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The focus of my thesis is to build upon the method of Shells and Spheres developed in our 

laboratory.  The method as previously implemented extracts medial points based on the 

divergence of the direction function to the nearest boundary as it changes across medial ridges, 

and reports the angle between the directions from the medial point to two respective boundary 

points.  The direction function is determined by analyzing the mean and variance of intensity 

within pairs of adjacent circular regions in a 2D image. My thesis research has involved 

improving the search method for determining the distance function and identifying medial 

points, and then clustering those medial points to extract features including scale, orientation and 

medial dimensionality. These are then analyzed to detect local geometric shapes.  I have 

implemented the methods in N dimensions in the Insight Toolkit (ITK).  In 3D, the method 

yields three fundamental dimensionalities of local shape: the sphere, the cylinder, and the slab, 

which, along with scale and orientation, are powerful features for classifying more complex 

shapes. Tests are performed on simple geometric objects including the hollow sphere (slab), 

torus (cylinder) and sphere. The results confirm the capability of the system to successfully 

identify the described medial shape features, and lay the foundation for ongoing research in 

identifying more complex anatomical objects in medical images.  
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1.0  INTRODUCTION 

Medical imaging has come a long way since the discovery of X-rays by Roentgen in 

1895. Over the years, many new imaging modalities have evolved, providing doctors and 

radiologists insight into the human body. The images produced by different modalities provide 

vital information necessary for diagnosis and treatment.  Doctors rely on these images to 

identify, measure and functionally assess various structures. Most of the techniques for analysis 

currently used in clinics require manual examination by a radiologist. This process is tedious and 

time consuming, especially with large 3D datasets such as produced by MRI, which are generally 

examined one slice at a time. Hence, computerized image analysis, as a means to assist doctors 

to extract information with little or no manual intervention, is of critical importance. Most of the 

automated analyses that exist are unreliable because of the irregularities that are inherently 

present in the images, such as noise, variation in anatomical shape, discontinuous object 

boundaries, and varying imaging characteristics. Hence, a more robust and rapid automated 

system is needed. 

Typically, shape detection depends on the ability to identify boundaries, which are used 

to determine the parent shape by grouping neighboring boundary points. Such local measurement 

techniques are susceptible to image noise and may be unstable. A different approach would be to 

group all boundary points globally, using geometric relationships. But this approach is 

computationally expensive and not practical for large data sets. A compromise between these 
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two approaches can be achieved by considering the medial relationship, which links opposing 

boundary points equidistant from the center of an object. The framework of “shells and spheres”, 

developed in Dr. Stetten‟s laboratory, is a means to perform this association by detecting medial 

points based on the statistical properties of populations of pixel intensities. This is accomplished 

by first determining the distance and direction to the nearest boundary at every pixel location. 

The work of this thesis is to build upon the framework of shells and spheres, examine its 

capability to detect and cluster medial points in N-dimensions, and extract features such as scale, 

orientation, and medial dimensionality. These features are analyzed to differentiate three 

fundamental local geometric shapes: sphere, cylinder, and slab. Tests have been performed on 

simple geometric objects including the hollow sphere (slab), torus (cylinder) and sphere. The 

methods have also been applied in a preliminary way to real 3D medical imaging data. 

 

Thesis Overview: 

i. A robust system capable of detecting medial manifolds in N-dimensions is developed.  

ii. The local properties of the medial manifold, including scale, orientation, and 

dimensionality, are extracted for shape analysis.  

iii. Evaluation of these methods on synthetic test objects (sphere, cylinder, and slab) 

confirms the ability of the system to detect medial manifolds and to identify their local 

scale, orientation, and dimensionality. Preliminary examination of the system on real 3D 

medical data is performed.  
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2.0  BACKGROUND 

2.1 MEDIAL AXIS 

The concept of the Medial Axis, originally referred to as topological skeleton, dates back to 1967 

when Blum introduced it as a tool for biological shape recognition [1]. The medial axis is 

formally defined as the locus of centers of spheres contained within the object that are tangent to 

the boundary in at least two places. It was originally suggested as an effective means of 

representing objects in 2D images.  A classic illustration of the Blum medial axis of a rectangle 

is shown in Figure 1. The dotted lines represent the locus of points equidistant from two or more 

boundary points of the rectangle. Also shown are a few of the circles whose centers lie on the 

medial axis and whose circumferences touch but do not cross the rectangle‟s boundary. 

Subsequently, Blum also suggested the extension of medial loci to objects in 3D images, using 

maximal spheres instead of circles. A useful metaphor for the Blum medial locus is the 

“grassfire”, in which the medial locus is obtained as a set of quench points when a field of 

uniformly dense grass whose boundary matches the boundary of the object is set on fire at each 

point on the boundary at time t = 0. 
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Figure 1: Blum medial axis (dotted lines) of a rectangle. It is locus of points equidistant from two or more boundary 

points of the rectangle (courtesy of Aaron Cois, Ph.D. Dissertation).  

 

Blum‟s approach presupposes an existing segmentation,  a binary image.  Detection of 

the medial axis in gray scale images was implemented by Burbeck and Pizer [2]. They designed 

a “core” model in which a figure's boundaries are related to one another at a scale determined by 

the figure's width, as determined by statistical operations at that scale. A core is a locus in a 

space whose coordinates are position, radius, and associated orientations. The extraction of 

boundary and medial ridges using the core model has proved to be stable against image 

disturbances [3]. A framework that finds pairs of boundary points called “core atoms” using one 

such statistical approach has been implemented by Stetten and Pizer [4]. In core atoms, pre-

detected boundary points are associated in pairs that face each other across an object and are then 

grouped by their centers into populations that are clustered at medial locations.  

 

The medial representation has a variety of strengths. It is powerful since it directly 

captures various aspects of shape by giving direct access to both object interiors and object 

boundaries and also provides important features such as location, orientation and scale in any 

neighborhood of the interior of an object. The medial axis is a transformation of an object 

boundary with the same topology as the object. It is not only possible to generate the medial axis 
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from the boundary but equally, the medial locus can generate the object boundary. As a result of 

such advantages, medial representation finds wide use in image analysis, computer vision and 

other fields of computer science.  

2.2 SHELLS AND SPHERES 

Shells and Spheres is a novel system developed in our laboratory for analyzing images. It is 

based on a set of spheres, one centered at each pixel in an image, whose radii are allowed to 

grow. A sphere map is an N-dimensional neighborhood of pixels that lie within a radius r of a 

center point. Thus, Sr (x) = {y : round(|y − x|)  ≤ r, y ∈ Ω}, where, Sr (x) is a  sphere of radius r 

centered at image pixel x, y is a pixel within that sphere, and Ω ⊂ ZN, is the set of all pixel 

locations in a sampled N-dimensional image. A shell is the set of all pixels whose distance to the 

center rounds to a given radius, defined for a radius r as Hr (x) = {y : round(|y − x|)  = r, y ∈ Ω}. 

Figure 2 depicts a sphere map of radius 2 (shown in blue) and a shell of radius 3 (shown in red). 

Each pixel is shown as a number indicating its integer distance from the central pixel.  

 

Figure 2: Each pixel is shown as a number indicating its integer distance from the central pixel. If we denote the 

central pixel as x, then pixels labeled n are members of the set Hn(x). For example, the pixels labeled “3” (shown in 

red) comprise the shell H3(x). 
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A sphere of radius r can be formed from a union of shells, 

  ( )   ⋃  ( )

 

   

 

A sphere is allowed to grow such that it touches but does not cross the boundary of the 

object. Figure 3 shows a noiseless image with 2 objects having pixel intensities of „1‟ and „9‟ 

respectively. The boundary between the objects is shown by a dotted line. At pixel x, sphere Sr(x) 

is allowed to grow till it reaches the boundary. Similarly, sphere Sr(y) centered at pixel y is 

allowed to grow in the neighboring object. Since Sr(x) and Sr(y) touch but do not cross the 

boundary, it can be said that the spheres are optimized correctly. The optimal spheres‟ radii are 

equivalent to a distance map, indicating the distance from the center of each sphere to the nearest 

boundary. 

 

 

Figure 3: Noiseless image with boundary between two objects. Numbers indicate pixel intensity. The spheres are 

optimized to the right size. Spheres touch, but do not cross the boundary between the two objects. Sr(x) has r(x) = 3 

and Sr(y) has r(y) =2. Color intensity indicates the sphere growing from size 0, red for Sr(x) and blue for Sr(y).  

 

This approach was taken prior to the present dissertation by Aaron Cois, in the Stetten 

laboratory, using Shells and Spheres to grow spheres from neighboring objects to meet at the 
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boundaries between them [5].  We now take a somewhat different approach, using asymmetric 

sphere pairs (described below), in which only one of the spheres is permitted to grow. 
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3.0  DETERMINING DISTANCE FUNCTION 

The focus of my thesis is to build upon the framework of Shells and Spheres. Building on the 

previous work in our lab [5], I will utilize pairs of spheres that are adjacent, to tell the difference 

between the intensities of adjoining regions.  Sphere pairs that are asymmetric, in terms of the 

radii of the individual spheres, can be used to determine the distance function, i.e., the distance to 

the nearest boundary, as well as the direction to that boundary. A sphere pair, as we define it, 

consists of a constant radius outer sphere, adjacent to an inner sphere whose radius can vary. 

The labels inner and outer denote the ideal placement of the sphere pair relative to an 

underlying object.  The constant radius of the outer sphere is chosen to be small enough to 

provide sufficient boundary curvature, while still being large enough to represent a statistically 

significant population. The radius of the inner sphere is permitted to grow, starting at the same 

radius as the outer sphere, in search of the nearest boundary.  The radius of the inner sphere is 

considered the scale of the sphere pair, and the sphere pair is said to be located at the center of 

the inner sphere. 

We define various statistics for spheres. The mean intensity of the pixels within sphere 

  ( ) is defined by 

 ( )   
 

   ( ) 
∑  ( )

 ∈  ( )

 

where    ( )  is the number of pixels in sphere   ( ) and  ( ) is the intensity at pixel y. 
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The variance at pixel x is defined as 

  ( )   
 

   ( )   
∑ [ ( )    ( )] 

 ∈  ( )

      ( )    

The standard deviation  ( ) is the square root of the variance. 

These statistics are first pre-computed for outer spheres at their constant radius for every 

pixel throughout the image. The statistics are then computed for the inner sphere at each pixel 

location, with the radius first set to that of the outer spheres and then allowed to increase until it 

reaches a maximum value set by the user, with the statistics recomputed for every radius.  These 

statistics will be compared to those of the adjacent outer spheres to determine the presence of a 

boundary, as will be described below.  

The radius of the outer sphere, which is also the initial radius of the inner sphere, must be 

at least 1.  A sphere of radius 0 consists of a single pixel. If variance is to be computed, it is 

imperative that the radius of the sphere be greater than 0, since the variance of a sample of one 

pixel is not defined. 

Boundaries between objects may be detected using the d’ (d-prime) value, which is a 

statistic used in signal detection. It provides the separation between the means of the signal and 

the noise distributions, in units of the standard deviation of the noise distribution. In our case we 

have two populations of pixel intensities (those within the inner and adjacent outer spheres), and 

we want a measure of how different the two populations are, so as to be able to detect a boundary 

between the spheres. Hence, the signal and the noise distributions in the definition of d’ can be 

replaced by the intensity distributions of the inner and the outer spheres. Since we care about the 

standard deviations of both populations, the formula for d’ is given by: 
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𝒅   
       

√  
 +   

 

2

 

where   and   are the means and standard deviations of populations 1 and 2.   

Figure 4 demonstrates the concept of detecting boundaries using d’. The figure consists 

of a noisy image with a rectangular object whose mean pixel intensity differs from that of the 

background, with an inner sphere (red), and three adjacent outer spheres (blue) superimposed. 

Intensity histograms of the three sphere pairs (formed from the inner sphere and each of the three 

outer spheres) are shown to the right. The dotted line represents the histogram of the inner 

sphere, while the solid line represents the histogram of the outer sphere. The inner sphere 

encompasses an object completely within the object. Each of the sphere pairs is examined. 

 

Sphere pair 1: The outer sphere encompasses a region completely outside the object.  As 

seen in the corresponding histogram of pixel intensities (labeled 1), the means are clearly 

separated. The variance in each of the spheres is relatively low. Hence, a high d’ results. 

 

Sphere pair 2: The outer sphere includes pixels from both inside and outside the object. 

The means of the inner and outer spheres are closer to each other and the histograms 

(labeled 2) overlap. Also, the variance in the outer sphere is higher. Hence, a lower d’ 

results.  

 

Sphere pair 3: Both the inner and outer spheres are entirely within the object. The 

corresponding histograms (labeled 3) completely overlap. The means of the population in 

both the spheres are approximately the same. Hence, the d’ is very close to 0.  
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A high d’ indicates that the two spheres in a sphere pair lie on opposite sides of a 

boundary, with the point of contact between the two spheres lying on the boundary. Noticeably, 

in the example illustrated in Figure 4, sphere pair 1 generates the highest d‟ and is therefore the 

best choice for a boundary between the object and the background.  

