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This research investigates the development of a process for Design for Supply Chain (DFSC) – a 

process that aims to reduce the product life cycle costs, improve product quality, improve 

efficiency, and improve profitability for all partners in the supply chain (SC). It focuses on 

understanding the impacts and benefits of incorporating the SC configuration problem into the 

product design phase. As the product design establishes different requirements on the 

manufacturability, cost, and similar parameters, the SC is also closely linked to product design 

decisions and impacted by them. This research uniquely combines the impacts of the product 

design and price decisions on the product demand and the impacts of the SC decisions on cost, 

lead time, and demand satisfaction. 

The developed mathematical models are aimed at economically managing the SC for 

product design and support not only product design, but also redesign associated with process 

improvements and design changes in general. This research suggests development of a proactive 

approach to product design allowing impacts to the SC to be predicted in advance and resolved 

more quickly and economically. It presents two product and SC design approaches. The 

sequential approach examines the design of a product followed by the SC design where the 

simultaneous approach considers both the product and SC designs concurrently. By utilizing 

Mixed Integer Programming and a Genetic Algorithm, this research studies various research 

questions which examine modeling preferences and essential performance metrics, impacts of 
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using a sequential versus simultaneous design approach on these performance metrics, the 

robustness of the resulting SC design, and relative importance of the product and SC design on 

the profits. To answer these questions, different models are developed, tested with illustrative 

data, and the results are analyzed. 

The test results and industry experts’ validations conclude that the developed DFSC 

models add significant value to the product design procedure resulting in a useful decision 

support tool. The results indicate that the simultaneous DFSC approach captures the complex 

interactions between the product and supply chain decisions, improving the overall profit of a 

product across its life cycle.  

 

Keywords: Design for Supply Chain, Product Design, Supply Chain, Simultaneous 

Optimization, Mixed Integer Programming, Heuristics, Genetic Algorithm. 
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NOTATION 

Sets i, k ∈ I :  Sets of components from component 1 to component P 

Sets j, l ∈ J :  Sets of suppliers from 1 to S 

Set αi ∈ Ai:  Set of design alternatives of component i 

Set t ∈ T :  Set of time periods 

Set n ∈ N :  Set of binary factorization elements of lead time – demand 

multiplication 

P:  Total number of components used in the product (|I | = P) 

S:  Total number of available suppliers (|J | = S) 

Ai:  Number of design alternatives for component i (|Ai| = Ai) 

T:  Number of time periods (each representing a product life cycle

phase) (|T |  = T) 

N:  Number of lead time – demand binary variables (γ and δ) that cover all 

possible LT1t × Demand1t values in a binary representation (|N | = N) 

cijαit
1, cijαit

2:  Unit manufacturing costs of component i at supplier j for production 

levels 1 and 2 for component design αi at time period t 
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Capacityijαit
1, Capacityijαit

2:  Total production capacity of supplier j for component i for 

production levels 1 and 2 for component design αi at time period t 

Netwcojl:  Fixed supply chain network costs between suppliers j and l 

Relationik:  Number of components k required to manufacture component i 

ptijαit:  Production time of design αi of component i at supplier j in time 

period t 

valiαit:  Value of design αi of component i for the demand in time period t (% 

of total contribution) 

Tportcostjklαkt:  Unit transportation cost of design αk of component k from supplier l 

to j in period t 

ω1t, ω2t, ω3t: Allowed values that price can take in time period t 

ht:  Unit inventory holding cost of the final product in time period t 

β1, β2:  Demand function coefficients 

timemultipliert:  A parameter value in order to adjust demand value according to the

time period t (based on what life cycle phase t is) 

periodlengtht:  Length of the time period t (in the same units with lead time) 

zssratio:  Z-value from the normal distribution corresponding to the given 

safety stock ratio (ssratio) 

ρ1, ρ2:  Constant coefficients of variation for demand over lead time and

lead time, respectively 

Mcapiαit:  Total available capacity for design αi of component i in time period t 

over all suppliers (∑
=

+
P

j
tijtij ii

CapacityCapacity
1

21
αα )  
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Mdem:  Maximum potential demand over all periods (calculated by using

maximum of timemultipliert and lowest pricet with υt=1) 

xijαit
1, xijαit

2:  Total production amount of component i at supplier j for production 

levels 1 and 2 for component design αi at time period t 

pricet:  Price of the final product in time period t 

yjl:  1, if suppliers j and l have a direct relationship; 0, otherwise 

aijαit:  1, if supplier j fulfills its level 1 capacity with design αi of 

component i in time period t; 0, otherwise 

ujklαkt:  Total amount of design αk of component k manufactured at supplier l

and transported to supplier j in time period t 

πiαit:  1, if design αi of component i is selected for time period t; 0, 

otherwise 

υt:  Total value of the final product design for time period t (between 0 

and 1, calculated by a constraint in the model) 

Demandit:  Total demand for component i at time period t 

φ1t:  1, if price values are increased to ω2t; 0, otherwise 

φ2t:  1, if price values are increased to ω3t; 0, otherwise 

λ1t, λ2t:  Variables that reflects pricing decision onto demand generation via

φ1t, φ2t, and υ in time period t 

τt
+:  1, if demand > total production; 0, otherwise 

τt
-:  1, if total production > demand; 0, otherwise 

kt
+:  Equal to demand, if demand > total production; 0, otherwise 

kt
-:  Equal to total production, if total production > demand; 0, otherwise
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ψ1t, ψ2t, ψ3t, ψ4t:  Control variables that link pricing decisions and demand or total

production values for revenue calculation in time period t 

LTit:  Total lead time for component i in time period t 

LTintt:  LT1t value rounded up to the nearest integer 

ptimeit:  Maximum production time for component i in time period t 

γnt: 1, if nth binary factor for LT1t is selected for time period t; 0, 

otherwise 

δnt:  A variable to reflect lead time-demand multiplication via binary 

factorization in time period t 
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1.0 INTRODUCTION 

This research focuses on understanding the impacts and proposed benefits of incorporating the 

supply chain configuration problem into the product design phase analogous to the Design for 

Manufacturability (DFM) concept introduced in the 1980s where manufacturing processes of a 

product are taken into account in the product design phase. Academic studies and industry 

experiences show the benefits of incorporating different aspects of the production phase into the 

product design process. As the product design establishes different requirements on the 

manufacturability, assembly, cost, and similar parameters that have significant impacts on the 

later phases of the product’s life cycle, supply chain is also very closely linked to product design 

decisions and impacted by these decisions. Therefore, the same benefits that are suggested with 

other Design for X approaches are also applicable for the Design for Supply Chain (DFSC) 

concept. Different Design for X approaches consider the impacts of the product design on 

various concepts such as cost, assembly, environment, and supply chain separately. However, 

since there would only be a single product design, its impacts on these various issues would be 

cumulative that is a product design may be optimized for minimum cost or easy assembly but 

this same design may not be the optimal decision for the environment or supply chain issues. 

Although in a perfect case, all of these problems would be combined and solved concurrently, 

each of these problems is very complex and needs to be studied in detail before being combined. 

In this research, the Design for Supply Chain approach is investigated to quantify and understand 
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the impacts of the product design on the supply chain performance. The proposed benefits of the 

DFSC are investigated by utilizing a mathematical programming approach in order to quantify 

these proposed benefits.  

The developed mathematical programming model is structured in a way to optimize 

product design and supply chain decisions with an aim of maximizing profits throughout the 

product’s life cycle. At the same time, this model allows for further investigation of the proposed 

benefits of incorporating supply chain decisions into the product design phase by providing the 

opportunity to exclude supply chain related decisions and evaluate the impacts of this exclusion. 

The model includes widely known product and supply chain design aspects, and has also been 

validated by industry experts. This ensures that the model captures important design parameters 

that are being used in the industry and is as realistic as possible.  

While this model is designed to be very realistic by considering primary product design 

and supply chain performance parameters, it tends to be mathematically very complex and hard 

to solve. Therefore, this research also aims to evaluate different solution techniques such as 

deterministic optimization procedures, heuristics, and their combinations in order to find optimal 

or near-optimal solutions quickly.   

1.1 MOTIVATION 

Research studies demonstrate that the average discrete manufacturer realizes a 12% reduction in 

time-to-value, a 20% reduction in development costs, and a 7% reduction in manufacturing costs 

by collaborating with the supply chain early in the design process [32]. Most benefits of 

collaboration among supply chain (SC) partners lie in the design phase of the product lifecycle, 
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since the cost of design changes increases as the design phase of the product life cycle ends and 

the manufacturing phase starts. It has been reported that at least 70% of the product costs become 

firm in the design phase [3]. Keys [34] reported that some 75 – 90% of opportunity to influence 

total life cycle cost is gone by the time a design is released to production. Figure 1 depicts the 

percentage of costs committed throughout the product design process.    

 
 

Figure 1: Actions affecting life cycle cost (adapted from [34]) 

 

Different aspects of the supply chain such as transportation planning, warehouse selection, and 

supplier selection contribute to the total supply chain performance and should be planned 

according to the product design and marketing targets. These aspects also constitute a large 

portion of the product cost after the design phase and they are significant sources of cost as 

standalone operations. For example, in the U.S, annual expenditures on non-military logistics 
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represented over 11% of the Gross National Product in 1995 [55]. A decade later in 2005, the 

total logistics costs total around $1.3 trillion, still representing 10% of the Gross National 

Product [19]. Therefore, the proposed benefits of designing the supply chain within the product 

design or redesign lifecycle phases present huge impacts on both the cost and other performance 

measures of the supply chain and success of the product. In this research, a product’s success is 

defined as its ability to generate enough demand and to satisfy this demand via the associated 

supply chain during its life cycle period. For example, a product could be considered as 

successful if its life cycle spans as long as planned, if it attracts targeted demand at the targeted 

markets, if it adds value to the company and its brand, and if it satisfies customers, therefore 

generating expected profits.    

This research aims to investigate the impacts and proposed benefits of incorporating the 

supply chain configuration problem into the product design phase. The motivation behind the 

study is that proposed benefits could be understood and considered by managers when 

conceptual ideas are supported with case studies to include quantitative analysis and performance 

metrics. This research investigates the formulation of advanced and complex product design and 

supply chain models with the investigation of several solution techniques to solve these models 

in a timely manner with optimal or near-optimal results. Here, product design models aim to 

solve product design selection, pricing, and similar problems; where supply chain models are 

mainly developed to design the supply chain by selecting suppliers and setting the relations 

between them.  
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1.2 PROBLEM STATEMENT 

In the complex business environment of the current technology era, it is recognized that not 

paying enough attention to product design might potentially result in financial losses due to 

demand generation problems. In this context, demand generation is used to define how attractive 

a product design is in terms of creating demand. In other words, it is the ability of a product 

design to generate demand by satisfying customer expectations. As the supply and therefore the 

competition among the companies for the limited market demand increases, the product design 

gains more importance for demand generation. However, the product design impacts not only the 

demand generation, but also the manufacturing processes, cost, quality, and lead time. The 

product design affects the associated supply chain directly with its requirements including, but 

not limited to manufacturing, transportation, quality, quantity, production schedule, material 

selection, production technologies, production policies, regulations, and laws. From a broad 

perspective, the success of the supply chain depends on the product design and the capabilities of 

the supply chain, but the reverse is also true, the success of the product depends on the supply 

chain which produces it. Since the product design dictates multiple requirements on the supply 

chain as mentioned previously, it is clear that once a product design is completed, it would 

determine the structure of the supply chain, limiting the flexibility of the engineers to generate 

and evaluate different supply chain alternatives. Furthermore, constructing an optimal supply 

chain is a key for the success of the product because of its impacts to cost, quality, and schedule.  

In this research, the impacts of the product design and redesign on the supply chain structure is 

studied with an aim at quantifying those impacts so that they can be used in the product design 

phase to better understand the tradeoffs between the benefits and costs of the different supply 

chain alternatives. The problem that the product design engineers and managers face in the 
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product design phase is to pick the “best” design among several alternatives in order to generate 

the targeted profits or benefits. This “best” design is decided generally based on its potential for 

demand generation in the industry. Thus the “best” product design would be the design which 

satisfies the customer requirements at the utmost level. Therefore, there is always an option to 

select the “best” possible product design and then optimize the supply chain for this fixed 

product design. In this research context, from the total profit point of view, the “best” product 

design would be the one that sacrifices (if necessary) some demand attractiveness for better 

supply chain performance so that the total profits (as a combination of both generated demand 

and supply chain performance) are maximized. Since the design decisions generate many 

constraints regarding manufacturing and supply chain requirements, the design alternatives need 

to be studied and compared considering their impacts to the supply chains. Broadly speaking, in 

addition to “always selecting the best possible design” approach (without regard to the supply 

chain design), there are two different approaches for product and supply chain design integration 

namely sequential and simultaneous as depicted in Figure 2.  

The sequential approach, which is widely applied in industry, suggests that product 

design should be completed based on customer, marketing, and management requirements 

independently from analyzing the supply chain impacts. After the design is completed, the 

supply chain should be generated and then examined for its performance. If the supply chain 

performance is not within desirable limits, the product design should be revised until a 

satisfactory supply chain performance is achieved. However, as it will be further explained and 

studied in Chapter 3.0, this approach very likely leads to a suboptimal product and supply chain 

design configuration due to solving each problem separately. Even after an optimal product 

design is created for customer and company requirements, subsequent changes to the component 
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and part designs to achieve a better performing supply chain may lead to a non-optimal product 

and supply chain design.    

 
 
 

 

Figure 2: Sequential and simultaneous product and supply chain design processes 

 

In contrast, a simultaneous product and supply chain design would overcome these 

shortcomings. The proposed approach uses not only customer, marketing, and management 

requirements necessary for the product design, but it also incorporates supplier information. With 

this approach, the cyclic procedure of designing a product, generating the supply chain, 

Sequential 
Product and Supply Chain Design 

Simultaneous 
Product and Supply Chain Design 

Data input (customer, marketing, 
management requirements) 

Data input (customer, marketing, 
management requirements, supplier 

information) 

Design product and components Design product and component alternatives 
and generate associated supply chain (SC) 

Generate the supply chain (SC) and 
evaluate its performance 

Satisfied with SC 
performance? 

Finalize the product and SC design. 

Finalize the product and SC design. 

Satisfied with 
product design & 
SC performance? 

Yes 

No 

Yes 

No 
Satisfied with 

product design? 
No 

Yes 



 8 

evaluating the supply chain, and redesigning the product is reduced in many cases to a single 

iteration. However, the costs and time requirements associated with determining or designing 

several components at once need to be considered for the simultaneous approach. The main 

tradeoff between the sequential and simultaneous approach would be designing several 

component alternatives at once for the simultaneous approach versus launching a non-optimal 

product design - supply chain combination which might lead to lower profits with the sequential 

approach.  

The problem addressed in this research is about picking the “optimal” product design by 

evaluating its impacts on the demand generation and supply chain network requirements. Briefly, 

developed models evaluate and compare the product design alternatives to select the optimal one 

which maximizes the company’s profit by generating more demand and supplying this demand 

with high quality products in a timely manner and with less cost.  

1.3 RESEARCH QUESTIONS 

This research investigates the development of a process for Design for Supply Chain [52] - a 

process that aims to drastically reduce the product life cycle costs (including design, production, 

and logistic costs), improve product quality, improve efficiency, and improve profitability for all 

partners in the supply chain. It presents supply chain models aimed at economically managing 

the supply chain for product design and supports not only product design, but also redesign 

associated with process improvements and design changes in general. It suggests development of 

a proactive approach to product design and design change allowing impacts to the supply chain 

to be predicted in advance and resolved more quickly and economically. 
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A typical example of DFSC is the automotive OEM with multi-tier suppliers and 

corresponding product data and information transfers to facilitate supply chain profitability. 

OEM's can focus on core competencies and optimize intellectual assets while outsourcing 

processes that are integral to their finished products [8]. Another objective of DFSC is to elevate 

the supply chain to the level of a design and development partner to create a ripple effect of 

benefits consistent with an OEM's primary objectives - quality and time to market [1]. It would 

also help to eliminate the "bullwhip effect" [48] (cascading rise in inventory and financial 

bottlenecks due to unanticipated changes to product design).   

By utilizing mathematical programming and heuristics on the DFSC models, this research 

specifically aims to answer four major research questions by studying several related sub-

questions: 

1. Which product design / supply chain performance metrics should be included in the 

model?  

This question inquires which performance metrics should be considered in the model since each 

additional metric would increase the complexity of the model. This research investigates impacts 

of different performance metrics on the complexity and quality of the solution techniques. 

Benefits and costs of adding new metrics to the model are analyzed.    

1.1. How much computational complexity does a performance metric add to the model? 

1.2. Are there specific performance metrics (such as cost and lead time) that should always 

be considered in the model? 

1.3. How does the performance of the solution techniques differ by adding another 

performance metric to the model? 
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2. How do the performance metrics differ for the product design and the associated 

supply chain for the simultaneous and sequential approaches? 

This question asks whether the simultaneous approach would impact the final product design and 

supply chain configuration that would have been selected by the sequential approach. It also 

examines which supply chain performance metrics would differ by using the simultaneous 

approach and whether any of these metrics would be improved.  

2.1. Does the simultaneous approach provide a less costly product design and supply chain 

through the product’s life cycle? 

2.2. Does the simultaneous approach create a supply chain that has minimum lead time? 

2.3. To what level does the simultaneous approach modify the product design that is 

optimized for customer preferences? 

2.4. Does the non-optimal product design (according to customer preferences) pay for itself 

through better supply chain performance? 

3. How robust is the supply chain to product design changes? 

The underlying idea is that there would not be any significant differences between different 

supply chains for a given product design. This question is explored by studying different supply 

chain configurations for a given product design and measuring both their forecasted and realized 

long-term performances. 

3.1. Do product design changes result in a change to the number of suppliers? 

3.2. Do product design changes result in a change in the number of tiers in the supply chain? 

3.3. Do product design changes result in a change of the actual suppliers? 

3.4. How sensitive is the supply chain to product design changes, i.e., what level of 

magnitude of changes result in a change to the supply chain? 
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3.5. Does the simultaneous design approach provide a more robust supply chain structure 

than the sequential approach? 

 

4. What is the relative importance of the product design and the supply chain design on 

the product success (thus on the profits)? 

This idea questions whether the design team of the product should only concentrate on the 

demand generation potential of the product design rather than considering its impacts on the 

supply chain, assuming effects of the supply chain performance on demand generation is 

negligible when compared to those of the product design itself. This question is studied by 

comparing the impacts of the product design and the supply chain performance on profit.  

4.1. How does optimal product design differ when supply chain structure is considered in 

addition to customer preferences than when it is not considered? 

4.2. How much impact does the product design and supply chain have on the product’s 

success (profits)? 

1.4 CONTRIBUTION 

This research makes several significant contributions. First, a significant addition to the existing 

DFSC research is provided by combining the product design and supply chain decisions into a 

single framework which optimizes the decisions simultaneously. This research aims to fill in the 

gap in the DFSC literature which lacks explicit consideration and integration of marketing and 

product design decisions and manufacturing and supply chain decisions. The previous academic 

studies concentrated on the integration of the product differentiation point or product Bill of 
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Materials requirements to the supply chain optimization models, and hence lack any assessment 

of impacts of these decisions on the customer demand and satisfaction. This research uniquely 

addresses both the demand and manufacturing aspects of a product and it employs well-

established product design and supply chain performance metrics. 

The second contribution of this dissertation is that the developed models are not limited 

to certain industries or products but rather they are generic and can be used virtually for any type 

of product in any manufacturing industry. 

The third contribution of this dissertation is that it investigates and provides insight about 

possible solution procedures, including Mixed Integer Programming and Genetic Algorithm, and 

their benefits to the solving these complex DFSC models. Detailed computational tests and 

illustrative examples provide a clear assessment of both solution methodologies. In addition, this 

dissertation evaluates alternative modeling preferences and assesses the performance of different 

solution methodologies for these alternative models. Furthermore, the presented analyses provide 

insight into the modeling and algorithmic / computation complexity issues.  

Finally, this dissertation provides an important assessment from different industry experts 

across various industries and includes these experts’ validation and suggestions for further work.  

1.5 OVERVIEW OF THE DISSERTATION 

In this dissertation, Chapter 2 provides a summary of the relevant literature that is related to 

product and supply chain decision problems. The first section in this chapter describes separate 

product design and supply chain design studies followed by an explanation of the research that 

investigated a combination of product and supply chain design similar to the DFSC approach. 
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The following sections concentrate on mathematical model formulations and solution techniques 

used for these separate and combined problems. A summary of the literature is provided in the 

last section. 

The mathematical model formulation is given in Chapter 3. The detailed problem 

description in the first section is followed by preliminary mathematical models in the second 

section. The third and fourth sections describe the complete DFSC model formulation and 

reduced DFSC models used to investigate research questions, respectively. The last section 

provides a model asymptotic size analysis for the described models. 

Brief history and capabilities of deterministic optimization methods and relevant 

heuristics are given in the first and second sections of Chapter 4. This chapter also provides a 

comparison of these methods’ performance on the preliminary models in the relevant 

subsections. Finally, a complexity analysis of these solution methods is provided.  

Chapter 5 concentrates on the computational results first by analyzing how different 

solution techniques perform for the described models. The second section is the problem and 

model validation and it includes the industry experts’ assessments, comments, and revisions 

about the significance of the problem, the mathematical model structure and assumptions, and 

finally the computational results. The last section in this chapter addresses research questions and 

provides answers for these questions based on the computational results.  

Chapter 6, the last chapter, presents a summary of the findings and concluding remarks. 

The second section provides future work both in extending the DFSC models and studying other 

solution techniques. 
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2.0 LITERATURE REVIEW 

Examination of the scholarly literature shows growing interest in supply chain problems and the 

relationships between the product design and supply chains as the potential impacts of supply 

chain decisions become more tractable, understandable, and easy to evaluate. Since the World 

War II era, there has been a growing interest in supply chain planning to increase efficiency and 

performance of supply chains. At the same time, product design and customer satisfaction 

interactions have gained increasing interest by researchers working in both design engineering 

and marketing. With the advancements in problem modeling and solution techniques, limited 

supply chain and product design problems are extended to capture more realistic aspects of these 

problems. In the last two decades, combining these two important and interacting problems 

continues to draw attention both by academia and industry. 

This literature review provides a summary of these efforts that are aimed at modeling and 

solving product design and customer satisfaction problems, supply chain problems, and their 

combinations. The literature review section is organized into three sections, namely problem 

types (Section 2.1), model formulation (Section 2.2), and solution methodologies (Section 2.3). 

Although several studies consider modeling, solution, or problem aspects collectively, they are 

presented within the literature survey according to their main contributions. 
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2.1 PROBLEM TYPES 

As this research examines a combination of product design and supply chain design problems, 

these two separate problems need to be comprehended. The product design problems often tend 

to be studied within the marketing and industrial engineering domains as they relate to the 

demand generation context of this research. On the other hand, supply chain problems are more 

widely studied within the industrial engineering optimization area although the majority of the 

research still concentrates on logistics aspects. Relevant studies to these different problem types 

are presented.  

2.1.1 Product Design Models 

The product design, along with price, advertising, and other market variables, is always 

considered one of the most important variables that impact demand. As each product is sold to 

satisfy certain customer needs, the product design addresses these needs by providing different 

features via different components. Each different component design satisfies these customer 

needs to a different degree. For example, car tires mainly satisfy customers’ needs for good road 

traction and a smooth ride. However, different tire thread designs such as dry or snow road 

threads fully satisfy these needs in the corresponding road conditions. Therefore, using a dry 

road thread on a car to be sold in a market with many snowy days would satisfy customers’ 

needs partially, resulting in lower demand.  

As an important effort in conceptualizing the interaction between the product design and 

satisfaction of customers’ needs, the Kano model, given in Figure 3, examines degree of 
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achievement by the product design against the customer satisfaction. It defines three major areas 

of customer satisfaction and their relationship to products features.  

 
 

Figure 3: The Kano model (adapted from [9] and [29]) 

 
 

According to the Kano model, the straight line represents expected performance measures from a 

product design. These expectations are usually expressed by the customers so the designers know 

what they need to provide as product features. The exciters or innovative design features are not 

expected by the customers and therefore are not expressed. Thus, if they are not achieved, they 

do not result in loss of customer satisfaction, however when they are provided, they provide 

extraordinary positive impact on customer satisfaction. On the opposite, basic design features are 

not expressed by the customers even though they are expected from a product design. Safety and 
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reliability features are usually in this category. Satisfaction of these basic expectations normally 

do not result in customer satisfaction, instead they only prevent customer dissatisfaction.   

In order to quantify the relationship between product design and satisfaction of 

customers’ needs, various models have been studied in the literature. In the robust design process 

context, Taguchi developed a “quality loss function” that evaluates the level of the dissatisfaction 

of customers’ needs (and value) when a product component’s design is different than its ideal 

specifications [21]. Although Taguchi developed more than 68 loss functions, the most widely 

used function, which is called nominal-the-best type given in (1.1), quantifies loss of customer 

value when a component design, y, varies from its targeted ideal value, τ. The quality loss 

coefficient, k, is assumed or determined by an expert and depends on the product or market and 

is defined in monetary values [9].  

 2)( τ−= ykL  (1.1) 

Another important approach is Value Engineering (VE) which was developed at General Electric 

during World War II. In this approach, the value of a component (and consequently its design) is 

defined as the ratio of its function to its cost. Although VE does not necessarily evaluate the 

satisfaction of customers’ needs by the product component’s design, it is widely used in industry 

to eliminate non-value added costs in product designs [17][18] and it is often required by the 

U.S. Department of Defense and NASA of their contractors [5].  

Quality Function Deployment (QFD), which was developed by Dr. Shigeru Mizuno in 

1972 and first applied in Mitsubishi in Japan, is “a planning tool to fulfill customer expectations” 

[9]. QFD is widely used to make design tradeoff decisions between component alternatives [17]. 

In this method, customers’ needs (WHATs) are transformed into design specifications (HOWs) 

by design engineers in the first step. Next, the relationships between customers’ needs and design 
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specifications are determined. Following these assessments, competing products’ specifications 

are also added into the relationship matrix, representing strengths and weaknesses of the 

proposed product design alternatives. In later steps, customers’ priorities on these features and 

associated technical difficulties to manufacture these designs are assessed. In conclusion, QFD 

provides a structured method to evaluate the satisfaction level of customers’ needs via features 

proposed by the product design alternatives. An extensive literature survey of Chan and Wu [12] 

suggests that QFD is widely used to collect and translate and to satisfy customers’ needs.  

As another effort to quantify the customer satisfaction and the product design 

interactions, Martin and Ishii [47] studied impacts of design variety on the customer satisfaction 

and manufacturing processes. In parallel to the QFD method, they developed an index called 

Variety Voice of the Customer (V2OC), which is a measure of the importance of the component 

to the customer, as well as the heterogeneity of the market with respect to that component. In this 

method, if a component is ranked with low V2OC value, then it is suggested that this component 

design is standardized for cost reduction. However, a high V2OC rating suggests that the 

corresponding component is of critical value for customer satisfaction and therefore should be 

designed to satisfy different customer requirements.   

Although there is an extensive literature of product design and its impacts on customer 

satisfaction (and consequently demand generation), a brief overview of important studies and 

concepts are presented. These studies suggest different methods can be employed to map 

customers’ needs to design specifications. They also suggest that various methods can be used to 

quantify impacts of satisfaction of customers’ needs on the demand. However, despite the 

existence of different methods, it should be noted that the product design and demand generation 
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relationship is an important issue and it needs to be quantified in a structured way to the extent 

possible to represent the complex interaction.  

2.1.2 Supply Chain Models 

A supply chain, which is defined as “consisting of all parties involved, directly or indirectly, in 

fulfilling a customer request” [13], is a continuously evolving part of a company’s production 

process and plays a critical role in the profitability of a product and the company. A supply chain 

starts with the raw material procurement and includes all tiers of suppliers that manufacture 

product components, production facilities that utilize manufacturing and assembly operations, 

warehouses and distribution centers, retailers, customers, and post-sales service centers. In this 

research, the supply chain configuration problem focuses on a segment of the supply chain 

beginning with the raw material procurement and ending with the final product manufacturing or 

assembly. Chopra and Meindl [13] suggest that toward the customer’s request fulfillment 

objective, a supply chain not only includes manufacturing and transportation of products but also 

consists of marketing, new product development, distribution, finance, and customer service. 

