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ADHESIVE ROUGH SURFACE CONTACT

Clint Adam Morrow, PhD

University of Pittsburgh, 2003

The focus of this dissertation is to use analytical and numerical methods to determine mech-

anisms which increase or decrease the adherence force between micro-scale components. Sev-

eral different methods are used to accomplish this task: 1) a traditional statistical approach

is used to analytically determine the adherence force as a function of surface roughness; 2) a

semi-analytical solution is developed for the adhesion of isotropic rough surfaces; 3) a numer-

ical approach utilizes a three-dimensional surface characterization to determine adherence

force trends with respect to roughness and material parameters; 4) combining a micro-scaled

friction model with item 3), static friction forces are determined as a function of material pa-

rameters as well as surface roughness. To inspire further rough surface solutions, an adhesive

solution for cylinders is extended to include the solution regime for when there is no longer

intimate contact, but adhesive forces are still active. For each of these methodologies there

are advantages and disadvantages which arise from the assumptions made in constructing

the solution, which are subsequently discussed.
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1.0 INTRODUCTION

Over the past decade, the design and utilization of micro-scale devices has continuously

increased. The micro-chip has become an everyday component of modern society. Function-

ality is being extended to the micro-chip through the addition of micro-machines. These

micro-machines are made up of micro-electro-mechanical systems (MEMS) which are being

integrated with the electrical circuitry of the micro-chip. This powerful combination enables

the chip to sense and act to a variety of outside stimuli. Many of the silicon based fab-

rication techniques originally used for micro-chips are now being used to construct MEMS

components. More notably, LIGA technology has extended the range of fabrication materi-

als to include metals such as nickel and copper. LIGA, is a german acronym for LIthograhie

Galvano-formun Abformung, or lithography, electroforming and molding. This process allows

for the creation of micron sized features on metal parts. These micro-scaled manufacturing

techniques are making MEMS implementation an attractive design alternative to conven-

tional technology. As the manufacturing MEMS components becomes more practical, the

utilization of micro-sized components will increase due to their numerous beneficial qualities

that include: lower cost, reduced weight, and improved performance. More specifically, by

decreasing the required number of parts and assembly time for a device, MEMS technology

can often reduce the cost of manufacturing small-scale components. Likewise, through the

reduction of the physical size and mass, MEMS technology can enhance the performance of

actuator and transducer elements by minimizing inertial effects.

Although the benefits of implementing and utilizing MEMS technology seem almost

obvious, the pitfalls are not as apparent. Devices that utilize MEMS technology will often

have mating surfaces. The contact at the surface interface is governed by asperity interaction.

This is due to the fact that moderate surface roughness and light loading conditions lead to
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contact between neighboring asperities. Components that reach this size have a high surface

to volume ratio which leaves them highly susceptible to surface forces. Stiction forces can

arise from any number of phenonmenon such as van der Waals, capillary, ionic and molecular

forces. Since the adhesive forces tend to make neighboring surfaces ‘jump’ into contact,

guides and separating mechanisms are added to the design of MEMS scale components

to insure there is no unwanted contact, as shown in Figure (1) In some circumstances,

adhesive forces are used to create a design advantage. The micro-sized steam engine shown

in Figure (2), for example, uses capillary forces as a restoring force for the pistons.

Throughout this dissertation two similar sounding terms are going to be utilized when

discussing attractive forces, they are, adhesive forces and the adherence forces. Adhesion

forces refer to interacting forces between surfaces. Whereas the adherence (stiction) is defined

as the minimum force required to separate two contacting surfaces. Adherence (or pull-

off) force can be significantly influence by numerous parameters. Surface roughness, in

example, may actually reduce the adherence force under certain conditions. For illustration

purposes, consider a rough surface in contact with a flat plane. On the rough surface, some

of the smaller asperities will be stretched by adhesion, while some of the taller ones will be

compressed through contact. Depending on the conditions, the elastic energy in the taller

asperities can in effect force apart the stretched smaller asperities, thereby reducing the

overall adherence force. K.L. Johnson has referred to this phenomenon as the ‘elbowing

effect’ [1]. This result highlights the primary focus of this work: to identify the mechanisms

which effect the adherence force between surfaces in MEMS and other related devices and

then to demonstrate how each mechanism effects the adherence force. To accomplish this

task, a diverse set of solutions for adhesive rough surfaces is introduced.

1.1 MOTIVATION

In order to gain the full advantage of the beneficial performance characteristics offered by

MEMS devices and chip-based micro-machines, it is necessary to obtain a complete under-

standing of how adhesive forces limit their functionality. Although there have been several

adhesive theories offered for rough surfaces [2]-[3], each have their own limitations. This dis-

2



Figure 1: ‘Dimples’ used to keep separate neighboring micro-sized components. SANDIA

NATIONAL LABS
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Figure 2: Micro-steam engine makes use of adherence forces. SANDIA NATIONAL LABS

sertation attempts to eliminate the drawbacks of the previous work by utilizing both scale

dependent and scale independent characterizations with JKR theory [4] and the Maugis-

Dugdale [5] adhesive solutions.

1.2 OBJECTIVES AND METHODOLOGY

This present research has three main objectives:

1. To develop methods to solve adhesive rough surface contact problems.

2. To identify and elucidate the effects of rough surface topography, interface stiffness, and

surface energy on the adherence force of a contact interface.

3. To determine the adherence force during rough surface contact and to show how adhesion

can effect frictional forces.

To achieve these objectives, several different novel contact mechanics problems will be

solved. The overall contribution of this dissertation is described in Tables 1 and 2. In

4



Table 1: Contribution of this dissertation to single asperity adhesive contact.

Geometry Theory/Solution Description Application
Elastic cylinders Baney and Hui

[6]
Complete adhesive
contact regime

Adhesive contact of
elastic cylinders

Section (2.3) Extends [6] solution
to consider adhesive
interaction where
cylinders do not
touch

Same as above

Elastic spheres Johnson,
Kendall, and
Roberts [4]

soft solids, large
radii and adhesive
forces

Adhesive contact of
elastic spheres

DMT [7] hard solids, small
radii and adhesive
forces

Same as above

Maugis-Dugdale
[5]

Adhesive regime
between JKR and
DMT theories

Same as above

Table 1, the available single asperity contact theories are described. In chapter 2 of this

dissertation an adhesive contact model for cylinders has been extended [6] to include the

solution regime when the two cylinders are no longer in physical contact but within the

range of adhesion. This solution regime provides a foundation for further rough surface

contact problems similar to that available for elastic spheres.

The contributions of the dissertation in the area of general rough surface contact is

provided in Table 2. As shown in the table, four important contact problems have been

added to this area. First, for a contact interface where the length scale is well known, a

scale dependent approach is used in chapter 3 to determine the pull-off force for the Maugis-

Dugdale (JKR-DMT transition) contact regime. This approach uses the Maugis-Dugdale

solution for adhesive spheres coupled with a statistical surface characterization. In the case

where the length scale is unknown, a fractal characterization is then applied in chapter 4 with

the adhesive solution of Johnson, Kendall and Roberts (JKR) where the adhesive contact

type is known a priori. A three-dimensional fractal model is subsequently developed chapter

5 which utilizes the Maugis-Dugdale solution for the case when neither the length scale and

5



Table 2: Contributions of this dissertation to adhesive rough surface contact.

Adhesive Rough Sur-
face – Multi-Asperity
contact

Fuller and Tabor
[2]

Statistical surface
characterization
which uses JKR
contact model

Contact where rough-
ness is at a known
length scale and con-
tact type is predomi-
nately JKR

Maugis [8] Statistical surface
characterization
with DMT constitu-
tive model

Same as above but
contact type is as-
sumed to be DMT

Morrow, Lovell,
and Ning [9],
chapter 3

Statistical surface
characterization
which uses the
Maugis-Dugdale
model

Same as above but
adhesive contact type
is between JKR and
DMT

chapter 4 Fractal surface
characterization
which uses JKR
constitutive model

Micro-sized contact
areas where roughness
is exhibited over
several length scales
and contact type is
assumed JKR

chapter 5 Fractal surface to-
pography with JKR-
DMT contact model

same as above but
contact type between
JKR and DMT

chapter 6 same as above but
with scale depend
friction model in-
cluded

same as above
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the adhesive contact type is unknown a priori. This last solution is the most general of all

solution methods and can be easily generalized to further solve anisotropic surface roughness.

Using the results for the loading curve generated in chapter 5 a frictional force is determined

chapter 6 utilizing a scale-based friction model for spheres in contact.

1.3 LITERATURE REVIEW

To better understand the context of the work introduced in this dissertation, it is important

to provide an adequate background of the prior work performed in the area of adhesive

rough surface contact. For determining the conditions under which the adherence force

is increased or diminished, several rough surface solutions have been developed. Many of

these theories idealize the asperity in contact as a spherical shape. Reviewing the literature,

Johson, Kendall, and Roberts (JKR) [4] found the first solution between elastic sphere using

an energy balance approach. JKR determined the pull-off force to be (3/2)πwR, where w is

the work of adhesion, and R is the effective radius. The work of adhesion is given by:

w = γ1 + γ2 − γ12 (1.1)

where γ1 and γ2 represent the surface energy and γ12 is the interface energy. The effective

radius is defined as:

R =
R1R2

R1 + R2

(1.2)

where R1 and R2 are the respective radii of each contacting sphere. Derjaguin, Muller

and Toporov (DMT) [7] subsequently solved the same problem numerically and determined

the pull-off force to be 2πwR. A dispute began between the two groups that was finally

resolved by Tabor [10], who determined the limiting assumptions in both theories. JKR

assumed that the cohesive zone was infinitesimally small. The term cohesive zone refers to

the area just outside the region of intimate contact that is subjected to adhesive traction.

Likewise, DMT, assumed that in the cohesive zone did not alter the Hertzian profile. In

his work, Tabor proposed that the DMT and JKR approaches were on opposite ends of

7



the solution spectrum. He introduced an adhesion (Tabor) parameter to characterize the

transition between the JKR and DMT theories:

µ ≈
(

w2R

K2z3
o

)1/3

(1.3)

where zo represents the interatomic spacing. In Equation (1.3), the effective elastic modulus

K is given by:

1

K
=

3

4

(
1− ν2

1

E1

+
1− ν2

2

E2

)
(1.4)

where E1, E2, ν1, and ν2 represent the Young’s modulus and Poisson’s ratio for the respective

spheres.

Tabor’s theory was then numerically proven by Muller and others in [11]-[12]. Maugis [5]

later offered an analytical solution which spanned the transition from JKR to DMT through

his own transition parameter λ.

λ =
2σo

(πwK2/R)1/3
(1.5)

The parameter σo represents the constant traction that is active over a separation distance,

ho. This is called the Dugdale assumption and is graphically depicted in Figure (3). Therefore

the Dugdale approximation was integral to Maugis’ theory. Today some refer to this solution

as the Maugis-Dugdale solution.

The theories of contacting spheres (or single asperity contacts) has long been a part of

developing rough surface contact solutions. Perhaps the most notable example is the work of

Greewood and Williamson (GW) [13]. GW is a statistically based approach which determines

the likelihood of an asperity being in contact based on its height. The primary result of this

theory is the plasticity index, which provides a measure of the number of asperities that

are being deformed in an elastic or plastic manner. The GW theory made the following

assumptions: i) all asperities in contact were spherical with the same radius of curvature,

ii) asperity heights follow a Guassian distribution, and iii) there is no interaction between

contacting asperities. Fuller and Tabor [2] made use of the statistical framework developed

by GW and used it to create an adhesive solution for JKR contact types. Their approach

produced a similar adhesion index that provided a measure of the adherence force based on

8
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Figure 3: Dugdale and Lennard-Jones force separation laws.

