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ABSTRACT 
 
 
 
 

DESIGN AND EVALUATION OF A NOVEL PULSATILE BIOREACTOR FOR 
BIOLOGICALLY ACTIVE HEART VALVES 

 
Daniel Kenneth Hildebrand, MS 

 
University of Pittsburgh, 2003 

 
 

Biologically active replacement heart valves (tissue engineered, recellularized xenograft) 

offer enhanced function compared to current valve therapies by possessing the capacity for 

remodeling and growth to meet the hemodynamic needs of the patient and eliminating the need 

for chronic medication. However, many fundamental questions remain as to how these valves 

will function in vivo, and new in vitro tools need to be created to address these questions. 

Traditional in vitro heart valve testing devices (mock flow loops) are designed to subject valves 

to physiologic and pathologic hemodynamic conditions. These devices offer a heart valve 

designer a useful tool with which to evaluate the mechanical functioning of their device in a 

variety of well-controlled hemodynamic situations. Unfortunately, these devices have not been 

designed for testing valves built of biologically active materials which require proper nutrient 

and waste exchange, pH, temperature, and freedom from attacks by microbial organisms in order 

to function. Pulsatile bioreactors have been developed to provide the aforementioned biological 

requirements to developing tissue engineered valves [1, 2], but these systems offer very limited 

hemodynamic control in comparison to mock flow loops. Therefore, in order to better understand 
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the role of hemodynamics in the function of biologically active heart valves (BAHV), and to 

thereby create better BAHV designs, a new type of pulsatile bioreactor should be created that 

also incorporates more of the hemodynamic control found in mock circulatory loops. This thesis 

details the both the development of such a device and evaluating its functionality. 
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1.0  INTRODUCTION 

In the year 2000, approximately 87,000 heart valve operations were performed [3]. Replacement 

heart valves can generally be divided into two classes: those that are built of biologically active 

materials and those that are built of non-living materials. With the exception of allografts, 

commercial heart valve therapies are this latter type and are further subdivided by the materials 

used in their manufacturing. Mechanical valves are built from materials whose source is not 

biological, while bioprosthetic valve are built from materials that were at one time biologically 

active such as chemically treated bovine pericardium and porcine tissues. More recently, another 

approach that has been gaining interest is to use materials with living cells [4-7]. These valves 

theoretically offer enhanced function when compared to current commercial therapies since they 

could possibly remodel and grow to meet the needs of the patient [6]. However, this technology 

is still in its infancy and many fundamental questions remain as to how these valves will function 

in vivo, including optimization of scaffold materials that will best balance mechanical properties 

and degradation rate, what cell source(s) will produce the best tissue, and how do hemodynamic 

variations affect these valves [6].  

In order to help address these questions concerning the function of biologically active heart 

valves, new tools must be created. Traditional in vitro heart valve mock circulatory flow loops 

are designed to subject the valves to physiologic and/or pathologic hemodynamic pressure and 

flow conditions. These devices offer a heart valve designer a useful tool with which to evaluate 

the mechanical functioning of their device in a variety of well-controlled hemodynamic 
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situations. Additionally, many of these tests are required for regulatory clearance before clinical 

and commercial use [8]. Unfortunately, these devices have been designed to test replacement 

mechanical or bioprosthetic valves, not for valves built of materials that are biologically active. 

Biologically active tissues require proper nutrient and waste exchange, pH, temperature, and 

freedom from attacks by microbial organisms in order to survive. Pulsatile bioreactors have been 

developed to provide the aforementioned biological requirements to developing tissue 

engineered valves [1, 2], but these systems offer very limited hemodynamic control.  

Therefore, in order to better understand the hemodynamic functioning of biologically active 

heart valves (BAHV, and to thereby create better BAHV designs, a new type of pulsatile 

bioreactor should be created that also incorporates more of the hemodynamic control of mock 

circulatory loops. This thesis details both the creation of such a device and the process of 

evaluating its functionality. 

 1.1  THE HEART 

The heart is a four chambered muscular organ which actively contracts to pump blood 

throughout the body. The names of the four chambers in order of which they received blood are 

the right atrium, right ventricle, left atrium, and left ventricle. The four chambers are each 

separated by a valve in order to maintain flow in one direction. The names of these valves in 

order is the tricuspid, pulmonic, mitral, and aortic. The names of the phases of ventricular 

pumping and filling can simply be called systole and diastole respectively. During systole, 

deoxygenated blood returns from the body via the systemic venous circulation and is emptied 

into the right atrium. Once right ventricular pressure drops below that of the right atrium, the 
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tricuspid valve opens letting blood fill the right ventricle during diastole. As the ventricle 

contracts during systole, the pressure builds until the ventricular pressure in the ventricle exceeds 

that of the atrium and the tricuspid valve closes. The pressure isovolumicaly increases until the 

ventricular pressure exceeds that of the outflow vessel, the pulmonary artery, and the pulmonic 

valve opens and blood is ejected into the pulmonary circulation. Again, once the pressure in the 

ventricle falls back beneath that of the outflow vessel, the pulmonic valve will close. This cycle 

is the same for the left side of the heart except the left atrium receives oxygenated blood from the 

pulmonary veins and the left ventricle pumps blood to the systemic circulation. 

 

 

Figure 1 Diagram of the heart: tricuspid valve, a; pulmonic valve, b; mitral valve, c; aortic valve, d. 
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Figure 2 Pressure and flow waveforms of the aortic or pulmonary circulations: ventricular contraction starts 
& inflow valve closes, 1; Isovolumic contraction, 1-2; outflow valve opens, 2; ejection, 2-3; outflow valve 
closes, 3; isovolumic relaxation, 3-4; inflow valve opens, 4; ventricular filling, 4-1. 

1.2  NATIVE HEART VALVES 

1.2.1  Structure and Composition 

The aortic valve is a functional assembly composed of the three cusps and corresponding sinuses 

which together acts to distribute stresses and assures proper and timely valve opening and 

closure [9]. The three leaflets of the aortic valve are attached to the wall of the aorta and are 

shaped to come into contact with the other leaflets in a region along the free edge called the 

coaptation region. The tissue at the center of the coaptation region, the nodulus, is a thickened 

area compared to the rest of the leaflet tissue. The aortic valve is a tri-layered structure consisting 

of the fibrosa, spongiosa and ventricularis. The ventricularis faces the ventricle, has a smooth 

surface, and consists mostly of the extracellular protein elastin. The fibrosa faces the aorta and 

mainly of very large bundles of collagen surrounded by a network of elastin. Between the fibrosa 

and ventricularis is the spongiosa, which consists of collagen, elastin, proteoglycans and 
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glycosaminoglycans (GAGs). GAGs bind water readily and give the spongiosa a sponge-like 

consistency. Its function is still unclear but it is hypothesized that it functions as a buffer zone 

between the fibrosa and the ventricularis during loading and unloading [10]. 

 

 
Figure 3 Picture of an aortic heart valve leaflet. Increasing gray intensity corresponds to increasing thickness. 
Note the very large bundles of tissue, primarily collagen, oriented circumferentially (parallel to the free edge) 

1.2.2  Environment, Stresses, and Motions 

In an adult male, the aortic valve typically operates under systolic and diastolic pressures of 

approximately 120/80 mmHg and a peak flow rate of approximately 30 lpm and a mean flow of 

5 lpm. The pulmonic valve operates under much lower pressures of roughly 30/15 mmHg with 

slightly lower peak flow rate of roughly 25 lpm. The mean flow rate is of course the same past 

both valves since the cardiovascular system is a closed circuit. The reduced peak flow rate across 

the pulmonic valve is compensated for by a slightly longer systolic phase in the right side of the 

heart than the left. The left side of the heart has a systolic/diastolic time ratio of about 33%. 

Other relevant physiologic information includes blood pH typically between 7.35-7.45 pH units 

and arterial gas tensions: oxygen, 95 mmHg, and carbon dioxide, 40 mmHg. 

In vitro studies have shown that native aortic leaflet motion undergoes rapid, complex 

conformational changes during opening/closing. The valve opens from the belly region to the 
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free edge while during closing both the free edge and circumferential section close together 

indicating important differences between opening and closing phases [11, 12]. In vivo, aortic 

valve leaflets are subjected to spatially complex and time-varying cyclic bending, shearing, and 

tensile stresses [13]. Elastin fibers within the leaflets bear the tensile stresses at low strains and it 

is thought that elastin in the ventricularis acts to retract fibrosa during systole [14] while collagen 

bears the tensile stresses at higher strains and its super structural fiber bundles are primarily 

orientated circumferentially to bear the high tensile forces during valve opening, closure, and 

diastole.  

1.3  HEART VALVE DISEASE 

Eighty-seven thousand heart valve operations were performed in the United States in 2000 [15]. 

The chart below shows that the number of heart valve procedures has generally increased over 

the past two decades. There are two main conditions that can require valve surgery: valve 

stenosis and regurgitation [3]. Valve stenosis is a narrowing of the valve opening due to a 

congenital valve defect, scar tissue buildup from rheumatic fever, or from progressive valvular 

calcium deposition. This last cause is currently the most common cause of aortic valve stenosis 

[3]. Regurgitation is reverse flow back into the ventricle caused by congenital defects, aortic 

dilation, infective endocarditis (a bacterial infection), or a tear in the aorta [3]. 
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Figure 4 Number of heart valve procedures in the United States 1979-2000 (AHA) 

 

Birth defects of the heart valve leaflets occur in about 2% of the population and account for 

20% of total heart valve disease cases [16]. Valve-related birth defects create a valve with an 

incorrect number of leaflets. If the deformation results in a valve with one or two leaflets, the 

valve will regurgitate, or allow retrograde flow while having an extra leaflet can cause stenosis. 

The most common defect is the formation of a bi-leaflet aortic valve. While some birth defects 

are not serious enough to require surgery, the presence of an abnormality generally results in a 

reduced life expectancy and surgery is absolutely required in cases of heart valves with mono or 

quad leaflet aortic valves. 

Rheumatic fever is a childhood streptococcal infection that usually results in scarring of the 

cardiac tissue, including the valves. The scarring decreases the durability of the valve tissue and 

leads to damage over time or the valve leaflets can partially fuse together, resulting in stenosis of 

the valve. Scarring from rheumatic fever accounts for about 45% of stenotic valve cases [16].  

Aortic dilation is the enlargement of the sinuses of valsalva, where the valve leaflets are 

situated [17] and is secondary to other heart conditions such as arteriosclerosis and hypertension. 
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The dilation causes the leaflets to not close properly resulting in regurgitation. Since the valve 

sinuses are often part of the prosthetic valve in porcine valves, depending upon the specific 

model, replacement of the entire conduit is usually performed [16]. 

 1.4 HEART VALVE THERAPIES 

Clinical management of heart valve disease includes both pharmaceutical and surgical 

intervention. Pharmaceutical therapies include beta-blockers and anti-bacterial medicines. Beta-

blockers are used in the treatment of hypertrophic hearts [18] while anti-bacterial medications 

are used to stop the infection of cardiac tissue. Pharmaceuticals are capable of stopping or 

slowing down the advances of valve diseases but the only way to restore lost function is to 

surgically replace the damaged heart valve. Commercially available replacement valves include: 

autografts, allografts, mechanical valves, and bioprosthetic valves. 

 

1.4.1  Allographs and Autographs 

As with all donor organs, the supply of donated cadaveric heart valves is very limited and as a 

result the percentage of total heart valve surgeries performed where allograft are used is small. 

An autograft procedure is when one of the patient’s valves is moved from one valve position to 

another. Autografts are primarily utilized in the Ross procedure [19], where the pulmonary valve 

is relocated to the aortic position and the pulmonary valve is replaced by either an allograft or a 

prosthesis. 
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Figure 5 LifeNet Allograft (St. Jude Medical) 

 
 

1.4.2  Mechanical Valves 

Typical mechanical valves are can last 30+ years without failure [16]. Most designs are bi-leaflet 

and are constructed of materials that are biocompatible such as pyrolytic carbon. Two leaflets are 

mounted within a rigid frame attached by hinges that are designed to open freely under minimal 

pressure gradients. Unfortunately, clotting factors can adsorb to leaflet surfaces requiring the 

patient to take anti-coagulants indefinitely.  

 

 

Figure 6 On-X bileaflet pyrolytic carbon mechanical aortic valve (MCRI Inc.) 
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1.4.3  Bioprosthetic Valves 

Bioprosthetic valves are either porcine aortic valves or bovine pericardial valves. Since both of 

these valve designs are made from xenograft tissue and would be immediately rejected by the 

host, the tissues are treated with chemicals such as glutaraldehyde to help hide antigens. 

Glutaraldehyde treatment also acts to crosslink collagen fibers which both stabilizes and stiffens 

the tissue structure. Bioprosthetic valves generally have better hemodynamic characteristics than 

mechanical valves and do not require anti-coagulation therapy, but they do require anti-

calcification drugs since the chemical cross-linking promotes the binding of calcium and salts 

reducing flexibility over time. These devices can last in excess of 20 years and eventually fail 

due to either calcification related valve insufficiency or tissue breakdown [16]. 