 

      

Figure 4: Noisy image consisting of 2 objects. A sphere pair consists of an inner sphere (red) and an outer sphere 

(blue). Three cases depicting different orientations of the outer sphere are shown, with their corresponding pixel 

intensity histograms (outer sphere = solid line, inner sphere = dashed line). 

 

 

At a given pixel location, the inner sphere is allowed to grow, starting from a small radius 

equal to the radius of the outer sphere. As the inner sphere grows, sphere pairs are formed at 

every scale with all possible orientations of the outer sphere. For example, let us consider an 

inner sphere whose initial radius is 1 and let us assume that this sphere has now grown to a 

radius of 3, as illustrated in Figure 5. Sphere pairs (inner sphere + outer sphere) are now formed 
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that comprise the current inner sphere of radius 3 (red) and outer spheres that are located around, 

and adjacent to, the inner sphere (blue). 

 

 

Figure 5: Inner sphere (red) is grown from radius 1 to radius 3. Sphere pairs are formed at all possible outer sphere 

(blue) orientations. The d’ is computed for each sphere pair and the optimum sphere pair is chosen. The winning 

sphere pair provides the direction to the nearest boundary. 

 

 

The d’ value is computed for each sphere pair, and the one with the highest d‟ provides 

the optimum sphere pair at the current scale. For the example in Figure 5, the optimum sphere 

pair is most likely to include the outer sphere highlighted by a solid line. Assuming a correct 

optimization of the sphere pair by the method just described, we can obtain a unit direction 

vector  ̂( ) from the center of the inner sphere to the center of the outer sphere. (The ^ symbol 

denotes unit vector.)  The direction vector, along with the corresponding d’ and the current 

radius is stored using a method that is described in the following section. The inner sphere radius 

is then increased by 1 and the search for the optimum sphere pair is repeated at the new scale. 
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This process is repeated until the inner sphere reaches a maximum size set by the user. A 

direction vector is thus found at every scale, for each pixel location.   

3.1 STORING THE DIRECTION VECTORS  

As described in the previous section, a direction vector is obtained at each scale, and at each 

pixel location.   Thus the direction vector is represented in a domain commonly known as “scale 

space”.  If the radius of the inner sphere ranges from 1 to 10, we obtain 10 different direction 

vectors pointing to the most likely boundary at each scale. Thus, we require a data structure 

capable of storing multiple records at each pixel location. 

The data structure used in my thesis is a linked list. A linked list is a data structure that 

consists of a sequence of data records allowing easy insertion and removal of data. Each record 

of the linked list holds the scale, d’, and the direction, as shown in Figure 6. 

 

 

 

Figure 6: Linked list in which each record stores the scale, d’, and the direction 

 

If a record were stored for every scale at every pixel, this would represent an enormous amount 

of data, for a typical 3D medical image.  Luckily, as will be discussed in the following sections, 

only certain locations and scales are considered significant, namely those that are medial. 

Scale = 1 
d’ 

Direction 

Scale = 2 
d’ 

Direction 

Scale = 3 
d’ 

Direction 

Scale = n 
d’ 

Direction 
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4.0  IDENTIFYING MEDIAL POINTS 

As one crosses the medial ridge, the direction vector, which points to the nearest boundary, 

changes abruptly, as shown in Figure 7. By detecting such abrupt changes, we can identify 

medial points. Since the direction vectors are unit vectors, the dot product of two direction 

vectors gives us the cosine of the angle between them. This value ranges from -1 to +1. While 

positive values of the dot product imply that the two vectors are roughly in the same direction, 

negative values imply that they are in opposite directions. By identifying a pair of neighboring 

pixels whose direction vectors produce a negative dot product, it is possible to detect the abrupt 

change across the medial ridge, implying the existence of a medial point between the pixels. 

Note that in cases where the vectors form a right angle (see Figure 7) the dot product will yield 0.  

A threshold can be set to include any desired range of angles.   

 

Figure 7: A noisy image showing the medial locus (red) of the object. Also shown is the direction of the sphere pair 

at a pixel location (blue). 
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The algorithm used to compute the dot product of the direction vectors of neighboring 

pixels is explained in the next section. 

4.1 ALGORITHM TO DETECT MEDIAL POINTS 

In terms of the data structure described in section 3.1, storing a record at every scale for every 

location would be redundant. It is sufficient to store a record only at the medial points and then 

only at the appropriate scale for that medial point.  

In order to detect medial points in an image, a mask that includes the immediate 

neighbors of a given pixel in the positive direction in each dimension (x and y in 2D; x, y and z in 

3D) is used. Figure 8 shows the 2D and 3D masks. 

 

Figure 8: (a) 2D mask and (b) 3D mask used to detect medial points . A center pixel (red) and its immediate 

neighbors (blue) in the positive direction in each dimension are shown. 

 

The mask is applied at every pixel location. Pairs of pixels are formed by considering the 

center pixel (red) and one of its neighbors (as defined by the mask). Thus, we obtain 2 pairs of 

pixels in 2D and 3 pairs in 3D at each pixel location. The dot product of the direction vectors is 
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computed for each pair. If the dot product is negative and satisfies a threshold set by the user, the 

pixels formulating the pair are marked as medial points, assuming that the d’ associated with 

each direction vector is above a threshold, i.e., the corresponding sphere pairs have each located 

significant boundaries.  

We apply this technique to detect medial points at every scale sequentially. Sphere pairs 

are first computed and stored temporarily at every pixel location of the image at a given scale. 

Medial points are then detected at this scale using the dot product of the direction vectors as just 

described. A record containing scale, the corresponding d‟, and the direction is stored in the 

linked list only at the medial points, instead of every pixel location. This process is repeated at 

each scale as the inner sphere is grown until it reaches its maximum radius. 

To validate this method, tests were performed on three synthetic 3D objects: a torus, a 

hollow sphere, and a sphere.  We chose these three objects because our aim is to detect the 

fundamental 3D shapes, namely, the cylinder, slab, and sphere.  A torus is basically a cylinder 

locally with varied orientation, and a hollow sphere is a slab locally with varied orientation.   

The results obtained are shown in Figures 9, 10, and 11. The images contain the synthetic 

3D objects, which were generated using ITK (introduced in a later section). The dimensions of 

the images are 75x75x75 pixels and the voxel spacing is isometric.  Gaussian noise has been 

added to the images. For each shape, medial points, which are expected to be related to the 

diameter of the shape at that point, are overlaid with the radius coded by color. A 3D surface 

rendering of each shape visualized using ITK-SNAP is also shown.  

Figure 9 shows slices of a noisy 3D image containing a torus, whose minor radius is 6 

and major radius is 15. The medial points detected at scale 1, 5, and 6 are shown in red, blue and 

green respectively. The majority of medial points are detected at scale 5. Fewer medial points are 
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detected at scale 6 (green), and they are therefore located far apart from each other. The points 

detected at scale 1 (red) are near the edge of the object. These points have been falsely identified 

as medial points due to an unresolved problem in the system. 

Figure 10 shows slices of a noisy 3D image containing a hollow sphere of thickness equal 

to 3. Medial points are detected at scale 1 (red). 

Figure 11shows the result obtained for a sphere of radius 8. As expected, the medial 

occupy a small region at the center of the sphere at scale 5 (blue). 
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Figure 9: (a) 3D model of a torus visualized using surface rendering in ITK-SNAP. (b) Noisy image of a torus. 

Slices of the 3D image, showing the cross section of the torus and the detected medial points (slices 5, 6, 7, and 12) 

at scale 1 (red), scale 5 (blue), and at scale 6 (green)  
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Figure 10:  (a) 3D model and a cross sectional view of a hollow sphere. (b) Slices of a noisy 3D image of a hollow 

sphere, showing the cross section of the hollow sphere and the detected medial points at scale 1 (red)  
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Figure 11:  (a) 3D model and a cross sectional view of a sphere. (b) Slices of a noisy 3D image of a hollow sphere, 

showing the cross section of the hollow sphere and the detected medial points at scale 5(blue) in slice 6.  
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5.0  CLUSTERING MEDIAL POINTS 

The medial points were clustered and analyzed to detect geometric shapes. Clustering was 

performed by describing a local region and a particular scale. The region was simply the inner 

sphere of any sphere pair at a medial location, as determined in the previous section. Any other 

medial points (sphere pairs) of the same scale within that inner sphere were considered to be in 

the cluster. Thus, a cluster Cr(x) at pixel location x is defined as Cr(x) = {Sr(x) ∩ M}, where Sr (x) 

is an inner sphere of radius r centered at image pixel x, and M is the set of all medial points. For 

example, Figure 12 shows a noisy image containing an object. A set of medial points is shown in 

red. Let us say that a medial point at location x has been detected at scale 5 using the method 

described in the previous section. This means that at pixel location x an optimum sphere pair 

exists whose inner sphere is of radius 5, and a second sphere pair (not shown) is to the left of it 

pointing towards the opposite boundary.  We can now form a cluster of medial points (dotted red 

line) that are within the inner sphere (blue) of radius 5 centered at x.  

 

Figure 12: Medial points (dotted red line) within the inner sphere (blue) centered at x are clustered 
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6.0  EXTRACTING FEATURES 

Local clusters of direction vectors are configured in three basic ways, corresponding to the 

fundamental geometric shapes of sphere, cylinder, and slab [5]. Each shape corresponds to a 

particular medial dimensionality, and has a particular distribution of direction vectors. 

Sphere: The direction vectors point outward from the center towards the boundary in all 

possible directions. This can be compared to light rays originating from a point source of light. 

The center of the sphere is the medial point. 

Cylinder: Medial points form the axis of the cylinder. The direction vectors point away 

from the axis to the nearest boundary within the plane orthogonal to the axis. This can be 

compared to the spokes of a wheel.  

Slab: The medial points form a plane, with the direction vectors pointing away from the 

plane in opposite directions towards the nearest boundary. 

These three configurations are illustrated in Figure 13. Note that the dimensionality of the 

particular medial manifold corresponds to the shape.  Thus, for the sphere, cylinder, and slab, the 

medial manifold is the point, line, and plane, respectively. This corresponds to linear spaces with 

dimensionality 0, 1, and 2. 

A given population of direction vectors may be examined to determine which of the basic 

three shapes it belongs to. Eigenanalysis is performed on the cluster of direction vectors by 

computing the covariance matrix D, which is given by  



 23 

   
 

 
∑  ̂  ̂

 

 

   

 

where    is a population of n unit directional vectors.   

Assuming we are working in N dimensions, we can obtain N eigenvalues from the 

covariance matrix D. The eigenvalues are denoted as                and their corresponding 

eigenvectors are denoted as  ̂   ̂    ̂ . Since D is a positive definite symmetric matrix, its 

eigenvalues are all positive and sum to 1, i.e.   +   +  +      . If we arrange the 

eigenvalues such that             , then their relative values can be used to represent 

dimensionality of the medial manifold, and their corresponding eigenvectors  ̂   ̂    ̂  can 

represent its orientation. Eigenvector  ̂  will be the vector whose direction is most orthogonal to 

the population of direction vectors. Eigenvector  ̂  will be most collinear to the population.  

In the case of 3D,    and    can be used to detect the dimensionality of an object. Note 

that it is sufficient to compute    and    since    =     +   . As shown in Figure 13, for a 

cylinder,  ̂ , being the most orthogonal to the population of direction vectors, represents the axis 

of the cylinder. The corresponding eigenvalues are      and      2. An eigenvalue of 0 

implies that the corresponding eigenvector is completely orthogonal to every direction vector in 

the population, which is true for the spoke of a wheel configuration of direction vectors in the 

perfect cylinder. For a slab, both    and    are equal to 0. This implies that  ̂  and  ̂  are 

completely orthogonal to the population, i.e., the medial manifold is a plane running down the 

middle of the slab. In the case of a sphere, none of the eigenvectors are orthogonal to the 

population, which points out from the center in all direction equally. The analysis is summarized 

in table 1.  
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Figure 13: Three fundamental shapes and their corresponding medial manifolds. Also shown is the distribution of 

direction vectors in each shape and their corresponding eigenvectors. (Courtesy: George Stetten) 

 

 

Table 1: Relation of eigenvalues to 3D shapes. 

 Sphere Cylinder Slab 

   1/3 0 0 

   1/3 1/2 0 

   1/3 1/2 1 

 

The relationship between the eigenvalues (   and   ) and the geometric shapes (sphere, 

cylinder, and slab) may be represented by a triangular domain we call the “lambda triangle” 

(Figure 11) [6]. As seen in Figure 11, the eigenvalues    and    defines the y-axis and x-axis 

respectively. All possible values of    and    fall within the triangle. The vertices of the triangle 

correspond to the 3 basic shapes (sphere, cylinder, and slab). Dimensionality may be 

approximated by arbitrarily dividing the triangle into three compartments, each representing a 

fundamental 3D shape. Given a population of direction vectors, the eigenvalues (   and    ) for 
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a given cluster can be plotted on the lambda triangle to identify the dimensionality depending on 

where the eigenvalues lie. 

