REAL TIME 3-D GRAPHICS PROCESSING HARDWARE DESIGN USING FIELD-
PROGRAMMABLE GATE ARRAYS.

by
James Ryan Warner

B. S. in Computer Engineering, Pennsylvania State University, 1999

Submitted to the Graduate Faculty of
Swanson School of Engineering in partial fulfillment
of the requirements for the degree of

Master of Science in Electrical Engineering

University of Pittsburgh

2008

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This thesis was presented

by

James Ryan Warner

It was defended on
September 18, 2008
and approved by
Dr. Alexander Jones, Assistant Professor, Department of Electrical and Computer
Engineering
Dr. Allen Cheng, Assistant Professor, Department of Electrical and Computer Engineering
Thesis Advisor: Dr. James T. Cain,

Professor Emeritus, Department of Electrical and Computer Engineering

Copyright © by James Ryan Warner

2008

REAL TIME 3-D GRAPHICS PROCESSING HARDWARE DESIGN USING FIELD-
PROGRAMMABLE GATE ARRAYS
James Ryan Warner, M.S.

University of Pittsburgh, 2008

Three dimensional graphics processing requires many complex algebraic and matrix
based operations to be performed in real-time. In early stages of graphics processing, such tasks
were delegated to a Central Processing Unit (CPU). Over time as more complex graphics
rendering was demanded, CPU solutions became inadequate. To meet this demand, custom
hardware solutions that take advantage of pipelining and massive parallelism become more
preferable to CPU software based solutions. This fact has lead to the many custom hardware
solutions that are available today.

Since real time graphics processing requires extreme high performance, hardware
solutions using Application Specific Integrated Circuits (ASICs) are the standard within the
industry. While ASICs are a more than adequate solution for implementing high performance
custom hardware, the design, implementation and testing of ASIC based designs are becoming
cost prohibitive due to the massive up front verification effort needed as well as the cost of fixing
design defects.

Field Programmable Gate Arrays (FPGASs) provide an alternative to the ASIC design
flow. More importantly, in recent years FPGA technology have begun to improve in
performance to the point where ASIC and FPGA performance has become comparable. In
addition, FPGAs address many of the issues of the ASIC design flow. The ability to reconfigure
FPGAs reduces the upfront verification effort and allows design defects to be fixed easily.

iv

This thesis demonstrates that a 3-D graphics processor implementation on and FPGA is
feasible by implementing both a two dimensional and three dimensional graphics processor
prototype. By using a Xilinx Virtex 5 ML506 FPGA development kit a fully functional
wireframe graphics rendering engine is implemented using VHDL and Xilinx’s development
tools. A VHDL testbench was designed to verify that the graphics engine works functionally.
This is followed by synthesizing the design and real hardware and developing test applications to
verify functionality and performance of the design. This thesis provides the ground work for

push forward the use of FPGA technology in graphics processing applications.

TABLE OF CONTENTS

PREFACE et re e XIX
1.0 INTRODUCTION ...t 1
11 OVERVIEW. ... 1

1.2 STATEMENT OF THE PROBLEM......ccooiiiii e 7

1.3 OQUTLINE ... e 9

2.0 COMPUTER GRAHPICS RENDERING.......ccciiiieeieeeee e 10
2.1 MATHMATICS OVERVIEW ... 12
2.1.1 HOMOQGENOUS VECTOIS.eeeiiiieiiiiiesiieeesitieesitee sttt snbe e snb e e s sineesnnee s 12

2.1.2 Co0rdiNate SYSTEIM.......cccueiieieeieseesie et sreereenes 13

2.1.3 Object Representation.........ccccccviiieiiiiieiiese e 15

2.1.4 Affine Geometric Transformations...........ccoceoeiririieiineneise e 16

2.1.41 Translation Transformationc.ccoeovniininneince e 17

2.1.4.2 Scaling Transformation............ccoccoeiiiiniiieeeese e 18

2.1.4.3 Rotation Transformation ... 20

2.1.4.4 Transformation COMPOSITIONSc.cceiririeiieieiene e 22

2.2 THE GRAPHICS PIPELINE ...t 26
2.2.1 ODJECt DEfiNITION.....cciiiiiiieicee e 27

2.2.2 Scene Composition using World Coordinate Transformation.................. 28

Vi

3.0

4.0

3.1

3.2

4.1

4.2

2.2.3 View Coordinates and the View Transformation...........ccccccvvveveeoiceeeeennn. 29

2.2.4 3D Projections and the Clipping Transformation...........c.ccccccoeevvievvennene. 34
2.2.4.1 Perspective ProjeCtioncccceveiiieiiirieiie e 37
2.2.4.2 Parallel ProjeCtion........cccccviieiiiieiiec e 39

p T O 1o o1 o PSSR 41
2.2.5.1 Cohen-Sutherland Two Dimensional Clippingcccceevevvivennenne 41
2.2.5.2 Cohen-Sutherland Three Dimensional Clipping.........cccccevvvvennenne. 45

2.2.6 Screen Coordinate Transformation...........c.ccoeoveneieineneineeee e 49

2.2.7 RASTEFIZATION ..o 51

THE GRAPHICS PROCESSING UNIT ..o 56
GRAPHICS PIPELINE ... 61

3.1.1 Matrix Multiplier AcCelerator............ccccoeiiiiiiiieii e 64

T8 I O 1T o1 [0 T 51T o o SR 67

3.1.3 LiNe RASTEIIZATION.ccviiiiiieieeiee e 79

3.1.4 Frame Buffer and Display Interface..........cccooeveiininiininseeee, 83
CENTRAL PROCESSING UNIT .o 87

3.2.1 Graphics Pipeline Control REgISTErS.........ccoviiiieiiiiiesc e 89

3.2.2 Other Peripherals ... 90

GRAPHIC PROCESSING UNIT IMPLEMENTATION AND TESTING.......... 91
HARDWARE DEVELOPMENT PLATFORM......ccccociiiiee 91
GRAPHICS PROCESSING UNIT IMPLEMENTATION ..o 9

4.2.1 Floating POINT PrIMITIVESc.cooiiiiiiiiiiii e 96

4.2.2 Microblaze Implementation............cocooeiiiininiiice e, 100

Vil

5.0

4.3

4.4

4.5

5.1

5.2

4.2.2.1 Base System BUIlEr...........cocoiieiieieiiece e 106

4.2.2.2 DVIHIC PLB INTErfaCe.ccoccviiiiiiiiiieeee e 116
4.2.2.3 N64 PLB controller interface.ccccooviieininincinice e 117
4.2.2.4 Graphics Pipeline Registers PLB interface.ccccccevevvveivenenne 119
4.2.3 Graphics Pipeline Implementationcccccevviveiivenisiinceee e 120
4.2.3.1 Floating Point Conversion and Matrix Selector............c..ccccovennne. 121
4.2.3.2 Matrix Transformation and Selection.............cccoovvvninciniienenn, 122
4.2.3.3 Cohen-Sutherland ClpPINg. ..cccccoveiieviee e 123
4.2.3.4 Bresenham’s Line RASEFIZENcccoovviiiieiiniieeene e 124
4.2.3.5 Frame Buffer and the ZBT Memory Controller...........c..cccvennenne. 125
4.2.3.6 VGA Display Interface and the Line Doubler...........c.cccovvvennne. 125
GRAPHICS PIPELINE FUNCTIONAL TESTBENCH........cccccviiiie 128
GPU SYNTHESIS ... s 134
441 Xilinx EDK and MICroblaze ..., 134
4.4.2 ISE and Full GPU SyNthesiS.........cccoiiiiiiiiiicceee e 136
4.4.3 SYNtheSIS RESUITS.......c.oiiiiiiiiiiiiee e 137
SOFTWARE BASED HARDWARE TESTINGccoccoiiiiiiieee 138
SUMMARY, CONCLUSIONS, AND FUTURE WORKccccoiiiiiienieeie, 144
SUMMARY AND CONCLUSIONS ..ot s 144
FUTURE WORK ...ttt 146
5.2.1 Feature AdAITIONScccoviiiiiieiie e 146
5.2.2 DIreCt MEMOIY ACCESS.....cceeuieieieiteste sttt sttt 148
5.2.3 Transformation Element Calculationscccoeiiiiniiiniiinicce 150

viii

APPEND

APPEND

APPEND

Cl1

C.2

C.3

C4

C5

C.6

C.7

C.38

CJ9

C.10

C.11

C.12

C.13

C.14

C.15

C.16

C.17

5.2.4 Using external processor oVer PCl eXPIreSS.ccovveiveieiieneeieseesieseesnens 151

5.2.5 More Parallelism in RASterizationc.ccocoovireiininenineeeeeeee 152
5.2.6 Partial Reconfigurablity............cccoooiiiiiiiiiice e 154
IX A: GRAPHICS PIPELINE CONTROL REGISTERS ..o 156
IXB: N64 CONTROLLER REGISTERS.......ccooiiiie e 163
IX C: VHDL SOURCE CODE ..o s 166
TOP LEVEL VHDL FILE. ... 166
GRAPHICS PIPELINE TOP LEVEL VHDL FILE........cccooiiieeeee 175
MATRIEX MULTPLIER ..o 191
MATRIX MULTIPLIER WITH BUFFERING AND NORMILIZATION....... 199
CLIPPING TREE ... e 205
OUTCODE GENERATOR ..ot 211
CLIPPING LOGIC ...t 214
ABSOLUTE VALUE ...ttt 235
BRESENHAM’S ALGORITHMoooii e 237
ZBT FRAME BUFFER.......oo e 250
ZBT MEMORY CONTROLLER......cooiiieeec e 257
ZBT PHYSICAL INTERFACE ... 264
ZBT PORT INTERFACE........ oottt 267
ZBT ARBITER ... 274
ZBT WIDTH CONVERSION ..ottt 281
ZBT MEMORY CONTROLLER PACKAGE.......ccccciiiiieiitie e 284
DVI PHYSICAL INTERFACE. ... 287

C.18 VGA FRAME READER........ccci i, 289

C.19 VGA SYNC GENERATOR ..o 294
C.20 VGA CONTROLLER ..ot 295
C.21 GRAPHICS PIPELINE TESTBENCH.........ccoooiiii, 301
APPENDIX D: C TESTCODE ..ot 316
BIBLIOGRAPHY ... s 330

LIST OF TABLES

Table 2.1: 2D Outcode ASSIGNMENt Table.........oooiiiiiieii e 42
Table 2.2: 2D Clipping INtersection EQUALIONS............ccveiiieeiieiie e sne e 43
Table 2.3: 3D Parallel Projection Outcode ASSIGNMENTcccoiiiiiiieiieie e 47
Table 2.4: 3D Perspective Projection Outcode ASSIGNMENT........cccueiveririiereerienie e 47
Table 2.5: 3D Parallel Projection Clipping Intersection EQUations.ccoeverieneencniensieeniennn 48
Table 2.6: 3D Perspective Projection Clipping Intersection EQUations............ccocevveiviieeiveniene 48
Table 3.1: 2D Outcode ASSIGNMENt Table.........oooiiiiiiii e 69
Table 3.2: 3D Perspective Outcode Assignment Table ... 69
Table 3.3: 2D Clipping INtersection EQUALIONS............ccveiiieeiieiie e sre e 72
Table 3.4: 3D Perspective Projection Clipping Intersection EQUations............ccocevveivrieeiveniene 73
Table 4.1: VGA Horizontal Timing Table. ..o 127
Table 4.2: VGA Vertical TIMING TabIEoouiiiiiiee e 127
Table A.1: GPU Configuration Register Memory Map and Register Definition....................... 156
Table B.1: N64 Controller Interface Memory Map and Register Definitionc.cccocveuee. 163

Xi

LIST OF FIGURES

Figure 1.1: Classic Graphics PIPEINE (1) ...eoviiieiiiieiiere ettt 2
Figure 1.2: GeForce 8800 CUDA AIChItECIUIE (3) ..veiveereerieiieriieie et 3
Figure 1.3: Wireframe MOGeliNg(L)oovoiiiiiiieiiiie et 8
Figure 2.1: Computer Graphics Processing Pipeling(1).ccooeriiiiiiniiniene e 11
Figure 2.2: 2D COOrdiNate SYSTEIM.....c..iiiiiieieiiesiee e see ettt sttt saesneesreeneesneeneens 14
Figure 2.3: 3D Cartesian Coordinate SYSEIMccciiiiiieeiinie et 14
Figure 2.4: Polygon Mesh RepreSentation(7)ccooveerieeienienieie e s 15
Figure 2.5: Translation 0f @ CUDE.c.ooiiiiiiie e e 18
Figure 2.6: SCAliNG OF @ CUDR. ...ocueiiiiii e e 19
Figure 2.7: Differential Scaling 0f @ CUDE..........ooiiiiii 19
Figure 2.8: Right Handed Coordinate System with Rotational Angle.........c.cccoooiiiiiiiiieninnnnen, 20
Figure 2.9: ROtation 0f @ CUDE..........ooouiiii e e 22
Figure 2.10: Object Centered ON Pl..........coovoiiiiiiieie ettt 23
Figure 2.11: Local to World Coordinate Translation.............ccccccveieiieiecieieceese e 23
Figure 2.12: Example Graphics PIpeline(L1)......cc.coveiuiiiiiieecese s 26
Figure 2.13: Cube in Object COOMdINALEScccveiieiieiieieee e 27
Figure 2.14: Cubes in World Space CoordiNates............ccovevueiieieeieiie e e 28

xii

Figure 2.15: Viewing Point with Viewing Direction in World Coordinates............cccccevereennenn. 29
Figure 2.16: VIEWING PIANE........oiiiiieiie ettt nee e 30
Figure 2.17: VIew COOFdINALE SYSTEIM.oiiiiiiiieitieiie ettt et nee e 31
FIGUIE 2.18: VIEW VOIUME ..ottt sttt nne e 31
Figure 2.19: Viewing coordinate system defined with World coordinate system........................ 33
Figure 2.20: Viewing Coordinate SYSEM........ccuiiiiiiiiiiiee e 34
Figure 2.21: Example Graphics PIPEliNE(B).........oiveiiiiiiiiirieseee e 35
Figure 2.22: Parallel ProJECTIONcc.ooiiiie ettt 36
Figure 2.23: PerspectiVe PrOJECTIONuiiiiieiie ittt st 36
Figure 2.24: Perspective ProJECTION (7)ooeeieiieiieiie ettt st 37
Figure 2.25: Perspective ProJECTION (7)ooveieiieiieiie ettt 38
Figure 2.26: Parallel Projection (8).........cco oo 40
Figure 2.27: Clipping Region DefinitioNS.ccooieiiiiiiieesiese e 42
Figure 2.28: Illustration of 2D Cohen Sutherland Clipping.ccccoovvviiieie i, 45
Figure 2.29: Parallel ProJECHIONcoui ittt e 46
Figure 2.30: Perspective PrOJECTIONciieiieiiece ettt nne e 46
Figure 2.31: Clipping to SCreen COOrdiNALES.covviieiiieieeieie et 49
Figure 2.32: Rasterized LINE(L0)couviieiieie ettt re e ne e 52
Figure 2.33: Bresenham’s Line Algorithm Diagram(11)cccccovveieiieieeneiieseese e, 53
Figure 2.34: Line Rasterization PSEUAO COOE.ccviieiieiiiieie e 54
Figure 2.35: SIOPe OCLEL RANGESeeveiiieiieeiie ettt sttt e e esreeaeaneesre e 55
Figure 3.1: Graphics PIPEliNE(L)....ccecuiiii et 58
Figure 3.2: GPU Top Level BIOCK Diagram.........ccccviiiiieieiie i se e 59

Xiii

Figure 3.3: Computer Graphic PIPEIINE(L) ..ocoueiviiiieiiiie e 61

Figure 3.4: 3D GraphiCs PIPEIINE.......cuiiie e e 62
Figure 3.5: 2D GraphiCs PIPEIINE.......cuiiiiiiee e 63
Figure 3.6: Floating Point Matrix Multiplication Block Diagram..........cccccevenieieninieeneniennen, 65
Figure 3.7: CHPPING LOGIC. .. .eiiiiiiiitieiiiie ettt sttt sttt st neenae e 68
Figure 3.8: Outcode Generator for CHpPING LOGIC.coiviiiiiiiieieiie e e 70
Figure 3.9: Clipping Decision Logic State MaChiNgccccooeiiiiiiiiniieiese e 71
Figure 3.10: Cohen-Sutherland Line Clipping With OUtCOUEScccviieriiiieiierece e, 75
Figure 3.11: Edge Intersection CalCUIALON.coiiiiiii i e 76
Figure 3.12: RoOUNd RODIN AFDITENc.eiiii e e 78
Figure 3.13: Bresenham’s Line RaSterizer DESIGNcooeierieieiieiie e 80
Figure 3.14: Line Drawing State MacChine...........cocoiiiiiiiiiieee e 82
Figure 3.15: Double Buffer State MaChINE..........cccooiiiiiiiiinieseee e 84
Figure 3.16: Frame Buffer Interface with Frame Memorycccccoooeiieie e, 85
Figure 3.17: Frame Reading State MaChingccccviiiiiiiiic e 86
Figure 3.18: GPU Top Level BIOCK Diagram..........cccccoeiieieiieieeie e 87
Figure 3.19: GPU CoNtrol REQISIEIS........ciieiieeieiie ettt re e nre e 89
Figure 4.1: ML506 Development Board (13)cccccviiieiieieiieie et 93
Figure 4.2: GPU TOP LEVEI DESIGN ...cvviivieiieeie ettt st ne e 94
Figure 4.3: GPU Top Level Implementation Block Diagram.............cccocvevviieiieveiie e, 95
Figure 4.4 : IEEE 754-1985 32 Bit Floating Point NUMDErcccoovveieieiie e, 97
Figure 4.5 : Custom 18 Bit Floating Point NUMbBEr..........c.cceiiiiieiecc e, 97
Figure 4.6: Xilinx Coregen Floating Point Operation Selection Window.............c.cccccevevveivennenn, 98

Xiv

Figure 4.7: Floating Point Precision Selection WINAOW.............cccoiiiiiiieneninnie e, 99
Figure 4.8: Microblaze Core BIOCK DIagram(L7)......ccccceeeereerenieiieniesee e 101
Figure 4.9: Multi-port Memory Interface Layout (18).cccooeririiiiinin e 103
Figure 4.10: PLB BIock Diagram (19)ccuoiieiiiieiieie ettt 104
Figure 4.11: MICroblaze SYSIEMooiiiiiie ittt sre e s 105
Figure 4.12: Xilinx Platform Studio’s ProjeCct OPENErcccceieeiierinie e 106
Figure 4.13: Base System Builder Welcome WINOWcccoeiiiiiiiniinnene e 107
Figure 4.14: Base System Builder Board SEIECTOr............cccoveiiiiiiiiiiiie e 108
Figure 4.15: Base System Builder Processor SEIECTOr...........ccoviiiiiieiiieiccese e 109
Figure 4.16: Base System Builder Microblaze Processor Configuration Window 110
Figure 4.17: Base System Builder 10 Interfaces Configuration Windows............cccccceeevvennenne 111
Figure 4.18: Base System Builder Cache Setup WIiNdow............ccooveviiniienienieniee e 112
Figure 4.19: Base System Builder Software Setup WiNndOWccoocvvrieeneniinnieencsee e 113
Figure 4.20: Base System Builder System Created WiNdOWcccoovvevveveiiieieese e 114
Figure 4.21: Original Base System without Custom Peripherals.c.ccccoovveieiiieieiieieeeee, 115
Figure 4.22: Peripheral Creation WINAOW.cccveiiiiiiicie e 116
Figure 4.23: N64 Controller(20)covoieiieieee st 117
Figure 4.24: GPU Pipeline Register PLB INterface.ccccoeveieiieii e 119
Figure 4.25: GPU Pipeline Top Level Implementation.ccccccveveiieieese s 120
Figure 4.26: Matrix Multiplier ACCEIEratorccoveiiiieie e 122
Figure 4.27: Cohen Sutherland Clipping Implementation..............ccccccvoveiienecicsieese e 123
Figure 4.28: Bresenham’s Line RaSterizer DeSIGNcccvevveiieiieieere et 124
Figure 4.29: Frame Buffer Interface with Frame Memory ..o 125

XV

Figure 4.30: VGA Horizontal SYNC TIMING. ...coouiiiiiiiiiieiieesie e e 126
Figure 4.31: VGA Vertical SYNC TIMING......cciviiuiiiiiieiiie ettt 127
Figure 4.32: GPU Testbench BIOCK DIagramcccveuiiierieiieiiesiienie et 129
Figure 4.33: Matrix Programming in SIMUIALIONcccoiiiiiiiiiiece e 131
Figure 4.34: Pushing Line in SIMUIALIONcoouiiiiiiiii e e 132
Figure 4.35: Matrix Multiplication in SIMulation.............ccooveiiiniiini e 132
Figure 4.36: PPM UNIT CUDE.oiiiiiiiiie ettt 133
Figure 4.37: Xilinx’s EDK showing processor SUD-SYStEM...........cccuurirerieenesiieneeniesee e 135
Figure 4.38: ISE 3D GPU NIEIAICRYc.oiiiiiiiiiiiesieeie ettt 136
Figure 4.39: Serial terminal output from test SOFtWare.cccooveiiiiiiin e 138
Figure 4.40: 3D Graphics Processor OQULPULccveiieieiie e siie sttt 139
Figure 4.41: 3D ODJECT FOTATION.oviiiiiieciie ittt ettt st enes 140
Figure 4.42: 3D ODJECT SCAIINGoivviiiiiieiie ettt 140
Figure 4.43: 3D Objects Translated and CHPPed.cccocveiieii i 141
Figure 4.44: Model Plane Rendered using GPU..........cccccceiiiiiiiciiece e 142
Figure 4.45: Development Kit with JTAG, VGA and N64 Hardwareccccoevveveeveeieennenne 143
Figure 5.1: Program Memory and Object Memory DiViSionccccceveiieneiiieieese e 149
Figure 5.2: Graphics PIpeline DMAooii ettt 150
Figure 5.3: Interleaved Mmemory organization............ccoccveeeieeieieese e 153
Figure 5.4: Contiguous Partitioning..........ccceiieeiiiiiieieeie et 154

XVi

LIST OF EQUATIONS

Equation 2.1: Two Dimensional and Three Dimensional VECIOrS.cccccevevieiiiinieeiesieen, 12
Equation 2.2: Two Dimensional and Three Dimensional Homogenous Vectors.............cc.cce...... 13
Equation 2.3: Matrix Representation of Translation, Scaling and Rotation of a Vertex.............. 16
Equation 2.4: 3D Translation Transformation MatriXcccocerieiiiinieniene e 17
Equation 2.5: 3D Scaling Matrix Transformation (1)........ccccceoereriiiinnenienie e 18
Equation 2.6: Z Axis Rotation Transformation MatrixX (1)ccccceveririinreninnienese e 21
Equation 2.7: Y Axis Rotation Transformation MatrixX (1)cccooeriiiieeneninniniese e 21
Equation 2.8: X Axis Rotation Transformation MatrixX (1)cccooceriinienreninnienese e 21
Equation 2.9: 2D Local to World Coordinate Transformation MatriXccccccvevveiiieiieeineenne. 24
Equation 2.10: 3D rotation transformation MatriX..........ccererieneriinin e 25
Equation 2.11: 3D Local to World Coordinate Transformation.............cccccevevienninneeneniennen, 25
Equation 2.12: View Coordinate Transformation.............ccooeeeiiiiiiin e 32
Equation 2.13: Similar Triangle Rations with solutions for x and y (7)......ccccceevevviieiveieiiienenn, 39
Equation 2.14: Perspective Projection Transformation MatriX (1)........ccccccvevveiiieveiiieiineiesieenen, 39
Equation 2.15: Perspective Projection Transformation MatriX (1)........cccccevvvveiieveiieiinene e, 40
Equation 2.16: 2D Parametric EQUALIONS...........c.civiiuiiiiiice e 43
Equation 2.17: 3D Parametric EQUALIONS...........c.civeiiiieiieie e 47
Equation 2.18: General Screen Transformation MatriX...........cccocvevviieiieiesieseece e, 50

Xvii

Equation 2.19: General Screen Transformation MatriX.........c.ccoceeviiirienienie s, 51

Equation 2.20: General line equation through two endpoints............cccoveereneninneniee e, 52
Equation 2.21: Line equation SOIVEd fOr Y.......couiiiiiiiie e 53
Equation 3.1: MatriX MUItIPHICAtION(6)........cerueriiiieiiiie e 65
Equation 4.1: Floating point CAICUIALION.uiiiiiiiie e e 97

Xviil

PREFACE

I would like to thank Dr. Cain for the opportunity to pursue the project and for all
the guidance he has provided through this ordeal. Also, thanks to my committee of Dr. Jones
and Dr. Chang for their input and guidance. | would also like to thank my family for all their
help and support while working on this project. Lastly, | would like to dedicate this work to my

loving wife Marcie whose support was instrumental in my ability to complete this thesis.

XiX

1.0 INTRODUCTION

1.1 OVERVIEW

Real-time computer graphics hardware designs have massively changed over the years.
In early stages of graphics processing, such tasks were delegated to a Central Processing Unit
(CPU). CPUs are highly flexible programmable devices that excel at performing sequential
tasks. Despite CPUs flexibility and usefulness, they do not do as well at executing tasks which
can take advantage of parallelism such as graphic processing. Graphic processing requires many
complex mathematical operations to be performed in real-time. In the late 90s and early 2000s
demand for more complex graphic processing increased. This has led to custom hardware
solutions which take advantage of pipelining and the massive parallelism inherent in graphics
processing. Today, these custom hardware solutions are implemented using Application Specific
Integrated Circuits or ASICs. Until recently ASIC based graphics processors used fixed pixel
pipelines architectures. Today, many modern graphics processors have switched to
programmable vertex and pixel processors greatly increasing the graphics processors
performance and flexiblity.

Until this recent change, graphics processing used the more traditional fixed pipeline

shown in Figure 1.1.

Model World View Clipping Screen
Coordinate Coordinate Coordinate Coordinate Coordinate

Space Space

Space Space Space

! | |
! | |
! | |
! | |
! | |
! | |
! | |
|
| | |
! . - .
Object ! Compose ! Clip to viewing ! Hidden Surface
s — —»| volume and —» Removal and p——>

Definition ! Scene | R | L |
! i project to 2D | Rasterization IDisplay
| ! | |
; ! ! !
! | | |
! | | |

World View Clipping Screen
Coordinate Coordinate Coordinate Coordinate

Transformation Transformation Transformation Transformation

Rasterizer

Figure 1.1: Classic Graphics Pipeline (1)

This pipeline architecture uses dedicated hardware blocks to render a 3D scene. A pipeline such
as this operates on three dimensional vertices. Vertices are 3D points which are grouped
together to form complex objects. The object definition step in Figure 1.1 is storage space for
groups of vertices that form objects. Grahpics processors are ofter paired with cental processing
units (CPUs). In most systems, graphics objects are stored in CPU memory and then passed to
the pipeline by the CPU itself. These objects are then passed to the compose scene block where
coordinate transformations and lighting calculations are performed. Coordinate transformations
are necessary to place 3D objects into a 3D virtual world. In addition, clipping and projections
are necessary to display the 3D virtual world onto a 2D screen. These 3D transformations, 2D
projections and other fuctions are discussed in more detail in Section 2.0 . Next, in the hidden
surface removal and rasterization stage, objects are converted to pixels (called rasterization),
shaded, anti-aliased and then textured. Pixels are discrete points of color on a 2D screen and the
process of rasterizing 3D objects into pixels will be discussed further in Section 3.0 . Lastly,
these pixels are stored into the graphic’s pipeline’s local memory (called the frame buffer) in the
hidden surface removal and rasteriazation stage to create a 2D frame of pixel data. This pixel

data is then read from the frame buffer and driven to a human display interface.

The graphics pipeline has basically included these same stages for the past two decades
with successive improvements over the years. The largest improvements have been finding ways
to increase the memory bandwidth of the frame buffer through parallelism and memory
interleaving. In addition, improvements have been made by brute force simply by creating many
graphics pipelines such as the one above which operate on a 3D scene in parallel.

Today, graphics processing is taking a radical new direction. An example of this is the
Geforce 8800 GS graphics processor from NVIDA (2). The 8800 uses the Computer Unified
Device Architecture (CUDA) which provides a multiprocessor based solution for graphics

processing. The architecture is shown in Figure 1.2,

4 .

Figure 1.2: GeForce 8800 CUDA Architecture (3)

The CUDA architecture differs from the classic graphics pipeline in that instead of set pipelined
hardware blocks, many specialized scalar processors are used. The Geforce 8800 CUDA
architecture can perform tens of thousands of threads concurrently. Using the CUDA

3

architecture, each scalar processor can be tasked with vertex, pixel or geometic calculations to
perform any function implemented in the classic pipeline.

The CUDA architecture in Figure 1.2 consists of 16 multiprocessors which each share
768 MB of system memory. Within each of the 16 multiprocessors, there are eight scalar
processors which share a local 16 KB cache. In total there are 128 scalar processor (16
multiprocessor * 8 scalar processors) each running at 1.35 GHz. These scalar processors
specialize at executing matrix-vector multiplication efficiently. Matrix-vector multiplication, as
will be scene later in Section 2.1.4, is a very common operation in graphics processing. Using
architectures such as this, today’s graphics processors are capable of rendering very complex 3D
worlds in real-time.

Currently, the majority of graphics processing units (GPUSs), such as the state of the art
Geforce 8800 GS, are designed and implemented as Application Specific Integrated Circuits
(ASICs). ASICs can be a good choice because of a GPU’s high speed performance
requirements. However, ASICs are very expensive to develop and manufacture due the high cost
of photomasks as well as the massive up front verification effort needed. It is not uncommon for
ASICs to require multiple revisions to iron out all the flaws of a particular design. With the
development of each photomask costing in the millions, development cost can escalate quickly.

In contrast, Field Programmable Gate Arrays (FPGASs) are devices that contain
programmable logic blocks with a programmable interconnected fabric to connect these various
blocks. FPGAs can eliminate many of the problems associated with ASIC design. FPGASs are
reconfigurable devices and due to this fact do not require the large scale up front verification of

ASICs. In addition, FPGA’s reconfigurablity eliminates the expensive photomask cost penalty

that ASIC design defects would accrue through design defects. These facts make FPGAs ideal
for digital system prototyping.

FPGAs also present a variety of additional advantages. For instance, if an FPGA based
design is found to have a design defect in the field, firmware updates allow the defects to be
fixed without massive hardware recalls or hardware replacement. In addition, new features can
be added based on new customer needs. Lastly, new techniques such as on the fly
reconfigurablity enable parts of the FPGA to be reconfigured to implement different functions
using the same physical hardware.

Some disadvantages of FPGAs is that they cost more per unit as compared to ASICs
(eliminating the upfront ASIC development costs) as well as the fact that ASICs generally
outperform FPGAs in terms of performance and density. Despite these disavantages, FPGAs
have now begun to bridge the performance gap comming close enough in terms of perfomance
of ASICs to be used in many applications where ASICs were traditionally used. Xilinx, a
leading FPGA vendor, has recently released the Virtex 5 SXT device (4). This device is a high
density high performance FPGA with 32,640 look up tables, 32,640 registers and a maximum
clock speed of 550 MHz. Altera, a competing FPGA vender, offers similar performing products
to the Virtex 5.

These FPGA specs, while impressive by FPGA standards, make developing graphics
processors that can compete with today’s state of the art ASIC based graphics processors, such as
the Geforce 8800, impractical. The sheer size of the Geforce 8800 (coming in at 754 million
transistors (2)) is very unlikely to be implemented in such a way as to fit into the limited number
of logic elements an FPGA provides. Another problem is the clock speeds of the scalar

processors, where the Geforce 8800 has its processing cores running at 1.35Ghz, far above what

today’s FPGA can achieve. Although the state of the art is currently impractical, many legacy
GPU designs have core clock speeds in the 200 to 300 MHz range. GPU such as these also use
the classic GPU architecture shown in Figure 1.1. This architecture is simpler to conceptualize
due to the fact that each stage is a well defined custom hardware structure as opposed to a fully
functional scalar processor as in the Geforce 8800.

Taking the advantages of FPGAs into concideration, an FPGA based graphics processor
using the architecture in Figure 1.1 could be used in many applications. For instance, a FPGA
based graphics processor could be use in many embedded applications where a fully featured
graphics processor is not needed. One such field is image processing. In image processing many
autonomous robots use combinations of cameras for visual data and things such as LADAR
scanners to acquire 3D depth information. LADAR is an acronym for Laser Radar. This
technique uses echoed laser beams as opposed to sound waves to get a 3D information from a
surface. FPGAs could be used to implement basic graphics processing logic which could map
the camera’s 2D visual information to the LADAR’s 3D depth information. This could be used
by robots to record a very accurate landscape of what it has scene in the past. The beauty of
FPGA:s is that the image processing logic, graphics processing logic, and other general purpose
logic could all be integrated into a single system on a chip FPGA design. These are just some of
the possible applications graphics processing using FPGAs.

Another possible application is legacy ASIC based graphics processor replacement.
FPGA based graphics processors could be used to replace legacy ASIC graphics processors
where the size and perfomace of the legacy device makes it feasible. FPGA designs have the
advantage of being field upgradable as well as on the fly reconfigurable providing several

advantages over the standard ASIC based legacy graphics processors as well. These legacy

graphics processors could also be integrated in system on chip designs where graphics
processing as well as other functionality is needed on a single chip.

Lastly, FPGA base graphics processors could be used for a rapid prototyping where
certain features of more complex graphics processor could be tested in physical hardware. This
approach could minimize risk in many graphics processing designs. Instead of relying only on
simulators the hardware architecture could also be tested in real hardware on an FPGA for basic
functionality. This could save millions of dollars in GPU ASIC refabrication due to additional
bugs found in the FPGA debugging phase possibly preventing several stages of costly chip
refabrication. In order to determine if such applications are feasiable in an FPGA first a basic

prototype using FPGA technology must be designed and tested.

1.2 STATEMENT OF THE PROBLEM

The overview above discussed the state of the art of graphics processing. Two different
architectures used today were discussed, the classic fixed pipeline and the multiprocessor
approach. The overview made a case that the fixed graphics pipeline is the most ideal for
implementation in an FPGA. In addition, the overview above showed certain applications could
take advantage of an FPGAs based graphics processing implementation as opposed to using
ASICs for deviopment.

The objective of this thesis is to test the feasibility of implementing complex graphics
processing functions on modern FPGA devices. In order to accomplish this, this thesis presents

an FPGA based graphics processor design and implementation that establishes the feasibility of a

complex set of graphics processing functions. From this FPGA prototype many conclusions can
be drawn about the performance, power and cost of an FPGA based GPU.
The FPGA prototype requirements include the features listed below.

e Graphics processing engine capable of rendering in both 2D and 3D.

e Rendering of wireframe objects.

e Support for a free roaming point of view (or camera) in 3D.

e Support standard display interfaces.
The features above constitute a fully functional graphics system. One such feature, the free
roaming camera allows for manipulation of objects within a virtual world. These objects can be
rotated, scaled or moved within this virtual world. The objects can then be displayed onto a 2D
computer display. For this proof of concept design, the objects to be displayed will be wireframe
based. Wire frames models are defined only by the edges of a physical object. Some examples

of wireframes are shown in Figure 1.3.

Figure 1.3: Wireframe Modeling(1)

Wire frame modeling is conceptually simple to implement compared textured graphics. The
advantage of wire frames are the high frame rates they allow due to the small pixel fill rates
needed. Using wireframes in conjunction with clipping and hidden surface removal will allow

this first pass system to run complex scenes in real time at 60 frames per second. The use of

wire frames will be sufficient for proof of concept while advanced features such as surface
texturing, lighting and shading could be implemented with successive additions to the design.
This thesis presents the work peformed to realize an FPGA based graphics processor
prototype. This document first must define requirements which are subset of graphics processing
functions to be implemented. Once identified and described, the functions must be designed to
run efficiently within an FPGA device. Given the design requirements, an FPGA must be
selected that has the logic resource and performance to implement these proposed graphics
functions. Following implementation, the FPGA based graphics processor must then be fully
verified and tested for functional correctness as well as have its area, power and performance
measured. From the graphics processor area and performance numbers, various conclusions can
be drawn on what graphics processing features are currently possible to implement in today’s
FPGA devices as well as what advantages an FPGA based designs presents over an ASIC based

design.

1.3 OUTLINE

The next section, Section 2.0, is an introduction to computer graphics. It gives the reader
all the necessary mathematical background information on the features planned for design and
implementation in the following sections. In the third section the functional requirements of the
prototype as well as how the prototype has been designed to meet these requirements are
presented. Section 4.0 shows the detailed implementation, verification and testing of the system
presented in Section 3.0 . Finally, Section 5.0 gives the conclusions on the performance of the

designed graphics processor and shows some ideas for future work.

20 COMPUTER GRAHPICS RENDERING

Computer graphics rendering is the process of displaying an image on a computer display
given a list of geometrically defined objects. These objects can be defined in either two-
dimensional space (2D) or three-dimensional space (3D). This 2D or 3D space is referred to as a
virtual world.

Though virtual world descriptions are three-dimensional, in contrast computer displays
are two dimensional. In order to display a three dimensional image on a two dimensional
computer display, a two dimensional projection of the three dimensional image is needed. In
addition, clipping to the boarders of portions of the world viewable on the screen may be
necessary to increase performance. Given this clipped two dimensional description, the virtual
world can then be mapped to the computer display.

Today, most computer displays are raster based. Raster graphics (5) are a rectangular
grid of points of color (know as pixels) used to display an image. The two dimensional projected
objects defined in vector format must be quantized and converted to a raster image. This process
is known as rasterization. Rasterization involves determining which pixels in the raster display
are affected by each object in the virtual scene. This process involves functions such as line

drawing. Rasterization will be discussed later.

10

Figure 2.1 shows a high level description of a graphics processing pipeline. In the
pipeline, all the consecutive steps needed to display a list of abstract 2D or 3D objects onto a 2D

computer display are shown.

Model World View Clipping Screen
Coordinate Coordinate Coordinate Coordinate Coordinate
Space Space Space Space Space

|
. ! Clip to viewin Hidden Surface	
Object 1	Compose N 9 N
e —»	volume and —» Removal and p—>
Definition ! Scene	.
! ! project to 2D ! Rasterization }Dlsplay	
! 1 1 1	
! I I I
World View Clipping Screen
Coordinate Coordinate Coordinate Coordinate
Transformation Transformation Transformation Transformation

Rasterizer

Figure 2.1: Computer Graphics Processing Pipeline(1).

As can be seen in the figure above, computer graphics involves converting from one coordinate
system to another. Starting at the left, model coordinates are where each object is stored in its
own coordinate system. Obijects in this coordinates system usually have a control point which is
used to move the model around the world coordinate system relative to the control point. The
next coordinate system is the world coordinate system. The world coordinate system is the
model of the actual 3D or 2D world where various objects defined in model coordinate space can
coexist. Next is the view coordinate system. This system can be thought of as the world
coordinate system viewed from a single point in space (like a camera). Next follows the clipping
space, where the world is constrained into a finite viewing volume and then projected on a 2D
plane. Lastly, the screen coordinate system is the rasterized version of the 2D projection. This

finial coordinate system corresponds to the physical display and is driven to the display device.

11

The following section will start with a brief overview of the mathematical principles
needed to implement the requirements of the graphics pipeline presented in Section 1.2. This is
followed by a detailed discussion of all the steps taken by the graphics pipeline to convert a list

of graphics objects to pixels on the screen.

21 MATHMATICS OVERVIEW

Transformations are tools that can be used to manipulate 2D and 3D objects in a virtual
world. They can be used to move an object within the virtual world and project the 3D virtual
world onto a 2D plane. This section introduces the notion of a vector as well as how vectors can
be grouped together to form graphics objects. These objects can then be transformed using basic

2D and 3D affine geometric transformations discussed here.
2.1.1 Homogenous vectors

In computer graphics 2D and 3D objects are defined in respect to a virtual world. This
virtual world is nothing more than a mathematical representation of a world’s geometry. Objects
can be defined in many ways, but are most commonly defined as a group of vertices. These

vertices are represented as vectors as shown in Equation 2.1.

X

2D m 3D
= =1y
Y z

Equation 2.1: Two Dimensional and Three Dimensional Vectors.

12

The X, y and z value of each vector describes an object’s position within a coordinate system
Coordinate systems are discussed in Section 2.1.2.

In computer graphics, vertices are often described in homogenous form(6). Homogenous
representation can allow affine geometric transformations to be easily represented by a single
matrix multiplication. In this representation, coordinates are the same as before except an

additional w coordinate is added to the vector as shown in Equation 2.2,

Equation 2.2: Two Dimensional and Three Dimensional Homogenous Vectors.

The need for homogenous vectors will be made apparent in the affine geometric transformation

Section 2.1.4.

2.1.2 Coordinate System

Coordinate systems are used to define a virtual space in computer graphics. The relative
positions of an object as well as its dimensions are all defined within these coordinate systems.
2D and 3D coordinate systems vary by the number of axes each systems has.

For instance, a coordinate system in two dimensions is defined by two axes at right
angles to each other forming a xy-plane. A grid on each axis defines uniform distances from
center of the coordinate system know as the origin. The basic 2D coordinate system is shown in

Figure 2.2

13

r

Y axis

4 —t—
3 —t—
P32
o (32)
I
I
L1 |
I
I
] | | | | | | | | | | [
| | | | | | | | | | | I x
6 5 -4 -3 2 1 1 2 3 4 5 6
-1 = 0rigin(0,0)
iy e N
3
) —t—

Figure 2.2: 2D Coordinate System

In Figure 2.2 the 2D vector P(3,2) is defined.

The three dimensional Cartesian coordinate system is shown in Figure 2.3.

4 Y axis
4 —4—
4 Z Axis
3 —t
P(3,2,0)
2 —--— -
|
L |
_____ J— —t—
4 / |
/ ’
// | s/ |
P | | L |) | | | |
- /
| | | I //I L | | | |
6 5 4 7 3, 2,7 41 1 2 3 4
7 / /2 1
B -1 Origin(0,0
P(—Z,l,—3)f————/£———(rigin(0,0)
| R
| // F -2
L7 T
4o
-4
-3 —t—
-l —t—

Figure 2.3: 3D Cartesian Coordinate System

14

Note that the original vector in the 2D coordinate system of Figure 2.2 is now located at P(3,2,0)
where the z coordinate is zero. Another 3D vector at P(-2,1,-3) is also defined in the coordinate
system.

Vector objects can be used to describe a group of connected points within a virtual world
defined by a coordinate system. These connected points are known as a polygon mesh. These
polygon mesh objects can then be moved with ease using affine geometric transformations.
Polygon meshes and their use with affine geometric transformations are discussed in the next sub

sections.

2.1.3 Object Representation

Today most commercial graphics processing units use a polygon mesh(7) to represent 2D
or 3D objects. A polygon mesh is a collection of vertices joined together to form the polygons of
an object. Figure 2.4 below shows and example of a four point object defined as a polygon
mesh. Vi, V2, V3 and V, define the vertices that make up an object while P; and P, are the

polygons defined by this list of vertices.

V2 V= (Vl’VZ'VS’V4)
Vz((xl’yl’zl’wl)’ ----- ’(XA'YA’Z4'W4))
P1=(V1V2V4)
P2=(V4\V2V3)

V1 V3

V4

Figure 2.4: Polygon Mesh Representation(7)

The list of vertices, such as Vi, V,, V3 and V4 shown in Figure 2.4 can be converted from one

coordinate system to another quite easily using a linear transformation matrix. The next section

15

describes how these objects can be scaled, rotated or translated using affine geometric

transformations.

2.1.4 Affine Geometric Transformations

Affine geometric transformations can be used to move objects around in a virtual
environment, convert between coordinate systems, and implement projections of 3D images on
to a 2D plane. This section gives the background on two dimensional and three dimensional
affine geometric transformations. An affine transformation is any transformation involving
scaling, rotation, or translation from one coordinate system to another.

A set of vectors (or points) which define an object can be transformed into another set of
points by an affine geometric transformation. Matrix notation is used in computer graphics to
describe an affine geometric transformation. The convention in computer graphics is to have a
vector V as a column vector which is multiplied by a transformation matrix.

Using this notation, any vector V can be transformed to a new vector V’. The translation,

scaling and rotation transformations calculations are shown below.

V'=D+V
V'=S*V
V'=R*V

Equation 2.3: Matrix Representation of Translation, Scaling and Rotation of a Vertex

D is the translation vector and S and R are the scaling and rotation matrices. These three basic
operations are the most common in computer graphics and can be combined to perform very
complex functions (for example projection of a 3D image onto a 2D plane). The next several

sections present each basic transformation individually.

16

2.1.4.1 Translation Transformation

Translation is the process of moving vertices from one point in a coordinate system to
another by adding a translation amount to each vertex. The algebraic and matrix representation
for 3D translation are shown in Equation 2.4 (for 2D removes all z components).

v'=D(d,.d,,d,)-V

x| [1 0 0 d,|[x] [x=x+d,
y| |01 0 d ||yl |y=y+d,
zZ| |00 1d,|]|z 7'=z+d,
1 0 00 1 1 1

Equation 2.4: 3D Translation Transformation Matrix

Note that in Equation 2.3 that the new vector is calculated by using matrix addition while in
Equation 2.4 that the new vector uses multiplication. This is where the importance of
homogenous coordinates discussed in Section 2.1.1 becomes apparent. Adding the addition
homogenous coordinate w=1 allows translation to be expressed as a matrix multiplication instead
of a matrix addition. This gives all three operations (scaling, rotation, and translation) a uniform
method of calculation. This becomes important in maximizing hardware efficiency both due to
the fact that only multiplication is needed and that, as will be shown later, multiple matrix
transformations can be multiplied together to be combined into one transformation matrix.

Once again D is the translation matrix and defines the displacement of each component of
V. Translation is more concisely explained in Figure 2.5 which shows a cube defined at the

origin being moved by the translation values [Dx,Dy,Dz] = [3, 2, 1].

17

>
>

N
f/__l__// |
_____ | | |
] g | | I
z_1__~- | px=3| ! (321 I
| | | — b2 Sl e
| | I I L1 v
| | | _ | > X
I Aol > X L P
b
7 A

Figure 2.5: Translation of a cube.

2.1.4.2 Scaling Transformation

Scaling is another form of transformation operation. It stretches or compresses vertices
within a coordinate system. This is done by multiplying each vector V by scaling factors Sx, Sy,
and Sz. The algebraic and matrix representations are shown below (for 2D remove all the z
components).

V'=S(s,,s,,s,)V

x19y19z

X s, 0 0 Of|[x] [x=xs,
y'= 0 s, 0 O.yzy':ysy
z 0 0 s, 0|z 7'=1s,
1 0O 0 0 1]]1 1

Equation 2.5: 3D Scaling Matrix Transformation (1)

S is the scaling matrix and based on its values the vector V can be either expanded or
compressed. This is shown in the example below in Figure 2.6. This particular example shows a

cube defined at the origin being scaled by scaling factors [Sx,Sy,Sz] = [2, 2, 2].

18

(0,0,0)

Figure 2.6: Scaling of a cube.

Note that above is an example of uniform scaling. Uniform scaling is where Sx=Sy=Sz. If any
of the scaling factors Sx, Sy or Sz are not equal the scaling is said to be differential. Differential
scaling affects the relative proportions of the object. This can be shown below in Figure 2.7 with

the same cube but this time with scaling factors [Sx,Sy,Sz] = [1/2,2,3].

A\ 4
X

Y Y
A A
//_ _/—I
s L7
7 V. |
s s
7/ V4 |
Ve s/ |
A~ "7 I‘ - 1(1/2,2,3) |
7 7 |
z_1_ | |
@10l ' |
[| | [
[| : |
|

©000) !
-

Figure 2.7: Differential Scaling of a cube.
Note that the cube, in difference to the cube scaled by factors [2,2,2], has been stretched more in
the Z direction, less in the X direction and the same amount in the Y direction. Differential

19

scaling is often used when mapping to screen coordinates of a display device that does not have

the same number of horizontal and vertical lines. For instance a 640x480 VGA display.

2.1.4.3 Rotation Transformation

Rotation is revolving a vector around the origin of a coordinate system. This is
accomplished by multiplying each vector by a rotation matrix. In three dimensions there are
three different angles for which an object can be rotated. Each angle component is show in the

Figure 2.8 below.

6(2)
8(x)

K

a(y)

v
x

Figure 2.8: Right Handed Coordinate System with Rotational Angle.

The three transformation matrices below can be used to rotate an object around either the X, y or
z axis. These equations are shown below. In each case R represents the rotation matrix and V is

the vertex being rotated.

20

x| [cos(,) —sin(@,) 0 0] [x] [x'=xcos(d,)-ysin(8,)
y | |sin(6,) cos(@,) 0 Of|y| |y =xsin(6,)+ycos(8,)
2|7 o 0 1 0||z| '=1

1 0 0 0 1|1 1

X 0
y o 1 0 0
z 0|
1

0 0 0 1
Equation 2.7: Y Axis Rotation Transformation Matrix (1)

[EY
-

V'=R(0,)-V
x| [1 0 0 0] [x X =X
y | |0 cos(6,) —sin(6,) Of|y| | y'=ycos(d,)-zsin(6,)
z'| |0 sin(@,) cos(@,) 0||z| |z =ysin(8,)+zcos(8,)
1 0 0 0 1111 1

Equation 2.8: X Axis Rotation Transformation Matrix (1)

Figure 2.9 shows an example of a cube rotated by 8y = -45 degrees. Note that both 6x and 6z

can be rotated similarly to the above figure. The next section shows how to compose the various

transformations into a single matrix transformation.

21

ST N
_____ - | N
/

7 - AN 17
e s | NI |
[| |
I I A
! | > X == ' > X
| T > N N
A v NP

By=-45
Z VA

Figure 2.9: Rotation of a cube.

2.1.4.4 Transformation Compositions

Individual scaling, rotation and translation geometric transformation matrices can be
combined to form just about any transformation function that is needed in computer graphics.
Though these matrices can be cascaded and multiplied one at a time to achieve the desired result,
matrix multiplication is a resource intensive function to implement in hardware. In order to
minimize the amount of logic needed to implement a given affine geometric transformation,
these matrices can be combined through multiplication to form a single matrix. This
multiplication of matrices by one another is known as composition. The above scaling, rotation
and translation matrices can be composed together by simple multiplication of the matrices. The
main reasoning behind composing transformation matrices is to gain efficiency by applying
single transformation matrices to vertices instead of applying a series of transformations. An
example of this is the transforming of an object in its local coordinate system, to an object in the
world coordinate system. In order to illustrate this consider the 2D object in Figure 2.10 below

with a reference point on the house defined by the point P1.

22

P1

v
x

Figure 2.10: Object Centered on P1

Converting an object from object coordinates to world coordinates can involve translation,
scaling, and rotation. In order to properly scale and rotate an object, first the object’s reference
point must be aligned to the origin of the object coordinate system. Next, the object is
transformed through a scaling matrix S. Rotation can follow by transforming the resulting scaled
coordinates through the rotation matrix R. Lastly, the scaled, rotated object can be translated to
its position in the world coordinate system by a translation matrix T. The sequence is shown in

Figure 2.11 below.

Y Y Y Y

Position P1in Local Translate to Local
A coordinate system. A Coordinate System's A Scale By S A Rotate By R A
Origin

Translate by to new
position In World
coordinate system P2.

Tx
I Sx 9 ==
P1 -Cx _ P1 A+ =~ Wl
y
_T -Cy iﬁy |
¢ / x

X X X

1%

¥
9

Figure 2.11: Local to World Coordinate Translation.

To do the following matrix transformation from local to world coordinates requires four matrix

transformations (translation to center, scaling, rotation and translation to world coordinate

23

position). In order to be more efficient, these four translation matrices can be composed into a
single matrix by simple multiplying the four matrices together. This process is shown in
Equation 2.9 below where M is the resulting composed matrix.

M =Dlt,.t,)-R(0)-S(s,.s,)- D[-c,,~c,)

X1y

1 0 t,] [cos(@) —sin(@) 0][s, 0 O][1 0 —c,
M=[0 1 t,|-|sin(¢) cos(@) 0|-|0 s, 0[-/0 1 -—c,
00 1 1/{0 0o 1/|0 0 1

s, cos(@) —s,sin(@) t,—c,s, cos(@)+c,s,sin(9)
M =|s,sin(@) s,cos(@) t,—c,s,sin(@)-c,s, cos(d)
0 0 1

Equation 2.9: 2D Local to World Coordinate Transformation Matrix

Similarly, a matrix for 3D local to world coordinate transformation matrix can be composed. 3D
involves three discrete angles as shown previously in Figure 2.8. In order to create the composed
matrix for transforming from object coordinates to world coordinates, first the three rotation

matrices must be composed as shown below.

24

[cos(9,) —sin(6,) 0 0][1 0 0 0][cose,) sin(e,) 0 0
~(6)— sin(9,) cos(@,) 0 0| |cos(,) -sin(6,) 0 0 0 1 00
(0)= 0 0 1 0||sin(9,) cos(6,) 1 0f|-sin(8,) cos(6,) 1 0
0 0 01 0 0 01 0 0 01
(—sin(6,)sin(6,)sin(6,)+cos(6,)cos(6,) —sin(8,)cos(6,) sin(8,)sin(8,)cos(6,)+ cos(@,)sin(6,) ©
R(0)= cos(@z)sin(ex)sin(ey)+cos(6?z)cos(0y) cos(8,)cos(8,) —cos(HZ)sin(HX)cos(ay)+sin(02)sin(9y) 0
—sin(@,)cos(8,) sin(@,) cos(6,)cos(8,) 0
0 0 0 1

X
—_
)
~
Il

Bﬂ
e
=
5-1

O O O

Equation 2.10: 3D rotation transformation matrix.

In the last step in Equation 2.10 the complex elements of the R matrix composed of sine and
cosine are referenced by the values rowco. This rotation will be used in all calculations using
R(0) in future calculations in this thesis. Taking the result for the 3D rotational transformation R
and multiplying it by the center translation, scaling, and world translation yield the overall result
shown below in Equation 2.11.

M =T(t,.t,.t,)-R(@)-Ss,.s,.s,) T(-c,.—,.~c,)

(1 0 0 t][r, 1, 1, O|[s, O O O][1 O O -c,
M = 010 ¢t |[rn K n O ‘ 0 s, 00O . 010 -c
0 0 1 t,||ry Iy, I, O[]0 O s, 0|0 0 1 -c,
10 0 01 6 0 0 1|0 0 O 1]|0 00 1
[Sefoe Syfor Sifoz —CySyFop —CyS,Foy —C,S, T +1, |
M| Sfo Syl ST —C,S,My —C,S,; —C,S,, +t,
S,fo Sy S,hp —C.S.hy —C,S I —C,S, Iy +t,
| 0 0 0 1 i

Equation 2.11: 3D Local to World Coordinate Transformation

25

The two matrices defined in Equation 2.9 and Equation 2.11 can be used to transform any
arbitrary point in 2D or 3D respectively from one coordinate system to another. The next
sections use the affine geometric transformations discussed here to transfer objects to different

coordinate systems.

2.2 THE GRAPHICS PIPELINE

Recall the graphics pipeline shown again in Figure 2.12 below.

Model World View Clipping Screen
Coordinate 1 Coordinate | Coordinate , Coordinate ., Coordinate
Space ! Space ! Space ! Space } Space

i i ! }
!	
!	
!	
} } }	
. ! li viewin Hi n Surf	
Object i Compose ! Clip to viewing ! dden Surface !	
Definition —> Scene —»	volume and —» Removal and pF——>
€ i	project to 2D
! ! ;Dlsplay	
!	
!	
!	
!	
} } }	
World View Clipping Screen

Coordinate Coordinate Coordinate Coordinate
Transformation Transformation Transformation Transformation

Rasterizer

Figure 2.12: Example Graphics Pipeline(1)

In a graphics pipeline, objects are stored in a suitable format that allows easy execution of
affine geometric transformations. The polygon meshes discussed in Section 2.1.3, are one such
modeling technique that allows objects to be converted to different coordinate systems quite
easily. Using these mesh models, it will be shown that objects can be converted to a variety of
coordinate systems for processing in the graphics pipeline. The end result of the pipeline being a
two-dimensional projected image on a raster display. The rest of this section goes through each
stage of the graphics pipeline and explains all the operations that take place in each stage.

26

2.2.1 Object Definition

In the object definition stage of the graphics pipeline, polygon mesh objects are each
stored in their own local coordinate system (also known as model coordinates). Figure 2.13
shows an example of a unit cube defined in the model coordinate system. Note that one of its
corners is lined up around at object coordinates origin. This origin is known as the object’s
control point. All scaling, rotation and translation of this object will be done centered around

that point.

A Y axis

Z Axis

Figure 2.13: Cube in Object Coordinates

Given objects such as these, a geometric transformation can be used to convert objects in model
coordinates to the world coordinate system. To make this transformation, each object is
associated with scaling, rotation and translation factors. These factors are the same as the S, R
and T matrices defined in Equation 2.9 and Equation 2.11. Using these equations a 2D or 3D
object in model coordinates can be placed with any position or orientation within the world

coordinate system.

27

2.2.2 Scene Composition using World Coordinate Transformation

Objects modeled in their own independent model coordinate system can then be placed in
the world coordinate system by a simple geometric transformation. The world coordinate system
represents each objects relative position to one another in the virtual world. Figure 2.14 below
shows two unit cubes modeled from their model coordinate description in Figure 2.13 placed in

world space at coordinates (4,2,1) and (1,0,4).

4 Y axis R ittt 1
I 7z |
Ve 7 |
s | s |
A P,
e e
| | |
I
| | |
| ! |
!)
| ————-r—=
| //(4,2,1) | Y
|// I//
b v
X axis
ST T T T al
7 7
7/ Ve
/ | 7 |
e
I ! I '
I ! I '
| ! | 'l
| ,'——__.I____
A I
1,7 1,7
b v

Z AXis

Figure 2.14: Cubes in World Space Coordinates

The geometric transformation for converting an object from model coordinates to world
coordinates is identical to the matrix transformations in Equation 2.9 and Equation 2.11 for 2D
and 3D objects respectively.

In this stage of the pipeline, objects can be animated by varying the translation, scaling
and rotation values in the world transformation matrix. Varying over time will give the viewer a

sense of an object moving on the screen. In this stage, lighting and shading can be implemented

28

if desired. These features will not be discussed here because the requirements for this design

only necessitate wireframe graphics where lighting and shading are not necessary.
2.2.3 View Coordinates and the View Transformation

In computer graphics, viewing coordinates or the viewing coordinate system can be
conceptualized as a camera pointed in a defined direction. The camera is positioned at a point
within the world coordinate system called the viewing reference point (VRP) and is given a
direction called the view plane normal (VPN). Figure 2.15 below shows the system in world

coordinates.

X axis

VRP

V/

> Y axis

Z axis
Figure 2.15: Viewing Point with Viewing Direction in World Coordinates

Using the VRP and VPN, the world coordinates can be transformed to viewing coordinates. The
necessity for view coordinates is that certain operations, such as clipping, are more conveniently
implemented in the view space.

At a minimum, a viewing system must have the following features. First a viewing

system must have a vector which establishes the viewer position and direction within the world

29

coordinate system. This has already been defined in Figure 2.15 as the view reference point
(VRP) and view plane normal (VPN) vector. Second, a view normal plane (VNP) must be

defined a distance (d) from the VRP. This is shown in the Figure 2.16 below:

X axis

h

VRP

Z axis

Figure 2.16: Viewing plane

The viewing plane is used to project the 2D image of the 3D scene. Third, using the VRP and
VNP and a perpendicular vector to the VPN, the view up vector (VUP), a view coordinate
system with a center at the VRP and normal to VNP is defined. This is shown below in Figure

2.17.

30

X axis

> Y axis

Z axis
Figure 2.17: View coordinate system.

Lastly, the VRP and VNP combine together to form a view volume. This volume will be used in

clipping objects outside the field of view. As will be shown later, the viewing volume has well

defined planer intersection equations that makes clipping more convenient and justifies the use

of view coordinates. The view volume is shown in Figure 2.18.

X axis

?

View
Volume

Z axis

Figure 2.18: View Volume

31

Using this viewing system, the view reference point can be positioned anywhere in the world
coordinate system and pointed in any direction.

Now that the notion of the viewing coordinate system has been explained, the affine
geometric transformation used to convert from world coordinate space to view space will be
presented. To do the conversion, a composition of two matrices is required. The first
transformation matrix is a translation matrix and is used to move the view reference point in the
world coordinate system to the origin of the view coordinate system. Second a rotational
transformation matrix is used to align the view plane normal with the z axis of the view
coordinate system. The composed transformation matrix is shown below:

M =R(6,,6,.6,) T(-c,.~c,~c,)

ro T T O[[1 0 0 -—c
M = e b n, O . 010 -c,
ry Iy I, 0[]0 0 1 -c,
0 0 0 1]/j0 0 0 1

fo Tor Too —Cylg — Cy o1 —C, I,
e Ny T —GChp-— Cy r, —C,hy
lo Ty Ty —Cily— Cy Iy —C, Iy
0 0 O 1

Equation 2.12: View Coordinate Transformation

Note that the rotational matrix R(6z,6x,0y) elements are substitutions for the mixed cosine/sine
functions in Equation 2.10. This matrix can be used to move objects to the new view coordinate
system defined by axes (U,V,N) shown in Figure 2.19. The figure shows this new coordinate

system with respect to the world coordinate system before the transformation.

32

4 Y axis
V axis
) N axis
—~
% NI ~ / I
~ I
VRP - 6x G
! ./ ll Y‘l >
-
ICy /cz — 7 / Z axis
/ - oy '/
le =
Cx
U axis

X AXxis

Figure 2.19: Viewing coordinate system defined with World coordinate system.

The result of the transformation has the VRP at the origin, the VPN going straight down the Z
axis and the VUP perpendicular to the VPN. The resulting view coordinate system (U,V,N) is

shown below:

33

N axis

VUpP

> U axis

View Plane

View
Volume

pm—————————

V axis

Figure 2.20: Viewing Coordinate System

Now that the viewing coordinate system and view volume have been defined, the scene can be
clipped against the view volume and projected onto the view plane.

Projection takes the 3D view and projects it onto a 2D projection plane, much like a
movie projector and a projection screen. There are two forms of projection, parallel and
perspective. Both projection types have a center of projection (COP), but the projection type is
determined by whether the projectors are parallel or join together to form a single point. Both

parallel and perspective projections are detailed below.

2.2.4 3D Projections and the Clipping Transformation

The next coordinate space in the graphics pipeline shown in Error! Reference source
not found. is called the clipping coordinate space. It is called this because this is the space

where all clipping against the view volume will take place. This space exists because it both

34

simplifies the clipping process and projects a 3D image to a 2D plane. The clipping process is

discussed in the next sub-section while 3D projections are discussed here.

Model World View Clipping Screen
Coordinate 1 Coordinate | Coordinate , Coordinate ., Coordinate
Space ! Space ! Space ! Space } Space

I i |
| | | |
| 1 ! !
| 1 ! !
1 ! ! !
. ! li viewin Hi n Surf
Object i Compose ! Clip to viewing ! dden Surface !
e > —»| volume and —» Removal and pF——>
Definition ! Scene |) | ot [
| ! project to 2D ! Rasterization IDisplay
| 1 ! ‘
! ! ! :
| | ! ‘
| | ! !
I | | !
| 1 ! !
| 1 ! !
| 1 ! ‘
World View Clipping Screen

Coordinate Coordinate Coordinate Coordinate
Transformation Transformation Transformation Transformation

Rasterizer

Figure 2.21: Example Graphics Pipeline(6)

The complexity of viewing 3D objects comes from the fact that the objects are described
in three dimensions while a computer screen is only two dimensions. To deal with this mismatch
between the three dimensional world and the two dimensional screen, the concept of projections
are used. A projection is the process of reducing the number of dimensions for a given
geometric object. This section details what projections are as well as how to project a 3D
environment to a 2D screen.

The types of projections that are dealt with here are planar geometric projections meaning
that the objects are projected onto a flat plane as opposed to a curved surface. By projecting onto
a flat plane, the equations needed to perform the projection can be greatly simplified. There are
two types of planar geometric projections dealt with here, parallel and perspective. Parallel
projections have a center of projection (COP) with a distance of infinity from the projection

plane known as the far clipping plane. In parallel projection, the projectors (lines that intersect

35

with the COP) are all parallel with each other, hence the name parallel projection. This forms a

cubic viewing volume that is shown in the Figure 2.22.

Projectors

COP at
Infinity

Y

Projectors

Viewing
Volume

Figure 2.22: Parallel Projection

Perspective in contrast has a finite distance between the center of projection and the
projection plane. All of the projectors in perspective projection intersect at the COP and extend
outward to the projection plane. This forms a cut off pyramid viewing volume which is shown

below.

Projectors

Ccop

Projectors
Viewing

Volume

Figure 2.23: Perspective Projection

36

The difference between these projection types as well as what they are used for is
discussed below. This sub-section goes into more detail on the projection types and their
differences and presents the transformation matrices necessary to convert from view coordinates

to clipping coordinates for each projection.

2.2.4.1 Perspective Projection

Perspective projections are similar to that of how the human eye perceives the world.
This effect is known as perspective foreshortening whereby the size of an object varies inversely
with distance that the object is from the center of projection. These projections while useful for
making realistic looking scenes are not useful for engineering applications which require
measuring the size and length of object in 3D (this is where parallel projections come into play).

Figure 2.24 below shows a single point perspective projection from two different views.

z-axis vanishing point

B
L

, i

z-axis vanishing point >

F

Figure 2.24: Perspective Projection (7)

37

In a perspective projection, a set of parallel lines, such as the ones in the cube shown above,
converge at a point in infinity. This point is known as the vanishing point which just so happens
to be the same point as the center of projection (COP). In general, parallel lines in perspective
projections only meet at infinity. If the parallel lines are parallel to the z-axis this vanishing
point is known as the principle vanishing point. The figure above has a single principle
vanishing point, and hence is known as a single point perspective projection.

Figure 2.25 shows how a perspective projection point is derived. P(Xx,y,z) defined in the
view coordinate system is to be projected onto the projection plane a distance d from the center
of projection which is normal to the z axis. Point P, is the projection of this point on the
projection plane. The projected point P, is a two dimensional vector projection plane. The
mathematics for perspective single point planar geometric projections can be made fairly simple
by making a few assumptions. First it is assumed that the projection plane is located at distance
defined by d shown in Figure 2.25. It is also assumed that the center of projection is located at
the origin of the viewing coordinate system. In the figure below the center of projection is at the

origin of the coordinate system and the projection plane is parallel with the z axis.

i Projection '
T— B i
plane d Projection
plane
P{XJ }". z} d
: ' ’ —e Z
G Op sy 0 Ve |
g Y,
- > Z x axis £ Plx, y, 2)
e
d Projection
¥ plane

Figure 2.25: Perspective Projection (7)

38

The object of perspective projections is to find the point Py, which is the point where point P
intersects the projection plane. In order to find this point, the ratio of similar triangles can be

used. These ratios and the solutions for x,and y, are shown below.

X _X Yo _ Y

d z d z
d-x X d-y y
X =—=— = =
Pz z/d Yo z z/d

Equation 2.13: Similar Triangle Rations with solutions for x and y (7).

Just think of the distance d as a scale factor while the z axis causes a closer object to appear
larger and further object to appear smaller. The similar triangle equations in Equation 2.13 can

be expressed as a single transformation matrix:

o O O B+
o O —~ O
o O O O

1/d

Equation 2.14: Perspective Projection Transformation Matrix (1)

2.2.4.2 Parallel Projection

Parallel projections in contrast to perspective projections do not mimic the human visual
system. Object’s sizes in a parallel projection do not vary with depth but instead stay constant.
Parallel projections are useful for engineering applications which require measuring the size and

length of object in 3D.

39

Figure 2.26 displays an example of a parallel projection.

plane
{top view)
|

// | Projectors for
=1 side view -~

Projectors A -~
for top view /

‘ ‘ Projection

/ Projection
el plane
/ ‘ (side view)
Projectors for

i) front view

Projection

plane

(front view)

Figure 2.26: Parallel Projection (8)

It can be seen in Figure 2.26 that all the relative lengths of all the sides of the house are
preserved. This type of projection is very useful for cad tools and engineering schematics where
relative lengths and widths are important.

The parallel projection transformation matrix is fairly trivial. Since the center of
projection is at infinity, the distance from the projection plane is also infinity yielding the matrix

below.

o O O -
o O +» O
o O O O
O O O

Equation 2.15: Perspective Projection Transformation Matrix (1)

This matrix simply throws out all the z components in an object.
Using these projection techniques, an object can be converted from 3D coordinates to 2D

coordinates. Before projection is done, the pipeline clips the objects to the view volume. From

40

here the clipping coordinates can be mapped to the screen coordinates in a process known as

rasterization. An explanation of clipping is given in the next section.

2.2.5 Clipping

Clipping is the process of removing the parts of a scene that are outside the viewing
volume defined in Section 2.2.4. Clipping is important because it filters all non-viewable objects
from the graphics pipeline thus increasing performance of the overall system. Many clipping
algorithms exist to perform these operations. Since we are dealing with wireframes only, the
algorithm dealt with here is the Cohen-Sutherland line clipping algorithm (8). Cohen-Sutherland
clips a given line to a rectangular window in 2D or to a cubic or conic volume in 3D.

The key to this algorithm is the initial tests that are performed on each line. First,
endpoints are checked for trivial acceptance (the line lies completely in the clipping window or
volume). If the object cannot be trivially accepted the object is checked if it can be trivially
rejected (the line lies completely outside the clipping window). If a line segment can neither be
trivially accepted or rejected then it must be divided into two lines at the edge of the clipping
window or volume. These new lines are than checked for trivial acceptance or rejections. If the
new lines are not either trivially accepted or rejected the process continues until one line is
trivially accepted and the other is trivially rejected. The following sections give a detailed

explanation of Cohen-Sutherland clipping in both 2D and 3D.

2.2.5.1 Cohen-Sutherland Two Dimensional Clipping
In a 2D graphics pipeline the Cohen-Sutherland clips a line against a rectangular window.

The algorithm divides a 2D space into 9 separate regions. These regions are used to determine if

41

a line can be trivially accepted, trivially rejected or if the line needs clipped. The regions are

shown in Figure 2.27 .

1001 0001 0101
Clipping
Window
1000 0000 0100
1010 0010 0110

Figure 2.27: Clipping Region Definitions.

From the figure above it can be scene that the nine regions can be defined as a four bit
outcode. A four bit outcode is defined for each point of a given line. The outcode bit

assignment is shown in the table below.

Table 2.1: 2D Outcode Assignment Table

Bit Number Location of End Point Conditional

First Bit Above Clipping Window if y > ymax then set bit to 1 else 0
Second Bit Below Clipping Window if y < ymin then set bit to 1 else 0
Third Bit Right of Clipping Window If X > Xmax then set bit to 1 else 0
Fourth Bit Left of Clipping Window if X < Xmin then set bit to 1 else 0

For example, given a general line defined by po = (Xo, Yo) and p1 = (X1, y1) the algorithm
can be defined in these steps.
1. Compute the outcodes called OCyand OC; for both points py and p;.
2. If OCy bitwise OR OC; = 0000 then the line is trivially accepted and the line is
passed to the next stage of the pipeline.
3. If OCy bitwise AND OC; = 0000 then the line is trivially rejected and the line is

dropped and not passed to the next stage of the pipeline.

42

4. Otherwise, then the line’s non visible portion must be clipped.
Step 4 requires the intersection points with the clipping window to be calculated. Parametric
equations can be used to calculate the intersection of a line by introducing a new dimension (t).
These new parametric line equations can be used to determine the intersection points with each

side of the clipping window. The equations are shown below.

X = X, + (X, — X,)
Y=Y +t(Y1_yo)

Equation 2.16: 2D Parametric Equations

Solving for t on the extreme of each clipping window yields four intersection equations. Below
is a table which shows how to calculate the new x and y coordinates for a clipped line based on

the edge intersected.

Table 2.2: 2D Clipping Intersection Equations

Clip Edge Solve for t Edge intersection equations.

Y = Yo ¢ — Y = o) x = %, + %= % Ynas = Yo)
Y1i— Yo Yi— Yo

Y = Ymin t:(ymin_yo) X:XO+(X1_XO)(ymin_y0)
Yi—Yo Yi—=Yo

X = Xmax t = (Xmax — XO) y=Y,+ (yl —Yo)(Xmax — XO)
X =% X =%

X = Xmin t= (Xmin — XO) Y=Y, + (yl — yO)(Xmin — XO)
X=X X =X

Based on the bits set in the outcode the appropriate edge intersection equation is used to acquire
the new x and y coordinates where the line intersects the clipping edge. These new points are
then put through steps 1 through 4 once again. If the line is trivially accepted clipping is

completed, otherwise steps 1 through 4 are repeated until trivial acceptance occurs.

43

An example of clipping can be seen in the Figure 44 below. With line KL both points K
and L have an outcode of 0000 because both points are in the clipping window. This line will be
trivially accepted. With line MN point M has an outcode of 0110 and N has an outcode of 0100.
The bitwise AND of M and N’s outcode yields 0100 which is not zero and hence the line should
be rejected.

