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Modern galaxy surveys, such as the Sloan Digital Sky Survey (SDSS), provide a wealth
of information about large scale structure, galaxy evolution and cosmology. Even if initial
density fluctuations were extremely Gaussian, gravitational collapse predicts the growth of
non-Gaussianities in the galaxy distribution. Higher order clustering statistics, such as the
three-point correlation function (3PCF), are necessary to probe the non-Gaussian structure
and shape information in these distributions. We measure the clustering of spectroscopic
galaxies in the SDSS Main Galaxy Sample, focusing on the shape or configuration dependence
of the 3PCF in redshift and projected space. This work constitutes the largest observational
dataset ever used to investigate the 3PCF, and the only known projected measurement for
SDSS galaxies. The 3PCF exhibits extreme sensitivity to systematic effects such as sky
completeness, binning scheme and insufficient error resolution. We show these systematics
can dramatically affect our results, which are not consistently accounted for in comparable
analyses. We find significant configuration dependence of the 3PCF on intermediate to
large scales (3 — 27 h™'Mpc), in agreement with predictions from ACDM and disagreement
with the hierarchical ansatz. Below 6 h~'Mpc, the redshift space 3PCF shows reduced power
and weak configuration dependence in comparison with projected measurements. Our results
indicate that redshift distortions, and not galaxy bias, can make the 3PCF appear consistent
with the hierarchical ansatz. Compared to the lower order 2PCF, the 3PCF shows a weaker
dependence on luminosity with no significant dependence on scales above 9 h~'Mpc. On

scales less than 9 h~'Mpc, the 3PCF shows a greater dependence on color than on luminosity.
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We conclude that galaxies remain a biased tracer of the mass with a stronger bias associated
with greater luminosity. Using a thorough error analysis in the linear regime (9—27 h~'Mpc),
we show bright galaxies (M, < —21.5) are a biased realization of mass clustering at greater
than 4.50 in redshift space and 2.50 in projected space. The strong degeneracy between
linear and quadratic bias terms naturally explains the weak luminosity dependence of the
3PCEF. Contrary to some claims, we find linear bias is sufficient to explain galaxy-mass bias

of our samples.
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1.0 INTRODUCTION

In the current paradigm of structure formation, we believe that an almost uniform distri-
bution of mass at early times in the universe evolved through gravitational instability into
the irregular and complex distribution that galaxies occupy today. The richness of structure
we observe in galaxy redshift surveys or model with numerical simulations exhibit overdense
knots, filaments and walls along with massive voids that all range from a few to hundreds of
megaparsecs in size. Quantifying this “cosmic web” and understanding its evolution is the
focus of research in large-scale structure (LSS; Peebles, 1980).

Structure formation does not try to describe the origin of the initial conditions of the
universe, rather it builds off of an inflationary cosmology (Guth, 1981). As the initial hot
and dense universe expands and cools, its dynamics enter a phase of matter domination
(when the universe is roughly 30,000 years old) where the non-relativistic matter starts to
dominate over free-streaming radiation pressure and small density perturbations can grow.
However, matter and radiation remain coupled after this transition, thereby limiting the
growth of structure due to competition between gravitational collapse and radiation pressure.
About 330,000 years after inflation, the universe cools enough for atomic nuclei to capture
electrons. This epoch of recombination causes a rapid transition from a hot plasma to a
neutral, transparent universe. At this stage, the dynamics of gravitational collapse become
decoupled from radiation and the growth of structure progresses unhindered.

The free steaming photons from recombination, observed today as the cosmic microwave
background radiation (CMB), document the initial conditions of structure formation: small
density fluctuations from an incredibly uniform spatial distribution that are well described
by a Gaussian probability distribution function. Applications of gravitational perturbation

theory and strong non-linear collapse in numerical simulations prove extraordinarily success-



ful in describing the evolution of structure. We see strong support for hierarchical structure

formation, where small objects form before larger ones (e.g. galaxies before galaxy clusters).

Gravitational dynamics are sensitive to cosmology and depend on the spatial curvature of
the universe as well as the contents of the material in it. A combination of many observations
including both LSS and CMB measurements support a standard model in accordance with
current observations (see recent constraints in Komatsu et al., 2009). This concordance
model of cosmology suggests a critically dense (spatially flat) universe. In addition to the
baryonic matter that makes up stars, planets and people — the majority of mass exists in an
as-of-yet undetected form, aptly called dark matter. To evolve into the structure we observe,
the velocity of this matter must be well below relativistic speeds, and is therefore referred to
cold dark matter (CDM). Finally, the expansion of the universe appears to be accelerating, a
result of some form of dark energy that is currently consistent with a cosmological constant
(denoted as A). This concordance model, referred to as ACDM, forms the basis of predicting

LSS and the framework underlying galaxy formation and evolution.

We probe density perturbations today by studying the statistical properties of the distri-
bution of galaxies which occupy highly overdense regions. We observe significant clumping
and clustering in line with predictions from ACDM. However, there is a large conceptual
hurdle between following the evolution of mass in gravitational collapse and that realized by
galaxy positions. There is little reason to believe there exists a perfect one-to-one correspon-
dence between mass overdensities and galaxy positions; complex galaxy formation processes
such as merging and feedback should have significant contributions. This discrepancy be-
tween predicted “mass” relative to the observed “light” in galaxies is often described as

galaxy-mass bias.

The parameterization of galaxy-mass bias allows us to use a two pronged approach to
probe both cosmology and galaxy formation. On one side, we map the clustering of galax-
ies to that of the underlying mass distribution allowing us to understand and constrain
cosmology. Alternatively, the parameterization of the bias itself encodes useful informa-
tion concerning galaxy formation processes. This distills observational data from hundreds
of thousands of galaxies into a significantly smaller and more manageable form, enabling

powerful empirical constraints for theoretical models.