 

Figure 14:  Triangle representing the relation between eigenvalues and 3D shapes 

 

Figures 15 and 16 show scatter plots of the eigenvalues for the hollow sphere and the 

torus (described in section 4.1), computed using the methods described above. Color denotes 

scale.  As shown in Figure 15 for the hollow sphere (Figure 10), medial points are detected only 

at scale 1. This is expected because the wall thickness of the hollow sphere is 3.  (Recall that a 

sphere of radius 0 is a single pixel, and a sphere of radius 1 has a diameter of 3.) Figure 15 

demonstrates that clusters formed at medial points of scale 1 contain sufficient number of 

direction vectors to perform meaningful eigenanalysis. Looking at the plot of the eigenvalues on 

the lambda triangle, we can see that the eigenvalues fall in the “slab compartment”, thus 

confirming the dimensionality of the hollow sphere. 
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In the case of the torus (Figure 9), the scatter plot of the eigenvalues on the lambda triangle in 

Figure 16 shows medial points detected at scales 5 and 6, with the majority being at scale 6. 

Since the medial points detected at scale 5 (green, Figure 9) were fewer and located far apart 

from each other, the individual clusters formed at these locations do not contain sufficient 

numbers of direction vectors to produce meaningful eigenvalues, and thus the eigenvalues are 

distributed over the entire plot and not concentrated at any one region. On the contrary, at scale 

6, the medial points that are detected are sufficiently numerous and close to each other to 

produce satisfactory eigenvalues, which are grouped near the vertex of the lambda triangle that 

corresponds to the cylinder.    

 

 

Figure 15:  Eigenvalues of the hollow sphere superimposed on the lambda triangle  
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Figure 16: Eigenvalues of the torus superimposed on the lambda triangle 

 

In the case of the sphere (Figure 11), each pixel location within the sphere has a direction 

vector that points outward towards the boundary of the sphere. The abrupt change of direction 

required to detect a medial point, as described in section 4.0, can be found only at the center of 

the sphere. Hence, medial points are detected at the center of the sphere, as shown in Figure 11. 

If we use the clustering method described in the previous section, the eigenvalues resulting from 

the cluster will not be meaningful, because only few medial points are available for clustering. 

We may address this in future work as follows: By altering the criteria used to cluster the 

direction vectors, more vectors could be included. Instead of clustering only the direction vector 

from the sphere pair with the greatest d’ for each medial point, we could include in the cluster, 

direction vectors from sphere-pairs with somewhat lower d’ (but still significant).  There will be 

large numbers of these, especially at medial points in the center of spherical objects.  This should 

yield sufficient number of samples to permit computation of eigenvalues, and we expect these 

values to be       , and    approximately equal to 1/3 for the sphere.  
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Figure 17: Orientation error in degrees for the torus and the hollow sphere.  

We found the orientation error for the torus and hollow sphere, as shown in Figure 17. 

Error was computed by finding the theoretical axis of the local cylinder in the torus and the 

normal to the local slab of the medial manifold for the hollow sphere.  The corresponding 

eigenvector for each medial pixel ( ̂  for the cylinder and  ̂  for the slab) was then compared to 

these theoretical values and the angular error reported.  As can be seen in Figure 17, the error 

showed that the eigenvectors were consistently aligned in the correct orientation, within 

approximately 40 degrees for the torus and 20 degrees for the hollow sphere.  
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7.0  MEDIAL DETECTION IN A REAL IMAGE 

The improved shells and spheres framework described in this thesis was tested on a real image. 

A 3D grey-scale lung data set of contrast-enhanced CT data, cropped and resampled to 75x63x99 

isometric voxels, was used as the test image (Figure 18). The goal was to find medial points of 

the arterial and venous vessels, which constitute major structures in the lungs. The result 

obtained after applying the methods and algorithms described in the previous sections is shown 

in Figure 19. The radius of the outer sphere is equal to 1, and the maximum radius of the inner 

sphere is equal to 7. Although a maximum inner sphere radius of 3 would have been sufficient to 

detect the distal regions of the vasculature, the inner sphere was intentionally allowed to grow to 

a radius of 7, so that the robustness of the system to detect medial points at various scales could 

be tested. Our system identified medial points at scales ranging from 1 to 5, with the majority 

being detected at scale 1. Figure 19 shows a small selection of coronal, sagittal and axial slices of 

the 3D lung image, with the medial points superimposed on the image. The medial points have 

been color-coded to represent scale (see figure). As expected, the majority of medial points in the 

vasculature were detected at scale 1 (red). At places where the vessels are thicker, medial points 

were detected at higher scales. A flexibility in the system comes from the fact that the user can 

choose the scale at which he wishes to find the object. In our case, having prior knowledge that 

the vessels are small regions, we can opt to view the medial points at scales 1, 2, and 3, resulting 

in the removal of the unwanted medial points that would be detected at higher scales. The medial 
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points can then be rendered using various methods to obtain a 3D visualization. One such 

method using the open-source visualization software ITK-SNAP is shown in Figure 20. The 

figure shows medial points at scales ranging from 1 to 5.  

 

Figure 18: Five slices of the cropped and resampled 3D lung image used in our experiment, shown in the (a) 

Coronal, (b) Sagittal,  And (c) Axial orientations.  
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Figure 19: The slices shown in Figure 18 with the detected medial points superimposed. The scales at which the 

medial points are detected are color coded  as follows: 1–red; 2–green; 3–dark blue; 4–yellow; 5–light blue. 

 

Figure 20: 3D rendering of the medial points using ITK-SNAP.  Color coding as in Figure 19. 
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8.0  IMPLEMENTATION IN ITK 

8.1  ABOUT ITK 

ITK stands for Insight Segmentation and Registration Toolkit. It is an open-source, cross 

platform, object-oriented system used by developers for image analysis. It contains a collection 

of algorithms and functions mostly designed for medical image analysis. ITK was started in 1999 

on the initiative of the National Library of Medicine (NLM) at the National Institutes of Health 

(NIH) [7]. As an open-source project, it has been created, debugged, maintained and extended by 

developers from around the world. ITK is implemented in C++ and is designed to run on many 

platforms. It can be downloaded for free from the ITK webpage: www.itk.org. ITK makes use of 

the CMake build environment to handle the compilation process. CMake, which stands for cross-

platform make is a build environment that is operating system and compiler independent. It 

creates native makefiles and workspaces that can be used in many compiler environments [8]. 

Together, ITK and CMake provide researchers and developers a powerful means to implement 

their ideas and algorithms. ITK has a vast library that supports numerous image processing tasks, 

including image read/write, segmentation, registration, image transformations, interpolations, 

linear and nonlinear filtering, creating spatial objects, morphology, level sets etc. 

ITK features a powerful plugin-based IO mechanism for reading and writing images. It 

supports a wide variety of image types such as bmp, analyze, DICOM, JPEG, MetaImage, png 

http://www.itk.org/
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etc. The output image in our case will consist of medial points in which pixel intensity 

corresponds to the scale at which the medial was detected.  

8.2 IMPLEMENTATION 

Figures 21, 22, and 23 show the organization of the various components, as will be discussed in 

this section. 

8.2.1 Organization  

 

Figure 21: Input image is passed to an Inner sphere filter through an outer sphere filter to obtain the output image 

which consists of medial points and analysis data 

 

 

Figure 22:  Outline of OuterSphereFilter 
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Figure 23: Outline of InnerSphereFilter 

8.2.2 Iterators in ITK 

The iterator in ITK is a powerful way to sequentially and efficiently access pixels in an image. 

There are several types of iterators used for specific purposes such as traversing image regions, 

local neighborhoods, arbitrary functions, random pixels etc.  Iterators work in N-dimensions and 

are designed for computational efficiency. They are fundamental to our implementation.  

8.2.3 Shell Iterator 

Developed previously in our lab, the shell iterator is used to keep track of offsets from a central 

point. It is completely defined by offset values and is used to iterate through a shell. We use it to 

gather data to perform statistical calculations related to the outer and inner spheres and also to 

obtain the direction vector from the best sphere pair. The input parameters of the ITK function  

itkShellIterator are: 

 Image on which the iterator operates 
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 Center location 

 Size of the shell (scale) 

8.2.4 Sphere Iterator 

Similar to the shell iterator, this is used to iterate over a sphere neighborhood. The input 

parameters of itkSphereIterator are: 

 Image on which the iterator operates 

 Center location 

 Size of the shell (scale) 

8.2.5 Sphere Pixel Data 

One of ITK‟s strengths is the ability to define “pixel” to mean just about anything.  We custom 

define a class of pixels to hold data related to the spheres centered at each pixel. Each pixel 

instantiating an object of the Sphere Pixel Data class stores the following data: 

Intensity Value – Stores the original image intensity 

Shell Number – Keeps account of the scale 

Pixel Count – Keeps count of the number of pixels in each sphere 

Current Sum – Stores the sum of intensity values within a sphere. It is calculated as 

Current Sum + Next Intensity Value. It is updated with every pixel added to the sphere.  

Current Sum Sq – Stores the square of Current Sum. It is calculated as Current Sum Sq + 

(Next Intensity Value ^ 2). 

Outer Sphere Mean – Stores the outer sphere mean calculated in the outersphere filter.  
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Outer Sphere Variance – Stores the outer sphere variance calculated in the outersphere 

variance 

Inner Sphere Mean – Stores the inner sphere mean calculated in the innersphere filter. It 

is updated whenever a new shell is added 

Inner Sphere Variance – Stores the inner sphere variance calculated in the innersphere 

filter. It is updated whenever a new shell is added 

Best Sphere Pair Test – Holds the z value of the optimum sphere pair.  

Best Sphere Pair – Holds the vector of the best sphere pair 

Best Unit Sphere Pair – Holds the unit vector of the best sphere pair 

8.2.6 Linked List Pixel 

This is a class that holds data related to each record in the linked list. Its members are: 

The z value – Stores the d’ of the sphere pair used to identify a medial point 

Direction – Stores the unit vector of the sphere pair used to identify the medial point 

Scale – Stores the scale at which the medial point was identified. 

Eigenvalues – Stores the eigenvalues of a population of direction vectors at medial points 

at a given scale 

8.2.7 Outer Sphere Filter 

This filter takes as input the image on which the analysis needs to be performed (provided by the 

user). It makes use of the sphere iterator to compute the outer sphere at each pixel location. The 
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size of the outer sphere is set by the user. The filter produces an intermediate image as output, 

which stores statistical data such as mean and variance of the outer spheres. 

8.2.8 Inner Sphere Filter 

This filter takes as input the intermediate image generated by the outer sphere filter. The shell 

iterator is used to calculate statistical data related to the inner sphere. The minimum radius of the 

inner sphere is equal to the radius of the outer sphere. The maximum radius is set by the user. As 

mentioned before, a sphere can be computed as a union of shells. The shell iterator provides data 

from each shell, which is accumulated to form the sphere of the desired size. The Sphere Data 

Pixel is updated with the inner sphere values. Once the inner spheres are computed at all pixel 

locations, the medial points are detected by the procedure explained before. The Linked List 

Pixel is instantiated at the medial points and added to the Linked List at that location. The medial 

points are then clustered and analyzed using the procedure mentioned before. Eigenanalysis is 

performed on the clustered pixels and the eigenvalues are stored in a .txt file. This process is 

repeated at the next scale. When the maximum scale is reached, we obtain an image in which 

each pixel stores a linked list.  

8.2.9 Eigenanalysis 

Eigenanalysis has been implemented in ITK using itkCovarianceCalculator, which calculates the 

covariance matrix of the target sample data and itkSymmetricEigenAnalysis, which finds 

eigenvalues of a real 2D symmetric matrix.    
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9.0  CONCLUSION 

In this thesis, I have developed a system that is capable of detecting medial points, which can be 

represented in scale space.  Medial features such as scale, orientation, and dimensionality have 

been extracted and analyzed to detect basic local geometric shapes including, cylinder, slab, and 

sphere. Sphere pairs were computed throughout the image, and the one that generated the most 

significant d’, at a pixel location for a particular scale, was considered to be the optimum sphere 

pair. A mask, which forms pairs of pixels in each cardinal direction from a central pixel, was 

applied at each pixel location to compute the dot product of the direction vectors for each pair of 

pixels. Medial points were detected by applying a threshold to the dot product computed for each 

pair as well as a threshold to the minimum d‟ for the constituent sphere-pairs. This was repeated 

at higher scales by increasing the radius of the inner sphere. Clusters of the medial points were 

formed by describing a local region within the inner sphere of each medial point at its particular 

scale, and the corresponding direction vectors were subjected to eigenanalysis to identify the 

local medial dimensionality and orientation.  Tests were performed on three synthetic 3D 

objects: a torus, a hollow sphere, and a sphere. The system detected the medial manifolds of the 

three objects accurately even in the presence of noise, and the local shapes of the objects were 

identified successfully in the case of the torus and hollow sphere.  A method for extending this to 

the sphere was proposed. The results confirmed the capability of the system to detect medial 

points at more than one scale and to identify the described medial shape features effectively.  
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10.0  FUTURE WORK 

Our goal is to demonstrate the system‟s capability for detecting medial manifolds in medical 

images such as MRI and CT in a useful manner. To accomplish this, we are considering a 

number of improvements. 

As already mentioned in Section 5.0, the criteria used to cluster the direction vectors may 

be altered to include the direction vectors from sphere pairs with lower d’ (yet significant). This 

would result in denser clusters around the center of the sphere, thus aiding the eigenanalysis of 

particularly focused local shapes such as the sphere.  

