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The Wagner Hypothesis states that when a thin-walled open-profile member is subjected 

to an axial loading leading to global instability, the longitudinal stresses developing within the 

fibers composing the cross-section become inclined to the normal plane; thus taking on a helical 

shape with respect to the longitudinal axis of the member.  It is assumed that the longitudinal 

fiber stresses act as “follower-forces” and thus assume the same inclination as the cross-sectional 

fibers and thus produce a torsional moment about the longitudinal axis of the member.  Classical 

second-order theories for calculating critical buckling loads based on the line of shear centers for 

thin-walled open-profile members have been developed by Timoshenko and Vlasov, which 

include the use of the Wagner effect.  However, a competing theory has been developed by 

Ojalvo that utilizes the line of cross-sectional centroids (rather than cross-sectional shear centers) 

as a reference axis while at the same time rejecting the use of the Wagner Hypothesis.  Ojalvo 

proposes that the Wagner Hypothesis violates common statical principles as well as is deficient 

for not identifying the free body with which torsional equilibrium is expressed.   

The current study explored the validity of the second-order theories using nonlinear finite 

element techniques to produce critical buckling loads for various thin-walled open-profile 

members.  Critical buckling loads obtained from this analysis were compared with numerical 

results provided by each theory as well as experimental results.  Not only did the present 

research evaluate the behavior of various torsional members at their critical buckling loads, but it 
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also explored the notion that the principal stresses take on a helical shape once torsion has 

occurred (i.e. the stresses do indeed behave as “follower-forces”) using graphical representations 

of the members created within the finite element software.  Conclusions were made based on the 

comparison of finite element results compared with theoretical results and experimental tests.  

The current study found that the Wagner Hypothesis is valid due to positive agreement between 

finite element results, numerical solutions, and experimental tests.  Recommendations were made 

concerning the possibility of further research regarding this topic. 
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NOTATION 
 

 

a Distance between a point on the cross section and the shear 
center 

 
Bx, By  Bending Stiffness about the x and y axis 

CT  St. Venant Torsional Stiffness 

CW  Warping Stiffness 

E  Modulus of Elasticity 

e(Ojalvo) ey - yo

ey  Eccentricity 

G  Shear Modulus 

Ix, Iy  Moment of Inertia about x and y axis 

Iω  Warping Moment of Inertia 

KT  St. Venant Torsion Constant 

k(Ojalvo) π/L 

L  Length of Member 

m(Ojalvo) Couples 

n  Energy State 

ro  Radius of Gyration 

T(Ojalvo) Internal Moment 

V  Shear Force 

u, v  Displacements 

x, y  Coordinates of any point on a cross section 

xo, yo  Coordinates of the Shear Center 

 x



βx  Cross Sectional Constant Defined by Eqn. 1-3 

φ Angle of Twist 
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1.0 INTRODUCTION 

 

The Wagner Hypothesis provides that when a thin-walled open-profile member is subjected to an 

axial loading leading to global instability, the longitudinal stresses developing within the fibers 

composing the cross-section become inclined to the normal plane and thus produce a torsional 

moment about the longitudinal axis of the member.  This theory relies on the assumption that a 

bar is comprised of a bundle of filaments that act somewhat independently of one another; a 

useful analog is a cross-section composed of bundle of straws.  Before the bar becomes unstable 

and begins to twist, the filaments have a compressive stress in them due to the axial loading.  

Once the member begins to twist due to the activation of some global instability mode, the 

filaments are no longer parallel to the longitudinal axis of the member.  It is assumed that the 

longitudinal fiber stresses act as “follower forces” and thus assume the same inclination as the 

cross-sectional fibers.   These inclined stresses then create a torsional moment about the 

longitudinal axis as well as an axial force resultant (Goodier 1950).  It is assumed that as the 

section twists the stresses will begin to form a helical shape around a longitudinal axis formed by 

the line of shear centers of all cross-sections occurring along the member length; this helix, 

therefore, will follow the geometry of the deformed shape.  The timeline under which the 

hypothesis evolved began with the classical theory for lateral-torsional buckling of thin-walled 

open-profile bars developed by Michell (1899) and Prandtl (1899).  It was then extended further 

by Timoshenko (1905) to I-shaped bars with two axes of symmetry in the same plane.  Wagner 

(1929) then applied these principles to the case of the shear center of thin-walled open-profile 

bars of arbitrary cross-section. The classical theories based on the assumptions that Wagner 

made have endured. 
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Second-order theories have been further developed based on the work of Timoshenko and 

Wagner, more recently by Galambos (1968).  These theories apply to various thin-walled open-

profile sections that are subjected to various loadings which cause some form of torsional failure.  

Also recently, a competing theory has been developed by Ojalvo (1990), which is not based on 

the shear center as the torsional axis and does not accept the Wagner Hypothesis.  Ojalvo 

proposes that the Wagner Hypothesis violates common statical principles as well as is deficient 

for not identifying the free body with which torsional equilibrium is expressed (Ojalvo 1987).  

Ojalvo develops his version of the second-order theories for thin-walled open-profile bars based 

on the line of centroids in order to create a free body for use in formulating higher order 

governing equations.  Ojalvo states that using the line of shear centers to develop the critical 

buckling load without employing the Wagner effect will lead to various problems, largely the 

fact that a mono-symmetric I-beam loaded with a constant moment will buckle at the same 

critical value regardless of whether the smaller or larger flange is in compression.  While Ojalvo 

seems to recognize that the current theories based on application of the lines of shear centers in 

conjunction with a consideration of Wagner’s Hypothesis work, his contention is that the 

Wagner hypothesis is an objectionable contrivance with no physical basis.  In fact, Ojalvo 

criticizes the Wagner hypothesis on the fundamental grounds that it is notionally inconsistent 

with the hypothesis of Navier (i.e. the “plane section law”) which is also applied at the very same 

cross-sections where filament distortion is considered to be occurring in the hypothesis of 

Wagner. 

Various experts have attempted to contradict Ojalvo’s new theory regarding buckling 

loads, while supporting the classical theory which makes use of the Wagner Hypothesis.  In an 

attempt to further explore the validity of the second-order theory that Ojalvo has proposed, the 
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behavior of thin-walled open-profile members under axial loading is evaluated under the scope 

of this project utilizing the second-order theories provided by Ojalvo and Galambos, finite 

element analysis, and the results of past experimental tests.  The finite element analysis software 

ABAQUS 6.4 is used for each of the finite element projects.  Thin-walled open-profile members 

are used to first verify that ABAQUS is an appropriate tool for this project.  Once the finite 

element analysis software has been tested to confidence, models are built and tested, and the 

results of those analyses are compared with the theories presented by both Galambos and Ojalvo. 

It is known that one of the distinguishing features of a non-circular member subjected to 

torsion is that sections that were originally plane prior to torsional loading will warp under 

torsional loading.  It is also known that thin-walled open-profile members are not very efficient 

at resisting torsion, and thus, as a result of a lack of torsional rigidity, typically will fail in a 

torsion mode.  For singly symmetric sections, lateral-torsional buckling will commonly occur.  It 

is crucial to study the stability of each member while performing the finite element analysis 

portion of the current research to ensure that the models are behaving as “real-life” members.  A 

load-displacement curve is developed for each model to do just that. 

An in-depth review of the literature published by both Galambos and Ojalvo is presented 

in the next section of this text.  These works outline the derivations for the second-order theories 

including the Wagner effect, as well as those neglecting its validity.  In addition to these texts, a 

short paper presented by Shao-Fan Chen is discussed within the context of identifying 

experimental test results to be used as a basis for comparison with the theoretical results and 

finite element analysis results.  To provide conclusive results, it is important to find agreement 

between the theoretical results, finite element analysis results, and the experimental testing 

results.  This is the main objective of the current study.  Not only will the present research 
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evaluate the behavior of various thin-walled open-profile sections at their critical buckling load, 

but it will also explore the notion that the principal stresses take on a helical shape once torsion is 

induced (i.e. the stresses do indeed behave as “follower-forces”). 

 

 

1.1 LITERATURE REVIEW 

 

To verify the validity of Wagner’s Hypothesis, it is necessary to prove (or conversely 

discount) that its validity. Theories of various experts are presented.  Within the scope of this 

project, a variety of thin-walled open-profile sections are loaded and tested to analyze the 

torsional behavior of the member.  There have been several experts within the field that have 

dealt with the concept of Wagner’s Hypothesis.  The subject has been worked on by V. Z. 

Vlasov, S. P. Timoshenko, and T. V. Galambos (1968), who are each in agreement on the 

validity of the theory; although Vlasov’s consideration of the Wagner hypothesis might be 

characterized as somewhat intricate.  There is also a competing theory presented by M. Ojalvo 

(1990) wherein the Wagner Hypothesis is dismissed as erroneous.   