JKR contact types. Maugis [14] also contributed to the adhesive rough surface contact by

implementing a stochastic approach to solve for DMT contacts. His work showed that there

was only a small difference in the magnitude of the adherence force when comparing the

JKR and DMT rough surface solutions. However Morrow et al [9] extended this family of

solutions by utilizing the Maugis-Dugdale solution [5] along with a modification to Maugis’

theory that was provided by Kim, McMeeking, and Johnson (KMJ) [15]. The theory of

KMJ added to Maugis’ solution regime by considering the possibility that even though the

spheres might not be in physical (intimate) contact there exists a force between them as long

as they are within the range of adhesion. Morrow et al showed that a significant difference

exists between the JKR and DMT solution regimes. By considering KMJ’s extension, the

overloading effect due to adhesive force was much more pronounced, thereby defining a

distinct transition regime for rough surfaces.

All of the rough surface contact theories mentioned thus far are based upon conventional

statistical parameters such as standard deviation of asperity heights, slope and radius of

curvature. However as the ability to measure surface roughness increases to finer levels of

detail, experimentalists have found that such parameters are scale dependent [16]. Just as

height, slope and curvature are non-unique, the theories based on these parameters provide

9



scale dependent solutions as well. A need then existed for a surface characterization which

was scale independent. The fractal surface characterization (see chapter 4) developed by

Majumdar [17] is such a model. This model utilizes the popular Weierstrass-Mandelbrot

(WM) fractal function to simulate a surface profile. Majumdar not only showed that WM

could be used to simulate rough surfaces but used this model to develop a rough surface

contact theory with Bhushan [18]. Their work focused on elastic-plastic contact between

rough surfaces and developed expressions for the critical contact area, total area, and total

load in terms of fractal dimensions. Just as GW work inspired work on adhesive rough

surface contact, so too did Majumdar and Bhushan’s (MB). Sahoo and Chowdhury [19]

took the fractal foundation of MB theory and coupled it with the results of JKR. They

developed relationships during loading and unloading conditions. Absent from their analysis,

however, were expressions for total contact area and the critical area of contact. The critical

area of contact refers to the limit that is reached for each individual stretched asperity.

During unloading conditions a contacting asperity attains a critical level of stretch, after

which separation abruptly occurs. These two key aspects of the analysis were provided by

Morrow and Lovell [20] in a recent analysis. Sahoo and Chowdhury continued to develop

theories based on their previous work [19] by developing friction and wear theories [21],

[22]. It is important to note that MB fractal theory, while pioneering, lacked to note the

difference between the truncated and real area of contact. The truncated area of contact

is defined as the area that is created by the geometric intersection between a sphere and a

flat plane. An illustrative depiction of this is shown by Figure (19) in chapter 4. This was

first pointed out by Komvopoulos and Yan in [23]. Sahoo and Chowdhury used MB theory

foundation without correction in their series of papers, therefore this is yet another drawback

to their approximation. Morrow and Lovell make note of this discrepancy and account for

the difference between the real and truncated areas. Komvopoulos and Yan contributed to

adhesive theories based on a fractal characterization with [3] and [24]. In both of these works

adhesive and compressive forces were uncoupled thereby bringing a degree of uncertainty into

the analysis.
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2.0 SINGLE ASPERITY CONTACT

2.1 ADHESIVE THEORY OF JOHNSON KENDALL, & ROBERTS (JKR)

The theory of Johnson, Kendall, and Roberts (JKR) was the first to determine the compli-

ance relationships for the contact of elastic spheres in the presence of surface energy. The

primary impetus for their work was to determine the ‘pull-off’ force between the contacting

spheres. The ‘pull-off’ force is defined as the external load at which the system becomes

unstable i.e. the force at which abrupt separation occurs. JKR determined this force to be:

Fc = −3

2
πwR (2.1)

where Fc represents the adherence for a single asperity in this case.

Johnson, Kendall and Roberts use a energy balance method to arrive at Equation (2.1).

In the JKR method, the following states are assumed: i) a load is initially applied under

a Hertzian contact condition, and at this point, the Hertzian contact load and approach

are given by FH and δH respectively; ii) once Hertzian contact is attained, that the surface

energy is then turned ‘on’ and the load is decreased while maintaining a constant contact

radius. The energy balance between the two states is maintained resulting in the following

equilibrium condition:

F 2
H − 2FH(F + 3wπR) + F 2 = 0 (2.2)

In Equation (2.2), F is the applied load and FH is the Hertzian contact load which is given by

(a3K/R). By substituting (a3K/R) for FH this expression into Equation (2.2), the applied

load is obtained:

F (a) =
a3K

R
−
√

6πwa3/2K1/2 (2.3)

11



where, a, is the intimate contact radius. The effective radius is given by:

R =
R1R2

R1 + R2

where R1 and R2 are shown in Figure (4) as the radii of each of the contacting spheres. Also

recall that K is the effective modulus which combines the elastic material properties of each

of the spheres by the following equation.

1

K
=

3

4

(
1− ν2

1

E1

+
1− ν2

2

E2

)

In order to give some physical insight to the variables of this problem Figure (4) was created.

Maugis [14] alternatively expressed the equilibrium condition by developing a form of

the strain energy release rate, G , for this type of contact:

G =
(FH − F )2

6πa3K
. (2.4)

At equilibrium, the strain energy release rate G , is equal to the work of adhesion. The

stability of the system in a fixed grips configuration is the partial of G with respect to the

area while the approach is held constant:

(
∂G

∂A

)
δ

=
3K

16π2a3

(
a2

R
− δ

)(
3a2

R
+ δ

)
(2.5)

where δ is the approach distance of the contacting spheres. During rupture, or pull-off

event, Equation (2.5) is less than or equal to zero. Therefore −3a2/R represents the critical

approach δ, which can be re-written as:

δc = −
(

3π2w2R

4K2

)1/3

(2.6)

This expression is useful as a limit of integration when determining total load and area

relationships.

12



c
e

n
t

e
r

l
i

n
e

x

F

f i x e d  v e r t i c a l  d i s p l a c e m e n t

R
2

R
1 d

a

Figure 4: Depiction of physical variables used in this section.

13



2.2 JKR-DMT TRANSITION SOLUTION WITH KIM EXTENSION

Since part of this work follows the transition solution provided by Maugis, it is pertinent

to review the major results of his theory. Combining the fracture mechanics solution for

an axisymmetric crack subjected to a Dugdale type interior traction, with the results for

the adherence of a flat punch, Maugis obtained three governing equations for the transition

solution of two adhesive spheres in contact. As shown below, Equation (2.7) is a result of

equilibrium between the strain energy release rate, G , and the work of adhesion w. During

equilibrium the stress intensity factor due to the internal loading (adhesion) cancels the stress

intensity factor due to the external loading (applied load). With these two requirements

the following three expressions for the dimensionless equilibrium, load, and approach are

respectively given by Maugis:

1 =
λA2

2
[
√

m2 − 1 + (m2 − 2) arctan
√

m2 − 1] + (2.7)

4λ2A

3
[(
√

m2 − 1 arctan
√

m2 − 1)−m + 1]

F = A3 − λA2
(√

m2 − 1 + m2 arctan
√

m2 − 1
)

(2.8)

∆ = A2 − 4

3
Aλ
√

m2 − 1 (2.9)

The dimensionless parameters that appear in the above equations are defined below.

A =
a

(πwR2/K)1/3
(2.10)

F =
F

πwR
(2.11)

∆ =
δ

(π2w2R/K2)1/3
(2.12)
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2c

Figure 5: Intimate contact and adhesive radii.

λ =
2σo

(πwK2/R)1/3
(2.13)

where δ is given by

δ =
a2

R
− 8σo

3K

√
c2 − a2 (2.14)

In Equations (2.10, 2.14), the radius a represents the intimate area of contact and the

radius c corresponds to the radius over which the adhesive traction acts (see Figure (5)).

The parameter m is given by the ratio of c/a. Note that the physical depiction of δ is

clearly depicted in Figure (4). Since a, F , δ represent the contact radius, the applied

normal load, and the approach of the two spheres respectively, Equations (2.10 – 2.12) are

their dimensionless counterparts. Kim et al [15] offers an extension of the Maugis-Dugdale

solution by adding to the solution regime when (a = 0) and (c 6= 0). As Kim explains, this

regime is explored by the adjustment of Equations (2.7 – 2.9):

π

4
C2λ +

2

3
(π − 2)Cλ2 + ξ = 1 (2.15)

F = −π

2
C2λ (2.16)

∆ = −4

3
Cλ− 2

π

ξ

λ
(2.17)
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where C represents the dimensionless ‘adhesive contact radius’ (has a similar non-dimensional

form as in Equation (2.10)) and ξ is the ratio of hg/ho. The parameters hg is the gap between

the deformed spheres at r = 0. Through the simultaneous solution of Equations (2.7 – 2.9)

and Equations (2.15 – 2.17) figures 7 and 8 are produced. As depicted, figures 7 and 8 give

a significant amount of information about the contact conditions. For example, examining

the load versus deflection curve in Figure (8), two important pieces of information can be

derived: (1) for each value of λ the horizontal tangent represents the adherence at a fixed

load, and (2) the vertical tangent corresponds to separation at which abrupt pull-off occurs

for fixed grips, δc. The determination of δc becomes an important factor when performing

calculations for the rough surface with the transition solution. Now that the results of the

transition solution have been presented, an approximate JKR-DMT transition solution can

be generated.

2.3 ADHESION OF ELASTIC CYLINDERS

To compliment the adhesive elastic sphere work of Maugis, Baney and Hui [6] present an

analytical solution for elastic adhesive cylinders. Their solution is analogous to the Maugis-

16
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ious values of the transition parameter.

Dugdale cohesive zone type theory for the adhesion of elastic spheres outlined in Section (2.2).

Baney and Hui’s theory is very useful for micro-sized contact problems that have asperities

that can be modeled with a cylindrical geometry. A typical application of this theory would

be adhesive contact problems in MEMS devices which have been formed by an etching

process, such as micro-sized gear trains. The roughness on the surface of the MEMS gears

have long cylindrical geometries. By implementing Baney and Hui’s theory into a rough

surface contact model, the adherence and friction forces could be determined. Although

useful in it’s present form for this purpose, the authors have neglected a portion of the

solution regime by accounting for the condition when the cylinders are in direct physical

contact. In this section, an extension to their solution is given which accounts for the

cylinders interacting adhesively, when they are out of physical contact.
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2.3.1 BANEY AND HUI SOLUTION

Baney and Hui make use of superposition to solve the adhesive contact problem. First the

compose a pressure term that satisfies the intimate contact condition, with out considering

surface energy. A pressure term is then composed which satisfies the adhesive forces in the

cohesive zone, which does not cause displacements inside the intimate contact region.

The geometry of this adhesive contact problem of cylinders is shown in Figure (9). This

figure shows the location of the cohesive zone that acts until the air gap between the deformed

spheres becomes greater than the separation of ho. The magnitude of the adhesive traction

is constant, σo, that acts from the point of intimate contact till the air gap becomes greater

than ho. This cohesive zone extends along the entire length of the cylinder. The contact

condition is given by:

w1(x) + w2(x) = − x2

2R
(2.18)
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where the functions w1(x) and w2(x) describe the displacement of each point of the cylinders

profile along the x axis. The effective radius is given by:

R =
R1R2

R1 + R2

where R1 and R2 are shown in Figure (9) as the radii of each of the contacting cylinders.

