
 i

AUTOMATED METHOD FOR N-DIMENSIONAL SHAPE DETECTION BASED ON

MEDIAL IMAGE FEATURES

by

Vikas Revanna Shivaprabhu

B.E., Visveswaraya Technological University, 2008

Submitted to the Graduate Faculty of

Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Master of Science in Electrical Engineering

University of Pittsburgh

2010

 ii

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This thesis was presented

by

Vikas Revanna Shivaprabhu

It was defended on

December 02, 2010

and approved by

Co-advisor: Dr. George Stetten, Professor, Department of Bioengineering

Co-advisor: Dr. C.C.Li, Professor, Department of Electrical and Computer Engineering

Dr. Pat Loughlin, Professor, Department of Bioengineering

Dr. Marlin Mickle, Professor, Department of Electrical and Computer Engineering

 iii

Copyright © by Vikas Revanna Shivaprabhu

2010

 iv

The focus of my thesis is to build upon the method of Shells and Spheres developed in our

laboratory. The method as previously implemented extracts medial points based on the

divergence of the direction function to the nearest boundary as it changes across medial ridges,

and reports the angle between the directions from the medial point to two respective boundary

points. The direction function is determined by analyzing the mean and variance of intensity

within pairs of adjacent circular regions in a 2D image. My thesis research has involved

improving the search method for determining the distance function and identifying medial

points, and then clustering those medial points to extract features including scale, orientation and

medial dimensionality. These are then analyzed to detect local geometric shapes. I have

implemented the methods in N dimensions in the Insight Toolkit (ITK). In 3D, the method

yields three fundamental dimensionalities of local shape: the sphere, the cylinder, and the slab,

which, along with scale and orientation, are powerful features for classifying more complex

shapes. Tests are performed on simple geometric objects including the hollow sphere (slab),

torus (cylinder) and sphere. The results confirm the capability of the system to successfully

identify the described medial shape features, and lay the foundation for ongoing research in

identifying more complex anatomical objects in medical images.

AUTOMATED METHOD FOR N-DIMENSIONAL SHAPE DETECTION BASED ON

MEDIAL IMAGE FEATURES

 Vikas Revanna Shivaprabhu, M.S.

University of Pittsburgh, 2010

 v

 TABLE OF CONTENTS

1.0 BACKGROUND... 3

1.1 MEDIAL AXIS .. 3

1.2 SHELLS AND SPHERES ... 5

2.0 DETERMINING DISTANCE FUNCTION .. 8

2.1 STORING THE DIRECTION VECTORS ... 13

3.0 IDENTIFYING MEDIAL POINTS ... 14

3.1 ALGORITHM TO DETECT MEDIAL POINTS .. 15

4.0 CLUSTERING MEDIAL POINTS .. 21

5.0 EXTRACTING FEATURES .. 22

6.0 MEDIAL DETECTION IN A REAL IMAGE .. 29

7.0 IMPLEMENTATION IN ITK .. 32

7.1 ABOUT ITK ... 32

7.2 IMPLEMENTATION ... 33

7.2.1 Organization... 33

7.2.2 Iterators in ITK.. 34

7.2.3 Shell Iterator .. 34

7.2.4 Sphere Iterator ... 35

7.2.5 Sphere Pixel Data... 35

 vi

7.2.6 Linked List Pixel .. 36

7.2.7 Outer Sphere Filter.. 36

7.2.8 Inner Sphere Filter .. 37

7.2.9 Eigenanalysis .. 37

8.0 CONCLUSION... 38

9.0 FUTURE WORK ... 39

APPENDIX .. 40

BIBLIOGRAPHY ... 76

 vii

LIST OF TABLES

Table 1: Relation of eigenvalues to 3D shapes... 24

 viii

LIST OF FIGURES

Figure 1: Blum medial axis (dotted lines) of a rectangle. It is locus of points equidistant from two or more boundary

points of the rectangle (courtesy of Aaron Cois, Ph.D. Dissertation)……………………………………… 4

Figure 2: Each pixel is shown as a number indicating its integer distance from the central pixel. If we denote the

central pixel as x, then pixels labeled n are members of the set Hn(x). For example, the pixels labeled “3”

(shown in red) comprise the shell H3(x)……………………………………………………………………. 5

Figure 3: Noiseless image with boundary between two objects. Numbers indicate pixel intensity. The spheres are

optimized to the right size. Spheres touch, but do not cross the boundary between the two objects. S r(x) has

r(x) = 3 and Sr(y) has r(y) =2. Color intensity indicates the sphere growing from size 0, red for Sr(x) and

blue for Sr(y)……………………….. 6

Figure 4: Noisy image consisting of 2 objects. A sphere pair consists of an inner sphere (red) and an outer sphere

(blue). Three cases depicting different orientations of the outer sphere are shown, with their corresponding

pixel intensity histograms (outer sphere = solid line, inner sphere = dashed

line)……. 11

Figure 5: Inner sphere (red) is grown from radius 1 to radius 3. Sphere pairs are formed at all possible outer sphere

(blue) orientations. The d’ is computed for each sphere pair and the optimum sphere pair is chosen. The

winning sphere pair provides the direction to the nearest

boundary……………………………………………………………………………………………………. 12

Figure 6: Linked list in which each record stores the scale, d’, and the direction ………………. …………………...13

Figure 7: A noisy image showing the medial locus (red) of the object. Also shown is the direction of the sphere pair

at a pixel location (blue)…………………………………… ……………………………………………….14

Figure 8: (a) 2D mask and (b) 3D mask used to detect medial points. A center pixel (red) and its immediate

neighbors (blue) in the positive direction in each dimension are shown……. ……………………………...15

Figure 9: (a) 3D model of a torus visualized using surface rendering in ITK-SNAP. (b) Noisy image of a torus.

Slices of the 3D image, showing the cross section of the torus and the detected medial points (slices 5, 6, 7,

and 12) at scale 1 (red), scale 5 (blue), and at scale 6 (green)

 ………………………………………………………………………………….…………………………..18

Figure 10: (a) 3D model and a cross sectional view of a hollow sphere. (b) Slices of a noisy 3D image of a hollow

sphere, showing the cross section of the hollow sphere and the detected medial points at scale 1 (red) 19

Figure 11: (a) 3D model and a cross sectional view of a sphere. (b) Slices of a noisy 3D image of a hollow sphere,

showing the cross section of the hollow sphere and the detected medial points at scale 5(blue) in slice 6.

 ……20

Figure 12: Medial points (dotted red line) within the inner sphere (blue) centered at x are clustered

 ………………………………………………………………………………….…………………………..21

Figure 13: Three fundamental shapes and their corresponding medial manifolds. Also shown is the distribution of

direction vectors in each shape and their corresponding eigenvectors. (Courtesy: George Stetten)

 ……24

Figure 14: Triangle representing the relation between eigenvalues and 3D shapes …………………………………25

Figure 15: Eigenvalues of the hollow sphere superimposed on the lambda triangle ………………………………..26

 ix

Figure 16: Eigenvalues of the torus superimposed on the lambda triangle …………………………..……………...27

 Figure 17: Orientation error in degrees for the torus and the hollow sphere ………………………..………………28

Figure 18: Five slices of the cropped and resampled 3D lung image used in our experiment, shown in the (a)

Coronal, (b) Sagittal, And (c) Axial orientations …………………………………………………………..30

Figure 19: The slices shown in Figure 18 with the detected medial points superimposed. The scales at which the

medial points are detected are color coded as follows: 1–red; 2–green; 3–dark blue; 4–yellow; 5–light blue.

 ………………………………………………………………………………………………..…………….31

Figure 20: 3D rendering of the medial points using ITK-SNAP. Color coding as in Figure 19. ………………….. .31

Figure 21: Input image is passed to an Inner sphere filter through an outer sphere filter to obtain the output image

which consists of medial points and analysis data…………………… ……………………………………..33

Figure 22: Outline of OuterSphereFilter ………………………………………………………...…………………...33

Figure 23: Outline of InnerSphereFilter ………………………………………………………………………………34

 x

PREFACE

I would like to sincerely thank my advisor Dr. George Stetten for all his support and guidance.

This thesis would not have materialized without his continuous encouragement and motivation.

George, thank you for having confidence in me and for showing me the intricacies involved in

research work. It is an honor for me to be working with you.

I would like to thank the members of VIA lab for their input, especially Dr. John Galeotti

for introducing me to ITK and helping me with the code. I appreciate Dr. C.C. Li for his

guidance in getting my graduate career on the right track. I would also like to thank the members

of my thesis committee for their precious time and suggestions.

I would like to thank my beloved brother, Vivek and his wife, Shruthi, and all my friends

for being there for me when I needed them the most. Thank you all for making my stay in the

U.S a pleasant and enjoyable experience.

Finally, and most importantly, I would like to express utmost gratitude to my parents for

their undying support, encouragement, and for their blessings.

 1

1.0 INTRODUCTION

Medical imaging has come a long way since the discovery of X-rays by Roentgen in

1895. Over the years, many new imaging modalities have evolved, providing doctors and

radiologists insight into the human body. The images produced by different modalities provide

vital information necessary for diagnosis and treatment. Doctors rely on these images to

identify, measure and functionally assess various structures. Most of the techniques for analysis

currently used in clinics require manual examination by a radiologist. This process is tedious and

time consuming, especially with large 3D datasets such as produced by MRI, which are generally

examined one slice at a time. Hence, computerized image analysis, as a means to assist doctors

to extract information with little or no manual intervention, is of critical importance. Most of the

automated analyses that exist are unreliable because of the irregularities that are inherently

present in the images, such as noise, variation in anatomical shape, discontinuous object

boundaries, and varying imaging characteristics. Hence, a more robust and rapid automated

system is needed.

Typically, shape detection depends on the ability to identify boundaries, which are used

to determine the parent shape by grouping neighboring boundary points. Such local measurement

techniques are susceptible to image noise and may be unstable. A different approach would be to

group all boundary points globally, using geometric relationships. But this approach is

computationally expensive and not practical for large data sets. A compromise between these

 2

two approaches can be achieved by considering the medial relationship, which links opposing

boundary points equidistant from the center of an object. The framework of “shells and spheres”,

developed in Dr. Stetten‟s laboratory, is a means to perform this association by detecting medial

points based on the statistical properties of populations of pixel intensities. This is accomplished

by first determining the distance and direction to the nearest boundary at every pixel location.

The work of this thesis is to build upon the framework of shells and spheres, examine its

capability to detect and cluster medial points in N-dimensions, and extract features such as scale,

orientation, and medial dimensionality. These features are analyzed to differentiate three

fundamental local geometric shapes: sphere, cylinder, and slab. Tests have been performed on

simple geometric objects including the hollow sphere (slab), torus (cylinder) and sphere. The

methods have also been applied in a preliminary way to real 3D medical imaging data.

Thesis Overview:

i. A robust system capable of detecting medial manifolds in N-dimensions is developed.

ii. The local properties of the medial manifold, including scale, orientation, and

dimensionality, are extracted for shape analysis.

iii. Evaluation of these methods on synthetic test objects (sphere, cylinder, and slab)

confirms the ability of the system to detect medial manifolds and to identify their local

scale, orientation, and dimensionality. Preliminary examination of the system on real 3D

medical data is performed.

 3

2.0 BACKGROUND

2.1 MEDIAL AXIS

The concept of the Medial Axis, originally referred to as topological skeleton, dates back to 1967

when Blum introduced it as a tool for biological shape recognition [1]. The medial axis is

formally defined as the locus of centers of spheres contained within the object that are tangent to

the boundary in at least two places. It was originally suggested as an effective means of

representing objects in 2D images. A classic illustration of the Blum medial axis of a rectangle

is shown in Figure 1. The dotted lines represent the locus of points equidistant from two or more

boundary points of the rectangle. Also shown are a few of the circles whose centers lie on the

medial axis and whose circumferences touch but do not cross the rectangle‟s boundary.

Subsequently, Blum also suggested the extension of medial loci to objects in 3D images, using

maximal spheres instead of circles. A useful metaphor for the Blum medial locus is the

“grassfire”, in which the medial locus is obtained as a set of quench points when a field of

uniformly dense grass whose boundary matches the boundary of the object is set on fire at each

point on the boundary at time t = 0.

 4

Figure 1: Blum medial axis (dotted lines) of a rectangle. It is locus of points equidistant from two or more boundary

points of the rectangle (courtesy of Aaron Cois, Ph.D. Dissertation).

Blum‟s approach presupposes an existing segmentation, a binary image. Detection of

the medial axis in gray scale images was implemented by Burbeck and Pizer [2]. They designed

a “core” model in which a figure's boundaries are related to one another at a scale determined by

the figure's width, as determined by statistical operations at that scale. A core is a locus in a

space whose coordinates are position, radius, and associated orientations. The extraction of

boundary and medial ridges using the core model has proved to be stable against image

disturbances [3]. A framework that finds pairs of boundary points called “core atoms” using one

such statistical approach has been implemented by Stetten and Pizer [4]. In core atoms, pre-

detected boundary points are associated in pairs that face each other across an object and are then

grouped by their centers into populations that are clustered at medial locations.

The medial representation has a variety of strengths. It is powerful since it directly

captures various aspects of shape by giving direct access to both object interiors and object

boundaries and also provides important features such as location, orientation and scale in any

neighborhood of the interior of an object. The medial axis is a transformation of an object

boundary with the same topology as the object. It is not only possible to generate the medial axis

 5

from the boundary but equally, the medial locus can generate the object boundary. As a result of

such advantages, medial representation finds wide use in image analysis, computer vision and

other fields of computer science.