In general, the analysis of a given structure for a specified loading is performed in two 

steps: first the force distribution within the structural member is determined based on either 

elastic or plastic theory; then the member is studied to determine whether it is able to support the 

imposed loading.  The second part of the analysis will also involve an examination of the overall 

stability of the member (Galambos 1968).  The present work deals strictly with the study of 

metal structures, and more specifically steel structures. 
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Many times the behavior of structures can be represented by assuming elastic behavior; 

meaning that when the loading is removed, the member will return to its original, pre-loaded 

configuration.  For the current study, members will be considered in their elastic state only.  The 

assumptions for the members under consideration are: the material is elastic; the members are 

prismatic and inititally straight; the column or beam has an open-profile thin-walled cross-

section; plane sections will remain plane; the deformations of the member are relatively small; 

shear deformations are neglected; and the shape of the cross-section will remain unchanged.  

These assumptions are used to develop first-order theories associated with elastic members, and 

as such are germane to the current work as the assumptions at the very heart of the fundamental 

mechanical theories at issue herein.  Due to the nature of the project, torsion will be the next 

focus of the discussion.  Torsional response considered extends beyond the elementary uniform, 

or St. Venant’s torsion, as covered in elementary undergraduate curricula.  

One of the principle distinguishing features of the response of members to non-uniform 

torsion is that sections that were originally plane are no longer so after a twisting moment is 

applied: the section will warp.  Exceptions to this statement are solid or tubular circular sections 

and thin-walled sections for which all elements intersect at a point, such as the cruciform, angle, 

and tee-shaped cross-sections (Galambos 1968).  While these cross-sections will not warp under 

torsion, they are somewhat inefficient under torsional loading and are subject to lateral-torsional 

buckling even when only an incidental torsional load is applied.  It is also known that when the 

section is free to warp, uniform or St.Venant torsion will occur in these non-circular sections, 

and when the member is restrained against warping, non-uniform torsion will occur (except in 

the case of a non-circular cross-section wherein the middle surfaces of all constituent plate 

components intersect at the shear center).  The shear center, S, of any section is defined as the 
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point in the plane of the cross-section where a shear force must act if no twisting of the section is 

to take place.  When a warping restraint is imposed anywhere along the member length, 

longitudinal stresses and shear stresses will develop in addition to the St.Venant shear stresses 

commonly associated with uniform torsion. 

In direct opposition to the governing differential equations employed in a linear analysis, 

the nonlinear differential equations developed for an elastic member formulated to consider 

various global instabilities are developed using the deformed shape of the structural element as 

the basis for formulating equilibrium requirements.  Because the deformations and internal 

forces are not independent of one another, they must be considered simultaneously.  Thus, when 

an initially straight and prismatic member is subject to a compressive axial force in addition to 

bending moments applied at the ends of the section, the member will experience additional 

lateral deflections due to so-called “P-Delta” effects.  The section may also twist about the shear 

center, S, through an angle of twist, φ.  Within the span of the member the cross-sections will no 

longer be in the original x-y-z coordinate system after the deformations have taken place 

(Galambos 1968).  The cross-section will rotate and translate as shown in the following: 
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Figure 1: Translation and Rotation of Elastic Cross-Sectional Slice. (Galambos 1968) 

 

The principal centroidal axes will have potentially translated and rotated with respect to a 

stationary global rectangular coordinate system and the original moments will be transformed as 

projections onto these axes.  In addition to the twist caused by the moments placed on the 

section, there are other stresses that contribute to the torque once the section has deformed; one 

is due to the fact that the axial load will retain its original direction and will cause a twisting 

moment about the shear center.  Another contribution to the moment is the fact that the two 

resulting cross-sections will warp with respect to one another as in the following image 

(intimately related to the Wagner Hypothesis): 
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Figure 2: Twist Due to Differential Warping of Two Adjacent Cross-sections. (Galambos 1968) 

 

The final contribution to the twisting moment is due to the end shears on the member.  Figure 2 

shows the twist due to differential warping of two adjacent cross-sections.  The value a on the 

figure is the distance from the shear center out to the extreme fiber of the point in question.  At 

the top of the figure there are two forces applied to the section.  The force shown in the 

horizontal direction is the “Wagner Force”.   

 Beams are typically designed to resist loads that cause bending about the major principal 

axis of the section.  It has already been stated that open-sections do not possess significant 

resistance to torsional deformations, and although in-plane bending does not produce torsion 

directly, it does result from the initial imperfections in the beam geometry and the unintentional 

small eccentricity of the loads.  Another more important consideration would be how elastic 
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strain energy is stored in the beam.  When in-plane bending occurs, the internal moments act 

through the rotations of each plane section along the beam longitudinal axis to store significant 

amounts of energy.  At some critical value, it becomes slightly easier for the beam to deform 

torsionally rather then in bending, and as a result, the slightest amount of perturbation of the 

beam due to loading imperfections or geometry imperfections activates the torsional deformation 

mode; a mode in which the beam is less efficient to resist external actions and thus a large 

torsional displacement occurs.  Lateral-torsional buckling occurs when out-of-plane 

deformations in the transverse direction become magnified to the extent that they terminate the 

usefulness of the beam (Galambos 1968).  In each of the models studied within this project, the 

member is not subject to a torsional load, but will exhibit a torsional failure mode.  Galambos 

developed two differential equations for lateral-torsional buckling for any elastic beam subjected 

to in-plane concentrated end moments: 

 

0''2" =++ φφ xx
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y MMuEI  

Eqn. 1-1 
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βx is a property of the cross-section.  To apply these equations to a doubly symmetric, simply 

supported cross-section, a few manipulations must be made.  For a section with double symmetry 

it can be shown that, 
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The differential equations now become, 
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Once these equations have been integrated, solved and manipulated, the critical moment for a 

simply supported, doubly symmetric section is found to be equal to the following: 
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Eqn. 1-9 

 

The lowest energy state corresponds to n = 1.  The use of this equation will allow for a 

comparison with a moment arrived at using a finite element analysis for a simply supported I-

beam.  Both the differential equations as well as the equation for critical moment developed in 

the theory provided by Galambos employ the Wagner Hypothesis for thin-walled open-profile 

sections, and more specifically beams. 

 The next section of the project deals with columns and their behavior relative to 

Wagner’s Hypothesis.  Within this study there were two columns modeled in a finite element 

analysis and there are theoretical equations presented by both Galambos and Ojalvo.  A column 

is defined as a member subject to an axial compressive load applied through the centroid, or at 

some very small eccentricity; for practical purposes columns typically stand on end.  When 

evaluating any column member, one of the main concerns is stability.  A member loaded by an 

axial force may tend to buckle. Within the scope of this study, only long, slender columns will be 

considered, and typically this type of column will buckle while the material is still elastic.  The 
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practical maximum load that can be carried by an elastic column is the load where the column 

buckles (Galambos 1968).   

Each of the sections chosen for the finite element analysis is found to be subject to a 

buckling failure mode, and in each case the stability of the structure is to be scrutinized.  

Instability is a condition wherein a compression member loses the ability to resist increasing 

loads and exhibits instead a decrease in load-carrying capacity as deflections increase; therefore 

instability occurs at the maximum point on a load-deflection curve (Galambos 1998).  To ensure 

that each of the finite element models analyzed are achieving accurate results, the stability of 

each will be considered.  It is known that the critical load of a member subject to compression 

does not necessarily equal the load at which a real imperfect member will collapse.  To evaluate 

the point at which a real member will fail, it is necessary to consider the members’ 

imperfections.  In determining the load carrying capacity of a structural member it is possible 

that when subjected to increasing load, a member will initially deform in one mode, then reach a 

critical loading, and then continue to deform in a different pattern.  This is referred to as the 

bifurcation of equilibrium.  There are two types of bifurcation buckling for initially perfect 

systems depicted in the following diagram: 

 

Figure 3: Postbuckling of Perfect Column.  (a) Stable (b) Unstable Curve. (Galambos 1998) 
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In each of the plots, the member initially deforms in one mode, the prebuckling deformation, and 

then at the critical load, due to a branch in the load-deflection curve, the deformation suddenly 

changes into a different pattern, the buckling mode.  An example of this phenomenon is when an 

axially loaded column initially shortens and then bends once it reaches the critical load.  The 

plots above represent the fact that a structure’s stiffness may increase or decrease at the onset of 

buckling.  The structure is said to have a stable postbuckling curve if it can support an increasing 

load following the onset of buckling.  On the other hand if the load decreases, the structure has 

an unstable postbuckling curve (Galambos 1998). 

