
ADVANCED HASHING SCHEMES FOR PACKET

FORWARDING USING SET ASSOCIATIVE

MEMORY ARCHITECTURES

by

Michel Hanna

M.S., Cairo University, 2004

Submitted to the Graduate Faculty of

Computer Engineering Program,

The School of Arts and Sciences

in partial fulfillment

of the requirements for the degree of

Master of Sciences

University of Pittsburgh

2009

UNIVERSITY OF PITTSBURGH

THE SCHOOL OF ARTS AND SCIENCES

This thesis was presented

by

Michel Hanna

It was defended on

November 16th, 2009

and approved by

Prof. Rami Melhem, Computer Science Department

Prof. Steven Levitan, Department of Electrical and Computer Engineering

Prof. KyoungSoo Park, Computer Science Department

Thesis Advisors: Prof. Rami Melhem, Computer Science Department,

Prof. Sangyeun Cho, Computer Science Department

ii

ADVANCED HASHING SCHEMES FOR PACKET FORWARDING USING

SET ASSOCIATIVE MEMORY ARCHITECTURES

Michel Hanna, M.S.

University of Pittsburgh, 2009

Building a high performance IP packet forwarding (PF) engine remains a challenge due

to increasingly stringent throughput requirements and the growing sizes of IP forwarding

tables. The router has to match the incoming packet’s IP address against the forwarding

table. The matching process has to be done in wire speed which is why scalability and low

power consumption are features that PF engines must maintain.

It is common for PF engines to use hash tables; however, the classic hashing downsides

have to be dealt with (e.g., collisions, worst case memory access time, · · · etc.). While

open addressing hash tables, in general, provide good average case search performance, their

memory utilization and worst case performance can degrade quickly due to collisions that

leads to bucket overflows.

Set associative memory can be used for hardware implementations of hash tables with

the property that each bucket of a hash table can be searched in one memory cycle. Hence,

PF engine architectures based on associative memory will outperform those based on the

conventional Ternary Content Addressable Memory (TCAM) in terms of power and scala-

bility.

The two standard solutions to the overflow problem are either to use some sort of prede-

fined probing (e.g., linear or quadratic) or to use multiple hash functions. This work presents

two new hash schemes that extend both aforementioned solutions to tackle the overflow prob-

lem efficiently. The first scheme is a hash probing scheme that is called Content-based HAsh

Probing, or CHAP. CHAP is a probing scheme that is based on the content of the hash ta-

iii

ble to avoid the classical side effects of predefined hash probing methods (i.e., primary and

secondary clustering phenomena) and at the same time reduces the overflow. The second

scheme, called Progressive Hashing, or PH, is a general multiple hash scheme that reduces

the overflow as well. PH splits the prefixes into groups where each group is assigned one

hash function, then reuse some hash functions in a progressive fashion to reduce the overflow.

We show by experimenting with real IP lookup tables that both schemes outperform other

hashing schemes.

Keywords: Hardware Hashing, Set Associative Memories, IP Lookup, Packet Forwarding,

Hash Schemes.

iv

TABLE OF CONTENTS

PREFACE . x

1.0 INTRODUCTION . 1

2.0 BACKGROUND . 4

2.1 General Open Addressing Hash . 4

2.2 Hashing in the presence of wildcards . 5

2.3 Set Associative Memory Architecture Overview 7

3.0 CONTENT-BASED HASH PROBING . 10

3.1 The CHAP(H,H) Scheme . 12

3.2 The CHAP Setup Algorithm . 13

3.2.1 The Mapping of IP Prefixes in CHAP. 14

3.3 Search in CHAP . 14

3.4 The Incremental Updates in CHAP . 16

4.0 THE PROGRESSIVE HASHING SCHEME 20

4.1 The PH Setup Algorithm . 21

4.2 Searching in PH . 22

4.3 The Incremental Updates in PH . 23

5.0 EVALUATION . 26

5.1 The Evaluation of Content-based Hash Probing 27

5.1.1 The Advantages of Content-based Hash Probing 27

5.1.2 Sensitivity Analysis of CHAP (H,H) 28

5.1.3 CHAP(H,H) versus Restricted Hashing(H) 29

5.1.4 CHAP(H,H) versus Restricted Hashing(2H) 31

v

5.2 The Evaluation of Progressive Hashing . 32

5.3 Applying Content-based Hash Probing to PH 34

5.3.1 Memory Overhead of CHAP and PH 35

6.0 CONCLUSIONS AND FUTURE WORK 37

BIBLIOGRAPHY . 39

vi

LIST OF TABLES

1 The Statistics of the IP lookup tables on January 31st 2009. 26

vii

LIST OF FIGURES

1 Splitting the Hashing Space into Groups. 7

2 The CA-RAM As An Example of Set Associative Memory Architectures. . . . 8

3 The CHAP basic concept. 11

4 The CHAP(3,3). 11

5 The Evolution of The PH Scheme. 24

6 Applying the PH Scheme. 24

7 Overflow of CHAP(1, m) vs. Linear Probing(1, m) for table rrc07. 28

8 The overflow vs. λ. 29

9 Average overflow of 4 bucket widths for RH(H) and CHAP(H,H) for table rrc05. 30

10 Average AMAT of 4 bucket widths for RH(H) and CHAP(H,H) for table rrc05. 30

11 (a)Average Overflow and (b) AMAT for CHAP(3,3) vs. RH(6) for 15 Lookup

Tables for C1: {L = 180 , N = 2048} . 31

12 (a)Average Overflow and (b) Average AMAT for CHAP(3,3) vs. RH(6) for 3

configurations. 32

13 (a) Average Overflow (b) AMAT of RH(5) vs. GH(5) vs. PH(5) for 15 Lookup

Tables for C1: {180× 2048}. 33

14 (a) Average Overflow and (b)Average AMAT for of RH(5) vs. GH(5) vs.

PH(5) for 3 configurations. 34

15 (a) Average Overflow and (b) Average AMAT of CHAP(5,5) vs. PH(5) vs.

PH CHAP(5,5) for 3 Configurations. 35

viii

LIST OF ALGORITHMS

1 CHAP(H,H) Setup Algorithm. 18

2 The CHAP Search Algorithm. 18

3 CHAP Insert Update Algorithm. 19

4 The PH Setup Algorithm. 25

5 The PH Search Algorithm. 25

ix

PREFACE

Acknowledgments

To both Dr. Rami Melhem and Dr. Sangyeun Cho, my advisors and also to both Dina and

Mira, my little beautiful family

x

1.0 INTRODUCTION

High speed routers require wire speed packet forwarding while the sizes of the IP tables

across core routers are increasing at a very high rate [10]. IP address lookup has been

a significant bottleneck for core routers. The advancement of optical networks made the

situation even worse with link rates already beyond 40 Gbps. It it predicted that in the near

future“Terabit” link rates will be available with affordable prices [26, 11].

IP lookup proceeds as follows: the destination address of every incoming packet is

matched against a large forwarding database (i.e., routing table) to determine the packet’s

next hop on its way to the final destination. An entry in the forwarding table (called a

prefix) is a binary string of a certain length (prefix length), followed by don’t care bits. The

adoption of Classless Inter-Domain Routing resulted in the need for longest prefix match

(LPM) in case of multiple matchings [21].

Existing IP forwarding engines are categorized into two main groups: hardware based

and software based. The hardware based schemes are generally constrained by the size and

power consumption of the engine. The software based schemes are mainly constrained by

the throughput, that is measured as the number of lookups per second. Recently, using

hash techniques for IP lookup gained a lot of momentum. Hash tables come in two flavors:

open addressing hash and closed addressing hash (or chaining). The hash table in closed

addressing hash has a fixed height (number of buckets), and each bucket is an unbounded

linked list. During the lookup process, a specific row index is generated by the hash function

and the row is searched to find the target key. An important design goal in this case is to

minimize the worst-case length of the linked lists and to balance the bucket population by

using Bloom filters-like data structures [4, 13, 24].

In open addressing, the hash table has a fixed height and a fixed bucket width (number

1

of elements per bucket). Open addressing hash has a simpler table structure than closed

addressing hash and is amenable to hardware implementations. However, the issues of

overflow and overflow handling have to be dealt with. Normally, the overflow is handled

by means of probing or by using multiple hash functions [6].

The hardware schemes use special hardware such as Ternary Content Addressable Mem-

ory (TCAM) [14, 16] to increase the lookup throughput. Unfortunately, the TCAM approach

has its own set of limitations: high power consumption, poor scalability, and low bit density.

Moreover, most commodity TCAMs run at low speed compared to SRAM memory [11].

Hence many researchers proposed optimizations to the TCAM architecture [15, 18, 23, 30].

In this thesis, we assume open addressing hash schemes for which a number of efficient

hardware prototype implementations have been proposed recently [5, 12, 29]. In these im-

plementations, the hash table is stored in a set associative memory where each set stores all

the elements in a bucket and the buckets are indexed through the hash function.