 

Figure 7 Porcine aortic valve (Edwards Lifesciences) 

1.1.4  Tissue Engineered Heart Valves 

While the previously discussed therapies have been in use for decades, and some have freedom 

from complication of 20+ years [16], these therapies do have drawbacks such as chronic anti-

coagulation therapy to prevent thromboembolic events in mechanical valves and chronic anti-

calcification drugs in order to retard the formation of valvular calcium deposits. Another 

approach has been to manufacture valves into living materials using tissue engineering 
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technology [6]. Currently, most TEHV designs fall into one of two categories depending on the 

source of the scaffold used in their fabrication. Raw scaffold materials can be either of biological 

origin (decellularized xenograft ECM, small intestinal submucosa, collagen gels, etc…), or from 

manufactured polymers [4, 5, 20, 21]. 

1.4.4.1  Xenograft Scaffolds Currently, there are commercial attempts by Cryolife (Kennesaw, 

GA) and Medtronic (Minneapolis, MN) to develop a decellularized heart valve as an alternative 

to traditional prosthetic valve therapies [22, 23]. These valves are made from a porcine xenograft 

segment of the aorta or pulmonary artery that includes the valve and root. This segment is then 

washed in a series of detergents in an attempt to remove the cellular material while leaving the 

extracellular matrix proteins (ECM) in place thereby creating a decellularized scaffold. The 

thought behind this is that the decellularized scaffold will temporarily function as a working 

valve while the host’s cells become incorporated within the scaffold and generate new tissue. 

Due to the fact that this is a foreign tissue, it is expected that there will be some form of immune 

response and subsequent attack by the host on the scaffold. A proper balance is needed between 

the degenerative effects of the immune response on the xenograft scaffold and the regenerative 

effects of host cell incorporation and stimulation; therein lies the current problem with this 

technology. 
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Figure 8 Theoretical lifecycle of a decellularized xenograft 

 

The first decellularized porcine heart valve, Synergraft by Cryolife resulted in rapid failures 

shortly after it was introduced in Europe in 2001 as an alternative to conventional biological 

valves. Four Synergraft valves were implanted in four male children in the right ventricular 

outflow tract as needed for the Ross operation in two of the patients and the other two received 

homograft aortic roots. At the time of implantation, the grafts appeared macroscopically 

unremarkable and good valve function was demonstrated postoperatively, yet three of the 

children died due to device failure [22]. Two died suddenly due to severe degeneration of the 

valves at 6 weeks and 1 year after implantation, while the third died due to valve rupture on the 

seventh day. The last child had his valve removed two days after implantation as a precaution. 

All four of the grafts showed severe inflammation which lead to structural failure in one case and 

severe degeneration of the leaflets and wall in the other two deaths. It was shown that the hosts 

demonstrated a foreign body type reaction and significant calcific deposits were demonstrated at 
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all stages which are detrimental to proper long term functioning and can lead to structural valve 

failure. It was shown pre-implantation that the detergents used by Cryolife did not remove all of 

the cells and calcific deposits remained within the scaffold, and postoperatively, there was no 

evidence of host cellular repopulation [22]. 

1.4.4.2  Polymeric Scaffolds Unlike the xenograft scaffolds, this design utilizes polymeric 

scaffolds that are ‘seeded’ or incubated with autologous cells that are grown, at least partially, in-

vitro in order to form a tissue-based replacement valve. This valve could theoretically function 

analogously to a healthy host valve since it would be composed of a scaffold material that would 

be eroded away while the host cells would continue to form tissue. The valve could subsequently 

offer the potential for growth and remodeling similar to a native valve without requiring 

pharmaceutical interventions.  

The general process of creating a polymeric scaffold TEHV is illustrated in the diagram 

below. The process starts with harvesting cells from the host (for autologous tissues) and then 

isolation of the cells from the ECM. The cells are initially a relatively small population so they 

are expanded by passaging the cells one or more times to increase their numbers several fold. A 

polymeric scaffold is then seeded with these cells by placing the scaffold in a cell suspension for 

one or more days to allow for most the cells to attach to the scaffold [6]. The scaffold is then 

removed from the suspension and is allowed to incubate in static and/or dynamic conditions. 

During this period of incubation, the cells may change phenotype and start to produce ECM 

components, or in simpler terms, form tissue . The process may last for several days to weeks 

and at the conclusion the now biologically active scaffold can be implanted within the host. 

There is as yet no consensus on many issues regarding the design of these valves such as 

what scaffold material will best balance mechanical properties and degradation rate, what cell 
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source(s) will produce the best tissue, how should the seeded valve be incubated pre-

implantation, and how will in vivo hemodynamic conditions affect the tissue and valve function. 

What follows is a summary of current thoughts on each of these topics. 
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Figure 9 Process diagram of the steps used in constructing a TEHV. Note the dynamic incubation is a step 
that is not used by all investigators. 

 

1.4.4.3  Cell Sources & Types There is general agreement is that the cell source should be 

autologous to reduce the severity of the immune response [24], but there remains no consensus 

as to what cell type(s) should be used to seed the scaffold. Depending on the cell type under 

investigation, there may be several ways of harvesting the cells from the host. This is not a trivial 

matter since any standardized or commercially applicable method will need a reliable host cell 

source and ideally the method of harvesting should be as non-invasive as possible. Currently, 
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most researchers are investigating cells harvested from vascular segments. It has been reported 

that there is a non-significant trend towards a lower cell count and reduced collagen content in 

venous cells [25], but generally it is easier to harvest venous segments than arterial. 
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Figure 10 Transdifferentiation of cell types associated in TEHV (adapted from Fig. 37.1 in [26]). Cell types 
that have been used in seeding scaffolds are those in white. 

 

The main cell types used are of mesodermal origin such as fibroblasts, myofibroblasts, and 

vascular smooth muscle cells. Fibroblasts are multi-potent cells of mesodermal origin that can 

give rise to other cells such as fat cells, bone cells, cartilage cells and smooth muscle cells. 

Fibroblasts make collagens, elastic fibers, glycosaminoglycans and glycoproteins found in the 

ECM. Fibroblasts are the least specialized of this family of connective tissue cells. The presence 

or absence of nearby extracellular matrix dramatically affects fibroblast differentiation, as does 

attachment to substrata or suspension in matrix, and the growth factor environment. Fibroblast 
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growth factor (b-FGF) is involved in the stimulation of fibroblasts during angiogenesis and 

transforming growth factor beta (TGF-b) stimulates fibroblasts to produce matrix proteins . 

Myofibroblasts are cells having characteristics of fibroblasts and smooth muscle cells and 

are derived from pericytes associated with blood vessels. Myofibroblasts are active during tissue 

development, remodeling and repair. They are involved in some forms of arterial thickening and 

are intimately involved in wound healing. They secrete collagen and their involvement late in 

wound healing can cause excessive scarring. Vascular smooth muscle cells (VSMC) actively 

control vascular tone and vessel resistance.  VSMC are multiunit smooth muscle and each cell 

exists as a discreet independent unit that is controlled by a single nerve ending.  

1.4.4.4  Scaffold Materials Polymeric Scaffolds are shaped to resemble heart valve leaflets and 

optionally includes the conduit and/or sinuses. Most of these polymeric materials are 

hydrophobic and can be coated with ECM proteins such as laminin, fibronectin, collagen, or 

RGD peptides to promote cell attachment [24]. The two main synthetically derived polymers 

used in scaffolds are PGA, polyglycolic acid, and PLA, polylactic acid. Both are manufactured 

as non-woven felts where individual fibers are not directly connected to other fibers and both 

materials are degraded by hydrolysis in vivo [27]. Both are in-elastic, brittle materials and PGA 

degrades rapidly in a period of 2-4 weeks while PLA is less susceptible to hydrolysis and 

degrades over a period of 8-12 weeks [24]. PGA and PLA can be combined to form copolymers 

that will degrade over a period that is proportional to the ratio of the polymers.  

Normally, polymeric TEHV valve scaffolds are assembled by hand by suturing or weaving 

sheets of material together which makes it difficult to mimic the complex geometry of a native 

valve [27]. Some studies have added P4HB, poly-4-hydroxybutyrate, a biosynthesized polymer 

that can be coated onto PGA or PLA scaffolds [27, 28]. This P4HB coated scaffold can then be 
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processed by compression molding and/or solution casting techniques which allows for greater 

scaffold design possibilities [27].  

1.4.4.5 Seeding, Pre-implantation Culture, and Mechanical Stimulation Cell seeding 

involves the scaffold being placed in a cell suspension for a given period of time. The cells attach 

to the scaffold through adsorbed proteins or other mechanisms and begin to produce ECM 

components such as collagen and GAGs depending on the specific cell type(s) [6]. After this 

period of cell seeding, the cell suspension is removed and the valve is optionally exposed to a 

period of static or dynamic flow [5, 6, 29].  

It has been hypothesized that culturing a valve under dynamic or pulsatile flow conditions 

could produce a valve with better tissue formation and mechanical properties when compared to 

static (non-pulsatile or steady flow) conditions [5, 6]. This exposes the valve to a combination of 

shearing and flexural stresses and strains which can mechanically stimulate the developing 

tissue. Shear stress has been shown to partially regulate proliferation, orientation, and the 

organization and composition of the ECM when endothelial cells have been used by themselves 

or in conjunction with other cell types [5, 6, 30]. It has been thought that proper modulation of 

the shear stress could potentially induce desired tissue structure and composition [31], but it is 

unclear as to what the magnitudes and directions of these stresses should be. Large cyclic strains 

(>9%) have been shown to produce TEHV materials with more and better oriented ECM [32]. 

Efforts are underway to further quantify the relationship between cyclic strain and tissue 

formation [33-35]. Another major mode of deformation in the native valve is dynamic flexure 

[36], and a recent study has shown that TEHV tissues exposed to dynamic flexure at a rate of 1 

Hz for 21 days showed a 63% increase in collagen, a more uniform transmural cell distribution, 

17 



 

and increased vimentin (an intermediate ECM fiber) expression compared to those cultured 

statically [37]. 

1.4.4.6  Recent Studies Currently, there is only one group who is actively investigating dynamic 

incubation of TEHVs, the Mayer group [1, 5, 6, 24, 27, 32, 38-40]. This group’s work was 

started primarily by Dr. John Mayer, Jr. who is trying to develop a suitable pulmonary 

replacement valve for pediatric patients. As previously discussed, the Ross procedure usually 

involves placing an allograft in the pulmonary position which are difficult to obtain and can 

produce a specific immune response [6]. It is thought that a TEHV would make the ideal 

replacement since it could potentially grow and remodel in the pulmonary position. Additionally, 

the pressures in the pulmonary position are much less than the aortic which is better suited for 

TEHV designs which are currently too weak to endure aortic pressures. 

Two studies [5, 6] have been published by the Mayer group that utilize dynamic incubation 

of TEHVs. The system used to dynamically incubate the valves is discussed in a later section. 

The methods used in these studies are summarized in Table 1 It is important to note that every 

condition listed in Table 1 is different between the two studies. This ‘shotgun’ approach to valve 

design, rather than a more systematic investigation, makes it extremely difficult to draw 

conclusions and infer exactly what factors are important in modulating tissue structure and 

composition. Results showed that valves dynamically cultured had both more cells and more 

collagen, through measured DNA content and hydroxyproline assays, respectively, than those 

statically cultured for the same amount of time [5]. 
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Table 1 Table summarizing previous pulsatile bioreactor studies. Note the cells, scaffold materials, and the 
coupled mean pressure and flow rate changes. Other relevant study parameters such as pressure and flow 
waveforms and heart rate were not reported. 

Study Scaffold Cells Cell # 
/Density 

Incubation 
Time 

Mean P & Q 

Mayer et al 
[40] 

PHA Vascular (mixed 
population) 

8 million Static: 5 days 
Dynamic: 1-8 
days 

140 ml/min at 
10 mmHg 
350 ml/min at 
13 mmHg 

Mayer et al 
[5] 

PGA/ 
P4HB 

1st Myofibroblasts 
2nd Endothelial 

4.5-5.5 
million/cm2 

1.5-2.0 
million/cm2

Static: 4 days 
Dynamic: 4-
28 days 

125 ml/min at 
30 mmHg 
750 ml/min at 
55 mmHg 

1.5  MOCK CIRCULATORY LOOP DESIGN 

In order to help address questions concerning the function of biologically active heart valves in a 

dynamic culture environment, a new type of device must be created that incorporates both 

bioreactor technology (explained in the next section) to provide an environment where tissues 

can live & grow and mock flow loop technology to provide controlled, pulsatile hemodynamics. 

Traditional in vitro heart valve mock circulatory flow loops are designed to subject the valves to 

physiologic and/or pathologic hemodynamic pressure and flow conditions. These devices offer a 

heart valve designer a useful tool with which to evaluate the mechanical functioning of their 

device in a variety of well-controlled hemodynamic situations.  

Mock circulatory loops are simplified hydraulic analogs of the cardiovascular system that 

have been utilized in the testing ventricular assist and artificial heart devices, heart valves, and 

for studying arterial hemodynamics [41-43]. These systems are usually designed using multiple-

element Windkessel models [44] and have a wide range of designs depending on the particular 

application. They are capable of producing highly accurate hydrodynamic resemblance to the 

desired pressure and flow waveforms, and in the more sophisticated systems, feedback control is 
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typically employed in order to provide stable and repeatable waveforms. Unfortunately, these 

systems tend to be large and were not built with sterility as a design criterion. 