2.2 SHELLS AND SPHERES

Shells and Spheres is a novel system developed in our laboratory for analyzing images. It is

based on a set of spheres, one centered at each pixel in an image, whose radii are allowed to

grow. A sphere map is an N-dimensional neighborhood of pixels that lie within a radius r of a

center point. Thus, Sr (x) = {y : round(|y − x|) ≤ r, y ∈ Ω}, where, Sr (x) is a sphere of radius r

centered at image pixel x, y is a pixel within that sphere, and Ω ⊂ ZN, is the set of all pixel

locations in a sampled N-dimensional image. A shell is the set of all pixels whose distance to the

center rounds to a given radius, defined for a radius r as Hr (x) = {y : round(|y − x|) = r, y ∈ Ω}.

Figure 2 depicts a sphere map of radius 2 (shown in blue) and a shell of radius 3 (shown in red).

Each pixel is shown as a number indicating its integer distance from the central pixel.

Figure 2: Each pixel is shown as a number indicating its integer distance from the central pixel. If we denote the

central pixel as x, then pixels labeled n are members of the set Hn(x). For example, the pixels labeled “3” (shown in

red) comprise the shell H3(x).

 6

A sphere of radius r can be formed from a union of shells,

 () ⋃ ()

A sphere is allowed to grow such that it touches but does not cross the boundary of the

object. Figure 3 shows a noiseless image with 2 objects having pixel intensities of „1‟ and „9‟

respectively. The boundary between the objects is shown by a dotted line. At pixel x, sphere Sr(x)

is allowed to grow till it reaches the boundary. Similarly, sphere Sr(y) centered at pixel y is

allowed to grow in the neighboring object. Since Sr(x) and Sr(y) touch but do not cross the

boundary, it can be said that the spheres are optimized correctly. The optimal spheres‟ radii are

equivalent to a distance map, indicating the distance from the center of each sphere to the nearest

boundary.

Figure 3: Noiseless image with boundary between two objects. Numbers indicate pixel intensity. The spheres are

optimized to the right size. Spheres touch, but do not cross the boundary between the two objects. Sr(x) has r(x) = 3

and Sr(y) has r(y) =2. Color intensity indicates the sphere growing from size 0, red for Sr(x) and blue for Sr(y).

This approach was taken prior to the present dissertation by Aaron Cois, in the Stetten

laboratory, using Shells and Spheres to grow spheres from neighboring objects to meet at the

 7

boundaries between them [5]. We now take a somewhat different approach, using asymmetric

sphere pairs (described below), in which only one of the spheres is permitted to grow.

 8

3.0 DETERMINING DISTANCE FUNCTION

The focus of my thesis is to build upon the framework of Shells and Spheres. Building on the

previous work in our lab [5], I will utilize pairs of spheres that are adjacent, to tell the difference

between the intensities of adjoining regions. Sphere pairs that are asymmetric, in terms of the

radii of the individual spheres, can be used to determine the distance function, i.e., the distance to

the nearest boundary, as well as the direction to that boundary. A sphere pair, as we define it,

consists of a constant radius outer sphere, adjacent to an inner sphere whose radius can vary.

The labels inner and outer denote the ideal placement of the sphere pair relative to an

underlying object. The constant radius of the outer sphere is chosen to be small enough to

provide sufficient boundary curvature, while still being large enough to represent a statistically

significant population. The radius of the inner sphere is permitted to grow, starting at the same

radius as the outer sphere, in search of the nearest boundary. The radius of the inner sphere is

considered the scale of the sphere pair, and the sphere pair is said to be located at the center of

the inner sphere.

We define various statistics for spheres. The mean intensity of the pixels within sphere

 () is defined by

 ()

 ()
∑ ()

 ∈ ()

where () is the number of pixels in sphere () and () is the intensity at pixel y.

 9

The variance at pixel x is defined as

 ()

 ()
∑ [() ()]

 ∈ ()

 ()

The standard deviation () is the square root of the variance.

These statistics are first pre-computed for outer spheres at their constant radius for every

pixel throughout the image. The statistics are then computed for the inner sphere at each pixel

location, with the radius first set to that of the outer spheres and then allowed to increase until it

reaches a maximum value set by the user, with the statistics recomputed for every radius. These

statistics will be compared to those of the adjacent outer spheres to determine the presence of a

boundary, as will be described below.

The radius of the outer sphere, which is also the initial radius of the inner sphere, must be

at least 1. A sphere of radius 0 consists of a single pixel. If variance is to be computed, it is

imperative that the radius of the sphere be greater than 0, since the variance of a sample of one

pixel is not defined.

Boundaries between objects may be detected using the d’ (d-prime) value, which is a

statistic used in signal detection. It provides the separation between the means of the signal and

the noise distributions, in units of the standard deviation of the noise distribution. In our case we

have two populations of pixel intensities (those within the inner and adjacent outer spheres), and

we want a measure of how different the two populations are, so as to be able to detect a boundary

between the spheres. Hence, the signal and the noise distributions in the definition of d’ can be

replaced by the intensity distributions of the inner and the outer spheres. Since we care about the

standard deviations of both populations, the formula for d’ is given by:

 10

𝒅

√
 +

2

where and are the means and standard deviations of populations 1 and 2.

Figure 4 demonstrates the concept of detecting boundaries using d’. The figure consists

of a noisy image with a rectangular object whose mean pixel intensity differs from that of the

background, with an inner sphere (red), and three adjacent outer spheres (blue) superimposed.

Intensity histograms of the three sphere pairs (formed from the inner sphere and each of the three

outer spheres) are shown to the right. The dotted line represents the histogram of the inner

sphere, while the solid line represents the histogram of the outer sphere. The inner sphere

encompasses an object completely within the object. Each of the sphere pairs is examined.

Sphere pair 1: The outer sphere encompasses a region completely outside the object. As

seen in the corresponding histogram of pixel intensities (labeled 1), the means are clearly

separated. The variance in each of the spheres is relatively low. Hence, a high d’ results.

Sphere pair 2: The outer sphere includes pixels from both inside and outside the object.

The means of the inner and outer spheres are closer to each other and the histograms

(labeled 2) overlap. Also, the variance in the outer sphere is higher. Hence, a lower d’

results.

Sphere pair 3: Both the inner and outer spheres are entirely within the object. The

corresponding histograms (labeled 3) completely overlap. The means of the population in

both the spheres are approximately the same. Hence, the d’ is very close to 0.

 11

A high d’ indicates that the two spheres in a sphere pair lie on opposite sides of a

boundary, with the point of contact between the two spheres lying on the boundary. Noticeably,

in the example illustrated in Figure 4, sphere pair 1 generates the highest d‟ and is therefore the

best choice for a boundary between the object and the background.

Figure 4: Noisy image consisting of 2 objects. A sphere pair consists of an inner sphere (red) and an outer sphere

(blue). Three cases depicting different orientations of the outer sphere are shown, with their corresponding pixel

intensity histograms (outer sphere = solid line, inner sphere = dashed line).

At a given pixel location, the inner sphere is allowed to grow, starting from a small radius

equal to the radius of the outer sphere. As the inner sphere grows, sphere pairs are formed at

every scale with all possible orientations of the outer sphere. For example, let us consider an

inner sphere whose initial radius is 1 and let us assume that this sphere has now grown to a

radius of 3, as illustrated in Figure 5. Sphere pairs (inner sphere + outer sphere) are now formed

 12

that comprise the current inner sphere of radius 3 (red) and outer spheres that are located around,

and adjacent to, the inner sphere (blue).

Figure 5: Inner sphere (red) is grown from radius 1 to radius 3. Sphere pairs are formed at all possible outer sphere

(blue) orientations. The d’ is computed for each sphere pair and the optimum sphere pair is chosen. The winning

sphere pair provides the direction to the nearest boundary.

The d’ value is computed for each sphere pair, and the one with the highest d‟ provides

the optimum sphere pair at the current scale. For the example in Figure 5, the optimum sphere

pair is most likely to include the outer sphere highlighted by a solid line. Assuming a correct

optimization of the sphere pair by the method just described, we can obtain a unit direction

vector ̂() from the center of the inner sphere to the center of the outer sphere. (The ^ symbol

denotes unit vector.) The direction vector, along with the corresponding d’ and the current

radius is stored using a method that is described in the following section. The inner sphere radius

is then increased by 1 and the search for the optimum sphere pair is repeated at the new scale.

 13

This process is repeated until the inner sphere reaches a maximum size set by the user. A

direction vector is thus found at every scale, for each pixel location.

3.1 STORING THE DIRECTION VECTORS

As described in the previous section, a direction vector is obtained at each scale, and at each

pixel location. Thus the direction vector is represented in a domain commonly known as “scale

space”. If the radius of the inner sphere ranges from 1 to 10, we obtain 10 different direction

vectors pointing to the most likely boundary at each scale. Thus, we require a data structure

capable of storing multiple records at each pixel location.

The data structure used in my thesis is a linked list. A linked list is a data structure that

consists of a sequence of data records allowing easy insertion and removal of data. Each record

of the linked list holds the scale, d’, and the direction, as shown in Figure 6.

Figure 6: Linked list in which each record stores the scale, d’, and the direction

If a record were stored for every scale at every pixel, this would represent an enormous amount

of data, for a typical 3D medical image. Luckily, as will be discussed in the following sections,

only certain locations and scales are considered significant, namely those that are medial.

Scale = 1
d’

Direction

Scale = 2
d’

Direction

Scale = 3
d’

Direction

Scale = n
d’

Direction

 14

4.0 IDENTIFYING MEDIAL POINTS

As one crosses the medial ridge, the direction vector, which points to the nearest boundary,

changes abruptly, as shown in Figure 7. By detecting such abrupt changes, we can identify

medial points. Since the direction vectors are unit vectors, the dot product of two direction

vectors gives us the cosine of the angle between them. This value ranges from -1 to +1. While

positive values of the dot product imply that the two vectors are roughly in the same direction,

negative values imply that they are in opposite directions. By identifying a pair of neighboring

pixels whose direction vectors produce a negative dot product, it is possible to detect the abrupt

change across the medial ridge, implying the existence of a medial point between the pixels.

Note that in cases where the vectors form a right angle (see Figure 7) the dot product will yield 0.

A threshold can be set to include any desired range of angles.

Figure 7: A noisy image showing the medial locus (red) of the object. Also shown is the direction of the sphere pair

at a pixel location (blue).

 15

The algorithm used to compute the dot product of the direction vectors of neighboring

pixels is explained in the next section.

4.1 ALGORITHM TO DETECT MEDIAL POINTS

In terms of the data structure described in section 3.1, storing a record at every scale for every

location would be redundant. It is sufficient to store a record only at the medial points and then

only at the appropriate scale for that medial point.

In order to detect medial points in an image, a mask that includes the immediate

neighbors of a given pixel in the positive direction in each dimension (x and y in 2D; x, y and z in

3D) is used. Figure 8 shows the 2D and 3D masks.

Figure 8: (a) 2D mask and (b) 3D mask used to detect medial points . A center pixel (red) and its immediate

neighbors (blue) in the positive direction in each dimension are shown.

The mask is applied at every pixel location. Pairs of pixels are formed by considering the

center pixel (red) and one of its neighbors (as defined by the mask). Thus, we obtain 2 pairs of

pixels in 2D and 3 pairs in 3D at each pixel location. The dot product of the direction vectors is

 16

computed for each pair. If the dot product is negative and satisfies a threshold set by the user, the

pixels formulating the pair are marked as medial points, assuming that the d’ associated with

each direction vector is above a threshold, i.e., the corresponding sphere pairs have each located

significant boundaries.

We apply this technique to detect medial points at every scale sequentially. Sphere pairs

are first computed and stored temporarily at every pixel location of the image at a given scale.

Medial points are then detected at this scale using the dot product of the direction vectors as just

described. A record containing scale, the corresponding d‟, and the direction is stored in the

linked list only at the medial points, instead of every pixel location. This process is repeated at

each scale as the inner sphere is grown until it reaches its maximum radius.

To validate this method, tests were performed on three synthetic 3D objects: a torus, a

hollow sphere, and a sphere. We chose these three objects because our aim is to detect the

fundamental 3D shapes, namely, the cylinder, slab, and sphere. A torus is basically a cylinder

locally with varied orientation, and a hollow sphere is a slab locally with varied orientation.

The results obtained are shown in Figures 9, 10, and 11. The images contain the synthetic

3D objects, which were generated using ITK (introduced in a later section). The dimensions of

the images are 75x75x75 pixels and the voxel spacing is isometric. Gaussian noise has been

added to the images. For each shape, medial points, which are expected to be related to the

diameter of the shape at that point, are overlaid with the radius coded by color. A 3D surface

rendering of each shape visualized using ITK-SNAP is also shown.

Figure 9 shows slices of a noisy 3D image containing a torus, whose minor radius is 6

and major radius is 15. The medial points detected at scale 1, 5, and 6 are shown in red, blue and

green respectively. The majority of medial points are detected at scale 5. Fewer medial points are

 17

detected at scale 6 (green), and they are therefore located far apart from each other. The points

detected at scale 1 (red) are near the edge of the object. These points have been falsely identified

as medial points due to an unresolved problem in the system.

Figure 10 shows slices of a noisy 3D image containing a hollow sphere of thickness equal

to 3. Medial points are detected at scale 1 (red).

Figure 11shows the result obtained for a sphere of radius 8. As expected, the medial

occupy a small region at the center of the sphere at scale 5 (blue).

 18

Figure 9: (a) 3D model of a torus visualized using surface rendering in ITK-SNAP. (b) Noisy image of a torus.

Slices of the 3D image, showing the cross section of the torus and the detected medial points (slices 5, 6, 7, and 12)

at scale 1 (red), scale 5 (blue), and at scale 6 (green)

 19

Figure 10: (a) 3D model and a cross sectional view of a hollow sphere. (b) Slices of a noisy 3D image of a hollow

sphere, showing the cross section of the hollow sphere and the detected medial points at scale 1 (red)

 20

Figure 11: (a) 3D model and a cross sectional view of a sphere. (b) Slices of a noisy 3D image of a hollow sphere,

showing the cross section of the hollow sphere and the detected medial points at scale 5(blue) in slice 6.