Many steps in the methods described contain parameters that need to be optimized in 

terms of the overall accuracy of the system. The C++ code can also be optimized to minimize 

speed and memory. 

Beyond this, we intend to extend the shape detection methodology to detect more 

complex shapes present in anatomical structures. Initial targets include extended cylinders, 

branching cylinders, and cylinders that pass by each other.  By following a basic “bottom-up” 

approach to increasingly complex structures within larger regions, our ultimate goal is to provide 

a new framework for the description and analysis of shape within medical images. 
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APPENDIX 

ITK CODE 

Main 

/** Includes */ 

#include "itkShellIterator.h" 
#include "mainheader.h" 
 

//Main function 

int main() 
{ 

 try 
 { 

  // Maximum size of the inner and outer spheres 
  int maxOuterSphereSize = 1;  
  int maxInnerSphereSize = 10;  
    

  std::cout<<"Running the pipeline......."<<std::endl; 
 

  //read the input image  
  ReaderType::Pointer reader = ReaderType::New(); 

Reader->SetFileName ((2==MY_DIMENSION)? 

"Bronchi_2d.mha":"Torus_15_6.mha"  ); 
CastFilterTypetoRead::Pointer castfiltertoread = 

CastFilterTypetoRead::New(); 

  castfiltertoread->SetInput(reader->GetOutput()); 

 

  // Running the outer sphere filter 
  m_OuterSphereFilter = OuterSphereFilterType::New(); 

  m_OuterSphereFilter->SetInput(castfiltertoread->GetOutput()); 

  m_OuterSphereFilter->SetOuterSphereSize(maxOuterSphereSize); 

     

  // Running the inner sphere filter 
  //Set the minimum and maximum radius as set by the user 
  m_InnerSphereFilter = InnerSphereFilterType::New(); 

  m_InnerSphereFilter->SetInput(m_OuterSphereFilter->GetOutput()); 

  m_InnerSphereFilter->SetMaxInnerSphereSize(maxInnerSphereSize); 

  m_InnerSphereFilter->SetMinInnerSphereSize(maxOuterSphereSize); 

  m_InnerSphereFilter->Update(); 

 

  m_ResultImage = castfiltertoread->GetOutput(); 

  //Get the output of the innerspherefilter 
  m_LinkedListImage = m_InnerSphereFilter->GetOutput(); 
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//Convert the result into a image viewable by the user 
//Pixel intensity corresponds to scale at which the medial was 

found 

   

typedef itk::ImageRegionIterator<LinkedListImageType> 

LinkedListItType; // Iterator type 
LinkedListItType LinkedListIt(m_LinkedListImage, 

m_LinkedListImage->GetRequestedRegion()); 

 

ItType resultIt(m_ResultImage, m_ResultImage-

>GetRequestedRegion()); 

 

  LinkedListIt.GoToBegin(); 

  resultIt.GoToBegin(); 

 

  std::list<LinkedListPixel<MY_DIMENSION>> TempList; 

  std::list<LinkedListPixel<MY_DIMENSION>>::iterator TempListIt; 

   

//Produce a text file containing indormation related to medial 

points 

  std::ofstream LLfile ("LinkedListDataTorus156_10_27_A.txt"); 
  if (LLfile.is_open()) 

LLfile<<"Index[0]\t[1]\t[2] \tScale\tDirection[0] 

\t[1]\t[2]\tZValue\n"; 
 

  double LLScale; 
  itk::Vector <double, 3> LLDirection; 
  double LLZValue; 
 

typedef itk::FixedArray< double, MY_DIMENSION > 

EigenValuesArrayType; 
  EigenValuesArrayType EigenValues; 

 

  while (!LinkedListIt.IsAtEnd()) 
  { 

resultIt.Set(0); //Set the result image to 0 everywhere  

other than at the medial 
 

   TempList = LinkedListIt.Get(); 

   TempListIt = TempList.begin(); 

  

   while(TempListIt != TempList.end()) 
   { 

    LLScale = TempListIt->getScale(); 

    LLDirection = TempListIt->getDirection(); 

    LLZValue = TempListIt->getZValue(); 

    EigenValues = TempListIt->getEigenValues(); 

    if (LLfile.is_open()) 
    { 

LLfile<<temporaryIndex[0] 

<<"\t"<<temporaryIndex[1] <<"\t" 

<<temporaryIndex[2] <<"\t"<<LLScale<<"\t" 
<<LLDirection[0] <<"\t"<<LLDirection[1] 

<<"\t"<<LLDirection[2]<<"\t"<<LLZValue<<"\n"; 
    } 

 

    resultIt.Set(TempListIt->getScale());  
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    TempListIt++; 

   } 

 

   LinkedListIt++; 

   resultIt++; 

 

  } 

  if (LLfile.is_open()) 
  { 

   LLfile.close(); 

  } 

 

  SaveImage(m_ResultImage,"Torus156Testing_10_27_A.mha" ); 
 

  return 0; 
 } 

 

  

 catch( itk::ExceptionObject & excp ) 
    { 

  std::cerr << "Exception caught: " << std::endl; 
  std::cerr << excp << std::endl; 

  std::cin.get(); 

  return EXIT_FAILURE; 
    } 

} 
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Mainheader.h 

#define MY_DIMENSION 3 

 

/** Standard includes */ 

#include <iostream> 

#include "math.h" 

 

/** Includes the ITK header files */ 

#include "itkImage.h" 

#include "itkImageRegionIterator.h" 

#include "itkImageFileWriter.h" 

#include "itkImportImageFilter.h" 

#include "itkImageFileReader.h" 

#include "itkMeanImageFilter.h" 

#include "itkRescaleIntensityImageFilter.h" 

#include "itkCastImageFilter.h" 

 

// Shells and Spheres includes 

#include "itkShellIterator.h" 

#include "itkSphereIterator.h" 

#include "itkOuterSphereFilter.h" 

#include "itkInnerSphereFilter.h" 

#include "itkSphereDivergenceFilter.h" 

#include <math.h> 

#include <list> 

 

//#include "LinkedListPixel.h" 

 

#define PI 3.14159265 

 

/** ITK typedefs */ 

typedef itk::Image< double, MY_DIMENSION > ImageType; 

typedef itk::Image< SphereDataPixel<MY_DIMENSION>, MY_DIMENSION > 

SphereImageType; 

#if MY_DIMENSION == 2 

  typedef itk::Image< double, MY_DIMENSION > WriteImageType;   

#else 

  typedef itk::Image<  short, MY_DIMENSION > WriteImageType;     

#endif 

// Iterator type 

typedef itk::ImageRegionIterator<ImageType> ItType;  

typedef itk::ImageRegionIterator<SphereImageType> SphereItType; 

// Our writer for saving the image 

typedef itk::ImageFileWriter< ImageType > WriterType;  

typedef itk::ImageFileReader< WriteImageType > ReaderType; 

// The mean filter was used since it is one of the simplest blurring filters 

typedef itk::MeanImageFilter< ImageType, ImageType >  MeanFilterType;  

// Our filter to do outer spheres  

typedef itk::OuterSphereFilter< ImageType, MY_DIMENSION > 

OuterSphereFilterType;  

// Rescaler to save 

typedef itk::RescaleIntensityImageFilter< ImageType, WriteImageType > 

RescaleFilterType;  

typedef itk::RescaleIntensityImageFilter< WriteImageType, ImageType > 

LoaderRescaleFilterType;  

typedef itk::InnerSphereFilter< MY_DIMENSION > InnerSphereFilterType; 

typedef itk::SphereDivergenceFilter< MY_DIMENSION > 

SphereDivergenceFilterType;  
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typedef itk::CastImageFilter< ImageType, WriteImageType > 

CastFilterTypetoWrite; 
typedef itk::CastImageFilter< WriteImageType, ImageType > 

CastFilterTypetoRead; 
 

 

typedef itk::Image<std::list<LinkedListPixel<MY_DIMENSION>>, MY_DIMENSION > 

LinkedListImageType; 
 

 

ImageType::Pointer m_Image; 

SphereImageType::Pointer m_OuterSphere; 

ImageType::Pointer m_ResultImage; 

SphereImageType::Pointer m_SpherePair; 

MeanFilterType::Pointer m_MeanFilter; 

OuterSphereFilterType::Pointer m_OuterSphereFilter; 

InnerSphereFilterType::Pointer m_InnerSphereFilter; 

SphereDivergenceFilterType::Pointer m_SphereDivergenceFilter; 

 

LinkedListImageType::Pointer m_LinkedListImage; 

 

// Please limit the filename to below 100 letters 

bool SaveImage(ImageType::Pointer m_ResultImage,char filename[100])  

{ 
  

// Setting up the writer 

WriterType::Pointer writer = WriterType::New(); 

writer->SetFileName(filename); // The filename we want to save as 
writer->SetInput(m_ResultImage); // The image that is saved 

 

// Error checking code from the ITK example 

try 

{ 

  writer->Update(); 

} 

catch( itk::ExceptionObject & err ) 
{ 

  std::cerr << "ExceptionObject caught !" << std::endl; 
  std::cerr << err << std::endl; 

  std::cin.get(); 

  return EXIT_FAILURE; 
} 

} 
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SphereDataPixel.h 

// Class of pixels holding information about the spheres 

// Now templated for multiple dimensions! 

 

template <unsigned int VImageDimension> class SphereDataPixel 

{ 

public: 

 double intensityValue; // Keep the original image intensity 

 int shellNumber;//Keeps track to what shell we have already iterated to 

 int pixelCount; // Total numer of pixels that we have iterated through 

 double outerSphereMean; // Calculated in the outer sphere filter 

 double outerSphereVariance; // Calculated in the outer sphere filter 

double innerSphereMean; // Constantly updated as another shell is added 

to the sphere, currentSum / pixelCount 

double innerSphereVariance; // (currentSumSq - (currentSum * 

innerSphereMean))/(pixelCount - 1) 

 double currentSum; // currentSum + next value 

 double currentSumSq; // currentSumSq + (next value ^ 2) 

 

itk::Offset <VImageDimension> bestSpherePair; // Holds the vector to 

the best sphere pair 

itk::Vector <double, VImageDimension> bestUnitSpherePair; // Holds the 

unit vector to the best sphere pair 

 // The partial refers to df/dx, df/dy and df/dz 

itk::Vector <double, VImageDimension> partialDerivatives; // [0] is x, 

[1] is y, [2] is z and so on... 

 double bestSpherePairTest; 

 double currentSpherePairTest; 

 double divergence; 

 void InitializeSphereData( double value ) 

 { 

  intensityValue = value; 

  shellNumber = 0; 

  pixelCount = 0; 

  outerSphereMean = 0; 

  outerSphereVariance = 0; 

  innerSphereMean = 0;  

  innerSphereVariance = 0;  

  currentSum = 0;  

  currentSumSq = 0;  

  bestSpherePairTest = 0; 

  currentSpherePairTest = 0; 

  divergence = 0; 

  LowIntensityPixels = 0; 

  HighIntensityPixels = 0; 

   

for (unsigned int counter = 0; counter < VImageDimension; 

counter++) 

  { 

   bestSpherePair[counter] = 0; 

   bestUnitSpherePair[counter] = 0; 

   partialDerivatives[counter] = 0; 

  } 

 } 

}; 
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LinkedListPixel.h 

template <unsigned int VImageDimension> class LinkedListPixel 

{ 

public: 

 double ZValue; 

 itk::Vector <double, VImageDimension> Direction; // Holds the unit 

vector  

 //to the best sphere pair 

 int Scale; 

 typedef itk::FixedArray< double, VImageDimension > 

EigenValuesArrayType; 

 EigenValuesArrayType EigenValues; 

 

 

 

 void InitializeLinkedList() 

 { 

  Scale = 0; 

  ZValue = 0; 

  for (unsigned int counter = 0; counter < VImageDimension; 

counter++) 

  { 

   Direction[counter] = 0; 

  } 

  for (unsigned int counter = 0; counter < VImageDimension; 

counter++) 

  { 

   EigenValues[counter] = 0; 

  } 

 

 } 

 

 int getScale() 

 { 

  return Scale; 

 } 

 

 itk::Vector <double, VImageDimension> getDirection() 

 { 

  return Direction; 

 } 

 

 double getZValue() 

 { 

  return ZValue; 

 } 

 

 EigenValuesArrayType getEigenValues() 

 { 

  return EigenValues; 

 } 

 

};  
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Itkshelliterator 

#ifndef __itkShellIterator_h 
#define __itkShellIterator_h 
 

#include "itkImageIterator.h" 
#include "itkOffset.h" 
 

#include <list> 
#include <vector> 
 

namespace itk 
{ 

 

/** 

 * \class ShellIterator 

 * \brief Iterates over a sphere shell.  

 * 

 *  Here we have an iterator that keeps track of offsets from a central 

point.   

 *  The iterator is totally defined by offset values.  We keep these as a 

list 

 *  of indices.  We also need a function to set the center of the iterator,  

 *  so we can calculate the included indices based on it.  Default center 

will 

 *  origin ( (0,0,0) for 3D) 

 * 

 *  We have a list of indices representing offsets.   