1.5.1  Modeling the Cardiovascular System: Windkessel Theory 

Mock circulatory loops have been designed by noting that many of the laws which govern 

electrical circuits can be used to also describe fluid-based circuits where pressure and volumetric 

flow rate are analogous to voltage and current, respectively. Of particular importance is the time-

varying nature of the cardiovascular system which is due to the fact that the heart pumps to 

produce pulsatile flow rather than steady flow. In electrical engineering terms, this relates to 

alternating current theory which has been well developed. Laws such as Ohm’s law, Kirchov’s 

loop and node laws, as well as the concepts of impedance and capacitance among others, can be 

used to model aspects of cardiovascular system with close agreement between simulation and in 

vivo measurements.  

These models are represented schematically as electrical circuits and numerous designs 

have been proposed [44]. Typically, all of these designs stem from what is called the Windkessel 

model proposed by Hales [45] which consists of capacitance in parallel with a resistance. 

Modifications to this basic design produce more physiologically accurate results at the expense 

of processing time. While this is in computational terms, experimentally and/or for model 

validation, fluid circuits can be made with the fluid analogs to these electrical concepts in order 

for accurate in vitro testing of the cardiovascular system. All mock circulatory loops must at least 

have resistive and compliance producing elements in order to simulate the cardiovascular 

system. 
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Figure 11 Equivalent electrical circuit of a 3 element Windkessel system: characterisitic resistance, Rc; 
peripheral resistance, Rp; and compliance, C. 

 

1.5.1.1  Resistance & Impedance In the body, peripheral resistance is defined as the ratio of 

mean pressure to mean flow and it is analogous to electrical resistance. Ohm’s law states that 

linear electrical resistance is defined as the ratio of mean (DC) voltage to current. Therefore, the 

resistance in the system dictates for a given mean pressure what the resulting mean flow will be. 

Since blood flow is pulsatile by nature, there have to exist higher frequency components to flow 

and pressure other than mean values (DC values or 0th harmonic terms). Therefore, it follows 

that there must to be a spectrum of impedances which describe the system. The impedance 

spectrum can be calculated from Fourier analysis of a single beat, ‘steady-state’ pressure and 

flow waveform as discussed by McDonald [46]. 

It is common to define two of these spectral values when describing the cardiovascular 

system, the peripheral resistance/impedance, and the characteristic resistance/impedance. 

Peripheral resistance is the 0th harmonic term in the impedance spectrum and has the largest 

value by an order of magnitude compared to the other harmonics and accordingly dominates the 

system response. Characteristic impedance represents input impedance in the absence of wave 
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reflections, though physiologically there are some wave reflection presents, making most 

measured values estimates [46]. The characteristic resistance describes the higher frequency 

content of the system and is defined usually as the average value of the 8th to 12th harmonics. 

Above this frequency, the contribution to the waveform becomes negligible. The high frequency 

content of the system primarily relates to the stiffness of the vessels at the point pressure 

measurement. The stiffer the vessel, the higher in magnitude of the upper harmonics and 

subsequently the characteristic impedance. 

In the cardiovascular system, the peripheral resistance is changed in the body by dilating or 

contracting ‘peripheral’ blood vessels (arterioles and capillaries) through control of vascular 

smooth muscle. This in part, along with increased ventricular contractility, ensures that various 

parts of the body are well supplied with oxygen-rich blood during periods of increased activity. 

The peripheral resistance that the pulmonary circulation experiences is similarly due to the 

vasculature surrounding the alveoli in the lungs. To make a distinction in peripheral resistances, I 

will refer to pulmonary resistance and systemic resistance separately as needed. In 

atherosclerotic disease, vessels can narrow due to fatty deposits which thereby increases 

resistance and in tern means the ventricle must pump harder, generate higher pressures, to 

maintain needed flow.  

Typical physiologic levels of peripheral resistance can be readily calculated from simply 

measuring mean blood pressure and mean blood flow past the area of interest. The areas of 

interest in this case are the pulmonary and aortic valves where mean flow and pressure are 

roughly 5 lpm at 20 mmHg and 5 lpm at 80 mmHg, respectively. Again using Ohm’s law, this 

yields peripheral resistances of 0.24 to 0.96 mmHg s mL-1. Typical values of characteristic 
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impedance for the pulmonary and systemic circulations are approximately 0.02 and 0.08 mmHg 

s mL-1, respectively [44]. 

1.5.1.2  Compliance In the cardiovascular system, compliance is defined as the ratio of the 

change in fluid volume to the pressure difference that produced the volume change and it is 

analogous to electrical capacitance. Compliance/capacitance acts to oppose a change in 

pressure/voltage by storing and releasing energy. Physiologically, the need for this property in 

the cardiovascular system is to increase pumping efficiency. Since the cardiovascular system is 

pulsatile, having compliant vessels increases pumping efficiency by allowing energy stored in 

the vessel walls during systole to be returned during diastole to continue pushing the fluid 

forward. Diseased arteries can harden becoming less compliant resulting in the ventricles having 

to work harder to maintain needed flow. Loss of aortic wall compliance at the level of the sinuses 

has been shown to lead to significantly higher stresses on the aortic leaflets which can lead to 

changes in their microstructure, sclerosis, and gross distortion or calcification of the cusps [9]. 

Compliance can be measured a variety of ways and there is as yet a consensus as to the preferred 

method. An excellent discussion on the various methods is provided by Liu et al [47]. 

Physiologic values for compliance are roughly 1 and 3 mL mmHg-1 for systemic and pulmonary 

circulations, respectively. 
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1.5.1.3  Features in Pressure and Flow Waveforms It is important to note some typical 

features in pressure and flow waveforms that are common references in discussions on 

hemodynamics around the cardiac circulation. The dichrotic notch is probably the best known 

waveform feature since it is easily observable. The dichrotic notch is a secondary pressure spike 

in the aortic signal due to the inertia of the blood pushing back against the aortic valve after 

valve closure. Regurgitant flow is any flow that is negative or backward. The most prominent 

instance of regurgitant flow takes place when the valve is closing frequently called the closing 

volume and the subsequent regurgitant flow is then the leakage volume. 

It is important to realize that there are two components to the overall shape of 

cardiovascular pressure and flow waveforms; a component that travels forward due to the 

incident (driving) pressure and a backward traveling component that due to wave reflections. 

These components can be calculated as follows from [48]: 
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where: the measured pressure and flow, Pm and Fm; the forward pressure wave, Pf; the backward 

pressure wave, Pb; the forward and backward flow components, Ff and Fb; the characteristic 

impedance, Z0. 
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Figure 12 Plots of human aortic pressure and flow data with forward and backward components as well as 
aortic input impedance spectrum (magnitude and phase). Note dichrotic notch shown as a slight secondary 
pressure pulsation after the main pressure pulse. Raw pressure and flow data was provided by Dr. Sanjeev 
Shroff of the University of Pittsburgh and was analyzed with the Matlab script in Appendix C. 

1.5.2  Hemodynamic Control Systems 

Methods of controlling the hemodynamics of mock circulatory loops incorporate feedback 

systems of varying complexity to automatically control the driving pressure waveform [49-51] as 

well as adjustable resistance(s) and compliance(s). However, these systems have primarily 

necessitated substantial manual intervention to adjust resistance and compliance in order to 

control pressure and flow waveforms. This is not ideal for a sterile incubation situation where 

continual user intervention could provide a source for contamination. Another concern is that 
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most mock loops are designed to mimic the left side of the heart where the pressure and flow are 

too high to provide a suitable environment for initially mechanically weak TEHV or pulmonary 

valves. A more desirable system would be one that could run at a wide range of pressures and 

flows in order to simulate both right and left heart physiologic levels as well as non-physiologic 

levels. Additionally, the size and complexity of many of these loops would not lend themselves 

to being placed within an incubator. 

The most common design [50, 52-54] for a producing compliance in a mock circulatory 

loop is to simply have a cylindrical chamber that is partially filled by the circulating fluid and the 

rest filled with trapped air. During systole pressure increases and the incompressible fluid 

performs work on the compressible air within the chamber thereby storing energy within it. As 

systole ends and the pressure starts to decrease, the compressed air resists this change by 

releasing its stored energy driving the fluid forward in the circuit. The method for adjusting the 

compliance would be to then control the amount of air or fluid in the chamber by either releasing 

or pumping in air.  

Conventional mock circulatory loops have used several different designs for providing 

variable circuit resistance. Most have used some type of clamp [55] or valve [53] which is 

manually adjusted until a desired resistance is achieved. The system must be manually tuned 

until the proper setting is achieved during which time the resistance could be changing 

drastically subjecting the valve to undesirable pressure and/or flows. Additionally, many of these 

valves have small internal features and components that could be difficult to clean or sterilize for 

use in a pulsatile bioreactor. Another method that provides more predictable control employs a 

number of small tubes in parallel with a motor positioned slide that can block off flow to some of 

the tubes [56] and in this way provide computer-based control for resistance. 

26 



 

1.5.3  Actuation Methods 

Several different methods of pumping the circulating fluid have been utilized in the construction 

of mock circulatory loop. The three main actuation systems have been rotational motors 

employing cams and a driving piston [57-59], an electromagnetic voice coil and piston [50, 53], 

and a pneumatic system driving a sac or bladder [43, 55, 60]. Both the cam and voice coil 

designs employ a piston attached to either the cam arm or voice coil respectively which when 

actuated compresses the hydraulic fluid surrounding a sac that functions as the ventricle. The 

pneumatic type relies on driving the ventricular sac with a compressed gas, usually air, instead of 

an incompressible liquid.  

The exact hydrodynamic performance of these systems varies largely on the details of the 

designs and their target application, but generally cam-piston designs have been used in systems 

that are meant to drive circuits at hyper-physiologic frequencies usually in order to perform 

accelerated flow/wear studies. Once the proper cam shape is designed, a highly repeatable 

ventricular pressure-volume relationship can be achieved. A drawback to using this system is the 

lack of flexibility and control in producing different ventricular waveforms since the shape of the 

ventricular pressure waveform is specific to the shape of the cam. 

Voice coil systems can generate highly controllable pressure-volume curves and can utilize 

robust feedback control algorithms. These systems have largely been used in studies where 

exacting ventricular volume control is of utmost concern. Some potential drawbacks to these 

systems are that the coils heat up dramatically after prolonged actuation and usually have 

exposed electromagnetic coils which could pose problems in humid environmental conditions 

such as those found in incubation systems. The voice-coil would then need to be external to the 
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incubator and the hydraulic driveline would then be passed into the incubator. Maintaining 

sterility of the hydraulic fluid could pose an additional complication. 

Pneumatic systems have been used for many years as the actuation method of choice for a 

host of medical devices such as sac-type ventricular assist devices which have been in use for 

over 20 years. In mock circulatory loops, however; usually this mode of actuation is still not as 

favorable as the voice coil for short-term in vitro testing due to the fact that pneumatic systems 

don’t directly control ventricular volume due in large part to the compressibility of the air. 

However, feedback systems can still be employed to control the driving pressure waveform, 

pneumatic drivers can offer trouble-free function for months at a time, and the drive line can be 

passed easily into the incubator. 

1.6   HEART VALVE BIOREACTOR DESIGN 

A pulsatile bioreactor is a device meant to subject living or developing cardiovascular tissues to 

pulsatile flow while providing an environment that maintains biological activity. This pulsatile 

flow is meant to simulate the flow in the cardiovascular system which may possibly better direct 

proper tissue growth and formation, as already discussed. 

Design requirements for pulsatile bioreactors include providing a biologically suitable & 

stable environment (proper nutrient & gas exchange, pH, temperature, sterility), stable 

hemodynamic control, a relatively easy method for attaching the outflow valve (BAHV), and 

proper sizing to fit into a commercial incubator [1, 61-63]. Pulsatile bioreactors have been 

designed for dynamic incubation of tissue engineered cardiovascular structures, and unlike the 

more technologically sophisticated mock circulatory loops, most use manual feedback control 
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systems in order to alter the pulsatile pressure and flow waveforms. They utilize fluid circuit 

resistances that are either manually operated [2] or have a fixed value [1, 61-63] resulting in a 

system that requires substantial manual intervention to achieve different mean pressure and flow 

levels. The pressure and flow waveforms these systems produce are largely non-physiologic, 

with exception of Dumont et al. [2] whose design has been shown to produce aortic 

hemodynamics. Additionally, most of these systems have to at least partially rely on changing 

the beat frequency (heart rate) rather than the stroke volume in order control the volumetric flow 

rate. This removes beat frequency (heart rate) as a possible experimental variable which is a 

potentially important factor in developing tissues [31]. 