Within this definition, a supply chain is considered a vital part of a product’s life cycle which 

starts with customers’ needs and ends only after the last customer service is completed, 

representing a time horizon longer than the actual selling period of a product. Obviously, each of 

many parts that constitutes a supply chain brings important planning challenges and these 

problems are widely studied by academicians.  

From an academic perspective, interest in supply chain problems has begun almost with 

the first operations research studies in the World War II era that examined transportation, 

scheduling, and facility location problems. As one of the earliest studies, in 1959, Hanssmann 
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[31] modeled material procurement, production, and distribution with an aim of optimizing the 

level of inventory and selecting optimal inventory locations. In 1960, Clark and Scarf [14] 

developed a model to optimize purchasing decisions from different echelons of a supply chain, 

each having a different level of available inventory and different lead times. The supply chain 

has gained more attention from academic and industry beginning in the mid 1970’s by studying 

different solution techniques for supply chain problems as explained in section 2.3. In the 

1980’s, several studies concentrated on inventory optimization and economic order quantity 

determination problems [55]. These, mainly single vendor and single buyer models are extended 

to capture multi-vendor, multi-buyer, and multi-period cases in the 1990’s [55]. However until 

the mid 1990’s, supply chain models often concentrated on single subproblems, such as 

inventory planning and buyer-vendor coordination. Later studies are aimed toward combining 

these subproblems into larger but more realistic complete supply chain models. For example, 

Cohen and Lee [16] formulated their model beginning with the material procurement, then 

production, and concluding with the product distribution portions of the supply chain and used a 

series of linked, approximate submodels, and heuristics optimization to solve the problem. They 

introduced stochastic demand and lead time parameters into the model and suggested different 

heuristic solution procedures for material control, production, stockpile inventory, and 

distribution submodels that constitutes the final supply chain model when combined.  

In parallel to these operational supply chain problems, strategic supply chain planning 

and supply chain network design problems are also widely studied within the engineering and 

business literatures. One of the initial papers that proposed a model and an efficient solution 

technique for specific kinds of supply chain problems was dated back to 1974 in which the 

authors modeled a static distribution system to optimize the locations of intermediate distribution 
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facilities between plants and customers [24]. This paper reports significant computational time 

gains by employing Bender’s Decomposition technique and having solutions within one or two 

tenths of one percent of the global optimum. Viswanadham and Raghavan [60] investigated 

performance of different supply chain networks under two different production planning and 

control policies, namely make-to-stock and assemble-to-order systems. Truong and Azadivar 

[56] developed a model to design the network of a supply chain that addresses supplier selection, 

distribution center location, inventory planning, and production orders. Cakravista et al. [10] 

developed a two-stage supply chain planning model which performs supplier selection based on 

supplier bids and determines optimal manufacturing and logistics functions. Talluri and Baker 

[54] developed a multi-phase model that evaluates each supplier’s production efficiency and 

incorporates this analysis into supply chain network design problem. Their model also optimizes 

production assignments to selected suppliers. Wu and O’Grady [64] developed a methodology to 

improve design of a supply chain network for multi-criteria in a constrained environment. Ding 

et al. [20] developed a supplier selection model that incorporates uncertainties emerging from 

demand, production, and distribution parts of a supply chain. Vidal and Goetschalckx [58] 

presented a mathematical model that maximizes the after tax profit of a multinational company 

by using transfer prices (prices a company’s different departments charge for semi-products 

within the company) and the allocation of transportation costs as explicit decision variables. This 

selection of studies represent the wide spectrum of the challenges that are directly associated 

with the supply chain problems in today’s global business environment.  

Thomas and Griffin [55] surveyed different supply chain models at operational and 

strategic levels both in academic and business literatures and stressed the lack of life cycle and 

inventory obsolescence constraints in the supply chain models. They stated that these problems 
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can partially be attributed to the supply chain structure and design. They also reported the 

importance of adding new objectives into the models due to current business trends. For 

example, they suggest including environmental regulations, and incorporating important 

macroeconomic parameters, such as currency exchange rates, which becomes more important 

with the movement towards globalization and outsourcing. Lambert and Cooper [36] stress that 

in today’s supply chain management problems; marketing decisions also play a significant role. 

Customer relationship management, demand management, and product development and 

commercialization are all vital parts of the supply chain management problems. Additionally, in 

parallel to the globalization, supply chain problems become far more complicated than classical 

logistics problems with the integration of long-term strategic supplier relations and marketing 

aspects.  

These selected studies represent emerging interests from more than six decades of supply 

chain research. As the trend shows, the current interests in supply chain research are more 

focused on developing complicated, thus realistic, models as conceptual combinations of 

previously studied sub-models with the addition of emerging industry needs. Similarly 

development of different solution techniques that can provide good solutions in acceptable time 

for larger models has also gained more importance as realistic models challenge existing, well-

established solution techniques currently in use.   

2.1.3 Product Design and Supply Chain Combined Models 

Although supply chain management and decision models are widely studied in the literature, the 

Design for Supply Chain concept is specifically addressed in several studies. The term Design 
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for Supply Chain Management (DFSCM) is first used by Lee and Billington [41] in an inventory 

planning problem within a supply chain review study. The authors stated that 

A lot has been written on design for manufacturability, for assembly, for quality, for 
producibility, and for serviceability. To this list we would add "design for supply chain 
management." Thus product designs should be evaluated not only on functionality and 
performance but also on the resulting costs and service implications that they would have 
throughout the product's supply chain. The same applied to process designs. [[41], p.11] 
 

In another study, Lee [40] suggested that changing the mind-set of the design teams and 

quantification of benefits of the DFSCM are the most important and significant obstacles for 

implementation.  

Keys [34] discussed the Design for Life Cycle concept that he described as the 

combination of all design efforts including but not limited to manufacturability, assembly, cost, 

quality, customer support logistics, and supply chain. He suggested that it is very important to 

keep the focus on the product life cycle since today “the planning of new products includes 

second, third, etc., generation product follow-on’s, where the support to and through product 

lives must be a part of an integrated life cycle strategy.”  

In a study by Lee and Sasser [44], Hewlett-Packard’s (HP) new product line, called 

Rainbow, was used to study an analytical DFSC model which incorporates stochastic demand 

with lead time decisions, service level targets, and inventory, stockout, and shipment costs in 

order to decide on the optimal product differentiation point. The authors provided analytical 

solutions for the model for different product life cycle phases as well as for different design 

alternatives. The importance of the study is that it was done using real data and the results were 

validated after the product launch over the product life cycle. Another important contribution is 

that all the modeling and analysis was done during the product design phase, which differs from 

the majority of supply chain related studies that try to optimize the supply chain for products past 
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the design phase. Although these authors studied a supply chain configuration problem, they did 

not incorporate supplier selection and thus associated uncertain quality, lead time, and capacity 

problems. In another study completed at HP, Lee and Billington [42] reported HP’s new 

approach to modeling and optimizing its SC policies which adds distribution, market, and 

product specifications into the available inventory modeling efforts. They explained the positive 

impacts of the new approach which suggests incorporating all related divisions of the company, 

key suppliers, and key customers into the SC design decisions and developing product-based 

supply chains. They listed four key company requirements as the basis for their model: “(1) 

benchmarking inventory and service tradeoffs; (2) assessing the impact of uncertainties on 

operational performance; (3) analyzing what-if questions for different scenarios and operating 

characteristics; and (4) evaluating product design impacts on the supply chain, that is, predicting 

how the supply chain would perform under different product and process design alternatives” 

([42], pp. 47). Lee, in his several studies, introduced and used similar terms that constitute parts 

of the DFSCM concept. Design for Localization (or interchangeably Design for Customization 

[43]) concentrates on delaying the customization of a product’s design for different local market 

segments. In relation, the Design for Flexible Manufacture [39] concept is introduced that aims 

to increase part commonality and interchangeable subassemblies to help reduce inventory costs 

and to ease supplier management. Finally, Design for Logistics [39] aims to design products so 

that they can be transported easily in a cost effective manner. However, all these concepts that 

add up to the DFSCM concept introduced by Lee and his colleagues, mainly focus on delaying 

product customization to reduce inventory and designing products for effective packaging and 

transportation. In these studies, the product design – customer demand interactions were not 

included, hence customer demand – supply chain performance relations were not evaluated.  
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Another extensive DFSC study has been conducted by Arntzen et al. [2] at Digital 

Equipment Corporation (DEC), that led to a term which they coined Global Supply Chain Model 

(GSCM). The GSCM is a large mixed-integer linear programming model (MIP) that minimizes 

cost or lead times (or both) for different echelons of the supply chain and time periods with 

requirements of meeting the estimated demand, using limited capacities, and restrictions on local 

content and offset trade. The cost structure of the model included fixed and variable production 

costs, inventory costs, and distribution costs including taxes, duties, and duty drawback. The 

model was developed to support product development at DEC for about 20 new products. It was 

used to design the supply chain during the product design phase and reported savings of US $1.4 

billion in four years with around a 500% productivity increase. However, the GSCM uses a 

combined objective function (weighted average of cost and lead time) and the objective function 

is limited to these two objectives. Furthermore, the fixed demand assumption is one of the major 

drawbacks of the model. The solution technique is a branch and bound algorithm with 

introduction of penalties for violating constraints to save computation time. The authors reported 

around a one minute solution time for problems with 2,000 to 6,000 constraints and 5,000 to 

20,000 variables, with a few hundred of these variables being binary.  

The impacts of different product life cycle phases and the type of product on the structure 

of the associated supply chain are reported to be unavoidable and necessary factors to be 

included in the modeling efforts in the literature. Fisher [23] stressed two distinct types of 

products, namely functional and innovative; and two related supply chain functions, physical 

(transforming raw material to an end product and concentrating mainly on cost reduction) and 

market mediation (ensuring the variety of products reaching the marketplace matches what 

consumers want to buy and concentrating mainly on lead time reduction). He gives examples of 
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Campbell’s Soup as a functional product with predictable demand (so use a physical supply 

chain with cost reducing strategy) and Sport Obermeyer’s line as an innovative product with 

unpredictable demand (so use market mediation supply chain with uncertainty reduction 

techniques, such as getting orders earlier).  

Wang et al. [61] suggested three types of products: innovative, functional, and hybrid and 

three categories of supply chains: lean supply chain (that focuses on lean manufacturing and cost 

reductions), agile supply chain (that aims to provide flexible and fast manufacturing to reduce 

lead time), and hybrid supply chain (that aims to capture both aspects of lean and agile supply 

chains). They used Analytic Hierarchy Process (AHP) and linear programming (LP) in a supplier 

selection model for solution procedures where suppliers are ranked with AHP and selected by 

using LP and preemptive goal programming in order to develop the desired supply chain (lean, 

agile, or hybrid) for the given product type (innovative, functional, or hybrid). The supply chain 

performance is measured by using the Supply-Chain Operations Reference model (SCOR), 

which is “a process reference model that has been developed and endorsed by the Supply-Chain 

Council as the cross-industry standard diagnostic tool for supply-chain management” [53]. 

Although this approach does not require extensive computational resources, the necessity of 

expert knowledge for AHP, setting goals and SCOR evaluations are major implementation 

drawbacks. Yet, expanding this solution technique as a multi-objective solution procedure which 

considers several objectives at the same time both in AHP and goal programming phases would 

be challenging, yet necessary for a better supplier selection model.  

Fandel and Stammen [22] developed a mathematical model to fix the product program 

and the extended supply chain network. In this study, they modeled investment decisions on 

product development projects between alternative products to compare product life cycles with 
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their development and recycling strategies. Their model evaluated impacts of these decisions on 

the supply chain network and aimed to develop the optimal product development and supply 

chain network strategy to maximize overall profits. Although their model includes recycling 

performance of the supply chain and allows selection of different product alternatives, they did 

not explicitly consider the impacts of the product design on customer satisfaction and demand. 

Moreover, due to extensive size of the developed model, they did not provide an efficient 

solution methodology for large, real life problems.   

Graves and Willems [30] developed a supply chain network model for a new product that 

selects suppliers and assigns production orders. However, this model assumes that the product 

design is finalized. Despite this drawback, this model provides opportunities by accounting for 

time-to-market costs and allowing multiple sourcing of a product component. 

Lamothe et al. [37] studied a product family selection and supply chain network design 

problem, similar to the proposed DFSC concept. In their study, the authors suggested a Generic 

Bill of Materials (G-BOM), which is a flexible Bill of Materials in terms of satisfying customers’ 

needs. In this study, different product family variants are associated with different market 

segments. A market segment is considered to be satisfied by at least the corresponding product 

variant or by a better product variant. Within this demand satisfaction perspective, the model 

aimed at minimizing total supply chain costs that come from variable manufacturing, 

transportation, and inventory decisions and fixed facility opening and transpiration line opening 

costs. Although the study models selection of better product variants for satisfaction of better 

market segments, it does not take the impacts of product design on the demand and market share 

into account. With an aim of cost minimization, the authors did not include the demand 

generation problem associated with the product design and pricing decisions. They have also 
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excluded economies of scale and international taxes and duties for simplification purposes. This 

study is an example of the growing interest in academia for modeling product design and supply 

chain interactions. Although this study precisely models product design and supply chain 

relations, its main drawback is the lack of explicit modeling of the impacts of product design on 

the product demand. Since the changing product demand may require different supply chains, 

overlooking the product design - demand interaction may result in a non-optimal supply chain 

network. Authors, in this study, also used an open-close decision structure to select suppliers and 

incur associated fixed costs which limits the model to capture the increasing nature of these costs 

with higher levels of interactions between supplier pairs.  

2.2 MODEL FORMULATION 

During the development of supply chain modeling efforts, academicians expanded the problem 

formulations so that initially ignored issues that complicate the problem are added for more 

realistic problem formulations. Yet, mathematical problem formulation is still a challenge for 

researchers since formulation is a primary driver of solution techniques and ultimately the 

complexity of the problem and solution time as well. Incorporating stochastic, nonlinear, or 

qualitative objectives, parameters, and variables into the formulation helps to develop more 

realistic models although it is usually harder to solve these formulations computationally and 

often requires long computational time or sacrifices from solution quality. The formulation is 

also closely linked to the problem studied since it describes what decisions will be made and 

what constraints will be considered.   
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Beamon [7] provides a detailed survey of research studies in multi-stage supply chain 

modeling and divides supply chain models into four categories: (1) deterministic analytical, (2) 

stochastic analytical, (3) economic, and (4) simulation models. She also defines performance 

measures for supply chains in two groups: (1) qualitative (customer satisfaction, flexibility, 

information and material flow integration, effective risk management, and supplier 

performance), and (2) quantitative (a) based on cost (cost minimization, sales maximization, 

profit maximization inventory investment minimization, and return on investment 

maximization), and (b) based on customer responsiveness (fill rate maximization, product 

lateness minimization, customer response time minimization, lead time minimization, and 

function duplication minimization). She also provides a list of frequently considered supply 

chain model variables which includes product / distribution scheduling, inventory levels, number 

of stages (echelons), distribution center assignments to customer, product assignment to plants, 

relationships between suppliers and buyers, product differentiation step specification, and 

number of product types held in inventory. She stresses the importance of using multi-objectives 

for realistic supply chain modeling and also including demand variance and related bullwhip 

effect problems. Although it is a very detailed paper about supply chain modeling aspects, it does 

not specify any solution techniques or discuss the implications of the model parameters on 

solution techniques. 

    Viswanadham and Raghavan [60] pointed out that a portion of the supply chain may 

operate under a push policy while the rest may operate under a pull policy and stressed that this 

transition point is called a decoupling point. They also suggested four different supply chain 

structures: (1) serial, (2) divergent, (3) convergent, and (4) network structure. They emphasized 

five analytical techniques for modeling supply chain problems and measuring performance 
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including (1) series–parallel graphs, (2) Markov chains, (3) Petri nets, (4) queuing networks, and 

(5) system dynamics. They implemented a stochastic Petri net approach using a Stochastic Petri 

Net Package (SPNP) to calculate the total cost of inventory and backorders under Make-to-Stock 

(MTS) and Assemble-to-Order (ATO) policies and studied the decoupling point problem. 

However, their work concentrated on cost aspects of the MTO or ATO policies only and their 

assumption that all variables were exponentially distributed requires further research in order to 

observe results for different distributions as well as their impacts on other performance measures, 

such as lead times or production quality.  

Lee and Kim [45] developed a model for multi-product, multi-period, multi-shop 

production and distribution to satisfy the retailer’s demand in given time periods. They proposed 

a hybrid solution technique which combines analytic methods with a simulation modeling 

approach to capture the stochastic nature of operation times in the supply chain. The objective of 

their model is to minimize the overall cost that includes production, transportation, inventory, 

and shortage costs, subject to inventory and operation time constraints. They incorporated 

machining and distribution time parameters from simulation results into the analytical model and 

proposed an iterative solution approach. This problem formulation only focused on the 

production and subsequent distribution questions without considering the front-end portion of the 

process namely raw material and vendor inputs. Despite the use of simulation, they also did not 

include stochastic demand aspects and removed backlog approaches which are often necessary 

for realistic supply chain models. In a related effort, Kim et al. [35] proposed a nonlinear model 

that optimizes production quantities for the final product and its components that are outsourced 

to different suppliers. They included capacity constraints for the manufacturer and suppliers and 

used a probabilistic demand function. The nonlinear model is transformed into two linear models 
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by using Karush-Kuhn Tucker (KKT) conditions, thus an iterative approach is developed to find 

the “global” optimum. The objective function of maximizing profits is optimized for expected 

demand values and considered for a single period in which both the manufacturing and sales take 

place. The lead time and delivery delays are ignored and all the production and assembly 

processes are assumed to be in a single period. Despite these drawbacks, the model and solution 

technique provides a good example for cost oriented manufacturing and outsourcing decision 

problems for existing product designs. Lamothe et al. [37] modeled their product family and 

supply chain network design problem as a Mixed Integer Programming problem. Their model 

included G-BOM, product flow, shipping, inventory, and supplier capacity constraints often 

requiring the use of binary variables to represent open-close type decisions. However, they stress 

that they avoided integer variables for lead time representation given that lead times are 

significantly shorter than the modeled planning time periods.  

Truong and Azadivar [56] described a methodology developed for an optimal supply 

chain configuration and proposed a hybrid solution procedure for the problem combining 

heuristics and simulation. They listed several performance measures for supply chain models 

which are grouped into quantitative and qualitative sections. Table 1 lists these performance 

measures.  

Wu and O’Grady [64] used a network-based approach, called Extended Trans-Nets, 

which represents the design of the supply chain as an abstract network with ‘AND’ and ‘OR’ 

nodes. They stated that this approach allows different designs of the supply chain to be modeled 

and analyzed. However, this approach cannot identify improvements in the design of supply 

chain by its nature and, similar to a system simulation, different designs should be entered by the 

end user or another algorithm.  
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Table 1: Performance measures for supply chain management (adapted from [56]) 

Performance Measure Description 
Based on cost or profit  

  Cost It is most widely used and cost is minimized for the 
entire supply chain.  

  Return on Investment Maximize the ratio of net profit to capital. 
Based on responsiveness to customers  

  Fill rate Maximize the fraction of customer orders filled on 
time. 

  Customer response time Minimize the amount of time required from order 
placement to delivery to customer.  

  Product lateness Minimize the amount of time between promised 
delivery time and actual delivery time.  

Qualitative performance measures  

  Customer satisfaction The degree to which customers (internal or external) 
are satisfied with the product received. 

  Flexibility The degree to which the supply chain can respond to 
random fluctuations in the demand pattern.   

  Effective risk management 
The degree to which effects of inherent risks that 
come from the relationships within the supply chain 
are minimized.  

 
 
 

Weber et al. [62] provided a literature search with 74 papers about supply chain vendor selection 

problems and stated that manufacturing cost, lead time, product quality, supplier capacity, and 

supplier location are the criteria most often used as primary decision factors.  

Although there are various kinds of supply chain models with different objectives and 

variables, the most common problem formulation shown in the literature aims to minimize cost 

under specific capacity constraints. However, in order to develop more realistic models in 

response to industry’s needs, multi-objective formulations are required and the formulations 

should capture the dynamic, stochastic, and structural aspects (such as push and pull strategies) 

inherent in the supply chains. Recent studies also mention the introduction of more stochastic 

elements into the model, necessitating the use of combinations of established solution techniques 

or development of new ones.  
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2.3 SOLUTION METHODOLOGIES 

Although there have been rapid computational technological developments in optimization 

methods in the last 20 years, there remains a need for more realistic and thus complicated models 

demanding even more powerful and timely solution techniques. It is why this area remains one 

of the main interests of the academic community. The supply chain problem is specifically one 

of these complex problems that requires new solution procedures because of the need to combine 

several different subproblems, such as distribution, location and allocation, transportation, and 

production planning in order to address the supply chain solution in its entirety. These 

subproblems were modeled and solved as independent problems initially because of the lack of 

computational resources and extensive data gathering tools as well as industry’s interest in fast 

solutions for smaller problems. As the military and industry needs grew, academic researchers 

initially worked on modeling smaller supply chain subproblems with an aim of finding optimal 

solutions for them as fast as possible. However, the literature trends show that handling these 

subproblems separately leads to suboptimal solutions for the supply chain as a whole since the 

interdependency between them is extremely high, making it almost impossible to combine the 

results to get the “one” optimal solution for the entire supply chain. The changes in the industry’s 

priorities towards solving broader, thus more complex problems in addition to the impacts of 

globalization, requires more academic studies that model and solve large and complex problems 

which are combinations of these subproblems. The technological developments in computing 

power and existing knowledge about these subproblems make both modeling and solving these 

large problems easier and help to reach optimum results.  

Supply chain problems are usually multi-objective problems with conflicting objectives 

since realistic problems introduce several objectives at once. Usually, all of these objectives are 
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very important to construct a profitable supply chain. For example, ignoring optimization of lead 

times and focusing only on the production costs provide a minimum cost supply chain, but it 

does not ensure profitability due to potentially long lead times resulting in stockouts. Despite 

their advances on single objective optimization, pure mathematical optimization techniques do 

not seem to handle the multi-objective problems well unless some modifications are introduced 

into the model, such as weighing/ranking objectives or penalizing solutions for poor objective 

values. The heuristic solution techniques, which are based on the concept of rapidly moving the 

solution space towards the best objective by moving to better solutions at each step, are more 

widely used to solve the supply chain problems because of their reasonable computational time 

requirements for an acceptably good solution and their flexibility to be fit into different kinds of 

problems. 

Vidal and Goetschalckx [59] presented an extensive literature survey of global supply 

chain optimization models with an emphasis on the use of MIP models and solution techniques. 

They suggested that although complex interactions in the supply chain can be straightforwardly 

captured by these models, a framework that can represent quantitative and qualitative decision 

variables is necessary. Unfortunately, an established and widely accepted supply chain modeling 

structure does not exist.  

Coello [15] provides an extensive review of the use of heuristic-based optimization 

techniques for multi-objective problems, including weighted average of objectives, goal 

programming, ε-constraint method, Vector Evaluated Genetic Algorithm (VEGA) methodology, 

using genders in GA for objectives, weighted min-max approach, and multiple-objective GA. He 

states strengths and weaknesses of each of these approaches and suggests different problems 

suitable for them. However, he criticizes the crucial implementation of weighing solutions to 
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combine them into a single objective for pure mathematical optimization because of its 

drawbacks including the requirement of determining proper weights and lack of generating 

proper Pareto optimal solutions in the presence of non-convex search spaces. The stochastic 

nature of the supply chain which is a result of uncertainty of demand, quality, production and 

transportation times, and long term planning requirements, is also identified in the literature as a 

barrier for optimizing objectives with deterministic parameter values. Although both 

mathematical and heuristic-based solution algorithms use deterministic parameters, the 

evaluation of the proposed optimal supply chain structure is done with simulation to capture the 

impacts of those uncertainties. The simulation aims to capture the state of the system in the long 

term with use of stochastic parameters. Of the biggest advantages of the simulation is its 

unlimited capacity of introducing stochastic elements and constructing a true representation of 

the analyzed system. These aspects make simulation a perfect tool to examine the long term 

consequences of complex supply chain decisions which are usually made using uncertain 

information.   

Vergara et al. [57] developed a heuristic Evolutionary Algorithm (EA) for scheduling the 

part processes within the suppliers and setting the synchronized delivery cycle time for the 

supply chain. They compared the results with enumeration of all solutions and showed that the 

heuristic solution provides optimal or near-optimal solutions faster than enumeration methods as 

the problem size gets larger. Aytug et al. [4] reviewed the use of a Genetic Algorithm (GA), 

which is a specific type of EA, to solve production and operations management problems, such 

as loading, scheduling, facility layout, line balancing, and production planning. The review 

suggests a rapid increase in heuristic implementations in the last two decades. Several 

implementation experiments resulted in refined and better heuristic applications that are capable 
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of providing good solutions in reasonable computational times. Aytug et al. also stressed that 

more advanced modeling and implementation techniques and developments in applications of 

heuristics could be used to solve a wide range of problems. For example, improved solution 

encoding techniques provide faster heuristic procedures for very complex or large problems 

since they save computational time by representing solutions in more compact memory.  

Truong and Azadivar [56] stated that finding the optimal strategy for a single supply 

chain would be hard since different components of the supply chain have different, conflicting 

objectives and the supply chain is a dynamic system that evolves over time. They grouped the 

supply chain configurations into two categories: (1) structural decisions (location, capacity, and 

transportation) and (2) coordination decisions (supplier selection, partnerships, inventory 

ownership, information sharing, demand forecasting, production plans, etc.). They stressed the 

interactions between all these decisions and the need for considering all at the same time. Their 

proposed solution algorithm was a hybrid algorithm consisting of a GA (that picks structural 

variables in particular), MIP (solving for coordination decisions) and simulation (to evaluate the 

supply chain for random events). Their experiments with illustrative examples showed that this 

approach performed better than a pure GA application and a random sampling approach in terms 

of both solution quality and solution time. Nevertheless, further testing with larger instances 

would be beneficial to observe the quality of the solution procedure, since the authors generated 

a single-product supply chain with few supplier alternatives and a total of 12 production stages. 

The model is solved for a single period and single objective (cost minimization) for an existing 

product. The multi-period, multi-product extension of the model is needed for a more realistic 

application and multi-objective optimization exists as a challenge for this kind of hybrid solution 

algorithm.  
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Wu and O’Grady [64] developed a Constraint-Based Genetic Algorithm (CBGA) which 

feeds possible supply chain network design alternatives into the developed Extended Trans-Nets 

supply chain model. However, complex supply chain model representation of Extended Trans-

Nets requires too much computer memory. In addition, the CBGA uses a weighted average of 

multiple objectives in order to evaluate a solution’s fitness which diminishes the benefits of 

developing a multi-objective model.  

Lourenco [46] surveyed application of metaheuristics in various kinds of supply chain 

models, including product design, inventory planning, and supply chain network design. She 

suggests that their modularity, easy implementation, easy updating, and adaptation to new 

situations combined with simulation and decision support systems make metaheuristics an 

important solution method for solving large scale supply chain network problems.  

In parallel to the developments in problem formulations, combinations of several solution 

techniques (e.g., deterministic optimization techniques, simulation, heuristics, and system 

dynamics) are more commonly used to solve these large supply chain models. The introduction 

of stochastic or nonlinear elements and the growing size of the real-world supply chain models 

(i.e., more variables and parameters due to globalization and outsourcing) requires hybrid 

solution methods to be utilized to ensure quality solutions with reasonable computational times. 

2.4 SUMMARY 

The provided literature review summarizes how the research interests of different disciplines are 

focused on the product design and supply chain problems through the past six decades. In 

addition to the growing interests in these two distinct problems, in the last two decades, it is also 
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acknowledged that interactions of these two problems propose important research challenges as 

the industry needs grow with the globally marketed products and global supply chains. 