For the first non-trivial cases AB needs to be clipped. Looking at the figure, the resulting
outcode of line AB will be 0000 for A and 1001 for B. The logical OR of the outcodes of A and
B are not zero and the logic and is zero therefore the line can be neither trivially accepted nor
trivially rejected. B’s outcode of 1001 indicates that it is above and to the left of the clipping
window. Since B’s outcode has two bits set either the ymax intersection equation or the xmin
intersection equation from Table 2.1 must be used to calculate the intersection. If ymax’s
calculation is done first the new line will be AD and the new resulting outcode for D will be
0000. Since A and D have an outcode of 0000 the line can be trivially accepted. On the other
hand if xmin’s intersection equation is calculated first then the new line will be AC and C’s new
resulting outcode will be 0001. AC bitwise OR of their outcodes yields a non-zero value of 0001
and hence another iterative step of clipping must occur. Once again the ymax calculation is done
on AC vyielding the new line AD. This is the same line as when the ymax edge intersection
calculation is done first. Note that order of the edge calculation has no effect accept for the fact

that if the wrong one is selected then additional steps must be taken.

44

D o J
Clipping
Window
N

Figure 2.28: Illustration of 2D Cohen Sutherland Clipping.

Line EF is the most complicated case in which both endpoints lie at diagonal corners of
the clipping window. In the worst case all four edge calculations may need to be done where as

in the best case two edge calculations need to be done.

2.2.5.2 Cohen-Sutherland Three Dimensional Clipping
Cohen-Sutherland clipping can be easily extended to 3D. Instead of a clipping window,
in 3D a clipping volume is used. 3D clipping is different based on the projection type. In the

case of parallel projection, the clipping volume is a 3D cubic.

45

Projectors

) ///l //;I
- -

|

|

|

|

|

|

|

|

>

COP at

|
I
I
I
Infinity |
I
I
l
I
I

~,

\

\
[
\

\
\
\
\
\
\
\

Projectors

Near Clipping Far Clipping
Plane Plane

Figure 2.29: Parallel Projection

In the case of perspective projection, the clipping volume is a 3D pyramid.

Projectors

copP

Near Clipping
Plane

Projectors

Far Clipping
Plane

Figure 2.30: Perspective Projection

Parallel projection clipping uses a six bit outcode with a unit clipping cube. The

parameters are shown below in Table 2.2.

46

Table 2.3: 3D Parallel Projection Outcode Assignment

Bit Number | Location of End Point Conditional

First Bit Above the Clipping Volume ify>1thensethittolelse0

Second Bit Below the Clipping Volume if y <-1then set bitto 1 else 0
Third Bit Right of Clipping Volume if x> 1thensetbitto 1else 0

Fourth Bit Left of Clipping Volume if x <-1then set bitto 1 else 0
Fifth Bit Behind the Clipping Volume ifz<-1thensethitto1lelse 0
Sixth Bit In Front of the Clipping Volume if z>0then set bitto 1 else 0

Perspective projection has an six bit outcode which varies with the depth within the conical view

volume, hence the z values within the conditionals.

Table 2.4: 3D Perspective Projection Outcode Assignment

Bit Number | Location of End Point Conditional

First Bit Above the Clipping Volume if y > -z then set bitto 1 else O
Second Bit Below the Clipping Volume if y <zthensetbitto1else 0
Third Bit Right of Clipping Volume if x> -z then set bitto 1 else 0
Fourth Bit Left of Clipping Volume if x <zthensetbhitto1else 0
Fifth Bit Behind the Clipping Volume ifz<-1lthensethitto1lelse 0
Sixth Bit In Front of the Clipping VVolume if Z> Zpin then set bit to 1 else 0

A 2D line is trivially accepted if both endpoints have an outcode of all zeros and trivially
rejected if the bit by bit logical AND of both points does not yield zero. 3D is no different
except the clipping volume is defined by six planes as opposed to four edges and 27 unique
sections exist as opposed to nine.

The intersection calculations for each of the six sides of the viewing volume can be found
once again using parametric equations. Assuming a line from Po(Xo,Yo0,20) t0 P1(X1,y1,21) the
parametric equations is described as such:

X=X, + (X = X;)

Y=Y, +t(Yl_YO)
z2=17,+t(z, - 2,)

Equation 2.17: 3D Parametric Equations

47

Solving for t on the extremes of the clipping volume yields six planar intersection equations.

Below is a table which shows how to calculate the new x, y and z coordinates for a clipped line

based on the plane intersected in both parallel and perspective projections.

Table 2.5: 3D Parallel Projection Clipping Intersection Equations.

Clip Edge Solve for t Planar intersection equations.
v=1 7 I IV RS (o' N ORT Y ()
Yi—=Yo Yi— Yo Z, -1,
y=-1 tzﬂ X:XO+(X1_X°)(_1_ YO) 7 0+(21_Zo)(1_yo)
Yi—Yo Yi— Yo Z,—1Z,
x=1 tz(l__XO) y=y0+(y1_yo)(1_xo) 7= 0+(21 21— %)
X — X, X — X, X =X,
x=-1 t:ﬂ y:y0+(y1_yo)(_1_xo) Z=ZO+(Zl_Z°)(_1_X°)
X =Xy X, — %o X=X
z=-1 t = (_1_20) X =X, + (Xi_xo)(_l_zo) y = YO"'(y yO)(_l_Zo)
Z, -1, 7, — 1, Z, -1,
z=0 R X:XO+M y:y0+(y1—yo)(—zo)
4~ 1 4, — 1, 2, — 1
Table 2.6: 3D Perspective Projection Clipping Intersection Equations.
Clip Edge | Solve for t Planar intersection equations.
y=-2 t= (_Zo_yo) X=XO+(X1_XO)(_ZO_y°)Z=ZO (21 o)(Z)
(Y1_YO)+(21_ZO) (yl_yO) (Zl_ZO) (y1) ()
y=12 t= (ZO_yO) X=X, + (X1 Xo)(yo) z=17,+ (21 Zo)(zo o)
(V- o) - (2 - 2) (1= ¥o)— (2 - 2) (v~ ¥o)- (2.~ 7,)
X =-z (o (=25 —%,) Y=y, + (y, yo)(Zy — %) z=zo+(zl_z)(Zy — %)
(X1_Xo)+(z1_zo) (Xl Xo) (Zo) (Xl Xo) (Zl_ZO)
X=z t= (Zo—Xo) Y=y, + (yl yo)(z XO) 7-7,+ (1 0)(ZO—XO)
(X1_Xo)_(z1_zo) (Xl_xo) (Z Zo) (Xl_XO)_(Zl_ZO)
z=-1 t:ﬂ X:XO+(X1_X°)(_1 Zo) y:y0+(y1_YO)(_1_Zo)
I L~ 1 Z,— 1,
Z = Zmin t:M X:XO+(X1_X0)(Zmin_Zo) y:y0+(y1_y0)(zmin_zo)
Z,— 1, 7, -1, z, -1,

48

Once an object is projected and clipped it can then be rasterized onto the screen. This
requires transforming the object’s endpoints from 2D projected coordinates to display specific
screen coordinates. Using these screen coordinates, the rasterizer handles filling in the pixels on

the display.

2.2.6 Screen Coordinate Transformation

Screen coordinates are the actual coordinates of the pixels in a particular raster display.
The screen coordinate transformation tells the graphics pipeline how to map clipping coordinates
onto a raster screen. Generally, this is display dependent and the screen transformation matrix
parameters will depend on the display size and type. The figure below shows an example of a
square transformed from clipping coordinates to screen coordinates. Note that in Figure 2.31,
the unit square in clipping coordinates becomes a rectangle in screen coordinates. This is meant
to reflect the fact that most displays have more pixels in the horizontal direction than in the

vertical direction.

Y Clipping Window \
A A Computer Screen
(Xmax,Ymax)
(Umax,Vmax)
i . » U
(Xmin,Ymin) » X (Umin,Vmin)
Clipping Coordinates Screen Coordinates

Figure 2.31: Clipping to Screen Coordinates

Where the x,y coordinate system is defined in the clipping space and the u,v coordinate system is
defined in screen coordinates. Clipping to screen coordinates requires a scaling transformation

49

to map the coordinates within the ranges xmin to xmax and ymin to ymax to their respective
screen coordinates. This scaling transformation is based on the relative ratios of the length and
width of the clipping coordinates and the screen coordinates.

In an arbitrary screen translation where the x,y,u and v minimum and maximum values
can be any value, the below matrix transformation can be used to transform between clipping and

screen coordinates.

M screen T (U min + Vmin) S(L)imax ~Hnin, Ve = T J T(_ Ximin '_ymin)

)
max — Xmin Y max ™ Ymin

u —-u,. . u u. .
max min 0 0 - X - max min u_ W
Xinax ~ Xmin Ximax ~ Ximin
Vv -V . Vv V..
M creen = 0 max min 0 - Yoo max min Vo
Ymax ~ Ymin ymax ~ Yin
0 0 1 0
0 0 0 1 |

Equation 2.18: General Screen Transformation Matrix

The two translation matrices T(-xmin,-ymin) and T(umin,vmin) are used to center the object in
each coordinate system. This calculation can be greatly simplified by taking advantage of the
fact that screen coordinate minimums can start at zero as well as using the clipping window
values discussed in Section 2.2.5. Taking in consideration each of these facts, the following

replacements can be made.

50

u

min — Vmin = O

Xmin = Ymin = -1

M screen T (U min ’Vmin) S[

M screen = T (O’O) ’ S(

M

screen

umax

max Umin

Vma

x ~ Venin

X

—Unin Vinax

)
max — Xmin Y max ™ Ymin

-V

max ~ Ymin

Xay — X

max min

0

0
0

0
Vinax = Vimin
Ymax = Ymin

0

0

0

0
1
0

Xmax ~ Xmin

Vinax = Vmin

Ymax — Ymin

e

in j T(L1)

Xmax — Xnin ymax_ymin

Umnax — Unin

Xinin 1™ Y min)

Equation 2.19: General Screen Transformation Matrix

Note, scaling from clipping to screen coordinates can result in non uniform scaling factors which

result in a distorted object. This can be seen in Figure 2.31 where the cube object after scaling

looks more like a rectangle. This is shown because most computer display has a wide aspect

ratio where the width of the screen is greater than its height. This issue can be addressed in the

projection transformation where scaling factors can be added to the transformation matrix to

counteract the phenomena.

Once the objects are converted to screen coordinates, given that a raster display is

quantized, the decimal portions of the object’s points can be either truncated or rounded. This

effectively converts all floating point numbers to an integer representation which can be taken

advantage of in Bresenham’s line algorithm discussed in the next section.

2.2.7 Rasterization

Rasterization is the process of converting graphics objects to pixels that lie on a 2D grid.

Since this design deals only with wireframes, line rasterization is all that is necessary to

o1

implement. The most common line rasterization algorithm is Bresenham’s Line Algorithm (9).
Bresenham’s Algorithm provides a close approximation between the actual line and what is
displayed on the screen. This algorithm is efficient using only integer addition and bit shifting.

Since real numbers are used to represent objects and there are only a discrete number of
pixels in a display, there will be small errors in representation of a line. This is known as
aliasing, and can be reduced with anti-aliasing filters. Anti-aliasing filters, while not in the
requirements of this design, are smoothing functions which convolve the surrounding pixels of
any given pixel to interpolate what the intensity of each pixel should be.

Anti-aliasing aside, the Bresenham’s line algorithm assumes two independent end pixels

Po(Xo,Y0) and P1(X1,y1). An example of a line such as this is shown in Figure 2.32 below.

A

~.
Pa(xmyu)\\

| N
Siope \
between
Oand 1

Pi(f1y1)

Figure 2.32: Rasterized Line(10)

The equation of the line above is:

Equation 2.20: General line equation through two endpoints.

52

In Bresenham’s algorithm, the x component is incremented for every raster row. Knowing this

fact we can solve for y by adding y, to both sides.

_yl_yO _
y__Xl_XO (X X0)+yo

Equation 2.21: Line equation solved for y
Bresenham’s algorithm calculates y as the x component scrolls across the line. Using the y
calculated the closest y is chosen.
With the basic Bresenham algorithm, the problem is limited in two ways. First, the slope
of the line (M) is restricted to a negative slope between zero and one. Making this assumption,
the line drawing routine always increments x as it plots from the starting point to the end point.

Figure 2.33 below shows a line plotted given these assumptions.

[E| + M|

Y-1

X X+1

Figure 2.33: Bresenham’s Line Algorithm Diagram(11)

Limiting the algorithm in this way leaves the algorithm with a limited number of options
as to where to put the next pixel as it traverses the x axis. The choices for the next pixel are
either (x+1,y) or (x+1,y-1). At this point the algorithm decides which pixel should come next.

Moving from x to x+1 the y coordinate is increased by an amount equal to the slope of the line

53

(M). Since the real value of y and the quantized value of y in the raster display will usually not
be equal. In this case the error (E) is associated with each y coordinate where the real y
coordinate is y+E. This error lies between -%2 and %. The next point should be the one with the
smallest error. If the currenty + % > -(y+E+M) then the error is less than the half way point
between the current y coordinate and the next coordinate y-1. In this case, select (x+1,y) as the
next pixel.. Otherwise, the error is big enough that the next y is below the half way point
between the current y and the next coordinate y-1 so select (x+1,y-1). After each point is
calculated, the error is updated depending on which point was plotted. If (x+1,y) was plotted
then the error is only increased by the slope (E+M) else if (x+1,y-1) is plotted then the error is
increased by the slope plus one (E+M+1). The pseudo code below shows what is described

below:

E=0; y=Yyo;

dX=X1-Xo; dy=Yi-Yo;

YStep = -1

M=dy/dx;

For x from Xo to xi loop
Plot(x,y); // Plots a point on the raster display.
if (E + M<0.5) then

E =E + M;
else
y=y+Ystep;
E=E+M-Ystep;
end if;
end for;

Figure 2.34: Line Rasterization Pseudo code.

This line algorithm works great for lines with a negative slope between zero and one, but what
about lines with other slopes. The solution lies in simply changing the order of the end points or
swapping the x and y coordinates. By doing this, all lines can be rasterized in the same way.
Figure 2.35 shows what coordinates need swapped and what the Y step polarity should be for

each octant in the graph.

54

-1>M>-c0 1<M<w
Y1<Y0 YO<Y1
Swap(X0,Y0) Swap(X0,Y0)
Swap(X1,Y1) Swap(X1,Y1)
0>M>-1 Y Step=-1 Y Step=1
X1<X0
0<M<1
Swap(X0,X1) X0<X1
Swap(Y0,Y1) ¢
Y Step =-1 Y XLY1 Y Step=1
0<M<-1
Swap(X0,X1) _
Swap(Y0.Y1) M Y Step=-1
Y Step =1 -1>M>-o0
Y1<YO Y1<YO
Swap(X1,Y0) Swap(X1,Y0)
Swap(X0,Y1) Swap(X0,Y1)
Y Step =1 Y Step =1

Figure 2.35: Slope Octet Ranges

Using this algorithm the final set of the pipeline is complete. Pixels can now be sent to

the computer monitor to be displayed. The next section will use all the mathematical principals,

transformations, and graphics operational algorithms to present a FPGA prototype design which

meets the requirements set forth in the interdiction.

55

3.0 THE GRAPHICS PROCESSING UNIT

In Section 2.0 a background on computer graphics was presented. The background
information consists of various algorithms used for rendering objects within a virtual scene.
These algorithms relate directly to the requirements presented in Section 1.2. Today, most
commercial graphics processors are designed using custom designed ASICs. The purpose of this
section is to present a GPU design which can be efficiently implemented on FPGA technology.

Before the design is presented, recall the design requirements from Section 1.2 relisted
below:

e Graphics processing engine capable of rendering in both 2D and 3D.

e Rendering of wireframe objects.

e Support for a free roaming point of view (or camera) in 3D.

e Support standard display interfaces.
These requirements constitute a fully functional graphics processing unit. Given these
requirements and based on the computer graphics overview given in Section 2, a set of design
specifications can be derived. The functional specifications to implement the graphics
processing requirements are listed here:

e Geometric transformation engine capable of scaling, rotation and translation of

objects in a 3D or 2D environment using floating point arithmetic.

e Projection of 3D objects on to a 2D surface.

56

e Clipping of objects outside the screen’s viewing area.

e Wire frame rasterization.

e Standard VGA/DVI display interface.

e Control interface for manipulating graphics objects.
In addition, some general performance constraints to aim for are put in place. The performance
specifications are listed here.

e Geometry engine which can process around 8 million polygons per second for 3D

and 24 million lines per second in 2D.

e Pixel fill rate of 100 million pixels per second.

e Support a standard VGA resolution of 640x480 at 60 frames per second.

e Support for 262,114 colors (18 bit color).
Note that these performance specs are much lower than today’s top of the line commercial
offerings. For instance, the Geforce 8800 GS (2) supports resolutions up to 1920x1080 and has a
pixel fill rate 26.4 billion pixels per second. Far greater than what is being aimed for here. This
is acceptable because this thesis is just testing the feasibility of an FPGA graphics based design,
not aiming to compete with today’s top of the line graphics processors.

In order to satisfy these specifications an architecture which is feasible to implement in
an FPGA must be derived. Recall from Section 2.0 the generic graphics pipeline discussed
shown again in Figure 3.2. The pipeline requires design for the transformation matrices to go
from coordinate system to coordinate system. In addition, special purpose logic is needed to
accelerate both clipping and rasterization. Also, a method for configuring the transformation

matrices and storage mechanism for the graphics objects.

57

World View Clipping Screen

Model . . .
Coordinate } Coordinate } Cogrdmate } Cogrdlnate } Cogrdlnate
Space | Space ! pace ! pace ! pace
| | |
} ! | |
I ! I |
I ! I |
I ! I |
| | | |
. [Clip to viewin Hidden Surface
Object 1 | Compose N 9 N |
o > —»| volume and —»| Removal and p——>
Definition I Scene | . | R |
! | project to 2D | Rasterization iDisplay
i | | |
| ! | |
| ! | |
I ! | |
| ! I |
| ! | |
! 1 1 1
! I I I
World View Clipping Screen
Coordinate Coordinate Coordinate Coordinate
Transformation Transformation Transformation Transformation

Rasterizer

Figure 3.1: Graphics Pipeline(1)

A design which can handle all these operations efficiently needs hardware acceleration of
the entire GPU pipeline. This is because the GPU pipeline is where the bulk of the calculations
are done. The GPU pipeline requires hardware acceleration for both the matrix transformations
as well as Cohen-Sutherland clipping to perform efficiently at 60 frames per second. A hardware
accelerated Bresenham’s line algorithm is also needed. An implementation of this algorithm in
hardware requires frame buffering to be implemented efficiently. This is because raster displays
expect the values for each pixel to be driven out according to the display’s timing specs.
Another fact is that each pixel is only driven out once making pushing each object to the display
one at a time impossible. To get around this issue using a frame buffer allows all the objects in
the virtual scene to be updated with the final scene with all the rendered objects stored in the
buffer. From there the image can be driven out to the display properly. Another issue that needs
to be handled is storage of graphics objects as well as how they are sent to the GPU pipeline. A
simplistic way to handle this is to use a central control processor to store and manipulate the
graphics objects in a scene and when required, drive these objects to the graphics pipeline.

58

The resulting top level architecture that was developed to meet all these requirements is shown in

Figure 3.2.
Program e
Mer?mr Buffereing
y Memory
FPGA
Bus L i
o GPU Pipline el Display
cher Control
< Peripheral Registers
Control g

Figure 3.2: GPU Top Level Block Diagram

The GPU in Figure 3.2 needs to be able to process graphics objects as quickly as
possible. Though many of these operations could be done using a general purpose CPU using
software, the matrix transformations, clipping operations, and wire-frame rasterization discussed
in Section 2.0 require many floating point multiplications, additions and divisions. Floating
point operations such as these take many cycles in a general purpose CPU. This fact makes
implementing these operations in software for real-time graphics processing of complex scenes
unrealistic with CPUs. To achieve the performance specifications, hardware acceleration of the
matrix transformations, clipping operations and rasterization is necessary. The GPU implements
these complex operations using hardware acceleration. The GPU pipeline also handles driving

out the images to the display interface at 60 frames per second as required in the specs. Lastly, a

59

frame buffering memory is required to hold a complete frame of data which is to be driven out to
the display. The frame buffer allows alterations to be done to the current frame without effecting
what is currently being displayed over the monitor.

The matrix transformation required for graphics rendering necessitate many
trigonometric functions in addition to the floating point multiplication, additions and divisions.
This is because each transformation matrix has different matrix elements based on the function
of the transformation matrix. The CPU in Figure 3.2 aids in the calculation of these matrix
elements. Using the CPU for this purpose simplifies the hardware design. Implementing custom
logic for each of the different matrix element calculations would require a large amount of
custom logic as well as vastly increase the verification effort needed. Using the CPU does not
greatly affect GPU performance because the matrix elements for the transformation matrices, as
will be shown, only need to be updated either every frame or only once at power up. Using this
hybrid CPU/Graphics Pipeline approach provides a simplistic design that performs well and
takes up less area on the FPGA.

The CPU requires a method for interfacing to the graphics pipeline. Control registers are
used because they can be accessed easily by the processor as memory mapped 10. These control
registers are used to update the graphics pipeline’s transformation matrices as well as to push
new graphics objects onto the pipeline. The CPU also initializes any other peripherals via the
memory mapped IO registers.

In this section the high level GPU design above has been presented. The GPU is
designed with no particular development platform or FPGA vendor in mind making the design
easily portable to other FPGAs. In addition, this section goes in to further details on the how the

high level design in Figure 3.2 satisfies the specifications presented above.

60

3.1 GRAPHICS PIPELINE

Recall the pipeline presented in Section 2.0 and shown in Figure 3.3. This pipeline
shows all the necessary steps for converting a list of abstract defined graphics objects to
rasterized pixels on a computer screen. This section uses this pipeline as a basis for the FPGA

hardware pipeline presented here.

View Clipping Screen
World .
Model I c ; Coordinate Coordinate Coordinate
Coordinate | oordinate ! Space ! s ! S
Space ! Space \ P \ pace ! pace
| |
| I I I
! 1 1 1		
. ! Clip to viewin Hidden Surface		
Object i	Compose N 9 N	
e —»	volume and —» Removal and p—>	
Definition I Scene	.	R
!	project to 2D	Rasterization iDisplay
i		
‘ | | :
World View Clipping Screen
Coordinate Coordinate Coordinate Coordinate
Transformation Transformation Transformation Transformation

Rasterizer

Figure 3.3: Computer Graphic Pipeline(1)

The above pipeline requires many operations to be performed on a graphics object before
it is displayed on the screen. In order to render as many graphics objects as possible in the 60
frames per second window specified, a fully pipelined graphics engine was designed. A pipeline
maximizes throughput so that object rendering can occur fairly quickly. Also, other techniques
like clipping and the use of only wireframe rasterization improve the frame rate and increase the
maximum number of objects that can be rendered per frame. This pipelined graphics processing

unit is known as the graphics pipeline.

61

The graphics pipeline is the heart of the graphics processing unit. It takes objects
pushed in by the CPU and does world, view, projection and screen coordinate transformations. It
also handles clipping to the viewing volume and rasterizing the wireframe representation of the
objects defined. Lastly it handles buffering the rasterized data and then pushing out the correct
display interface signals in order to drive an external monitor. Figure 3.4 shows a top level

diagram of the 3D graphics pipeline.

: ; Screen 3D GPU
Configuration . S
Registers <I::‘> Coordinate Pipeline
Transform

View
Coordinate
Transform

<5

Clipping

<L

Clipping
Coordinate
Transfrom

<>

Screen
Coordinate
Transform

<=

Frame Buffer Displa:
(External Rasterizer ’1 Y
Memory) | — Interface

Figure 3.4: 3D Graphics Pipeline

The 2D graphics pipeline is very similar. The only difference is that in 2D there is no
notion of view coordinates and projection to 2D is not necessary. This is because a 2D image is
already in two-dimensions and can natively be displayed on a 2D monitor. These two blocks are

removed and the resulting pipeline is shown in Figure 3.5:

62

Screen 2D GPU
Space Pipeline
Translation

<

Clipping

<

Screen
Space
Translation

<%

Frame Buffer Rasterizer Displa
(External And A Intelﬁacye >
Memory) Frame Interface

Configuration [—
Registers —

Figure 3.5: 2D Graphics Pipeline

The screen, view, projection and screen translation matrices, can be handled by a common
matrix multiplication accelerator block. This is because, the CPU handles calculating the matrix
elements for each translation matrix. The elements for each of the four translation matrices are
what make each matrix unique. The matrix multiplication accelerator design is presented in
Section 3.1.1. The pipeline also handles clipping to the viewing volume using the Cohen-
Sutherland’s algorithm discussed in Section 2.2.5 and the design is presented in Section 3.1.2.
Bresenham’s algorithm is then used to rasterize the clipped objects and to push then to the frame
buffer. This design is presented in Section 3.1.3. Lastly, Section 3.1.4 discusses how data is

pulled from the frame buffer data and pushed to the display interface.

63

3.1.1 Matrix Multiplier Accelerator

Sections 2.2.2, 2.2.3, 2.2.4, and 2.2.6 overview coordinate transformations that all require
the multiplication by a transformation matrix. All of these transformations are required to
properly implement a geometry engine discussed in the design specifications. An operation
such as matrix multiplication can be a computationally expensive operation for a CPU to handle
in software. A 4x4 matrix multiplication requires 16 multiplications and 12 additions. Given
these facts and the fact that CPUs execute sequentially, the latency for a single matrix
multiplication can be hundreds of CPU cycles. To improve efficiency, matrix multiplication can
be implemented in hardware. Fortunately, multiplication of a matrix requires operations between
rows and columns of a matrix. These operations are independent and can be implemented in
parallel. Parallel operations such as these lend themselves to hardware acceleration.

The matrix multiplier accelerator block is used by the graphics pipeline to translate, scale
and rotate objects to different coordinate systems as discussed in Section 2. In 2D, an end point
of a line is defined by a homogenous vector which consists of a x value, a 'y value, and a
homogenous value w. Similarly, a 3D end point is also defined by a homogenous vector
containing an additional z value to the x, y and w values. Homogenous vectors are discussed in
Section 2.1.1. These vectors are multiplied by a transformation matrix which result is a
coordinate translation of the vector.

A matrix multiplication is a rather complex operation and if it was to be done all in a
single clock cycle, the FPGA resource requirements would be massive. The matrix

multiplication is depicted below.

64

X

Vx
13 Vy
Vz
Vw

Equation 3.1: Matrix Multiplication(6)

VMg +V, My, +V, My, +V, My,
VM +V,my +V,M, +V, M5
ViMyy £V My, +V, My, +V, My,
VMg +V, My, +V, My, +V,, My

As stated above, a single cycle matrix multiplication requires 16 floating point multiplies and 12

floating point additions. Such an implementation would have huge resource requirements. For

these reasons it was decided to use a four step matrix multiplier that utilizes resource sharing.

Figure 3.6 illustrates the matrix multiplier design.

Matrix
Multiplication

Write Enable
—

Write Data

Write Address
>

>

4x4
Dual Port Block Ram

Read Data

Optional
Normalizer

Shift
Register

>
>

Read Address

Vector Pop
G ——d

Vector Data,

Matrix Read¥

Pipeline
Controller

Vector
Data

Result
Counter

Result Valid

—_—

Result Back
Pressure

Figure 3.6: Floating Point Matrix Multiplication Block Diagram

Each matrix multiplication block contains a 4x4 dual port block ram. This ram is used to

store the contents of the transformation matrix with each address location storing an entire matrix

row. An external CPU is responsible for calculating the matrix elements and programming the

block ram by setting the write enable signal and applying the matrix data and address to the write

65

data and write address signals. The processor is also responsible for driving the matrix ready
signal when all the transformation matrix entries have been programmed. Once the ready signal
is received data can be retrieved by the pipeline controller from an upstream FIFO connected to
the vector pop and vector data signals. The pipeline controller is also responsible for controlling
selection of the matrix row to read from the dual port block ram. The data read from the RAM is
pushed to the floating point multipliers. The multipliers accept the vector data V and the matrix
row M(n) and multiply the appropriate component as shown in Equation 3.1. The multiplied
data is then pushed through two addition stages effectively adding all the products together. The
results of the additions are pushed into a shift register where each resulting component is stored
until all four components of the new vector are stored in the shift register. Once all four entries
are present in the shift register, result valid pulse is set and the new vector can be read. When
other operations such as clipping or rasterization need the raw normalized X, y, and z vector
coordinates from a matrix calculation, normalization is needed. The normalization consists of
dividing the x, y and z coordinates by w. This returns the vector to homogenous standard form
where w = 1. The normailzer block is optional and hence is only instantiated when necessary.
Another thing to note is that the same matrix multiplier is used for both 2D and 3D, the only
difference being that in 2D the z coordinate is always set to zero.

In order to meet the polygons per second performance specification each floating point
operation is fully pipelined. Fully pipelining the design allows the logic to be clocked at a high
clock speed. Since the multipliers and adders can accept new data every cycle and using the fact
that it takes four cycles to execute a matrix multiplication, the number of polygons per second
this block can process can be calculated. Assuming a 100MHz (or 10ns period) clock and

ignoring the latency of the floating point multiplier, the polygons per second can be calculated by

66

dividing 100MHz / (4 cycles * 3 Vectors per polygon). 100MHz/12 is 8.33 Million polygons
per second. Assuming 60 frames per second 138,888 thousand polygons can be processed per

frame. This meets our original performance specifications.

3.1.2 Clipping Design

Clipping is necessary to properly render lines that are not completely within the viewing
volume defined in Section 2.2.5. In addition, objects completely outside the viewing volume can
be dropped from the pipeline improving the GPU’s performance. The performance improvement
is achieved by reducing the amount of line rasterization needed for partially obscured objects as
well as eliminating rasterization completely for invisible ones.

The Cohen-Sutherland line clipping algorithm provides an efficient way of implementing
clipping in hardware. As discussed in Section 2.2.7, the Cohen-Sutherland algorithm determines
whether a line can be trivially accepted, trivially rejected, or if it must be clipped. While this
algorithm could be implemented in software, clipping involves calculating the intersection of a
line with the viewing volume. The intersection calculation equations involve floating point
multiplications, additions and divisions which require many CPU cycles to execute. As with the
matrix multiplier accelerator block, in order to achieve the polygons/lines per second
performance specifications requires hardware acceleration is required.

Figure 3.7 presents the top level design developed to implement the Cohen-Sutherland
clipping algorithm in hardware. The clipping hardware uses floating point arithmetic to calculate

the intersections

67

Point +
Outcode +
Valid Outcode Clipping Accept Avalible

— fei _’1 > i i Valid
Generator Decision y Accept FIFO le ' Art[':;gon —
ZMin Y M
1 Point + Fop Ready
Point + (—
N Outcode +
. Point + Outcode . Done
Point + Avalible| ¢ |
Outcode Outcode + ¢ P—
Avalible Store FIFO Store oin -
i Prefetch , @ e
Read < Po Point0 z S
y Input FIFO ¢ p s 8
¢ Pop Point +
Outcode + Calc0 1
Avalible
; Clip | Cli Outcode |PointC Cli
i Clip FIFO p N p
clip Fetch Tree Generator "l Selector
Pop
r'S
=gl gl =
Calel Result0 % s E g
clip Clip
Tree I Tree
Select

Result 1

Figure 3.7: Clipping Logic
This design is pipelined in order to provide maximum throughput as well as to not provide a
significant bottleneck to the matrix multiplication accelerators. The next few paragraphs give
some detail on the functional blocks with in the design.

Recall that Cohen-Sutherland clips lines to either a rectangular window in 2D or a conic
volume in perspective 3D. Only perspective projection clipping will be implemented because
perspective projection mimics the human visual system unlike parallel projection. This
particular clipping algorithm is an iterative procedure where in the initial stage a line is checked
to either be completely inside, outside, are partially within the viewing volume. In order to
determine where a line lies in respect to the viewing volume, the Cohen-Sutherland uses what is
known as an outcode. The outcode is a bit vector which each bit represents which boarder a line

violates. For 2D, recall the outcode table from Section 2.2.5.1 shown again in Table 3.1.

68

Table 3.1: 2D Outcode Assignment Table

Bit Number Location of End Point Conditional

First Bit Above Clipping Window Ify > Ymaxthen set bitto 1 else 0
Second Bit Below Clipping Window If y < ymin then set bitto 1 else 0
Third Bit Right of Clipping Window If X > Xmax then set bitto 1 else 0
Fourth Bit Left of Clipping Window If X < Xmin then set bit to 1 else 0

Similarly for 3D, the outcode is calculated using the table from Section 2.2.5.2.

Table 3.2: 3D Perspective Outcode Assignment Table

Bit Number | Location of End Point Conditional

First Bit Above the Clipping VVolume ify>-zthensethitto 1lelse 0
Second Bit Below the Clipping Volume if y <zthensetbitto1else 0
Third Bit Right of Clipping Volume if x> -z then set bitto 1 else O
Fourth Bit Left of Clipping Volume if x <z then set bitto 1 else 0
Fifth Bit Behind the Clipping Volume ifz<-1lthensethitto1lelse 0
Sixth Bit In Front of the Clipping Volume if z> zmin then set bitto 1 else 0

The first stage of the pipeline is the outcode generator. The outcode generation block in Figure

3.7 involves comparing the endpoints to the border of the view window or view volume. In

order for the design to execute these operations efficiently in hardware, floating point

comparators are used. The outcode generator design is shown in Figure 3.8.

69

Valid
Xmin

Xmax

Ymin

Ymax

Compare +

Delay

Element

vVyVYyyvVY

X < Xmin

> Vallid
o ——— T ()
). X

Compare

X > Xmax

vVVYyY

> Outcode(1)

Compare +

Delay

Element

vYyVvyYy

Y < Ymin

> OUtcode(3)
— Y

Compare

Y > Ymax

vYyYVYyyY

o ———— T)

Outcode Key:

Outcode(0):Left of clipping volume.
Outcode(1):Right of clippping volume.
Outcode(2): Below clipping volume.
Outcode(3): Above clipping volume.
Outcode(4): Behind the clipping volume.
Outcode(5): In front of the clipping volume.

Zmin

Zmax

Compare +

Delay

Element

vYyVvYyyY

Z <Zmin

3D Only

o ————t ST L O))
— 7

Compare

Z>Zmax

\ A A 4

> Ouitcode(5)

The outcode has six floating point compares between the line endpoints and the viewing
volume’s boarders (only four in 2D).
coordinates and compares them against the clipping volume or window. If the point is outside

the volume then the corresponding outcode bit is set. Delay elements store the incoming X, vy,

Figure 3.8: Outcode Generator for Clipping Logic.

The compare blocks takes the incoming x, y, and z

and z coordinates to be pushed into the input FIFO block along with the outcode.

Clipping requires determining whether a line lies within the viewing volume, outside the
viewing volume, or partially within the viewing volume.
outcodes calculated in the outcode generator are compared to each other. The second pipeline
stage in the clipping logic pipeline is the clipping decision block. The clipping logic takes the
outcodes generated by the outcode generator for both endpoints of a line and compares them.

Based on the comparisons, the location of the line with the viewing volume can be established.

The state machine in Figure 3.9 represents this process.

70

In order to accomplish this, the

Input Fifo Line not Availible
Or
Accept Fifo Almost Full

Input Fifo Line Availible
And
Accept Fifo not Almost Full

Pop Input Fifo(Point 0)

POP
FIRST

Pop Input Fifo(Point 1)

Point 0 Outcode
Or
Point 1 Outcode =0

Otherwise

Push Point 0 onto Clip Fifo and
Store Fifo

Push Point 0 onto Accept Fifo

Point 0 Outcode
And
Point 1 Outcode /=0

ACCEPT
LINE

REJECT
LINE

Push Point 1 onto Accept Fifo Push Point 1 onto Clip Fifo and
Store Fifo

Figure 3.9: Clipping Decision Logic State Machine

In stage 3 of the pipeline, the clipping decision state machine decides which FIFOs the incoming
lines should be put into. Note although this is a pipelined design, it is pipeline in the sense that it
can process one line per two cycles, which is the same as one point per cycle.

In the state machine above the IDLE and POP FIRST state transitions clipping decision
logic pops a line from the input FIFO once the input FIFO has stored a complete line. The
outcode for each point is compared to determine which FIFO to push the line to if any. If the
logical OR of the line endpoint’s outcodes are zero, then the line is accepted and pushed into the
accept FIFO and store FIFO. If the logical AND of the line endpoint’s outcodes are not equal to
zero, then the line is rejected and dropped from the pipeline. If neither of the above conditions
are true then the line is pushed in the clipping FIFO where further processing will be done

further down the pipeline.

71

In the case where a line is clipped, pipeline state four, the clip fetch logic in Figure 3.7 is
responsible for popping the line’s two endpoints from the clipping FIFO. Once the line is
popped from the clipping FIFO, the intersection point with the viewing volume is calculated to
determine the new line. While Cohen-Sutherland clipping only requires solving the intersection
equations for planes/sides that the line could potentially intersect, the clip fetch block cycles
through all six plane intersection calculations for 3D or four side calculations for 2D. The reason
all potential intersection points are calculated is to both simplify as well as increase the
performance of the clipping logic.

Section 2.2.5 derived the equations to calculate the viewing window and viewing volume

intersection equations. These equations are represented below for 2D in Table 3.3 and 3D in

Table 3.4.
Table 3.3: 2D Clipping Intersection Equations

Clip Edge Solve for t Edge intersection equations.

Y = Ymax t:(ymax_yo) X:X0+(X1_XO)(ymax_yO)
Yi— Yo Yi—Yo

Y = Ymin ¢ = Win = ¥o) x = %, + =% Yo = ¥o)
Y1 = Yo Yi— Yo

X = Xmax t = (Xmax — XO) y=Y,+ (yl —Yo)(Xmax — XO)
X =X X =X

X = Xmin t= (Xmin — XO) y=Y,+ (yl — yO)(Xmin — XO)
X =X X, =X

72

Table 3.4: 3D Perspective Projection Clipping Intersection Equations

Clip Edge Solve for t Planar intersection equations.

y=-z o 7y X:XO+(xl—x0)(—zo—yO) z:zo+(zl_20)(_20_y0)
(Vs = Yo)+ (2.~ 2,) (Vs = ¥o)+ (2.~ 2) (Vs = ¥o)+ (2.~ 2,)

y=1 ‘ (2o - o) K=, + (%, — % NZo = Yo) 1o+ (z,- 2,0z ¥,)

(yl_yo)_(zl_zo) (yl_yo)_(zl_zo) (yl_yo)_(zl_zo)

(21_ Zo)(_ Z _Xo)

(Xl_xo)+(z1_ Zo)

X=-z . (—ZO—XO) (y1_yo)(_zo_xo) Z=1,+
+ 0

o=x)+ @-2) | 7)+ (- 2,)

X=2 t = (Zo_xo) X=X + (yl_yO)(ZO_XO) 7=7 + (Zl_zo)(zo_xo)
P (%) -(z-2) P (-%)-(z-2)

z=-1 t:(_l_zo) X:XO+(X1_X°)(_1_Z°) y:y0+(Y1_YO)(_1_Zo)
Z, -1, Z,— 1, Z,— 1,

Z = Zmin t:(zmin_zo) X = X +(X1_XO)(Zmin_ZO)y:y +(y1_yo)(zmin_zo)
z, -7, ° z,-1, ° z, -1,

When a line is to be clipped, the viewing volume or viewing window intersection
equations in Table 3.3 and Table 3.4 respectively are used to determine where the line
intersection points. Recall that each point is assigned an outcode by the Cohen-Sutherland
algorithm and that if a bit in the outcode is set to one, this indicates that the point is outside the
viewing window or viewing volume. Consider the 2D example shown in Figure 3.10 on page
75. 2D points have a 4 bit outcode with each bit set to one depending on where the point lies
with respect to the outside of the clipping plane. For line AD point A has and outcode of 0000
and point D has an outcode 1001. Point A having a 0000 outcode indicates that this point lies
within the viewing volume. Since D has a non zero outcode, this line needs to be clipped. It can
be seen from Figure 3.10 that the line needs to be clipped to line AB where point B is at the top
boarder of the viewing window. To calculate B, the equations in Table 3.3 can be used to

73

determine the exact intersection point with the viewing window. Since point D has an outcode
of 1001, point D lies both above and to the left of the viewing volume. Dependent on the testing
order of the Cohen-Sutherland algorithm, the intersection check is done on the left edge or the
top edge. If the top edge intersection calculation is done first the new line will be AB. The
algorithm calculates point B’s new outcode which is 0000. This means point B is within the
viewing volume and we are done. If however, the left edge intersection calculation is done first
the new line will be AC. The algorithm calculates point C’s new outcode which is 1000. This is
not in the viewing volume and another iteration of intersection calculation must be done. This
time the calculation is done on the top edge once again yielding line AB. The algorithm
calculates point B’s new outcode which is 0000. Once again point B is within the viewing
window.

Line EI requires up to four iterations. The first endpoint E has and outcode of 0100.
Therefore the algorithm cuts the line on the bottom edge using the bottom edge intersection
equation yielding the new line FI. The second endpoint I has an outcode 1010. Depending on
the algorithm, either the top edge or right edge intersection can be selected to be calculated first.
If the top edge is selected for clipping the new line is FH. H’s outcode is determined to be 0010,
so the next iteration results in clipping in the right edge. This clipped line if FG. This lines lies

within the viewing window and can be accepted.

74

Viewing
Window 0001

0101 I 0100 I 0110
| |

Figure 3.10: Cohen-Sutherland Line Clipping with outcodes

The above examples show that Cohen-Sutherland clipping is an iterative process that
requires multiple clips before a line lies entirely within the viewing volume. In order to improve
performance of the clipping algorithm all clipping viewing windows or viewing volume
intersections in Table 3.3 and Table 3.4 are performed in parallel as opposed to iteratively.
While this results in more logic utilization it improves the overall throughput of the clipping
logic.

In addition to all intersection equations being evaluated in parallel, the intersection
equations above must be completely pipelined as to not impose a bottleneck on the rest of the
system. The intersection equations are composed of multiplication, addition and division
floating point operations. The same pipelined floating point operations used in the matrix
multiplication accelerator can be used here. Using the pipelined floating point operations, the
fifth stage of the pipeline design in Figure 3.7 can be used to calculate all of the intersection
equations in Table 3.3 and Table 3.4.

75

SELA B C D E F RESULT = A+ (BiC)(D—A)
(E-C)+(F-B)

O

+

O—

Delay

Figure 3.11: Edge Intersection calculator.

In the above figure, the select signal chooses between addition and subtraction in the +/- blocks

of the clipping tree logic. For example, in Table 3.3 the bottom edge intersection equation is

X=X, +) y°). Using the edge intersection calculator, the following substitutions
Y1 Yo

A=Xo, B=F=ynmin C=y, D= x; and E=y; as well as selecting subtraction for the +/- blocks can be
used to calculate the bottom edge intersection of a 2D viewing window. Two edge intersection
calculators are needed for the 3D engine while only one is needed for the 2D engine. These edge
intersection calculators make up the Clip Tree block in Figure 3.1. The Clip Tree’s internal state
machine cycles through all six intersection calculations in the 3D case or all four intersection
calculations in the 2D case. A byproduct of this is that it takes six cycles to complete a 3D
clipping calculations and four cycles for all 2D clipping calculations. Although this fact causes

clipped lines to stall the pipeline, this design decision is made for implementation simplicity

76

because a large amount of combinational logic is needed to determine exactly which intersection
equation to use. Generating an edge intersection calculator for each intersection equation could
remove the pipeline stalling, but the logical real-estate needed for this is unpractical. Since lines
which are not clipped are fully pipelined and the matrix multipliers for coordinate transformation
require four cycles to complete, this fact does not hurt the designs overall throughput
significantly.

By using the edge intersection calculators within the clip tree new X, y, z coordinates are
created that intersect with all planes of the viewing volume or viewing window. Not all of these
X, Y, z coordinates are not needed, it depends on the original outcodes of the lines in question.
First each point’s original outcode is check to see if it even needs any of the intersection
calculations. If the original outcode is zero the intersection’s six or four intersection calculations
are unnecessary and can be discarded. In this situation the old coordinate can be used. If the
original outcode is non zero than one of the intersection points calculated by the Clip Tree is the
new point that will be used to complete the clipped line. To determine this another outcode
generator is needed.

The new X, vy, z coordinates calculated by the Clip Tree block are pushed through the next
stage of the pipeline which is another outcode generator. This outcode generator is used to
determine if the new intersection points lie within the clipping volume/window or not. The clip
selector then looks at the old outcode by popping it from the store FIFO to determine which
plane or planes the line needs to be clipped against. Once the clip plane is determined the clip
selector then cycles through all the new outcodes generated. One of the new outcodes will be

zero for one of the planes the line intersects. This new X, y, z coordinate corresponding to this

7

outcode is selected and the new clipped point is made available to the final pipeline stage, the
arbiter.

One potential problem with the clipping logic is that it takes more cycles to clip a line
than to trivially accept it. This fact can cause trivially accepted lines needlessly back up within
the rendering pipeline. In order to avoid this situation an arbiter is added to the end of the
clipping stage. This arbiter selects either a clipped line or a trivially accepted line and passes it
onto the rasterizer logic. Arbitration between clipped and accepted lines is done in a fair round

robin fashion. Figure 3.12 shows the functionality of the round robin arbiter.

Clip Tree Results Not Ready
and
Accept Fifo Empty

Accept fifo not Empty Clip Tree Results Ready

Output Line
Endpoint 0

Accept Fifo not Empty

Output Line Endpoint 1

ACCEPT1

Clip Tree Results Ready

Output Line Endpoint 1

Clip Tree Results Not Ready
and
Accept Fifo Empty

Figure 3.12: Round Robin Arbiter

Note that the arbiter waits for either the clipping tree results or for the accept FIFO to have a line

ready for processing. When either is ready the arbiter outputs either the data from the accept

78

FIFO or the line calculated from the clipping tree logic. The state machine gives fair weight to
accepted and clipped lines so that neither is starved for any substantial amount of time. The

vectors output from the clipping logic are sent to the clipping coordinate transformation, where
the graphics objects are projected onto a 2D plane. From there the objects are converted to

screen coordinates and converted to pixels by the rasterizer.

3.1.3 Line Rasterization

Rasterization is the process of calculating each object’s contribution to each pixel. Based
on the specifications of the design, this design only requires wireframe rendering of graphics
objects. Wireframes only consist of edges of a polygon which is nothing more than a group of
lines. A good algorithm to use for line rasterization is Bresenham’s line rasterization algorithm.
Bresenham’s line algorithm is efficient, accurate and can be easily implemented in hardware due
to the fact that it is strictly based on integer math with only addition, subtraction and bit shifting.
Integer operations require far less logic resources to implement making the design very compact.
Also note that although the GPU pipeline uses floating point arithmetic in the coordinate
conversion and clipping portions of the pipeline, the conversion to screen coordinates expresses
the floating point values in a range limited by the screen coordinates. For instance if the screen
is 640x480 then the floating point values will be between 0 to 640 for the x values and between 0
to 480 for the y values. The line rasterizer must round these values to the nearest pixel and the
floating point values must be converted to integers. Though this introduces some error, the
performance gains, area reduction and reduced design complexity justify this design decision.

Bresenham’s line rasterization algorithm takes two line end-points from the 2D
projection matrix transformation and fills in all the raster pixels on a display between them. The

79

design, shown in Figure 3.13 is a five stage pipeline which takes incoming point vectors from the
output of the screen coordinate transformation and writes the appropriate pixels into the frame
buffer. Once again, a pipeline design is used in order to maximize throughput enabling a high
number of graphics objects to be processed every frame. Using pipelining, this particular design
can process one pixel per clock cycle. Assuming this logic is clocked with a 100MHz clock, a
pixel fill rate of roughly 100,000,000 pixels per second can be achieved with this architecture

which matches the initial specifications of the GPU. At 60 frames per second this equates to

1.67 million pixels per frame.

Pix Ready
Fifo Almost

Valid Valid Valid Valid Valid Empty
Color, Color Color Color Color
X Line X0 X0 X0 X0 X0
——| Creator L |
Y and X1 Delay x1 x1 X1 X1
——| Rounding N N
Block Yo Yo Yo Yo Yo
Delay | — Delay
Y1 vi i | Swap XIY |y, Y1
Line
Dx Dx Dx Fifo
Dy Dy Dy
__ Slope -
Steep
N —
5 2 g —
@ — s
— I

Calc
Error

> ——
Step
Calc

ABS(-)

StepX
StepY.

J LQ_|

x| >
3

o £f 2f > x

:1;] :lDD

Line Draw State Machine
And
Frame Buffer Interface

Error
Color

Y1
YO
X1
X0

Fifo Pop
Fifo Empt
Stej

Background Color

Data
Ready

Address

Write Req

Figure 3.13: Bresenham’s Line Rasterizer Design

80

Going through each pipeline stage of the rasterizer, the first stage, the line creator and
rounding block groups two pixels from the screen transformation block to form a line. Each
floating point endpoint is rounded to an integer value. Stage 2 then takes the line’s endpoints
which are passed to the absolute value subtractors. It is here that the change in x (delta x) and
change in y (delta y) are calculated. In stage 3, the change in x and change in y are compared to
determine which rate of change is larger. This value is known as the steep value and determines
if the lines slope is mainly vertical or horizontal. Recall from Section 2.2.7, Bresenham’s line
algorithm limits the slope within a range of zero to one. In order to handle lines with slopes not
between 0 and 1, the line’s end points must be swapped in such a way as to force all lines within
these slope constraints. In other words a line with a vertical slope must be rotated to have a
horizontal slope. The most straight forward way to do this is to swap the x and y values of each
endpoint in the line as is done in stage 4 of the pipeline. After the endpoints have been swapped
if needed, pipeline stage 5 assigns values to the x step, y step and error flags. The error is
initially set to either delta x or delta y depending on the steep value. The x step and y step flags
are set and indicate if the line is going from left to right or right to left and from top to bottom or
bottom to top. Lastly, the new endpoints are pushed into the line drawing state machine which
handles writing the pixels for each line to the frame buffer.

The line drawing state machine, shown in Figure 3.14, takes two line endpoints from the
five stage rasterization pipeline and writes the line to the frame buffer. The line drawing state
machine handles two main tasks. The first is to clear the frame buffer of all the pixels stored in
the last frame. The second is to then go through each line passed to the rasterizer one by one and

calculate its contribution to each pixel in the frame buffer.

81

!(End of Frame)

End of Frame and H

!(Frame Buffer Ready)

mmmmmeennneeneeeeeeeeeee /- Frame Buffer Ready
and Address != Last
Address

End of Frame and Frame Buffer Ready
Frame Buffer Ready

............................. Write Req = 1
Write Req = 1 Address = 0
Address =0 uDaE:al: (())(olor)
Data = Background Color oo oo s pdate(Xpos;
9 !(Line Ready) Update(Ypos)

Load Line
(Xpos,Ypos,Xmax,Ymax,
Line Ready Xmin,Ymin,Dx,Dy Xstep,
............................. Ystep,Steep,Error,Color)

Update(Error)

Address =
Last Address

IFrame Buffer Ready

............................. Line Ready

Address =0 Pop Line

Data = Background Color

I(Line Ready)

End of Frame

Figure 3.14: Line Drawing State Machine

Looking at the state machine above, the state machine stays idle until the display interface
triggers that a frame has ended. An end of frame means that all the pixels for this particular
frame have been sent to the display interface and that processing on the next frame can begin.
From there the state machine waits for the frame buffer to be ready to receive data. If the frame
buffer is ready, the state machine enters the CLEAR SCREEN state and begins writing to
background color to every pixel in the frame buffer. Once the screen is cleared, the state
machine enters the DRAW FIRST state. Here it waits for the five state pipeline in Figure 3.13 to
indicate that a line is available in the line FIFO with assertion of the LINE READY signal.
When LINE READY is asserted the state machine responds by asserting the POP LINE signal
and then waits in the WAIT DATA state for the line data to become available. Once available
the state machine enters the GRAB DATA state where the line data is parsed and registered. The
registered data is then used in the DRAW LINE state. It is this state where the line’s endpoints

are connected with rasterized pixels. Recall from Section 2.2.7 that in the x direction that for

82

each pixel x is simply incremented by one. For each new x a new error is calculated. If this
error is greater than the half way point between the current y position and the next y position,
then y is incremented by one otherwise the y position stays the same. Remember that the notion
of x position, y position and increment and decrement can be swapped this final stage since
Brenham’s Algorithm only works for slopes between zero and one. Other slopes may need to
swap the x and y values as well as the order of the line’s endpoints. Taking all this into
consideration, the DRAW LINE state sends write requests with the calculated line pixels. Lines
continue to be drawn until the rasterization pipeline’s FIFO becomes empty indication no further
lines need to be processed. The state machine then waits for another end of frame signal for the
display interface where the process starts over. The next section discusses the frame buffer and

display interface in details.

3.1.4 Frame Buffer and Display Interface

The last step in the graphics pipeline is driving out the rasterized frame onto the external
display. The design specifications call for a display interface operating at 60 frames per second.
For the display interface to operate at such speeds, it must be able to operate independently from
the rest of the graphics pipeline. One way for the graphics pipeline to achieve this is to use a
frame buffer. A frame buffer is a memory buffer which stores a complete frame of pixel data.
Double buffering, a particular type of frame buffering, provides space for storage of two frames.
The two frames are the read frame and the write frame. The read frame is read by the display
interface and the pixel values read are driven to the display. The write frame is the frame being
updated by the graphics pipeline. Figure 3.15 shows an example of the control for double

buffering. As shown in the figure, the read and write pointers are always opposite polarity where

83

with each new frame these values are inverted. Generally, the read and write pointer bits are the
most significant bit of the frame address in memory. That way, both the read frame and write

frame get their own independent space.

End Of Frame

I(End Of Frame
'(End Of Frame) Write Frame Address =1 ()

Read Frame Address =0

A A

End Of Frame

Write Frame Address =0
Read Frame Address =1

Figure 3.15: Double Buffer State Machine

By using double buffering, the graphics pipeline and display interface can access the frame
buffer completely independent of each other. Without double buffering, screen artifacts can
often result because the GPU is unable to complete updating the current frame before the
contents of the frame are read by the display interface.

Figure 3.16 shows how the line frame buffer connects to both the line rasterizer from

Figure 3.13 and the display interface.

84

Line Rasterizer

Address
Write Req
Data
Ready

CE
WE
Double Frame Buffer Address

And -
Memory Interface Write Data

Frame Memory

Background Color Read Data

EOF
Address
Read Req

Data
Valid
Ready

Display Interface

Figure 3.16: Frame Buffer Interface with Frame Memory

The line rasterizer, explained in Section 3.1.3, writes pixels to the write frame buffer as objects
are processed by the GPU. On the display side, the display interface reads pixels from the read

frame buffer and drives the pixels values to the display. Figure 3.17 shows the state machine

which governs reading data from the read buffer.

85

1(End Of Frame) |(Frame Buffer Ready)

[\

WAIT
FOR EOF

I(Frame Buffer Ready)

Frame Read Req =1 ‘

Frame Read Address =0

READ
REQUEST

End Of Frame and
I(Frame Buffer Ready)

Frame Buffer Ready and
Frame Read Address <
Frame Size
Frame Read Req =1
Frame Read Address =0

WAIT
FOR
FRAME

BUFFER

End Of Frame and Frame
Buffer Ready
Frame Read Req =1
Frame Read Address =0

Frame Buffer Ready and
Frame Read Address =
Frame Size

Frame Read Address =0

Figure 3.17: Frame Reading State Machine

As the frame reading state machine shows, the logic waits for an end of frame signal from the
display interface. Upon receiving the end of frame signal, the logic waits for the frame buffer to
be ready. Once ready, the display interface reads each pixel out of the read frame buffer and
drives it to the display interface.

The actual display interface and type of memory are independent of this design. In
Section 4.0 details are presented on both the ZBT memory and VGA interface, which are used as

the frame buffer memory and display interface respectively.

86

3.2 CENTRAL PROCESSING UNIT

Recall the top level design shown in Figure 3.18 calls for a central control processor
(CPU). The CPU handles many tasks for the GPU pipeline which are better handled in software.
In addition, it provides a mechanism for initializing external components such as the display and

other peripherals. The functions of the CPU will be discussed in this subsection.

Program Frame
Mer?wr Buffereing
y Memory
FPGA
Bus o)
CPU GPU Pipline esmmml) Display
cher Control
— Peripheral Registers
Control g

Figure 3.18: GPU Top Level Block Diagram

The GPU handles matrix multiplication acceleration for geometric transformations,
clipping, rasterization and driving the rasterized image to a display. In particular, the geometric
transformations required for GPU presented in Section 2.0 require many floating point
mathematical operations. With geometric transformations, the elements of the transformation
matrix require various trigonometric operations, multiplications, divisions and additions in order
to be calculated.. While hardware could theoretically be designed to calculate the matrix

elements, the trigonometric functions and calculation of matrix elements present two problems.

87

The first is that cosines and sine functions are not easily implemented in hardware. They either
require a lookup table solution or a hardware implemented Taylor series. The lookup table
solution presents a large amount of error and a Taylor series solution require many divisions and
multiplications which are resource intensive in FPGAs. The second issue is that for the four
geometric transformations (world, view, clipping, and screen) each has their own unique matrix
elements which would require specialized hardware for each of the four transformation matrices.
This adds complexity to the design and will require even further FPGA resources.

To solve these two problems above, a central processing unit (CPU) can be used calculate
the matrix elements for each matrix in software. The screen and projection translation matrices
only need programmed at power up due to the fact that the screen size and projection windows
are constants in the design. The view matrix needs programmed once each frame as the view
reference point moves through the environment. Although software solutions generally execute
much slower than hardware solutions, the overhead of a software implementation does not hurt
the overall performance of the design due to the limited number of times each matrix needs
updated. In contrast, the world translation matrix may need updated every graphics object which
does add some unwanted software overhead to design. This is acceptable though because the
initial prototype is only for proof of concept. Hardware acceleration or a faster processor can be
implemented later to elevate these shortcomings.

The CPU has several other responsibilities within the system. The processor handles
initialization of the graphics pipeline, video interface, and other peripherals in the system. The
graphics pipeline also provides an end of frame interrupt which the CPU must service. Upon
every interrupt, the view transformation matrix must be updated to reflect the position of the

view reference point in current frame.

88

3.2.1 Graphics Pipeline Control Registers

The control registers are a means for the CPU to interface to the graphics pipeline over
the processor local bus. Many of these registers will be implementation dependent because
external display, memory interfaces and other peripherals have different configuration registers.

An example control register circuit is shown in Figure 3.109.

System Read/
Write Enable Reset
Write Enable System Write Data) System Enable
Registers
stem Read Datal End of Frame
Address H
Object Reg
Write Data Read/Write
Enable Graphics XY, ZW
Read Enable Object Reg Object Color
Write Data | t
Read Data ; nser Push
Object Reg . GPU
—
Read Data Registers Ready L
Pipeline
Matrix Reg .
R st Enable Write Enable
egister .
g Matrix Matrix Sel
Decoder | \iuixr
atrix Reg Update Col Address
Write Data .
Registers Row Data
Reg Read/ X
Write Enable Write Data
—
) Implementation
Reg Write Dependent
Data Control and
Reg Read St(_:ltus Read Data
Data Registers i

Figure 3.19: GPU Control Registers

As shown above, the GPU control interface at a minimum should have registers to pull the
pipeline out of reset, initialize the pipeline, write the matrix elements, and push objects into the
graphics engine. The diagram above shows system registers which can be used to reset and
enable the pipeline as needed. The graphics object insert registers are used to push graphics
objects on to the GPU pipeline for each frame. Another register block, the matrix update

registers, enables the processor to handle transformation matrix element calculations to alleviate

89

the need to create custom hardware to do so. Finally, any implementation depend registers for
the system will be defined here. In Section 4.0 and Appendix A will go into detail on the these
registers and any implementation dependent registers needed for both the 2D and 3D graphics

pipeline.

3.2.2 Other Peripherals

Other peripherals may attach to the processor’s local bus. The specifications require a
video output interface such as a VGA or a DVI display interface. The CPU will handle
initializing any hardware associated with the video interface. Also, any control interface such as
the N64 game controller which will be used in this implementation would be initialized and
controlled by the CPU as well.

This section has laid down the functional and performance specifications for the design
based on the requirements for this thesis. A hybrid hardware and software design was presented
which meets all the performance and functional specifications set forth in this section. The GPU
pipeline uses hardware to accelerate the most computational intensive function of the graphics
processor. Meanwhile, the CPU provides does additional computations for calculating
transformation matrices elements and storing and sending graphics objects to the GPU pipeline.
The next section will actually implement this design in a Xilinx Virtex 5 ML506 development kit

with the aid of a Microblaze processor.

90

4.0 GRAPHIC PROCESSING UNIT IMPLEMENTATION AND TESTING

This section presents the implementation, verification and testing of the 2D and 3D
graphics processing units. First, an overview of the hardware design platform selected is given
in order to understand the implementation constraints. Next, the implementation of the graphics
processor is discussed along with FPGA implementation results. Third, the testbench used to
verify the implementation and test results are presented. Fourth, a presentation of the synthesis,
mapping and place and route logic utilization results are highlighted. Lastly, details of the test

software used to verify the design in real hardware is given along with actual output screens.

41 HARDWARE DEVELOPMENT PLATFORM

This subsection discusses the hardware development platform selected and how it meets
the minimum requirements needed to implement the graphics processing system laid out in
Section 3.0 . Below is a list of hardware requirements needed to implement a graphic processor
system:

e Video interface to drive graphics images to a display.
e Memory storage for frame buffering.

e A control interface to manipulate the graphics environment.

91

e A control processor with memory for code storage to handle sending objects to
the 2D or 3D engines as well as the control interface.
e Sufficient logic to implement the geometry and rasterization engines.
These requirements represent the minimum components needed to implement a graphics
processing system. A hardware system must be selected that, at minimum, meets these goals.

Given the design in Section 3.0 , it can be seen that many matrix operations are required
in order to implement the geometry and raster calculations needed to render a 2D or 3D scene.
Commercial graphics processors generally use IEEE single precision floating point
representations. Floating point arithmetic operations take a large amount of logic resources to
implement in hardware. Because of this fact, it is best that a high density FPGA be used for
implementation.

The Xilinx Virtex 5 family of FPGAs was the highest density FPGAs Xilinx had to offer
when this project began (12). Although a smaller FPGA may be feasible, this FPGA family was
selected in order to prevent any potential unforeseen hardware resource bottlenecks. In
particular, the Virtex 5 SXT 50 (13) was selected. This FPGA was designed to be used
particularly for digital signal processing designs. Graphics processing uses many of the same
matrix multiplication arithmetic operations as digital signal processing designs making Virtex 5
SX50 ideal for graphic processing. The FPGA has 288 48-bit multiply-accumulate functions
which can be used to efficiently implement the floating point multiplies and additions used in the
geometry calculations of graphics processors. In addition, the Virtex 5 has 32,640 six input look
up tables and flip flops which should be plenty of logic for the graphics systems needs. Also,
Xilinx has embedded design tools that can efficiently implement processing elements called

Microblaze. The Microblaze processor can be used as a control processor for the system.

92

The ML506 is a Xilinx development board that uses the Virtex 5 SXT 50 as its

configurable logic chip. The board is shown below:

FD e |
VIRTEX-&5
XCEVSXS0T™
FEGTTMEMUSIp
DONTIA

Figure 4.1: ML506 Development Board (13)

It has a DVI interface for video output. There is also a 256Kx36 ZBT SRAM for frame buffering
and Z-buffering as well as a 256MB DDR2 SDRAM for code storage. In addition, the general
purpose 1/O can be used for any additional interfacing to the board. Lastly, it uses the Xilinx
Virtex 5 SXT 50 FPGA which as discussed can provide all of the implementation logic and
processing needs. Using a development board also has the advantage of having no need for a
custom PCB design. Based on these reasons, the ML506 is a more than sufficient hardware
platform to implement this design. Given these facts, the ML506 development board meets all

the hardware requirements.

93

42 GRAPHICS PROCESSING UNIT IMPLEMENTATION

This section details the implementation of the graphics processing unit (GPU) on the
Virtex 5 ML506 Development Platform. First, a discussion of the implementation of the floating
point primitives needed for the graphics pipeline is presented. Second, the Microblaze CPU
implementation and creation details are given. Lastly, the implementation of the graphics
pipeline itself is discussed.

Recall the system design presented in Section 3.0

Program Frame
Mer?wr Buffereing
y Memory
FPGA 1
Bus o _
CPU GPU Pipline essmml) Display
cher Control
h Peripheral Registers
Control 9

Figure 4.2: GPU Top Level Design

This design requires a GPU pipeline to be implemented along with a CPU for processing
assistance. Thankfully, Xilinx’s Virtex 5 ML506 Development platform provides everything

needed to implement the design above. Xilinx provides a soft-core processor know as

94

Microblaze which can be used as the systems CPU. The FPGA fabric logic can be used to
implement the floating point logic and other general purpose logic needed by the GPU. In
addition the ML506 provides ZBT SRAM and DDR2 DRAM which can be used for frame
buffering and program storage respectively. Finally, a DVI/VGA display interface can be used
to drive a computer monitor.

Using the ML506 development kit, the system shown in Figure 4.3 was developed.

I
| Connector
I
I

GPU ZBT
Top Level DDR2 SDRAM Sync SRAM
| virtex 5 |
FPGA
I I
| |
| |
N64 DVI
Control : 3 Microblaze <:> GPU Pipeline E >
ncoder

Interface
I DVI
|
|
|

—f g

| F:SZfBZ Platform
nterface Flash

DB9 JTAG
Connector Connector

Figure 4.3: GPU Top Level Implementation Block Diagram

The Microblaze processor provides the CPU functionality discussed in Section 3.2. The
Microblaze handles GPU configuration, interrupt handling, and configuring the elements within
the graphic pipeline’s matrix transformations. The graphics logic implements the matrix
acceleration, clipping, rasterization and frame buffering presented in Section 3.1. Here floating

point multiplication, division and addition cores are used to implement the computational

95

intensive operations needed by the GPU. The ML506 external DDR2 SDRAM is used for
storing the executable code for the Microblaze processor while the ZBT SRAM is used as frame
buffer storage for the GPU. A DVI encoder is used to drive a 640x480 raster display. In
addition, a N64 controller is added to the system to provide a tool for manipulation of graphics
objects on the computer display. The remainder of this section will go over this top level

implementation in more detail.

4.2.1 Floating Point Primitives

The main mathematical primitives used in the graphics pipeline all involve floating point
operations. As shown in the top level diagram, the ZBT SRAM will be used as the frame
buffering memory. Due to the limitations of the ZBT 36 bit memory width, the floating point
cores are not standard IEEE754 32bit single precision but custom 18bit floating point cores.
This is because the ZBT memory is only 36 bits wide. The pixels are stored as 18 bit color
values in order to leave room in the frame buffer to store both an 18 bit floating point z values,
This will enable future implementation of Z-buffering.. Because of this decision, all floating
point cores within the design use this custom 18 bit floating point format. An additional ZBT
memory device could alleviate this constraint and allow the use of full 32 bit floating point
numbers, but, since this is a prototype, this level of precision is acceptable for proof of concept.

The figures below shows examples of both and IEEE 754-1985 standard single precision
floating point number (14) as well as the custom 18 bit floating point numbers used in this

design.

96

31 30 23 22 0
Sign Exponent (8 bit) Fraction (23 bit)

Figure 4.4 : IEEE 754-1985 32 Bit Floating Point Number

17 16 12 11 0
Sign Exponent (5 bit) Fraction (12 bit)

Figure 4.5 : Custom 18 Bit Floating Point Number

A floating point number is calculated by the formula below.
V =-1°x2Fx1F

Equation 4.1: Floating point calculation.

Where V is the floating point number, S is the sign, E is the exponent and F is the fraction.

There are several different types of floating point operations used in this design. In
particular the operations needed are addition, subtraction, multiplication, division, compare,
32bit to 18bit floating point conversion, and 18bit floating point to fixed point conversion. The
32 to 18 bit conversion is needed because the Microblaze uses IEEE754 32bit single precision
format. When the floating point values are passed to the GPU, they need to be converted to the
18 floating point format for processing by the 18 bit floating point cores. Additionally, in the
rasterization stage, the 18 bit floating point numbers must be converted to integers requiring the
18 bit floating point to fixed cores.

Floating point calculations, either using IEEE754 single precision 32 bit or custom 18 bit,
take quite a bit of logic resources to implement. These functions are also very computationally
expensive in terms of software CPU cycles if a software implementation is employed. Either

way, floating point operations are usually required in graphics processing due to the large

97

quantization errors that can be caused by fixed point or integer representations. Thi

especially true with higher resolution displays.

s is

Thankfully, Xilinx provides fully pipelined floating point cores that consume a

reasonable level of hardware resources on the Virtex 5 FPGA (around 100-300 look up tables

depending on the operation). These cores can be customized with a variable number of pipeline

stages that provides an area verses performance tradeoff.

The floating point cores are generated using the Xilinx Coregen IP Generator (15). The

floating point Coregen window is shown in the figure below.

M Floating-point
Iﬂgf'c JPE Floating-point .
Component Name |mult18
i i QOperation Selection
A[21:0] m— sy RESULT]21:0]
B[31:0] s Please select from the following functions:
() Add/Subtract Both
(%) Muttiphy
() Divide
() SguareToot
() Compare Programmable
() Fixedtofloat
T () Poattoficed
=
o (O Floatofloat
Multiply operation selected: RESULT = A*B.
IP Symbal Resource Estimate
\iew Data Sheet Page 1of 4 < Back I Next = l [Finish] ’ Cancel

X

Figure 4.6: Xilinx Coregen Floating Point Operation Selection Window

98

From this window the function to be created can be selected. In the above instance,
multiplication is selected. Once the operation is selected, a precision type needs to be selected.
In the below example, the creation of a custom 18 bit floating point precision type is selected.

The table below shows this selection.

M Floating-point E|
logiC IR Floating-point Va0
Precision of A/B Inputs
Please select a precision type
A1T.0] RESULT[1T:0]
frl=y — I () Single (O Double (®) Custom
B{17:0] m—
: Total width c
| |
]
! Exponent width :
|
Sign Exponent i
I)
|
—"'I 1-bit r~— 1@ Fraction
i
T Fraction width :
=
L&l
Exponent Width : 5 Range: 4..16
Fraction Width : 13 Range: 4.13
Total Width : 18
IP Symbol Resource Estimate
View Data Sheet Page Z2of 4 ’ < Back] I Nexd > l ’ Finish] ’ Cancel

Figure 4.7: Floating Point Precision Selection Window

This precision type has one sign bit, a 5 bit exponent, and a 12 bit fraction. Note that the
above diagram shows a 13 bit fraction, which is because the Coregen tool includes the sign bit in
its fraction width calculation. The true fraction length is 12 bits. Once again, this 18 bit custom
precision is selected due to the ZBT memory size limitation. If more memory was present

IEE754 single or even IEEE754 double precision could be used.

99

Lastly, Coregen allows the user to adjust the cores to either maximize area or
performance. DSP48 elements can be used to reduce LUT count for addition, subtraction and
multiplication (16). The DSP48 elements also increase the overall performance of the cores by
reducing the number of latency cycles needed for addition and multiplication to complete.
DSP48 blocks should be used when available. DSP48 elements are built in multiply and
accumulate functions which can be used to perform complex math functions without the use of
the logic within the FPGA fabric. Using these blocks improves area efficiency by reducing the
number of logic resources used by the floating point cores as well as improves overall
computational performance allowing for fewer cycles of latency in the floating point
calculations. Note that DSP48 elements are limited resources with only 288 DSP48 elements on

the Virtex 5.

4.2.2 Microblaze Implementation

The Microblaze Central Processor Unit handles several tasks within the GPU system. Its
primary function is controlling the GPU pipeline logic by handling initialization, serving end of
frame interrupts, and sending objects to the GPU pipeline input FIFO. It is also responsible for
pooling the control interface logic (N64 controller) and decoding the incoming controller
commands. The CPU is implemented using Xilinx’s Embedded Development Kit and included
soft core processor Microblaze.

The Microblaze processor is a 32-bit soft core processor optimized for Xilinx FPGA
implementations. The processor is a reduced instruction set computer (RISC) and can be used to

implement a wide array of software applications. A block diagram is shown below:

100

Instruction-side Data-side
g

bus inferface bus inferface
Memory Management Linit (MMLU)
= uns | e |5
IXCL_M T ﬁ 2 [DxcL_m
B <::| 5: \\J :\,-':_ ALU fm'.l _Lf/ =
IXCL_S |::> z Program : g |k :| DXCL_S
Counter Special <:: Shift ®
Purpose B)
Registers | arrel Shift
- -
-' {} Multiplier <Em:>
Divider
my (ee>
IOFE DOFE
|:ll> Bus . md ik Bus
IF [Instruction — IE
|::ILMEI > —| Buffer] ‘,l-f} |} \l/‘:E.>
Instmoction
Diecode L1
— e o
| Register File RN _l MFSL 015
—| 32X3D N :| SFSL0.15

Cotional MicroBlaze fealire b

Figure 4.8: Microblaze Core Block Diagram(17)

As can be scene above, Microblaze uses a Harvard memory architecture where data and
instruction accesses are stored in separate memory addressing space. Microblaze does not
separate accesses to 1/O peripherals and memory, it instead uses memory mapped /0.
Microblaze has three separate interfaces for memory accesses. The first is the processor local
bus (PLB) which is most commonly used for access to slower external peripherals. Second is the
local memory bus (LMB) which is used for reading and writing local block ram. This can be
used for cache memory with a single or two cycle access latency depending on the
area/performance constraints. Lastly, the Xilinx CahacLink which interfaces to the data and
instruction cache controllers if caching is enabled.