 21

5.0 CLUSTERING MEDIAL POINTS

The medial points were clustered and analyzed to detect geometric shapes. Clustering was

performed by describing a local region and a particular scale. The region was simply the inner

sphere of any sphere pair at a medial location, as determined in the previous section. Any other

medial points (sphere pairs) of the same scale within that inner sphere were considered to be in

the cluster. Thus, a cluster Cr(x) at pixel location x is defined as Cr(x) = {Sr(x) ∩ M}, where Sr (x)

is an inner sphere of radius r centered at image pixel x, and M is the set of all medial points. For

example, Figure 12 shows a noisy image containing an object. A set of medial points is shown in

red. Let us say that a medial point at location x has been detected at scale 5 using the method

described in the previous section. This means that at pixel location x an optimum sphere pair

exists whose inner sphere is of radius 5, and a second sphere pair (not shown) is to the left of it

pointing towards the opposite boundary. We can now form a cluster of medial points (dotted red

line) that are within the inner sphere (blue) of radius 5 centered at x.

Figure 12: Medial points (dotted red line) within the inner sphere (blue) centered at x are clustered

 22

6.0 EXTRACTING FEATURES

Local clusters of direction vectors are configured in three basic ways, corresponding to the

fundamental geometric shapes of sphere, cylinder, and slab [5]. Each shape corresponds to a

particular medial dimensionality, and has a particular distribution of direction vectors.

Sphere: The direction vectors point outward from the center towards the boundary in all

possible directions. This can be compared to light rays originating from a point source of light.

The center of the sphere is the medial point.

Cylinder: Medial points form the axis of the cylinder. The direction vectors point away

from the axis to the nearest boundary within the plane orthogonal to the axis. This can be

compared to the spokes of a wheel.

Slab: The medial points form a plane, with the direction vectors pointing away from the

plane in opposite directions towards the nearest boundary.

These three configurations are illustrated in Figure 13. Note that the dimensionality of the

particular medial manifold corresponds to the shape. Thus, for the sphere, cylinder, and slab, the

medial manifold is the point, line, and plane, respectively. This corresponds to linear spaces with

dimensionality 0, 1, and 2.

A given population of direction vectors may be examined to determine which of the basic

three shapes it belongs to. Eigenanalysis is performed on the cluster of direction vectors by

computing the covariance matrix D, which is given by

 23

∑ ̂ ̂

where is a population of n unit directional vectors.

Assuming we are working in N dimensions, we can obtain N eigenvalues from the

covariance matrix D. The eigenvalues are denoted as and their corresponding

eigenvectors are denoted as ̂ ̂ ̂ . Since D is a positive definite symmetric matrix, its

eigenvalues are all positive and sum to 1, i.e. + + + . If we arrange the

eigenvalues such that , then their relative values can be used to represent

dimensionality of the medial manifold, and their corresponding eigenvectors ̂ ̂ ̂ can

represent its orientation. Eigenvector ̂ will be the vector whose direction is most orthogonal to

the population of direction vectors. Eigenvector ̂ will be most collinear to the population.

In the case of 3D, and can be used to detect the dimensionality of an object. Note

that it is sufficient to compute and since = + . As shown in Figure 13, for a

cylinder, ̂ , being the most orthogonal to the population of direction vectors, represents the axis

of the cylinder. The corresponding eigenvalues are and 2. An eigenvalue of 0

implies that the corresponding eigenvector is completely orthogonal to every direction vector in

the population, which is true for the spoke of a wheel configuration of direction vectors in the

perfect cylinder. For a slab, both and are equal to 0. This implies that ̂ and ̂ are

completely orthogonal to the population, i.e., the medial manifold is a plane running down the

middle of the slab. In the case of a sphere, none of the eigenvectors are orthogonal to the

population, which points out from the center in all direction equally. The analysis is summarized

in table 1.

 24

Figure 13: Three fundamental shapes and their corresponding medial manifolds. Also shown is the distribution of

direction vectors in each shape and their corresponding eigenvectors. (Courtesy: George Stetten)

Table 1: Relation of eigenvalues to 3D shapes.

 Sphere Cylinder Slab

 1/3 0 0

 1/3 1/2 0

 1/3 1/2 1

The relationship between the eigenvalues (and) and the geometric shapes (sphere,

cylinder, and slab) may be represented by a triangular domain we call the “lambda triangle”

(Figure 11) [6]. As seen in Figure 11, the eigenvalues and defines the y-axis and x-axis

respectively. All possible values of and fall within the triangle. The vertices of the triangle

correspond to the 3 basic shapes (sphere, cylinder, and slab). Dimensionality may be

approximated by arbitrarily dividing the triangle into three compartments, each representing a

fundamental 3D shape. Given a population of direction vectors, the eigenvalues (and) for

 25

a given cluster can be plotted on the lambda triangle to identify the dimensionality depending on

where the eigenvalues lie.

Figure 14: Triangle representing the relation between eigenvalues and 3D shapes

Figures 15 and 16 show scatter plots of the eigenvalues for the hollow sphere and the

torus (described in section 4.1), computed using the methods described above. Color denotes

scale. As shown in Figure 15 for the hollow sphere (Figure 10), medial points are detected only

at scale 1. This is expected because the wall thickness of the hollow sphere is 3. (Recall that a

sphere of radius 0 is a single pixel, and a sphere of radius 1 has a diameter of 3.) Figure 15

demonstrates that clusters formed at medial points of scale 1 contain sufficient number of

direction vectors to perform meaningful eigenanalysis. Looking at the plot of the eigenvalues on

the lambda triangle, we can see that the eigenvalues fall in the “slab compartment”, thus

confirming the dimensionality of the hollow sphere.

 26

In the case of the torus (Figure 9), the scatter plot of the eigenvalues on the lambda triangle in

Figure 16 shows medial points detected at scales 5 and 6, with the majority being at scale 6.

Since the medial points detected at scale 5 (green, Figure 9) were fewer and located far apart

from each other, the individual clusters formed at these locations do not contain sufficient

numbers of direction vectors to produce meaningful eigenvalues, and thus the eigenvalues are

distributed over the entire plot and not concentrated at any one region. On the contrary, at scale

6, the medial points that are detected are sufficiently numerous and close to each other to

produce satisfactory eigenvalues, which are grouped near the vertex of the lambda triangle that

corresponds to the cylinder.

Figure 15: Eigenvalues of the hollow sphere superimposed on the lambda triangle

-0.02

0.03

0.08

0.13

0.18

0.23

0.28

-0.1 0 0.1 0.2 0.3 0.4 0.5

Scale 1

 27

Figure 16: Eigenvalues of the torus superimposed on the lambda triangle

In the case of the sphere (Figure 11), each pixel location within the sphere has a direction

vector that points outward towards the boundary of the sphere. The abrupt change of direction

required to detect a medial point, as described in section 4.0, can be found only at the center of

the sphere. Hence, medial points are detected at the center of the sphere, as shown in Figure 11.

If we use the clustering method described in the previous section, the eigenvalues resulting from

the cluster will not be meaningful, because only few medial points are available for clustering.

We may address this in future work as follows: By altering the criteria used to cluster the

direction vectors, more vectors could be included. Instead of clustering only the direction vector

from the sphere pair with the greatest d’ for each medial point, we could include in the cluster,

direction vectors from sphere-pairs with somewhat lower d’ (but still significant). There will be

large numbers of these, especially at medial points in the center of spherical objects. This should

yield sufficient number of samples to permit computation of eigenvalues, and we expect these

values to be , and approximately equal to 1/3 for the sphere.

-0.02

0.03

0.08

0.13

0.18

0.23

0.28

-0.1 0 0.1 0.2 0.3 0.4 0.5

Scale 5

Scale 6

 28

Figure 17: Orientation error in degrees for the torus and the hollow sphere.

We found the orientation error for the torus and hollow sphere, as shown in Figure 17.

Error was computed by finding the theoretical axis of the local cylinder in the torus and the

normal to the local slab of the medial manifold for the hollow sphere. The corresponding

eigenvector for each medial pixel (̂ for the cylinder and ̂ for the slab) was then compared to

these theoretical values and the angular error reported. As can be seen in Figure 17, the error

showed that the eigenvectors were consistently aligned in the correct orientation, within

approximately 40 degrees for the torus and 20 degrees for the hollow sphere.

 29

7.0 MEDIAL DETECTION IN A REAL IMAGE

The improved shells and spheres framework described in this thesis was tested on a real image.

A 3D grey-scale lung data set of contrast-enhanced CT data, cropped and resampled to 75x63x99

isometric voxels, was used as the test image (Figure 18). The goal was to find medial points of

the arterial and venous vessels, which constitute major structures in the lungs. The result

obtained after applying the methods and algorithms described in the previous sections is shown

in Figure 19. The radius of the outer sphere is equal to 1, and the maximum radius of the inner

sphere is equal to 7. Although a maximum inner sphere radius of 3 would have been sufficient to

detect the distal regions of the vasculature, the inner sphere was intentionally allowed to grow to

a radius of 7, so that the robustness of the system to detect medial points at various scales could

be tested. Our system identified medial points at scales ranging from 1 to 5, with the majority

being detected at scale 1. Figure 19 shows a small selection of coronal, sagittal and axial slices of

the 3D lung image, with the medial points superimposed on the image. The medial points have

been color-coded to represent scale (see figure). As expected, the majority of medial points in the

vasculature were detected at scale 1 (red). At places where the vessels are thicker, medial points

were detected at higher scales. A flexibility in the system comes from the fact that the user can

choose the scale at which he wishes to find the object. In our case, having prior knowledge that

the vessels are small regions, we can opt to view the medial points at scales 1, 2, and 3, resulting

in the removal of the unwanted medial points that would be detected at higher scales. The medial

 30

points can then be rendered using various methods to obtain a 3D visualization. One such

method using the open-source visualization software ITK-SNAP is shown in Figure 20. The

figure shows medial points at scales ranging from 1 to 5.

Figure 18: Five slices of the cropped and resampled 3D lung image used in our experiment, shown in the (a)

Coronal, (b) Sagittal, And (c) Axial orientations.

 31

Figure 19: The slices shown in Figure 18 with the detected medial points superimposed. The scales at which the

medial points are detected are color coded as follows: 1–red; 2–green; 3–dark blue; 4–yellow; 5–light blue.

Figure 20: 3D rendering of the medial points using ITK-SNAP. Color coding as in Figure 19.

 32

8.0 IMPLEMENTATION IN ITK

8.1 ABOUT ITK

ITK stands for Insight Segmentation and Registration Toolkit. It is an open-source, cross

platform, object-oriented system used by developers for image analysis. It contains a collection

of algorithms and functions mostly designed for medical image analysis. ITK was started in 1999

on the initiative of the National Library of Medicine (NLM) at the National Institutes of Health

(NIH) [7]. As an open-source project, it has been created, debugged, maintained and extended by

developers from around the world. ITK is implemented in C++ and is designed to run on many

platforms. It can be downloaded for free from the ITK webpage: www.itk.org. ITK makes use of

the CMake build environment to handle the compilation process. CMake, which stands for cross-

platform make is a build environment that is operating system and compiler independent. It

creates native makefiles and workspaces that can be used in many compiler environments [8].

Together, ITK and CMake provide researchers and developers a powerful means to implement

their ideas and algorithms. ITK has a vast library that supports numerous image processing tasks,

including image read/write, segmentation, registration, image transformations, interpolations,

linear and nonlinear filtering, creating spatial objects, morphology, level sets etc.

ITK features a powerful plugin-based IO mechanism for reading and writing images. It

supports a wide variety of image types such as bmp, analyze, DICOM, JPEG, MetaImage, png

http://www.itk.org/

 33

etc. The output image in our case will consist of medial points in which pixel intensity

corresponds to the scale at which the medial was detected.

8.2 IMPLEMENTATION

Figures 21, 22, and 23 show the organization of the various components, as will be discussed in

this section.

8.2.1 Organization

Figure 21: Input image is passed to an Inner sphere filter through an outer sphere filter to obtain the output image

which consists of medial points and analysis data

Figure 22: Outline of OuterSphereFilter

 34

Figure 23: Outline of InnerSphereFilter

8.2.2 Iterators in ITK

The iterator in ITK is a powerful way to sequentially and efficiently access pixels in an image.

There are several types of iterators used for specific purposes such as traversing image regions,

local neighborhoods, arbitrary functions, random pixels etc. Iterators work in N-dimensions and

are designed for computational efficiency. They are fundamental to our implementation.

8.2.3 Shell Iterator

Developed previously in our lab, the shell iterator is used to keep track of offsets from a central

point. It is completely defined by offset values and is used to iterate through a shell. We use it to

gather data to perform statistical calculations related to the outer and inner spheres and also to

obtain the direction vector from the best sphere pair. The input parameters of the ITK function

itkShellIterator are:

 Image on which the iterator operates

 35

 Center location

 Size of the shell (scale)

8.2.4 Sphere Iterator

Similar to the shell iterator, this is used to iterate over a sphere neighborhood. The input

parameters of itkSphereIterator are:

 Image on which the iterator operates

 Center location

 Size of the shell (scale)

8.2.5 Sphere Pixel Data

One of ITK‟s strengths is the ability to define “pixel” to mean just about anything. We custom

define a class of pixels to hold data related to the spheres centered at each pixel. Each pixel

instantiating an object of the Sphere Pixel Data class stores the following data:

Intensity Value – Stores the original image intensity

Shell Number – Keeps account of the scale

Pixel Count – Keeps count of the number of pixels in each sphere

Current Sum – Stores the sum of intensity values within a sphere. It is calculated as

Current Sum + Next Intensity Value. It is updated with every pixel added to the sphere.