Figure (10) physically depicts the intimate contact region |x| ≤ a as x = ±a and the adhesive

radius which is defined by the region between x = ±b, where b > a. Their model considers

the cohesive zone similar to Maugis [5] with a Dugdale model Figure (3). The pressure term

which satisfies the contact without considering adhesion, pc, is given by:

pc(x) =
3K

8R
(a2 − x2)1/2 + p′o(a

2 − x2)−1/2 (2.19)

Note the pressure term in pc which involves p′o creates a singularity condition at the edge of

the intimate contact area. It should be noted that this term p′o would normally be neglected,

positive values it would infer that interference existed outside the contact area and negative

values would only be valid in the case of adhesive forces. Since the adhesive forces are taken

into account in this problem the p′o term cannot be set to zero. For the case where the

cohesive zone interaction is considered the pressure term becomes

pd(x) =


2σo

π

[√
b2−a2

a2−x2 − tan−1
√

b2−a2

a2−x2

]
: |x| ≤ a

−σo : a < |x| < b

(2.20)

where pd denotes the ‘Dugdale pressure’. The Barenblatt condition is then invoked which

states that the singularities in pressure from the contact and cohesive zone must cancel one

another. Thus p′o is required to be

p′o = −2σo

π

√
b2 − a2.

To illustrate where these pressure terms, pc, pd, and p act Figure (10) was created. This

leaves the pressure in the contact zone, |x| < a, to be

p(x) =
3K

8R
(a2 − x2)1/2 − 2σ

π
tan−1

√
b2 − a2

a2 − x2
(2.21)
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The pressure is then integrated over the contact and cohesive zones which gives the total

force.

F =
πK

3R
a2 − 2σo

√
b2 − a2 (2.22)

Baney and Hui finally find the critical opening gap at x = b,

ho =
b
√

b2 − a2

2R
− a2

2R
ln

b +
√

b2 − a2

a
− 3σo

πK
b ln

b

a
(2.23)

+
3σo

√
b2 − a2

πK
ln

b +
√

b2 − a2

a

2.3.2 ANALYTICAL EXTENTION TO BANEY-HUI SOLUTION

In an attempt to generalize the above derived expressions Baney et al introduce the following

non-dimensionalization for the variables in equations (2.22-2.23):

F̃ =
F

(π(3/4)Kw2R)1/3
(2.24)

ã =
a

2
(

R2w
π(3/4)K

)1/3
(2.25)

B̃ =
b

2
(

R2w
π(3/4)K

)1/3
(2.26)

λ =
4σo(

π2((3/4)K)2w
R

)1/3
(2.27)

ξ =
a

b
(2.28)
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where F , a, b, λ, and ξ are the load, contact radius, adhesive contact radius, transition

parameter, and intimate to adhesive contact radius ratio respectively. By utilizing the di-

mensionless parameters and the condition that w = σoho, Equations (2.22, 2.23) can be

written as:

F̃ = B̃2ξ2 − B̃λ
√

1− ξ2 (2.29)

1 =
B̃2λ

2

[√
1− ξ2 − ξ2(ln(1 +

√
1− ξ2)− ln(ξ))

]
(2.30)

+
B̃λ2

2

[
ln(ξ) +

√
1− ξ2(ln(1 +

√
1− ξ2)− ln(ξ))

]
when ã 6= 0, that is the cylinders are in physical contact. Note Equation (2.30) is a bit more

difficult to attain than Equation (2.29). First the Equation (2.23) must be divided through

by ho and w = σoho is used to eliminate ho from the equation. Then the non-dimensional

parameters are used to re-write the equation in the final form given by Equation (2.30).
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One contribution of the present work is to extend this solution to include the regime to

when the cylinders are no longer in physical contact but they remain within the range of

adhesion. The solution for this region is given by the following equations.

F̃ = −λB̃ (2.31)

1 =
B̃2λ

2
+

B̃λ2

2
ln(2) + δ (2.32)

where δ = hg/ho. The parameter δ is comprised of hg and ho, which are physically depicted

in Figure (6). In Equation (2.23) the value for hg = 0, therefore when the equation was

non-dimensionalized, δ did not appear. It should be noted that δ in this sub-section now

refers to this ratio and does not relate to the approach distance of the cylinders. Since we

now want are considering a physical separation between the two cylinders the δ does appear

if hg is used to represent the separation of the cylinders at the point of closest approach.

From the figure, it is found δ represents the ratio of the gap at r = 0 to the critical opening

gap, ho. These are adjustments to Equations (2.29, 2.30) by letting a tend to zero and

accounting for δ in Equation (2.32). Using these newly derived expressions, Figure (12)

can be produced. It is interesting to note in Figure (12) that in the solution regime where

there is no physical contact, the load varies nearly linearly with the adhesive contact radius.

Equations (2.31, 2.32) and Figure (12) complete the cohesive zone model for cylinders. Now

this asperity model can now be implemented into rough surface theories to solve for adhesion

on the micro-scale.
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3.0 G-W TYPE TRANSITION SOLUTION FOR ROUGH SURFACES

3.1 INTRODUCTION

In this chapter a method of approximating the pull-off or adherence force is presented in the

case for which the dominant length scale of surface roughness is known a priori. Although

engineering surfaces have been shown to exhibit roughness on several different length scales

[17], different types of surface machining and grinding methods can restrict the range of

length scales [25]. For example, if a surface is being prepared by a cutting tool that has

a known radius of curvature one would expect that the surface to exhibit fractal behavior

at length scales less than or equal to the radius of the cutting tool. However, when the

examining the surface at a scale larger than the radius of the cutting tool, the surface

topography becomes deterministic. Later chapters will explore the fractal surface roughness

regime, however, this chapter is presented to give an adhesive solution for surfaces where

the length scale is known but the adhesive contact type is not. A rough surface solution of

adhesive contact is given for the transition regime which exists between the JKR and DMT

solutions.

3.2 BACKGROUND

Maugis [14] used an approach similar to Fuller and Tabor’s to arrive at a solution for contacts

of the DMT type. In order to bridge the gap between Fuller and Tabor’s solution and the one

presented by Maugis [14], this chapter focuses on the development of an adhesive solution

for rough surfaces utilizing Maugis’ JKR-DMT transition solution. It is important to note
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Table 3: Single asperity and Rough Surface adhesive theories

Geometry Theory Solution Regime

Elastic Spheres JKR λ = ∞

Maugis-Dugdale Small to large λ

DMT λ = 0

Adhesive rough surface Fuller & Tabor (JKR) λ = ∞

Present chapter (Maugis-Dugdale) Small to large λ

Maugis’ (DMT) λ = 0

that K.S. Kim et al [15] offered an extension of Maugis’ solution for the case when the two

spheres are not in intimate contact but within the range of adhesion. Kim et al theory should

now be considered an integral part of the Maugis model; therefore it will be included when

Maugis’ transition theory [5] is referenced in this chapter. Table 3 explains the applicability

of Maugis transition solution for single asperities and demonstrates how the current chapter

will similarly complete the theories for adhesive rough surface contact.

3.3 APPROXIMATION OF MAUGIS’ TRANSITION SOLUTION

A drawback of equations Equations (2.7 – 2.9) and Equations (2.15 – 2.17) is that they are

cumbersome to manipulate in order to attain meaningful results. To use these equations

in a more efficient manner, figures 7 and 8 were numerically curve fit using a non-linear

regression program. Expressions for F̄ and A were then determined as functions of ∆. Recall

the non-dimensional parameters from the JKR-DMT transition theory of Maugis presented

in Section (2.2).

A =
a

(πwR2/K)1/3

F =
F

πwR
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∆ =
δ

(π2w2R/K2)1/3

λ =
2σo

(πwK2/R)1/3

These are shown here once again because they are readily used throughout the remainder of

this chapter. A physical illustration of these parameters is given in Figure (4) in chapter 2.

Once these expressions were obtained, they were substituted into integrals resulting from the

rough surface analysis (c.f. Greenwood [13] and Fuller, Tabor [2]) to produce approximations

of the pull-off force and contact area for varying approach distances. It should be noted that

these equilibrium curves F̄ (∆) and A(∆) were only fit within the stable region of Maugis’

solution.

For values of λ ≥ 1, the contact radius and load deflection curves were fit in a two stage

process. First, the dimensionless contact radius A was fit with respect to the dimensionless

deflection parameter ∆ into the following:

F̄ = α + βAθ + γAω (3.1)

where (α, β, γ, θ, and ω) are curve fit constants. From Equation (3.1), the load deflection

curve was produced. The motivation for the form is found in equation Equation (2.8), where

an expression for the contact radius versus deformation becomes directly available. The

dimensionless contact radius parameter, A, was likewise fit in a similar manner using the

form derived from Equation (2.9). This form is given by:

A = η + (ρ + θ∆)ϕ. (3.2)

where η, ρ, θ, ϕ are curve-fit constants.

When λ < 1, fitting the Maugis and Kim region was more challenging. After investigating

many different function forms the following expression was found to be optimum.

F̄ = yo + A∗ [exp(−0.5(∆− xc1)2/w)

+B (1− tanh(k2(∆− xc2))) exp(0.5k3(|∆− xc3|+ (∆− xc3)))] (3.3)

where yo, A∗, xc1, w, B, k2, xc2, k3 and xc3 are all parameters. An example of the quality

of fits is shown for λ = 0.2, 0.5, 0.9, 5.0 in Figure (13). The curve-fits for all λ investigated
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Table 4: Values for curve-fit parameters for transition parameter values less than one (see

Appendix A for values greater than one).

λ yo A∗ xc1 w B k2 xc2 k3 xc3

0.2 122.253 −122.684 −1.741 251.731 0.025 0.674 −0.792 0.304 −0.545

0.3 16.005 −17.329 −0.547 17.158 0.041 2.020 −0.872 0.783 −0.721

0.5 10.441 −9.910 −0.230 9.080 0.258 2.010 −1.415 0.253 −0.855

0.9 11.368 −7.566 0.702 6.681 0.967 1.580 −1.570 0.300 −0.942
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Figure 13: The black curves represent the solution given from Maugis’ solution, and in white

the curve-fit results are shown laid overtop.
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in this are listed in Appendix A. With the approximate equations for F̄ and A, the rough

surface analysis of Fuller and Tabor can be implemented.
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Figure 14: Depiction of composite rough surface at a separation of d.

3.4 METHODOLOGY FOR ADHESIVE ROUGH SOLUTION

It can be assumed that two rough surfaces being brought into normal contact, with stan-

dard deviations in asperity heights of σ1 and σ2, can be replaced with a single surface of

roughness σ =
√

σ2
1 + σ2

2 and a smooth surface. This method of replacing the rough sur-

face interface by a smooth rigid plane and a deformable rough surface of σ is taken to be

common practice throughout literature [2], [5], [13], [26]. However strong physical evidence

has not been demonstrated that this truely represents the roughness of the interface. If it

is assumed that there exists a probability density function ϕ(z) of asperity heights, then it

is possible to find the probability that an asperity will be greater than a certain height, d.

The distance d represents the length from the mean plane of asperity heights to the smooth

surface (Figure (14)). The probability that an asperity height is greater than d is given by:∫ ∞

d

ϕ(z)dz. (3.4)

Therefore it follows that the number of asperities in contact is represented by:

n = N

∫ ∞

d

ϕ(z)dz (3.5)

where N represents the total number of asperities. Having the numerical expressions for the

non-dimensional contact radius (A) and load (F̄ ) for a single asperity as a function of ∆,

the following integrals can be formed.

Stotal = N(πwR2/K)2/3

∫ ∞

d

πA(∆)2ϕ(z)dz (3.6)

Ftotal = NπwR

∫ ∞

d

F̄ (∆)ϕ(z)dz (3.7)
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Equation (3.6) and Equation (3.7) represent estimates of the total contact area and load.

Note that all of the above integrals are carried out in terms of z. Since the expressions for

the load and contact area are in terms of ∆, it is necessary to have a relationship between ∆

and z. The asperities that have a height greater than d are deformed by a distance δ = z−d.