Thirty-two 32-bit general purpose registers are present for software use. In addition, 32-
bit instructions with two addressing modes. The processor can be configured to provide either a

three stage or five stage pipeline depending on if minimum area or maximum throughput is

101

needed respectively. A five stage pipeline is used in this design. Microblaze also supports one
external interrupt input which is used to break normal execution for high priority interrupt
service routines. Virtual memory management, caching, floating point and various other
instructions are optional and can be enabled or disable depending on available resources and
functionality needs. In this design, both caching and floating point logic is enabled. Caching
improves code execution time while the floating point logic is useful for calculating the matrix
elements in the transformation matrices.

The Microblaze processor is used to run system software for the graphics processor and
interfaces to external memory as well as external peripheral. To store this software code, the
Microblaze processor interfaces with external memory via the Multi-Port Memory Controller
(MPMC) provided by Xilinx. The MPMC is a fully programmable memory controller provided
by Xilinx that supports double data rate (DDR) or single data rate (SDR) memories. Up to eight
ports can be enabled for use with data widths up to 64 bits. The eight ports can be configured for
fixed, round robin or a hybrid of fixed and round robin scheduling. It supports various physical
interfaces such as DDR2 SDRAM which is used in this implementation. The MPMC is a
convenient choice because it handles all the refreshes, timing and clock generation for the DDR2
SDRAM ram. Figure 4.9 below presents the MPMC layout in the GPU design showing the

Microblaze interfacing to the MPMC’s XCL and PLB ports as it is used in this design.

102

I
o
. |
MicroBlaze ———
xcL oo |
DXCL | b I MPMC | Memary
IFLE DFLE T
_ PLE |
FPIn I
| Device
= Device
/PLEY
H..ﬁ?/ D642 02 082207

Figure 4.9: Multi-port Memory Interface Layout (18).

The GPU pipeline and other peripherals are connected to Microblaze processor via the
Processor Local Bus (PLB). The PLB provides fairly arbitrated access to all PLB masters and

slaves. This bus is shown in Figure 4.10.

103

Master Slave
Ports Ports

P

Master Slave
Portz Ports

P

Master Slave
Port= Ports

bt

Address Path

Write Data Path

Fead Data Path

A

L

DCH Bus Interface B
= Bus Control Unit | _ N
Master Ports —— |, | Watchdog Timer Slave Ports
—=PLE_Rst
gﬁ’a— ET; - Reset Logic | —=SPLE_Rst
- —=MPLE_Rst

Dssa1_11 _ceroy
Figure 4.10: PLB Block Diagram(19)

The PLB’s bus control unit provides arbitration for up to eight master devices on the bus.
This logic also provides the control for steering data to the proper slave or master. In addition,
the bus control unit also interfaces with a watchdog timer. This timer is used to determine if a
request to a slave device has taken too long. In this case an exception is raised and needs to be
handled by software. There are also separate read, write and address paths each with the muxing
logic used to steer address or data to the proper master or slave device.

The PLB slaves consist of the graphics pipeline, N64 Controller, as well as various other
IP cores such as the DVI 1IC controller, interrupt controller, RS232 serial controller, flash
memory and the DDR2 Multi-port Memory Controller. The diagram below shows the top level

block diagram of the entire Microblaze system.

104

External
Clk

External
Reset

DDR2
SDRAM

PLB
BUS

Clock _
"| Generator "
l PLB
< > Bus
Arbiter
> Reset > Microblaze
Geneartor
> <
IXCL <
g
DXCL
ILMB A pLvs System
BUS BUS Interrupt
v
Instruction Data
LMB LMB
Controller Controller
A
v
Dual Port Interrupt
Local Memory (BRAM) Controller
A
|-
o | DDR2 Multi-Port Memory |
v Controller -
p—

JTAG
Debug
Interface

» JTAG

N64
Controller

>
Connector

N64

DVI
1C
Interface

A

GPIO

DVI

RS232
Interface

A

A

Encoder

D9
RS232

v

Compact
Flash
Controller

Port

System
Ace

GPU
Register
Interface

A

v

Compact
Flash

GPU

End of Frame
Interrupt

> LOGIC

Figure 4.11: Microblaze System

Xilinx Embedded Development Kit (EDK) is a tool that helps in the generation

of

embedded processors on FPGA devices. The system above was mostly generated by EDK with

the addition of some custom VHDL. EDK provides a tool called Base System Builder that aids

in the creation of embedded systems. Because the Virtex 5 ML506 board is a board provided by

Xilinx, EDK already has a pre-canned system with all the pinout files, memory controllers, bus

arbiter, serial debug interfaces and interrupt controller. The tool also generates templates for

PLB master and slaves to be added to the PLB bus. In this design, the GPU register interface,

N64 controller interface and DVI 1IC interface all need to be made using a custom design.

105

4.2.2.1 Base System Builder

Xilinx’s Embedded Development Kit provides a Base System Builder (BSB) that
provides the necessary configuration files for many popular Xilinx FPGA based development
boards. Thankfully, the BSB has a configuration for the ML506 development board. Using the
BSB, all the timing, area and pinout constraints for the design can be automatically generated.

To start Base System Builder one must simple start Xilinx’s EDK as shown in

. Xilinx Platform Studio

Create new or open existing project

E:SKB (@) | Base System Builder wizard frecommended) |

@) Blank XPS project
E (71 Open a recent project

Browse for More Projects...

Browse installed EDK examples (projects) here

OK H Cancal

Figure 4.12: Xilinx Platform Studio’s Project Opener

Selecting Base System Builder creates a directory for all of EDK’s hardware, software, and
configuration files. Once a directory is selected the user is welcomed by the Base System
Builder tool shown in Figure 4.13. This is a new design so the option to “I would like to create a

new design” is selected.

106

Embedded
Platform Stug

Welcome to the Base System Builder!

This tool will lead you through the steps necessary to create an embedded system.

Please begin by selecting one of the following options:
@ |would like to create a new design

() Iwould like to load an existing bsb settings file (saved from a previous session)

| Browse...

Moo _ <Beck || ubintiens] |iGomatio]

Figure 4.13: Base System Builder Welcome Window

Since the Virtex 5 ML506 Development board is a common platform, as said before, Xilinx
already has all the board files needed to implement the system. To implement the system all that

needs to be done is select the proper dropdown bars in Figure 4.14.

107

Select atarget development board:

Select board
@ |would like to create a system for the following development board

Board vendor: | Xiliro |Z|
G G Virtex 5 ML506 Evaluation Platform -
Board revision: | 1 Iz‘

Mote: Visit the vendor website for additional board support materials.

Vendor's Website Contact Info

Download Third Party Board Definition Files

(71 I'would like to create a system for a custom board

Board description

The ML506 board is intended to showcase and demonstrate Vitex-5 technology. The ML50E
board utilizes Xilirec Vitex 5 XCEVSXBOT-FFG1136 device. The board includes Tri-Mode
Ethemet MAC/PHY, 256MB DDR2 SDRAM SODIMM memory, 1MB ZBT SRAM, 32MB of
Commodity Flash, 8kb 1IC EEPROM, CPU Debug and CPL Trace connectors, System ACE CF
cortroller, Two RS232 serial ports.

Figure 4.14: Base System Builder Board Selector

Once the proper vendor, board and revision are selected the Base System Builder requests which
processor type is to be used. Many Xilinx FPGA has build in PowerPCs, the ML506 does not so
the only choice is to use the soft-core Microblaze which is implemented in the FPGA fabric. The

processor selection process is shown in Figure 4.15.

108

The board you selected has the following FPGA device:
Architecture: Device: Package: Speed grade:
it [=] [rchveint 1136 =] [

Select the processor you would like to use in this design:

Processors

@ MicroBlaze

FowertL

Not supported by this device

Processor description

The MicroBlaze(TM) 32-bit soft processoris @ RISC-based engine with a 32 register by 32 bit
LUT RAM-based Register File, with separate instructions for data and memory access. |

supports both on-chip BlockRAM and./or extemal memory. All peripherals are implemented on
the FPGA fabric.

[<Back |[MNea> | [Cancel

Figure 4.15: Base System Builder Processor Selector

The next step in the Base System Builder is to configure the Microblaze processor, here the
processors reference clock frequency, bus clock frequency and local memory size are selected.

In addition, either caching or the floating point unit can be enabled. The processor configuration

is in Figure 4.16.

109

ase System Builder - Configure MicroBlaz

Micro3laze

System wide settings

Processor-Bus clock

Reference clock frequency: —

100.00 MHz 10000 [+] MHz

Reset polarity: Active LOW

Processor configuration
Debug I/F
@ On-chip H/W debug module
(%) AMD with S/W debug stub
(=) Mo debug

| Local memary

Data and Instruction:
(Use BRAM)

32KB =

MicraSiaze

Cache setup
[#] Enable

[¥] Enable floating point unit {FPU)

. [<Back |[Met> | [Concal |

Figure 4.16: Base System Builder Microblaze Processor Configuration Window

Note that both a processor and bus speed of 100Mhz is selected. The bus speed was picked to
match the processor speed to eliminate the need for any clock domain crossing logic reducing the
LUT count. Also notice that a small 32KB BRAM is created for local program storage if
needed. This memory is also used to load a standard bootloader created by Xilinx for debugging
purposes and can be used to support more complex bootloaders in the future. In addition, the
caching logic and floating point units are enabled. Caching improves overall processor
performance, while the floating point units are especially useful for calculating the

transformation matrix floating point values.

110

After configuring the Microblaze processor’s speed, cache and floating point setup, the
next step is to configure the various 10 interfaces that connect to the PLB bus listed in . This
takes place in four steps. In the first step a single uart with a baudrate of 115200 bits per second
is created. This PLB slave is used by the system as a standard input and standard output device.
The standard input and standard output device is used to send debug messages to a serial console
that is useful in detecting GPU status conditions and debugging the GPU. In the second step no
10 devices are created because these devices are not needed by the system. In particular the ZBT
SRAM memory is used by the GPU pipeline negating the need for an SRAM memory controller.
Step three instantiates the Multi-Port Memory Controller (MPMC) that interfaces to the DDR2
SDRAM. The DDR2 SDRAM is used for storage of software code for use by the Microblaze.
Lastly, step 4 the SysACE Compact Flash controller is created. While not need by the GPU, in

the future graphics objects and software code could be stored on this flash.

Figure 4.17: Base System Builder 10 Interfaces Configuration Windows

The Base System Builder also handles creating the cache controller which interfaces to
the Microblaze processor and the MPMC. The window in Figure 4.18 provides a means to

configure the instruction and data cache sizes and enable them for the DDR2 SDRAM.

111

% Base System Builder - Cache Setup_

You have enabled the cache feature on the MicroBlaze processor,
Cache setup

Please select a cache size for instruction and data. The cache is implemented using block RAM
(BRAM) or distributed RAM resources on the FPGA.

Instruction Cache (ICache) Size: | 2 KB [+]
Data Cache (DCache) Size: 4KB [=]

Select the memory peripherals you would like to cache:
ICache: DCache: Cacheable Memories:
DDR2_SDRAM

Figure 4.18: Base System Builder Cache Setup Window

Lastly in Figure 4.19, the Base System Builder selects the standard input and standard
output devices. The RS232 Uart created in the 10 creation section is selected to be used for
debug messages. In addition, software code which can be used to test the DDR2 SDRAM is

generated.

112

P
% Base System Builder - Software Setup X f

Devices to use as standard input, standard output, and boot memory

STDIN: RS232_Uart_1 [+]
STDOUT: RS232_Uart_1 [=]
Boot Memory: |[lllsi=gi3 =

Sample application selection

Select the sample C application that you would like to have generated. Each application will
include a linker script.

Memary test

llustrate system aliveness and perform a basic readfwrite test to each memory in your system
[[] Peripheral sefftest

Perform a simple sefftest for each peripheral in your system.

(s)

Figure 4.19: Base System Builder Software Setup Window

Now that the system is created, the Base System Builder provides a summary for the

system which is created shown in Figure 4.20.

113

9 Base System Builder - System Created

Below is @ summary of the system you have created. Please review the information below. i it is
comect, hit <Generate> to enter the information into the XPS data base and generate the system files.
Ctherwise retum to the previous page to make comections.

Processor: microblaze_0
System clock frequency: 100.00 MHz
On Chip Memory : 32 KB
Total Off Chip Memory : 256 MB
- DDR2_SDRAM = 256 MB

The address maps below have been automatically assigned. You can modify them using the
editing features of XP5.

PLB Bus : PLB_VA46 Inst. name: mb_plb Attached Components:

Core Name Instance Name Base Addr High Addr
xps_uartlite RS5232_Uart_1 (24000000 (8400FFFF
mpme DDR2_SDRAM_C_MPF| (30000000 (=SFFFFFFF
Xps_sysace SysACE_CompactFask| (x83600000 cB360FFFF
mdm debug_module (k84400000 (beB440FFFF

LMB Bus : LMB_V10 Inst. name: iimb Attached Components:
Core Name Instance Name Base Addr High Addr
Imb_bram_if_critlr ilmb_cnitlr (00000000 (00007FFF

LME Bus : LMB_V10 Inst. name: dimb Attached Components:
Core Name Instance Name Base Addr High Addr

Imb_bram_if_critlr dimb_critir (00000000 | (00007FFF

. [<Back |[Genemte | [Cancel |

Figure 4.20: Base System Builder System Created Window

To create the base system, visualized in Figure 4.21, the user clicks on the generate
button. By doing this, the Microblaze processor, local memory BRAM, PLB Bus, interrupt
controller, clock manager, RS232 debug serial interface, Compact Flash memory controller, and
DDR2 DRAM MPMC memory controller is created. This system includes the pin out files,

drivers for the peripherals and memory test software.

114

L]
l
speieIsu=b weibeTp X¥20TS
bas w=isis —-- paiziau=)
- * T S eAs\reIBe TR T\ SPROTUMOQ \ISUTRM UeAy sswep\sI=sn)) ¢ wexbetg yoo0Tg Buriezsusg
weiBe] 203 | ey fguassy wepss | [opmIS wiops] | Tr
[M\&128M)Y:D - s2u0ad [eao] joalaly
LR
10553001 |
jaiuo) [eydied
10d
Jajjanuer) Aowsp| pue Aowsp -
ez lesarsds ood OIS S s oud @ - uoieaiunwwoy) Jossaooudia)
ez Jopeueipop () 8soding [iaUag) -
o001 ajpensdx UOIRINBL233Y O
11"} 2opsfs sdx Bngag
2001 wpw Bl pUB i |
00l oo weiq - H paads-maT UoRILINLWEY -
Bk uwdy HYHOS THOT € i paadg-yfiy uonealunuwe)
EQLg oy e qu e || —0 .1 s pue 1858 o[
EOLZ Uy weg g TP * Q bpug pue sng -
ZE0L 9pA qd 30 G s Gopeuy
200t L e TOIOrvUBe)- Y N0 3 8
700l D o | |t SMelS. adf) 4| uoisiEp 4|
qLL sTE|qLIDIL [eTEgI
UoIsIRA d| adf) d UORI3UICY SNY awep 2 2 - |
o Dm_ 7 _ 10, 7 msepen g | Y L L 1
w48 wooipr | Wt feusd [| 7 1 4| F T
ADIBER =2 @ XE S PEV-E FER FEE0E WIBEwe SRE HAL0
% @5 dpH mopuigy uonenuis Bngag uonenByuonyadmag aemyos aempiey paloig mAA Pp3 34

[TM3IA AIGLUSSSY WS1SAG] - AU LSISAS/SPEOJUMC/ISUIER UEAY SSUIB[/SI3ST)/1) - OIPNIS WLOLE| XUITY e

| Base System without Custom Peripherals.

Origina

Figure 4.21

115

The next step is to add the custom peripherals that will connect to the Microblaze systems
PLB bus. Xilinx’s EDK provides a tool to help create a VHDL template for interface to PLB.
The GPU requires three slave peripherals. Figure 4.22 shows how to create a PLB slave. The
key checkbox is the “User logic software register” which creates a template for a register

controller within the PLB slave which all three peripherals need.

@ Create Peripheral - IPIF (IP Interface) Services ﬁ
i IPIF (P Interface) Services I
Indicate the IPIF services required by your peripheral . CS'?.?

Your peripheral will be connected to the PLB (v4.8) interconnect through comesponding PLB IP Interface (IPIF) modules, which provide you with a quick way to
implement the inteface between the PLB interconnect and the user logic. Besides the standard functions like address decoding provided by the slave IPIF module,
the wizard tool also offers other commonly used services and configurations to simplify the implementation of the design.

Slave service and configuration

Processor Local Bus (version 4.6) Typically required _bry most _penphemls for operations like logic control, status
report, data buffering, multiple memory/address space access, and etc.
(PLB slave interfface will always be included).
[7] Software resst User logic software register
[] Read/Write FIFO [User logic memory space
PLB v4.6 PLB v4.6
Slave Master [7] Intemupt control Include data phase timer
. E -E Master service and corfiguration
- - # % -Tu' Typically required by complex perpherals like Ethemet and PCI for
f - -] commanding data transfers between regions (PLE master inteface will be
Read | [Write = = : included if master service selected).
FIFo | | FIFo A B B
= z

[7] User logic master

Coe |] [o

Figure 4.22: Peripheral Creation Window.

The next three sub sections go into detail on what the custom PLB slave peripherals include.

4.2.2.2 DVI I1C PLB Interface.
The I1C standard, developed by Philips, is a two-wire bidirectional serial bus that is used

to provide communication between different low speed devices. This standard is capable of

116

arbitration between multiple masters and supports communication with multiple slaves and has a
7-bit addressing space for devices.
The DVI IIC interface uses a modified version of the IIC controller solution provided

from www.opencores.org. This 11C controller has been redesigned to interface to a PLB bus as a

slave. Several registers on the Chrontel DVI transmitter control need to be accessed to initialize
the DVI transmitter. These registers access are done via I1C transfers over the DVI IIC bus. In
particular, the DVI transmitter needs to be powered on and put into RGB bypass mode (analog
mode). The controller is programmed to output 640x480 analog VGA. For more details on the

configuration registers of the DVI controller please check the Chrontel CH7301c spec.

4.2.2.3 N64 PLB controller interface.

The N64 Controller, designed by Nintendo for use with the Nintendo 64 console, is used
for manipulation of 2D and 3D objects in the FPGA based graphics system. It is mainly a tool
used for debugging and was selected based on availability. Using it, objects on the screen can be

selected, translated, scaled and rotated. The N64 Controller is shown below.

Figure 4.23: N64 Controller(20)

117

http://www.opencores.org/�

The N64 controller is a serial device with a three pins (Ground, 3.3V, and Control). The single
wire control interface is a bi-directional open drain. A 500k weak pull down resister is used on
the control line. When a controller is not present on the line the pull down resister drives the line
low. When a controller is present a stronger pull up in the controller overrides the pull down and
the value reads is high.

The PLB interface for the N64 controller has four registers used to control and read status
from the device. These registers interface to a controller state machine which is responsible for
both driving serial commands to the controller as well as reading and decoding serial commands
from the controller. These registers are listed in Appendix B .

Software is responsible for polling the controller present bit in the status register to
determine if the controller is indeed connected to the development board. If the controller is not
connected the controller’s state logic is pulled into reset. When the controller is detected, the
controller state logic is pulled out of reset. It is then the software’s job to periodically write to
the button status or control word bit of the trigger register. Writing to either bit sends a serial
pattern to the N64 controller which requests either the button status or the current controller
word. After setting the trigger bit, software must poll the controller busy bit until it goes low
indicating that the button status or control word has returned via a serial stream sent by the
controller. Once the busy bit goes low, the button status or control word registers can be read to
determine either which buttons has been pressed or to determine the current status of the
controller. For this graphic system design, only the button status is ever needed as a means to

manipulate objects on the screen.

118

4.2.2.4 Graphics Pipeline Registers PLB interface.
The processor needs a way to communicate with the graphics pipeline. Figure 4.24

shows how the graphics pipeline interfaces to the PLB bus.

System Read/
Write Enable Reset
[System Write Data) System Enable
Registers
|System Read Da!al End of Frame
Object Reg
Read/Write
Enable Graphics X,Y,ZW
Object Reg Object Color
Write Data
Object Reg Insert Push GPU
j .
Read Data Registers Ready L
Pipeline
Matrix Reg .
PLB BUS Redist Enable Write Enable
egister .
—) g Matrix Matrix Sel
Decoder | . uixr
atrix Reg Update Col Address
Write Data R .
egisters Row Data
Reg Read/ .
Write Enable Write Data
—
) Implementation
Reg Write Dependent
Data Control and
Reg Read St_atus Read Data
Data Registers —————

Figure 4.24: GPU Pipeline Register PLB Interface.

The graphics pipeline control register interface is logic specifically designed to interface
to the PLB bus as a PLB slave device. This interface provides the needed communication
between the Microblaze CPU and custom graphics pipeline logic over the PLB bus. In this
block, various registers for configuration and debug of the graphics pipeline are present and can
be seen in Appendix A. The graphics pipeline control register use the custom peripheral tool
from EDK to create a PLB slave template. To implement the custom registers custom VHDL

was integrated into the template

119

4.2.3 Graphics Pipeline Implementation

In this section the design of the graphics pipeline presented in Section 3.0 is
implemented on the Xilinx Virtex 5 SX50 FPGA. Using the design from Figure 3.3 as a

template, Figure 4.25 shows the entire pipeline.

Ready
\ 4 l |
Vector Val
> \;EC‘:O’ZV\"I"J »> World
Floating »| Transfomration o]
X, Y, Z,W - .
»| Point 32to Malrix Data > Matrix w
PLB BUS Floatin World WE .
Matrix Data A 9) A
> Point 18 > 3 N
) Conversion sl N B
Zmin 5 > 151
— -) |
Control >y Xy
Registers View DVI_RESET »
View WE | Transformation DVI XCLK_N ¢
g Matrix DVI XCLK_P. ¢
. VGA/DVI > o
Matrix WE w
> || — (3D Only) Interface DVI DATA > -4
5| = A DVI DATA ENABLE sy 239
. B - And > Qo
Matrix — | N 2 Line Double DVI HORIZONTAL SYNC ¢ 4
Matrix SEL | Selector | gl ¢ & DVI VERTICAL SYNC .
v | >y Xy ___DVIGPIO ~
AAA Zmin -~ v
5|2z > Cohen- 'y
B Sutherland 3 g E
3 L
olslo Clipping Zl <] § @
s|z|e ol 9| ¢«
H 2 oy g N A >| > A 4
| | >
5 5 N 3 Read Req > ZBT CE
sl > & Address ZBT WE
g A
2"P::'ect|on Frame RRseaZdEm t ES; SE: &
. —>| : Reader 59
Proj WE .| Transformation Read Po ZBT ADD NE
d Matrix Read Data ZBT D =
(3D Only) ZBT CLK
5| = A ZBT Memory ZBT FB CLK
> > [—
| N B Controller
g 1 §
gl =] «
>y Xy
Screen Vector Val Write Req
ScreenWE ; .| Bresenham’s ¢
»| Transformation XYZ B _oddress
. Read! Line Write Data
Matrix <—y— L —————p|
Rasterization Ready
| A
ol
s %
HEE g
Bk
= 5
2|<

Figure 4.25: GPU Pipeline Top Level Implementation.

The graphics pipeline interfaces to the Microblaze processor via the processor local bus (PLB).
The control register block acts as a PLB slave device. A PLB slave is a device which only
receives transfer initiations from the PLB bus. The CPU acts as the PLB master and initiates all
reads and writes to the graphic control registers. These control registers, defined in Appendix A,

can be used to push the objects onto the pipeline as well as program the elements for the

120

transformation matrices. The pipeline then converts the objects from object coordinates to
screen coordinates and rasterizes the objects on the screen. The world, view, projection and
screen transformation matrix blocks all use the matrix multiplication accelerator design
presented in Section 3.1.1. In addition, the Cohen-Sutherland clipping algorithm shown in
Section 3.1.2 is used to clip graphics objects to the viewing volume. Externally, the graphics
pipeline interfaces to a 256K x 36 ZBT SRAM. This memory is used as a frame buffer and
stores the rasterized lines for each frame. The frame buffer uses double buffering. Due to this
fact, the resolution is limited to 320x240. The frame reader reads the frame from the memory
and drives the appropriate pixels out the DVI interface. The DVI interface executes line
doubling to upscale the 320x240 image to 640x480 resolutions. Below detail about how each of

the following blocks of the system was implemented is presented.

4.2.3.1 Floating Point Conversion and Matrix Selector

The CPU works with 32 bit single precision floating point numbers while the graphics
pipeline uses 18 bit custom precision floating point numbers. Because of this fact, a conversion
block is instantiated to do the conversion. This conversion block is created by Xilinx’s Coregen
IP generator discussed in Section 4.1. Using these conversion blocks the incoming point vectors,
matrix elements, and the front clipping plane values are all converted by this block to 18 bit
format. The floating point values destined for the world, view, projection and screen coordinate
transformations are also converted to 18 bit format, but are multiplexed to the proper

transformation matrix based on what registers are written in the GPU pipeline control registers.

121

4.2.3.2 Matrix Transformation and Selection
There are four matrix transformations in the 3D design and only two in the 2D design.
Viewing and projection are not needed in 2D because the image is already 2D and can be

displayed on the screen as is. Recall, the matrix multiplier design in Section 3.1.1.

Matrix

. . . V(w) Optional
Multiplication Normalizer _
1
[} 1
I 1 X
! 1
! I
I 1
Write Enable : : v
} Shift ' !
Write Data 4x4 Read Data —> Register >/ .
’ Dual Port Block Ram : :
Write Address 1 I
—_—) 1 Z
! |
o A ' i : !
2 + ! 1
st V=< /J ¢{r . /" w
x ———p>
5 V(y) i
[
4
Vector Pop Result Valid
A S
Vector Data, Pipeline Data M(n,1)
—_—
Controller
Matrix Read
RN V(x)
A
M(n,0)

Result Back
Pressure

Figure 4.26: Matrix Multiplier Accelerator

This block is implemented using the 18 bit floating point multipliers, adders and dividers
discussed in Section 4.1. The dual port block RAM is a 4 x 4 x 72 bit block RAM instantiated in
the FPGA fabric. The block RAM is 72 bits wide because each entry contains an entire column
of the matrix. Each point is stored in a 72 bit wide FIFO for which the pipeline controller of the
matrix multiplier pops data. The pipeline controller cycles through all four columns stored in the
dual port block RAM sending each row sequentially through the floating pint multiplication and
addition cores. The end result of the matrix multiplication is then shifted out. The optional
normailzer block is only instantiated in the screen translation. This is so the final vector sent to

the rasterization logic is normalized with respect to the w component (i.e. divided by w so that

122

w=1). This block was written completely in VHDL and the source code can be seen in Appendix

Ca.

4.2.3.3 Cohen-Sutherland Clipping.

The clipping stage trims lines around the defined clipping volume. Recall the Coehn-

Sutherland Clipping design presented in Section 3.1.2 and shown again in Figure 4.26.

Valid| Outcode Clipping |Accept

Generator Decision \| Accept FIFO |
|

—) -

Point +
Outcode +
Avalible

Input FIFO

»

Point +
Outcode

Clip

Clip FIFO

Point +
Outcode +
Avalible

"
€

Point +
Outcode +

Avalible Done

Pop

Arbitration
Logic

" Pointl
Store FIFO Store on
Prefetch .

Point0

Pop

Point +
Outcode + Calco

Point Sel
N
g

Done

Avalible .
Clip | Clip
Fetch

Tree

Outcode
Generator

PointC |

Clip

"l Selector

Calcl

Result0

2
]
=z

Point
N

£

valid
>

=
N

Clip

Tree

j -

Clip
Tree
Select

Result 1

Figure 4.27: Cohen Sutherland Clipping Implementation

This block is written completely in custom wrote VHDL with a few acceptations. The outcode

generators utilize 18 bit floating point compare IP cores to determine each points outcode. The

other exception is that the Clip Tree which calculates the plane intersections is composed of 18

bit floating point multipliers, adders and dividers. The source code for the custom VHDL is

located in Appendix C.7.

123

4.2.3.4 Bresenham’s Line Rasterizer

The rasterization converts the graphics objects to physical pixels on the screen. Recall

the Bresenham’s Line Rasterizer design presented in Section 3.1.3 and shown again in Figure

Pix Ready
Fifo Almost
Valid Valid Valid Valid Valid Empty
Color, Color Color Color Color
X Line X0 X0 X0 X0 X0
——| Creator — | —
Y and X1 Delay x1 x1 X1 X1
——| Rounding — L
Block Yo Yo Yo Yo Yo
Delay | — Delay
Y1 vi i | Swap XIY |y, Y1
Line
Dx Dx Dx Fifo
Dy Dy Dy
__ Slope -
Steep
- —
X 2] —
3 — 5
— i
Calc
ABS() Error
by B
S|
21 o
120 k2
> —
1 Step
Calc
of
£
S
4 [B B IS 5
el8l gl 2l =l 8 2 xl=lelzlels
I b B] ke T)) S e Y (S
EOF
Line Draw State Machine

And
Frame Buffer Interface

Background Color

Data
Ready

Write Req
Address

Figure 4.28: Bresenham’s Line Rasterizer Design

This block is written completely in custom wrote VHDL as it is completely integer based and

requires no floating point cores. The source code can be found in Appendix C.9.

124

4.2.3.5 Frame Buffer and the ZBT Memory Controller

The frame buffer uses double buffering to prevent artifacts from occurring on the screen.
Avrtifacts occur because when a single buffer is used, the line rasterizer and display interface can
be writing and reading the same locations from memory in some corner case conditions. Figure
4.29 shows the design of the frame buffer and memory controller. In actual implementation the

memory is the ZBT SRAM provided by the ML506 development board.

Line Rasterizer

Write Req
Data
Ready

Address

CE

WE
Double Frame Buffer Address
And — Frame Memory

Memory Interface Write Data

Background Color Read Data

EOF
Data
Valid

Ready

Address
Read Req

Display Interface

Figure 4.29: Frame Buffer Interface with Frame Memory

Both the frame buffer and memory controller are written in VHDL and can be seen in Appendix

C.10.

4.2.3.6 VGA Display Interface and the Line Doubler.
The most common display interface used in computer graphics today is VGA. On a

VGA interface there are three signals (red, green, blue) that send color information to a VGA

125

monitor. These signals each drive an electron gun that emits electrons which paint one primary
color at a point on the monitor. The signal varies between 0 and 0.7 V which in turn controls the
intensity of each color component. The three colors together combine to form a pixel. An image
(or frame) on a monitor is composed of h lines each containing w pixels. A full frame is
expressed as a w x h as its size. In this example w = 640 and h = 480. In order to draw a frame
the deflection circuits in a monitor move the beams of electrons from left to right and top to
bottom of the screen. To control the deflection circuit’s two pulses (horizontal and vertical sync)

must be generated. Below are typical timing diagrams for horizontal sync and vertical sync.

Line

Horizontal Horizontal
Blanking Blanking
Interval Interval

HSYNC

PixTotar

Blankingyen ——’%1—}

TLSyr-c 4/ ,-f

Blankingsight

Horizontal Line Period

F 3

Figure 4.30: VGA Horizontal Sync Timing.

For a 640x480 @ 60Hz VGA display the timing parameters or as shown below:

126

Table 4.1: VGA Horizontal Timing Table.

H Sync Timing Period Number of Clock Cycles at
Param. 25Mhz.
Tisync 3.84usec 96
Blankingyeft 0.64usec 16
Blankingrignt 1.92usec 48
PiXtotal 25.6usec 640
Horizontal Freq 32.0usec or 31.46Khz | 800

The vertical sync pulse is enabled and clocked off the horizontal sync pulse. The timing

information is shown below.

Frame

Vertical
Blanking
Interval

T

TTTTTTTT]

Vertical
Bianking
Interval |

VSYNC

Lintota

—

F

BlankingLen — .

VerticalFrame Period

Trsyne

Blankingrigm

Figure 4.31: VGA Vertical Sync Timing

For a 640x480 @ 60Hz VVGA display the timing parameters or as shown below:

Table 4.2: VGA Vertical Timing Table

V Sync Timing Param. | Period Number of Horizontal Sync pulses
TLsync 64.0usec 2

Blankingyeft 352.0usec 11

Blankinggrignt 992.0usec 31

PiXTotal 15.36msec 480

Vertical Freq 16.79msec or 60hz 524

127

The output display is running at 640x480 @ 60Hz but the internal GPU pipeline logic only
supports 320x240 @ 60Hz. A line doubling circuit written in VHDL bridges the gap between
the 640x480 and 320x240 resolutions. In simple terms, the line doubling logic sends out two
identical horizontal lines to the display for every one horizontal line within the GPU pipeline.
The same two to one ration holds true for the vertical lines. This is accomplished by
instantiating a small line buffer which as each odd horizontal line is received from the GPU
pipeline the line is also stored in the line buffer. On the even horizontal lines, the data is read
from the line buffer sending the horizontal line stored in the line buffer. In addition, as each
pixel comes into the line doubler, the pixel is sent out twice effectively reducing the vertical
resolution by half. Using this logic, the GPU pipeline can run at the low resolution of 320x240
while the physical display thinks it’s displaying a 640x480 image. The source code for the line

doubler can be found in Appendix C.18.

43 GRAPHICS PIPELINE FUNCTIONAL TESTBENCH

Now that the GPU is completely implemented, the design can be tested to verify that the
graphics processor functions as specified. ~ To accomplish this, a VHDL testbench was
developed with the purpose of simulating the design using Mentor Graphic’s Modelsim.
Modelsim is a digital circuit simulator that aids in design and verification of digital systems.
Modelsim provides the benefit of allowing the tester to probe internal digital signals that would
otherwise be unreachable in conventional testing. This gives the tester more visibility into the

design.

128

While in theory the Microblaze processor could be simulated for functional correctness.
Given that it is a Xilinx provided intellectual property (IP), it is taken for granted that it works
properly. The graphics pipeline is the custom logic in the design and hence will be the
component tested in simulation. The testbench is designed to mimic the functionality of the
CPU. Below is a very high level view of a functional testbench developed for the graphics

pipeline.

Functional

/_ Testbench

Behavioral
Models
(ZBT Memory)

Stimulus
Generation . Data Capture
Design Under p
(CPU ||> 9 I|: (PPM File

Behavioral ; G tor)
ineli enerator
Model) (GPU pipeline)

Figure 4.32: GPU Testbench Block Diagram

The stimulus generator acts as a behavioral model for the CPU as well as other functions
such as clock and reset generation. In addition, the ZBT frame buffering memory is mimicked
using a behavioral hardware description language (hdl) model provided by Cyprus. This model
is cycle for cycle accurate and provides confidence that the logic interfacing to the ZBT memory
functions properly. On the other end of the testbench the data capture block interoperates the
outgoing DVI signals and generates an image file of the frame. In the testbench itself, the GPU’s
graphics pipeline is instantiated so it can be interfaced to by the stimulus generator, data capture

and the ZBT memory behavioral model. Using this setup, stimulus configuration files can be

129

used to push a variety of objects through the graphics pipeline. Modelsim does not support
IEEE754 floating point data-types for debug in its waveform tool let alone the custom 18-bit
floating point bit values used in this design. This makes debugging wave forms quite
complicated. To get around this problem, a custom VHDL package was created to convert both
custom 18-bit floating point bit values and 32-bit IEEE754 floating point bit values to decimal
values to be displayed on the simulators console. In addition, the image file generator can be
used to actually see what the output to a monitor would look like.

Each specific test must handle the following operations within the testbench.

e Handles all the initialization needed by the pipeline before objects are loaded into
the pipeline.

e Loads the simulation files with various graphics objects to be pushed into the
pipeline for each frame.

e Inputs the values for the translation matrices as needed by the system. The screen
and projection translation matrix are loaded only once, the viewing translation
matrix is loaded for each frame and the world translation matrix is loaded once for
each object.

e Handles polling for the end of frame interrupt which is used to determine when
each frame ends and begins.

For each frame, the data capture interprets the outgoing DVI interface and converts the
information to a PPM frame. A PPM files stands for a portable pixmap file where raw RGB data
is stored from left to right and top to bottom fashion. PPM files are convenient because
DVI/VGA displays output RGB data in left to right top to bottom format. PPM files store data

the same way, from left to right and top to bottom. Also, the header for the file is minimal

130

makeing the file almost completely raw RGB data. In addition to the PPM files, the testbench
displays results which give information on the test results on the Modelsim console.

This section goes through a step by step process of how data is progressed through the
pipeline. First the pipeline waits for an end of frame interrupt from the VGA controller. After
the interrupt occurs, the viewing and world transformation matrix is updated using the matrix
mailbox interface. The waveform in Figure 4.33 shows the world transformation matrix being

programmed.

Jvideo_control_top_tbju_regs_ifd/dk 0

4 jvideo_control_top_tbju_regs_if0jreset_n |

4 pvideo_control_top_tbfu_regs_if0/eof i 0

“ jvideo_control_top_tbfu_regs_if0/matrix_we 0

pvideo_control_top_tbfu_regs_if0/matrix_sel k] 3
Jvideo_control_top_tbju_regs_ifd/matrix_waddr 3 End of Frame 3

4 pideo_control_top_th/u_regs_ifo/matrix_wdata 3F3000000000000000000C003F800000
4 video_control_top_tb/u_regs_ifd/mbox_trig_reg
4 jvideo_control_top_tbfu_regs_if0/matrix_cC_reg
B Jvideo_control_top_tbju_regs_if0/matrix_c1_reg
— PLB BUS
B Jvideo_control_top_tbju_regs_if0/matrix_cZ_reg
video_control_top_tbfu_regs_ifd/busZip_ck
~ pvideo_control_top_tb/u_regs_Ifo/bus2ip_reset
4 video_control_top_tbfu_regs_if0/bus2ip_addr
4 jvideo_control_top_tbfu_regs_if0/busZip_cs
4 jvideo_control_top_tbju_regs_ifd/bus2ip_rrw
4 pvideo_control_top_tbfu_regs_if0/bus2ip_data
fvideo_control_top_tbju_regs_if0/bus2ip_be
4 pideo_control_top_tbfu_regs_if0fip2bus_data
4 jvideo_control_top_tb/u_regs_if0/ip2bus_rcack
jvideo_control_top_tbfu_regs_if0/ip2bus_wrack

29181495000 ps
Cursor 1 21377190208 ps

Figure 4.33: Matrix Programming in Simulation

Once the transformation matrices are programmed objects can begin being pushed into
the graphics pipeline after the VGA'’s end of frame signal. It is here that the individual (x,y,z,w

and color) vectors are pushed into the pipeline as shown in the wave in Figure 4.34.

131

: Jvideo_control_top_tb/u_regs_ifd/dk

Jvideo_control_top_tbju_regs_if0jreset_n

4 |video_control_top_th/u_regs_ifo/eof i

B jvideo_control_top_th/u_regs_ifo/x_in_o
fvideo_control_top_th/u_regs_ifo/y_in_o
Jvideo_control_top_tb/u_regs_ifd/z_in_o
Jvideo_control_top_th/u_regs_ifd/w_in_o
fvideo_control_top_th/u_regs_if0/point_trig_o
fvideo_control_top_tb/u_regs_if0/color_in_o
Jvideo_control_top_tb/u_regs_if0/point_ready_i
Jvideo_control_top_tb/u_regs_ifd/zmax_o
—— PLBBUS

fvideo_control_top_thfu_regs_ifd/bus2ip_dk
Jvideo_control_top_tb/u_regs_ifd/bus2ip_reset
Jvideo_control_top_tb/u_regs_ifd/bus2ip_addr
Jvideo_control_top_thju_regs_ifd/bus2ip_cs
fvideo_control_top_th/u_regs_ifdbus2ip_rmw
video_control_top_th/u_regs_ifd/bus2ip_data
Jvideo_control_top_tb/u_regs_ifd/bus2ip_be
Jvideo_control_top_tb/u_regs_if0fipZbus_data
Jvideo_control_top_thju_regs_ifdip2bus_rdack
fvideo_control_top_tbju_regs_ifd/ip2bus_wr;
Jvideo_control_top_tb/u_regs_ifd/fipZbus_error
Jvideo_control_top_tb/u_regs_ifdfipZbus_intrevent

“
21378438952 05

Figure 4.34: Pushing Line in Simulation

The object data is then passed through the various matrix multiplication blocks to
transform between the various coordinate spaces. The pushing of object data through the world

translation multiplication and the multiplication’s results are shown in Figure 4.35.

video_control_top_th/video_control_top_0/world_translation_0/reset
Jvideo_control_top_th/video_control_top_0jworld_translation_0/dk
Jvideo_control_top_th/video_control_top_0jworld_translation_0/x_in
video_control_top_tb/video_control_top_0fworld_translabon_0/y_in
Jvideo_control_top_tb/video_control_top_0fworld_translation_0/z_in
Jvideo_control_top_th/video_contral_top_0/world_translation_0/w_in
Jvideo_control_top_th/video_control_top_0/world_translation_0/color_in
[video_control_top_th/video_control_top_0/world_translation_0fvalid_in
video_control_top_th/video_control_top_0/world_translation_0/pix_ready
video_control_top_th/video_control_top_0world_translation_0/matrix_we
Jwdeo_control_top_th/video_control_top_0fworld_translation_0/matrix_waddr
Jvideo_control_top_tb/video_control_top_0/world_translation_0/matrix_wdata
Jvideo_control_top_th/video_control_top_0/world_translation_0/enable

7 deo_control_top_th/video_control_top_0iworld_translation_o/eof
Jdeo_control_top_th/video_control_top_0/world_translation_0/x_out
video_control_top_tb/video_control_top_0/world_translation_0/y_out
video_control_top_tb/video_control_top_0/world_translation_0/z_out
video_control_top_th/video_control_top_0/world_translation_0fw_out
video_control_top_th/video_control_top_0/world_translation_0/color_out
[video_control_top_th/video_control_top_0/world_transiation_0/valid_out
video_control_top_th/video_control_top_0/world_translation_0/raster_rdy

Figure 4.35: Matrix Multiplication in Simulation

The object data goes through each multiplication stage of the pipeline. From there the
objects are clipped, rasterized and stored in the frame buffer. On the next frame, the objects are

read from the buffer and driven out on the DVI interface.

132

The data destined to the DVI interface is attached to a PPM file generator. Here a PPM
frame is generated for each actual frame driven out on the display interface. An example of a

unit cube PPM file generated by the testbench is shown below.

Figure 4.36: PPM unit cube.

Pushing various test images and verifying them using the waveform and their generated
PPM frame, establishes that the basic functionality of the GPU’s graphics pipeline was
functioning properly. Hence it was safe to implement the GPU into fully synthesized logic using
the FPGA. By synthesizing the logic, an idea of the resource utilization needed by the GPU can

be attained and further functional and performance testing can be performed.

133

44 GPUSYNTHESIS

The following section goes into the details involved with FPGA synthesis of the GPU
design on the Xilinx Virtex 5 SXT 50 device. Synthesis here involves both the graphics pipeline
as well as the Xilinx Microblaze CPU. In addition, logic is needed to synthesize any external
interface peripheral controllers such as the DVI interface, ZBT memory controller, and N64
controller interface. In this section first the steps involved in design synthesis are presented

followed by the actual synthesis resource utilization results.

441 Xilinx EDK and Microblaze

The CPU is used for various tasks within the design. Using the processor, C programs
were written which calculate the elements of the matrix transformation, initialize the GPU, push
graphics objects onto the GPU pipeline, and manipulate graphics objects in software. The CPU
also has various peripherals which interface to external devices such as the DDR2 SDRAM
controller, DVI controller, N64 controller, and serial UART. The UART is used to display
information and results from any application run on the CPU. All compiled software executables
are stored in external DDR2 SDRAM. The Microblaze CPU, DDR2 SDRAM controller, and
serial UART are all intellectual property provided by Xilinx’s Embedded Development Kit
(EDK) software. The DVI controller is a modified design provided by opencores and the N64
controller is a custom built peripheral meant for testing. The figure below shows all these

peripherals connected to the PLB in EDK.

134

A | auoq
joug | Bunweps | nding
4 | »

wedbiel] yoolg wmal fquessy waisls

-

2007 jesasdsooud
CHEOS ey
2001 Jojeiaual yoopR

7l a sch

sajl4 yoday ssaLUds -F

& | |- 2 sajy4 Do -
e, @ | |- ® sajl aoualaEy|i _m_
B = ® TWHOIAYHIE ‘FPo WS -
& | |- 4 [PYA0H -
& | |- ® (molp) 54 uoneswa)dw -
& |- & SNPopgns - ﬁ_:mz:.”
8- & L-GE L LHADG*EAGO - 20lAS] -
o || . oo ol =
Hoo)g weig e 1 =t} H 1 uabygroge tapq suondg usbyg -
owdw @ ﬁ InuniTiselala ta)4 suondo uoneusws|dwy -
@ ||—o - 3 WIS PEOJUMOP,/ 218 3 PUBLILIOY | 4!
o —e o prndo/eEp ey 407

ssuwrnda a)d S5
sUUrnd 24 SH -

]| — s3|y palay - m
'€ -H il uoge|d
s oy bt SN _ﬂ _ﬂ w _ Bojeiea 41 _ suoneddy _ joalouy
sy m_mb@ _ sassaIpPY _ T _ saoepal) sng _|b 1 1 d .
NODER 32 ME XKE #m $EF-E S IEOE0E WRBXEwa E&@ @mﬂ

X @E dpy mopuiyy uonenuing Bngag uonenByuo) 3omag wemyos asempiey Palond maly Wp3 A4
F— = [rmap, Aiquiassy waisks] - dunendoynda\azejgonnupateunpandbysoalosd\:) - olpnis uLogeld XUy |

Figure 4.37: Xilinx’s EDK showing processor sub-system
135

Xilinx’s EDK handles the creation of the Microblaze CPU system. It also handles the
interconnection of peripherals such as the UART and DDR2 SDRAM memory controller via the
PLB bus. In addition, the graphics pipelines control registers are mapped to a specific location
within the PLB buses addressing space. EDK also handles the compilation and syntax checking
of executable code written for the Microblaze processor. The complied executable is stored in

and executed from DDR2 SDRAM.
4.4.2 ISE and Full GPU Synthesis

The Microblaze system is just a portion of the design hierarchy. The Microblaze sub-
system is then added to the GPU design as shown in the figure below. This figure shows the

hierarchy used by ISE to synthesis, map, and place and route the FPGA design.

= gpu_cpu
= £ xcHvsx50t-11136
= ﬁﬁﬁgpu_cpu_tup - hdl {C:/projects/gpu/vhdlAop/apu_cpu_top vhd)
u_cpul} - opu (C:/projects.gpusAdlirec/edi /microblaze /cpuscpu xmp)
= u_clpu[!'-videu:u_c-:untml_tcup - hdl {C:/projects/gpusvhdlAopvidea_control_top vhd}
[ﬂnatBE_ﬂu:uat'I 8 _conv_0 -float32_float18_conv - hdl {C:/projects/gpu/vhdl‘geometry float 32_float 18_conv vhd)
- "Wyl u_woa_ctd_0 - wvga_ctrd - hdl {C:/projects/gpusvhdlvaa_ctdAvaa_ctd vhd)
u_dvi_intf_{ - dvi_intf - hdl {C:/projects.apusvhdl/dvi_intf /dvi_intf whd)

’Fl u_vaga_frame_reader_{ - vga_frame_reader - hdl {C:/projects/gpu.vhdlvoa_ctdvoa_frame_reader vhd)
[world_translation_[- matrix_transformation - hdl {C:/projects /gpuvhdl/geometny/matrix_transformation vhd)
- W] view_translation_{ - matrix_transformation - hdl (C:/projects/gpusvhdl/geometry/matrx_transformation vhd)
53] clipping_logic_0 - clipping_2d - hdl {C:/projects/gpu/vhdl/clipping/clipping_2d vhd)
[projection_translation_{ - matrix_transformation - hdl {C:/projects./apusvhdl/geometny/matri_transformation vhd)
+ screen_translation_0 - matrix_transformation - hdl {C:/projects/gpuvhdl‘geometny/matrix_transformation . whd)
- "W | line_creator_0 - line_creator - hdl {C:/projects./gpuvhdl/geometryline_creatar.vhd)
&3] line_drawler_0 - line_drawler - il {C:/projectsapusvhdl/msterzerline_dawler vhd)
[l u_zbt_frame_intf_0 - zbt_frame_intf - il {C:/projects/apu/vhdl/zbt_intefface./zbt_frame_intf vhd)
E gpu.ucf {C:/projects/gpusuct /gpu ucf)

Figure 4.38: ISE 3D GPU hierarchy

136

The figure above shows the Microblaze processor instantiated within the system and name
u_cpu0. The other major block is the GPU which is named u_gpu0. The GPU consists of the
four translation matrix blocks, clipping logic, rasterization logic, VGA/DVI interface and the
ZBT frame buffer interface. In addition, ‘gpu.ucf’ is a constraint file which holds pin placement
constraints for the external peripherals on the Xilinx Virtex 5 SX50 development board. The
‘gpu.ucf” file also hold timing constraints directing the synthesis to meet the desired timing
requirements of 100MHz.

Xilinx’s ISE tool is used for synthesis, place and route, and program file generation.
After these steps are completed, the programming file is loaded onto the FPGA’s configuration
prom. Upon power up the FPGA reads the data from the non-volatile configuration PROM and

configures it’s the FPGA’s internal fabric accordingly.

4.4.3 Synthesis Results

The full 3D GPU system uses 18,860 or 57% of the available LUTs and 23,630 or 72%
of the available flip flops in the Xilinx Virtex 5 SX50 device. Moreover, 2,016 KB or 42% of
the Virtex 5’s block memory is used with the 3D GPU. This leaves a substantial amount of area
that could be used for other graphical functions (such as lighting, texturing or shading). This
shows that a basic 3D GPU is feasible in today’s modern FPGA devices. In fact, for this
particular design a smaller, less expensive Virtex 4 or Spartan 3 may be able to be used. Now
that the design is put into hardware, it can be verified to work in actual hardware by using test

software application which runs on the Microblaze CPU.

137

45 SOFTWARE BASED HARDWARE TESTING

The hardware was tested using a C application designed to be run on the Microblaze
processor. The test software performs several functions. The first is initializing the system.
System initialization involves configuring the DVI controller via its 1IC interface, enabling the
N64 control interface, configuring the clipping logic and setting the element values of the screen

translation matrix. All of these steps can be seen below in Figure 4.39.

Figure 4.39: Serial terminal output from test software.

The figure above shows the initialization output of the FPGA’s Microblaze processor. This
window is a console program running on a PC.

After the GPU is initialized the test software begins pushing graphics objects to the GPU
pipeline. At the same time, the processor is checking the status of the N64 controller. The

controller is used to move the objects on the screen as well as change the camera angle of the 3D

138

scene. A sample screen where the processor is pushing a single cube and single pyramid into the

graphics processor is shown in Figure 4.40.

Figure 4.40: 3D Graphics Processor Output

Several features needed to be tested in real hardware. The following images show examples of
the same objects in Figure 4.40 with rotation, scaling, translation and clipping applied. Figure

4.41 shows the pyramid and cube rotated about the z-axis.

139

Figure 4.41: 3D Object rotation.

In Figure 4.42 the rotate object is then reduced in size using scaling.

Figure 4.42: 3D Object Scaling

140

Lastly clipping and translation is tested in Figure 4.43 by translating the object off screen and

verifying that the objects are clipped properly.

Figure 4.43: 3D Objects Translated and clipped.

Using this basic test, it can be scene that the basic functionality of the system is working. Next is
to try a more complex model to more exhaustively test the system.
A more complex model is rendered in Figure 4.44. This model is a plane containing over

5000 polygons. All of this is rendered at 60 Frames per second.

141

Figure 4.44: Model Plane Rendered using GPU

142

A picture of the entire hardware system which was used to render the above objects is shown in

Figure 4.45.

Figure 4.45: Development Kit with JTAG, VGA and N64 Hardware

This software test code proves that the design is functionally working as expected. The test code

is located in Appendix D.

143

5.0 SUMMARY, CONCLUSIONS, AND FUTURE WORK

5.1 SUMMARY AND CONCLUSIONS

This thesis set out to demonstrate that it is feasible for both 2D and 3D real time
computer graphics processing units to be implemented in modern FPGA devices. In particular,
this thesis set out to implement a wireframe based graphics engine capable of rendering objects
in a 2D or 3D virtual world. The requirements also asked for implementation of a free roaming
viewpoint or camera so that a 3D virtual world can be viewed from any perspective. Lastly, the
graphics processing unit must be able to interface with today’s standard display technologies.
Accomplishing these objectives would establish FPGA’s as viable graphic processing elements
in embedded systems.

To meet these goals, some extensive research was initially performed on
implementation of graphics processing. Typical graphic pipeline algorithms that can be
implemented in an FPGA, such as Affine Geometric Transforms, Bresenham’s Line Algorithm
for rasterization and Cohen-Sutherland’s clipping algorithm were highlighted. Each algorithm
was analyzed to see if hardware acceleration could be efficiently implemented. Bresenham’s
Line algorithm and Cohen Sutherland’s clipping algorithm were designed completely in
hardware using floating point cores provided by Xilinx along with custom designed logic. In

addition, Affine Geometric Transformations involve implementing matrix multiplications in

144

hardware. These transformations require Xilinx’s floating point cores and some custom logic
design. These transformations also require software assistance for matrix element calculation.

The software used to control the system required a central control processor. The Xilinx
Microblaze processor was added to the design and provided a means for storing the graphics
objects, offloading some geometric transformation element calculations, and system
initialization.

To implement this design, a Virtex 5 SX50 ML506 development board was used. The
ML506 has the necessary display interfaces, memory, and logic resource to guarantee that
development hardware did not present any bottleneck during design. Using this development
board, the GPU implementation used a combination of a hardware accelerated graphics pipeline
with some processor assistance. This yielded a design with reasonable logic utilization and good
performance.

Before synthesis of the system, initial verification was done using a VHDL testbench to
verify that the GPU was functionally correct. Upon initial confirmation, the actual hardware was
synthesized on the ML506 development board. Maximum performance met the design
performance requirements with the ability for the geometry engine to process 8.33 million
polygons per second and the rasterizer to fill 100,000,000 pixels per second ignoring processor
overhead. The design took up a reasonable 60-70% of the device leaving more room for some of
the features discussed in Section 5.2 as well as any addition embedded system and system on

chip features discussed in Section 1.2.

145

5.2 FUTURE WORK

The design and implementation provides a good starting point for using FPGA devices as
for graphics processing applications. Given this fact, additional features could be added to the
FPGA solution presented in this thesis. In addition, some design optimizations can be made to
make the current design function even more efficiently. This section details what feature
additions are necessary to implement a more complete and efficient graphics hardware
accelerator and justify how it is viable in today’s FPGA. In addition, it touches on some

advanced features such as partial reconfigurablity.

5.2.1 Feature Additions

The current graphics accelerator designed in this thesis uses only wireframe objects for
rendering. Wireframes draw only the perimeter of an object as illustrated back in Figure 1.3.
For more realistic looking objects, functions such as texturing, illumination, shading, hidden
surface removal and anti-aliasing are needed.

Texturing or texture mapping is a method for adding surface detail to the faces of 3D
rendered object. Texturing applies what is known as a texture map to the surface of a polygon.
Textures are formed from a standard two dimensional image where each pixel within the map is
known as a textel. This texture map is defined on its own coordinate system (u,v). This process
is similar to applying wrapping paper around a plain box. This process requires additional
texture storage memory as well as additional matrix transformations to map the text coordinates

to pixel coordinates.

146

IHlumination is another common feature in graphics processing that adds the sense of
realistic lighting and shading. Various illumination models exist from ambient light models, to
single and multiple point light sources. Shading is the process of applying a given illumination
model to every visible point within the scene. Shading and lighting involve the calculation of
surface normals to polygons, which can be calculated using matrix math for which the hardware
is already designed for coordinate transformations.

In most graphics applications hidden surface removal is done using the z-buffering
technique. Z-buffering is the management of depth coordinates in a 3D object. This can often
be done in the frame buffer by storing a corresponding z coordinate with each pixel. In fact, this
design divided the ZBT frame buffer memory words into 18 bit segments for this purpose. The
first 18 bits store the RGB color of the pixel and the second 18 bits store the floating point value
of the current z coordinate of this pixel. Z buffering is quite simple, for each pixel that is edited
in the frame buffer the z value is read. If the new pixel’s z value falls in front of the old pixels z
value then the pixel’s z value and RGB value are overwritten. Otherwise, the pixel is not written
to the frame buffer. This method could easily be added to this thesis’s design but is of minimal
use in wireframe designs and due to time constraints was not implemented. Also using z
buffering doubles the frame buffer’s memory bandwidth because each pixel in the frame buffer
must be initially read and have the old z value compared with the new z value. If the pixel is
visible, it is then written to the frame buffer. Section 5.2.5 explores with ways to improve

rasterization and frame buffer performance.

147

5.2.2 Direct Memory Access

The graphics accelerator designed in this thesis is a fully functional wireframe graphics
renderer. This subsection highlights various design optimizations and changes that could be
made to improve performance of the design.

Section 4.5 describes how software is responsible for pushing all the graphics objects
onto the graphics pipeline for every frame. In the software test application, graphics objects are
stored in DRAM. Upon every end of frame interrupt, the processor must handle fetching the
objects from memory and writing these objects over the PLB bus. The PLB writes are targeted to
the graphic’s pipelines control registers in order to push these objects onto the input FIFO of the
graphics pipeline. This is a very inefficient requiring the processor to perform many costly
writes for every frame. This overhead could be eliminated by first reserving a section of DRAM
for object storage and reserving another section for software code. Figure 5.1 shows the

purposed memory division.

148

OBJECT END DDR2$DRAM
ADDRESS

OBJECT
MEMORY

OBJECT
START
ADDRESS

PROGRAM
MEMORY
END
ADDRESS

EXECUTABLE
CODE

PROGRAM
MEMORY
START
ADDRESS

Figure 5.1: Program Memory and Object Memory Division

By dividing the memory, the processors function can be mitigated to only updating or
deleting objects within the object memory. Direct memory access can be used by the graphics
pipeline to fetch the object needed for each frame. Figure 5.2 shows a proposed design involving
a multiport memory access to the DDR2 SDRAM. Xilinx provides a Multi-port Memory
Controller (MPMC) IP core that connects directly to the PLB bus. This interface provides direct
read/write access to the DDR2 SDRAM and handles the arbitration between ports. It is still the
responsibility of the CPU, upon receiving and end of frame, to update the object memory and
then to indicate to the graphics pipeline that all updating for the current 2D or 3D frame has been
completed for this frame. When the frame is complete the CPU sends a Start DMA signal in
Figure 5.2 to indicate for the pipeline to start reading. Since the graphics pipeline handles
reading the objects from object memory this leaves the general purpose CPU more cycles to do

other tasks.

149

System Object
Memory Memory
DDR2
SDRAM

byl

[¢]

QD

o

2 g

s g

=

End of Frame

Graphics

CPU . .
Start DMA Pipeline

Figure 5.2: Graphics Pipeline DMA

5.2.3 Transformation Element Calculations

Another core operation of the CPU is calculating the matrix elements for each
transformation matrix. In the current design this is done in software for convenience. Recall the
various transformation matrices from Section 2.2. These matrices require cosine and sine
trigonometric functions as well as additional floating point multiplication, additions and division
for calculation of each matrix elements. Moreover, each transformation matrix requires different
calculations for each of its elements. This requires special purpose hardware for each matrix.
Use of a software solution for viewing, projection and screen coordinates is not costly because
the screen transformation is only updated at power up and the viewing projection transformation
matrices are only updated once per frame. Since the frame rate of a monitor is 60Hz, this means

the viewing and projection matrices only needs updated once every 1/60"™ of a second. Using a

150

100 MHz processor with a period of 10ns, the time needed to do these calculations will be
negligible.

The world coordinate transformation must be updated once per object, this can happen in
a non deterministic number of times within one frame. As the design stands now the software
calculates each entry of this matrix. This transformation requires floating point cosine, sine,
multiplication and addition functions. Performing these calculations for each object causes a
huge bottleneck for the system as the graphics pipeline must wait for the new world
transformation matrix to be updated before it can process any new graphics objects. To alleviate
this problem, floating point cosine and sine hardware acceleration must be implemented as well
as using addition multiplication and addition floating point cores define in Section 4.2.1.
Implementing these operations will take up more FPGA area, but will allow the graphics pipeline

to stream graphics objects without being interrupted by the processor.

5.2.4 Using external processor over PCI express.

As more complicated graphics features are needed, FPGA real estate will be at a
premium. Fortunately, Xilinx Virtex 5 FPGAs have and integrated PCI Express block which are
complaint with Specification 1.1. x1, x4, and x8 lane speeds are supported. The PCI express
could be used to eliminate the need for an on board processor. In Microblaze systems on the
Virtex 5 SX50, this could save roughly 30% of the chips resources. This additional logic could
be used to implement more advance functions such as texturing or illumination. Using PCI

express enables communication with an external processor. An external processor may be

151

significantly more powerful than a Microblaze, potentially adding better performance to the

overall system.

5.2.5 More Parallelism in Rasterization

Rasterization has the potential to become the major bottleneck for the system. The
geometry engine of the graphics pipeline can process a triangle every 12 cycles, while
rasterization of a wireframe triangle is non-deterministic depending on the object size and
amount of clipping needed. While not a huge issue with wireframe rendering, when polygons
are filled or textured the number of pixels that must be displayed goes up dramatically. When
rasterization becomes a bottleneck, the only way to alleviate it, other than just increasing the
rasterization engine’s clock speed, is parallelism. However, increasing parallelism is not enough,
because more memory bandwidth is required for each parallel rasterization element added. In
this subsection, various methods that could be used to implement for parallel rasterization in the
future are discussed.

In this thesis’s design, a single physical frame buffer memory was used. The memory
bandwidth is that of the single ZBT frame buffering memory. This will most certainly cause a
bottleneck as resolutions increase and the number and size of graphic objects increase. One
method to overcome this is to use memory interleaving. Memory interleaving divides the
memory into multiple partitions (7). For example if the memory is divided into 16 partitions,
then every forth pixel of every forth scan line can be stored in one partition, as shown in Figure

5.3.

152

Figure 5.3: Interleaved memory organization

The figure above illustrates a small cross section of a computer screen. Each letter represents a
different memory bank. By dividing the screen this way, up to 16 pixels can be written or read
in parallel. To implement this there must be 16 memory banks connected to an FPGA device or
there must be one memory that supports bursting at 16 times the rate of the rasterization logic.
Any combination of these would work as well, 4 physical memories with a clock 4 times the rate
of the rasterization logic would also work. Using these methods requires alteration of any
rasterization hardware to support parallel calculation of pixels for each memory bank.

Another method of memory parallelism is called contiguous partitioning. In contiguous
partitioning, instead of each memory partition dealing with every other pixel or scan line, each
memory partition is assigned an area of the screen. This is show in Figure 5.4 for a 2x2

contiguous partition.

153

Memory Memory

Partition 1 Partition 2
Memory Memory
Partition 3 Partition 4

Figure 5.4: Contiguous Partitioning

In the figure above, ¥ of the screen is assigned to each memory partition. This implementation
is simpler, but the performance increase is only seen if objects lie in different sections of the
screen. If all the objects lie in one section of the screen no performance increase is observed.

In general, interleaved partitioning provides a better balance of the workload then
contiguous partitioning. Use of either contiguous partitioning or interleaved partitioning
involves creating multiple rasterization engines, one for each partition. This can dramatically
increases the amount of hardware needed for rasterization but the performance increase can be as

much 2x for each partition added.

5.2.6 Partial Reconfigurablity

Xilinx FPGA development tools provide the ability to partially reconfigure a portion of
the FPGA design during runtime. This type of operation is very similar to a processor using
context switching. The only difference is that instead of loading different segments of software,
it is actually hardware that is being loaded onto the design. In this sense, the FPGA can be used

to time share resources among different functions.

154

In order to do this, Xilinx PlanAhead tool must be used. PlanAhead provides a means to
floor plan a design and constrain certain parts of a design hierarchy into portions of an FPGA.
For partially reconfigured designs special care must be taken to modularize the design. The
design must be have a separate fixed portion and separate reconfigurable portions.
Communication between modules is done via a bus macro called a TBUF. In addition,
PlanAhead must be used to constrain each module into a vertical span or multiple vertical spans
of a device. The bus macros must then be constrained to straddle the two columns that each
module occupies. In addition, clocks that are needed for any permutation of the device must be
present for all permutations.

This technique could be used to load different graphics processing hardware on the fly, as
opposed to having hardware instantiated on the device at once. For instance, supposed a Xilinx
FPGA is near its maximum logic utilization. If one application calls for a complex lighting
model by no anti-aliasing, another needs a very simple lighting model but needs ant aliasing to
prevent a jagged appearance. Assuming the design is made modular, the FPGA could in theory
reconfigure itself for each application. For instance, application one could instantiate hardware
for Phong shading with no anti-aliasing while application two could instantiate hardware for a
simpler constant shading but with 4x anti-aliasing hardware acceleration. In a sense each
application could partially reconfigure the FPGA for its own needs. This kind of functionality

could be used to get the most functionality out of smaller scale FPGA devices.

155

APPENDIX A: GRAPHICS PIPELINE CONTROL REGISTERS

The graphics pipeline register interface is logic designed for communication between the
Microblaze CPU and custom graphics pipeline logic over the PLB bus. This block contains
various registers for configuration and debug of the GPU. The table below shows the registers

present in both the 2D and 3D graphics engine.

Table A.1: GPU Configuration Register Memory Map and Register Definition

Register Name Type Offset
ID Register Read Only 0x00
Scratch Register Read or Write 0x04
Status Register Clear on Read 0x08
Enable Register Read or Write 0x0C
Background Color Register Read or Write 0x10
Background Depth Register Read or Write 0x14
ZBT Mailbox Write Register Write Only 0x40
ZBT Mailbox Read Register Write Only 0x44
ZBT Mailbox Data 0 Register Read or Write 0x48
ZBT Mailbox Data 1 Register Read or Write 0x4C
Clipping Z Maximum Register Read or Write 0x340
Matrix Column 0 Data Register Read or Write 0x380
Matrix Column 1 Data Register Read or Write 0x384
Matrix Column 2 Data Register Read or Write 0x388
Matrix Column 3 Data Register Read or Write 0x38C
Matrix Write Enable Write Only 0x390
Vector X Coordinate Data Register Read or Write 0x3C0
Vector Y Coordinate Data Register Read or Write 0x3C4
Vector Z Coordinate Data Register Read or Write 0x3C8
Vector W Coordinate Data Register Read or Write 0x3CC
Vector Color Data Register Read or Write 0x3D0
Vector Write Enable Read or Write 0x3D4

*Note all register dealing with the Z coordinate are not present in the 2D engine, these 3D only register are highlighted.

156

ID Register — 0x00

The Id register used to identify that this is indeed the GPU and also identify the current version

of the GPU.
Bits Name Type Description
31:16 | GPUID Read Only Reads back OXBEEF
15:0 | GPU Version Read Only Read back current version of GPU

Currently 0x0006

Scratch Register — 0x04

Scratchpad register which can be written to any value. Used for PLB sanity check.

Bits Name

Type

Description

31:.0 Scratch Value

Read or Write

Write anything.

Status Register — 0x08

The status register gives various debug and status information, each bit is described below.

Bits Name Type Description

31:4 | Reserved NA Reserved

8 Object Complete Clear on Read This bit is set when the World
Translation engine is complete with the
translation matrix in use.

7 Input FIFO Full Read Only Gives the current status of the input
FIFO of the GPU. This value should be
read before pushing vector data into the
GPU.

6 Arithmetic Error Clear on Read Divide by zero, Arithmetic Underflow,
Arithmetic Overflow, or Invalid
Operation has occurred in one of the
floating point arithmetic engines.

5 FIFO Overflow Clear on Read A FIFO overflow in one of the designs
FIFO has occurred.

4 FIFO Underflow Clear on Read A FIFO underflow in one of the designs
FIFO has occurred.

3 End of Frame Clear on Read This bit is set when an end of frame
even occurs.

2 ZBT Write Done Clear on Read A ZBT memory write has completed.

1 ZBT Read Valid Clear on Read A ZBT memory read has completed.

0 ZBT DCM Lock Clear on Read The ZBT DCM clock deskewing done.

157

Enable Register — 0x0C

The Enable register is used to enable various block within the graphics pipeline.

Bits Name Type Description

31:29 | Reserved NA Reserved

1 GPU Enable Read or Write Enables the GPU logic for use.

0 DVI Enable Read or Write Enables output to the DVI controller.

Background Color Register — 0x10

This register sets the default background color of the screen.

Bits Name Type Description
17:12 | Red Value Read or Write Red Component of background color.
11:6 | Green Value Read or Write Green Component of background color.

5:0 Blue Value

Read or Write

Blue Component of background color.

Background Color Register — 0x14

This register sets the default background depth. This value is represented as a floating point 18.

Bits Name

Type

Description

17:0 | Depth Value

Read or Write

Floating point depth value.

ZBT Mailbox Write Register — 0x40

This register is used to trigger a single write to the ZBT memory. The value written into this
register is the address to be written to memory. Before this register is written, the ZBT Mailbox
Data 0 and Data 1 registers must be set to the values to be written into memory.

Bits Name

Type

Description

31:.0 Write Address

Write Only

Address to be written to.

ZBT Mailbox Read Register — 0x44

This register is used to trigger a single read to the ZBT memory. The value written into this
register is the address to be read from memory. After this register is written, the ZBT Mailbox
Data 0 and Data 1 registers hold the data which was read from memory.

Bits Name

Type

Description

31:0 Read Address

Write Only

Address to be read from.

158

ZBT Mailbox Data 0 Register — 0x48

This register is used to write bits 31 to 0 of ZBT memory when data is written to memory and is
used to read bits 31 to 0 of ZBT memory when data is read.

Bits

Name

Type

Description

31:0

Read or Write Data

Read or Write

Data to be read from or written to
memory.

ZBT Mailbox Data 1 Register — 0x4C

This register is used to write bits 35 to 32 of ZBT memory when data is written to memory and is
used to read bits 35 to 32 of ZBT memory when data is read.

Bits Name Type Description
31:4 Reserved NA Reserved
3:0 Read or Write Data | Read or Write Data to be read from or written to

memory.

Clipping Z Maximum Register — 0x340

The clipping z maximum register defines where the front face of the viewing volume is defined.
All z values greater than the z maximum register are clipped.

Bits

Name

Type

Description

31:0

Z Maximum

Read or Write

Defines the front face of the viewing
volume.

Matrix Column 0 Data Register — 0x380

This register is used to write floating point values into the geometric translation engines.
This register is for column zero of the matrix.

Bits

Name

Type

Description

31:0

Matrix Column 0

Read or Write

Geometric engine’s column zero
floating point value.

159

Matrix Column 1 Data Register — 0x384

This register is used to write floating point values into the geometric translation engines.
This register is for column one of the matrix.

Bits

Name

Type

Description

31:0

Matrix Column 1

Read or Write

Geometric engine’s column one
floating point value.

Matrix Column 2 Data Register — 0x388

This register is used to write floating point values into the geometric translation engines.
This register is for column two of the matrix.

Bits

Name

Type

Description

31:0

Matrix Column 2

Read or Write

Geometric engine’s column two
floating point value.

Matrix Column 3 Data Register — 0x38C

This register is used to write floating point values into the geometric translation engines.
This register is for column three of the matrix.

Bits

Name

Type

Description

31:0

Matrix Column 3

Read or Write

Geometric engine’s column three
floating point value.

Matrix Write Enable Register — 0x390

This register triggers a write to a row of the geometric translation engine. The values of matrix
column register 0 to 3 are written into the selected matrix column. Each geometric engine has

four rows and there are four geometric engine blocks.

Select

Bits Name Type Description

1:0 Matrix Row Write | Write Only Geometric engine column's write
Address address.

3:2 Geometric Engine Write Only b00: World Translation Engine

b01: View Translation Engine
b10: Projection Translation Engine
b11: Screen Translation Engine

160

Vector X Coordinate Data Register — 0x3C0

This register is used to write floating point x value into the floating point engine.

Bits

Name

Type

Description

31:0

X Coordinate

Read or Write

X Coordinate’s floating point value.

Vector Y Coordinate Data Register — 0x3C4

This register is used to write floating point y value into the floating point engine.

Bits

Name

Type

Description

31:0

Y Coordinate

Read or Write

Y Coordinate’s floating point value.