Current Sum Sq – Stores the square of Current Sum. It is calculated as Current Sum Sq +

(Next Intensity Value ^ 2).

Outer Sphere Mean – Stores the outer sphere mean calculated in the outersphere filter.

 36

Outer Sphere Variance – Stores the outer sphere variance calculated in the outersphere

variance

Inner Sphere Mean – Stores the inner sphere mean calculated in the innersphere filter. It

is updated whenever a new shell is added

Inner Sphere Variance – Stores the inner sphere variance calculated in the innersphere

filter. It is updated whenever a new shell is added

Best Sphere Pair Test – Holds the z value of the optimum sphere pair.

Best Sphere Pair – Holds the vector of the best sphere pair

Best Unit Sphere Pair – Holds the unit vector of the best sphere pair

8.2.6 Linked List Pixel

This is a class that holds data related to each record in the linked list. Its members are:

The z value – Stores the d’ of the sphere pair used to identify a medial point

Direction – Stores the unit vector of the sphere pair used to identify the medial point

Scale – Stores the scale at which the medial point was identified.

Eigenvalues – Stores the eigenvalues of a population of direction vectors at medial points

at a given scale

8.2.7 Outer Sphere Filter

This filter takes as input the image on which the analysis needs to be performed (provided by the

user). It makes use of the sphere iterator to compute the outer sphere at each pixel location. The

 37

size of the outer sphere is set by the user. The filter produces an intermediate image as output,

which stores statistical data such as mean and variance of the outer spheres.

8.2.8 Inner Sphere Filter

This filter takes as input the intermediate image generated by the outer sphere filter. The shell

iterator is used to calculate statistical data related to the inner sphere. The minimum radius of the

inner sphere is equal to the radius of the outer sphere. The maximum radius is set by the user. As

mentioned before, a sphere can be computed as a union of shells. The shell iterator provides data

from each shell, which is accumulated to form the sphere of the desired size. The Sphere Data

Pixel is updated with the inner sphere values. Once the inner spheres are computed at all pixel

locations, the medial points are detected by the procedure explained before. The Linked List

Pixel is instantiated at the medial points and added to the Linked List at that location. The medial

points are then clustered and analyzed using the procedure mentioned before. Eigenanalysis is

performed on the clustered pixels and the eigenvalues are stored in a .txt file. This process is

repeated at the next scale. When the maximum scale is reached, we obtain an image in which

each pixel stores a linked list.

8.2.9 Eigenanalysis

Eigenanalysis has been implemented in ITK using itkCovarianceCalculator, which calculates the

covariance matrix of the target sample data and itkSymmetricEigenAnalysis, which finds

eigenvalues of a real 2D symmetric matrix.

 38

9.0 CONCLUSION

In this thesis, I have developed a system that is capable of detecting medial points, which can be

represented in scale space. Medial features such as scale, orientation, and dimensionality have

been extracted and analyzed to detect basic local geometric shapes including, cylinder, slab, and

sphere. Sphere pairs were computed throughout the image, and the one that generated the most

significant d’, at a pixel location for a particular scale, was considered to be the optimum sphere

pair. A mask, which forms pairs of pixels in each cardinal direction from a central pixel, was

applied at each pixel location to compute the dot product of the direction vectors for each pair of

pixels. Medial points were detected by applying a threshold to the dot product computed for each

pair as well as a threshold to the minimum d‟ for the constituent sphere-pairs. This was repeated

at higher scales by increasing the radius of the inner sphere. Clusters of the medial points were

formed by describing a local region within the inner sphere of each medial point at its particular

scale, and the corresponding direction vectors were subjected to eigenanalysis to identify the

local medial dimensionality and orientation. Tests were performed on three synthetic 3D

objects: a torus, a hollow sphere, and a sphere. The system detected the medial manifolds of the

three objects accurately even in the presence of noise, and the local shapes of the objects were

identified successfully in the case of the torus and hollow sphere. A method for extending this to

the sphere was proposed. The results confirmed the capability of the system to detect medial

points at more than one scale and to identify the described medial shape features effectively.

 39

10.0 FUTURE WORK

Our goal is to demonstrate the system‟s capability for detecting medial manifolds in medical

images such as MRI and CT in a useful manner. To accomplish this, we are considering a

number of improvements.

As already mentioned in Section 5.0, the criteria used to cluster the direction vectors may

be altered to include the direction vectors from sphere pairs with lower d’ (yet significant). This

would result in denser clusters around the center of the sphere, thus aiding the eigenanalysis of

particularly focused local shapes such as the sphere.

Many steps in the methods described contain parameters that need to be optimized in

terms of the overall accuracy of the system. The C++ code can also be optimized to minimize

speed and memory.

Beyond this, we intend to extend the shape detection methodology to detect more

complex shapes present in anatomical structures. Initial targets include extended cylinders,

branching cylinders, and cylinders that pass by each other. By following a basic “bottom-up”

approach to increasingly complex structures within larger regions, our ultimate goal is to provide

a new framework for the description and analysis of shape within medical images.

 40

APPENDIX

ITK CODE

Main

/** Includes */

#include "itkShellIterator.h"
#include "mainheader.h"

//Main function

int main()
{

 try
 {

 // Maximum size of the inner and outer spheres
 int maxOuterSphereSize = 1;
 int maxInnerSphereSize = 10;

 std::cout<<"Running the pipeline......."<<std::endl;

 //read the input image
 ReaderType::Pointer reader = ReaderType::New();

Reader->SetFileName ((2==MY_DIMENSION)?

"Bronchi_2d.mha":"Torus_15_6.mha");
CastFilterTypetoRead::Pointer castfiltertoread =

CastFilterTypetoRead::New();

 castfiltertoread->SetInput(reader->GetOutput());

 // Running the outer sphere filter
 m_OuterSphereFilter = OuterSphereFilterType::New();

 m_OuterSphereFilter->SetInput(castfiltertoread->GetOutput());

 m_OuterSphereFilter->SetOuterSphereSize(maxOuterSphereSize);

 // Running the inner sphere filter
 //Set the minimum and maximum radius as set by the user
 m_InnerSphereFilter = InnerSphereFilterType::New();

 m_InnerSphereFilter->SetInput(m_OuterSphereFilter->GetOutput());

 m_InnerSphereFilter->SetMaxInnerSphereSize(maxInnerSphereSize);

 m_InnerSphereFilter->SetMinInnerSphereSize(maxOuterSphereSize);

 m_InnerSphereFilter->Update();

 m_ResultImage = castfiltertoread->GetOutput();

 //Get the output of the innerspherefilter
 m_LinkedListImage = m_InnerSphereFilter->GetOutput();

 41

//Convert the result into a image viewable by the user
//Pixel intensity corresponds to scale at which the medial was

found

typedef itk::ImageRegionIterator<LinkedListImageType>

LinkedListItType; // Iterator type
LinkedListItType LinkedListIt(m_LinkedListImage,

m_LinkedListImage->GetRequestedRegion());

ItType resultIt(m_ResultImage, m_ResultImage-

>GetRequestedRegion());

 LinkedListIt.GoToBegin();

 resultIt.GoToBegin();

 std::list<LinkedListPixel<MY_DIMENSION>> TempList;

 std::list<LinkedListPixel<MY_DIMENSION>>::iterator TempListIt;

//Produce a text file containing indormation related to medial

points

 std::ofstream LLfile ("LinkedListDataTorus156_10_27_A.txt");
 if (LLfile.is_open())

LLfile<<"Index[0]\t[1]\t[2] \tScale\tDirection[0]

\t[1]\t[2]\tZValue\n";

 double LLScale;
 itk::Vector <double, 3> LLDirection;
 double LLZValue;

typedef itk::FixedArray< double, MY_DIMENSION >

EigenValuesArrayType;
 EigenValuesArrayType EigenValues;

 while (!LinkedListIt.IsAtEnd())
 {

resultIt.Set(0); //Set the result image to 0 everywhere

other than at the medial

 TempList = LinkedListIt.Get();

 TempListIt = TempList.begin();

 while(TempListIt != TempList.end())
 {

 LLScale = TempListIt->getScale();

 LLDirection = TempListIt->getDirection();

 LLZValue = TempListIt->getZValue();

 EigenValues = TempListIt->getEigenValues();

 if (LLfile.is_open())
 {

LLfile<<temporaryIndex[0]

<<"\t"<<temporaryIndex[1] <<"\t"

<<temporaryIndex[2] <<"\t"<<LLScale<<"\t"
<<LLDirection[0] <<"\t"<<LLDirection[1]

<<"\t"<<LLDirection[2]<<"\t"<<LLZValue<<"\n";
 }

 resultIt.Set(TempListIt->getScale());

 42

 TempListIt++;

 }

 LinkedListIt++;

 resultIt++;

 }

 if (LLfile.is_open())
 {

 LLfile.close();

 }

 SaveImage(m_ResultImage,"Torus156Testing_10_27_A.mha");

 return 0;
 }

 catch(itk::ExceptionObject & excp)
 {

 std::cerr << "Exception caught: " << std::endl;
 std::cerr << excp << std::endl;

 std::cin.get();

 return EXIT_FAILURE;
 }

}

 43

Mainheader.h

#define MY_DIMENSION 3

/** Standard includes */

#include <iostream>

#include "math.h"

/** Includes the ITK header files */

#include "itkImage.h"

#include "itkImageRegionIterator.h"

#include "itkImageFileWriter.h"

#include "itkImportImageFilter.h"

#include "itkImageFileReader.h"

#include "itkMeanImageFilter.h"

#include "itkRescaleIntensityImageFilter.h"

#include "itkCastImageFilter.h"

// Shells and Spheres includes

#include "itkShellIterator.h"

#include "itkSphereIterator.h"

#include "itkOuterSphereFilter.h"

#include "itkInnerSphereFilter.h"

#include "itkSphereDivergenceFilter.h"

#include <math.h>

#include <list>

//#include "LinkedListPixel.h"

#define PI 3.14159265

/** ITK typedefs */

typedef itk::Image< double, MY_DIMENSION > ImageType;

typedef itk::Image< SphereDataPixel<MY_DIMENSION>, MY_DIMENSION >

SphereImageType;

#if MY_DIMENSION == 2

 typedef itk::Image< double, MY_DIMENSION > WriteImageType;

#else

 typedef itk::Image< short, MY_DIMENSION > WriteImageType;

#endif

// Iterator type

typedef itk::ImageRegionIterator<ImageType> ItType;

typedef itk::ImageRegionIterator<SphereImageType> SphereItType;

// Our writer for saving the image

typedef itk::ImageFileWriter< ImageType > WriterType;

typedef itk::ImageFileReader< WriteImageType > ReaderType;

// The mean filter was used since it is one of the simplest blurring filters

typedef itk::MeanImageFilter< ImageType, ImageType > MeanFilterType;

// Our filter to do outer spheres

typedef itk::OuterSphereFilter< ImageType, MY_DIMENSION >

OuterSphereFilterType;

// Rescaler to save

typedef itk::RescaleIntensityImageFilter< ImageType, WriteImageType >

RescaleFilterType;

typedef itk::RescaleIntensityImageFilter< WriteImageType, ImageType >

LoaderRescaleFilterType;

typedef itk::InnerSphereFilter< MY_DIMENSION > InnerSphereFilterType;

typedef itk::SphereDivergenceFilter< MY_DIMENSION >

SphereDivergenceFilterType;

 44

typedef itk::CastImageFilter< ImageType, WriteImageType >

CastFilterTypetoWrite;
typedef itk::CastImageFilter< WriteImageType, ImageType >

CastFilterTypetoRead;

typedef itk::Image<std::list<LinkedListPixel<MY_DIMENSION>>, MY_DIMENSION >

LinkedListImageType;

ImageType::Pointer m_Image;

SphereImageType::Pointer m_OuterSphere;

ImageType::Pointer m_ResultImage;

SphereImageType::Pointer m_SpherePair;

MeanFilterType::Pointer m_MeanFilter;

OuterSphereFilterType::Pointer m_OuterSphereFilter;

InnerSphereFilterType::Pointer m_InnerSphereFilter;

SphereDivergenceFilterType::Pointer m_SphereDivergenceFilter;

LinkedListImageType::Pointer m_LinkedListImage;

// Please limit the filename to below 100 letters

bool SaveImage(ImageType::Pointer m_ResultImage,char filename[100])

{

// Setting up the writer

WriterType::Pointer writer = WriterType::New();

writer->SetFileName(filename); // The filename we want to save as
writer->SetInput(m_ResultImage); // The image that is saved

// Error checking code from the ITK example

try

{

 writer->Update();

}

catch(itk::ExceptionObject & err)
{

 std::cerr << "ExceptionObject caught !" << std::endl;
 std::cerr << err << std::endl;

 std::cin.get();

 return EXIT_FAILURE;
}

}

 45

SphereDataPixel.h

// Class of pixels holding information about the spheres

// Now templated for multiple dimensions!

template <unsigned int VImageDimension> class SphereDataPixel

{

public:

 double intensityValue; // Keep the original image intensity

 int shellNumber;//Keeps track to what shell we have already iterated to

 int pixelCount; // Total numer of pixels that we have iterated through

 double outerSphereMean; // Calculated in the outer sphere filter

 double outerSphereVariance; // Calculated in the outer sphere filter

double innerSphereMean; // Constantly updated as another shell is added

to the sphere, currentSum / pixelCount

double innerSphereVariance; // (currentSumSq - (currentSum *

innerSphereMean))/(pixelCount - 1)

 double currentSum; // currentSum + next value

 double currentSumSq; // currentSumSq + (next value ^ 2)

itk::Offset <VImageDimension> bestSpherePair; // Holds the vector to

the best sphere pair

itk::Vector <double, VImageDimension> bestUnitSpherePair; // Holds the

unit vector to the best sphere pair

 // The partial refers to df/dx, df/dy and df/dz

itk::Vector <double, VImageDimension> partialDerivatives; // [0] is x,

[1] is y, [2] is z and so on...