Our goal is to fit an entire IP lookup table in a single fixed size hash table by using

simple and efficient hash functions that could be easily implemented in hardware. The main

challenge is to achieve maximum space utilization and minimum overflow. In addition, we

want to keep both insertion/deletion into/from the table simple and straightforward. This

work makes the following contributions to the area of open addressing hash in general:

• The introduction of the new concept of content-based hash probing which tackles the

overflow more effectively than other existing probing techniques.

• The application of content-based probing to multiple hash function schemes.

• The introduction of the Progressive Hashing scheme for better space utilization and

overflow reduction.

• The use of content-based probing and progressive hashing together to implement an

efficient hardware-based IP lookup engine.

The rest of this thesis is organized as follows. In Section 2 we give a brief background

on open addressing hashing and the use of hashing in the presence of wildcards which play

a major rule in packet forwarding tables. Furthermore, we describe an example of the state-

of-the-art set associative memory architecture in Section 2 as well. We also discuss in this

2

section the state-of-the-art set associative memory architectures by showing a representing

example. In Section 3 we describe CHAP, our first scheme. We discuss our second scheme

Progressive Hashing in Section 4. Section 5 shows experimental results of each scheme alone

and the results of combining the two schemes. Finally, we give both the conclusions and

future work in Section 6.

3

2.0 BACKGROUND

2.1 GENERAL OPEN ADDRESSING HASH

Searchable data items, or records, contain two fields: key and data. Given a search key, k,

the goal of searching is to find a record associated with k in the database. Hash scheme

achieves fast searching by providing a simple arithmetic function h(·) (hash function) on k

so that the location of the associated record is directly determined. The memory containing

the database can be viewed as a two-dimensional memory array of N rows with L records

per row.

It is possible that two distinct keys ki 6= kj hash to the same value: h(ki) = h(kj). Such

an occurrence is called collision. When there are too many (≥ L) colliding records, some of

those records must be placed elsewhere in the table by finding, or probing, an empty space

in a bucket. For example in linear probing the probing sequence used to insert an element

into a hash table is given as follows:

h(k), h(k) + β0, h(k) + β1, · · · , h(k) + βm−1 (2.1)

where each βi is a constant, and m is the maximum number of probes. Linear probing

is simple, but often suffers from what is called “primary key clustering” [6]. Another type

of probing is called quadratic probing where we use a quadratic equation to determine the

next bucket to be probed. The quadratic probing sequence used to insert an element into a

hash table is generated by the following equation:

h(k, i) = h′(k) + c1 × i + c2 × i2, i = 0, 1, · · ·m− 1 (2.2)

4

where h′(·) is called the auxiliary hash function and both c1 and c2 are constants.

Quadratic probing suffers from another type of clustering which is called “secondary key

clustering” [6].

Instead of probing, we can apply a second hash function to find an empty bucket, which

is known as double hashing [6]. In general, the use of H ≥ 2 hash functions is shown to

be better in reducing the overflow than probing [1]. In this case (which we will refer to

as multiple hashing) the probing sequence of inserting a key into the hash table is given as

follows:

h0(k), h1(k), · · · , hH−1(k) (2.3)

where H is the maximum number of hash functions. Most work that is done in the

multiple hashing area is for closed addressing hash [1, 27]. Note that using a different hash

table for each hash function in Equation 2.3 is a valid design option; however, using different

hash tables leads to memory fragmentation that results in poor space utilization. To achieve

high space utilization (the ratio between the required memory to store the database and

the capacity of the actual RAM used) we apply multiple hash functions on a single hash

table. Specifically, a key is inserted in the hash table using any of the H hash functions in

Equation 2.3.

Given a database of M records and an N -bucket hash table, the average number of hash

table accesses to find a record is heavily affected by the choice of h(·), L (the number of slots

per bucket), and α, or the load factor, defined as M/(N ×L). With a smaller α, the average

number of hash table accesses can be made smaller, however at the expense of more unused

memory space, which leads to increase the power consumption [2].

2.2 HASHING IN THE PRESENCE OF WILDCARDS

Applying hash functions in packet forwarding is very challenging due to the fact that wild-

cards, or don’t care, bits are heavily present in the IP lookup tables. Hashing with wildcards

requires one of the two solutions: restricted hashing or grouped hashing [9]. In restricted

5

hashing RH, the hash functions are restricted to use only the non-wildcard bits of the keys.

For example, prefixes can be either expanded [25] to increase the number of non-wildcard

bits or only a specific prefix length, that rarely includes wildcards, is used for hashing. In the

latter case, the shorter prefixes are kept in a small fast memory [8, 9]. The hashing scheme

that we use in our first scheme, CHAP, restricts the hash functions to use only 16 bits to

generate the hash indices. The number of prefixes that are longer than 16 is less than 2% of

the lookup table population.

In grouped hashing, GH, prefixes are grouped based on their lengths, then different hash

functions are applied to each group. For example, the 32 bit IPv4 wide address space can

be split into 5 groups as follows:

• Group S24 that contains prefixes with at least 24 specific (non-wildcard) bits.

• Group S20 which contains prefixes of length between 20 and 23 bits.

• Group S18 which contains prefixes of length 18 and 19 bits.

• Group S16 which contains prefixes of length 16 and 17 bits.

• Group S8 which contains prefixes of length between 8 and 15 bits.

Then, each group is associated with a different hash function. For example, a hash

function h0() that uses 24 bits can be associated with group S24, h1() that uses 20 bits can

be associated with group S20, · · · , and h4() that uses 8 bits can be associated to group S8.

This scheme is similar to the one used in [12]. Figure 1(a) shows the five groups and their

associated hash function. We represent the 32-bit address space with bold line and MSb

and LSb stand for most significant bit and least significant bit, respectively. The prefixes

that are less than 8 bits long, which are less than 0.1% of the lookup table, are stored in a

special buffer which we call “overflow buffer” that is searched after failing the search of the

main hash table.

Grouped hashing will be used in Section 4 to derive the progressive hashing (PH) scheme,

which is our second proposed scheme.

6

32 bits32 bits
S24: S24: 2424 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 3232

MSbMSb LSbLSb

hh00()()
hh11()()
hh22()()
hh33()()
hh44()()

S20: S20: 2020 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 2323

S18: S18: 1818 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 1919

S16:S16:1616 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 1717

S8:S8:88 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 1515

|Prefix| = prefix length|Prefix| = prefix length

Figure 1: Splitting the Hashing Space into Groups.

2.3 SET ASSOCIATIVE MEMORY ARCHITECTURE OVERVIEW

We use the CA-RAM (Content Addressable-Random Access Memory) as a representative of

a number of set associative memory architectures proposed for IP lookup [5, 12, 29]. CA-

RAM is a specialized, yet generic memory structure that is proposed to accelerate search

operations. The basic idea of CA-RAM is simple; it implements the well-known hashing

technique in hardware. It uses a conventional high-density memory (i.e., SRAM or DRAM)

and a number of small match logic blocks to provide parallel search capability. Records are

pre-classified and stored in memory so that given a search key, access can be made accurately

on the memory row having the target record. Each match logic block then extracts a record

key from the fetched memory row, usually holding multiple candidate keys, and determines

if the record key under consideration is matched with the given search key.

CA-RAM provides a row-wise search capability comparable to TCAM. More importantly,

the bit-density of CA-RAM is much higher than that of TCAM, up to nearly five times higher

if DRAM is used in the CA-RAM implementation [5].

A CA-RAM takes, as an input, a search key and outputs the result of a lookup. Its

main components are: an index generator, a memory array (SRAM or DRAM), and match

processors, as shown in Figure 2.

7

RAMRAM
Index Index

GeneratorGenerator

IGIGKeyKey

An element An element is is
mapped to this rowmapped to this row

MPMP MPMP MPMP MPMP MPMP

Matching ProcessorsMatching Processors

Priority EncoderPriority Encoder
Parallel MatchingParallel Matching

ResultResult

……

……

One CellOne Cell
PrefixPrefix LenLen PortPort

Figure 2: The CA-RAM As An Example of Set Associative Memory Architectures.

The task of the index generator is to create an index from a key input. The actual function

of the index generator will highly depend on the target application. In many applications,

index generation is as simple as bit selection, incurring very little additional logic or delay. In

other cases, simple arithmetic functions, such as addition or subtraction, may be necessary.

Depending on the application requirements, a small degree of programmability in index

generation can be implemented using a set of simple shift functions and multiplexers.

A row may be divided into entries of the form shown at the left corner of Figure 2 where

a CA-RAM entry (cell) stores a prefix, its length and the port number. Alternatively, two

bits can be used to store a ternary digit to represent 0, 1 and don’t care, rather than binary

(like in TCAM arrays except that the comparison hardware in this case is shared among all

the rows in the memory array). Optionally, each row can be augmented with an auxiliary

field, which is to provide information on the status of the associated bucket (e.g., how many

keys are stored in this row). We use the auxiliary field in our two hashing schemes.

Once the index is generated from the input key, the memory array is accessed and L

candidate keys are fetched simultaneously. The match processors then compare the candi-

8

date keys with the search key in parallel, resulting in constant-time matching. Each match

processor performs comparison quickly using a hardware comparator.