There have so far been only two published designs of pulsatile bioreactors for the dynamic 

incubation of tissue engineered heart valves [1, 2]. The only group to report a design tested with 

an actual tissue engineered heart valve is by Mayer et al whose only hemodynamic control is the 

magnitude of driving pressure waveform. The device is pneumatically driven by a respirator and 

produces a waveform which is sinusoidal in shape. This design features very low flow rates for a 

given pressure (mean 125 mL/min at mean 35 mmHg) probably due to several factors such as the 

small caliber of the tubing used, the static tension in the deforming ventricular bladder, and the 

lack of a compliance source. These perceived limitations however are in keeping with the 

authors’ design intent which was to provide pulsatile pressure and flow to a maturing tissue 

engineered heart valve under sterile conditions, with an emphasis on the sterility. 
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 1.7  STUDY AIMS 

Finding adequate in vitro models for investigating human biological phenomena has been an 

ongoing problem within the scientific community and especially within the medical device 

community. The costs of using animal models can be prohibitive and are often difficult to 

adequately control, but it is currently the only way to model complex physiological processes. 

Making in vitro experiments more physiologically accurate is a more tractable approach to 

answering more fundamental questions that can be helpful in the initial design phases of a 

medical device. In vitro experiments generally provide enhanced control while offering an 

approximation of a biologically active event.  

Altered hemodynamics is a physiological event that can exist in many pathologic or post-

implant states that can potentially have a dramatic effect on biologically active heart valve 

function as previously discussed. While it is unclear what pressure and flow waveforms (overall 

shapes and/or magnitudes) are required for alteration in BAHV function, it is clear that in order 

to investigate the effects of altered hemodynamics on BAHV in vitro, a new type of pulsatile 

bioreactor that incorporates greater hemodynamic control must be developed.  

To this end, the study aim is to develop an in vitro system capable of subjecting a 

biologically active heart valve to well controlled pulsatile pressure and flow waveforms under 

biologically relevant conditions. The steps used in completion of the study aim are the following: 

1. Analysis of the design problem to form design requirements 

2. Create and fabricate design hardware based on design requirements 

3. Develop a suitable control system 

4. Test the design for both mechanical and biological functionality 
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2.0  METHODS 

It was realized that in order to accomplish the study aim the project would have to be executed in 

two distinct phases: the design phase which consists of establishing needed device requirements, 

create possible design solutions, quantitatively select the best solution, create fabrication solid 

models/schematics, and reevaluation of device requirements. The second phase is evaluation 

which entails machining components, assemble prototype device, writing control code, and 

testing comprising hydrodynamic characterization of the system with a prosthetic valve, a 

sterility challenge and full test with biologically active heart valve. 

 

 

Figure 13 Diagram of design and evaluation processes 
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2.1  DEVICE DESIGN PROCESS 

The first step and the most important part of the design process is establishing the device 

requirements. This is done by determining the true needs/problems of the end-user (customer) 

which will result in a problem set that is almost certainly at least somewhat different than the 

problems initially expressed by the end-user. An example of this would be if an end-user said 

they required an improved wheelchair so they can travel from point A to point B more easily. 

The expressed need is an improved wheelchair whereas the true problem is a way of getting from 

point A to point B more easily. A solution to the true problem may not be best addressed by an 

improved wheelchair since the designer could possibly come up with a more effective solution. 

Once the device requirements are firmly established, the designer can start to think of ways 

of addressing the problem. Brainstorming ideas, no matter how unrealistic they might seem to at 

first be, can be incredibly helpful. Momentarily and purposefully forgetting preconceived 

solutions can result in truly inspired designs. The next step involves analyzing competitive 

designs which is necessary to ensure that the designer is not wasting his/her efforts on a product 

that has already been devised. This step serves to help establish expected performance 

specifications, provide more ideas, and save time. This step also involves looking at the 

possibility of incorporating existing, off-the-shelf (OTS) components, which can cut down on 

costs as well as save time.  

After these steps have been completed the designer should have several possible solutions 

to the problem. The way of eliminating or refining the solutions is to analyze them as 

quantitatively as possible through either performing calculations, running simulations, 

administering surveys, hazard/risk assessment, conducting feasibility studies, etc.... After 
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weighting the results of the different design solutions the winning design should become 

apparent. If this is not the case, it is quite likely that not enough analyses have been performed. 

Once the solution is chosen, it is time to design any parts that must be fabricated as well as 

ensure the functionality of the assembled device. For mechanical or structural components, this 

is usually accomplished through the use of computer aided design (CAD) programs that can 

generate 2D or 3D models of the parts and assemblies. The resulting files used for fabrication 

purposes are either 2D schematics showing the parts with dimensions and notes on various faces 

or are 3D triangulated mesh files (*.STL). STL files can be used directly by some manufacturing 

operations such as the rapid prototyping techniques of fused deposition modeling (FDM) and 

stereolithography (SLA). 

Once the solid model part or assembly is complete it is important to now revisit the device 

requirements in order to attempt to ensure that all of the design intent is still being met. By 

running virtual simulations (stress analysis, computational fluid dynamics, heat transport, etc…) 

on the solid models within the computer, actual real-world device performance can often be 

predicted with great accuracy. Fabrication is expensive, both in terms of money and time and this 

is the last step that the designer has direct and total control over the actual design. If the device 

requirements are still met at this stage it is safe to go onto fabrication. If any requirement is in 

jeopardy of failure, it is very important to go back through all of or as many of the steps already 

covered that are required to ensure success before fabrication. 

The degree of control the designer has over the fabrication/manufacturing process may 

vary, but regardless it is critical that the designer accurately convey the design intent to the 

manufacturer so that the most appropriate fabrication techniques are used. The result of the 

fabrication step will be the end product which should be tested to evaluate its performance with 
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respect to the device requirements. Testing can reveal faults in either the design itself or with the 

fabrication steps used to create the device. Depending on which of these cases is true, either 

process can be repeated as many times as needed. 

2.2.1 Device Requirements 

The device requirements are determined from analyzing the study aims and their implications: 

for the device to subject a heart valve to well controlled pulsatile pressure and flow waveforms 

that can span physiologic and non-physiologic ranges and can also be modulated over an 

extended period of time, it is clear that a robust hemodynamic control system be in place. 

Deconstructing the previous statement into design parameters, it is noted that there are three 

levels or aspects of the control system that need to be in place: pulsatile hemodynamics, 

predictable response to adjustments, and time-varying control. 

To detect meaningful cellular changes in of biologically active heart valves due to altered 

hemodynamics, they must be cultured for a period of days to weeks. This has a broad impact on 

the design since nearly all aspects of the system will be affected by having to function properly 

for extended durations. Two of the most important impacts are the type of actuator, as discussed 

in the introduction, and the control system. This affects the control system in that user 

intervention will be of a limited nature since the timeframe of testing is over days, and 

accordingly, the system should have as high a capacity for auto regulation as possible. 

Sterility is needed in any biological setting where the system is incapable of providing a 

sufficient immune response to remove or prevent infection or where the presence of such an 

immune response would interfere with the study aims. System sterility implies two design 
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parameters: that the system is capable of being sterilized and that the system can maintain 

sterility over the duration of the test.  

The outflow valve, the biologically active heart valve, must be easily mounted to the 

system. This is due to the fact that increased handling time both negatively impacts sterility and 

excessive handling also could mechanically damage the possibly fragile valve. 

Since the device must be kept at physiologic temperature, pH, and gas concentrations, it 

would be ideal to have the device reside in an incubator which is capable of maintaining these 

environmental conditions. This creates an added design requirement in that commercial 

incubators have given interior dimensions to which the device must fit.  

 

Table 2 Table of the design requirements for the pulsatile BAHV bioreactor 

Requirement Motivation Solution(s) Qualitative or 
Quantitative Values 

Pulsatile 
hemodynamics 

Simulate 
cardiovascular system 

2 Element, RC, 
Windkessel system 

R: 0.3-1+ mmHg s 
mL-1

C: 1-3 mL mmHg-1

HR: 70+ bpm 
‘Un-couple’ mean 
pressure & flow rate 

Automatic control of 
mean pressure and 
flow rate 

Variable resistor 
Pneumatic controller 

P: 120+ mmHg 
Q: 5 lpm 
 

Sterility Prevent biological 
attacks on valve 

All components can 
be disassembled 
Materials can be EtO 
sterilized 

No bacterial or fungal 
colony formation 

Easy valve attachment Prevent handling 
damage 
Sterility 

Screw-in stent  

Biological 
environment 

Cellular metabolism Tri-gas incubator pH 7.4, 37°C 
pO2 95 mmHg 

Size Fit into incubator  450x450x750 mm 
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2.1.2  Hardware Design & System Overview 

All device hardware, with exception of the pneumatic system, was designed with the CAD 

platform SolidWorks (version 2003, SolidWorks Corporation, Concord, MA). All of the 

individual part solid models were generated within separate component assemblies (ventricle, 

atrium, resistor, etc…) to maintain proper parametric functionality. These component assemblies 

were then incorporated into a single master assembly in order to ensure proper component 

interconnectivity. 

 

c 

IV 

I
I

air
a 
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II

 

Figure 14 CAD assembly of an overhead view of the pulsatile bioreactor: atrium, I; ventricle, II, compliance 
chamber, III, variable resistor, IV; pressure sensors, a; flow sensor, b; stepper motor, c. 
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Figure 15 Picture of the pulsatile bioreactor in operation within the incubator: atrium, I; ventricle, II, 
compliance chamber, III, variable resistor, IV; pressure sensors, a; flow sensor, b; stepper motor, c. 
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Figure 16 Schematic of the entire system 

 
 

The schematic of the entire system is illustrated in Figure 16 which shows the pulsatile 

bioreactor located within the incubator. The pulsatile bioreactor is driven pneumatically and the 

compressed air is generated by an external pneumatic system. A computer through a digital to 

analog converter (D/A)  generates the signals to control the pulsatile bioreactor through both the 

pneumatic pressure waveform (air signal) and the resistor’s stepper motor (motor signal). 

Pressure and volumetric flow rate measurements are acquired by the computer with an analog to 

digital converter (A/D). Carbon dioxide and oxygen gases are supplied to the incubator to 

maintain proper media pH and oxygen tension respectively. 

2.1.2.1  Pneumatic System Most pneumatic controllers in mock loops utilize simple on/off 

solenoid type valves for dispensing air into the ventricle which produces a mostly square driving 
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pressure waveform and accordingly, for many applications this does not provide enough control 

over waveform shape. However, it was realized that if a different type of valve controller, called 

proportional pressure regulators, could be employed in dispensing the air to the ventricle in a 

more controllable manner that this would be the ideal actuation scheme for our system. 

Proportional pressure regulators can generate highly detailed pressure waveforms through 

piezoelectric valve technology. Such a pneumatic system would provide: dependable and 

adjustable pressure waveforms over millions of cycles, the pneumatic line can be easily passed 

into the incubator, and can incorporate feedback control.  Thus, we adopted a pneumatic system 

for the current design. 

The pneumatic system starts with a bench-top compressed air supply that is connected to a 

pressure regulator & air filter (R18, Wilkerson) which steps down the inlet pressure to 10 psi and 

is passed into a buffer chamber to dampen transient pressure spikes. The air line then runs into a 

voltage-controlled piezoelectric proportional pressure regulator (Airfit Tecno, Hoerbiger-Origa, 

Glendale Heights, IL) that features a 43Hz update rate to produce a smooth and highly detailed 

pressure waveform controlled by the computer generated voltage waveform. Next, the air flows 

to a 3-way solenoid valve (225B-601BA, Mac Valve, Wixom, MI) and is either sent to the 

ventricular chamber for driving the system (systole) or is allowed to exit from the ventricle 

through an exhaust port (diastole). The air is passed through the incubator and into the ventricle 

via reinforced Tygon tubing. 
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Figure 17 Schematic of the pneumatic system 

 
 

2.1.2.2  Atrium The atrium provides a location for the circulating media to collect before 

passively filling the ventricle. For bioreactors there is added need to provide a means for gas 

exchange between the media and the incubator interior. The atrium is an ideal location for this 

function since it can be designed to have a large surface area and is open to the interior of the 

incubator. Our atrium design incorporates panels to encourage mixing to enhance gas exchange 

and it is made out of a solid piece of polycarbonate to avoid gaps or spaces that could be difficult 

to clean. The lid, also made of polycarbonate, is easily removable and features a cover which 

allows gas exchange but hinders particles from falling directly into the media. The atrium is 

mounted onto a plastic lab jack (Cole-Parmer) which allows for height changes for varying 

ventricular filling pressure. 
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Figure 18 Picture of the atrium 

 
 

2.1.2.3  Ventricle The ventricle consists of two polycarbonate chambers separated by a thin latex 

(~0.5 mm) bladder. One chamber is filled by the circulating fluid, the media side, that has a 

working volume of ~200 ml while the other is filled by air from the pneumatic system. Filling 

the air chamber causes the bladder to deform and drive the fluid forward. The direction of flow 

in the ventricle is maintained by a mechanical inflow valve (On-X, MCRI, Austin, TX) and an 

outflow valve which can be a BAHV or a prosthetic valve. A stopcock is on the top of the media 

side to allow for removal of trapped air during initial filling. The media side is also ported for a 

pressure sensor. 
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Figure 19  Diagram of the ventricle 

 
 

2.1.2.4  Outflow Valve Holders For hydrodynamic characterization purposes, a bioprosthetic 

valve (Perimount, Edwards Lifesciences Corp.) was used in the outflow position since it is more 

robust than a tissue engineered construct. The bioprosthetic valve is mounted in a conduit held in 

place between the lip of the outflow conduit and an o-ring mounted on the inflow side.  