Different proposed methods try to quantify product design and customer satisfaction 

relationship. However, these methods often capture the relationship partially due to the highly 

qualitative nature of the customer behavior. Development of more realistic concepts and methods 

in establishing the quantitative representation of this interaction is still a significant research 

challenge.  

On the other hand, because of its more quantitative nature, supply chain problems are 

often modeled in a more structured way. However, although different supply chain models are 

proposed and even implemented in industry cases, the lack of a consensus on supply chain 

modeling is still a major drawback. A more significant problem with the supply chain research is 

that the models tend to be very large for real cases and thus it is very hard to find optimal or even 

acceptable solutions within adequate time limits. In this case, heuristics and metaheuristics are 

good candidates as alternative solution techniques when one does not want to compromise from 

the realistic models. These heuristics are still being developed and improved and finding suitable 

and fast heuristics for various supply chain problems is still an important research area.   

Finally, there has not been a significant progress in Design for Supply Chain research 

after the mid 1990’s until the last couple of years which is now a more challenging task due to 

the global scale of the product design and supply chain problems. Up to this time, the DFSC 

models were geared more towards optimizing the supply chain policies and the product 

differentiation and product family decisions without considering marketing aspects of the 

product design. Therefore, the modeling of impacts of the product design on customer 

satisfaction (thus on the product demand) and incorporating the design of the supply chain (not 
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only supply chain policies but the actual suppliers and their connections) still poses a significant 

research problem.  

In this research, the product design is looked at both from the marketing and the 

production perspectives and its interactions with the customer satisfaction and the supply chain 

performance are investigated. The impacts of product demand and various supply chain 

performance metrics are captured and translated into financial metrics. In addition, different 

solution techniques including deterministic optimization and heuristics are investigated and their 

performances are analyzed. In brief, this research aims to fill in the gap by combined modeling 

of product design – demand generation, supply chain – demand satisfaction, and product design 

– supply chain performance interactions as well as investigating efficient solution techniques.   
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3.0 PROBLEM FORMULATION 

In this section, the DFSC problem formulation, which is based on the literature and industry 

experts’ reviews, is presented. Following the detailed problem definition, the preliminary models 

used in the early steps of the solution method analysis are discussed. Next, the complete 

mathematical notation and formulation is given. In the subsequent sections, the reduced 

mathematical models from the complete formulation are provided with a brief asymptotic size 

analysis of the models. 

3.1 PROBLEM DEFINITION 

This research targets DFSC problems to find optimal product and supply chain design decisions 

within the product design alternative and supplier selection contexts. DFSC considers 

constructing the optimal supply chain configuration and product design simultaneously, so that 

impacts of the supply chain on the selected objectives are optimized during the product life 

cycle. 

The product design phase begins with design requirements and ends with a product 

description [65]. It can be grouped into four parts: (1) conceptual design phase (usually where a 

hypothetical design and product function alternatives are created rather than actual detailed 

drawings are developed), (2) physical design phase (where general features and design 
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specifications of the product are determined and drawn as well as some prototyping), (3) detailed 

design phase (where single components of the product are designed in detail and tested for 

satisfactory functionality), and (4) final design phase (where the component and final product 

designs are tested, finalized, and documented). Figure 4 illustrates the details of the design phase 

within the product life cycle. These design phases are not explicitly distinct and they contain 

feedforward and feedback loops between these phases since each phase creates inputs for the 

subsequent phases and undesired results in any phase require adjustments in the previous phases. 

 
 

 

Figure 4: Design phase in the product life cycle 

 
For a new product, the design phase generally uses customer expectations and marketing goals of 

the company as inputs for the conceptual phase. With these inputs, the main functions of the 

product are determined. For example, a car manufacturer may decide to launch a new car and the 

marketing team decides on the targeted customers. The demand for a new product, complaints 

about the performance of an existing product, or the failure due to malfunctions of an existing 
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product can trigger a new product design. At this point, it should be noted that the product design 

phase is also applicable for redesigning an existing product. This redesign process would not be 

too different than designing a completely new product other than shorter time requirements 

especially for the conceptual phase due to existing knowledge. The customer expectations are 

usually used in the conceptual design phase to define the broad scope of design requirements, 

such as how powerful, or how technologically advanced the product should be. The pricing 

requirements are also determined in this phase in general, leading to a Target Costing (TC) 

procedure to determine an acceptable cost for the final product.  

In this research, it is assumed that the product’s main function, the general product 

definition, customer expectations, and the customers’ assessments about functions of the 

components are known. Therefore, the market research efforts to understand what customers 

require and how they value each available feature related to new or redesigned products are not 

modeled. Instead, this information is assumed to be already known and used as an input for the 

DFSC model.  

With these assumptions, the problem is defined to be selecting the “optimal” product 

design. This optimal design is aimed at achieving maximum profit by generating desired demand 

through satisfying customer needs and by utilizing the supply chain optimally. Here, an optimal 

supply chain is defined to have lower cost with acceptable lead time and to provide high quality 

products. Obviously, the demand generation and satisfaction are not only functions of a product 

design, but also significant outcomes of the supply chain performance thus leading to the DFSC 

concept. Figure 5 illustrates the proposed DFSC procedure.  
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Figure 5: The proposed DFSC Procedure 
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The proposed DFSC procedure starts with the definition of the main product. Based on this 

decision, Value Engineering, market surveying, and similar tools are utilized to understand how 

much value each product feature would add to the product from the customer point of view. This 

information is later used in deciding among product design alternatives. At the same time, 

product definition, value assessment, and market survey results are combined to develop a 

possible pricing range for the final product. Given that price range and company’s profit goals, a 

target product cost is established. In the next step, by employing customer preferences and 

proposed features of the product, different product components are determined. Subsequently, 

customer value assessment and target cost information is distributed among these product 

components. For example, initial customer surveys for a car design may suggest a certain value 

for the safety of the car. However, this value needs to be distributed among several components 

related to safety such as braking systems, traction controls, airbags, and seat belts either by 

industry experts or again by customer survey methods. In the next step, different design 

alternatives for each component are designed. These design alternatives might be actual different 

geometric component designs or may consist of different design tolerances, different materials, 

and regional customization options. In parallel to the design alternatives development, potential 

suppliers are searched. For each component design, supplier’s capabilities, capacity, cost, lead 

time, and quality information is collected. Finally, the proposed DFSC approach optimizes the 

product and supply chain designs concurrently by balancing demand generated by the product 

design and demand satisfied through the associated supply chain. The details of different 

modeling assumptions and concepts captured by the model formulation are explained below. 
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Objective Function 

Since the developed DFSC model aims to balance the product and supply chain designs, 

different objectives can be sought. In the literature, the supply chain optimization models mostly 

aim to minimize total cost of the supply chain [7]. However, in reality, a company’s final 

objective from a product would always be to generate maximum profit by creating demand for 

this product through marketing and then by satisfying this demand through manufacturing and 

sales. Fandel [22] suggests that “as a component of strategic planning, strategic supply chain 

management is focused towards the goals and tasks of company policy. The main goal of 

strategic supply chain management is to achieve profit maximization.” In their simultaneous 

product and supply chain design study, Lamothe et al. [37] stressed that when market shares (and 

demand) depend on the product configuration (options chosen), the eventual objective needs to 

be profit maximization. Since the DFSC models developed in this research consider both 

marketing and manufacturing decisions towards creating and satisfying the demand, the final 

objective is selected to be overall profit maximization throughout the product’s life cycle.   

Marketing Mix Assumptions 

In terms of marketing mix decisions, price and product (as product design) are modeled 

since they are the most relevant decision variables in profit maximization. For simplification 

purposes and in support of the main objective of understanding product and supply chain design 

interactions, impacts of product placing and promotion are excluded.  

Product Design’s Impacts on the Demand and Supply Chain 

In this research, the product design plays three important roles. The first one is that the 

value of each component alternative design is added to determine the final value of the product. 

The total demand for the product is positively correlated to the value of the product design thus a 
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better product design would increase the demand or vice versa. In order to quantify the 

customers’ needs and value assessments, each product component is given a value between 0 and 

1. These component values add up to 1, representing a percentage of the corresponding 

component’s value satisfying the customers’ needs. For example, a computer basically consists 

of a motherboard-CPU, a hard disk, a monitor, memory, and other peripherals. If the monitor is 

valued at 20% importance by customers then it would be valued as 0.2 in the model. The 

remaining components’ values would sum up to 80% (or 0.8 in the model). Within each 

component, several design alternatives are considered. Each of these alternatives has different 

values with a maximum of the value of the component itself. For example, an LCD monitor may 

be valued at 20% (0.2) due to its better view quality and smaller size where a CRT monitor may 

be valued at 10% (0.1) due to its old technology and larger space requirements. The important 

point here is that a design alternative’s value should never exceed the maximum value of the 

component itself (20% for a monitor in the example). In this model, all component designs are 

assumed to be compatible with each other allowing the model to select the product designs 

without any restrictions. However, for a given time period only one design alternative for each 

component can be selected since concurrent selection of different design alternatives would 

mean different products at the end and would require a multi-product model. At the same time, it 

is assumed that there is no correlation between the value of a component design and the 

associated supplier manufacturing and transportation costs and lead times. This implies that a 

higher valued component design may cost less than a less valued component design to 

manufacture or transport. For example, a (high valued) LCD monitor takes less space than a 

regular (low valued) CRT monitor resulting in lower transportation costs.  
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The second role of the product design is that it limits supplier alternatives for the supply 

chain network since each component design alternative may not be manufactured by each 

supplier. Within the same computer design example, an LCD monitor design would result in a 

different suppliers set than a CRT monitor since an LCD is an advanced technology and still may 

not be manufactured by some suppliers.  

Obsolescence  

Finally the third role of the product design is that, by utilizing different component 

alternative values over the time periods, it captures the impacts of the obsolescence which is an 

important product design performance metric in today’s fast paced business environment. For 

example, a high valued component design for the initial time periods might have a lower design 

value for the later time periods. Since this value is directly linked with the product’s demand 

generation potential, a lower value represents lower demand due to obsolescence of the particular 

component design. It should be noted that in this model obsolescence is also captured by 

diminishing supplier capacities over the time periods for certain component design alternatives. 

For example, in a year, a supplier may have half the capacity it has today for a particular 

component alternative due to unavailability of raw materials, lower profitability for the supplier, 

and market competition. Therefore, the model captures obsolescence both by accounting for 

reduction in demand and reduction in supply as the component design alternative becomes 

obsolete.    

The Demand Function and Demand Assumptions 

As it is stated that price and product (as product design) factors of the marketing mix are 

used in the model, the demand function consists of their interactions. Various functions are used 

in the marketing, economy, and engineering literatures to represent price – demand relationship 
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including linear, polynomial, exponential, logistic, etc. In this research, a quadratic function is 

used to relate the pricing decisions to the demand since it captures the changing price elasticity 

of the demand for different pricing ranges without complicating the mathematical model.  

The impact of the product design on the demand is assumed to be linearly correlated 

(positive) with the product design value. According to this approach, the maximum design value, 

1, generates the maximum demand where any lower product design value reduces the demand in 

a linear fashion. For example, a product design value of 0.5 would generate half of the maximum 

demand. 

A third element of the demand function is the time period itself, where the demand 

occurs. This element helps capture the impacts of different product life cycle phases on the 

demand such as having a lower demand during the introduction period and a higher demand 

during the product maturity phase given that same price levels and product design features are 

provided in each period.  

The interaction of these three elements (price, product design, and time period) is 

assumed to impact the demand in a combined way. Therefore, each element’s impact is 

multiplied toward the final demand calculation, leading to a non-linear demand function due to a 

quadratic price function and multiplication of price and design value variables. A demand 

function linearization schema is provided in Appendix section A.2.  

Supply Chain Performance Metrics 

For the supply chain planning models, Weber [62] suggested that manufacturing cost, 

lead time, product quality, supplier capacity, and supplier location are the criteria most often 

used as primary decision factors. Together with the industry experts’ opinions (see Section 5.2), 

primary supply chain criteria are selected to be manufacturing, inventory, and transportation 



 49 

costs, lead time, and supplier capacity. Quality of each supplier is assumed to be at least at a 

certain level that they are considered in the planning. Therefore, an assumption of the model is 

that all the available suppliers meet the quality specifications of a particular component or they 

are not considered for being candidates and have a zero capacity for that particular component. 

Supplier locations are also not explicitly modeled for simplification; however the impacts of the 

location on the transportation costs and lead times are captured by supplier specific information. 

Other than these two main aspects, the supplier location impacts are mostly qualitative in nature 

such as risks and opportunities. Although these measures can be added into the model later, they 

do not have a direct impact on the product and supply chain design interaction and thus are not 

included.  

Economies of Scale Structure and Assumptions  

The supplier manufacturing costs are included as unit costs incurred per item 

manufactured. These costs change for selected component design alternatives, suppliers, and 

time periods. In addition, supplier capacities may differ for each time period, for the component 

design alternative, and for different suppliers. In order to capture the impacts of the economies of 

scale, which suggests lower unit manufacturing costs for larger order sizes, the supplier 

capacities and manufacturing costs are divided into two levels. Up to the first supplier capacity 

level (which would represent a partial use of the total capacity), a relatively higher unit 

manufacturing cost is incurred per unit. Only if this level 1 capacity is fully utilized, then 

additional units that fall into level 2 capacity would be charged a lower unit manufacturing cost. 

This model representation captures the concept of reducing per unit manufacturing costs with 

higher capacity utilization. It should be noted that the economies of scale factor in this model is 
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only related to unit manufacturing costs and has no impact on transportation and supply chain 

network costs and lead times.  

Transportation Structure and Assumptions 

In this model, different transportation costs are incurred for different directions of flow 

between suppliers, for different component alternative designs, and for different time periods. 

This structure helps to capture different import / export taxes applied by countries. For example, 

if a country (or region) only applies import taxes and omits export taxes, then it would cost less 

to receive from that country than to send to that country. In addition, this structure allows the 

same components to be manufactured by different suppliers and transported to various higher-

tiered suppliers independently. Briefly, components are not required to be transported from / to a 

single supplier and any number of suppliers can manufacture the same component and transport 

to a single supplier or different suppliers. 

Lead Time Concept and Assumptions 

As one of the important supply chain performance metrics, lead times are considered as 

the summation of a components’ and its predecessors’ production times. Lead times are assumed 

to include both production and transportation times. Each lead time is defined for a component 

design alternative from a supplier for a given time period. However, lead times are assumed to be 

given for predetermined batch sizes and they only depend on the supplier capacity utilization. In 

lead time calculations, specific times of the suppliers are not considered in calculating the final 

lead time and instead, the longest time of the all suppliers (relative to the supplier capacity 

utilization) is assumed as a component’s lead time. This means production is assumed to 

continue only when all the required components are delivered. Partial deliveries from different 

suppliers with shorter lead times are not accounted toward a component’s final lead time.  
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Inventory Calculations and Assumptions 

The lead time information is not directly modeled in the objective function but rather its 

impacts on the inventory costs are used. Total inventory cost for a time period is approximated 

by assuming that final product inventory is held by the main manufacturer at a level that ensures 

a certain level of demand is satisfied during the lead time period. This demand satisfaction level 

is given by the end user and corresponding safety stock levels depend on this satisfaction level. 

Therefore, longer lead times results in higher safety stock levels driving inventory costs higher. 

By this representation, the model captures a lead time minimization objective via an inventory 

cost minimization perspective. In order to capture the variability of the demand and lead time in 

a deterministic model, it is assumed that demand and lead time have constant coefficients of 

variations (ρ1 and ρ2, respectively) thus higher lead time (and demand) values result in higher 

variations. Moreover, for simplification purposes and to keep a linear model, demand variability 

is removed from the inventory calculations (ρ1=0).   

Time Periods in the Model 

As this model aims to optimize product and supply chain design at a strategic (long term) 

level, time periods are considered to be product life cycle phases. These phases often last for 

months or even years. Therefore, this strategic level model does not deal with production 

scheduling and short term inventory planning problems.  

Supply Chain Network Costs 

Another important supply chain cost driver is the initial investment costs of the supply 

chain network. These costs include supplier certification, training, computer and communication 

network infrastructure (including computer software investments), and other initial, one-time 

fixed costs. Although the qualitative preferences over certain suppliers (such as supplier 
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preference weights) are not explicitly modeled, the model captures some of these cost-based 

preferences by accounting for different supply chain network costs. For example, a strategic 

supplier, which the company has had business with, would have significantly lower supply chain 

network costs since minimal certification or communication investments would be required for a 

new product. These costs are modeled in a way that when there is a direct relationship between 

any two suppliers, the associated supply chain network costs are incurred. The direct relationship 

between two suppliers is defined to exist only if a sub-component is transported from one of the 

suppliers to the other one. These direct relationships are represented in a one-way fashion, 

therefore they illustrate that only the sub-component supplier is linked to the upper tier and the 

corresponding costs are incurred. For an upper-tier supplier to be linked to the lower-tier 

supplier; it must supply another sub-component to this supplier and this would remove the 

hierarchy between them, making them both at the same tier. It should be noted that although 

these supply chain network costs are one-time fixed costs, they are not modeled as facility 

opening-closing costs which is widely used in the literature. The open-close decision structure 

limits the model to incur these costs once if a supplier is used regardless of its relationships’ 

complexity within the supply chain. The benefit of this modeling structure is that it allows 

different supply chain network costs to be incurred helping to capture cases like excluding 

certification costs for an already certified supplier. It also helps model different costs for each 

supplier if it has a complex relationship with many of the suppliers.  
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3.2 PRELIMINARY MODELS 

In order to test proposed deterministic optimization and heuristic solution techniques, two 

preliminary mathematical models are developed. Total cost and lead time are the two primary 

performance measures that are used in this preliminary analysis. Although other secondary 

performance measures are mentioned in the literature, only total cost and lead time are used in 

the preliminary problem formulation stage since this stage aims to evaluate performance of 

different solution techniques rather than developing the complete DFSC model. The product 

design, pricing decisions, and their impacts on the demand generation are also excluded in the 

preliminary modeling stage.   

In the preliminary analysis, the total cost is considered to have two parts: (1) total 

production costs (e.g., setup, material, and labor costs) and (2) total supply chain network costs. 

Total production costs are assumed to be varying by production quantity and they are given per 

unit. For simplicity reasons transportation, distribution, inventory holding, and similar 

production costs are excluded in this stage. Total supply chain network costs are assumed to be 

fixed costs that are charged independent of the number of units produced by the main 

manufacturer or its suppliers. It is assumed that there would be a network (relation) between any 

supplier pairs (or between the supplier and the main manufacturer) for any directly related 

components that are manufactured by them. Direct relation between components is defined to 

occur when one of the components directly goes into the assembly of the other component in the 

Bill of Material (BOM). For example, if a metal component is directly assembled into a car body 

without going through any other process (e.g., painting, press, or welding), then there exists a 

direct relation between the metal component and the car body. Therefore, a network cost is 

incurred between the manufacturers of this metal segment and car body. It should be noted that 
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any supplier who manufactures a component that is used in several other components has 

network relations with all these manufacturers. However, if a supplier supplies more than one 

component for another supplier or the manufacturer, the network costs are incurred only once, 

since these costs are assumed to include initial inspection, training, communication network 

implementation, and similar one time initial costs. The primary difference of this preliminary 

supply chain network representation from the method described in the problem definition 

(section 3.1) is that suppliers are assumed to have a network connection when they manufacture 

any two directly related components regardless of whether these components are actually 

transported between them for manufacturing.  

With respect to the lead time minimization model, the lead times are assumed to be fixed 

and independent of the supplier’s capacity utilization in the preliminary analysis. Since the 

transportation aspect is also excluded in the preliminary modeling stage, the lead time values do 

not include transportation times but only consists of production times.  

Cost minimization model 

In this model, the cost is minimized subject to demand satisfaction, economies of scale, capacity 

limitations, and supply chain network generation constraints. The parameters and variables are as 

follows: 

Parameters: 

Sets i ∈ I : Sets of components from component 1 (final product) to component P 

Sets j ∈ J : Sets of suppliers from 1 (the main manufacturer) to S 

P: Total number of components used in the product (|I | = P)  

S: Total number of available suppliers (|J | = S) 

cij
1, cij

2: Unit manufacturing costs of component i at supplier j for production levels 1 and 2 
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Capacityij
1, Capacityij

2: Total production capacity of supplier j for component i for production 

levels 1 and 2. 

Demandi: Total demand for component i 

Netwcojl: Fixed supply chain network costs between suppliers j and l 

Relationik: Number of components k required to manufacture component i 

Variables: 

xij
1, xij

2: Total production amount of component i at supplier j for production levels 1 and 2 

zij: 1, if component i is manufactured by supplier j; 0, otherwise   

yjl: 1, if suppliers j and l have a direct relationship; 0. otherwise 

aij: 1, if supplier j does not fulfill its level 1 capacity with component i; 0, otherwise 

 

Equation (2.1) is the objective function that consists of total production and supply chain 

network costs. The first part of the equation is the total production costs that is the summation of 

level 1 and level 2 production costs of components at each supplier. The second part of the 

equation is the summation of total network costs incurred over all possible supplier relation 

pairs. The first constraint (equation 2.2) ensures that the total production of each component 
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satisfies the demand of this component. Equations (2.3), (2.4), and (2.5) serve both as capacity 

and economies of scale constraints. While equations (2.3) and (2.5) limit the production of each 

component with the related supplier’s capacity limitations for different production levels, 

equation (2.4) determines the value of the aij variable by checking whether level 1 production 

capacity is fulfilled. Unless this level 1 capacity is fully utilized, the aij variable prohibits use of 

any level 2 capacity by interacting in equation (2.5). Equation (2.3) also controls the zij variable 

by forcing it to be 1 when a production quantity is assigned to supplier j for component i. 

Equation (2.6) is used to capture the network relationships within the supply chain by ensuring 

that the yjl variable gets a value 1 when suppliers j and l manufacture directly related components 

so that appropriate network relation costs are incurred in the objective function. Equation (2.7) 

defines the structure of the variables. 

Lead time minimization model 

In this model, the total time required to manufacture the final product (lead time) is minimized 

subject to demand and capacity constraints. The same variables and parameters as used in the 

cost minimization model apply, with the addition of the following: 

Parameter: 

ptij: Production time of component i at supplier j 

Variables: 

LTi: Total lead time for component i 

ptimei: Maximum production time for component i 
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The objective function (equation 3.1) minimizes the lead time of component 1 (LT1), which is 

defined as the main product. Equation (3.2) ensures the demand for each component is satisfied 

where equations (3.3), (3.4), and (3.5) limit the production levels according to the capacity limits 

and dictate proper use of the economies of scale concept as described with the cost minimization 

model. Equation (3.6) ensures that production time of component i is selected as the maximum 

of all production times of component i among all suppliers that manufacture this component. 

This is necessary to capture the impact of selecting the supplier with longer lead times, since in 

general manufacturing a batch of product starts after its components arrives. Thus, if one supplier 

takes longer to deliver a component than another supplier, the production waits for the supplier 

with the longer lead time. The next constraint (3.7) defines the lead time of a component (LTi) as 

the summation of this component’s production time and the maximum of related component’s 

lead time values (since basically lead time values are based on production times). Equation (3.8) 

ensures that lead time of a component is at least equal to its production time. It can be suggested 

that equation (3.7) already includes equation (3.8), but to reduce the number of constraints in the 

model, equation (3.8) is defined only for those component pairs that have a direct relationship. In 
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this case, equation (3.8) is required to capture the lead and production time relation for the 

components that do not have any components used in them. Finally, equation (3.9) defines the 

structure of the variables.   

Reduced cost minimization model 

In addition to these preliminary models, another model is used to optimally assign the production 

orders within the heuristic optimization procedure. This model is an MIP model that minimizes 

total production costs without considering supply chain network costs. Therefore, this model is 

actually a subset of the equations given in the cost minimization model. This model is given 

below with the variable and parameter definitions as defined previously.  

 

The solution techniques test results based on these preliminary models are given in sections 4.1.2 

and 4.2.2. 

3.3 COMPLETE MODEL FORMULATION 

The complete DFSC model as presented here is based on the conditions and assumptions 

explained in problem definition (section 3.1). This model aims to maximize the total profit over 
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the product’s life cycle by selecting component design alternatives, prices, and supplier 

production and transportation quantities. The product demand, supply chain network structure, 

and inventory levels are also calculated. Obsolescence and economies of scale concepts are 

captured via different constraints. For the completeness of the model, all used parameters and 

variables (including ones that were used in preliminary models) are listed below: 

Parameters: 

• Sets i ∈ I : Sets of components from component 1 (final product) to component P 

• Sets j ∈ J : Sets of suppliers from 1 (the main manufacturer) to S 

• Set αi ∈ Ai: Set of design alternatives of component i 

• Set t ∈ T : Set of time periods  

• Set n ∈ N : Set of binary factorization elements of lead time – demand multiplication 

• P: Total number of components used in the product (|I | = P)  

• S: Total number of available suppliers (|J | = S) 

• Ai: Number of design alternatives for component i (|Ai| = Ai) 

• T: Number of time periods (each representing a product life cycle phase) (|T | =  T) 

• N: Number of lead time – demand binary variables (γ and δ) that cover all possible LT1t × 

Demand1t values in a binary representation (|N | = N)   

• cijαit
1, cijαit

2: Unit manufacturing costs of component i at supplier j for production levels 1 and 

2 for component design αi at time period t 

• Capacityijαit
1, Capacityijαit

2: Total production capacity of supplier j for component i for 

production levels 1 and 2 for component design αi at time period t 
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• Netwcojl: Fixed supply chain network costs between suppliers j and l 

• Relationik: Number of components k required to manufacture component i 

• ptijαit: Production time of design αi of component i at supplier j in time period t 

• valiαit: Value of design αi of component i for the demand in time period t (% of total 

contribution) 

• Tportcostjklαkt: Unit transportation cost of design αk of component k from supplier l to j in 

period t 

• ω1t, ω2t, ω3t: Allowed values that price can take in time period t 

• ht: Unit inventory holding cost of the final product in time period t 

• β1, β2: Demand function coefficients  

• timemultipliert: A parameter value in order to adjust demand value according to the time 

period t (based on what life cycle phase t is)  

• periodlengtht: Length of the time period t (in the same units with lead time) 

• zssratio: z-value from the normal distribution corresponding to the given safety stock ratio 

(ssratio) 

• ρ1, ρ2: Constant coefficients of variation for demand over lead time and lead time, 

respectively 

• Mcapiαit: Total available capacity for design αi of component i in time period t over all 

suppliers (∑
=

+
P

j
tijtij ii

CapacityCapacity
1

21
αα ) 

• Mdem: Maximum potential demand over all periods (calculated by using maximum of 

timemultipliert and lowest pricet with υt=1)  
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Variables: 

• xijαit
1, xijαit

2: Total production amount of component i at supplier j for production levels 1 and 

2 for component design αi at time period t 

• pricet: Price of the final product in time period t 

• yjl: 1, if suppliers j and l have a direct relationship; 0, otherwise 

• aijαit: 1, if supplier j fulfills its level 1 capacity with design αi of component i in time period t; 

0, otherwise 

• ujklαkt: Total amount of design αk of component k manufactured at supplier l and transported 

to supplier j in time period t 

• πiαit: 1, if design αi of component i is selected for time period t; 0, otherwise 

• υt: Total value of the final product design for time period t (between 0 and 1, calculated by a 

constraint in the model) 

• Demandit: Total demand for component i at time period t 

• φ1t: 1, if price values are increased to ω2t; 0, otherwise 

• φ2t: 1, if price values are increased to ω3t; 0, otherwise 

• λ1t, λ2t: Variables that reflects pricing decision onto demand generation via φ1t, φ2t, and υ in 

time period t 

• τt
+: 1, if demand > total production; 0, otherwise 

• τt
-: 1, if total production > demand; 0, otherwise 

• kt
+: Equal to demand, if demand > total production; 0, otherwise 

• kt
-: Equal to total production, if total production > demand; 0, otherwise 
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• ψ1t, ψ2t, ψ3t, ψ4t: Control variables that link pricing decisions and demand or total production 

values for revenue calculation in time period t 

• LTit: Total lead time for component i in time period t 

• LTintt: LT1t value rounded up to the nearest integer 

• ptimeit: Maximum production time for component i in time period t 

• γnt: 1, if nth binary factor for LT1t is selected for time period t; 0, otherwise  

• δnt: A variable to reflect lead time-demand multiplication via binary factorization in time 

period t 

The complete DFSC model is described below: 

Objective Function 

The objective of this model is to maximize the total profit throughout the product’s life cycle. 