Recalling the definition of ∆ in Equation (2.12), and assuming a Gaussian distribution:

ϕ(z) =
1

σ
√

2π
exp

(
−z2

2σ2

)
(3.8)

Variable z is changed to δ in Equation (3.7) and the following equation is obtained:

Ftotal

NπwRFc(λ)
=

1

σFc(λ)
√

2π

∫ ∞

0

F̄

(
δ

δ̄

)
exp

(
−(δ + d)2

2σ2

)
dδ (3.9)

where δ̄ is (π2w2R/K2)
1/3

. Note see Figure (8) for a depiction of Fc as a function of λ. As

explained in [2], however, Equation (3.9) is only valid when the smooth surface progressively

approaches the rough surface until a minimum d is reached. Consider the case when after

minimum separation distance d is reached that the surfaces are then subsequently separated.

During this separation, Equation (3.9) will no longer be valid because the asperities that were

extended above their δc will no longer contribute to the adherence force. An interesting way

to show the effect of asperities which are stretched is to examine the Gaussian distribution

of asperities heights. The asperities which are physically interfering with the rigid plane

have a height greater than d. These are shown in Figure (15) by the gray shaded area

with z greater than d. Whereas the stretched asperities are range from d− δc to d that are

depicted by the black shaded region. Therefore in order to improve Equation (3.9), so that

the adherence force can be ascertained, the lower limit of integration needs to be corrected

by the amount δc(λ) which is represented in Figure (8). After making the adjustment to the

lower integration limit and eliminating σ, Equation (3.9) takes the following form.

Ftotal

NπwRFc(λ)
=

1

Fc(λ)
√

2π

∫ ∞

−δ∗c (λ)

F̄

(
δ∗

δ̄∗

)
exp

(
−(δ∗ + d∗)2

2

)
dδ∗ (3.10)

Any term in Equation (3.10) that has a superscript ∗ has been divided by σ. Equation (3.10)

is similar in form to Fuller and Tabor’s rough surface integral, however there is some impor-

tant difference that should be noted. The lower integration limit δc, and Fc are functions

of λ, which gives the solution validity over the range of the transition parameter, whereas
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in [2] the integral is only valid for the regime of JKR. For Equation (3.10) values for Fc(λ)

and δ(c) need to be determined. The normalization factor Fc(λ) is determined by finding

the point at which the tangent for the load deflection curve becomes zero. It is at this

location that the pull-off force is found for a single asperity. In a similar manner, δc(λ) can

be determined. For δc, however, the point at which the tangent becomes vertical is taken,

which yields the amount of stretching that an asperity can take under a fixed grip condition.

A similar integral is obtained for the total contact area and is given by Equation (3.11)

Atotal

N(πwR2/K)2/3Ac(λ)
= (3.11)

π

Ac(λ)
√

2π

∫ ∞

−δ∗c (λ)

A

(
δ∗

δ̄∗

)2

exp

(
−(δ∗ + d∗)2

2

)
dδ∗

The critical step in obtaining an adhesive rough surface solution is to find the load at which

the system becomes unstable, i.e. the minimum pull-off force (Fmin). In order to find the

magnitude and the value of d∗ for this critical load, the derivative of Equation (3.10) must

be taken and set equal to zero. Then d∗ is solved for and the value of the pull-off force is

computed. As Maugis shows in [14], the derivative can be taken within the integral sign and
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Figure 16: Adherence force for rough surfaces for various values of the transition parameter.

the derivative can be taken with respect to d∗. In taking the derivative of Equation (3.10)

the following expression is obtained:

∫ ∞

−δ∗c (λ)

F̄

(
δ∗

δ̄∗

)
(d∗ + δ∗) exp

(
−(δ∗ + d∗)2

2

)
dδ∗ = 0. (3.12)

Equation (3.12) allows to solve for Fmin as a function of λ.

3.5 RESULTS

Equation (3.12) was utilized to study the effect that varying λ had on the adherence force.

The results of these calculations are depicted in Figure (16), where results are shown out to a

value of λ = 0.2 because of the difficulty that arises when approximating the load deflection

curve.

Closely examining Figure (16), several interesting trends are found. The first trend shows

that the rate of decay of the adherence force distinctly varies with the value of λ. For larger

values (5.0) of λ in the JKR range, the adherence force rapidly decreases as a function of

1/δ̄∗. As λ decreases and tends toward the DMT regime, however, the rate of change of the

adherence force substantially decreases. Such a difference in the decay rates can be directly
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attributed to the fact that the harder, less compliant DMT materials have a significantly

greater adhesion range than the more compliant JKR materials.

A second important tendency found in Figure (16) is that the separation behavior of JKR

materials are dramatically different than DMT materials. As the value of λ is decreased

the normalized adherence force increases for any one value of 1/δ̄∗. This phenomenon is

referred by Maugis in [8] as overloading due to adhesion. This analysis not only accounts

‘adhesive ring’ outside of the stretched asperities but also incorporates the attractive force

of the asperities that are no longer in intimate contact but are within the range of strong

interaction, ho. This effect is directly attributed to the inclusion of Kim et al extension of

Maugis’ theory.

Finally, in Figure (16), it appears that the DMT regime will have a greater separation

force than those of JKR materials. This phenomenon, however, is an artifact of the use

of identical material parameters for JKR and DMT materials when generating the curves

in Figure (16). In reality, DMT materials have significantly larger elastic properties (i.e.

Young’s modulus) than JKR materials. Therefore, being much more compliant and having a

higher peak traction than their DMT counterparts, the elastic energy of compressed asperities

in JKR materials will naturally generate greater peak adhesive forces than DMT materials.

The adherence force is plotted versus the adhesion parameter, 1/δ̄∗. This adhesion

parameter is essentially the same as that used by Fuller and Tabor, in fact, the difference

is a scaling factor. An identical adhesional parameter was specifically used to demonstrate

the effect of adherence force with the variation of λ which could easily be compared to the

results of Fuller and Tabor. The adhesion parameter of Fuller and Tabor is sufficient because

it offers a measure of the competing elastic and adhesional forces.

3.6 SUMMARY AND DISSCUSSION

Within the statistical frame work laid out by Greenwood and Williamson, the adherence force

has been predicted for various values of the transition parameter λ by using an approximation

for Maugis’ solution. This theory is only valid for surfaces that have been compressed to a

certain distance and then separated. Unlike the theory of Fuller and Tabor [2], and solution
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of Maugis [8] this chapter accounts for the adhesive forces due to asperities which are no

longer in physical contact but are within the adhesive range of neighboring surfaces.

Now that the normal force between the two solids has been determined, further studies

can utilize this information in relation to frictional forces between rough surfaces as λ is

changed. As Maugis mentions in [8], the overload due to adhesion can increase frictional

forces. Since his solution for contacts of the DMT type does not account for asperities

that are within the adhesive range however are not in physical contact his estimation of the

adherence force may be lower than predicted in this chapter.
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4.0 FRACTAL MODEL FOR ADHESIVE CONTACT OF JKR TYPE

4.1 INTRODUCTION

In chapter 3 an assumption was made which restricts the applicability of the derived expres-

sions to a certain length scale. This statistically based theory can be used with confidence

as long as the length scale is known before hand. In this present chapter, it is assumed that

the surface interface exhibits fractal behavior. This means that the surface has roughness

on several different length scales and the contact type is governed by the adhesive contact

of Johnson, Kendall and Roberts [4].

4.2 BACKGROUND

Based on a single asperity solution provided by Johnson, Kendall and Roberts [4] (JKR), an

adhesive rough surface model will be developed in this chapter using a fractal surface char-

acterization. Similar to the fractal counterpart of the G-W model presented by Majumdar

and Bhushan [18] , the current work employs a unique scale independent fractal model that

complements the solution obtained by Fuller and Tabor [2] (see Table 5).

Table 5: Rough surface contact theories.

Conventional Statistical Fractal Model

Elastic-Plastic Greenwood & Williamson [13] Majumdar & Bhushan [18]

Elastic Adhesive (JKR) Fuller & Tabor [2] Present chapter
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In a work with a similar premise to the present chapter, Sahoo and Chowdhury [19]

analyzed the adhesive contact between rough surfaces using a modified JKR approach. In

their analysis, Sahoo and Chowdhury included plasticity of asperities and based their analysis

on the truncated area of contact. Unlike the work presented in [19], the authors have

assumed that plasticity plays a minor role in the asperity contact due to the light loading

conditions. Furthermore, Sahoo and Chowdhury fail to denote the difference between the

real and apparent area of contact, whereas the present work makes this distinction and

provides a means of conversion between truncated and JKR contact areas (this is discussed

in detail in Section (4.4)).

It is also important to note that two and three-dimensional comparisons of uncoupled

compressive and adhesive force contributions have been previously determined for a given

separation distance [3],[24]. A unique feature of the present JKR based model, however,

is that the forces are computed by directly coupling the elastic deformation and adhesive

effects. Such an approach more effectively captures the physical phenomenon being analyzed.

In addition to improving accuracy, this coupled model is potentially very useful for MEMS

designers because is allows determination of adhesive forces as a direct function of easily

obtainable fractal (G and D) and material parameters.

4.3 FRACTAL SURFACE CHARACTERIZATION

As mentioned in Section (1.3), conventional statistical methods of surface characterization

are scale dependent. Therefore any contact theory that is based on a statistical description

is subject to errors [2] or [13]. It is well documented that surfaces exhibit roughness on many

different length scales [16], [17], [18], and [27]. The topography of any surface can be thought

of as roughness superimposed on top of roughness. In a series of papers by Majumdar et

al [16] and [28], it has been shown that the multi-scale nature for surface roughness can be

represented by fractal geometry.
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For the present analysis, the surface profile height is represented by z(x), which is defined

by the real part of the Weierstrass-Mandelbrot function:

z(x) = G(D−1)

∞∑
n=nl

cos(2πηnx)

η(2−D)n
1 < D < 2 η > 1. (4.1)

In Equation (4.1), D is the fractal dimension, G is a scaling constant (which carries a length

unit), and nl is defined by the lowest frequency of observation that corresponds to the length

of the sample, L, ηnl = 1/L. Adjustments have been made by Majumdar and Bhushan [16]

to the original W-M function introduced by Berry and Lewis [29]. These include starting

the summation at nl and multiplying the function by the scaling relation GD−1. Majumdar

and Tien [28] found that η = 1.5 is a suitable value for phase randomization. Setting η = 1.5

then provides a means of solution for nl assuming the length of the sample is known.

In order to determine the fractal parameters D and G, the power spectrum of z(x) is

utilized. The power spectrum of z(x) is found by taking its Fourier transform. Berry and

Lewis showed the power spectrum can be approximated by taking the average range of ∆ω

and ∆n such that the power spectrum becomes:

P (ω) =
G2(D−1)

2lnη

1

ω(5−2D)
(4.2)

The parameters G and D are then found by plotting the power spectrum of the fractal

surface, where D is the slope and G is found from the intersection of the vertical axis. This

solution assumes that the roughness of the contact interface is exhibited on several different

length scales. By plotting the power spectrum density, one can determine the finite range

of length scales for which the surface is fractal. At the spatial frequency which the surface

deviates from the power-law behavior the limits are determined. Experimental data from

atomic force microscope scans are presented in chapter 5 to illustrate this phenomenon. The

power spectrum density of this equivalent rough surface interface is shown in Figure (17) to

illustrate the range of length scales for which the interface exhibits fractal behavior. It is

seen in Figure (17) that for lower frequency values the roughness of the interface is tending

away from a fractal trend. This is an artifact of the surface scans which were chosen. In

chapter 5 the roughness profiles which form the interface are shown. One of these surfaces

has dominant ribs which were intentionally manufactured to reduce the effects of adhesion.
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Figure 17: Power spectrum of equivalent rough surface.
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The W-M function has several desirable characteristics which make it well suited to

simulate rough surface topography. As mentioned previously, all surfaces exhibit roughness.