Other outflow valve holders have been designed for attaching biologically active valves 

such as TEHV and native heart valves to the ventricle. The sterility challenge utilized a TEHV 

holder which consists of two parts, a mount with a female threaded hole and a stent with curved 

suture holes and male threads at its base. The valve is sewn to the stent using ~3 continuous 

sutures (684H, Ethicon, Johnson & Johnson) which is greatly facilitated by having the suture 
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holes curved the same radius as the suture needle. All of the valve holders were made from  

stereolithography resin (Accura Si40, 3D Systems, Valencia, CA) 

 

Figure 20 Tissue engineered heart valve holder assembly showing the stent and base 

 
 

Suture needleSuture needle

“Stitching”“Stitching”
motionmotion

Suture needleSuture needle

“Stitching”“Stitching”
motionmotion

 

Figure 21 Diagram showing the method for suturing the TEHV scaffold into the stent. Note the holes within 
the stent are curved the same as the needle allowing for easy suturing since the needle never has to be 
manipulated within the inflow aspect of the scaffold 
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2.1.2.5  Compliance Chamber As previously stated, most mock circulatory loops utilize a 

compliance element that is a cylindrical chamber located downstream of the heart valve. In order 

to calculate the needed volume of the compliance chamber one must look at the limiting case 

which is the pulmonary compliance which is approximately 3.5 mL mmHg-1, Cmax. The needed 

empty volume of the compliance chamber was determined using formulations given by 

Knierbein et al [52] and assuming pulmonary systolic/diastolic pressures of 40/20 mmHg: 

atmdia

atmsys
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PPP
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      (2) 

 

Noting that compliance is defined as PVC ∆∆=  and assuming isothermal expansion and 

contraction, PV=constant: 
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 the needed chamber volume, Vatm, is approximately 2.8 L. The height and diameter are then 

constrained parameters that must satisfy the relationship: 

48.2 2
0 HDLV π==       (4) 

The chosen dimensions are roughly 120 mm inner diameter by 250 mm in height. 
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Figure 22 Diagram of the compliance chamber: the compliance is proportional to the amount of air trapped 
within the chamber 

 
 

2.1.2.6  Variable Resistor The resistor provides a variable resistance to flow within a 

predetermined range. The needed working range is dictated by physiology where the typical 

resistance range is roughly 0.25 and 1.2 mmHg s ml-1 for pulmonary and systemic circulations 

respectively. In order to fill the design requirements, the system would have to be able to 

automatically adjust to and maintain the desired resistance indefinitely as well as provide high 

resolution in order to provide the level of control needed for mean pressure and mean flow.  

AAiirr  
VVaallvvee  

AAiirr  

MMeeddiiaa  

LLeessss AAiirr == LLoowweerr CCoommpplliiaannccee  MMoorree  AAiirr  ==  HHiigghheerr  CCoommpplliiaannccee 
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Figure 23 Diagram of the variable resistor. Flow is restricted depending on the position of the spiral plate in 
relation to the tube network. Adapted from a design used in [41]. 

 
 

The design that was chosen for our system utilizes a rotating spiral shaped plate in contact 

with a tube network of approximately 60 1.3 mm diameter tubes manufactured from a stiff 

stereolithography resin formulation (Accura Si40, 3D Systems). The rotation of the plate is 

provided by a high angular resolution (0.0375 degrees/step) stepper motor (C57L, Thompson 

Airpax, Danaher Motion, Port Washington, NY) and provides high torque (10 ft-lbs). The reason 

for needing a high torque motor is due to the friction that is present in both maintaining the 

water-tight seal around the shaft of the plate and in the contact of the plate against the tube 

network. In order to maintain this contact, an o-ring is placed between the inflow side of the 

plate and the resistor housing as well as the outflow end of the tube network and the outflow 

gasket. Tightening of the outflow flange then presses the tube network into the plate. 

SStteeppppeerr  
mmoottoorr  SSppiirraall  ppllaattee  

TTuubbee  nneettwwoorrkk  

FFllooww

SSppiirraall  ppllaattee  

TTuubbee  nneettwwoorrkk 
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The number and diameter of the tubes were determined from using the Hagen-Poiseulle 

equation for fully-developed, laminar flow of a Newtonian fluid in a tube as an approximation 

for calculating resistance: 

4

8
R

LRtube π
µ

=       (5) 

where: fluid viscosity, µ (0.7x10-6 N s m-2 for water at 37°C); tube length, L (25 mm); tube 

radius, R (0.65 mm). For resistors in parallel, Rtot = Rtube / N, where number of tubes, N. A pilot 

study was performed to check the error of using equation (5) as an estimate using a resistor with 

30 tubes. The measured resistance was found to be approximately 4.6 times the calculated 

resistance which was calculated based on the Hagen-Poiseuille equation. Noting that pulmonary 

resistance is typically 0.25 mmHg s ml-1, the maximum number of tubes needed is then shown as 

below:  

8 ⎤⎡ Lµ

576.4
25.0

4

==
⎥⎦⎢⎣== NRHP

R
R

HP
R
R

error
pulmonary

tube
error

total

tube π    (6) 

A constraint on the number of tubes is the overall diameter of the tube network which was 

desired to be less than 25 mm, the diameter of the inlet and outlet tubing, and to limit the overall 

size of the entire resistor as the resistor plate diameter also depends on the tube network 

diameter. A constraint on the diameter of the tubes is due to fabrication and also ease of 

cleaning. Too small of a diameter would be difficult to accurately machine for every hole and 

could cause some holes to be larger than others which can cause large differences in resistance 

since radius is raised to the 4th power in the equations. 
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Figure 24 Number of open tubes vs. angle of spiral plate in the resistor 

 
 
 

 

Figure 25 Resistance vs. angle of the spiral plate in the resistor. Resistance was calculated by measuring mean 
pressure and flow across the resistor. 
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2.1.2.7  Sensors The pressure is monitored with pressure transducers (19C series, Sensym ICT) 

in direct contact with the circulating fluid in both the ventricle and in the outflow stream. The 

pressure sensors were chosen for being constructed of 316 grade stainless steel which is 

extremely resistant to corrosion. The sensors are also temperature compensated and have the 

desired pressure range. Volumetric flow is measured using an ultrasonic flow probe (C series, 

Transonic Systems, Ithaca, NY) placed after the valve and before the compliance chamber.  

2.1.2.8  Incubator The incubator is a tri-gas model (Isotemp, Fisher Scientific, Hampton, NH) 

which allows for controlling both the concentration of oxygen as well as carbon dioxide the 

xygen concentration respectively. In this way, the concentrations of oxygen and carbon dioxide 

in the media can be controlled.  The media pH is consequently controlled since it is buffered by 

the reaction between carbon dioxide and the bicarbonate ion within the media. 

, the 

pneumatic enclosure, and the data acquisition & stepper motor controller, the DAQ enclosure. 

The breakout terminal for the DAQ card is located in the DAQ enclosure along with the power 

supplies for the stepper motor, an inexpensive multi-output DC supply (Techtronix), and for the 

pressure sensors, a regulated 12 V DC supply (Sola). The stepper motor controller 

(TM98CTL3145, Herbach and Rademan) is controlled bit-wise by using the digital I/O 

within the incubator environment by adding oxygen or nitrogen to increase or decrease the 

o

2.1.2.9  Computer Interfacing Electronic control of the device is performed by a PC with a 

multifunction data acquisition card (PCI 6035E, National Instruments, Austin, TX) running 

custom written control software (Labview, National Instruments). Two metallic enclosures that 

are external to the inter-incubator components of the loop house the pneumatic system
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functionality of the DAQ card. The two analog output channels of the DAQ card are used for 

generation of the voltage waveform that controls the piezoelectric proportional pressure regulator 

and for producing the square wave (TTL signal) which controls the solenoid valve. An analog 

output channels are used for both signals since they can be easily synchronized with each other 

in the Labview software. 

2.1.3  Software Design 

aveform for the piezoelectric pressure regulator is generated using the 

function shown below: 

The requirements of the software are to produce a tunable pulsatile driving waveform, 

automatically control mean pressure and flow over time, and acquire and store data. All code 

was created in the LabView software environment. 

2.1.3.1  Driving Waveform A numerical function is used for producing the driving voltage 

waveform for the piezoelectric pressure regulator since the pressure waveform that the valve is 

exposed to should be  the same for successive tests. Additionally, a numerical waveform that has 

parameters to finely control its shape gives the user an easy way to predictably alter the 

waveform shape over time if so desired. 

The driving voltage w
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t , absolute time; t , time to peak pressure; T, period. A typical f  waveform is shown in 

Figure 26 as the standard case. The amplitude of the output waveform is controlled by 

multiplying f  by the computed magnitude of the control voltage, V, as discussed below. The 

α

g tp max. Physically, the parameters n1, n2, and α1 are 

analo
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shape of the waveform can be modified by adjusting n1, n2, and 1 as well as the 

systolic/diastolic time ratio by controllin

gous to the rise time, the decay time, and the width of the peak respectively. 
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Figure 26 Plots of varying the waveform parameters n1 (a), n2 (b), and alpha1 (c) in the normalized air valve 
function, fact, which controls the driving ventricular pressure waveform. Standard parameter values: tp max 
= 30% period, n1=2.00, n2=30.0, alpha1=0.07 

 
 

52 



 

 
Figure 27 Screenshot of flow loop software showing the waveform control interface 

 
 

2.1.3.2  Mean Pressure and Flow Control Code In order to limit user intervention and to 

reduce risk of contamination in our system, mean pressure, P, and mean flow, Q, are primarily 

controlled electronically by simultaneously modulating the magnitude of the driving pneumatic 

pressure waveform, V, and the circuit resistance, R, as shown in Figure 28. 
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Figure 28 Diagram of the control system for mean pressure, P, and mean flow, Q. Errors from the target 

 
 

values, ∆P and ∆Q, are functions of the magnitude of the pneumatic waveform, V, and resistance, R. 

Measured pressure and flow errors from the command, ∆P and ∆Q, are used in solving for 

the needed change in circuit resistance and control voltage, ∆R and ∆V, using the equation: 

 
dRcVQ
bRaVP
+=∆
+=∆

     (8) 

where: ∆P, pressure difference; ∆Q, volumetric flow difference; V, control voltage to 

piezoelectric pressure regulator; R, resistor control explained below; a-d are constants 

determined from linear regressions of tuning the system response as shown: 
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       (9) 

Constants a (mmHg V-1) and c (lpm V-1) were computed from the regressions of system pressure 

and flow while changing voltage only and constants b (lpm) and d (mmHg-1) while changing 

circuit resistance only. Constants a,b,c are positive values while d is negative. 

The resistor history function, below, relates the number of steps needed to be output to the 

stepper motor to provide the needed change in resistance:  
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where: Rt, target (command) resistance; R1, the current measured resistance; R2, the resistance 

measured in the previous running of the control loop; S, a scaling factor. F is then a weighting 

losed. Both the number of motor steps and control voltage output to the system are tuned by 

aling factors, S, to achieve a stable and fast system response.  

lues 

of mean pressure and flow at this beat. The software ke

and the appropriate target mean pressure and flow level are fed into the control code. It was 

decided that the beat number should be used rather than time as to anticipate tests where the 

heart rate could be modulated over time as well. 

 

factor that approaches zero when the resistor is fully open and increases as the resistor becomes 

c

sc

When the user requires the target mean pressure and flow levels to change over time, the 

control code generates a protocol that consists of the beat or cycle number and the desired va

eps track of the number of elapsed beats 
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Figure 29 Partial screen capture of the flow loop software showing
protocol where: initial and final mean pressure, Pa and Pb; initial and final mean flow rate, Qa and Qb; 
initial phase, Phase 1; ramping phase, Phase 2; and final phase, Phase 3 

 

ressure and flow errors from the 

comm

2.1.2.4  Data Acquisition Pressure and flow data are acquired at a frequency dependant on heart 

rate which ensures that 4 beats are always acquired regardless of the heart rate. This is easily 

accomplished since the heart rate, or period, is already controlled by software. Mean pressure 

and flow data are the given as the average of these 4 beats. The rate at which the data is saved to 

PPhhaassee  11  PPhhaassee 22 PPhhaassee 33 

QQaa  

QQbb  

PPbb  

PPaa  

 the mean pressure and flow vs. time 

 

In the event of a system malfunction where mean pressure and/or mean flow can no longer 

be accurately maintained, as would happen if there was a leak, a problem with the air line, 

structural valve failure, etc…, the control code will automatically stop the actuation of the 

system. It does this by having the user input limits on the mean p

and, ∆P and ∆Q, and if these limits are exceed for a user defined period, the system will 

change the control voltage to 0 V thereby halting actuation. The data acquisition portion of the 

code will continue to run since the acquired data could be helpful in failure analysis. 
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file is user defined due to the fact that tests could be quite long (weeks) and generate large file 

sizes. Two separate files are generated, one with extracted pressure and flow data (mean, max, 

min), stroke volume, heart rate, target pressure and flow, and another file that consists of the 

waveforms of outflow valve pressure & flow, ventricular pressure, and driving voltage. 