Two components of the total profit are total revenue and total cost and total profit is defined as 

Total Profit = Total Revenue – Total Cost 

Since the model is not restricted to satisfy all the demand, the Total Revenue would be  

Total Revenue = Price x Satisfied Demand 

where,  

Satisfied Demand = min(Demand, Total Production) 

Since both demand and production amounts are variables in the model, for the Total Revenue 

calculation, a linearization schema is developed. The details of this linearization are given in 

Appendix section A.1. According to this schema, Total Revenue over the product’s life cycle is 
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On the other hand, Total Cost consists of all supply chain related costs, namely production, 

supply chain network, transportation, and inventory costs. The Total Production Cost is the 

summation of all manufacturing costs incurred by all the suppliers for all selected component 

design alternatives over the planning horizon. Therefore, it can be expressed by  

 
The supply chain network costs are incurred whenever there is a direct relationship between two 

suppliers. Hence, Total Supply Chain Network Cost is the summation of these costs over all 

supplier pairs and given as 

 
The transportation costs are incurred per unit transported, so the Total Transportation Cost is the 

summation of costs incurred per item for each component design alternative between all supplier 

pairs over the planning horizon as represented below. 

 
Finally, Total Inventory Cost constitutes the last group of cost drivers. Due to the non-linear 

nature of the safety stock calculations, the Total Inventory Cost function is linearized. The details 

of the linearization schema are given in Appendix section A.3. The Total Inventory Cost is the 

summation of Inventory Costs over all time periods and given below. 

 
Given these components of the objective function, the complete DFSC model is presented below.  
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Equation (6.2) calculates the demand of the final product (component 1) for each time period 

based on selected component design alternatives, price, and the time period adjustment 

parameter. The original demand function in non-linear form is given below. 

 
Since equation (7.1) is non-linear due to multiplication of the price and υ variables, a 

linearization schema is presented in Appendix section A.2. Equation (6.3) does not necessarily 

constrain the feasible region, but instead is used to evaluate the demand for each selected 

component alternative design based on the demand for the final product and Bill of Materials 

data. Similarly, equation (6.4) makes sure that each component that is assembled into another 

one is manufactured in at least an amount required by the Bill of Materials data. The difference 

between these two equations is that equation (6.4) constrains the minimum manufacturing 

quantity of a component where equation (6.3) only calculates the demand for this component but 

does not enforce any limits on the manufacturing amounts. Equations (6.5), (6.6), and (6.7) 

establish supplier capacity limits and an economies of scale structure as explained in preliminary 

models. The next three constraints incorporate the product design decisions into the model. The 

first constraint (6.8) ensures that only selected component alternative designs (for which πiαit = 1) 

are manufactured. The second product design constraint (6.9) requires that exactly one 

component design alternative is selected for each component in each time period. The last 

product design constraint (6.10) is used to calculate total value of the final product based on 

component design alternative selections. The supply chain network design is set up by the 

equation (6.11) by making sure that two suppliers are linked (that is yjl = 1) if any transportation 

occurs between them (that is ujklαkt > 0) for a component. Equation (6.12) guarantees that the 

total amount of a component transported from a supplier is at most the manufactured quantity by 

tttt liertimemultippriceDemand ××+= υββ )( 2
2

11 (7.1)
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this supplier. The next constraint (6.13) makes sure that for a component manufactured at a 

certain supplier, all required subcomponents are transported to this supplier from other suppliers. 

Equations (6.14) through (6.17) are used to calculate the lead times. Equation (6.14), similar to 

the equation (3.6) described in the preliminary models, makes sure that the production time of a 

component is at least equal to the longest time it takes for manufacturing this component among 

all the suppliers that manufacture this particular component. This constraint is necessary since it 

is assumed that the production of a component starts only after all of its subcomponents are 

delivered to the manufacturer. Therefore, the longest production time among all of a 

component’s suppliers is defined as the production time of this component. However, different 

from the preliminary modeling, in this complete model it is assumed that production time data 

(ptijαit) is given for the total capacity of the supplier, hence the final production time of a 

component at a particular supplier is determined relative to the capacity utilization of this 

supplier. For example, if a supplier states that it takes 10 days to manufacture the complete batch 

in full capacity utilization, then the model decides that the production time of this component at 

this supplier would be 5 days if half the capacity is used. Equations (6.15) and (6.16) are used to 

calculate the final lead time of a component in the same fashion described in the preliminary 

models where the former constraint (only defined for components which have subcomponents) 

ensures that the lead time of a component is equal to the summation of its own manufacturing 

time and the maximum lead time of its subcomponents. The latter constraint is used only for the 

components which do not have any subcomponents to make sure that their final lead time is at 

least equal to their production times. In the lead time constraints set, the last equation (6.17) is 

used to represent the final lead time of the main product with binary variables for inventory cost 

linearization described in Appendix section A.3.  
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Constraints (6.18) through (6.45) are used for linearization of the model and do not 

impose any actual limits on the product and supply chain design. Equations (6.18), (6.19), and 

(6.20) ensure that δnt variables take values to truly represent demand – lead time multiplication in 

a binary format. Similarly, while equation (6.21) ensures that only one of the second or third 

price levels is selected, the following three equations ((6.22), (6.23), and (6.24)) ensure that the 

λ1t and λ2t variables take correct values to capture price and product design value multiplications.  

In order to calculate the satisfied demand, which is the minimum of demand and total 

production, equations (6.25), (6.26), and (6.27) control the τt
+ and τt

- variable values to represent 

whether the demand or the total production is larger. Based on these τt
+ and τt

- values, kt
+ and  kt

-

variables take the minimum of the demand or the total production via equations (6.28) through 

(6.33). The following ten constraint sets, equations (6.36) through (6.45), control the ψ variables 

that are used in revenue calculation and described in revenue linearization in section A.1 of the 

Appendix. Finally, equation (6.46) establishes the required variable types and bounds.  

This complete DFSC model formulation defines all of the considered problem aspects 

under the stated assumptions. Therefore, this model is used as the base formulation to investigate 

research questions. However, this research not only investigates the proposed DFSC concept but 

it also focuses on different modeling practices and the tradeoffs between solution performance 

and model features. As the complete DFSC model is very large and complex, despite the 

simplification by linearization of the model, it requires too much computational time and power 

to optimize. In addition, this model entails several parameters that sometimes companies cannot 

estimate easily. Therefore, different reduced models are developed to investigate the impacts of 

certain concepts on the value of the model and solution time and quality. The following section 

(3.4) provides different models that are derived from the developed complete DFSC model.  
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3.4 REDUCED MODELS 

As stated in the research question 1, this research aims to investigate the importance of different 

product design and supply chain performance metrics in real industry cases as well as their 

impacts on modeling the DFSC problems and impacts on the performance of the solution 

techniques. Therefore, to investigate impacts of different performance metrics, different reduced 

DFSC models are developed. These models are based on the developed complete DFSC model 

and they are developed by removing some model features, changing some assumptions, or both. 

These models are presented below and the differences from the complete model are explained. 

The impacts of these changes on the validation of the model and performance of the solution 

techniques are discussed in sections 5.2 and 5.3.1, respectively.  

Initially, the economies of scale concept is removed from the complete model resulting in 

the reduced DFSC model 1. Although this is a widely used concept both in industry and 

academia in supply chain modeling, for simplification purposes, it is usually modeled by using 

piecewise linear functions with only a couple of segments as in the complete DFSC model. 

Therefore, the actual representation of the economies of scale concept is often only an 

approximation in order to keep the models linear. In addition, the unit manufacturing cost data is 

often estimated for a long-term planning in such models thus it involves a significant amount of 

uncertainty. Moreover, demanding more detailed cost data based on the capacity utilization of 

the suppliers only amplifies this uncertainty. Briefly, the first reduced model investigates the 

impacts of removing the economies of scale concept from the DFSC modeling. It is assumed that 

using an average unit manufacturing cost (thus having a less realistic model) is a reasonable 

trade off for the increased uncertainty due to more detailed data requirements for the economies 

of scale modeling.  
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In the complete DFSC model, the economies of scale were introduced by dividing the 

supplier capacities into two different levels and using an associated two-level unit manufacturing 

cost structure. This representation drives constraints given in equations (6.6) and (6.7) and also 

requires the introduction of a binary variable, aijαit, to control the proper application of the 

concept. As a result, removing the economies of scale concept eliminates these two constraints 

and the corresponding binary variable. In addition, since the production quantities at each 

supplier are no longer divided into two levels, the second level manufacturing quantity variable, 

xijαit
2, and the second level capacity parameter, Capacityijαit

2, are no longer necessary. As it is 

discussed in the model asymptotic size analysis section (3.5), these changes significantly reduce 

the number of variables and constraints. The mathematical formulation of the reduced DFSC 

model – 1 is given in Appendix B.1. 

In the reduced DFSC model 2, the impacts of removing the lead time (and thus inventory) 

from the complete DFSC model are investigated. This reduced model is based on the complete 

DFSC model therefore it utilizes the economies of scale concept. When the lead time concept is 

removed, only the direct cost related supply chain performance metrics remain in the model. As 

it is discussed in the model validation section (5.2), the lead time data is often hard to collect or 

estimate compared to the cost data. In addition, supply chain costs are usually determined and 

fixed for a period through contractual agreements where the lead time depends on the actual 

daily operations and varies greatly. Although contracts may oblige supply chain partners to 

perform within certain lead time limits via penalties or other sanctions, it is still very hard for 

companies to estimate a true lead time for a supply chain in the long-term. Furthermore, the 

inventory levels highly depend on the inventory keeping and product ordering policies. The 

variability of the lead time and demand also requires certain assumptions as discussed in the 
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complete model formulation section (3.3) such as constant coefficient of variation and linearly 

changing average inventory levels. Therefore, it may be preferable to neglect inventory and lead 

time concepts in the initial planning stage and consider them separately in a later phase of the 

supply chain planning process to save from the model solution time and achieve the optimal 

solution. The impacts of removing the inventory and lead time concepts on the model and 

solution quality are discussed in section 5.3.1 in detail. The mathematical formulation of the 

reduced DFSC model – 2 is given in Appendix B.2. 

In the complete DFSC model, the lead time and inventory cost concepts require several 

binary (γnt, δnt) and continuous (LTit, ptimeit) variables. In addition, removing lead time and 

inventory concepts makes the related parameters (ptijαit, ht, periodlengtht, zssratio, ρ1, ρ2) 

redundant. Finally, constraints (6.14) through (6.20) and the inventory cost calculation in the 

objective function, which is given in equation (5.5), can be removed from the model. The 

significance of the removal of these variables and constraints are discussed in section 3.5. 

3.5 MODEL ASYMPTOTIC SIZE ANALYSIS 

In this section, an asymptotic size analysis of the preliminary, complete, and reduced models is 

provided. This analysis summarizes the changes in the number of variables and number of 

constraints, as well as the expected performance of the solution techniques. 

Preliminary Models 

The complexity of the proposed models increases not only by the number of product components 

and suppliers, but also with the interactions between them. For the cost minimization model, the 

number of variables is equal to 4(PS)+S2, where P is the number of components and S is the 



 72 

number of total suppliers. 2PS of these variables are binary, where the rest are non-negative 

continuous variables. The number of supply chain generation constraints depends on the direct 

relationships between the components therefore only an upper bound can be calculated. The 

maximum number of total constraints is equal to P(PS2+3S+1).   

For the lead time minimization model, the number of variables is equal to 4PS+2P, 

where 2PS of these variables are binary. The number of constraints is based on the relationships 

between the components, and between components and suppliers. Therefore, an upper bound for 

the total number of constraints is P(P+4S+2).  

As shown above for both models, the number of variables and constraints increase 

significantly when the number of components or suppliers is increased.  

Complete DFSC Model 

Among the developed models, the complete model captures all the described concepts and 

assumptions, making it the most complex model in terms of variables, constraints, and their 

interactions. By using the model’s set notation, the total number of the variables in the complete 

DFSC model can be expressed as S2+T(13+2N+3P+[(PAi)(1+3S+S2)]), where T is number of 

time periods, Ai is total number of design alternatives for the component i, and N is number of 

lead time – demand binary variables. Therefore, the number of variables in this model increases 

linearly with the number of components, number of time periods, number of lead time – demand 

binary variables, and number of design alternatives per component when one of them is 

increased and the others are constant. However, the number of variables increases with the 

square of the number of available suppliers when the number of other variables is constant; 

hence this parameter has the most significant impact on the model size. 

S2+T(4+N+[(PAi)(1+S)]) of these variables are binary and this shows that the number of 
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available suppliers is critical as the binary variables increase the solution time significantly more 

than continuous variables. It should be noted that among all variables, the number of xijαit
1, xijαit

2, 

ujklαkt, πiαit, yjl, and aijαit variables, which were described in section 3.3, highly depends on the 

model set sizes and their interactions, where the number of ujklαkt and yjl variables increases with 

the square of the number of available suppliers, significantly increasing the model size.  

Similar to the preliminary models, the exact number of constraints in the complete DFSC 

model depends on the parameter values which define component – supplier relationships, Bill of 

Material information, and component design alternatives. An upper bound on the constraints is 

equal to T(30+3N+P[4+P+PS+Ai(1+5S+S2)]), which suggests that the total number of 

constraints significantly depends on the number of time periods. This is due to the structure of 

the model to capture the total life cycle of the product based on life cycle phases rather than 

using short time periods for tactical or operational planning.  

The model analysis suggests that the complete DFSC model size highly depends not only 

on the size of the parameter sets but also on the interactions between these sets. Therefore, each 

problem instance differs by size and complexity and larger problems may have significantly 

fewer constraints due to relatively simpler Bill of Materials or component – supplier interactions.  

Reduced Models 

In the first reduced model, where the economies of scale concept is removed, the total number of 

variables is reduced by 2PSAiT to S2+T(13+2N+3P+[(PAi)(1+S+S2)]). The significance of this 

reduction is from the fact that PSAiT of these variables are binary, promising a significant 

reduction in solution times. In addition, with the removal of the economies of scale concept, the 

upper limit on the total number of constraints is reduced by 2PSAiT due to elimination of 
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equations (6.6) and (6.7). It should be noted that although the reduction in the number of 

constraints is important, having fewer binary variables notably reduces the solution space.  

With the exclusion of lead time and inventory cost concepts, the second reduced model 

employs 2T(P+N) less variables than the complete DFSC model. This reduction eliminates a 

total of TN binary variables (γnt) which is less than the binary variable reduction in the first 

reduced model. In terms of constraint reduction, the second reduced model cuts 

T(3N+P+P2+PSAi) constraints by purging equations (6.14) through (6.20). The total reduction in 

the number of constraints is less than the same reduction in the first reduced model provided that 

the P<SAi condition is true. It should be noted that this condition would hold in almost all real 

cases unless the majority of the considered components are manufactured by a very small set of 

suppliers. This analysis suggests that the first reduced model reduces more variables and 

constraints suggesting a shorter solution time as compared to the second reduced model. Section 

5.3.1 specifically addresses the solution quality and time performances of the reduced models.  

Table 2 summarizes the total number of variables and maximum number of constraints 

possible for each developed model.  
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Table 2: Summary of number of variables and constraints in different models 

 Number of 
Variables 

Number of Integer 
Variables Number of Constraints 

Preliminary Models     
Preliminary cost 
minimization model 4PS+S2 2PS+S2 P(PS2+3S+1) 

Preliminary lead time 
minimization model 4PS+2P 2PS P(P+4S+2) 

Preliminary reduced cost 
minimization model 4PS 2PS 3PS+P 

DFSC MIP Models    

Complete DFSC model 
S2+ 

T(13+2N+3P+ 
[(PAi)(1+3S+S2)]) 

S2+T(4+N+ 
PAi[1+S]) 

30T+3NT+ 
PT[4+P+PS+Ai(1+5S+S2)]

Reduced DFSC model – 1  
S2+ 

T(13+2N+3P+ 
[(PAi)(1+S+S2)]) 

S2+ 
T(4+N+PAi) 

30T+3NT+ 
PT[4+P+PS+Ai(1+3S+S2)]

Reduced DFSC model – 2  
S2+ 

T(13+P+ 
[(PAi)(1+3S+S2)]) 

S2+T(4+ 
PAi[1+S]) 

30T+ 
PT[3+PS+Ai(1+4S+S2)] 

 

 

In order to illustrate the significance of the reductions in the number of variables and constraints, 

Table 3 summarizes these values for all different models based on a problem instance with 10 

components, 3 design alternatives for each component, 15 suppliers, 4 time periods, and 8 lead 

time – demand binary variables.  
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Table 3: Numerical illustration of model asymptotic size of different models 

 Number of 
Variables 

Number of 
Integer Variables Number of Constraints

Preliminary Models     
Preliminary cost 
minimization model 825 525 22,960 

Preliminary lead time 
minimization model 620 300 720 

Preliminary reduced cost 
minimization model 600 300 460 

DFSC MIP Models    

Complete DFSC model 32,981 2,193 42,896 

Reduced DFSC model – 1  29,381 393 39,296 

Reduced DFSC model – 2  32,837 2,161 40,560 

 

 

This numerical illustration presents a 10.92% reduction in number of variables for the reduced 

DFSC model – 1 and 0.44% reduction for the second reduced DFSC model. More importantly, 

the reduction in the number of binary variables, which challenge and lengthen the solution 

procedures, is 1,800 for the first reduced model and 32 for the second reduced model.   

 

 

 

 



 77 

4.0 SOLUTION METHODOLOGY 

In order to solve the developed MIP models, a deterministic optimization method (branch and 

bound) and different metaheuristics are investigated. This chapter provides a brief history of 

these methods followed by the details of specific implementations for this research. Finally, their 

performance test results on the preliminary test models are presented. 

4.1 DETERMINISTIC OPTIMIZATION METHODOLOGIES 

4.1.1 Overview 

Deterministic optimization methodologies include all varieties of solution techniques that are 

aimed toward solving the problems that only involve deterministic parameters and variables. 

Problem formulations that only include continuous variables and linear functions are solved by 

using Linear Programming (LP), which was mainly developed during World War II and evolved 

by incorporation of fast and optimal guaranteed solution methods such as the Simplex 

Algorithm. For a problem to be formulated as an LP, it should satisfy four assumptions [63]. The 

first one is the linearity assumption that states each of the variable’s contribution to any equation 

in the model is constant and these contributions are additive, therefore prohibiting any 

interactions (including multiplication and division) of the variables. The second assumption 
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(divisibility) states that all of the variables in the model are continuous. The third assumption is 

certainty which requires all the model parameters are to be known constants, thus it assumes that 

the model is solved under perfect information. The final assumption is that the model has a 

single objective which is optimized under the other assumptions. However, many real problem 

cases violate the divisibility assumption by requiring either all or some of the variables to take 

integer values. When all of a model’s variables are required to take integer values, this model 

formulation is called Integer Programming (IP). On the other hand, when models engage both 

continuous and integer variables, they are named as Mixed Integer Programming formulations.   

The MIP problems are usually very hard to solve effectively compared to the LP 

problems. However, certain methods are developed to accelerate the solution procedures (e.g., 

branch and bound, cutting plane, branch and cut, delayed column generation) and save time over 

the enumeration of all possible integer solutions. Since this research does not evaluate nor use all 

of these methods, only the branch and cut method is discussed in detail. The branch and cut 

method is actually a combination of branch and bound and cutting plane methods. The branch 

and bound method, first introduced by Land and Doig [38] in 1960, aims to shrink the search 

space for the problem by pruning unpromising search space regions thus saving computational 

time. The underlying process of this method is that after the initial LP relaxation of the problem 

is solved, the solution space is divided into smaller sub-solution spaces (branching). During this 

process, a solution tree is constructed to keep track of which solutions (nodes) have which 

variables at the integer values and the objective values of these solutions. Within the process, the 

time savings come from pruning the unpromising branches of the tree instead of spending time 

on these solutions as in the complete enumeration. By keeping track of each node’s best possible 

solution value, as an upper (or lower) bound, other nodes that have worse bounds can be 
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removed from the search space. The cutting plane method, first introduced by Gomory [28] in 

1963, aims to add new specially structured constraints (cuts) to the original model in order to 

eliminate the non-integer optimal solution for the initial model relaxation. These cuts are 

constructed in a special formation so that they do not remove any feasible integer solutions from 

the search space when eliminating the current non-integer solution. The branch and cut method 

used in this research is a combination of branch and bound and cutting plane methods, where 

during the branch and bound algorithm, relevant cuts are introduced to further reduce the 

solution space size.  

The most significant feature of solving LP and MIP problems by the mentioned methods 

is that finding the optimal solutions to these problems is guaranteed, provided one exists. 

However, MIP problems are usually very hard to solve to the optimal value due to the drastically 

increasing solution space size for larger problems. In this case, the specially structured solution 

procedures such as heuristics and metaheuristics need to be considered. Their details are 

discussed in section 4.2. The following section provides the computational test results of the 

described MIP branch and bound solution procedure on the preliminary models.  

4.1.2 Performance on the Preliminary Models 

In order to perform tests on the performance of MIP and metaheuristics, five different illustrative 

problem instances are generated randomly for the preliminary models. Table 4 shows detailed 

information about each of these problem instances.  
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Table 4: Illustrative test problem data for the preliminary models  

Problem 
Instance 

Number of 
Components

Number of 
Suppliers 

Number of 
Components per 

Supplier 
1 5 10 1-3 
2 10 20 1-4 
3 25 50 1-7 
4 50 100 1-14 
5 100 200 1-19 

 
 
 

For all instances, unit manufacturing costs (that suppliers charge per component produced) are 

selected randomly based on a uniform distribution (here to referred as uniform-randomly) from a 

[10-100] interval for the first production level and from a [1-70] interval for the second 

production level. However, the second level cost is forced to be less than or equal to the first 

level cost to ensure the economies of scale concept is considered. Similarly, first and second 

level capacity values for each component-supplier pair are selected uniform-randomly having the 

second level capacity larger than or equal to the first level capacity. For all instances, lead times 

are distributed uniform-randomly from a [100-1,000] interval. SC network costs are again 

selected uniform-randomly from a [10,000-1,000,000] interval.  

The MIP solution technique is utilized by using the CPLEX® optimization software to 

optimize each model separately. CPLEX® uses a robust branch and cut algorithm to solve MIP 

models optimally in a short time period, however MIP models tend to increase in size 

significantly as the number of variables increases making the solution procedure very time 

consuming. The behavior of the MIP solution techniques for small and large models is tested and 

the results and the performance of the solution procedure is analyzed. 

All CPLEX® runs are completed on the Microsoft Windows® XP platform on a computer 

with an Intel® Pentium 4 3.06 GHz CPU and 1 GB of RAM.  
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The cost minimization and lead time minimization models are solved by using default 

CPLEX® parameters as the base case. Table 5 shows the results of the cost minimization runs 

where Table 6 reports results of the lead time minimization runs. Problem instance 4 in the cost 

minimization model and problem instance 5 in the lead time minimization model cannot be 

solved to the optimal value due to memory limitations. Therefore, the best found integer 

solutions are reported.  

 

 Table 5: MIP cost minimization model preliminary run results 

Problem 
Instance 

Final Integer 
Solution ($) 

Relative 
Optimality Gap*

Solution Time 
(in seconds) 

1 21,769,159 0.00 % 0.11 
2 56,899,401 0.00 % 0.21 
3 46,931,986 0.00 % 2,457.76 
4 81,096,271 16.18 % 494,246.30 
5 381,543,320 0.00 % 113,737.19 

*   Relative optimality gap is the percentage of the gap between the best known integer solution and the best possible 
integer solution (a lower bound).  

 
 
 

Table 6: MIP lead time minimization model preliminary run results 

Problem 
Instance 

Final Integer 
Solution (hr.) 

Relative 
Optimality Gap* 

Solution Time 
(in seconds) 

1 2,704 0.00 % 0.13 
2 3,381 0.00 % 0.13 
3 1,695 0.00 % 5.59 
4 2,193 0.00 % 228.69 
5 3,108 11.03 % 102,465.21 

*   Relative optimality gap is the percentage of the gap between the best known integer solution and the best possible 
integer solution (a lower bound).  

 
 
 

The MIP results show that as the problem size gets larger, the solution time increases 

significantly. The time increase is more significant in the cost minimization model due to its high 

dependency on the relationships between the components and suppliers as described in the model 
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complexity section. However, the cost minimization model results show that both the solution 

quality and the solution times depend on the exact problem instance values in addition to the 

problem instance size. For example, problem instance 4 cannot be solved to the optimal value in 

more than 5 days and is stopped due to memory limitations where the largest problem instance 

(5) can be solved to the optimal point in 1.5 days.  

4.2 HEURISTICS AND META HEURISTICS 

As specified before, the time to solve a MIP problem with branch and cut method increases 

significantly as the problem size gets larger. In this case, heuristics and metaheuristics present an 

important alternative to the deterministic optimization methods.  

4.2.1 Overview 

Heuristics, in general, can be defined as special algorithms which are designed to solve a 

problem much faster than the traditional optimization methods, occasionally by guaranteeing an 

optimal solution or sometimes by providing an approximation limit to the real optimal solution. 

It should be noted that this approximation limit may be infinite, meaning that no guaranteed 

optimality approximation is provided by the heuristic. In this sense, heuristics are often designed 

specifically for a problem (and formulation) and they exploit the problem structure to efficiently 

come up with good solutions in a shorter time (e.g., Nearest Neighborhood Algorithm for 

Traveling Salesman Problems and Dijkstra’s Algorithm for Shortest Path Problems). However, 

this special design of the algorithm for a particular problem limits its applicability on other 
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problems. In addition, some heuristics are not always developed to optimize a problem but to 

find a feasible solution very quickly. Especially for large combinatorial optimization problems, 

MIP techniques may stall even before finding a feasible solution, encouraging the use of 

heuristics.  

Metaheuristics, alternatively, are special types of heuristics that are applicable to a wide 

range of problems and they are not limited by the problem structure and formulation. However, 

metaheuristics often utilize some randomness in the search process. In addition, metaheuristics 

usually move in the search space by utilizing specially designed operations to evaluate a portion 

of the search space to come up with a good solution quickly. In general, a particular solution 

quality cannot be guaranteed for metaheuristics. There exist various metaheuristics for different 

types of problems but the most common ones include Genetic Algorithm (GA), Tabu Search 

(TS), Simulated Annealing (SA), Ant Colony Optimization (ACO), and Greedy Algorithm 

(GrA).  

The application of different metaheuristics on the supply chain problems are discussed in 

section 2.3. In this research, GA and TS are selected as candidate metaheuristics for the DFSC 

problem since they are the commonly used techniques and their performances are known to be 

very good for these types of problems. Initially, these metaheuristics are evaluated by using the 

preliminary model formulations. A brief history of these methods and their application details are 

given below.  

Genetic Algorithm 

The Genetic Algorithm was initially developed by Holland and his associates at the University of 

Michigan in the 1970s [33]. The GA has a biological basis. In brief, the GA imitates the 

operations of Darwin’s Theory of Evolution such as crossover and mutation, to find the optimal 
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solution (even though it is not guaranteed). The main idea behind the algorithm is to reach a 

“good” solution by employing these operations on an initial set of solutions, namely an initial 

population. The individual solutions, which as a set constitute a population, are called 

chromosomes. Each chromosome represents a solution for the problem and therefore is encoded 

to represent a particular solution. Encoding is an important issue for the GA since it dictates how 

the algorithm advances by limiting the search space and determining the structure of certain GA 

operators. The chromosomes are often encoded by using binary values for yes – no, open – close 

and similar decisions or by using integer and/or real numbers to represent real values that the 

corresponding problem variables could take. Every following generation after the first one is 

generated by creating new offspring by applying crossover to two selected parent chromosomes 

from the previous generation and sometimes also letting the best ones live without performing 

crossover (elitist approach). Mutation is used to partly modify the old generation’s individuals or 

the newly created offspring in order to diverse the search. The GA has certain advantages over 

other search and optimization methods which are its ability to search the solution space 

extensively without being stuck on a local optimal point and being computationally beneficial 

especially for large problem instances. However, its major drawback is that it does not guarantee 

a global optimal solution which is common for metaheuristics in general. For further detailed 

information about GA, refer to Goldberg [27]. 