 *  center + offset = index => offset = index - center  

 *   

 * 

 * \ingroup ImageIterators 

 * 

 */ 

template <typename TImage> 
class ITK_EXPORT ShellIterator : public ImageIterator<TImage>

 //ITK_EXPORT? 
{ 

public: 
  /** Standard class typedefs. */ 
  typedef ShellIterator Self; 
  typedef ImageIterator<TImage> Superclass; 
 

  /** Number of dimensions */ 
  itkStaticConstMacro(NDimensions, unsigned int, TImage::ImageDimension); 

 //itkStaticConstMacro? 
 

  /** Index typedef support. */ 
  typedef typename Superclass::IndexType  IndexType; 
 

  /** Size typedef support. */ 
  typedef typename Superclass::SizeType    SizeType; 
 

  /** Region typedef support */ 
  typedef typename Superclass::RegionType    RegionType; 
 

  /** Image typedef support. */ 
  typedef typename Superclass::ImageType   ImageType; 
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  /** Internal Pixel Type */ 
  typedef typename Superclass::InternalPixelType   InternalPixelType; 
  /** External Pixel Type */ 
  typedef typename Superclass::PixelType   PixelType; 
  typedef Offset<NDimensions> OffsetType; 
 

  /** An stl storage container type that can be sorted.  The type used for 
      the list of active offsets in the neighborhood.*/ 

  typedef std::list<OffsetType> OffsetListType; 
  typedef OffsetListType* OffsetListPointerType; 
  typedef typename OffsetListType::iterator OffsetListIteratorType; 
 

  /** std::list containing the vectors to each of the points in the outer 

shell.*/ 
  typedef vnl_vector<double> VectorType; 
  typedef VectorType* VectorPointerType; 
  typedef std::list<VectorPointerType> VectorListType; 
  typedef VectorListType* VectorListPointerType; 
  typedef VectorListType::iterator VectorListIteratorType; 
 

  /** Constructor establishes an iterator to walk a particular image */ 
  ShellIterator(ImageType *imagePtr, const IndexType& center, int scale, bool 

ioi = false); 
 

  /** Default Destructor. */ 
  ~ShellIterator() {} 

  /** Compute whether the index of interest is a legal index of the image */ 
  bool IsIndexWithinImage() const; 
 

  /** Walk forward one index */ 
  void operator++() {  
  Next(); 

  } 

  void Next() {  
  do { 
   ++m_OffsetListIterator; 

  } while( ( m_OffsetListIterator != m_OffsetList->end() ) && 
    !m_IncludeOutsideIndices && !IsIndexWithinImage() ); 

  } 

  bool IsAtEnd() { 
    if(m_OffsetListIterator == m_OffsetList->end()) return true; 
    else return false; 
  } 

 

  void GoToBegin() { 
  m_OffsetListIterator = m_OffsetList->begin(); 

  while( !m_IncludeOutsideIndices && !IsAtEnd() && 

!IsIndexWithinImage() ) 
  { 

   ++m_OffsetListIterator; 

  } 

 } 

 

  /** Get the pixel value */ 
  const PixelType & Get(void) const 
    { 

      // This will give the index of the center pixel + offset  
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      IndexType index = m_CenterIndex + *m_OffsetListIterator; 

   PixelType myPixel; 

   myPixel = this->m_Image->GetPixel( index ); // It can't access the 

pixel correctly...WHY??? 
      return this->m_Image->GetPixel( index );  
    } 

 /** non-const Get */ 
 PixelType& Value() 

 { 

    IndexType index = m_CenterIndex + *m_OffsetListIterator; 

    return const_cast<ImageType*>((const ImageType*)this->m_Image)->GetPixel( 

index );  
 } 

  /** Get the offset. This provides a read only reference to the offset. 
   * This causes the offset to be calculated from pointer arithmetic and is 

   * therefore an expensive operation.*/ 

  const OffsetType GetOffset() 
    { return *m_OffsetListIterator; } 
/** Get the index. This provides a read only reference to the index. 

   * This causes the index to be calculated from pointer arithmetic and is 

   * therefore an expensive operation. 

   * \sa SetIndex */ 

  const IndexType GetIndex() 
    {  

      // This will give the index of the center pixel + offset 
      IndexType index = m_CenterIndex + *m_OffsetListIterator; 

      return index; 
    } 

 Self& operator=( const Self& source ) 
 { 

  *(Superclass*)this = (const Superclass&)source; 
  m_CenterIndex = source.m_CenterIndex; 

  m_OffsetList = source.m_OffsetList; 

  m_OffsetListIterator = source.m_OffsetListIterator; 

  return (*this); 
 } 

protected: //made protected so other iterators can access 
  IndexType m_CenterIndex; 

  OffsetListPointerType m_OffsetList; 

  OffsetListIteratorType m_OffsetListIterator; 

 

  VectorListPointerType m_VectorList; 

  VectorListIteratorType m_VectorListIterator; 

 

 // static vector of shell offset lists, indexed by scale 
 static std::vector<OffsetListPointerType> s_ShellOffsetLists; 
 static int s_HighestGeneratedScale; 
 bool m_IncludeOutsideIndices; 
}; 

 

} // end namespace itk 
 

#ifndef ITK_MANUAL_INSTANTIATION 
#include "itkShellIterator.txx" 
#endif 

 

#endif   
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itkShellIterator.txx 

#ifndef _itkShellIterator_txx 

#define _itkShellIterator_txx 

 

#include <iostream> 

#include "itkShellIterator.h" 

#include "vnl/vnl_vector_fixed.h" 

 

namespace itk 

{ 

 

template<class TImage> 

std::vector<typename ShellIterator<TImage>::OffsetListPointerType> 

ShellIterator<TImage>::s_ShellOffsetLists; 

 

template <class TImage> 

int ShellIterator<TImage>::s_HighestGeneratedScale = -1; 

 

template<class TImage> 

ShellIterator<TImage> 

::ShellIterator(ImageType *imagePtr, const IndexType& center, int scale, bool 

ioi): ImageIterator<TImage>( imagePtr, imagePtr->GetLargestPossibleRegion() ) 

{ 

 m_CenterIndex = center; 

 m_IncludeOutsideIndices = ioi; 

 

 // Generate new offset lists if we need to 

 if( scale > s_HighestGeneratedScale ) { 

  for( int s = s_HighestGeneratedScale+1; s <= scale; ++s ) { 

   OffsetListPointerType new_list = new OffsetListType(); 

   s_ShellOffsetLists.push_back( new_list ); 

   OffsetType current_offset; 

   current_offset.Fill(-s); 

// Inefficient, but practically it won't make a significant difference. 

   while( 1 ) { 

// compute nearest-integer distance to the center. if equal to this scale, 

include 

// the pixel in this scale's offset list 

    vnl_vector_fixed<double,NDimensions> v_offset; 

    for( int i = 0; i < NDimensions; ++i ) v_offset[i] = 

double( current_offset[i] ); 

    if( int( v_offset.magnitude() + 0.5 ) == s ) { 

     new_list->push_back( current_offset ); 

    } 

    // move onto the next pixel 

    int i; 

    for( i = 0; i < NDimensions; ++i ) { 

     ++current_offset[i]; 

     if( current_offset[i] > s ) current_offset[i] = 

-s; 

     else break; 

    } 

// every component overflowed past scale, so we've hit every pixel. done. 

    if( i == NDimensions ) break; 

   } 

  } 

  s_HighestGeneratedScale = scale; 

 }  
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  m_OffsetList = s_ShellOffsetLists[scale]; 

} 

 

template<class TImage> 

bool 

ShellIterator<TImage> 

::IsIndexWithinImage() const 

{ 

  SizeType size = this->m_Region.GetSize(); 

 OffsetType& offset = *m_OffsetListIterator; 

 IndexType index = m_CenterIndex + offset; 

  for(int i = 0;i < NDimensions; ++i) { 

    if(index[i] >= size[i] || index[i] < 0) return false; 

  } 

  return true; 

} 

 

} // end namespace itk 

 

#endif 
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itkSphereIterator.h 

#ifndef __itkSphereIterator_h 

#define __itkSphereIterator_h 

 

#include "itkImageIterator.h" 

#include "itkShellIterator.h" 

#include "itkOffset.h" 

 

#include <list> 

#include <vector> 

 

namespace itk 

{ 

 

/** 

 * \class SphereIterator 

 * \brief Iterates over a sphere neighborhood. 

 * 

 * \ingroup ImageIterators 

 * 

 */ 

template <typename TImage> 

class ITK_EXPORT SphereIterator : public ImageIterator<TImage> 

{ 

public: 

  /** Standard class typedefs. */ 

  typedef SphereIterator Self; 

  typedef ImageIterator<TImage> Superclass; 

 

  /** Number of dimensions */ 

  itkStaticConstMacro(NDimensions, unsigned int, TImage::ImageDimension); 

 

  /** Index typedef support. */ 

  typedef typename Superclass::IndexType  IndexType; 

 

  /** Size typedef support. */ 

  typedef typename Superclass::SizeType    SizeType; 

 

  /** Region typedef support */ 

  typedef typename Superclass::RegionType    RegionType; 

 

  /** Image typedef support. */ 

  typedef typename Superclass::ImageType   ImageType; 

 

  /** Internal Pixel Type */ 

  typedef typename Superclass::InternalPixelType   InternalPixelType; 

 

  /** External Pixel Type */ 

  typedef typename Superclass::PixelType   PixelType; 

 

 typedef Offset<NDimensions> OffsetType; 

 

  /** An stl storage container type that can be sorted.  The type used for 

      the list of active offsets in the neighborhood.*/ 

  typedef std::list<OffsetType> OffsetListType; 

  typedef OffsetListType* OffsetListPointerType; 

  typedef typename OffsetListType::iterator OffsetListIteratorType; 
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/** std::list containing the vectors to each of the points in the outer 

shell.*/ 

  typedef vnl_vector<double> VectorType; 

  typedef VectorType* VectorPointerType; 

  typedef std::list<VectorPointerType> VectorListType; 

  typedef VectorListType* VectorListPointerType; 

  typedef VectorListType::iterator VectorListIteratorType; 

 

  /** Constructor establishes an iterator to walk a particular image */ 

  SphereIterator(ImageType *imagePtr, const IndexType& center, int scale, 

bool ioi = false); 

 

  /** Default Destructor. */ 

  ~SphereIterator() {} 

 

  /** Compute whether the index of interest is a legal index of the image */ 

  bool IsIndexWithinImage() const { 

  return m_CurrentShellIterator.IsIndexWithinImage(); 

 } 

 

  /** Walk forward one index */ 

  void operator++() {  

  Next(); 

  } 

 

  void Next() {  

  ++m_CurrentShellIterator; 

  if( m_CurrentShellIterator.IsAtEnd() ) { 

   ++m_CurrentScale; 

   if( m_CurrentScale <= m_Scale ) { 

    m_CurrentShellIterator = ShellIterator<ImageType>( 

      const_cast<ImageType*>((const 

ImageType*)this->m_Image), m_CenterIndex, 

      m_CurrentScale ); 

    m_CurrentShellIterator.GoToBegin(); 

   } 

  } 

 } 

 

  bool IsAtEnd() { 

  return ( (m_CurrentScale >= m_Scale) && 

m_CurrentShellIterator.IsAtEnd() ); 

  } 

 

  void GoToBegin() { 

  m_CurrentScale = 0; 

  m_CurrentShellIterator = ShellIterator<ImageType>( 

    const_cast<ImageType*>((const ImageType*)this-

>m_Image), m_CenterIndex, 0 ); 

  m_CurrentShellIterator.GoToBegin(); 

 } 

 

  /** Get the pixel value */ 

  const PixelType & Get(void) const { 

      return m_CurrentShellIterator.Get(); 

    } 
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 /** non-const Get */ 
 PixelType& Value() { 

      return m_CurrentShellIterator.Value(); 
 } 

 

  /** Get the offset. This provides a read only reference to the offset. 
   * This causes the offset to be calculated from pointer arithmetic and is 

   * therefore an expensive operation.*/ 

  const OffsetType GetOffset() 
    { return m_CurrentShellIterator.GetOffset(); } 
 

/** Get the index. This provides a read only reference to the index. 

   * This causes the index to be calculated from pointer arithmetic and is 

   * therefore an expensive operation. 