1.1 MOTIVATION

If the galaxy distribution was entirely Gaussian, clustering properties would be completely
determined by the two-point correlation function (2PCF), or its Fourier space analog the
power spectrum. Although analyses of the CMB suggest that the primordial mass fluctua-
tions in our universe appear extremely Gaussian, we expect gravitational evolution between
the early epoch observed by the CMB and today to produce non-Gaussian signatures in the
galaxy distribution. The 2PCF remains only a limited view of the full distribution which

cannot sufficiently probe non-Gaussian signals.

To investigate non-Gaussian structure, as well as shape information in galaxy distribu-
tions, we require higher order clustering statistics. In the hierarchy of n-point correlation
functions, the three-point correlation function (3PCF) is the lowest order statistic to provide
information on shape. For example, this enables probes of the triaxial nature of halos and
extended filaments within the “cosmic web”. Measurements of higher order moments allow
a more complete picture of the galaxy distribution, breaking model degeneracies describing

cosmology and galaxy properties.

Unfortunately, the information contained in higher order moments comes at a price.
Their increased complexity make the measurements, modeling and interpretation difficult.
Theoretically, non-linear contributions have significant non-trivial implications. Their calcu-
lation gets computationally challenging and efficient algorithms become critically important.
They require larger and cleaner galaxy samples as they show more sensitivity to observa-
tional systematics than their lower order cousins (such as the 2PCF). As it was recently
described: “the overlap between well understood theory and reliable measurements is in
fact disquietingly small” (Szapudi, 2005). This work attempts to increase this overlap by

leveraging the massive data available in a modern galaxy survey such as the SDSS.



1.2 OVERVIEW OF THESIS

In this thesis, we discuss efficient means to measure higher order correlation functions from
large observational surveys, such as the Sloan Digital Sky Survey (SDSS), and how to make
effective constraints using the data. We focus on the configuration dependence of the reduced
3PCF of galaxies in the SDSS, constraining parameters relevant to galaxy formation with
implications for better understanding of cosmology. This work represents the largest sample
of galaxy data ever analyzed with the reduced 3PCF, and the only investigation of the
projected 3PCF for the SDSS.

In the rest of this chapter, we review the concepts relevant to this work. We describe
statistical descriptions for quantifying large-scale structure (LSS) in §1.3, specifically defining
the n-point correlation functions. The model to relate the clustering of galaxies to properties
of the underlying mass, i.e. galaxy-mass bias, is reviewed in §1.4. We continue by presenting
the effects of redshift distortions on clustering in §1.5 and a method to minimize these effects
by projecting the correlation functions in §1.6. In §1.7, we review the methods of estimating
correlation functions from data.

In Chapter 2, we describe our SDSS galaxy samples. We discuss their selection and
completeness, and describe the parent catalog they are derived from (Blanton et al., 2005b).
We cover the creation of “representative samples” (i.e. volume-limited subsets) characterized
by different luminosities. We also discuss necessary information about our use of a dark
matter N-body simulation and mock galaxy catalogs for comparison to observed galaxies.

In Chapter 3, we discuss the computational challenge of analyzing the increasingly mas-
sive observational data that is becoming available. We introduce a solution we developed
applicable to a wide range of analyses: Ntropy, an efficient parallel framework to utilize
massively parallel supercomputing facilities (thousands of processors) using efficient tree-
based data structures. We present two applications implemented with this framework: (1) a
friends-of-friends (Davis et al., 1985) group finder and (2) an n-point correlation calculator.
We use the n-point application for our analysis of SDSS galaxies.

In Chapter 4, we present clustering measurements of SDSS DR6 galaxies, primarily

focusing on the configuration dependence of the reduced 3PCF on scales between 3 and



27 h~'Mpc. We use the full shape dependence at three different scales roughly corresponding
to the non-linear (3 —9 h=*Mpc), quasi-linear (6 — 18 h~*Mpc) and linear (9 — 27 h~'Mpc)
regimes. We find significant configuration dependence at all scales, similar to predictions
from the canonical ACDM model and in contrast the lack of shape dependence proposed by
the hierarchical ansatz. We investigate the luminosity and color dependence for three galaxy
samples with different r-band magnitude ranges, where significant differences appear only on
scales below 9 h~!Mpc. We find a weak luminosity dependence, and a color dependence that
changes with scale showing a more pronounced difference on our smallest scale configuration
(3 —9 h~'Mpc). We analyze measurements and associated covariance matrices for the
3PCF, both in redshift and projected space. We note significant structure and correlation
in the covariance that varies with galaxy sample luminosity. We discuss the effect of “super
structures”, such as the Sloan Great Wall (Gott et al., 2005), have on these clustering
measurements. We show that a few structures dramatically affect measurements on the

whole volume, but which structure dominates depends on the scale being measured.

In Chapter 5, we constrain galaxy-mass bias which quantifies the clustering difference
between “light” (galaxies) and “mass” (as realized by dark matter particles from an N-
body simulation). We utilize a modern analysis technique to incorporate the full covariance
matrix and minimize inaccuracies due to noise. We investigate the structure of the covariance
matrices by inspection of their eigenvectors, confirming that our errors are signal dominated
and well resolved. We obtain fits for linear and quadratic bias on two galaxy samples and
discuss the implications for cosmology. We show galaxy clustering can be described as a

biased realization of the mass field, where the strength of the bias varies by luminosity.

In Chapter 6, we investigate systematic effects associated with our measurements, es-
pecially those not well studied for the 3PCF. We investigate the effect of sky completeness
and binning, which can alter or mask expected signal in the 3PCF. We address the effec-
tiveness of projected correlation functions in minimizing the impact of redshift distortions.
Finally, we question the quality of error estimation by comparing cross validation estimation
(i.e. jackknife re-sampling) with independent mock catalogs corresponding to our bright-
est galaxy sample. We justify that the choices we made in previous chapters should not

affect our results and highlight the importance of systematics that are often overlooked in



comparable analyses.

