. Consequently computational

load decreases. The other advantage of the LCT in the proposed system is that the windowing

and shifting matrices of the transcoders are compatible with LCT blocks of video frames.

Therefore there is no need to derive new windowing and shifting matrices for LCT case

since motion compensation in the LCT domain can be realized with these matrices. Thus

DCT domain compositing system if fully compatible with video sources using DCT or LCT

domain coding.

Finally, we use a convex R-D model in bit rate control [42]. To distribute the bits to each

frame optimally, Lagrangian optimization is used. Frame dependency problem is solved by

computing the frame dependency parameter which is obtained form the linear relationship

between the variance of the actual residue error and the distortion of the original reference

frame [42]. Since embedded zerotree coder does not require evaluation of quantization pa-

rameter, which is the case in regular quantization, we only need to solve the bit rate problem

in the frame layer. Also unlike regular quantization the coding control parameter is the al-

located bit rate to each frame in a GOP. Therefore we get exact target bit rate. However

regular quantization requires a feedback to reevaluate the quantization parameters to reach

the target bit rate. Still it does not guarantee to achieve the target bit rate precisely requir-

ing usage of a buffer. We also show that there is no need to obtain the statistics of each

subframe to distribute the allocated bit rate of a frame to each subframe. The reason for this

is that the embedded zerotree coding uses successive approximation quantization that allows

the most significant DCT coefficients to be encoded first whether they are in any subframe.

In the same manner, the other DCT coefficients are encoded in the descending significance

order. We also compare the performances of the bit rate control methods using convex [42]

and piecewise linear models [44]. Bit rate control with convex model achieves slightly higher

PSNRs than that with piecewise linear model.

As future works, first it is possible to improve the coding efficiency of the adaptive

arithmetic encoder by using different contexts, such as group of neighbor symbols [24, 15, 21].

118



Since real time video compositing requires fast operations, the approach in [16] can be used

to identify zerotrees faster than the approach in [15]. There are also other zerotree coding

methods such as 3-D coefficient tree structure for 3-D wavelet in [17] that can be applied to

DCT zerotree coding to achieve more compression or quality. It is also worth to compare

the overall runtime of the spatial domain compositing system with that of the DCT domain

compositing system using embedded zerotree coding for both methods, DCT-EZT and DCT-

SPIHT. Also processing times of regular quantization and embedded zerotree coding can be

compared to investigate the complexity of the zerotree coding over the regular one. It must

be stated that a slight increase in PSNR may not be visible to the viewers. Therefore, for

a faster compositing, our DCT decimation/interpolation method can be used with smaller

values of q than those used in this work. In the same manner, after comparing the processing

time of each zerotree coding methods, faster one can be chosen even if it achieves lower PSNR

values than the other one. To make the overall process faster, computational complexity to

obtain and to process the two R-D models can be compared, and faster one can be chosen.

Another future work that can be implemented is to use the obtained R-D models of the frames

of the first GOP to allocate the target bit rate among the frames of the next GOPs instead

of obtaining new R-D models for each GOP. Although this may decrease average PSNR of

a GOP, it may be useful for real-time compositing to decrease the coding delay. Another

reason leading to this conclusion is that in video conferencing, the background information

is stable, and the person speaking generally does not move significantly. Therefore, statistics

of consecutive GOPs may not differ considerably. Other bit rate control schemes [46, 47]

can also be considered to be compared with the performance of the bit rate control schemes

used in this work. Also a research on a possible folding operation in the DCT domain can

be considered if it decreases the computational complexity of the LCT-based compositing

system.

119



APPENDIX A

SPARSE MATRICES IN FAST DCT TRANSCODER

The sparse matrices, which their products give the 8× 8 DCT matrix S8 in Equation 2.14,

is given as follows. The diagonal matrix D is

D =




0.3536 0 0 0 0 0 0 0

0 0.2549 0 0 0 0 0 0

0 0 0.2706 0 0 0 0 0

0 0 0 0.3007 0 0 0 0

0 0 0 0 0.3536 0 0 0

0 0 0 0 0 0.4500 0 0

0 0 0 0 0 0 0.6533 0

0 0 0 0 0 0 0 1.2814




.

The second one is a permutation matrix which is defined as

P =




1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0




.

120



The other sparse matrices, B1, B2, M1, A1, A2, and A3 are given as follows.