When this roughness is continually magnified more roughness is revealed down to the atomic

level. Therefore, mathematically stated, no unique tangent can be drawn at any point along

the surface profile. This makes W-M an ideal candidate for surface topography simulation

since it has the properties of being continuous everywhere and differentiable nowhere. Fur-

thermore, each level of magnification appears similar in structure to the previous, thus the

self-similarity leads to self-affinity.

In order to develop a contact theory based on fractal surfaces, a size or area distribution

is needed for asperities in intimate contact. The concept of asperities in contact with an

opposing surface is similar too the area of islands which are greater than a certain size.

While studying the fractal nature of the coastline of England, Mandelbrot [30], proposed a

power-law relationship which is given by:

N(S) =

(
Sl

S

)Ds/2

(4.3)

where N represents the number of islands that are greater than an area S. In Equation (4.3),

Ds is the fractal dimension of the coastlines and Sl represents the area of the largest island.

Majumdar [18] has argued that the coastal fractal dimension is similar to the fractal di-

mension D given in Equation (4.1). Therefore the size distribution can be determined by

differentiation which gives:

Γ(S) =
D

2

Sl
D/2

SD/2+1
(4.4)

This methodology is widely accepted in the literature in this field [18]-[24].
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4.4 ADHESIVE FRACTAL CONTACT MODEL

Utilizing fractal surface characterization and the adhesive contact solution given by JKR,

an adhesive rough surface model will be developed that is valid over several length scales.

Initially, the model will follow the example set forth by Majumdar and Bhushan [18]. In

their work, it was assumed that the interference which a spherical asperity has with the rigid

plane is given by:

δ = G(D−1)l(2−D) (4.5)

where l is identified by as the length scale of the asperity. In previous chapters the parameter

δ had referred to the approach distance between contacting spheres. Since the normal contact

of spheres is physically analogous to the contact of a sphere with a rigid plane, the parameter

δ is now referred to as interference (the maximum displacement of an asperity). Figure (18)

depicts the geometry of the truncated contact that of length scale, l. A relationship can be

drawn between this length scale and the truncated area of the contact spot, l = (S ′)1/2. It

should be noted that any parameter shown with a superscript ‘prime’ refers to a truncated

area. The subscripts ‘H’ and ‘JKR’ are used to denote Hertzian and JKR contact conditions

respectively. Figure (19) schematically portrays the definition of the truncated area. From

Hertzian contact theory, it is known that the truncated area is related to the real area of

contact by the following relationship:

SH = S ′/2. (4.6)

where S ′ is the truncated contact area. However, due to the inclusion of surface energy, none

of the contacts in this chapter are of the Hertzian type. Using Equation (4.6), a relationship

can be developed between the truncated area and the JKR contact area. Since this work will

operate under a ‘fixed grips’ assumption, the interference distance must be equal for both

the truncated and JKR conditions. Drawing upon Hertzian contact theory it is known that:

δH =
a2

H

R
(4.7)
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and from JKR theory:

δJKR =
a2

JKR

R
− 2

3

√
6
(wπaJKR

K

)
. (4.8)

Equating equations (4.7) and (4.8) and using Equation (4.6), a relationship is developed

which provides a means of conversion between the truncated and real contact area given by

JKR theory:

SJKR = 9.25

(
S ′DG2(1−D)w

K

)2/3
1.68− 0.61

√
5.95−

√
(S ′π)/2

((S ′DG2(1−D)w)/K)1/3

 (4.9)

Majumdar and Bhushan neglected to note the difference between the real area of contact and

the truncated area, but this was later exposed by Komvopolous in [23]-[25]. The following

derivations will be in terms of the truncated area for simplicity of the expressions, but the

results will be presented in terms of the real (JKR) area.

Following the work of Majumdar and Bhushan, the following assumption is made for the

expression for the interference, δ, in terms of the truncated area:

δ = G(D−1)(S ′)(2−D)/2 (4.10)
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Majumdar and Bhushan also provided an expression for the radius of curvature at the

asperity tip, in terms of fractal parameters:

R =
S ′D/2

π2GD−1
. (4.11)

Using equations (4.10-4.11), relationships specific to asperities in the JKR contact regime can

be developed. In this chapter, a rigid-flat plane that progressively approaches a randomly

rough surface (see Figure (14)) will be analyzed. When a minimum distance is reached at

point ‘a’, the rigid-flat plane will then be pulled away to point ‘b’. It is from this point ‘b’

that the system will be analyzed. During the separation phase under force control, a critical

point is achieved at which the system becomes unstable and the surfaces will ‘jump’ apart.

The force at this point is referred to as the critical pull-off force. In order to develop our

analysis, the expressions for the critical stretch and contact area that are derived from JKR

theory must be correlated to the fractal parameters G and D. An important contribution

of the present analysis is the determination of S ′
c as a function of only material and fractal

parameters. The parameter S ′
c represents the critical contact area just prior to the point of

abrupt separation. This critical contact area allows for the study of the pull-off force as a

function of separation distance.

Unlike Hertzian theory, asperities can sustain tensile tractions at the contact interface

in JKR contact. Therefore, when the contacting surfaces are pulled away, the asperities are

stretched. Equation (2.6) can be used to determine the magnitude of this stretching under

fixed grip conditions. In Figure (20), the vertical tangent on the load deflection curve shows

this point. Using Equation (2.6) and Equation (4.11), a relationship for the critical stress is

given in terms of the fractal parameters and truncated area:

δc = −
(

3w2S ′D/2

4K2GD−1

)1/3

(4.12)

If the stretch becomes less than δc, then adhesion is broken i.e. δc < δ. Therefore by

substituting Equation (4.10) and Equation (4.12) into this inequality a relationship is found

for the critical contact area:

S ′
c =

(
3w2

4K2

) 1
3−2D

G
4(1−D)
3−2D (4.13)
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Figure 20: Load-Deflection curve for JKR theory

Equation (4.13) has a significant impact on asperity contact since it limits the size of the

contact area for asperities when they are being stretched. For example, suppose that a

relationship for the size distribution of the asperities, Γ(S), is known. The following integral

could then be used to give the real area of contact:

S ′
real =

∫ S′
l

S′
c

S ′Γ(S ′)dS ′ (4.14)

Equation (4.14) is only valid for the contact condition of surfaces that are originally com-

pressed together then subsequently separated. The parameter S ′
l represents the area of the

largest contact spot. It is important to note that the lower integration limit is not zero. This

is due to the condition that no asperity can attain a contact area less than S ′
c. Incidentally,

Equation (4.14) is the exact relationship which is given in [18] for the contact area of as-

perities that are being deformed elastically. Therefore the integration in Equation (4.14) is

carried out yielding the real-truncated area of contact,

S ′
real =

D

2−D

(
S ′

l − S ′
c
1−D/2

S ′
l
D/2
)

(4.15)
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To determine the pull-off force as a function of separation, the same premise used to produce

Equation (4.15) can be used:

F =

∫ S′
l

S′
c

F (S ′)Γ(S ′)dS ′ (4.16)

The load-contact radius relationship given by Equation (2.3) can be written entirely in terms

of truncated area, S ′ using the conversion provided by Equation (4.9). Equation (4.16) can

then be numerically integrated with the results of which will be presented in Section (4.5). It

is noteworthy to mention that results of the numerical integration are not directly a function

of separation distance but can be effectively controlled by S ′
l. As the separation distance

between the surfaces increases, S ′
l decreases to a limit of S ′

c.

4.5 RESULTS AND DISCUSSION

Utilizing the adhesion fractal contact model developed in Section (4.4), the adhesive forces

between two surfaces can be analyzed as a function of surface roughness and interface mate-

rial. The expressions (4.13), (4.15), and (4.16) allow direct manipulation and investigation

of the influence of the fractal parameters G and D, and the material parameter, K. In

the analysis presented in this section, a pair of micro-sized areas with an apparent area of

Sapp = 625µm2, and a combined work of adhesion of w = .1J/m2 will be assumed (see Ta-

ble 6). In order to demonstrate the applicability of the expressions derived in Section (4.4),

results will be generated by varying the fractal parameters (D and G) and the effective mod-

ulus, K. Table 6 indicates the various conditions explored. These conditions were chosen

because the produce a circumstance where JKR theory is applicable. Let us first investigate

the effects that varying the fractal parameter D has on the adhesive forces. As mentioned

previously, the system being analyzed is under displacement control so that the separation

distance between the two surfaces can be controlled by increasing or decreasing S ′
l. Since we

are concerned with the adherence force, S ′
l can be decreased until the limit of S ′

c is attained,

thereby revealing the critical pull-off force. This is determined by allowing S ′
l to range from

the critical adhesion contact area, S ′
c, to values much larger than S ′

c, for different D values.

Curves can then be generated for each D value by parametrically varying a′l and plotting
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Table 6: Conditions for numerical results.

Case D G× 10−14 (m) K × 108 Pa

1 1.320, 1.319, 1.318 1.0 117

2 1.320 1.0, 1.2, 1.5 117

3 1.320 1.0 112,115,117

equations (4.15) and (4.16) in nondimensional form as shown in Figure (21). As depicted in

the figure, the critical pull-off force can be determined by the vertical tangent of each area

load curve, as labeled by the symbol Fc for D=1.32. An important tendency exhibited by

Figure (21) is that overall pull-off force increases with the fractal dimensional parameter D.

The underlying explanation for this phenomenon is found by examining the surface topog-

raphy at different fractal dimensional values, as illustrated in Figure (22) and Figure (23).

It is important to note that D = 1.2 and D = 1.4 were chosen in Figure (22) and Fig-

ure (23) to highlight the effects of varying D, and do not directly correspond to the values

shown in Figure (21). As illustrated in these figures, increasing the value of D at a fixed G

value dramatically changes the surface profile. Specifically, as D increases, the density of the

asperities becomes greater, while the overall surface roughness becomes smoother because

of smaller asperity heights. For a higher asperity density, the number of adhesive contact

interactions between surfaces will be greater, therefore increasing the energy required for

separation. Since the disparity in asperity heights also decreases with the increase of D, the

elastic energy stored in the compressed asperities will be less dominant than the adhesive

energy in the stretched asperities (when compared to lower D values). Since these factors

will decrease the amount of elbowing along the contact interface, the increase in pull-off force

with increasing D shown in Figure (21) can be accounted for.

Turning our attention to the fractal parameter, G, Figure (24) illustrates the influence

that varying G has on the adhesive forces. Examining the figure, it is clearly shown that the

critical pull-off force substantially increases with decreasing G values. To understand this

tendency, Figure (25) was generated to illustrate how the surface topography varies with
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Figure 21: Effect of fractal parameter D on pull-off force
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Figure 22: Fractal parameter D=1.2.
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Figure 23: Fractal parameter D=1.4.
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Figure 24: Effect of fractal parameter G on pull-off force
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Figure 25: Effect of G on surface topography.

G. As indicated in Figure (25), increasing the values of G amplifies the magnitude of the

asperity peaks. Again considering the influence of elbowing, the greater the magnitude of

the asperity peak heights, the more elastic energy that will be stored between the contacting

surfaces for a give separation distance. Hence, at larger G values, there will be more elastic

restoring energy to force the contacting surfaces apart, which will decrease the critical pull-off

force, as shown in Figure (24).

Finally, the influence that the material parameter K has on the pull-off force is demon-

strated in Figure (26). As shown in the figure, the total load and critical pull-off force

decreases with increasing K. Since K is a measure of the equivalent elastic modulus of the

contacting surfaces, a large value of K indicates that the contact interface is stiff. Therefore,

the amount of restoring force between asperities will directly increase with K, as indicated

by the lower critical pull-off force magnitudes at higher K values in Figure (26).