Chapter 7 summarizes our conclusions and presents additional discussion of our main
results. Additionally, we briefly review future directions of this work.

On a practical note, all figures represent the work of the authors unless we explicitly

mention otherwise.

1.3 QUANTIFYING LARGE-SCALE STRUCTURE

1.3.1 Defining the Correlation Function

We define the mass density as a function of position, p(¥), that has a well known average

density of p. We define the fractional overdensity about the mean at a local point as

i) = Q —1. (1.1)

p
We note casting the density in terms of the overdensity effectively removes the first moment
of the § field, i.e. (0(%)) = 0, where the () denotes an ensemble average. The two-point cor-
relation function (2PCF) can be defined in terms of ¢ values characterized by the separation

of two positions, r2 = |Z1 — Zs|, which we write

£(r12) = (5(;?1)(5(;?2)) . (1-2)

Generally given a field of values, say discrete objects filling some volume, we might ask
whether the objects cluster more than expected from a uniform random field. We cast this
in terms of a probability. If we know the mean density of objects, n, we relate the marginal
probability, 0 P, of finding an object within some marginal volume, 6V, such that P = ndV.
If we then want to define the probability of finding another object within some distance r
from the original object, we need to know an additional property of the distribution that
relates pairs. If the field is random then there is no clustering nor correlation and the same

formula holds independent of . However, if the distribution exhibits some clustering, we



can quantify it using the 2PCF. The conditional marginal probability (conditional since we

already start from an object) can then be found by
P =ndéV [1+&(r)] . (1.3)

The function £(r) encodes the excess probability above (or equivalently below) random. For a
random field, & = 0. Positive values denote increased clustering; there is a higher probability
of finding a point a distance r over random. Negative values show an anti-correlation, i.e.
less likely than random down to a limit that the probability becomes zero when & = —1. &
remains unbounded for positive values.

We can relate ¢ to the marginal probability, 0 P, of two positions each characterized by

small volumes, 0V} and §V5, also parameterized by their separation, rqo, as
P = n?0VidVa [1 4 £(r12)], (1.4)

The difference between (1.3) and (1.4) is strictly the starting point. The conditional prob-
ability considers finding another object while sitting at the location of one. The latter
formulation in (1.4) generalizes the relation for any two positions within the field, hence the

dependence on 2.

1.3.2 Three-Point Correlation Function

A Gaussian field refers to any distribution that is fully described (statistically) by only its
first and second moments (e.g. a mean and variance). For the ¢ field, the mean is zero and
&(r) successfully describes all clustering properties. A non-Gaussian field, basically every
other possible distribution besides uniform and Gaussian, has non-trivial higher moments
(i.e. non-zero higher order correlation functions). Higher order functions of the distribu-
tion can be similarly defined with respect to overdensity fluctuations, where the three-point

correlation function (3PCF) is given by
C(T’lg, T23, 7’31) = <5(fl)5(f2>(5(f3)> . (15)

Instead of a single dependent variable, such as ri5 in £(r15), we see the 3PCF relies on three

separations necessary to parameterize triplets. Further higher order correlation functions



(greater than n = 3) require even more variables, resulting in a “combinatorial explosion”

of parameters (Szapudi, 2005). Relating the 3PCF back to marginal probabilities, we write
0P = n*6Vi0Vad Vs [1 + E1€os + 1261 + Ea3&ar + Cing) (1.6)

where we use a simplified notation with {15 = £(712), etc. We see the probability of finding
triplets depends both on the 3PCF and the product of lower order 2PCFs. Formally, the
probability relates to the joint moment of the mass overdensity ¢ field. The n-point cor-
relation functions, which we denote for n = 2 and 3 with £ and (, are the connected joint
moments. Connected moments do not include “accidental associations” due to clustering in
lower order connected moments. To visualize this, think of a Gaussian distribution where
all connected joint moments for n > 2 are zero. However, the probability of finding a triplet

is certainly not zero, and will depend on the clustering characterized in &.

1.3.3 Reduced Three-Point Correlation Function

The hierarchical ansatz posits that the 3PCF can be estimated by a cyclic combination of

respective 2PCFs:
C(r12,793,731) = Q [£12€03 + E12€31 + E31803] (1.7)

where () denotes a scaling constant to adjust the amplitude (Peebles, 1980). Initial measure-
ments of 3PCF using angular surveys suggested that the hierarchical ansatz held at small
scales with @ ~ 1.3 (Peebles, 1980). Current observations indicate that this hierarchical
scaling does not hold for galaxies in the weakly non-linear regime where measurements of
galaxies show both scale and configuration dependence.

What was originally called the hierarchical amplitude (@) can be rewritten as a function,
specifically

C(T‘1277“23,7“31)

Qa1 = o et + Enn (18)

This definition provides a useful normalization, and Q(ri2,r23,731) is commonly referred to

as the normalized or reduced 3PCF. As long as the 2PCF remains well above zero, i.e. the
denominator in (1.8), the value of the function @) roughly equals unity regardless of scale.

This form was later justified by gravitational perturbation theory, as the evolution of the



3PCF depends on quadratic terms in the equations of motion encapsulated in the square of
the 2PCF (Bernardeau et al., 2002). An additional benefit of utilizing such a “ratio statistic”
is that we expect @ to be insensitive to both time and cosmology. To leading order, ) only

depends on the spectral index and triangle configuration (Bernardeau et al., 2002).