B1 =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 1 1 0

0 0 0 0 0 1 −1 0

0 0 0 0 −1 0 0 1




B2 =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 −1 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 −1 0 1




M1 =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0.7071 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 −0.9239 0 −0.3827 0

0 0 0 0 0 0.7071 0 0

0 0 0 0 −0.3827 0 0.9239 0

0 0 0 0 0 0 0 1




121



A1 =




1 1 0 0 0 0 0 0

1 −1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




A2 =




1 0 0 1 0 0 0 0

0 1 1 0 0 0 0 0

0 1 −1 0 0 0 0 0

1 0 0 −1 0 0 0 0

0 0 0 0 −1 −1 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1




A3 =




1 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0

0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0

0 0 0 1 −1 0 0 0

0 0 1 0 0 −1 0 0

0 1 0 0 0 0 −1 0

1 0 0 0 0 0 0 −1




.

122



APPENDIX B

ADAPTIVE ARITHMETIC CODING

Arithmetic coding effectively utilizes the redundancies present in zerotree and subordinate

arrays for lossless compression producing embedded bitstreams. The detailed algorithm of

the adaptive arithmetic coding is given in [24]. Although arithmetic coding is more complex

than Huffman coding, it is especially useful when processing the sources with small alphabets.

Another advantage of the arithmetic coding is that a system with multiple arithmetic codes

is very easy to implement [28]. Additionally, it is very easy to adapt arithmetic codes to

changing symbol statistics. This is done by estimating the probabilities of the input alphabet

that is simply keeping a count of the symbols as they are coded. There is no requirement of

preserving a tree as with adaptive Huffman codes, and also there is no need to generate a

code a priori as in the Huffman coding. To reduce the complexity it is also possible to develop

multiplication-free arithmetic coders [28]. The flowchart of the algorithm is illustrated in

Fig. 57.

For adaptivity, a histogram count of the symbols, which is the model of adaptive arith-

metic coder, is used. Different from the adaptive arithmetic coder, fixed model arithmetic

coders use predetermined table of frequency counts of the symbols. In practice, adaptive

model arithmetic coders outperform the fixed model ones in terms of compression ratio

[24, 25, 27, 30, 31]. Thus in the experiments, adaptive model was chosen. The distribution

of the probabilities for the symbols are calculated as each symbol is encoded. Initially, all

counts of the symbols are the same, and are set to one. For a better adaptation, the initial

counts may be set to predetermined frequencies presenting the overall statistics of the sym-

123



bols better. As each symbol is seen, the counts are updated. Both encoder and decoder use

the same initial counts and the same algorithm for updating the model to be synchronized.

Therefore, there is no need to transmit additional information to the decoder for updating.

When sum of the counts of all symbols reaches a maximum cumulative count, each symbol

frequency count is divided by two to control the learning rate for adaptation. This gives

more weighting to the recent symbols than the earlier ones as stated in [24]. This adaptation

method with a limited past histogram reduces the bit rate more than %30 below the first

order entropy of the symbols [27]. If some symbols, which have been seen rarely in the past,

occur more frequently lately hence they require lower bit rates [24, 27, 29, 32].

Maximum cumulative counts of the symbols are predetermined. In the experiments, 256

maximum cumulative count was used for both zerotree and subordinate symbols. The other

counts like 64, 512, and 1024 were also used to see if better compression results were achieved.

Then 256 was chosen since it was found to be the most suitable maximum histogram count.

124



AS "NO"

Define Top Value 
(Largest Code Value)

First Quarter=(Top Value/4+1)
Half=2*First Quarter

Third Quarter=3*First Quarter

FOR ARITHMETIC ENCODING

DECLARATIONS USED 

Set up Tables that translate
between Symbol Indices

and Symbols
Set Maximum Frequency

MODEL

INITIALIZATION

Initialize Frequency Counts

and Cumulative Frequencies

Read Symbol

Find index of the symbol

from the Table

Range=High−Low+1

High=Low+   Range*Cum_freq(index)/Cum_freq(0)  −1

Low=Low+   Range*Cum_freq(index+1)/Cum_freq(0)

(High<Half) |

(Low>=Half) |

(Low>=First Qtr &

High<Third Qtr)

?

High < Half ?
YES

Low >= Half ?

High<Third Qtr
Low>=First Qtr &

?