 The postbuckling curve of an initially perfect system does not by itself give sufficient 

information to allow one to determine when failure takes place (Galambos 1998).  There are 

initial imperfections that exist in all members, and these characteristics of the real structure must 

be considered.  The load deflection curves for both stable and unstable systems with initial 

imperfections are as follows: 

 

 

Figure 4: Postbuckling Curves for Initially Imperfect Systems. (Galambos 1998) 
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It is obvious from the plots that for a system with a stable postbuckling curve, very small 

imperfections have little effect on the behavior of the system.  This type of structure is able to 

resist increasing loads after the critical load is reached, and a failure will occur only once the 

member has yielded.  In contrast, for the system that has an unstable postbuckling curve the 

initial imperfections have a greater effect on the system, and the member will typically fail at a 

load less than the critical buckling load.  It is evident that the behavior of real imperfect systems 

can be predicted from the shape of the postbuckling curve for perfect systems (Galambos 1998).  

Due to this fact, it is reasonable to evaluate the behavior of the columns analyzed using the finite 

element method by considering the load deflection plots produced from the output.  If the output 

generates a plot similar to either stability curve, the user can be confident that the analysis is 

giving accurate results.  All models included in the present research are analyzed assuming 

elastic behavior.  When the member is elastic, it will return to its original undeflected position 

after loading is removed. 

 In order to develop the critical moment equations for the final set of finite element 

analysis runs, the behavior of elastic beam-columns must also be discussed.  A beam-column is 

defined as a member that can support both axial compressive loads as well as moment at either 

end of the section.  There are many practical applications for this type of member.  A member is 

also considered a beam-column when it is subject to an axial compressive load with some 

amount of eccentricity, which produces a moment.  The relationship between load and 

deformations for beam-columns differs from the behavior seen individually in either beams or 

columns.  The axial load that is applied to a beam-column may be smaller than the maximum 

load that an equivalent column could carry, and therefore there is some reserve of capacity for 

moment that can be resisted (Galambos 1968).  At the same time the moment that can be carried 
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is less than the full plastic moment that could be resisted by the beam if the axial load were equal 

to zero.  The system of coupled differential equations governing the elastic behavior of beam-

columns of arbitrary cross-section is (Galambos 1968): 
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Eqn. 1-12 

 
where the bending stiffness about each principal axis is: 
 

xx EIB =  

Eqn. 1-13 

and  
 

yy EIB =  

Eqn. 1-14 

 
 
the St.Venant torsional stiffness is 
 

TT GKC =  

Eqn. 1-15 
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the warping stiffness is equal to 
 

ωEICW =  

Eqn. 1-16 

 
and 
 

∫=
A

dAaK 2~ σ  

Eqn. 1-17 

 
 

These equations can be rewritten with the conditions that MBy = MTy = 0, MBx = -M0, and MTx = 

kM0 as: 
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Eqn. 1-20 

 

It should be noted that these three equations are not independent of one another and that the first 

equation is not homogeneous.  Lateral-torsional buckling is governed by the second and third 

differential equations presented above.  After some manipulation and substitution into these 

equations, the buckling condition for a beam-column becomes: 
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where Py and Pz are equal to: 
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Eqn. 1-23 

 

This equilibrium equation can be used to find the critical combination of P and M0 for any beam-

column section (Galambos 1968).  Within the scope of this study, this development is used to 

compute the critical load for a column subjected to an axial load with a degree of eccentricity.  

For beams, columns, and beam-columns, Galambos has developed theoretical equations set forth 

by Vlasov and Timoshenko applying principles from the Wagner Hypothesis. 

      The competing theory presented by Ojalvo to discount the use of the Wagner 

Hypothesis includes the development of a new second-order theory for structures subjected to 

torsional failure.  When developing the second-order theory, Ojalvo states that the line with 

which a deformed bar is modeled is the line of centroids.  He states that the centroid line is 
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important because the transverse displacement of the centroid of a profile is the average 

transverse displacement of a profile and its longitudinal displacement corresponds to the average 

longitudinal displacement of the points of a profile (Ojalvo 1990).  This differs from the theories 

developed by Galambos, which models deformations about the shear center of the section.  

Galambos affirms that when the line of shear centers is utilized the Wagner effect must be 

employed.  The Wagner effect is redefined as the induced torsional moment in a normal plane 

arising from longitudinal stresses and twist deformations, and Ojalvo states that he does not 

support the use of this pheonmenon (Ojalvo 1990).  The second-order theory that he develops is 

in complete agreement with classical buckling theory, in that the critical load associated with a 

member corresponds to the point where the member initially buckles.  He derives equations 

associated with the critical moment of a simply supported beam subject to a constant moment, 

and the resulting equations presented are identical to the theory that Galambos puts forward. 

 Ojalvo begins his development of the equations that describe the nature of the buckling 

load for the second-order theory with the following differential equations: 
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Eqn. 1-24 
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Eqn. 1-25 

 

After some manipulation and substitution, Ojalvo develops an equation from which buckling 

loads can be calculated: 
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where, 
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Eqn. 1-27 

 

These differential equations are used as the basis of other numerical solutions specific to the 

columns that were used to model the finite element analysis portion of the current study. 

 Ojalvo plainly states that the notion of longitudinal stresses inducing torsional moment on 

normal sections of a deformed bar is not valid (Ojalvo 1990).  He therefore denies the possibility 

of torsional buckling as an admissible global instability (he instead explains experimental 

observations of such response as a by-product of local instabilities).  He states that in general, the 

equilibrium method derivations in which the Wagner effect terms appear are deficient for not 

identifying the free body with which torsional equilibrium is expressed and for violating statical 

principles (Ojalvo 1987) (e.g. Navier’s plane-section hypothesis).  Ojalvo does not limit his 

criticism to only strong form statements of the problem at hand, and he contends that derivations 

based on variational methods (Bleich 1952) are just as incorrect, in that the theorem of stationary 

potential energy is misused.  In other words, the components of a finite strain tensor are used in 

the strain energy expression when infinitesimal strain expressions are required (Ojalvo 1982, 

1987).  He also believes that adopting the line of shear centers without using the Wagner effect 
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leads to at least one major problem, which is that a mono-symmetric I-beam under uniform 

moment buckles at the same value of moment regardless of whether the smaller or larger flange 

is in compression (Ojalvo 1987).  Another mono-symmetric column model will be studied within 

the current study to examine this claim. 

  In the case of the cruciform-shaped column, Ojalvo defines several equations for the 

torsional buckling load of the section.  The buckling load presented by Ojalvo using the Wagner 

effect is: 
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Eqn. 1-28 

 

where Io is the shear center polar moment of inertia of the profile area (Bleich 1952).  When θ = 

θ” = 0 at either end of the section the critical buckling load is equal to the following: 
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The analogous solution that does not employ the Wagner effect is equal to: 
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which is developed by using four identical tee-shaped columns whose web tips would all be 

connected to form the cruciform shape (See Figure 5) (Ojalvo 1990). 

 

 

Figure 5: Cruciform Behaving as Tee Under Torsional Loading. (Ojalvo 1990) 

  

To verify the use of the Wagner effect, it is necessary to not only compare finite element 

results with theoretical results, but to also compare these findings with experiments performed on 

so-called “real-life” members.  In an attempt to make comparisons between failure loads and 

flexural-torsional buckling loads, Ojalvo presents the results of experimental tests performed by 

Shao-Fan Chen (1980) on various tee-shaped columns.  The details of the experimental tests and 

the results will be discussed later in this presentation, but it is important to cover the numerical 

solutions that Ojalvo develops, which are to be applied to these tests.  He derives a set of 

equations based on the line of shear centers for the normal planes which leads to a quadratic 

function of P where the buckling load may be calculated as: 
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in which, 
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Eqn. 1-32 

 

He also develops a quadratic function from which the buckling load can be calculated based on 

the theory of the line of centroids defining the normal plane.  It is developed from eqn. 1-25 

presented previously in this discussion. 
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Eqn. 1-33 

 

In an effort to verify the development of this new theory, the steps that Ojalvo lists for derivation 

of this equation were worked through, and it was not possible to achieve this final buckling 

equation.  Therefore, when calculating the critical load for the tee-shaped column, eqn. 1-25 

from this discussion was utilized (i.e. an error was found in Ojalvo’s book indicating that eqn. 1-

32 does not emanate from eqn. 1-25).   