 double bestSpherePairTest;

 double currentSpherePairTest;

 double divergence;

 void InitializeSphereData(double value)

 {

 intensityValue = value;

 shellNumber = 0;

 pixelCount = 0;

 outerSphereMean = 0;

 outerSphereVariance = 0;

 innerSphereMean = 0;

 innerSphereVariance = 0;

 currentSum = 0;

 currentSumSq = 0;

 bestSpherePairTest = 0;

 currentSpherePairTest = 0;

 divergence = 0;

 LowIntensityPixels = 0;

 HighIntensityPixels = 0;

for (unsigned int counter = 0; counter < VImageDimension;

counter++)

 {

 bestSpherePair[counter] = 0;

 bestUnitSpherePair[counter] = 0;

 partialDerivatives[counter] = 0;

 }

 }

};

 46

LinkedListPixel.h

template <unsigned int VImageDimension> class LinkedListPixel

{

public:

 double ZValue;

 itk::Vector <double, VImageDimension> Direction; // Holds the unit

vector

 //to the best sphere pair

 int Scale;

 typedef itk::FixedArray< double, VImageDimension >

EigenValuesArrayType;

 EigenValuesArrayType EigenValues;

 void InitializeLinkedList()

 {

 Scale = 0;

 ZValue = 0;

 for (unsigned int counter = 0; counter < VImageDimension;

counter++)

 {

 Direction[counter] = 0;

 }

 for (unsigned int counter = 0; counter < VImageDimension;

counter++)

 {

 EigenValues[counter] = 0;

 }

 }

 int getScale()

 {

 return Scale;

 }

 itk::Vector <double, VImageDimension> getDirection()

 {

 return Direction;

 }

 double getZValue()

 {

 return ZValue;

 }

 EigenValuesArrayType getEigenValues()

 {

 return EigenValues;

 }

};

 47

Itkshelliterator

#ifndef __itkShellIterator_h
#define __itkShellIterator_h

#include "itkImageIterator.h"
#include "itkOffset.h"

#include <list>
#include <vector>

namespace itk
{

/**

 * \class ShellIterator

 * \brief Iterates over a sphere shell.

 *

 * Here we have an iterator that keeps track of offsets from a central

point.

 * The iterator is totally defined by offset values. We keep these as a

list

 * of indices. We also need a function to set the center of the iterator,

 * so we can calculate the included indices based on it. Default center

will

 * origin ((0,0,0) for 3D)

 *

 * We have a list of indices representing offsets.

 * center + offset = index => offset = index - center

 *

 *

 * \ingroup ImageIterators

 *

 */

template <typename TImage>
class ITK_EXPORT ShellIterator : public ImageIterator<TImage>

 //ITK_EXPORT?
{

public:
 /** Standard class typedefs. */
 typedef ShellIterator Self;
 typedef ImageIterator<TImage> Superclass;

 /** Number of dimensions */
 itkStaticConstMacro(NDimensions, unsigned int, TImage::ImageDimension);

 //itkStaticConstMacro?

 /** Index typedef support. */
 typedef typename Superclass::IndexType IndexType;

 /** Size typedef support. */
 typedef typename Superclass::SizeType SizeType;

 /** Region typedef support */
 typedef typename Superclass::RegionType RegionType;

 /** Image typedef support. */
 typedef typename Superclass::ImageType ImageType;

 48

 /** Internal Pixel Type */
 typedef typename Superclass::InternalPixelType InternalPixelType;
 /** External Pixel Type */
 typedef typename Superclass::PixelType PixelType;
 typedef Offset<NDimensions> OffsetType;

 /** An stl storage container type that can be sorted. The type used for
 the list of active offsets in the neighborhood.*/

 typedef std::list<OffsetType> OffsetListType;
 typedef OffsetListType* OffsetListPointerType;
 typedef typename OffsetListType::iterator OffsetListIteratorType;

 /** std::list containing the vectors to each of the points in the outer

shell.*/
 typedef vnl_vector<double> VectorType;
 typedef VectorType* VectorPointerType;
 typedef std::list<VectorPointerType> VectorListType;
 typedef VectorListType* VectorListPointerType;
 typedef VectorListType::iterator VectorListIteratorType;

 /** Constructor establishes an iterator to walk a particular image */
 ShellIterator(ImageType *imagePtr, const IndexType& center, int scale, bool

ioi = false);

 /** Default Destructor. */
 ~ShellIterator() {}

 /** Compute whether the index of interest is a legal index of the image */
 bool IsIndexWithinImage() const;

 /** Walk forward one index */
 void operator++() {
 Next();

 }

 void Next() {
 do {
 ++m_OffsetListIterator;

 } while((m_OffsetListIterator != m_OffsetList->end()) &&
 !m_IncludeOutsideIndices && !IsIndexWithinImage());

 }

 bool IsAtEnd() {
 if(m_OffsetListIterator == m_OffsetList->end()) return true;
 else return false;
 }

 void GoToBegin() {
 m_OffsetListIterator = m_OffsetList->begin();

 while(!m_IncludeOutsideIndices && !IsAtEnd() &&

!IsIndexWithinImage())
 {

 ++m_OffsetListIterator;

 }

 }

 /** Get the pixel value */
 const PixelType & Get(void) const
 {

 // This will give the index of the center pixel + offset

 49

 IndexType index = m_CenterIndex + *m_OffsetListIterator;

 PixelType myPixel;

 myPixel = this->m_Image->GetPixel(index); // It can't access the

pixel correctly...WHY???
 return this->m_Image->GetPixel(index);
 }

 /** non-const Get */
 PixelType& Value()

 {

 IndexType index = m_CenterIndex + *m_OffsetListIterator;

 return const_cast<ImageType*>((const ImageType*)this->m_Image)->GetPixel(

index);
 }

 /** Get the offset. This provides a read only reference to the offset.
 * This causes the offset to be calculated from pointer arithmetic and is

 * therefore an expensive operation.*/

 const OffsetType GetOffset()
 { return *m_OffsetListIterator; }
/** Get the index. This provides a read only reference to the index.

 * This causes the index to be calculated from pointer arithmetic and is

 * therefore an expensive operation.

 * \sa SetIndex */

 const IndexType GetIndex()
 {

 // This will give the index of the center pixel + offset
 IndexType index = m_CenterIndex + *m_OffsetListIterator;

 return index;
 }

 Self& operator=(const Self& source)
 {

 (Superclass)this = (const Superclass&)source;
 m_CenterIndex = source.m_CenterIndex;

 m_OffsetList = source.m_OffsetList;

 m_OffsetListIterator = source.m_OffsetListIterator;

 return (*this);
 }

protected: //made protected so other iterators can access
 IndexType m_CenterIndex;

 OffsetListPointerType m_OffsetList;

 OffsetListIteratorType m_OffsetListIterator;

 VectorListPointerType m_VectorList;

 VectorListIteratorType m_VectorListIterator;

 // static vector of shell offset lists, indexed by scale
 static std::vector<OffsetListPointerType> s_ShellOffsetLists;
 static int s_HighestGeneratedScale;
 bool m_IncludeOutsideIndices;
};

} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkShellIterator.txx"
#endif

#endif

 50

itkShellIterator.txx

#ifndef _itkShellIterator_txx

#define _itkShellIterator_txx

#include <iostream>

#include "itkShellIterator.h"

#include "vnl/vnl_vector_fixed.h"

namespace itk

{

template<class TImage>

std::vector<typename ShellIterator<TImage>::OffsetListPointerType>

ShellIterator<TImage>::s_ShellOffsetLists;

template <class TImage>

int ShellIterator<TImage>::s_HighestGeneratedScale = -1;

template<class TImage>

ShellIterator<TImage>

::ShellIterator(ImageType *imagePtr, const IndexType& center, int scale, bool

ioi): ImageIterator<TImage>(imagePtr, imagePtr->GetLargestPossibleRegion())

{

 m_CenterIndex = center;

 m_IncludeOutsideIndices = ioi;

 // Generate new offset lists if we need to

 if(scale > s_HighestGeneratedScale) {

 for(int s = s_HighestGeneratedScale+1; s <= scale; ++s) {

 OffsetListPointerType new_list = new OffsetListType();

 s_ShellOffsetLists.push_back(new_list);

 OffsetType current_offset;

 current_offset.Fill(-s);

// Inefficient, but practically it won't make a significant difference.

 while(1) {

// compute nearest-integer distance to the center. if equal to this scale,

include

// the pixel in this scale's offset list

 vnl_vector_fixed<double,NDimensions> v_offset;

 for(int i = 0; i < NDimensions; ++i) v_offset[i] =

double(current_offset[i]);

 if(int(v_offset.magnitude() + 0.5) == s) {

 new_list->push_back(current_offset);

 }

 // move onto the next pixel

 int i;

 for(i = 0; i < NDimensions; ++i) {

 ++current_offset[i];

 if(current_offset[i] > s) current_offset[i] =

-s;

 else break;

 }

// every component overflowed past scale, so we've hit every pixel. done.

 if(i == NDimensions) break;

 }

 }

 s_HighestGeneratedScale = scale;

 }

 51

 m_OffsetList = s_ShellOffsetLists[scale];

}

template<class TImage>

bool

ShellIterator<TImage>

::IsIndexWithinImage() const

{

 SizeType size = this->m_Region.GetSize();

 OffsetType& offset = *m_OffsetListIterator;

 IndexType index = m_CenterIndex + offset;

 for(int i = 0;i < NDimensions; ++i) {

 if(index[i] >= size[i] || index[i] < 0) return false;

 }

 return true;

}

} // end namespace itk

#endif

 52

itkSphereIterator.h

#ifndef __itkSphereIterator_h

#define __itkSphereIterator_h

#include "itkImageIterator.h"

#include "itkShellIterator.h"

#include "itkOffset.h"

#include <list>

#include <vector>

namespace itk

{

/**

 * \class SphereIterator

 * \brief Iterates over a sphere neighborhood.

 *

 * \ingroup ImageIterators

 *

 */

template <typename TImage>

class ITK_EXPORT SphereIterator : public ImageIterator<TImage>

{

public:

 /** Standard class typedefs. */

 typedef SphereIterator Self;

 typedef ImageIterator<TImage> Superclass;

 /** Number of dimensions */

 itkStaticConstMacro(NDimensions, unsigned int, TImage::ImageDimension);

 /** Index typedef support. */

 typedef typename Superclass::IndexType IndexType;

 /** Size typedef support. */

 typedef typename Superclass::SizeType SizeType;

 /** Region typedef support */

 typedef typename Superclass::RegionType RegionType;

 /** Image typedef support. */

 typedef typename Superclass::ImageType ImageType;

 /** Internal Pixel Type */

 typedef typename Superclass::InternalPixelType InternalPixelType;

 /** External Pixel Type */

 typedef typename Superclass::PixelType PixelType;

 typedef Offset<NDimensions> OffsetType;

 /** An stl storage container type that can be sorted. The type used for

 the list of active offsets in the neighborhood.*/

 typedef std::list<OffsetType> OffsetListType;

 typedef OffsetListType* OffsetListPointerType;

 typedef typename OffsetListType::iterator OffsetListIteratorType;

 53

/** std::list containing the vectors to each of the points in the outer

shell.*/

 typedef vnl_vector<double> VectorType;

 typedef VectorType* VectorPointerType;

 typedef std::list<VectorPointerType> VectorListType;

 typedef VectorListType* VectorListPointerType;

 typedef VectorListType::iterator VectorListIteratorType;

 /** Constructor establishes an iterator to walk a particular image */

 SphereIterator(ImageType *imagePtr, const IndexType& center, int scale,

bool ioi = false);

 /** Default Destructor. */

 ~SphereIterator() {}

 /** Compute whether the index of interest is a legal index of the image */

 bool IsIndexWithinImage() const {

 return m_CurrentShellIterator.IsIndexWithinImage();

 }

 /** Walk forward one index */

 void operator++() {

 Next();

 }

 void Next() {

 ++m_CurrentShellIterator;

 if(m_CurrentShellIterator.IsAtEnd()) {

 ++m_CurrentScale;

 if(m_CurrentScale <= m_Scale) {

 m_CurrentShellIterator = ShellIterator<ImageType>(

 const_cast<ImageType*>((const

ImageType*)this->m_Image), m_CenterIndex,

 m_CurrentScale);

 m_CurrentShellIterator.GoToBegin();

 }

 }

 }

 bool IsAtEnd() {

 return ((m_CurrentScale >= m_Scale) &&

m_CurrentShellIterator.IsAtEnd());

 }

 void GoToBegin() {

 m_CurrentScale = 0;

 m_CurrentShellIterator = ShellIterator<ImageType>(

 const_cast<ImageType*>((const ImageType*)this-

>m_Image), m_CenterIndex, 0);

 m_CurrentShellIterator.GoToBegin();

 }

 /** Get the pixel value */

 const PixelType & Get(void) const {

 return m_CurrentShellIterator.Get();

 }

 54

 /** non-const Get */
 PixelType& Value() {

 return m_CurrentShellIterator.Value();
 }

 /** Get the offset. This provides a read only reference to the offset.
 * This causes the offset to be calculated from pointer arithmetic and is

 * therefore an expensive operation.*/

 const OffsetType GetOffset()
 { return m_CurrentShellIterator.GetOffset(); }

/** Get the index. This provides a read only reference to the index.

 * This causes the index to be calculated from pointer arithmetic and is

 * therefore an expensive operation.