Tabu Search 

Tabu Search is a metaheuristics solution algorithm that employs a memory structure that defines 

the way the algorithm moves through the search space. Attributed to Fred Glover [25][26], it was 

originally developed two decades ago. Since then, several refinements have been made to the 

algorithm making it more powerful. The main idea of TS is to keep track of previous moves in 
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the solution space and diversify the search by encouraging the search process to move to 

unexplored regions of the solution space by preventing going back to previous steps. This is 

implemented by a so called “tabu list” which consists of changes made to the solutions in the 

previous steps. Whenever the algorithm searches for another solution, it is blocked from 

considering previous solutions as alternatives, thus it is forced to move to an unexplored region 

of the solution space.  

As a first step in a TS procedure, solutions are defined and coded into a solution array 

similar to the chromosome concept in the GA. The structure of the solution array is very 

important since it determines the possible operations to be utilized on it. Another important TS 

concept is “neighborhood” which defines the set of all solutions that lie near the current solution. 

Each solution is considered to be within the neighborhood of the current solution if it can be 

reached directly from the current solution by an operation called a “move.” Therefore, move and 

neighborhood are closely related terms and setting one help dictate the other.  

In general, the TS algorithm starts by picking a solution randomly from the solution 

space. After evaluating the objective value for that solution, it evaluates objective values of all 

feasible solutions within the neighborhood of the current solution and moves to the “best” one in 

the neighborhood. After a new current solution is fixed, the previous move operation is added 

into the tabu list thus preventing the algorithm from evaluating the previous solution as a 

candidate for the next step. As the algorithm moves through the solution space in this manner, 

the tabu list fills and many moves become prevented. The usual application is to set a limit for 

the number of tabu moves, so after a certain number of iterations, the oldest move is removed 

from the list and it is allowed to be examined again. Although the TS algorithm has a tendency to 

pick a solution with a better objective function value than the current one on every iteration, the 
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tabu list may prevent it from doing so. Therefore, the algorithm is sometimes forced to move to a 

worse solution which helps diversifying the search and preventing being stuck in a local optima.  

In addition to the tabu list, which keeps track of last moves thus called “short term 

memory,” some “long term memory” concepts are also popular in the TS. The long term 

memory generally uses the frequencies of solution segments (attributes), e.g., how many times a 

solution segment occurs in the search. This type of memory is used to employ “diversification,” 

which aims to force the algorithm to search a wider area by selecting less frequently used 

attributes or “intensification” which compels the algorithm to focus on a particular region by 

urging more frequently used attributes. It should be noted that there are many extensions and 

variations used in TS applications to improve the solution process. For further details of TS 

concepts, refer to Glover and Laguna [26]. 

4.2.2 Performance on the Preliminary Models 

In this research, the GA and TS algorithms are coded in Visual Basic by using Microsoft Visual 

Studio® 6.0 and run on the same hardware as described in MIP performance testing on the 

preliminary models. 

Genetic Algorithm 

In a GA, genes, which are elements within a chromosome, can take different values (called 

alleles) such as continuous, integer, or binary numbers. They define the structure of a 

chromosome and therefore have drastic impacts on the behavior, the solution quality, and 

computational time of the algorithm. In the preliminary testing implementation of the GA, the 

chromosomes represent the solutions with binary genes. Each chromosome represents a complete 

solution of the problem where all possible component–supplier pairs are decided to be active (in 
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use) or inactive. Each gene of the chromosome corresponds to a component – supplier pair and 

an allele value (1 or 0) of the gene represents the status of the corresponding pair; 1, being an 

active pair and 0, an inactive pair. Figure 6 depicts an illustrative chromosome structure.  

  
 

 Component – Supplier Relationship 
 p1-s1 p1-s2 p2-s1 … … pp-ss-2 pp-ss-1 pp-ss 
1 = used pair  
0 = unused pair 1 1 0 … … 0 1 0 

 

 

Figure 6: Chromosome structure of the Genetic Algorithm for the preliminary models 

 
 

It should be noted that only the possible component – supplier pairs are included in the 

chromosome structure hence only available suppliers for manufacturing a component are listed 

under this particular component’s section. For example, a chromosome structure for a problem 

set can be as comp1-supplier2, comp1-supplier5, comp2-supplier3, comp2-supplier6, etc.   

The GA solution procedure begins with creation of the initial population. For the next 

steps, new generations are created by applying two major genetic operators and additional 

procedures. After copying a certain number of best solutions to the next generation directly 

(elitist selection rule), new solutions are created by a crossover operator which selects two 

parents (two solutions from the previous generation) according to a roulette wheel selection rule. 

In this rule, all solutions have a certain probability of being selected as parents which is 

distributed according to the objective value of the solution, called the fitness value. Then a cut 

point is selected randomly based on a uniform distribution (hereafter referred to as 

uniform-randomly) and the offspring is created by copying the genes from the first parent up to 

the cut point and copying the rest from the second parent. With a certain probability, these new 



 88 

solutions are mutated, which means some genes of the solution are randomly flipped from 1 to 0 

or vice versa making any part – supplier pair active or inactive. This mutation procedure adds 

diversity to the populations and helps prevent being trapped in local optimal solution spaces or 

early convergence. 

Since the defined problem has some constraints, crossover and mutation procedures may 

lead to infeasible solutions because of their random altering nature. Therefore, a repair 

procedure, that eliminates the infeasibility of a solution, is employed. Due to the structure of the 

chromosome and genetic operators, infeasibility can only occur in a segment of a chromosome 

that corresponds to a single particular part whose genes either come from different parents or are 

mutated. For that part’s chromosome segment, the repair procedure uniform-randomly selects 

genes to change their value into 1 (to use more suppliers to satisfy the demand) until infeasibility 

is removed. Although this procedure disturbs the exact replication of parents’ structures, it has a 

small impact in the solutions since only a single segment among many is repaired and major 

chromosome structures of parents are preserved.  

Finally, an immigration concept is employed to ensure the diversity of the population to 

search a wider solution space and prevent convergence to local optimal solutions. In this 

procedure, a certain percent of the population is randomly generated instead of being created by 

using individuals from the previous generation in reference to immigration in nature. If no 

improvements are observed in the last certain number of generations, the population is “kicked” 

where after elitist chromosomes are copied, the rest of the population is created randomly similar 

to the immigration concept. In this case, crossover and mutation operators are not used for the 

new population. The algorithm terminates either when convergence is determined (very small or 

no improvements are noted after a certain number of generations) or an iteration limit is reached. 
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The preliminary GA application solves for the cost and lead time minimization objectives. The 

pseudo-code of the GA implementation is given below. 

Preliminary GA Pseudo-code: 

Create initial population 
Until stopping criteria is met 
     Copy elitist chromosomes to next generation 
     Create immigrant chromosomes for the next generation 
     Until population size is filled 
 Select two parents according to the roulette wheel rule 
 Cross subsections of the chromosomes 
 Decide to mutate or not  
 If mutate, then randomly perturb the solution; else, continue 
     Do 
     Calculate fitness values of the chromosomes 
     If the best solution is not changed for certain number of generations, then kick 

population 
Do 
Check stopping criteria is met, if yes, then terminate; else, continue 
 

The GA requires several parameters to be adjusted before the final testing to reach the maximum 

performance since the behavior of the GA depends on these parameters. For the preliminary 

analysis, problem instance 3 with 25 components and 50 suppliers is selected for the parameter 

adjustment tests since it is not only complex enough to see different results for different 

parameter settings, but also manageable in size to perform many test runs. The analyzed 

parameters consist of population size, maximum number of generations, percentage of number of 

elitist chromosomes, and percentage of immigrating chromosomes. The mutation rate also needs 

to be adjusted for each run, but a special structure, which starts with lower mutation rates 

(between 0.01 and 0.2) and increases as the algorithm proceeds up to a predetermined high value 

(between 0.5 and 0.8), is used. Although high mutation rates may disturb the similarity of 

successive generations, initial performance tests suggest increasing mutation rates provides more 

diversity and helps to prevent local optimal results. In addition to mutation rate changes, another 
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operation that reduces the number of active component – supplier pairs is also included into the 

mutation operation. By this addition, when a new component – supplier pair is activated by the 

mutation operator, other active pairs for this component are removed keeping the solution 

feasible. Therefore, mutation rates are not explicitly analyzed within this parameter adjustment 

test sets. Each parameter setting combination has been run for five times for the parameter tests 

since the GA is a random algorithm. Performance results are reported in Appendix C. The results 

suggest that the number of maximum generations has the largest impact on the solution quality 

(despite increasing computation times) followed by population size. It is intuitive that increasing 

both the population size and the number of generations results in better solutions and longer 

computational times since this allows the algorithm to search more solutions in the solution 

space. However, these test results suggest that increasing the number of generations adds more 

value to the search than increasing the population size. Therefore, different numbers of 

generations and population sizes were used for different problem instances, with a preference of 

increasing the number of generations.  

For the percentage of elitist and immigration chromosomes, their impacts on the solution 

quality is not as significant, although a higher immigration chromosome percentage increases the 

solution time more than the percentage of elitist chromosomes. This is also intuitive in the sense 

that immigrating chromosomes are newly created while elitist chromosomes are exact copies 

from the previous generation, thus it takes more time to create a new feasible solution than 

copying an existing one. As the final parameter set, the percentage of elitist chromosomes is set 

at 5% where the immigration percentage is set at 1%. Table 7 reports results of the GA runs for 

five preliminary problem instances for the cost minimization problem and Table 8 reports the 

GA run results for the lead time minimization problem for five preliminary problem instances.   
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Table 7: Genetic Algorithm cost minimization model preliminary run results  

Problem 
Instance 

Population 
Size 

Number of 
Generations

Best 
Objective 

($) 

Solution 
time (in 
seconds) 

Relative 
Gap* 

Solution Time 
Gap** 

1 100 50 21,769,159 41 0.00 % 99.73 % 
 100 50 58,098,429 57 2.06 % 99.63 % 
2 100 200 58,700,381 249 3.07 % 99.92 % 
 200 250 57,474,011 636 1.00 % 99.97 % 
 100 1,000 54,389,653 3,389 13.71 % 27.48 % 
3 100 5,000 49,263,967 18,966 4.73 % 87.04 % 
 200 5,000 49,553,641 38,692 5.29 % 93.65 % 
 100 50 144,734,979 614 43.97 % -80,394.14 % 
4 200 250 135,448,500 5,992 40.13 % -8,148.44 % 
 100 1,000 91,306,584 12,520 11.18 % 3,847.65 % 
 20 355 474,948,397 3,100 19.76 % -3,568.94 % 
5 25 1,000 414,122,894 11,212 7.87 % -914.42 % 
 100 355 455,809,970 26,643 16.29 % -326.89 % 

* Relative gap is the percentage of the gap between the best known CPLEX® solution and the best GA solution. 
(Negative values show a better objective function value for the GA.) 
** Solution time gap measures compare how long the CPLEX® run lasts relative to the GA run. (Negative values 
show shorter solution times for the GA.)  
*** Bold values indicate a better objective value or a shorter solution time for the GA.  

 
 
 
Table 8: Genetic Algorithm lead time minimization model preliminary run results 

Problem 
Instance 

Population 
Size 

Number of 
Generations

Best 
Objective 

(hr) 

Solution 
time (in 
seconds) 

Relative 
Gap* 

Solution Time 
Gap** 

1 100 50 2,704 1.29 0.00 % 98.79 % 
2 100 50 3,381 7.12 0.00 % 98.79 % 
3 200 250 1,841 54.60 7.93 % 95.55 % 
4 250 1,000 2,601 112.18 15.68 % 59.22 % 
5 200 1,000 3,457 540.75 -12.70 % -18,848.72 % 

* Relative gap is the percentage of the gap between the best known CPLEX® solution and the best GA solution. 
(Negative values show a better objective function value for the GA.) 
** Solution time gap measures compare how long the CPLEX® run lasts relative to the GA run. (Negative values 
show shorter solution times for the GA.)  
*** Bold values indicate a better objective value or a shorter solution time for the GA.  

 
 

 
The GA results suggest that for smaller problem instances, the MIP solutions can achieve 

optimal solutions in a shorter time. Yet, for larger problem instances, the GA can find better 
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solutions than the MIP more quickly. The benefits of the GA are more significant with the cost 

minimization model where the number of nodes in the branch & cut procedure of CPLEX® 

increases significantly. Although not shown on the tables, it should also be noted that the GA can 

find a feasible solution for any problem instance in less than one second, whereas the MIP 

procedure spends time on the order of ten minutes to find the first feasible solution for larger 

instances such as 4 and 5. Another important point is that the benefits of the GA diminish in the 

long term in the sense that after a certain amount of time, the GA reports fewer improvements 

where the MIP procedure would eventually find the optimal solution. These results are intuitive 

since after a near-optimal solution is found, it takes a longer time to find a better solution 

because of the random search aspects of the GA.  

Tabu Search 

In this research, the solution array of the problem is defined as a binary array, with each element 

corresponding to a component – supplier pair similar to the chromosome structure of the GA 

application. The move operator is selected to change one array element’s value from 0 to 1 or 

vice versa on each iteration. As a result, the neighborhood is defined as the solutions that either 

have one more or one less active component – supplier pair. However, changing an array 

element from 1 to 0, thus making this pair inactive, may lead to an infeasible solution. In this 

case, these infeasible solutions are determined and are not considered as candidate solutions for 

future moves. After a move is completed, the changed array element is added to the tabu list to 

prevent its use in future moves. However, even if a move is on the tabu list, solutions reachable 

through this move are still evaluated since an “aspiration criterion” is implemented. With this 

concept, if a tabu move leads to a solution with an objective value that is better than any known 
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objective value so far, then this tabu move is allowed as an exception, thus preventing missing 

good opportunities in the solution space.  

The TS algorithm keeps track of the best known solutions and when a solution better than 

the best one is not found for a certain number of iterations, it changes the current solution to the 

best known and clears the tabu list. With this long term memory application, branching towards 

worse regions of the solution space is stopped after some point and a fresh search is initiated 

from the best known point without any prevented moves by emptying the tabu list. If no 

improvement is noticed after a certain number of iterations (convergence) or a predetermined 

iteration limit is reached, the algorithm terminates.  

Two main parameters of the TS, the tabu list size and the number of iterations limit, 

mainly determine the behavior of the algorithm. Therefore, these parameters are changed 

according to the size of the problem instance. All given values represent the starting tabu list size 

since the tabu list size is not fixed throughout the search. According to this policy, the tabu list 

size increased when a cycling between previous solutions occurs and it is reduced when no 

improvements are noted for a certain number of iterations. The number of iterations limit defines 

the maximum iterations allowed, however when the algorithm cannot improve the solution for a 

predetermined number of iterations, it is terminated. The preliminary TS application is able to 

minimize for both cost and lead time objectives. The pseudo-code of the TS implementation is 

given below. 
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TS Pseudo-code: 
Create initial solution 
Until stopping criteria is met 
     Apply move to each solution array element and evaluate the objective value 
     If a tabu move has better objective than known so far apply aspiration, else set the 

non-tabu solution with best objective value as the new solution 
     Add changed solution array element to the tabu list 
     Update tabu list by removing oldest tabu move 
     If the best solution is not changed for a certain number of iterations then set best 

solution so far as current solution 
Do 
Check stopping criteria is met, if yes, then terminate; else, continue 

For the five preliminary problem instances, Table 9 reports the results and the performance of the 

TS algorithm for the cost minimization model. The lead time minimization model results and 

performance are shown in Table 10.  

 
 
 

Table 9: Tabu Search cost minimization model preliminary run results 

Problem 
Instance 

Tabu List 
Size 

Number of 
Iterations 

Best Objective 
($) 

Solution 
time (in 
seconds) 

Relative 
Gap* 

Solution 
Time Gap** 

1 20 100 21,769,159 0.19 0.00 % 42.11 % 
2 50 250 56,899,401 22.93 0.00 % 99.08 % 
3 50 250 52,150,368 434.17 10.01 % -466.08 % 
4 50 250 133,883,711 2,100.41 39.43 % -23,430.94 % 
5 50 250 689,614,166 23,734.02 44.67 % -379.22 % 

* Relative gap is the percentage of the gap between the best known CPLEX® solution and the best TS solution. 
(Negative values show a better objective function value for the TS.) 
** Solution time gap measures compare how long the CPLEX® run lasts relative to the TS run (Negative values 
show shorter solution times for the TS).  
*** Bold values indicate a better objective value or a shorter solution time for the TS.  
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Table 10: Tabu Search lead time minimization model preliminary run results  

Problem 
Instance 

Tabu List 
Size 

Number 
of 

Iterations 

Best 
Objective 

(hr) 

Solution 
time (in 
seconds) 

Relative 
Gap* 

Solution 
Time Gap** 

1 20 100 2,704 0.17 0.00 % 23.53 % 
2 20 100 3,381 0.25 0.00 % 48.00 % 
3 20 500 1,706 27.04 0.64 % 79.33 % 
4 50 1,000 2,193 630.15 0.00 % 63.71 % 
5 50 200 4,717 1,144.32 36.02 % -8,854.24 % 

* Relative gap is the percentage of the gap between the best known CPLEX® solution and the best TS solution. 
(Negative values show a better objective function value for the TS.) 
** Solution time gap measures compare how long the CPLEX® run lasts relative to the TS run (Negative values 
show shorter solution times for the TS).  
*** Bold values indicate a better objective value or a shorter solution time for the TS.  
 
 

 

The TS lead time minimization results suggest that it performs very well for smaller instances 

and its performance is also good for the largest instance. However, for the middle-sized 

instances, it finds the optimal solution in a longer time compared to MIP solutions. This is a 

result of the defined neighborhood search policy in which the number of neighboring solutions 

increases extensively with the number of components and suppliers. However, due to the 

structure of the lead time problem, many neighboring solutions are degenerate, therefore the TS 

spends too much time searching different solutions with the same objective value. When 

compared to the GA, where the number of objective function calculations are fixed by the 

population size and degenerate solutions are very rare through crossover operations, the TS 

spends time on degenerate solutions and this causes worse computational time performance 

especially around a local optimal solution. In summary, GA outperforms TS as the problem size 

gets larger.  

For the cost minimization problem, the TS performs well with the smaller instances, 

however with larger instances, solving the reduced cost minimization model for each candidate 
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solution reduces the performance. It should also be noted that the number of neighboring 

solutions drastically increases with the larger problem instances. When compared to the GA, 

increasing the number of objective function calculations due to the problem size rather than 

having a fixed number of objective function calculations makes the GA preferable for larger 

problem instances. On the other hand, the TS outperforms the CPLEX® for the large instances by 

reaching good solutions in a shorter time although it takes longer to improve the solution for the 

TS than for the CPLEX®. This suggests complex neighborhood and extensive objective function 

value evaluation procedures of the TS results in diminishing benefits during the search procedure 

resulting in a better performance than the MIP but a worse performance as compared to the GA.  

These results suggest that none of the methods dominates another for all instances and 

each has certain time or solution quality advantages and disadvantages. However, in the long 

run, as the problem sizes gets larger, the GA starts to perform better compared to other methods.  

4.3 SELECTED SOLUTION METHODOLOGIES AND IMPLEMENTATION 

Based on the performance analyses of the different solution techniques on the preliminary 

models, the complete and reduced DFSC models are solved by using the MIP branch and cut 

method and the GA. The MIP guarantees finding the optimal solution and performs very good 

for smaller problem instances in particular. However, for larger problem instances, extensive 

search tree size creates a memory problem and finding the optimal solution takes very long. In 

such cases, the GA is used to quickly find good, near-optimal solutions. The implementation 

details of both the MIP and the GA are given below. 
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4.3.1 Mixed Integer Programming 

As described in the preliminary modeling section (4.1.1), the MIP branch and cut method utilizes 

the CPLEX® software. In order to solve MIP models, CPLEX® provides various options, 

including branching and node selection strategies, probing and cut generation alternatives, 

stopping criteria choices, etc. In order to select the best CPLEX® parameter set, an automated 

parameter tuning process, developed by Baz et al. [6], is utilized. In this process, a specifically 

designed program, Selection Tool for Optimization Parameters (STOP), works by solving a 

practically solvable size of the optimization model under different solver options in a structured 

way. First, a set of initial runs under different options were completed. Different solver options 

in these initial runs were selected by pairwise coverage; however STOP also allows the user to 

select these parameters randomly or by a greedy heuristic. Following that, a machine learning 

process based on regression trees (as artificial neural networks being another option) is employed 

to select optimization parameters for further runs. For CPLEX®, the investigated optimization 

parameters consist of MIP emphasis (preference of concentrating on finding the optimal solution, 

a feasible solution, or their combination), node selection (strategy for selecting a node for 

exploration), branching variable selection (strategy for selecting a variable to branch on at each 

node), dive type (an option to look for the children nodes with probing before selecting the 

node), fractional cuts, and Mixed Integer Rounding (MIR) cuts. The results of 64 runs with 

various solver parameter combinations with problem instances with five to six components and 

suppliers did not show any significant solution time difference over the default solver 

parameters. The default CPLEX® option for most of these parameters is for automatic selection 

and adjustment during the branch and cut procedure. The only two exceptions (that are not 

automatically adjusted during the branch and cut process) are the node selection strategy and the 
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MIP emphasis parameters. However, changing these parameters from their default values did not 

have a significant impact on the solution time. In summary, all MIP computational tests are run 

by using the default CPLEX® parameters.  

4.3.2 Genetic Algorithm 

In order to solve the complete and reduced DFSC models, the GA progresses by deciding on two 

key problem variables, the price levels (pricet) and the component design alternative selections 

(πiαit) in each time period. Therefore, each GA chromosome has two main segments, one for 

price and another for design selection variables. The complete GA chromosome structure is 

given in Figure 7. According to this structure, the price segment has T genes, each corresponding 

to a pricing decision for a time period. These genes may get values changing from 1 to the 

number of pricing levels allowed by the problem instance. For example, if three price levels are 

considered for the models, then these genes may be valued as 1, 2, or 3. It should be noted that, 

since there are no assumptions in the model limiting selection of price values for different time 

periods, any gene can take any of these allowed values independent of each other without 

causing any infeasibility.  

In the component design selection segment of the chromosome, each gene corresponds to 

a selected – not selected decision for a component design alternative in a time period. Therefore, 

the genes are valued as 1 if the corresponding component design alternative is selected for the 

particular time period (i.e., πiαit = 1) or as 0 if this component design alternative is not selected 

(i.e., πiαit = 0). However, due to the constraint given in equation (6.9), these genes’ values depend 

on each other for the representation of a feasible solution. Since only one design alternative can 
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be selected for each component in each time period, only one of the genes may be 1 for a given 

i,t parameter value pair.  

 
 

 

Figure 7: Chromosome structure of the Genetic Algorithm for complete and reduced models 

 
 

The GA algorithm starts by creating the initial population. This is done uniform-randomly 

selecting a price value and component design alternatives for each time period. Since only one 

design alternative is selected for each component in each time period, initial chromosomes 

always correspond to feasible solutions.  

Following the initial population, new generations are created by applying two major 

genetic operators and additional procedures. After copying a certain percentage of the best 

solutions to the next generation directly (elitist selections rule), new solutions are created by a 

crossover operator which selects two parents (two solutions from the previous generation) 

according to a roulette wheel selection rule (based on their fitness values) as described in the 

preliminary GA procedure. Then, for the crossover procedure, first two new offsprings are 

created. For the pricing decision in each time period, one of the two parents’ gene values is 

selected with a higher probability (0.7 in this research) given to the parent with the better fitness 

value. These genes are then copied to the first offspring. The other offspring’s price value for this 

time period is selected by the same procedure. After the price segment crossover is completed, 
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the component design alternatives segment crossover is utilized. For each component, a parent 

(again the first parent with higher probability equal to 0.7) is selected for the first offspring and 

the other parent is assigned to the second offspring. Within each selected component, for each 

time period, again one of the parents is randomly selected by assigning a much higher probability 

(0.95 in this research) to the previously selected parent. In order to avoid a repair function as 

explained in section 4.2.2, all of the component alternatives’ gene values are copied from the 

selected parent so that the crossover procedure always produces a feasible offspring. This 

crossover procedure mostly maintains each parent’s gene structure via iteratively reducing the 

probability of selecting different parents from the component level to the time period level but 

selection of different parents for a component’s different time periods is not completely 

eliminated.  

After both offspring are formed with crossover, with a certain probability, these new 

chromosomes are mutated. The mutation is done separately for the pricing and component 

alternative selection segments. For the pricing segment, the price of a uniform-randomly selected 

time period is changed to another allowed price level with equal selection probabilities for other 

price levels. In the component design alternative segment, a component, and then a time period is 

uniform-randomly selected for mutation. Within this time period, the already selected component 

alternative design (which has a gene value of 1) is unselected by flipping the corresponding gene 

value to 0. Among all other design alternatives, one is uniform-randomly picked and its gene 

value is flipped to 1 from 0 to select this design alternative. Therefore, this mutation procedure is 

ensured to keep feasibility of the offspring while providing some diversity to the GA procedure. 

The GA algorithm terminates either when a convergence is determined (no improvements are 

noted after a certain number of generations) or a time limit is reached.  
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Within the GA procedure, each chromosome’s fitness value (objective function value) is 

evaluated. Since the GA only picks the price and component design alternatives, the rest of the 

variables (production amounts, supplier selection, transportation flows, lead times, supply chain 

network, and economies of scale) need to be optimized for the given GA selections. Therefore, 

after each chromosome is completely produced (either by initial random selection, or by 

crossover and mutation), CPLEX® is called to optimize other decisions via solving a smaller 

DFSC model, suited for the GA application. The GA model for the complete DFSC model is 

given below in equations (8.1) through (8.23) where corresponding GA models for the reduced 

DFSC models are listed in Appendix D. These GA models are based on their MIP counterparts 

and they follow the same notation and variables as well as same concepts and constraints. 

However, there are small modifications on these sub-models in order to reflect the GA decisions.   

Since the GA algorithm selects price and component design alternatives, the complete 

DFSC is modified. Pricet, πiαit, and Demandit variables of the complete DFSC model are still 

used in this GA sub-model but they are defined as parameters. Since two components of the 

demand function (price and product design) are selected by the GA, the demand values can be 

computed by the GA and inputted to the CPLEX® model. Due to the use of these variables as 

parameters, the linearization schemas are not employed in this model. Price – satisfied demand 

multiplication in the revenue function and demand – lead time multiplication in the inventory 

cost calculations do not introduce any nonlinearity for this model. Therefore, linearization related 

variables including υt, φ1t, φ2t, λ1t, λ2t, ψ1t, ψ2t, ψ3t, ψ4t, δnt, and γnt are removed from the model. 

The only newly introduced variable to this GA sub-model is LTintt which is used in 

inventory cost calculations instead of the LT1t variable as presented in the complete DFSC 

model. This addition ensures that the final lead time value used for inventory cost calculations is 
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integer similar to the complete DFSC model lead time value for an equal comparison of both 

model results. The linearization of lead time and demand multiplication requires the final 

product’s lead time (LT1t) to be an integer value and this integrality requirement is implied by 

other integer variables in the complete DFSC model. However, since the GA sub-models do not 

include these integer variables, this newly included lead time variable (LTintt) ensures that the 

final product’s lead time is an integer value and the GA results are comparable to the MIP 

results. Equation (8.13) is also introduced in order to establish the relationship between true lead 

time and its integer counterpart. Table 11 summarizes the asymptotic size analysis results for the 

GA sub-models.  