 In an attempt to prove conclusively that the Wagner effect does exist, it is necessary to 

examine, firsthand, the paper of Shao-Fan Chen (1980) concerning the experimental tests 

performed on various tee-shaped columns at the Xian Institute of Metallurgy and Construction 
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Engineering, which is located in Xian, Shaanxi, China.  A tee is a mono-symmetric section, and 

when acted on by an eccentric load, either a positive or negative eccentricity will exist.  Chen 

states that based on an analytic study, most cases where this type of member fails under a lateral-

torsional buckling mode, the resistance of the section will be smaller when there is the case of 

negative eccentricity (Chen 1980).  Chen tested 24 columns with 18 sections experiencing a 

negative eccentrically placed axial compressive load.  This current research makes use of what 

was designated a “PD” section (by Chen), therefore only that section will be covered in this 

discussion.  This member is built-up using two plates welded together to form tee shapes with 

width to thickness ratios of 15.  Each classification was given three column lengths.  The 

members were also assigned an eccentricity ratio defined as: 

 

w
eA=ε  

Eqn. 1-34 

 

where e is defined as the eccentricity, A is equal to the cross-sectional area, and w is the section 

modulus.  This ratio differs with the various specimens, and each “PD” section was given a 

negative eccentricity ratio.  The specimens are reported to be made of low carbon steel number 3, 

and each “PD” member had a mark of AD3.  The members were hinged at each end and were 

supported by knife edges, where the center of the hinge was located at the load application point.  

The knife-edge at the top of the column was fixed to the testing frame with bolts, while the 

knife-edge at the bottom rested on the hydraulic jack.  The loading during the test was stepped 

according to an estimated ultimate load and was tested until failure.   
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 Overall, the 24 specimens saw three different failure modes including local buckling, in-

plane stability, and lateral-torsional buckling.  The PD3-1 was chosen for the finite element 

model in the current study due to a lateral-torsional buckling failure mode reported in the results 

from Chen’s tests.  Chen concludes from the results of the experiments that the width to 

thickness ratio for a tee-section should be limited by a slenderness ratio much like an I-section 

(Chen 1980).  He also discusses equations related to the critical buckling load of the tee-section, 

but his formulation was not studied within the scope of this project; only his raw experimental 

results were of interest. 

 Within the literature presented by each of the authors including Galambos (1968), Ojalvo 

(1990), and Chen (1980), there are separate formulations for the critical buckling loads 

associated with different types of structural members.  Galambos further develops a second-order 

theory based on the works of Vlasov and Timoshenko, which use the line of shear centers by 

which to model their numerical solutions.  These solutions include the use of the Wagner 

Hypothesis.  Ojalvo presents a competing theory where the Wagner effect is disregarded and the 

line of centroids is used to develop a substitution for the classical second-order theory by which 

to calculate the critical buckling loads for various members.  Experimental tests performed by 

Chen are used to verify both theories. 

 

 

1.2 OVERVIEW OF THESIS ORGANIZATION 

 

Chapter 2 discusses the finite element method as it applies to the current study.  Section 

2.1 covers the procedure for modeling a structure using the finite element method, analyzing the 
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structure, and interpreting the results.  It outlines the importance of the element mesh as well as 

mathematical models used to solve the models.  Chapter 3 covers the finite element model used 

to verify that ABAQUS 6.4 would be an adequate tool for analyzing the models related to the 

problem at hand.  Within the contents of Chapter 4, various models are analyzed in order to 

compare the finite element results for beam and column behavior to theoretical results provided 

by both Galambos and Ojalvo.  Chapter 5 encompasses the results of the current study as well as 

conclusions that can be drawn from those results.   
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2.0 FINITE ELEMENT METHOD 

 

The objective of the current study is to determine the validity of the Wagner Hypothesis as it 

relates to classical theories regarding lateral-torsional buckling of thin-walled open-profile 

members.  The Finite Element Method (FEM) is employed in this research to create analytical 

models of thin-walled open-profile sections.  In general, the finite element method is a numerical 

method for solving engineering problems which have complicated geometries, loadings, and 

material properties.  It allows the user to solve complex problems without the requirement of the 

direct solution of ordinary or partial differential equations.  The FEM analysis will result in a 

system of simultaneous algebraic equations for the solution, as opposed to a very complicated 

and almost impossible solution of differential equations.  The method assembles a finite number 

of structural elements interconnected by a finite number of nodes.  The analysis will provide an 

approximate solution to the actual structure since the original continuum is divided into an 

equivalent system of finite elements using one-, two- and three- dimensional structural elements.  

The material properties for the system will be retained by the elements chosen as part of the 

analysis.  The commercial multipurpose finite element software package, ABAQUS 6.4, is 

employed in this research to execute nonlinear finite element analysis studies.  Only geometric 

nonlinearity is considered herein. 
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2.1 FINITE ELEMENT ANALYSIS PROCEDURE 

 

The process of modeling a body and analyzing that body under a particular loading 

begins with the discretization of the body into an equivalent system of smaller units (finite 

elements) interconnected at points common to two or more elements (nodes).  An appropriate 

element type is chosen to closely simulate the behavior of the original continuum.  In general, 

smaller elements are used to create a denser mesh which will produce better results from the 

model.  In theory, when the mesh size of correctly formulated elements is reduced, the solution 

of the analysis will converge to the exact solution for the actual structure.  The compatibility of 

elements with adjacent elements is very important for the proper convergence of the analysis.  If 

the compatibility of the elements is not satisfied, gaps or overlaps within the model will occur, 

and may result in a less predictable convergence characteristic.   

The evaluation of the element properties for the model involves developing the stiffness 

matrix for the given system which forms the relationship between the forces and displacements 

in the model.  The individual element equations will be superimposed using the direct stiffness 

method to produce the global stiffness matrix, [K].  The following equation relates the forces, F, 

to the displacements, d, for the system using the global stiffness matrix, [K]: 

 

{ } [ ]{ }dKF =  

Eqn. 2-1 

 

Boundary conditions must be imposed in order for numerical singularity to be avoided, so that 

the structure remains stationary during the analysis instead of moving as a rigid body. 
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 Following the evaluation of the element properties, the actual analysis of the structural 

model must be completed.  In order for the analysis to run correctly, the equilibrium, 

compatibility, and force-displacement relationships must be satisfied.  The equations that result 

from the force-displacement relationships may be solved using the force method approach or the 

displacement method approach, both of which are appropriate for structural systems that are 

elastic.  The mathematical system may be solved using any number of solution algorithms 

including elimination methods such as Gaussian elimination or iterative methods including the 

Gauss-Seidel method.  For a nonlinear analysis, these methods are not sufficient to directly arrive 

at an equivalent approximate solution, and therefore the equilibrium path must be traced using 

iterative and incremental methods. 

 

 

2.2 NONLINEAR FINITE ELEMENT ANALYSIS 

 

To evaluate a problem of linearly elastic nature a linear analysis of the structure is 

performed, because it is assumed that the displacements of the members are infinitesimally 

small.  Nonlinearity in structures can be classified as either material or geometric nonlinearity.  

Material nonlinearity results from changes in the material properties, such as plasticity, and 

geometric nonlinearity can result from changes in the configuration of the model, such as large 

deflections.  A change in the geometry in the model may cause both the load distribution and 

magnitude to be altered.   

During a nonlinear analysis the solution cannot be calculated by solving a system of 

linear algebraic equations directly.  The solution is found by specifying the loading as a function 
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of time and incrementing the time intervals to obtain the nonlinear response (the term “time” is 

used in a generic sense since all analysis considered herein are static and thus time is a “dummy” 

variable used to connote incrementation of load).  ABAQUS breaks the given analysis into a 

predetermined set of time increments and calculates the approximate equilibrium configurations 

at the end of each time period.  ABAQUS assumes the response to be linear within each interval.  

After each increment, the structure is reconfigured and a new ideal linearized structural response, 

or tangent stiffness matrix, is calculated.  For each increment, the linearized structural problem is 

solved for displacements, and these displacements are added to those determined at the end of 

the previous increment.  ABAQUS uses the load proportionality factor as the load increment, and 

the load proportionality factors will vary in size as a function of the effort required to achieve 

convergence in the prior increment.  After each converged increment is computed, the program 

will compute a new tangent stiffness matrix using the internal loading and the deformation of the 

structure at the beginning of the load increment.  The tangent stiffness matrix, [kT], may be 

denoted as: 

 

[ ] [ ] [ ]poT kkk +=  

Eqn. 2-2 

 

where [kO] is the common linear stiffness matrix for the uncoupled bending and force behavior, 

and the matrix [kP] is the initial stress matrix that is based on the force at the beginning of each 

load increment.   
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2.2.1 Nonlinear Equilibrium Solution Methods 
 

For the current research, incremental solution procedures are necessary to trace the 

nonlinear equilibrium path of the model.  ABAQUS utilizes either the Newton-Raphson 

Algorithm or the modified Riks-Wempner Method (arc length method) (ABAQUS 2003); both 

methods are powerful tools for determining the nonlinear response of a system.  ABAQUS uses 

the Newton-Raphson method as its default solution algorithm.  This method is useful for cases 

where there is mild nonlinear response.  The Newton-Raphson method is advantageous because 

of its quadratic convergence rate when the approximation at a given iteration is within the radius 

of convergence (ABAQUS 2003).  One drawback of this technique is its inability to traverse 

limit points in the equilibrium path being traced as part of the nonlinear solution process.  The 

Riks-Wempner method does not suffer from this limitation and as such represents the solution 

strategy of choice when tackling problems with large degrees of nonlinearity. 