Vector Z Coordinate Data Register — 0x3C8

This register is used to write floating point z value into the floating point engine.

Bits

Name

Type

Description

31:0

Z Coordinate

Read or Write

Z Coordinate’s floating point value.

Vector W Coordinate Data Register — 0x3CC

This register is used to write floating point w value into the floating point engine.

Bits

Name

Type

Description

31:0

W Coordinate

Read or Write

W Coordinate’s floating point value.

Vector Color Select Register — 0x3D0

This register sets the color of the vector. It takes two vectors to make a line, only the first vector
is used as the color select. The second vector’s color field is ignored.

Bits Name Type Description

17:12 | Red Value Read or Write Red Component of background color.
11:6 | Green Value Read or Write Green Component of background color.
5:0 Blue Value Read or Write Blue Component of background color.

161

Vector Write Enable Register — 0x3D4

This register triggers a push of a 3D vector into the graphics processing engine. The values of in
the (x,y,z,w) coordinate register along with the color register are pushed into the graphic
processors input FIFO.

Bits Name Type Description

0 Last Vector Write Only This bit indicates if this vector is the
last vector input for this particular
object.

162

APPENDIX B: N64 CONTROLLER REGISTERS

The N64 Controller (20), designed by Nintendo for use with the Nintendo 64 console, is used for
manipulation of 2D and 3D objects in the FPGA based graphics system. It is mainly a tool used
for debugging and was selected based on availability. Using it, objects on the screen can be

selected, translated, scaled and rotated. The N64 Controller registers are shown below

Table B.1: N64 Controller Interface Memory Map and Register Definition

Register Name Type Offset
Trigger Write Only 0x00
Status Read Only 0x04
Control Word Return Read Only 0x08
Button Status Return Read Only 0x0C

163

Trigger Register — 0x00

This register triggers commands to be sent to the N64 controller. Either a control word request
or a button status request can be sent. There is also a reset bit for the internal state machine.

Bits

Name

Type

Description

31:3

Reserved

NA

NA

2

Button Status Req.

Write Only

This bit sends a single cycle strobe to
the controller state machine. The
strobe triggers a serial bit stream to be
sent to the N64 controller indicating
that the button status be returned.

Control Word Reg.

Write Only

This bit sends a single cycle strobe to
the controller state machine. The
strobe triggers a serial bit stream to be
sent to the N64 controller indicating
that the control word status be returned.

State Machine Reset

Write Only

Resets internal logic’s state machine.
Use this if the Controller Busy bit gets
suck high or if the controller is
removed.

Status Register — 0x04

This register provides general status for the N64 controller.

A present bit can be polled to

determine if the controller is present while a busy bit is used to determine when valid data from
the controller has returned.

Bits Name Type Description

31:2 | Reserved NA NA

1 Controller Present Read Only Bit is high if controller is present on the
line, else it is low.

0 Controller Busy Read Only After sending a control word or button

status trigger this bit will be high until
the control word or button status is
returned by the controller.

164

Control Word - 0x08

This register stores the contents of the last returned control word.

Bits Name Type Description
31:24 | Reserved NA NA
23:0 | Controller Status Read Only This is a 24 bit vector used to describe

the status of the controller. Different
bits are wused to describe what
peripheral is connected to the memory
card slot.

Control Word - 0x0C

This register stores the contents of the last returned button.

Bits Name Type Description

31 Button A Read Only High if A was pressed.

30 Button B Read Only High if B was pressed.

29 Button Z Read Only High if Z was pressed.

28 Button Start Read Only High if Start was pressed.

27 Joypad UP Read Only High if Up is pressed on Joypad.

26 Joypad Down Read Only High if Down is pressed on Joypad.

25 Joypad Left Read Only High if Left is pressed on Joypad.

24 Joypad Right Read Only High if Right is pressed on Joypad.

23:22 | Unused NA NA

21 Button L Read Only High if L was pressed.

20 Button R Read Only High if R was pressed.

19 Cpad UP Read Only High if Up is pressed on Cpad

18 Cpad Down Read Only High if Down is pressed on Cpad

17 Cpad Left Read Only High if Left is pressed on Cpad

16 Cpad Right Read Only High if Right is pressed on Cpad

15:8 | Joystick X-Axis Read Only 0-255 Value depending on placement
of the X axis on the analog stick.

7:0 Joystick Y-Axis Read Only 0-255 Value depending on placement

of the Y axis on the analog stick.

165

APPENDIX C: VHDL SOURCE CODE

This appendix presents the VHDL code for the GPU. The Microblaze and floating point

cores are not shown because they are proprietary IP provided by Xilinx. The code is listed in the

sections below.

C.1 TOP LEVEL VHDL FILE

This VHDL file ties together the Microblaze CPU and the graphics processing custom

logic. The tri state buffers for the iic, n64 controller and the ZBT memory are also defined here.

In addition the DDR flops to drive data to the DVI controller are also instantiated.

> gpu_cpu_top.vhd

-- Filename
-- Date
-- Author

-- Desc

library ieee;

: September 20 2007
- James Warner

- GPU Top Level

use ieee.std logic 1164.all;
use ieee.std logic arith.all;
use ieee.std_logic _unsigned.all;

library work;

use work.gpu_pkg-all;

library UNISIM;

use UNISIM.Vcomponents.all;

entity gpu_cpu_top is

166

port(

-- Reset

ext rst n :in std_logic;
-- Main external clock reference
sys clk :in std_logic;
-— UART (for debugglng, stdio, etc.)
uartl rx in std Ioglc
uartl_tx - out std_logic;

-— 12C Bus 1/0 (to be used later...DO NOT FORGET
-— PULLUP declaratlons on these pins in the UCF)

i2c_sda inout std _logic;

i2c_clk - inout std_logic;

i2c_dvi_sda : inout std_logic;

i2c_dvi_clk : inout std_logic;

-— SRAM interface plns.

zbt_clk out std_logic;

zbt_clk_fb - in std_logic;

zbt_addr : out std_logic_vector(20 downto 0);
zbt_dq : inout std_logic_vector(35 downto 0);
zbt ben : out std_logic_vector(3 downto 0);
zbt_oen : out std_logic;

zbt _cen : out std_logic;

zbt _wen : out std logic;

-- Flash interface pins.

flash_clk : In std_logic;

flash_addr : out std_logic _vector(6 downto 0);
flash_data : inout std_logic_vector(15 downto 0);
flash_cen - out std_logic;

flash_oen : out std_logic;

flash_wen : out std_logic;

flash_irq : In std _logic;

-— DDR DRAM |nterface pins

ddr_addr out std logic vector(12 downto 0);
ddr_bankaddr - out std_logic_vector(1 downto 0);
ddr_cas n : out std_logic;

ddr_cke : out std logic vector(1 downto 0);
ddr_cs_n : out std logic vector(1 downto 0);
ddr_ras n : out std_logic;

ddr_we_n : out std logic;

ddr_dm : out std logic vector(7 downto 0);
ddr_dgs : inout std_logic_vector(7 downto 0);
ddr_dgs_n : 1nout std _logic vector(7 downto 0);
ddr_dq : inout std _logic_ vector(63 downto 0);
ddr_clk : out std_logic_vector(1 downto 0);
ddr_clk_n : out std logic vector(1 downto 0);
ddr_odt : out std logic vector(1 downto 0);

-- Signals that drive the video DAC
dvi_reset b out std_logic;
dvi_xclk_n out std_logic;

dvi_xclk p : out std logic;
dvi_d : out std logic vector(1l downto 0);
dvi_de : out std_logic;
dvi_gpiol : Inout std logic;
dvi_h : out std logic;
dvi_v : out std_logic;

167

-- N64 Controller input
n64_data - inout std_logic

)
end gpu_cpu_top;

architecture hdl of gpu _cpu_top is

component cpu is
port (

fpga_O_DDR2_SDRAM_DDR2_ODT_pin : out std_logic_vector(l downto 0);
fpga_0_DDR2_SDRAM_DDR2_Addr_pin : out std_logic_vector(12 downto 0);
fpga_0 DDR2_SDRAM_DDR2_BankAddr_pin : out std_logic_vector(l downto 0);
fpga_0_DDR2_SDRAM_DDR2_CAS _n_pin - out std _logic;
fpga_0_DDR2_SDRAM_DDR2_CE_pin : out std_logic_vector(l downto 0);
fpga_0 DDR2_SDRAM _DDR2_CS n pln - out std_logic_vector(l downto 0);
fpga_0_DDR2_SDRAM_DDR2_RAS n _pin - out std_logic;
fpga_0_DDR2_SDRAM_DDR2_WE_n pln : out std_logic;
fpga_0 DDR2_SDRAM _DDR2_Clk_pin : out std_logic_vector(l downto 0);
fpga_0_DDR2_SDRAM_DDR2_CIk_n_pin : out std_logic_vector(l downto 0);
fpga_0_DDR2_SDRAM_DDR2_DM pln : out std_logic_vector(7 downto 0);
fpga_0 _DDR2_SDRAM_DDR2_DQS : inout std_logic_vector(7 downto 0);
fpga_0_DDR2_SDRAM_DDR2_DQS _n : inout std_logic_vector(7 downto 0);
fpga_0_DDR2_SDRAM_DDR2_DQ : inout std Ioglc vector (63 downto 0);
fpga_0_SysAce_CompactFlash_SysAce CEN _pin : out std_logic;
fpga_0_SysAce_CompactFlash_SysAce_CLK_pin : in std_logic;

fpga_0_SysAce_CompactFlash_SysAce_ MPA pin : out std_logic_vector(6
downto 0);

fpga 0 _SysAce CompactFlash_SysAce MPIRQ pin : in std_logic;

fpga_0_SysAce_CompactFlash_SysAce MPD_pin : 1inout std_logic_vector(15
downto 0);

fpga_0_SysAce_CompactFlash_SysAce_WEN_pin : out std_logic;
fpga_0_SysAce_CompactFlash_SysAce OEN pln : out std_logic;
Tfpga_0_GPU_INTF_REG_zbt_mbox_dval_pin : |n std_logic;
fpga_0_GPU_INTF_REG_zbt_mbox_wdone _pin - in std_logic;

fpga_0 _GPU_INTF_REG_zbt_mbox_rdata_pin : in std_logic_vector(35 downto

0);
0);

fpga 0 GPU_INTF_REG zbt mbox_wdata pin : out std logic vector(35 downto

fpga 0 GPU_INTF_REG zbt mbox_addr pin : out std _logic_vector(0 to 19);
fpga_0_GPU_INTF_REG_zbt_mbox_we _pin : out std_logic;

fpga_0 _GPU_INTF_REG_zbt_mbox_sel _pin - out std_logic;

fpga_0 GPU_INTF_REG_zbt_dcm_Tock _pin - in std_logic;
fpga_0_GPU_INTF_REG_video_enable _pin : out std_logic;
fpga_0_GPU_INTF_REG_gpu_enable _pin : out std_logic;

fpga_0 GPU_INTF_REG background pin - out std_logic_vector(35 downto 0);
fpga_0_GPU_INTF_REG_zmax_o : out std_logic_vector(31 downto 0);

fpga_0 _GPU_INTF_REG_color_in_o : out std_logic_vector(17 downto 0);
fpga_0 GPU_INTF_REG x_in_o : out std_logic_vector(31 downto 0);
fpga_0_GPU_INTF_ REG_y_ln 0o : out std_logic_vector(31 downto 0);
fpga_0 _GPU_INTF_REG_z_in_o : out std_logic_vector(31 downto 0);
fpga_0 GPU_INTF_REG w_in_o : out std _logic_vector(31 downto 0);
fpga_0_GPU_INTF_REG_point_trig o : out std_logic;

fpga_0 _GPU_INTF_REG_matrix_we : out std_logic;

fpga_0 _GPU_INTF_REG_matrix_. “sel : out std_logic_vector(l downto 0);
fpga_0_GPU_INTF_REG_matrix_ Waddr : out std_logic_vector(l downto 0);
fpga_0_GPU_INTF_REG_matrix_ wdata : out std_logic_vector(127 downto 0);
fpga_0 GPU_INTF_REG_eof _pin - in std_logic;

fpga_0_1IC_DVI_Sda_oen_pin : out std_logic;

fpga_0_11C_DVI_Sda o _pin : out std_logic;

fpga_ 0 _I11C_DVI_Sda_i_pin : in std_logic;

fpga_0_11C_DVI_Scl _oen_pin : out std_logic;

fpga_0_11C_DVI_Scl o _pin : out std_logic;

fpga_ 0 _11C_DVI_Scl_i_pin : in std_logic;

168

fpga_O_IIC_EEPROM_Sda_oen_pin : out std _logic;
fpga O I11C_EEPROM _Sda o pin : out std_logic;
fpga_0_11C_EEPROM_Sda_i_pin : |n std_Togic;
fpga_ 0 _I11C_EEPROM_Scl _oen_pin : out std_logic;
fpga_0_11C_EEPROM_Scl_o_pin : out std_logic;
fpga_0_11C_EEPROM Scl_'_pln : in std_logic;
fpga 0 RS232 Uart_1_TX _pin : out std_logic;
fpga_0_RS232 Uart_1_RX_pin : in std_Togic;

sys _clk_pin : in std_logic;

sys clk 125 pin : out std _logic;

sys_rst_pin : in std_logic;

dvi_clk pin : out std_logic;

zbt_fb_clk_pin : in std_logic;

zbt_clk_pin : out std_logic;

n64_input_| pln : in std_logic;

n64_highz_pin : out std_logic

end component;

component video_control_top is

port(
- Reset/CIock
reset : in std_logic; -- Async Reset.
sys clk : In std_logic; -- System clock.
zbt _clk : in std_logic; -- ZBT memory clock.
vga_clk : in std_logic; -- Vga clock.

-— VGA enable signals.
vga_enable : in std_logic;

-— New frame trigger signals.
gpu_enable - in std_logic;

-— Background
background : in std_logic_vector(35 downto 0);

-- End of file
eof : out std_logic;

-- Matrix Memory access.

matrix_we > In std_logic;

matrix_sel : In std _logic_vector(l downto 0);
matrix_waddr : in std _logic_vector(l downto 0);
matrix_wdata : in std_logic_vector (127 downto 0);

-- Pixel Pipe.

x_1in : in std_logic_vector(31 downto 0);
y in : In std _logic vector(31 downto 0);
z_1in : in std_logic vector(31 downto 0);
w_in : in std_logic_vector(31 downto 0);
color : In std _logic vector(17 downto 0);
pix_valid : in std_logic;

pix_ready : out std_logic;

-- Clipping Maximum

zmax : in std_logic_vector(31 downto 0);
-- CPU Interface port.

cpu_sel : in std_logic;

cpu_we : Iin std _logic;

cpu_addr : Iin std _logic_vector(19 downto 0);
cpu_wdata : in std_logic_vector(35 downto 0);
cpu_wdone : out std logic;

169

cpu_dval : out std logic;
cpu_rdata : out std _logic_vector(35 downto 0);
-- ZBT interface
zbt_cen : out std _logic;
zbt_wen : out std_logic;
zbt oen : out std logic;
zbt_ts : out std logic;
zbt wdata : out std_logic_vector(35 downto 0);
zbt addr : out std logic_vector(17 downto 0);
zbt rdata : in std_logic_vector(35 downto 0);
-- Dvi interface signals.
dvi_hsync_n: out std_logic;
dvi_vsync_n: out std_logic;
dvi_data en: out std _logic;
dvi_datal : out std logic_vector(l1l downto 0);
dvi_data? : out std_logic_vector(1l downto 0)
)
end component;
-— Tieoffs to supplies...
signal vdd : std_logic_vector(31
signal gnd : std logic vector(31
signal reset : std_logic;
signal reset n : std _logic;
signal dvi_hsync_n : std_logic;
signal dvi_vsync n : std _logic;
signal dvi_data en : std_logic;
signal dvi_datal : std_logic_vector(11
signal dvi_data2 : std logic vector(1l
signal 12c_eeprom_scl_i : std_logic;
signal 12c_eeprom scl o : std _logic;
signal i12c_eeprom_scl_oen : std_logic;
signal 12c_eeprom_sda_i : std_logic;
signal 12c_eeprom sda o : std _logic;
signal i12c_eeprom_sda_oen : std_logic;
signal i12c_dvi_scl_i : std_logic;
signal i12c _dvi_scl o : std _logic;
signal i12c_dvi_scl_oen : std_logic;
signal i12c_dvi_sda_i : std_logic;
signal i12c _dvi_sda o : std _logic;
signal i12c_dvi_sda_oen : std _logic;
signal zbt cen_i : std_logic;
signal zbt wen_i : std_logic;
signal zbt oen_i : std_logic;
signal zbt ts i : std _logic;
signal zbt addr_i : std _logic_vector(17
signal zbt wdata_i : std_logic_vector(35
signal zbt rdata_i : std logic_vector(35
signal video_enable : std_logic;
signal gpu_enable : std _logic;
signal background : std _logic_vector(35
signal eof : std_logic;
signal zbt dcm_lock : std _logic;
signal zbt mbox_sel : std_logic;
signal zbt _mbox_we : std_logic;
signal zbt mbox_ addr : std logic_vector(19

170

downto
downto

downto
downto

downto
downto
downto

downto

downto

0)
0)

0
)

0)
0)
0)

0

0

signal zbt mbox wdata : std _logic_vector(35 downto 0);
signal zbt mbox rdata : std _logic_vector(35 downto 0);
signal zbt _mbox_wdone : std_logic;

signal zbt mbox_ dval : std _logic;

signal vga_ clk : std_logic;

signal sys clk 125 : std _logic;

signal color : std_logic_vector(17 downto 0);
signal pix valid : std _logic;

signal pix_ready : std _logic;

signal matrix_we : std_logic;

signal matrix_sel : std _logic_vector(l downto 0);
signal matrix_waddr : std_logic_vector(l downto 0O);
signal matrix_wdata : std logic_vector(127 downto 0);
signal x_in : std_logic_vector(31 downto 0);
signal y in : std logic _vector(31 downto 0);
signal z_in : std _logic_vector(31 downto 0);
signal w_in : std_logic_vector(31 downto 0);
signal color_in : std logic_vector(17 downto 0);
signal zmax : std _logic_vector(31 downto 0);
signal n64_highz : std_logic;

begin

-- Create both high and low polarity reset signals...
reset_n <= ext_rst n;

reset

<= not(ext_rst _n);

-- Single bit ones and zeroes...

vdd <= (others => "1%);

gnd <= (others => "0%);

-- CPU instanciation.
u_cpu0 : cpu
port map (

fpga 0 RS232 Uart 1 RX pln
fpga_0_RS232 Uart_1_TX pin
fpga_0_DDR2_SDRAM_DDR2_ODT _pin
fpga_0 DDR2_SDRAM_DDR2_Addr_pin
fpga_0_DDR2_SDRAM_DDR2_BankAddr_pin
fpga_0_DDR2_SDRAM_DDR2_CAS_n_pin
fpga_0_DDR2_SDRAM_DDR2_CE_pin
fpga_O_DDR2_SDRAM_DDR2_CS_n_pin
fpga_0_DDR2_SDRAM_DDR2_RAS n _pin
fpga_0_DDR2_SDRAM_DDR2_WE_n_pin
fpga_0_DDR2_SDRAM_DDR2_DM_pin
fpga_0_DDR2_SDRAM_DDR2_DQS
fpga_0_DDR2_SDRAM_DDR2_DQS_n
fpga_0_DDR2_SDRAM_DDR2_DQ
fpga_0_DDR2_SDRAM_DDR2_CIk_pin
fpga_0 DDR2_SDRAM_DDR2_CIlk_n_pin

uartl_rx,
uartl_tx,
ddr_odt,
ddr_addr,
ddr_bankaddr,
ddr_cas n,
ddr_cke,
ddr_cs_n,
ddr_ras _n,
ddr_we_n,
ddr_dm,
ddr_ dqs
ddr_dqgs_n,
ddr_dq,
ddr_clk,
ddr_clk n,

fpga_0_SysAce_CompactFlash_SysAce CLK _pin => flash_clk,
fpga_0_SysAce_CompactFlash_SysAce MPA_pin => flash_addr,
fpga_0_SysAce_CompactFlash_SysAce MPIRQ pin => flash_irq,
fpga_0_SysAce_CompactFlash_SysAce_MPD_pin => flash_data,
fpga_0_SysAce_CompactFlash_SysAce CEN_pin => flash_cen,

fpga 0 SysAce_ CompactFlash_SysAce WEN pin => flash_wen,
fpga 0 SysAce_ CompactFlash_SysAce OEN pin => flash_oen,
sys_clk pin

sys clk 125 pin

=> sys clk,
=> sys clk 125,

171

sys_rst_pin

dvi_clk pin

zbt_fb_clk_pin

zbt_clk_pin

fpga_0_TIC_EEPROM _Scl_i_pin
fpga_0_11C_EEPROM_Scl_o_pin
fpga_0_11C_EEPROM_Scl _oen_pin
fpga_0_11C_EEPROM_Sda _i_pin
fpga_0_11C_EEPROM_Sda_o_pin
fpga_0_11C_EEPROM_Sda_oen_pin
fpga_O_1IC_DVI_Scl_i_pin
fpga_0_11C_DVI_Scl_o_pin
fpga_0_11C_DVI_Scl_oen_pin
fpga_0_1IC_DVI_Sda_i _pin
fpga_0_11C_DVI_Sda_o_pin
fpga_0_11C_DVI_Sda_oen_pin
fpga_0_GPU_INTF_REG_video_enable_pin
fpga_0_GPU_INTF_REG_gpu_enable _pin
fpga_0 _GPU_INTF_REG _background_pin
fpga_0_GPU_INTF_REG_eof pin
fpga_0_GPU_INTF_REG_x_in_o

fpga_0 GPU_INTF_REG y in_o

fpga_0 _GPU_INTF_REG_z_in_o

fpga_0 _GPU_INTF_REG_w_in_o

fpga_0 GPU_INTF_REG color_in_o
fpga_0_GPU_INTF_REG_matrix_we
fpga_0_GPU_INTF_REG_matrix_sel
fpga_0 GPU_INTF_REG_matrix_waddr
fpga_0_GPU_INTF_REG_matrix_wdata
fpga_0_GPU_INTF_REG_point_trig_o
fpga_0 GPU_INTF_REG_zmax_o
fpga_0_GPU_INTF_REG_zbt_dcm_lock _pin
fpga_0_GPU_INTF_REG_zbt_mbox_sel _pin
fpga_0 GPU_INTF_REG_zbt _mbox_we_pin
fpga_0_GPU_INTF_REG_zbt_mbox_addr _pin
fpga_0_GPU_INTF_REG_zbt_mbox_wdata _pin
fpga_0 GPU_INTF_REG_zbt _mbox_rdata_pin
fpga_0_GPU_INTF_REG_zbt_mbox_wdone_pin
fpga_O_GPU_INTF_REG_zbt_mbox_dval_pin
n64_input_| pin

n64_highz_pin

)-
u_gpu0 : video_control_top
port map (
reset => reset,
sys clk => sys clk 125,
zbt _clk => sys clk 125,
vga_clk => vga_clk,

vga_enable => video_enable,
gpu_enable => gpu_enable,
background => background,
matrix_we => matrix_we,
matrix_sel => matrix_sel,
matrix_waddr=> matrix_waddr,
matrix_wdata=> matrix_wdata,

x_1in => x_1in,

y_in = vy in,

Z in => z in,

w_in => w_in,
color => color_in,
pix_valid => pix_ valld
pix_ready => pix_ ready,
zmax => zmax,

eof => eof,

172

ext_rst_n,
vga_clk,
zbt_clk_fb,
zbt_clk,
i2c_eeprom_scl i,
i2c_eeprom_scl_o,
i2c_eeprom_scl_oen,
i2c_eeprom_sda i,
i2c_eeprom_sda_o,
i2c_eeprom_sda_ oen,
i2c _dvi_scl i,
i2c_dvi_scl o,
i2c_dvi_scl _oen,
i2c_dvi_sda i,
i2c_dvi_sda o,
i2c_dvi_sda_oen,
video_enable,
gpu_enable,
background,

eof,

x_in,

y_in,

z_in,

w_in,

color_in,
matrix_we,
matrix_sel,
matrix_waddr,
matrix_wdata,
pix_valid,

zmax,
zbt_dcm_lock,
zbt_mbox_sel,
zbt_mbox_we,
zbt_mbox_ addr
zbt_mbox_wdata
zbt _mbox_rdata,
zbt_mbox_wdone,
zbt_mbox_dval,
n64_data,
n64_h|ghz

cpu_sel => zbt mbox_sel,

cpu_we => zbt mbox_we,
cpu_addr => zbt mbox_ addr,
cpu_wdata => zbt mbox wdata,
cpu_wdone => zbt_mbox_wdone,
cpu_dval => zbt mbox dval,
cpu_rdata => zbt mbox rdata,
zbt _cen => zbt cen_1i,
zbt_wen => zbt wen_1,

zbt oen => zbt ocen_i,
zbt_ts => zbt ts_ 1,

zbt wdata => zbt wdata i,
zbt addr => zbt addr_i,

zbt rdata => zbt rdata_ 1,
dvi_hsync_n => dvi_hsync_n,
dvi_vsync_n => dvi_vsync n,
dvi_data en => dvi_data_en,
dvi_datal => dvi_datal,
dvi_data2 => dvi_data2

)
-- Drive out the ZBT related signals.
zbt_addr <= "000" & zbt_addr_i;
zbt _cen <= zbt cen_1i;
zbt wen <= zbt wen_i;
zbt _ben <= (others => "0%);
zbt oen <= zbt oen_1i;
zbt _dq <= zbt wdata i when (zbt _ts i = "0") else (others => "Z%);

zbt _rdata_i <= zbt _dq;

-- Clock mirrors for the DAC clock
-- P clock. ...
xclk _p mirror : ODDR -- Xilinx primitive...
port map (
C => vga_clk,
Q => dvi_xclk p,
CE => vdd(0),
D1 => vdd(0),
D2 => gnd(0),
R => gnd(0),

S => gnd(0)
)
-- N clock. ..
xclk_n_mirror : ODDR -- Xilinx primitive...
port map (
C => vga_clk,
Q => dvi_xclk n,
CE => vdd(0),
D1 => gnd(0),
D2 => vdd(0),
R => gnd(0),
S => gnd(0)
)
-- Vsync
vsync_mirror : ODDR -- Xilinx primitive...
port map (
C => vga_clk,

Q => dvi_yv,
CE => vdd(0),
D1 => dvi_vsync _n,
D2 => dvi_vsync n,

173

R => gnd(0),
S => gnd(0)
);
-- Vsync
hsync_mirror : ODDR -- Xilinx primitive...
port map (
C => vga clk,
Q => dvi_h,

CE => vdd(0),
D1 => dvi_hsync n,
D2 => dvi_hsync _n,
R => gnd(0),
S => gnd(0)

)

-- Vsync
de_mirror : ODDR -- Xilinx primitive...
port map (
C => vga clk,
Q => dvi_de,
CE => vdd(0),
D1 => dvi_data_en,
D2 => dvi_data_en,
R => gnd(0),
S => gnd(0)
)

-- Data bus (12 bit DDR)

dvi_ddr_data : for i in 11 downto O generate

-— Data flop
dvi_dbus_oddr : ODDR -- Xilinx primitive...
port map (
C => vga_clk,
Q => dvi_d(i),
CE => vdd(0),
D1 => dvi_datal(i),
D2 => dvi_data2(i),
R => gnd(0),
S => gnd(0)
)

end generate;

-— Tieoffs for the VGA DAC. If these values are
-- not set as seen below, the rotten DAC will not

-— work.

dvi_gpiol <= "Z"; -- Keep this at Hi-Z just to be safe...
dvi_reset b <= "1%; -- Keep reset high as the DAC has a poweron reset.
-— 11C outputs.

i2c_sda <= "Z" when (i2c_eeprom sda oen = "1") else i2c_eeprom_sda o;
i2c_eeprom_sda_i <= i12c_sda;

i2c_clk <= "Z" when (i2c_eeprom scl _oen = "1") else i2c_eeprom_scl _o;
i2c_eeprom_scl_i <= i12c_clk;

i2c_dvi_sda <= "Z" when (i2c_dvi_sda oen = "1") else i2c_dvi_sda o;
i2c_dvi_sda i <= i2c_dvi_sda;

i2c_dvi_clk <= *"Z" when (i2c_dvi_scl _oen = "1") else i2c_dvi_scl o;
i2c _dvi_scl i <= i2c_dvi_clk;

174

n64 _data <= "Z" when (n64_highz = "1") else "07;
end hdl;

C.2 GRAPHICS PIPELINE TOP LEVEL VHDL FILE

This VHDL file ties together various components of the graphics pipeline. In particular,
the frame buffer logic, VGA controller, ZBT memory interface, matrix multipliers, line

rasterizer, and clipping logic.

-— Filename : video_control_top.vhd

- Date : November 2 2007

- Author : James Warner

_- Desc : Top level of gpu controller.

library ieee;
use ieee.std_logic_1164._all;
use ieee.std logic arith.all;
use ieee.std logic unsigned.all;

library work;
use work.gpu_pkg-.all;

entity video _control_top is

port(
-- Reset/Clock
reset : in std_logic; -- Async Reset.
sys_clk : in std_logic; -- System clock.
zbt clk : In std_logic; -- ZBT memory clock.
vga_clk : in std_logic; -- Vga clock.

-— VGA enable signals.
vga_enable : in std_logic;

-— New frame trigger signals.
gpu_enable : in std_logic;

-- Background
background : in std_logic_vector(35 downto 0);

-- End of file
eof : out std _logic;

-— Matrix Memory access.

175

matrix_we - In std _logic;

matrix_sel : in std _logic_vector(l downto 0);
matrix_waddr - in std_logic_vector(l downto 0);
matrix_wdata : in std logic vector(127 downto 0);

-- Pixel Pipe.

X_1in : In std _logic vector(31 downto 0);
y in : in std_logic vector(31 downto 0);
z_1in : in std_logic_vector(31 downto 0);
w_in : In std _logic vector(31 downto 0);
color : in std_logic vector(17 downto 0);
pix_valid : in std_logic;

pix_ready : out std logic;

-— Clipping Maximum
zmax : In std_logic vector(31 downto 0);

-- CPU Interface port.
cpu_sel : In std _logic;

cpu_we - in std _logic;
cpu_addr > In std_logic_vector(19 downto 0);
cpu_wdata : in std logic vector(35 downto 0);
cpu_wdone : out std logic;
cpu_dval : out std_logic;
cpu_rdata : out std logic vector(35 downto 0);

-- ZBT interface
zbt cen : out std _logic;

zbt wen : out std _logic;
zbt _oen : out std_logic;
zbt ts : out std logic;
zbt wdata : out std logic vector(35 downto 0);
zbt_addr : out std_logic_vector(17 downto 0);
zbt rdata : in std logic vector(35 downto 0);

-- Dvi interface signals.

dvi_hsync _n: out std logic;

dvi_vsync _n: out std logic;

dvi_data_en: out std _logic;

dvi_datal : out std logic vector(1l downto 0);
dvi_data2 : out std logic vector(l1l downto 0)

end’video_control_top;
architecture hdl of video control _top is

component float32_floatl8 conv is

generic
NUM_OF _ENTRIES : integer = 1
)
port (
-- Reset/Clock
reset : in std_logic;
clk : in std_logic;
-— 32 signle precision inputs
float32_in_val : Iin std_logic_vector(NUM_OF ENTRIES-1 downto
0);
float32_in_data - in std logic _vector(NUM_OF ENTRIES*32-1 downto
0);

176

floatl8 out val

0);

floatl8 out data

0);

out std _logic_vector(NUM_OF ENTRIES-1 downto
: out std_logic_vector(NUM_OF ENTRIES*18-1 downto

floatl8 out _underflow : out std logic vector(NUM_OF ENTRIES-1 downto

0);

floatl8 out overflow : out std logic vector(NUM_OF ENTRIES-1 downto 0)

);

end component;

component vga frame_reader is

port(

-- Clock, reset and enable signals

vga _clk
reset_n

in std logic;
in std logic;

-- Vga controller interface.

vga_fifo_afull
vga_data_val
vga_data
vga_eof

-- ZBt memory inter

mem_req
mem_afull
mem_addr
mem_rpop
mem_rdata
mem_rempty
mem_rafull

end component;

component vga_ctrl
generic(

is

in std logic;
out std_logic;
out std logic_vector(23 downto 0);
in std logic;

face.

out std_logic;

in std _logic;

out std logic _vector(18 downto 0);
out std_logic;

in std logic_vector(35 downto 0);
in std logic;

in std logic

-— Number of bits per color

NUM_COLOR_BITS

-— Video timing Generics.

H_ACTIVE_VIDEO
H_PULSE_LENGTH
H_FRONT_PORCH
H_BACK_PORCH
V_ACTIVE_VIDEO
V_PULSE_LENGTH
V_FRONT_PORCH
V_BACK_PORCH

-- Pixel Fifo Generics

FIFO_DEPTH

FIFO_AFULL_THRESH -
FIFO_AEMPTY THRESH:

)
port(

natural := 8;
integer :-= 640;
integer := 96;
integer := 16;
integer :-= 48;
integer := 480;
integer := 2;
integer :-= 11;
integer := 31;
integer := 16;
integer := 9;
integer := 8

-— Clock, reset and enable signals

vga_clk
reset_n
gpu_enable

in std _logic;
in std _logic;
in std logic;

-— Input pixel data.

177

pixel _data in : in std _logic _vector((NUM_COLOR BITS * 3)-1 downto

0);

pixel_wr_req > In std_logic;

-- Signals to the display

vsync_n : out std_logic;

hsync_n : out std _logic;

red_value : out std_logic_vector(NUM_COLOR _BITS-1 downto 0);
green_value : out std_logic_vector(NUM_COLOR BITS-1 downto 0);
blue_value : out std_logic_vector(NUM_COLOR BITS-1 downto 0);
vga valid : out std_logic;

-— Display driver and fifo status

pixel Ffifo full : out std logic;

pixel _fifo_empty : out std_logic;

pixel fifo afull : out std logic;

pixel _fifo_aempty: out std_logic;

pixel_eof : out std_logic

)

end component;

component dvi_intf is

port(
-- Clock, reset and enable signals
clk - In std _logic;
reset_n - Iin std _logic;
enable > In std_logic;

-— VGA input S|gnals.
vga_vsync_n in std _logic;
vga_hsync_n in std logic;

vga_red : in std_logic_vector(7 downto 0);
vga_green > in std_logic_vector(7 downto 0);
vga_blue : In std _logic_vector(7 downto 0);
vga valid - Iin std _logic;

-- Display driver and fifo status
dvi_hsync_n out std_logic;
dvi_vsync_n out std_logic;
dvi_data en out std _logic;
dvi_datal out std logic_vector(1l downto 0);
dvi_data2 out std_logic_vector(11l downto 0)

)

end component;

component zbt frame_intf is

generic (
ADDR_WIDTH > integer := 20;
BYTE_WIDTH : integer := 9;
DATA WIDTH - integer := 36
port (
-- Reset/Clock
reset : in std_logic; -- Async Reset.
sys clk : In std_logic; -- System clock.
zbt clk : in std_logic; -- ZBT memory clock.
vga_clk : in std_logic; -- Vga clock.

178

-- New frame trigger signals.

gpu_enable - in std _logic;

vga_eof > in std_logic;

-— VGA Read Only Port

vga_req > Iin std_logic;

vga_afull : out std _logic;

vga_addr : in std _logic_vector(ADDR_WIDTH-2 downto 0);

vga_rpop > in std_logic;

vga_rdata : out std_logic_vector(DATA WIDTH-1 downto 0);

vga_rempty : out std _logic;

vga_rafull : out std_logic;

-- GPU Interface port

gpu_req in std_logic;

gpu_afull - out std_logic;

gpu_size : in std_logic _vector(l downto 0);

gpu_addr : in std_logic_vector(ADDR_WIDTH-2 downto 0O);

gpu_rnw : in std _logic;

gpu_wpush : in std _logic;

gpu_wdata : in std_logic_vector(DATA_WIDTH-1 downto O);

gpu_wafull : out std logic;

gpu_rpop : in std _logic;

gpu_rdata : out std_logic_vector(DATA_WIDTH-1 downto O);

gpu_rdwdaddr : out std logic vector(l downto 0);

gpu_rempty : out std_logic;

-- CPU Interface port.

cpu_sel in std logic;

cpu_we - in std_logic;

cpu_addr : In std _logic_vector(ADDR_WIDTH-1 downto 0O);

cpu_wdata : in std_logic_vector(DATA WIDTH-1 downto 0O);

cpu_wdone : out std_logic;

cpu_dval : out std logic;

cpu_rdata : out std_logic_vector(DATA WIDTH-1 downto 0O);

-- ZBT |nterface

zbt_cen : out std_logic;

zbt wen : out std_logic;

zbt oen : out std logic;

zbt_ts : out std_logic;

zbt_wdata : out std_logic vector(DATA WIDTH-1 downto 0);

zbt_addr out std _logic_vector (ADDR_WIDTH-
bit_width(DATA _WIDTH/BYTE_WIDTH)-1 downto 0);

zbt rdata : in std_logic_vector(DATA_WIDTH-1 downto 0O)

)

end component;

component matrix_transformation is

generic (
NORMALIZE . integer :
MATRIX_MULT_LATENCY : integer :
DIV_LATENCY > integer :
FIFO_WIDTH . integer :
FIFO_DEPTH . integer :
FIFO_AFULL_THRESH > integer :
FIFO_AEMPTY_THRESH : integer :
FIFO_FALL_THROUGH . integer :
port (
-- Reset/Clock
reset - Iin std _logic;

W n
=
()]

179

)

end

clk :in
-- Incomint
X_1in = 1
y_in in
z_1in :in
w_in in
color_in : in
valid_in : in
pix_ready : out

std_logic;

points (18 bit floating

std_logic_vector(17
std_logic_vector(17
std_logic_vector (17
std_logic_vector(17
std_logic_vector(17
std_logic;

std_logic;

point).

downto 0)
downto 0)
downto 0)
downto 0)
downto 0)

-— Matrix Access (18 bit floating point).

matrix_we

matrix_waddr :
matrix_wdata :

-- Control
enable
eof

-- Output
x_out
y_out

z _out
w_out
color_out
valid_out
raster_rdy

component;

in std_logic;
std_logic_vector(1l downto 0);
std_logic_vector(71 downto 0);

in

in
> in std_logic;
- In std _logic;
Integers, a line or edge.
: out std_logic_vector(17
: out std_logic_vector(17
: out std_logic_vector(17
: out std _logic_vector(17
: out std _logic_vector(17
: out std_logic;
: In std _logic

component line_creator is

downto 0)
downto 0)
downto 0)
downto 0)
downto 0)

generic (
X_PIX_WIDTH : integer := 320;
Y_PIX_WIDTH : integer := 240
)
port (
-- Reset/Clock
reset - in std _logic;
clk > in std_logic;
-— Incomint p0|nts (18 bit floating point).
x_1in : std_logic_vector(17 downto 0);
y in : |n std_logic_vector(17 downto 0);
color_in : in std _logic vector(l7 downto 0);
valid_in : in std_logic;
pix_ready : out std logic;
-- Control
enable - Iin std _logic;
eof - in std _logic;
-— Output Integers, a line or edge.
X0 _out : out std_logic_vector(bit width(X PIX WIDTH)-1 downto 0);
yO0_out : out std_logic_vector(bit_width(Y_PIX_WIDTH)-1 downto 0);
X1 out : out std_logic_vector(bit_width(X_PIX_WIDTH)-1 downto 0);
yl out : out std_logic_vector(bit_width(Y_PIX_WIDTH)-1 downto 0);

color_out : out std_logic_vector(17 downto 0);
valid_out : out std_logic;

raster_rdy: in std logic

180

end component;

component line_drawler is

0):
0):
0):
0):

generic (
X_PIX_WIDTH : integer := 320;
Y_PIX_WIDTH : integer := 240

);

port (
-- Reset/Clock
reset : in std_logic;
clk : in std_logic;
-— Line Inputs.
x0 - In std_logic vector(bit width(X_ PIX WIDTH)-1 downto
x1 - In std_logic vector(bit width(X_ PIX WIDTH)-1 downto
y0 : in std_logic_vector(bit_width(Y_PIX_WIDTH)-1 downto
yl : in std_logic vector(bit width(Y_PIX WIDTH)-1 downto
color : In std _logic vector(17 downto 0);
pix_valid : in std_logic;
pix_ready : out std_logic;
-- Control
background : in std_logic_vector(35 downto 0);
enable : In std_logic;
eof : in std_logic;
-—- Memory Outputs
gpu_req : out std_logic;
gpu_rnw : out std_logic;
gpu_afull : In std _logic;
gpu_addr : out std_logic_vector(18 downto 0);
gpu_wpush : out std_logic;
gpu_wdata : out std_logic_vector(35 downto 0);
gpu_wafull : in std _logic

end’component;

component clipping_2d is

port (
-- Reset/Clock
reset : in std _logic;
clk : in std_logic;
-- Control
enable : in std_logic;
eof : In std _logic;
-— Incomint points (18 bit floating point).
X_1in : In std_logic_vector(17 downto 0);
y_in : in std _logic _vector(17 downto 0);
z_1in : in std_logic_vector(17 downto 0);
color_in : In std _logic vector(17 downto 0);
valid_in : in std _logic;

pix_in_ready : out std_logic;

181

-— Window singals.
zmax > in std _logic_vector(17 downto 0);

-— Output Integers a line or edge.

X_out : out std _logic_vector(17 downto 0);
y_out : out std_logic_vector(17 downto 0);
Z _out : out std _logic_vector(17 downto 0);
color_out : out std _logic_vector(17 downto 0);
valid_out : out std_logic;
pix_out_rdy : in std_logic
)
end component;
signal reset n : std_logic;
signal vga req : std_logic;
signal vga_afull : std_logic;
signal vga addr : std _logic_vector(18 downto 0);
signal vga rpop : std_logic;
signal vga rdata : std_logic_vector(35 downto 0);
signal vga rempty : std_logic;
signal vga rafull : std_logic;
signal vga fifo_afull : std_logic;
signal vga_data_val : std_logic;
signal vga data : std_logic_vector(23 downto 0);
signal vga_eof : std_logic;
signal vga vsync_n : std_logic;
signal vga hsync n : std_logic;
signal vga red : std_logic_vector(7 downto 0);
signal vga green : std _logic_vector(7 downto 0);
signal vga blue : std_logic_vector(7 downto 0);
signal vga valid : std_logic;
signal ground : std_logic_vector(35 downto 0) := (others =>
"07);
signal vga eof meta : std_logic;
signal vga eof _sync : std_logic;
signal vga eof _sync d : std_logic;
signal sys eof : std_logic;
signal gpu_req : std_logic;
signal gpu_rnw : std_logic;
signal gpu_afull : std_logic;
signal gpu_addr : std_logic_vector(18 downto 0);
signal gpu_wpush : std_logic;
signal gpu wdata : std_logic_vector(35 downto 0);
signal gpu_wafull : std_logic;
signal float32_in_val i : std_logic_vector(8 downto 0);
signal float32_in_data_i : std_logic_vector((9*32)-1 downto 0);
signal floatl8 out val i : std _logic_vector(8 downto 0);
signal floatl8 out_data_i : std_logic_vector((9*18)-1 downto 0);
signal zmax_floatl8 : std_logic_vector(17 downto 0);
signal matrix _wdata floatl8 : std logic vector(71 downto 0);
signal y_in_ floatl8 : std_logic_vector(17 downto 0);
signal x_in_floatl8 : std _logic_vector(17 downto 0);
signal z_in_floatl8 : std_logic_vector(17 downto 0);
signal w_in_floatl8 : std_logic_vector(17 downto 0);
signhal matrix_we_dly : std_logic_vector(2 downto 0);
type matrix_sel _dly t is array (0 to 2) of std_logic_vector(l downto 0);
signal matrix_sel _dly : matrix_sel _dly t;

182

type matrix_waddr_dly t is array (0 to 2) of std Ioglc vector(l downto 0);

signal
signal
signal
signal
signal

signal

type color_dly t is array (O to 2) of std_logic_vector(17 downto 0);

signal

signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal

signal

begin

matrix_waddr_dly
matrix_world_we
matrix_view_we
matrix_projection_we
matrix_screen_we

pix_valid_dly
color_dly

X_world

y_world

z_world

w_world
color_world
valid _world
pix_ready_world

X_view

y_view

Z view

w_view
color_view
valid view
pix_ready_ view

X_projection
y_projection
Z_projection
w_projection
color_projection
valid_projection
pix_ready_ projection

x_clipping

y _clipping
z_clipping
w_clipping
color_clipping
valid _clipping
pix_ready_clipping

X_screen
y_screen
Z_screen
w_screen
color_screen
valid_screen
pix_ready_screen

X0_line_creator
x1 line_creator
yO_line_creator
yl line creator
color_line_creator
valid_line_creator

pix_ready_ line_creator

pix_ready_line

reset_n <= not reset;

matrix_waddr_dly_t
std_logic;
std_logic;
std_logic;
std_logic;

std_logic_vector(2 downto 0);

color_dly_t;

: std_logic_vector(17

std_logic_vector(17
std_logic_vector(17
std_logic_vector(17
std_logic_vector(17
std_logic;
std_logic;

std_logic_vector(17
std_logic_vector(17
std_logic_vector(17
std_logic_vector(17
std_logic_vector(17
std_logic;

std_logic;

std_logic_vector(17
std_logic_vector(17
std_logic_vector(17
std_logic_vector(17
std_logic_vector(17
std_logic;

std_logic;

std_logic_vector (17
std_logic_vector(17
std_logic_vector(17
std_logic_vector(17
std_logic_vector(17
std_logic;

std_logic;

std_logic_vector(17
std_logic_vector (17
std_logic_vector(17
std_logic_vector(17
std_logic_vector(17
std_logic;

std_logic;

downto
downto
downto
downto
downto

downto
downto
downto
downto
downto

downto
downto
downto
downto
downto

downto
downto
downto
downto
downto

downto
downto
downto
downto
downto

std_logic_vector(8 downto 0);
std_logic_vector(8 downto 0);
std_logic_vector(7 downto 0);
std logic_vector(7 downto 0);
std_logic_vector(17 downto 0);

std_logic;
std_logic;

std_logic;

183

-- This process syncs and edge detects the eof signal
-- from the vga controller.
sys _eof _sync : process(sys_clk,reset)
begin
if (reset = "1") then

vga _eof meta <= "0";

vga_eof _sync <= "0°";

vga_eof _sync_d <= "07;

sys_eof <= "0°";

elsif (sys _clk="1" and sys_clk"event) then

vga_eof meta <= vga eof;

vga_eof _sync <= vga_eof _meta;

vga_eof sync _d <= vga eof sync;

sys _eof <= "0%;

if (vga_eof sync = "1° and vga_eof _sync_d = "0") then
sys eof <= "1°7;

end if;

end if;

end process;
eof <= sys eof;

-- This process decodes the selects from the matrix address

-- and sets the proper write enable for the matrix being edited.

-— 1 don"t think this needs to be register, logic should be fast enough
-- at 100Mhz.

matrix_we_sel _dec : process(matrix _we dly(2),matrix_sel _dly(2))

begin
matrix_world we <= "07;
matrix_view_we <= "0";
matrix_projection_we <= "0%;
matrix_screen_we <= "07;

if (matrix_we_dly(2) = "1") then
case matrix_sel _dly(2) is

when 00" => matrix_world _we <= "1%;
when 01" => matrix_view_we <= "1°7;
when "10" => matrix_projection we <= "1°7;
when ""11" => matrix_screen_we <= "1%;
when others => NULL;
end case;
end if;

end process;
float32_ floatl8 conv 0 : float32_ floatl8 conv

generic map (
NUM_OF_ENTRIES => 9

)

port map (
reset => reset,
clk => sys clk,
float32_in_val => float32_in_val i,
float32_in_data => float32_iIn_data i,
floatl8 out val => floatl8 out val i,
floatl8 out data => floatl8 out data 1,

floatl18 out_underflow => open,
floatl8 out overflow => open

)

pix_valid _dly prc : process(sys_clk,reset)

184

begin
if (reset = "1") then
pix_valid_dly <=
color_dly <=
matrix_we_dly <=
matrix_waddr_dly <=
matrix_sel dIy <=

(others => "0");

(others => (others => "0%));

(others => "0%);

(others => (others => "07));
(others => "07));

(others =>

elsif (sys clk = "1" and sys_clk"event) then

pix_valid_dly(0)
color_dly(0)
matrix_we_dly(0)
matrix_waddr_dly(0)
matrix_sel _dly(0)
for 1

in 1 to 2 loop

<= pix_valid;

<= color;

<= matrix_we;

<= matrix_waddr;
<= matrix_sel;

pix_valid _dly(i) <= pix_valid_dly(i-1);
color_dly(i) <= color_dly(i-1);
matrix_we_dly(i) <= matrix_we dly(i-1);
matrix_waddr_dly(i) <= matrix_waddr_dly(i-1);
matrix_sel _dly(i) <= matrix_sel dly(i-1);
end loop;
end if;
end process;

float32_in_val_1 <= (others => "1%);

float32_in_data_i <= zmax & matrix_wdata & w_in & z_in & y_in & x_in;
zmax_floatl8 <= floatl8 out_data_i((9*18)-1 downto 8*18);
matrix_wdata floatl8 <= floatl8 out data i1((8*18)-1 downto 4*18);
w_in_Ffloatl8 <= floatl8 out _data i((4*18)-1 downto 3*18);
z_in_floatl8 <= floatl18 out_data_i((3*18)-1 downto 2*18);

y _in_floatl8 <= floatl18 out_data_i((2*18)-1 downto 1*18);
x_in_floatl8 <= floatl18 out_data_i((1*18)-1 downto 0*18);

u vga ctrl 0 : vga ctrl
generic map (

NUM_COLOR_BITS => 8,
H_ACTIVE_VIDEO => 640,
H_PULSE_LENGTH => 96,
H_FRONT_PORCH => 16,
H_BACK_PORCH => 48,

V_ACTIVE_VIDEO => 480,
V_PULSE_LENGTH => 2,

V_FRONT_PORCH = 11,
V_BACK_PORCH => 31,
FTFO_DEPTH => 16,

FIFO_AFULL_THRESH => 9,
FIFO_AEMPTY_THRESH=> 8

)

port map(
vga_clk => vga_clk,
reset_n => reset_n,
gpu_enable => vga_enable,
pixel _data_in => vga_data,
pixel_wr_req => vga_data_val,
vsync_n => vga_vsync_n,
hsync_n => vga_hsync _n,
red_value => vga_red,
green_value => vga_green,
blue_value => vga_blue,
vga_valid => vga_valid,

pixel fifo full => open,
pixel _fifo_empty => open,
pixel fifo_afull => vga fifo_afull,
pixel fifo _aempty=> open,

185

pixel _eof => vga_eof
);
u dvi_intf 0 : dvi_intf
port map (
clk => vga_clk,
reset_n => reset_n,
enable => vga_enable,

vga_vsync_n
vga_hsync_n

vga_vsync_n,
vga_hsync _n,

vga_red => vga_red,

vga_green => vga_green,
vga_blue => vga_blue,
vga_valid => vga_valid,

dvi_hsync_n =

dvi_vsync_n
dvi_data en

mem_rempty
mem_rafull

);

dvi_hsync_n,
dvi_vsync _n,
dvi_data _en,

dvi_datal => dvi_datal,
dvi_data2 => dvi_data2

)

u_vga Fframe _reader_ O : vga frame_ reader

port map (
vga_clk => vga_clk,
reset_n => reset _n,
vga_Ffifo_afull => vga fifo_afull,
vga _data_val => vga_data_val,
vga_data => vga_data,
vga_eof => vga_eof,
mem_req => vga_req,
mem_afull => vga_afull,
mem_addr => vga_addr,
mem_rpop > vga_rpop,
mem_rdata > vga_rdata,

\Y

vga_rempty,
vga_rafull

\

-- Send ready signal back to cpu.
pix_ready <= pix_ready world;

world_translation O : matrix_transformation

generic map (
NORMALIZE

=> O’

MATRIX_MULT_LATENCY => 4,

DIV_LATENCY = 16,
FIFO_WIDTH => 18*5,
FI1FO_DEPTH => 16,

FIFO_AFULL_THRESH => 8,
FIFO_AEMPTY_THRESH => 7,
FIFO_FALL_THROUGH => 0

)

port map (
reset => reset,
clk => sys clk,
X_1in => x_in_floatl8,
y_in => vy in_floatl8,
Z_1in => z in_floatl8,
w_in => w_in_floatl8,
color_in => color_dly(2),
valid_in => pix_valid_dly(2),
pix_ready => pix_ready world,

186

matrix_we
matrix_waddr
matrix_wdata
enable

eof

x_out

y_out

z_out

w_out
color_out
valid_out
raster_rdy

);

view_translation O :

generic map (
NORMALIZE

matrix_world we,
matrix_waddr_dly(2),
matrix_wdata floatl8,
gpu_enable,

sys_eof,

x_world,

~world,

z_world,

w_world,
color_world,

valid world,
pix_ready_view

matrix_transformation

=> 0,

MATRIX_MULT_LATENCY => 4,

DIV_LATENCY
FIFO_WIDTH
FIFO_DEPTH

=> 16,
=> 18%5,

FIFO_AFULL_THRESH => 8,
FIFO_AEMPTY_THRESH => 7,
FIFO_FALL_THROUGH =0

)

port map (
reset
clk
X_1in
y_in
z_in
w_in
color_in
valid_in
pix_ready
matrix_we

matrix_waddr
matrix_wdata
enable

eof

x_out

y_out

z_out

w_out
color_out
valid_out
raster_rdy

):

clipping_logic O
port map (

reset
clk
enable
eof
X_1in
y_in
z_in
color_in
valid_in
pix_in_ready
zmax
x_out

V VYV

\%

reset,

sys_clk,

x_world,

y world,

z_world,

w_world,
color_world,

valid world,
pix_ready_ view,
matrix_view_we,
matrix_waddr_dly(2),
matrix_wdata floatl8,
gpu_enable,
sys_eof,

X_view,

y view,

z_view,

w_view,
color_view,

valid _view,
pix_ready_clipping

: clipping_2d

=>
=>
=>

=>

reset,
sys_clk,
gpu_enable,
sys_eof,
X_view,

y view,
z_view,
color_view,
valid view,
pix_ready_clipping,
zmax_Ffloatls,
x_clipping,

187

y_out => y_clipping,

z_out => z clipping,
color_out => color_clipping,
valid _out => valid _clipping,
pix_out_rdy => pix_ready projection
);
w_clipping <= "00" & x"F000";

projection_translation_0 : matrix_transformation

generic map (

NORMALIZE = 0,
MATRIX_MULT_LATENCY => 4,
DIV_LATENCY => 16,
FIFO_WIDTH => 18*5,
FIFO_DEPTH = 16,

FIFO_AFULL_THRESH => 8,
FIFO_AEMPTY_THRESH => 7,
FIFO_FALL_THROUGH => 0

)
port map (
reset => reset,
clk => sys clk,
x_1in => x_clipping,
y_in => vy clipping,
z_in => z clipping,
w_1in => w_clipping,
color_in => color_clipping,
valid_in => valid_clipping,
pix_ready => pix_ready projection,
matrix_we => matrix_projection_we,

matrix_waddr => matrix_waddr_dly(2),
matrix_wdata => matrix_wdata floatls8,

enable => gpu_enable,

eof => sys eof,

x_out => Xx_projection,

y_out => y projection,

z_out => z projection,

w_out => w_projection,

color_out => color_projection,

valid_out => valid_projection,

raster_rdy => pix_ready_screen
)

screen_translation_ 0 : matrix_transformation

generic map (

NORMALIZE = 1,
MATRIX_MULT_LATENCY => 4,
DIV_LATENCY => 16,
FIFO_WIDTH => 18*5,
FIFO_DEPTH = 16,

FIFO_AFULL_THRESH => 8,
FIFO_AEMPTY_THRESH => 7,
FIFO_FALL_THROUGH => 0

)

port map (
reset => reset,
clk => sys clk,
x_1in => Xx_projection,
y_in => y projection,
z_in => z projection,
w_in => w_projection,
color_in => color_projection,

188

valid_in =
pix_ready =
matrix_we =
matrix_waddr =
matrix_wdata =
enable =
eof =
x_out =
y_out =
z_out =
w_out =
color_out =
valid _out =

raster_rdy

)

line creator_O

generic map (

valid _projection,
pix_ready_ screen,
matrix_screen_we,
matrix_waddr_dly(2),
matrix_wdata floatl8,
gpu_enable,

sys_eof,

X_screen,

y_screen,

Z_screen,

W_screen,
color_screen,

valid _screen,
pix_ready_ line_creator

ine_creator

X_PIX_WIDTH => 320,
Y_PIX_WIDTH => 240

)

port map (
reset => reset,
clk => sys clk,
x_1in => X_screen,
y_in => y screen,
color_in => color_screen,
valid_in => valid_screen,
pix _ready => pix_ready line_creator,
enable => gpu_enable,
eof => sys eof,
X0 _out => x0_line_creator,
y0_out => y0 _line_creator,
x1 out => x1 line_creator,
yl out => y1 line_creator,
color_out => color_line_creator,
valid out => valid_line creator,
raster_rdy => pix_ready_line

)

line _drawler O : 1line_drawler

generic map (
X_PIX_WIDTH => 320,
Y_PIX_WIDTH => 240

port map (
-- Reset/Clock
reset => reset,
clk => sys clk,
--— Line Inputs.
x0 => x0_line_creator,
x1 => x1 line_creator,
y0 => y0 line_creator,
yl => yl1l line_creator,
color => color_line_creator,
pix_valid => valid_line creator,
pix_ready => pix_ready line,
-- Control

189

background => background,

enable => gpu_enable,
eof => sys_eof,

-— Memory Outputs

gpu_req => gpu_req,
gpu_rnw => gpu_rnw,
gpu_afull => gpu_afull,
gpu_addr => gpu_addr,
gpu_wpush => gpu_wpush,
gpu_wdata => gpu_wdata,
gpu_wafull => gpu_wafull

);
u_zbt frame_intf 0 : zbt frame intf

generic map
ADDR_WIDTH => 20,
BYTE_WIDTH => 9,
DATA_WIDTH => 36

)

port map (
reset => reset,
sys clk => sys clk,
zbt clk => zbt clk,
vga_clk => vga_clk,
-— New frame trigger signals.
gpu_enable => gpu_enable,
vga_eof => sys eof,
--— VGA Read Only Port
vga_req => vga_req,
vga_afull => vga_afull,
vga_addr => vga_addr,
vga_rpop => vga_rpop,
vga_rdata => vga_rdata,
vga_rempty => vga_rempty,
vga_rafull => vga_rafull,
-- GPU Interface port
gpu_req => gpu_req,
gpu_afull => gpu_afull,
gpu_size => ground(1 downto
gpu_addr => gpu_addr,
gpu_rnw => gpu_rnw,
gpu_wpush => gpu_wpush,
gpu_wdata => gpu_wdata,
gpu_wafull => gpu_wafull,
gpu_rpop = 0",
gpu_rdata => open,

gpu_rdwdaddr => open,
gpu_rempty => open,

-— CPU Interface port.

cpu_sel => cpu_sel,

cpu_we => cpu_we,

cpu_addr => cpu_addr,
cpu_wdata => cpu_wdata,
cpu_wdone => cpu_wdone,
cpu_dval => cpu_dval,
cpu_rdata => cpu_rdata,

0),

190

-— ZBT interface

zbt_cen => zbt_ cen,
zbt_wen => zbt wen,
zbt oen => zbt oen,
zbt_ ts => zbt_ts,
zbt wdata => zbt wdata,
zbt addr => zbt_ addr,
zbt rdata => zbt rdata
)
end hdl;

C.3 MATRIX MULTPLIER

This VHDL file implements a 4x4 18bit floating point matrix multiplication. It outputs a

18 bit 4x1 floating point vector every four clock cycles.

-— Filename > matrix_mult4x4.vhd

-- Date : January 6th 2008

-— Author = James Warner

-— Desc : Matrix multiply of Nbit vector by NxN matrix.
- | N1 | | M11 mM21 - MX1]

- | N2 | | M12 M22 . . MX2 |

-- - 1r=r- - - - . |

-- r-r - - - . |

- | NX | | M1y m2y . . |

library ieee;
use ieee.std logic 1164 ._.all;
use ieee.std_logic _arith.all;
use ieee.std logic unsigned.all;

library work;
use work.gpu_pkg.all;

entity matrix_mult4x4 is
port(

-— Clock, reset and enable signals

clk : in std _logic;
reset > Iin std_logic;
-- Vector Inputs.

vector_avail : Iin std_logic;
vector_pop : out std logic;

191

vector_data : In std_logic_vector(18*4-1 downto 0);

-- Matrix Inputs.

matrix_we : Iin std _logic;

matrix_waddr : in std_logic_vector(bit_width(4)-1 downto 0);
matrix_wdata : in std_logic_vector(18*4-1 downto 0);
matrix_ready : in std_logic;

-- Matrix Outputs

rslt _valid : out std_logic;

rslt_data : out std_logic_vector(18*4-1 downto 0);
rsit_bp : in std_logic

):

end matrix_mult4x4;

architecture hdl of matrix mult4x4 is
constant MATRIX_SIZE : integer := 4;

-- Small distributed ram to store matrix.
component dist_ram 2port_l1clk is
generic (
MEM_WIDTH : integer := 18;
MEM_SIZE : integer := MATRIX_SIZE*MATRIX_SIZE

port (
-- Clock
clk > in std_logic;
-— Control signals
we : Iin std _logic;
waddr : in std_logic_vector(bit_width(MEM_SI1ZE)-1 downto 0);
wdata : in std_logic_vector(MEM _WIDTH-1 downto 0);
raddr : in std_logic_vector(bit_width(MEM_SI1ZE)-1 downto 0);
rdata : out std_logic_vector(MEM_WIDTH-1 downto 0)
)s

end component;

-- Floating point multiply.
component floatl8 mult IS

port (
a : In std_logic_vector(17 downto 0);
b : in std _logic_vector(17 downto 0);
operation_nd : in std _logic;
operation_rfd : out std logic;
clk : in std _logic;
result : out std_logic_vector(17 downto 0);
underflow : out std logic;
overflow : out std_logic;
invalid_op : out std_logic;
rdy : out std _logic
end component;

-- Floating point addition.
component floatl8 add IS

port (
a : in std_logic_vector(17 downto 0);
b : in std_logic_vector(17 downto 0);
operation_nd : in std logic;
operation_rfd : out std logic;
clk : in std_logic;
result : out std _logic_vector(17 downto 0);

192

underflow out std_logic;

overflow - out std_logic;

invalid_op : out std _logic;

rdy : out std logic
end’component;

type vector_state_type is
signal vector_state :

(IDLE,MULT_VAL);
vector_state_type;

signal vector_pop_cnt std_logic_vector(bit width(MATRIX SIZE)-1
downto 0);

signal fifo_rdy > std_logic;

signal fifo_rdy dly : std_logic;

signal matrix_raddr : std_logic_vector(bit width(MATRIX_SIZE)-1
downto 0);

signal matrix_rdata : std_logic_vector(MATRIX_SI1ZE*18-1 downto 0);

signal multO_en : std_logic;

signal multO _datal : std _logic_vector(17 downto 0);

signal multO_data2 : std_logic_vector(17 downto 0);

signal multO_rslt : std _logic _vector(17 downto 0);

signal multO_underflow : std_logic;

signal multO_overflow : std_logic;

signal multO_invalid op : std_logic;

signal multO_rdy : std_logic;

signal multl _en : std_logic;

signal multl datal : std _logic_vector(17 downto 0);

signal multl_data2? : std_logic_vector(17 downto 0);

signal multl rsilt : std _logic_vector(17 downto 0);

signal multl _underflow : std_logic;

signal multl _overflow : std_logic;

signal multl invalid op : std _logic;

signal multl rdy : std_logic;

signal mult2_en : std_logic;

signal mult2 datal : std _logic_vector(17 downto 0);

signal mult2_data2 : std_logic_vector(17 downto 0);

signal mult2 rslt : std _logic_vector(17 downto 0);

signal mult2_underflow : std_logic;

signal mult2_overflow : std_logic;

signal mult2_invalid _op : std_logic;

signal mult2_rdy : std_logic;

signal mult3 _en : std_logic;

signal mult3 datal : std _logic_vector(17 downto 0);

signal mult3 data2 : std_logic_vector(17 downto 0);

signal mult3 rslt : std _logic_vector(17 downto 0);

signal mult3 underflow : std_logic;

signal mult3 overflow : std_logic;

signal mult3 invalid op : std _logic;

signal mult3 rdy : std_logic;

signal add 0 1 en : std_logic;

signhal add 0 1 datal : std _logic_vector(17 downto 0);

signal add_0_1 data2 : std_logic_vector(17 downto 0);

signal add 0 1 rslt : std _logic_vector(17 downto 0);

signal add 0 1 underflow : std logic;

signal add_0_1 overflow : std_logic;

signal add 0 1 invalid op : std logic;

signal add 0 1 rdy : std_logic;

signal add 2 3 en : std_logic;

193

signal add 2 3 datal : std_logic _vector(17 downto 0);

signal add 2 3 data2 : std_logic vector(17 downto 0);

signal add_2 3 rslt : std_logic_vector(17 downto 0);

signal add 2 3 underflow : std logic;

signal add_2 3 overflow : std_logic;

signal add_2 3 invalid_op : std_logic;

signal add 2 3 rdy : std_logic;

signal add 0 1 2 3 en : std_logic;

signal add 0 1 2 3 datal : std logic_vector(17 downto 0);

signal add 0 1 2 3 data2 : std _logic_vector(17 downto 0);

signal add 0 1 2 3 rslt : std_logic_vector(17 downto 0);

signal add 0 1 2 3 underflow : std logic;

signal add 0 1 2 3 overflow : std_logic;

signal add_0_ 1 2 3 invalid_op : std_logic;

signal add 0 1 2 3 rdy : std _logic;

signal rslt_cnt std_logic_vector(bit width(MATRIX_SI1ZE)-1
downto 0);

signal rslt_data_i : std_logic_vector(MATRIX_SI1ZE*18-1 downto 0);
begin

-- Small distributed

ram to store matrix.

matrix_ram O : dist_ram 2port lclk

generic map

(
=> 18*MATRIX_SIZE,

MEM_WIDTH

MEM_SIZE => MATRIX_SIZE
port map (

clk => clk,

we

=> matrix_we,

waddr => matrix_waddr,
wdata => matrix_wdata,
raddr => matrix_raddr,

rdata => matrix_rdata

);

-- Generate Multipliers.
mult 0 : floatl8 mult

port map (
a

b

=> multO_datal,

=> multO_data2,
operation_nd => multO_en,

operation_rfd => open,

clk = clk,

result => multO_rslit,
underflow => multO_underflow,
overflow => multO_overflow,
invalid _op => multO_invalid_op,
rdy => multO_rdy

);

-- Generate Multipliers.
mult 1 : floatl8 mult
port map (

a
b

=> multl datal,
=> multl _data2,
operation_nd => multl _en,

operation_rfd => open,

clk = clk,

result => multl_rsit,
underflow => multl _underflow,
overflow => multl_overflow,

194

=>
=>

invalid _op
rdy

multl_invalid_op,
multl rdy

-- Generate Multipliers.
mult 2 : floatl8 mult

port map (
a =>
b =>
operation_nd =>

operation_rfd =>
clk =>
result =>
underflow =>
overflow =>
invalid _op =>
rdy =>
);

mult2_datal,
mult2 data2,
mult2_en,

open,

clk,

mult2_rslit,
mult2_underflow,
mult2_overflow,
mult2_invalid_op,
mult2_rdy

-- Generate Multipliers.
mult 3 : floatl8 mult

port map (
a => mult3 _datal,
b => mult3 _dataz,
operation_nd => mult3 en,
operation_rfd => open,
clk => clKk,
result => mult3_rsit,
underflow => mult3_underflow,
overflow => mult3 _overflow,
invalid _op => mult3_invalid _op,
rdy => mult3_rdy
)
-- Generate Adders.
adder 0 1 : floatl8 add
port map (
a => add _0_1 datal,
b => add 0 _1 data2,
operation nd => add 0 1 en,
operation_rfd => open,
clk => clKk,
result => add 0 1 rslt,
underflow => add_0_1 underflow,
overflow => add 0_1 overflow,
invalid_op => add 0 1 invalid_op,
rdy => add 0_1 rdy
)
-- Generate Adders.
adder_2 3 : floatl8 add
port map (
a => add_2 3 datal,
b => add 2 3 data2,
operation_ nd => add 2 3 en,
operation_rfd => open,
clk => clKk,
result => add_2 3 rslt,
underflow => add_2_ 3 underflow,
overflow => add 2 3 overflow,
invalid _op => add 2 3 invalid_op,
rdy => add 2 3 rdy

195

-- Generate Adders.
adder 0 1 2 3 : floatl8 _add

port map (
a => add 0 1 2 3 datal,
b => add_0_1 2 3 data2,

operation_nd => add 0 1 2 3 en,

operation_rfd => open,

clk = clk,
result => add 0 1 2 3 rslt,
underflow => add 0 1 2 3 underflow,
overflow => add 0 1 2 3 overflow,
invalid_op => add_0_1 2 3 invalid_op,
rdy => add 0 1 2 3 rdy
)
ctrl_prc : process(clk,reset)
begin
if (reset = "1") then
vector_pop <= "07;
vector_pop_cnt <= (others => "07%);
vector_state <= IDLE;
fifo_rdy <= "0";
fifo _rdy dly <= "0";

elsif (clk = "17 and clk®event) then
vector_pop <= "0-;
fifo_rdy <= "0°";
fifo _rdy dly <= fifo_rdy;
case vector_state is

when IDLE =>

if (vector_avail = "1" and matrix_ready = "1" and rslt bp = "0%)
then
vector_pop <= "1°;
fifo_rdy <= "1°7;
vector_pop_cnt <= (others => "0%);
vector_state <= MULT_VAL;
end if;
when MULT_VAL =>
fifo_rdy <= "1°%;
if (vector_pop_cnt = MATRIX_SIZE-1) then
vector_pop_cnt <= (others => "0");
if (vector_avail = "1" and matrix _ready = "1" and rslt_bp = "0%)
then
vector_pop <= "17;
else
vector_state <= IDLE;
fifo_rdy <= "0";
end if;
else
vector_pop_cnt <= vector_pop_cnt + 1;
end if;
end case;
end if;

end process;

196

matrix_mult_stageO prc : process(clk,reset)

begin

if (reset = "1") then
multO_en <= "07;
multO _datal <= (others => "07);
multO_data2 <= (others => "0%);
multl en <= "0-;
multl datal <= (others => "07);
multl data2 <= (others => "0%);
mult2_en <= "0-;
mult2 datal <= (others => "07);
mult2 _data2 <= (others => "0");
mult3_en <= "0-;
mult3 datal <= (others => "07);
mult3 data2 <= (others => "0");
matrix_raddr <= (others => "0");

elsif (clk = "1" and

clk"event) then

multO_en <= "0°";

multl _en <= "0°";

mult2_en <= "07;

mult3_en <= "0°";

if (Fifo_rdy dly = "1%) then
multO_en <= "1°7;
multO_datal <= vector_data(l7 downto 0);
multO data2 <= matrix_rdata(l17 downto 0);
multl _en <= "1°7;
multl datal <= vector_data(35 downto 18);
multl data2 <= matrix_rdata(35 downto 18);
mult2_en <= "1°7;
mult2_datal <= vector_data(53 downto 36);
mult2 _data2 <= matrix_rdata(53 downto 36);
mult3_en <= "1°7;
mult3 _datal <= vector_data(71 downto 54);
mult3 data2 <= matrix_rdata(7l downto 54);

if (matrix_raddr
matrix_raddr <=

else

matrix_raddr <=

end if;
end if;

end if;
end process;

matrix_add 0 1 stageO prc

begin

MATRIX_SIZE-1) then
(others => "0%)

matrix_raddr + 1;

process(clk,reset)

if (reset = "1") then

add 0 1 en
add 0 1 datal
add 0 1 data2

<= "0":
<= (others => "0%);
<= (others => "07%);

elsif (clk = "1" and clk"event) then

add 0 1 en <=

0"

197

if (nultO_rdy = "1" and multl _rdy = "1%) then
add 0 1 en <= "17;
add 0 1 datal <= multO_rslt;
add 0 1 data2 <= multl_rslit;

end if;

end if;
end process;

matrix_add_2 3 stageO prc : process(clk,reset)
begin

if (reset = "17) then

add_2 3 en <= "0";
add 2 3 datal <= (others => "07);
add 2 3 data2 <= (others => "0%);

elsif (clk = "1 and clk®event) then
add 2 3 en <= "07;

if (ult2 _rdy = "1° and mult3_rdy = "1%) then
add 2 3 en <= "1°7;
add 2 3 datal <= mult2_rslt;
add 2 3 data2 <= mult3 rslt;

end if;

end if;
end process;

matrix_add 0 1 2 3 stageO prc : process(clk,reset)
begin

if (reset = "1") then
add_0_1 2 3 en <= "07;

add 0 1 2 3 datal <= (others => "0");

add 0 1 2 3 data2 <= (others => "07);

elsif (clk = "1" and clk"event) then

if (add_0 1 rdy = "1" and add_2 3 rdy = "1%) then
add_0_1 2 3 en <= "1°%;

add 0 1 2 3 datal <= add 0 1 rslt;

add_0_1 2 3 data2 <= add_2_3_rslt;

end if;
end process;

rslt _out _prc : process(clk,reset)
begin

if (reset = "1") then
rslt_valid <= "07;
rslt data 1 <= (others => "07);

198

rslt _cnt <= (others => "0%);
elsif (clk = "1 and clk®event) then

rslt valid <= "0%;

for 1 in 1 to MATRIX_SIZE-1 loop
rslt _data 1 ((18*(i+1))-1 downto 18*(i)) <= rslt data i((18*1)-1
downto 18*(i-1));
end loop;

if (rslt_cnt = MATRIX_SIZE-1) then
rslt cnt <= (others => "0%);
rslt valid <= "17;
else
rslt cnt <= rslt_cnt + 1;
end if;
end if;
end if;
end process;

rslt _data <= rslt _data i;
end hdl;

C.4 MATRIX MULTIPLIER WITH BUFFERING AND NORMILIZATION

This VHDL file adds a input fifo for data buffering and dividers for division by w.