A large area saving in CA-RAM comes from decoupling memory cells and match logic.

Unlike conventional CAM where each individual row in the memory array is coupled with its

own match logic, CA-RAM separates the dense memory array from the common match logic

(i.e., match processors) completely. Since the match processors are simple and light-weight,

the overall area cost of CA-RAM will be close to that of the memory array used. At the same

time, by performing a number of candidate key matching operations in parallel, low-latency,

constant-time search performance is achieved.

CA-RAM was compared against TCAM in terms of performance, power and area (cost).

The result obtained in [5] shows that CA-RAM is over 26 times more power-efficient than the

16T SRAM-based TCAM [14], and over 7 times improved over the 6T dynamic TCAM [16].

The CA-RAM cell size is over 12× smaller than a 16T SRAM-based TCAM cell, and 4.8×

smaller than a state-of-the-art 6T dynamic TCAM cell. Overall, CA-RAM is performance-

competitive with TCAM, in terms of both search latency and bandwidth. The detailed area

and power issues are addressed in [5].

9

3.0 CONTENT-BASED HASH PROBING

As we mentioned in the last section, a CA-RAM row stores the elements of a bucket and is

accessed in one memory cycle. Because the architecture is very flexible, we may keep some

bits at the end of each row for auxiliary data; this allows for more efficient probing schemes

with multiple hash functions. In this section we first present the basic content-based hash

probing scheme, CHAP(1,m), which is a natural evolution of the linear probing scheme

described by Equation (2.1). We then extend this scheme to H hash functions, which we

call CHAP(H,m).

In open addressing hash, some rows may incur overflow while others have unoccupied

space. While linear probing uses predetermined offsets to solve that problem as specified by

Equation (2.1), CHAP uses the same probing sequence, but with the constants β0, β1, · · · , βm

determined dynamically for each value of h(k), depending on the distribution of the data

stored in a particular hash table. Specifically, the probing sequence to insert a key “k” is:

h(k), β0[h(k)], β1[h(k)], · · · , βm−1[h(k)] (3.1)

This means that for each row we associate a group of m pointers to be used if overflow

occurs to point to other rows that have empty spaces. We call those pointers “probing

pointers” and the overall scheme is called CHAP(1,m) since it has only one hash function

and m probing pointers per row.

Figure 3 shows the basic idea of CHAP when m = 2. In order to match the overflow

excess keys to specific rows, we need to collect all the overflow elements across all the rows.

We achieve this by counting the excess elements per row and finding for each row i two rows

in which these overflow elements can fit. These two rows indices’ are recorded in β0[i] and

β1[i].

10

Probing Pointers
All elements at this row are matched in parallel

h(.)PacketPacket
To theMatching Processors

… ββββ1ββββ0…
Figure 3: The CHAP basic concept.

Assume that we are searching for a key k. If the hash function points to row i = h(k)

and it turns out that the input key k is not in this row, we check to see if the probing

pointers at row i are defined or not. If defined, this means that there are other elements

that belong to row i but reside in either row β0[i] or in row β1[i] and these elements might

contain k. Consequently, rows β0[i] and β1[i] are accessed in subsequent memory cycles to

find the matching key.

Probing PointersMultiple hash functions
h0(.)Packet

To theMatching Processors
… ββββ1[h1()]ββββ0[h0()]

h1(.) …h2(.)
ββββ2[h2()]

Figure 4: The CHAP(3,3).

The content-based probing can also be applied to the multiple hashing scheme. Specifi-

11

cally, we refer to CHAP with H hash functions and m probing pointers by CHAP(H,m).

For example, in CHAP(H,H) we have H hash functions and m = H probing pointers. In

this case, the probing sequence for inserting a key, k, can be defined by:

h0(k), h1(k), · · · , hH−1(k), β0[h0(k)], β1[h1(k)], · · · , βm−1[hH−1(k)] (3.2)

In essence, we dedicate to each hash function a pointer per row. An example is shown

in Figure 4 for a three hash functions CHAP scheme, or CHAP(3,3), where a key is mapped

to three different buckets. In the example, this key will have six different buckets to which

it can be allocated: h0(k), h1(k),h2(k), β0[h0(k)], β1[h1(k)] and β2[h2(k)] in the given order,

where βi[hi(·)] is the probing pointer of hash function hi(·).

There are different ways to organize CHAP(H,m) when m 6= H depending on whether or

not the probing pointers are shared among the hash functions in a given row. In the example

described above for CHAP(H,H), we assume that one probing pointer is associated with each

hash function. Another organization is to share probing pointers among hash functions. Yet

a third organization is to assign multiple pointers for each hash function, which is the only

possible organization for CHAP(1,m), when m > 1. In the rest of this work, we limit our

discussion to CHAP(1,m) and CHAP(H,H) with one pointer for each hash function and with

the probing order given by Equations 3.1 and 3.2 for both organizations, respectively.

3.1 THE CHAP(H,H) SCHEME

In this section we describe how to establish an IP lookup engine using CHAP(H,H). We

present the setup algorithm that sets the probing pointers and maps actual IP prefixes into

the CHAP hash table. With minor modifications, this algorithm can apply to the case of

CHAP(1,m).

Before we describe the CHAP setup algorithm, we note that on average 98% of IP prefixes

are 16 bits or longer [10]. In CHAP, we use restericted hashing (RH) where we restrict the

hash functions to use only the most significant 16 bits. This means that prefixes shorter

than 16 bits are not included in the hash table and they are stored as overflow in a separate

12

memory that we call “overflow buffer”. The overflow buffer is used also to store the prefixes

that cannot fit in the table during the setup algorithm as described in Section 3.2. In

addition, the overflow buffer is searched after a lookup failure in the main hash table which

is a common practice[30, 3, 8, 9].

3.2 THE CHAP SETUP ALGORITHM

Algorithm 1 lays out the setup phase of CHAP. In that algorithm, j = 0, · · · , M − 1 is used

to index the prefixes, where M is the total number of prefixes in an IP routing table. The

goal is to map this table into a hash table with 2R = N rows, where R is the number of

bits used to index the hash table. We use i as an index for hash functions and H as the

maximum number of hash functions. An array of counters, HC[row index], is used to count

the number of elements that will be mapped to each row of the hash table. We define a

two dimensional array of counters OC[row index][hash function index] to count the overflow

elements for each hash function per row. The maximum value of a single counter in this

array is equal to λ, where λ ≤ L, and L is the number of prefixes per row. This bound

comes from the fact that a hole, or an empty space in any row of the hash table, can never

exceed L. CHAP setup phase determines if the configuration parameters of the hash table

is valid or not. In other words, do the parameters L, H, λ and N result in a mapping of the

M prefixes into a single hash table with acceptable overflow, or not?

Algorithm 1 calculates the number of prefixes to be assigned to each row. By “assigned”

we mean not only the prefixes that are hashed to this row, but also the overflow prefixes that

are supposed to be in this row but will reside in other rows that are pointed to by this row’s

probing pointers. It starts by sorting prefixes from long to short, then initializing the two

arrays HC and OC to zeros, while the table overflow counter is initialized to the number of

prefixes that are less than 16 bits long (lines 1–2). Sorting the prefixes helps to stop at the

first matching prefix as will be proved in Section 3.3. The set of hash values {r0, · · · rH−1}

for each prefix is calculated (lines 6–7). Then, the algorithm updates the counter HC as

follows: if there is a spot for the current prefix in HC then the algorithm will move on to the

13

next prefix (lines 8–11), if not, it increments the corresponding OC counter (lines 12–15).

When Algorithm 1 exits, table overflow will include the number of prefixes that could

not fit in either HC or OC (lines 16–17) in addition to the number of prefixes that are

shorter than 16 bits long. If that number is not acceptable, then the algorithm can be

repeated with more hash functions, that is with a new H ′ = H + 1. In that setting, the

acceptability of the overflow depends on the capacity of the overflow buffer. The progressive

hashing scheme discussed in Section 4 may be applied in conjunction with CHAP to further

reduce the overflow.

3.2.1 The Mapping of IP Prefixes in CHAP.

The last step in CHAP is to allocate the elements into the hash table using the probing

pointers. Before moving to the actual mapping of the prefixes, we need to assign values

to the probing pointer’s array. This is done by running the best fit algorithm [20]. The

algorithm starts by finding the largest counter value from the OC array, say OC[T][I], and

the smallest counter value from HC, say HC[J], which we call a hole. Then the Ith probing

pointer of row T is assigned the value of J , the row having the largest hole provided that

the hole size is larger than OC[T][I]. This process is repeated iteratively.

Clearly, the best fit algorithm may not find a hole for each overflow counter, which means

that some keys will not be able to fit in the hash table. The number of these keys are added

to table overflow, and again, if the resulting overflow is not acceptable, then Algorithm 1 has

to be re-executed with a larger value of H. After setting the probing pointers, the prefixes

are mapped to the hash table.