 

 

2.3 ELEMENT TYPE 

 

Shell elements found in the ABAQUS element library are chosen for this study due to 

their ability to economically model structures where one dimension, the thickness is much 

smaller than the other dimensions of the structure.  A three-dimensional shell element is able to 

model either “thick” or “thin” shell problems.  The nonlinear shell element chosen for various 

modeling applications throughout this project is the S4R shell element (ABAQUS 2003).  The 

S4R element is defined by ABAQUS (2003) as a 4-node doubly curved general-purpose shell, 

with reduced integration, hourglass control, and finite membrane strains. 
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There are five aspects of an element that characterize its behavior.  They include: 

1. Family 

2. Degrees of Freedom 

3. Number of Nodes 

4. Formulation 

5. Integration 

The S4R belongs to the shell family, and it possesses 4 nodes.  There are two types of shell 

elements, thick and thin shells.  Thick conventional shell elements are utilized in cases where 

transverse shear flexibility is important and second-order interpolation is desired (ABAQUS 

2003).  Thin conventional shell elements are used for modeling cases where transverse shear 

flexibility is negligible and the shell normal remains orthogonal to the shell reference surface.  

The general purpose conventional shell elements used in this research allow transverse shear 

deformation, and they use thick shell theory as the shell thickness increases and become discrete 

Kirchoff thin shell elements as the thickness decreases (ABAQUS 2003).  This is important for 

this project because the shell thicknesses are changed for varying sized columns and beams.  For 

each of the four nodes on the element there are six active degrees of freedom, which include 

displacements and rotations in each principal direction.  The S4R element degrees of freedom are 

defined as: 

 

1, 2, 3, 4, 5, 6 (ux, uy, uz, φx, φy,φz,) 

 

 The S4R element uses reduced integration to form the element stiffness matrix, while the 

mass matrix and distributed loadings are integrated exactly.  Reduced integration usually 
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provides more accurate results (e.g. relieves shear locking, etc.), provided that the elements are 

not distorted or loaded in in-plane bending, and it significantly reduces the running time for the 

model resulting in a more economical choice for the user (ABAQUS 2003).  The S4R is said to 

be computationally inexpensive since the integration is performed at one Gauss point per 

element.  

 

 

Figure 6: S4R Element 

 

 

2.4 FINITE ELEMENT MESH 

 

The analytical models created for this study are built from a dense finite element mesh of 

the ABAQUS S4R element described in the previous section.  The mesh density is directly 

related to the computational time and the modeling accuracy.  These two factors must be 

balanced in such a way that the model produces relatively accurate results while being analyzed 
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in an appropriate amount of time.  The finer the mesh density is, the more accurate the results 

will become, but the computational time will also increase.   

The elements used in each of the models including the verification study have an aspect 

ratio of one-to-one.  In other words, all elements in each of the models have a square shape.  The 

mesh density employed herein was proven to provide accurate results at both the local and global 

level, in the verification work provided by Earls and Shah (2001).  The equally sized elements in 

the flanges and webs of each model allow the components to be compatible.  This means that the 

mesh along the web segment can be integrated with the longitudinal mesh of the flange sets.  

This allows the user to accurately tie the meshes of separate elements together to make a single 

piece that performs as one.   

 

 

2.5 IMPERFECTION SEED 

 

In modeling studies where buckling is investigated, it is important that the evolution of 

the modeling solution be carefully monitored so that any indication of bifurcation in the 

equilibrium path is carefully assessed so as to guarantee that the equilibrium branch being 

followed corresponds to the lowest energy state of the system (Earls and Shah 2001).  To ensure 

that the lowest energy path is followed, the current study uses an imperfection seed in the finite 

element analysis with some initial displacement or rotation.  This initial displacement is obtained 

from a linearized-eigenvalue buckling analysis where an approximation of the buckling mode is 

found.  This analysis will indicate which mode should be used as well as the initial displacement.  

This is then superimposed onto the finite element mesh in order to perform a postbuckling 
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analysis.  The imperfection seed is scaled so that the maximum initial displacement is small 

enough so as to not affect gross cross-sectional properties of the model (Earls and Shah 2001).  

In order to find an accurate account of the critical loads achieved by the model, various scale 

factors are used.  Although the technique of seeding a finite element mesh with an initial 

imperfection to ensure that the correct equilibrium path is followed is recognized to have 

shortcomings, the technique is employed in this project due to the fact that the results obtained 

from this method have agreed with experimental tests (Earls and Shah 2001).  The imperfection 

seed is superimposed on to the mesh by using the *IMPERFECTION command in the ABAQUS 

finite element software. 

 

 

2.6 MATERIAL PROPERTY DEFINITIONS 

 

Steel is the material used for each of the models presented in this study, due to its 

widespread practical use.  The input file for the finite element analysis requires that the material 

properties for each section of the model are defined appropriately.  All analysis performed within 

the scope of this project is purely elastic.  A material name is coded into the input file with a 

modulus of elasticity, E, and Poisson’s Ratio, ν, for the analysis.  In each of the models used in 

the current study, the modulus of the elasticity used is 29,000 ksi, and Poisson’s Ratio is 0.3; this 

is typical for all grades of structural steel.   
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3.0 VERIFICATION STUDY 

 

In order to create models using the finite element method, and to ensure that the analysis 

produces reliable results, the modeling techniques must be verified using a reliable data set.  For 

the current project, a numerical model was selected from Galambos’ text (1968) to recreate the 

variation of curvature, Φ, along the length of the beam.  The model prescribed a W12x50 steel 

shape, simply supported, with an eccentric load at the mid-span of the structure. 

ABAQUS was used to model the beam using the geometry and material properties 

described in the text.  The beam was constructed by defining nodes, and then creating node sets 

and elements between those nodes; the elements used for this model are shells designated S4R.  

Each element corresponded to regions with separate material properties and shell thicknesses.  

The accuracy of the finite element analysis is dependant on the density of the mesh for the 

model.  A dense mesh is used for all of the models throughout the project to obtain more 

accurate results, and an aspect ratio of one-to-one is maintained for all elements in these models.  

The element size is one square inch.  For the verification study, the model generated includes 

approximately 7,000 nodes and 6,800 elements. 

 

 

3.1 VERIFICATION STUDY RESULTS 

     

The objective of the verification study chosen is to replicate the rate of curvature versus 

length curve presented by Galambos.  Young’s Modulus is set to 29,500 ksi and Poisson’s Ratio 

is 0.3 in the finite element model.  The example uses a W12x50 wide flange section where the 
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beam length is 240 inches.  The depth of the beam used is 12.19 inches, and the flanges are 8.077 

inches wide.  The flange thickness used is 0.641 inches, and the web thickness is 0.371 inches 

(See Figure 7). 

 

 

Figure 7: W12x50 Cross-section 

 
The boundary conditions for the study include use of a roller and a pinned condition, 

where the pin was restrained against displacements in the x (strong axis), y (weak axis), and z 

(longitudinal axis) directions and rotation about the z-axis was also restricted.  The roller was 
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restrained against displacements in the x and y directions, and rotation about the z-axis was again 

prohibited.  The rotations were restrained so that the beam would not completely overturn while 

being loaded.  So that the beam would be permitted to twist at the mid-span, rigid beam elements 

were employed at the support locations.  These “rigid beam” elements were given an elastic 

modulus, E, ten times greater than the elastic modulus of the steel, as well as cross-section 

dimensions of five inches in length by five inches in width.       

The load, Q, was applied with an eccentricity, e, to produce a twisting moment equivalent 

to, 

 

eQM z ∗=  

Eqn. 3-3-1 

 

about the shear center of the cross-section.  In order to model the eccentricity of the load, a small 

lever arm is attached to the beam at the mid-span of the beam at the center of the web.  This arm 

is comprised of rigid beam elements so that the arm itself would not deform when loaded.  It is 

not necessary that the arm see any portion of the load, and therefore the rigid beam elements 

allow the load to be transferred totally to the beam.  The actual load for the example was not 

stated in the text; therefore, the end of the lever arm is loaded with a one kip load acting in the 

downward y direction. 