   * \sa SetIndex */ 

  const IndexType GetIndex() 
    {  

      return m_CurrentShellIterator.GetIndex(); 
    } 

 

 Self& operator=( const Self& source ) 
 { 

  *(Superclass*)this = (const Superclass&)source; 
  m_CenterIndex = source.m_CenterIndex; 

  m_Scale = source.m_Scale; 

  m_CurrentScale = source.m_CurrentScale; 

  //m_CurrentShell = source.m_CurrentShell; 
 } 

 

protected: //made protected so other iterators can access 
  IndexType m_CenterIndex; 

 

 int m_Scale; 
 

 int m_CurrentScale; 
 ShellIterator<ImageType> m_CurrentShellIterator; 

 

 bool m_IncludeOutsideIndices; 
}; 

 

} // end namespace itk 
 

#ifndef ITK_MANUAL_INSTANTIATION 
#include "itkSphereIterator.txx" 
#endif 

 

#endif 
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itkSphereIterator.txx 

 

#ifndef _itkShellIterator_txx 

#define _itkShellIterator_txx 

 

#include <iostream> 

#include "itkShellIterator.h" 

#include "vnl/vnl_vector_fixed.h" 

 

namespace itk 

{ 

 

template<class TImage> 

std::vector<typename ShellIterator<TImage>::OffsetListPointerType> 

ShellIterator<TImage> 

::s_ShellOffsetLists; 

 

template <class TImage> 

int 

ShellIterator<TImage> 

::s_HighestGeneratedScale = -1; 

 

 

template<class TImage> 

ShellIterator<TImage> 

::ShellIterator(ImageType *imagePtr, const IndexType& center, int scale, bool 

ioi) 

 : ImageIterator<TImage>( imagePtr, imagePtr->GetLargestPossibleRegion() 

) 

{ 

 m_CenterIndex = center; 

 m_IncludeOutsideIndices = ioi; 

 

 // Generate new offset lists if we need to 

 if( scale > s_HighestGeneratedScale ) { 

  for( int s = s_HighestGeneratedScale+1; s <= scale; ++s ) { 

   OffsetListPointerType new_list = new OffsetListType(); 

   s_ShellOffsetLists.push_back( new_list ); 

   OffsetType current_offset; 

   current_offset.Fill(-s); 

// Inefficient, but practically it won't make a significant 

difference. 

   while( 1 ) { 

// compute nearest-integer distance to the center. if equal 

to this  //scale, include 

    // the pixel in this scale's offset list 

    vnl_vector_fixed<double,NDimensions> v_offset; 

for( int i = 0; i < NDimensions; ++i ) v_offset[i] = 

double( current_offset[i] ); 

    if( int( v_offset.magnitude() + 0.5 ) == s ) { 

     new_list->push_back( current_offset ); 

    } 

    // move onto the next pixel 

    int i; 

    for( i = 0; i < NDimensions; ++i ) { 

     ++current_offset[i]; 

if( current_offset[i] > s ) current_offset[i] = 

-s; 

     else break;  
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    } 

// every component overflowed past scale, so we've 

hit every pixel. done. 

    if( i == NDimensions ) break; 

   } 

  } 

  s_HighestGeneratedScale = scale; 

 } 

 

  m_OffsetList = s_ShellOffsetLists[scale]; 

} 

 

template<class TImage> 

bool 

ShellIterator<TImage> 

::IsIndexWithinImage() const 

{ 

  SizeType size = this->m_Region.GetSize(); 

 OffsetType& offset = *m_OffsetListIterator; 

 IndexType index = m_CenterIndex + offset; 

  for(int i = 0;i < NDimensions; ++i) { 

    if(index[i] >= size[i] || index[i] < 0) return false; 

  } 

  return true; 

} 

 

} // end namespace itk 

 

#endif 
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itkOuterSphereFilter.h

#ifndef __itkOuterSphereFilter_h 

#define __itkOuterSphereFilter_h 

 

#include "itkImageToImageFilter.h" 

 

// Shells and spheres specific includes 

#include "itkShellIterator.h" 

#include "itkSphereIterator.h" 

#include "SphereDataPixel.h" 

 

#include <math.h> 

 

namespace itk 

{ 

   

/** \class OuterSphereFilter 

 * \Calculates the mean and standard deviation for outer spheres 

 * 

 * This class is parameterized over the type of the input image and 

 * the type of the output image.   

 *  

 * \ingroup    

 */ 

template <class TInputImage, unsigned int VImageDimension> 

class ITK_EXPORT OuterSphereFilter : public ImageToImageFilter<TInputImage, 

itk::Image< SphereDataPixel<VImageDimension>, VImageDimension> > 

{ 

public: 

  /** Standard class typedefs. */ 

  typedef OuterSphereFilter                             Self; 

  typedef ImageToImageFilter<TInputImage,itk::Image< 

SphereDataPixel<VImageDimension>, VImageDimension > >  Superclass; 

  typedef SmartPointer<Self>                            Pointer; 

  typedef SmartPointer<const Self>                      ConstPointer; 

 

  /** Method for creation through the object factory. */ 

  itkNewMacro(Self); 

   

  /** Run-time type information (and related methods). */ 

  itkTypeMacro(OuterSphereFilter, ImageToImageFilter); 

 

  /** Some convenient typedefs. */ 

  typedef TInputImage                            InputImageType; 

  typedef typename    InputImageType::Pointer    InputImagePointer; 

  typedef typename    InputImageType::RegionType InputImageRegionType;  

  typedef typename    InputImageType::PixelType  InputImagePixelType;  

 

  typedef itk::Image< SphereDataPixel<VImageDimension>, VImageDimension> 

OutputImageType; 

  typedef typename     OutputImageType::Pointer    OutputImagePointer; 

  typedef typename     OutputImageType::RegionType OutputImageRegionType; 

  typedef typename     OutputImageType::PixelType  OutputImagePixelType; 

  typedef typename     OutputImageType::IndexType  OutputImageIndexType; 

 

  /** Set the direction in which to reflect the data. */ 

  itkGetConstMacro( Direction, unsigned int ); 

  itkSetMacro( Direction, unsigned int );  
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  itkSetMacro( OuterSphereSize, int ); 

 

  /** ImageDimension constants */ 

  itkStaticConstMacro(InputImageDimension, unsigned int, 

                      TInputImage::ImageDimension); 

  itkStaticConstMacro(OutputImageDimension, unsigned int, 

                      OutputImageType::ImageDimension); 

 

#ifdef ITK_USE_CONCEPT_CHECKING 

  /** Begin concept checking */ 

  itkConceptMacro(SameDimensionCheck, 

    (Concept::SameDimension<InputImageDimension, OutputImageDimension>)); 

  /** End concept checking */ 

#endif 

 

protected: 

  OuterSphereFilter(); 

  virtual ~OuterSphereFilter() {}; 

  void PrintSelf(std::ostream& os, Indent indent) const; 

 

  /** This method implements the actual reflection of the image. 

   * 

   * \sa ImageToImageFilter::ThreadedGenerateData(), 

   *     ImageToImageFilter::GenerateData()  */ 

  void GenerateData(void); 

 

private: 

  OuterSphereFilter(const Self&); //purposely not implemented 

  void operator=(const Self&); //purposely not implemented 

 

  unsigned int m_Direction; // Not currently used 

  int m_OuterSphereSize; // Maximum size of the outer spheres 

 

}; 

 

} // end namespace itk 

 

#ifndef ITK_MANUAL_INSTANTIATION 

#include "itkOuterSphereFilter.txx" 

#endif 

 

#endif 

 

 

 

 

 

 

 



 59 

itkOuterSphereFilter.txx 

#ifndef __itkOuterSphereFilter_txx 

#define __itkOuterSphereFilter_txx 

 

#include "itkOuterSphereFilter.h" 

#include "itkImageLinearIteratorWithIndex.h" 

#include "itkImageLinearConstIteratorWithIndex.h" 

#include "itkProgressReporter.h" 

 

namespace itk 

{ 

 

 /** 

 * Constructor 

 */ 

 template <class TInputImage, unsigned int VImageDimension> 

 OuterSphereFilter<TInputImage,VImageDimension > 

  ::OuterSphereFilter() 

 { 

this->SetNumberOfRequiredInputs( 1 ); // We are only taking in 1 

input, the image dimension 

  m_Direction = 0; 

  m_OuterSphereSize = 0; 

 } 

 

 

 /** 

* GenerateData goes through every pixel and calculates the mean at the 

pixel 

 */ 

 template <class TInputImage, unsigned int VImageDimension> 

 void OuterSphereFilter<TInputImage,VImageDimension> 

  ::GenerateData( void ) 

 { 

  std::cout<<std::endl<<"Running OuterSphere Filter"; 

  // Input image pointer and output image pointer 

typename Superclass::InputImageConstPointer inputPtr = this-

>GetInput(); 

typename Superclass::OutputImagePointer outputPtr = this-

>GetOutput(0); 

 

  // Making the output the same size as the input... 

  outputPtr->SetRequestedRegion( inputPtr->GetRequestedRegion() ); 

  outputPtr->SetBufferedRegion( inputPtr->GetBufferedRegion() ); 

outputPtr->SetLargestPossibleRegion( inputPtr-

>GetLargestPossibleRegion() ); 

  outputPtr->Allocate(); 

 

  // Creating our iterators to go through the output/input 

  typedef ImageRegionIterator<TInputImage> InputIterator; 

  typedef ImageRegionIterator<OutputImageType> OutputIterator; 

InputIterator inputIt( const_cast<InputImageType*>(this-

>GetInput()),  inputPtr->GetRequestedRegion() ); 

OutputIterator outputIt( outputPtr, outputPtr-

>GetRequestedRegion() ); 

 

  // Starting both input and output 

  inputIt.GoToBegin();  
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  outputIt.GoToBegin();    

 

// Temporary variables to store the current sphere data and the 

current pixel value 

  SphereDataPixel<VImageDimension> currentSphereDataPixel; 

  double currentValue; 

  // itk::Offset<VImageDimension> myOffset; 

  while( !inputIt.IsAtEnd() )  

  {  

   // Sets all the sphere data to 0 

   currentSphereDataPixel.InitializeSphereData( double   

   (inputIt.Get()) ); 

 

itk::SphereIterator <TInputImage> 

sphereIt(const_cast<InputImageType*>(this->GetInput()), 

inputIt.GetIndex(), m_OuterSphereSize, true); 

   for(sphereIt.GoToBegin(); !sphereIt.IsAtEnd(); ++sphereIt) 

   { 

    if(sphereIt.IsIndexWithinImage()) // Edge pixels? 

    { 

     // myOffset = sphereIt.GetOffset(); 

     currentValue = double(sphereIt.Get()); 

currentSphereDataPixel.currentSum = 

currentValue + 

currentSphereDataPixel.currentSum; 

currentSphereDataPixel.currentSumSq = 

currentSphereDataPixel.currentSumSq + 

(currentValue * currentValue); 

     ++currentSphereDataPixel.pixelCount; 

    } 

   } 

 

currentSphereDataPixel.outerSphereMean = 

currentSphereDataPixel.currentSum / 

currentSphereDataPixel.pixelCount; 

currentSphereDataPixel.outerSphereVariance = 

(currentSphereDataPixel.currentSumSq + 

(currentSphereDataPixel.outerSphereMean * 

currentSphereDataPixel.outerSphereMean * 

currentSphereDataPixel.pixelCount) - (2 * 

currentSphereDataPixel.outerSphereMean * 

currentSphereDataPixel.currentSum) 

)/(currentSphereDataPixel.pixelCount - 1); 

    

   outputIt.Set( currentSphereDataPixel ); 

 

   ++inputIt; 

   ++outputIt; 

  } 

 } 

 

 template <class TInputImage, unsigned int VImageDimension > 

 void 

  OuterSphereFilter<TInputImage,VImageDimension>:: 

  PrintSelf(std::ostream& os, Indent indent) const 

 { 

  Superclass::PrintSelf(os,indent);  
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  os << indent << "Direction: " << m_Direction << std::endl; 

 } 

 

} // end namespace itk 

 

#endif 
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itkInnerSphereFilter.h 

#ifndef __itkInnerSphereFilter_h 

#define __itkInnerSphereFilter_h 

 

#include "itkImageToImageFilter.h" 

 

// Shells and spheres specific includes 

#include "itkShellIterator.h" 

#include "itkSphereIterator.h" 

 

#include <math.h> 

#include <iostream> 

#include <fstream> 

 

#include <list> 

 

#include <itkShapedNeighborhoodIterator.h> 

#include "LinkedListPixel.h" 

 

namespace itk 

{ 

   

/** \class InnerSphereFilter 

 * \Calculates the mean and standard deviation for the inner spheres, 

comparing them with 

 * the outer spheres to determine the direction to the most likely boundary, 

as determined 

 * by the z-value. 

 * 

 * This class is parameterized over the type of the input image and 

 * the type of the output image.   