 
 

Table 11: Summary of number of variables and constraints in GA sub-models 

DFSC GA Sub-
Models 

Number of 
Variables 

Number of 
Integer 

Variables 

Number of Constraints 

Complete DFSC GA  
sub-model 

S2+ 
T(5+2P+[(PAi)(3S+S2)]

1+S2+ 
T(2+PAi[1+S]) 

10T+ 
PT[2+Ai(1+5S+S2)+S(1+P)] 

Reduced DFSC GA  
sub-model – 1  

S2+ 
T(5+2P+[(PAi)(S+S2)]

1+S2+ 
T(2+PAi) 

10T+ 
PT[2+Ai(1+3S+S2)+S(1+P)] 

Reduced DFSC GA  
sub-model – 2  

S2+ 
T(4+[(PAi)(3S+S2)] 

S2+ 
T(2+PAi[1+S]) 

10T+ 
PT[1+Ai(1+4S+S2)+PS] 

 
 
 
The asymptotic size analysis shows that the GA sub-models have fewer variables and constraints 

than their counterpart MIP models as previously shown in Table 2. The number of available 

suppliers and the number of time periods have the most significant impact on the model size 

similar to the MIP models. Since the GA selects the product design and pricing decisions and 

therefore eliminates the associated variables, the impact of the number of components and design 

alternatives is reduced compared to the MIP models. Based on the previously used problem 
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example (see section 3.5), with 10 components, 3 design alternatives for each component, 15 

suppliers, 4 time periods, and 8 lead time – demand binary variables, Table 12 illustrates the 

number of variables and constraints in the GA sub-models.  

 
 

Table 12: Numerical illustration of model asymptotic size of GA sub-models 

DFSC GA Sub-Models Number of 
Variables 

Number of Integer 
Variables 

Number of 
Constraints 

Complete DFSC GA  
sub-model 32,725 2,154 42,840 

Reduced DFSC GA  
sub-model – 1  29,125 354 39,240 

Reduced DFSC GA  
sub-model – 2  32,641 2,153 40,400 

 
 

 
 

The GA illustration does not show a significant reduction either in the number of variables nor in 

the number of constraints compared to the MIP illustration (Table 3). The performance tests of 

the MIP and GA solution techniques (section 5.1) discuss as the significance of these reductions 

in number of variables and constraints and their impact on the solution performance. 
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The complete pseudo-code of the GA implementation is given below. 

Complete GA Pseudo-code: 

Create initial population 
Until stopping criteria is met 
   Copy elitist chromosomes to next generation 
   Until population size is filled 
      Select two parents according to the roulette wheel rule 
      For each offspring 
        For each time period 
          Select one of the parents (higher probability given to the parent with better fitness value) 
          Copy the corresponding gene value  
        Next time period 
      Next offspring 
      For each offspring 
          For each component 
              Select a parent (with higher probability given to the first parent) 
              For each time period 
                  Select a parent (higher probability given to the assigned parent)  
       Copy gene values for this component and time period 
              Next time period 
          Next component 
      Next offspring  
      Decide to mutate or not  
      If mutate  
         Randomly perturb the pricing for a time period 
         Randomly perturb a component design alternative selection 
      End if 
   Do 
   Calculate fitness values of the chromosomes 
Do 
Check stopping criteria is met, if yes, then terminate; else, continue 

 

Since the GA is a random search algorithm, different parameters impact the solution time and 

quality and different runs may produce different results. A parameter tuning test based on the 

preliminary models is explained in section 4.2.2. The rule of thumb suggests that increasing 

population size and number of generations would yield better solutions (with the expense of 

longer solution times) since more of the solution space will be searched. The preliminary 

analyses also support this outcome. On the other hand, increasing mutation probability and 
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percentage of elitist chromosomes have different impacts on the solution quality and time. A 

higher mutation rate endangers the survival of the good chromosomes (or chromosome 

segments) by randomly altering the genes too frequently. However, a low mutation rate would 

not help to diversify the population since the crossover operation always picks the genes from 

the existing gene structures. Therefore, for a balanced diversification and preservation of the 

population, a dynamic mutation rate is used [50]. According to this, the GA starts with a low 

mutation rate since the algorithm is more likely to improve the best-known solution during the 

early generations. However, as the best-known solution improves and the search progresses to 

later generations, it takes longer to find a better solution due to the random nature of the 

algorithm. In these phases, a larger mutation rate helps to diversify the population by random 

perturbation of the chromosomes [11].  

In addition to the mutation, survival of the elitist chromosome helps to exploit the 

best-known solutions to find better solutions within the neighborhood. According to this concept, 

a predetermined percentage of the best chromosomes of the population survives (copied 

unchanged) to the next generation based on their fitness values. This procedure ensures that a 

population always contains the best-known solutions and it survives until a better one is found. 

Since, according to the roulette wheel selection rule, a chromosome with a better fitness value is 

more likely to be selected for crossover, the elitist approach also guides the algorithm to make 

more use of the best-known solutions. However, a too high elitist percentage risks the diversity 

of the population by filling the new generation with too many of the chromosomes from the 

previous generations. A too low percentage would lead to loss of good chromosomes and thus 

the algorithm cannot exploit the good chromosomes to the possible extent. Therefore, the 

percentage of the elitist chromosomes for larger populations is increased. According to this 
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approach, a small population size would keep only a small percentage of the elitist chromosomes 

where more of these good solutions can be kept and exploited when larger populations are 

maintained.      

4.4 SOLUTION TECHNIQUES COMPLEXITY ANALYSIS 

Preliminary Model Solution Techniques 

Most of the MIP models, especially which do not satisfy specific conditions (e.g., with integer 

right hand side values or with a totally unimodular constraint matrix) tend to be NP-hard. In 

addition, most of the supply chain problems are modeled as MIP models. Although the 

complexity of the developed DFSC models is not explicitly proven, like most non-trivial supply 

chain models, it is expected that these models are NP-hard. The performance of the solution 

techniques discussed in sections 4.1.2 and 4.2.2 suggest that it is significantly harder to solve the 

developed DFSC models as these models grow in size and they do not guarantee a polynomial 

time solution. In addition, for the CPLEX® MIP solver, the complexity of the solution algorithm 

depends on the relaxed linear programming solution (with the fractional values of integer 

variables) and the relationships between the components and suppliers.  

Both of the heuristic algorithms evaluated in preliminary modeling (GA and TS) start 

with creating feasible solutions by fixing variables. This process takes O(PS) computational time 

where O denotes an asymptotic upper bound for the time of the process. It should be noted that 

in the GA, the number of chromosomes is equal to the population size for a single generation 

(thus the process takes O(pop_size × PS)) where the TS generates only a single solution at each 
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iteration. After the initial solution set is created, the GA uses three operations to create the next 

generation: 

1) copying elitist chromosomes (O(#elitist × PS)),  

2) creating immigrating chromosomes (O(#immigrating × PS)), and  

3) crossover and mutation (O(#crossover × PS)).  

Therefore, each generation of the GA lasts O(pop_size × PS), and for a given number of 

generations, the GA takes O(#generations × pop_size × PS) time.  

On the other hand, the TS investigates each neighboring solution of the current one by 

flipping a single bit every time. Thus the search takes O(PS) computational time. The move 

operation picks the best flip and moves to this solution which takes O(1) time since only a single 

bit is changed in each move. As a result, for a given iteration limit, the TS algorithm takes 

O(#iterations × PS) time. However, since both algorithms employ a CPLEX® MIP solution 

procedure to calculate the objective function by using branch and cut and simplex algorithms, 

neither algorithm is guaranteed to run in polynomial time suggesting a significant increase in 

solution times as the problem sizes increases.  

Complete and Reduced Model Solution Techniques 

Similar to the preliminary models, the complete and reduced DFSC model solution obtained by 

using the branch and cut technique depends on the interactions between components and 

suppliers (thus on the problem instance) and the problem size. Since the branch and bound tree 

would grow as the problem size gets larger, it increases the solution time. However, the growth 

of the solution tree size cannot be analytically determined since it depends on the initial 

relaxation results, the number of integer variables, and the problem instance itself. The model 

complexity analysis proposes that the number of binary variables is S2+T(4+N+[(PAi)(1+S)]) in 
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the complete DFSC model therefore an upper bound on the size of the branch and bound solution 

tree would be 2S2+T(4+N+[(PAi)(1+S)]).  

The GA solution procedure starts with creating an initial population which selects 

component design alternatives and prices for each time period. This process takes O(PAiT) time 

therefore it is polynomial. For the creation of the following generations, the elitist chromosome 

copying and crossover procedures take O(pop_size × PAiT) time in total, since each of these 

procedures requires copying each gene to a new offspring. However, the number of iterations 

(generations) the GA will use is not known since it depends on the improvements from one 

generation to the next. In addition, each chromosome’s fitness value is calculated by another 

branch and cut algorithm to solve for the remaining variables. In conclusion, since the number of 

generations changes randomly for each GA run and the branch and cut algorithm is not 

polynomial, the GA eventually cannot run in polynomial time.  
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5.0 COMPUTATIONAL RESULTS 

In this section, the computational results are presented. The first section reports on the 

performance of the MIP and GA solution techniques on the complete and reduced DFSC models. 

The solution quality and solution time are reported with a comparative analysis. The following 

section concentrates on the research questions stated in section 1.3. Each research question is 

investigated and the behavior of the models, solution techniques, and results are discussed. The 

third section summarizes the validity of the models and the results via academic literature survey 

and industry experts’ views.  

5.1 PERFORMANCE TESTS ON COMPLETE AND REDUCED MODELS 

The performance of the MIP and GA solution techniques are discussed in this section. In order to 

evaluate their performances, five complete DFSC model instances are created randomly. Table 

13 shows the number of components and available suppliers used in these problem instances. 

Similar to the preliminary modeling, these instances grow in size to evaluate the performance of 

the solution methods for different problem sizes.  
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Table 13: Complete and reduced DFSC problem instances for performance testing   

Problem Instance Number of Components Number of all Suppliers 
1 4 6 
2 6 9 
3 8 12 
4 10 15 
5 16 24 

 

 

 

For all five instances, four time periods are considered. Each time period in the model 

corresponds to a product life cycle phase, namely introduction, growth, maturity, and decline as 

suggested by Perreault and McCarthy [49].  

In these problem instances, the number of design alternatives for each component is 

uniform-randomly selected between 1 and 3. For the Bill of Materials relationships, a 

uniform-random assignment is followed where any number of a component between zero and 

five may be required by another component. It should be noted that if zero units of a component 

are required by another component, it is not used. The production time for each component is 

selected between 1 and 30 days uniform-randomly. By performing a presolve analysis for each 

instance, the maximum lead time is determined to be less than 256 days (28 days) for each 

instance. This bound necessitates eight binary lead time linearization variables (γnt) to be used for 

these problem instances.  

5.1.1 Mixed Integer Programming 

 For the performance testing of the branch and cut method, CPLEX® is utilized with the default 

parameters as suggested by the STOP procedure described in section 4.3.1. For each problem 
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instance, the branch and cut algorithm is allowed to run for 48 hours (172,800 seconds) or until 

the optimal solution is found (by a 0.01% optimality gap). The optimality gap measures the 

relative ratio of the objective value of the best integer feasible solution found to the objective 

value of the best possible solution (a bound) which is the best objective value of a node in the 

MIP solution tree. When the optimality gap value is equal to zero, the obtained solution is 

guaranteed to be the optimal one. Larger optimality gap values mean the true optimal solution is 

between the solution obtained and the bound. For any optimality gap value other than zero, the 

current solution may be the optimal solution but it is not guaranteed nor proven. Table 14 reports 

the results of the MIP runs with the complete DFSC model instances. 

 

Table 14: MIP results for the complete DFSC model 

Problem Instance Optimality Gap Solution Time (sec.) 
1 0.01% 150.69 
2 20.61% 172,800.00 
3 2,490.00% 172,800.00 
4 92.01% 172,800.00 
5 96.03% 172,800.00 

 
 
 

The results show that although a feasible solution to the problem is found for every problem 

instance, they cannot be solved to optimality with the given 48 hour time limit (except the 

smallest instance). Another important result is that the solution quality depends not only on the 

problem size but also on the problem instance as well. For example, the two largest problems (4 

and 5) can be solved to around 90% optimality, but the third instance result is only within the 

2,490% of the optimality bound. Therefore, the MIP solution progress cannot be easily 

determined by only assessing the problem size. Moreover, the results show that the complete 

DFSC is very complex and hard to solve even for small scale problems.   
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In order to further evaluate the performance of the MIP algorithm, the reduced DFSC 

model – 1 is solved by using the same problem instances and with the same 48 hour time limit. 

Table 15 summarizes the results. 

 
 

Table 15: MIP results for the reduced DFSC model – 1 

Problem Instance Optimality Gap Solution Time (sec.) 
1 0.01% 36.89 
2 0.01% 48,091.53 
3 15.64% 172,800.00 
4 36.60% 172,800.00 
5 33.11% 172,800.00 

 
 
 

The results show that the solution quality is increased for all instances compared to the complete 

model. As suggested by the model complexity analysis, having fewer binary variables helps the 

algorithm progress faster. These results still suggest that the solution quality degrades as the 

problems get larger and solution time increases. However, compared to the complete model, the 

algorithm finds better solutions in the same running time or even in a shorter time as seen in 

problem instance 2.  

In order to evaluate the performance of the MIP solution technique further, the reduced 

DFSC model – 2 is solved by using the same problem instances. The results are shown in Table 

16. 

 
Table 16: MIP results for the reduced DFSC model – 2 

Problem Instance Optimality Gap Solution Time (sec.) 
1 0.01% 6.24 
2 0.01%  7,023.81 
3 0.01% 145,232.95 
4 49.63% 172,800.00 
5 16.34% 172,800.00 
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The reduced DFSC model – 2 MIP results show that, in general, the performance increase is 

even better than the one for the reduced DFSC model – 1. Three of the five problem instances 

could be solved to optimality and the largest problem is solved to less than a 17% optimality gap, 

best among all three tests. However, the solution quality for the fourth instance is worse than that 

of for the reduced DFSC model – 1. These results suggest that the performance of the MIP 

solution algorithm is not necessarily correlated with the number of binary variables in the model 

as the reduced DFSC model – 1 has fewer binary variables than the reduced DFSC model – 2. 

The interactions between these variables are very important for faster reduction of the optimality 

bound. However, in general, it is clear that the algorithm performance deteriorates as the 

problems get larger.  

5.1.2 Genetic Algorithms 

In order to test the performance of the GA, the described five problem instances are solved for 

both the complete and the reduced DFSC models. The GA procedure is allowed to run for 48 

hours (the same limit applied to the MIP) or it is terminated when no improvements are noted in 

20 consecutive generations. Initial test runs without the objective improvement termination 

condition showed that once no improvements are noted for about 10 iterations, the GA often 

cannot find a better solution. Therefore, setting the termination limit to 20 consecutive 

generations without any improvements is reasonable. Each GA run is started with a 5% elitist 

chromosome rate and a 1% mutation rate. However, according to the dynamic mutation rate 

application, the mutation rate is increased by 1% when no improvements in the best-known 

solution are noted for three consecutive generations. The solution quality (optimality gap) of the 

GA is measured relatively to the final solution of the MIP technique. For example, if the MIP 
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finds the optimal solution and the GA does not, then there is an optimality gap for the GA 

solution. The negative optimality gap values mean that the GA solution is worse than the MIP 

solution (since the objective is to maximize the profit) where the positive values correspond to 

the GA solutions which are better than the MIP solutions. Since the MIP guarantees an optimal 

solution (if one exists), the GA can only find better solutions when the MIP runs are stopped due 

to meeting the time limit before the optimal solution is found. The solution time gap values on 

the other hand are different. The negative solution time gaps correspond to faster GA runs where 

positive solution time gap values mean that it took the GA longer to achieve the reported results. 

Table 17 summarizes the results of the GA with the complete DFSC model.  

 

Table 17: GA results for the complete DFSC model 

Problem Instance Objective Value Gap Solution Time Gap Solution Time (sec.) 
1 0.00% 99.56% 300.72 
2 -0.04% -99.83% 291.40 
3 5.30% -74.33% 44,354.28 
4 6.66% -98.54% 2,529.32 
5 -18.53% -38.17% 106,841.33 

* Bold values indicate a better objective value or a shorter solution time for the GA. 
 
 
 

According to the results, the GA usually terminates before the MIP, except for the smallest 

instance due to the requirement of searching for an extra 20 generations with no improvements. 

Since the GA does not use any optimality bound information, these additional generations 

increase the solution time even if the optimal solution is found as shown with the first problem 

instance. Due to the random nature of the GA, a solution quality bound cannot be given. 

However, results show that the GA finds the optimal solution for the smallest instance and it 

finds better solutions than the MIP for the third and fourth problem instances. For the second and 

the fifth (largest) problem instances, it cannot find a better solution than the MIP, suggesting a 
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highly random solution quality. However, the GA usually runs for shorter time periods compared 

to the MIP and the solution quality is always less than 20% worse compared to the MIP.  

Table 18 reports the results of the GA application for the reduced DFSC model – 1 where 

the economies of scale concept is removed.   

 

Table 18: GA results for the reduced DFSC model – 1 

Problem Instance Objective Value Gap Solution Time Gap Solution Time (sec.) 
1 0.00% 75.52% 64.75 
2 0.00% -99.87% 60.13 
3 5.72% -98.03% 3,396.70 
4 4.00% -98.57% 2,465.88 
5 -9.87% 0.00% 172,800.00 

* Bold values indicate a better objective value or a shorter solution time for the GA.
 

 
 

The reduced DFSC model – 1 GA run results show that the GA performs better with the reduced 

model as it finds the optimal solution for the first and second instances and finds better solutions 

than the MIP for the third and fourth problem instances. For the largest instance, the solution 

quality is less than 10% of the MIP where both algorithms terminate due to the time limit. 

However, the GA runs are often shorter than the MIP runs except for the smallest instance where 

the additional 20 generations requirement for termination adds extra time to the algorithm and 

becomes significant. As the last performance test for the GA, results of the reduced DFSC model 

– 2 are summarized in Table 19.  
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Table 19: GA results for the reduced DFSC model – 2 

Problem Instance Objective Value Gap Solution Time Gap Solution Time (sec.) 
1 0.00% 1,734.18% 114.45 
2 0.00% -98.26% 122.39 
3 -0.12% -70.66% 42,608.76 
4 -4.64% -86.25% 23,767.98 
5 -4.73% -66.87% 57,246.45 

* Bold values indicate a shorter solution time for the GA.
 

 
 

The reduced DFSC model – 2 results show that the GA can find very good solutions (less than 

5% worse than the MIP) in a relatively short time, except for the smallest instance due to the 

termination requirement described before. In the worst case, for the largest problem instance, the 

GA runs for nearly 16 hours where the MIP runs up to the 48 hour time limit.  

5.1.3 Comparative Analysis 

The final run results for the MIP and GA solution techniques only show the outcomes of the 

individual runs within the allowed time limits. However, the progression of both solution 

techniques are important to accurately compare their performances. For example, since the MIP 

procedure tries to find the true optimal solution to the problem, it continues to run even after the 

optimal solution is found to prove its optimality. On the other hand, the GA procedure terminates 

regardless of the goodness of the solution and does not try to prove optimality or to provide any 

optimality gap information. Therefore, the actual optimization process data is illustrated to 

compare the behavior of each solution technique over the run-time.  

For each of the problem instances, six different runs (MIP and GA runs for the complete 

model and the reduced models 1 and 2) are illustrated on the following charts. The x-axis shows 

the run time in a logarithmic scale where the y-axis shows the actual solution value. Since both 
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algorithms find a feasible solution with a positive objective value very quickly (in less than 

0.05% of their total run times), the y-axis on the graphs only shows positive objective values for 

clarity. The progress of both algorithms for the first problem instance is shown in Figure 8 for 

the complete DFSC model, in Figure 9 for the reduced DFSC model – 1, and in Figure 10 for the 

reduced DFSC model – 2. 
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Figure 8: Progress of the MIP and the GA for the complete DFSC model (instance 1) 
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Figure 9: Progress of the MIP and the GA for the reduced DFSC model – 1 (instance 1) 
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Figure 10: Progress of the MIP and the GA for the reduced DFSC model – 2 (instance 1) 
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The algorithm progressions show that for this smallest problem instance, the MIP solves the 

problem to the optimality for all models in a shorter time than the GA. The MIP dominates the 

GA for the complete DFSC model and the reduced DFSC model -2. Although the GA finds a 

better solution than the MIP initially for the reduced DFSC model – 1, the MIP outperforms the 

GA by finding the optimal solution in a shorter time. The progression of both algorithms for the 

second problem instance is shown in Figure 11 for the complete DFSC model, in Figure 12 for 

the reduced DFSC model – 1, and in Figure 13 for the reduced DFSC model – 2.  
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Figure 11: Progress of the MIP and the GA for the complete DFSC model (instance 2) 
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Figure 12: Progress of the MIP and the GA for the reduced DFSC model – 1 (instance 2) 
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Figure 13: Progress of the MIP and the GA for the reduced DFSC model – 2 (instance 2) 
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For the second problem instance, as opposed to the first instance, the GA dominates the MIP for 

all three models by finding the solutions with better objective values in a shorter time. The 

progress of both algorithms for the third problem instance is shown in Figure 14 for the complete 

DFSC model, in Figure 15 for the reduced DFSC model – 1, and in Figure 16 for the reduced 

DFSC model – 2. 
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Figure 14: Progress of the MIP and the GA for the complete DFSC model (instance 3) 
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Figure 15: Progress of the MIP and the GA for the reduced DFSC model – 1 (instance 3) 
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Figure 16: Progress of the MIP and the GA for the reduced DFSC model – 2 (instance 3) 
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For the third problem instance, the MIP finds better solutions in the beginning of each run; 

however the GA finds either better or as good solutions and takes less time in the end. The GA 

terminates before the MIP for all three models and actually the MIP cannot find as good 

solutions as the GA within the time limit. For the fourth problem instance, the progress of both 

algorithms is shown in Figure 17 for the complete DFSC model, in Figure 18 for the reduced 

DFSC model – 1, and in Figure 19 for the reduced DFSC model – 2. 
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Figure 17: Progress of the MIP and the GA for the complete DFSC model (instance 4) 
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Figure 18: Progress of the MIP and the GA for the reduced DFSC model – 1 (instance 4) 
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Figure 19: Progress of the MIP and the GA for the reduced DFSC model – 2 (instance 4) 
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For the fourth problem instance, the results differ for different models. In the complete DFSC 

model, the GA outperforms the MIP both in solution quality and time. For the reduced DFSC 

model – 1, the GA finds a slightly better solution than the MIP; however the MIP finds a very 

good solution in a much shorter time. For the reduced DFSC model – 2, the MIP outperforms the 

GA by finding much better solutions very quickly. The GA terminates earlier than MIP due to 

lack of any improvement in the solution quality before finding a solution as good as MIP did. 

The progress of both algorithms for the fifth problem instance is shown in Figure 20 for the 

complete DFSC model, in Figure 21 for the reduced DFSC model – 1, and in Figure 22 for the 

reduced DFSC model – 2. 
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Figure 20: Progress of the MIP and the GA for the complete DFSC model (instance 5) 
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Figure 21: Progress of the MIP and the GA for the reduced DFSC model – 1 (instance 5) 
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Figure 22: Progress of the MIP and the GA for the reduced DFSC model – 2 (instance 5) 
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For the largest problem instance, the MIP procedure terminates due to the time limit before 

proving the optimality of the solution. However, the GA cannot find a better solution for any of 

the three models and is dominated by the MIP. 

This comparative analysis of the both methods’ progressions suggests that neither one of 

the methods dominates the other for all models or problem sizes. The results show that the GA 

performs better for the mid-sized problem instances, but it is dominated by the MIP for the 

smaller instances (due to the terminating conditions) and by the larger instances due to the 

inherent difficulties that the GA encounters with a large solution space, i.e., a diminishing 

probability of improving a good solution.  

5.2 PROBLEM AND MODEL VALIDATION 

The DFSC modeling concepts, assumptions, and results are discussed with three different 

industry experts in order to get industry users’ input and validate the models. Some discussions 

with the industry experts were conducted in the model development phase and their input is 

incorporated into the models. Further discussions were aimed toward validating the models and 

assessing the solution quality towards the end of the research. These experts currently work in 

supply chain planning related tasks at their companies. The first expert works for a U.S.-based 

company that specializes in sleep and respiratory solutions. The second expert’s company 

manufactures electrical systems and components for automobiles, aircraft, and other industrial 

equipment and is also based in the U.S. The third expert works in an international company 

which manufactures electronics and provides electrical engineering solutions to diverse markets.  
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The discussions with these experts showed that none of the companies currently employ 

an integrated DFSC procedure that simultaneously considers product and supply chain design 

issues in the product design phase. However, both experts from the U.S.-based companies stated 

that their companies are beginning to utilize more of the simultaneous approach and forsaking 

the sequential approach. Yet, design teams still maintain primary responsibility for the design 

process with only partial involvement from supply chain related groups although the 

involvement by the supply chain groups is increasing. The third company expert stated that they 

are currently using the sequential approach in all of their product designs.  

The U.S.-based companies stated that their primary interest in the supply chain design 

problems is cost reductions. In terms of the product design, the U.S.-based companies’ primary 

concerns are the satisfaction of the regulations and customer specifications, followed by the 

improvement of the customer attractiveness of the product. The third company stated that their 

primary goal both in product and supply chain design is to satisfy specific quality levels required 

by the customer regardless of its impacts on the cost and other measures. All three experts 

confirm that the manufacturing, inventory, supply chain network, and transportation costs as well 

as lead times and supplier capacity limitations are the most important factors for their decisions 

in the supply chain design decisions. Other variables that they felt were of secondary importance 

but were not included in these developed models include mainly more qualitative factors such as 

working history with suppliers, strategic partnerships, number of distinct suppliers, certain risks 

due to suppliers’ processes or location, increasing diversity, and suppliers’ company culture. All 

three experts suggested that although these factors are important, they play a secondary role in 

the supply selection procedure and are often considered as tie-breaking criteria. This suggests 
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that the developed DFSC models would be a valid and useful decision support tool utilizing the 

most important industry criteria.  

In terms of product design, experts suggest that they often change the component designs 

several times in the product design phase to meet certain specifications and attract more 

customers or to achieve a better supply chain performance as suggested by the sequential 

approach. These design changes include, but are not limited to actual geometric design changes, 

selection of different materials, and using different versions of components such as computer 

chips. The impacts of these design changes on the demand and customer satisfaction are often 

assessed by the marketing departments via expert knowledge and forecasting or by customer 

surveys. Therefore, the industry experts suggest that the developed DFSC concept and models 

may improve their product design procedures by reducing the number of product design change 

iterations thus reducing the time to launch the product to the market.  

The industry experts suggest that they usually have a considerable amount of information 

about the potential price levels and demand in the product design phase so the pricing and 

demand function data requirements of the DFSC models can be satisfied. They also acknowledge 

that obsolescence plays an important role in their product and supply chain decisions and some 

level of obsolescence information can be predicted for the DFSC models. Experts stated that cost 

data such as supplier manufacturing costs and economies of scale information can be gathered 

with relative ease. However, transportation and inventory costs can only be estimated with a 

certain level of error due to their highly fluctuating nature. Similarly, suppliers’ lead time 

information may be estimated with some error since it highly depends on the daily operations 

and capacity utilization levels and may change over time. The initial supply chain network cost 

concept and its importance is also validated by the industry experts and it is suggested that these 



 131 

costs can be estimated since they are required only for the short term. In summary, the data 

requirements of the DFSC model can be satisfied within a certain level of error, therefore the 

experts suggested that the DFSC model would add value to their decision support systems.  