 When viewing the deformed shape through the ABAQUS 6.4 CAE viewer, it is obvious 

the beam is experiencing a lateral-torsional buckling mode of failure.   
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Figure 8: Deformed Shape of a Simply Supported Beam under Eccentric Loading 

 

 

The plot developed by Galambos shows a curve of the location on the beam, z, divided by the 

total length of the beam versus a non-dimensionalized unit of the variation of the curvature.   
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Figure 9: Variation of Angle of Twist and Derivatives Along Beam Length. (Galambos 1968) 

 
 
Once the finite element model of the beam is built, it is important to duplicate this curve in order 

to verify that ABAQUS is providing accurate results.  The rotation of the beam about the 

longitudinal, or z-axis, is exported from ABAQUS into Microsoft Excel.  This rotation is 

reported at the intersection of top flange and web.  The rotation, φ, is then non-dimensionalized 

in the same fashion as listed in the text.  The rotation is multiplied by a unit-less factor of: 
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Eqn. 3-3-2 

 

which for this case yields a value of 174.4.  The plot derived from the finite element analysis 

results is the following: 
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Figure 10: Rotation about Longitudinal Axis of W-Section Compared to Galambos’ Plot 

 

 

The maximum curvature achieved from the plot given in the text is approximately 0.30 radians.  

This value has been scaled off of the plot which was reproduced from the text.  The finite 

element analysis results provide a maximum curvature of 0.319 radians.  Therefore, the results of 

the verification study are satisfactorily showing that the ABAQUS finite element analysis 

software is a reasonable tool for producing models within an appropriate degree of accuracy for 

this study.  The research will make use of the software to evaluate torsional deformations for 
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beams and columns in relation to their failure modes.  Also, the models will be evaluated 

regarding the stresses relative to the theories presented. 
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4.0 FINITE ELEMENT MODELS 

 

To support the existence of the Wagner Hypothesis, it is necessary to find compatibility between 

the results of finite element analyses, theoretical solutions, and experimental test results relative 

to the theory.  A new second-order theory pertaining to thin-walled open-profile sections has 

been developed by Ojalvo in opposition to the classical theory that states when a bar is subject to 

an axial load and the section twists, the longitudinal stresses become inclined to the normal plane 

and produce a torsional moment in that plane.  So that the classical theory may be verified, 

several different finite element models are created using the ABAQUS finite element analysis 

software so as to produce modeling results to compare with both second-order theories as well as 

experimental results.  In making these comparisons, the validity of the competing theory 

presented by Ojalvo can be tested.  The first model is similar to the verification study presented 

in the previous chapter.  It is a doubly symmetric W-section that is loaded by a uniform moment 

across the length.  A linearized-eigenvalue buckling analysis is performed on the model to find 

the critical buckling load; this value is then compared to the numerical solution applied to the W-

section, which was provided by Galambos (1968). 

Subsequent models are created to compare the new theories derived by Ojalvo to the 

classical theories further developed by Galambos.  Along these lines, a second model is 

developed; a cruciform-shaped column that is axially loaded through the section’s centroid.  A 

linearized-eigenvalue buckling analysis is performed to capture the buckling mode of the column 

so that it can be utilized as an initial imperfection.  This imperfection is then superimposed onto 

the column so that a postbuckling analysis can be performed to determine the critical buckling 

load of the structure.  This value is compared to numerical solutions provided by both Galambos 
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and Ojalvo to determine whether the Wagner effect should be included in the second-order 

theories.  The third and final finite element analysis is performed on a tee-shaped column that is 

loaded axially through a point of eccentricity.  The consideration of these modeling results is 

essential since the cross-section is a mono-symmetric shape and thus offers the opportunity for 

important insights to be gained.  The tee finite element analysis is performed in the same way 

that the cruciform is analyzed with an initial imperfection and a postbuckling analysis to 

determine the value of the critical buckling load.  Not only are these results used for comparison 

with numerical solutions derived by Galambos and Ojalvo, but since the model is an analog to an 

actual experimental test specimen (Chen 1980); the results can be verified against the critical 

loads provided by the test results.  The comparisons made in this chapter will give a solid 

indication as to whether the Wagner effect should be included in the second-order theories 

developed relative to the torsional behavior of open-profile thin-walled sections.     

 

 

4.1 DOUBLY SYMMETRIC W-SECTION LOADED BY UNIFORM MOMENT 

 

The finite element model that is used to verify that ABAQUS could achieve accurate 

results for this research is now modified to compare with theoretical equations provided by 

Galambos (1968).  The model consists of a simply supported W12x50 section, which is specified 

as 240 inches in length.  The cross-sectional shape has a flange width of 8.077 inches with a 

0.641 inch thickness.  The web depth is 11.5 inches with 0.371 inch thickness.  The modulus of 

elasticity is given as 30,000 ksi, and the shear modulus is 11,500 ksi.  The moment of inertia 

about the y-axis is 56.4 in4, while about the x-axis the moment of inertia for the section is 394.5 
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in4.  The warping moment of inertia, Iw, is equal to 1,881 in6 and the St.Venant torsion constant, 

KT, is 1.82 in4.  The finite element model is built by defining node locations according to the 

shape of the beam and then filling in those nodes with elements to create a mesh with an aspect 

ratio of one-to-one.  The element chosen for this model is an S4R shell element, and the element 

size is one square inch. This particular element gives accurate results while keeping the 

computational time of the models to a reasonable level.  Along the outside middle lines of the 

cross-sections occurring at the member ends, rigid beam elements are placed between all nodes 

along the web to facilitate the imposition of idealized boundary conditions without producing 

unwanted warping restraint.  With the use of the rigid beam elements, a single boundary 

condition can be placed at the mid-height of the section at either end of the beam.  At one end the 

model is restrained against displacement in the x (stong axis), y (weak axis), and z (longitudinal 

axis) directions as well as rotation about the z-axis is prohibited.  At the other end of the section, 

displacements in the x and y directions are restrained as well as the rotation about the z-axis.  

The rotation about the z-axis is restrained so that the model is able to twist at locations within the 

span length, while no twist is permitted to occur at the ends.  The model is loaded at the 

boundary with a constant moment of 6000 kip-inches which grows according to the magnitude of 

a load proportionality factor that is determined as part of the nonlinear solution process in 

ABAQUS. 

Owing to the fact that geometric or material nonlinearities may occur during the analysis 

of the section, a command line is included in the ABAQUS input deck to indicate whether these 

nonlinearities should be considered.  For this analysis, the model uses 30 time increment steps 

and the results will include geometric nonlinearities that may arise during the model’s execution; 

material nonlinearity is not considered.  A static analysis is the contextual basis for the modeling 

44 



 

(i.e. the loads are applied slowly), and the Modified Riks method (ABAQUS 2003) solution 

technique is employed as part of the postbuckling analysis.  The Modified Riks method is 

typically used to predict unstable, geometrically nonlinear collapse of a structure (ABAQUS 

2003).  There is an indication that the beam has reached the critical buckling load once a 

negative eigenvalue emerges in the numerical analysis (i.e. a negative eigenvalue is detected in 

the global stiffness matrix of the entire model).  The occurrence of this first negative eigenvalue 

needs to also occur in the time step following the increment where it first appeared to ensure that 

the buckling mode is persisting (i.e. not subsequently eliminated by a reduction of the load 

proportionality factor).  These eigenvalues are easily obtained from the message file produced by 

the analysis.  The message file will give information regarding the progress of the solution as 

ABAQUS executes the file.  It lists details including increment numbers, step times, equilibrium 

iterations, the load proportionality factor associated with the Riks analysis, etc.  The load 

proportionality factor can be described as the fraction of the load that the model is seeing at a 

particular point in time, with the point in time being a specific increment.  For this model, the 

first negative eigenvalue occurs at time increment nine, which corresponds to a load 

proportionality factor of 0.5025, or about fifty percent of the total load.  This results in a critical 

buckling moment of 3015 kip-inches. 

Galambos (1968) develops a theoretical result for this model.  He states that the lateral-

torsional buckling mode of a simple beam will develop a critical moment of: 
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Setting “n” equal to one, the critical moment is calculated as 2978.52 kip-inches.  The difference 

in the theoretical value and the result of the finite element analysis equals 1.2%, which proves 

that the finite element analysis results for this case are in definite agreement with the use of the 

Wagner Hypothesis.   