Two factors govern the validity of these results: i) asperities are not interacting with one

another, that is, the real to apparent contact area is small, ii) the asperities in contact are

in the JKR regime. Both of these conditions are satisfied in the present analysis. To address

item i, the ratio of the real and apparent area of contact for the variables examined is less

than five percent, which indicates that the asperity interaction is small. Considering item

ii, the we can examine the Tabor parameter µ for these conditions. The Tabor parameter µ
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Figure 26: Effect of varying effective elastic modulus, K, on pull-off force

is defined by:

µ =

(
Rw2

K2z3
o

)1/3

(4.17)

Written in terms of the fractal parameters, this relationship becomes:

µ =

(
wS ′D/2

π2K2z3
oG

D−1

)
(4.18)

From Equation (4.18), the µ values in our analysis range from approximately 3 to 4.5. Based

on the work of Johnson and Greenwood [31], it has been shown that JKR theory applies to

µ vales as low as 1.0. Therefore the presented trends are well within the acceptable limits

to produce valid results.
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4.6 SUMMARY AND CONCLUSIONS

In the present chapter a closed form analytical solution has been determined for adhesive

rough surface contact in terms of fractal parameters. This solution can be applied to any

surface interface provided that estimations can be obtained for the work of adhesion, and

the fractal parameters G and D. With the growing popularity of MEMS technology, there is

an inherent need to more accurately characterize the pull-off force using a methodology that

is independent of length scale. The developed expressions provide a mechanism to perform

this characterization by directly coupling the elastic deformation and adhesive effects within

the contact interface. In addition to improving accuracy, the presented expressions are

potentially useful for MEMS designers because they allow determination of adhesive forces

as a function of easily obtainable parameters.

To illustrate the usefulness of the developed expressions, the influence of the fractal

parameters G and D, and the material parameter K on the adhesive forces were analyzed.

Based on this analysis, the following trends were determined:

1. The critical pull-off force increases with the fractal parameter D due to the greater

density of asperity peaks at larger D values.

2. The critical force required for separation decreases with increasing G because of the

larger asperity peaks and the increased elbowing that occurs at higher G values.

3. Increasing the effective modulus along the contact interface reduces the effects of adhesion

due to the greater level of elastic energy stored in the asperities.

4. Small variations of the fractal parameter G has the most significant impact on the vari-

ation of pull-off force.
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5.0 FRACTAL CONTACT MODEL FOR JKR-DMT SOLUTION REGIME

5.1 INTRODUCTION

In chapter 3 and chapter 4 there have been several limiting assumptions which dictated the

generality of the solution. First in chapter 3, the radius of curvature for the contacting

asperity is assumed prior to contact force and area determination. Therefore inherent to the

statistical based solution method a length scale is assumed. To accommodate surfaces which

exhibit roughness on several length scales, an adhesive fractal solution based on JKR contact

types was presented in chapter 4. Although the applicability of this solution is extended to

multi-scale surfaces, the contact type was limited to JKR contact. In this present chapter

the most general of all adhesive rough surface solution methods is presented. The surface

characterization is based on a three-dimensional characterization and the contact type is

determined at the time of integration. Although the method is shown for isotropic surface

roughness, it can easily be extended to anisotropic surface roughness.

5.2 3-D ROUGH SURFACE SIMULATION

Rough surface contact solutions are traditionally implemented in a two stage process. First,

the topography is characterized by either a statistical or a fractal method. Secondly, an

assumption is made that the peaks in contact can then be modeled by simplified shapes

such as spheres. By performing these steps, it can be established which asperities are in

intimate contact and which are not. By determining the interference or deformation that

each asperity incurs, the total contact area and load can be subsequently calculated. A
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similar methodology will be used in the present analysis in our adhesive surface contact

algorithm.

In this chapter, a fractal surface geometry (see chapter 4) will be used to characterize

the topography. A fractal geometry was chosen because most engineering surfaces have been

shown to exhibit roughness on several different length scales. If for example, one would

attempt to characterize a multi-scale surface with traditional statistical parameters such as

average surface roughness, slope and curvature, they would render different results depending

on the scale at which the measurements were taken. Fractal geometry, on the other hand,

offers a uniquely defined set of parameters which are invariant with respect to scale. More

specifically, once the scale-invariant fractal parameters are determined, the roughness can be

predicted at all length scales for which the surface is shown to exhibit fractal behavior [17].

In the present investigation, it will be assumed that the surface roughness is isotropic.

Physically, this means that if scans were made in the two lateral directions x and y, the char-

acteristic fractal parameters would be the same. In order to obtain actual fractal parameters

, a scan is taken which reveals the profile of the surface at a particular cross-section. Once

the profile is obtained, for a surface, its power spectrum density (PSD) is determined using

a fast fourier transform (FFT). When the PSD of the profile is plotted versus frequency on

log-log scale, a linear relationship is revealed for surfaces which exhibit fractal behavior. For

the Weierstrass-Mandelbrot (W-M) function,

z(x) = GD−1

∞∑
n=nl

cos(2πηnx)

η(2−D)n
(5.1)

Berry and Lewis [29] show that the power spectrum is given by:

P (ω) =
G2(D−1)

2 ln(η)

1

ω(5−2D)
. (5.2)

In Equations (5.1 & 5.2) D and G are the fractal roughness and scaling parameters. These

two scale invariant parameters are found by respectively determining the slope and intercept

point from the log-log plot of the PSD. The fractal roughness parameter D varies from one to

two and is dimensionless, while the scaling parameter G is not limited to a specific range and

carries a length dimension. In Equation (5.2), the density of asperities, η, must be greater

than one. A review of the literature ([18], [3], [24]), however, reveals that η is typically taken
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as 1.5. The physical significance of the fractal parameters G and D are explained as follows.

As D becomes larger, the number of asperities increase and their heights decrease. By this

definition, as D approaches 3.0, the surface will become smoother. Therefore, as explained

in [32], D governs the contribution of the low and high frequency components to the surface.

The parameter G is referred to as the fractal roughness. As G increases, the peaks and

valleys are amplified, such that the asperity peaks are higher and the valleys are lower.

In this chapter, the contact interface of two actual MEMS components will be analyzed

to demonstrate the use of the adhesive surface contact algorithm. The surface profiles were

obtained by taking scans of LIGA surfaces using an atomic force microscope (AFM). As

shown in Figure (27), the AFM profile taken from the first surface exhibits a randomly rough

topography with periodic ribs which were manufactured to reduce the effects of adhesion.

In Figure (27), the solid profile corresponds to the actual AFM scan and the dashed line

represents the fractal simulation of the profile. Apart from the ribs, the roughness predicted

by the fractal profile accurately models the topographical features of the scanned geometry.

Likewise, Figure (28) depicts the AFM profile and fractal representation of the second fractal

surface. As with Figure (27), Figure (28) shows that the second surface is randomly rough

and is adequately modeled by the fractal representation.

To simulate the contact between the surfaces in figures 27 and 28, the concept of an

equivalent rough surface will be utilized. To obtain an equivalent surface, the PSD is first

determined for both surfaces (solid profiles in figures 27 and 28). The power spectra are

then summed together and plotted versus frequency so that the fractal parameters G and D

can be obtained for the equivalent rough surface. With the equivalent fractal representation,

the rough surface interface can be replaced by an equivalent rough surface and a smooth

rigid plane, as discussed in Section (3.4). Figure (17) in chapter 4 depicts the equivalent

power law relationship between the PSD and frequency for the two LIGA surfaces being

analyzed in this chapter. It should be noted that when converting the fractal parameters

from profile to surface parameters, the fractal scaling parameter, G, remains the intercept

point of Figure (17). The fractal roughness parameter, D, however must be increased by

one [18]. Hence, for an equivalent surface, the range for D will be between two and three.

For the composite PSD shown in Figure (17) for the actual LIGA surface investigated in
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Figure 27: Typical AFM scan of ribbed LIGA surface.
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Figure 28: AFM scan of mating LIGA surface.
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this chapter, the slope and intercept were respectively found to be 1.7815 and 1.3152× 10−9

meters, which yields equivalent surface D and G values of 2.7815 and 1.3152× 10−9 meters.

In order to generate surface topography information directly from the above fractal

parameters, a multivariate fractal version of the W-M function given by Ausloos and Berman

was utilized [33]. In their work, Ausloos and Berman demonstrated that the W-M function

could be a function of more than one variable. Yan and Komvopoulos [34] then presented

a version of Ausloos and Berman’s function that was readily applicable for use with rough

surface contact theory [34, 3, 32]. The three-dimensional version of the Ausloos and Berman

function is given by [34]:

z(x, y) = L

(
G

L

)D−2(
lnη

M

)1/2 M∑
m=1

nmax∑
n=0

ηD−3n (cos φm,n (5.3)

− cos

[
2πηn(x2 + y2)1/2

L
cos

(
tan−1

(
x

y

)
− πm

m

)
+ φm,n

])
where z(x, y) represents the asperity height at each x− y location, η determines the density

of frequencies, L is the sample length, M is the number of superimposed ridges, D is the

fractal dimension (2 < D < 3), G is the fractal roughness, and φm,n are random phases. The

parameter nmax is related to the maximum frequency by the following relationship,

ηnmax = L/Ls (5.4)

where Ls is ‘cut-off length’ (which is the instrument resolution). The parameter nmax is deter-

mined by solving Equation (5.4) and taking the integer value of the ratio log(L/Ls)/ log(η).

Utilizing Equation (5.3), a contour plot can be generated directly from the fractal parame-

ters. Figure (29) shows a contour plot of the equivalent surface being analyzed in this work

(D = 2.7815 and G = 1.3152× 10−9 meters).

In order to verify that the topography shown in Figure (29) is representative of an

isotropic fractal surface, a two-dimensional power spectrum can be taken (see Figure (30)).

For isotropic behavior, the resultant plot of should reveal an axi-symmetric power spectrum.

In the case of Figure (30), it is seen that the two-dimensional power spectrum exhibits axial

symmetry [34]. It is important to mention that as found by Anguiano et al [35], the two

orthogonal bands seen along the frequency axes are artificial and can be eliminated.
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Figure 29: Contour plot of surface topography for simulated surface.
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Figure 30: Axi-symmetric power distribution of simulated surface.
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5.3 ADHESIVE ROUGH SURFACE SOLUTION METHODOLOGY

5.3.1 BACKGROUND

Before describing the algorithm developed in this chapter in detail, it is important to review

the work of Yan and Komvopolous [34] to provide an adequate background of the equations

utilized. In their work a three-dimensional rough surface analysis was conducted for elastic-

plastic materials. The expressions developed by Yan and Komvopolous were useful in the

present algorithm. In order to develop easy to use expressions for the asperity interference,

Yan and Komvopoulos developed a two-dimensional form of Equation (5.3) to account for the

M number of ridges by introducing a multiplicative factor which was eventually set equal to

1. This implied that a two-dimensional W-M function could be used to approximate a fractal

function in three dimensions. By making these approximations, the following expression is

developed:

δ = 2GD−2ln γ1/2(2a′)3−D. (5.5)

Yan states in [34] that since the radius of curvature of each asperity is much greater than

the height of the asperity then this relationship can be assumed to be

a′
2

= 2Rδ (5.6)

where a′ is the truncated contact radius. He then uses Equations (5.5 & 5.6) to find a rela-

tionship for the radius of curvature as a function of the truncated area and fractal parameters:

R =
S ′(D−1)/2

2(5−D)π(D−1)/2G(D−2)(ln η)1/2
(5.7)

where S ′ is the truncated contact area. Throughout the remainder of this chapter, primed

variables correspond to ‘truncated’ values. The fractal relationship for the radius of curva-

ture, R can be used to modify the Equation (1.5) to give a transition parameter which is

related to fractal dimensions

λ = 1.16

(
wS ′(D−1)/2

25−DK2π(D−1)/2GD−2
√

ln ηz3
o

)1/3

(5.8)
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Since in Equation (1.5) σo is not an easily attainable value, the relationship between λ and

Tabor’s transition parameter is used:

λ = 1.16µ (5.9)

where µ is defined by:

µ =

(
Rw

K2z3
o

)1/3

(5.10)

where zo is the intermolecular distance, which is about 0.3− 0.5 nm. With this background,

the truncated area can now be determined based on a given interference. By substituting

Equation (5.7) into Equation (5.6), the following expression is used to solve for the truncated

area based on interference for each ith asperity:

S ′
i

π
= 2

(
S ′(D−1)/2

i

2(5−D)π(D−1)/2G(D−2)(ln γ)1/2

)
δi (5.11)

Equation (5.11) can be solved using a fixed point iteration scheme to determine the truncated

area. It should be noted that the truncated area is used for the first iteration of the algorithm

(see next section) only. For efficiency and to reduce solution time, the previously converged

area for each asperity is saved and is subsequently used as the starting point for the next

level of interface separation.
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Figure 31: Iterative scheme to solve for total load and area.
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5.3.2 ALGORITHM

To solve for the total load and contact area a novel numerical algorithm has been developed.