-- Filename : matrix_transformation.vhd

_- Date : Febuary 27 2008

- Author : James Warner

_- Desc : This block attaches a input fifo to a

- 4x4 matrix multiplication. An options
- normilzation can be enable through
- generics.

library ieee;
use ieee.std_logic_1164._all;
use ieee.std logic arith.all;
use ieee.std logic unsigned.all;

library work;

199

use work.gpu_pkg.all;

entity matrix_transformation is

generic (
NORMALIZE > Integer = 0;
MATRIX_MULT_LATENCY : integer := 4;
DIV_LATENCY : integer := 16;
FIFO_WIDTH . integer := 32;
FIFO_DEPTH : Integer := 16;
FIFO_AFULL_THRESH : integer := 8;
FIFO_AEMPTY_THRESH : integer := 7;
FIFO_FALL_THROUGH : integer := 0

port (
-- Reset/Clock
reset > in std_logic;
clk : In std _logic;
-— Incomint points (18 bit floating point).
x_1in : In std_logic_vector(17 downto 0);
y in : in std_logic vector(17 downto 0);
z_in > in std_logic_vector(17 downto 0);
w_in : In std _logic vector(17 downto 0);
color_in : in std logic vector(l17 downto 0);
valid_in : iIn std _logic;
pix_ready : out std logic;

-- Matrix Access (18 bit floating point).
matrix_we - In std _logic;

matrix_waddr : in std_logic vector(l downto 0);
matrix_wdata : in std_logic_vector(71 downto 0);

-- Control
enable
eof

in std_logic;

in std logic;

-- Output Integers, a line or edge.

x_out : out std_logic_vector(17 downto 0);
y_out : out std_logic_vector(17 downto 0);
z_out : out std_logic_vector(17 downto 0);
w_out : out std _logic _vector(17 downto 0);
color_out : out std logic vector(17 downto 0);
valid out - out std_logic;

raster_rdy: in std logic
);

end matrix_transformation;

architecture hdl of matrix_transformation is
component matrix_mult4x4

port(
-- Clock, reset and enable signals
clk : Iin std _logic;
reset in std _logic;

-- Vector Inputs.
vector_avail
vector_pop

in std logic;
out std _logic;

200

vector_data : In std_logic_vector(18*4-1 downto 0);

-- Matrix Inputs.
matrix_we
matrix_waddr
matrix_wdata
matrix_ready

in std logic;

n std_logic_vector(bit_width(4)-1 downto 0);
in std_logic_vector(18*4-1 downto 0);

in std _logic;

-- Matrix Outputs
rslt valid
rslt _data
rslt_bp
)

end component;

out std_logic;
std _logic_vector(18*4-1 downto 0);
in std _logic

o
c
~+

-- Floating point Division.
component floatl8 div is

port (
a : In std_logic_vector(17 downto 0);
b : in std_logic_vector(17 downto 0);
operation_nd : in std_logic;
operation_rfd : out std_logic;
clk : In std _logic;
result : out std_logic_vector(17 downto 0);
underflow : out std_logic;
overflow : out std _logic;
invalid_op : out std_logic;
divide_by zero : out std_logic;
rdy : out std logic
)

end component;

-- Single fifo clk.
component fifo _1clk is

generic (
FIFO_WIDTH . Integer := 32;
FIFO_DEPTH . integer := 16;
FIFO_AFULL_THRESH : integer := 8;
FIFO_AEMPTY_THRESH: integer := 7;
FIFO_FALL _THROUGH : integer := 0
)
port (
--— Clock and reset
reset : in std _logic;
clk - Iin std _logic;
-— Control signals
push - Iin std _logic;
pop > Iin std_logic;

-- Read write data
wdata : In std_logic_vector(FIFO_WIDTH-1 downto 0O);
rdata : out std logic vector(FIFO_WIDTH-1 downto 0O);

-- Status flags.

afull : out std _logic;
aempty : out std logic;
empty : out std_logic;
full : out std logic

201

);

end component;

signal vector_pop : std_logic;

signal vector_data : std_logic_vector(18*4-1 downto 0);

signal vector_avail : std_logic;

signal pix_fifo_push > std_logic;

signal pix_fifo_pop : std_logic;

signal pix_fifo_wdata : std _logic_vector(18*5-1 downto 0);

signal pix_ fifo_rdata : std_logic_vector(18*5-1 downto 0);

signal pix_fifo_afull : std _logic;

signal pix_fifo_aempty : std_logic;

signal pix_fifo_empty : std_logic;

signal pix_Ffifo_ full : std _logic;

type color_pipe_dly_t is array (0O to MATRIX_MULT_LATENCY-1) of
std_logic_vector(17 downto 0)

signal color_pipe_dly : color_pipe _dly t;

signal divx_rslt : std _logic_vector(17 downto 0);

signal divx_underflow : std_logic;

signal divx_overflow : std_logic;

signal divx_invalid_op : std _logic;

signal divx_divide by zero: std_logic;

signal divx_rdy : std_logic;

signal divy rslt : std logic_vector(17 downto 0);

signal divy_underflow : std_logic;

signal divy_overflow : std_logic;

signal divy_invalid_op : std_logic;

signal divy divide_by | zero: std_logic;

signal divy_rdy : std_logic;

signal divz_rslt : std logic _vector(17 downto 0);

signal divz_underflow : std_logic;

signal divz_overflow : std_logic;

signal divz_invalid_op : std _logic;

signal divz_divide by zero: std_logic;

signal divz_rdy : std_logic;

signal divw_rslt : std_logic_vector(17 downto 0);

signal divc_rsit std_logic_vector(17 downto 0);

type divc_pipe_dly t is array (0 to DIV_LATENCY-1) of std_logic_vector(17
downto 0);

signal divc_pipe_dly : divc_pipe_dly_t;
signal rslt_valid : std_logic;
signal rslt _data : std _logic_vector(18*4-1 downto 0);
signal rslt_bp : std_logic;
begin

-- Handle input fifo.

pix_ready <= (not pix_Ffifo_afull);

pix_Fifo _push <= valid_in;

pix_Ffifo wdata <= color_in & x_in & y in & z_in & w_in;
pix_Fifo_pop <= vector_pop;

vector_data <= pix_Ffifo_rdata(18*4-1 downto 0);
vector_avail <= not pix_Ffifo_empty;

-— Input fifo that buffers incomming vertices.
pix Fifo 0 : fifo 1clk

generic map(
FIFO_WIDTH => FIFO_WIDTH,

202

FIFO_DEPTH => FIFO_DEPTH,
FIFO_AFULL_THRESH => FIFO_AFULL_THRESH,
FIFO_AEMPTY_ THRESH => FIFO_AEMPTY_ THRESH,
FIFO_FALL_THROUGH => FIFO_FALL_THROUGH

)

port map (
—-— Clock and reset
reset => reset,
clk => clk,

-- Control signals
push => pix_Fifo_push,
pop => pix_Fifo_pop,

-- Read write data
wdata => pix_Ffifo _wdata,
rdata => pix_fifo_rdata,

-— Status flags.
afull => pix_fifo_afull,
aempty => pix_Fifo_aempty,
empty => pix_Fifo_empty,
full => pix_Fifo_full

)

-- Pipeline delay register for color.
color_pipe_dly prc : process (clk,reset)
begin
if (reset = "1") then
color_pipe_dly <= (others => (others => "0%));
elsif (chlk = "1 and clk"event) then
color_pipe_dly(0) <= pix_fifo_rdata(18*5-1 downto 18*4);
for 1 Iin 1 to MATRIX_MULT_LATENCY-1 loop
color_pipe_dly(i) <= color_pipe_dly(i-1);
end loop;
end if;
end process;

translation_matrix : matrix_mult4x4

port map (
--— Clock, reset and enable signals
clk = clk,
reset => reset,
-- Vector Inputs.
vector_avail => vector_avail,
vector_pop => vector_pop,
vector_data => vector_data,

-— Matrix Inputs.

matrix_we => matrix_we,

matrix_waddr => matrix_waddr,

matrix_wdata => matrix_wdata,

matrix_ready => "1", —- 1 was born ready so I am always set.
-- Matrix Outputs.

rslt _valid => rslt _valid,

rslt_data => rslt_data,

rsit_bp = rslt_bp

rslf_bp <= not raster_rdy;

203

disable normalization
-- X result.
divx_rslt
divx_underflow
divx_overflow
divx_invalid_op
divx_divide_by zero
divx_rdy
-- Y result.
divy rslt
divy_underflow
divy_overflow
divy _invalid_op
divy _divide_by zero
divy_rdy
-- Z result.
divz_rslt
divz_underflow
divz_overflow
divz_invalid_op
divz_divide_by zero
divz_rdy
-- W result.
divw_rslit
-- C result.
divc_rslit
divc_pipe_dly

end generate;

enable_normalization

<=
<=
<=
<=
<=
<=

<=
<=
<=
<=
<=
<=

<=
<=
<=
<=
<=
<=

if (NORMALIZE = 0) generate

rslt _data(18*4-1 downto 18*3);
0" -

IOI;

“0-:

“0-:

rslt valid;

rslt _data(18*3-1 downto 18*2);
IOI;

“0-:

“0-:

IOI;

rsit valid;

rslt _data(18*2-1 downto 18*1);
0" :

“0-:

IOI;

“0-:

rslt _valid;

rslt _data(18*1-1 downto 18*0);
color_pipe dly(MATRIX_MULT_LATENCY-1);
(others => (others => "07));

Tt (NORMALIZE = 1) generate

-- Floating point Division, x/w.
normalize x : floatl8 div

port map (
a

b

operation_nd
operation_rfd
clk

result
underflow
overflow
invalid _op
divide_by zero
rdy

)

rslt _data(18*4-1 downto 18*3),
rslt data(18*1-1 downto 18*0),
rslt valid,

open,

clk,

divx_rslt,

divx_underflow,

divx_overflow,

X
w

divx_invalid_op,
divx_divide_by zero,
divx_rdy

-- Floating point Division, y/w.

normalize vy :

port map (
a
b
operation_nd
operation_rfd
clk
result
underflow
overflow
invalid _op
divide_by zero
rdy

=>

=>
=>

floatl8 div

rslt _data(18*3-1 downto 18*2), -- y
rslt _data(18*1-1 downto 18*0), -- w
rslt valid,

open,

clk,

divy_rslt,

divy_underflow,

divy_overflow,

divy_invalid_op,
divy_divide_by zero,
divy_rdy

204

-- Floating point Division, z/w.
normalize _z : floatl8 div

port map (
a => rslt_data(18*2-1 downto 18*1), -- z
b => rslt _data(18*1-1 downto 18*0), -- w
operation_nd => rslt_valid,
operation_rfd => open,
clk = clk,
result => divz_rslt,
underflow => divz_underflow,
overflow => divz_overflow,
invalid_op => divz_invalid_op,
divide_by zero => divz_divide_by zero,
rdy => divz_rdy
)

-— w/w This should always be 1, you are dividing a number by istelf.
divw_rslt <= "00" & x"'F000";

-- Delay the color to match up with the normalized result.
divc_pipe_dly prc : process (clk,reset)
begin
i1f (reset = "1") then
divc_pipe_dly <= (others => (others => "0%));
elsift (chlk = "1 and clk"event) then
divc_pipe_dly(0) <= color_pipe dly(MATRIX_MULT_ LATENCY-1);
for 1 in 1 to DIV_LATENCY-1 loop
divc_pipe_dly(i) <= divc_pipe_dly(i-1);
end loop;
end if;
end process;
divc_rslt <= divc _pipe_dly(DIV_LATENCY-1);

end generate;

-- Wire up outputs.

X_out <= divx_rslt;
y out <= divy_rslt;
z_out <= divz_rslt;
w_out <= divw_rslit;

color_out <= divc_rslit;
valid out <= divx_rdy;

end hdl;

C.5 CLIPPING TREE

This VHDL file implements the planar intersection equations used in clipping.

-— Filename : clipping_tree.vhd

-- Date : April 11 2008

205

-- Author - James Warner

-- Desc : A tree of floating point operations which
- calculate a lines intersections with a rectangular boarder.
- The equation is X = A+(((B-C)+(D-A))/((E-C)+/-(F-B)))

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic arith.all;
use ieee.std_logic _unsigned.all;

library work;
use work.gpu_pkg-all;

entity clipping_tree is

port (
-- Reset/Clock
reset : Iin std_logic;
clk : in std _logic;
--— Incomming operands.
operand_a > in std _logic_vector(17 downto 0);
operand_b : in std_logic_vector(17 downto 0);
operand_c : In std _logic_vector(17 downto 0);
operand_d : in std _logic_vector(17 downto 0);
operand_e : Iin std_logic_vector(17 downto 0);
operand_f : In std _logic_vector(17 downto 0);
operand_dem _add : in std _logic;
operand_in_val : in std _logic;
-— Outcoing operands
operand_out : out std_logic_vector(17 downto 0);
operand_out_val : out std logic

)

end clipping_tree;

architecture hdl of clipping_tree is

-- Floating point adder.
component floatl8 add is

port (
a : in std_logic_vector(17 downto 0);
b : In std_logic_vector(17 downto 0);
operation_ nd : in std logic;
operation_rfd : out std logic;
clk : in std_logic;
result : out std _logic_vector(17 downto 0);
underflow : out std_logic;
overflow : out std_logic;
invalid op : out std logic;
rdy : out std _logic
)

end component;

-- Floating point multiplier.

206

component floatl8 mult is

port (
a : In std _logic_vector(17 downto 0);
b > in std _logic_vector(17 downto 0);
operation_nd : in std _logic;
operation_rfd : out std logic;
clk - in std _logic;
result > out std_logic_vector(17 downto 0);
underflow : out std logic;
overflow : out std _logic;
invalid_op : out std _logic;
rdy : out std logic

);

end component;

-- Floating point divider.
component floatl8 div is

port (
a in
b :in
operation_nd : in std_logic;
operation_rfd : out std logic;
clk - in std _logic;
result > out
underflow : out std logic;
overflow : out std _logic;
invalid_op : out std _logic;
divide by zero: out std _logic;
rdy - out std _logic

)

end component;

-- Floating point engine Iatency constants.

constant ADD_LATENCY integer :
constant MULT_LATENCY integer :
constant DIV_LATENCY integer :

constant
ADD_LATENCY+ADD_LATENCY+DIV_LATENCY;
constant BC MULT DA _ LATENCY :

A_LATENCY

-- Clipping tree signals.

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

operand_ b add c
operand_b_add c_underflow
operand_b_add_c_overflow
operand_b_add_c_invalid_op
operand_b_add_c_rdy
operand_d_add_a
operand_d_add_a_underflow
operand_d_add_a_overflow
operand_d_add_a_invalid_op
operand_d_add_a_rdy
operand_e_add_c
operand_e_add_c_underflow
operand_e_add c overflow
operand_e_add_c_invalid_op
operand_e_add_c_rdy
operand_f_add_b
operand_f_add_b_underflow
operand_f_add_b_overflow
operand_f_add_b_invalid_op

integer :

207

8-
6;

std_logic_vector(17 downto 0);
std_logic_vector(17 downto 0);

std_logic_vector(17 downto 0);

17;

AD

integer

D_LATENCY-MULT_LATENCY;

std_logic_vector(17 downto 0);

std_logic;
std_logic;
std_logic;
std_logic;

std_logic_vector(17 downto 0);

std_logic;
std_logic;
std_logic;
std_logic;

std_logic_vector(17 downto 0);

std_logic;
std_logic;
std_logic;
std_logic;

std_logic_vector(17 downto 0);

std_logic;
std_logic;
std_logic;

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

-- Delay stages needed for pipelining calulation tree properly.

type

operand_f add b rdy
operand_bc _mult _da
operand_bc_mult_da_und
operand_bc_mult_da_ove
operand_bc_mult_da_inv
operand_bc_mult_da_rdy
operand_ec_add_Tb
operand_ec_add_fb_unde
operand_ec_add_fb_over
operand_ec_add_fb_inva
operand_ec_add_fb_rdy
operand_bcda_div_ecfb
operand_bcda_div_ecfb__
operand_bcda_div_ecfb_
operand_bcda_div_ecfb_
operand_bcda_div_ecfb_
operand_bcda_div_ecfb_
operand_out_underflow
operand_out_overflow
operand_out_invalid_op
operand_nega
operand_negb
operand_b_or_negb
operand_negc

operand_f add b _add su

: std_logic;

: std_logic vector(17
erflow > std_logic;
rflow : std_logic;
alid_op : std_logic;

> std_logic;

: std _logic_vector(17
rflow : std_logic;
flow > std_logic;
lid _op : std_logic;

: std_logic;

: std_logic_vector(17
underflow : std_logic;
overflow : std_logic;
invalid_op : std_logic;
div_by zero : std logic;
_rdy : std_logic;

> std_logic;

: std_logic;

: std_logic;

: std_logic_vector(17
: std _logic vector(17
: std_logic vector(17
: std_logic_vector(17
b : std _logic vector(17

downto

downto

downto

downto
downto
downto
downto
downto

0);

0);

0);

operand_a reg t is array (0 to A LATENCY-1) of std logic vector(17

downto 0);

signal
type
std _logic
signal
type
signal

begin

operand_a_reg

operand_bc_mult_da_t

vector(17 downto 0);

operand_bc mult_da reg :

: operand_a_reg_t;
is array (0 to BC _MULT DA LATENCY-1) of

operand_bc_mult_da_t;

operand_dem_add_t is array (0 to ADD_LATENCY- 1) of std_logic;

operand_dem_add_reg :

operand_dem_add_t;

-- These need to be made negative for subtraction.

operand_|
operand_|
operand_|

nega <= (not operand_.
negb <= (not operand_|
negc <= (nhot operand_

a(17)) & operand_a(16 downto 0);
b(17)) & operand b(16 downto 0);
c(17)) & operand_c(16 downto 0);

-— Clipping floating point calculation tree.

-- Does
__A+

the equivalantd of:

60 * (b-A)

(E-C) +/- (F-B)

operand_b_or_negb <= operand_b when operand _dem add = "0" else
operand_negb;

float n
port
a
b
ope
ope
clk
res
und
ove
inv
rdy

egb _or_b add_negc : fl
map (
=> operand_|
=> operand_|

ration_nd => operand_
ration_rfd => open,
=> clk,
ult => operand
erflow => operand_|
rflow => operand_|
alid_op => operand_|
=> operand_|

oatl8 add

b _or_negb,
negc,
in_val,

b add c,
b_add_c_underflow,
b_add_c_overflow,
b_add _c_invalid_op,
b_add_c_rdy

208

float _d add nega : floatl8_ add

port map (
a => operand_d,
b => operand_nega,

operation_nd => operand_in_val,
operation_rfd => open,

clk = clk,
result => operand d add_a,
underflow => operand_d_add_a_underflow,
overflow => operand_d_add_a_overflow,
invalid _op => operand_d_add_a_invalid_op,
rdy => operand_d_add_a_rdy

)

float_e _add_negc : floatl8_ add

port map (
a => operand_e,
b => operand_negc,

operation_nd => operand_in_val,
operation_rfd => open,

clk => clKk,
result => operand e _add c,
underflow => operand_e_add_c_underflow,
overflow => operand_e_add_c_overflow,
invalid _op => operand_e_add_c_invalid_op,
rdy => operand_e_add_c_rdy

)

float_f add negb : floatl8 add

port map (
a => operand_T,
b => operand_negb,

operation_nd => operand_in_val,
operation_rfd => open,

clk = clk,
result => operand f_add b,
underflow => operand_f_add_b_underflow,
overflow => operand_f_add_b_overflow,
invalid_op => operand_f_add_b_invalid_op,
rdy => operand_f_add_b_rdy

)

float_bc mult_da : floatl8 mult

port map (

a => operand_b add_c,

b => operand_d_add_a,
operation_nd => operand_f _add b rdy,
operation_rfd => open,

clk = clk,
result => operand bc mult _da,
underflow => operand_bc_mult_da_underflow,
overflow => operand_bc_mult_da_overflow,
invalid_op => operand_bc_mult_da_invalid_op,
rdy => operand_bc_mult_da_rdy
)
delay dem_add_prc : process(clk)
begin

if (clk = "1" and clk"event) then
operand_dem_add_reg(0) <= operand_dem_add;
for i in 0 to ADD LATENCY 2 loop
operand_dem_add_reg(i+1) <= operand_dem_add_reg(i);
end loop;
end if;

209

end process;

operand_f_add_b_add_sub(16 downto 0) <= operand_f_add_b(16 downto 0);
operand_f _add_b_add_sub(17) <= operand_f add b(17)

(operand_dem_add_reg(ADD_LATENCY-1) = "1") else

not operand_f _add_b(17);
float_ec_add_fb : floatl8 add

port map (
a => operand_e add c,
b => operand_f add b_add_sub,

operation_nd => operand_f_add_b rdy,
operation_rfd => open,

clk = clk,
result = operand ec_add_fb,
underflow => operand_ec_add_fb_underflow,
overflow => operand_ec_add_fb_overflow,
invalid_op => operand_ec_add_fb_invalid_op,
rdy => operand_ec_add_fb_rdy
)
delay bc mult _da prc : process(clk)
begin

if (clk = "1" and clk"event) then
operand_bc_mult_da_reg(0) <= operand_bc_mult_da;
for i in O to BC_MULT_DA LATENCY-2 loop
operand_bc_mult_da reg(i+1) <= operand_bc mult_da_reg(i);
end loop;
end if;
end process;

float _bcda div_ecfb : floatl8 div

port map (
a => operand_bc _mult_da reg(BC_MULT_DA LATENCY-1),
b => operand_ec_add_fb,

operation_nd => operand_ec_add_fb_rdy,
operation_rfd => open,

clk => clk,
result => operand bcda div_ectb,
underflow => operand_bcda_div_ecfb_underflow,
overflow => operand_bcda_div_ecfb_overflow,
invalid _op => operand_bcda_div_ecfb_invalid_op,
divide_by zero=> operand_bcda_div_ecfb_div_by zero,
rdy => operand_bcda_div_ecfb_rdy
)
delay a prc : process(clk)
begin

if (clk = "1" and clk"event) then
operand_a_reg(0) <= operand_a;
for i in O to A LATENCY-2 Ioop
operand_a_reg(i+1) <= operand_a_reg(i);
end loop;
end if;
end process;

float_a add bcdaecfb : floatl8 add

port map (
a => operand_a_reg(A_LATENCY-1),
b => operand_bcda_div_ecfb,

operation_nd => operand_bcda_div_ecfb_rdy,
operation_rfd => open,
clk = clk,

210

when

result => operand_out,

underflow => operand_out_underflow,
overflow => operand_out_overflow,
invalid _op => operand_out_invalid_op,
rdy => operand_out_val
)
end hdl;

C.6 OUTCODE GENERATOR

This VHDL file implements the outcodes used in Cohen-Sutherland clipping. These

outcodes are used to determine a point’s positions with respect to the clipping volume.

-— Filename : outcode gen.vhd

_- Date April 11 2008

- Author : James Warner

- Desc : Creates a Cohen-Sutherland formated

- outcode used to deterimen the position
- of a line"s end point with respect to the
- viewing window.

library ieee;
use ieee.std_logic_1164._all;
use ieee.std logic arith.all;
use ieee.std logic unsigned.all;

library work;
use work.gpu_pkg-.all;

entity outcode _gen is

port (
-- Reset/Clock
reset - in std_logic;
clk > in std_logic;

-— Incomint points (18 bit floating point).
x_1in > In std_logic_vector(17 downto 0);
y in : In std _logic_vector(17 downto 0);
z_in : in std _logic_vector(17 downto 0);
valid_in : in std_logic;

-— Window singals.
xmin > in std_logic_vector(17 downto 0);
ymin : In std _logic_vector(17 downto 0);

211

zmin 2 in
Xmax 2 in
ymax in
zmax 2 in
-— Output
outcode : out
valid out : out
);

end outcode_gen;

architecture hdl of

-- Floating point

component floatl8

port (
a
b
operation
operation_nd
operation_rfd
clk
result
invalid _op
rdy

)

end component;

std_logic_vector(17 downto
std _logic_vector(17 downto
std_logic_vector(17 downto
std _logic_vector(17 downto

Integers, a line or edge.

std_logic_vector(5 downto 0);
std _logic

outcode_gen is

comparitor.
compare is

in
in
in
in
out
in
out
out
out

std_logic_vector(17 downto 0);
std_logic_vector(17 downto 0);
std _logic_vector(5 downto 0);
std_logic;
std_logic;
std_logic;
std_logic_vector(0 downto 0);
std_logic;
std_logic

-- Compare constants for floating point comparitors.

constant
constant
constant
constant
constant
constant
constant

COMPARE_LESS_THAN
COMPARE_GREATER_THAN
COMPARE_LESS_EQAUL
COMPARE_GREATER_EQUAL
COMPARE_EQUAL
COMPARE_NOT_EQUAL
COMPARE_UNORDERED

downto
downto
downto
downto
downto
downto
downto

std_logic_vector(5
std_logic_vector(5
std_logic_vector(5
std_logic_vector(5
std_logic_vector(5
std_logic_vector(5
std_logic_vector(5

-— Outcode constants.

constant OUTCODE_LEFT . integer := 0;

constant OUTCODE_RIGHT : integer := 1;

constant OUTCODE BOTTOM : integer := 2;

constant OUTCODE_TOP . integer := 3;

constant OUTCODE_BEHIND : integer := 4;

constant OUTCODE_FRONT : integer := 5;

signal xmin_result : std_logic_vector(0 downto 0);
signal xmax_result : std _logic _vector(0 downto 0);
signal ymin_result : std_logic _vector(0 downto 0);
signal ymax_result : std_logic_vector(0 downto 0);
signal zmin_result : std _logic _vector(0 downto 0);
signal zmax_result : std_logic _vector(0 downto 0);
signal xmin_invalid_op : std_logic;

signal xmax_invalid op : std logic;

signal ymin_invalid op : std _logic;

signal ymax_invalid_op : std_logic;

signal zmin_invalid op : std logic;

signal zmax_invalid op : std _logic;

begin

212

"'001100™
100100
"'011100™
''110100"
''010100™
''101100™
'*000100"

-— Check if coord

is

xmin_Ffloatl8 compare

port map (
a =
b =>
operation =
operation_nd =>

)

-- Check if coord

operation_rfd =>

clk =>
result =
invalid _op =>
rdy =>

is

xmax_Floatl8 compare

port map (
a =>
b =>
operation =>

)

-- Check if coord

operation_nd =>
operation_rfd =>

clk =>
result =
invalid _op =>
rdy =>

is

ymin_Ffloatl8 compare

port map (
a =>
b =>
operation =

)

operation_nd =>
operation_rfd =>

clk =>
result =>
invalid_op =>
rdy =
-— Check if coord 1is

ymax_Ffloatl8 compare

port map (
a =>
b =>
operation =

)

operation_nd =>
operation_rfd =>

clk =>
result =>
invalid _op =>
rdy =
-— Check if coord 1is

zmin_floatl8_ compare

to the left of the
: floatl8 compare

x_in,

xmin,
COMPARE_LESS_THAN,
valid_in,

open,

clk,

xmin_result,
xmin_invalid_op,
valid_out

to the right of the viewport.

: floatl8 compare

x_in,

xmax,
COMPARE_GREATER_THAN,
valid_in,

open,

clk,

xmax_result,
xmax_invalid_op,

open

above of the viewport.
: floatl8 compare

y_in,

ymin,
COMPARE_LESS_THAN,
valid_in,

open,

clk,

ymin_result,

ymin_invalid_op,
open
below of the viewport.

: floatl8 compare

y_in,

ymax,
COMPARE_GREATER_THAN,
valid_in,

open,

clk,

ymax_result,

ymax_invalid_op,
open
above of the viewport.

: floatl8 compare

213

viewport.

port map (

a => z in,
b => zmin,
operation => COMPARE_LESS_THAN,

operation_nd => valid_in,
operation_rfd => open,

clk = clk,
result => zmin_result,
invalid_op => zmin_invalid_op,
rdy => open

)

-- Check i1f coord is below of the viewport.
zmax_floatl8 compare : Ffloatl8 compare

port map (
a => z in,
b => zmax,
operation => COMPARE_GREATER_THAN,

operation_nd => valid_in,
operation_rfd => open,

clk = clk,
result => zmax_result,
invalid_op => zmax_invalid_op,
rdy => open

)

outcode(OUTCODE_LEFT) <= xmin_result(0);
outcode(OUTCODE_RIGHT) <= xmax_result(0);
outcode(OUTCODE_BOTTOM) <= ymax_result(0);
outcode(OUTCODE_TOP) <= ymin_result(0);
outcode(OUTCODE_FRONT) <= zmax_result(0);
outcode(OUTCODE_BEHIND) <= zmin_result(0);

end hdl;

C.7 CLIPPING LOGIC

This VHDL file is the top level file for Cohen-Sutherland clipping. The output of this

file is a clipped line.

-— Filename = clipping_2d.vhd

_- Date : Febuary 27 2008

- Author : James Warner

_- Desc : Takes in 3-D projected floating point coordinates and

- and clips them againts a given viewing volume.

library ieee;
use ieee.std logic 1164.all;
use ieee.std_logic _arith.all;
use ieee.std logic unsigned.all;

library work;
use work.gpu_pkg.all;

entity clipping_2d is

port (
-- Reset/Clock
reset - in std _logic;
clk > in std_logic;
-- Control
enable > in std_logic;
eof - In std _logic;

-- Incomint p0|nts (18 bit floating point).

-— Outcoing operands

215

X_1in : In std _logic_vector(17 downto 0);
y in : in std_logic_vector(17 downto 0);
z_1in > in std_logic_vector(17 downto 0);
color_in : In std logic_vector(17 downto 0);
valid_in : in std_logic;
pix_in_ready : out std_logic;
-— Window singals.
zmax > In std_logic_vector(17 downto 0);
-— Output Integers a line or edge.
X_out : out std_logic_vector(17 downto 0);
y_out : out std_logic_vector(17 downto 0);
z_out : out std _logic_vector(17 downto 0);
color_out : out std_logic_vector(17 downto 0);
valid out : out std logic;
pix out rdy : in std logic
)
end clipping_2d;
architecture hdl of clipping_2d is
component clipping_tree is
port (
-- Reset/Clock
reset in std_logic;
clk in std logic;
--— Incomming operands.
operand_a in std logic vector(17 downto
operand_b in std logic vector(17 downto
operand_c in std_logic vector(17 downto
operand_d in std logic vector(17 downto
operand_e in std logic vector(17 downto
operand_¥F : in std_logic_vector(17 downto
operand _dem add : in std _logic;
operand_in_val in std logic;

operand_out : out std _logic_vector(17 downto 0);
operand_out _val : out std logic

end component;

component outcode gen is

port (
-- Reset/Clock
reset - in std _logic;
clk > in std_logic;

-— Incomint points (18 bit floating point).
x_1in > In std_logic_vector(17 downto 0);
y_in : In std logic_vector(17 downto 0);
z_in : in std _logic_vector(17 downto 0);
valid_in : in std_logic;

-— Window S|ngals.

xmin > in std_logic_vector(17 downto 0);
ymin : in std_logic_vector(17 downto 0);
zmin : in std _logic_vector(17 downto 0);
Xmax > in std_logic_vector(17 downto 0O);
ymax : In std logic_vector(17 downto 0);
zmax : in std _logic_vector(17 downto 0);

-— Output Integers a line or edge.
outcode : out std_logic_vector(5 downto 0);
valid_out : out std_logic

)s

end component;

-- Fifo, for data buffering.
component fifo_1clk is

generic
FIFO_WIDTH . Integer := 32;
FIFO_DEPTH . integer := 16;
FIFO_AFULL_THRESH : integer := 8;
FIFO_AEMPTY_THRESH: integer := 7;
FIFO_FALL _THROUGH : integer := 0
port (
-- Clock and reset
reset : in std_logic;
clk - In std logic;
-— Control signals
push > in std_logic;
pop - In std _logic;

-- Read write data

wdata : in std logic_vector(FIFO_WIDTH-1 downto 0);
rdata : out std_logic_vector(FIFO_WIDTH-1 downto 0);
-- Status flags.

afull : out std_logic;

aempty : out std logic;

empty : out std logic;

full : out std_logic

)

end component;

constant NEG_ONE : std _logic vector(17 downto 0) := "10" &
X""FO00™";

-— End of frame registers.

216

signal

signal
signal

eof dly

zmax_reg
z_in_neg

-- Input fifo signals.

signal
signal
signal
signal
signal
signal
signal
signal

fifo_input _push
Ffifo_input _pop
fifo_input_wdata
fifo_input rdata
Ffifo_input_afull
Ffifo_input_full
fifo_input_aempty
Ffifo_input_empty

-- Accept fifo signals.

signal
signal
signal
signal
signal
signal
signal
signal

Ffifo_accept push
Ffifo_accept_pop
fifo_accept _wdata
Ffifo_accept_rdata
fifo_accept_afull
fifo_accept full

fifo_accept_empty

-— Accept fifo signals.

signal
signal
signal
signal
signal
signal
signal
signal

fifo_clip_push
fifo _clip_pop
fifo_clip_wdata
fifo_clip_rdata
fifo _clip_afull
fifo _clip_full
fifo_clip_aempty
fifo _clip_empty

-— Accept store signals.

signal
signal
signal
signal
signal
signal
signal
signal

fifo_store push
fifo_store pop
fifo_store_wdata
fifo_store_rdata
fifo_store_afull
fifo_store_full
fifo_store_aempty
fifo_store empty

-- Prefech signals.

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

fifo_store x0
fifo_store_ y0
fifo_store z0
fifo_store color0

fifo_store x1
fifo_store yl
fifo_store zl
fifo_store colorl
fifo_store outcodel
fifo_store_rdy
fifo_store_done

: std_logic;

: std_logic;
: std_logic;
: std_logic_vector(18*4 +
: std logic_vector(18*4 +
: std_logic;
: std_logic;
: std _logic;
: std_logic;

: std_logic;
:std_
: std logic_vector(18*4-1
: std logic_vector(18*4-1
: std_logic;

: std _logic;

fifo_accept_aempty :
: std_logic;

logic;

std_logic;

: std_logic;
: std_logic;
: std _logic_vector(18*4 + 6-1
: std_logic_vector(18*4 + 6-1
: std _logic;
: std_logic;
: std_logic;
: std_logic;

: std _logic;
: std _logic;
: std_logic_vector(18*4 + 6-1
: std logic vector(18*4 + 6-1
: std_logic;
: std_logic;
: std _logic;
: std_logic;

: std_logic_vector(17 downto 0);
: std_logic vector(17 downto 0);

downto
downto

oo
AN

downto 0);
downto 0);

downto
downto

downto
downto

: std _logic_vector(17 downto 0);
: std_logic_vector(17 downto 0);
: std logic _vector(17 downto 0);
: std_logic_vector(17 downto 0);
fifo_store outcodeO :

std_logic_vector(5 downto 0);

: std _logic vector(17 downto 0);
: std_logic vector(17 downto 0);
: std_logic_vector(17 downto 0);
: std _logic _vector(17 downto 0);
: std_logic _vector(5 downto 0);
> std Ioglc
: std_logic

0);
0);

0);
0);

0)5

type fifo_store state t is (POP ZERO, POP ONE,STORE,WAIT_FOR_DONE);

signal

fifo_store_state

-— Outcode signals.

signal
signal

outcode
outcode_valid

: flfo_store_state_t

217

: std_logic_vector(5 downto 0);
: std_logic;

signal
signal
signal
signal

outcode x
outcode y
outcode z
outcode color

-- outcode latecy signals.
constant OUTCODE_LATENCY :

type

fifo_input_wdata_reg_t

integer := 3;
is array

©

std_logic vector(18*4 1 downto 0);

signal fifo_input_wdata_reg

: fifo_input wdata_

-- Decision state variables.

type

decision _state t

to

reg_t;

: std_logic _vector(17 downto 0);
: std_logic_vector(17 downto 0);
o std_loglc_vector(17 downto 0);
: std _logic_vector(17 downto 0);

OUTCODE_LATENCY-1)

(IDLE,POP_FIRST,POP_LINE,PUSH_ACCEPT_LINE,REJECT_LINE,PUSH_CLIP_LINE);

signal
signal

decision_state :
fifo_input_rdataO :

decision_state t;

std _logic_vector(18*4 + 6 -1 downto 0);

-- Clipping calculation tree signals.

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

operand_a0 :
operand_bO
operand_cO
operand_dO
operand_e0
operand_T0
operand_dem_addO
operand_in_valO
operand_outO
operand_neg_outO
operand_out_valO

operand_al
operand_bl
operand_cl
operand_d1
operand_el
operand_dem_addl
operand_f1
operand_in_vall
operand_outl
operand_neg_outl
operand_out_vall

-— Operand push signals.
type operand_push_state t is (IDLE,POP_LINE,CALC);

signal
signal
signal
signal

-— New
signal
signal
signal
signal
signal
signal
signal
signal
type

operand_push_state
operand_push_cnt
fifo_clip_rdatal
fifo_clip_rdatal

std_logic_vector(17
std _logic_vector(17
std_logic_vector (17
std_logic_vector(17
std_logic_vector(17
std_logic_vector (17
std_logic;

std_logic;

std_logic_vector (17
std_logic_vector(17
std_logic;

std_logic_vector(17
std _logic_vector(17
std_logic_vector (17
std_logic_vector(17
std_logic_vector(17
std_logic;

std _logic_vector(17
std_logic;

std_logic_vector (17
std_logic_vector(17
std_logic;

: operand_push_state_
: std _logic_vector(2

: std _logic_vector(18*4 + 6
: std_logic_vector(18*4 + 6

outcode genreation signals.

new_outcode cnt

new_Xx_1in
new_y 1in
new_z in
new_z_in_neg
new_valid_in

new_outcode
new_outcode valid

S

©

array

std_logic_vector(18*3-1 downto 0O);
new_outcode xyz reg t;

signal
signal
signal
signal

new_outcode xyz reg:
new_outcode_x
new_outcode_y
new_outcode z

218

downto
downto
downto
downto
downto
downto

downto
downto

downto
downto
downto
downto
downto

downto

downto
downto

t;
downto

to

0);
0);
0);
0);
0);
0);

0):
-1 downto 0);
-1 downto 0);

: std_logic_vector(2 downto 0);

: std logic_vector(17 downto 0);
: std _logic_vector(17 downto 0);
: std_logic_vector(17 downto 0);
: std _logic_vector(17 downto 0);
: std_logic;
: std_logic_vector(5 downto 0);
: std _logic;

new_outcode xyz reg t OUTCODE_LATENCY-1)

: std _logic_vector(17 downto 0);
: std_logic_vector(17 downto 0);
: std _logic_vector(17 downto 0);

of

of

-- Pixel select state machlne signhals.

signal clip_pix _cnt : std_logic_vector(2 downto 0);
signal clip_x0 : std_logic_vector(17 downto 0);
signal clip_yO0 : std _logic_vector(17 downto 0);
signal clip_z0 : std_logic_vector(17 downto 0);
signal clip_color0 : std _logic_vector(17 downto 0);
signal clip_rdyO : std_logic;

signal clip_x1 : std_logic_vector(17 downto 0);
signal clip_yl : std _logic_vector(17 downto 0);
signal clip_z1l : std _logic_vector(17 downto 0);
signal clip_colorl : std_logic_vector(17 downto 0);
signal clip_rdyl : std _logic;

signal clip_rdy : std_logic;

signal clip_x0_reg : std_logic_vector(17 downto 0);
signal clip_y0 reg : std _logic_vector(17 downto 0);
signal clip_z0 reg : std _logic_vector(17 downto 0);
signal clip_color0_reg : std_logic_vector(17 downto 0);
signal clip _x1 reg : std _logic_vector(17 downto 0);
signal clip_yl reg : std _logic_vector(17 downto 0);
signal clip_z1 reg : std_logic_vector(17 downto 0);
signal clip_colorl reg : std _logic_vector(17 downto 0);
signal clip_rdy reg : std_logic;

signal clip_done : std_logic;

-- Arb state

type arb_state t is (IDLE,CLIPO,CLIP1,ACCEPTO,ACCEPT1);
signal arb_state : arb_state_ t;

begin

-— This process simply registers the min max values when and end of frame
-— arives. This is so the process cannot change the value until the next
-— frame. Also, the min values signs are inverted to make subtraction
-— easier in the pipe stages below.
reg_register _prc : process(clk,reset)
begin

if (reset = "1%) then

-- Reset all registers.
zmax_reg <= (others => "0%);
eof dly <= "0";

elsift (clk"event and clk = "1") then

-— Line up eof with the latching of the registers.
eof _dly <= eof;

-— Latch registers on end of frame.
if (eof = "1%) then

zZmax_reg <= zmax;
end if;

end if;
end process;
z_in_neg(17) <= not z_in(17);
z_in_neg(16 downto 0) <= z_in(16 downto 0);

-— Component generates Cohen-Sutherland outcode.
outcode_gen_0 : outcode_gen

port map (
reset => reset,
clk = clk,
X_1in => x_1in,

219

y_in => vy in,

z_in => z in,
valid_in => valid_in,
xmin => z in,

ymin => z in,

zmin => NEG_ONE,

Xmax => z in_neg,
ymax => z_in_neg,
zmax => zmax_reg,
outcode => outcode,
valid_out => outcode_valid

);

-- Delay to match up X,y and color with outcode.
x_y color_dly prc : process (clk)
begin
if (clk = "1" and clk"event) then
fifo_input _wdata_reg(0) <= color_in & z_in & y_iIn & x_in;
for 1 in O to OUTCODE_LATENCY-2 loop
fifo_input wdata reg(i+l) <= fifo_input wdata reg(i);

end loop;
end if;
end process;
outcode_x <= fTifo_input_wdata_reg(OUTCODE_LATENCY-1)(17 downto O);
outcode y <= fifo_input_wdata_reg(OUTCODE_LATENCY-1)(35 downto 18);
outcode z <= fifo_input_wdata_reg(OUTCODE_LATENCY-1) (53 downto 36);

outcode_color <= Ffifo_input_wdata_reg(OUTCODE_LATENCY-1)(71 downto 54);

-- Input fifo assignments.

fifo_input_push <= outcode_valid;

fifo _input wdata <= outcode & outcode color & outcode z & outcode y &
outcode_ x;

pix_in_ready <= not fifo_input_afull;

-- Buffer incomming data.
input_fifo : fifo_l1clk
generic map (

FIFO_WIDTH => 18*4 + 6,
FIFO_DEPTH => 16,
FIFO_AFULL_THRESH => 8,
FIFO_AEMPTY_THRESH => 1,
FIFO_FALL_THROUGH => 1

)
port map (
reset => reset,
clk = clk,
push => fifo_input _push,
pop => fTifo_input_pop,

wdata => fifo_input_wdata,
rdata => fifo_input_rdata,
afull => fifo_input_afull,
aempty => fifo_input_aempty,
empty => fifo_input _empty,
full => fifo_input_full

)

-- Control process for popping the input fifo and doing the outcode

-— compairson. The process looks at two points and deterimes weather.
-— To trivialy accept, trivialy reject, or do clipping. There are two
-— fifos, one for accepted lines and on for clipped lines. This way,
-— clipped lines cannot block accepted lines.

decision_ctrl_prc : process (clk,reset)

begin

220

if (reset = "1") then
fifo_input _pop <= "0";
fifo_accept _push <= "07;
fifo_accept _wdata <= (others => "07);
fifo _clip push <= "0";
fifo clip_wdata <= (others => "0%);
decision_state <= IDLE;

elsif (clk = "1" and clk"event) then

-- Defaults.

fifo_input _pop <= "0";
fifo_accept push <= "07;
fifo _clip push <= "0";

case decision_state is
when IDLE =>

-— Pop the first point and save it,
-- We need two points to make a line!
if (fifo_input_aempty = "0° and fifo_accept_afull = "0") then
fifo_input pop <= "1°%;
decision_state <= POP_FIRST;
end if;

when POP_FIRST =>

fifo_input_pop <= "1";
fifo_input _rdata0 <= fifo_input rdata;
decision_state <= POP_LINE;

when POP_LINE =>

if ((Fifo_input_rdata0O(77 downto 72) or fifo_input rdata(77 downto
72)) = x"0") then

-— IF¥ both points lie within the viewing window,

-— and the accept fifo is not almost full then

-- then push the stored pixel onto accept fifo and
-— store the new one, it will be pushed next cycle.
fifo_input_rdata0 <= fifo_input_rdata;

fifo_accept push <= "1°7;

fifo_accept wdata <= Ffifo_input_rdata0O(71 downto 0);
decision_state <= PUSH_ACCEPT LINE;

elsit ((Fifo_input_rdataO(77 downto 72) and Ffifo_ input rdata(77
downto 72)) /= x"0") then

-— IF neither point intercepts the viewing window then
-- reject the line and do not push it on either Ffifo.
decision_state <= REJECT_LINE;

else

-- If the point can neither be trivially accepted or rejected then
-- send it to the clipping fifo when the clipping fifo is not

-— almost full. Push the stored pixel, the new one will be pushed
-- next cycle.

fifo_input_rdata0 <= fifo_input_rdata;

fifo_clip_push <= "1°;
fifo_clip_wdata <= fifo_input rdataO;
decision_state <= PUSH_CLIP_LINE;

221

end if;
when PUSH_ACCEPT_LINE =>

-— Push second accepted point.
fifo_accept_push <= "17;
fifo_accept_wdata <= fifo_input _rdata0(71 downto 0);

-—- Return to the idle state.
decision_state <= IDLE;

when REJECT_LINE =>

-— Return to the idle state.
decision_state <= IDLE;

when PUSH CLIP_LINE => null;

-- Push second accepted point.
fifo_clip_push <= "1°%;
fifo_clip_wdata <= fifo_input_rdataO;

-- Return to the idle state.
decision_state <= IDLE;

end case;

-- Just put this here incase as to not lock up the state machine.
if (eof = "1%) then

decision_state <= IDLE;
end if;

end if;
end process;

-— Buffer accept data.
accept_fifo : fifo _l1clk
generic map (
FIFO_WIDTH => 18%*4,
FIFO_DEPTH = 16,
FIFO_AFULL_THRESH => 8,
FIFO_AEMPTY_THRESH => 1,
FIFO_FALL_THROUGH => 1

)
port map (
reset => reset,
clk = clk,
push => fifo_accept_push,
pop => fifo_accept _pop,

wdata => fifo_accept wdata,
rdata => fifo_accept_rdata,
afull => fifo_accept _afull,
aempty => fifo_accept_aempty,
empty => fifo_accept_empty,
full => Ffifo_accept_ full

)

-— Buffer clipping data.
clip_fifo : fifo_lclk
generic map

FIFO_WIDTH => 18*4+6,
FI1FO_DEPTH => 16,
FIFO_AFULL_THRESH => 8,

FIFO_AEMPTY_THRESH => 1,

222

FIFO_FALL_THROUGH => 1

)
port map (
reset => reset,
clk => clk,
push => fifo_clip_push,
pop => fifo_clip_pop,

wdata => fifo_clip_wdata,
rdata => fifo_clip_rdata,
afull => fifo _clip_afull,
aempty => fifo_clip_aempty,
empty => fifo_clip_empty,
full => Fifo_clip_*full

);

-- Buffer clipping data.
-— This one needs to be big to handle clipping tree latency.
fifo_store push <= fifo_clip_push;
fifo_store wdata <= fifo _clip_wdata;
store _fifo : fifo _lclk
generic map (
FIFO_WIDTH => 18*4+6,
FIFO_DEPTH => 128,
FIFO_AFULL_THRESH => 96,
FIFO_AEMPTY_THRESH => 1,

FIFO_FALL_THROUGH => 1
)
port map (
reset => reset,
clk = clk,
push => fifo_store push,
pop => fifo_store pop,

wdata => fifo_store_wdata,
rdata => fifo_store rdata,
afull => fifo_store_afull,
aempty => fifo_store_ aempty,
empty => fifo_store empty,
full => fifo_store_ full

)

-- Small state machine that prefeches data from storage fifo.
store_prefech_prc : process(reset,clk)

begin
if (reset = "1") then

fifo_store_ pop <= "0°";

fifo_store x0 <= (others => "07%);
fifo_store y0 <= (others => "0%);
fifo_store z0 <= (others => "07%);
fifo_store color0 <= (others => "07%);
fifo_store outcode0 <= (others => "0%);
fifo_store x1 <= (others => "07%);
fifo_store yl <= (others => "07%);
fifo_store z1 <= (others => "0%);
fifo_store _colorl <= (others => "0%);
fifo_store outcodel <= (others => "07);

fifo_store rdy <= "0°";
fifo_store state <= POP_ZERO;
elsift (clk = "1 and clk"event) then

-— Defaults
fifo_store pop <= "07;

case fifo _store state is

223

when POP_ZERO =>

if (fifo_store aempty = "0") then

fifo_store pop <= "1%;
fifo_store_state <= POP_ONE;
end if;

when POP_ONE =>

fifo_store pop <= "1°7;
fifo_store x0 <= fifo_store rdata(l7 downto 0);
fifo_store_ y0 <= fifo_store_rdata(35 downto 18);
fifo_store z0 <= fifo_store rdata(53 downto 36);

fifo_store color0 <= fifo_store rdata(71l downto 54);
fifo_store outcode0 <= fifo_store_rdata(77 downto 72);
fifo_store state <= STORE;

when STORE =>

fifo_store x1 <= fifo_store_rdata(l7 downto 0);
fifo_store yl <= fifo_store_rdata(35 downto 18);
fifo_store z1 <= fifo_store rdata(b53 downto 36);

fifo_store colorl <= fifo_store_rdata(71 downto 54);
fifo_store_outcodel <= fifo_store_rdata(77 downto 72);
fifo_store state <= WAIT_FOR_DONE;

fifo_store rdy <= "1°%;

when WAIT_FOR_DONE =>

if (fifo_store _done = "1%) then
fifo_store_rdy <= "0";
fifo_store_state <= POP_ZERO;
end if;

end case;

end if;
end process;

-— This process pops, two points for the clipping fifo and push
-— the data through the clipping tree.
clip_fifo_pop _prc : process (reset,clk)

begin
if (reset = "1") then
fifo_clip_pop <= "0";
operand_aO <= (others => "07%);
operand_bO <= (others => "0%);
operand_cO <= (others => "0%);
operand_dO <= (others => "0%);
operand_e0 <= (others => "0%);
operand_T0 <= (others => "0%);
operand_dem_addO <= "0°";
operand_in_valO <= "0°";
operand_al <= (others => "0%);
operand_bl <= (others => "0%);
operand_cl <= (others => "0%);
operand_dil <= (others => "0%);
operand_el <= (others => "0%);
operand_f1 <= (others => "0%);
operand_dem_addl <= "0";
operand_in_vall <= "0°";

operand_push_state <= IDLE;
operand_push_cnt <= (others => "0%)
fifo _clip_rdatal <= (others => "0%)

224

fifo _clip_rdatal <= (others => "0%);
elsif (clk = "1" and clk"event) then

-- Defaults

operand_in_valO <= "0%;
operand_in_vall <= "07;
fifo _clip_pop <= "0";

case operand_push_state i
when IDLE =>
-- Pop off point xO0,y0,

if (fifo_clip_aempty
fifo_clip_pop <=

S

z0

0" and pix out_rdy = "1%) then
"y

operand_push_state <= POP_LINE;
operand_push_cnt <= (others => "0%);

end if;
when POP_LINE =>

-- Pop off point x1,yl,z1
fifo_clip_pop <= "1%;

-- Save point x0,y0,z0

fifo_clip_rdatal <= fifo_clip_rdata;

-- Cycle through all the sides.
operand_push_state <= CALC;

when CALC =>

-- Increment counter.
if (operand_push_cnt

""101'") then

operand_push_cnt <= (others => "0%);

else

operand_push_cnt <= operand_push_cnt + 1;

end if;

-- Do bottom line intersection check.

case operand_push_cnt i

when 000" =>

S

-- Save point x1,yl,z1

fifo_clip_rdatal

<= fifo_clip_rdata;

-- Do x=z intersection check.

operand_in_valO
operand_aO
operand_bO
operand_cO
operand_dO
operand_eO0
operand_T0
operand_dem_addO

operand_in_vall
operand_al
operand_bl
operand_cl
operand_di1

<=
<=
<=
<=
<=
<=
<=

<=
<=
<=
<=
<=

<= "17;

fifo _clip_rdata0(35 downto 18); --
fifo _clip_rdata0(53 downto 36); --

fifo_clip_rdata0(17 downto 0);
fifo _clip_rdata(35 downto 18);
fifo _clip _rdata(l17 downto 0);
fifo_clip_rdata(53 downto 36);
0" :

"1v-

fifo _clip_rdata0(53 downto 36); --
fifo _clip_rdata0(53 downto 36); --

fifo_clip_rdata0(17 downto 0);
fifo _clip_rdata(53 downto 36);

225

yO0
z0
x0
yl
x1
z1

z0
z0
x0
z1

operand_el
operand_f1l

operand_dem_addl

when 001"

<=
<=
<=

fifo _clip_rdata(l17 downto 0); -
fifo _clip_rdata(53 downto 36); --

"0":

-- Do x=-z intersection check.

operand_in_valO

operand_a0
operand_bO
operand_cO
operand_dO
operand_e0
operand_f0

operand_dem_add0

operand_in_vall

operand_al
operand_bl
operand_cl
operand_d1
operand_el
operand_f1

operand_dem_addl

when ""010" =>

<=
<=
<=
<=
<=
<=
<=

<=
<=
<=
<=
<=
<=
<=
<=

<= "17;

fifo_clip_rdata0(35
fifo _clip_rdata0(53
fifo_clip_rdata0(17
fifo_clip_rdatal(35
fifo _clip_rdatal(17
fifo _clip_rdatal(53
“1--

"1t
fifo_clip_rdata0(53
fifo _clip_rdata0(53
fifo _clip_rdata0(17
fifo_clip_rdatal(53
fifo clip _rdatal(17
fifo _clip_rdatal(53
1t

-- Do the y=-z interscetion check.

operand_in_valO

operand_aO
operand_bO
operand_cO
operand_dO
operand_e0
operand_f0

operand_dem_addO

operand_in_vall

operand_al
operand_bl
operand_cl
operand_d1l
operand_el
operand_f1

operand_dem_addl

when 011"

<=
<=
<=
<=
<=
<=
<=

<=
<=
<=
<=
<=
<=
<=
<=

<= "17;

fifo_clip_rdata0(17
fifo _clip_rdata0(53
fifo _clip_rdata0(35
fifo_clip_rdatal(1l7
fifo _clip_rdatal(35
fifo _clip_rdatal(53
“1t-

“qe-
fifo_clip_rdata0(53
fifo _clip_rdata0(53
Ffifo _clip_rdata0(35
fifo_clip_rdatal(53
fifo _clip_rdatal(35
fifo_clip_rdatal(53
"1t

-- Do the y=z intersection check.

operand_in_valO

operand_a0
operand_bO
operand_cO
operand_dO
operand_e0
operand_T0

operand_dem_addO

operand_in_vall

operand_al
operand_bl
operand_cl
operand_d1
operand_el

<=
<=
<=
<=
<=
<=
<=

<=
<=
<=
<=
<=
<=

<= "17;

fifo_clip_rdata0(17
fifo _clip_rdata0(53
fifo_clip_rdata0(35
fifo_clip_rdatal(17
fifo _clip _rdatal(35
fifo _clip_rdatal(53
0" :

"1t
fifo_clip_rdata0(53
fifo _clip_rdata0(53
fifo_clip_rdata0(35
fifo_clip_rdatal(53
fifo _clip _rdatal(35

226

downto
downto
downto
downto
downto
downto

downto
downto
downto
downto
downto
downto

downto
downto
downto
downto
downto
downto

downto
downto
downto
downto
downto
downto

downto
downto
downto
downto
downto
downto

downto
downto
downto
downto
downto

18); --
36); --
0); --
18); --
0); --
36); --

36); --
36); —-
0); --
36); --
0); --
36); -—-

0); --
36); --
18); —-
0); --
18); --
36); —-

36); --
36); --
18); --
36); --
18); --
36); —-

0); --
36); --
18); --
0); --
18); --
36); --

36); --
36); —-
18); --
36); --
18); --

x1

yO
z0
x0
yl
x1
z1

z0
z0
x0
z1
x1
z1

x0
z0
yO
x1

yl
z1

z0
z0
yO
z1

yl
z1

x0
z0

y0
x1

z1

z0
z0

yO
z1

yl

operand_f1 <= fifo_clip_rdatal(53 downto 36); -- z1
operand_dem addl <= "0°";
when 100" =>
-- Do z=-1 intersection check.

operand_in_valO <= "1°%;
operand_a0 <= fifo_clip_rdata0(17 downto 0); -- xO
operand_bO <= NEG_ONE; - -1
operand_cO <= fifo_clip_rdata0(53 downto 36); -- z0
operand_dO <= fifo_clip_rdatal(l7 downto 0); -- x1
operand_e0 <= fifo_clip_rdatal(53 downto 36); -- z1
operand_f0 <= NEG_ONE; -- -1
operand_dem_addO <= "0";
operand_in_vall <= "1°7;
operand_al <= Ffifo_clip_rdata0(35 downto 18); -- yO
operand_b1l <= NEG_ONE; - -1
operand_cl <= fifo_clip_rdata0(53 downto 36); -- z0
operand_d1 <= Ffifo_clip_rdatal(35 downto 18); -- vyl
operand_el <= fifo_clip_rdatal(53 downto 36); -- z1
operand_f1 <= NEG_ONE; -- -1
operand_dem _addl <= "0%;
when 101" =>
-- Do z=zmax intersection check.

operand_in_valO <= "1°7;
operand_aO <= fifo_clip_rdata0(17 downto 0); -- xO0
operand_bO <= zmax_req; -— zmax
operand_cO <= fifo_clip_rdata0(53 downto 36); -- zO
operand_dO <= fifo_clip_rdatal(17 downto 0); -- x1
operand_eO0 <= fifo_clip_rdatal(53 downto 36); -- z1
operand_f0 <= zmax_reg; -— zmax
operand_dem_addO <= "0";
operand_in_vall <= "1°7;
operand_al <= fifo_clip_rdata0(35 downto 18); -- yO
operand_bl <= zmax_reg; -— zmax
operand_cl <= fifo_clip_rdata0(53 downto 36); -- zO
operand_d1l <= fifo_clip_rdatal(35 downto 18); -- vyl
operand_el <= fifo_clip_rdatal(53 downto 36); —-- z1
operand_f1 <= zmax_reg; -— zmax
operand_dem_addl <= "0%;

-- Pop off point x0,y0,z0
if (Fifo _clip_aempty = "0") then
Ffifo_clip_pop <= "1°7;
operand_push_state <= POP_LINE;
operand_push_cnt <= (others => "0%);
else
operand_push_state <= IDLE;

end if;
when others => null;
end case;
end case;

end if;
end process;

Slilly VHDL, there are no more cases!

-— This clipping tree is calculates the intersection point of

227

-- points outside the viewing volume with the viewing volume itself.
clipping tree 0 : clipping_tree

port map (
reset
clk
operand_a
operand_b
operand_c
operand_d
operand_e
operand_F
operand_dem_add
operand_in_val
operand_out
operand_out_val

ope?and_neg_outo <=

clipping tree 1 : cl

port map (
reset
clk
operand_a
operand_b
operand_c
operand_d
operand_e
operand_F
operand_dem add
operand_in_val
operand_out
operand_out_val

ope?and_neg_outl <=

=> reset,

=> clk,

=> operand_a0,

=> operand_bO,

=> operand_cO,

=> operand_dO,

=> operand_eO,

=> operand_¥fO0,

=> operand_dem_addoO,
=> operand_in_valoO,
=> operand_outO,

=> operand_out_valO

(not operand_out0(17)) & operand out0(16 downto 0);
ipping_tree

=> reset,

=> clk,

=> operand_al,

=> operand_bl,

=> operand_cl,

=> operand_d1,

=> operand_el,

=> operand_f1,

=> operand_dem_addl,
=> operand_in_vall,
=> operand_outl,

=> operand_out_vall

(not operand_outl(17)) & operand outl(16 downto 0);

-- Process the cycles through all 4 clipping calculation and pushes
-- the proper pixels into the new outcode calculaiton.

outcode gen prc : process (reset,clk)
begin
i1f (reset = "1") then

new_x_1in <= (others => "0%);
new_y in <= (others => "07);
new_z in <= (others => "0%);
new_valid_in <= "07;

new_outcode cnt <= (others => "07%);
elsift (chlk = "1 and clk"event) then

new_valid_in <= "0";
if (operand_out_valO = "17) then

-— Set the outcode valid pulse.
new_valid _in <= "17;

-— Determine what portion of the volume intersection

-— we are dealing with.
case new_outcode_cnt is

when 000" =>
-— This is the x=z intersection.

new_x_1in <= operand_outl;
new_y 1in <= operand_outO;

228

new_z in <= operand_outl;
when 001" =>

-— This is the x=-z intersection.

new_x_1in <= operand_neg_outl;
new_y 1in <= operand_outO;
new_z in <= operand_outl;

when *'010" =>

-- This is the y=-z intersection.

new_x_1in <= operand_outO;
new_y in <= operand_neg_outl;
new_z in <= operand_outl;

when *'011" =>

-- This is the y=z intersection

new_x_1in <= operand_outO;
new_y 1in <= operand_outl;
new_z in <= operand_outl;

when 100" =>

-— This is the z=-1 intersection

new_x_1in <= operand_outO;
new_y 1in <= operand_outl;
new_z in <= NEG_ONE;

when 101" =>

-- This is the z=zmax intersection

new_x_1in <= operand_outO;
new_y_in <= operand_outl;
new_z_in <= zmax_reg;

when others => null; -- Slilly VHDL.
end case;

-- Increment counter
if (new_outcode cnt = "101'") then
new_outcode_cnt <= (others => "0%);
else
new_outcode cnt <= new_outcode cnt + 1;
end if;

end if;

end if;
end process;

new_z in_neg(17) <= not new_z_ in(17);
new_z in_neg(16 downto 0) <= new_z_ in(16 downto 0);

-— Component generates Cohen-Sutherland outcode.
new_outcode gen 0 : outcode_gen

port map (
reset => reset,
clk = clk,
X_in => new_x_1in,
y_in => new_y in,

229

z in => new_z_in,
valid_in => new_valid_in,

Xmin => new_z in,

ymin => new_z_in,

zmin => NEG_ONE,

Xmax => new_z_in_neg,

ymax => new_z_in_neg,

zmax => zmax_reg,

outcode => new_outcode,

valid_out => new_outcode valid
)

-- Delay to match up X,y,z and color with outcode.
new_outcode xy dly prc : process (clk)
begin
if (clk = "1" and clk"event) then
new_outcode xyz reg(0) <= new_z in & new_y in & new_Xx_in;
for i in 0 to OUTCODE LATENCY-2" loop
new_outcode xyz_reg(i+1l) <= new_outcode xyz_reg(i);

end loop;
end if;
end process;
new_outcode_x <= new_outcode xyz reg(OUTCODE_LATENCY-1)(17 downto 0);
new_outcode_y <= new_outcode_xyz_reg(OUTCODE_LATENCY-1)(35 downto 18);
new_outcode z <= new_outcode_xyz_reg(OUTCODE_LATENCY-1)(53 downto 36);

-- This process cycles through all the calculated outcodes
-- and sends the proper pixel to the arbiter.
pix_sel _prc : process (reset,clk)
begin
1f (reset = "1%) then
fifo_store _done <= "0°;

clip_pix_cnt <= (others => "0%);
clip_x0 <= (others => "07%);
clip_yo0 <= (others => "0%);
clip_z0 <= (others => "07%);
clip_color0 <= (others => "07%);
clip_rdyO <= "0°";

clip_x1 <= (others => "07%);
clip yl <= (others => "07%);
clip_z1 <= (others => "0%);
clip_colorl <= (others => "07%);
clip_rdyl <= "0°";

clip_rdy <= "0°";

clip_x0_reg <= (others => "07%);
clip_y0 reg <= (others => "07%);
clip_z0 reg <= (others => "0%);
clip_color0O_reg <= (others => "0%);
clip x1 _reg <= (others => "07%);
clip_vyl reg <= (others => "0%);
clip_z1 reg <= (others => "0%);
clip_colorl reg <= (others => "0%);

clip_rdy reg <= "0°";

elsift (clk = "1 and clk"event) then
-- Default
fifo_store_done <= "0-;
clip_rdy <= "0";

if (new_outcode_valid = "1%) then
-- Determine what portion of the volume intersection

-- we are dealing with. Look at the outcodes and determine what
-- to do.

230

case clip_pix _cnt is

new coordi

x""0"™) then

new coordi

x"0") then

then

then

when

000" =>

-— Determine if x0,y0,z0 is outside the viewing volume.
-— If it isn"t, use the original coordinates.
IT it is see if it was to the left of the volume and iIf the

nate

clip_
clip_

is

in the volume.

rdyO <= "0";
color0 <= fifo_store color0;

if (fifo_store outcodeO = 00" & x"0") then
ip_x0 <= fifo_store xO0;
ip_y0 <= fifo_store_yO0;

cl
cl
cl
cl
el

cl
cl
cl
cl
en

nate

ip_z0 <= fifo_store z0;

ip_rdy0 <= "1-7;

sift (Ffifo_store outcode0(0) = "1 and new _outcode = "00" &
ip_x0 <= new_outcode_ X;

ip_y0 <= new_outcode_y;
ip_z0 <= new_outcode z;
ip_rdy0 <= "1-7;

d if;

Determine if x1,yl,zl1 is outside the viewing window.
-— If it isn"t, use the original coordinates.
IT it is see if it was to the left of the volume and if the

is

—-- in the volume.
clip_rdyl <= "0°";
clip_colorl <= fifo_store colorl;
if (fifo_store outcodel = "00" & x"0'") then
ip x1 <= fifo_store x1;
ip vyl <= fifo_store yl;

cl
cl
cl
cl
el

cl
cl
cl
cl
en

when

ip_z1 <= fifo_store_z1;

ip_rdyl <= "1°7;

sift (Ffifo_store outcodel(0) = "1 and new outcode = "00" &
ip_x1 <= new_outcode X;

ip vyl <= new_outcode_y;
ip_z1 <= new_outcode z;
ip_rdyl <= "1°7;

d if;
001" =>

-— If we haven"t already selected the a point, than see if
-- x0,y0,z0 intersects with the right of the volume.
if (clip_rdy0O = "0") then
if (fifo_store outcodeO(l) = "1" and new_outcode = "00" & x'"0')

end

clip_x0 <=

clip_yo0 <=
clip_z0 <=
clip_rdy0 <=
end if;

if;

f we haven™t

new_outcode Xx;
new_outcode y;
new_outcode z;
Lk

already selected the a point, than see if

-- x1,y1,z1 intersects with the right of the volume.
if (clip_rdyl = "0") then
if (fifo_store outcodel(l) = "1 and new_outcode = "00" & x"0')

clip x1 <=

new_outcode X;

231

then

then

then

then

clip yl <= new_outcode_y;
clip_z1 <= new_outcode z;
clip_rdyl <= "1°7;
end 1f;

end if;

when *"010" =>

-- If we haven™t already selected the a point, than see if
-- x0,y0,z0 intersects with the bottom of the volume.
if (clip_rdy0O = "0") then
if (fifo_store outcode0(2) = "1° and new_outcode = '00" & x"0")

clip_x0 <= new_outcode_ X;
clip_yO0 <= new_outcode_y;
clip_z0 <= new_outcode z;
clip_rdy0 <= "1%;
end if;

end if;

-—- If we haven™t already selected the a point, than see if
-- x1,yl,z1 intersects with the right of the volume.
if (clip_rdyl = "0") then
if (fifo_store outcodel(2) = "1° and new_outcode = "00" & x"0™)

clip x1 <= new_outcode_ X;
clip_yl <= new_outcode_y;
clip _z1 <= new_outcode z;
clip_rdyl <= "1%;
end if;

end if;

when 011" =>

-— If we haven"t already selected the a point, than see if
-- x0,y0,z0 intersects with the top of the volume.
if (clip_rdy0O = "0") then
if (fifo_store outcodeO0(3) = "1 and new_outcode = "00" & x'"0')

clip_x0 <= new_outcode X;
clip_yo0 <= new_outcode y;
clip_z0 <= new_outcode z;
clip_rdy0 <= "17;
end if;

end if;

-— I we haven"t already selected the a point, than see if
-- x1,y1,z1 intersects with the top of the volume.
if (clip_rdyl = "0") then
if (fifo_store outcodel(3) = "1 and new_outcode = "00" & x'"0')

clip x1 <= new_outcode X;
clip yl <= new_outcode y;
clip_z1 <= new_outcode z;
clip_rdyl <= "17;
end if;

end if;

when "100" =>
-— If we haven"t already selected the a point, than see if

-- x0,y0,z0 intersects with the back of the volume.
if (clip_rdy0 = "0") then

232

if (fifo_store outcode0(4) = "1 and new_outcode = "00" & x"0")

then
clip_x0 <= new_outcode X;
clip_yo0 <= new_outcode y;
clip_z0 <= new_outcode z;
clip_rdy0 <= "1°7;
end i1f;
end if;
-—- If we haven"t already selected the a point, than see if
-- x1,yl,z1 intersects with the back of the volume.
if (clip_rdyl = "0") then
if (fifo_store outcodel(4) = "1 and new_outcode = "00" & x"0")
then
clip_x1 <= new_outcode X;
clip yl <= new_outcode y;
clip_z1 <= new_outcode z;
clip_rdyl <= "17;
end 1f;
end if;
when 101" =>
-- If we haven™t already selected the a point, than see if
-- x0,y0,z0 intersects with the front of the volume.
if (clip_rdy0O = "0") then
if (fifo_store outcodeO0(5) = "1° and new_outcode = "00" & x"0")
then
clip_x0 <= new_outcode_ X;
clip_yO0 <= new_outcode_y;
clip_z0 <= new_outcode z;
clip_rdy0 <= "1%;
end if;
end if;
-—- If we haven™t already selected the a point, than see if
-- x1,yl,z1 intersects with the front of the volume.
if (clip_rdyl = "0") then
if (fifo_store outcodel(5) = "1° and new_outcode = "00" & x"0™)
then

clip x1 <= new_outcode_ X;
clip_yl <= new_outcode_y;
clip _z1 <= new_outcode z;
clip_rdyl <= "1%;

end if;
end if;
-— Assert clipping coordinates are ready.
clip_rdy <= "1°7;

fifo_store_done <= "1°;

when others => null; -- Slilly VHDL.
end case;
-- Increase counter

if (clip_pix_cnt = "101"™) then

clip_pix_cnt <= (others => "0%);
else

clip_pix_cnt <= clip_pix_cnt + 1;
end if;

end if;

233

-- Register clipping stuff.
if (clip_rdy = "1%) then
clip_rdy_reg <= "1°%;

clip x0 _reg <= clip_x0;
clip_y0 reg <= clip_yO;
clip_z0 reg <= clip_z0;
clip_color0O_reg <= clip_coloro0;
clip x1 _reg <= clip_x1;
clip_vyl reg <= clip_y1;
clip_zl reg <= clip_z1;
clip_colorl reg <= clip_colorl;
end if;

if (clip_done = "1") then
clip_rdy reg <= "07;
end if;

end if;
end process;

-- Arbitration process

-- Selects between clipping and accepted paths.
-- Round robin between the two.

arb_prc : process(reset,clk)

begin

if (reset = "1") then
x_out <= (others => "0%)
y_out <= (others => "07%);
z_out <= (others => "0%);
color_out <= (others => "07%);
valid _out <= "0";
clip_done <= "0°";
fifo_accept_pop <= "0";
arb_state <= IDLE;

elsif (chlk = "1 and clk"event) then
-- Defualts
valid_out <= "0°;
clip_done <= "0";

fifo_accept _pop <= "0";
case arb_state 1is
when IDLE =>
if (clip_rdy reg = "1%) then
arb_state <= CLIPO;
elsift (fifo_accept_aempty = "0") then

fifo_accept _pop <= "1";
arb_state <= ACCEPTO;

end if;
when CLIPO =>

x_out <= clip_x0_reg;
y_out <= clip_yO0 _reg;
z_out <= clip_z0 reg;

color_out <= clip_colorO_reg;
valid out <= "17;
clip_done <= "1°7;

234

arb_state <= CLIP1;
when CLIP1 =>

x_out <= clip_x1_reg;
y_out <= clip_yl reg;
Z_out <= clip_zl1 reg;

color_out <= clip_colorl_reg;
valid out <= "17;

if (fifo_accept _aempty = "0") then
fifo_accept_pop <= "1°7;
arb_state <= ACCEPTO;
else
arb_state <= IDLE;
end if;

when ACCEPTO =>

x_out <= Ffifo_accept _rdata(l17 downto 0);
y_out <= fifo_accept_rdata(35 downto 18);
z_out <= Ffifo_accept rdata(53 downto 36);
color_out <= Ffifo_accept _rdata(71 downto 54);
valid _out <= "17;

fifo_accept_pop <= "1°7;
arb_state <= ACCEPT1;

when ACCEPT1 =>

x_out <= fifo_accept rdata(l17 downto 0);
y out <= Ffifo_accept _rdata(35 downto 18);
Z_out <= fifo_accept_rdata(53 downto 36);
color_out <= fifo_accept rdata(71 downto 54);
valid _out <= "1°7;

if (clip_rdy reg = "17) then
arb_state <= CLIPO;
else
arb_state <= IDLE;
end if;
end case;

end if;
end process;

end hdl;

C.8 ABSOLUTE VALUE

This VHDL file calculates the absolute value of the subtraction of two 18bit floationg

point values.