3.3 SEARCH IN CHAP

As discussed in Section 2.3, a read operation fetches a full row (bucket) from the hash table

into a buffer and uses a set of comparators to determine, in parallel, the longest prefix match

among the elements in that bucket. A complete search might need to search more than one

14

bucket. Hence, a metric that will be used to measure the efficiency of the search in CHAP

is the Average Memory Access Time, AMAT, which is simply the average number of rows

accessed for successful search.

The CHAP search algorithm, Algorithm 2, is straightforward. We call our main hash

table “H Table[N][L]”, where N and L are the number of rows and the row capacity respec-

tively. For each element in H Table[N][L] consists of the actual prefix, H Table[N][L].key,

and the prefix length, H Table[N][L].len which is used to determine the LPM. Given a packet

P , we calculate the row address ri(P) = hi(P) and ri+H = βi[hi(P)], where i = 0, · · · , H− 1

(lines 2–4).

For each row of the 2H rows, we match the packet against all the prefixes in this row in

parallel and if we hit at this row, we return the port number associated with the matched pre-

fix (lines 5–7). If we do not find a match in these rows, we simply search the overflow buffer

(line 11).

To be able to stop at the first matching prefix during search in the CHAP’s search

algorithm, Algorithm 2, we store the prefixes according to their length from the longest to

the shortest [8]. In addition to sorting the prefixes during the insertion, we have to maintain

what is called the “hash order” during both insertion and search phases. The hash order

is merely the order of applying the hash functions in addition to the order of accessing the

probing pointers. Theorem 1 proves that these two conditions are enough to find the LPM

first.

Theorem 1. In CHAP, the first matching prefix is the LPM if:

1. The prefixes are inserted from the longest to shortest.

2. The search’s hash order, which includes both the order of accessing the probing pointers

and the order of applying the hash functions, is the same as the insertion’s hash order.

Proof. In a restrictive multi hashing scheme all the H hash functions are applied to all keys.

Let us assume that we have M keys to be hashed and that they are sorted according to

their length from the longest to the shortest. Also, assume that the hash order during the

insertion is as follows: r0(km), · · · , r2H−1(km), where ri(km) = hi(km) for i = 0, · · ·H−1 and

ri(km) = βi[hi(km)] for i = H, · · · , 2H − 1. In addition, assume that there exists a packet

15

PX that matches two prefixes kX and kY and that kX is longer than kY . This means that

kX is mapped to the hash table before kY .

Without losing the generality, assume that rt(kX) = rt(kY) = rt. We can see that it is

impossible for kY to find a space in row rt if kX could not find a space. This means that if

kX is stored in row ri(kX) = rX and if kY is stored in row rj(kY) = rY , then i < j. Hence,

while searching for a match for PX as follows: r0(PX), · · · r2H−1(PX), we will match kX at

row rX before matching kY at row rY .

Note that if both prefixes kX and kY in Theorem 1 are mapped to the same row, the

matching processors are going to calculate the LPM in this case.

3.4 THE INCREMENTAL UPDATES IN CHAP

An important issue in the IP forwarding engine is the incremental updates of the prefix

database. The number of prefixes included in a routing table grows with time [10, 26]. The

updates consist of two basic operations, Insert/Update and Delete a prefix. In CHAP the

delete operation is straightforward. For any prefix deletion operation we find the prefix first,

then we delete it and decrement the row counter HC which is used to keep track of the rows’

populations.

The basic idea of the insert/update operation, which is detailed in Algorithm 3, is to

find the appropriate row, r, that the new prefix should fit in, taking into account the LPM

feature. In other words, we need to find where the new prefix should be stored according to

its length to achieve LPM. If it is found that the prefix already exists in the CHAP table,

the existing entry will be updated.

Algorithm 3 consists of two boolean functions, CHAP Insert Update()

and Insert in Rows(). The first subroutine, CHAP Insert Update(), determines the ap-

propriate rows to insert the new prefix kn (lines 16–21). The second subroutine is where the

actual insertion is made, as it take a prefix kx then it tries to insert it in a series of rows

starting from row index a all the way to row index b.

16

In the first function, the row array ri, which of size 2H, is used to store the computed val-

ues of the hash functions of kn and the corresponding probing pointers (lines 2–4). Note that

ri is a global variable because it will be accessed by the second function, Insert in Rows().

For each row ri we match kn against all the prefixes in this row and extract both the longest

prefix, kl, and the shortest prefix, ks, that match kn (lines 5–7). We record the rows rl and rs

that include kl and ks if such matchings are found. Depending on the length of kn relative to

the length of both kl and ks, we try to insert kn in one of the 2H rows. This is done through

an if − else construct (lines 8–15). The first case is when neither kl nor ks are defined (i.e.,

no matching), thus we can insert kn into any row (lines 8–9). The second case, which is

route update [10], is when kn is equal either kl or ks in which case we replace either kl or ks

with kn (lines 10–12). The third case is if |kn| is larger than |kl|, then we try to insert kn

into one of the buckets {r0, · · · , rl} if there is a space (line 13). In the next case we check to

see if |kn| < |ks| is true, then we try to insert kn in a row among {rs, · · · , r2H−1} (line 14).

Finally, if |ks| < |kn| < |kl|, then we try to put kn in any row between rl and rs (line 15).

In any case, the subroutines terminate successfully if we are able to insert kn. Otherwise,

we try either insert kn into the overflow buffer, or use a backtracking scheme like “Cuckoo

hashing” [17] to replace an existing prefix, say ky, from the hash table by kn, then try to

recursively reinsert ky back to the hash table [7].

17

Algorithm 1 CHAP(H,H) Setup Algorithm.

1: Sort the IP prefixes from longest to shortest

2: initialize the arrays HC[N] and OC[N][H] to zeros

3: table overflow = number of prefixes shorter than 16 bits

4: for(j = 0; j < M ; j + +)

5: inserted = false

6: for(i = 0; i < H; i++)

7: ri = hi(kj)

8: for (i = 0; i < H AND inserted == false; i++)

9: if(HC[ri] < L), then

10: HC[ri]++

11: inserted = true

12: for (i = 0; i < H AND inserted == false; i++)

13: if(OC[ri][i] < λ), then

14: OC[ri][i]++

15: inserted = true

16: if(inserted == false), then table overflow++

17: table overflow++

Algorithm 2 The CHAP Search Algorithm.

1: Search Hash Table(Packet P)

2: for(i = 0 ; i < H ; i + +) {

3: ri = hi(P)

4: ri+H = βi[hi(P)] }

5: for(i = 0 ; i < 2H ; i + +) {

6: if(P matches H Table[ri][j].key), then

7: return H Table[ri][j].port

8: else

9: continue

10: }

11: search the overflow buffer

18

Algorithm 3 CHAP Insert Update Algorithm.

1:subroutine CHAP Insert Update (prefix kn)

2:for(i = 0; i < H; i + +) {

3: ri = hi(kn)

4: ri+H = βi[hi(kn)] }

5:By searching the rows r0, · · · r2H−1, find:

6: kl = longest prefix matching kn and rl = row containing kl

7: ks = shortest prefix matching kn and rs = row containing ks

8:if(kl is not defined AND ks is not defined), then

9: return(Insert in Rows(kn, 0 ,(2H − 1)) /*no matching, insert kn in any row*/

10:else if ((|kn| == |kl|) OR (|kn| == |ks|)), then

11: Replace kl or ks with kn /*an update operation*/

12: return (true)

13:else if(|kn| > |kl|), then return(Insert in Rows(kn, 0, rl))

14:else if(|kn| < |ks|), then return(Insert in Rows(kn, rs, (2H − 1)))

15:else, return(Insert in Rows(kn, rl, rs))

16:subroutine Insert in Rows (prefix kx, a, b)

17:for(i = a; i <= b; i + +)

18: if(HC[ri] < L), then

19: insert kx in ri and HC[ri]++

20: return (true)

21:return (false)

19

4.0 THE PROGRESSIVE HASHING SCHEME

In this section, we propose the Progressive Hashing scheme (PH) as another effective mech-

anism for reducing collisions (hence overflow) for open-addressing hash systems. As we

mentioned in Section 2.1, using multiple hash functions is efficient in reducing collisions. In

Section 2.1 we described the two multiple hashing schemes for dealing with don’t care bits,

which are abstracted in Figures 5(a) and (b) where the hashing space is represented as a

circle. In the restricted hashing scheme (Figure 5(a)) the hash functions h′
0(), · · ·h′

3() are

applied to all the keys in the hashing space. On the other hand, in the grouped hashing

(Figure 5(b)) we split the hashing space into groups and a single hash function is associated

with each group. In Figure 5(b), functions h0(), · · · h3() are associated with Groups 0, · · ·

3 respectively.

In this section we group the prefixes based on their lengths (i.e., use grouped hashing

or GH). Consequently, groups with longer prefix length can use the hash functions of other

groups that have shorter prefix lengths. For example, in Figure 1, group S24 can use the

hash functions of groups S20 and S16. Motivated by this observation, we propose to apply

the hash functions in a progressive manner as illustrated in Figure 5(c) to give some keys

more chances to be mapped to the hash table thus reducing the overflow.