 

 

parameters 

2.1.3  Tissue Engineered Heart Valve Design 

2.1.3.1  Scaffold Design The TEHV outflow valve that was used for the sterility challenge, 

TEHV#1, and the valve used in the TEHV ramped flow study, TEHV#2, were const

Figure 30 Screenshot of the flow loop software showing acquired waveforms and displaying various measured 

 

ructed from 

a non-woven 50:50 blend PGA/PLA (Albany International Research, Mansfield, MA) scaffold 

approximately 2 mm thick. TEHV#1 was constructed out of 2 layers of scaffold material stitched 

together along the edges while TEHV#2 was constructed from 1 layer. This was due to the 

results of TEHV#1 showing the two layers delaminated after incubation.  
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The geometry of the valve was determined by first constructing a valve with rectangular 

leaflets (28 mm x 25 mm) that had a straight free edge out of a thin latex sheet (~0.3 mm) and 

suturing it in the TEHV holder which recreates the dimensions of the valve designed for the 

sterility challenge, TEHV#1. This valve was run in the loop at various hemodynamic conditions 

and its open and closing behavior, leaflet flutter and extent of opening, was qualitatively 

evaluated and recorded onto digital video (9000, Sony). An examination of the literature [9] 

provided useful native valve leaflet geometry which suggested that the length of the leaflet from 

base to center of free edge should be roughly 70% of the valve diameter. The latex valve was 

modified by cutting away excess leaflet, as shown below, and then re-evaluating it. Both the 

amount of flutter and degree of opening appeared to be improved. It was this valve design that 

was duplicated for use as the TEHV design for  the TEHV ramping study explained below, 

TEHV#2.  

 

 

Figure 31 Diagram showing the geometry (in mm) of a single TEHV leaflet in the TEHV#2 design. TEHV #1 

 
featured the same height and width dimensions without the parabolic cutout 
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valve was seeded with ovine vascular smooth muscle cells (~17x106 cells/cm2, 

starting passage number 9, final passage number 13). The culture media was Dulbecco’s 

modified eagles medium containing 4.5 g/L glucose, L-glutamine (#11965, Invitrogen, Grand 

Island, NY) with 10% fetal bovine serum (#16000, Invitrogen) added 1% antibiotic-antimycotic 

(#152400, Invitrogen) containing penicillin, streptomycin, and amphotericin, and 2 ng/ml human 

recombinant basic fibroblast growth factor (bFGF, BD Biosciences, Bedford, MA) as well as 

phenol red for visual pH estimation. The cell-seeded valves were incubated for 7, TEHV#1, and 

10 days, TEHV#2, prior to testing at 37°C and 5% carbon dioxide in a 140 cc hybridization tube 

(Pyrex, Corning, Corning, NY) with a vented filter cap on a rotisserie at 8 rpm (Labquake 

rotisserie rotator, Barnstead-Thermolyne, Dubuque, IA) in 90 ml of media that was changed 

daily. 

2.1.3.2  Cell Expansion and Scaffold Seeding The seeding apparatus and methods used in this 

study were adapted from Sutherland et al [64] and Nasseri et al [65].  One vial of vascular 

smooth muscle cells (SMC) (approximately 7.5 x 106 cells, passage 9) cryo-preserved in culture 

medium supplemented with 5% dimethyl sulfoxide (DMSO; Sigma, St. Louis, MO) was thawed, 

resuspended in culture medium, and plated into three 185 cm2 flasks (Nuclon™∆ SoLo flask; 

Nalgene Labware).  After 3 serial 1:3 passages (approximately 28 days), a total of 54 confluent 

185 cm2 flasks (passage 13) were ready for use.  The flasks were trypsinized (0.25% trypsin, 1 

mM EDTA; GIBCO™), and the SMC were resuspended to yield a seeding solution of 

approximately 8 x 106 cells/ml, as determined by cell counts with a hemacytometer (Hausser 

Scientific, Horsham, PA). 

Each 
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t valve, TEHV#2,  after rotisserie incubation 

justed roughly to 37°C and the flow was collected in a graduated cylinder while the 

elapsed time was recorder with a stop watch. 

Figure 32 Tissue engineered hear

2.2  HYDRODYNAMIC TESTING 

Aspects of system response time, stability, and control were tested as well as the system’s ability 

to produce physiologic waveforms with water as the circulating media. Pressure sensors were 

first placed in the incubator overnight in order to heat to 37°C. They were then calibrated with a 

mercury manometer (Baumanometer, Baum) using measurements taken at 40, 80, and 120 

mmHg. The scales were found to be very similar with slope of 6.4to 6.5 mmHg/mV. Given the 

low output of the pressure sensors, the programmable gain functionality of the DAQ board was 

used to maximize the resolution. The ultrasonic flow meter was calibrated at the factory at 37°C. 

This was verified by attaching it to a tube connected to a lab faucet. The temperature of the water 

was ad
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2.2.1  System Calibration, Response, and Stability 

In order to first tune the system flow test, 3 to 3.5 lpm at 30 to 

40 mmH ters were adjusted until a fast 

and stable system  stability was addressed by running two 

constant set point tests of 5 lp ean pressure (MP) and 1 lpm at 

35 mmHg for 16 hrs each.  

2.2.2  Control and Flexibility 

System p tests at high 

y increased from 30 to 40 

mmHg and back while MF was held at a constant of 4 lpm (Fig. 37a). Next MF was gradually 

increased from 4 to 5 lpm and back while MP  

Finally both MP and MF were increased and decreased at the same amounts as the prior ramp 

The system was tested to see if it could produce reasonably accurate physiological waveforms of 

both aortic and pulmonary circulations. The beat frequency was set at 60 BPM and the MF at 5 

lpm for both cases while MP was 105 mmHg (systolic/diastolic pressures of 125/85 mmHg) for 

the aortic case and 27 mmHg (systolic/diastolic pressures of 35/20 mmHg) for the pulmonary 

 response time, a step pressure and 

g, was run and control voltage & resistor tuning parame

 response was achieved. System

m mean flow (MF) at 30 mmHg m

 control and flexibility was tested by performing two series of gradual ram

and low flow rates. For the high flow rate series, MP was graduall

was held at a constant of 30 mmHg (Fig. 37b).

tests (Fig. 37c). For the low flow rate series, MP was gradually increased from 25 to 35 mmHg 

and back while MF was held at a constant of 1 lpm (Fig. 38a). Next MF was gradually increased 

from 1 to 2 lpm and back while MP was held at a constant of 25 mmHg (Fig. 38b). Finally both 

MP and MF were increased and decreased at the same amounts as the prior ramp tests (Fig. 38c). 

2.2.3  Waveforms 
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case. The waveforms were analyzed with a custom Matlab script (Appendix C) which calculated 

2.3.1  Sterility 

 was performed using culture media and TEHV#1 as previously 

It is known that a stagnant fluid will have will have gas mass transport rate that is diffusion 

-mixed fluid will have a mass transport rate that is limited by convection. In 

the input-impedance spectrum (magnitude and phase), and the forward and backward waveforms 

as previously discussed. 

 2.3  TESTS OF BIOLOGICAL RELEVANCE  

A 21 day test of system sterility

described. The system was sterilized with ethylene oxide gas before loading the valve. The 

incubation conditions were 37°C, 5% carbon dioxide, and 21% oxygen. During rotisserie culture 

it was found that the rate of media consumption was approximately 90 ml per day and 

accordingly, 2 L of media was used to fill the system initially and at no other time was media 

was added or removed. The mean flow and pressure was set at 2.5 lpm at 40 mmHg Sterility was 

macroscopically qualified by daily inspection of the media and also at the test conclusion by 

disassembling the device and inspecting each part for bacterial, mold, or fungal colonies. 

2.3.2  Measuring Dissolved Gases and pH 

limited while a well

between the stagnant and well-mixed situations, gas tension of a particular species will be a 

function of the degree of mixing, or in the case of the pulsatile bioreactor, the mean flow rate. 

Dissolved oxygen and carbon dioxide gas tensions as a function of mean flow rate were 

measured using a blood gas analyzer (ABL 5, Radiometer, Radiometer America, Westlake, OH) 
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with samples drawn from the ventricle’s luer port. Two separate tests were run with water first 

and then culture medium as the circulating fluids in the pulsatile bioreactor at incubator settings 

of 5% carbon dioxide and 37°C.  

The water test was conducted first to determine only the general oxygen tension and flow 

rate relationship running the pulsatile bioreactor at mean flow rates of 3.5, 2, 1, and 0 lpm at an 

incubator oxygen settin  also measured in the 

reactor, which has been demonstrated to effectively grow engineered tissues, to 

serve as a comparison [36]. Carbon dioxide values are not particularly important for the water 

case since it is known that carbon dioxide is 24 times more soluble than oxygen in water. pH can 

not be accurately measured since the blood gas analyzer is calibrated to measure pH between 7 

and 8 pH units. This too is not important for the water case since the  pH buffering ability of the 

media will be of much greater effect and importance. The water test was then repeated at an 

incubator oxygen setting of 35% to measure the effect of enhanced gas partial pressure on the 

general oxygen tension and flow rate relationship. The time in between gas measurements was 

no less than 2 hours and the amount of fluid within the circuit was approximately 2.5 L and the 

atrium was kept near full to ensure maximum diffusion distance. 3 samples were taken for each 

Below is a picture of phenol red which is present in the culture medium giving it it’s red 

g of 21% (room oxygen level). Oxygen tension was

lab’s flexure bio

test and the average is reported. 

color. Phenol red is an acid-base indicator useful near physiologic pH (7.4) and can be used to 

visually detect relatively large changes in pH of ±0.5. Clearly, pH must be measured with means 

such as those described here to obtain accurate and precise pH measurements. Unlike the water 

test, measured pH and carbon dioxide concentrations are needed since pH is buffered in the 

medium by sodium bicarbonate and modulated by carbon dioxide concentration. The media test 
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was then conducted to determine only the relationship of the dissolved gas tensions and pH at 

low flow rates, 1.0, 0.5, and 0 lpm, since that was found to be transition region between the 

diffusion and convection limited cases in the water tests. The incubator’s oxygen setting was 

kept at 21% (room oxygen level).  

 

 

Figure 33 Picture showing the acid-base indicating ability of phenol red which is present in the culture 
medium. Note physiological pH is approximately 7.4. pH levels have to change at least 0.5 pH units before a 
noticeable change in pH can be detected. 

 
 

2.3.3  TEHV Ramped Flow Study 

A 5 day test was conducted to demonstrate the ability of the pulsatile BAHV bioreactor to 

subject a TEHV, TEHV#2 as previously described, to a gradually ramped mean flow rate at a 

constant pressure over the course of 4 days. On day 1, the valve was subjected to mean pressure 

and flow levels of 1.5 lpm at 40 mmHg and starting on day 2 the flow was gradually increased to 

2 lpm until the 5th day. 1.5 lpm was used as the initial flow rate since that is the minimum flow 

rate that produced physiologically shaped pressure and flow waveforms. At the conclusion of the 

test, valve tissue composition was examined for collagen content. Additionally, the device was 

examined for signs of contamination in the same manner as previously discussed. 
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2.3.4  Tissue Analysis 

Collagen was assayed by techniques adapted from Brown et al [66].  3 samples (~ 16 x 4 x 1 

region, and at the basal stent region as shown below. Total colla

mm, average wet weight 0.05 g) were cut from each leaflet: near the free edge, at the belly 

gen was extracted from samples 

using a solution of 0.5 M acetic acid (Sigma) and pepsin (1 mg/ml Pepsin A (P-7000); Sigma).  

Each sample was placed in a microcentrifuge tube and incubated in 1 ml of extraction solution 

overnight (~ 16 hours) on a rocker table (Orbitron Rotator I™; Boekel Scientific, Feasterville, 

PA) operating inside a refrigerator at 2-8°C. Following the extraction steps, the collagen extracts 

were assayed according to the guidelines provided with the Sircol™ assay kit (Biocolor Ltd., 

Newtownabbey, N. Ireland) using a Genesys 20 spectrophotometer (Thermo Spectronic, 

Rochester, NY). 

 

 

Figure 34  Sectioning diagram for performing collagen analysis. 3 sections per leaflet were used for 
evaluation: near the free edge, belly region, and a basal region sewn to the stent. 
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3.0  RESULTS 

The response time, or the amount of time it took the system to go from the baseline level of 3.0 

lpm MF at 30 mmHg MP to a stable elevated level of 3.5 lpm at 40 mmHg, was less than sixty 

seconds. The results of the stability tests (average ± standard deviation) showed a stable reading 

of 5.00±0.06 lpm at 30.00±0.04 mmHg and 1.00±0.02 lpm at 35.00±0.07 mmHg with maximum 

absolute values of the command errors of 0.15 lpm for MF and 0.21 mmHg for MP for the high 

flow rate test and 0.06 lpm for MF and 0.22 mmHg for MP for the low flow rate test. 