 The experts suggest that removing economies of scale or lead time and inventory 

concepts from the model in order to be able to solve it or shorten the solution time would have 

the least significant impact on the quality of the model. Since removing the economies of scale 

concept (reduced DFSC model – 1) significantly reduces the number of binary variables (and 

thus the model complexity) and it can easily be approximated via an average unit manufacturing 

cost value, the experts suggest that it would be reasonable to set this concept aside in order to 

improve the solution procedure. On the other hand, the removal of lead time and inventory 

(reduced DFSC model – 2) is a more significant sacrifice making it a secondary choice for the 

model reduction. The industry experts suggest avoiding some other model reduction suggestions 

such as removing transportation costs or removing supplier capacity limitations since these 

concepts add significant value to the models and the data can be estimated with relative 

accuracy. Price and / or demand decisions, variations due to different product life cycle phases 

(time periods), supply chain network costs, and product design’s impacts on the demand are the 

most significant value adding and differentiating concepts of the DFSC models and therefore 

should be kept even if they introduce complexity into the models.  

As another suggestion to reduce the model complexity and improve the solution 

procedures, the experts suggest that the models be solved for the most critical components of the 

product (as opposed to the whole product) in terms of customer satisfaction, product 

functionality, and cost and quality impacts. This would reduce the number of components in the 

model and the number of suppliers to be considered. For example, an analytical analysis such as 
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Pareto analysis can be employed to identify the most critical components in terms of their impact 

on the demand and their challenging requirements on the supply chain configuration. The experts 

suggest that in most of their products, the number of components that they would consider as 

critical is less than ten. Therefore, the developed illustrative problem instances can represent a 

real case and show the complexity of the models even for the instance with few components and 

suppliers.  

In summary, after reviewing the models and illustrations in detail, the industry experts 

liked the model and the underlying simultaneous optimization approach. They state that the 

model requires extensive amount of data however the required data would already be gathered 

for the product design and supplier selections. Therefore, they stated that they would use the 

developed DFSC models and it would serve as a valuable decision support tool. The industry 

experts also agreed that the model captures the most important product design and supply chain 

variables. They also stressed that it would be useful to customize the models into their 

company’s specific needs as further discussed in section 6.2 (extensions for the DFSC models).  

5.3 ANSWERS TO RESEARCH QUESTIONS 

In this research, the performance of the DFSC concept is examined via the stated major research 

questions. This section provides detailed analysis and answers to the stated research questions.  
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5.3.1 Performance Metrics and Modeling Preferences 

Research Question 1: Which product design / supply chain performance metrics should be 

included in the model?  

The first research question investigates which product design and supply chain 

performance metrics should be included in the model in order to keep the models realistic and 

representative of the real industry problems as well as simple enough to find high quality 

solutions within acceptable time limits. The reduced DFSC models are used to investigate the 

performance variations between different modeling preferences. The concepts to be removed 

from the models are selected based on the model structure (to have significant impacts on the 

model size and solution performance) and are validated by the industry experts as discussed.  

The performance of both solution procedures for the complete and the reduced DFSC 

models are summarized in Table 20 for the MIP and in Table 21 for the GA.  

 
 
 

Table 20: MIP results for the complete and reduced DFSC models 

 Complete DFSC Model Reduced DFSC Model – 1 Reduced DFSC Model – 2 
Problem 
Instance 

Optimality 
Gap 

Solution 
Time (sec.) 

Optimality 
Gap 

Solution 
Time (sec.) 

Optimality 
Gap 

Solution 
Time (sec.) 

1 0.01% 150.69 0.01% 36.89 0.01% 6.24
2 20.61% 172,800.00 0.01% 48,091.53 0.01% 7,023.81
3 2,490.00% 172,800.00 15.64% 172,800.00 0.01% 145,232.95
4 92.01% 172,800.00 36.60% 172,800.00 49.63% 172,800.00
5 96.03% 172,800.00 33.11% 172,800.00 16.34% 172,800.00
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 Table 21: GA results for the complete and reduced DFSC models 

 Complete DFSC Model Reduced DFSC Model – 1 Reduced DFSC Model – 2 
Problem 
Instance 

Optimality 
Gap* 

Solution 
Time (sec.) 

Optimality 
Gap* 

Solution 
Time (sec.) 

Optimality 
Gap* 

Solution 
Time (sec.) 

1 0.01% 300.72 0.01% 64.75 0.01% 114.45
2 20.68% 291.40 0.01% 60.13 0.01% 122.39
3 2,359.39% 44,354.28 9.38% 3,396.70 0.12% 42,608.76
4 80.11% 2,529.32 31.35% 2,465.88 56.91% 23,767.98
5 140.62% 106,841.33 47.69% 172,800.00 22.12% 57,246.45

* The optimality gap values measure the percent difference between the GA solution and the best bound value 
provided by the MIP for the corresponding MIP model. Note that this table does not compare the MIP and the GA 
results but it shows the performance variations for different models.  
 

 
 

These results clearly show a performance increase for both solution procedures when the 

complete DFSC is reduced. While the optimality gap is very large for problem instances other 

than the smallest one (problem instance 1) with the complete model, both algorithms terminate 

prior to finding an optimal solution due to the time limit or lack of improvements for a specified 

time. On the other hand, both algorithms progress more rapidly and provide better optimality gap 

values in a shorter time for the reduced models. Nevertheless, the solution techniques’ 

performances do not provide an apparent conclusion on how they differ for the two reduced 

models. For the reduced DFSC model – 1, the MIP cannot prove the optimality of the solution 

within the 48 hour time limit for the three largest problem instances although it improves the 

optimality gap compared to the complete model. Similarly, the GA terminates in a shorter time 

and provides a better optimality gap except for the largest instance where it reaches the time 

limit. For the reduced DFSC model – 2, the optimality gap improvements over the complete 

model are better for the problem instances 3 and 5 and worse for the instance 4 compared to the 

first reduced model. Although the reduced DFSC model – 1 prunes more binary variables than 

the second model and therefore is expected to improve both of the solution techniques, the 

results suggest that the solution performance depends not only on the problem size (e.g., number 
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of component design alternatives, number of suppliers) and number of binary variables, but also 

on the problem instance itself (e.g., Bill of Material complexity, actual cost and lead time 

values). The differences in the interactions between the model variables due to the different 

parameter values may help the first reduced model to be solved to a better solution than the 

second reduced model or vice versa.  

In summary, the results suggest that the reduced models can be solved to significantly 

better solutions (to a lesser optimality gap value) in the same time period or even a shorter time 

period and therefore become attractive alternatives to the complete DFSC when it cannot be 

solved or the solution quality is not satisfactory. The loss of detailed information, such as 

impacts of economies of scale or lead times, may be an acceptable tradeoff to allow for a better 

solution performance. As industry experts agree, the economies of scale information can be 

approximated by an average cost value and then can be evaluated after the model is solved and 

the final product design and price are fixed. On the other hand, when the first reduced model 

solutions are not satisfactory, lead time and inventory information can be removed as in the 

second reduced model. However, the loss of this information is more significant in this model as 

these concepts cannot be approximated with any other parameters remaining in the model. 

Therefore, the second reduced model is only preferred when the complete and the first reduced 

models cannot be solved. However, when the second reduced model is utilized, the results 

should be further analyzed qualitatively by investigating the impacts of the simplifications to the 

model. 

In order to test the changes in the model solution and objective value with respect to the 

parameter estimation errors, a sensitivity analysis is conducted. For these tests, a new problem 

instance based on a simple cordless phone example is created. The cordless phone in this 
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example is assumed to consist of four components, namely a housing, battery, printed circuit 

board, and antenna. This example is modeled with five components including the final assembly 

of the cordless phone itself as another component. Although this final assembly is regarded as a 

standalone component in order to capture supplier selection and cost aspects, it does not have 

any design alternatives nor any customer satisfaction value. The remaining four components 

have two design alternatives each and the customer satisfaction value of these designs change 

over time to reflect obsolescence. There are four time periods in this example representing four 

main product life cycle phases as described before. The customer satisfaction values of each 

component over four time periods are given in Table 22. For this problem, five suppliers are 

considered, with the first supplier being the final manufacturer and the only supplier available for 

the final assembly.  
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Table 22: Customer satisfaction values of component design alternatives – cordless phone 

 Appearance Battery Life Signal 
Quality 

Dialing 
Functions 

Total 

Total Value 40.0% 30.0% 15.0% 15.0% 100.0% 
Component      
Cordless 
Phone 

0.0% 0.0% 0.0% 0.0% 0.0% 

Housing      

Design 1 30.0%-30.0%-
30.0%-30.0%   

4.0%-4.0%-
4.0%-4.0% 

34.0%-34.0%-
34.0%-34.0% 

Design 2 24.0%-24.0%-
21.0%-18.0%   

3.6%-3.2%-
3.2%-2.8% 

27.6%-27.2%-
24.2%-20.8% 

Battery      

Lithium Ion  
25.0%-25.0%-
25.0%-25.0% 

1.0%-1.0%-
1.0%-1.0%  

26.0%-26.0%-
26.0%-26.0% 

Ni-Cd  
20.0%-17.5%-
12.5%-7.5% 

0.9%-0.9%-
0.9%-0.9%  

20.9%-18.4%-
13.4%-8.4% 

Printed 
Circuit Board      

Design 1  
5.0%-5.0%-
5.0%-5.0% 

6.0%-6.0%-
6.0%-6.0% 

11.0%-11.0%-
11.0%-11.0% 

22.0%-22.0%-
22.0%-22.0% 

Design 2  
4.5%-4.5%-
4.5%-4.5% 

4.8%-4.8%-
4.8%-4.8% 

8.8%-7.7%-
7.7%-5.5% 

18.1%-17.0%-
17.0%-14.8% 

Antenna      

Design 1 10.0%-10.0%-
10.0%-10.0%  

8.0%-8.0%-
8.0%-8.0%  

18.0%-18.0%-
18.0%-18.0% 

Design 2 9.0%-9.0%-
9.0%-9.0%  

5.6%-5.6%-
5.6%-5.6%  

14.6%-14.6%-
14.6%-14.6% 

* Four different values in the table correspond to component design values for four time periods. The 
time periods are ordered as |time period 1 – time period 2| in the table.  
time periods are ordered as |time period 3 – time period 4| 
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To test differences in the objective function and solution variables, first the initial problem with 

the original parameter values (base case) is solved. Next, to represent estimation errors, 

important parameter values are increased or decreased by 10% separately from the base case. 

The tested parameters include supplier capacities (Capacityijαit
1,2), unit manufacturing costs at 

suppliers (cijαit
1,2), production times at suppliers (ptijαit), supply chain network costs (Netwcojl), 

transportation costs (Tportcostjklαkt), and demand function coefficients (β1, β2). Table 23 shows 

the objective value of each scenario and whether the variables of supplier selection (supply chain 

design), component alternatives selection (product design), and pricing differ from the base case. 

All tests are conducted by using the MIP solution procedure by solving the complete DFSC 

model therefore these tests capture all the described concepts and the solutions are proven to be 

optimal. It should be noted that the aim of these tests is not to show how the actual solution 

values change but rather to understand how much impact these estimation errors might have on 

the primary product and supply chain designs. Therefore, the changes in the variables from the 

base case primarily investigate whether another design or another supplier for a component is 

selected and if the pricing decisions are changed. The pricing decisions are important since price 

has a significant impact on the demand and may influence selection of different product or 

supply chain designs.  
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Table 23: Parameter estimation error test results 

Scenario 
Objective 

Value (profit) 
($) 

Change from the Base 
Case Solution 

Time 
(sec.) Product 

Design 
Price  
($) 

Supply 
Chain 
Design 

Base Case 85,462,662 - - - 16,606.92
Supplier capacity (+10%) 88,765,433 Yes No Yes 2,954.48 
Supplier capacity (-10%) 81,205,455 Yes No No 73,292.46
Unit manufacturing cost (+10%) 82,818,261 No No Yes 21,108.20
Unit manufacturing cost (-10%) 88,211,200 Yes No Yes 16,257.85
Supplier production time (+10%) 83,693,537 No No Yes 38,170.30
Supplier production time (-10%)  87,240,959 Yes No Yes 27,672.56
Supply chain network cost (+10%) 83,955,662 No No No 14,514.36
Supply chain network cost (-10%) 86,969,662 No No No 15,995.99
Transportation cost (+10%) 84,263,290 No No No 45,424.48
Transportation cost (-10%) 86,662,033 No No No 18,484.96
Demand function coefficients (+10%) 100,850,314 Yes No Yes 32,361.29
Demand function coefficients (-10%) 68,012,999 Yes No Yes 17,516.67

 
 
 

The results suggest that for this problem instance, underestimating the cost parameter values or 

overestimating the supplier capacities and the demand function coefficients results in lower 

profits due to increases in the realized costs or unexpected supplier capacity limitations and 

lower realized demand. Estimation errors in the opposite directions result in higher profits due to 

lower supply chain costs, higher demand, or more supplier production capacity.  

A 10% estimation error in the supply chain network costs or in the transportation costs do 

not change the preferred product design and supplier selection. However, estimation errors on 

other parameters have different consequences and depend on the actual problem data and 

interactions between the variables. For example, the demand function coefficients have a 

significant impact on the profit value since they directly impact the demand and revenue rather 

than the supply chain costs. An interesting result of these tests is that none of the scenarios 

resulted in a change in the optimal price levels.  
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Since the product and supply chain design decisions are made before the parameter errors 

are realized in a real life situation, additional sensitivity analysis is performed to further examine 

the impact of these errors by further illustrating such an issue. In this case, instead of optimizing 

the problem from the beginning with the new parameter values for each scenario, the optimal 

solution for the base case is used with the new parameter values. The same product design 

selections, supplier selections (thus supply chain network), and price values that are optimal for 

the base case are kept the same for each scenario. The remaining decisions including production 

and transportation quantities are optimized again. Table 24 shows the results of these tests. In the 

second column of this table, the profit values for the scenarios are shown where the base case 

scenario decisions are maintained. In the third column, the re-optimized profit results for each 

scenario are given. It should be noted that these profit values are the same results as shown in 

Table 23. The difference in the profit values when the base case solution is used and when the 

problems are re-optimized is shown in the fourth column. 
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Table 24: Parameter estimation error test results by using the base case solution 

Scenario 

Objective 
Value with 
Base Case 

Solution ($) 

Objective Value 
with 

Re-optimized 
Solution ($) 

Change  in the 
Objective Value  

with 
Re-optimization ($) 

Base Case 85,462,662 85,462,662             - 
Supplier capacity (+10%) 86,398,935 88,765,433   2,366,498  
Supplier capacity (-10%) 81,069,890 81,205,455      135,565  
Unit manufacturing cost (+10%) 82,818,261 82,818,261              -    
Unit manufacturing cost (-10%) 88,107,062 88,211,200      104,138  
Supplier production time (+10%) 83,693,537 83,693,537              -    
Supplier production time (-10%)  87,218,392 87,240,959        22,567  
Supply chain network cost (+10%) 83,955,662 83,955,662              -    
Supply chain network cost (-10%) 86,969,662 86,969,662              -    
Transportation cost (+10%) 84,263,290 84,263,290              -    
Transportation cost (-10%) 86,662,033 86,662,033              -    
Demand function coefficients (+10%) 93,583,581 100,850,314   7,266,733  
Demand function coefficients (-10%) 65,926,952 68,012,999   2,086,047  

 
 
 

The results show that the re-optimization improves the objective values for some scenarios. 

However, since re-optimization cannot occur in real life, changes in the profit values while 

maintaining the decisions made in the base case provide important clues of the impact of the 

parameter estimation errors. The results showed that the increased and reduced supplier 

capacities, lower manufacturing costs and production times, and changes in the demand function 

coefficients have resulted in lower profits compared to the re-optimization results. This suggests 

that these parameter estimation errors have significant impact on the profit and if the base case 

decisions could be altered later in the product life cycle phases, higher profit values could be 

obtained. For other scenarios, base case decisions resulted in the same profit value as the re-

optimization suggesting that the decisions based on the erroneous estimations for these 

parameters would still be optimal when true parameter values are observed.  
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Nevertheless, these test results only provide a general idea about the significance of the 

impacts of these parameter estimation errors. Yet, the impact of these parameter estimation 

errors may be different for other problem instances depending on the interactions between these 

parameters in the model. Another important result of these tests is that the solution time for these 

problems may significantly change based on the actual parameter values. For this particular 

problem instance, the solution time for different scenarios changed significantly from 

approximately 45 minutes to 20 hours. The results suggest that supplier capacity values have the 

most significant impact on the solution time. Increased supplier capacities significantly reduced 

the solution time by providing enough capacity from the selected suppliers where reduced 

capacities lengthen the solution time since the production amounts need to be distributed among 

different suppliers for the optimal allocation.   

5.3.2 Simultaneous versus Sequential Approach 

Research Question 2: How do the performance metrics differ for the product design and 

the associated supply chain for the simultaneous and sequential approaches?  

The second research question investigates how sequential and simultaneous approaches 

impact the product and supply chain design performance metrics. In order to investigate this 

research question, two problem instances are tested since this research question aims to test the 

main contribution of this dissertation and further insight from additional problem instances is 

important. In addition to the previously described cordless phone example, a new problem 

instance which is based on a desktop computer is introduced. In this example, the final product is 

considered as a standalone component with no design alternatives and no design value. The 

remaining five components are the motherboard & CPU, memory, hard disk, monitor, and 
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peripherals. The components’ design values are selected to be diminishing over four different 

time periods to capture obsolescence impacts similar to the cordless phone example. The 

customer satisfaction values of each component over four time periods are given in Table 25. For 

this problem, seven suppliers are considered, as the first supplier being the final manufacturer 

and the only supplier available for the final assembly.  
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Table 25: Customer satisfaction values of component design alternatives – desktop computer 

 Perform-
ance 

Ease of 
Use 

Storage 
Capacity 

Display 
Quality 

Appear-
ance Total 

Total Value 50.0% 13.0% 10.0% 17.0% 10.0% 100.0% 
Component       
Desktop 
Computer 

0.0% 0.0% 0.0% 0.0%  0.0% 

Motherboard 
& CPU 

      

2.5 GHz 35.0%-35.0%-
35.0%-35.0%   

5.0%-5.0%-
5.0%-5.0% 

 40.0%-40.0%-
40.0%-40.0%

2.0 GHz 30.0%-25.0%-
20.0%-10.0%   

4.0%-3.0%-
2.0%-2.0% 

 34.0%-28.0%-
22.0%-12.0%

Memory       

1 GB 10.0%-10.0%-
10.0%-10.0%   

4.0%-4.0%-
4.0%-4.0% 

 14.0%-14.0%-
14.0%-14.0%

512 MB 7.0%-6.0%-
4.0%-2.0%   

3.0%-2.0%-
2.0%-1.0% 

 10.0%-8.0%-
6.0%-3.0% 

Hard Disk       

120 GB 5.0%-5.0%-
5.0%-5.0%  

8.0%-8.0%-
8.0%-8.0%  

 13.0%-13.0%-
13.0%-13.0%

60 GB 4.0%-4.0%-
3.0%-1.0%  

6.0%-6.0%-
4.0%-1.0%  

 10.0%-10.0%-
7.0%-2.0% 

Monitor       

19” LCD  
3.0%-3.0%-
3.0%-3.0%  

8.0%-8.0%-
8.0%-8.0% 

5.0%-5.0%-
5.0%-5.0% 

16.0%-16.0%-
16.0%-16.0%

19” CRT  
2.0%-2.0%-
1.0%-0.0%  

6.0%-5.0%-
3.0%-1.0% 

2.0%-2.0%-
0.0%-0.0% 

10.0%-9.0%-
4.0%-1.0% 

Peripherals       

Advanced   
10.0%-10.0%-
10.0%-10.0%

2.0%-2.0%-
2.0%-2.0%  

5.0%-5.0%-
5.0%-5.0% 

17.0%-17.0%-
17.0%-17.0%

Standard  
8.0%-8.0%-
4.0%-4.0% 

1.0%-1.0%-
0.0%-0.0%  

4.0%-3.0%-
3.0%-2.0% 

13.0%-12.0%-
7.0%-6.0% 

* Four different values in the table correspond to component design values for four time periods. The 
time periods are ordered as |time period 1 – time period 2| in the table.  
time periods are ordered as |time period 3 – time period 4| 
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In order to evaluate the differences between the sequential and simultaneous approaches as stated 

in this research question, each problem instance (cordless phone and desktop computer 

examples) is first solved with the simultaneous approach. Subsequently, each problem is solved 

via the sequential approach. Since the product design value should be as high as possible 

according to the sequential approach (as the design teams would prefer higher design values in a 

sequential approach), the initial solution has been based on selecting the best design alternatives 

for each component which would maximize the demand. After the complete DFSC model is 

solved for this scenario, each component design is changed to a less preferred alternative 

following a minimum loss of design value rule. This procedure aims to capture a real case where 

a design team would compromise from a component’s design (to potentially reduce SC costs) 

which would cause the minimum loss of total product design value, that is, the component with 

the lowest impact on the demand. In order to truly capture the impact of the design change on the 

demand, the design value loss is multiplied by the time multipliers which are used in the 

complete DFSC model to represent each product life cycle phase’s impact on the demand. For 

example, assume that the first two time multipliers which correspond to introduction and growth 

phases of a product’s life cycle are equal to 1 and 2, respectively. This means that for the same 

demand parameters (product design and price); the demand in the growth phase would be twice 

the demand in the introduction phase. Therefore, the impact of the design value changes would 

be more on the growth phase compared to the introduction phase. The described sequential 

approach procedure is depicted in Figure 23.   
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Figure 23: The sequential approach procedure based on separate time periods 

 
 
 

Moving through this procedure, several iterations are tested until no improvements on the total 

profit is recorded. The simultaneous and sequential approaches are compared by first solving the 

cordless phone example. For this example, the four time multipliers corresponding to four 

different product life cycle phases are 1, 2, 3, and 1; respectively. Table 26 shows the result of 

the simultaneous approach and summarizes the results of the sequential approach.  
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In the first scenario, all components’ first designs are selected (best product design 

possible). In each following scenario, the component design with the lowest impact on the 

demand is changed to the second design alternative. The demand loss column shows the impact 

of this design change on the demand. If the profit is increased with this design change, then this 

change is accepted and subsequent scenarios include this change. If the change does not increase 

the profit, then it is rejected and is not investigated in the subsequent scenarios. 

 
 

Table 26: Simultaneous and sequential approach results for the cordless phone example  

Scenario Component Time 
Period 

Demand 
Loss Profit ($) Design Change 

Accepted 
Simultaneous Approach   85,462,662  
Sequential Approach     

1 - - - 77,830,520 - 
2 Antenna  1 3.4% 78,333,287 Yes 
3 Antenna 4 3.4% 78,621,416 Yes 
4 Printed Circuit Board 1 3.9% 78,951,870 Yes 
5 Battery 1 5.1% 79,567,470 Yes 
6 Housing 1 6.4% 79,626,229 Yes 
7 Antenna 2 6.8% 82,127,598 Yes 
8 Printed Circuit Board 4 7.2% 75,996,840 No 
9 Printed Circuit Board 2 10.0% 82,878,307 Yes 
10 Antenna 3 10.2% 85,462,662 Yes 
11 Housing 4 13.2% 83,101,544 No 
12 Housing 2 13.6% 83,856,203 No 
13 Printed Circuit Board 3 15.0% 79,245,215 No 
14 Battery 2 15.2% 85,032,936 No 
15 Battery 4 17.6% 83,178,938 No 
16 Housing 3 29.4% 83,048,751 No 
17 Battery  3 37.8% 82,370,043 No 

 
 
 

The sequential approach test results show that scenarios 2 through 10 (except scenario 8) result 

in higher profit. Further design changes (scenarios 11 through 17) do not improve the profit from 

the $85,462,662 level obtained in scenario 10. In this problem, scenario 10 of the sequential 
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approach finds the same profit as the simultaneous approach. In addition, the optimal solutions of 

both approaches are the same, that is, they not only result in the same product design, but also 

they select the same price levels and the same suppliers. In the second comparison of 

simultaneous and sequential approaches, the desktop computer problem is solved by following 

the same procedure described for the cordless phone example. For this example, the time 

multipliers are 1, 1.2, 1.6, and 1; respectively for each product life cycle phase. Table 27 shows 

the results of both design approaches.  

 
 

Table 27: Simultaneous and sequential approach results for the desktop computer example 

Scenario Component Time 
Period 

Demand 
Loss Profit ($) Design Change 

Accepted 
Simultaneous Approach   8,495,076,500  
Sequential Approach     

1 - - - 7,561,769,600 - 
2 Hard Disk 1 3.0% 7,539,925,100 No 
3 Hard Disk 2 3.6% 7,669,845,600 Yes 
4 Peripherals 1 4.0% 7,648,320,500 No 
5 Memory 1 4.0% 7,647,961,500 No 
6 Peripherals 2 4.8% 7,795,946,900 Yes 
7 Monitor 1 6.0% 7,747,072,600 No 
8 Motherboard & CPU 1 6.0% 7,761,299,800 No 
9 Memory 2 7.2% 7,798,211,400 Yes 
10 Monitor 2 8.4% 7,815,327,500 Yes 
11 Hard Disk 3 9.6% 7,313,069,500 No 
12 Peripherals 4 11.0% 7,669,300,400 No 
13 Hard Disk 4 11.0% 7,425,286,000 No 
14 Memory 4 11.0% 7,659,417,200 No 
15 Peripherals 3 12.8% 7,658,090,700 No 
16 Memory 3 12.8% 7,679,607,300 No 
17 Motherboard & CPU 2 14.4% 7,727,076,000 No 
18 Monitor 4 15.0% 7,612,294,200 No 
19 Monitor 3 19.2% 7,581,860,000 No 
20 Motherboard & CPU 4 28.0% 7,413,139,300 No 
21 Motherboard & CPU 3 28.8% 7,548,458,900 No 
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The results show that the sequential approach based on the previously described procedure 

cannot find as high a profit value as the simultaneous approach for this problem example. Only 

four out of the first ten scenarios could improve the profit value where none of the remaining 

eleven scenarios could find a better objective value. Since the previously described sequential 

approach procedure performs poorly, another procedure is also tested to represent the sequential 

approach for this problem. Within this new procedure, the component with the lowest impact on 

the demand is selected in a similar manner. However, instead of fixing its design selection at a 

given time period, the problem is solved by releasing this component’s design selections for all 

time periods and fixing other components at their best designs. For example, in the first scenario 

of this procedure, the lowest total design loss over four time periods is for the hard disk 

component. Therefore, all other components designs are fixed at their best; the design selections 

for the hard disk are decided by the optimization process. If a higher profit is noted for this 

problem, then these design decisions are fixed and the subsequent component’s design selections 

are released. The new modified sequential approach procedure is depicted in Figure 24. Moving 

through this procedure the sequential approach is tested and the results are shown in Table 28. 
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Figure 24: The sequential approach procedure based on the optimization over all time periods 
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Table 28: Simultaneous and sequential approach results with alternative sequential procedure   

Scenario Component Total Demand Loss Profit Design Change 
Accepted 

Simultaneous Approach  8,495,076,500  
Sequential Approach    

1 - - 7,561,769,600 - 
2 Hard Disk 27.2% 7,669,845,000 Yes 
3 Peripherals 32.6% 7,795,946,900 Yes 
4 Memory 35.0% 7,798,211,400 Yes 
5 Monitor 48.6% 7,815,327,500 Yes 
6 Motherboard & CPU 77.2% 7,815,327,500 No 
7 Hard Disk 27.2% 7,815,327,500 No 
8 Peripherals  32.6% 7,815,327,500 No 
9 Memory 35.0% 7,917,199,000 Yes 
10 Monitor 48.6% 7,917,199,000 No 
11 Motherboard & CPU 77.2% 7,917,199,000 No 
12 Hard Disk 27.2% 7,917,199,000 No 
13 Peripherals  32.6% 7,917,199,000 No 

 
 
 

This change in the sequential procedure eventually finds a better profit value, yet it cannot find 

the true optimal solution achieved by the simultaneous approach. By letting the optimization 

process select the component designs, this procedure terminates in fewer iterations. Scenarios 2 

through 6 initially consider each component once (Hard Disk, Peripherals, Memory, Monitor, 

and Motherboard & CPU). After all components are tested separately, their best design 

selections are fixed and the iterations are repeated as shown in scenarios 7 through 11. Since an 

improvement is noted in scenario 9, the two previously rejected components are tested again in 

scenarios 12 and 13. This procedure makes sure that given a component design selections set, no 

additional improvements are possible by further changing any component designs.     