The effectiveness of progressive hashing depends mainly on how we select the groups and

their associated hash functions. One important aspect during the grouping of the keys is

to maintain “hashing specificity hierarchy”, where “hash function specificity” is defined as

follows:

Definition 1. A hash function hi(·) is said to be more specific than another hash function

hj(·) if any bit used in hj(·) is also used in hi(·).

20

For example, in Figure 1, the hash function h0(·) is more specific than h1(·), h2(·), h3(·)

and than h4(·). Figure 6 demonstrate the PH scheme applied to the same groups of Figure 1.

As an example, group S24, which is assigned to hash function h0(·), can use the less specific

hash functions of groups S20, S18, S16 and S8 as illustrated in Figure 6.

In the next two sections we show the PH setup and search algorithms.

4.1 THE PH SETUP ALGORITHM

In this section we introduce the PH setup algorithm, Algorithm 4. Before dividing the

prefixes into groups, we sort the prefixes from longest to shortest and insert them in that

order. In Algorithm 4, j = 0, · · · , M − 1 is used to index the keys, where M is the total

number of prefixes in an IP routing table. The goal is to map the prefixes into a hash table,

H Table[row index][bucket size], with L = maximum bucket size, and N = 2R maximum

number of rows, where R is the maximum number of bits used to index the hash table. Each

entry in H Table[N][L] contains the field “key” which consists of the actual prefix, the prefix

length (or mask), the prefix port number and the hash function field (lines 9– 12). The hash

function index is used to store the index of the hash function that is used to store the prefix.

In the next section, Section 4.2, we show the importance of this field. H is the maximum

number of hash functions and an array of counters, HC[N], is used to count the number

of elements that are mapped to each row of the hash table and table overflow records the

number of overflow elements and is initialized by the number of prefixes that are shorter

than 8 bits long. Group number ‘i’ is represented by Gi.

Algorithm 4 attempts to allocate kj, (line 6) in the hash table, if the attempt is not

successful, it stores the key in the overflow buffer that is searched after the main hash table.

Note that we apply the hash functions according to their specificity starting from the most

specific to the least specific during the insertion.

21

4.2 SEARCHING IN PH

In this section we show how to find the LPM in the PH scheme. The goal for any given

packet is to find its longest prefix matching. But since we might find multiple matches,

we want to make the first prefix that matches any packet to be its LPM. Unfortunately,

Theorem 1 cannot be used for PH scheme as some prefixes have a different insertion’s hash

order than their search’s hash order.

For example, if a packet PX matches prefix kX ∈ (S18) and kY ∈ (S16) in Figure 6(a),

then kX is the LPM of PX . Assume that during the prefixes mapping that both prefixes are

stored in two different rows as follows: h2(kX) = rX and h3(kY) = rY . During the search for

PX we try all the five hash functions r0 = h0(PX), · · · r4 = h4(PX). Assume that one of the

hash functions that were not used to store either kX or kY generates the row rY when it is

applied to PX , i.e., r0 = rY or r1 = rY . This means that we search rY before rX , thus, we

report kY as the LPM instead of kX , which is wrong.

To solve this problem, the hash function that was used to insert kY has to be checked.

In this case it turns out that kY was stored using h3() and not h0(), hence kY has to be

skipped as a matching as there might be a better matching, which is kX in this case. This

is why we store the hash function index in PH setup algorithm, Algorithm 4, (line 11).

The PH search algorithm is given in Algorithm 5. It works as follows: for each packet

P that arrives at the packet processing unit, we calculate the row index addresses r0 =

h0(P), · · · , rH−1 = hH−1(P) (lines 2–3). For each row ri we match P against all the elements

in that row in parallel in a single clock cycle using the matching processors (line 4). The

matching processors return the LPM in the bucket if and only if the stored hash function

index “.h” is identical to the hash function index that is used to lookup the prefix during

the search (line 5). If we did not find any match, then we search the overflow buffer (line

10).

22

4.3 THE INCREMENTAL UPDATES IN PH

In Section 3.4 we talked about the importance of the incremental updates issue for the IP

forwarding engine. In this section we describe how to preform the incremental updates for

the progressive hashing scheme.

Deleting a certain prefix is straight forward in PH scheme. It involves locating this

prefix, deleting it and adjusting the HC row counter. The insert/update operation for the

PH scheme is similar to that of the CHAP scheme that is given in Algorithm 3 except that

the the rows ri are not defined for i = H, · · · 2H − 1. Also, we use only the hash functions

that are applicable to the prefix being inserted. Specifically, we replace the lines 2–4 from

Algorithm 3 with the following lines:

2: for(i = 0 ; i < H ; i + +) {

3: if (kn ∈ Gi), then

4: ri = hi(kn) }

After that, we decide to which bucket we should store the new prefix, kn, as we did in

Algorithm 3. To summarize, Algorithm 3 can be used as an insert/update algorithm for PH

except for aforementioned 3 lines.

23

Restricted Hashing Scheme

Group 0
Group 1
Group 2
Group 3

hh00`(), `(), hh11`(), `(),
hh22`(), `(), hh33`()`()

Grouped Hashing Scheme

Group 0
Group 1
Group 2
Group 3

hh00()()
hh11()()

hh22()()
hh33()()

(a) (b)
Progressive Hashing Scheme

Group 0
Group 1
Group 2
Group 3

hh00(), h(), h11(), (),
hh22(), h(), h33()()hh11(), h(), h22(), (),

hh33()()

hh22(), h(), h33()()
hh33()()

(c)

Figure 5: The Evolution of The PH Scheme.

32 bits32 bits
S24: S24: 2424 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 3232

MSbMSb LSbLSb

hh00(), h(), h11(), (),
hh22(), h(), h33(), h(), h44()()

hh11(), h(), h22(), (),
hh33(), h(), h44()()

hh22(), h(), h33(), (),
hh44()()

hh33(), h(), h44()()
hh44()()

S20: S20: 2020 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 2323

S18: S18: 1818 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 1919

S16:S16:1616 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 1717

S8:S8:88 ≤ ≤ |Prefix| |Prefix| ≤ ≤ 1515

|Prefix| = prefix length|Prefix| = prefix length

Figure 6: Applying the PH Scheme.

24

Algorithm 4 The PH Setup Algorithm.

1: Sort the IP prefixes from longest to shortest and define the groups

2: Initialize HC[N] array to zeros and table overflow = number of prefixes shorter than

8 bits

3: for(j = 0; j < M ; j + +) {

4: inserted = false

5: for(i = 0 ; i < H ; i + +) {

6: if (kj ∈ Gi), then {

7: ri = hi(kj)

8: if(HC[ri] < L), then {

9: H Table[ri][HC[ri]].key = kj

10: H Table[ri][HC[ri]].len = |kj|

11: H Table[ri][HC[ri]].port = kj port number

12: H Table[ri][HC[ri]].h = i

13: HC[ri]++, inserted = true }

14: }

15: }

16: if(inserted == false), then

17: Store kj in overflow buffer, table overflow++ }

Algorithm 5 The PH Search Algorithm.

1: Search Hash Table(Packet P)

2: for(i = 0 ; i < H ; i + +) {

3: ri = hi(P)

4: if(P matches H Table[ri][j].key), then

5: if(i == H Table[ri][j].h), then

6: return H Table[ri][j].port

7: else

8: continue

9: }

10: search the overflow buffer

25

5.0 EVALUATION

We used C++ to build our own simulation environment. This environment allows us to

choose and arrange different types of hash functions. The hash functions used in our ex-

periments are from three different hashing families: bit-selecting, CRC-based, and H3 [19]

hashing families. Those families have the advantage of being simple and fast enough to be

easily realized in hardware.

For the evaluation, we collected 15 tables from the Border Gateway Protocol (BGP)

Internet core routers of the routing information service project [22] on January 31st 2009.

Table 1 lists the 15 routing tables, their sizes, and the percentage of prefixes, which we call

“Short prefixes”, that are shorter than 16 bits long. To measure the average search time, we

generate uniformly distributed synthetic traces using the same tables.

IP Table Size % Short prefixes IP Table % Short prefixes Size

rrc00 292,717 0.78 rrc10 0.82 276,912

rrc01 276,224 0.82 rrc11 0.82 275,903

rrc02 272,743 0.79 rrc12 0.82 277,132

rrc03 283,147 0.80 rrc13 0.81 280,961

rrc04 283,075 0.81 rrc14 0.82 274,824

rrc05 301,383 0.77 rrc15 0.82 275,828

rrc06 277,555 0.81 rrc16 0.81 280,744

rrc07 274,479 0.83 Average 0.81 280,242

Table 1: The Statistics of the IP lookup tables on January 31st 2009.

26

We define a “configuration” by specifying both N = the number of rows, and L = the

number of entries per row. The performance of CHAP and PH schemes, in terms of both

overflow percentage and AMAT, depends on the number of hash functions, H, and on the

load factor (space utilization) α = M/(N ×L) where M is the database size and (N ×L) is

the hash table size. For a given α, the hashing overflow depends on the aspect ratio of the

memory N/L.