 

 3.1  HYDRODYNAMIC STUDIES 

3.1.1  System Response & Stability 
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Figure 35 Results of the system response test: mean pressure and mean flow were stepped from 3.0 lpm at 30 
mmHg to 3.5 lpm at 40 mmHg. Note the critically damped behavior of the mean pressure solution 

 

3.1.2  System Control and Flexibility 

 

Control and flexibility results for the high flow rate series showed that system followed the 

command signal strongly with command errors of 0.00±0.27 mmHg and 0.00±0.05 lpm. The 

maximum absolute values of command errors were 0.18 lpm and 0.83 mmHg. Results of the low 

flow rate series showed that system followed the command signal strongly with a mean and 

standard deviation for the command errors of 0.00±0.12 mmHg and 0.00±0.03 lpm. The 

maximum absolute values of command errors were 0.10 lpm and 0.32 mmHg. In both series, the 

command errors for both pressure and flow passed the Kolmogorov-Smirnov test [67] for 

following a normal distribution. 
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Figure 36 Histograms of the mean pressure and flow rate errors from the input (command) for the high flow 
mped pressure and flow studies with a bioprosthetic valve. Both passed the Kolmogorov-Smirnov test [67]  
r following a normal distribution. 

ra
fo
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Figure 37 High flow hydrodynamic control tests: ramped mean pressure test (a), ramped mean flow test (b), 
ramped mean pressure and mean flow test (c). All tests are run at 60 bpm 
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Figure 38 Low flow hydrodynamic control tests: ramped mean pressure test (a), ramped mean flow test (b), 
ramped mean pressure and mean flow test (c). All tests were run at 60 bpm 
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3.1.3  Waveforms 

Resulting waveforms of the device running at pulmonary and aortic pressures and flows are 

shown in Figure 39, Figure 40, and Figure 41. The waveforms exhibit both similarity to 

physiologic waveforms as seen in the input-impedance spectrum in Figure 40 and Figure 41. The 

waveforms also exhibited strong beat-to-beat similarity with mean differences of 0.37 mmHg 

and 0.48 lpm with the largest beat-to-beat differences taking place in the first 0.5 s after valve 

closure (Figure 39). Mean pressure and mean flow for the aortic case was 105 mmHg and 5 lpm, 

and 28 mmHg and 5.14 lpm for the aortic and pulmonary circulations, respectively. The 

calculated peripheral resistances are then 1.26 and 0.33 mmHg s ml-1 and the characteristic 

resistances are 0.2 and 0.15 mmHg s ml-1 for the aortic and pulmonary circulations, respectively. 

Compliances of 1.35 and 2.98 ml/mmHg for the aortic and pulmonary circulations, respectively, 

were also calculated with the Matlab script in Appendix C. 
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Figure 39 Acquired physiologic waveforms at 60 bpm: pressure (mmHg) and volumetric flow (lpm) 
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Figure 40 Analysis of the aortic waveform produced by the pulsatile bioreactor: measured, forward, and 
backward pressure and flow waveform components, a & b; impedance spectrum, c; phase angle, d. The black 
line in the impedance magnitude plot shows the average of the 8th-12th harmonics. 
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Figure 41 Analysis of the pulmonary waveform produced by the pulsatile bioreactor: measured, forward, and 

ack 

 

3.2  TEHV FEASIBILITY STUDIES 

3.2.1  System Sterility 

The valve, TEHV#1, suffered a leaflet tear at the basal attachment during the night on day 19. 

Due to this failure, the hemodynamic waveforms became irregular with regurgitant flow and 

pressure oscillations. The system attempted to maintain target pressure and flow conditions, but 

was unable due to the tear, which greatly lowered mean pressure and flow rates. This resulted in 

backward pressure and flow waveform components, a & b; impedance spectrum, c; phase angle, d. The bl
line in the impedance magnitude plot shows the average of the 8th-12th harmonics. 
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the system going into standby mode as expected. Examination of the data indicates that the valve 

was probably exposed to zero flow conditions for approximately 12 hours. When the device was 

checked in the morning, the target flow rate was set to 1.3 lpm so as not to further damage the 

valve and to circulate fluid. The media was examined daily for turbidity, and after a total of 21 

days, the device was removed from the incubator, the media was drained, and the valve and 

components were macroscopically examined for signs of contamination such as bacterial or 

fungal colonies. Every component was disassembled and inspected and no signs of 

contamination were found as was the case for the valve. 

3.2.2  Gas Concentrations and pH 

The water test at an incubator oxygen setting of 21% showed that oxygen tension was greater 

than 140 mmHg at flow rates of 3.5 to 1.0 lpm. The oxygen tension dropped to 80 mmHg when 

the loop was stagnant (0 lpm). Increasing the incubator oxygen setting 14% to 35% uniformly

agnant conditions respectively.  

 

raised the tension 14 mmHg yielding values of 154 and 94 mmHg for the 3.5 -1.0 lpm and 

st
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Figure 42 Dissolved oxygen tensions as a function of flow rate and incubator oxygen % in water 

 

For the test using culture me

 

dia, it was decided to only investigate flow rates below 1 lpm 

nce that was found to be the area of greatest change in oxygen tension in the water experiment. 

The oxygen tension appeared to decrease fairly linearly from 120 to 40 mmHg from 1 to 0 lpm 

although with only three measured flow rates, this relationship is at best only a first 

approximation. The ratio of pH to carbon dioxide tension did not appreciably change and the 

measured pH was between 7.45 and 7.47 which is only 0.02 pH units above the normal 

physiologic pH range of 7.35-7.45 [68]. 

 

si
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Figure 43 Dissolved gas concentrations and pH as a function of mean flow rate in culture medium
conditions were standard 37C, 21% O

. Incubator 

3.2.3

3.2.3.1  Pressure and Flow Control The system showed excellent control of pressure and flow, 

until a leaflet tear, with a narrow distribution of errors shown below. The errors from command 

were found to be (mean ± standard deviation) 0.00±0.08 mmHg and 0.00±0.03 lpm. The valve, 

TEHV#2, suffered a leaflet tear along the free edge of one leaflet during the night on day 4, 

approximately 4.7 days into the test. As with valve TEHV#1, the hemodynamic waveforms 

became irregular, with regurgitant flow and pressure oscillations. The system attempted to 

maintain target pressure and flow conditions, but was unable due to the tear which greatly 

lowered mean pressure and flow rates. This resulted in the system going into standby mode as 

2, and 5% CO2 

 

  TEHV Ramped Flow Study 
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expected. Examination of the data indicates that the valve was probably exposed to zero flow 

conditions for approximately 12 hours. For the remaining hours of the test, the target flow rate 

was set to 1.0 lpm so as not to further damage the valve and to circulate fluid. After a total of 5 

days, the device was removed from the incubator, the media was drained, and the valve and 

components were examined for signs of contamination such as bacterial or fungal colonies. 

Every component was disassembled and inspected and no signs of contamination were found as 

was the case for the valve. 

 

 

Figure 44 Measured pressure and flow waveforms for TEHV#2 
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Figure 45 Mean pressure and flow data for the ramped flow TEHV study until system went on standby due to 
leaflet tear 

  

3.2.3.2  Tissue Analysis Collagen concentration within the leaflets (n=3) was found to be very 

high overall with average concentrations ranging from the basal stent to free edge of 1200 to 

1800 µg collagen/g wet weight as shown below. The collagen concentration in the leaflets 

appears to be non-homogenous and increases with distance away from the basal stent attachment. 

 

 
Figure 46 Collagen concentration as a function of location in the leaflet (n=3). There was found to be a 
significant difference between the amount of collagen within the free edge and at the portion attached to the 
stent (p<0.01). 
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Table 3 Summary of tests performed during the evaluation phase of the study 

Test Name Purpose Valve 
Design 

Fluid Duration Qualitative Description of 
Results 

Response Tune system 
mean P&Q 
behavior 

Biopros Tap 
Water 

~ 4 min System capable of fast & 
stable mean P and Q control 
Critically damped mean P 
response 

Stability Single set pt 
control 

Biopros Tap 
Water 

15+ 
hours  
per test 

High long term system 
stability 

Flexibility 
and Control 

Evaluate 
feedback 
control 

Biopros Tap 
Water 

~3 hours  
per test 

Excellent accuracy and 
precision of controller 

scheme 
Waveforms Produce 

physiologic 
P&Q 
waveforms 

Biopros Tap 
Water 

~ 5 min Good approximation to 
physiologic waveforms 
Strong beat-to-beat similarity 
Increased upper harmonic 

compliant root and sinus 
content probably due to non-

Sterility Check for 

contamination 

TEHV#1 Culture 21 days No evidence of contamination 

basal suture attachment on 

probably hypoxic media 

gross Media Day 19: Scaffold tear near 

one leaflet leading to 

conditions for ~12 hours  
Gasses and 
pH 

Measure gas 
tensions and 
pH vs. flow 
rate 

Biopros Tap 
Water, 
Culture 
Media 

At least 2 
hours 
between 
data pts 

O2 tension falls beneath 
physiologic at low flow rates 
(<1 lpm) 
pH (and CO2) remain 
constant 

Ramp Flow 
w/ 
Collagen 
Analyses 

Preliminary 
TEHV test 
under 
increasing 
flow 

TEHV#2 Culture 
Media 

5 days Collagen concentration 
increases from basal stent to 
free edge 
Day 5: Scaffold tear near free 
edge of one leaflet leading to 
probably hypoxic media 
conditions for ~12 hours  
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The series of studies presented herein were aimed at evaluating the performance of a new 

re d f ig e e hi ons of 

pulsatile pressure and/or flow on biological tissues. Unique feat t 

control system that utilizes a variable resistance, which can b  a 

range mate  1 g om  

capable of producing well-defined pressure waveforms. The sy ean 

pulsatile pressure range of 15 to 100+ mmHg and a working me  lpm. 

es ch le ing s 

well as physiologic conditions. The higher si e ost 

s. W uencies 

bstan on the hemodyn s unknown, bu e 

t an s can produce a more physiologically accurate valve opening and flow 

field. The system control and flexibility tests show normally dis eans 

and low standard deviations for both pressure and flow demonstrating the high level of accuracy 

and precision the control system can achieve. This aspect of the system is critical for studies 
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tributed errors with zero m

81 



 

where significant differences in cellular function could be dictated by small changes in 

hemodynamics. 

The system has demonstrated a l

published pulsatile bioreactors [1, 2]. Unlike these more simplistic bioreactors, this newly 

created pulsatile bioreactor can control for mean pressure and flow, generate physiologic mean 

flows (>5 lpm), has an adjustable compliance element, and is capable of generating the pressure 

h the systemic and pulmonary circulations. Our pulsatile 

physiologic pH. Proper oxygen tension could be maintained provided the flow rate was kept at or 

evel of hydrodynamic control that exceeds that of all other 

and flow waveforms that mimic bot

bioreactor makes it possible for the first time to perform a controlled study on the effects of 

dynamically modulating mean pressure and flow during pulsatile culture of biologically active 

heart valves.  

The following parameters are available for automatic control: mean pressure, mean flow 

rate, beat frequency (HR), stroke volume, and the shape of the driving pressure waveform. 

Further control of the systolic/diastolic pressure ratio, or pulsatile pressure response, is possible 

with manual compliance adjustments. Shear stress on the valve can be controlled by adjusting 

the flow rate and/or by changing the viscosity of the media with the addition of chemicals such 

as dextrose. Modulating these parameters would in effect modulate the mechanical stress 

environment the developing valve is exposed to during culture. 

4.1.2  Biological Performance 

Biologically, the system demonstrated that it could provide suitable, sterile environmental 

conditions. Carbon dioxide tension and pH were found to be invariant of flow. Using standard 

incubator settings (5% CO2), the average pH was found to be 7.45 which is in line with 
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above 1 lpm. Since the scaffolds tore, forcing the system to go into zero flow standby mode, the 

oxygen tension presumably dropped to low levels (~ 40 mmHg) during this time. Whether or not 

this o

y one valve tested, it is impossible to make meaningful comparisons to the study 

by th

-woven construction results in 

permanent material deformation  under cyclic strains [32]. Until the PGA/PLLA scaffold 

ed an adequate ECM, the construct will continue to largely 

xygen tension is low enough to cause cell death is unclear. It is important to note that the 

low oxygen tension is a not a result of device failure but it is rather a failure of the scaffold 

material and/or valve design, which are not related to the completion of the aims of this study. 

The device functioned exactly as designed throughout the experiments until the TEHV material 

itself failed. This material failure is probably due to the inelastic nature of the non-woven 

scaffold materials [71] which exhibit permanent deformation under mechanical loading [32] and 

can pull away from attachment points (sutures) over time. 

With onl

e Mayer group [5, 27], but several differences between the study methods can be noted.  

The scaffold used in their study was a rapidly degrading PGA scaffold whose degradation rate is 

on the order of 2 weeks. The study reported by the end of 4 weeks, the scaffold was completely 

absent from the tissue. By the end of their incubation period of 2 weeks, it is very likely that the 

scaffold was not functional from a structural perspective. Our study used a much slower 

degrading PGA/PLLA scaffold that retains its structural integrity for at least 8 weeks. The 

inelastic nature of these scaffolds combined with the non

degrades and the cells have form

behave as an inelastic body and continue to deform as dynamic incubation continues which is 

what probably lead to the tears associated with the TE valves in the study. 

Another important difference in their study was the flow magnitude used was initially 0.125 

lpm and was increased to 0.75 lpm [5]. The choice of these flows were not given. The final flow 
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rate that was used by their group is half the initial flow rate used in our studies of 1.5 lpm. As 

previously discussed, the 1.5 lpm flow rate was chosen because that was the minimum flow rate 

that produced a physiologically shaped waveform. A lower flow rate would cause pressure and 

flow oscillations due to improper valve closure. The pressure and flow waveforms were never 

measured in the Mayer studies, but based on their bioreactor design and the reported driving 

pressure waveform, it is likely that their pressure and flow waveforms were highly un-

physiologic in shape and was thought by our group to be less than ideal for proper development. 