 

 

4.2 FLANGED CRUCIFORM COLUMN LOADED BY AXIAL FORCE 

 

A second finite element analysis is executed to further prove the validity of the Wagner 

Hypothesis.  A flanged cruciform model presented by Ojalvo is utilized as the subject of this 

analysis.  The column is a shape with length, L, and thickness, t; where t is very small when 

compared with its other dimensions.  The area of the section is defined as 12td, where d is the 

length of a flange piece.  The depth and width of the cross-section are defined as 4d.  The polar 

moment of inertia, J, is defined as 4t3d, and both Ix and Iy are equal to 13.5td3.  The warping 

torsion constant, Iω, is 4/3 td3.  For the initial model, a trial thickness of t = 0.1 inches, a depth of 

d = 6 inches, and a length of L = 240 inches is used because actual dimensions were not provided 

by Ojalvo.  Using these dimensions, the area of the section is 7.2 in2, the polar moment of inertia 

is 0.024 in4, both moments of inertia are 291.6 in4, and the warping torsion constant is equal to 

28.8 in4.  A graphical depiction of the cross-section is shown below: 
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Figure 11: Cruciform Column Cross-sectional Dimensions 

 

Because of the shape of the model, the two sections of the web and the four flanges are 

generated separately and then meshed together for the finite element analysis.  The outline of the 

model is assigned nodes and then this outline is filled with nodes using the node generation 

command.  The element generation is based on the specified nodes using an aspect ratio of one-

to-one, with the element size being one square inch.  The material properties for the cruciform 

model are assigned a modulus of elasticity of 29,000 ksi and Poisson’s ratio of 0.3, which are 

typical properties of steel.  Along the middle lines of the constituent plate surfaces at each end of 

the model, there are rigid beam elements placed between the nodes along the web members only 
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so that there is no warping restraint at the ends of the column.  While it is that twisting of the 

members’ ends is constrained, cross-sectional twisting within the span is unrestrained.  These 

“rigid beam” elements are given a modulus of elasticity of 290,000 ksi and Poisson’s ratio of 0.3.  

Since the outside surfaces are very rigid, the boundary conditions can be placed at the 

intersection of the two web sections at a single node location.  At one end of the model, the 

column is restrained against displacements in the x, y, and z directions, and it is prohibited from 

twisting about the y-axis.  At the other end of the column, the model is prevented from 

displacing in the x and z directions, as well as being restrained against rotation about the 

longitudinal y-axis.  An axial compressive load of 100 kips was placed at the intersection of the 

two web sections at the top of the column; this is subsequently scaled according to the load 

proportionality factor.  The model geometry required approximately 20,000 nodes and 18,000 

elements.  For comparison, this model is subject to a number of different analysis runs.  The goal 

of this phase of the analysis is to compare the finite element results to the second-order theories 

provided by Ojalvo, as well as to provide plots of the load versus deflection so that the stability 

of the model may be evaluated.   

The finite element analysis makes use of an imperfection file to account for initial 

imperfections in the model.  Two analysis runs are performed: the first to arrive at the probable 

collapse mode, and the second to perform the postbuckling analysis.  In the first analysis run a 

linearized-eigenvalue buckling analysis is executed on the perfect column to find the buckling 

mode and to ensure that the mesh discretizes those modes correctly.  These results are written to 

a “node file” to subsequently be used as input into the postbuckling analysis as an initial 

displacement field.  The imperfection is superimposed into the code using a single scale factor 

applied to the point of maximum displacement to define the maximum perturbation of the model, 
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and the amount of remaining imperfection inputted into the model is determined by relative 

scaling of the user input maximum at other locations.  This scale factor is adjusted and evaluated 

to determine the structure’s sensitivity to the imperfection seed.  During the linearized-

eigenvalue buckling analysis run, the model is set up to evaluate the first five buckling modes.  

For the first set of models, a series of scale factors was used ranging from L/100 to L/5000.  As 

the scale factor becomes smaller, the imperfection also becomes smaller and the model parallels 

practical conditions.  To utilize the imperfection command, the buckling mode retrieved from the 

linearized-eigenvalue buckling run must be inputted as well as the scale factor.  The ABAQUS 

CAE pre- / post-processing software is used to look at each of the five buckling modes from the 

linearized-eigenvalue buckling analysis.  Mode one corresponds to a twist about the longitudinal 

axis, and thus is used with the imperfection command as the seed displacement. 

When the postbuckling analysis is complete, the ABAQUS CAE module is used to export 

the load proportionality factors as well as the rotation of the model about the y-axis (e.g. 2-axis 

in Figure 13).  An Excel plot of the load versus deflection is then created for the model; this plot 

is used to study the torsional stability of the model.  If the plot shows a smooth curve resembling 

the stability curves for an imperfect system, then the results are usable.  The node located at the 

point of intersection of the two webs at the mid-height of the cruciform-shaped model is selected 

to provide the output of the load proportionality factors and rotations.  The load versus deflection 

plot for this set of analysis runs shows various discontinuities in the rotation as the load 

approaches a critical value.  As can be seen in the Excel plot below (See Figure 12), the curve 

does not resemble either of the stability plots that were discussed earlier in this text.  Also note 

that while the shape of the plot is chaotic, there is no significant amount of deformation about the 

longitudinal axis.  This discontinuity could be attributable to the fact the Modified Riks analysis 
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method is passing over the critical buckling load through its selection of load increments that are 

too large for the present investigation.  This occurs when the model has an easy time converging 

during the solution process, and as a result permits the incremental load proportionality factors to 

grow large.  By invoking the direct analysis parameter, the user may specify a constant load 

increment size and thus ensure that the critical load is not skipped.  In addition, the ABAQUS 

CAE viewer is used to analyze the change in deformations as the model was stepped through the 

analysis. 
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Figure 12: Load vs. Rotation for Section having t = 0.1 

 

 

Through the use of ABAQUS CAE, it becomes obvious that the deformed shape exhibits 

the presence of local buckles along the length of the model (See Figure 13).  This would cause 
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the local rotation of a node to be in the opposite direction in comparison to the global rotation of 

the model.  At some locations along the length of the model, the local buckles caused the model 

to see a negative value for the rotation about the y-axis.   

 

 

Figure 13: Mode 1 Deflected Shape of Cruciform Column Exhibiting Local Buckles 

 

 

Once it is established that the occurrence of local buckles is causing the global critical load to be 

undetectable, it is necessary to re-evaluate the parameters of the model, and it is concluded that 

the thickness of 0.1 inches is not adequate for the column under consideration, and therefore the 

thickness of both the flange plates and web plates is increased to 0.25 inches.  This increases the 
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area of the model to 18 in2, the polar moment of inertia to 0.375 in4, both moments of inertia to 

729 in4, and the warping torsion constant to 72 in4. 

 When performing the finite element analysis on the cruciform-shaped column with the 

new thickness of 0.25”, another linearized-eigenvalue buckling analysis is run to create the initial 

imperfection for the new model.  After considering the five buckled shapes provided by the 

analysis, it is concluded that the mode 1 buckled shape should be used with a scale factor of 

L/1000 (the maximum out-straightness permitted by current steel design specifications) in the 

postbuckling analysis.  The mode 1 buckled shape is shown below: 

     

 

 

Figure 14: Mode 1 Buckled Shape of Cruciform Column with 0.25" Thickness 
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The image provided by the ABAQUS viewer shows the column experiencing a torsional 

deformation; with the section twisting once along the length of the column (i.e. torsional mode 

1).  This imperfection is superimposed into the postbuckling analysis; subsequently leading to 

the torsional buckling mode of failure seen in the following ABAQUS screen capture (from the 

postbuckling analysis): 

 

 

Figure 15: Postbuckled Shape of Cruciform Column with Scale Factor of L/1000 
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A plot of the load versus deflection verifies that the model is responding to the axial load as it 

should (See Figure 16).  It can be seen that as the load increases so does the rotation of the 

model, which is consistent with intuition.  
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Figure 16: LPF vs. Rotation about Longitudinal Axis for Web Intersection at Mid-height 

 

 

This plot also demonstrates the relative stability of the model; it can be stated that the model 

follows a curve such that after the member reaches a critical load, the member continues to be 

loaded and shows the capacity to resist additional load (i.e. stable postbuckling response).  The 

modeling results indicate that the cruciform-shaped model possesses a critical load of 206.75 

kips.  This is extracted from the Excel plot at the point where the graph begins to turn and 

display a dramatic increase in the twisting deformation.  These results are reasonable because the 
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deformed shape of the postbuckling analysis exhibits a purely torsional mode of failure (See 

Figure 15). 

 The form of the classical second-order theory pertaining to the cruciform case appears as: 
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Ojalvo, however, rejects the Wagner Hypothesis, as implied in the foregoing equation, and thus 

states that buckling of a cruciform, that is purely torsional, is fictitious and thus not covered by 

his new theory.  He then assumes that the cruciform will behave in the same way that four tee-

columns buckling simultaneously would respond to an axial compressive loading.  The critical 

buckling load is then given as: 
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Eqn. 4-4-3 

 

When evaluating these two equations numerically, based on the dimensions of the model used 

for the finite element analysis, the critical buckling load calculated using the classical theory is 

equal to 210.65 kips; using the new second-order theory developed by Ojalvo the critical 

buckling load for the cruciform-shaped column is equal to 266.60 kips.  The calculations that 

were performed to arrive at these results can be found in Appendix C2.  It is obvious that when 

comparing the critical load resulting from the finite element analysis, to the critical loads 
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calculated from both second-order theories that the numerical solution that takes Wagner’s effect 

into account is in closer agreement with the finite element analysis results.   