 *  

 * \ingroup    

 */ 

 

template <unsigned int VImageDimension>      

class ITK_EXPORT InnerSphereFilter : public ImageToImageFilter< 

  itk::Image< SphereDataPixel<VImageDimension>, VImageDimension>, 

  itk::Image< std::list<LinkedListPixel<VImageDimension>>, VImageDimension>  

>  

{ 

public: 

  /** Standard class typedefs. */ 

  typedef InnerSphereFilter                          Self; 

  typedef ImageToImageFilter< 

   itk::Image< SphereDataPixel<VImageDimension>, VImageDimension>,  

   itk::Image< std::list<LinkedListPixel<VImageDimension>>, 

VImageDimension>>          Superclass; 

  typedef SmartPointer<Self>                            Pointer; 

  typedef SmartPointer<const Self>                      ConstPointer; 

 

  /** Method for creation through the object factory. */ 

  itkNewMacro(Self); 

   

  /** Run-time type information (and related methods). */ 

  itkTypeMacro(InnerSphereFilter, ImageToImageFilter); 

 

  /** Some convenient typedefs. */  



 63 

  typedef itk::Image< SphereDataPixel<VImageDimension>, VImageDimension> 

InputImageType; 

  typedef typename InputImageType::ConstPointer InputImagePointer; 

  typedef typename InputImageType::RegionType   InputImageRegionType;  

  typedef typename InputImageType::PixelType    InputImagePixelType;  

 

  typedef itk::Image< std::list<LinkedListPixel<VImageDimension>>, 

VImageDimension> OutputImageType; 

  typedef typename OutputImageType::Pointer      OutputImagePointer; 

  typedef typename OutputImageType::RegionType   OutputImageRegionType; 

  typedef typename OutputImageType::PixelType    OutputImagePixelType; 

  typedef typename OutputImageType::IndexType    OutputImageIndexType; 

 

  std::list<LinkedListPixel<VImageDimension>> mylist; 

  //list<LinkedListPixel<VImageDimension>> mylist; 

 

  typedef itk::Image< std::list<LinkedListPixel<VImageDimension>>, 

VImageDimension> LinkedListImageType; 

 

   /** Set the direction in which to reflect the data. */ 

  itkGetConstMacro( Direction, unsigned int ); 

  itkSetMacro( Direction, unsigned int ); 

  itkSetMacro( MaxInnerSphereSize, unsigned int ); 

  itkSetMacro( MinInnerSphereSize, unsigned int ); 

 

  /** ImageDimension constants */ 

  itkStaticConstMacro(InputImageDimension, unsigned int, 

                      InputImageType::ImageDimension); 

  itkStaticConstMacro(OutputImageDimension, unsigned int, 

                      OutputImageType::ImageDimension); 

 

  //Shaped Neighborhood 

  typedef ShapedNeighborhoodIterator< InputImageType > SNType; 

 

#ifdef ITK_USE_CONCEPT_CHECKING 

  /** Begin concept checking */ 

  /** End concept checking */ 

#endif 

 

protected: 

  InnerSphereFilter(); 

  virtual ~InnerSphereFilter() {}; 

  void PrintSelf(std::ostream& os, Indent indent) const; 

 

  /** This method implements the actual reflection of the image. 

   * 

   * \sa ImageToImageFilter::ThreadedGenerateData(), 

   *     ImageToImageFilter::GenerateData()  */ 

  void GenerateData(void); 

  float ModifiedTTest( void ); 

 

private: 

  InnerSphereFilter(const Self&); //purposely not implemented 

  void operator=(const Self&); //purposely not implemented 

 

  unsigned int m_Direction; 

  int m_MaxInnerSphereSize;  
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  int m_MinInnerSphereSize; 
 

}; 

 

} // end namespace itk 
 

#ifndef ITK_MANUAL_INSTANTIATION 
#include "itkInnerSphereFilter.txx" 
#endif 

 

#endif 
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itkInnerSphereFilter.txx 

#ifndef __itkInnerSphereFilter_txx 

#define __itkInnerSphereFilter_txx 

 

#include "itkInnerSphereFilter.h" 

#include "itkImageLinearIteratorWithIndex.h" 

#include "itkImageLinearConstIteratorWithIndex.h" 

#include "itkProgressReporter.h" 

 

#include "itkListSample.h" 

 

#include "itkCovarianceCalculator.h" 

#include "itkVector.h" 

 

#include "itkSymmetricEigenAnalysis.h" 

#include "itkFixedArray.h" 

#include "itkMatrix.h" 

 

#define EigenAnalysis 1 

 

namespace itk 

{ 

 

 /** 

 * Constructor 

 */ 

 template <unsigned int VImageDimension>   

 InnerSphereFilter<VImageDimension>  

  ::InnerSphereFilter() 

 { 

  this->SetNumberOfRequiredInputs( 1 ); 

  m_Direction = 0; 

 } 

 

 /** 

 

* GenerateData goes through every pixel and calculates the mean at the 

pixel 

 */ 

 template <unsigned int VImageDimension>   

 void InnerSphereFilter<VImageDimension>  

  ::GenerateData( void ) 

 { 

  std::cout<<std::endl<<"Running InnerSphere Filter"; 

  int threshold = 100;//; -500 

  //list<Cube> CubeData; 

   

  // Input image pointer and output image pointer 

typename Superclass::InputImageConstPointer inputPtr = this-

>GetInput(); 

typename Superclass::OutputImagePointer outputPtr = this-

>GetOutput(0); 

 

  // Making the output the same size as the input 

  outputPtr->SetRequestedRegion( inputPtr->GetRequestedRegion() ); 

  outputPtr->SetBufferedRegion( inputPtr->GetBufferedRegion() ); 

outputPtr->SetLargestPossibleRegion( inputPtr-

>GetLargestPossibleRegion() );  
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outputPtr->Allocate(); 

   

  //Create a Image of Input Type to do manipulations 

  InputImageType::Pointer TempImage = InputImageType::New(); 

  TempImage->SetRequestedRegion( inputPtr->GetRequestedRegion() ); 

  TempImage->SetBufferedRegion( inputPtr->GetBufferedRegion() ); 

TempImage->SetLargestPossibleRegion( inputPtr-

>GetLargestPossibleRegion() ); 

  TempImage->Allocate(); 

 

// Creating our iterators to go through the 

output/input/tempImage 

typedef ImageRegionConstIterator<InputImageType> 

ConstInputIterator; 

  typedef ImageRegionIterator<OutputImageType> OutputIterator; 

  typedef ImageRegionIterator<InputImageType> TempImageIterator; 

 

 

ConstInputIterator inputIt( this->GetInput(),  inputPtr-

>GetRequestedRegion() ); 

OutputIterator outputIt( outputPtr, outputPtr-

>GetRequestedRegion() ); 

TempImageIterator TempImIt( TempImage, TempImage-

>GetRequestedRegion() ); 

 

  inputIt.GoToBegin(); 

  TempImIt.GoToBegin(); 

 

  // Giving the tempImage the information contained in the input 

  while(!TempImIt.IsAtEnd()) 

  { 

   TempImIt.Set(inputIt.Get()); 

   ++inputIt; 

   ++TempImIt; 

  } 

 

  //Temporary SphereDataPixels to perform computations 

  SphereDataPixel<VImageDimension> currentSphereDataPixel; 

  SphereDataPixel<VImageDimension> tempSphereDataPixel; 

 

  //Set the iterators to the beginning of the images 

inputIt.GoToBegin(); 

  TempImIt.GoToBegin(); 

  double maxoutermean = 0; 

  double minoutermean = 0; 

     

//Create an image of linked list and allocate memory 

LinkedListImageType::Pointer LinkedListImage = 

LinkedListImageType::New(); 

LinkedListImage->SetRequestedRegion( inputPtr-

>GetRequestedRegion() ); 

LinkedListImage->SetBufferedRegion(inputPtr-

>GetBufferedRegion()); 

LinkedListImage->SetLargestPossibleRegion( inputPtr-

>GetLargestPossibleRegion() ); 

  LinkedListImage->Allocate(); 
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//Create an iterator for the linked list image 

typedef ImageRegionIterator<LinkedListImageType> 

LinkedListIterator; 

LinkedListIterator LinkedListIt( LinkedListImage, 

LinkedListImage->GetRequestedRegion() ); 

   

  //Set the iterator to the beginning of the image 

  LinkedListIt.GoToBegin(); 

 

  //Instantiate an object of LinkedListPixel class 

  LinkedListPixel<VImageDimension> CurrentLLPixel; 

  CurrentLLPixel.InitializeLinkedList(); 

   

  std::list<LinkedListPixel<VImageDimension>> CurrentLinkedList; 

  std::list<LinkedListPixel<VImageDimension>> NeighbourLinkedList; 

   

  unsigned int element_radius = 1; 

  SNType::RadiusType radius; 

         radius.Fill(element_radius); 

   

typedef ShapedNeighborhoodIterator< LinkedListImageType > 

LLSNType; 

LLSNType LLSNit(radius, LinkedListImage, LinkedListImage-

>GetRequestedRegion());   

  

  //Store pixel data for debugging 

std::ofstream myfile ("TestingTorus156_10_27_A.txt"); 

  if (myfile.is_open()) 

myfile << "Index[0]\t[1]\t[2]\tScale\t 

InnerSphereMean\tOuterSphereMean\tInnerVariance 

\tOuterVariance\tZValue\tDirection[0]\t[1]\t[2]\n"; 

    

  double bestInnerSphereMean; 

  double bestOuterSphereMean; 

  double bestInnerSphereVariance; 

  double bestOuterSphereVariance; 

  typedef itk::Vector <double, VImageDimension> DirectionType; 

  DirectionType tempDirection; 

 

//Iterate over scale 

for (unsigned int shellSize = (m_MinInnerSphereSize); shellSize 

<= m_MaxInnerSphereSize; ++shellSize) 

  { 

   std::cout<<std::endl<<"Scale = "<<shellSize; 

    

   //Iterate over all pixels at each scale 

while(!TempImIt.IsAtEnd()) 

   { 

    currentSphereDataPixel = TempImIt.Get(); 

     

//Consider only those pixels whose intensity is 

//greater than the threshold set by the user 

 

if(currentSphereDataPixel.outerSphereMean >  

threshold) 

    {  
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/**Indentation changed to accommodate the code in the document   

   

// Temporary sums of the shell 

double shellSum = 0; 

double shellPixelCount = 0; 

itk::ShellIterator <InputImageType> shellIt(const_cast<InputImageType*>(this-

>GetInput()), TempImIt.GetIndex(), shellSize, true); 

      

itk::Offset<VImageDimension> myOffset; 

//Compute data in a shell using shell iterator and accumulate the sum of 

//pixel intensity 

for(shellIt.GoToBegin(); !shellIt.IsAtEnd(); ++shellIt) 

{ 

if(shellIt.IsIndexWithinImage())  

{ 

  myOffset = shellIt.GetOffset(); 

  tempSphereDataPixel = shellIt.Get(); 

 

//Compute statisttical data such as mean, variance 

currentSphereDataPixel.currentSum = 

currentSphereDataPixel.currentSum +  

tempSphereDataPixel.intensityValue;  

currentSphereDataPixel.currentSumSq = 

currentSphereDataPixel.currentSumSq 

+(tempSphereDataPixel.intensityValue * 

tempSphereDataPixel.intensityValue ); 

            

++currentSphereDataPixel.pixelCount; 

}  

} 

 

//Compute the mean and variance 

// innerSphereMean = sphereSum/spherePixelCount; 

currentSphereDataPixel.innerSphereMean = 

currentSphereDataPixel.currentSum/currentSphereDataPixel.pixelCount;  

     currentSphereDataPixel.innerSphereVariance = 

(currentSphereDataPixel.currentSumSq + 

(currentSphereDataPixel.innerSphereMean * 

currentSphereDataPixel.innerSphereMean * currentSphereDataPixel.pixelCount) - 

(2 * currentSphereDataPixel.innerSphereMean * 

currentSphereDataPixel.currentSum) )/(currentSphereDataPixel.pixelCount - 1); 

      

itk::Offset<VImageDimension> shellBestPair; 

itk::ShellIterator <InputImageType> 

shellSpherePairIt(const_cast<InputImageType*>(this->GetInput()), 

TempImIt.GetIndex(), (shellSize + m_MinInnerSphereSize), true); 

      

//Setup sphere pairs to compute z value 

for(shellSpherePairIt.GoToBegin(); !shellSpherePairIt.IsAtEnd(); 

++shellSpherePairIt) 

{ 

// Checks if the pixel is within the image, if not do nothing 

 if(shellSpherePairIt.IsIndexWithinImage())  

 { 

  // Calculating the modified TTest 

  tempSphereDataPixel = shellSpherePairIt.Get(); 
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currentSphereDataPixel.currentSpherePairTest = abs( 

(tempSphereDataPixel.outerSphereMean - 

currentSphereDataPixel.innerSphereMean)/ 

sqrt((tempSphereDataPixel.outerSphereVariance) + 

(currentSphereDataPixel.innerSphereVariance))); 

             

  //Find the optimum sphere pair. The one with the highest z-value 

if((currentSphereDataPixel.currentSpherePairTest > 

currentSphereDataPixel.bestSpherePairTest) && 

(currentSphereDataPixel.innerSphereMean > 

tempSphereDataPixel.outerSphereMean)) 

  { 

//Store data related to the optimum sphere pair 

currentSphereDataPixel.bestSpherePairTest = 

currentSphereDataPixel.currentSpherePairTest; 

   shellBestPair = shellSpherePairIt.GetOffset(); 

   currentSphereDataPixel.bestSpherePair = shellBestPair; 

   currentSphereDataPixel.shellNumber = shellSize; 

bestInnerSphereMean = 

currentSphereDataPixel.innerSphereMean; 

   bestOuterSphereMean = tempSphereDataPixel.outerSphereMean; 

bestInnerSphereVariance = 

currentSphereDataPixel.innerSphereVariance; 

bestOuterSphereVariance = 

tempSphereDataPixel.outerSphereVariance; 

  } 

 } 

} 

      

// Getting the sums of the best sphere pairs... 

double sumOfSqBestSpherePair = 0; 

for (unsigned int counter = 0; counter < VImageDimension; counter++) 

{ 

sumOfSqBestSpherePair = sumOfSqBestSpherePair + 

(currentSphereDataPixel.bestSpherePair[counter] * 

currentSphereDataPixel.bestSpherePair[counter]); 

} 

 

// Creates our unit sphere pairs... 

for (unsigned int counter = 0; counter < VImageDimension; counter++) 

{ 

currentSphereDataPixel.bestUnitSpherePair[counter] = 

currentSphereDataPixel.bestSpherePair[counter] / sqrt( 

sumOfSqBestSpherePair ); 