Low=2*Low

High=2*High+1

Output 0 &

OppositeOutput times 1

=0Opposite

Low=2*(Low−Half)

High=2*(High−Half)+1

Output &1

=0

Output Opposite times 0

Opposite

Low=0High=Top Value
=0Opposite

YES

YES
High=2*(High−First Qtr)+1

Low=2*(Low−First Qtr)

Opposite=Opposite +1

NO

Update the Model

Last Symbol? STOP ENCODING
NO YES

NO

NO

YES

NO CONDITIONS ARE SATISFIED

REPEAT UNTIL THREE OF THE 

Figure 57: Flowchart of the adaptive arithmetic encoder

125



BIBLIOGRAPHY

[1] L. F. Chaparro, and C. C. Li, “New Algorithms for DCT-based transcoding and com-
positing in multi-point video conferencing,” Final Report of PDG Project, Univ. of
Pittsburgh, Apr. 2003.

[2] S. A. Martucci, “Image resizing in the discrete cosine transform domain,” in Proc. IEEE
International Conf. Image Proc., Oct. 1995, Vol. 2, pp. 244-247.

[3] S.-F. Chang, and D. G. Messerschmitt, “Compositing motion-compensated video within
the network,” 4th IEEE ComSoc Intl. Workshop on Multimedia Communications, pp.
40-56, Monterey, CA, Apr. 1992.

[4] S.-F. Chang, and D. G. Messerschmitt, “A new approach to decoding and compositing
motion-compensated DCT-based images,” Proc. IEEE Intl. Conf. Acoustic, Speech, and
Signal Processing, Vol. 5, pp. 421-424, Minneapolis, MN, Apr. 1993.

[5] S.-F. Chang, and D. G. Messerschmitt, “Manipulation and compositing of MC-DCT
compressed video,” IEEE Journal on Selected Areas in Commun., Vol. 13, No. 1, pp.
1-11, Jan. 1995.

[6] Y. Noguchi, D. G. Messerschmitt, and S.-F. Chang, “MPEG video compositing in the
compressed domain,” Proc. IEEE Intl. Symp. Circuits and Systems, Vol. 2, pp. 596-599,
May 1996.

[7] M. Song, A. Cai, J.-a. Sun, “Motion estimation in DCT domain,” Proc. IEEE Comm.
Technology, ICCT’96, Vol. 2, pp. 670-674, May 1996.

[8] N. Merhav, and V. Bhaskara, “A transform domain approach to spatial domain image
scaling,” IEEE Intl. Conf. Acoustic, Speech, and Signal Processing, Vol. 4, pp. 2403-
2406, Atlanta, GA, May 1996.

[9] N. Merhav, and V. Bhaskaran, “A fast algorithm for DCT-domain inverse motion com-
pensation,” Proc. IEEE International Conf. Acoustics, Speech, and Signal Processing,
Vol. 4, pp. 2307-2310, May 1996.

126



[10] N. Merhav, and V. Bhaskaran, “Fast algorithms for DCT-domain image downsampling
and for inverse motion compensation,” IEEE Trans. Circuits and Systems for Video
Technology, Vol. 7, No. 3, pp. 468-476, June 1997.

[11] J. Song, and B.-L. Yeo, “A fast DCT domain inverse motion compensation algorithm
based on shared information in a macroblock,” Proc. Asimolar Conference on Signals,
Systems and Computers, Vol. 1, pp. 845-849, Nov. 1998.

[12] R. Dugad, and N. Ahuja, “A fast scheme for image size change in the compressed
domain,” IEEE Trans. Circuits and Syst. for Video Technology, pp. 461-474, Apr. 2001.

[13] J. Jian, G. Feng, “The spatial relationship of DCT coefficients between a block and its
sub-blocks,” IEEE Trans. Signal Proc., pp. 1160-1169, May 2002.

[14] J. Mukherjee, and S. K. Mitra “Image resizing in the compressed domain using subband
DCT,” IEEE Trans. Circuits and Syst. for Video Tech., pp. 620-627, Jul. 2002.

[15] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,” IEEE
Trans. Signal Proc., Vol. 41, No. 12, pp. 3445-3462, Dec. 1993.

[16] J. M. Shapiro, “A fast technique for identifying zerotrees in the EZW algorithm,” IEEE
Intern. Conf. on Acoustics, Speech, and Signal Proc., ICASSP-96, Vol. 3, pp. 1455-1458,
May 96.

[17] C. He, J. Dong, Y. F. Zheng, Z. Gao, “Optimal 3-D coefficient tree structure for 3-D
wavelet video coding,” IEEE Trans. Circuits and Syst. for Video Tech., Vol. 13, pp.
961-972, Oct. 2003.

[18] Z. Xiong, O. G. Guleryuz, and M. T. Orchard, “A DCT-based embedded image coder,”
IEEE Trans. Signal Proc., Vol. 3, No. 11, pp. 289-290, Nov. 1996.