1.4 GALAXY-MASS BIAS

Galaxies might not perfectly trace the mass field. To account for differences between the
observed light and mass, we can consider galaxies to be a biased realization of the ACDM
evolved mass field. In the local bias model (Fry and Gaztanaga, 1993), the galaxy over-

density, d 4, can be connected to the mass density, d,,, by a non-linear Taylor series expansion:

Sg=>_ B gt b16, + bega (1.9)

This relation describes the mapping between galaxy and mass overdensities by simple scalar
values, to second order: the linear (b;) and quadratic (bg) bias.

With measurements on galaxy n-point correlation functions, the clustering of galaxies can
be related to mass clustering via the bias parameters. The 2PCF can be used to constrain
the linear bias by equating the correlation function between galaxies, £;, to that of dark

matter, &,,, such that
E(r) =01 &nl(r) - (1.10)

The 3PCF is the lowest order correlation function that is sensitive to the quadratic bias term

(to leading order). The analog to (1.10) for the connected 3PCF is written

Co(r12, 723, 731) = U3 (112, 793, 731) + b3ba [E12€03 + E10€a1 + Ea1aa] (1.11)

where & = (1), etc. This simplifies for the reduced 3PCF which we write in terms of two

scalar values B = by and C' = by /b; as follows:

1

Qg(T1277“2379) = E

[ Qun(r12,723,0) +C ] . (1.12)



We have changed notation slightly in (1.12), parameterizing r3; instead as ¢, the opening
angle between the two sides 715 and ro3, which still defines a unique triplet.

If there is any functional shape to @, its shape can be affected by B (since it is a
multiplicative factor), whereas C' will only cause an offset. We can imagine that B and
C are somewhat degenerate in this description, especially if there is no shape dependence
in Q(0) — as two parameters are used to describe a simple change in amplitude. However,
when the 3PCF exhibits a shape dependence, the degeneracy is broken since B affects the
shape and C' is just an amplitude offset. Larger values of B will dampen the configuration
dependence of @(6). Even with the degeneracy broken, the values of B and C' will likely

show a strong correlation.

1.5 REDSHIFT DISTORTIONS

The most accurate method to determine galactic distances is to determine a redshift from
galaxy spectra. The redshift identifies the recession velocity (cz) which we relate to distance
(d) using Hubble’s law (Hubble, 1929). Any dynamical or peculiar velocity (vpe.) of a galaxy

will induce an additional redshift or blueshift so that we really measure

cz = Hod + pee (1.13)

where H, denotes the value of the Hubble constant at the current epoch (today). The
systematic error on distance due to the peculiar velocity is commonly referred to as a redshift
distortion. We refer to the positions that include distorted distances as redshift space, which
we denote with s as opposed to “real” space distance 7.

Redshift distortions effectively couple the density and velocity fields, complicating the
models needed to accurately describe observational galaxy samples. A nice review of linear
theory implications is presented in Hamilton (1998), and we present their illustration of
redshift distortion in Figure 1.1. There are two main effects that have been identified in

galaxy distributions. In the linear regime, the peculiar velocities remain low and a small
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squashing effect can appear to slightly enhance large elongations perpendicular to our line-
of-sight (Kaiser, 1987). In the strongly non-linear regions of gravitational collapse, we expect
the relative velocities to be high, e.g. a galaxy falling into a galaxy cluster. The high peculiar
velocity creates an extreme elongation along our line-of-sight; structures affectionately called
“fingers-of-god” (FoG).

We show a slice of SDSS galaxies in Figure 1.2, where such FoG can be clearly seen. As
as example of the magnitude of the effect, consider a typical galaxy cluster where the velocity
dispersion might be 1000km/s. If we assume a galaxy is falling into the cluster along our
line-of-sight, the distortion distance due to this peculiar velocity would be 10h~'Mpc.

The redshift space distortion will significantly affect any statistical measure of clustering
such as correlation functions. This breaks the isotropy of the galaxy distribution (it is no
longer translational invariant, but maintains rotational symmetry). This results in a redshift
space correlation function dependent on three variables, namely the redshift distances to the

galaxies s; and sy as well as their redshift space separation sj5 (Hamilton, 1998).

§(r12) — &(s1, 82, S12) (1.14)

We commonly use the spherically averaged, or monopole term, of the correlation function
expressed as a function of just the redshift space separation: £(s;2). We show a comparison
of this redshift space 2PCF with respect to real space measurement for a mock galaxy catalog
in Figure 1.3. We see a severe reduction in power on small scales in the redshift space 2PCF
as the FoG scatter pairs. At separations larger than 3 h~'Mpc the redshift space £(s) shows
more power than real space.

As another alternative, we can assume the angle subtended between galaxies stays small,
making the radial redshift distortions plane-parallel (for any given pair). We then cast
the separation in terms of two coordinates perpendicular and parallel to our line-of-sight,
respectively r, and m, so

(51, S2, S12) = &(1p, ) (1.15)

This relates back to the redshift space separation, s = /r2 + 72.
We show the correlation function, £(r,, ), in Figure 1.4 for an SDSS galaxy sample. At

small r,, we note the signature of fingers-of-god in the correlation function. At large r, we

11



Real space; Redshift space:

Squashing effect

Linear regime

Collapsed

Turnaround

Collapsing Finger-of-god
Figure 1.1 Ilustrative description of redshift distortions. The shapes on the left represent shapes in real
space, with points as “galaxies”. The arrows show the respective peculiar velocities which become entangled
into the distance measurement and results in the redshift space shapes on the left. In the collapsing case,
the strongly non-linear gravitational region actually appears to invert the structure (the closest “galaxy”
to the observer appears the farthest away). Image reproduced from Hamilton (1998).
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Figure 1.2 Slice of SDSS galaxy positions. Each point represents one galaxy, with the line-of-sight distance
expressed as a redshift (denoted here with Z). Several finger-of-god structures can be seen, as well as the
massive super structure in the top slice, often referred to as the Sloan Great Wall (Gott et al., 2005). Image
courtesy of A. Berlind.
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Figure 1.3 We show the 2PCF for a mock galaxy catalog we created from an N-body simulation, both with
and without redshift space distortions. The error bars denote 1-o uncertainties. For comparison, we include
a fiducial power law model matching that used in Zehavi et al. (2005). Line-of-sight redshift distortions
due to the peculiar velocities affect intrinsic clustering, illustrated by the difference in the solid black line
(real space) and the dotted red line (redshift space).
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Figure 1.4 The 2PCF expressed in 7, — 7 coordinates, perpendicular and parallel to our line-of-sight. The

black lines are contours of a specific value of &(r,,m) with the yellow highlighted one corresponding to
&(rp,m) =1 . The blue (dot-dashed) semi-circles show a perfect isotropic correlation for comparison.
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see the large scale Kaiser infall as a “squashing” of the contours. The symmetry of galaxy

clustering is clearly broken by redshift distortions.