 * \sa SetIndex */

 const IndexType GetIndex()
 {

 return m_CurrentShellIterator.GetIndex();
 }

 Self& operator=(const Self& source)
 {

 (Superclass)this = (const Superclass&)source;
 m_CenterIndex = source.m_CenterIndex;

 m_Scale = source.m_Scale;

 m_CurrentScale = source.m_CurrentScale;

 //m_CurrentShell = source.m_CurrentShell;
 }

protected: //made protected so other iterators can access
 IndexType m_CenterIndex;

 int m_Scale;

 int m_CurrentScale;
 ShellIterator<ImageType> m_CurrentShellIterator;

 bool m_IncludeOutsideIndices;
};

} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkSphereIterator.txx"
#endif

#endif

 55

itkSphereIterator.txx

#ifndef _itkShellIterator_txx

#define _itkShellIterator_txx

#include <iostream>

#include "itkShellIterator.h"

#include "vnl/vnl_vector_fixed.h"

namespace itk

{

template<class TImage>

std::vector<typename ShellIterator<TImage>::OffsetListPointerType>

ShellIterator<TImage>

::s_ShellOffsetLists;

template <class TImage>

int

ShellIterator<TImage>

::s_HighestGeneratedScale = -1;

template<class TImage>

ShellIterator<TImage>

::ShellIterator(ImageType *imagePtr, const IndexType& center, int scale, bool

ioi)

 : ImageIterator<TImage>(imagePtr, imagePtr->GetLargestPossibleRegion()

)

{

 m_CenterIndex = center;

 m_IncludeOutsideIndices = ioi;

 // Generate new offset lists if we need to

 if(scale > s_HighestGeneratedScale) {

 for(int s = s_HighestGeneratedScale+1; s <= scale; ++s) {

 OffsetListPointerType new_list = new OffsetListType();

 s_ShellOffsetLists.push_back(new_list);

 OffsetType current_offset;

 current_offset.Fill(-s);

// Inefficient, but practically it won't make a significant

difference.

 while(1) {

// compute nearest-integer distance to the center. if equal

to this //scale, include

 // the pixel in this scale's offset list

 vnl_vector_fixed<double,NDimensions> v_offset;

for(int i = 0; i < NDimensions; ++i) v_offset[i] =

double(current_offset[i]);

 if(int(v_offset.magnitude() + 0.5) == s) {

 new_list->push_back(current_offset);

 }

 // move onto the next pixel

 int i;

 for(i = 0; i < NDimensions; ++i) {

 ++current_offset[i];

if(current_offset[i] > s) current_offset[i] =

-s;

 else break;

 56

 }

// every component overflowed past scale, so we've

hit every pixel. done.

 if(i == NDimensions) break;

 }

 }

 s_HighestGeneratedScale = scale;

 }

 m_OffsetList = s_ShellOffsetLists[scale];

}

template<class TImage>

bool

ShellIterator<TImage>

::IsIndexWithinImage() const

{

 SizeType size = this->m_Region.GetSize();

 OffsetType& offset = *m_OffsetListIterator;

 IndexType index = m_CenterIndex + offset;

 for(int i = 0;i < NDimensions; ++i) {

 if(index[i] >= size[i] || index[i] < 0) return false;

 }

 return true;

}

} // end namespace itk

#endif

 57

itkOuterSphereFilter.h

#ifndef __itkOuterSphereFilter_h

#define __itkOuterSphereFilter_h

#include "itkImageToImageFilter.h"

// Shells and spheres specific includes

#include "itkShellIterator.h"

#include "itkSphereIterator.h"

#include "SphereDataPixel.h"

#include <math.h>

namespace itk

{

/** \class OuterSphereFilter

 * \Calculates the mean and standard deviation for outer spheres

 *

 * This class is parameterized over the type of the input image and

 * the type of the output image.

 *

 * \ingroup

 */

template <class TInputImage, unsigned int VImageDimension>

class ITK_EXPORT OuterSphereFilter : public ImageToImageFilter<TInputImage,

itk::Image< SphereDataPixel<VImageDimension>, VImageDimension> >

{

public:

 /** Standard class typedefs. */

 typedef OuterSphereFilter Self;

 typedef ImageToImageFilter<TInputImage,itk::Image<

SphereDataPixel<VImageDimension>, VImageDimension > > Superclass;

 typedef SmartPointer<Self> Pointer;

 typedef SmartPointer<const Self> ConstPointer;

 /** Method for creation through the object factory. */

 itkNewMacro(Self);

 /** Run-time type information (and related methods). */

 itkTypeMacro(OuterSphereFilter, ImageToImageFilter);

 /** Some convenient typedefs. */

 typedef TInputImage InputImageType;

 typedef typename InputImageType::Pointer InputImagePointer;

 typedef typename InputImageType::RegionType InputImageRegionType;

 typedef typename InputImageType::PixelType InputImagePixelType;

 typedef itk::Image< SphereDataPixel<VImageDimension>, VImageDimension>

OutputImageType;

 typedef typename OutputImageType::Pointer OutputImagePointer;

 typedef typename OutputImageType::RegionType OutputImageRegionType;

 typedef typename OutputImageType::PixelType OutputImagePixelType;

 typedef typename OutputImageType::IndexType OutputImageIndexType;

 /** Set the direction in which to reflect the data. */

 itkGetConstMacro(Direction, unsigned int);

 itkSetMacro(Direction, unsigned int);

 58

 itkSetMacro(OuterSphereSize, int);

 /** ImageDimension constants */

 itkStaticConstMacro(InputImageDimension, unsigned int,

 TInputImage::ImageDimension);

 itkStaticConstMacro(OutputImageDimension, unsigned int,

 OutputImageType::ImageDimension);

#ifdef ITK_USE_CONCEPT_CHECKING

 /** Begin concept checking */

 itkConceptMacro(SameDimensionCheck,

 (Concept::SameDimension<InputImageDimension, OutputImageDimension>));

 /** End concept checking */

#endif

protected:

 OuterSphereFilter();

 virtual ~OuterSphereFilter() {};

 void PrintSelf(std::ostream& os, Indent indent) const;

 /** This method implements the actual reflection of the image.

 *

 * \sa ImageToImageFilter::ThreadedGenerateData(),

 * ImageToImageFilter::GenerateData() */

 void GenerateData(void);

private:

 OuterSphereFilter(const Self&); //purposely not implemented

 void operator=(const Self&); //purposely not implemented

 unsigned int m_Direction; // Not currently used

 int m_OuterSphereSize; // Maximum size of the outer spheres

};

} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION

#include "itkOuterSphereFilter.txx"

#endif

#endif

 59

itkOuterSphereFilter.txx

#ifndef __itkOuterSphereFilter_txx

#define __itkOuterSphereFilter_txx

#include "itkOuterSphereFilter.h"

#include "itkImageLinearIteratorWithIndex.h"

#include "itkImageLinearConstIteratorWithIndex.h"

#include "itkProgressReporter.h"

namespace itk

{

 /**

 * Constructor

 */

 template <class TInputImage, unsigned int VImageDimension>

 OuterSphereFilter<TInputImage,VImageDimension >

 ::OuterSphereFilter()

 {

this->SetNumberOfRequiredInputs(1); // We are only taking in 1

input, the image dimension

 m_Direction = 0;

 m_OuterSphereSize = 0;

 }

 /**

* GenerateData goes through every pixel and calculates the mean at the

pixel

 */

 template <class TInputImage, unsigned int VImageDimension>

 void OuterSphereFilter<TInputImage,VImageDimension>

 ::GenerateData(void)

 {

 std::cout<<std::endl<<"Running OuterSphere Filter";

 // Input image pointer and output image pointer

typename Superclass::InputImageConstPointer inputPtr = this-

>GetInput();

typename Superclass::OutputImagePointer outputPtr = this-

>GetOutput(0);

 // Making the output the same size as the input...

 outputPtr->SetRequestedRegion(inputPtr->GetRequestedRegion());

 outputPtr->SetBufferedRegion(inputPtr->GetBufferedRegion());

outputPtr->SetLargestPossibleRegion(inputPtr-

>GetLargestPossibleRegion());

 outputPtr->Allocate();

 // Creating our iterators to go through the output/input

 typedef ImageRegionIterator<TInputImage> InputIterator;

 typedef ImageRegionIterator<OutputImageType> OutputIterator;

InputIterator inputIt(const_cast<InputImageType*>(this-

>GetInput()), inputPtr->GetRequestedRegion());

OutputIterator outputIt(outputPtr, outputPtr-

>GetRequestedRegion());

 // Starting both input and output

 inputIt.GoToBegin();

 60

 outputIt.GoToBegin();

// Temporary variables to store the current sphere data and the

current pixel value

 SphereDataPixel<VImageDimension> currentSphereDataPixel;

 double currentValue;

 // itk::Offset<VImageDimension> myOffset;

 while(!inputIt.IsAtEnd())

 {

 // Sets all the sphere data to 0

 currentSphereDataPixel.InitializeSphereData(double

 (inputIt.Get()));

itk::SphereIterator <TInputImage>

sphereIt(const_cast<InputImageType*>(this->GetInput()),

inputIt.GetIndex(), m_OuterSphereSize, true);

 for(sphereIt.GoToBegin(); !sphereIt.IsAtEnd(); ++sphereIt)

 {

 if(sphereIt.IsIndexWithinImage()) // Edge pixels?

 {

 // myOffset = sphereIt.GetOffset();

 currentValue = double(sphereIt.Get());

currentSphereDataPixel.currentSum =

currentValue +

currentSphereDataPixel.currentSum;

currentSphereDataPixel.currentSumSq =

currentSphereDataPixel.currentSumSq +

(currentValue * currentValue);

 ++currentSphereDataPixel.pixelCount;

 }

 }

currentSphereDataPixel.outerSphereMean =

currentSphereDataPixel.currentSum /

currentSphereDataPixel.pixelCount;

currentSphereDataPixel.outerSphereVariance =

(currentSphereDataPixel.currentSumSq +

(currentSphereDataPixel.outerSphereMean *

currentSphereDataPixel.outerSphereMean *

currentSphereDataPixel.pixelCount) - (2 *

currentSphereDataPixel.outerSphereMean *

currentSphereDataPixel.currentSum)

)/(currentSphereDataPixel.pixelCount - 1);

 outputIt.Set(currentSphereDataPixel);

 ++inputIt;

 ++outputIt;

 }

 }

 template <class TInputImage, unsigned int VImageDimension >

 void

 OuterSphereFilter<TInputImage,VImageDimension>::

 PrintSelf(std::ostream& os, Indent indent) const

 {

 Superclass::PrintSelf(os,indent);

 61

 os << indent << "Direction: " << m_Direction << std::endl;

 }

} // end namespace itk

#endif

 62

itkInnerSphereFilter.h

#ifndef __itkInnerSphereFilter_h

#define __itkInnerSphereFilter_h

#include "itkImageToImageFilter.h"

// Shells and spheres specific includes

#include "itkShellIterator.h"

#include "itkSphereIterator.h"

#include <math.h>

#include <iostream>

#include <fstream>

#include <list>

#include <itkShapedNeighborhoodIterator.h>

#include "LinkedListPixel.h"

namespace itk

{

/** \class InnerSphereFilter

 * \Calculates the mean and standard deviation for the inner spheres,

comparing them with

 * the outer spheres to determine the direction to the most likely boundary,

as determined

 * by the z-value.

 *

 * This class is parameterized over the type of the input image and

 * the type of the output image.

 *

 * \ingroup

 */

template <unsigned int VImageDimension>

class ITK_EXPORT InnerSphereFilter : public ImageToImageFilter<

 itk::Image< SphereDataPixel<VImageDimension>, VImageDimension>,

 itk::Image< std::list<LinkedListPixel<VImageDimension>>, VImageDimension>

>

{

public:

 /** Standard class typedefs. */

 typedef InnerSphereFilter Self;

 typedef ImageToImageFilter<

 itk::Image< SphereDataPixel<VImageDimension>, VImageDimension>,

 itk::Image< std::list<LinkedListPixel<VImageDimension>>,

VImageDimension>> Superclass;

 typedef SmartPointer<Self> Pointer;

 typedef SmartPointer<const Self> ConstPointer;

 /** Method for creation through the object factory. */

 itkNewMacro(Self);

 /** Run-time type information (and related methods). */

 itkTypeMacro(InnerSphereFilter, ImageToImageFilter);

 /** Some convenient typedefs. */

 63

 typedef itk::Image< SphereDataPixel<VImageDimension>, VImageDimension>

InputImageType;

 typedef typename InputImageType::ConstPointer InputImagePointer;

 typedef typename InputImageType::RegionType InputImageRegionType;

 typedef typename InputImageType::PixelType InputImagePixelType;

 typedef itk::Image< std::list<LinkedListPixel<VImageDimension>>,

VImageDimension> OutputImageType;

 typedef typename OutputImageType::Pointer OutputImagePointer;

 typedef typename OutputImageType::RegionType OutputImageRegionType;

 typedef typename OutputImageType::PixelType OutputImagePixelType;

 typedef typename OutputImageType::IndexType OutputImageIndexType;

 std::list<LinkedListPixel<VImageDimension>> mylist;

 //list<LinkedListPixel<VImageDimension>> mylist;

 typedef itk::Image< std::list<LinkedListPixel<VImageDimension>>,

VImageDimension> LinkedListImageType;

 /** Set the direction in which to reflect the data. */

 itkGetConstMacro(Direction, unsigned int);

 itkSetMacro(Direction, unsigned int);

 itkSetMacro(MaxInnerSphereSize, unsigned int);

 itkSetMacro(MinInnerSphereSize, unsigned int);

 /** ImageDimension constants */

 itkStaticConstMacro(InputImageDimension, unsigned int,

 InputImageType::ImageDimension);

 itkStaticConstMacro(OutputImageDimension, unsigned int,

 OutputImageType::ImageDimension);

 //Shaped Neighborhood

 typedef ShapedNeighborhoodIterator< InputImageType > SNType;

#ifdef ITK_USE_CONCEPT_CHECKING

 /** Begin concept checking */

 /** End concept checking */

#endif

protected:

 InnerSphereFilter();

 virtual ~InnerSphereFilter() {};

 void PrintSelf(std::ostream& os, Indent indent) const;

 /** This method implements the actual reflection of the image.