} 

tempDirection = currentSphereDataPixel.bestUnitSpherePair; 

      

//Store the data of optimum sphere pairs in a .txt file for debugging 

myfile<<tempIndex2[0]<<"\t"<<tempIndex2[1]<<"\t"<<tempIndex2[2]<<"\t"<<shellS

ize<<"\t"<<bestInnerSphereMean<<"\t"<<bestOuterSphereMean<<"\t"<<bestInnerSph

ereVariance<<"\t"<<bestOuterSphereVariance<<"\t"<<currentSphereDataPixel.best

SpherePairTest<<"\t"<<tempDirection[0]<<"\t"<<tempDirection[1]<<"\t"<<tempDir

ection[2]<<"\t"<<"\n"; 

      

} 

++TempImIt; 

++inputIt;  
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} 

    

//Create a itkShapedneighborhood of immediate neighbors to detect medial 

//points 

    

SNType::IndexListType ActiveIndexList; 

SNType SNit(radius, TempImage, TempImage->GetRequestedRegion()); 

SNType::OffsetType Centeroffset = {(0,0,0)}; 

SNType::OffsetType offset1 = {(0,0,1)}; 

SNType::OffsetType offset2 = {(0,0,9)}; 

SNType::OffsetType offset3 = {(0,0,-3)}; 

    

SNit.ActivateOffset(Centeroffset); 

SNit.ActivateOffset(offset1);  

SNit.ActivateOffset(offset2); 

SNit.ActivateOffset(offset3); 

   

LLSNit.ActivateOffset(Centeroffset); 

LLSNit.ActivateOffset(offset1);  

LLSNit.ActivateOffset(offset2); 

LLSNit.ActivateOffset(offset3); 

    

LLSNit.GoToBegin(); 

LLSNType::Iterator LLInsideSNit; 

   

//Initialize iterators to the beginning of the images obtained from the 

//previous filter and also of the linked list image 

SNit.GoToBegin(); 

LinkedListIt.GoToBegin(); 

    

//Store the data corresponding to the center of the neighborhood and the data 

//of the neighboring pixels in different SphereDataPixel classes 

SNType::Iterator InsideSNit; 

SphereDataPixel<VImageDimension> SNPixel; 

itk::Vector <double, VImageDimension> CenterPixelDirection; 

itk::Vector <double, VImageDimension> NeighborDirection; 

double DotProduct; 

int centerShellSize; 

double CenterPixelZValue; 

int NeighborShellSize; 

double NeighborPixelZValue; 

SphereDataPixel<VImageDimension> SNNeighborPixel; 

   

itk::Index<VImageDimension> tempIndex; 

   

//Look for medial points by comparing the direction of the center of the 

//neighborhood with the direction of its immediate neighbors  

while( !SNit.IsAtEnd() ) 

{ 

 LLInsideSNit = LLSNit.Begin(); 

 LLInsideSNit++; 

 InsideSNit = SNit.Begin(); 

 InsideSNit++; //To go to the center of the neighborhood 

 SNPixel = InsideSNit.Get(); 

        

 CenterPixelDirection = SNPixel.bestUnitSpherePair; 

 centerShellSize = SNPixel.shellNumber;  
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CenterPixelZValue = SNPixel.bestSpherePairTest; 

 

//Go to the first neighbor of the center pixel as defined in the neighborhood 

 

InsideSNit--; 

LLInsideSNit--; 

        

if(SNPixel.outerSphereMean >  threshold) 

{ 

//iterate through all the neighbors of the center of the neighborhood 

//as defined in the shaped neighborhood 

for (; InsideSNit != SNit.End(); InsideSNit++,LLInsideSNit++) 

 { 

//Avoid considering the center of the neighborhood the second 

//time 

if (InsideSNit.GetNeighborhoodIndex() == 13) 

  continue; 

      

  SNNeighborPixel = InsideSNit.Get(); 

   

//Entry into the linkedlist for each pixel is done here depending 

//on the direction of the neighboring pixels 

   

  SNPixel = InsideSNit.Get(); 

       

//Only consider those results whose scale matches the current 

//scale and compute the Dot Product 

if ((SNPixel.shellNumber == centerShellSize) && 

(SNPixel.shellNumber == shellSize) ) 

  { 

   NeighborDirection = SNPixel.bestUnitSpherePair; 

DotProduct = (CenterPixelDirection[0]*NeighborDirection[0] 

+ CenterPixelDirection[1]*NeighborDirection[1] + 

CenterPixelDirection[2]*NeighborDirection[2]); 

                    

//If the dot product is negative and less than a threshold, 

//mark both the center pixel and the corresponding neighbor 

points as medial points at the current scale 

if (DotProduct < -0.3 && SNPixel.bestSpherePairTest > 1.0 

&& CenterPixelZValue > 1.0) 

   { 

    CurrentLLPixel.Scale = SNPixel.shellNumber; 

    CurrentLLPixel.ZValue = SNPixel.bestSpherePairTest; 

for (unsigned int counter = 0; counter < 

VImageDimension; counter++) 

    { 

CurrentLLPixel.Direction[counter] = 

SNPixel.bestUnitSpherePair[counter]; 

    } 

             

    CheckingLinkedList = LLInsideSNit.Get(); 

    CheckingLLPixel.InitializeLinkedList(); 

  

    //To store data at Neighbor Pixel 

    if(!CheckingLinkedList.empty()) 

    CheckingLLPixel = CheckingLinkedList.back(); 

 

 



 72 

CurrentLinkedList = LLInsideSNit.Get();  

    CurrentLinkedList.push_back( CurrentLLPixel); 

        

    //Store only one result at each scale  

if(!(CheckingLLPixel.Scale == SNPixel.shellNumber)) 

    { 

     LLInsideSNit.Set(CurrentLinkedList); 

    } 

        

    //To store data at the Center Pixel 

    LLInsideSNit = LLSNit.Begin(); 

    LLInsideSNit++; 

    CurrentLinkedList = LLInsideSNit.Get(); 

    CheckingLinkedList = LLInsideSNit.Get(); 

    CheckingLLPixel.InitializeLinkedList(); 

             

    if(!CheckingLinkedList.empty()) 

     CheckingLLPixel = CheckingLinkedList.back(); 

         

    CurrentLLPixel.Scale = centerShellSize; 

    CurrentLLPixel.ZValue = CenterPixelZValue; 

for (unsigned int counter = 0; counter < 

VImageDimension; counter++) 

    { 

CurrentLLPixel.Direction[counter] = 

CenterPixelDirection[counter]; 

    } 

    CurrentLinkedList.push_back( CurrentLLPixel); 

    if(!(CheckingLLPixel.Scale == SNPixel.shellNumber)) 

    { 

     LLInsideSNit.Set(CurrentLinkedList); 

    } 

    break; 

           

   } 

} 

 } 

} 

} 

 

SNit++; 

LinkedListIt++; 

LLSNit++; 

      

}  

 

LinkedListIt.GoToBegin(); 

TempImIt.GoToBegin(); 

LLSNit.GoToBegin(); 

    

} 

   

if(myfile.is_open()) 

myfile.close(); 
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#ifdef EigenAnalysis 

//Eigen Analysis 

   

//Create a list for storing eigen values 

std::list<LinkedListPixel<MY_DIMENSION>> TempList; 

std::list<LinkedListPixel<MY_DIMENSION>>::iterator TempListIt; 

std::list<LinkedListPixel<MY_DIMENSION>>::iterator CurrentListIt; 

 

LinkedListPixel<VImageDimension> tempLLPixel; 

double tempScale; 

double CurrentScale; 

   

//define classes for covariance calculation and eigen value computation 

typedef itk::Vector <double, VImageDimension> PixelDirectionType; 

PixelDirectionType PixelDirection; 

typedef itk::Statistics::ListSample< PixelDirectionType > SampleType; 

SampleType::Pointer BankofPixels = SampleType::New(); 

BankofPixels->SetMeasurementVectorSize( VImageDimension ); 

  

typedef itk::Statistics::CovarianceCalculator< SampleType > 

CovarianceAlgorithmType; 

typedef CovarianceAlgorithmType::OutputType CovarianceMatrixType; 

typedef itk::FixedArray< double, VImageDimension > EigenValuesArrayType; 

typedef itk::Matrix< double,VImageDimension, VImageDimension > 

EigenVectorMatrixType; 

typedef itk::SymmetricEigenAnalysis< CovarianceMatrixType, 

EigenValuesArrayType, EigenVectorMatrixType > SymmetricEigenAnalysisType; 

EigenValuesArrayType EigenValues; 

EigenVectorMatrixType EigenVectors; 

   

//Create a .txt file to store the eigen values 

std::ofstream EigenFile ("EigenAnalysisDataTorus156_10_27_A.txt"); 

if (EigenFile.is_open()) 

//define the heading for the file 

EigenFile << "Index[0]\t[1]\t[2]\tScale\tEigenValue[0]\t[1]\t[2]\n"; 

   

itk::Index<VImageDimension> EigenTempIndex; 

  

//Create a iterator to go through the linked list at each pixel 

LLSNit.GoToBegin(); 

LLSNType::Iterator LLInsideSNit; 

   

//Iterate through the image of linked lists 

while(!LLSNit.IsAtEnd()) 

{ 

 LLInsideSNit = LLSNit.Begin(); 

 LLInsideSNit++; 

 CurrentLinkedList  = LLInsideSNit.Get(); 

 EigenTempIndex = LLSNit.GetIndex(); 

       

//Iterate through all the records in the linked list 

for(CurrentListIt = CurrentLinkedList.begin(); CurrentListIt != 

CurrentLinkedList.end(); CurrentListIt++)  

 { 

  CurrentLLPixel  = *CurrentListIt; 

  CurrentScale = CurrentLLPixel.getScale(); 
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//Cluster all medial points within the inner sphere centered at 

the current iterator index, whose radius is equal to the current 

scale 

for (unsigned int shellSize = (m_MinInnerSphereSize); shellSize 

<= CurrentScale; ++shellSize) 

  { 

itk::ShellIterator <LinkedListImageType> 

shellIt(LinkedListImage, LLSNit.GetIndex(), shellSize, 

true); 

   for(shellIt.GoToBegin(); !shellIt.IsAtEnd(); ++shellIt) 

   { 

    if(shellIt.IsIndexWithinImage())  

    { 

     TempList = shellIt.Get(); 

for(TempListIt = TempList.begin(); TempListIt 

!= TempList.end(); TempListIt++) 

     { 

      tempLLPixel = *TempListIt; 

      tempScale = tempLLPixel.getScale(); 

      if (tempScale == CurrentScale) 

      { 

PixelDirection = 

tempLLPixel.getDirection(); 

BankofPixels->PushBack( 

PixelDirection ); 

      } 

          

     } 

    } 

   } 

  } 

  

//compute covariance matrix of the cluster created in the 

//previous step using the CovarianceAlgorithm filter   

CovarianceAlgorithmType::Pointer covarianceAlgorithm = 

CovarianceAlgorithmType::New(); 

  covarianceAlgorithm->SetInputSample( BankofPixels ); 

  covarianceAlgorithm->Update(); 

   

//Compute the eigen valuesof the covariance matrix generated in 

//the previous step 

SymmetricEigenAnalysisType SymmetricEigenSystem(VImageDimension); 

SymmetricEigenSystem.ComputeEigenValuesAndVectors 

(*(covarianceAlgorithm->GetOutput()), EigenValues, EigenVectors 

); 

 

//Store the eigen values in a .txt file 

EigenFile<<EigenTempIndex[0]<<"\t"<<EigenTempIndex[1]<< 

"\t"<<EigenTempIndex[2]<<"\t"<<CurrentScale<<"\t"<< 

EigenValues[0]<<"\t"<<EigenValues[1]<<"\t"<<EigenValues[2]<<"\n"; 

      

//Store the eigen values in the linked list 

for (unsigned int counter = 0; counter < VImageDimension; 

counter++) 

  { 

   CurrentLLPixel.EigenValues[counter] = EigenValues[counter]; 

  }  
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  *CurrentListIt = CurrentLLPixel; 

    

 } 

 LLSNit++; 

} 

 

//Close the eigen analysis .txt file  

if(EigenFile.is_open()) 

 EigenFile.close(); 

#endif 

 

outputIt.GoToBegin(); 

LLSNit.GoToBegin(); 

 

itk::Index<VImageDimension> tempIndex; 

while(!outputIt.IsAtEnd()) 

{ 

tempIndex = outputIt.GetIndex(); 

 if (tempIndex[0] == 18 && tempIndex[1] == 0 && tempIndex[2] == 19) 

 LLInsideSNit = LLSNit.Begin(); 

 LLInsideSNit++; 

++LLSNit; 

 outputIt.Set(LLInsideSNit.Get()); 

 ++outputIt; 

} 

   

} 

 

template <unsigned int VImageDimension>   

float InnerSphereFilter< VImageDimension >::ModifiedTTest( void ) 

{ 

 

} 

 

template <unsigned int VImageDimension>   

void InnerSphereFilter<VImageDimension>  

 ::PrintSelf(std::ostream& os, Indent indent) const 

{ 

 Superclass::PrintSelf(os,indent); 

} 

 

} 

 

#endif 
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