1.6 PROJECTED CORRELATION FUNCTIONS

Using the plane-parallel approximation of galaxies in redshift space, we notice that the 7
coordinate encapsulates the redshift distortion. We can integrate the redshift space 2PCF

along 7 and introduce the projected two-point correlation function:

w(r,) = 2 /0 " e, w)d (1.16)

Physically, we project the 3D correlation function onto a 2D surface of the sky. Although we
lose information from the dimensionality reduction of the projection, we achieve a statistical
representation largely independent of redshift distortions. For small scales, where both the
density and velocity fields are highly non-linear, redshift distortions become exceedingly
difficult to model. The projected correlation function allows the high statistical significance
of these small scale measurements to be robustly used with simple or even no modeling of
the redshift distortions (we investigate its success later in Chapter 6).

Analogously, we define the projected 3PCF and its reduced form as:

Cpmj(rmzﬂ’pz:’,,'f’pm) ://C('f’pu,7’p23,7’p3177Tl2,7T23)d7T12d7T23 (1~17)

Cp(rp127 T'p23, 7°p31) (1 18)
Wp12Wp23 + Wp12Wp31 + Wp31 Wp24

Qproj (Tp127 T'p23, 7"p31) =
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Figure 1.5 We show the fiducial projected 2PCF calculated by integrating the fiducial power-law model

of the real space 2PCF: &piq(r) = (r/5 h~'Mpc)

"® The dotted line depicts the full integration of the

fiducial power-law in real space. We also show the effect of truncating the integration at m,,, for three
other values as noted in the legend.
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1.7 ESTIMATING CORRELATION FUNCTIONS

To estimate correlation functions, we simply count pairs for the 2PCF, and triplets for
the 3PCF. We convert the raw counts into estimates of clustering using the corresponding
volume, which is typically done in Monte Carlo fashion by uniformly distributing points
filling the same volume as the data. We refer to these latter distributions as random catalogs
(reviewed in Szapudi, 2005).

Let us consider the 2PCF. From a finite data sample consisting of N points, we find all
pairs that exist with separations between (r — Ar/2) and (r + Ar/2), where Ar denotes the
bin-width. We refer to this count of data-data pairs as dd(r). We normalize this raw count

by the number of possible pairs, such that DD(r) = N??\Ei)l)'

We do the same using points
from our random catalog finding the normalized random-random pairs RR(r). The simplest
representation of the 2PCF (Peebles, 1980) then becomes

~ DD

§nat = TR L, (1.19)
where gmt signifies the natural estimator. Note, we have dropped the dependence on r only
from our notation. In practice, the random catalogs typically contain many more points,
often by factors of 5 — 50, so the shot noise contribution (Poisson error) in 5 are dominated
by the data alone.

Unfortunately, we obtain galaxy data with many boundaries in irregular geometries.
These “edges” produce significant contributions to estimates of correlation functions, de-
viating from the true underlying function of the data. New estimators were designed to
optimally account for the edge effects, with two almost simultaneously presented: ELS by

Landy and Szalay (1993) and £papm by Hamilton (1993):

~  DD-2DR+RR

{Ls = R ; (1.20)
~ DD RR
Ham = —p 7 (1.21)
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Here, DR corresponds to the normalized cross count of data-random pairs, such that DR =

dr
NpNgr

where Np represents the number of data objects and Ng corresponds to that in random
catalogs.

A detailed comparison between these and other estimators (Kerscher et al., 2000) found
no distinguishable difference between E s and E Ham- They find that both of these minimum
variance estimators optimally correct for edge effects and show stable estimates with the
least number of randoms. We adopt E rs for our 2PCF estimates. The LS estimator was
extended to a class of minimum variance estimators for all n-point correlation functions by

Szapudi and Szalay (1998). We use this to estimate the 3PCF, specifically

Zoo = DDD —3DDR+ 3DRR — RRR
95 RRR '

(1.22)

The DDD denotes the normalized count of data-data-data triplets, DDR corresponds to
data-data-random, etc. A brief comparison of three-point estimators shows ZSS performs

favorably to alternatives (see appendix in Kayo et al., 2004).
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2.0 DATA SAMPLES

In this chapter, we define the data samples we analyze throughout the thesis. We describe
important aspects of the galaxy data obtained from the Sloan Digital Sky Survey (SDSS) in
§2.1. We introduce the N-body simulations in §2.2 which we use to predict mass evolution
through gravitational collapse in comparison to observational galaxy results. In addition,
we detail the construction of mock galaxy catalogs in §2.3 which we later use to test our

analysis and investigate the reliability of our estimated measurement errors in Chapter 6.