In Section 5.1 we evaluate the CHAP scheme and in Section 5.2 we evaluate the PH

scheme. Finally, Section 5.3 evaluates the combined scheme of PH and CHAP.

5.1 THE EVALUATION OF CONTENT-BASED HASH PROBING

For a given hardware implementation, the number of rows, N , and the number of entries

per row, L, are fixed and the performance of the CHAP scheme depends on two important

parameters, namely the maximum overflow value of the OC counters, λ, and the number of

hash functions used, H, which is also the number of probing pointers per row in CHAP(H,H).

Intuitively, if λ is small, then the setup algorithm (Algorithm 1) may not be able to eliminate

the overflow. On the other hand, if λ is large, then Algorithm 1 may terminate with every

OC having a value smaller than λ, but the best fit algorithm may not find holes that are

large enough in the table to accommodate the values of the OC, thus increasing the overall

overflow of the hash table. In Section 5.1.2, we study the sensitivity analysis of CHAP(H,H)

for λ.

5.1.1 The Advantages of Content-based Hash Probing

In order to show the advantage of content-based probing over linear probing, we compare

the overflow generated by both CHAP(1,m) and linear probing (that has the same number

of probing steps) when mapping routing tables to hash tables with specific configurations

(that is with specific L and N). We use the table “rrc07” and two different configurations:

{L = 200, N = 1024} and {L = 100, N = 2048}. We tried many different configurations and

27

they all led to results similar to those shown in Figure 7. In addition, these two configurations

have a high average load factor α = 98.5% for the “rrc07” table, which articulates the

strength of CHAP.

010203040506070
1 2 3 4 5 6 7 8 9 10Overflow %

Number of Probing Steps or Pointers
LP(1,m)CHAP(1,m)

010203040506070
1 2 3 4 5 6 7 8 9 10Overflow %

Number of Probing Steps or Pointers
LP(1,m)CHAP(1,m)

(a) {L=270 , N=1024} (b) {L=135 , N=2048}

Figure 7: Overflow of CHAP(1, m) vs. Linear Probing(1, m) for table rrc07.

Figure 7 shows that for the same number of probing steps, overflow in CHAP(1,m) is

less than that in linear probing. In fact, CHAP achieves 72.4% more overflow reduction

than linear probing on average. Moreover, we can see that the longer the probing sequence,

the more effective is CHAP in eliminating overflow compared to linear probing. The main

reason behind this is that CHAP is addressing the overflow problem directly by choosing

empty, or partially empty, buckets to reallocate the overflow elements. This is in contrast

to linear probing which blindly tries to put the overflow elements in the nearest available

bucket which may not be found within m probes.

5.1.2 Sensitivity Analysis of CHAP (H,H)

In this section we study the effect of varying λ in the CHAP setup algorithm (Section 3.2).

We report the results for table “rrc07” since all other tables have similar results. We show

the results for two different groups of configurations where each group has 4 configurations.

In one group we use N = 212 = 4096 rows, and in the other N = 213 = 8192 rows. In these

groups we use H = 3.

Figures 8(a) and (b) show the values of overflow versus λ for the two groups. For

Figure 8(a), we set L = 70, 80, 90 and 100 entry per row for N = 4096 rows, which results in

28

α = 94.9%, 83.1%, 73.8% and 66.5% respectively. As for Figure 8(b), we set L = 35, 40, 45

and 50 entry per row for N = 8192 rows, which results in the same loading factors. Note

that λ ∈ [0, L].

0

5

10

15

20

25

5 10 20 30 35 40 45 50 60 70 75 80 85 90 100

Ov
er

flo
w

 %

λ

L = 70
L = 80
L = 90
L = 100

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50

Ov
er

flo
w

 %

λ

L = 35
L= 40
L = 45
L = 50

(a) N = 4096 (b) N = 8192

Figure 8: The overflow vs. λ.

As the figures indicate, the overflow starts at some non zero value and then decreases

in the range 0 < λ < L
2
. At λ = L

2
the overflow is almost zero in Figure 8(a), which is an

indication that the average hole size in the hash table is equal to L
2
. For larger values of

λ, the maximum hole size becomes smaller than λ and thus we are unable to insert all the

elements that were counted by OC into the hash table. This increases the overflow. For

Figure 8(b) we notice that the overflow is smaller when λ = L. This happens because the

bucket (row) size is small and we have a large number of buckets and a lot of them are

almost empty. This is expected since there is low entropy (randomness) between the prefixes

in the lookup tables, which leads to a lot of empty spaces in the hash table. In the following

section we use λ = L
2

for bucket sizes larger than 50 and λ = L for smaller bucket sizes.

5.1.3 CHAP(H,H) versus Restricted Hashing(H)

In this section we compare the CHAP(H,H) scheme against the restricted hashing scheme

(or RH(H)), where H is the number of hash functions used. We compare the two schemes in

terms of the AMAT (Average Memory Access Time) and the overflow. In this experiment we

use the routing table “rrc05“ since it has the largest number of entries among other tables.

29

0

10

20

30

40

50

200 100 50 30

O
ve

rf
lo

w
 %

Bucket Size

RH (H)

H = 1

H = 2

H = 3

H = 4

0
5

10
15
20
25
30
35
40

200 100 50 30

O
ve

rf
lo

w
 %

Bucket Size

CHAP(H,H)

H = 1

H = 2

H = 3

H = 4

Figure 9: Average overflow of 4 bucket widths for RH(H) and CHAP(H,H) for table rrc05.

In Figure 9 we show the average values of overflow for different number of hash func-

tions (between 1 and 4) and for four different configurations. We set N = 2048, 4096, 8192

and 16384 where L = 200, 100, 50 and 30, respectively. It is obvious from Figure 9 that

CHAP(H,H) has much less overflow than multiple hashing for the same number of hash

functions. On average CHAP(H,H) is 49.0% lower than RH(H) over all four bucket sizes.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

200 100 50 30

A
M

A
T

Bucket Size

RH (H)

H = 1

H = 2

H = 3

H = 4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

200 100 50 30

A
A

M
T

Bucket Size

CHAP(H,H)

H = 1

H = 2

H = 3

H = 4

Figure 10: Average AMAT of 4 bucket widths for RH(H) and CHAP(H,H) for table rrc05.

The results shown in Figure 10 indicates that the average AMAT over the four bucket

sizes for RH(H) is 2.16, while it’s 2.28 for CHAP(H,H) which is only 5% higher than RH.

We note here that both CHAP and RH schemes have a sperate memory (overflow buffer) to

accommodate the overflow prefixes which is searched after the main hash table (CA-RAM)

is searched. Therefore, the worst case search time for CHAP(H,H) and RH(H) are 2H + 1

and H + 1, respectively. Although the difference between the two schemes seems large in

30

terms of the worst case access memory time (WMAT), we have to take into consideration

that at H = 3 the overflow of CHAP is almost zero (less than 1%) for the bucket sizes of

L = 200, 100 and 50, while it is less than 5% for L = 30. Thus adding more hash functions

only makes the average memory access time worse. A classical tradeoff between the overflow

and the average memory access time can be seen in Figures 9 and 10. However, a better

understanding of the tradeoff that CHAP and RH present can be obtained by comparing

CHAP(H,H) with RH(2H) since both has 2H as the maximum number of table accesses (i.e.,

WMAT).

5.1.4 CHAP(H,H) versus Restricted Hashing(2H)

In order to show that CHAP(H,H) can achieve both low overflow and average access time

compared to RH(2H), we plot in Figure 11 (a) the overflow and (b) the average memory access

time of both schemes for one configuration C1:{L = 180, N = 2048}. For this experiment

we map each of the 15 IP tables into a fixed hash table of 368, 640 entries.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

rr
c0

0
rr

c0
1

rr
c0

2
rr

c0
3

rr
c0

4
rr

c0
5

rr
c0

6
rr

c0
7

rr
c1

0
rr

c1
1

rr
c1

2
rr

c1
3

rr
c1

4
rr

c1
5

rr
c1

6
A

V
E

.

O
ve

rf
lo

w
 %

Overflow for C1: 180 x 2048

RH(6)

CHAP
(3,3)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

rr
c0

0
rr

c0
1

rr
c0

2
rr

c0
3

rr
c0

4
rr

c0
5

rr
c0

6
rr

c0
7

rr
c1

0
rr

c1
1

rr
c1

2
rr

c1
3

rr
c1

4
rr

c1
5

rr
c1

6
A

V
E

.

A
M

A
T

AMAT for C1: 180 x 2048

RH(6)

CHAP
(3,3)

(a) (b)

Figure 11: (a)Average Overflow and (b) AMAT for CHAP(3,3) vs. RH(6) for 15 Lookup

Tables for C1: {L = 180 , N = 2048}

Note that we represent the average of all files as another independent point that is called

AVE in Figure 11. As we can see, CHAP(3,3) is better than RH(6) for all files in terms of

both the AMAT and the overflow. In fact CHAP(3,3) reduces the overflow by 90.2% and at

the same time improves the AMAT by 12.2% for this configuration.