[19] D. M. Monro, and G. J. Dickson, “Zerotree Coding of DCT coefficients,” IEEE Intern.
Conf. Image Proc., Vol. 2, pp. 625-628, Oct. 1997.

[20] Y.-A. Jeong, and C.-K. Cheong, “A DCT-based embedded image coder using wavelet
structure of DCT for very low bit rate video codec,” IEEE Trans. Cons. Elec, Vol. 44,
No. 3, pp. 500-507, Aug. 1998.

[21] A. Said, and W. A. Pearlman, “A new, fast, and efficient image codec based on set
partitioning in hierarchical trees,” IEEE Trans. Circuits and Syst. for Video Technology,
Vol. 6, No. 3, pp. 243-250, June 1996.

[22] E. Khan and M. Ghanbari, “Video Coding with Virtual Set Partitioning in hierarchical
tree,” IEEE Inter. Symposium on Circuits and Systems, Vol. 1, pp. 449-452, May 2002.

[23] A. P. Azcarraga, M. R. Lim, “2-D order of self-organizing kristal maps,” IJCNN Intern.
Joint Conf. Neural Networks, Vol. 1, pp. 510-513, July 1999.

127



[24] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data compression,”
Commun. ACM, Vol. 30, No. 6, pp. 520-540, June 1987.

[25] E. Baum, V. Harr, and J. Speidel, “Improvement of H.263 encoding by adaptive arith-
metic coding,” IEEE Trans. Circuits and Syst. for Video Technology, Vol. 10, No. 5,
Aug. 2000.

[26] ITU-T Recommendation H.263, Video coding for low bit rate communication, Feb. 1998.

[27] M. Ghanbari, Video Coding, An Introduction to Standart Codecs. The Institution of
Electirical Engineers, London, UK, 1999.

[28] K. Sayood, Introduction to Data Compression. Morgan Kauffmann Publishers, Inc., San
Francisco, CA, 1996.

[29] V. Bhaskaran, K. Konstantinides, Image and Video Compression Standarts. Kluwer
Academic Publishers, Norwell, MA, 1997.

[30] M. Nelson, J.-L. Gially, The Data Compression Book. M&T Books, New York, NY,
1996.

[31] L. Wall, K. Ferens, and W. Kinsner, “Real-time dynamic arithmetic coding for low bit-
rate channels,” in Proc. IEEE Conf. Commun., Computers, and Power in the Modern
Env., Saskaaton, Canada, May 1993, pp. 381-391.

[32] P. G. Howard, J. S. Vitter, “Analysis of arithmetic coding for data compression,” in
Proc. Data Compression Conf., Snowbird, UT, Apr. 1991, pp. 3-12.

[33] C.-K. Cheong, K.-S. Cho, and S.-W. Lee, “Significance tree image sequence coding
with DCT-based pyramid structure,” in Proc. IEEE International Conf. Image Proc.,
Vancouver, Canada, Sep. 2000, Vol. 2, pp. 859-862.

[34] H. S. Malvar, “The LOT: a link between block transform coding and multirate filter
banks,” IEEE Intern. Symp. Circuits and Systems, pp. 835-838, Aug. 1988.

[35] H. S. Malvar, D. H. Staelin, “The LOT: transform coding without blocking effects,”
IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. 37, No. 4, pp. 553-559, Apr.
1989.

[36] H. S. Malvar, Signal processing with lapped transforms. Artech House Publishers, Nor-
wood, MA, 1992.

[37] G. Aharoni, A. Averbuch, R. Coifman, M. Israeli, “Local Cosine Transform - A Method
for the Reduction of the Blocking Effect in JPEG,” Journal of Mathematical Imaging
and Vision, pp. 7-38, 1993.

128



[38] K. Ramchandran, A. Ortega, M. Vetterli, “Bit allocation for dependent quantization
with applications to multiresolution and MPEG video coders,” IEEE Trans. Image
Processing, Vol. 3, No.5, pp. 533-545, Sept. 1994.

[39] L.-J. Lin, A. Ortega, and C.-C. J. Kuo, “Rate control using spline-interpolated R-D
characteristics,” in Proc. VCIP, Orlando, FL, pp. 111-122, Mar. 1996.

[40] T. Chiang, and Y.-Q. Zhang, “A new rate control scheme using quadratic rate distortion
model,” IEEE Trans. Circuits and Systems for Video Technology, Vol. 7, No. 1, pp. 246-
250, Feb. 1997.