In this algorithm the Maugis-Dugdale solution, introduce in Section (2.2), is used to model

the micro-sized contact of each asperity. Unique to the methodology presented in this chapter

is that the there is no assumption of length scale or contact type prior to load and contact

area integration. The transition parameter is uniquely determined for each asperity based

on the given contact conditions. Furthermore, with the use of a fractal characterization, the

surface topography can be modeled in a scale-invariant manner.

This algorithm is described in a flowchart format shown in Figure (31). As described in

the figure the first step is to generate the surface topograpy from the fractal parameters using

Equation (5.3). Next the surface is offset to introduce an initial penetration into the rigid

plane. The interference, δi, of each asperity is determined. Based on this interference, the

truncated area is subsequently computed for only the asperities that are physically interfering

with the rigid plane. As described in chapter 4, the ‘truncated area’ is the area of intersection

between the flat plane and the spherical capped asperity (see Figure (19)). The truncated

area is then used to compute the radius of curvature and transition parameter λ for each

asperity. Once the values for λ and R values are found from on the initial interference, they

are stored for later use during subsequent calculation of the mean interface separation.

Once the truncated area is initially determined, the main iteration scheme is started

to determine the real area of contact for each asperity. Using the values for R and λ, the

contact radius, m and δcom are computed. These values are computed based on the adhesive

contact solution of Maugis [5], (see Section (2.2)) given in equations (2.7-2.9).

1 =
λA2

2
[
√

m2 − 1 + (m2 − 2) arctan
√

m2 − 1]

+
4λ2A

3
[(
√

m2 − 1 arctan
√

m2 − 1)−m + 1]

∆ = A2 − 4

3
Aλ
√

m2 − 1

F = A3 − λA2
(√

m2 − 1 + m2tan−1
√

m2 − 1
)
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where A, ∆, and F are defined by:

A =
a

(πwR2/K)1/3

∆ =
δ

(π2w2R/K2)1/3

and F = F/(πwR). The algorithm first calculates the contact radius, a′, using the relation-

ship
√

S ′/π. S ′ could either be the truncated area (during the first step) or the converged

contact area from a previous sub-step. From the contact radius, A, is calculated and used in

Equation (2.7) to solve for m. Based on the values for A and m, the computed approach δcom

is solved for using Equation (2.9). If the percent difference of δcom is less than one percent

then the iteration has converged. If δcom is not sufficiently close to the prescribed approach,

however, the value of S ′ is adjusted. In the event that δcom < δ, then S ′ is increased, whereas

if δcom > δ the area is decreased. The interations will continue in this manner until conver-

gence has been reached. Once the iterations have converged, the values of the load, Fi, and

area, Si are added to the totals (Ftotal and Stotal). All interfering asperities are iterated on in

this fashion and then the surface is moved to the next separation location and the procedure

starts once again.

5.4 RESULTS

The solution methodology outlined in Section (5.3) was implemented in Mathematica. The

validity of the this solution scheme was first established by examining the contact of a single

asperity. For this condition, the results predicted by our algorithm can be measured against

Maugis’ single asperity solution. Figure (32) shows a comparison between both the numerical

result and the MD solution for λ = 4.815 and λ = 0.498. In the figure, that the diamond

and starred shaped icons represent our numerical results while the solid lines are Maugis’

solution. Examining the curves depicted in Figure (32), it is found that our numerical scheme

predicts results nearly identical to Maugis’ theory at both high and low values of λ. Such

a trend indicates that our algorithm is able to accurately predict the contact behavior for a

wide range of values of the transition parameter, λ.
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Figure 32: Single asperity validation of algorithm.

After being validated, the method described in Section (5.3) was used to examine several

factors that influence the pull-off force. In this section we will specifically examine the influ-

ence of the material stiffness, the work of adhesion, and the topography parameters G and

D. The material and surface topography parameters for all of the numerical investigations

conducted are listed in Table 7. The LIGA nickel material whose surface geometry was

described in figures 27 and 30 was used in all analyses. LIGA nickel was specifically chosen

due to its manufacturability and growing popularity for the construction of micro-scale de-

vices. In the analyses, it was assumed that both contacting rough surfaces were constructed

of nickel. Using Equation (1.4) the compliance can thereby range from 70.3 GPa to 110.3

GPa [36]. The surface energy of nickel was found to be 2280 mJ/m2 [37], which makes the

work of adhesion approximately 4 J/m2. This value of w should be considered an upper

limit in the present analysis. Because there is much discrepancy between the theoretical

work of adhesion values and those determined from experiments, the present investigation

will assume a moderate value of 0.25 J/m2 for the bulk of the numerical simulations. The

fractal scaling parameter G was chosen to range between 0.9152 × 10−9 and 5.3152 × 10−9

meters, and the fractal roughness parameter D was selected to vary from 2.6815 to 2.8815.
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Table 7: Operating conditions for the investigation of individual parameters.

Case K (GPa) w (J/m2) D G (×10−9)m

1 110.3, 90.3, 70.3 0.25 2.7815 1.3152

2 110.3 0.05, 0.15, 0.25 2.7815 1.3152

3 110.3 0.25 2.6815, 2.7815, 2.8815 1.3152

4 110.3 0.25 2.7815 0.9152, 1.3152, 5.3152

The following parameters were held constant for all numerical simulations: Sa = 620.1 µm2,

L = 24.9 µm, Ls = 1.47 × 10−9, η = 1.5 and M = 10. It should be noted that using the

numerical method presented in this chapter along with experiments, however could enable a

researcher to determine the real area of contact based on the determined work of adhesion

by changing values of w to account for varying degrees of adhesion.

Considering first the influence that the interface stiffness, K, has on adhesion forces,

the ratio of real to apparent contact area was plotted versus total load in Figure (33).

The normal force results are plotted as a function of δmean/σ, where δmean is defined as

the distance between rigid plane and average asperity peak height. The parameter δmean

then non-dimensionalized by the average roughness of the asperity peaks. As depicted, the

interface stiffness considerably increases as the adherence force decreases. Physically, the

increased stiffness causes the larger asperities (ones with more interference) to produce a

compressive force which dominates the adhesion in the shorter stretched asperities. In fact

Figure (33) illustrates the ‘elbowing effect’ discussed by Johnson [1]. In the figure, it is shown

that elbowing can become markedly more dominant as the interface stiffness increases.

Investigating the role that varying the work of adhesion has on our system, Figure (34)

depicts that as the surface energy is increased, the adherence force becomes stronger. This

is to be expected because at a higher surface energy, each asperity has more adhesive energy,

thereby causing an increased force to separate the two surfaces. Further examination of Fig-

ure (34) an obvious yet important result for designers: to minimize stiction forces in mating

micro-components, the energy of the interface should be reduced. This can be accomplished

by choosing materials which have a high interface energy, γ12, thereby reducing the overall
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Figure 33: Effect of varying stiffness on adherence force.
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Figure 34: Effect of varying surface energy on adherence force.
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Figure 35: Effect of varying fractal roughness parameter D on adherence force.

work of adhesion, w (see Equation (1.1)).

As mentioned previously, surface roughness can have considerable influence on the ad-

herence force. We will therefore consider the effect that varying the surface topography

parameters D and G has on adherence of our system. Recalling its definition, as D in-

creases, the surface becomes ‘smoother’, and the number of asperities increases. Based on

this definition, it is not readily obvious what effect increasing D will have on adherence force.

Figure (35) was plotted for our system to determine how the adherence force varies with D.

In Figure (35), it is found that by slightly increasing D, the pull-off force can dramatically

increase. One explanation for this fact is that a smoother surface interface will have a higher

real to apparent contact area ratio. In such a condition, there is less disparity in asperity

heights so that the compressive forces of the taller asperities do not dominate the adherence

force.

Finally, considering the influence that the fractal scaling parameter G has on adherence

in our system, the pull-off force was plotted in Figure (36) for different G values. From its

definition, as G increases, the magnitude of the asperity peaks and become more pronounced.

Thus, as shown in Figure (36), taller asperities are created as G increases which try to

separate the interface, in effect reducing the pull-off force. From surface roughness results
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in figures 35 and 36, it is readily apparent that another means of controlling the adherence

force at a micro-sized contact interface is to control the surface topography, particularly the

heights of the asperities.

5.5 CONCLUSIONS

A three-dimensional adhesive rough surface contact analysis was presented in this chapter.

This numerical work provides a novel and computationally efficient method for analyzing

contact between micro-scale components. Unlike many other adhesive rough surface contact

solutions, no assumption has been made about the contact type prior to numerical integra-

tion. In the algorithm, the transition parameter is determined at the time of integration,

thereby more accurately capturing the correct physics of the contact condition. To illustrate

the applicability of the derived expressions, trends for controlling the adherence force for

a LIGA nickel based system was examined. In the results, the parameters w and D are

directly proportional to pull-off force, whereas K and G are found to be inversely propor-
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tional to the adherence force. Furthermore, the proposed solution method can be used in

conjunction with work of adhesion experiments to estimate the real area of contact. To date,

work of adhesion values have either been determined by first principle calculations or have

been presented as an ‘apparent’ work of adhesion. This brought about inaccuracies since the

energy of adhesion was divided by the ‘apparent area’ rather than the real area of contact,

this produces much lower values than calculated from first principle derivations. Since this

solution offers a means of more accurately estimating the real area of contact and will more

accurately approximate the experimentally determined value for the work of adhesion.
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6.0 SCALE DEPENDENT ADHESIVE FRICTION MODEL

6.1 INTRODUCTION

In chapter 5, an adhesive rough surface solution was presented for surfaces that demonstrate

multi-scale roughness behavior. In the present chapter, the total shear force during adhesive

rough surface contact will be evaluated by combining the results of chapter 5 with a scale

dependent friction model for single asperity contacts [38]-[39]. Hurtado and Kim (HK) in

[38]-[39] developed a micro-mechanical dislocation model of frictional slip which consists of

three distinct regimes which are determined by the area of contact for each asperity. Such

a model is well suited for use with the fractal model presented in chapter 5 because of the

multi-scale nature of the surface topography and contacts. Hence, the total friction force

and coefficient of friction can be determined with respect to the fractal scaling and roughness

parameters G and D.

6.2 HURTADO AND KIM MODEL

Based on dislocation theory, Hurtado and Kim (HK) have developed a scale dependent

friction model. Their solution predicts the frictional forces to be determined in three different

dislocation regimes. Johnson [40] provides an excellent description of these three regimes,

which are based on the ratio of the contact radius, a, and the Burgers vector, b. The Burgers

vector is the amount and direction of atomic displacement which will occur within a crystal

when dislocation moves. For small contacts, where (a/b) < 30, HK theory shows that the

shear stress, τo, is constant and equal to the theoretical shear strength of a perfect crystal.
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Figure 37: HK [39] scale dependent friction model.