Whether or not the high flow rate in our study also contributes to early scaffold structural failure 

is as yet undetermined. 

 

ing. 

Although the results are only taken from one valve, it is interesting to note that collagen 

concentration within the leaflets increased from the basal stent attachment towards the free edge. 

Moreover, measured levels of collagen were higher than those found in a previous study 

conducted in our lab [37] which utilized dynamic flexure at 1 Hz on rectangular sections of 

TEHV material seeded at approximately the same cell density. The collagen levels reported in 

that study, 893 ± 133 µg/g wet weight, are less than the levels found in this study 1392 ± 369 

µg/g wet weight. This is promising, indicating that perhaps pulsatile incubation with its complex 

stress and strain field may better stimulate TEHV tissues mechanically to produce more ECM 

proteins. As for the regional differences, it is unclear whether or not this is due to the presence of 

more cells being initially deposited in this area, if cells migrate towards the free edge, or if the 

cells are stimulated to produce more collagen in these areas. Measuring levels of DNA and 

testing more valves would help clarify the mechanisms underlying this find
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4.2  LIMITATIONS 

4.2.1  Non-compliant Sinus 

The human cardiovascular system has elastic vessels and valve sinuses whereas the pulsatile 

bioreactor uses rigid tubing which, as previously mentioned, produces waveforms that have 

enhanced upper frequencies and also as shown in the impedance spectrums of Figure 40 and 

Figure 41. Having an elastic sinus has proven [69, 70] to reduce this phenomenon and also 

produces a more physiologically accurate flow field. An elastic sinus may also help to reduce the 

relatively large backward pressure and flow waveforms shown in Figure 40 and Figure 41. 

4.2.2  Manual Atrial Head Pressure Adjustment 

 rate or an 

electronically controlled lab jack to automatically control the atrial head pressure.  

Inorporation of an elastic sinus system, which would also likely entail having to install a 

compliance chamber around it in order to adjust the elastic response, proved to be a modification 

which was not feasible at this time since it would further complicate the attachment of the 

outflow valve. 

The ventricle fills due to the head pressure in the atrium. If the filling rate is too high it will 

cause ventricular pressure spikes during diastole. In order to easily adjust the filling rate, a clamp 

can be placed on the tube from the atrium to the ventricle. This is an added level of user 

adjustment which would ideally liked to be eliminated. More sophisticated atriums have been 

designed but this would add a great deal of complexity and additional parts. A possible simple 

solution would be an electronically actuated tubing clamp to adjust the filling
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4.2.3 TEHV Design 

V design was not an aim of this study and any work that was done 

tissues have a viscoelastic mechanical response unlike the currently available non-woven 

lems shown with the clinical use of the Synergraft valves clearly indicates the 

poor understanding of the biological mechanisms of both the host immune response and tissue 

uit. The pulsatile bioreactor could potentially 

explore fundamental questions regarding the interactions between human cell lines seeded on 

these xenograft scaffolds in a much more highly controlled in vitro setting. This would include 

the exposure to physiologic pressure and flow waveforms during culture which could be critical 

for regulation of growth, remodeling, and cellular expression. 

The fast system response time makes it possible to perform step changes in mean pulsatile 

pressure and flow in addition to the gradual changes as shown in the flexibility and control tests. 

A possible application of this feature would be to investigate changes to intact native valve 

function such as an “in vitro Ross procedure” where a native pulmonary valve could be switched 

between being incubated under systemic and pulmonary pressure and flow conditions.  

As previously discussed, TEH

towards designing a TEHV was to simply serve as a starting point for future work. Native valve 

polymeric scaffold materials which exhibit an inelastic response which means the scaffolds 

permanently deform under cyclic mechanical loading. Efforts are underway to develop scaffold 

materials with elastic properties [71, 72] that could possibly better mimic elastic tissue response 

and not exhibit the undesirable permanent deformation effects [32] as previously discussed.  

 4.3  FUTURE MODIFICATIONS AND POTENTIAL APPLICATIONS 

The severe prob

remodeling processes in a decellularized valve cond
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Ideally, it would be convenient for the system to offer automatic compliance adjustments so 

how the native tract remodels due to reduced compliance is another potential application of the 

system to provide information on the time course of  leaflet deformation of developing TEHV. 

Real-time metabolic data and concentrations of dissolved gases could be acquired with the 

addition  another 

pneumatic system to control the air level within the compliance chamber. Additionally, the 

system could be easily modified for culturing other cardiovascular structures, such as blood 

vessels, while providing the same degree of hemodynamic control. 

tor for biologically active heart 

valves. The study first established the need for 

evaluating novel therapies such as tissue engineered heart valves (decellularized xenograft 

that one could study the effects of altering this other important hemodynamic feature. This could 

be done by adding another pneumatic controller to control the volume of air within the 

compliance chamber. Certain pathological conditions can result in stiffened aortic roots/outflow 

tracts that have a negative impact on hemodynamic function [9]. Elucidating questions regarding 

pulsatile bioreactor. 

Future enhancements to the device could include an integrated non-contacting imaging 

of biosensors and compliance changes could be automated by installing

 4.4  SUMMARY 

This study details the design and evaluation of a pulsatile bioreac

the development of such a device by examining 

current problems with current heart valve replacements and the lack of proper equipment for 

scaffolds and polymeric scaffolds). A rational set of design requirements were established in 

order to form a logical basis for creating a design solution. The chosen design solution 
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incor

as been shown to feature: 

6. sterile environment 

7. physiologic pH (7.45 without any pCO2 modulation) 

8.  oxygen tension can be controlled to provide supra-arterial tensions at flow rates 

porated elements of both mock circulatory loop and bioreactor technologies to create a 

hybrid pulsatile heart valve bioreactor. Both specific design issues such as component design, 

actuation methods, and their final solutions were discussed in detail. Finally, the process of 

evaluating a device that has both specific mechanical and biological functions was given 

attention.  

The results of the all the tests indicate that all design requirements have been met and in 

summary the device h

1. accurate and precise modulation of pulsatile pressure and flow (normally 

distributed mean errors from command, zero means with low standard deviations) 

2. wide resistance range (0.25-1.2+ mmHg s mL-1) 

3. highly tunable pneumatic waveform 

4. good beat-to-beat waveform reproducibility (low mean differences) 

5. waveforms can mimic physiologic waveforms (qualitatively and quantitatively  

by input-impendence spectrum analysis) 

greater than 1 lpm 

Also, the preliminary results with the TEHV are promising showing collagen levels that 

exceed our previous study [37] indicating that pulsatile mechanical stimulation could be 

enhancing ECM formation. The results when taken together demonstrate that the pulsatile 

bioreactor can expose a biologically active heart valve to well controlled pulsatile pressures and 

flows in a biologically relevant environment.  
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clc
clear
close

%Read in Data
load tehv2_1.txt
load tehv2_2.txt
load hydro6.txt
load pulmon.txt
load pulmon2.txt
load systemic3.txt
load systemic2.txt
load unfilt.txt
load filt.txt
load shroff.txt

T21=tehv2_1;
T22=tehv2_2;
H6=hydro6;
PUL=pulmon;
PUL2=pulmon2;
SYS=systemic3;
SYS2=systemic2;
FIL=filt;
UNFIL=unfilt;
SHROFF=shroff;

data=input('Which data set to analyze? (Ex. ''T21'' for TEHV2_1): ');

%Number of data points
count=size(data,1)/2; %(divide by 2 usually; divide by 1 for human data fro
m shroff- shroff.txt)

%Assign data
P=data(1:count,1);
Q=data(1:count,2)*16.667; %convert to ml/s;
T=1; % period in seconds (1 for 60bpm; 0.735 for human data from shroff- sh
roff.txt)
time=(0:(T/((count-1))):T);

%************************************************************************
%         Frequency Domain Data
%************************************************************************

Pfft=fft(P,count);
Pfft=Pfft(1:12);
Pmag=abs(Pfft);
Pang=angle(Pfft)*180/pi;
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Qfft=fft(Q,count);
Qfft=Qfft(1:12);
Qmag=abs(Qfft);
Qang=angle(Qfft)*180/pi;

Zin=Pfft./Qfft;
Zmag=abs(Zin);
Zang=angle(Zin);

%************************************************************************
%         Calculation of Parameters
%************************************************************************

HR=(60/T);
AOPmean=mean(P);
AOFmean=mean(Q);
SV=cumtrapz(time,Q);
SV=SV(count);
CO=SV*HR;

%Power terms
convt=1333*10^-7;
Wsteady=AOPmean*AOFmean*convt;
Wtot=P.*Q;
Wtot=mean(Wtot)*convt;
Wosc=Wtot-Wsteady;
Wfrac=abs(Wosc/Wtot)*100;

%Systemic vascular resistance
R=AOPmean/AOFmean;

%************************************************************************
%        Area Computations
%************************************************************************

%Find Qend_diastolic and Qend_systolic
[Pmax,Pmax_index] = max(P);
[Qmin,Index_post_incisura]=min(Q);

%Find start of systolic/end of diastolic as the point where flow rate exced
es some threshold value
Qstart_index=min(find(4 < Q));
Pend_dia=P(Qstart_index);
Pend_dia_index=Qstart_index;
[Qmax,Integration_End]=max(Q);
[Pend_sys,Pend_sys_index]=min(P(Pmax_index:Index_post_incisura));
Pend_sys_index=Pend_sys_index+Pmax_index;
[Pmax2,Pmax2_index]=max(P(Pend_sys_index:count));
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Pmax2_index=Pend_sys_index+Pmax2_index;

%Area of first Diastolic Portion
Area_dia_1=cumtrapz(time(1:Pend_dia_index),P(1:Pend_dia_index));
A1_size=size(Area_dia_1);
Area_dia_1=Area_dia_1(A1_size);
Area_dia_1=Area_dia_1(1);

%Area of second Diastolic Portion
Area_dia_2=cumtrapz(time(Pmax2_index:count),P(Pmax2_index:count));
A2_size=size(Area_dia_2);
Area_dia_2=Area_dia_2(A2_size);
Area_dia_2=Area_dia_2(1);

%Total Diastolic and Systolic Areas
Area_dia=Area_dia_1+Area_dia_2;
Area_total=cumtrapz(time,P);
Area_total=Area_total(count);
Area_sys=Area_total-Area_dia;

%************************************************************************
%          Area Related Calculations, C, RC, RC_T
%************************************************************************

%Compliance with area method
K=(Area_sys+Area_dia)/Area_dia;
C=SV/(K*(Pmax2-Pend_dia));

%Compute RC & RC/T with area method
RC=Area_dia/(Pend_sys-Pend_dia);
RC_T=RC/T;

%Compute Z0, characteristic impedance using upper harmonics
Z0=mean(Zmag(4:12));

%Z0 time domain
delta_t=time(2)-time(1);
time_pts=0;
pts=0;
while  (time_pts<0.05)
    time_pts=time_pts+delta_t;
    pts=pts+1;
end
end_time=Qstart_index+pts;
Z0_time=mean(P(Qstart_index:end_time))/mean(Q(Qstart_index:end_time));

%Forward and backward waveforms
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for i=1:count
Pf(i)=(P(i)+Z0*Q(i))/2;
Pb(i)=(P(i)-Z0*Q(i))/2;
Qf(i)=Pf(i)/Z0;
Qb(i)=-Pb(i)/Z0;
end

%Reflection Coefficient
Reflection_1st=(Zmag(1)-Z0)/(Zmag(1)+Z0);
RI=(max(Pb)-min(Pb))/(max(Pf)-min(Pf));

%************************************************************************
%          Results
%************************************************************************
S = struct('T',T,'HR',HR,'AOPmean',AOPmean,'AOFmean',AOFmean,'SV',SV,'CO',C
O,'Wtotal',Wtot,'Wsteady',Wsteady,'Wosc',Wosc,'Wfrac',Wfrac,'R',R,'C',C,'Z0
',Z0,'RC',RC,'RCperT',RC_T,'Ref_C',Reflection_1st,'Ref_Index',RI,'Z0_time',
Z0_time)

set(gcf,'DefaultLineLineWidth',3)

subplot(221);plot(time,P,time,Pf,time,Pb)
title('Pressure');
xlabel('Time (s)');
ylabel('P (mmHg)');
legend('Pmeas','Pf','Pb');

subplot(222);plot(time,Q,time,Qf,time,Qb)
title('Flow Rate');
xlabel('Time (s)');
ylabel('Q (ml/s)');
legend('Qmeas','Qf','Qb');

subplot(223);plot(Zmag)
title('Impedance');
line([8 12],[Z0 Z0],'Color','k');
xlabel('Freq (Hz)');
ylabel('|Zin| (mmHg s/ml)');

Zang=Zang*180/pi;

subplot(224);plot(Zang)
title('Phase Angle');
line([0 15],[0 0],'Color','k');
xlabel('Freq (Hz)');
ylabel('Phase Angle of Zin (deg)');
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