 *

 * \sa ImageToImageFilter::ThreadedGenerateData(),

 * ImageToImageFilter::GenerateData() */

 void GenerateData(void);

 float ModifiedTTest(void);

private:

 InnerSphereFilter(const Self&); //purposely not implemented

 void operator=(const Self&); //purposely not implemented

 unsigned int m_Direction;

 int m_MaxInnerSphereSize;

 64

 int m_MinInnerSphereSize;

};

} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkInnerSphereFilter.txx"
#endif

#endif

 65

itkInnerSphereFilter.txx

#ifndef __itkInnerSphereFilter_txx

#define __itkInnerSphereFilter_txx

#include "itkInnerSphereFilter.h"

#include "itkImageLinearIteratorWithIndex.h"

#include "itkImageLinearConstIteratorWithIndex.h"

#include "itkProgressReporter.h"

#include "itkListSample.h"

#include "itkCovarianceCalculator.h"

#include "itkVector.h"

#include "itkSymmetricEigenAnalysis.h"

#include "itkFixedArray.h"

#include "itkMatrix.h"

#define EigenAnalysis 1

namespace itk

{

 /**

 * Constructor

 */

 template <unsigned int VImageDimension>

 InnerSphereFilter<VImageDimension>

 ::InnerSphereFilter()

 {

 this->SetNumberOfRequiredInputs(1);

 m_Direction = 0;

 }

 /**

* GenerateData goes through every pixel and calculates the mean at the

pixel

 */

 template <unsigned int VImageDimension>

 void InnerSphereFilter<VImageDimension>

 ::GenerateData(void)

 {

 std::cout<<std::endl<<"Running InnerSphere Filter";

 int threshold = 100;//; -500

 //list<Cube> CubeData;

 // Input image pointer and output image pointer

typename Superclass::InputImageConstPointer inputPtr = this-

>GetInput();

typename Superclass::OutputImagePointer outputPtr = this-

>GetOutput(0);

 // Making the output the same size as the input

 outputPtr->SetRequestedRegion(inputPtr->GetRequestedRegion());

 outputPtr->SetBufferedRegion(inputPtr->GetBufferedRegion());

outputPtr->SetLargestPossibleRegion(inputPtr-

>GetLargestPossibleRegion());

 66

outputPtr->Allocate();

 //Create a Image of Input Type to do manipulations

 InputImageType::Pointer TempImage = InputImageType::New();

 TempImage->SetRequestedRegion(inputPtr->GetRequestedRegion());

 TempImage->SetBufferedRegion(inputPtr->GetBufferedRegion());

TempImage->SetLargestPossibleRegion(inputPtr-

>GetLargestPossibleRegion());

 TempImage->Allocate();

// Creating our iterators to go through the

output/input/tempImage

typedef ImageRegionConstIterator<InputImageType>

ConstInputIterator;

 typedef ImageRegionIterator<OutputImageType> OutputIterator;

 typedef ImageRegionIterator<InputImageType> TempImageIterator;

ConstInputIterator inputIt(this->GetInput(), inputPtr-

>GetRequestedRegion());

OutputIterator outputIt(outputPtr, outputPtr-

>GetRequestedRegion());

TempImageIterator TempImIt(TempImage, TempImage-

>GetRequestedRegion());

 inputIt.GoToBegin();

 TempImIt.GoToBegin();

 // Giving the tempImage the information contained in the input

 while(!TempImIt.IsAtEnd())

 {

 TempImIt.Set(inputIt.Get());

 ++inputIt;

 ++TempImIt;

 }

 //Temporary SphereDataPixels to perform computations

 SphereDataPixel<VImageDimension> currentSphereDataPixel;

 SphereDataPixel<VImageDimension> tempSphereDataPixel;

 //Set the iterators to the beginning of the images

inputIt.GoToBegin();

 TempImIt.GoToBegin();

 double maxoutermean = 0;

 double minoutermean = 0;

//Create an image of linked list and allocate memory

LinkedListImageType::Pointer LinkedListImage =

LinkedListImageType::New();

LinkedListImage->SetRequestedRegion(inputPtr-

>GetRequestedRegion());

LinkedListImage->SetBufferedRegion(inputPtr-

>GetBufferedRegion());

LinkedListImage->SetLargestPossibleRegion(inputPtr-

>GetLargestPossibleRegion());

 LinkedListImage->Allocate();

 67

//Create an iterator for the linked list image

typedef ImageRegionIterator<LinkedListImageType>

LinkedListIterator;

LinkedListIterator LinkedListIt(LinkedListImage,

LinkedListImage->GetRequestedRegion());

 //Set the iterator to the beginning of the image

 LinkedListIt.GoToBegin();

 //Instantiate an object of LinkedListPixel class

 LinkedListPixel<VImageDimension> CurrentLLPixel;

 CurrentLLPixel.InitializeLinkedList();

 std::list<LinkedListPixel<VImageDimension>> CurrentLinkedList;

 std::list<LinkedListPixel<VImageDimension>> NeighbourLinkedList;

 unsigned int element_radius = 1;

 SNType::RadiusType radius;

 radius.Fill(element_radius);

typedef ShapedNeighborhoodIterator< LinkedListImageType >

LLSNType;

LLSNType LLSNit(radius, LinkedListImage, LinkedListImage-

>GetRequestedRegion());

 //Store pixel data for debugging

std::ofstream myfile ("TestingTorus156_10_27_A.txt");

 if (myfile.is_open())

myfile << "Index[0]\t[1]\t[2]\tScale\t

InnerSphereMean\tOuterSphereMean\tInnerVariance

\tOuterVariance\tZValue\tDirection[0]\t[1]\t[2]\n";

 double bestInnerSphereMean;

 double bestOuterSphereMean;

 double bestInnerSphereVariance;

 double bestOuterSphereVariance;

 typedef itk::Vector <double, VImageDimension> DirectionType;

 DirectionType tempDirection;

//Iterate over scale

for (unsigned int shellSize = (m_MinInnerSphereSize); shellSize

<= m_MaxInnerSphereSize; ++shellSize)

 {

 std::cout<<std::endl<<"Scale = "<<shellSize;

 //Iterate over all pixels at each scale

while(!TempImIt.IsAtEnd())

 {

 currentSphereDataPixel = TempImIt.Get();

//Consider only those pixels whose intensity is

//greater than the threshold set by the user

if(currentSphereDataPixel.outerSphereMean >

threshold)

 {

 68

/**Indentation changed to accommodate the code in the document

// Temporary sums of the shell

double shellSum = 0;

double shellPixelCount = 0;

itk::ShellIterator <InputImageType> shellIt(const_cast<InputImageType*>(this-

>GetInput()), TempImIt.GetIndex(), shellSize, true);

itk::Offset<VImageDimension> myOffset;

//Compute data in a shell using shell iterator and accumulate the sum of

//pixel intensity

for(shellIt.GoToBegin(); !shellIt.IsAtEnd(); ++shellIt)

{

if(shellIt.IsIndexWithinImage())

{

 myOffset = shellIt.GetOffset();

 tempSphereDataPixel = shellIt.Get();

//Compute statisttical data such as mean, variance

currentSphereDataPixel.currentSum =

currentSphereDataPixel.currentSum +

tempSphereDataPixel.intensityValue;

currentSphereDataPixel.currentSumSq =

currentSphereDataPixel.currentSumSq

+(tempSphereDataPixel.intensityValue *

tempSphereDataPixel.intensityValue);

++currentSphereDataPixel.pixelCount;

}

}

//Compute the mean and variance

// innerSphereMean = sphereSum/spherePixelCount;

currentSphereDataPixel.innerSphereMean =

currentSphereDataPixel.currentSum/currentSphereDataPixel.pixelCount;

 currentSphereDataPixel.innerSphereVariance =

(currentSphereDataPixel.currentSumSq +

(currentSphereDataPixel.innerSphereMean *

currentSphereDataPixel.innerSphereMean * currentSphereDataPixel.pixelCount) -

(2 * currentSphereDataPixel.innerSphereMean *

currentSphereDataPixel.currentSum))/(currentSphereDataPixel.pixelCount - 1);

itk::Offset<VImageDimension> shellBestPair;

itk::ShellIterator <InputImageType>

shellSpherePairIt(const_cast<InputImageType*>(this->GetInput()),

TempImIt.GetIndex(), (shellSize + m_MinInnerSphereSize), true);

//Setup sphere pairs to compute z value

for(shellSpherePairIt.GoToBegin(); !shellSpherePairIt.IsAtEnd();

++shellSpherePairIt)

{

// Checks if the pixel is within the image, if not do nothing

 if(shellSpherePairIt.IsIndexWithinImage())

 {

 // Calculating the modified TTest

 tempSphereDataPixel = shellSpherePairIt.Get();

 69

currentSphereDataPixel.currentSpherePairTest = abs(

(tempSphereDataPixel.outerSphereMean -

currentSphereDataPixel.innerSphereMean)/

sqrt((tempSphereDataPixel.outerSphereVariance) +

(currentSphereDataPixel.innerSphereVariance)));

 //Find the optimum sphere pair. The one with the highest z-value

if((currentSphereDataPixel.currentSpherePairTest >

currentSphereDataPixel.bestSpherePairTest) &&

(currentSphereDataPixel.innerSphereMean >

tempSphereDataPixel.outerSphereMean))

 {

//Store data related to the optimum sphere pair

currentSphereDataPixel.bestSpherePairTest =

currentSphereDataPixel.currentSpherePairTest;

 shellBestPair = shellSpherePairIt.GetOffset();

 currentSphereDataPixel.bestSpherePair = shellBestPair;

 currentSphereDataPixel.shellNumber = shellSize;

bestInnerSphereMean =

currentSphereDataPixel.innerSphereMean;

 bestOuterSphereMean = tempSphereDataPixel.outerSphereMean;

bestInnerSphereVariance =

currentSphereDataPixel.innerSphereVariance;

bestOuterSphereVariance =

tempSphereDataPixel.outerSphereVariance;

 }

 }

}

// Getting the sums of the best sphere pairs...

double sumOfSqBestSpherePair = 0;

for (unsigned int counter = 0; counter < VImageDimension; counter++)

{

sumOfSqBestSpherePair = sumOfSqBestSpherePair +

(currentSphereDataPixel.bestSpherePair[counter] *

currentSphereDataPixel.bestSpherePair[counter]);

}

// Creates our unit sphere pairs...

for (unsigned int counter = 0; counter < VImageDimension; counter++)

{

currentSphereDataPixel.bestUnitSpherePair[counter] =

currentSphereDataPixel.bestSpherePair[counter] / sqrt(

sumOfSqBestSpherePair);

}

tempDirection = currentSphereDataPixel.bestUnitSpherePair;

//Store the data of optimum sphere pairs in a .txt file for debugging

myfile<<tempIndex2[0]<<"\t"<<tempIndex2[1]<<"\t"<<tempIndex2[2]<<"\t"<<shellS

ize<<"\t"<<bestInnerSphereMean<<"\t"<<bestOuterSphereMean<<"\t"<<bestInnerSph

ereVariance<<"\t"<<bestOuterSphereVariance<<"\t"<<currentSphereDataPixel.best

SpherePairTest<<"\t"<<tempDirection[0]<<"\t"<<tempDirection[1]<<"\t"<<tempDir

ection[2]<<"\t"<<"\n";

}

++TempImIt;

++inputIt;

 70

}

//Create a itkShapedneighborhood of immediate neighbors to detect medial

//points

SNType::IndexListType ActiveIndexList;

SNType SNit(radius, TempImage, TempImage->GetRequestedRegion());

SNType::OffsetType Centeroffset = {(0,0,0)};

SNType::OffsetType offset1 = {(0,0,1)};

SNType::OffsetType offset2 = {(0,0,9)};

SNType::OffsetType offset3 = {(0,0,-3)};

SNit.ActivateOffset(Centeroffset);

SNit.ActivateOffset(offset1);

SNit.ActivateOffset(offset2);

SNit.ActivateOffset(offset3);

LLSNit.ActivateOffset(Centeroffset);

LLSNit.ActivateOffset(offset1);

LLSNit.ActivateOffset(offset2);

LLSNit.ActivateOffset(offset3);

LLSNit.GoToBegin();

LLSNType::Iterator LLInsideSNit;

//Initialize iterators to the beginning of the images obtained from the

//previous filter and also of the linked list image

SNit.GoToBegin();

LinkedListIt.GoToBegin();

//Store the data corresponding to the center of the neighborhood and the data

//of the neighboring pixels in different SphereDataPixel classes

SNType::Iterator InsideSNit;

SphereDataPixel<VImageDimension> SNPixel;

itk::Vector <double, VImageDimension> CenterPixelDirection;

itk::Vector <double, VImageDimension> NeighborDirection;

double DotProduct;

int centerShellSize;

double CenterPixelZValue;

int NeighborShellSize;

double NeighborPixelZValue;

SphereDataPixel<VImageDimension> SNNeighborPixel;

itk::Index<VImageDimension> tempIndex;

//Look for medial points by comparing the direction of the center of the

//neighborhood with the direction of its immediate neighbors

while(!SNit.IsAtEnd())

{

 LLInsideSNit = LLSNit.Begin();

 LLInsideSNit++;

 InsideSNit = SNit.Begin();

 InsideSNit++; //To go to the center of the neighborhood

 SNPixel = InsideSNit.Get();

 CenterPixelDirection = SNPixel.bestUnitSpherePair;

 centerShellSize = SNPixel.shellNumber;

 71

CenterPixelZValue = SNPixel.bestSpherePairTest;

//Go to the first neighbor of the center pixel as defined in the neighborhood

InsideSNit--;