For most materials, this is approximately G/30. For large contacts (a/b > 105), Hurtado

and Kim found that the frictional stress is constant and is equal to the Peierls stress. The

Peierls stress is the minimal stress required for a dislocation movement at zero temperature.

Finally, for intermediate contact sizes, 30 < a/b < 105, HK theory finds that the frictional

force is governed by the Peirels stress at the contact interface. These three regimes, which

are shown in Figure (37), and will be described in more detail in the following sections.

6.2.1 CONCURRENT TO SINGLE-DISLOCATION-ASSISTED (SDA) SLIP

In the HK model, the first transition from small to intermediate sized contacts is commonly

referred to as concurrent to SDA slip. At this first transition, the contact sizes are extremely

small (on the order of 20 nm). For such a small contact size, a single dislocation loop is

nucleated. In the case of concurrent slip the dislocation loop is defined by all of the atoms

that are located within the contact radius, a. The nucleation sweeps across the entire contact

area resulting in a slip displacement equal to b. In this regime, as the name suggests, all of

the atoms move in a concurrent or a collaborative motion to move one lattice constant. In
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Figure 38: Model of disslocation loops. [39]

Figure (37), the experimental values in this regime were with an atomic force microscope. As

illustrated in the figure, the slip that is taking place at the AFM tip is governed by ‘concurrent

slip’. This transition leads into the new ‘transition regime’ of SDA slip where the contact

sizes are typically on the order of 10 nm to 10 µm, which is more typical in adhesive dry

contacts [38]. As the contact sizes tend asymptotically smaller the shear strength becomes

approximately G/30.

6.2.2 SDA SLIP TO MULTIPLE-DISLOCATION-COOPERATED (MDC) SLIP

In the SDA regime, the shear stress is governed by the force to nucleate one dislocation loop.

As Johnson explains, the force required to nucleate one dislocation loop varies as a3/2, and

the stress varies as a−1/2. Figure (37) shows the stress in the SDA regime varying with the

contact radius as pointed out by Johnson. In the case when the contact size becomes larger,

the frictional stress approaches the Peierls stress of the interface. In the second transition

region from medium to large contacts, pile-up is modeled by several concentric dislocation

loops (see Figure (38)). Johnson provides an excellent explanation of the transition that

takes place at the transition between the SDA and MDC slip regions, “As the size of the
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contact is increased, the dislocation loops equilibrate and pile up within the contact until a

steady state is reached when the loops collapse at the same rate they are nucleated. This

is the steady state regime in which the friction stress is constant and equal to the Peierls

stress.”

6.3 HK IMPLEMENTATION

The implementation of the HK model will follow the work of Adams [41] who determined

shear stress and coefficient of friction values using a statistical approach. Non-dimensionalization

will be used in the form τ f = τf/G
′where τf is the frictional stress, and G′ is the effective

shear modulus given by:

G′ =
G1G2

G1 + G2

. (6.1)

It is important to note in Figure (37) that the effective shear strength is written as ‘µ’,

whereas the present investigation uses the symbol G′. The contact radius a is normalized by

the Burgers vector b, a = a/b. As seen in Figure (37), the dimensionless shear stress can be

written as a function of the dimensionless contact radius by the following condition:

log(τ f ) =


log(τ f1) : a < a1

M log(a) + B : a1 < a < a2

log(τ f2) : a > a2

(6.2)

where the parameters M and B are given by

M = − log(τ f1/τ f2)
/

log(a2/a1) (6.3)

B =
(log(τ f1) log(a2)− log(τ f2) log(a1))

log(a2/a1)
(6.4)
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The force of friction can then be obtained by making the assumption that the friction force

is directly proportional to the product of the shear stress and contact area, Ffric = τfS. The

resulting expression is non-dimensionalized and shown to have the following form:

Ffric

G′b2
=


τ f1a

2 : a < a1

10BaM+2 : a1 < a < a2

τ f2a
2 : a > a2

(6.5)

The above expressions are then implemented into the algorithm described in chapter 5.

Each time the contact radius is determined for a particular asperity that is in contact, the

scale-dependent friction regime can be then found. The resultant friction force for the ith

asperity is then added to the running sum. The friction force results have been computed

and are presented in the following section.

6.4 RESULTS

Using the scale dependent HK friction model, results have been obtained for rough surface

contact with multiple asperities. Because experimental parameters for the HK model are

limited, the parameters have been taken from the literature [38], [39] and [41]. The model

parameters utilized are: τ f1 = 1/30, τ f2 = τ f1/43, a1 = 28, and a2 = 80000. The effective

shear modulus,G′, and Burgers vector, b are taken to be, 78.4 GPa and 0.249 nm respectively.

In this section we will examine the effect of varying the fractal scaling, G, and roughness,

D, parameters for the conditions given in Table 7.

For the purpose of understanding the effect of varying the fractal roughness parameter D,

Figure (39) was generated. In the figure, it is found that the non-dimensional friction force is

greater for lower D values at contact area ratios of 0.006 and higher. Consider S/Sapp = 0.01,

the non-dimensional friction values are 3200 for D = 2.6815 and 3000 for D = 2.7815. Thus

as the fractal roughness parameter increases the force of friction decreases. It is evident from

this trend that surface roughness plays an integral role in determining friction at the micro-

scale. To help explain the trend Equation (6.6) must be further examined. To quantitatively

76



0.005 0.01 0.015 0.02

1000

2000

3000

4000

5000

D=2.7815

D=2.6815
F

fric
/G'b

2

S/S
app

~3200

~3000

Figure 39: The effect of varying the fractal roughness parameter on friction.

verify that the roughness does vary with the fractal parameters, the following expression was

derived by Majumdar [17] which relates the surface roughness to the fractal parameters:

σ =

√
G2(D−1)

2 ln η

1

(4− 2D)

(
1

ω4−2D
l

− 1

ω4−2D
h

)
(6.6)

Using Equation (6.6) to determine the roughness, and Figure (39) to find the friction force,

Table 8 was produced. Table 8 clearly shows a direct relationship between the friction force

and the surface roughness. In Figure (39), if we consider a one percent contact for either

D = 2.6815 or 2.7815, Table 8 shows that the surface roughness is increased by 216 percent

and the non-dimensional friction force is increased by 6.6 percent. Therefore, Equation (6.6)

verifies that as surface roughness is increased, the frictional force is expected to increase.

Furthermore, two more trends are depicted in Figure (39): 1) below a value of 0.6 percent

area of contact, the friction force is independent of surface roughness; 2) as the area of

contact increases the percent increase in friction force increases.

To investigate the friction force relationship with the fractal scaling parameter, G, Fig-

ure (40) was generated. In the figure, the fractal scaling parameter is varied according to

Table 7 and the effect on the total friction force is determined. In Figure (40) it is found

that increasing the value of G decreases the friction. In this case, the correlation of surface
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Table 8: The effect of varying D on friction force, G = 1.3152 nm

Fractal parameters σ % Diff (Ffric/G
′b2) % Diff

D = 2.6815 39.3 nm 3200

D = 2.7815 16.5 nm
216

3000
6.6

roughness and friction again holds true. Table 9 shows that for a thirty-three percent in-

crease in surface roughness, an approximately two percent increases in the non-dimensional

friction force is obtained. Figure (40) also illustrates that when the percent contact area

becomes small, the difference in friction force is virtually negligible. In addition, in both

figures 39 and 40, the relationship between friction and area is largely linear once the the

percent contact becomes greater than 0.6 percent.

6.5 DISCUSSION

By using this method described in this chapter, an experimental correlation could then

be performed to approximate the real area of contact in MEMS components. Currently the

experimental methods to determine the real area of contact are scarce. By implementing this

scale dependent friction model into the adhesive rough surface contact algorithm developed

in chapter 5, a unique method of combining the effects of adhesion, multi-scale surface

roughness, and scale-dependent friction to approximate the true area of contact between

interfaces. One could the fit the model to the experimental results and would then have a

method to predict the real area of contact for similar systems. It should be pointed out that

when conducting friction experiments on a micro-scale, the total measured force applied by

the experimenter is not a complete representation of the total normal force. Adhesion forces

can be present which will alter the coefficient of friction estimate.
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Figure 40: The effect of varying the fractal scaling parameter on friction.

Table 9: The effect of varying G on friction force, D = 2.7815

Fractal parameter (nm) σ % Diff (Ffric/G
′b2) % Diff

G = 0.9152 12.4 nm 3580

G = 1.3152 16.5 nm
33

3650
1.95
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APPENDIX

CURVE-FIT EQUATIONS

λ = 5

A(δ∗, δ̄∗) = 0.506581 +
√

0.755717 + 0.82545(δ∗/δ̄∗) (.1)

F̄ (δ∗, δ̄∗) = −0.255531− 1.72253A(δ∗, δ̄∗)2 + A(δ∗, δ̄∗)3 (.2)

λ = 3

A(δ∗, δ̄∗) = −0.408687 + 0.457199

(
1.92325 +

√
3.69888 + 4(δ∗/δ̄∗)

)
(.3)

F̄ (δ∗, δ̄∗) = 0.145313− 2.15673(A(δ∗, δ̄∗))1.04913 (.4)

+0.517717(A(δ∗, δ̄∗))3.473

λ = 2

A(δ∗, δ̄∗) = 0.397699 +
√

0.829211 + 0.879804(δ∗/δ̄∗) (.5)

F̄ (δ∗, δ̄∗) = 0.0155519− 2.13959(A(δ∗, δ̄∗))1.0412656 (.6)

+0.593154(A(δ∗, δ̄∗))3.346

λ = 1.2

A(δ∗, δ̄∗) = 0.230705 +
√

0.968164 + 0.991943(δ∗/δ̄∗) (.7)
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F̄ (δ∗, δ̄∗) = −0.848921− 1.52808(0.968164 + 0.991943(δ∗, δ̄∗))0.492 (.8)

+1.01187(0.968164 + 0.991943(δ∗/δ̄∗))1.500

λ = 1.0

A(δ∗, δ̄∗) = 0.208561 +
√

0.946903 + 0.963879(δ∗/δ̄∗) (.9)

F̄ (δ∗, δ̄∗) = −0.990609− 1.57412(0.946903 + 0.963879(δ∗/δ̄∗))0.592 (.10)

+1.1988699(0.946903 + 0.963879(δ∗/δ̄∗))1.460

λ = 0.7

A(δ∗, δ̄∗) = 0.035611 + 1.02769(1.05759 + 1.07911(δ∗/δ̄∗))0.488 (.11)

F̄ (δ∗, δ̄∗) = −1.10144− 1.26132(A(δ∗, δ̄∗))1.203 (.12)

+0.811666(A(δ∗, δ̄∗))3.077

λ = 0.5

A(δ∗, δ̄∗) = 0.257819 + (0.974653 + 1.06842(δ∗/δ̄∗))0.494 (.13)

F̄ (δ∗, δ̄∗) = −1.34003− 1.0821(A(δ∗, δ̄∗))1.23 (.14)

+0.901174(A(δ∗, δ̄∗))3.0352

λ = 0.1

A(δ∗, δ̄∗) = 0.000620886 +
√

0.4754718 + 1.0131375(δ∗/δ̄∗) (.15)

F̄ (δ∗, δ̄∗) = −1.94645− 0.375988(A(δ∗, δ̄∗))2.0585 (.16)

+1.11492(A(δ∗, δ̄∗))2.957

λ = 0.05

A(δ∗, δ̄∗) = 0.000432064 + (0.335979 + 1.00369(δ∗/δ̄∗))0.499 (.17)

F̄ (δ∗, δ̄∗) = 0.997114(−1.98244− 0.152864A(δ∗, δ̄∗)1.571 (.18)

+A(δ∗, δ̄∗)3.001)
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