235

-— Filename : abs_val.vhd
-— Initial Date : Feburary 15 2008
-— Author : James Ryan Warner

-— Description : Takes in two integer and calculates their absolutle value.

library ieee;

use ieee.std logic 1164.all;

use ieee.std_logic _unsigned.all;
use ieee.std logic arith.all;

library work;
use work.gpu pkg.all;

entity abs val is

generic (
WIDTH : integer := 8
)
port (
-- Reset/Clock
reset : in std_logic;
clk : In std_logic;
-— Line Inputs.
a : In std_logic vector(bit width(WIDTH)-1 downto 0);
b : in std_logic vector(bit width(WIDTH)-1 downto 0);
ready : in std_logic;
-— Output value
valid : out std_logic;
data : out std_logic_vector(bit width(WIDTH)-1 downto 0)
)

end abs_val;
architecture rtl of abs val is

signal mux_sel : std_logic;

signal asubb : std _logic _vector(bit width(WIDTH)-1 downto 0);
signal bsuba : std_logic vector(bit width(WIDTH)-1 downto 0);
begin

-- Mux select
abs val _prc : process(a,b,ready)
begin

-— Determine which value is greater.
if (a > b) then

mux_sel <= "1°7;
else

236

mux_sel <= "0";
end if;

-— Subtract both values regardless.
asubb <= a - b;
bsuba <= b - a;

end process;

reg_prc : process(clk,reset)
begin
if (reset = "1") then
valid <= "0%;
data <= (others => "07);
elsit (clk"event and clk="1") then
valid <= ready;
-- A>B
if (mux_sel = "1%) then
data <= asubb;
else
data <= bsuba;
end if;
end if;
end process;

end rtl;

C.9 BRESENHAM’S ALGORITHM

This VHDL file is a hardware implementation of Bresenham’s line algorithm. It takes
two points and interpolates the nearest pixels to activate based on the straight line between the

line’s endpoints.

-- Filename : line_drawler.vhd

-— Initial Date : January 14 2008

-— Author : James Ryan Warner

-— Description : This block implements a the Bresenham®s line algorithm.

- It takes as input, two 2D points within a given range.

- It then draws a rasterized line by writting information to
- the frame buffer. It is assumed that the incomming pixels

- clipped to the viewing volume.

237

library ieee;

use ieee.std logic 1164.all;

use ieee.std_logic _unsigned.all;
use ieee.std logic arith.all;

library work;
use work.gpu_pkg.all;

entity line_drawler is

generic (
X_PIX_WIDTH : integer := 320;
Y_PIX_ WIDTH : integer := 240

);

port (
-- Reset/Clock
reset : in std_logic;
clk : in std_logic;

-- Line Inputs.
x0 in std_logic_vector(bit width(X_PIX WIDTH)-1 downto 0);

x1 : in std_logic_vector(bit_width(X_PIX_WIDTH)-1 downto 0);
y0 : in std_logic_vector(bit_width(Y_PIX_WIDTH)-1 downto 0);
yl : in std_logic_vector(bit_width(Y_PIX_WIDTH)-1 downto 0);
color : in std_logic_vector(17 downto 0);

pix_valid : in std_logic;

pix_ready : out std_logic;

-- Control

background : in std_logic _vector(35 downto 0);

enable : in std_logic;

eof : in std_logic;

-- Memory Outputs

gpu_req : out std _logic;
gpu_rnw : out std _logic;
gpu_afull > in std_logic;
gpu_addr : out std _logic_vector(18 downto 0);
gpu_wpush : out std _logic;
gpu_wdata : out std_logic_vector(35 downto 0);
gpu_wafull - Iin std _logic
)

end line_drawler;
architecture rtl of line_drawler is

component abs_val

generic (
WIDTH : integer
)
port (
-- Reset/Clock
reset : in std_logic;
clk : In std_logic;

-— Line Inputs.
a : In std_logic vector(bit width(WIDTH)-1 downto 0O);

238

b : in std_logic vector(bit width(WIDTH)-1 downto 0);

ready : in std_logic;

-— Output value

valid : out std_logic;

data : out std_logic_vector(bit width(WIDTH)-1 downto 0)
end’component;

component fifo l1clk is

generic (
FIFO_WIDTH . integer;
FIFO_DEPTH : integer;
FIFO_AFULL_THRESH : integer;
FIFO_AEMPTY_THRESH: integer;

FIFO_FALL_THROUGH : integer

)
port (
-- Clock and reset
reset : in std_logic;
clk > In std_logic;
-— Control signals
push > in std_logic;
pop : In std _logic;
-- Read write data
wdata in std logic _vector(FIFO _WIDTH-1 downto 0);

rdata : out std_ | logic_vector(FIFO_WIDTH-1 downto 0);

-- Status flags.

afull : out std _logic;
aempty : out std_logic;
empty : out std logic;
full : out std _logic
)

end component;

constant NUM_PIX : integer := X PIX WIDTH*Y PIX_WIDTH;
constant FIFO_WIDTH integer I=
bit_width(X_PIX_WIDTH)*4+bit_width(Y_PIX WIDTH)*3+1+18+2+2+1'

type scan_state_t is
(IDLE,WAIT_FOR_SLOT,CLEAR_SCREEN,DRAW_FIRST,WAIT_DATA,GRAB_DATA,DRAW_LINE);

signal scan_state I scan_state t;

signal gpu_addr_i std_Togic vector(16 downto 0);

signal background_reg std_logic_vector(35 downto 0);

signal eof dly std_logic;
-- Fifo Signals.

signal fifo_push std_logic;
signal fifo_pop std_logic;

signal fifo_wdata : std_logic_vector(FIFO_WIDTH-1 downto 0);
signal fifo _rdata : std logic vector(FIFO WIDTH-1 downto 0);
signal fifo_afull : std logic;
signal fifo_empty : std_logic;

-- State 1 signals.

signal sl1_valid : std_logic;
signal sl1 x0 : std _logic _vector(bit width(X_PIX WIDTH)-1 downto 0);

239

signal
signal
signal
signal

sl x1
sl yO0
sl yl
sl color

-- Stage 2 signals.

signal
signal
signal
signal
signal
signal
signal
signal

-- State 3 signals

signal
signal
signal
signal
signal
signal
signal
signal
signal

-— State 4 signals

signal
signal
signal
signal
signal
signal
signal
signal
signal

-- State 5 signals

signal
signal
signal
signal
signal
signal
signal
signal
signal

s2 _valid
s2_x1x0_abs:
s2_yly0 . abs
s2_x0

s2_x1

s2_y0

s2 yl

s2 _color :

s3 valid

s3 x0

s3 x1

s3 y0

s3 yl

s3 deltax
s3 _deltay
s3 color

s3_steep

s4 _valid
s4 x0

s4 x1
s4_yO0

s4 yl

s4 _deltax
s4_deltay
s4_color
s4_steep

s5 valid
s5 x0

s5 x1

s5 y0

s5 vyl
s5_deltax
s5_deltay
s5_steep
s5 color

-- Stage 6 sngnals

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

signal
signal

s6_error
s6_x0
s6_x1
s6_y0
s6_yl
s6_valid
s6_deltax
s6_deltay
s6_steep
s6_color
s6_ystep
s6_xstep

X_pos
y_pos

std_logic_vector(bit width(X_PIX WIDTH)-

std _logic_vector(bit width(Y_PIX WIDTH)-1
std_logic_vector(bit_width(Y_PIX_WIDTH)-1
std_logic_vector(17 downto 0);

: std_logic;

std_logic_vector(bit_width(X_PIX_WIDTH)-1
std_logic_vector(bit_width(Y_PIX_WIDTH)-
std_logic_vector(bit_width(X_PIX_WIDTH)-1

- std_ logic_vector(bit width(X_PIX WIDTH)-1
- std_logic_vector(bit_width(Y_PIX_WIDTH)-1
: std_logic_vector(bit_width(Y_PIX_WIDTH)-1

std_logic_vector(17 downto 0);

std_logic;
std_logic_vector(bit_width(X_PIX_WIDTH)-1
std_logic_vector(bit_width(X_PIX_WIDTH)-1
std_logic_vector(bit_width(Y_PIX_WIDTH)-1
std_logic_vector(bit_width(Y_PIX_WIDTH)-1
std_logic_vector(bit_width(X_PIX_WIDTH)-1
std_logic_vector(bit_width(Y_PIX_WIDTH)-1
std_logic_vector(17 downto 0);
std_logic;

std_logic;

std _logic_vector(bit width(X_PIX WIDTH)-1
std_logic_vector(bit_width(X_PIX_WIDTH)-1
std_logic_vector(bit_width(Y_PIX_WIDTH)-
std_logic_vector(bit_width(Y_PIX_WIDTH)-
std_logic_vector(bit_width(X_PIX_WIDTH)-
std_logic_vector(bit_width(Y_PIX_WIDTH)-1
std_logic_vector(17 downto 0);
std_logic;

std_logic;

std _logic_vector(bit width(X_PIX WIDTH)-1
std_logic_vector(bit_width(X_PIX_WIDTH)-1
std_logic_vector(bit_width(Y_PIX_WIDTH)-

: std_logic_vector(bit_width(Y_PIX_WIDTH)-1
: std_logic_vector(bit_width(X_PIX_WIDTH)-1
: std_logic_vector(bit_width(Y_PIX_WIDTH)-1
: std_logic;

: std_logic_vector(17 downto 0);

: std_logic_vector(bit width(X_PIX _WIDTH)
: std_logic_vector(bit_width(X_PIX_WIDTH)-
: std_logic_vector(bit_width(X_PIX_WIDTH)-1

std_logic_vector(bit_width(Y_PIX_WIDTH)-1
std_logic_vector(bit_width(Y_PIX_WIDTH)-1
std_logic;

std_logic_vector(bit width(X_PIX WIDTH)-
std_logic_vector(bit_width(Y_PIX WIDTH)-

std_logic;

std_logic_vector(17 downto 0);
std_logic_vector(1 downto 0);
std _logic_vector(1l downto 0);

std_logic_vector(bit_width(X_PIX_WIDTH)
std_logic_vector(bit_width(Y_PIX_WIDTH)

240

1 downto 0);
1 downto 0);
1 downto 0);

1 downto 0);
-1 downto 0);
1 downto 0);
1 downto 0);
1 downto 0);
1 downto 0);

1 downto 0);
1 downto 0);
1 downto 0);
1 downto 0);
1 downto 0);
1 downto 0);

1 downto 0);
1 downto 0);
1 downto 0);
1 downto 0);
-1 downto 0);
1 downto 0);

1 downto 0);
1 downto 0);
-1 downto 0);
1 downto 0);
1 downto 0);
1 downto 0);

downto 0);
-1 downto 0);
1 downto 0);
1 downto 0);
1 downto 0);

1 downto 0);
1 downto 0);

downto 0);
downto 0);

signal x_min
signal y_min
signal x_max

std _logic_vector(bit width(X_PIX WIDTH)-1 downto 0);
std _logic_vector(bit width(Y_PIX WIDTH)-1 downto 0);
std_logic_vector(bit_width(X_PIX_WIDTH)-1 downto 0);

signal y max - std_logic_vector(bit_width(Y_PIX_WIDTH)-1 downto 0);
signal steep : std_logic;
signal ystep : std_logic_vector(l downto 0);
signal xstep : std _logic_vector(1l downto 0);
signal line_error : std_logic_vector(bit_width(X_PIX_WIDTH) downto 0);
signal deltax : std_logic_vector(bit_width(X_PIX_WIDTH)-1 downto 0);
signal deltay - std_logic_vector(bit_width(Y_PIX_WIDTH)-1 downto 0);
signal pix_color : std_logic_vector(17 downto 0);

begin

-- Make sure background only changes on an end of frame.
reg_bg prc : process(clk,reset)
begin
if (reset = "1") then
background_reg <= (others => "0%);
eof _dly <= "0";
elsift (clk"event and clk = "1") then
eof _dly <= eof;
if (eof = "1") then
background_reg <= background;
end if;
end if;
end process;

-- Regiser the data.
-— Cliping should be done, but clamp do it just to be safe.
stagel prc : process (clk,reset)
begin
if (reset = "1") then
sl valid <= "0°";

sl y0 <= (others => "0%);

sl vyl <= (others => "07);

sl x0 <= (others => "07%);

sl x1 <= (others => "0");

sl color <= (others => "0%);
elsift (clk"event and clk = "1%) then

sl valid <= "0";
if (pix_valid = "1") then

sl valid <= pix valid;

-— Clamp to max resolution.
if (sl yl >= Y_PIX_WIDTH) then
sl y1 <= conv_std_logic_vector(Y_PIX WIDTH-1,bit width(Y_PIX_WIDTH));
else
sl yl <= vyl;
end if;
if (s1_y0 >= Y_PIX_WIDTH) then
sl yO <= conv_std logic_vector(Y_PIX WIDTH-1,bit width(Y_PIX_WIDTH));
else
sl y0 <= yO;
end if;
if (sl_x1 >= X_PIX_WIDTH) then
sl x1 <= conv_std logic_vector(X _PIX WIDTH-1,bit width(X_PIX_WIDTH));
else
sl x1 <= x1;
end if;
if (s1_x0 >= X PIX_WIDTH) then
sl x0 <= conv_std_logic_vector(X_PIX WIDTH-1,bit width(X_PIX_WIDTH));
else

241

sl x0 <= x0;
end if;

sl color <= color;

end if;
end if;
end process;

-- Stage 2 of line drawing pipeline.
-- Determines if the absolute value of x1-x0 and yl-yO
yOyl abs_val : abs_val
generic map (
WIDTH => Y_PIX_WIDTH

)

port map(
reset => reset,
clk = clk,
a => sl yO,
b => sl vyi,
ready => sl valid,
valid => open,
data => s2 ylyO abs

);

x0x1_abs val : abs_val

generic map (
WIDTH => X_PIX_WIDTH

)

port map(
reset => reset,
clk => clk,
a => sl x0,
b => sl x1,
ready => sl valid,
valid => open,
data => s2 x1x0_abs

):

-- Stage 2

-- Register all x,y and color info
stage 2 prc : process(clk,reset)
begin

if (reset = "1") then

s2_x0
s2 x1
s2_y0
s2 yl
s2_color
s2_valid

<= (others
<= (others
<= (others
<= (others
<= (others
<: IOI;

-o-)
-O-)
-O')
-o-)

0%

elsift (clk="1"
s2 valid <=
if (sl valid
s2 valid <=
s2_x0 <=
s2_x1 <=
s2_y0 <=
s2 yl <=
s2_color <=
end if;
end if;
end process;

and clk®event) then
0%;
= "1") then

sl valid;

sl xO0;

sl x1;

sl y0;

sl yi;

sl color;

242

-- Stage 3

-- Determine the steepness of the slope (>1) by comparing ylyO abs an
-- X1x0 abs. If the slope is steep swap x and y.

stage 3 prc : process(clk,reset)

begin
if (reset = "1") then
s3_x0 <= (others => "07%);
s3 x1 <= (others => "0%);
s3_y0 <= (others => "07%);
s3 yl <= (others => "07%);
s3 _color <= (others => "0%);

s3_steep <= "07;
s3 valid <= "07;
s3 _deltay <= (others => "0%);
s3_deltax <= (others => "07%);
elsit (clk="1" and clk"event) then
s3 valid <= "0%;
if (s2_valid = "1") then
s3 valid <= s2 valid;
if (s2_yly0 abs > s2 x1x0 _abs) then
s3 _steep <= "17;

else

s3 _steep <= "07;
end if;
s3 x0 <= s2_x0;
s3 x1 <= s2_x1;
s3_y0 <= s2_yO0;
s3 vyl <= s2_vyi,;

s3 _color <= s2 color;
s3_deltay <= s2 _yly0 abs;
s3 deltax <= s2 x1x0_abs;
end if;
end if;
end process;

-- Stage 4
-—- Swap x and y order if line is going from right to left.
stage 4 prc : process(clk,reset)

begin
i1f (reset = "1") then
s4_x0 <= (others => "0%);
s4 x1 <= (others => "0%);
s4_y0 <= (others => "07%);
s4 yl <= (others => "0%);
s4_color <= (others => "07%);

s4 steep <= "07;
s4 valid <= "0%;
s4_deltay <= (others => "07%);
s4_deltax <= (others => "07%);
elsift (clk="1" and clk"event) then
s4 valid <= "07;
if (s3 valid = "1%) then
s4 valid <= s3 valid;
if (s3_x0 > s3 x1) then
s4 x0 <= s3_x1;
s4 x1 <= s3_x0;
s4 y0 <= s3 yl;
s4 yl <= s3 _yO0;
else
s4 X0 <= s3 x0;
s4 x1 <= s3 _x1;
s4 y0 <= s3 yO0;
s4 yl <= s3 yl;
end 1f;

243

s4 _color <= s3 color;
s4 _steep <= s3_steep;
s4 _deltay <= s3 deltay;
s4_deltax <= s3 deltax;
end if;
end if;
end process;

-- Stage 5
-- Calculate delta x and delta y
stage 5 prc : process(clk,reset)
begin
if (reset = "1") then
s5 valid <= "0°";
s5_steep <= "0-;

s5 color <= (others => "0%);
s5 x0 <= (others => "0%);
sb x1 <= (others => "07%);
s5 y0 <= (others => "07%);
s5 yl <= (others => "0%);
sb_deltay <= (others => "0%);
s5 deltax <= (others => "0%);
elsift (chlk="1" and clk"event) then

s5 valid <= "07;

if (s4 valid = "1%) then
s5 valid <= s4 valid;
s5 color <= s4 color;
s5 steep <= s4_steep;

s5 x0 <= s4_x0;
sb5 x1 <= s4 x1;
s5 yO <= s4_yo0;
s5 vyl <= s4_yi,;

s5 _deltay <= s4 deltay;
s5 deltax <= s4 deltax;
end if;
end if;
end process;

-- Stage 6
-- Calculate error
stage 6 _prc : process(clk,reset)
variable s6 _error_v : std logic vector(bit width(X PIX_ WIDTH) downto 0O);
begin
if (reset = "1") then
s6_error <= (others => "0%);
s6_valid <= "0°";

s6_color <= (others => "0%);
s6_deltax <= (others => "0%);
s6_deltay <= (others => "0%);
s6_steep <= "0-;

s6_ystep <= (others => "0%);
s6_xstep <= (others => "07%);
s6_x0 <= (others => "07);
s6_x1 <= (others => "07%);
s6_y0 <= (others => "0%);
s6_yl <= (others => "07%);

elsit (clk="1" and clk"event) then

s6_valid <= "0";
if (sb_valid = "17) then
s6_valid <= s5 valid;
if (s5 steep = "0") then
s6_error_v = (0" & sb_deltax) + 1;
s6_error_v := "0" & s6_error_v(bit width(X_PIX WIDTH) downto 1);

244

s6_error_v = 0 - s6_error_v;
s6_error <= s6_error_v;
else
s6_error_v :
s6_error_v :
s6_error_v :
s6_error <
end if;
s6_color <= s5 color;
s6 _deltax <= sb deltax;
s6 _deltay <= sb deltay;
s6_steep <= sb_steep;

('0" & s5_deltax) + 1;

0" & s6_error_v(bit width(X PIX WIDTH) downto 1);
0 - s6_error_v;

s6_error_v;

s6_x0 <= s5 x0;
s6_x1 <= sb _x1;
s6_y0 <= s5 yO0;
s6 vyl <= s5 vyi;

if (s5 y0 < s5 yl) then
s6_ystep <= "01";
elsift (sb_y0 > s5 yl) then
s6_ystep <= 00";
else
s6_ystep <= "11";
end if;
if (s5 x0 < s5 x1) then
s6_xstep <= "01";
elsift (sb5_x0 > s5 x1) then
s6_xstep <= "00";
else
s6_xstep <= "11";
end if;
end if;
end if;
end process;

-— Wire up fifo signals

fifo _push <= s6_valid;

fifo wdata <= s6_error & s6 deltax & s6 deltay & s6 steep & s6_ystep &
s6_xstep & s6 _color & s6 X0 & s6 x1 & s6_y0 & s6_yl;

-- Fifo data points.
line fifo : fifo_lclk

generic map (
FIFO_WIDTH => FIFO_WIDTH,
FI1FO_DEPTH => 32,
FIFO_AFULL_THRESH => 16,
FIFO_AEMPTY_THRESH=> O,
FIFO_FALL_THROUGH => 0

)

port map (
reset => reset,
clk => clk,
push => fifo_push,
pop => fifo_pop,
wdata => fifo_wdata,
rdata => fifo_rdata,
afull => fifo_afull,
aempty => open,
empty => fifo_empty,
full => open

)

—-— 1t first recieves and eof for where it clears out the screen with

245

-- the background color. Then lines are rasterized until eof.
scan_state prc : process(clk,reset)
variable line_error_temp : std_logic_vector(bit width(X_PIX_WIDTH) downto
0);

Begin
if (reset = "1") then

-- Reset defaults.
gpu_req <= "07;
gpu_rnw <= "1%;
gpu_addr_i <= (others => "0%);
gpu_wpush <= "07;
gpu_wdata <= (others => "0%);
scan_state <= IDLE;

X_pos <= (others => "07%);
y_pos <= (others => "0%);
x_min <= (others => "07%);
y_min <= (others => "07%);
X_max <= (others => "0%);
y_max <= (others => "07%);
steep <= "07;

ystep <= (others => "0%);
xstep <= (others => "07%);
line _error <= (others => "07%);
deltax <= (others => "0%);
deltay <= (others => "07%);
pix_color <= (others => "07%);

Ffifo_pop <= "0°";
elsif (chlk = "1 and clk"event) then
-— Defaults
gpu_req <= "0";
gpu_rnw <= "1%;
gpu_wpush <= "07;
fifo pop <= "07;

-- Raster state machine.
case scan_state is

when IDLE =>
if (eof dly = "1 and enable = "1") then
if (gpu_afull = 0" and gpu _wafull = "0") then

-— Goto screen clear state.
scan_state <= CLEAR_SCREEN;

-— Clear first pixel.

gpu_req <= "1%;

gpu_rnw <= "0";

gpu_wpush <= "1%;

gpu_addr_i <= (others => "0%);
gpu_wdata <= background reg;

else

-— Wait for memory to become availibale.
scan_state <= WAIT_FOR_SLOT;

end if;

246

end if;
when WAIT_FOR_SLOT =>
if (gpu_afull = 0" and gpu wafull = "0") then

-- Goto screen clear state.
scan_state <= CLEAR_SCREEN;

-— Clear first pixel.

gpu_req <= "1";

gpu_rnw <= "07;

gpu_wpush <= "1%;

gpu_addr_i <= (others => "0%);
gpu_wdata <= background_reg;

end if;
when CLEAR_SCREEN =>
if (gpu_addr_i = NUM_PIX-1) then

-- Goto raster state
scan_state <= DRAW_FIRST;

else
if (gpu_afull = 0" and gpu_wafull = "0") then
-— Clear fFirst pixel.
gpu_req <= "1%;
gpu_rnw <= "07;
gpu_wpush <= "1%;
gpu_addr_i <= gpu_addr_i + 1;
gpu_wdata <= background_reg;
end if;
end if;
when DRAW_FIRST =>

if (eof dly = "1") then
scan_state <= WAIT_FOR_SLOT;

end if;
if (gpu_afull = "0° and gpu_wafull = "0 and fifo_empty "0%)
then
fifo_pop <= "1°7;
scan_state <= WAIT_DATA;
end if;
when WAIT_DATA =>
scan_state <= GRAB_DATA;
when GRAB_DATA =>
X_pos <= "0" & fFifo_rdata((bit width(X PIX WIDTH)*2 +
bit width(Y_PIX_WIDTH)*2 - 1) downto (bit_width(X_PIX_WIDTH) +

bit_width(Y_PIX_WIDTH)*2));

247

y_pos <= "0" & fifo_rdata((bit width(Y_PIX WIDTH)*2-1) downto
(bit_width(Y_PIX_WIDTH)));

y_max <= fifo_rdata((bit _ width(Y_PIX WIDTH)-1) downto 0);
y_min <= Fifo_rdata((bit_width(Y_PIX WIDTH)*2-1) downto
(bit_ width(Y_PIX_WIDTH)));

X_max <= fifo_rdata((bit_width(X_PIX_WIDTH) +
bit_width(Y_PIX _WIDTH)*2-1) downto (bit_ width(Y_PIX_WIDTH)*2));

X_min <= Fifo_rdata((bit_width(X PIX WIDTH)*2 +
bit_width(Y_PIX_WIDTH)*2 - 1) downto (bit_width(X_PIX_WIDTH) +
bit_width(Y_PIX_WIDTH)*2));

pix_color <= Ffifo_rdata((18 + bit width(X_PIX WIDTH)*2 +
bit_width(Y_PIX_WIDTH)*2 - 1 downto (bit_width(X_PIX_WIDTH)*2 +
bit_width(Y_PIX_WIDTH)*2));

xstep <= fifo_rdata((2 + 18 + bit width(X_PIX_ WIDTH)*2 +
bit_width(Y_PIX WIDTH)*2 - 1) downto (18 + bit_width(X_ PIX_ WIDTH)*2 +
bit_width(Y_PIX_WIDTH)*2));

ystep <= fifo_rdata((2 + 2 + 18 + bit_ width(X_PIX_ WIDTH)*2

+ bit_width(Y_PIX WIDTH)*2 - 1) downto (2 + 18 + bit width(X _PIX_WIDTH)*2 +
bit width(Y_PTX_WIDTH)*2));

steep <= fifo_rdata(2 + 2 + 18 + bit_ width(X_PIX WIDTH)*2 +
bit width(Y_PIX _WIDTH)*2);

deltay <= Ffifo rdata((2 + 2 + 1 + 18 +
bit width(X_PIX WIDTH)*2 + bit width(Y_PIX WIDTH)*3 - 1) downto (2 + 2 + 1 +

18 + bit_width(X_PIX _WIDTH)*2 + bit_width(Y_PIX_WIDTH)*2));

deltax <= Ffifo rdata((2 + 2 + 1 + 18
bit width(X_PIX WIDTH)*3 + bit width(Y_PIX WIDTH)*3 - 1) downto (2 + 2 + 1
18 + bit_width(X_PIX _WIDTH)*2 + bit_width(Y_PIX WIDTH)*3))

line error <= fifo rdata((2 + 2 2 + 1 + 18
bit_width(X_PIX_WIDTH)*4 + bit_width(Y_PIX WIDTH)*3 - 2) downto (2 + 2 + 1
18 + bit_width(X_PIX WIDTH)*3 + bit_width(Y_PIX_WIDTH)*3));

scan_state <= DRAW_LINE;

+ +

+ +

when DRAW_LINE =>

if (eof _dly = "1") then
scan_state <= WAIT_FOR_SLOT;
end if;

if (gpu_afull = "0 and gpu_wafull = "0") then

-—- Write a pixel.
gpu_req <= "1%;
gpu_rnw <= "0%;
gpu_wpush <= "1%;
gpu_wdata <= x'0000" & "00" & pix_color;

if (steep = "1") then

if (((y_max > y min) and (y_pos(bit width(Y_PIX WIDTH)-1 downto
0) <=y max) and (y_pos(bit Wldth(Y PIX WIDTH)) /= "1%)) or
((y_max < y min) and (y_pos(bit width(Y_PIX_WIDTH)-1 downto
0) >= y max) and (y_pos(bit width(Y_PIX WIDTH)) /= "1%)) or
((y_max = y min) and (y_pos(bit width(Y_PIX_WIDTH)-1 downto
0) = y max) and (y_pos(bit_width(Y_PIX WIDTH)) /= "1%))) then

gpu_addr _i <=
conv_std_logic_vector((conv_integer(y_pos(bit_width(Y_PIX_WIDTH)-1 downto
0))*X_PIX_WIDTH+conv_integer(x_pos(bit_width(X_PIX_WIDTH)-1 downto 0))),17);

-— Calculate new error.
if (line_error(bit width(X_PIX WIDTH)) = "1%) then
line error_temp := (not line_error) + 1;
line_error_temp := ('0" & deltax) - line_error_temp;
else

248

line _error_temp := line_error + ('0" & deltax);
end if;

if (line_error_temp(bit width(X_PIX_WIDTH)) = *0") then
line error_temp := line_error_temp - ('0" & deltay);
-— Incrment x

if (xstep = "00") then
X_poOs <= X _pos - 1;
elsift (xstep = "01') then
X_pOS <= x_pos + 1;
end i1f;
end if;
line_error <= line_error_temp;

-— Increment y
if (y_max > y _min) then
y_pos <= y_pos + 1;
else
Yy _posS <= y pos - 1;
end if;

else

"0" and gpu_ wafull = "0 and fifo empty =

it (gpu_afull
"0") then
fifo pop <= "17;
scan_state <= WAIT_DATA;
else
scan_state <= DRAW_FIRST;
end if;

end if;

else

if (((x_max > x min) and (x_pos(bit width(X_PIX WIDTH)-1 downto
0) <= x_max) and (x_pos(bit width(X_PIX WIDTH)) /= "1%)) or
((x_max < x min) and (x_pos(bit width(X PIX_WIDTH)-1 downto
0) >= x_max) and (x_pos(bit_width(X_PIX WIDTH)) /= "1%)) or
((x_max = x_min) and (x_pos(bit width(X PIX WIDTH)-1 downto
0) = x max) and (x_pos(bit width(X_PIX WIDTH)) /= "1%))) then

gpu_addr _i <=
conv_std_logic_vector((conv_integer(y_pos(bit_width(Y_PIX_WIDTH)-1 downto
0))*X_PIX_WIDTH+conv_integer(x_pos(bit_width(X_PIX_WIDTH)-1 downto 0))),17);

-- Calculate new error.
if (line_error(bit width(X_PIX WIDTH)) = "1%) then

line error_temp := (not line_error) + 1;
line _error_temp := ("'0" & deltay) - line_error_temp;
else
line _error_temp := line_error + ('0" & deltay);
end if;
if (line_error_temp(bit width(X_PIX_WIDTH)) = *"0") then
line error_temp := line_error_temp - ("'0" & deltax);
-— Incrment y

if (ystep = "00') then
y_pos <=y pos - 1;
elsif (ystep = "01'") then
Yy _pos <=y pos + 1;
end if;
end if;
line_error <= line_error_temp;

249

-— Increment x
if (xX_max > x_min) then
X_poOsS <= X_pos + 1;

else
X_pos <= X _pos - 1;
end if;
else
if (gpu_afull = "0" and gpu wafull = "0 and fifo empty =
"0") then
fifo_pop <= "1°;
scan_state <= WAIT_DATA;
else
scan_state <= DRAW_FIRST;
end if;
end if;
end if;
end if;
end case;
end if;

end process;

gpu_addr <= gpu_addr_i & "00";
pix_ready <= not fifo_afull;

end rtl;

C.10 ZBT FRAME BUFFER

This VHDL file implements a double buffer. Data from the graphics pipeline is written
into one frame buffer while the vga interfaces reads data from another. Each frame switches
which buffer the graphics pipeline and vga interface uses. The is also a debug port that give the

CPU raw access to the ZBT memory for debug.

-— Filename : zbt _frame_intf.vhd

-- Initial Data : Oct 23 2007

250

-— Author : James Ryan Warner

-— Description : This implements the frame buffer.

- It handles arbitration between 3 ports.

- 1. VGA Read Only port used by the vga controller to

- output the latest screen.

2. GPU Write interface which interfaces to the

- and zbuffering logic to update the next frame.

- 3. CPU interface for software updating of the frame buffer.
- Priority is strict priority with 1 being the highset and

- 3 being the lowest.

- Double buffering is also handled here by using a simple
-— togeling bit from the vga controllers end of frame.

library ieee;
use ieee.std logic 1164.all;

library work;
use work.zbt ctrl_pkg.all;

entity zbt frame_intf is

generic (
ADDR_WIDTH : integer := 20;
BYTE_WIDTH : integer = 9;
DATA_WIDTH : integer := 36
)
port (
-- Reset/Clock
reset : In std _logic; -- Async Reset.
sys_clk : in std _logic; -- System clock.
zbt_clk : iIn std_logic; -- ZBT memory clock.
vga _clk : in std _logic; -- Vga clock.
-— New frame trigger signals.
gpu_enable : in std _logic;
vga_eof : in std _logic;
-— VGA Read Only Port
vga_req : Iin std_logic;
vga_afull : out std_logic;
vga_addr : in std_logic_vector(ADDR_WIDTH-2 downto 0);
vga_rpop : in std _logic;
vga_rdata : out std_logic_vector(DATA_WIDTH-1 downto O);
vga_rempty : out std logic;
vga_rafull : out std logic;
-— GPU Interface port
gpu_req - in std _logic;
gpu_afull : out std_logic;
gpu_size : in std _logic vector(l downto 0);
gpu_addr : in std_logic_vector(ADDR_WIDTH-2 downto 0O);
gpu_rnw > in std_logic;
gpu_wpush - in std logic;
gpu_wdata - in std _logic_vector(DATA WIDTH-1 downto 0);
gpu_wafull : out std _logic;
gpu_rpop - Iin std logic;
gpu_rdata : out std_logic_vector(DATA WIDTH-1 downto 0);
gpu_rdwdaddr : out std_logic_vector(l downto 0);
gpu_rempty : out std logic;

251

-- CPU Interface port.

cpu_sel
cpu_we
cpu_addr
cpu_wdata
cpu_wdone
cpu_dval
cpu_rdata

in std _logic;
in std_logic;
in std _logic_vector(ADDR_WIDTH-1 downto 0);
in std logic_vector(DATA_WIDTH-1 downto 0);
out std_logic;
out std_logic;
out std_logic_vector(DATA WIDTH-1 downto 0);

-— ZBT interface

zbt _cen :
zbt wen
zbt oen
zbt _ts
zbt_wdata
zbt_addr

out std_logic;
out std _logic;
out std_logic;
out std_logic;
out std_logic_ vector(DATA WIDTH-1 downto 0);
out std_logic_vector (ADDR_WIDTH-

bit_width(DATA_WIDTH/BYTE_WIDTH)-1 downto 0);

zbt rdata :
)

in std logic vector(DATA WIDTH-1 downto 0)

end zbt frame_intf;

architecture rtl of zbt frame_ intf is

component zbt_ct

generic (
NUM_PORTS
ADDR_WIDTH
MEMORY_WIDTH
BYTE_WIDTH
DATA_DELAY
DATA_WIDTH

MAX_BURST_SIZE
CMD_FI1FO_DEPTH

WRITE_FIFO_D
READ_FIFO_DE
CMD_FIFO_AFU
WRITE_FIFO_A
READ_FIFO_AF

);

port (
reset
clk
port_clk

FIFO_DUAL_CLOCK

"0%);

-- Port inte
port_req
port_afull
port_size
std_logic_vector(t
M_PORTS)-1 downto
port_addr
port_rnw
port_wpush
port wdata
downto 0);
port_wafull
port_rpop

rl_top is

integer;
integer;
integer;
integer;
integer;
integer_array_t;
integer_array_t;
integer_array_t;
integer_array_t;
integer_array_t;
integer_array_t;
integer_array_t;
integer_array_t;
integer_array_ t

EPTH
PTH
LL_THRESH
FULL_THRESH
ULL_THRESH

in std _logic;
n std_logic;

: Iin std _logic vector(NUM_PORTS-1 downto 0) := (others =>

rfaces into memory controller.
- in std _logic_vector(NUM_PORTS-1 downto 0);
: out std_logic_vector(NUM_PORTS-1 downto 0)
in
otal_size(conv_array_bit width(MAX BURST_ SIZE NUM_PORTS),NU
0);
: In std _logic_vector(NUM_PORTS*ADDR_WIDTH-1 downto 0);
: in std_logic_vector(NUM_PORTS-1 downto 0);
: in std_logic_vector(NUM_PORTS-1 downto 0);
: in std_logic_vector((total size(DATA_WIDTH,NUM_PORTS))-1

: out std_logic_vector(NUM_PORTS-1 downto 0);
: In std _logic_vector(NUM_PORTS-1 downto 0);

252

port_rdata

downto 0);
port_rwdaddr:
std_logic_vector(total _size(conv_array bit width(MAX BURST_SI1ZE,NUM_PORTS),NU
M_PORTS)-1 downto 0);
port_rempty : out
port_rafull :

bit_width(MEMORY_WIDTH/BYTE_WIDTH)- -1 downto 0);

out std logic vector((total _size(DATA WIDTH,NUM_PORTS))-1

out

ZBT interface
zbt cen
zbt _wen
zbt _ts
zbt oen
zbt wdata
zbt_addr

zbt rdata

);

end component;

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

signal
signal

type eof state t is

signal

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

port_clk
port_req
port_afull
port_size
port_addr
port_rnw
port_wpush
port_wdata
port_wafull
port_rpop
port_rdata

port_rwdaddr
port_rempty

port_rafull

wframe_addr
rframe_addr

eof _state

cpu_mem_

reqg

out
out
out
out
out

in

cpu_mem_afull
cpu_mem_addr

cpu_mem_

rnw

cpu_mem_wpush
cpu_mem_wafull
cpu_mem_wdata
cpu_mem_rpop
cpu_mem_rdata
cpu_mem_rempty

out

std_logic_vector(NUM_PORTS-1 downto 0);
std logic_vector(NUM_PORTS-1 downto 0);

std_logic;
std_logic;
std_logic;
std_logic;
std_logic_ vector(MEMORY WIDTH-1 downto 0);

out

std_logic_vector (ADDR_WIDTH-

std _logic_vector(MEMORY_WIDTH-1 downto 0)

std _logic_vector(2 downto 0);
std_logic_vector(2 downto 0);
std logic_vector(2 downto 0);
std _logic_vector(3 downto 0);
std_logic_vector(ADDR_WIDTH*3-1 downto 0);
std_logic_vector(2 downto 0);
std _logic_vector(2 downto 0);
std_logic_vector(DATA_WIDTH*3-1 downto 0);
std_logic_vector(2 downto 0);
std _logic_vector(2 downto 0);
std_logic_vector(DATA_WIDTH*3-1 downto 0);
std_logic_vector(3 downto 0);
std_logic_vector(2 downto 0);
std_logic_vector(2 downto 0);

: std_logic;

std_logic
eof state_t;

std_logic;
std_logic;

(IDLE ENABLE_ GPU ENABLE_CPU) ;

std_logic_vector(ADDR_WIDTH-1 downto O);

std_logic;
std_logic;
std_logic;

std _logic_vector(DATA _WIDTH-1 downto 0);

std_logic;

std_logic_vector(DATA_WIDTH-1 downto O);

std _logic;

type cpu_mbox_state t is (IDLE,READ_CMD,READ_WAIT,READ_POP,WRITE_CMD);
signal cpu_mbox_state: cpu_mbox_state t;

begin

-— Cpu mailbox interface process.
-— Converts mailbox signals to memory port interface signals.
cpu_mail_prc : process(sys_clk,reset)

begin

if (reset =

"1") then

253

cpu_wdone <= "0°";
cpu_dval <= "0";
cpu_mem_req <= "0";

cpu_mem_addr <= (others => "07%);

cpu_mem_rnw <= "17;
cpu_mem_wpush <= "07;

cpu_mem_wdata <= (others => "07%);

cpu_mem_rpop <= "0°";
cpu_mbox_state <= IDLE;

elsif (sys clk = "1 and sys_clk"event) then

-- Defaults.

cpu_wdone <= "0°";
cpu_dval <= "0°";
Ccpu_mem_req <= "0";
cpu_mem_rnw <= "1%;

cpu_mem_wpush <= "07;
Ccpu_mem_rpop <= "0";

—-- Control state machine.

case cpu_mbox_state is

when IDLE =>

-— Wait for CPU to trigger a read or write.

if (cpu_sel = "1%) then

if (cpu we = "0%)

cpu_mem_req <=
cpu_mem_rnw <=
cpu_mem_addr <=
cpu_mbox_state <=

else
cpu_mem_req <=
cpu_mem_rnw <=

cpu_mem_wpush <=
cpu_mem_addr <=
cpu_mem_wdata <=
cpu_mbox_state <=

end if;
end if;

when READ _CMD =>

then

1+

“7-1
cpu_addr;
READ_CMD;
“1--

IOI;

“q-:
cpu_addr;
cpu_wdata;
WRITE_CMD;

if (cpu_mem _rempty = "1%) then
cpu_mbox_state <= READ WAIT;

else

Cpu_mem_rpop <= "1%;
cpu_mbox_state <= READ_ POP;

end if;
when READ WAIT =>

if (cpu_mem _rempty = "0") then
Ccpu_mem_rpop <= "1%;
cpu_mbox_state <= READ_POP;

end if;
when READ POP =>

254

cpu_dval

<= "17;

cpu_mbox_state <= IDLE;

when WRITE_CMD

cpu_wdone

=>

<= "17;

cpu_mbox_state <= IDLE;

end case;

end if;
end process;

cpu_rdata <= cpu_mem_rdata;

-- Process used to

toggle double frame buffer.

-- as well as detect end of frame.
det_eof prc : process (sys_clk,reset)

begin
1f (reset = "17)

wframe_addr <=
rframe_addr <=
eof _state <=
elsif (sys clk =
case eof state

when IDLE =>

then
0" :
0-:
IDLE;

"1" and sys _clk"event) then

1S

if (gpu_enable = "1%) then
if (vga_eof = "1") then

wframe__
rframe_
eof _state

end if;
else

addr <= "0°;
addr <= "17;
<= ENABLE_GPU;

if (vga_eof = "17) then

wframe__
rframe_
eof _state

end if;
end if;

addr <= "0°;
addr <= "0";
<= ENABLE_CPU;

when ENABLE_GPU =>
if (gpu_enable = *"17) then
if (vga_eof = "17) then

wframe__
rframe_

end if;
else

addr <= not wframe_addr;
addr <= not rframe_addr;

if (vga_eof = "17) then

wframe__

addr <= "0";

rframe_addr <= "07;

eof _state

end if;
end if;

<= ENABLE_CPU;

when ENABLE_CPU =>
if (gpu_enable = "1%) then
if (vga_eof = "17) then
wframe_addr <= "07;
rframe_addr <= "1°%;

eof _state

end if;

<= ENABLE_GPU;

255

else

if (vga_eof = "1") then
wframe_addr <= "0-;
rframe_addr <= "07;
end if;
end if;
end case;
end if;
end process;
port clk <= sys clk & sys clk & vga clk;
port_req <= cpu_mem_req & gpu_req & vga_req;
port_size <= "0° & gpu_size & "0%;
port_addr <= cpu_mem_addr & wframe_addr & gpu addr & rframe addr &
vga_addr;

port_rnw <= cpu_mem_rnw & gpu_rnw & "1°7;
port_wpush <= cpu_mem wpush & gpu_wpush & "0%;
port_wdata <= cpu_mem wdata & gpu_wdata & x''000000000;
port_rpop <= cpu_mem_rpop & gpu_rpop & vga_rpop;
cpu_mem_afull <= port_afull(2);
gpu_afull <= port_afull(l);
vga_afull <= port_afull(0);
cpu_mem_wafull <= port_wafull(2);
gpu_wafull <= port_wafull(l);
cpu_mem_rdata <= port_rdata(DATA WIDTH*3-1 downto DATA WIDTH*2);
gpu_rdata <= port_rdata(DATA_WIDTH*2-1 downto DATA WIDTH*1);
vga_rdata <= port_rdata(DATA_WIDTH*1-1 downto DATA WIDTH*0);
gpu_rdwdaddr <= port_rwdaddr(2 downto 1);
cpu_mem_rempty <= port_rempty(2);
gpu_rempty <= port_rempty(1l);
vga_rempty <= port_rempty(0);
vga_rafull <= port_rafull(0);

zbt _ctrl_top_inst :
generic map (

zbt _ctrl_top

NUM_PORTS => 3,

ADDR_WIDTH => ADDR_WIDTH,

DATA_WIDTH => (DATA_WIDTH,DATA_WIDTH,DATA_WIDTH,0),
MEMORY_WIDTH => DATA_WIDTH,

BYTE_WIDTH = 9,

DATA_DELAY = 2,

MAX_BURST_SIZE => (1,4,1,0),

CMD_FIFO_DEPTH

WRITE_FIFO_DEPTH =
READ_FIFO_DEPTH =
CMD_FIFO_AFULL_THRESH
WRITE_FIFO_AFULL_THRESH =>

> (16,16,16,0),
(64.64,64,0).
(64,64,64,0).
(8,8,8,0),

(32,32,32.0),

READ_FIFO_AFULL_THRESH => (32,32,32,0),
FIFO_DUAL_CLOCK = (1,0,0,0)
)
port map (
reset => reset,
clk => zbt clKk,
port _clk => port_clk,
port_req => port_req,
port_afull => port_afull,
port_size => port_size,
port_addr => port_addr,
port_rnw => port_rnw,
port_wpush => port_wpush,
port wdata => port_wdata,
port_wafull => port_wafull,
port_rpop => port_rpop,

256

port rdata => port_rdata,

port_rwdaddr => port_rwdaddr,
port_rempty => port_rempty,
port _rafull => port_rafull,

zbt _cen => zbt_cen,
zbt_wen => zbt wen,
zbt oen => zbt oen,
zbt_ts => zbt_ts,
zbt wdata => zbt wdata,
zbt addr => zbt_addr,
zbt rdata => zbt rdata
)
end rtl;

C.11 ZBT MEMORY CONTROLLER

This VHDL file provides a multiport interface to the ZBT memory. It provides a
configurable number of ports which are arbitrated in fair round robin fashion. Three ports are
defined in this design. A read only VGA port, a write only graphics pipeline port, and a

bidirectional CPU debug port.

-— Filename : zbt_ctrl_top.vhd

-— Initial Data : May 23 2007

_- Author : James Ryan Warner

-— Description : This block provides a multiport interface to a static zbt
- memory. The arbitration is done in a round robin fashion.

- The number of ports as well as data and address widths are
- configurable.

library ieee;
use ieee.std_logic_1164.all;

library work;
use work.zbt_ctrl_pkg-.all;

entity zbt ctrl_top is

generic (
NUM_PORTS > integer := MAX_NUM_INTF;
ADDR_WIDTH : integer := DEFAULT_ADDR_WIDTH;
MEMORY_WIDTH : integer := DEFAULT_MEMORY_WIDTH;

257

BYTE_WIDTH integer := DEFAULT_BYTE_WIDTH;
DATA_DELAY integer := DEFAULT_DATA DELAY;
DATA_WIDTH integer_array t := DEFAULT DATA_WIDTH;

MAX_BURST_SI1ZE
CMD_FIFO_DEPTH
WRITE_FIFO_DEPTH
READ_FIFO_DEPTH
CMD_FIFO_AFULL_THRESH
DEFAULT_CMD_FIFO_AFULL_THRESH;

integer_array_ t := DEFAULT_MAX_ BURST SIZE;
integer_array_t := DEFAULT _CMD_FIFO _DEPTH;
integer_array t := DEFAULT WRITE_FIFO_DEPTH;
integer_array_t := DEFAULT READ FIFO _DEPTH;
integer_array_t

WRITE_FIFO_AFULL_THRESH : integer_array_t i=
DEFAULT_WRITE_FIFO_AFULL_THRESH;
READ_FIFO_AFULL_THRESH : integer_array_t i=
DEFAULT_READ_FIFO_AFULL_THRESH;
FIFO_DUAL_CLOCK : integer_array_t := DEFAULT FIFO_DUAL_ CLOCK
);
port (
-- Reset/Clock
reset : In std_logic; -- Async Reset.
clk : in std_logic; -- Memory clock
port_clk : in std_logic_vector(NUM_PORTS-1 downto 0) := (others =>
"0°);
-- Port interfaces into memory controller.
port_req : in std_logic_vector(NUM_PORTS-1 downto 0);
port_afull : out std_logic_vector(NUM_PORTS-1 downto 0)
port_size in

std_logic _vector(total _size(conv_array bit width(MAX BURST SIZE NUM_PORTS),NU
M_PORTS)-1 downto 0);

port_addr > in std_logic_vector(NUM_PORTS*ADDR_WIDTH-1 downto 0O);

port_rnw : In std _logic_vector(NUM_PORTS-1 downto 0);

port wpush : in std logic vector(NUM _PORTS-1 downto 0);

port_wdata > in std_logic_vector((total_size(DATA_WIDTH,NUM_PORTS))-1
downto 0);

port_wafull : out std logic vector(NUM_PORTS-1 downto 0);

port_rpop : in std_logic_vector(NUM_PORTS-1 downto 0);

port_rdata : out std_logic_vector((total _size(DATA WIDTH,NUM_PORTS))-1
downto 0);

port_rwdaddr: out

std_logic _vector(total _size(conv_array bit width(MAX BURST_SIZE,NUM_PORTS),NU
M_PORTS)-1 downto 0);

port_rempty : out std_logic_vector(NUM_PORTS-1 downto 0O);

port_rafull : out std logic vector(NUM _PORTS-1 downto 0);

-- ZBT interface
zbt cen : out std _logic;

zbt wen : out std _logic;

zbt _oen : out std_logic;

zbt ts : out std logic;

zbt wdata : out std_logic_ vector(MEMORY WIDTH-1 downto 0);

zbt_addr out std_logic_vector (ADDR_WIDTH-

bit_width(MEMORY_WIDTH/BYTE_WIDTH)- -1 downto 0);
zbt rdata : in std_logic_vector(MEMORY_WIDTH-1 downto 0)
)

end zbt_ctrl_top;
architecture rtl of zbt ctrl_top is

constant MAX_MEM _BURST SIZE : integer := max_size(MAX BURST_SIZE,NUM_ PORTS)
* (max_size(DATA_WIDTH,NUM_PORTS)/MEMORY_WIDTH);

constant MAX_MEM BURST BITS : integer := bit width(MAX_MEM_BURST_SIZE);

constant NUM_PORT_BITS : integer := bit width(NUM_PORTS);

258

constant TOTAL_DATA WIDTH : integer := total _size(DATA WIDTH,NUM PORTS);
constant TOTAL_ADDR_WIDTH : integer := NUM_PORTS * ADDR_WIDTH;
constant TOTAL_BURST_WIDTH : integer :

total_size(conv_array_b?t_widfh(MAX_BURST_SIZE,NUM_ﬁORTS),NUM_PORTS);
constant MAX_BURST_BITS : integer_array_t
conv_array_bit_width(MAX_BURST_SIZE,NUM_PORTS);

component zbt port_interface is

generic
ADDR_WIDTH
DATA_WIDTH
MAX_BURST_SIZE
CMD_FIFO_DEPTH
WRITE_FIFO_DEPTH
READ_FIFO_DEPTH
CMD_FIFO_AFULL_THRESH

WRITE_FIFO_AFULL THRESH

READ_FIFO_AFULL_THRESH
FIFO_DUAL_CLOCK

)
port (
reset :in
clk : in
port_clk in
port_req :in
port_afull : out
port_size :
downto 0);
port_addr in
port_rnw in
port_wpush :in
port_wdata in
port_wafull : out
port_rpop :in
port_rdata : out
port_rwdaddr :
downto 0);
port_rempty : out
port_rafull : out
arb_req : out
arb_ack in
arb_size :
downto 0);
arb_rnw : out
arb_addr : out
arb_wdata : out
arb_wdata_empty : out
arb_wdata_pop in
arb_rdata :in
arb_dval :in
arb_rwdaddr :
downto 0)
end component;
component zbt width_conver
generic (
ADDR_WIDTH
DATA_WIDTH
MEMORY_WIDTH
BYTE_WIDTH

MAX_BURST_SIZE
MAX_MEM_BURST_SIZE

integer;
integer;
integer;
integer;
integer;
integer;
integer;
integer;
integer;
integer

std_logic; -— Async Reset.
std_logic; -— Memory clock
std_logic;
std_logic;
std_logic;

in std_logic_vector(bit_width(MAX_BURST_SIZE)-

std_logic_vector(ADDR_WIDTH-1 downto 0);
std_logic;
std_logic;
std _logic_vector(DATA WIDTH-1 downto 0);
std_logic;
std_logic;
std _logic_vector(DATA WIDTH-1 downto 0);

out std logic_vector(bit width(MAX BURST_SIZE)-

std_logic;
std_logic;
std_logic;
std_logic;
out std_logic_vector(bit_width(MAX_BURST_SIZE)-

std_logic;

std_logic_vector(ADDR_WIDTH-1 downto O);

std _logic_vector(DATA WIDTH-1 downto 0);
std_logic;

std_logic;

std _logic_vector(DATA WIDTH-1 downto 0);
std_logic;

in std_logic_vector(bit_width(MAX_BURST_SIZE)-

sion is

integer;
integer;
integer;
integer;
integer;
integer

259

1

1

1

1

port (

reset
clk
arb_size i

downto 0);

arb_addr_i
arb_size o

downto 0);

arb_addr_o
arb_wdata_i

in std_logic;
in std_logic;
in std_

-- Async Reset.
-- Memory clock
logic_vector(bit width(MAX BURST_SIZE)-1

in std_logic_vector(ADDR_WIDTH-1 downto 0);
: out std_logic_vector(bit_width(MAX_MEM_BURST_SIZE)-1

: out std_logic_vector(ADDR_WIDTH-1 downto O);

in std logic vector(DATA WIDTH-1 downto 0);

arb_wdata_pop_i in std logic;
arb_wdata_ o : out std_logic_vector(MEMORY_WIDTH-1 downto 0);
arb_wdata pop o : out std _logic;
arb_rdata_i in std logic vector(MEMORY_WIDTH-1 downto 0);
arb_dval i in std_logic;
arb_rwdaddr_1i : in std logic vector(bit width(MAX_MEM BURST_SIZE)-1
downto 0);
arb_rdata o : out std_logic_vector(DATA_WIDTH-1 downto O);
arb_dval o : out std logic;
arb_rwdaddr_o out std logic vector(bit width(MAX BURST _SIZE)-1
downto 0)
)
end component;
component zbt port arbiter is
generic (
NUM_PORTS integer;
ADDR_WIDTH integer;
MEMORY_WIDTH : integer;
MAX_BURST_SIZE : integer
)
port (
reset > in std_logic; -- Async Reset.
clk - In std logic; -- Memory clock
req : in std_logic_vector(NUM_PORTS-1 downto 0);
ack : out std_logic_vector(NUM_PORTS-1 downto 0);
size : in
std_logic_vector(NUM_PORTS*bit_width(MAX_MEM_BURST_SIZE)-1 downto 0)
rnw : in std_logic_vector(NUM_PORTS-1 downto 0);
addr : in std_logic_vector(NUM_PORTS*ADDR_WIDTH-1 downto 0);
wdata : in std_logic_vector(NUM_PORTS*MEMORY_WIDTH-1 downto 0);
wdata_empty: in std_logic_vector(NUM_PORTS-1 downto 0);
wdata_pop : out std_logic_vector(NUM_PORTS-1 downto 0);
rdata : out std_logic_vector(NUM_PORTS*MEMORY_WIDTH-1 downto 0);
rval : out std_logic_vector(NUM_PORTS-1 downto 0);
rwdaddr out
std_logic_vector(NUM_PORTS*bit width(MAX MEM_BURST_SIZE)-1 downto 0);
mem_sel : out std_logic;
mem_rnw : out std logic;
mem_addr : out std_logic_vector(ADDR_WIDTH-1 downto 0);
mem_wdata : out std_logic_vector(MEMORY_WIDTH-1 downto 0);
mem_wdaddr : out std_logic_vector(bit width(MAX_MEM_BURST_SIZE)-1
downto 0);
mem_wport : out std_logic_vector(bit width(NUM_PORTS)-1 downto 0);
mem_dval - In std logic;
mem_rdata : in std _logic_vector(MEMORY _WIDTH-1 downto 0O);
mem_rport : in std_logic_vector(bit_width(NUM_PORTS)-1 downto 0);
mem_rwdaddr: in std _logic_vector(bit width(MAX_MEM_BURST_ SIZE)-1
downto 0)
end component;

component zbt_intf is

generic (

260

ADDR_WIDTH
MEMORY_WIDTH
DATA_DELAY
NUM_PORTS

);

port (

reset

clk

mem_sel

mem_rnw

mem_addr

mem_wdata

mem_wdaddr
downto 0);

mem_wport :

mem_dval

mem_rdata

mem_rport

mem_rwdaddr
downto 0);

zbt _cen

zbt _wen

zbt oen

zbt_ts

zbt wdata

zbt addr

zbt rdata

)

end component;

MAX_BURST_SIZE

signal conv_size
signal conv_addr
signhal conv_wdata

signal conv_wdata |

signal conv_rdata
signal conv_dval

pop

signal conv_rwdaddr

signal arb_req

signal arb_ack

signal arb_size
downto 0);

signal arb_rnw

signal arb_addr

signal arb_wdata

0);

integer;
integer;
integer;
integer;
integer
in std_logic; -- Async Reset.
in std logic; -- Memory clock
in std logic;
in std _logic;
in std logic _vector(ADDR_WIDTH-1 downto 0);
in std logic vector(MEMORY_WIDTH-1 downto 0);
> in std_logic_vector(bit_width(MAX_MEM_BURST_SIZE)-1
in std logic vector(bit width(NUM_PORTS)-1 downto 0);
: out std_logic;
: out std_logic_vector(MEMORY_WIDTH-1 downto 0);
: out std_logic_vector(bit width(NUM_PORTS)-1 downto 0);
: out std_logic_vector(bit width(MAX_MEM_BURST_SIZE)-1
: out std_logic;
: out std_logic;
: out std logic;
: out std_logic;
: out std_logic_vector(MEMORY_WIDTH-1 downto 0);
: out std_logic_vector(ADDR_WIDTH-1 downto 0O);
in std logic vector(MEMORY_WIDTH-1 downto 0)

: std_logic_vector(TOTAL BURST WIDTH-1 downto 0);
- std_logic_vector(TOTAL_ADDR_WIDTH-1 downto 0);
- std_logic_vector(TOTAL_DATA WIDTH-1 downto 0);
- std_logic_vector(NUM_PORTS-1 downto 0);

: std _logic_vector(TOTAL_DATA WIDTH-1 downto 0);
- std_logic_vector(NUM_PORTS-1 downto 0);

: std_logic_vector(TOTAL_BURST WIDTH-1 downto 0);

: std_logic_vector(NUM_PORTS-1 downto 0);
: std logic_vector(NUM_PORTS-1 downto 0);

std _logic_vector(NUM_PORTS*MAX_MEM_BURST_BITS-1

: std _logic_vector(NUM_PORTS-1 downto 0);
: std _logic_vector(NUM_PORTS*ADDR_WIDTH-1 downto 0);

: std_logic_vector (NUM_PORTS*MEMORY_WIDTH-1 downto

signal arb_wdata_empty : std_logic vector(NUM_PORTS-1 downto 0);
signal arb_wdata_pop

signal arb_rdata

0);

signal arb_dval

signal arb_rwdaddr

downto 0);

signal mem_sel
signal mem_rnw
signal mem_addr
signal mem wdata
signhal mem_wdaddr
signal mem_wport
signal mem_dval

: std_logic_vector(NUM_PORTS-1 downto 0);

: std_logic_vector(NUM_PORTS*MEMORY_WIDTH-1 downto

: std_logic_vector(NUM_PORTS-1 downto 0O);

std_logic_vector (NUM_PORTS*MAX_MEM_BURST_BITS-1

std_logic;

std_logic;

std_logic_vector (ADDR_WIDTH-1 downto 0);
std_logic_vector(MEMORY_WIDTH-1 downto 0);
std_logic_vector(MAX_MEM_BURST _BITS-1 downto 0);
std_logic_vector(NUM_PORT BITS-1 downto 0);
std_logic;

261

signal mem rdata
signal mem_rport
signal mem_rwdaddr

begin

port_interface gen : for i in
begin

std_logic_vector (MEMORY_WIDTH-1 downto 0);
std_logic_vector(NUM_PORT BITS-1 downto 0);
std_logic_vector(MAX_MEM_BURST_BITS-1 downto 0);

0 to NUM_PORTS-1 generate

port_interface_inst : zbt port_interface

generic map (
ADDR_WIDTH
DATA_WIDTH
MAX_BURST_SIZE
CMD_FIFO_DEPTH
WRITE_FIFO_DEPTH
READ_FIFO_DEPTH
CMD_FIFO_AFULL_THRESH
WRITE_FIFO_AFULL_THRESH
READ_FIFO_AFULL_THRESH
FIFO_DUAL_CLOCK

)

port map (
reset
clk
port_clk
port_req
port_afull
port_size

=> ADDR_WIDTH,

=> DATA_WIDTH(i),

=> MAX_BURST_SIZE(i),

=> CMD_FIFO_DEPTH(i),

=> WRITE_FIFO_DEPTH(1),

=> READ_FIFO_DEPTH(1),

=> CMD_FIFO_AFULL_THRESH(i),
=> WRITE_FIFO_AFULL_THRESH(i),
=> READ_FIFO_AFULL_THRESH(1),
=> FIFO_DUAL_CLOCK(i)

=> reset,
=> clk,
=> port_clk(i),
=> port_req(i),
=> port_afull (i),
=> port_size(top_index(i,MAX_BURST BITS)

downto bottom_index(i,MAX_BURST_BITS)),

port_addr
bottom_index(i,ADDR_WIDTH)),
port_rnw
port_wpush
port wdata
bottom_index(i,DATA_WIDTH)),
port_wafull
port_rpop
port_rdata
bottom_index(i,DATA _WIDTH)),
port rwdaddr
downto bottom_index(i,MAX_BURST
port_rempty
port_rafull
arb_req
arb_ack
arb_size

downto bottom index(i,MAX_ BURST_

arb_rnw

arb_addr
bottom_index(i,ADDR_WIDTH)),

arb_wdata
bottom_index(i,DATA _WIDTH)),

arb_wdata_empty

arb_wdata_pop

arb_rdata
bottom_index(i,DATA_WIDTH)),

arb_dval

arb_rwdaddr

downto bottom_ index(i,MAX_ BURST_

)

zbt_width_conversion_inst :
generic map (

=> port_addr(top_index(i,ADDR_WIDTH) downto

=> port_rnw(i),
=> port_wpush(i),
=> port_wdata(top_index(i,DATA WIDTH) downto

=> port_wafull(i),

=> port_rpop(i),
=> port_rdata(top_index(i,DATA_WIDTH) downto

=> port_rwdaddr(top_index(i,MAX BURST_BITS)
_BITS)),
=> port_rempty(i),
=> port_rafull(i),
=> arb_req(i),
=> arb_ack(i),

=> conv_size(top_index(i,MAX_BURST BITS)

BITS)),
=> arb_rnw(i),

=> conv_addr(top_index(i,ADDR_WIDTH) downto

=> conv_wdata(top_index(i,DATA WIDTH) downto
=> arb_wdata_empty(i),
=> conv_wdata_ pop(1),

=> conv_rdata(top_index(i,DATA WIDTH) downto
=> conv_dval (i),

=> conv_rwdaddr(top_index(i,MAX BURST_BITS)
BITS))

zbt _width_conversion

262

ADDR_WIDTH => ADDR_WIDTH,

DATA_WIDTH => DATA_WIDTH(i),
MEMORY_WIDTH => MEMORY_WIDTH,
BYTE_WIDTH => BYTE_WIDTH,
MAX_BURST_SIZE => MAX_BURST_SIZE(i),
MAX_MEM_BURST_SIZE => MAX_MEM_BURST_ SIZE
)
port map (
reset => reset,
clk => clk,
arb_size i => conv_size(top_index(i,MAX BURST_BITS)
bottom_index(i,MAX_BURST_BITS)),
arb_addr_i => conv_addr(top_index(i,ADDR_WIDTH)
bottom_index(i,ADDR_WIDTH)),
arb_size o => arb_size(top_index(i,MAX_ MEM_BURST_BITS)
bottom_index(i ,MAX_MEM_BURST_BITS)),
arb_addr_o => arb_addr(top_index(i,ADDR_WIDTH)
bottom_index(i,ADDR_WIDTH)),
arb_wdata_1i => conv_wdata(top_index(i,DATA WIDTH)
bottom_index(i,DATA_WIDTH)),
arb_wdata _pop_i => arb_wdata pop(i),
arb_wdata o => arb_wdata(top_index(i ,MEMORY_WIDTH)
bottom_index(i,MEMORY_WIDTH)),
arb_wdata _pop_o => conv_wdata pop(i),
arb_rdata_1i => arb_rdata(top_index(i,MEMORY_WIDTH)
bottom_index(i,MEMORY_WIDTH)),
arb_dval i => arb_dval (i),
arb_rwdaddr_1i => arb_rwdaddr(top_index(i ,MAX MEM_BURST_ BITS)
bottom_index(i,MAX MEM_BURST BITS)),
arb_rdata o => conv_rdata(top_index(i,DATA WIDTH)
bottom_index(i,DATA_WIDTH)),
arb_dval o => conv_dval (i),
arb_rwdaddr_o => conv_rwdaddr(top_index(i,MAX_BURST_BITS)

bottom_index(i,MAX_BURST_BITS))
)

end generate port_interface gen;

zbt_port_arbiter_inst : zbt port _arbiter
generic map(
NUM_PORTS => NUM_PORTS,
ADDR_WIDTH => ADDR_WIDTH,
MEMORY_WIDTH => MEMORY_WIDTH,
MAX_BURST_SIZE => MAX_MEM_BURST_SIZE

)

port map(
reset => reset,
clk => clKk,
req => arb_req,
ack => arb_ack,
size => arb_size,
rnw => arb_rnw,
addr => arb_addr,
wdata => arb_wdata,
wdata_empty => arb_wdata empty,
wdata_pop => arb_wdata pop,
rdata => arb_rdata,
rval => arb_dval,
rwdaddr => arb_rwdaddr,
mem_sel => mem_sel,
mem_rnw => mem_rnw,
mem_addr => mem_addr,
mem_wdata => mem_wdata,
mem_wdaddr => mem_wdaddr,

263

downto
downto
downto
downto

downto

downto

downto

downto

downto

downto

mem_wport => mem_wport,

mem_dval => mem_dval,

mem_rdata => mem_rdata,

mem_rport => mem_rport,

mem_rwdaddr => mem_rwdaddr
)

zbt_intf_inst : zbt_intf
generic map

ADDR_WIDTH => (ADDR_WIDTH - bit_width(MEMORY_WIDTH/BYTE_WIDTH)),
MEMORY_WIDTH => MEMORY_WIDTH,
DATA_DELAY => DATA_DELAY,
NUM_PORTS => NUM_PORTS,
MAX_BURST_SIZE => MAX_MEM_BURST_SIZE

)

port map(
reset => reset,
clk = clk,
mem_sel => mem_sel,
mem_rnw => mem_rnw,
mem_addr = mem_addr (ADDR_WIDTH -

bit_width(MEMORY_WIDTH/BYTE_WIDTH)-1 downto 0),

mem_wdata => mem_wdata,
mem_wdaddr => mem_wdaddr,
mem_wport => mem_wport,
mem_dval => mem_dval,
mem_rdata => mem_rdata,
mem_rport => mem_rport,
mem_rwdaddr => mem_rwdaddr,
zbt _cen => zbt cen,
zbt wen => zbt wen,
zbt _oen => zbt oen,
zbt _ts => zbt ts,
zbt wdata => zbt wdata,
zbt _addr => zbt addr,
zbt rdata => zbt rdata

)

end rtl;

C.12 ZBT PHYSICAL INTERFACE

This VHDL file interfaces directly to the zbt memory. All the necessary control signals

are driven out to memory for either reads or writers.

-— Filename : zbt_intf.vhd
-— Initial Data : May 23 2007

-— Author : James Ryan Warner

264

-— Description : The output signals are to interface directly with the zbt
memory .

- Certian featurs of the ZBT memory such as byte enables and
burst

- mode are disabled as they are not needed for our design.

- The DCM for output clock generation and tri-state buffers

- assumed to exist at a higher level.

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic unsigned.all;
use ieee.std_logic _arith.all;

library work;
use work.zbt_ctrl_pkg.all;

entity zbt intf is

generic (
ADDR_WIDTH . integer;
MEMORY_WIDTH . integer;
DATA_DELAY : integer;
NUM_PORTS . integer;
MAX_BURST_SIZE : integer
)
port (
-- Reset/Clock
reset : in std_logic; -- Async Reset.
clk : in std_logic; -- Memory clock

-- Arbitration interface
mem_sel > in std_logic;

mem_rnw - In std _logic;

mem_addr : in std _logic_vector(ADDR_WIDTH-1 downto 0);

mem_wdata : in std_logic_vector(MEMORY_WIDTH-1 downto 0);

mem_wdaddr : in std_logic_vector(bit width(MAX_BURST_SIZE)-1 downto 0);
mem_wport : in std_logic_vector(bit_width(NUM_PORTS)-1 downto 0);
mem_dval : out std_logic;

mem_rdata : out std_logic_vector(MEMORY_WIDTH-1 downto 0);

mem_rport : out std_logic_vector(bit_width(NUM_PORTS)-1 downto 0);

mem_rwdaddr : out std_logic_vector(bit_width(MAX_BURST_SI1ZE)-1 downto 0);

-- ZBT interface

zbt_cen : out std_logic;

zbt wen : out std logic;

zbt _oen : out std _logic;

zbt _ts : out std_logic;

zbt wdata : out std _logic_vector(MEMORY _WIDTH-1 downto 0O);
zbt_addr : out std_logic_vector(ADDR_WIDTH-1 downto 0);
zbt_rdata : in std_logic_vector(MEMORY_WIDTH-1 downto 0)

)

end zbt_intf;
architecture rtl of zbt _intf is
-- Delay signals.

type delay data_type is array (0 to DATA_DELAY-1) of
std_logic_vector(MEMORY_WIDTH-1 downto 0);

265

type delay port_type is array (0] to DATA_DELAY)
std_logic_vector(bit_width(NUM_PORTS)-1 downto 0);
type delay_wdaddr_type is array (0 to DATA_DELAY)

std_logic_vector(bit W|dth(MAX BURST_SIZE)-1 downto 0);

signal zbt_oen_d
signal zbt_wdata_d
signal delay port
signal delay wdaddr
signal delay_dval

begin

process (reset,clk)
begin

std _logic_vector(DATA DELAY-1 downto 0);
: delay_data_type;
: delay_port type;
: delay_wdaddr_type;
- std_logic_vector(DATA _DELAY downto 0);

if (reset = "1") then

zbt_cen <=
zbt wen <=
zbt _addr <=
zbt wdata <=
zbt oen <=
zbt_ts <=
mem_dval <=
mem_rdata <=
mem_rport <=
mem_rwdaddr <=

“qt-
ERE
(others => "0%);
(others => "0");
1
IOI;

0" :
(others => "0%);
(others => "0%);
(others => "07%);

for 1 in O to DATA_DELAY-1 loop

zbt _oen_d(i)

<= -1--

zbt wdata_d(i) <= (others => "0%);

end loop;

for i in O to DATA_DELAY loop
~o"

delay dval(i) <=
delay port(i) <=
delay wdaddr(i)<=
end loop;

(others = "0%);
(others => "0%);

elsif (clk = "1" and clk"event) then

zbt _cen <=
zbt_wen <=
zbt_oen_d(0) <=
delay dval(0) <=
zbt_addr <=
zbt_wdata_d(0) <=
if (mem_sel = "1°
zbt_cen
zbt_wen
zbt_wdata_d(0) <=
zbt_addr
delay port(0) <=
delay wdaddr(0)<=

"1
ELF

“q-:

0"

(others => "0%);

(others => '0')

and mem_rnw = "0") then

<_ Io'.
<= 0"’
mem_wdata;

<= mem_addr + mem_wdaddr;

mem_wport;
mem_wdaddr ;

elsift (mem_sel = "1" and mem_rnw = "1%) then

zbt_cen

zbt addr
delay dval(0) <=
zbt_oen_d(0) <=
delay port(0) <=
delay wdaddr(0)<=
end if;

<= "0";
<= mem_addr + mem_wdaddr;

1t
0~

mem_wport;
mem_wdaddr ;

266

of
of

for 1 in 1 to DATA DELAY-1 loop
zbt_oen_d(i) <= zbt oen_d(i-1);
zbt _wdata_d(i) <= zbt_wdata d(i-1);

end loop;

for 1 in 1 to DATA_DELAY loop
delay dval(i) <= delay_dval(i-1);
delay port(i) <= delay_port(i-1);
delay wdaddr(i)<= delay_wdaddr(i-1);

end loop;

zbt_oen
zbt wdata
zbt_ts

mem_dval
mem_rport

<= zbt_oen_d(DATA_DELAY-1);
<= zbt_wdata_d(DATA_DELAY-1);
<= not zbt _oen_d(DATA_DELAY-1);

<= delay_dval (DATA_DELAY);
<= delay_port(DATA_DELAY);

mem_rwdaddr<= delay_wdaddr (DATA DELAY);

mem_rdata
end if;
end process;

end rtl;

<= zbt_rdata;

C.13 ZBT PORT INTERFACE

This VHDL file defines the logic for a signle port in the zbt memory controller.