[41] J. Ribas-Corbera, and S. Lei, “Rate control in DCT video coding for low-delay commu-
nications,” IEEE Trans. Circuits and Systems for Video Technology, Vol. 9, No. 1, pp.
172-185, Feb. 1999.

[42] P.-Y. Cheng, J. Li, and C.-C. J. Kuo, “Rate control for an embedded wavelet video
coder,” IEEE Trans. Circuits and Systems for Video Technology, Vol. 7, No. 4, pp.
696-702, Aug. 1997.

[43] Guido M. Schuster, Aggelos K. Katsaggelos Rate-Distortion Based Video Compression.
Kluwer Academic Publishers, Boston / Dordrecht / London, 1997.

[44] E. A. B. da Silva, R. Caetano, “A rate control strategy for embedded wavelet video
coders in an MPEG-4 framework,” Global Telecommunications Conference, pp. 199-203,
1999.

[45] A. Ortega and K. Ramchandran, “Rate-distortion methods for image and video com-
pression,” IEEE Signal Processing Magazine, pp. 23-50, Nov. 1998.

[46] Z. He, and S. K. Mitra, “A linear source model and a unified rate control algorithm for
DCT video coding,” IEEE Trans. Circuits and Systems for Video Technology, Vol. 12,
No. 11, pp. 970-982, Nov. 2002.

[47] Z. He, and S. K. Mitra, “Optimum bit allocation and accurate rate control for video
coding via ρ-domain source modeling,” IEEE Trans. Circuits and Systems for Video
Technology, Vol. 12, No. 10, pp. 840-849, Oct. 2002.

129


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Average speed improvements by DCT transcoder and fast DCT transcoder over hybrid decoder
	2. Computational complexity comparisons of four decimation methods for N=2
	3. PSNR comparisons of the decimation methods for N=2
	4. Computational complexity of our decimation algorithms
	5. Average PSNR values obtained from three scan methods according to given constant bit rates
	6. Average PSNR values for four composited videos (N=2)
	7. Average PSNR values for mixed-view composited videos (N=3, 2/3)
	8. Average PSNR comparisons of DCT-EZT and DCT-SPIHT for composited videos with four subframes
	9. Average PSNR comparisons of DCT-EZT and DCT-SPIHT for composited videos with six subframes
	10. PSNR results of reconstructed frames coded with LCT with different bell functions
	11. Average PSNR comparisons of LCT-EZT and DCT-EZT for composited videos with four subframes
	12. Average PSNR comparisons of LCT-EZT and DCT-EZT for composited videos with six subframes
	13. Average PSNR comparisons of rate control with convex R-D model with piecewise linear R-D model for composited videos with four subframes
	14. Average PSNR comparisons of rate control with convex R-D model with piecewise linear R-D model for composited videos with six subframes
	15. Average PSNR comparisons of rate control with and without subframe layer bit rate allocation for composited videos with four subframes
	16. Average PSNR comparisons of rate control with and without subframe layer bit rate allocation for composited videos with six subframes