2.1 SLOAN DIGITAL SKY SURVEY

The SDSS (York et al., 2000) is an ambitious project based on a collaboration of over 25
institutions around the world. The data was obtained over eight years and managed as two
sequential programs: SDSS-I (2000-2005) and SDSS-II (2005-2008). A third project, SDSS-
I1I, is planned to continue operations until 2012, but we do not include any of these data in
the current analysis. A dedicated 2.5 meter telescope at Apache Point Observatory in New
Mexico obtained images and spectra covering nearly a quarter of the sky (see Gunn et al.,
1998, for technical description). The 120 mega-pixel camera took imaging data in 5 different
filters (ugriz) and a fiber spectrograph recorded spectra for over one million objects. The
SDSS is arguably the most influential astronomical survey to date.

For our analysis, we use galaxy catalogs with accurate distances (obtained by measuring
the spectroscopic redshift). In general, objects are identified from the multi-band imaging
data and selected as targets for the fiber spectrograph according to a specific criteria detailed

in Strauss et al. (2002). The algorithm which defines the Main galaxy sample selected about
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90 galaxies per square degree which have a median redshift of 0.104 (Strauss et al., 2002).
The Main galaxy sample has high completeness with an accurate statistical separation of
starts and galaxies, preventing stellar contaminants in the galaxy samples.

The SDSS data is made available in almost yearly data releases. It is provided in a
“scientifically digestible” reduced form as a product of a carefully developed software pipeline.
We investigate systematics and perform initial measurements on a preliminary version of the
5th data release (DR5, Adelman-McCarthy et al., 2007) which we sometimes refer to as
DR4+. We conduct our primary analysis of the three point correlation function on DR6
(Adelman-McCarthy et al., 2008). The final data product of SDSS-II was released to the
public late in October 2008 as DR7 (Abazajian et al., 2009). Figure 2.1 depicts the main
difference between the three releases: more available data in later releases due to larger

angular coverage.

Figure 2.1 This figure is an Aitoff projection in equatorial coordinates of our specific SDSS spectroscopic
galaxy samples from the NYU-VAGC. Our samples from the three latest data releases are shown: DR5 in
blue, new regions to DR6 in yellow and new regions of DR7 in red.
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2.1.1 Value-Added Galaxy Catalog

The SDSS galaxy samples are made more readily available for scientific analysis in the New
York University Value-Added Galaxy Catalog (NYU-VAGC; Blanton et al., 2005b). This
catalog focuses on spectroscopically targeted galaxies and provides detailed characterizations
of the sample geometry and completeness as well as correcting for known systematics that
are pertinent to large scale structure analyses. These include passive evolution corrections,
K-corrections, and “fiber collision corrections” to correct for galaxies without measured
redshifts due to galaxy pairs that are closer than fibers can be positions on the sky. We
review these briefly here.

Statistical descriptions of the galaxy distribution, such as correlation functions, require
a detailed account of the survey geometry. This is important to define the volume probed
as well as define areas on the sky where objects could have been observed. The NYU-
VAGC makes use of disjoint convex spherical polygons to store the geometry (Hamilton and
Tegmark, 2004). This method is capable of accurately describing the complex shape of the
SDSS footprint on the sky. Spectroscopic galaxy targets can be associated with a specific
region that is described by these spherical polygons. A completeness is assigned for each
region by taking the ratio of the number of successful redshifts to the number of identified
targets.

The NYU-VAGC calculates additional quantities that are necessary for defining galaxy
samples. A redshift is a measure of the recession velocity of the galaxy, which can be turned
into an accurate distance measure for objects outside of the local group. However, the
difference between the observed-frame wavelength bandpass to that of the actual rest-frame
will also vary with distance. Basically, we observe a different part of the spectrum for distant
objects (high redshift) as opposed to nearby objects. The “corrections” to account for this
effect are referred to as K-corrections (see Oke and Sandage, 1968; Hogg et al., 2002). The
absolute magnitude (M) can then be determined by using the apparent magnitude (m), the

luminosity distance (Dy), and the K-correction (K):

M:m—5log(DL)—K. (2.1)

10pc
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The K-correction is empirically determined by fitting ugriz magnitudes to carefully designed
templates with the kcorrect code (Blanton et al., 2003b). They are calibrated at z =
0.1, which is close to the median redshift of the Main sample. The luminosity distance is
calculated using the comoving distance element (for a concise review see Hogg, 1999) using
a flat cosmology with Q,, = 0.3, Qy = 0.7, H, = h x 100km s~ Mpc™!.

We expect the intrinsic brightness of galaxies to evolve with time. For the Main galaxy
sample, a simple passive evolution model can characterize this as a function of redshift by
examining the luminosity function and expected number density of objects. This correction
to the absolute magnitude is determined and included in the NYU-VAGC (Blanton et al.,
2005b) using a simple quadratic fit.

SDSS spectra are obtained by using 640 fibers per plate (one plate per observation).
Hardware limitations restrict how close two fibers can physically be placed. Objects that are
located within 55 ” “collide” and can not be simultaneously observed preventing redshifts for
about 7% of the galaxy targets. A small number can be recovered in overlap regions between
neighboring plates (a region covered by two different observations). Due to the significant
clustering of galaxies, one must be careful to consider this effect which dramatically alters
small scales. At large scales, a “fiber collision correction” can be applied to objects missing
redshifts by assigning the exact redshift of the nearest angular neighbor to the object, which
is incorporated into the NYU-VAGC. While this might appear dramatic, this method was
carefully tested for clustering analyses by using simulated datasets (Zehavi et al., 2002) and
found to be a sufficient correction for 5-6% of the sample (leaving only 1-2% of the total
objects without redshifts).

2.1.2 Galaxy Sample Selection

To aid our understanding of galaxy clustering, we must analyze a “fair sample” of observa-
tional data. Galaxy surveys observe to an apparent brightness limit on the sky. The resulting
flux-limited sample includes a larger volume of intrinsically brighter objects at farther dis-
tances with respect to fainter objects. This builds in an observational bias between brightness

of the objects and total volume probed. This is typically handled in two ways. First, the
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radial distribution of the sample can be modeled and a radial selection function constructed
to statistically weight the galaxy distribution and “correct” for the bias. The second option
is to define a subset of the original sample by restricting the absolute magnitude range and
redshift such that all objects within the brightness limits are observable through the entire
redshift range. This subset is more “representative” of the universe although it is often of
considerably smaller volume, hence referred to as a volume-limited sample.