31

To evaluate the CHAP scheme performance under other configurations, we use three

different configurations: C1:{L = 180, N = 2048}, C2:{L = 90, N = 4096} and C3:{L = 45,

N = 8192} in Figure 12(a) and (b). Figure 12(a) shows the average overflow over all the 15

lookup tables for RH(6)and CHAP(3,3). These three configurations have the same average

load factor of 76.0% which is considerably high. Figure 12(b) shows the AMAT of the same

three configurations for RH(6)and CHAP(3,3).

0.02.04.06.08.010.012.0
C1: 180 x 2048 C2: 90 x 4096 C3: 45 x 8192Overflow % RH(6)CHAP(3,3) 0.00.51.01.52.02.53.03.5

C1: 180 x 2048 C2: 90 x 4096 C3: 45 x 8192
AMAT RH(6)CHAP(3,3)

(a) (b)

Figure 12: (a)Average Overflow and (b) Average AMAT for CHAP(3,3) vs. RH(6) for 3

configurations.

For the three configurations, CHAP(3,3) reduces the overflow by 90.2%, 83.5% and 80.1%

respectively over RH(6). At the same time, CHAP(3,3) improves the AMAT over the RH(6)

for these configurations by 12.2%, 10.2% and 14.4% respectively.

5.2 THE EVALUATION OF PROGRESSIVE HASHING

In this section we compare the PH scheme against grouped hashing (GH) and restricted

hashing (RH) each using 5 hash functions. For RH(5), all 5 hash functions use the most

significant 16 bits and are applied to all the prefixes in the lookup tables. Those prefixes that

are less than 16 bits long are inserted in the overflow buffer. On the other hand, we split

the 32 bits IPv4 address space according to Figure 1 for both GH(5) and PH(5) schemes.

Figure 13(a) shows the overflow percentage, which is the ratio of the overflow to the

32

total number of prefixes of a routing table. We show results for all 15 routing tables for one

configuration C1:{L = 180, N = 2048}, for the three schemes: RH, GH and PH. On average,

the PH reduces the overflow by 86.5% compared to the RH scheme and by 66.9% compared

to the GH scheme. At the same time, the AMAT (Figure 13(b)) of the PH is improved by

22.0% over the RH scheme and 3.4% over the GH. Note that the overflow prefixes are added

to the overflow buffer that is searched after exhausting all possible buckets in the CA-RAM.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

rr
c0

0
rr

c0
1

rr
c0

2
rr

c0
3

rr
c0

4
rr

c0
5

rr
c0

6
rr

c0
7

rr
c1

0
rr

c1
1

rr
c1

2
rr

c1
3

rr
c1

4
rr

c1
5

rr
c1

6
A

V
E

.

O
ve

rf
lo

w
 %

Overflow for C1: 180 x 2048

RH(5)

GH(5)

PH(5) 0.0

0.5

1.0

1.5

2.0

2.5

rr
c0

0
rr

c0
1

rr
c0

2
rr

c0
3

rr
c0

4
rr

c0
5

rr
c0

6
rr

c0
7

rr
c1

0
rr

c1
1

rr
c1

2
rr

c1
3

rr
c1

4
rr

c1
5

rr
c1

6
A

V
E

.

A
M

A
T

AMAT for C1: 180 x 2048

RH(5)

GH(5)

PH(5)

(a) (b)

Figure 13: (a) Average Overflow (b) AMAT of RH(5) vs. GH(5) vs. PH(5) for 15 Lookup

Tables for C1: {180× 2048}.

To show that the PH scheme is robust under other configurations, we use the same three

configurations that we used before: C1:{L = 180, N = 2048}, C2:{L = 90, N = 4096} and

C3:{L = 45, N = 8192} in Figure 14(a) and (b). Figure 14(a) shows the average overflow

over all the 15 lookup tables for the three schemes RH, GH and PH. Figure 14(b) shows the

AMAT for the same configurations and schemes.

The PH has the lowest overflow percentage among the three schemes. The average (over

the three configurations) overflow reduction percentages of the PH is 55.2% compared to the

GH scheme, while it is 75.3% compared to RH. The PH improves the AMAT by 20.5% and

7.9% compared to RH and GH respectively.

33

0.02.04.06.08.010.012.014.016.018.020.0
C1: 180 x 2048 C2: 90 x 4096 C3: 45 x 8192Overflow % RH(5)GH(5)PH(5) 0.00.51.01.52.02.53.0

C1: 180 x 2048 C2: 90 x 4096 C3: 45 x 8192
AMAT RH(5)GH(5)PH(5)

(a) (b)

Figure 14: (a) Average Overflow and (b)Average AMAT for of RH(5) vs. GH(5) vs. PH(5)

for 3 configurations.

5.3 APPLYING CONTENT-BASED HASH PROBING TO PH

In this section we will combine both proposed schemes PH and CHAP into a third scheme

that we call PH CHAP(H,H). As described before, CHAP is using restricted hashing

scheme where the hash functions uses only the most significant 16 bits of all the prefixes.

However, we use progressive hashing scheme instead of RH scheme to get better performance

than both schemes.

In Figure 15(a) we show the average overflow of CHAP(5,5), PH(5) and PH CHAP(5,5)

for the same three configurations we used in Sections 5.2 and 5.1. The largest average

overflow belongs to PH(5) scheme with 3.5% and the lowest average overflow is 0.3% for

PH CHAP(5,5) over the 3 configurations The first two configurations, C1 and C2, have zero

overflow for PH CHAP(5,5) scheme with a reduction of 100%. For the third configuration,

C3, the PH CHAP(5,5) combined scheme reduced the overflow by 87.5% over PH(5) and by

23.6% over CHAP(5,5).

At the same time, we note that PH CHAP(5,5) has a lower AMAT (Figure 15(b)) than

CHAP(5,5) and PH(5) schemes with an average of 19.7% improvement over CHAP(5,5) and

of 2.3% improvement over PH(5). The improvement in the AMAT comes from the fact that

the combined scheme, PH CHAP(5,5), uses PH to reduce the overflow in addition to the

34

0.0

1.0

2.0

3.0

4.0

5.0

6.0

C1: 180 x 2048 C2: 90 x 4096 C3: 45 x 8192

O
ve

rf
lo

w
 %

CHAP
(5,5)

PH(5)

PH_
CHAP
(5,5)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C1: 180 x 2048 C2: 90 x 4096 C3: 45 x 8192

A
M

A
T

CHAP
(5,5)

PH(5)

PH_
CHAP
(5,5)

(a) (b)

Figure 15: (a) Average Overflow and (b) Average AMAT of CHAP(5,5) vs. PH(5) vs.

PH CHAP(5,5) for 3 Configurations.

probing pointers, in contrast to the fact that CHAP(5,5) relies only on its probing pointers

to reduce the overflow since CHAP uses hash functions that are restricted to use only 16 bits,

thus, increasing its AMAT. This is why the largest average AMAT over the 3 configurations

belongs to CHAP(5,5) though it has the second lowest overflow percentage among the three

schemes.

5.3.1 Memory Overhead of CHAP and PH

In this section we estimate the memory overhead of the PH(5), CHAP(5,5) and

PH CHAP(5,5) packet forwarding schemes. We estimate the memory requirements for one

configuration C1: {L = 180, N = 2048} as an example for these three schemes. In general,

C1 requires 180 × 2048 = 368, 640 or 370K entry, where an entry is represented by 5 bytes

prefix plus 5 bits prefix length and there is 1 byte per row for the row counter.

For the PH(5) scheme we need 3 bits per entry for the hash function index. Thus,

the total memory requirement for PH(5) for the configuration C1 is ∼ 2.12 MB. For the

CHAP(5,5) scheme we add 5 pointers per row where each pointer represented by 12 bits.

Note that we will use the auxiliary field of the CA-RAM that is at the end of each row, as

we mentioned in Section 2.3, to store the pointers and the row counters. Thus, the total

35

memory requirement for CHAP(5,5) is ∼ 2.00 MB for the configuration C1. Finally, for the

sam C1 configuration, the combined PH CHAP(5,5) scheme needs ∼ 2.13 MB.

36

6.0 CONCLUSIONS AND FUTURE WORK

In this thesis we have described and studied two different hash-based schemes for IP for-

warding, Content-based HAsh Probing (CHAP) and Progressive Hashing (PH) The schemes

solve the overflow problem by utilizing content-based probing and multiple hash functions,

respectively, and have small average memory access times. We also illustrated that both

schemes can be realized in hardware by taking advantage of state-of-the-art search mem-

ory architectures. In this work we use simple hash functions that can be easily realized in

hardware. We provided simple setup and incremental update algorithms for both schemes.

Simulation results show that content-based hash probing is superior compared to linear

probing in terms of overflow elimination. CHAP achieves 71.61% more overflow reduction

than linear probing on average. The results also show that CHAP improves the average

memory access time over the restricted multiple hash function scheme while reducing the

overflow.