Based on the presented test results, it is clear that the sequential approach would require 

many iterations to achieve the same optimal result of the simultaneous approach. However, as 

the second example shows, the sequential approach may not even be able to find the true optimal 
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solution and be stuck with a worse solution. When the optimal prices and component design 

selections are analyzed for both approaches (shown in Table 29), although there are only minor 

component design and price differences the profit for the simultaneous approach is higher. 

Nevertheless, all of these changes that constitute the optimal solution cannot always be 

determined easily by the sequential approach. The iterative procedure, which the sequential 

approach utilizes, may miss some alternatives as the interactions between different variables 

make it hard to capture the profit improvements via an iterative approach. This example 

illustrates the benefits of the simultaneous approach where all decisions are evaluated in a 

combined structure, and better solutions are found compared to iteratively trying to improve the 

solutions. 

 

Table 29: Optimal solutions of simultaneous and sequential approaches – desktop computer 

Component Design Selections Profit 
Time 

Period 1 
Time 

Period 2 
Time 

Period 3 
Time 

Period 4 
Simultaneous Approach     8,495,076,500 
Motherboard & CPU 2 1 1 1  
Memory 2 1 1 1  
Hard Disk 2 2 1 1  
Monitor 2 2 1 1  
Peripherals 2 2 1 1  
Price 400 400 400 400  
Sequential Approach     7,917,199,000 
Motherboard & CPU 1 1 1 1  
Memory 1 1 1 1  
Hard Disk 1 2 1 1  
Monitor 1 2 1 1  
Peripherals 1 2 1 1  
Price 800 400 400 400  
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In order to further investigate the benefits of using the DFSC and the simultaneous approach, the 

results of the simultaneous approach, sequential approach, and not using either of these methods 

(only selecting the best product design and then optimizing the supply chain) are compared by 

using both examples. Table 30 and Table 31 show the profit, revenue, total and detailed supply 

chain costs, and final product’s lead time values for these three methods for the cordless phone 

and desktop computer examples, respectively. 

 

Table 30: Revenue, costs, and lead time results of the cordless phone example 

 Simultaneous 
Approach 

Sequential 
Approach 

Best Product 
Design 

Profit ($) 85,462,662 85,462,662 77,830,520 
Revenue ($) 156,014,344 156,014,344 168,000,000 
Total Supply Chain Cost ($) 70,551,682 70,551,682 90,169,479 
   Manufacturing Cost ($) 26,444,006 26,444,006 32,052,857 
   Supply Chain Network Cost ($) 15,070,000 15,070,000 15,070,000 
   Transportation Cost ($) 11,993,713 11,993,713 16,193,142 
   Inventory Cost ($) 17,043,963 17,043,963 26,853,480 
Lead Time* (days) 5-10-19-9 5-10-19-9 11-18-23-11 
* Four different values in the table correspond to final product lead times in four time periods. 

 

 
 
 
Table 31: Revenue, costs, and lead time results of the desktop computer example 

 Simultaneous 
Approach 

Sequential 
Approach 

Best Product 
Design 

Profit ($) 8,495,076,500 7,917,199,000 7,561,769,600 
Revenue ($)  13,945,540,000   12,850,180,000   12,940,800,000  
Total Supply Chain Cost ($)    5,450,459,560     4,932,977,064     5,379,030,446  
   Manufacturing Cost ($)    4,351,615,400     3,936,897,800     4,273,806,900  
   Supply Chain Network Cost ($)         17,480,000          17,480,000          17,480,000  
   Transportation Cost ($)       693,433,690        634,276,890        703,595,610  
   Inventory Cost ($)       387,930,470        344,322,374        384,147,936  
Lead Time* (days) 5-10-9-9 7-10-9-9 7-11-9-9 
* Four different values in the table correspond to final product lead times in four time periods. 
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As stated before, both the simultaneous and the sequential approaches find the same optimal 

solution for the cordless phone example. When these results are compared to the best product 

design selection scenario, it is shown that these methods find a higher profit. Although the best 

product design approach generates more demand and thus more revenue, both the simultaneous 

and the sequential approaches find less costly supply chains and therefore have higher profits. It 

is also shown that for this example, selecting the best product design would yield higher lead 

times compared to the other two approaches, increasing the inventory costs significantly.   

For the desktop computer example, the simultaneous approach finds the best solution, 

followed by the sequential approach, and then by select the best product design scenario. 

Changes in the price decisions impact the revenues for these approaches. The simultaneous 

approach can satisfy more demand by better supplier selection at a lower price as compared to 

the select the best product design scenario. Although more demand is created in the select the 

best product design scenario, this high demand cannot be completely satisfied resulting in lower 

revenue. The sequential approach has the lowest revenue since it cannot generate more demand 

than the best product design scenario nor supports a lower price and higher demand satisfaction 

as in the simultaneous approach. The results show that the simultaneous approach creates a more 

costly supply chain (total supply chain cost in Table 31) in addition to its higher revenue 

however it finds the maximum overall profit. For example, it finds a supply chain with shortest 

lead times, but its higher demand causes higher inventory costs compared to other two 

approaches.  

In summary, the test results show that selecting the best component design alternatives 

does not necessarily provide the maximum profit although it satisfies the customer’s needs at the 

maximum level. The test results illustrate that selecting less valued component design 
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alternatives (via simultaneous or sequential method) may improve the performance and the 

profits of the product throughout its life cycle. However, when one of these methods is selected 

for improving the product design, the results indicate that the simultaneous approach finds better 

solutions than the sequential approach and the sequential approach may not be able to achieve 

the same solution. An additional benefit of using the simultaneous approach is that once it finds 

the optimal solution, no further iterations are required. On the other hand for the sequential 

approach, many iterations may be required where each time large optimization problems are 

solved. Yet these iterations may not even improve the profit and the sequential approach may 

terminate with a worse result.     

The results suggest that the simultaneous approach does not necessarily reduce the total 

supply chain costs or the product lead time, but it balances the cost with the revenue to find a 

higher profit. Therefore, it helps to overcome the complex interactions between the revenue and 

cost sides of the profit which is hard to analyze separately in a sequential approach. The 

simultaneous approach also modifies the product design to achieve better performance in such a 

way that the other approaches cannot do iteratively. The simultaneous approach may 

compromise some customer satisfaction, however it accounts for the tradeoff of customer 

satisfaction with a better supply chain performance.   

5.3.3 Combining Product and Supply Chain Design 

Research Question 3:  How robust is the supply chain to product design changes? 

The third research question investigates the robustness of the supply chain with respect to 

the product design changes. In order to test the impacts of the product design on the supply 

chain, both of the previously described cordless phone and the desktop computer examples’ 



 156 

resulting supply chains are analyzed. Table 32 shows the design selections and resulting supply 

chains for the simultaneous approach and the best design approach for the cordless phone 

example.  

 
 

Table 32: Product design and supply chain decisions for the cordless phone example 

Component Design Selections Selected Suppliers 

Time 
Per. 1 

Time 
Per. 2 

Time 
Per. 3 

Time 
Per. 4 

Time 
Per. 1 

Time 
Per. 2 

Time 
Per. 3 

Time 
Per. 4 

Simultaneous 
Approach 

        

Housing 2 1 1 1 3-4 1-3 1-3 1-3 
Battery 2 1 1 1 5 4-5 4-5 5 
Printed Circuit Board 2 2 1 1 2 2 2 2 
Antenna 2 2 2 2 5 5 5 5 
Price 40 40 40 40     
Best Design 
Approach 

    
    

Housing 1 1 1 1 1 1-3 1-3 1 
Battery 1 1 1 1 4-5 5 4-5 4-5 
Printed Circuit Board 1 1 1 1 2 2 2 2 
Antenna 1 1 1 1 5 5 5 5 
Price 40 40 40 40     

 
 
 

The cordless phone example results show some changes in the supplier selection over time for 

different component design selections. For the housing and battery components, some suppliers 

are selected or unselected in the optimal solution depending on the demand and capacity 

limitations. However, for the printed circuit board and antenna components, the same suppliers 

are selected over all time periods although different designs were chosen for these components. 

Table 33 presents the design selections and the supply chain alternatives for the desktop 

computer example. 
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Table 33: Product design and supply chain decisions for the desktop computer example 

Component Design Selections Selected Suppliers 

Time 
Per. 1 

Time 
Per. 2 

Time 
Per. 3 

Time 
Per. 4 

Time 
Per. 1 

Time 
Per. 2 

Time 
Per. 3 

Time 
Per. 4 

Simultaneous 
Approach 

        

Motherboard & CPU 2 1 1 1 2-3-7 2-3-7 2-3-7 2-7 
Memory 2 1 1 1 2-5 1-2-5 1-2-5 2-5 
Hard Disk 2 2 1 1 6 6 3-5-6 3-6 
Monitor 2 2 1 1 3 3 3-4-5 3-5 
Peripherals 2 2 1 1 7 7 2-6-7 6-7 
Price 400 400 400 400     
Best Design 
Approach 

    
    

Motherboard & CPU 1 1 1 1 2-3 2-3-7 2-3-7 2-7 
Memory 1 1 1 1 2-5 1-2-5 1-2-5 2-5 
Hard Disk 1 1 1 1 6 3-5-6 3-5-6 3-5 
Monitor 1 1 1 1 5 3-4-5 3-4-5 3-5 
Peripherals 1 1 1 1 7 6-7 2-6-7 6-7 
Price 800 400 400 400     

 
 
 

The desktop computer example results show that the simultaneous approach selected different 

suppliers for the hard disk and monitor components over time. The change in the supply chain is 

a result of different demand due to design selections and related supplier capacities. It should 

also be noted that although it is not explicitly modeled and implied in the objective function, the 

simultaneous approach results generate a supply chain with fewer suppliers, which would reduce 

the supply chain complexity in real industry applications.   

As these example problems illustrate, different component design selections would 

necessitate different supply chain designs as changing demand and price values would require 

use of more supplier capacity or a less costly supplier in the optimal solution. These 

requirements may necessitate new suppliers to be added to or some existing suppliers to be 

removed from the supply chain as well as replacement of some suppliers by others to 
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accommodate new cost or capacity requirements. Although these examples do not explicitly 

indicate any change in the supply chain tiers, real industry problems may require more 

components to be added into the product bill of material depending on the component design 

selections which may further result in new supply chain tiers.  

 

Research Question 4: What is the relative importance of the product design and the supply 

chain design on the product success (thus on the profits)? 

The fourth research question investigates whether the product design or the supply chain 

dominates each other’s impact on the product’s success and profits. The two examples’ test 

results indicate a strong interdependence between the product design and the supply chain, and 

that they both have significant impacts on the product’s profits. As shown in Table 30 for the 

cordless phone example, sometimes it may be preferred to reduce the demand by selecting less 

attractive component designs in order to reduce the supply chain costs and to maximize the 

profit. However, due to strong interdependence, as shown in Table 31 for the desktop computer 

example, it might be better to increase the demand by selecting better product designs so that 

more revenue is generated although supply chain costs are increased. Therefore, the results 

indicate that neither product design nor the supply chain dominate each other in terms of 

significance of their impacts on the profit generation. This result stresses the importance of the 

simultaneous approach as it aims to balance these two important aspects to maximize the profit 

where overlooking either one (as shown in best product design approach results) may lead to 

non-optimal results. 

 



 159 

6.0 CONCLUSIONS AND FUTURE RESEARCH 

This chapter highlights the findings of this research and summarizes the conclusions in the first 

section. In the second section, further concepts, ideas, and opportunities which can be added to 

extend the developed DFSC models are presented. This section also discusses further 

enhancements to the presented solution techniques and alternative solution procedures. 

6.1 SUMMARY AND CONCLUSIONS 

In this dissertation, an optimization model which aims to maximize the profit of a product 

throughout its life cycle by deciding its components’ design alternatives, the associated supply 

chain, and price levels is presented. This DFSC model provides an opportunity to simultaneously 

consider product design and supply chain decisions within the product design phase which would 

replace the sequential approach that is commonly used in industry. The simultaneous approach 

helps the decision makers to see the big picture and impacts of their decisions both in the short 

and long term. It also provides an alternative approach for optimizing these decisions to achieve 

better results which cannot always be accomplished by the sequential approach. Finally, the 

simultaneous approach generally works faster than the sequential approach which may require 

multiple iterations, thus it helps to finalize the product design and supply chain decisions earlier, 

reducing product design time and product time-to-market.  
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The test results suggest that both the product design and the supply chain are important 

decisions and both have significant impacts on a product’s profitability. Therefore, emphasis 

must be placed on both aspects and neither one should be overlooked. The presented 

simultaneous approach offers an analytical framework to achieve this balanced method where 

both aspects are considered before any major decisions are made as it is very costly to change the 

product design or supply chain decisions in the later phases of a product’s life cycle.   

The computational test results further suggest that the DFSC models tend to be very 

complex in nature due to very complicated relationships and interdependencies between product 

design and supply chain variables. These models grow significantly in size as the number of 

product components and the number of suppliers increase. According to the test results and 

industry experts’ suggestions, the developed reduced DFSC models are attractive alternatives 

where the full-scale complete DFSC models cannot be solved in reasonable times.  

In terms of solution methodologies, the test results show that metaheuristics can be 

utilized to improve the quality of the solutions for the DFSC models where they cannot be solved 

easily by the deterministic optimization methodologies, such as the MIP. However, the test 

results also show that the performance of both solution methodologies depends both on the 

problem size and the complexity of the interactions between the problem parameters. Since the 

MIP guarantees an optimal solution, it is the preferred solution methodology. However, when the 

solution time becomes unreasonable due to the problem size and complexity, metaheuristics 

(GA) become a good solution alternative.  

According to the discussions with the industry experts and their model reviews, the 

developed DFSC models would add important value to their product design processes and would 

be a very useful decision support tool. The industry experts suggest that although further 
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extensions and customization of the DFSC models would increase their value, the developed 

models are valid and show the underlying benefits of the simultaneous product and supply chain 

design optimization approach. In terms of model applicability, the industry experts agree that the 

DFSC model has diverse data requirements, yet this data is customarily gathered. Hence, the 

DFSC model can be easily implemented and utilized with the data in hand.  

This research provides a significant addition to the existing DFSC research by combining 

the product design and supply chain decisions into a single framework which optimizes the 

decisions simultaneously. This research aims to fill in the gap in the DFSC literature which lacks 

explicit consideration and integration of marketing and product design decisions and 

manufacturing and supply chain decisions. Both the demand and manufacturing aspects of a 

product are addressed uniquely in this research and well-established product design and supply 

chain performance metrics are employed. The generic DFSC models which are applicable to 

virtually any type of product in any manufacturing industry are solved by utilizing Mixed Integer 

Programming and Genetic Algorithm. Detailed computational tests and illustrative examples 

provide a clear assessment of both solution methodologies. In addition, this dissertation evaluates 

alternative modeling preferences and assesses the performance of different solution 

methodologies for these alternative models. Furthermore, the presented analyses provide insight 

into the modeling and algorithmic / computation complexity issues.  

Finally, this dissertation provides an important assessment from different industry experts 

across various industries and includes these experts’ validation and suggestions for further work. 
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6.2 EXTENSIONS FOR DFSC MODELS AND SOLUTION METHODS 

The developed DFSC model aims to capture important decision variables which a product design 

or supply chain expert would consider for a new product. However, it is certain that some 

particular extensions of this model and further customizations would improve the quality of the 

model and help it fit different products’ unique requirements. In this section, some additional 

objectives, constraints, and concepts are presented.  

Although a company’s main objective is usually profit maximization, some other 

objectives might be pursued occasionally in order to achieve other goals. For example, when the 

company wishes to penetrate into a new market with a new product design, its main objective 

might be demand or market share maximization rather than maximization of profit. Although, 

the main objective in the long term would still be profit maximization, this short term objective 

to maximize demand may overrule the profit maximization objective and the company may even 

allow a short term loss. Therefore, an important extension for the DFSC model would be 

introduction of different objectives for different time periods to reflect changing priorities of a 

company for a product. Introduction of different objectives for different time periods should not 

be confused with a multi-objective formulation since these various objectives here are aimed to 

be unique goals which vary in different time periods. In addition to the market share 

maximization objective, some other important objectives include maximizing the reliability of 

the supply chain and reducing the negative impacts of the product design and supply chain on the 

environment. The maximization of the supply chain reliability is an important issue since 

variations in supplier quality and lead times have significant impacts on the supply chain 

performance and profitability in the later phases of the product life cycle. In addition, the product 

design influences the environment by dictating material selection and certain manufacturing 
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processes. For example, using a plastic component may have a more negative impact on the 

environment than using a metal component if the product is not recycled properly at the end of 

its life cycle. A product design may also require certain manufacturing processes that have 

harmful effects on the environment such as generating chemical waste. Therefore, minimizing 

the harmful impacts of the product and supply chain design on the environment could be a good 

extension for the DFSC models.  

In addition to the changes in the objective function, the DFSC model can be extended by 

adding or changing some constraints to capture other important concepts or requirements. For 

example, as the industry experts stated, many companies make their supplier selections not only 

by using the quantitative variables (such as cost and lead time) but they also consider some 

qualitative metrics or constraints. The industry experts listed quality levels of suppliers, risks and 

opportunities of a supplier, and previous business history with some suppliers as important 

qualitative metrics. However, it would be beneficial to quantify these metrics by using a 

structured methodology (such as Analytical Hierarchy Process) or using a surrogate measure 

such as number of defective parts per million for the quality before they are introduced into the 

DFSC model.  

In terms of other quantitative constraints, the DFSC models can be improved by adding 

specific supply chain network constraints that many companies consider. For example, these 

constraints may include the requirement of using at least two distinct suppliers for the critical 

parts, some minimum order quantities for certain suppliers, or some other constraints that are 

related to outsourcing decisions and protection of intellectual property. For instance, it would be 

an interesting extension to study the impact of different component design selections on the 
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protection of the intellectual property where some design alternatives cannot be manufactured by 

the main company or by the domestic suppliers.  

As today’s business environment involves complex decisions for outsourcing to overseas 

and offshoring, the addition of related variables such as custom duty rates would also add 

significant value to the DFSC models. Since these decisions often need to take the import and 

export related issues and costs into account, the DFSC can easily capture these important aspects. 

Some important variables identified by the industry experts include custom duty rates, taxation 

variations in different countries, import / export quotas, additional transportation challenges such 

as vessel capacity problems, and other risks related to other countries’ political and economical 

circumstances. Some of these variables such as quotas and taxes are quantitative measures and 

can be added into the DFSC models with relative ease. Yet, other variables such as economic or 

political risks are qualitative in nature and require further assessment and need to be analytically 

quantified for integration into the DFSC models. Expansion of the DFSC models to incorporate 

these outsourcing and offshoring variables is important for global supply chain decisions and 

would add value to the DFSC models. 

Although the deterministic approach employed in this dissertation captures and estimates 

the impacts of the most important supply chain performance criteria, the explicit modeling of the 

stochastic elements would be another important extension. The demand and supply chain lead 

time parameters (which are approximated by assuming constant coefficients of variation in this 

dissertation) can be further analyzed by a stochastic modeling approach. The impacts of the 

demand and the lead time on the profits can be investigated in detail through a simulation 

analysis integrated within the optimization procedure. However, the additional computational 
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requirements associated with the simulation should be carefully weighed against the model 

improvements.  
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APPENDIX A 

MODEL LINEARIZATION SCHEMA 

In this section, the linearization schemas that are developed to remove nonlinearities from the 

mathematical model are described.  

A.1 REVENUE LINEARIZATION 

In order to represent the Total Revenue with linear equations, initially two sets of variables  

(τt
+, τt

- and kt
+, kt

-) are introduced. As explained in their definition in section 3.3, these variables 

are used to evaluate satisfied demand which is 

)oduction, Total Pr(DemandemandSatisfiedD ttt 11min=  

Based on their definitions, these variables take respective values as shown below. 
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Since, according to the presented representation, kt
+ and kt

- would take relevant demand or total 

production values, revenue in each time period can be expressed as 

))k(k(priceRevenue tttt
−+ +×=  

As described in section 3.1, a quadratic price – demand function can be expressed by 

2
2

1 ββ += priceDemand  

 By using this function, the demand can be expressed as a function of price, product design 

value, and time period adjustment parameter by 

tttt liertimemultippriceDemand ××+= υββ )( 2
2

11  

As the price is allowed to take discrete values (ω1t, ω2t, ω3t) in this model, the final price value in 

each time period is expressed by 

ttttttttprice 2131121 )()( φωωφωωω −+−+=  

where, φ1t and φ2t variables control if price values are increased to ω2t and/or ω3t, respectively. 

From equations (A.4) and (A.7), it can be concluded that regardless of the price levels, revenue 

would at least be equal to )(1
−+ + ttt kkω . Since the demand function is utilized in a separate 

constraint in the model, a direct mathematical equation of the revenue and demand functions 

does not exist. Therefore, having kt
+ and kt

- take relevant demand or total production values via 

separate constraints given in (6.30) and (6.33), it is not necessary to linearize the revenue 

function with respect to price – product design value multiplication. However, an additional set 

of variables (ψ1t, ψ2t, ψ3t, ψ4t) is introduced to represent revenue values for higher price levels. 

The actual non-linear relations that these variables represent are given below 
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Since constraints given in equations (6.34) through (6.45) force only one of the ψ values to take 

a non-zero value, the revenue function can finally be expressed by 

))(())(()( 421331121 tttttttttttt kkRevenue ψψωωψψωωω +−++−++= −+  

Accordingly, Total Revenue would be expressed by 
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A.2 DEMAND LINEARIZATION 

Since the quadratic price – demand function is given as  

2
2

1 ββ += priceDemand  

and the final price value in each time period is expressed by 

ttttttttprice 2131121 )()( φωωφωωω −+−+=  

the demand function becomes 
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2
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111 )1(  

since φ1t × φ2t = 0 is always true by definition and via equation (6.21). 

 

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)



 169 

In order to represent Demand1t as a linear equation, an additional set of variables (λ1t, λ2t) is 

introduced to linearize price – product design value multiplication. The actual non-linear 

relations that these variables represent are given below 

ttt

ttt

υφλ
υφλ
×=
×=

22

11  

By using the Demand1t function (A.13) and replacing φ × υ multiplications by λ variables, the 

final Demand1t function becomes 
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A.3 INVENTORY COST LINEARIZATION 

Since the developed model is at the strategic planning level, the inventory levels are calculated as 

the average Safety Stock levels for each time period. Based on the inventory theory and wide 

application in the literature, the Safety Stock level for a given customer satisfaction target under 

stochastic demand and lead time is given as the following formula [49]. 

222 )( LDssratio DLzStockSafety σσ +=  

where L is the average lead time, D is the average demand during the average lead time, and 2
Lσ  

and 2
Dσ  are the variances of the lead time and demand during the lead time, respectively.  

The lead time values used in this research (LT1t) are given in actual true time units. 

However, the demand values (Demand1t) are calculated for the entire product life cycle phase (t) 

therefore, the average demand during the lead time is calculated by
t

t

thperiodleng
Demand1 , where 
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periodlengtht is the length of the time period t in the same units with lead time. Therefore, by 

using the parameters and variables of the DFSC model, the Safety Stock in a time period can be 

represented as  

 

In this research, it is assumed that lead time and lead time demand have constant coefficients of 

variation, which suggests that change in the variation of these variables is constant when their 

average values are changed. The mathematical representations of ρ1 and ρ2 by using model 

variables are given below. 
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By using ρ1 and ρ2 for coefficients of variation for lead time and demand over the lead time 

respectively, the safety stock in a time period can be represented as 
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Since the total inventory would be equal to the sum of the average lead time inventory kept and 

safety stock, the Total Inventory in a time period is represented as 
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Since this model calculates the demand at the strategic level, the lead time demand variation is 

removed by assuming ρ1 = 0. Hence, the Total Inventory in a time period becomes 
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However, the lead time and demand multiplication makes this equation non-linear therefore a 

linearization is provided. Since Demand1t is a continuous variable, LT1t is limited to take integer 

values, given that production time data, ptijαit is integer and capacity utilization adjustments do 

not strictly enforce proportional reductions in production times. Furthermore, the lead time 

values are rounded up to the nearest integer value since it would be better to account for the 

uncertainty for the worst case scenario. Given these assumptions, lead time values can be 

represented as combinations of several binary variables (γnt) as shown in the following equation. 
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It should be noted that based on the provided data, the number of γ variables (N) needs to be 

estimated so that LT1t ≤ 2N is always true in order to keep the model feasible. By utilizing this 

binary representation schema, lead time – demand multiplication becomes 
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By the introduction of δnt variables, each of which corresponding to relative γntDemand1t 

multiplications (i.e., N][0,each for  1 ∈= nDemand tntnt γδ ), the lead time - demand multiplication 

is represented as   
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In order to calculate Total Inventory Cost, the average inventory in a time period is assumed to 

be half of the maximum inventory levels. This approach is widely used in the literature and is 
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based on the fact that the inventory is used over the lead time thus it is safe to assume that the 

inventory decreases linearly with the time. Therefore, the average inventory level for a time 

period can be adequately approximated as the half of the maximum inventory. Based on this 

assumption, the Total Inventory Cost in a time period can be calculated as 
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By using the lead time - demand linearization (A.25), the linear form of the Total Inventory Cost 

in a time period, which is used in the objective function, becomes 
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APPENDIX B 

REDUCED DFSC MODELS 

In this appendix, the two reduced DFSC model formulations, described in section 3.4, are 

presented. It should be noted that the same notation used in the complete DFSC modeling is 

employed.  

B.1 REDUCED DFSC MODEL – 1 

The following mathematical model is the reduced DFSC model that reflects the removal of 

economies of scale concept from the complete model. 
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B.2 REDUCED DFSC MODEL – 2 

The following mathematical model is the reduced DFSC model that reflects the removal of lead 

time and inventory concepts from the complete model. 
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APPENDIX C 

PRELIMINARY GA PARAMETER TEST RESULTS 

Population 
Size 

Number of 
Generations 

% Elitist 
Chromosomes 

% Immigrating 
Chromosomes 

Best 
Objective ($) 

Solution Time 
(in seconds) 

100 1,000 1 1  55,008,046  6,440.83 
100 1,000 5 1  54,389,653  3,389.32 
100 1,000 10 1  54,832,677  3,435.80 
100 1,000 5 5  57,267,504  3,507.90 
100 1,000 10 10  58,886,818  3,619.83 
10 50 5 1  80,069,169  17.51 
25 50 5 1  79,495,423  41.54 
50 50 5 1  71,512,200  81.49 

100 50 5 1  72,920,801  169.71 
200 50 5 1  70,655,715  334.39 
10 100 5 1  80,839,748  39.75 
25 100 5 1  73,995,774  83.60 
50 100 5 1  71,460,939  164.07 

100 100 5 1  71,755,095  338.87 
200 100 5 1  70,504,045  646.53 
50 250 5 1  73,099,370  420.25 

100 250 5 1  63,283,761  836.70 
200 250 5 1  61,447,527  1,678.82 
200 500 5 1  56,948,753  3,153.78 
50 1,000 5 1  60,943,471  1,876.25 

100 1,000 5 1  54,389,653    3,389.00  
50 5,000 5 1 55,662,800  9,924.39 

100 5,000 5 1  49,263,967  18,966.84 
200 5,000 5 1  49,553,641  38,692.77 

* Shaded areas represent tested parameter. (The rest of the parameters are kept constant.) 
** Starting mutation rate is set at 5%. 
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APPENDIX D 

REDUCED GA SUB-MODELS 

This appendix presents the reduced MIP models that are used in the GA procedure. Both models 

have fewer variables and constraints than the complete DFSC model and the corresponding GA 

sub-models since linearization, economies of scale, and lead time (with inventory cost 

calculation) variables are eliminated simultaneously. 

D.1 REDUCED GA SUB-MODEL – 1 

This model removes economies of scale concept from the presented GA sub-model.  
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D.2 REDUCED GA SUB-MODEL – 2 

This model removes lead time and inventory cost concepts from the presented GA sub-model.  
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