There are benefits and drawbacks to both approaches. Clustering measurements based
on the full flux-limited sample use the full statistical strength of all the available galaxies.
However, the analysis can be sensitive to how well the radial selection function is modeled.
This creates a chicken-or-the-egg problem: we must make significant assumptions about the
galaxy distribution before actually measuring it. Volume-limited samples avoid the radial
selection function by defining it to be the same over the entire redshift range. The drawback
with using volume-limited samples is the smaller volume drastically reduces the data size
and therefore the statistical strength of the measurements.

Given the size of data available with the SDSS, we choose to analyze volume-limited
samples. Even the reduced volume of these samples can include over 100,000 objects (see
Table 2.1). This avoids problems caused by the fact that the systematic effects in tabulat-
ing the radial selection function can dominate over statistical uncertainties in flux-limited
samples.

We construct volume-limited samples by looking at the evolution corrected absolute -
band magnitude as a function of redshift. We then define a sample of objects by selecting
bounding redshifts that correspond to a specific luminosity range. This is shown in Figure
2.2 for our SDSS DR6 samples. For each sample we tabulate the number of objects, volume
and completeness corrected number density as shown in Table 2.1.

A common analytic form of the luminosity function, i.e. the number density of galaxies

as a function of their intrinsic brightness, is given by Schechter (1976)

it o (L) oo (L) a( £) o

where ¢(L)dL gives the number density of galaxies, parameterized by the normalization ¢,

a characteristic luminosity dividing the bright and faint ends L, and the power-law slope
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Specifics of SDSS galaxy samples

Volume  Number of Density
Magnitude Redshift
(Gpc/h)®  Galaxies  107*(Mpc/h)~3
BRIGHT M, < —21.5 0.010 to 0.210  0.1390 37,875 0.272
LSTAR  —21.5 < M, < —20.5 0.053 to 0.138  0.0391 106, 824 2.732
FAINT —20.5 < M, < —=19.5 0.034 to 0.086  0.0098 76, 808 7.849

Table 2.1 The redshift limits, volume, number of objects and sky completeness corrected number density
(see text) are shown for the three galaxy samples constructed from the SDSS DR6 spectroscopic catalog.
These are selected by cuts in redshift, z, and corrected (K-correction and passive evolution) absolute r-band
magnitude, M,., to create a volume-limited selection.

of the faint end in a. We plot this function with respect to the SDSS galaxy luminosity
function (Blanton et al., 2003a) in Figure 2.3. We can see that fainter galaxies (below L)
show a power law decrease in number density with increasing brightness. Brighter galaxies
(well above L,) become extremely rare exhibiting an exponential drop decrease in number

density.

We define our galaxy samples in three luminosity ranges to investigate the luminosity
dependence of our measurements. Observational datasets often have a characteristic lumi-
nosity, referred to at L,, that represents the luminosity of the most prevalent galaxy in the
survey. This is an observational “sweet spot” due to the competing effects of the galaxy

luminosity function and limiting volume of observation.

Extremely faint galaxies can only be observed in a small volume and even though their
expected density is high, the volume is too low to dominate the total galaxy count. At the
very bright end, the exponential drop in the galaxy luminosity function is more rapid than
the increasing volume and bright galaxies also become a minority contribution. For the SDSS
Main galaxy sample, L, corresponds to M, ~ —20.5 (actually —20.42, see Blanton et al.,
2003a). We choose two of our samples to be a bin of unit magnitude below L, and above L,
to maximize the statistical strength while probing the luminosity dependence, respectively
referred to as our FAINT and LSTAR samples. In addition, we investigate a brighter sample,
called BRIGHT (M, < —21.5), that covers the largest volume. Properties of these samples
are detailed in Table 2.1.
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We define our galaxy samples from two parent catalogs which are two versions of a flux-
limited sample of SDSS DR6 available through the NYU-VAGC. The FAINT and LSTAR
samples use the “safe” selection which conservatively applies an apparent magnitude restric-
tion such that all galaxies are within 14.5 < m, < 17.6 (see blue data points in Figure 2.2).
Our BRIGHT galaxy sample is defined from the “bright” flux-limited catalog (see black
points in Figure 2.2), which does require members to be brighter than m, = 14.5. The
bright apparent magnitude cut was originally motivated to prevent contamination of fainter
galaxy samples as an earlier version of the SDSS processing pipeline had more difficulties
determining the apparent magnitude of near, bright galaxies.

Galaxy clustering measurements have been shown to vary strongly with color (Zehavi
et al., 2005). We define red and blue sub-samples based on the g — r color for two of
our galaxy samples. There is a strong bi-modality between red and blue sub-samples that
varies with absolute magnitude, as shown in Baldry et al. (2004). This can be seen in the
color magnitude diagram (Figure 2.4), where the data points show a strong overdense linear
structure, the “red sequence”, which is predominantly populated by red elliptical galaxies
and a less dense and more circular clump at bluer values, i.e. the “blue cloud”. We adopt a
simple linearly sloped color cut that depends on r-band magnitude to account for this effect,

as described in Zehavi et al. (2005), such that the g — 7 color limit is:

(g — r)iim = —0.03M, +0.21 . (2.3)
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Figure 2.2 This figure depicts the sample selection for volume-limited samples from the SDSS DRE6 release.
We select the spectroscopic redshift limits where galaxies of all included magnitudes can be seen at both
the inner and outer boundaries. The black points do not have a bright apparent magnitude cut, and is the
base for our brightest volume-limited sample; the blue points show the so called “safe” catalog which we
use to define our two fainter galaxy samples.
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Figure 2.3 Luminosity function of SDSS Main galaxies from DRI (symbols) with a best-fit Schechter
function (line), taken from (Loveday, 2004). This luminosity function is characterized by magnitude (M)
rather than luminosity (L), but is qualitatively the same as described in (2.2).
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Figure 2.4 We show M, magnitude as a function of color (g — ) for the full DR6 galaxy sample. The “red
sequence” can be seen the overdensity on the right which is redder (higher g — r values) and slightly tilted.
The “blue cloud” is the diffuse clump to the left (lower g — r values). The dashed line shows the separation
of the red and blue populations as a function of M, as we discuss in the text.
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2.2 HUBBLE VOLUME SIMULATION

We compare the SDSS galaxy distribution with the structure in cosmological N-body sim-
ulations. We use the Hubble Volume (HV) simulations (Colberg et al., 2000; Evrard et al.,
2002) that were completed by the Virgo Consortium. We chose the simulation with ACDM
cosmology: (Qn = 0.3, Qy = 0.7, H, = 70km s~ Mpc™t, og = 0.9). This HV simula-
tion consists of 1000® particles in a box of (3000h~*Mpc)? volume with a particle mass of
Mpars = 2.2 X 10"2h71 M. To better compare with observational galaxy samples, we make
use of a “light-cone” realization. Rather than have all positions at a single epoch, particles
at farther distances from the origin correspond to earlier times in the gravitational evolution
and hence trace the light-cone of observed galaxy samples. The light-cone output of the HV
ACDM simulation was kindly provided by Gus Evrard and Jérg Colberg.

We apply observational constraints to the particles of the HV simulation. We filter
particles to match the same angular footprint of the SDSS geometry (see Figure 2.1) as
well as limiting the line-of-sight distance for each of the galaxy samples. This will exactly
reproduce the volume of the galaxy sample. We also apply redshift distortions to the radial

distance by using the particle’s peculiar velocity (vpe.) to approximate the distortion distance,

Upec
dradial = dcomoving + ;_}_O . (24)

This is an approximation since we neglect evolution of the Hubble parameter and scale factor

1

1—+Z) At the low redshift of our galaxy samples, this is a fair approximation. Finally,

(a =
we randomly downsample the number of dark matter particles to make the computational
time of the analysis more manageable. To verify, we compare several downsampled realiza-
tions to a full distribution and noted the variation was well within expectations for Poisson
sampling. We conclude that the measurements on dark matter distributions that we later

use to compare to galaxy samples accurately represent the results of the full Hubble Volume

simulation.
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2.3 MOCK GALAXY CATALOGS

We use mock galaxy catalogs created to match the SDSS galaxy data, which are based
on 49 independent N-body simulations. These were all evolved with the same cosmology,
specifically Q,, = 0.27, Qy = 0.73, h = 0.72, 0s = 0.9 using different realizations with
randomized phases where the initial conditions were generated from 2nd order Lagrangian
perturbation theory (2LPT; Scoccimarro, 1998; Crocce et al., 2006). Please note that this
cosmology differs slightly from that used in the observational galaxy samples, but this should
not affect our main results (see Chapter 6). These simulations consist of 640% particles which
we evolved using Gadget2 (Springel, 2005) from an initial redshift of z; = 49 to the present
epoch. The box side-length of 1280 h~'Mpc was sufficiently large to match the geometry
and cover the entire volume of our brightest SDSS sample.

The galaxy mocks were created by finding the number of galaxies that exist in each dark
matter halo using a empirical description known as the halo occupation distribution (HOD;
Berlind and Weinberg, 2002). The specific HOD model we use is described in detail in Tinker
et al. (2005) with the parameters defined for M, < —21.5 and og = 0.9 (Berlind, private
communication). The halos were identified using a friends-of-friends algorithm (FoF; Davis
et al., 1985) with a linking length of b = 0.2 in units of the mean interparticle separation.
The least massive halos contained 33 particles, capable of representing the minimum halo
mass necessary to host the faintest galaxies in the BRIGHT galaxy sample. Given the
mass resolution, less massive halos that would host the fainter galaxies in the LSTAR and
FAINT galaxy samples were not properly identified in these simulations. Therefore, these
simulations can only be reliably used to for galaxy mocks corresponding to the BRIGHT

galaxy sample.
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3.0 COMPUTATION

In this chapter, we describe the computational difficulty associated with our investigation
of the three-point correlation function and introduce code developed in collaboration with
Jeffrey Gardner, Andrew Connolly and myself (see Gardner et al., 2007). We discuss the
problem of analyzing the massive data available in current and future projects in §3.1. We
present a general coding framework as a solution we developed for astrophysical contexts in
§3.2. We further discuss two specific applications of our framework to address current scien-
tific needs: (1) an n-point calculator in §3.3 and (2) a friends-of-friends groupfinder in §3.4.
To be explicit about my involvement in code development: I focused on testing, debugging,
result verification and minor development within the applications (along with their scientific
use). The design and implementation of the Ntropy framework is predominately the work

of Jeff Gardner.

3.1 COMPUTATIONAL CHALLENGE

Over the past decade and continuing for the foreseeable future, we find ourselves fortunate
enough to have a deluge of astrophysical data. Observational surveys are producing catalogs
of unprecedented size. The Sloan Digital Sky Survey (SDSS) contains over 1 million spectra
and more than 350 million unique objects in imaging data within the DR7 release. The
large synoptic survey telescope (LSST) will produce time series photometry for over a billion
objects, generating terabytes of data every might. On the theory side, the availability of
supercomputing facilities with tens of thousands of processors makes simulations consisting

of billions of particles commonplace. Obviously the situation is a good problem to have —
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but how do we handle this data?

An appropriate