While we introduce Progressive Hashing as a new open addressing hash-based packet

processing scheme, it can also work for closed addressing hash systems. Progressive hashing

is effective in reducing the classical hashing overflow by 93% on average over the restricted

hashing.

A state-of-the-art CMOS technology SRAM memory design [28] reports of a single chip

of 36.375 MB that runs on 4.0GHz. Since our scheme depends on a set associative RAM, we

conservatively assume that the clock rate is 2.0 GHz. If we assume AMAT of∼ 2.0 (according

to Figure 14(b)), then we have a forwarding speed of 2.0 Giga packets per seconds or 640

Gbps for the minimum packet size of 40 bytes.

The future work includes applying both schemes to other packet processing applications

such as Packet Classification (PC). In addition, we plan to introduce other optimizations to

37

reduce the worst case memory access time of both CHAP and PH schemes. Finally, we will

study a fully synthesized PH CHAP(H,H) packet forwarding engine.

38

BIBLIOGRAPHY

[1] Yosi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations.
pages 593–602. ACM SOC, 1994.

[2] Florin Baboescu, Dean M. Tullsen, Grigore Rosu, and Sumeet Singh. A tree based
router search engine architecture with single port memories. volume 1, pages 123–133.
IEEE ISCA, 2005.

[3] A. Basu and G. Narlikar. Fast incremental updates for pipelined forwarding engines.
pages 64–74. IEEE Infocom, July 2003.

[4] B. Bloom. Space/time trade-offs in hash coding with allowable errors. Comm. of the
ACM, 13(7):422–426, 1970.

[5] Sangyeun Cho, Joel Martin, , and Rami Melhem. Ca-ram: A high-performance memory
substrate for search-intensive applications. pages 230–241. Ispass’07, April 2007.

[6] T. Cormen, C. Leiserson, R. Rivest, and C. Stien. Introdcution to Algorithms. McGraw
Hill, 2003.

[7] Michel Hanna, Socrates Demetriades, Sangyeun Cho, and Rami Melhem. An efficient
hardware-based multi-hash scheme for high speed ip lookup. pages 103–110. IEEE
HOTi, August 2008.

[8] Michel Hanna, Socrates Demetriades, Sangyeun Cho, and Rami Melhem. Chap: En-
abling efficient hardware-based multiple hash schemes for ip lookup. IFIP Networking,
IFIP, May 2009.

[9] Michel Hanna, Socrates Demetriades, Sangyeun Cho, and Rami Melhem. Progressive
hashing for packet processing using set associative memory. IEEE/ACM ANCS, ANCS,
October 2009.

[10] G. Huston. Analyzing the internet’s bgp routing table. The Internet Pro. J., 2001.

[11] Weirong Jiang and Viktor K. Prasanna. A memory-balanced linear pipeline architecture
for trie-based ip lookup. pages 83–90. HOTi’07, August 2007.

39

[12] S. Kaxiras and G. Keramidas. Ipstash: A power-efficient memory architecture for ip-
lookup. pages 361–373. IEEE Micro, November 2003.

[13] A. Kirsch and M. Mitzenmacher. Simple summaries for hashing with multiple choices.
IEEE/ACM Trans. on Net., 2007.

[14] H. Noda K. Inoue H. J. Mattausch T. Koide and K. Arimoto. A cost-efficient dynamic
ternary cam in 130nm cmos technology with planar complementary capacitors and tsr
architecture. Proc. Int’l Symp. VLSI Circuits, June 2003.

[15] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary. Algorithms for advanced
packet classification with ternary cams. pages 193–204. ACM Sigcomm, May 2005.

[16] H. Noda and et al. A cost-efficient high-performance dynamic tcam with pipelined
hierarchical searching and shift redundancy architecture. IEEE J. Solid-State Circuits,
40(1):245–253, January 2005.

[17] R. Pagh and F. Rodler. Cuckoo hashing. Lec. Notes in Comp. Sci., pages 121–133,
2001.

[18] R. Panigrahy and S. Sharma. Reducing tcam power consumption and increasing
throughput. pages 107–112. IEEE HOTi, August 2002.

[19] M. Ramakrishna and et Al. Efficient hardware hashing functions for high performance
computers. IEEE Trans. on Comp., 46(12):1378–1381, December 1997.

[20] B. Randell. A note on storage fragmentation and program segmentation. Comm. of the
ACM, 12:365–372, July 1969.

[21] Y. Rekhter and T. Li. An architecure for ip address allocation with cidr. RFC, 1993.

[22] RIS. Routing information service. http://www.ripe.net/ris/, 2009.

[23] D. Shah and P. Gupta. Fast updating algorithms for tcams. IEEE Micro Mag., 21(1):36–
47, Jan./Feb. 2001.

[24] Haoyu Song and et Al. Fast hash table lookup using extended bloom filter: An aid to
network processing. pages 181–192. ACM Sigcomm, August 2005.

[25] V. Srinivasan and G. Varghese. Fast address lookups using controlled prefix expansion.
ACM Trans. Comput. Syst., 17(1):1–40, 1999.

[26] G. Varghese. Network Algorithmics: An Interdisciplinary Approach to Designing Fast
Networked Devices. Morgan Kaufmann, 2005.

[27] B. Vocking. How asymmetry helps load balancing. ACM J., pages 568–589, July 2003.

40

[28] Y. Wang, U. Bhattacharya, F. Hamzaoglu, P. Kolar, Y. Ng, L. Wei, Y. Zhang, K. Zhang,
and M. Bohr. A 4.0 ghz 291 mb voltage-scalable sram design in 32nm high-k metal-gate
cmos with integrated power management. In IEEE ISSCC, pages 456–457, 2009.

[29] SangKyun Yun. Hardware-based ip lookup using n-way set associative memory and lpm
comparator. Lecture Notes in Computer Science (LNCS), 4017/2006:406–414, 2006.

[30] F. Zane, G. Narlikar, and A. Basu. Coolcams: Power-efficient tcams for forwarding
engines. pages 42–52. IEEE Infocom, April 2003.

41

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. The Statistics of the IP lookup tables on January 31st 2009.

	LIST OF FIGURES
	1. Splitting the Hashing Space into Groups.
	2. The CA-RAM As An Example of Set Associative Memory Architectures.
	3. The CHAP basic concept.
	4. The CHAP(3,3).
	5. The Evolution of The PH Scheme.
	6. Applying the PH Scheme.
	7. Overflow of CHAP(1, m) vs. Linear Probing(1, m) for table rrc07.
	8. The overflow vs. .
	9. Average overflow of 4 bucket widths for RH(H) and CHAP(H,H) for table rrc05.
	10. Average AMAT of 4 bucket widths for RH(H) and CHAP(H,H) for table rrc05.
	11. (a)Average Overflow and (b) AMAT for CHAP(3,3) vs. RH(6) for 15 Lookup Tables for C1: {L = 180 , N = 2048}
	12. (a)Average Overflow and (b) Average AMAT for CHAP(3,3) vs. RH(6) for 3 configurations.
	13. (a) Average Overflow (b) AMAT of RH(5) vs. GH(5) vs. PH(5) for 15 Lookup Tables for C1: {180 2048}.
	14. (a) Average Overflow and (b)Average AMAT for of RH(5) vs. GH(5) vs. PH(5) for 3 configurations.
	15. (a) Average Overflow and (b) Average AMAT of CHAP(5,5) vs. PH(5) vs. PH_CHAP(5,5) for 3 Configurations.

	LIST OF ALGORITHMS
	1. CHAP(H,H) Setup Algorithm.
	2. The CHAP Search Algorithm.
	3. CHAP Insert Update Algorithm.
	4. The PH Setup Algorithm.
	5. The PH Search Algorithm.

	PREFACE
	1.0 INTRODUCTION
	2.0 BACKGROUND
	2.1 General Open Addressing Hash
	2.2 Hashing in the presence of wildcards
	2.3 Set Associative Memory Architecture Overview

	3.0 CONTENT-BASED HASH PROBING
	3.1 The CHAP(H,H) Scheme
	3.2 The CHAP Setup Algorithm
	3.2.1 The Mapping of IP Prefixes in CHAP.

	3.3 Search in CHAP
	3.4 The Incremental Updates in CHAP

	4.0 THE PROGRESSIVE HASHING SCHEME
	4.1 The PH Setup Algorithm
	4.2 Searching in PH
	4.3 The Incremental Updates in PH

	5.0 EVALUATION
	5.1 The Evaluation of Content-based Hash Probing
	5.1.1 The Advantages of Content-based Hash Probing
	5.1.2 Sensitivity Analysis of CHAP (H,H)
	5.1.3 CHAP(H,H) versus Restricted Hashing(H)
	5.1.4 CHAP(H,H) versus Restricted Hashing(2H)

	5.2 The Evaluation of Progressive Hashing
	5.3 Applying Content-based Hash Probing to PH
	5.3.1 Memory Overhead of CHAP and PH

	6.0 CONCLUSIONS AND FUTURE WORK
	BIBLIOGRAPHY