	LIST OF FIGURES
	1. Hybrid encoder
	2. Hybrid decoder
	3. Spatial domain compositing
	4. DCT domain compositing
	5. DCT transcoder
	6. Motion compensation in the spatial and the DCT domains
	7. Windowing and shifting
	8. Possible positions of optimal DCT block
	9. Running time comparisons of hybrid decoder, DCT transcoder and fast DCT transcoder
	10. DCT decimation process for N=2
	11. Several video compositing structures
	12. Improved DCT decimation process for N=2
	13. DCT decimation for the rational case, N=2/3
	14. PSNR comparisons of different decimation factors for Miss America sequence
	15. Treating an 88 DCT block as a 3-scale subband structure
	16. Conversion of an 88 DCT-frame into 3-scale subband frame
	17. An 88 DCT-blocks frame, and its rearranged version of 3-scale subband structure
	18. Parent-child relationship of 3-scale DCT subband structure
	19. Raster, Morton, and Peano scan paths of a 3-scale subband structure
	20. Flowchart of zerotree coding
	21. An example of zerotree coding
	22. Dominant and subordinate pass intervals
	23. DCT-EZT encoder
	24. PSNR comparisons of DCT-EZT coder for Raster, Morton and Peano scan methods
	25. PSNR comparisons of DCT-EZT and conventional DCT encoder for four composited videos
	26. Composited video frame samples from the conventional DCT and the DCT-EZT codings
	27. PSNR comparisons of DCT-EZT and conventional DCT encoder for mixed-view compositing
	28. Mixed-view composited video frame samples from the conventional DCT and the DCT-EZT codings
	29. Comparison of DCT-EZT and Wavelet based embedded zerotree coder
	30. Comparison of DCT-EZT and embedded zerotree coder with virtual set partitioning in hierarchical tree
	31. Proposed encoder
	32. Rate-distortion performances of the proposed encoding vs. regular encoding for intraframes (from top to bottom: Salesman, Miss America, and Foreman)
	33. Rate-distortion performances of the proposed encoding vs. regular encoding for interframes
	34. Video frame samples from regular and proposed codings
	35. Set partitioning examples
	36. Flowchart of SPIHT
	37. PSNR comparisons of DCT-EZT vs. DCT-SPIHT for composited videos with four subframes
	38. Composited video frame samples with four subframes from DCT-EZT and DCT-SPIHT
	39. PSNR comparisons of DCT-EZT vs. DCT-SPIHT for composited videos with six subframes
	40. Composited video frame samples with six subframes from DCT-EZT and DCT-SPIHT
	41. Local cosine transform
	42. Consecutive intervals and corresponding bells
	43. Symmetry property of bell function
	44. Bell functions for several iternums
	45. Some video frame samples coded with LCT with different bell functions
	46. LCT-EZT encoder
	47. PSNR comparisons of composited frames with four subframes coded with LCT-EZT and DCT-EZT
	48. Composited video frame samples with four subframes from DCT-EZT and LCT-EZT
	49. PSNR comparisons of composited frames with six subframes coded with LCT-EZT and DCT-EZT
	50. Composited video frame samples with six subframes from DCT-EZT and LCT-EZT
	51. Convex R-D model
	52. Rate-Distortion characteristics of first I and P frames from different video sequences
	53. Relationship between the variance of the actual residue error and the mean square error of the original reference frame
	54. Piecewise linear R-D model
	55. Comparison of R-D performances of the proposed convex model with piecewise linear model for composited videos with 4-subframes
	56. Comparison of R-D performances of the proposed convex model with piecewise linear model for composited videos with 6-subframes
	57. Flowchart of the adaptive arithmetic encoder

	1.0 INTRODUCTION
	2.0 VIDEO COMPOSITING FOR MULTI-POINT VIDEO CONFERENCING
	2.1 MOTION COMPENSATION IN THE DCT DOMAIN
	2.1.1 Fast DCT Transcoding

	2.2 DECIMATION IN THE DCT DOMAIN
	2.2.1 Fast Transformation of DCT Blocks
	2.2.2 Improved DCT Decimation


	3.0 EMBEDDED ZEROTREE CODING OF DCT COEFFICIENTS
	3.1 INTRODUCTION
	3.2 DEFINITION AND FEATURES OF DCT-BASED EMBEDDED ZEROTREE CODING
	3.3 SUCCESSIVE APPROXIMATION QUANTIZATION
	3.3.1 Dominant Pass
	3.3.2 Subordinate Pass

	3.4 AN EXAMPLE
	3.5 EXPERIMENTAL RESULTS
	3.6 APPLICATION OF DCT DECIMATION/INTERPOLATION WITH EMBEDDED ZEROTREE CODING TO A SINGLE VIDEO STREAM

	4.0 IMPROVEMENT OF ZEROTREE CODING
	4.1 SET PARTITIONING IN HIERARCHICAL TREES
	4.1.1 Comparison of DCT-EZT with DCT-SPIHT

	4.2 REDUCTION OF BLOCKING EFFECT AT LOW BIT RATES
	4.2.1 Theory of Local Cosine Transform
	4.2.2 Comparison of DCT-EZT with LCT-EZT


	5.0 BIT RATE CONTROL
	5.1 RATE-DISTORTION MODEL AND RATE CONTROL PROBLEM
	5.2 FRAME DEPENDENCY PROBLEM
	5.3 USING LAGRANGIAN OPTIMIZATION TO ACHIEVE OPTIMIZED BIT RATE
	5.4 COMPARISON OF THE CONVEX R-D MODEL WITH PIECEWISE LINEAR R-D MODEL
	5.4.1 Bit Rate Allocation at Subframe Layer


	6.0 CONCLUSIONS AND FUTURE WORK
	APPENDIX A. SPARSE MATRICES IN FAST DCT TRANSCODER
	APPENDIX B. ADAPTIVE ARITHMETIC CODING
	BIBLIOGRAPHY