LLInsideSNit--;

if(SNPixel.outerSphereMean > threshold)

{

//iterate through all the neighbors of the center of the neighborhood

//as defined in the shaped neighborhood

for (; InsideSNit != SNit.End(); InsideSNit++,LLInsideSNit++)

 {

//Avoid considering the center of the neighborhood the second

//time

if (InsideSNit.GetNeighborhoodIndex() == 13)

 continue;

 SNNeighborPixel = InsideSNit.Get();

//Entry into the linkedlist for each pixel is done here depending

//on the direction of the neighboring pixels

 SNPixel = InsideSNit.Get();

//Only consider those results whose scale matches the current

//scale and compute the Dot Product

if ((SNPixel.shellNumber == centerShellSize) &&

(SNPixel.shellNumber == shellSize))

 {

 NeighborDirection = SNPixel.bestUnitSpherePair;

DotProduct = (CenterPixelDirection[0]*NeighborDirection[0]

+ CenterPixelDirection[1]*NeighborDirection[1] +

CenterPixelDirection[2]*NeighborDirection[2]);

//If the dot product is negative and less than a threshold,

//mark both the center pixel and the corresponding neighbor

points as medial points at the current scale

if (DotProduct < -0.3 && SNPixel.bestSpherePairTest > 1.0

&& CenterPixelZValue > 1.0)

 {

 CurrentLLPixel.Scale = SNPixel.shellNumber;

 CurrentLLPixel.ZValue = SNPixel.bestSpherePairTest;

for (unsigned int counter = 0; counter <

VImageDimension; counter++)

 {

CurrentLLPixel.Direction[counter] =

SNPixel.bestUnitSpherePair[counter];

 }

 CheckingLinkedList = LLInsideSNit.Get();

 CheckingLLPixel.InitializeLinkedList();

 //To store data at Neighbor Pixel

 if(!CheckingLinkedList.empty())

 CheckingLLPixel = CheckingLinkedList.back();

 72

CurrentLinkedList = LLInsideSNit.Get();

 CurrentLinkedList.push_back(CurrentLLPixel);

 //Store only one result at each scale

if(!(CheckingLLPixel.Scale == SNPixel.shellNumber))

 {

 LLInsideSNit.Set(CurrentLinkedList);

 }

 //To store data at the Center Pixel

 LLInsideSNit = LLSNit.Begin();

 LLInsideSNit++;

 CurrentLinkedList = LLInsideSNit.Get();

 CheckingLinkedList = LLInsideSNit.Get();

 CheckingLLPixel.InitializeLinkedList();

 if(!CheckingLinkedList.empty())

 CheckingLLPixel = CheckingLinkedList.back();

 CurrentLLPixel.Scale = centerShellSize;

 CurrentLLPixel.ZValue = CenterPixelZValue;

for (unsigned int counter = 0; counter <

VImageDimension; counter++)

 {

CurrentLLPixel.Direction[counter] =

CenterPixelDirection[counter];

 }

 CurrentLinkedList.push_back(CurrentLLPixel);

 if(!(CheckingLLPixel.Scale == SNPixel.shellNumber))

 {

 LLInsideSNit.Set(CurrentLinkedList);

 }

 break;

 }

}

 }

}

}

SNit++;

LinkedListIt++;

LLSNit++;

}

LinkedListIt.GoToBegin();

TempImIt.GoToBegin();

LLSNit.GoToBegin();

}

if(myfile.is_open())

myfile.close();

 73

#ifdef EigenAnalysis

//Eigen Analysis

//Create a list for storing eigen values

std::list<LinkedListPixel<MY_DIMENSION>> TempList;

std::list<LinkedListPixel<MY_DIMENSION>>::iterator TempListIt;

std::list<LinkedListPixel<MY_DIMENSION>>::iterator CurrentListIt;

LinkedListPixel<VImageDimension> tempLLPixel;

double tempScale;

double CurrentScale;

//define classes for covariance calculation and eigen value computation

typedef itk::Vector <double, VImageDimension> PixelDirectionType;

PixelDirectionType PixelDirection;

typedef itk::Statistics::ListSample< PixelDirectionType > SampleType;

SampleType::Pointer BankofPixels = SampleType::New();

BankofPixels->SetMeasurementVectorSize(VImageDimension);

typedef itk::Statistics::CovarianceCalculator< SampleType >

CovarianceAlgorithmType;

typedef CovarianceAlgorithmType::OutputType CovarianceMatrixType;

typedef itk::FixedArray< double, VImageDimension > EigenValuesArrayType;

typedef itk::Matrix< double,VImageDimension, VImageDimension >

EigenVectorMatrixType;

typedef itk::SymmetricEigenAnalysis< CovarianceMatrixType,

EigenValuesArrayType, EigenVectorMatrixType > SymmetricEigenAnalysisType;

EigenValuesArrayType EigenValues;

EigenVectorMatrixType EigenVectors;

//Create a .txt file to store the eigen values

std::ofstream EigenFile ("EigenAnalysisDataTorus156_10_27_A.txt");

if (EigenFile.is_open())

//define the heading for the file

EigenFile << "Index[0]\t[1]\t[2]\tScale\tEigenValue[0]\t[1]\t[2]\n";

itk::Index<VImageDimension> EigenTempIndex;

//Create a iterator to go through the linked list at each pixel

LLSNit.GoToBegin();

LLSNType::Iterator LLInsideSNit;

//Iterate through the image of linked lists

while(!LLSNit.IsAtEnd())

{

 LLInsideSNit = LLSNit.Begin();

 LLInsideSNit++;

 CurrentLinkedList = LLInsideSNit.Get();

 EigenTempIndex = LLSNit.GetIndex();

//Iterate through all the records in the linked list

for(CurrentListIt = CurrentLinkedList.begin(); CurrentListIt !=

CurrentLinkedList.end(); CurrentListIt++)

 {

 CurrentLLPixel = *CurrentListIt;

 CurrentScale = CurrentLLPixel.getScale();

 74

//Cluster all medial points within the inner sphere centered at

the current iterator index, whose radius is equal to the current

scale

for (unsigned int shellSize = (m_MinInnerSphereSize); shellSize

<= CurrentScale; ++shellSize)

 {

itk::ShellIterator <LinkedListImageType>

shellIt(LinkedListImage, LLSNit.GetIndex(), shellSize,

true);

 for(shellIt.GoToBegin(); !shellIt.IsAtEnd(); ++shellIt)

 {

 if(shellIt.IsIndexWithinImage())

 {

 TempList = shellIt.Get();

for(TempListIt = TempList.begin(); TempListIt

!= TempList.end(); TempListIt++)

 {

 tempLLPixel = *TempListIt;

 tempScale = tempLLPixel.getScale();

 if (tempScale == CurrentScale)

 {

PixelDirection =

tempLLPixel.getDirection();

BankofPixels->PushBack(

PixelDirection);

 }

 }

 }

 }

 }

//compute covariance matrix of the cluster created in the

//previous step using the CovarianceAlgorithm filter

CovarianceAlgorithmType::Pointer covarianceAlgorithm =

CovarianceAlgorithmType::New();

 covarianceAlgorithm->SetInputSample(BankofPixels);

 covarianceAlgorithm->Update();

//Compute the eigen valuesof the covariance matrix generated in

//the previous step

SymmetricEigenAnalysisType SymmetricEigenSystem(VImageDimension);

SymmetricEigenSystem.ComputeEigenValuesAndVectors

(*(covarianceAlgorithm->GetOutput()), EigenValues, EigenVectors

);

//Store the eigen values in a .txt file

EigenFile<<EigenTempIndex[0]<<"\t"<<EigenTempIndex[1]<<

"\t"<<EigenTempIndex[2]<<"\t"<<CurrentScale<<"\t"<<

EigenValues[0]<<"\t"<<EigenValues[1]<<"\t"<<EigenValues[2]<<"\n";

//Store the eigen values in the linked list

for (unsigned int counter = 0; counter < VImageDimension;

counter++)

 {

 CurrentLLPixel.EigenValues[counter] = EigenValues[counter];

 }

 75

 *CurrentListIt = CurrentLLPixel;

 }

 LLSNit++;

}

//Close the eigen analysis .txt file

if(EigenFile.is_open())

 EigenFile.close();

#endif

outputIt.GoToBegin();

LLSNit.GoToBegin();

itk::Index<VImageDimension> tempIndex;

while(!outputIt.IsAtEnd())

{

tempIndex = outputIt.GetIndex();

 if (tempIndex[0] == 18 && tempIndex[1] == 0 && tempIndex[2] == 19)

 LLInsideSNit = LLSNit.Begin();

 LLInsideSNit++;

++LLSNit;

 outputIt.Set(LLInsideSNit.Get());

 ++outputIt;

}

}

template <unsigned int VImageDimension>

float InnerSphereFilter< VImageDimension >::ModifiedTTest(void)

{

}

template <unsigned int VImageDimension>

void InnerSphereFilter<VImageDimension>

 ::PrintSelf(std::ostream& os, Indent indent) const

{

 Superclass::PrintSelf(os,indent);

}

}

#endif

 76

BIBLIOGRAPHY

[1] A transformation for extracting new descriptors of shape H Blum, Models for the perception
of speech and visual form, 1967

[2] Burbeck, C. A., Pizer, S. M., “Object representation by cores: Identifying and representing
primitive spatial regions,” Vision Research, vol. 35, no. 13, pp. 1917–1930, (1995)

[3] Pizer, S. M., Eberly, D. H., Morse, B. S., and Fritsch, D. S., “Zoom invariant vision of figural

shape: The mathematics of cores,” Comp. Vision Image Understanding, vol. 69, no. 1, pp. 55–
71, (1998).

[4] G. Stetten, S. Pizer, Medial Node Models to Identify and Measure Objects in Real-Time 3D
Echocardiography, IEEE Transactions on Medical Imaging, Vol. 18, No. 10, pp 1025-1034, Oct.
1999

[5] C.A. Cois, K. Rockot, J. Galeotti, R. Tamburo, G. Stetten, Shells and Spheres: A Framework
for Variable Scale Statistical Image Analysis, CMU Robotics Tech Report#CMU-RI-TR-04-19,

April, 19, 2006

[6] G. Stetten, S. Pizer, Automated Identification and Measurement of Objects via Populations of
Medial Primitives, with Application to Real Time 3D Echocardiography,XVIth International

Conference on Information Processing in Medical Imaging (IPMI), June 1999. Lecture Notes in
Computer Science, vol. 1613, pp. 84-97.

[7] www.itk.org

[8] www.cmake.org

http://www.itk.org/
http://www.cmake.org/

	TITLE PAGE
	COMMITTEE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1: Relation of eigenvalues to 3D shapes

	LIST OF FIGURES
	1: Blum medial axis (dotted lines) of a rectangle
	2: Each pixel is shown as a number indicating its integer distance from the central pixel
	3: Noiseless image with boundary between two objects
	4: Noisy image consisting of 2 objects. A sphere pair consists of an inner sphere (red) and an outer sphere (blue)
	5: Inner sphere (red) is grown from radius 1 to radius 3. Sphere pairs are formed at all possible outer sphere (blue) orientations
	6: Linked list in which each record stores the scale, z-value and direction
	7: A noisy image showing the medial locus (red) of the object
	8: (a) 2D mask and (b) 3D mask used to detect medial points
	9: (a) 3D model of a torus visualized using surface rendering in ITK-SNAP. (b) Noisy image of a torus
	10: (a) 3D model and a cross sectional view of a hollow sphere. (b) Slices of a noisy 3D image of a hollow sphere
	11: (a) 3D model and a cross sectional view of a sphere. (b) Slices of a noisy 3D image of a hollow sphere
	12: Medial points (dotted red line) within the inner sphere (blue) centered at x are clustered
	13: Three fundamental shapes and their corresponding medial manifolds
	14: Triangle representing the relation between eigenvalues and 3D shapes
	15: Eigenvalues of the hollow sphere superimposed on the lambda triangle
	16: Eigenvalues of the torus superimposed on the lambda triangle
	17: Orientation error in degrees for the torus and the hollow sphere
	18: Five slices of the cropped and resampled 3D lung image used in our experiment, shown in the (a) Coronal, (b) Sagittal, And (c) Axial orientations
	19: The slices shown in Figure 18 with the detected medial points superimposed
	20: 3D rendering of the medial points using ITK-SNAP
	21: Input image is passed to an Inner sphere filter through an outer sphere filter to obtain the output image which consists of medial points and analysis data
	22: Outline of OuterSphereFilter
	23: Outline of InnerSphereFilter

	PREFACE
	1.0 INTRODUCTION
	2.0 BACKGROUND
	2.1 MEDIAL AXIS
	2.2 SHELLS AND SPHERES

	3.0 DETERMINING DISTANCE FUNCTION
	3.1 STORING DIRECTION VECTORS

	4.0 IDENTIFYING MEDIAL POINTS
	4.1 ALGORITHM TO DETECT MEDIAL POINTS

	5.0 CLUSTERING MEDIAL POINTS
	6.0 EXTRACTING FEATURES
	7.0 MEDIAL DETECTION IN A REAL IMAGE
	8.0 IMPLEMENTATION IN ITK
	8.1 ABOUT ITK
	8.2 IMPLEMENTATION
	8.2.1 ORGANIZATION
	8.2.2 ITERATORS IN ITK
	8.2.3 SHELL ITERATOR
	8.2.4 SPHERE ITERATOR
	8.2.5 SPHERE PIXEL DATA
	8.2.6 LINKED LIST PIXEL
	8.2.7 OUTER SPHERE FILTER
	8.2.8 INNER SPHERE FILTER
	8.2.9 EIGENANALYSIS

	9.0 CONCLUSION
	10.0 FUTURE WORK
	APPENDIX
	ITK CODE

	BIBLIOGRAPHY