-- Filename

-- Initial Date :

-- Author

-— Description

library ieee;

> zbt_port_interface.vhd

May 23 2007

: James Ryan Warner

: This block implements a singluar port interface to zbt

memory controller. It consists of 3 fifos. The fifos are
the read,write and command fifos. The write and command
fifos are used to buffer data to be written to zbt memory.
The read fifo buffers data comming from the zbt memory.

use ieee.std logic 1164.all;
use ieee.std logic unsigned.all;
use ieee.std_logic _arith.all;

library work;

use work.zbt_ctrl_pkg.all;

267

entity zbt port interface is

generic (
ADDR_WIDTH . integer;
DATA_WIDTH . integer;
MAX_BURST_SIZE > integer;
CMD_FIFO_DEPTH . integer;
WRITE_FIFO_DEPTH . integer;
READ_FIFO_DEPTH . integer;
CMD_FIFO_AFULL_THRESH . integer;
WRITE_FIFO_AFULL_THRESH : integer;
READ_FIFO_AFULL_THRESH : integer;
FIFO_DUAL_CLOCK . integer
);
port (
-- Reset/Clock
reset : in std_logic; -- Async Reset.
clk : in std_logic; -- Memory clock
port_clk : in std_logic = "07;
-- External port interface to command fifo.
port_req > in std_logic;
port_afull : out std logic;
port_size : in std _logic _vector(bit width(MAX BURST_SI1ZE)-1 downto
0);
port_addr : in std _logic_vector(ADDR_WIDTH-1 downto 0);
port_rnw - in std _logic;
-- External port interface to write fifo.
port_wpush in std logic;

port_wdata S in std_logic_vector(DATA_WIDTH-1 downto O);
port_wafull : out std logic;

-- External port interface to read fifo

port_rpop - Iin std _logic;

port_rdata : out std _logic_vector(DATA WIDTH-1 downto 0);

port_rwdaddr : out std_logic_vector(bit_width(MAX_BURST_SI1ZE)-1 downto
0);

port_rempty - out std _logic;
port_rafull : out std _logic;

-— Arbiter interface to port cmd fifo

arb_req : out std _logic;

arb_ack - in std logic;

arb_size : out std _logic vector(bit width(MAX BURST_SIZE)-1 downto
0);

arb_rnw : out std _logic;

arb_addr : out std _logic_vector(ADDR_WIDTH-1 downto 0);

-- Arbiter interface to write fifo

arb_wdata : out std_logic_vector(DATA WIDTH-1 downto 0);

arb_wdata_empty : out std_logic;

arb_wdata pop - in std logic;

-- Arbiter interface to port read fifo

arb_rdata : Iin std _logic_vector(DATA WIDTH-1 downto 0);

arb_dval - in std logic;

arb_rwdaddr : in std_logic_vector(bit_width(MAX_BURST_SIZE)-1 downto
0)

)

268

end zbt_port_interface;
architecture rtl of zbt_port_interface is

-- Various constants for vector widths and fifo widths.
constant NUM BURST BITS integer := bit_width(MAX BURST_SIZE);

constant CMD_FIFO_WIDTH : integer := 1 + ADDR_WIDTH + NUM_BURST_BITS;
constant CMD_ADDR_START : integer := O;

constant CMD_ADDR_END > integer -= ADDR_WIDTH-1;

constant CMD_SIZE_START : integer := CMD_ADDR_END+1;

constant CMD_SIZE_END > integer := CMD_SIZE START+NUM_BURST BITS-1;
constant CMD_RNW_POS > integer = CMD_SIZE END+1;

constant DATA_FIFO_WIDTH : integer := NUM_BURST_BITS + DATA _WIDTH;
constant DATA DATA START : integer := O;

constant DATA_DATA_END > integer :-= DATA WIDTH-1;

constant DATA WORD_START : integer := DATA DATA END+1;

constant DATA WORD_END . integer := DATA_WORD_START+NUM_BURST BITS-1;

-- Command fifo data record.

type cmd_fifo _rec t is record
rnw : std_logic;
size : std _logic_vector(NUM_BURST BITS-1 downto 0);
addr : std_logic_vector(ADDR_WIDTH-1 downto 0);

end record;

-— Command fifo reset record constant.

constant CMD_FIFO_RECORD_RESET : cmd_fifo_rec t = (
rw => "07,
size => (others => "07%),
addr => (others => "0%)

)

-- Converts command fifo data record to std_logic_vector
function cmd_fifo rec to slv (rec : cmd _fifo rec t)
return std _logic_vector is

variable temp : std_logic_vector(CMD_FIFO WIDTH-1 downto 0) := (others =>
"07);
begin
temp = rec.rnw & rec.size & rec.addr;

return temp;
end cmd_Ffifo _rec_to slv;

-— Converts standard logic vector to command fifo data record type.
function slv_to cmd fifo rec (vec : std logic vector(CMD_FIFO WIDTH-1
downto 0))
return cmd_fifo rec t is
variable temp : cmd_Ffifo rec t := CMD_FIFO RECORD_RESET;
begin
temp.addr := vec(CMD_ADDR_END downto CMD_ADDR_START);
temp.size := vec(CMD_SIZE_END downto CMD_SIZE_START);
temp.rnw := vec(CMD_RNW_POS);
return temp,
end slv_to cmd_fifo _rec;

-- Data fifo data record.

type data_Ffifo rec_t is record
word : std_logic_vector(NUM_BURST BITS-1 downto 0);
data : std_logic_vector(DATA WIDTH-1 downto 0);

end record;

-- Data fifo reset record constant.

constant DATA FIFO_RECORD RESET : data fifo rec t = (
word => (others => "07),
data => (others => "0%)

269

);

-- Converts data fifo record to std_logic_vector
function data_fifo _rec to slv (rec : data fifo rec t)
return std _logic_vector is

variable temp : std_logic _vector(DATA_FIFO WIDTH-1 downto 0) := (others
=> "0");
begin
temp := rec.word & rec.data;

return temp;
end data_fifo _rec _to_slv;

-- Converts standard logic vector to data fifo record type.
function slv_to data fifo rec (vec : std _logic vector(DATA FIFO_WIDTH-1
downto 0))
return data_fifo rec t is
variable temp : data fifo _rec t := DATA FIFO_RECORD_RESET;
begin
temp.data := vec(DATA DATA END downto DATA DATA_START);
temp.word := vec(DATA WORD END downto DATA WORD_START);
return temp;
end slv_to data fifo_rec;

component fifo_1clk is

generic (
FIFO_WIDTH : integer := 18;
FIFO_DEPTH > integer := 16;
FIFO_AFULL_THRESH : integer := 8;
FIFO_FALL _THROUGH : integer := 0
)
port (
reset : in std _logic;
clk > in std_logic;
push : in std logic;
pop : in std _logic;

wdata : in std_logic_vector(FIFO_WIDTH-1 downto 0);
rdata : out std logic vector(FIFO WIDTH-1 downto 0);
afull : out std logic;

empty: out std_logic

)
end component;
component fifo 2clk is
generic (
FIFO_WIDTH : integer := 18;
FIFO_DEPTH . Integer := 16;
FIFO_AFULL_THRESH : integer := 8;
FIFO_FALL_THROUGH : integer = 0
);
port (
reset : in std_logic;
wclk : in std _logic;
rclk : in std _logic;
push : in std_logic;
pop : In std _logic;

wdata : in std_logic vector(FIFO_WIDTH-1 downto 0);
rdata : out std_logic_vector(FIFO_WIDTH-1 downto 0);
afull : out std logic;
empty : out std logic

end component;

-— Command fifo signals.
signal cmd_fifo_push : std_logic;

270

signal
signal
signal
signal
signal
signal

cmd_fifo
cmd_Fifo
cmd_ fifo
cmd_fifo_
cmd_fifo_
cmd_fFifo_

_pop
_wdata

rdata
afull
afull d
_empty

-—- Write fifo signals.
write_fifo_push
write_fifo_pop

signal
signal
signal
signal
signal
signal

write_fifo wdata :
write fifo rdata :

write_fifo_afull

write_fifo_empty :

-- Read fifo signals.
signal read_fifo push
signal read_fifo_pop
signal read fifo wdata

signal

read_fifo_

downto 0);
read fifo_afull
read Ffifo_empty

signal
signal

signal
signal

begin

signle_

arb_ctrl

port_rdata_: wdaddr :

clock on :

-- Instansate command
cmd_fifo : Fi
generic map (
FIFO_WIDTH
FIFO_DEPTH
FIFO_AFULL_THRESH
FIFO_FALL_THROUGH

)

port map (
reset =>
clk =>
push =>
pop =>
wdata =>
rdata =>
afull =>
empty =>

)

fo 1clk

reset,
clk,

cmd_Ffifo_|

cmd_Fifo
cmd_fifo

cmd_fifo_
cmd_Fifo
cmd_fifo

rdata

: std_logic;
: cmd_fifo_rec t;
: std_logic_vector(CMD_FIFO_WIDTH-1 downto 0);

std_logic;
std_logic;

> std_logic;

> std_logic;
: std_logic;
std _logic_vector(DATA WIDTH-1 downto 0);
std_logic_vector(DATA_WIDTH-1 downto O);
: std_logic;
std_logic;

: std_logic;
: std_logic
: data _fifo_rec_t;
- std _logic_vector(NUM_BURST BITS+DATA WIDTH-1

: std_logic;
: std_logic;

: cmd_fifo_rec t;
data_fifo _rec t;

if (FIFO_DUAL_CLOCK = 0) generate

fifo

=> CMD_FIFO_WIDTH,

=> CMD_FIFO_DEPTH.

=> CMD_FIFO_AFULL THRESH,
= 1

push,

_pop,

rec_to_slv(cmd_fifo_wdata),
rdata,

afull,

empty

-- Used for edge dectection.
cmd_afull_falling _edge prc : process(clk,reset)
begin

it

(reset =

"1") then
cmd_fifo _afull _d <= "0";
elsif (clk="1" and clk"event) then
cmd_fifo afull _d <= cmd_fifo_afull;
end if;
end process;

-- Instansate write data fifo

write_fifo
generic map

FIFO_WIDTH

- fifo_l1clk

=> DATA_WIDTH,

271

FIFO_DEPTH => WRITE_FIFO_DEPTH,
FIFO_AFULL_THRESH => WRITE_FIFO_AFULL_THRESH,
FIFO_FALL_THROUGH => O

)
port map (
reset => reset,
clk => clk,
push => write_fifo_push,
pop => write_ fifo_pop,
wdata => write_ fifo wdata,
rdata => write_fifo rdata,
afull => write_fifo_afull,
empty => write_fifo _empty
)

-- Instansate read data fifo
read_fifo : fifo_lclk
generic map
FIFO_WIDTH => DATA FIFO_WIDTH,
FIFO_DEPTH => READ FIFO_DEPTH,
FIFO_AFULL_THRESH => READ FIFO AFULL_THRESH,
FIFO_FALL _THROUGH => 0

)
port map (
reset => reset,
clk => clk,
push => read_fifo_push,
pop => read_fifo_pop,
wdata => data_fifo _rec_to slv(read fifo_wdata),
rdata => read_fifo _rdata,
afull => read_fifo_afull,
empty => read_fifo_empty

)
end generate;
dual_clock on : if (FIFO_DUAL_CLOCK /= 0) generate

-- Instansate command fifo
cmd_fifo : Fifo 2clk
generic map (
FIFO_WIDTH => CMD_FIFO_WIDTH,
FIFO_DEPTH => CMD_FIFO_DEPTH,
FIFO_AFULL_THRESH => CMD_FIFO_AFULL_THRESH,
FIFO_FALL_THROUGH => 1

)
port map (
reset => reset,
wclk => port_clk,
rclk => clk,
push => cmd_fifo_push,
pop => cmd_fifo_pop,
wdata => cmd_fifo_rec_to_slv(cmd_fifo wdata),
rdata => cmd_fifo_rdata,
afull => cmd_flfo_afull,
empty => cmd_Ffifo_empty
)

-- Used for edge dectection.
cmd_afull_falling_edge prc : process(port_clk,reset)
begin
if (reset = "1") then
cmd_fifo_afull_d <= "0~;
elsif (port_clk="1" and port_clk"event) then

272

cmd_fifo afull _d <= cmd_fifo_afull;
end if;
end process;

-- Instansate write data fifo
write fifo : fifo_2clk
generic map (
FIFO_WIDTH => DATA_WIDTH,
FIFO_DEPTH => WRITE_FIFO_DEPTH,
FIFO_AFULL_THRESH => WRITE_FIFO_AFULL_THRESH,
FIFO_FALL_THROUGH => 0

)
port map (
reset => reset,
wclk => port_clk,
rclk => clk,
push => write_fifo_push,

pop => write_ Tfifo_pop,

wdata => write_ fifo wdata,

rdata => write_fifo rdata,

afull => write_fifo_afull,

empty => write_fifo _empty
)

-- Instansate read data fifo
read_fifo : fifo_2clk
generic map (
FIFO_WIDTH => DATA FIFO_WIDTH,
FIFO_DEPTH => READ FIFO_DEPTH,
FIFO_AFULL_THRESH => READ FIFO AFULL_THRESH,
FIFO_FALL _THROUGH => 0

port map (
reset => reset,
wclk => clk,
rclk => port_clk,
push => read_fifo_push,

pop => read_fifo_pop,
wdata => data_fifo_rec_to_slv(read_fifo_wdata),
rdata => read_fifo_rdata,
afull => read_fifo_afull,
empty => read_fifo_empty
)

end generate;

-— wire up command Ffifo input signals
cmd_fifo_push <= port_req;
cmd_Fifo_pop <= arb_ack;
cmd_fifo wdata.rnw <= port_rnw;
cmd_fifo wdata.size <= port_size;
cmd_fifo wdata.addr <= port_addr;

-- port ack pulses high asyncronusly with port request,
-- so long as fifo is not full.
port_afull <= cmd_fifo_afull;

-— Wire out arb ready signal and data to arbitration block.
arb_req <= not cmd_Ffifo_empty;

arb_ctrl <= slv_to_cmd_fifo_rec(cmd_fifo_rdata);

arb_addr <= arb_ctrl.addr;

arb_rnw <= arb_ctrl.rnw;

arb_size <= arb_ctrl.size;

273

-—- wire up write fifo input signals
write_fifo push <= port_wpush;
write_fifo_pop <= arb_wdata_pop;
write_fifo wdata <= port_wdata;

-- wire up write fifo output signals

port_wafull <= write_fifo_afull;
arb_wdata_empty <= write_fifo _empty;
arb_wdata <= write_fifo rdata;
-— wire up command Ffifo input signals
read_fifo_push <= arb_dval;
read_Ffifo pop <= port_rpop;

read_Ffifo wdata.data <= arb_rdata;
read_fifo wdata.word <= arb_rwdaddr;

-— Write out read fifo outputs.
port_rdata wdaddr <= slv_to_data_ fifo_rec(read_fifo_rdata);

port_rdata <= port_rdata_wdaddr.data;
port_rwdaddr <= port_rdata_wdaddr.word;
port_rempty <= read_fifo_empty;
port_rafull <= read_fifo_afull;

end rtl;

C.14 ZBT ARBITER

This VHDL file defines the logic for the round robin arbitration of the memory

controller’s multi-port interface.

-— Filename : zbt _port_arbiter.vhd

-— Initial Date : May 23 2007

-— Author : James Ryan Warner
-— Description : This block implements a simple round robin arbitration
scheme

- for multi port interface to a zbt memory. The number of
ports
- is configurable.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std logic unsigned.all;
use ieee.std logic arith.all;

library work;

274

use work.zbt ctrl_pkg.all;

entity zbt port_arbiter is

generic (
NUM_PORTS > integer;
ADDR_WIDTH . integer;
MEMORY_WIDTH . integer;
MAX_BURST_SIZE : integer
)
port (
-- Reset/Clock
reset > in std_logic; -— Async Reset.
clk - In std _logic; -— Memory clock
-- Request/Ack signals
req : In std_logic_vector(NUM_PORTS-1 downto 0);
ack : out std_logic_vector(NUM_PORTS-1 downto 0);
-— Control signals
size - in std _logic vector(NUM_PORTS*bit_width(MAX_BURST SIZE)-1
downto 0);
rnw : In std _logic_vector(NUM_PORTS-1 downto 0);
addr : in std_logic_vector(NUM_PORTS*ADDR_WIDTH-1 downto 0);
-- Write data
wdata : in std_logic_vector(NUM_PORTS*MEMORY_WIDTH-1 downto 0);
wdata empty in std logic_vector(NUM_PORTS-1 downto 0);
wdata_pop : out std_logic_vector(NUM_PORTS-1 downto 0);
-- Read data
rdata : out std_logic_vector(NUM_PORTS*MEMORY_WIDTH-1 downto 0);
rval : out std_logic_vector(NUM_PORTS-1 downto 0);
rwdaddr : out std_logic_vector(NUM_PORTS*bit_width(MAX_BURST SIZE)-1
downto 0);
-- Memory interface signals
mem_sel : out std_logic;
mem_rnw : out std_logic;
mem_addr : out std_logic_vector(ADDR_WIDTH-1 downto 0);
mem_wdata : out std_logic_vector(MEMORY _WIDTH-1 downto 0);
mem_wdaddr : out std_logic_vector(bit_width(MAX_BURST_SIZE)-1 downto 0);
mem_wport : out std_logic_vector(bit_width(NUM_PORTS)-1 downto 0);
mem_dval : in std_logic;
mem rdata : in std logic_vector(MEMORY_WIDTH-1 downto 0);
mem_rport : in std_logic_vector(bit_width(NUM_PORTS)-1 downto 0);
mem_rwdaddr: in std_logic_vector(bit_width(MAX_BURST SIZE)-1 downto 0)
);

end zbt port_arbiter;

architecture rtl of zbt port_arbiter is

constant MAX_BURST BITS > integer := bit_width(MAX_BURST_SIZE);
constant WDADDR_VECTOR_SIZE : integer := NUM_PORTS * MAX_BURST_BITS;
constant DATA VECTOR_SIZE : integer := NUM_PORTS * MEMORY_WIDTH;
constant ADDR_VECTOR_SIZE > integer := NUM_PORTS * ADDR_WIDTH;

type wdaddr_array_t is array (0] to NUM_PORTS-1)

std_logic_vector(MAX_BURST_BITS-1 downto 0);

275

of

type data_array_t is array (0] to NUM_PORTS-1)
std_logic ' vector(MEMORY WIDTH-1 downto 0);

type addr_array_t is array (0] to NUM_PORTS-1)
std _logic_vector(ADDR_WIDTH-1 downto 0);

signal size_s : wdaddr_array_t;

signal size_s reg : wdaddr_array_ t;

signal wdata s : data_array_t;

signal addr_s : addr_array_t;

signal rdata s : data_array_t;

signal rwdaddr_s : wdaddr_array_t;

signal rnw_s : std_logic_vector(NUM_PORTS-1 downto 0);
signal ack s : std _logic_vector(NUM_PORTS-1 downto 0);

signal wdata_pop_s : std_logic_vector(NUM_PORTS-1 downto 0);

type arb_state t |s (IDLE,GRANT);

signal state : arb_state_t;

signal port_state : integer range O to NUM_PORTS-1;

signal arb_count : std _logic vector(MAX BURST BITS-1 downto 0);

signal rnw_d std_logic_vector(NUM_PORTS-1 downto 0);
signal addr_d addr_array_t;

signal arb_count_d : std_logic_ ' vector(MAX BURST_BITS-1 downto 0);
signal state d arb_state_t;

signal port_state d integer range O to NUM_PORTS-1;

signal ack _d std_logic_vector(NUM_PORTS-1 downto 0);

begin

of
of

-- These signal assignments in the async process are mearly for convienece.

-— They convert the raw vector ports to an array of vertors.
-— This makes writing code much easier.
vector_convert _proc : process (size,addr,wdata,rdata_s,rwdaddr_s)

variable start_index : integer := 0;
variable end_index : integer = 0;
begin

for i in O to NUM_PORTS-1 loop
-- Wire up size vector.
start_index := 1 * MAX BURST_BITS;
end_index := (i+1) * MAX_BURST BITS - 1;
size_s(i) <= size(end_index downto start_index);
-- Wire up wdata vector.
start_index = 1 * MEMORY_WIDTH;
end_index := (i+1) * MEMORY_WIDTH - 1;
wdata_s(i) <= wdata(end_index downto start_index);
-- Wire up rwdadrr vector.
start_index := 1 * MAX_BURST_BITS;
end_index := (i+1) * MAX_BURST BITS - 1;
rwdaddr(end_index downto start_index) <= rwdaddr _s(1);
-- Wire up rdata vector.
start_index = 1 * MEMORY_WIDTH;

end_index := (i+1) * MEMORY_WIDTH - 1;
rdata(end_index downto start_index) <= rdata s(i);
end loop;

end process;

vector_convert _proc_seq : process (clk,reset)

variable start _index : integer := 0;
variable end_index : integer := 0;
begin

if (reset = "1") then

276

addr_s <= (others => (others => "0%));
rw_s <= (others => "0%);

elsif (clk = 1" and clk"event) then
for 1 in O to NUM_PORTS-1 loop

-— Wire up address vector.

start_index = 1 * ADDR_WIDTH;

end_index = (i+1) * ADDR_WIDTH - 1;

addr_s(i) <= addr(end_index downto start_index);

end loop;
rnw_s <= rnw;
end if;
end process;

-— This process handles the round robin arbitration of memory

accesses.

-- A port gets access for as many cycles as the burst size requests.
arb_state_proc : process(reset clk)

variable index
variable index2
variable other_req
variable another_req

begin

integer;
integer;
std_logic := "0%;
std_logic := "07;

if (reset = "1") then

-- Reset values.
state <= IDLE;
port_state <= O;

ack s <= (others => "07%);
wdata_pop_s <= (others => "0");
arb_count <= (others => "0%);
size_s reg <= (others => (others => "0%));

elsif (clk = "1 and clk®event) then

—- Defaults

ack_ s <= (others => "07%);

wdata_pop_s <= (others => "0");

case state is

when IDLE =>

-- Go through each port and if request is seen return the proper
-- ack and goto grant state while seting proper port state.

for 1 in O to NUM_PORTS-1 loop

-— Go through the previous request.
-— If any are high then it prempts the current req.
other_req := "07;
for k in O to i-1 loop
other_req := req(k) or other_req;
end loop;

if (req(i) = "1" and other_req = "07) then

-— IF this request is seen goto grant state and
state <= GRANT;

-- Set the arb counter to zero
-- set the proper port state bit.
arb_count <= (others => "07%);
port _state <= i;

-- Assert ack signal.

277

port

ack s(i) <= "17;

-- Assert write pop when writing.
wdata_pop_s <= (others => "0%);
if (rnw(i) = "0") then
wdata_pop_s(i) <= "17;
else
wdata_pop_s(i) <= "0";
end if;

-- Register size.
size_s_reg(i) <= size_s(i);

end if;
end loop;

when GRANT =>

-- Go through each port.
for i in O to NUM_PORTS-1 loop

-- Determine other req.
another_req := "0%;
for j in O to NUM_PORTS-1 loop
if (reg) = "1" and j /= i) then
another_req := "1°7;
end if;
end loop;

-— If this port is active service it.
if (port_state = i) then

-— Wait till arb count equals size until releasing port.
if (arb_count /= size_s reg(i)) then

-- Increment arb count and assert wdata_pop on writes only.
arb_count <= arb_count + 1;

-- Hold the pop signal, whatever it is.
wdata_pop_s(i) <= wdata pop_s(i);

elsit (size_s reg(i) = 0 and req(i) = "1 and another_req =
"0") then

-- Idle cycle required for single cycle transfers.
state <= IDLE;

elsift (arb_count = size s reg(i) and req /= 0) then

-- Hold the pop signhal, whatever it is.
wdata_pop_s(i) <= wdata_pop_s(i);

-- Go through each port, starting at the next port and
-- ending at the current port.
for j 1n O to NUM_PORTS-1 loop

-- 1 hope the tool is smart enough not to synthesize this.
index := (J + 1 + 1) mod NUM_PORTS;

-- Go through the previous request.

-— If any are high then it prempts the current req.
other_req := "07;

for k in O to j-1 1loop

index2 := (k + i + 1) mod NUM_PORTS;

278

other_req := req(index2) or other_req;

end loop;
if (req(index) = "1" and other_req = "0") then

-- Set the arb counter to zero and

-- set the proper port state bit.
arb_count <= (others => "0%);
port_state <= index;

-- Assert ack signal.
ack_s(index) <= *1%;

-- Assert write pop when writing.
wdata_pop_s <= (others => "0%);
if (rnw(index) = "0") then
wdata_pop_s(index) <= "1°7;
else
wdata_pop_s(index) <= "07;
end if;

-- Register size.
size_s_reg(index) <= size_s(index);

end if;
end loop;
elsif (arb_count = size_ s reg(i) and req = 0) then

-- No request lines are active, return to idle state.
state <= IDLE;

end if;
end if;

end loop;
end case;
end if;
end process;

-- Wire out outputs because stupid vhdl won"t let you read output ports!!!!
wdata_pop <= wdata pop_s;
ack <= ack_s;

memory_drive _prc : process(clk,reset)
begin
if (reset = "1") then

-- Do nothing

mem_sel <= "07;

mem_rnw <= "1%;

mem_addr <= (others => "0%)
mem_wdata <= (others => "0%)
mem_wport <= (others => "0%)
mem_wdaddr<= (others => "0%)

rnw_d <= (others => "07%);

addr_d <= (others => (others => "0%));
arb_count_d <= (others => "0%);

state d <= IDLE;

279

port _state d <= 0;
ack d <= (others => "0%);

elsift (clk = "17 and clk"event) then

-- Delay all control signals by one cycle to compensate
-— for write fifo delay.

rnw_d <= rnw_s;
addr_d <= addr_s;
arb_count_d <= arb_count;
state _d <= state;
port_state d <= port_state;
ack d <= ack_s;

if (state_d = IDLE) then

-— When idle deselect memory.
mem_sel <= "0-;

mem_rnw <= "1%;

mem_addr <= (others => "0%)
mem_wdata <= (others => *07)
mem_wport <= (others => "0%)
mem_wdaddr<= (others => "0%)

elsif (state_d = GRANT) then
for 1 in O to NUM_PORTS-1 loop

-— IFf this port is active service it.
if (port_state d = i) then

-— When granted select memory.
if (ack_d /= 0) then

mem_sel <= "17;

mem_rnw <= rnw_d(i);

mem_addr <= addr_d(i);
end if;

mem_wdata <= wdata_s(i);
mem_wport <= conv_std _logic_vector(i,bit width(NUM_PORTS));
mem_wdaddr <= arb_count _d;

end if;
end loop;
end if;

end if;
end process;

-- This is a sequential mux to routes out the read data to the proper port.
memory_input_proc : process(clk,reset)
begin
if (reset = "1") then
for i in O to NUM_PORTS-1 loop
rdata_s(i) <= (others => "0%);

rval (1) <= "0°;
rwdaddr_s(i) <= (others => "0%);
end loop;

elsift (chlk = "1 and clk"event) then
rval <= (others => "0%);
for i in O to NUM_PORTS-1 loop
if (mem_rport = conv_std _logic_vector(i,bit_width(NUM_PORTS))) then
rdata_s(i) <= mem_rdata;

280

rval (i) <= mem_dval;
rwdaddr_s(i) <= mem_rwdaddr;
end if;
end loop;
end if;
end process;

end rtl;

C.15 ZBT WIDTH CONVERSION

This VHDL file converts the internal data path’s width to the physical memory’s data

path width.

-— Filename : zbt width_conversion.vhd
-— Initial Date : May 23 2007
-— Author : James Ryan Warner

-— Description : This block converts the incomming data vector to
- the approprate memory vector width.

library ieee;

use ieee.std logic 1164.all;

use ieee.std_logic _unsigned.all;
use ieee.std logic arith.all;

library work;
use work.zbt ctrl_pkg.all;

entity zbt width_conversion is

generic (
ADDR_WIDTH > integer;
DATA _WIDTH . integer;
MEMORY_WIDTH : integer;
BYTE_WIDTH > integer;
MAX_BURST_SIZE : integer;
MAX_MEM_BURST_SIZE : integer
)
port (
-- Reset/Clock
reset : in std_logic; -- Async Reset.
clk : in std_logic; -- Memory clock

281

-- Arbiter interface to port cmd fifo

arb_size i : in std _logic vector(bit width(MAX_ BURST SIZE)-1 downto
0);

arb_addr _i : in std _logic_vector(ADDR_WIDTH-1 downto 0);

arb_size o : out std logic vector(bit width(MAX_ MEM_BURST SIZE)-1
downto 0);

arb_addr_o : out std_logic_vector(ADDR_WIDTH-1 downto 0);

-- Arbiter interface to write fifo

arb_wdata i : in std _logic_vector(DATA WIDTH-1 downto 0);
arb_wdata_pop_i in std_logic;

arb_wdata o std_logic_vector(MEMORY_WIDTH-1 downto O);
arb_wdata pop_o out std_logic;

o
c
=

-- Arbiter interface to port read fifo
arb_rdata_i in std logic vector(MEMORY_WIDTH-1 downto 0);

arb_dval i - in std_logic;

arb_rwdaddr _i > in std_logic_vector(bit_width(MAX_MEM_BURST_SIZE)-1
downto 0);
arb_rdata_ o : out std_logic_vector(DATA WIDTH-1 downto 0);
arb_dval_o : out std _logic;
arb_rwdaddr_o : out std logic vector(bit width(MAX_BURST SIZE)-1 downto
0)
)

end zbt width_conversion;
architecture rtl of zbt width_conversion is

-- Various constants for vector widths and fifo widths.

constant NUM_BURST_BITS integer := bit width(MAX BURST_SIZE);
constant DATA RATIO integer := (DATA_WIDTH/MEMORY_WIDTH) ;
constant DATA_RATIO BITS integer := bit width(DATA RATIO);
constant ARB_SIZE BITS integer := bit width(MAX_MEM_BURST_SIZE);

signal write_count : std _logic_vector(DATA RATIO BITS-1 downto 0);
signal write_count_d : std_logic_vector(DATA_RATIO BITS-1 downto 0);
signal read_count : std_logic_vector(DATA RATIO BITS-1 downto 0);

begin

byte address_shift on : if (MEMORY_WIDTH > BYTE _WIDTH) generate
arb_addr_o(ADDR_WIDTH-bit_width(MEMORY_WIDTH/BYTE_WIDTH)-1 downto 0)
<= arb_addr_1(ADDR_WIDTH-1 downto bit_width(MEMORY_WIDTH/BYTE_WIDTH));
arb_addr_o(ADDR_WIDTH-1 downto ADDR_WIDTH-
bit_width(MEMORY_WIDTH/BYTE_WIDTH)) <= (others => "0%);
end generate;

byte_address_shift_off : if (MEMORY_WIDTH <= BYTE_WIDTH) generate

arb_addr o <= arb_addr_i;
end generate;

width_expand_on : if (DATA _WIDTH > MEMORY_WIDTH) generate

-— Wire out command signals.

arb_size o(ARB_SIZE BITS-1 downto NUM_BURST _BITS+DATA RATIO_BITS) <=
(others => "0%);

arb_size o(NUM_BURST BITS+DATA RATIO BITS-1 downto DATA RATIO BITS) <=
arb_size_i1(NUM_BURST_ BITS-1 downto 0);

“arb_size o(DATA RATIO BITS-1 downto 0) <=
(others => "1%);

-— Simple counter to pop data from the fifo.

282

write_pop_prc : process (clk,reset)
begin

-- Write counter.
if (reset = "1") then
write_count <= (others => "07%);
write_count d <= (others => "0%);
elsif (clk = "1 and clk"event) then
if (arb_wdata_pop_i = "1%) then

-- Increment write counter.

write_count <= write_count + 1;
if (write_count = conv_std _logic_vector(DATA_RATIO-
1,bit_width(DATA_RATIO))) then
write_count <= (others => "0%);

end if;
end if;
write_count_d <= write_count;
end if;

end process;

write_mux_prc : process (arb_wdata pop_i,arb_wdata_i,write_count)
begin
-— If this is the last word then pop the Ffifo.
arb_wdata_pop_o <= "07;
if (arb_wdata pop i = "1" and (write_count = 0)) then
arb_wdata pop o <= "1°%;
end if;

-— Send out part of data word, this is simply a combinational mux.

arb_wdata_o <= (others => "0%);

for 1 in O to DATA RATIO-1 loop

if (conv_integer(write_count _d) = i) then

arb_wdata_o <= arb_wdata_i1(((i+1) * MEMORY_WIDTH) - 1 downto (i *

MEMORY_WIDTH));

end if;

end loop;

end process;

-— Simple counter to pop data from the fifo.
read_push_prc : process (clk,reset)

begin
1T (reset = "1") then
read_count <= (others => "0%);
arb_dval_o <= "07;

arb_rdata o <= (others => "07%);
arb_rwdaddr_o <= (others => "0%);
elsift (clk = "1 and clk"event) then

arb_dval_o <= "0";

-- Read counter
if (arb_dval_i = "1%) then

-- Increment read counter.
read_count <= read count + 1;
if (read_count = conv_std_logic_vector(DATA_RATIO-
1,bit_width(DATA_RATIO))) then
-— IF this iIs the last word then push the fifo.
arb _dval o <= "17;
read _count <= (others => "0%);
end if;

-- Send out part of data word.

283

for 1 in O to DATA RATIO-1 loop
if (conv_integer(read_count) = 1) then
arb_rdata_o((((i+1) * MEMORY_WIDTH) - 1) downto (i *
MEMORY_WIDTH)) <= arb_rdata_1i;
arb_rwdaddr_o <= arb_rwdaddr_i (NUM_BURST BITS+DATA RATIO BITS-1
downto DATA_RATIO BITS);
end if;
end Ioop;

end if;

end if;
end process;

end generate;

width_expand_off : if (DATA WIDTH <= MEMORY_WIDTH) generate
width_not_max_on : iIf (ARB_SIZE BITS > NUM_BURST_BITS) generate
arb_size o(ARB_SIZE_BITS-1 downto NUM_BURST BITS) <= (others => "0%);
end generate;

arb_size o(NUM_BURST _BITS-1 downto 0) <= arb_size i;
arb_wdata_ o <= arb_wdata_i;
arb_wdata_pop_o <= arb_wdata pop_i;
arb_rdata o <= arb_rdata_i;
arb_dval_o <= arb_dval _i;
arb_rwdaddr_o <=

arb_rwdaddr_i (NUM_BURST_BITS-1 downto 0);
end generate;

end rtl;

C.16 ZBT MEMORY CONTROLLER PACKAGE

This VHDL file contains functions needed by the various blocks of the ZBT memory

controller.

-— Filename : zbt_ctrl_pkg.vhd
-— Initial Date : May 23 2007

-— Author : James Ryan Warner

-— Description : Type,Constants and Functions needed for the zbt controller.

library ieee;
use ieee.std_logic_1164.all;

284

package zbt ctrl _pkg is

constant MAX_NUM_INTF
constant DEFAULT_ADDR_WIDTH
constant DEFAULT_MEMORY_WIDTH
constant DEFAULT_BYTE_WIDTH
constant DEFAULT_DATA_DELAY

> integer = 4;
. integer := 20;
. integer := 18;
> integer := 8;
> integer := 2;

type integer_array_t is array (0 to MAX NUM_INTF-1) of integer;

constant DEFAULT_DATA WIDTH : integer_array t := (others =>
1Sgénstant DEFAULT_MAX_ BURST_SIZE : integer_array t := (others =>
4)(’:onstant DEFAULT_CMD_FIFO_DEPTH : integer_array t := (others =>
1Ggénstant DEFAULT_WRITE_FIFO_DEPTH integer_array t := (others =>
64génstant DEFAULT_READ_FIFO_DEPTH integer_array t := (others =>
6426nstant DEFAULT_CMD_FIFO_AFULL_THRESH : iInteger_array t := (others =>
8)(’:onstant DEFAULT WRITE_FIFO_AFULL_THRESH : integer_array t := (others =>
32():6nstant DEFAULT_READ FIFO_AFULL_ THRESH : integer_array t := (others =>
zjgénstant DEFAULT_FIFO_DUAL_CLOCK integer_array t := (others =>
function bit width (value : integer range 0 to 65535) return integer;
function max_size (value : iInteger_array_t;
nports: integer) return integer;
function total_size (value : integer_array_t;
nports: integer) return integer;
function top_index (index : integer;
value : integer_array_t) return integer;
function top_index (index : integer;
value : integer) return integer;
function bottom index (index : integer;
value : integer_array_t) return integer;
function bottom index (index : integer;

value :

function conv_array bit width (value
nports

end zbt _ctrl_pkg;
package body zbt ctrl _pkg is

function bit width (value :
return integer is
begin
for 1 in O to 65535 loop
if (value <= 2**i1) then
if (i = 0) then return 1; end if;
return i;
end if;

285

integer) return integer;

integer_array_t;
integer) return integer_array _t;

integer range 0 to 65535)

end loop;
return 65535;
end function bit width;

function max_size (value : iInteger_array_t;
nports: integer)
return integer is
variable max : integer := 0;
begin
for 1 in O to nports-1 loop
if value(i) > max then max := value(i); end
end loop;
return max;
end function;

function total_size (value : integer_array_t;
nports: integer)
return integer 1is
variable total : integer := O;
begin
for 1 in O to nports-1 loop
total := value(i) + total;
end loop;
return total;
end function;

function top_index (index : integer;
value : integer_array_ t)
return integer is
variable total : integer := O;
begin
for i in O to index loop
total := value(i) + total;
end loop;
return total - 1;
end function;

function top_index (index : integer;
value : integer)
return integer is
variable total : integer := O;
begin
for 1 in O to index loop
total := value + total;
end loop;
return total - 1;
end function;

function bottom index (index : integer;
value : integer_array t)
return integer is

variable total : integer := O;
begin
total := top_index(index,value);

return ((total+1l) - value(index));
end function;

function bottom index (index : integer;
value : integer)
return integer is

variable total : integer := O;
begin
total := top_index(index,value);

return ((total+1l) - value);

286

end function;

function conv_array bit_width(value : integer_array_t;
nports: integer)
return integer_array_t is
variable temp : integer_array t;
begin
for i in O to value®length-1 loop
if (i > nports-1) then

temp(i) := 0;
else
temp(i) := bit width(value(i));
end if;
end loop;

return temp;
end function;
end zbt _ctrl_pkg;

C.17 DVI PHYSICAL INTERFACE

This VHDL file handles driving the control signals to the DVI controller. It is hard wired

for VGA pass-through.

-- Filename : dvi_intf.vhd

_- Date : September 20 2007

- Author : James Warner

_- Desc : This logic handles driving control signals

- to the dvi controller. Right now, it
- only handles vga passthrough mode.

library ieee;
use ieee.std_logic_1164._all;
use ieee.std logic arith.all;
use ieee.std logic unsigned.all;

library work;
use work.gpu_pkg.all;

entity dvi_intf is

port(
-— Clock, reset and enable signals
clk > in std_logic;
reset _n - In std _logic;
enable - Iin std _logic;

-— VGA input signals.

287

vga_vsync_n
vga_hsync_n
vga_red
vga_green
vga_blue
vga_valid

-- Display driver and

dvi_hsync_n
dvi_vsync_n
dvi_data en
dvi_datal
dvi_data2

);
end dvi_intf;

std_logic;
std_logic;
std_logic_vector(7 downto 0);
std _logic_vector(7 downto 0);
std _logic_vector(7 downto 0);
std_logic;

fifo status
out std_logic;
out std _logic;
out std_logic;
out std_logic_vector(11l downto 0);
out std logic vector(1l downto 0)

architecture hdl of dvi_intf is

-- State signals.

type dvi_state t is (IDLE,ACTIVE);

signal dvi_state

begin

: dvi_state_t;

-- Green Isb and blue get sent on first cycle,
-- then red and green msb.
sdr_process : process (clk,reset_n)

begin
1f (reset_ n = "0") then
dvi_state <= IDLE;
dvi_datal <= (others => "07%);
dvi_data2 <= (others => "07%);
dvi_hsync n <= "1°;
dvi_vsync_n <= "1°7;
dvi_data en <= "0";
elsif (chlk = "1 and clk"event) then
case dvi_state 1is
when IDLE =>
if (enable = "1") then
dvi_state <= ACTIVE;
end if;

when ACTIVE =>

dvi_hsync_n <=
dvi_vsync n <=

vga_hsync_n;
vga_vsync_n;

vga_valid;
vga_green(3 downto 0) & vga blue;

dvi_data_en <=
dvi_datal <=
dvi_data2 <=
end case;
end if;

end process;

end hdl;

vga_red & vga green(7 downto 4);

288

C.18 VGA FRAME READER

This VHDL file handles pulling a frame from zbt memory when the VGA interface asks

for a new frame of data.

-- Filename : vga_frame_reader.vhd

-- Date : Oct. 23 2007

-- Author : James Warner

-—- Desc : This is glue logic which interfaces

- between the memory controller and the vga
- controller. It handles driving out the
- address

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic arith.all;
use ieee.std_logic _unsigned.all;

library work;
use work.gpu_pkg-all;

entity vga frame_reader is

port(
-— Clock, reset and enable signals
vga_clk > Iin std_logic;
reset _n - In std _logic;

-- Vga controller interface.

vga_fTifo_afull in std _logic;

vga_data_val out std_logic;

vga_data out std_logic_vector(23 downto 0);
vga_eof in std logic;

-— ZBt memory interface.

mem_rempty
mem_rafull

in std _logic;
in std logic

mem_req : out std _logic;
mem_afull - Iin std _logic;
mem_addr > out std_logic_vector(18 downto 0);
mem_rpop : out std logic;
mem_rdata : in std _logic_vector(35 downto 0);

)
end vga_ frame_reader;
architecture hdl of vga frame reader is

type mem_read_req_state_t is (WAIT_FOR_EOF,WAIT_FOR_NFULL,WRITE_REQ);
signal mem read _req _state : mem_read req_state t;

289

type scan_line_double_state t is
(WAIT_FOR_EOF,WAIT_NEMPTY,PIX_ODD_LINE_ODD,PIX_EVEN_LINE_ODD,PIX_ODD_LINE_EVE
N,PIX_EVEN_LINE_EVEN);

signal scan_line_double_state : scan_line_double_state t;

signal mem_addr_i
signal bram_we
signal bram_re
signal bram_addr
signal bram_wdata
signal bram_rdata
signal line_count

std_logic_vector(16 downto 0);

std_logic;

std_logic;

std_logic_vector(bit_width(320)-1 downto 0);
std_logic_vector(35 downto 0);
std_logic_vector(35 downto 0);
std_logic_vector(bit_width(240)-1 downto 0);

signal mem we_dly std_logic;
signal mem_rdata_dly std_logic_vector(35 downto 0);
signal mem_rafull_meta std_logic;
signal mem_rafull_sync std_logic;

component bram_1port_l1clk is

generic (
MEM_WIDTH : integer;
MEM_SIZE : integer

)

port (
clk > in std_logic;
we - In std _logic;
addr : in std _logic_vector(bit width(MEM_SIZE)-1 downto 0);
wdata > in std_logic_vector(MEM_WIDTH-1 downto 0);
rdata : out std _logic_vector(MEM_WIDTH-1 downto 0)

)

end component;
begin

-— Small block ram used to store a scan line of data.
scan_line_bram : bram_1port_1clk
generic map (
MEM_WIDTH => 36,
MEM_SIZE => 320

)
port map (
clk => vga_clk,
we => bram_we,
addr => bram addr,
wdata => bram_wdata,
rdata => bram_rdata
)

-— Read almost full sync register, syncs read almost full signal to vga clk
domain.
rafull_sync_prc : process(vga_clk,reset_n)
begin
if (reset_ n = "0") then
mem_rafull_meta <= "07;
mem_rafull_sync <= "07;
elsif (vga clk = "1" and vga_clk"event) then
mem_rafull_meta <= mem_rafull;
mem_rafull_sync <= mem_rafull_meta;
end if;
end process;

-- Process to drive out vga control signals.

vga_data_out _prc : process(vga_clk,reset_n)
begin

290

if (reset_ n = "0") then
vga_data_val <= "0";
vga_data <= (others => "07%);
mem we dly <= "0%;
mem_rdata dly<_ (others => "0%);
elsif (vga _clk = "1" and vga_clk"event) then

vga_data _val <= "0°;
mem_we_dly <= "0";

if (bram_re = "1%) then
vga _data val <= "17;
vga_data <= bram_rdata(17 downto 12) & "0" & "0" &
bram_rdata(ll downto 6) & "0" & "0" &
bram_rdata(5 downto 0) & "0 & "07;
elsif (bram we = "1") then
vga_data_val <= "17;
vga_data <= mem_rdata(l7 downto 12) & "0 & "0 &
mem_rdata(ll downto 6) & "0F & "0" &
mem_rdata(5 downto 0) & "0 & "07;
mem_rdata_dly <= mem rdata;
mem_we_dly <= "1°%;
elsift (mem_we dly = '1') then
vga_data val <= "1°

vga_data <= mem_ rdata _dly(17 downto 12) & "0 & "0OF

mem_rdata_dly(11 downto 6) & "0" & "0" &
mem_rdata_dly(5 downto 0) & "0" & "07;
end if;

end if;
end process;
-— Process to handle line double as well as pulling data from
mem_line_double_prc : process(vga_clk,reset_n)

begin
if (reset_ n = "0") then

mem_rpop <= "0";
bram we <= "0°;
bram_re <= "0";
bram addr <= (others => "0%);
line_count <= (others => "0");

elsif (vga clk = "1" and vga_clk"event) then

-— Defaults

mem_rpop <= "0";
bram we <= "0";
bram_re <= "07;

case scan_line_double_state is
when WATT_FOR_EOF =

if (vga _eof = "1") then
scan_line _double state <= WAIT_NEMPTY;

end if;
when WAIT_NEMPTY =
if (mem_rempty = "0" and vga fifo _afull = "0") then
mem_rpop <= "1°;
bram addr <= (others => "0%);

291

&

memory .

line_count <= (others => "0%);

scan_line_double_state <= PIX _ODD_LINE_ODD;
end i1f;

when PIX_ODD_LINE_ODD =>
if (vga fifo_afull = "0") then

bram_we <= "17;
scan_line_double_state <= PIX _EVEN_LINE _ODD;
end 1f;

when PIX_EVEN_LINE_ODD =>

if (vga fifo_afull = "0") then
if (bram_addr < 319) then
if (mem_rempty = "0" and vga fifo _afull = "0") then

mem_rpop <= "1%;
bram_addr <= bram_addr + 1;
scan_line_double_state <= PIX_0ODD_LINE_ODD;
end if;
else
bram_addr <= (others => "07%);
scan_line_double_state <= PIX _ODD_ LINE_EVEN;
end if;
end if;

when PIX_ODD_LINE_EVEN =>
if (vga fifo_afull = "0") then

bram_re <= "1%;
scan_line_double_state <= PIX _EVEN_LINE EVEN;
end if;

when PIX_EVEN_LINE_EVEN =>

if (vga_fifo_afull = "0") then
if (bram_addr < 319) then

bram re <= "1°7;

bram_addr <= bram_addr + 1;

scan_line_double_state <= PIX _ODD_LINE_EVEN;
else

if (line_count < 239) then
it (mem_rempty = "0" and vga Fifo _afull = "0") then

mem_rpop <= "1%;
bram_re <= "1°%;
bram_addr <= (others => "07);
line_count <= line_count + 1;
scan_line_double_state <= PIX_ODD_LINE_ODD;
end if;
else
bram_re <= "1%;
bram_addr <= (others => "0%);
line_count <= (others => "0%);
scan_line_double state <= WAIT_FOR_EOF;
end if;
end if;
end if;
end case;
end if;

end process;
bram_wdata <= mem_rdata;

292

-- Process to drive out memory requests to the memory controller.
mem_read_reqg_prc : process(vga_clk,reset_n)
begin

if (reset_ n = "0") then

-- Reset
mem_req <= "07;
mem_addr_i <= (others => "0%);

mem_read_req_state <= WAIT_FOR_EOF;
elsif (vga clk = "1 and vga _clk"event) then

-- Defaults
mem_req <= "07;

-— Memory Request state machine.
case mem_read_req_state is

when WAIT_FOR_EOF =>

-- Wait for end of frame until starting to drive
-- out read requests to the memory controller.
-— Check if the memory controller is full.
if (vga_eof = "17) then
it (mem_afull = "0" and mem_rafull_sync = "0") then

mem_req <= "1%;
mem_addr_i <= (others => "07%);
mem_read_req_state <= WRITE_REQ;
else

mem_read_req_state <= WAIT_FOR_NFULL;
end if;
end if;

when WAIT_FOR_NFULL =>

-— An EOF has been sceen but we need to wait until
-- the memory controller is not busy.
if (mem_afull = "0" and mem_rafull_sync = "0") then

mem_req <= "17;
mem_addr_i <= (others => "07%);
mem_read_req_state <= WRITE_REQ;
end if;
when WRITE_REQ =>

-— Wait for the memory controller not to be full to send
-— read requests. Also check the vga fifo to assure it isn"t
-— begining to overflow.
if (mem_afull = "0" and mem_rafull_sync = "0") then
it (mem addr_i = (320 * 240)-1) then

mem_addr_i <= (others => "07%);
mem_read_req_state <= WAIT_FOR_EOF;
else
mem_req <= "1%;
mem _addr_i <= mem_addr_i + 1;
end if;
end if;
end case;

end if;
end process;

mem_addr <= mem_addr_i & "00";

293

end hdl;

C.19 VGA SYNC GENERATOR

This VHDL file handles creating the vertical and horizontal sync pulses used by today’s

standard VGA monitors.

-- File
-- Date
-- Auth

-- Desc

name -

or -

vga_sync_generator.vhd

Februrary 20 2005

James Warner

This block is a counter with comparitors

used to generate horizontal or vertical
sync pulses for a graphical display.

library
use
use
use

library
use

ieee;
ieee.std

logic_1164.all;

ieee.std_logic_arith.all;
ieee.std logic unsigned.all;

work;

work.gpu_pkg.all;

entity vga _sync_generator is

generi

c(

-— Generics for horizontal timing

PULS
FRON

ACTIVE_VIDEO

E_LENGTH
T_PORCH

BACK_PORCH

port(
cl
re
cl

Clock,
k
set_n
k_enable

> integer = 96;
: integer = 16;
. integer = 640;
> integer = 48

reset and enable signals
: in std_logic;
in std logic;
in std logic;

—-— Output signals

sy
ga
bl
co

nc_n
te
ank
unt

: out std_logic;
: out std_logic;
: out std _logic;
out std logic vector(bit width(PULSE _LENGTH +

FRONT_PORCH + ACTIVE_VIDEO + BACK_PORCH)-1 downto 0)

):

end vga_sync_generator;

294

architecture synth of vga sync _generator is

-- Constants for horizontal sync timing
constant TOTAL_COUNT : integer := PULSE_LENGTH + FRONT_PORCH + ACTIVE_VIDEO
+ BACK_PORCH;

constant BLANK_MIN integer := PULSE_LENGTH + BACK_PORCH;

constant BLANK_MAX : integer := TOTAL_COUNT - FRONT_PORCH;

-- Internal Counters for horiznotal and vertical sync

signal count i : std_logic vector(bit width(TOTAL _COUNT)-1 downto 0);
begin

-- Main State Machine for VGA timing
sync_counter_prc : process (clk, reset _n)
begin

-- Active Low Reset
if (reset_ n = "0") then

-- Reset Defaults
count_i <= (others=>"0");

-- rising edge of the clk.
elsift (clk"event and clk = "1") then
if (clk _enable = "1%) then

-— Count ever rising clock.
if (count_i /= TOTAL_COUNT-1) then
--— Internal counter counts until its maximum value.
count_i <= count_i + 1;
else
-- Reset counter to zero when it passes its max value.
count_i <= (others=>"0");
end if;
end if;
end if;
end process;
-- Async. signals gate, sync, and blank.
gate <= "1 when (count_i = TOTAL_COUNT-1) else "0%;
blank <= "1° when ((count_i < BLANK_MIN) or (count_i >= BLANK MAX)) else
0" :
sync_n <= "0" when (count_ i < PULSE_LENGTH) else "1°7;
count <= count_1i;

end synth;

C.20 VGA CONTROLLER

This VHDL file drives the red, green, blue, vertical sync and horizontal sync to the VGA

interface.

-— Filename : vga_ctrl.vhd

-— Date > Februrary 20 2005
-- Author : James Warner
-- Desc : This logic drives the display VSYNC and HSYNC

- signals. It also passes through the 3 bit,
- red,green and blue signals.

library ieee;
use i1eee.std logic 1164.all;
use ieee.std logic arith.all;
use ieee.std_logic _unsigned.all;

library work;
use work.gpu_pkg-all;

entity vga ctrl is

generic(
-— Number of bits per color
NUM_COLOR_BITS : natural := 8;
-- Video timing Generics.
H ACTIVE_VIDEO : integer := 640;
H_PULSE_LENGTH : integer := 96;
H_FRONT_PORCH : integer := 16;
H BACK_ PORCH : integer := 48;
V_ACTIVE_VIDEO : integer := 480;
V_PULSE_LENGTH : integer := 2;
V_FRONT_PORCH : integer := 11;
V_BACK_PORCH : integer := 31;
-- Pixel Fifo Generics
FIFO_DEPTH : integer := 16;
FIFO_AFULL_THRESH : integer := 9;
FIFO_AEMPTY_THRESH: integer := 8
)
port(
-— Clock, reset and enable signals
vga_clk > in std_logic;
reset _n - In std _logic;
gpu_enable - Iin std _logic;
-— Input pixel data.
pixel _data_in : in std _logic_vector((NUM_COLOR BITS * 3)-1 downto
0);
pixel _wr_req - In std _logic;

-- Signals to the display

vsync_n out std_logic;
hsync_n out std_logic;
red_value out std_logic_vector(NUM_COLOR_BITS-1 downto 0);

green_value
blue_value
vga_valid

out std logic _vector(NUM_COLOR _BITS-1 downto 0);
out std _logic vector(NUM_COLOR _BITS-1 downto 0);
out std_logic;

-— Display driver and fifo status
pixel_fifo full : out std_logic;
pixel fifo empty : out std logic;

296

pixel fifo_afull
pixel fifo _aempty
pixel_eof

out std_logic;
out std_logic;
out std_logic

)

end vga_ctrl;

architecture hdl of vga_ctrl is
-- Constants

constant PIXEL_SIZE : integer := NUM_COLOR_BITS * 3;
constant FIFO_BITS : integer := bit_width(FIFO_DEPTH);

constant H_TOTAL - integer := H_ACTIVE VIDEO + H PULSE LENGTH +
H_FRONT_PORCH + H_BACK_ PORCH;
constant V_TOTAL : integer := V_ACTIVE_VIDEO + V_PULSE_LENGTH +

V_FRONT_PORCH + V_BACK_PORCH;
-- State Type and State Vector
type gpu_drive_state t is (GPU_IDLE, GPU_PRE DRIVE, GPU DRIVE);
signal gpu_drive_state : gpu_drive state_t;

-- Internal Counters for horiznotal and vertical sync

signal hcount : std_logic_vector(bit width(H_TOTAL)-1 downto
0):

signal vcount : std_logic_vector(bit width(V_TOTAL)-1 downto
0);

-- Horizontal and Vertical generator enable signals.

signal hsync_enable : std_logic;

signal vsync _enable : std _logic;

signal eof _enable : std_logic;

-- Blanking signals

signal hblank : std_logic;

signal vblank : std_logic;

signal reset : std _logic;

-— Pixel Fifo internal signals

signal pixel_read data : std_logic_vector((NUM_COLOR_BITS*3)-1 downto
0);

signal pixel_read_req : std_logic;

-— Pixel Fifo internal signals

signal pixel _fifo _empty s : std_logic;
signal pixel fifo aempty s : std _logic;
signal pixel fifo afull_s : std logic;

signal pixel_fifo_full_s std_logic;
-— Output register

signal vsync n_1i std_logic;
signal hsync n_i std_logic;

signal red_value_i
signal green_value_1i
signal blue_value i
signal vga valid_i

std _logic_vector(NUM_COLOR_BITS-1 downto 0);
std_logic_vector(NUM_COLOR_BITS-1 downto O);
std _logic_vector(NUM_COLOR _BITS-1 downto 0);
std_logic;

-- Sync pulse generator component.
component vga_sync_generator
generic (
-- Generics for horizontal timing
PULSE_LENGTH : integer;
FRONT_PORCH : integer;
ACTIVE_VIDEO : integer;

297

BACK_PORCH . integer

port(

-- Clock, reset and enable signals
clk > in std_logic;
reset _n : Iin std _logic;
clk _enable - in std _logic;

-— Output signals

sync_n : out std _logic;
gate : out std _logic;
blank : out std logic;
count : out std logic vector(bit width(PULSE_LENGTH +

FRONT_PORCH + ACTIVE_VIDEO + BACK_PORCH)-1 downto 0)
end’component;

-- Pixel Fifo component.
component fifo_l1clk

generic (
FIFO_WIDTH : integer; -- Fifo with in bits
FIFO_DEPTH : integer; -- Fifo depth in FIFO_WIDTH sized words.
FIFO_AFULL_THRESH : integer; -- Almost empty level threshold
FIFO_AEMPTY THRESH : integer; -- Almost empty level threshold
FIFO_FALL_THROUGH : integer
)
port(
--— Clock and reset
reset : in std_logic;
clk - Iin std _logic;
-— Control signals
push - Iin std_logic;
pop > in std_logic;
-- Read write data
wdata in std logic_vector(FIFO_WIDTH-1 downto 0);

rdata : out std logic_vector(FIFO_WIDTH-1 downto 0);

-- Status flags.

afull : out std logic;
aempty : out std logic;
empty : out std_logic;
full : out std logic
).

end’component;
begin

-- Instantiate Horizontal Sync Generator
hsync_gen_0 : vga_sync_generator
generic map
PULSE_LENGTH => H_PULSE_LENGTH,
FRONT_PORCH => H_FRONT_PORCH,
ACTIVE_VIDEO => H_ACTIVE_VIDEO,
BACK_PORCH => H_BACK_PORCH

)

port map (
clk => vga_clk,
reset_n => reset_n,
clk_enable => hsync_enable,
sync_n => hsync n_1i,

298

gate
blank
count

);

-- Instantiate

=> vsync_enable,
=> hblank,
=> hcount

Vertical Sync Generator

vsync_gen_0 : vga_sync_generator
generic map (
PULSE_LENGTH => V_PULSE_LENGTH,
FRONT_PORCH => V_FRONT_PORCH,
ACTIVE_VIDEO => V_ACTIVE_VIDEO,

BACK_PORCH

)

port map (
clk
reset_n
clk _enable
sync_n
gate
blank
count

);

-- Instanciate

=> V_BACK_PORCH

=> vga_clk,

=> reset_n,

=> vsync_enable,
=> vsync_n_i,

=> eof _enable,
=> vblank,

=> vcount

Pixel Fifo

reset <= not reset_n;

pixel_Ffifo 0 :

fifo_iclk

generic map (

FIFO_WIDTH
FI1FO_DEPTH

=> PIXEL_SIZE,
=> FIFO_DEPTH,

FIFO _AFULL THRESH => FIFO_AFULL_THRESH,
FIFO_AEMPTY_THRESH => FIFO_AEMPTY_THRESH,
FIFO_FALL_THROUGH => 1

)

port map (
reset =>
clk =>
push =>
pop =>
wdata =>
rdata =>
afull =>
aempty =>
empty =>
full =

)

reset,

vga _clk,

pixel _wr_req,
pixel_read_req,
pixel _data in,

pixel _read data,
pixel _fifo_afull_s,
pixel fifo aempty_s,
pixel fifo _empty s,
pixel_fifo_full_s

-- End of frame or reset fifo signal.

pixel_read req

<= not vblank and not hblank;

pixel Fifo empty <= pixel Ffifo _empty s;
pixel_fifo full <= pixel_fifo_full_s;
pixel _Ffifo afull <= pixel fifo afull_s;
pixel _Ffifo _aempty<= pixel fifo aempty s;

pixel_eof

-—- Main State

<= eof_enable and vsync_enable;

Machine for VGA timing

gpu_drive_state prc : process (vga_clk, reset_n)

begin

-- Active Low Reset

if (reset n

= "0") then

-- Reset Defaults
gpu_drive_state <= GPU_IDLE;

299

hsync_enable <= "0";

red value i <= (others=>"0");
blue_value_i <= (others=>7"0");
green_value_i <= (others=>"0");
vga valid_i <= "0";

-— States register on rising edge of the clk.
elsif (vga clk"event and vga clk = "1%) then

case gpu_drive_state is
when GPU_IDLE =>

-— Wait for enable signal.
-- Once enable is set start loading in pixel data.
if (gpu_enable = "1") then
gpu_drive_state <= GPU_PRE_DRIVE;
end if;

when GPU_PRE_DRIVE =>

-- Assert hsync_enable which will kick off the

-- GPU Driver.

hsync_enable <= "1°7;

if (eof _enable = "1" and vsync _enable = "1") then
gpu_drive_state <= GPU_DRIVE;

end if;

when GPU_DRIVE =>

if (hblank = "1" or vblank = "1%) then
-- Blank Pixels if outside active video area.
red_value_1i <= (others=>"0");
green_value_i1 <= (others=>"0%);
blue value 1 <= (others=>"0");
vga_valid_i <= "0°;
else
-— Drive out pixels if in active screen area.
red_value_i <= pixel_read_data(NUM_COLOR_BITS*1-1 downto 0);

green_value_i <= pixel _read_data(NUM_COLOR_BITS*2-1 downto
NUM_COLOR_BITS*1);
blue value_i <= pixel_read_data(NUM_COLOR_BITS*3-1 downto

NUM_COLOR_BITS*2);
vga valid_i <= "1°7;
end if;

end case;
end if;
end process;

reg_output_prc : process (vga_clk,reset _n)
begin

if (reset_n = "0") then

-— Reset Output Registers
vsync_n <= "1%";

hsync_n <= "1°7;
red_value <= (others=>"0")
green_value <= (others=>"0%)
blue value <= (others=>"0%)
vga_valid <= "0°";

elsift (vga clk"event and vga clk="1") then

300

vsync_n <= vsync_n_i;
hsync_n <= hsync_n_i;

red value <= red _value_1i;
green_value <= green_value_i;
blue value <= blue value_i;
vga valid <= vga valid_i1;

end if;
end process;

end hdl;

C.21 GRAPHICS PIPELINE TESTBENCH

This VHDL is used to test the actual graphics pipeline by loading objects into the

graphics pipeline and using a PPM file generator to view the results.

library ieee;
use ieee.std logic 1164 ._.all;
use ieee.std _logic _arith.all;
use ieee.std logic unsigned.all;

library work;
use work.zbt ctrl_pkg.all;
entity video _control_top tb is

end video_control_top_tb;

architecture test of video _control _top tb is

-- Constants

constant sysCLK : time := 5 ns; -- 100 Mhz
constant zbtCLK : time = 5 ns; -- 100 Mhz
constant vgaCLK : time = 20 ns; -- 25 Mhz
constant dviCLK : time = 10 ns; -- 50 Mhz
constant tsetup : time = 1 ns;

constant boardDelay : time := 1 ns;

-— Tieoffs in case you need them...
signal vdd = std_logic;
signal gnd : std_logic vector(63 downto 0);

component ppm_gen is
generic(
X_DIM : integer := 640;
Y_DIM : integer := 480;
PATH : string := "./ppm_frames/output frames/"
)
port (
pixel_clk : in std_logic;

301

1/0

enable in std_logic;

red - in std _logic_vector(7 downto 0);
green : in std_logic_vector(7 downto 0);
blue : In std_logic vector(7 downto 0);
push : in std_logic

end’component;

component cy7cl1352
generic (
-- Constant parameters
addr_bits : INTEGER := 18;
data_bits : INTEGER := 36;

-— Timing parameters for -5 (133 Mhz)

tCYC : TIME = 7.5 ns;
tCH : TIME = 3.0 ns;
tCL : TIME = 3.0 ns;
tCo : TIME = 4.0 ns;
tAS : TIME = 1.5 ns;
TtCENS : TIME = 1.5 ns;
tWES : TIME = 1.5 ns;
DS : TIME = 1.5 ns;
TtAH : TIME = 0.5 ns;
tCENH : TIME = 0.5 ns;
tWEH : TIME = 0.5 ns;
tDH : TIME = 0.5 ns

)

-— Port Declarations

port (
Dq : INOUT STD_LOGIC _VECTOR ((data bits - 1) DOWNTO 0); -- Data
Addr - IN STD_LOGIC_VECTOR ((addr_bits - 1) DOWNTO 0); -- Address
Mode - IN STD_LOGIC = "1, -— Burst Mode
Clk - IN STD_LOGIC; -- Clk
CEN_n - IN STD_LOGIC; -- CEN#
AdvLd n : IN STD LOGIC; -— Adv/Ld#
Bwa_n - IN STD_LOGIC; -- Bwa#
Bwb_n = IN STD_LOGIC; -- BWb#
Rw_n - IN STD_LOGIC; -— RW#
Oe_n - IN STD_LOGIC; -- OE#
Cel n - IN STD_LOGIC; -- CE1#
Ce2 = IN STD_LOGIC; -- CE2
Ce3_n - IN STD_LOGIC; -- CE3#
Zz - IN STD_LOGIC -- Snooze Mode

)

end component;
component video_control_top is

port(
-- Reset/Clock
reset : in std_logic; -- Async Reset.
sys clk : In std_logic; -- System clock.
zbt _clk : in std_logic; -- ZBT memory clock.
vga_clk : in std_logic; -- Vga clock.

-— VGA enable signals.
vga_enable : in std_logic;

-— New frame trigger signals.
gpu_enable - in std_logic;

302

-- Background

background : in std _logic _vector(35
-- End of file
eof : out std _logic;

-— Matrix inp
matrix_we
matrix_sel
matrix_waddr
matrix_wdata

-- Pixel Pipe
x_1in :
y_in

Z in

w_in
color
pix_valid
pix_ready

ut

|
o
|
|

in
in
in
in
in
in
out

n std _logic;

n std_logic_vector(1
n std_logic_vector(l
n std_logic_vector(l

std_logic_vector(31
std_logic_vector(31
std _logic _vector(31l
std _logic_vector(31l
std_logic_vector (17
std_logic;

std_logic;

-— Clipping Maximum

Zmax -

in

-- CPU Interf@ce

cpu_sel :
cpu_we
cpu_addr
cpu_wdata
cpu_wdone
cpu_dval
cpu_rdata

imn

-— ZBT interface

zbt_cen :
zbt_wen
zbt _oen
zbt_ts
zbt_wdata
zbt _addr
zbt_rdata

out
out
out
out
out
out
in

-— Dvi interface

dvi_hsync_n:
dvi_vsync_n:
dvi_data_en:
dvi_datal :
dvi_data2 :

end component;

out
out
out
out
out

std_logic_vector(31

port.

std_logic;
std_logic;
std_logic_vector(19
std_logic_vector(35
std_logic;
std_logic;
std_logic_vector(35

std_logic;
std_logic;
std_logic;
std_logic;
std_logic_vector (35
std_logic_vector(17
std_logic_vector(35

signals.

std_logic;
std_logic;
std_logic;

std _logic_vector(11l
std_logic_vector(11

component user_logic is

port(

-- Video output enable.

video_enable |

gpu_enable o

(0]

-- Background color

background_o

-- End of fi
eof i

le

I out

303

out
out

downto 0);

downto 0);
downto 0);
27 downto 0);

downto 0);
downto 0);
downto 0);
downto 0);
downto 0);

downto 0);

downto 0);

downto 0);

downto 0);

downto 0);
downto 0);
downto 0);

downto 0);
downto 0)

std_logic;
std_logic;

std_logic_vector(35 downto 0);

std_logic;

-— Matrix Input
matrix_we
matrix_sel

out
out

std_logic;
std_logic_vector(1l downto 0);

matrix_waddr out std _logic vector(l downto 0);
matrix_wdata out std_logic_vector(127 downto 0);
-— Pixel input
X_In_o : out std_logic_vector(31 downto 0);
y in_o : out std _logic_vector(31 downto 0);
Zz in_ o : out std _logic_vector(31 downto 0);
w_in_o : out std_logic_vector(31 downto 0);
color_in_o : out std _logic_vector(17 downto 0);
point_trig o : out std _logic;
-- ZBT DCM lock
zbt _dcm_lock - in std _logic;
-— Clipping Zmax
zmax_o : out std_logic_vector(31 downto 0);
-— Debug zbt memory interface.
zbt_mbox_sel : out std _logic;
zbt_mbox_we : out std_logic;
zbt _mbox_addr : out std _logic_vector(19 downto 0);
zbt_mbox_wdata : out std _logic_vector(35 downto 0);
zbt_mbox_rdata > in std_logic_vector(35 downto 0);
zbt _mbox_wdone - In std _logic;
zbt_mbox_dval - in std _logic;
-- OPB interface.
Bus2IP_CIlk - in std _logic;
Bus2IP_Reset > in std_logic;
Bus2IP_Addr : In std _logic_vector(0 to 31);
Bus2IP_CS - in std _logic vector(0 to 0);
Bus2IP_RNW > in std_logic;
Bus2IP_Data : In std logic _vector(0 to 31);
Bus2IP_BE - in std _logic vector(0 to 3);
IP2Bus_Data : out std_logic_vector(0 to 31);
I1P2Bus_RdAck : out std logic;
I1P2Bus_WrAck : out std _logic;
IP2Bus_Error : out std_logic;
IP2Bus_IntrEvent : out std _logic_vector(0 to 0)
)

end component;

signal vga_enable > std_logic;

signal gpu_enable : std _logic;

signal background : std_logic _vector(35 downto 0);

signal eof > std_logic;

signal zbt adv : std_logic;

signal zbt_addr : std_logic_vector(17 downto 0);

signal zbt bwn : std _logic vector(1 downto 0);

signal zbt wen : std_logic;

signal zbt_oen > std_logic;

signal zbt cen_i : std _logic;

signal zbt ts : std_logic;

signal zbt zz : std_logic;

signal zbt mode : std_logic;

signal zbt cen : std_logic;

signal zbt ce : std_logic_vector(2 downto 0);

signal zbt dq : std_logic vector(35 downto 0);

304

signal zbt wdata : std_logic_vector(35 downto 0);
signal zbt rdata : std_logic _vector(35 downto 0);
signal reset : std _logic = "17;

signal sys clk : std_logic = "0%;

signal zbt clk : std_logic = "07;

signal vga clk : std _logic = "07;

signal cpu_sel - std_logic;

signal cpu_we : std _logic;

signal cpu_addr : std_logic _vector(19 downto 0);
signal cpu_wdata : std_logic_vector(35 downto 0);
signal cpu_wdone : std _logic;

signal cpu_dval : std_logic;

signal cpu_rdata : std_logic_vector(35 downto 0);
signal dvi_clk : std_logic = "1%;

signal dvi_hsync_n - std_logic;

signal dvi_vsync n : std _logic;

signal dvi_data en : std_logic;

signal dvi_datal : std_logic_vector(11l downto 0);
signal dvi_data2 : std _logic vector(l11l downto 0);
signal ppm_red : std_logic_vector(7 downto 0);

signal ppm _green : std _logic _vector(7 downto 0);

signal ppm_blue : std_logic _vector(7 downto 0);

signal ppm_push > std_logic;

type ppm_state t is (FIRST,SECOND);

signal ppm_state > ppm_state_t;

signal ip_addr : std_logic_vector(31 downto 0);
signal ip_rnw : std_logic;

signal ip_rack : std_logic;

signal ip_wack : std _logic;

signal ip_wdata : std_logic _vector(31 downto 0);
signal ip_be : std_logic_vector(3 downto 0);

signal ip_cs : std _logic _vector(0 downto 0);

signal ip_rdata : std_logic _vector(31 downto 0);

signal x_in std _logic_vector(31 downto 0);

signal y_in : std _logic_vector(31 downto 0);
signal z_in : std_logic_vector(31 downto 0);
signal w_in : std _logic vector(31 downto 0);
signal color_in : std_logic _vector(17 downto 0);
signal point_trig > std_logic;
signal zmax : std_logic_vector(31 downto 0);
signal matrix_we : std_logic;
signal matrix_sel : std_logic _vector(l downto 0);
signal matrix_waddr : std_logic_vector(l downto 0);
signal matrix_wdata : std _logic vector (127 downto 0);
begin

-- Power supplies...

vdd <= "17;

gnd <= (others => "0%);

-- Clock an reset generation.

sys clk <= (not sys_clk) after sysCLK;
vga_clk <= (nhot vga clk) after vgaCLK;
dvi_clk <= (not dvi_clk) after dviCLK;
zbt clk <= (not zbt clk) after zbtCLK;

305

reset <= "1°",

process(dvi_clk,r
begin

0" after (sysCLK * 25);

eset)

if (reset = "17) then

ppm_red <=
ppm_green <=
ppm_blue <=
ppm_push <=

ppm_state <=
elsif (dvi_clk

ppm_push <= *

if (dvi_data_
it (ppm_sta
ppm_state
ppm_red
ppm_green(3

else
ppm_state
ppm_green(7
ppm_blue
ppm_push

end if;

end if;

end if;
end process;

ul_genarator : pp
generic map(

X_DIM => 640,

Y _DIM => 480

(others => "0%);
(others => "0");
(others => "07%);
IOI ;

FIRST;

= "1" and dvi_clk"event) then

0%;
en = "1") then
te = FIRST) then
<= SECOND;
<= dvi_datal(7 downto 0);
downto 0) <= dvi_datal(l1l downto 8);

<= FIRST;

downto 4) <= dvi_data2(3 downto 0);
<= dvi_data2(11 downto 4);
<= "1

m_gen

dvi_clk,
vga_enable,
ppm_red,
ppm_green,
ppm_blue,
ppm_push

video_control_top O : video_control_top

)

port map(
pixel_clk =>
enable =>
red =>
green =
blue =>
push =>

);

port map(
-- Reset/Cloc
reset =
sys _clk =
zbt clk =
vga_clk =>
-- VGA enable

vga_enable =>

-— New frame
gpu_enable =>

-- Background
background =>

k

reset,
sys _clk,
zbt_clk,
vga_clk,

sighals.
vga_enable,

trigger signals.
gpu_enable,

background,

306

-—- End of frame.

eof => eof,

-— Matrix input

matrix_we => matrix_we,
matrix_sel => matrix_sel,

matrix_waddr => matrix_waddr,
matrix_wdata => matrix_wdata,

-- Pixel Pipe.

x_1in => x_1in,
y_in = vy in,

Z in => z in,
w_in => w_in,
color => color_in,

pix_valid => point_trig,
pix_ready => open,

-— Clipping Zmax

zmax => zmax,

-— CPU Interface port.
cpu_sel => cpu_sel,
cpu_we => cpu_we,
cpu_addr => cpu_addr,

cpu_wdata => cpu_wdata,
cpu_wdone => cpu_wdone,
cpu_dval => cpu_dval,
cpu_rdata => cpu_rdata,

-- ZBT interface

zbt_cen => zbt cen_i,
zbt wen => zbt wen,
zbt oen => zbt oen,
zbt_ ts => zbt_ts,

zbt_wdata => zbt_wdata,
zbt addr => zbt addr,
zbt rdata => zbt rdata,

-- DVI interface
dvi_hsync_n => dvi_hsync n,
dvi_vsync_n => dvi_vsync_n,
dvi_data en => dvi_data_en,
dvi_datal => dvi_datal,
dvi_data2 => dvi_data2

)

zbt model 0 : cy7cl1352
generic map(

-- Constant parameters
addr_bits => 18,
data bits => 36,

-— Timing parameters for -5 (133 Mhz)

tCYC => 7.5 ns,
tCH => 3.0 ns,
tCL => 3.0 ns,
tCo => 4.0 ns,
tAS => 1.5 ns,
tCENS => 1.5 ns,
tWES => 1.5 ns,
tDS => 1.5 ns,

307

tAH => 0.5
tCENH => 0.5
tWEH => 0.5
tDH => 0.5
-— Port Declaration
port map(
Dq => zbt dq
Addr => zbt ad
Mode => zbt mo
Clk => zbt cl
CEN_n => zbt ce
AdvLd n => zbt ad
Bwa_n =>
Bwb_n =
Rw_n => zbt we
Oe n => zbt oe
Cel n => zbt ce
Ce2 => zbt ce
Ce3 n => zbt ce
Zz => zbt zz
)

ns,
ns,
ns,
ns

S

dr,
de,
k,
n,
V’

zbt_bwn(0),
zbt_bwn(1),

n ’
n Ed
OF
1,
2,

-- Tristate buffer for ZBT data...

zbt dq <=)
zbt rdata <= zbt _dq
zbt mode <= "0°;
zbt zz <= "0°;
zbt_ce(0) <= "0~7;
zbt ce(l) <= "1°7;
zbt _ce(2) <= zbt ce
zbt_bwn <= (other
zbt adv <= "0";
zbt_cen <= "0";
u regs if0 : user_lI
port map(
-- Video output

video_enable o
gpu_enable_o

-- Background c
background_o =>

-- End of frame
eof 1 =
-— Matrix input
matrix_we
matrix_sel
matrix_waddr
matrix_wdata

-— Vector input
X_in_o

y in_o

z in_o

w_in_o
color_in_o
point_trig o

-— Zmax Clipping

zbt wdata when (zbt_ts

(35 downto 0);

n_i;
s = "0%);

ogic

enable.
=> vga_enable,
=> gpu_enable,

olor
background,

eof,

matrix_we,
matrix_sel,
matrix_waddr,
matrix_wdata,

=>
=>
=>
=>
=>
=>

x_in,
y_in,
z_in,
w_in,

color_in,
point_trig,

308

-- Clock enable...

"0") else (others => "Z%);

zmax_o

-- ZBT DCM lock

zbt dcm_lock =>

=> zZmax,

"1,

—-— Debug zbt memory interface.

zbt _mbox_sel =>
zbt_mbox_we =>
zbt _mbox _addr =>
zbt _mbox_wdata =>

zbt_mbox_rdata =>

zbt_mbox_wdone => cpu_wdone,
zbt _mbox_dval => cpu_dval,
-— PLB interface.
Bus2IP_CIlk => sys clk,
Bus21P_Reset => reset,
Bus2IP_Addr => 1p_addr,
Bus2IP_CS => ip_cs,
Bus2I1P_RNW = ip_rnw,
Bus2IP_Data => ip_wdata,
Bus2IP_BE => i1p_be,
IP2Bus_Data => ip_rdata,
1P2Bus_RdAck => 1p_rack,
1P2Bus_WrAck => i1p_wack,
I1P2Bus_Error => open,
1P2Bus_IntrEvent => open
)
cpu_mem_write_prc : process
variable rslt_data : std_logic_vector(31 downto 0) := (others => "0%);
procedure cpu _write_addr (addr : in std logic vector(7 downto 0);
wdata : in std_logic_vector(31 downto 0)
) is
begin
wailt until sys clk = "0";
ip_addr <= x'"00000" & '"00" & addr & '00";
ip_be <= (others => "17%);
ip_cs <= "1";
ip_rnw <= "07;
ip_wdata <= wdata;
wait until (sys_clk = "07);
ip_addr <= (others => "07);
ip_be <= (others => "07);
ip_cs <= "0";
ip_rnw <= "1°;
ip_wdata <= (others => "07);
end procedure;
procedure cpu_read_addr (addr : in std_logic_vector(7 downto 0);
rdata : out std_logic_vector(31 downto 0)
) is
begin
wailt until sys clk = "0";
ip_addr <= x'"00000" & '"00" & addr & '00";
ip_be <= (others => "17%);
ip_cs <= "1";

cpu_sel,
cpu_we,
cpu_addr,
cpu_wdata,
cpu_rdata,

309

ip rnw <= "1%;
wait until (sys_clk = "0°

);
ip_addr <= (others => "07%);
ip_be <= (others => "07%);
ip_cs <= "0";
ip_rnw <= "1%;
rdata = ip_rdata;

end procedure;
begin
-- Initial conditions

-- Wait for reset
wait until reset = "07;
wait until sys clk = "0";

-- Read Id.
cpu_read_addr(x'00",rslt_data);

-— Write and read scratch register.
cpu_write_addr(x"01",x"1234abcd");
cpu_read_addr(x'01",rslt_data);

-- Write iIn a screen.
for y in O to 239 loop
for x in 0 to 319 loop
cpu_write_addr(x'12",x""00000000");
cpu_write_addr(x"13",x""00000000");
cpu_write_addr(x'"10",conv_std _logic_vector((x+(y*320))*4,32));
end loop;
end loop;

-— Write background register
cpu_write_addr(x"04",x""0000003F");
cpu_write_addr(x"05",x"00000000");

-— Zmax register
cpu_write_addr(x"D0",x""BDCCCCCC™);

-— Setup Default World translation to view coordinates matrix values.
cpu_write_addr(x"EOQ",x""3F800000");

cpu_write_addr(x"E1",x"00000000");

cpu_write_addr(x"E2",x""00000000");
cpu_write_addr(x"E3",x'"00000000");
cpu_write_addr(x"E4",x"00000000™);
cpu_write_addr(x"EO",x'"00000000"
cpu_write_addr(x"E1",x"3F800000"
cpu_write_addr(x"E2",x"00000000"
cpu_write_addr(x"E3",x'"00000000"
cpu_write_addr(x"E4",x'"00000001"

cpu_write_addr(x"E1",x""00000000");
cpu_write_addr(x"E2",x"3F800000");
cpu_write_addr(x"E3",x"00000000");
cpu_write_addr(x"E4'",x'00000002");
cpu_write_addr(x"EO",x"00000000"
cpu_write_addr(x"E1'",x'00000000"
cpu_write_addr(x"E2",x"00000000"

)
)
)
)
)
)
)
)
Cpu_write_addr(x"EO",x"OOOOOOOO"g
)
)
)
)
g
cpu_write_addr(x"E3",x""3F800000'")

310

cpu_write_addr(x"E4",x"00000003");

-— Setup Projection translation to screen coordinates matrix values.
cpu_write_addr(x"EO",x"431F8000"");
cpu_write_addr(x"E1",x"00000000");
cpu_write_addr(x"E2",x'00000000"
cpu_write_addr(x"E3",x"431f8000"
cpu_write_addr(x"E4",x"0000000C"

cpu_write_addr(x"EO0",x"00000000"
cpu_write_addr(x"E1",x"42EF0000"
cpu_write_addr(x"E2",x"00000000"
cpu_write_addr(x"E3",x"42EF0000"
cpu_write_addr(x"E4",x"0000000D"

cpu_write_addr(x"E1",x"00000000"
cpu_write_addr(x"E2",x"3F800000"
cpu_write_addr(x"E3",x"00000000"
cpu_write_addr(x"E4",x"0000000E"

)
);
)
)
)
)
)
)
cpu_write_addr(x"EOQ",x"00000000")
)
)
)
)
cpu_write_addr(x"EOQO",x"00000000")
cpu_write_addr(x'"E1",x"00000000")
cpu_write_addr(x"E2",x"00000000")
cpu_write_addr(x"E3",x""3F800000")
cpu_write_addr(x'"E4",x""0000000F)
-- Enable GPU engine.

cpu_write_addr(x'"03",x"00000002");

-- Enable VGA engine.
cpu_write_addr(x"03",x"00000003");

-- Draw a triangle
while (true) loop

-— Wait for end of frame.
wait until eof = "17;

-- Setup Default View translation to screen coordinates matrix
values.

cpu_write_addr(x"EO0",x"3F800000"");

cpu_write_addr(x"E1",x"00000000");

cpu_write_addr(x"E2",x'"00000000");

cpu_write_addr(x"E3",x"00000000"");

cpu_write_addr(x"E4",x"00000004");

cpu_write_addr(x"EO0",x"00000000"
cpu_write_addr(x"E1",x"3F800000"
cpu_write_addr(x"E2",x'00000000"
cpu_write_addr(x"E3",x"00000000"
cpu_write_addr(x"E4",x"00000005"

)
)
)
)
)
)
)
cpu_write_addr(x"EO0",x"00000000"");
cpu_write addr(x"E1",x'"00000000"");
cpu_write_addr(x"E2",x"3F800000");
cpu_write_addr(x"E3",x"00000000"")
cpu_write addr(x"E4",x"00000006")

)

)

)

)

)

cpu_write_addr(x"EO0",x"00000000"
cpu_write_addr(x"E1",x"00000000"
cpu_write_addr(x"E2",x'00000000"
cpu_write_addr(x"E3",x"3F800000"
cpu_write_addr(x"E4",x"00000007"

-— Setup Default View translation to screen coordinates matrix
values.
cpu_write_addr(x"EO",x"3F800000");
cpu_write_addr(x"E1",x"00000000");
cpu_write_addr(x"E2",x"00000000");
cpu_write_addr(x"E3",x"00000000");
cpu_write_addr(x"E4",x"00000008");
cpu_write_addr(x"EOQ",x"00000000");
cpu_write_addr(x"E1",x"3F800000");
cpu_write_addr(x"E2",x"00000000");
cpu_write_addr(x"E3",x"00000000");
cpu_write_addr(x"E4",x"00000009");
cpu_write_addr(x"EO",x"00000000");
cpu_write_addr(x"E1",x"00000000");
cpu_write_addr(x"E2",x"3F800000");
cpu_write_addr(x"E3",x"00000000");
cpu_write_addr(x"E4",x"0000000A™);
cpu_write_addr(x"EO",x"00000000"
cpu_write_addr(x"E1'",x"00000000"
cpu_write_addr(x"E2",x"3F800000"
cpu_write_addr(x"E3",x"00000000"
cpu_write_addr(x"E4",x"0000000B")

)
)
)
)
)
)
)
)
)
);
)
)
)
)
)
s
)
)

-— Setup Default World translation to screen coordinates matrix
values.

cpu_write_addr(x"EO",x"3F800000);

cpu_write_addr(x"E1",x"00000000"

cpu_write_addr(x"E2",x"00000000"

cpu_write_addr(x"E3",x"00000000"

cpu_write_addr(x"E4",x"00000000"

cpu_write_addr(x"EO0",x"00000000"
cpu_write_addr(x"E1",x"3F800000"
cpu_write_addr(x"E2'",x"00000000"
cpu_write_addr(x"E3",x"00000000"
cpu_write_addr(x"E4",x"00000001"

cpu_write_addr(x"E1",x"00000000"
cpu_write_addr(x"E2",x"3F800000"
cpu_write_addr(x"E3",x"00000000"
cpu_write_addr(x"E4",x"00000002"

cpu_write_addr(x"EO0",x"00000000"
cpu_write_addr(x"E1",x"00000000"
cpu_write_addr(x"E2'",x"00000000"
cpu_write_addr(x"E3",x"3F800000"

)
)
)
)
)
)
)
)
)
cpu_write_addr(x"EO",x"OOOOOOOO"%
)
)
)
D,
);
;
cpu_write_addr(x"E4",x'"00000003")

-— Draw Cube

cpu_write_addr(x"F0",x"BES800000™) ;
cpu_write_addr(x"F1",x"BES800000");
cpu_write_addr(x"F2",x"BE800000");
cpu_write_addr(x"F3",x"3F800000");
cpu_write_addr(x"F4",x"0003FFFF");
cpu_write_addr(x"F5",x"00000001");
cpu_write_addr(x"FO0",x"BE800000") ;
cpu_write_addr(x"F1'",x"3E800000");
cpu_write_addr(x"F2",x"BE800000");
cpu_write_addr(x"F3",x"3F800000");

312

cpu_write_addr(x"F4",

X""0003FFFF"

cpu_write_addr(x"F5'",x"00000001"

cpu_write_addr(x"F0",x"BES8000O0O"
cpu_write_addr(x"F1',x"3E800000"
cpu_write_addr(x"F2",x"BES800000O"

cpu_write_addr(x"F3",

X"'3F800000™

cpu_write_addr(x"F4",x"0003FFFF"

cpu_write_addr(x"F5",
cpu_write_addr(x"F0",

X''00000001"
X"'3E800000"

cpu_write_addr(x"F1',x"3E800000"
cpu_write_addr(x"F2",x"BE800000O"

cpu_write_addr(x"F3",

X"'3F800000™

cpu_write_addr(x"F4",x"0003FFFF"

cpu_write_addr(x"F5",

X''00000001"

cpu_write_addr(x"F0",x"3E800000"

cpu_write_addr(x"F1',

X"'3E800000"

cpu_write_addr(x"F2",x"BE800000O"
cpu_write_addr(x"F3",x"3F800000"

cpu_write_addr(x"F4",
cpu_write_addr(x"F5",

X"'0003FFFF"
X''00000001™

cpu_write_addr(x"F0'",x"3E800000"
cpu_write_addr(x"F1l",x"BE800000O"
cpu_write_addr(x"F2",x"BE8S800000O"
cpu_write_addr(x"F3",x"3F800000"

cpu_write_addr(x"F4",
cpu_write_addr(x"F5",x

cpu_write_addr(x"F0",

X"'0003FFFF"

**00000001™

X"'3E800000"

cpu_write_addr(x"F1l",x"BE800000O"
cpu_write_addr(x"F2'",x"BE800000"

cpu_write_addr(x"F3",
cpu_write_addr(x"F4",

X"'0003FFFF"

cpu_write_addr(x"F5'",x"00000001"
cpu_write_addr(x"F0",x"BES800000O"
cpu_write_addr(x"F1l",x"BE800000O"
cpu_write_addr(x"F2'",x"BE800000"

cpu_write_addr(x"F3",
cpu_write_addr(x"F4",

X"'3F800000"
X"'0003FFFF"

cpu_write_addr(x"F5'",x"00000001"

cpu_write_addr(x"F0",x"BE8S800000O"
cpu_write_addr(x"F1',x"BE800000"
cpu_write_addr(x"F2",x"BF400000"

cpu_write_addr(x"F3",

X"'3F800000™

cpu_write_addr(x"F4",x"0003FFFF"

cpu_write_addr(x"F5",

X''00000001"

cpu_write_addr(x"F0",x"BE8S8000O0O"
cpu_write_addr(x"F1',x"3E800000"
cpu_write_addr(x"F2",x"BF400000"

cpu_write_addr(x"F3",

X"'3F800000™

cpu_write_addr(x"F4",x"0003FFFF"

cpu_write_addr(x"F5",

X''00000001"

cpu_write_addr(x"F0'",x"BE800000"

cpu_write_addr(x"F1',

X"'3E800000"

cpu_write_addr(x"F2",x"BF400000"
cpu_write_addr(x"F3'",x"3F800000"

cpu_write_addr(x"F4",
cpu_write_addr(x"F5",

X"'0003FFFF"
X''00000001"

cpu_write_addr(x"F0'",x"3E800000"

cpu_write_addr(x"F1',

)
)
)
)
)
)
)
)
E
)
)
)
)
)
);
)
)
)
)
)
)
)
)
)
)
)
)
)
X"*3F800000™)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

X"'3E800000"

cpu_write_addr(x"F2",x"BF400000"

313

cpu_write_addr(x"F3",

X"'3F800000"

cpu_write_addr(x"F4",x"0003FFFF"

cpu_write_addr(x"F5",

X''00000001"

cpu_write_addr(x"F0",x"3E800000"

cpu_write_addr(x"F1',

X"'3E800000"

cpu_write_addr(x"F2",x"BF400000"
cpu_write_addr(x"F3",x"3F800000"

cpu_write_addr(x"F4',
cpu_write_addr(x"F5",

X"'0003FFFF"
X''00000001"

cpu_write_addr(x"F0",x"3E800000"
cpu_write_addr(x"F1l",x"BE8S800000O"
cpu_write_addr(x"F2",x"BF400000"
cpu_write_addr(x"F3",x"3F800000"

cpu_write_addr(x"F4',
cpu_write_addr(x"F5",

cpu_write_addr(x"F0",

X"'0003FFFF"
X''00000001"

X"'3E800000"

cpu_write_addr(x"F1l",x"BE800000O"
cpu_write_addr(x"F2'",x"BF400000"

cpu_write_addr(x"F3",
cpu_write_addr(x"F4",

X"'3F800000"
X"'0003FFFF"

cpu_write_addr(x"F5'",x"00000001"
cpu_write_addr(x"F0",x"BES8000O0O"
cpu_write_addr(x"F1",x"BE800000O"
cpu_write_addr(x"F2'",x"BF400000"

cpu_write_addr(x"F3",
cpu_write_addr(x"F4",

X"'3F800000"
X"'0003FFFF"

cpu_write_addr(x"F5'",x"00000001"

cpu_write_addr(x"F0",x"BE8S80000O"
cpu_write_addr(x"F1',x"BE800000"

cpu_write_addr(x"F3",

X"'3F800000™

cpu_write_addr(x"F4",x"0003FFFF"

cpu_write_addr(x"F5",

X''00000001"

cpu_write_addr(x"F0",x"BE8S800000O"
cpu_write_addr(x"F1',x"BE800000"
cpu_write_addr(x"F2",x"BF400000"

cpu_write_addr(x"F3",

X"'3F800000™

cpu_write_addr(x"F4",x"0003FFFF"

cpu_write_addr(x"F5",

X''00000001"

cpu_write_addr(x"F0'",x"BE800000"

cpu_write_addr(x"F1',

X"'3E800000"

cpu_write_addr(x"F2",x"BE8S800000O"
cpu_write_addr(x"F3",x"3F800000"

cpu_write_addr(x"F4",
cpu_write_addr(x"F5",

X"'0003FFFF"
X''00000001™

cpu_write_addr(x"F0",x"BE800000"

cpu_write_addr(x"F1',

X"'3E800000"

cpu_write_addr(x"F2",x"BF400000"
cpu_write_addr(x"F3",x"3F800000"

cpu_write_addr(x"F4",
cpu_write_addr(x"F5",x

cpu_write_addr(x"F0",
cpu_write_addr(x"F1",

X"'0003FFFF"

'*00000001™

X"'3E800000"
X"'3E800000™

cpu_write_addr(x"F2'",x"BE800000"

cpu_write_addr(x"F3",
cpu_write_addr(x"F4",

X"'3F800000"
X"'0003FFFF"

cpu_write_addr(x"F5'",x"00000001"

cpu_write_addr(x"F0",
cpu_write_addr(x"F1",x

s
)
)
)
)
)
)s
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
3
cpu_write_addr(x"F2",x""BES800000")
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

X"'3E800000"

"*3E800000™

314

cpu_write_addr(x"F2",x"BF400000");
cpu_write_addr(x"F3",x"3F800000");
cpu_write_addr(x"F4",x"0003FFFF");
cpu_write_addr(x"F5",x"00000001");
cpu_write_addr(x"F0",x"3E800000")
cpu_write_addr(x"F1",x""BES800000")
cpu_write_addr(x"F2",x"BES800000")
cpu_write_addr(x"F3",x"3F800000")
cpu_write_addr(x"F4",x"0003FFFF')
cpu_write_addr(x"F5",x"00000001")
cpu_write_addr(x"F0",x"3E800000")
cpu_write_addr(x"F1",x""BES800000")
cpu_write_addr(x"F2",x"BF400000")
cpu_write_addr(x"F3",x"3F800000")
cpu_write_addr(x"F4",x"0003FFFF')
cpu_write_addr(x"F5",x"00000001")
end loop;

wait;
end process;

end architecture test;

315

APPENDIX D: C TESTCODE

This is the test code discussed in Section 4.5. The code provides initlization of the entire system.

In addition the test code handles responding to the inputs of N64 controller, driving the objects

into the graphics pipeline and updating the world and viewing translation matrices. The code is

listed below.

Ok X o R ok X X X ok o XN\

*

Xilinx, Inc.

XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"™ AS A
COURTESY TO YOU. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION AS
ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION OR
STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION
IS FREE FROM ANY CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE
FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION
XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO
THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO
ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION 1S FREE
FROM CLAIMS OF INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

*
N

b R X X R o X X X Ok ok XN\

*

Xilinx EDK 9.1.02 EDK _J SP2.4
This File is a sample test application

This application is intended to test and/or illustrate some
functionality of your system. The contents of this file may
vary depending on the IP in your system and may use existing
IP driver functions. These drivers will be generated in your
XPS project when you run the "Generate Libraries'™ menu item
in XPS.

Your XPS project directory is at:
C:\projects\gpu\xilinx\edk\microblaze\microblaze_ O\

*
N

// Located in: microblaze 0/include/xparameters.h
#include ''xbasic_types.h"

#include "'xparameters.h"

#include "'xuartlite_I.h"

#include "'xio.h"

#include "i2c.h"

#include "xenv.h"

#include "unistd.h"

316

#include "'stdio.h"

#include "xutil.h"

#include "mb_interface.h"

#include "plb_regs_interface.h"

#include "xintc_I_h"

#include "float.h"

#include "math.h"

//=

#define MASTER_CLOCK 100000000 // 100Mhz
#define 12C_FREQUENCY 100000 // 100Khz
#define 12C_PRER_VALUE (MASTER_CLOCK / (56 * 12C_FREQUENCY)) - 1

#define 12C_WTIME 0x00080000 // ~5m

#define GPU_REG_BADDR XPAR_PLB REGS INTERFACE_O_ MEMO_BASEADDR
#define N64_REG_BADDR XPAR_PLB_N64 CTRL_O_BASEADDR
#define 12C_BADDR XPAR_11C_EEPROM_BASEADDR
#define VIDEO 12C_BADDR XPAR_I11C_DVI1_BASEADDR
#define EEPROM_ADDR OxAO

#define DVI_ADDR OxEC

#define DVI_RGB BYPASS 0x21

#define DVI_TESTMODE 0x48

#define DVI_POWER_MNG 0x49

#define DVI_VERSION_ID Ox4A

#define DVI_DEVICE_ID Ox4B

#define GPU_ID GPU_REG _BADDR + 0xO
#define GPU_SCRATCH GPU_REG_BADDR + 0x4
#define GPU_DCM_STAT GPU_REG_BADDR + 0x8
#define GPU_CONTROL GPU_REG BADDR + 0xC
#define GPU_BACKGROUND COLOR GPU REG_BADDR + 0x10
#define GPU_BACKGROUND DEPTH GPU REG_BADDR + 0x14
#define GPU_ZBT _MBOX _WRITE GPU_REG BADDR + 0x40
#define GPU_ZBT_ MBOX_READ GPU_REG _BADDR + 0x44
#define GPU_ZBT_MBOX_DATAO GPU_REG _BADDR + 0x48
#define GPU_ZBT MBOX DATA1l GPU_REG BADDR + 0x4C
#define GPU_CLIP_ZMAX GPU_REG_BADDR + 0x340
#define GPU_MATRIX_CO_DATA GPU_REG_BADDR + 0x380
#define GPU_MATRIX_C1 DATA GPU_REG_BADDR + 0x384
#define GPU_MATRIX_C2 DATA GPU_REG_BADDR + 0x388
#define GPU_MATRIX_C3 DATA GPU_REG_BADDR + 0x38C
#define GPU_MATRIX_WRITE GPU_REG_BADDR + 0x390
#define GPU_X POINT GPU_REG_BADDR + 0x3CO
#define GPU_Y_ POINT GPU_REG_BADDR + 0x3C4
#define GPU_Z POINT GPU_REG_BADDR + 0x3C8
#define GPU_ W _POINT GPU_REG_BADDR + 0x3CC
#define GPU_COLOR _POINT GPU_REG_BADDR + 0x3DO
#define GPU_POINT_TRIG GPU_REG_BADDR + 0x3D4
#define N64_CONTROL N64 REG_BADDR + OxO
#define N64_STATUS N64 REG BADDR + Ox4
#define N64_CW_RETURN N64 REG_BADDR + Ox8
#define N64_BS_RETURN N64 REG_BADDR + Oxc

//=

const Xuint8 MICRON_AUX_REG = OxFO;

const Xu
const fl

int8 CAMERA_
oat MOVE_

12C_
INCR =

SLAVEADDR = OxBS8;
0.0025;

317

0.005;
0.005 * M_PI;

const float SCALE_INCR
const float ANGLE_INCR

// Define Globals.

volatile Xuint32 n64_button_reg;
volatile Xuint32 n64_button_reg_prev;
volatile Xuint32 scene_update;

void init_peripherals(Q) {

Xuint8 i2c_read _byte;
Xuint32 gpu_read_word;
volatile float *gpu_float ptr;
volatile float gpu float;
volatile int *gpu_int_ptr;
volatile float gpu_matrix[4][4];
Int X ys ’_lr

// Initialize the DVI 12C core.
xil_printf("Initializing DVI DAC 12C Bus... \r\n'");

12C_MASTER_initCore(VIDEO_12C_BADDR, 12C_PRER_VALUE, 12C_WTIME,MICRON_AUX_REG);

// Read out DVI Version ID.

i2c_read byte =

12C_MASTER_readByte(VIDEO_ 12C_BADDR,DVI_ADDR,DVI_VERSION_ID);
xil_printf(""'DVI DAC VERSION ID Reg = Ox%x \n\r',i2c_read byte);

// Read out DVI Device ID.

i2c_read byte =
12C_MASTER_readByte(VIDEO_12C_BADDR,DVI_ADDR,DVI_DEVICE_ID);
xil_printf('DVI DAC DEVICE ID Reg = Ox%X \n\r" i2c_read_byte);

// Setup RGB Bypass mode.

print("'Enabling RGB bypass mode \n\r');
I2C_MASTER_writeByte(VlDEO_I2C_BADDR,DVI_ADDR,DVI_RGB_BYPASS,Oxg);
i2c_read byte =

12C_MASTER_readByte(VIDEO _12C_BADDR,DVI_ADDR,DVI_RGB_BYPASS);
xil_printf(*'DVI RGB Bypass Reg = Ox%X \n\r", |20_read_byte)

// Power on DAC.

print("'Powering up DAC \n\r");
12C_MASTER_writeByte(VIDEO_12C_BADDR,DVI_ADDR,DVI_POWER_MNG,0x0);
i2c_read_byte =
12C_MASTER_readByte(VIDEO_12C_BADDR,DVI_ADDR,DVI_POWER_MNG) ;
xil_printf(*'DVlI Power Managment Reg = Ox%x \n\r',i2c _read byte);

// Check GPU id.
gpu_read word = Xlo_In32(GPU_ID);
xil_printf("'GPU ID Reg = Ox%x \n\r',gpu_read_word);

// Determine if controller is present
gpu_read_word = Xlo_In32(N64__ STATUS)
1T ((gpu_read_word & 0x00000002) == 0) {
xil_printf("N64 Controller Not Present\n\r");
} else {
Xil_printf("'N64 Controller Present\n\r");

// Clear out Memory

print(*'‘Clearing Memory \n\r');
Xlo_Out32(GPU_ZBT_MBOX_DATAO, 0Ox00010A35);
X1o_O0ut32(GPU_ZBT_MBOX_DATA1, 0x0);

318

for (x=0; x<320; x++) {
for (y=0; y<240; y++) {

X1o_0ut32(GPU_ZBT_MBOX_WRITE, ((x+(y*320))*4));

gpu_read_word =

}

XTo_In32(GPU_DCM_STAT);

// Set background color.
print(*'Setting Background Color\n\r'™);
X1o_Out32(GPU_BACKGROUND_COLOR, 0x0000003F);
gpu_read_word = Xlo_In32(GPU_BACKGROUND_COLOR);
xil_printf(""GPU Background Color = Ox%x \n\r",gpu_read_word);

print(*'Setting Background Color\n\r');
X1o_Out32(GPU_BACKGROUND_DEPTH, 0x00000000);
gpu_read_word = Xlo_In32(GPU_ BACKGROUND DEPTH)
xil_printf("'GPU Background Depth =

// Set Clipping Registers.
print(*'Setting ZMax Clipping Plane\n\r");

X1o_Out32(GPU_CLIP_ZMAX,0xBDCCCCCC) ;

gpu_read word = X10_In32(GPU_CLIP_ZMAX);

xil_printf("'GPU Background Color = Ox%x \n\r"

// Set Viewport to Screen Translation Matrix.

gpu_matrix

gpu_matrix|[0]

gpu_matrix

gpu_matrix[1]
gpu_matrix[
gpu_matrix[2]
gpu_matrix[
gpu_matrix[3]

[0] 0] = 159.5; gpu_matrix[0][1] = 0.0;
[3] 159.5;

:1]_0] = 0.0; gpu_matrix[1][1] = 119.5;
[3] = 119.5;

[2]1[0] = 0.0; gpu_matrix[2][1] = 0,0;
[3] = 0.0;

[3]1[0] = 0.0; gpu_matrix[3][1] = 0.0;
[3] = 1.0;

// Write transformation matrix to hardware.
xil_printf(*'Setting up Screen Translation Matrix\n\r');
gpu_float_ptr = &gpu_Tloat;

for (1=0; 1<=3; i++) {
for (g=0; j<=3; j++) {
gpu_float = gpu_matrix[i][i];
gpu_int_ptr = (int*)&gpu_Ffloat;
iIf g==0) {
X1o_Out32(GPU_MATRIX_CO_DATA,
} else if (g==1) {

Xlo_Out32(GPU_MATRIX_C1_DATA,

} else

X1o_Out32(GPU_MATRIX_C2_DATA,

} else

if (§

::2) {

X1o_Out32(GPU_MATRIX_C3_DATA,

X1o_Out32(GPU_MATRIX_WRITE, (OXC |

}
}
}

// Set scene semaphore
scene_update = 0;

// Enable GPU/VGA Logic
print("Enableing GPU Logic \n\r');

X1o_Out32(GPU_CONTROL, 0x3);
gpu_read_word = Xlo In32(GPU CONTROL) ;

xnI _printf('GPU Control Reg =

*gpu_int_ptr);
*gpu_int_ptr);
*gpu_int_ptr);

*gpu_int_ptr);
);

319

0x%x \n\r',gpu_read_word);

,gpu_read_word);

gpu_matrix[0][2]
gpu_matrix[1][2]
gpu_matrix[2][2]
gpu_matrix[3][2]

0x%x \n\r",gpu_read_word);

0.0;
0.0;
1.0;
0.0;

}
void eof _intr_handler(void * baseaddr _p) {
Xuint32 ctrl_read;

Xuint32 baseaddr;

Xuint32 IntrStatus;

Xuint32 IpStatus;

baseaddr = (Xuint32) baseaddr_p;

// Get status from Device Interrupt Status Register.
IntrStatus
PLB_REGS_INTERFACE_mReadReg(baseaddr,PLB_REGS INTERFACE_INTR_DISR_OFFSET);

// Determine if controller is present.
ctrl_read = Xlo_In32(N64_STATUS);
if ((ctrl_read & 0x00000002) == 0x000000002) {

// Trigger a read of the controller®s status registers.
X1o_Out32(N64_CONTROL, 0x00000004);

// Wait until the state machine is no longer busy.
ctrl_read = 0;
while ((ctrl_read & 0x00000001) == 0) {

ctrl_read = Xlo_In32(N64_STATUS);

// Read status registers.
ctrl_read = Xlo_In32(N64_BS RETURN);

n64_button_reg _prev = n64_ button_reg;
n64_button_reg = ctrl_read;

}

// Set scene update variable.
scene_update = 1;

// Verify the source of the interrupt is the user logic and clear the
// source by toggle write baca to the IP ISR register.
it ((IntrStatus & INTR_IPIR_MASK) == INTR_IPIR_MASK) {

IpStatus
PLB_REGS_INTERFACE_mReadReg(baseaddr,PLB_REGS_INTERFACE_INTR_IPISR_OFFSET);
PLB_REGS_INTERFACE_mWriteReg(baseaddr,PLB_REGS_INTERFACE_INTR_IPISR_OFFSET,
IpStatus);

}

//=
int main (void) {

// Object 1

volatile float x0[8],x1[5],vcx,vax,vex,cx[2],tx[2],sx[2],ax[2];
volatile float yO[8],yl[5],vcy,vay,vey,cy[2],ty[2],syl[2].ay[2];
volatile float z0[8],z1[5],vcz,vaz,vez,cz[2],tz[2],sz[2].az[2];
volatile int color[2];

volatile float angle,scale;

volatile float x0_float,y0 float,z0 float;

320

volatile float *x0_float ptr,*y0 float ptr,*z0 float ptr;
volatile int *x0_int ptr,*y0_int _ptr,*z0_int _ptr;
volatile float x1_float,yl float,zl1 float;

volatile float *x1_float ptr,*yl float ptr,*z1 float_ptr;
volatile int *x1_int_ptr,*yl int_ptr,*zl_int_ptr;
volatile float matrix[4][4];

volatile float *matrix_ Tloat _ptr;

volatile float matrix_Tloat;

volatile int *matrlx_lnt_ptr;

volatile float cosz,sinz,cosy,siny,Ccosx,Sinx;

volatile float active object = -1;

int 1,j;

int k = 0;

/*
* Enable and initialize cache
*/
#iT XPAR_MICROBLAZE_O_USE_I1CACHE
microblaze init _icache range(0, XPAR_MICROBLAZE O CACHE_BYTE_SIZE);
microblaze _enable_icache();
#endif

#iT XPAR_MICROBLAZE_O_USE_DCACHE
microblaze init_dcache_range(0, XPAR_MICROBLAZE O DCACHE_BYTE_SIZE);
microblaze enable_dcache();

#endif

print(*'-- Powering Up GPU! --\r\n"");
init_peripherals(Q);

xil_printf("Initilaizing Interrupts \n\r');

// Register Handler.

XIntc_RegisterHandler(XPAR_XPS_ INTC_O_ BASEADDR,
XPAR_XPS_INTC_O_PLB_REGS_INTERFACE_O_IP2INTC_IRPT_INTR, (XInterruptHandler)eof
_intr_handler, (void *)XPAR_PLB_REGS_ INTERFACE_O BASEADDR)

// Start the interrupt controller
XIntc_mMasterEnable(XPAR_XPS_ INTC_O_BASEADDR);

// Enable requests in the interrupt controller

XIntc_mEnablelntr(XPAR_XPS_INTC_O_BASEADDR,XPAR_PLB_REGS_INTERFACE_O_IP2INTC_
IRPT_MASK) ;

// Enable Interrupts on PLB register controller.
PLB_REGS INTERFACE_Enablelnterrupt((Xuint32
*IXPAR_PLB_REGS_INTERFACE_O_BASEADDR);

// Enable interrupts.
microblaze_enable_interrupts(Q);

// Deflne objects Iocal coordinate system location

x0[0] = -0.1; yO[0] = -0.1; zO[O0] = -0.1;
x0[1] = -0.1; yO[1] = 0.1; zO[1] = -0.1;
x0[2] = 0.1; yo[2] = 0.1; zO[2] = -0.1;
x0[3] = 0.1; yO[3] = -0.1; zO[3] = -0.1;
x0[4] = -0.1; yo[4] = -0.1; z0[4] = O0.1;
x0[5] = -0.1; yO[5] = 0.1; zO0[5] = O0.1;
x0[6] = 0.1; yo[6] = 0.1; zOo[6] = 0.1;
x0[7] = 0.1; yo[7] = -0.1; zO[7] = O0.1;
cx[0] = 0.0; cy[0] = 0.0; cz[0] = 0.00;

321

tx[0] = 0.0; ty[0] = 0.0; tz[0] =
ax[0] = 0.0; ay[0] = 0.0; az[0] = 0.00;
sx[0] = 1.0; sy[O] = 1.0; sz[O0] =
color[0] = OxOO0O03FFFF;
x1[0] = -0.1; yl1J0] = -0.1; zi[O] =
x1[1] = 0.1; yl[1] = -0.1; zi[1] =
x1[2] = 0.1; yi[2] = -0.1; z1i[2] = O0.1;
x1[3] = -0.1; y1[3] = -0.1; z1[3] = .
x1[4] = 0.0; yl[4] = 0.1; zi[4] =
cx[1] = 0.0; cy[1] = 0.0; cz[1] =
tx[1] = 0.0; ty[1] = 0.0; tz[1] =
ax[1] = 0.0; ay[1] = 0.0; az[1] = 0.00;
sx[1] = 1.0; sy[1] = 1.0; sz[1] =
color[1] = Ox0003FFFF;
// Viewing Parameters.
vcx = vey = vez = 0.0;
vax = vay = vaz = 0.0;
vex = vey = vez = 0.0;
while (TRUE) {

if (scene_update == 1) {

if (active_object == -1) {

// Update View Parameters based on button presses.

if ((n64_button_reg & 0x00280000) =

vCcz = vcz - MOVE_INCR;

}
if ((n64_button_reg & 0x00240000)
vcz = vcz + MOVE_INCR;

}
if ((n64_button_reg & 0x08200000)
vecy = vcy - MOVE_INCR;

if ((n64_button_reg & 0x04200000)
vecy = vcy + MOVE_INCR;

if ((n64_button_reg & 0x02200000)
vCcx = vcx - MOVE_INCR;

}
if ((n64_button_reg & 0x01200000)
vcx = vcx + MOVE_INCR;

}

it ((n64_button_reg & 0x00220000)
vaz = vaz - ANGLE_INCR;

}
if ((n64_button_reg & 0x00210000)
vaz = vaz + ANGLE_INCR;

}
it ((n64_button_reg & 0x08200000)
vax = vax + ANGLE_INCR;

}
it ((n64_button_reg & 0x04200000)
vax = vax - ANGLE_INCR;

}
if ((n64_button_reg & 0x02200000)
vay = vay - ANGLE_INCR;

}
if ((n64_button_reg & 0x01200000)
vay = vay + ANGLE_INCR;

322

= 0x00080000)

0x00040000)

0x08000000)

0x04000000)

0x02000000)

0x01000000)

0x00220000)

0x00210000)

0x08200000)

0x04200000)

0x02200000)

0x01200000)

{

{

}

if ((n64_button_reg
vcz
vaz
vez

VCX = vgy =
vax = vay =
vex = vey =

}
else if (active object == 0) {

10000000) == 0x10000000) {

// Update View Parameters based on button presses.
if ((n64_button_reg & 0x00280000) == 0x00080000) {

tz[0] = tz[0] - MOVE_INCR;

if ((n64_button_reg & 0x00240000)
tz[0] = tz[0] + MOVE_INCR;

if ((n64_button_reg & 0x08200000)
ty[0] = ty[0] + MOVE_INCR;

if ((n64_button_reg & 0x04200000)
ty[0] = ty[0] - MOVE_INCR;

if ((n64_button_reg & 0x02200000)
tx[0] = tx[0] + MOVE_INCR;

if ((n64_button_reg & 0x01200000)
tx[0] = tx[0] - MOVE_INCR;

if ((n64_button reg & 0x40200000)

sx[0] = sy[0O]

if ((n64_button reg & 0x80200000)

sx[0] = sy[0O]

if ((n64_button_reg & 0x10000000)
0.0; tz[0]

tx[0] = 0.0; ty[O
ax[0] = 0.0; ay[O]
?X[O] = 1.0; sy[O]

else if (active object

T 1] e
I

RO
OO |

== 0x00040000) {
== 0x08000000) {
== 0x04000000) {
== 0x02000000) {

== 0x01000000) {

== 0x40000000) {
SCALE_INCR;

== 0x80000000) {
SCALE_INCR;

== 0x10000000) {
= -0.35;

// Update View Parameters based on button presses.
if ((n64_button_reg & 0x00280000) == 0x00080000) {

tz[1] = tz[1] - MOVE_INCR;

if ((n64_button_reg & 0x00240000)
tz[1] = tz[1] + MOVE_INCR;

ifT ((n64_button_reg & 0x08200000)
ty[1] = ty[1] + MOVE_INCR;

}
ifT ((n64_button_reg & 0x04200000)
ty[1] = ty[1] - MOVE_INCR;

ifT ((n64_button_reg & 0x02200000)
tx[1] = tx[1] + MOVE_INCR;

ifT ((n64_button_reg & 0x01200000)
tx[1] = tx[1] - MOVE_INCR;

== 0x00040000) {

== 0x08000000) {

== 0x04000000) {

== 0x02000000) {

== 0x01000000) {

if ((n64_button_reg & 0x40200000) == 0x40000000) {
sx[1] = sy[1] = sz[1] = sx[1] - SCALE_INCR;

if ((n64_button_reg & 0x80200000) == 0x80000000) {
sx[1] = sy[1] = sz[1] = sx[1] + SCALE_INCR;

if ((n64_button_reg & 0x10000000) == 0x10000000) {

tx[1] = 0.0; ty[1] = 0.0; tz[1] = —0 75;
ax[1] = 0.0; ay[l] = 0.0; az[l] = 0.0;
sx[1] = 1.0; sy[1] = 1.0; sz[1] = 1.0;
}
}
if (((n64_button_reg & 0x00100000) == 0x00100000) &&
((n64_button_reg prev & 0x00100000) == 0x00000000)) {
if (active_object == -1) {

active_object = active object + 1;
color[0] = O0xO00FCO;
color[1] = Ox3FFFF;

} else 1f (active _object == 0) {
active_object = active object + 1;
color[0] = Ox3FFFF;

color[1] = OxO0FCO;

} else {
active_object = -1;
color[0] = Ox3FFFF;

color[1] = Ox3FFFF;

}

// Set Translation Matrix to ldentity.
cosx = cos(-vax); cosy = cos(-vay); cosz = cos(-vaz);
sinx = sin(-vax); siny = sin(-vay); sinz = sin(-vaz);

matrix[0][0] = cosy*cosz;

matrix[O][1] = cosy*sinz;

matrix[0][2] = -siny;

matrix[0][3] = -vcx * cosy * cosz - vcy * cosy * sinz + vcz * siny;

matrix[1][0] = -cosx * sinz + sinx * siny * cosz;

matrix[1][1] = cosx * cosz + sinx * siny * sinz;

matrix[1][2] = sinx*cosy;

matrix[1][3] = -vcy * cosx * cosz + vcx * cosx * sinz - sinx * (vcz *
cosy + vcy * siny * sinz) - vcx * sinx * siny * cosz;

matrix[2][0] = cosx * siny * cosz + sinx * sinz;

matrix[2][1] = cosx * siny * sinz - sinx * cosz;

matrix[2][2] = cosx*cosy;

matrix[2][3] = -vcz * cosx * cosy - vCX * cosx * siny * cosz - vcy *
CosSX * siny * sinz + vcy * sinx * cosz - vcx * sinx * sinz;

matrix[3][0] = 0.0;

matrix[3][1] = 0.0;

matrix[3][2] = 0.0;

matrix[3][3] = 1.0;

// Write world to view transformation matrix to hardware.
matrix_float ptr = &matrix_float;
for (1=0; 1<=3; i++) {
for (J=0; j<=3; j++) {
matrix_float = matrix[i][i]:

324

matrix_int _ptr = (int*)&matrix_float;

if (==
XTo_Out32(GPU_MATRIX_CO_DATA, *matrix_int_ptr);

} else if (==

)
X1o_Out32(GPU_MATRIX C1 DATA, *matrix_int_ptr);

} else if (==2) {

Xlo_Out32(GPU_MATRIX_C2_DATA, *matrix_int_ptr);

} else

X1o_Out32(GPU_MATRIX_C3_DATA, *matrix_int_ptr);
X1o_Out32(GPU_MATRIX_WRITE, (Ox4 | 1)):;

}

}

// Set Translation Matrix to ldentity.

matrix[O0][0] = 1.0; matrix[0][1] = 0.0; matrix[0][2] = 0.0;
matrix[0][3] = -vex;

matrix[1][0] = 0.0; matrix[1][1] = 1.0; matrix[1][2] = 0.0;
matrix[1][3] = -vey;

matrix[2][0] = 0.0; matrix[2][1] = 0,0; matrix[2][2] = 2.0;
matrix[2][3] = 0.0;

matrlx[3][0] = 0.0; matrix[3][1] = 0.0; matrix[3][2] = 1.0;
matrix[3][3] = 0.0;

// Write view to projection transformation matrix to hardware.
//matrix_float ptr = &matrix_Ffloat;
for (i=0; i<=3; i++) {

for (j=0; j<=3; j++) {

}
+

matrix_float
matrix_int_ptr

matrix[i1[j];
(int*)é&matrix_float;

if (==
X1o_Out32(GPU_MATRIX _CO_DATA, *matrix_int_ptr);

} else if (==1) {

X1o_Out32(GPU_MATRIX_C1_DATA, *matrix_int_ptr);

} else if (j==2) {

X1o_Out32(GPU_MATRIX_C2_DATA, *matrix_int_ptr);

} else {

X1o_Out32(GPU_MATRIX _C3 DATA, *matrix_int_ptr);
Xlo_Out32(GPU_MATRIX WRITE, (0x8 | 1));

}

// Clear Semaphore
scene_update = 0;

// Configure Local to World Translation Matrix

matrix[O][0] = sx[0]; matrix[O][1] = 0.0; matrix[0][2] = 0.0;
matrix[0][3] = tx[0];

matrix[1][0] = 0.0; matrix[1][1] = sy[0]; matrix[1][2] = 0.0;
matrix[1][3] = ty[O];

matrix[2][0] = 0.0; matrix[2][1] = 0,0; matrix[2][2] = sz[O];
matrix[2][3] = tz[O0];

matrlx[3][0] = 0.0; matrix[3][1] = 0.0; matrix[3][2] = 0.0;
matrix[3][3] = 1.0;

// Write local to world transformation matrix to hardware.
matrix_float ptr = &matrix_float;
for (1=0; 1<=3; i++) {

for (j=0; J<=3; j++) {

matrix_float
matrix_int_ptr

matrix[i1[j1;
(int*)é&matrix_float;

if (j==0) {
XTo_Out32(GPU_MATRIX_CO_DATA, *matrix_int_ptr);

325

} else 1if (==

X1o_Out32(GPU_MATRIX C1 DATA, *matrix_int_ptr);
} else if (==

X1o_Out32(GPU_MATRIX_C2_DATA, *matrix_int_ptr);
} else {

X1o_Out32(GPU_MATRIX_C3_DATA, *matrix_int_ptr);

X1o_Out32(GPU_MATRIX_WRITE, (OxO | 1)):;

}
}
}

// Set Color and W value.
X1o_Out32(GPU_COLOR_POINT, color[0]);
X1o_0ut32(GPU_W_POINT, Ox3F800000)

X0 _Float_ptr = &x0_float;
y0 float_ptr = &y0 float;
z0_float_ptr = &z0 float;
x1_float_ptr = &x1_float;
yl float_ptr = &yl float;
z1 float _ptr = &z1 float;

for (i=0; i<4; i++) {
// Write Line

X0 _Ffloat = x0[1]; xO_int ptr = (int*)&x0_float;
y0 float = yO[i]; yO_int_ptr = (int*)&y0 float;
z0 _float = zO[i]; zO_int_ptr = (int*)&z0_float;

X1o_0ut32(GPU_X_POINT , *x0_int_ptr);
X1o_Out32(GPU_Y_ POINT , *y0_int_ptr);
X1o_0ut32(GPU_Z_ POINT , *z0_int_ptr);
X1o_0ut32(GPU_POINT_TRIG, 0x0);

if (i == 3) {
x1_Ffloat = x0[0]; x1_int_ptr = (int*)&x1_float;
yl float = yO[0]; yl_int_ptr = (int*)&yl float;
z1 float = zO[0]; zl1 int ptr = (int*)&z1l float;
} else {
x1 Float = x0[i+1]; x1_int ptr = (int*)&x1l_float;
yl float = yO[i+1]; yl int ptr = (int*)&yl float;
z1 float = zO[i+1]; z1 int_ptr = (int*)&z1 float;

by

X1o_0Out32(GPU_X POINT , *xX1_int_ptr);
X1o_0ut32(GPU_Y_POINT , *yl int_ptr);
X1o_0ut32(GPU_Z POINT , *z1_int_ptr);
X1o_Out32(GPU_POINT_TRIG, 0x0);

3
for (i=4; i<8; i++) {

// Write Line

x0_Ffloat = xO[i]; xO_int_ptr
yO float J: yo_int_ptr (int*)&y0 float;
z0 _float = zO[i]; zO_int _ptr (int*)&z0_ Ffloat;
X1o_0ut32(GPU_X_POINT , *x0_int_ptr);
X1o_0ut32(GPU_Y_POINT , *y0_int_ptr);
X1o_Out32(GPU_Z POINT , *z0_int_ptr);
X1o_0ut32(GPU_POINT_TRIG, 0x0);

(int*)&x0_Ffloat;

I
<
o
=

if (=7
x1 Float = x0[4]; x1_int _ptr = (int*)&x1 float;
yl float = y0O[4]; yl_int_ptr = (int*)&yl float;
z1 float = z0[4]; zl1 int ptr = (int*)&z1l float;
} else {
x1_Ffloat = xO[i+1]; x1_int_ptr = (int*)&x1_float;
yl float = yO[i+1]; yl int ptr = (int*)&yl float;

326

z1 float = zO[i+1]; zl1 int ptr = (int*)&zl float;

by

Xl1o_Out32(GPU_X_POINT , *x1_int_ptr);
X1o_Out32(GPU_Y_POINT , *yl int_ptr);
X1o_Out32(GPU_Z POINT , *z1 _int _ptr);
X1o_0ut32(GPU_POINT_TRIG, 0x0);

}
for (i=0; i1<4; 1++) {

// Write Line

X0 _float = x0O[i1]; xO_int _ptr
y0 float = yO[i]; yO_int_ptr (int*)&y0_ float;
z0_float = zO[i]; zO_int_ptr (int*)&z0_ float;
X1o_0ut32(GPU_X_POINT , *x0_int_ptr);
X1o_Out32(GPU_Y_POINT , *y0_int_ptr);
X1o_0ut32(GPU_Z POINT , *z0_int_ptr);
X1o_0ut32(GPU_POINT_TRIG, 0x0);

(int*)&x0_float;

x1 float = x0[i+4]; xl_lnt_ptr = (int*)&x1_float;
yl float = yO[i+4]; yl1 int ptr = (int*)&yl float;
z1 float = zO[i+4]; zl1l int ptr = (int*)&zl float;

X1o_Out32(GPU_X_POINT , *x1_int_ptr);
X1o_0ut32(GPU_Y_POINT , *yl_int_ptr);
X1o_0ut32(GPU_Z POINT , *z1 _int_ptr);
X1o_Out32(GPU_POINT_TRIG, 0x0);

}

// Wait for a little, this is a hack.
//for (1=0; i1<50; i++) {

// k=k+1;

//}

// Configure Local to World Translation Matrix

matrix[0][0] = sx[1]; matrix[0][1] = 0.0; matrix[0][2] = 0.0;
matrix[0][3] = tx[1];

matrix[1][0] = 0.0; matrix[1][1] = sy[1l]; matrix[1][2] = 0.0;
matrix[1][3] = ty[1];

matrix[2][0] = 0.0; matrix[2][1] = 0,0; matrix[2][2] = sz[1];
matrix[2][3] = tz[1];

matrlx[3][0] = 0.0; matrix[3][1] = 0.0; matrix[3][2] = 0.0;
matrix[3][3] = 1.0;

// Write local to world transformation matrix to hardware.
matrix_float ptr = &matrix_float;
for (i=0; i<=3; i++) {

for (3=0; j<=3; j++) {

matrix_float = matrix[i][j];
matrix_int_ptr = (int*)&matrix_float;
if (==

)
X1o_Out32(GPU_MATRIX _CO_DATA, *matrix_int_ptr);
} else if (g==1) {
Xlo_Out32(GPU_MATRIX_C1_DATA, *matrix_int_ptr);
} else if (==
Xlo_Out32(GPU_MATRIX_C2_ DATA, *matrix_int_ptr);
3} else {
X1o_Out32(GPU_MATRIX C3 DATA, *matrix_int_ptr);
X1o_O0ut32(GPU_MATRIX_WRITE, (OxO | D));
}
}
}

327

// Set Color and W value.
X1o_Out32(GPU_COLOR_POINT, color[1]);
Xlo_Out32(GPU_W_POINT, 0x3F800000) ;

for (i=0; i<4; i++) {
// Write Line

X0 _Ffloat = x1[i1]; xO_int ptr = (int*)&x0_float;
y0 float = yi[i]; yO_int_ptr = (int*)&y0 float;
z0 _float = z1[i]; zO_int_ptr = (int*)&z0_float;

X1o_0ut32(GPU_X_POINT , *x0_int_ptr);
X1o_Out32(GPU_Y_ POINT , *y0_int _ptr);
X1o_0ut32(GPU_Z POINT , *z0_int_ptr);
X1o_0ut32(GPU_POINT_TRIG, 0x0);

if (i ==3) {
x1_Ffloat = x1[0]; x1_int_ptr = (int*)&x1_float;
yl float = y1[0]; yl1_int_ptr = (int*)&yl float;
z1 float = z1[0]; z1 int ptr = (int*)&z1l float;
} else {
x1 Ffloat = x1[i1+1]; x1_int _ptr = (int*)&x1l_float;
yl float = yl[i+1]; yl int ptr = (int*)&yl float;
z1 float = z1[i+1]; z1 int_ptr = (int*)&zl float;

by

X1o_Out32(GPU_X POINT , *X1_int_ptr);
X1o_0ut32(GPU_Y_POINT , *yl int_ptr);
X1o_0ut32(GPU_Z POINT , *z1 _int_ptr);
X1o_0ut32(GPU_POINT_TRIG, 0x0);

}

for (i=0; i<4; i++) {
// Write Line
X0 _Ffloat = x1[i1]; xO_int _ptr
y0 float = yi1[i]; yO_int_ptr (int*)&y0_ float;
z0_float = z1[i]; zO_int_ptr (int*)&z0_ float;
X1o_0ut32(GPU_X_POINT , *x0_int_ptr);
X1o_Out32(GPU_Y_POINT , *y0_int_ptr);
X1o_0ut32(GPU_Z POINT , *z0_int_ptr);
Xlo Out32(GPU POINT_TRIG, 0x0);
x1 Ffloat = x1[4]; xl_lnt_ptr = (int*)&x1_float;
yl float = yl[4]; yl int _ptr = (int*)&yl float;
z1 float = 21[4]' z1 int_ptr = (int*)&z1 float;
X1o_O0ut32(GPU_X_POINT , *X1_int_ptr);
X1o_0ut32(GPU_Y_POINT , *yl_int_ptr);
X1o_0ut32(GPU_Z POINT , *z1_int_ptr);
X1o_Out32(GPU_POINT_TRIG, 0x0);

(int*)&x0_float;

}
}

/*
* Disable cache and reinitialize it so that other
* applications can be run with no problems
*/

#iT XPAR_MICROBLAZE_O_USE_DCACHE
microblaze disable dcache();
microblaze init_dcache range(0, XPAR_MICROBLAZE O DCACHE BYTE_SIZE);

#endif

#iT XPAR_MICROBLAZE_O_USE_I1CACHE

microblaze disable_icache();

microblaze init_icache_range(0, XPAR_MICROBLAZE O CACHE_BYTE_SIZE);
#endif

328

print(*'-- Exiting main() --\r\n"");
return O;

329

BIBLIOGRAPHY

1. Watt, Alan. 3D Computer Graphics. s.l. : Addison-Wesley Publishing, 2000.

2. NVIDIA Corporation. Geforce 8800 GPU Architecture Technical Brief. [Online]
November 2006. http://www.nvidia.com/page/8800_tech_briefs.html.

3. Dense Matrix-Vector Multiplication on the CUDA Architecture. Fujimoto, Noriyuki.
s.l. : Parallel Processing Letters, 2008.

4. Xilinx, 1Inc. Virtex-5 Family Overview. [Online] September 23, 2008.
http://www.xilinx.com.

5. Wikipedia Article "Raster Grahpics”. Wikipedia. [Online] [Cited: September 10,
2008.] http://en.wikipedia.org/wiki/Raster_graphics.

6. Hecker, Stephen Andrilli and David. Elementrary Linear Algebra. s.l.: PWS
Publishing Company, 1993.

7. James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.
Computer Graphics Principles and Practice. s.l. : Addison-Wesley Publishing Company, Inc,
1996.

8. Sproull, W. Newman and R. Principles of Interactive Computer Graphics. New
York : McGraw-Hill, 1979.

9. Algorithm for computer control of a digital plotter. Bresenham, J. E. 1, s.l.: IBM
Systems Journal, 1965, Vol. 4.

330

10. Wikipedia Article "Bresenham's Line Algorithm™. Wikipedia. [Online] [Cited:
September 10, 2008.] http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm.

11. Flanngan, Colin. Website "The Bresenham Line-Drawing Algorithm"”. [Online]
[Cited: September 10, 2008.] http://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html.

12. Xilinx, Inc. Virtex-5 FPGA Datasheets. [Online] September 23, 2008.
http://www.xilinx.com.

13. Xilinx, Inc. ML505/ML506/ML507. [Online] November 10, 2008.
http://www.xilinx.com.

14. IEEE Standard for Binary Floating-Point Arithmetic. IEEE Computer Society.
1985. IEEE Std. 754-1985.

15. Xilinx Inc. Coregen IP Generator Documentation. [Online] April 2008.
http://www.xilinx.com.

16. Xilinx, Inc. Floating-Point Operator v4.0. [Online] April 25, 2008.
http://www.xilinx.com.

17. Xilinx, Inc. Microblaze Processor Reference Guide. [Online] http://www.xilinx.com.

18. Xilinx, Inc. Multi-Port Memory Controller (MPMC) (v3.00.b). [Online] November 8,
2007. http://www.xilinx.com.

19. Xilinx, Inc. Processor Local Bus (PLB) v4.6 (v1.00a). [Online] [Cited: August 9,
2007.] http://mwww.xilinx.com.

20. Wikipedia Article "Nintendo 64 Controller". Wikipedia. [Online] [Cited: September
10, 2008.] http://en.wikipedia.org/wiki/Nintendo_64_controller.

331

	Title Page
	Abstract
	Table of Contents
	List of Tables
	Table 2.1: 2D Outcode Assignment Table
	Table 2.2: 2D Clipping Intersection Equations
	Table 2.3: 3D Parallel Projection Outcode Assignment
	Table 2.4: 3D Perspective Projection Outcode Assignment
	Table 2.5: 3D Parallel Projection Clipping Intersection Equations.
	Table 2.6: 3D Perspective Projection Clipping Intersection Equations.
	Table 3.1: 2D Outcode Assignment Table
	Table 3.2: 3D Perspective Outcode Assignment Table
	Table 3.3: 2D Clipping Intersection Equations
	Table 3.4: 3D Perspective Projection Clipping Intersection Equations
	Table 4.1: VGA Horizontal Timing Table.
	Table 4.2: VGA Vertical Timing Table
	Table A.1: GPU Configuration Register Memory Map and Register Definition
	Table B.1: N64 Controller Interface Memory Map and Register Definition

	List of Figures
	Figure 1.1: Classic Graphics Pipeline (1)
	Figure 1.2: GeForce 8800 CUDA Architecture (3)
	Figure 1.3: Wireframe Modeling(1)
	Figure 2.1: Computer Graphics Processing Pipeline(1).
	Figure 2.2: 2D Coordinate System
	Figure 2.3: 3D Cartesian Coordinate System
	Figure 2.4: Polygon Mesh Representation(7)
	Figure 2.5: Translation of a cube.
	Figure 2.6: Scaling of a cube.
	Figure 2.7: Differential Scaling of a cube.
	Figure 2.8: Right Handed Coordinate System with Rotational Angle.
	Figure 2.9: Rotation of a cube.
	Figure 2.10: Object Centered on P1
	Figure 2.11: Local to World Coordinate Translation.
	Figure 2.12: Example Graphics Pipeline(1)
	Figure 2.13: Cube in Object Coordinates
	Figure 2.14: Cubes in World Space Coordinates
	Figure 2.15: Viewing Point with Viewing Direction in World Coordinates
	Figure 2.16: Viewing plane
	Figure 2.17: View coordinate system.
	Figure 2.18: View Volume
	Figure 2.19: Viewing coordinate system defined with World coordinate system.
	Figure 2.20: Viewing Coordinate System
	Figure 2.21: Example Graphics Pipeline(6)
	Figure 2.22: Parallel Projection
	Figure 2.23: Perspective Projection
	Figure 2.24: Perspective Projection (7)
	Figure 2.25: Perspective Projection (7)
	Figure 2.26: Parallel Projection (8)
	Figure 2.27: Clipping Region Definitions.
	Figure 2.28: Illustration of 2D Cohen Sutherland Clipping.
	Figure 2.29: Parallel Projection
	Figure 2.30: Perspective Projection
	Figure 2.31: Clipping to Screen Coordinates
	Figure 2.32: Rasterized Line(10)
	Figure 2.33: Bresenham’s Line Algorithm Diagram(11)
	Figure 2.34: Line Rasterization Pseudo code.
	Figure 2.35: Slope Octet Ranges
	Figure 3.1: Graphics Pipeline(1)
	Figure 3.2: GPU Top Level Block Diagram
	Figure 3.3: Computer Graphic Pipeline(1)
	Figure 3.4: 3D Graphics Pipeline
	Figure 3.5: 2D Graphics Pipeline
	Figure 3.6: Floating Point Matrix Multiplication Block Diagram
	Figure 3.7: Clipping Logic
	Figure 3.8: Outcode Generator for Clipping Logic.
	Figure 3.9: Clipping Decision Logic State Machine
	Figure 3.10: Cohen-Sutherland Line Clipping with outcodes
	Figure 3.11: Edge Intersection calculator.
	Figure 3.12: Round Robin Arbiter
	Figure 3.13: Bresenham’s Line Rasterizer Design
	Figure 3.14: Line Drawing State Machine
	Figure 3.15: Double Buffer State Machine
	Figure 3.16: Frame Buffer Interface with Frame Memory
	Figure 3.17: Frame Reading State Machine
	Figure 3.18: GPU Top Level Block Diagram
	Figure 3.19: GPU Control Registers
	Figure 4.1: ML506 Development Board (13)
	Figure 4.2: GPU Top Level Design
	Figure 4.3: GPU Top Level Implementation Block Diagram
	Figure 4.4 : IEEE 754-1985 32 Bit Floating Point Number
	Figure 4.5 : Custom 18 Bit Floating Point Number
	Figure 4.6: Xilinx Coregen Floating Point Operation Selection Window
	Figure 4.7: Floating Point Precision Selection Window
	Figure 4.8: Microblaze Core Block Diagram(17)
	Figure 4.9: Multi-port Memory Interface Layout (18).
	Figure 4.10: PLB Block Diagram(19)
	Figure 4.11: Microblaze System
	Figure 4.12: Xilinx Platform Studio’s Project Opener
	Figure 4.13: Base System Builder Welcome Window
	Figure 4.14: Base System Builder Board Selector
	Figure 4.15: Base System Builder Processor Selector
	Figure 4.16: Base System Builder Microblaze Processor Configuration Window
	Figure 4.17: Base System Builder IO Interfaces Configuration Windows
	Figure 4.18: Base System Builder Cache Setup Window
	Figure 4.19: Base System Builder Software Setup Window
	Figure 4.20: Base System Builder System Created Window
	Figure 4.21: Original Base System without Custom Peripherals.
	Figure 4.22: Peripheral Creation Window.
	Figure 4.23: N64 Controller(20)
	Figure 4.24: GPU Pipeline Register PLB Interface.
	Figure 4.25: GPU Pipeline Top Level Implementation.
	Figure 4.26: Matrix Multiplier Accelerator
	Figure 4.27: Cohen Sutherland Clipping Implementation
	Figure 4.28: Bresenham’s Line Rasterizer Design
	Figure 4.29: Frame Buffer Interface with Frame Memory
	Figure 4.30: VGA Horizontal Sync Timing.
	Figure 4.31: VGA Vertical Sync Timing
	Figure 4.32: GPU Testbench Block Diagram
	Figure 4.33: Matrix Programming in Simulation
	Figure 4.34: Pushing Line in Simulation
	Figure 4.35: Matrix Multiplication in Simulation
	Figure 4.36: PPM unit cube.
	Figure 4.37: Xilinx’s EDK showing processor sub-system
	Figure 4.38: ISE 3D GPU hierarchy
	Figure 4.39: Serial terminal output from test software.
	Figure 4.40: 3D Graphics Processor Output
	Figure 4.41: 3D Object rotation.
	Figure 4.42: 3D Object Scaling
	Figure 4.43: 3D Objects Translated and clipped.
	Figure 4.44: Model Plane Rendered using GPU
	Figure 4.45: Development Kit with JTAG, VGA and N64 Hardware
	Figure 5.1: Program Memory and Object Memory Division
	Figure 5.2: Graphics Pipeline DMA
	Figure 5.3: Interleaved memory organization
	Figure 5.4: Contiguous Partitioning

	List of Equations
	Equation 2.1: Two Dimensional and Three Dimensional Vectors.
	Equation 2.2: Two Dimensional and Three Dimensional Homogenous Vectors.
	Equation 2.3: Matrix Representation of Translation, Scaling and Rotation of a Vertex
	Equation 2.4: 3D Translation Transformation Matrix
	Equation 2.5: 3D Scaling Matrix Transformation (1)
	Equation 2.6: Z Axis Rotation Transformation Matrix (1)
	Equation 2.7: Y Axis Rotation Transformation Matrix (1)
	Equation 2.8: X Axis Rotation Transformation Matrix (1)
	Equation 2.9: 2D Local to World Coordinate Transformation Matrix
	Equation 2.10: 3D rotation transformation matrix.
	Equation 2.11: 3D Local to World Coordinate Transformation
	Equation 2.12: View Coordinate Transformation
	Equation 2.13: Similar Triangle Rations with solutions for x and y (7).
	Equation 2.14: Perspective Projection Transformation Matrix (1)
	Equation 2.15: Perspective Projection Transformation Matrix (1)
	Equation 2.16: 2D Parametric Equations
	Equation 2.17: 3D Parametric Equations
	Equation 2.18: General Screen Transformation Matrix
	Equation 2.19: General Screen Transformation Matrix
	Equation 2.20: General line equation through two endpoints.
	Equation 2.21: Line equation solved for y
	Equation 3.1: Matrix Multiplication(6)
	Equation 4.1: Floating point calculation.

	Preface
	Introduction
	Overview
	Statement of the Problem
	Outline

	Computer Grahpics Rendering
	Mathmatics Overview
	Homogenous vectors
	Coordinate System
	Object Representation
	Affine Geometric Transformations
	Translation Transformation
	Scaling Transformation
	Rotation Transformation
	Transformation Compositions

	The Graphics Pipeline
	Object Definition
	Scene Composition using World Coordinate Transformation
	View Coordinates and the View Transformation
	3D Projections and the Clipping Transformation
	Perspective Projection
	Parallel Projection

	Clipping
	Cohen-Sutherland Two Dimensional Clipping
	Cohen-Sutherland Three Dimensional Clipping

	Screen Coordinate Transformation
	Rasterization

	The Graphics Processing Unit
	Graphics Pipeline
	Matrix Multiplier Accelerator
	Clipping Design
	Line Rasterization
	Frame Buffer and Display Interface

	Central Processing Unit
	Graphics Pipeline Control Registers
	Other Peripherals

	Graphic Processing Unit Implementation and Testing
	Hardware Development Platform
	Graphics Processing Unit Implementation
	Floating Point Primitives
	Microblaze Implementation
	Base System Builder
	DVI IIC PLB Interface.
	N64 PLB controller interface.
	Graphics Pipeline Registers PLB interface.

	Graphics Pipeline Implementation
	Floating Point Conversion and Matrix Selector
	Matrix Transformation and Selection
	Cohen-Sutherland Clipping.
	Bresenham’s Line Rasterizer
	Frame Buffer and the ZBT Memory Controller
	VGA Display Interface and the Line Doubler.

	Graphics Pipeline Functional Testbench
	GPU Synthesis
	Xilinx EDK and Microblaze
	ISE and Full GPU Synthesis
	Synthesis Results

	Software Based Hardware Testing

	Summary, Conclusions, and Future Work
	Summary and Conclusions
	Future Work
	Feature Additions
	Direct Memory Access
	Transformation Element Calculations
	Using external processor over PCI express.
	More Parallelism in Rasterization
	Partial Reconfigurablity

	Appendix A: Graphics Pipeline Control Registers
	Appendix B: N64 Controller Registers
	Appendix C: VHDL Source Code
	C.1 Top Level VHDL File
	C.2 Graphics Pipeline Top Level VHDL File
	C.3 Matrix Multplier
	C.4 Matrix Multiplier with Buffering and Normilization
	C.5 Clipping Tree
	C.6 Outcode Generator
	C.7 Clipping Logic
	C.8 Absolute Value
	C.9 Bresenham’s Algorithm
	C.10 ZBT Frame Buffer
	C.11 ZBT Memory Controller
	C.12 ZBT Physical Interface
	C.13 ZBT Port Interface
	C.14 ZBT Arbiter
	C.15 ZBT Width Conversion
	C.16 ZBT Memory Controller Package
	C.17 DVI Physical Interface
	C.18 VGA Frame Reader
	C.19 VGA Sync Generator
	C.20 VGA Controller
	C.21 Graphics Pipeline Testbench

	Appendix D: C Testcode
	Bibliography