In order to address the notion of whether or not the principal stresses within a structural 

member form a helix when the member is subject to a torsional failure mode, a graphical 

representation is made in ABAQUS to show the inclination of the principal stresses. 

 

 

Figure 17: Maximum Principal Angle on Upper Half of Flange on Cruciform-Shaped Column 

 

 

The screen capture shown above gives a plot of the maximum principal stresses on one of the 

flanges of the cruciform model.  This plot shows elements from the top of the column to the mid-

height only.  The screen capture exhibits the column in the final step of the analysis under a 

maximum loading.  It is obvious that the stresses are forming a helix type shape, yet it is 

necessary to verify the graphical representation numerically.  The finite element analysis is used 
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to extract both the normal and shear stress for each element along a strip of elements in the 

flange to a data file.  The flange used in this portion of the analysis lies in the 1-2 plane using the 

coordinates specified by ABAQUS; or in other words the x-y plane.  In addition, the rotation 

about the 3 or z-axis for the same strip of elements is used.  The normal and shear stresses are 

used to calculate the inclination of the principal plane, and then this value is plotted in addition to 

the rotation about the z-axis for the entire length of the column.  The equation used to compute 

the angle of inclination of the principal stress, θp, is the following: 
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Eqn. 4-4-4 

 

The calculations used for the following Excel plot are found in Appendix D1.  The Excel plot 

depicts the inclination of the principal angle of each element along the length of the column in 

addition to the rotational deformation of each element in the same planar section.   
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Figure 18: Principal Angle and Rotation about Z-Axis along Length of Cruciform 

 

 

By examining the plots shown in Figure 18 it is concluded that the maximum principal angles are 

in fact forming a helix that follows the deformed shape of the column.  This agrees with the 

graphical representation extracted from ABAQUS, and further verifies that the classical second-

order theories including Wagner’s effect are valid.  Due to the fact that the plots do not match 

exactly, it is possible that the results are somewhat at odds with the Wagner Hypothesis.  It is 

important to note that Wagner’s Hypothesis was developed based on the idea of fiber orientation.  

Galambos’ development of the theory does not rely heavily on the concept of fibers, and 

furthermore steel is a homogeneous material, which is not comprised of a bundle of fibers.  This 

may account for the difference in the plot shown in Figure 18.  Wagner’s Hypothesis is valid 

based on the fact that the results follow the trend of the theory.  For the cruciform model, the use 

of Wagner’s effect is credible based on agreement between numerical solutions and finite 
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element analysis results relative to the critical buckling load as well as the existence of the 

helical pattern of the principal stresses shown in Figure 17. 

 

     

4.3 TEE COLUMN LOADED BY ECCENTRIC AXIAL COMPRESSIVE FORCE 

 

The final phase of modeling performed for this project involves a finite element analysis 

of a column with a tee-shaped cross-section.  The tee is also considered an open-profile thin-

walled shape, and was considered directly by Ojalvo in his alternate formulation.  Ojalvo makes 

reference to Shao-Fan Chen’s (1980) experimental testing (Ojalvo 1990) of 24 tee-shaped beam-

columns in order to make comparisons between failure loads and flexural-torsional buckling 

loads. The tee section is a mono-symmetric shape and thus provides additional background for 

comparison beyond the doubly symmetric cases already considered.  The experimental tee 

specimens were loaded eccentrically and thus the present discussion follows suit.  This eccentric 

loading condition represents a departure from the other finite element analyses that are used for 

analysis within the scope of the current research in that they were loaded with a concentric load.  

Within the text of “Lateral-Torsional Buckling of T-Section Steel Beam-Columns”, Chen (1980) 

notes that when a tee section is acted on by an eccentric compressive load, there are two 

locations where the section may be loaded: the section may be loaded with either a positive or 

negative eccentricity.  The positive eccentricity case is characterized as when the load is placed 

on the flange-side of the centroid, and the negative eccentricity is when the load is placed axially 

on the web-side; as shown below: 
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Figure 19: a) Negative Eccentricity b) Positive Eccentricity 

 

 

 The results presented for the 24 experimental specimens of different cross-sectional 

dimensions and lengths are presented in the paper by Chen (1980).  There are some columns that 

fail due to local buckling, some that fail due to in-plane instability, and others that fail due to 

lateral-torsional buckling.  The section that is used for the finite element analysis was chosen 

from the specimens that failed in a lateral-torsional mode: specimen PD3-1.  The other cases 

were not within the scope of the current study.  The column selected is comprised of two steel 

plates with flange dimensions of 102 millimeters in width by 7.7 millimeters thick.  The web 

plate measures 121 millimeters in depth and 7.7 millimeters in thickness.  The total column 

length is 2322 millimeters, and the area of the cross-section is listed as 1717 mm2.  Chen (1980) 

states that extreme care was taken to achieve the most accurate experimental results possible.  
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The specimen is made of low carbon steel, marked AD3 by the manufacturer, with a yield stress 

reported by Chen (1980) as 2910 kg/cm2.     

 

 

Figure 20: Metric Dimensions of Tee Cross-section 

 

 

 The experimental tests were performed in the Constructional Structure Laboratory of the 

Xian Institute of Metallurgy and Construction Engineering in Xian, Shaanxi, China.  The loading 

installation consisted of a loading frame and hydraulic jack, and the test specimens were hinged 

at both ends with double knife-edge bearings.  The center of the hinge coincided with the load 
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application point, and the knife-edge of the upper end bearing was fixed to the frame girder with 

bolts, while the lower bearing rested on the hydraulic jack (Chen 1980).  The specimens were 

initially aligned by the marks on the end plate and then the column was loaded to approximately 

one-third of the failure load.  At this stage, the column was further aligned so that two strain 

gauges placed symmetrically on the flange would provide equal readings; the ratio between the 

strain gauges placed on the flange and the web, in conformity with the eccentricity ratios 

provided for the section, were also monitored.  The eccentricity ratio is defined by Chen to be: 

 

S
Ae *

=ε  

Eqn. 4-4-5 

 

where ε is the non-dimensional eccentricity ratio, e is the position of the eccentricity, A is equal 

to the area of the section, and S is the elastic section modulus.  Chen reports the eccentricity 

ratios for the experimental specimens instead of the actual location of the eccentricity.  The test 

setup and experimental results provided by Chen (1980) were utilized in the construction of the 

finite element models. The theoretical equations provided by Ojalvo and Galambos are used to 

compare with the finite element analysis results in conjunction with the experimental results 

from the paper by Chen (1980).  This part of the finite element analysis provides for very reliable 

conclusions due to the possibility of agreement between experimental results, finite element 

analysis results, as well as numerical results based on theories including (and excluding) 

Wagner’s hypothesis. 

 The finite element model built using ABAQUS was formed using English units; therefore 

all of the dimensions were converted from metric to English.  The flange plate measures 4.02” 
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wide by 0.303” thick, while the web plate measures 4.76” deep by 0.303” thick; the length of the 

column is 91.42”.   

 

Figure 21: English Dimensions of Tee Cross-section 

 

 

The model is developed in the same fashion that the other models are built.  Nodes are specified 

to form the outline of the section, and the input file generates nodes and elements within that 

outline to create the mesh.  The aspect ratio used for the elements is one-to-one as defined 

previously, and the element size is 0.9142 in. by 0.9142 in.  The entire model uses approximately 

1300 nodes and 1200 elements, with the element type being the S4R shell element from the 
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ABAQUS library.  As with the other models analyzed for this project, rigid beam elements are 

superimposed at either end of the model, along the flange and web faces, to facilitate imposition 

of the boundary conditions without imposing warping restraint.  The model is restrained against 

St. Venant’s torsion at its ends.   

The experimental tests were setup so that the load was placed at the point of eccentricity 

as well as the boundary conditions.  However, according to the theoretical modeling approaches 

presented by Galambos and Ojalvo, the load must be placed at the point of eccentricity and the 

boundary conditions should be located at the centroid of the finite element model so as to 

facilitate a useful comparison.  This applies to all open-profile shapes.  In order to achieve results 

that would closely parallel the theory, the model is analyzed with the load at the specified 

eccentricity and the boundary conditions at the centroid of the section.  Within the text of Chen’s 

paper, the eccentricity was given in the form of the eccentricity ratio presented above (See Eqn. 

4-5).  The eccentricity ratio for the specimen of interest, PD3-1, was given as -1.55; this is a 

unitless value.  Using the area, A, of the section and the elastic section modulus, S, the 

eccentricity of the model was found to be 2.52” from the shear center, which is located in the 

center of the flange plate.  For the finite element analysis, an arbitrary axial compressive load of 

10 kips is placed at this point (the reader will recall that a load proportionality factor will be 

applied to this reference load to suitably scale its magnitude during the nonlinear solution 

process).  The boundary conditions are positioned at the centroid of the model, with the bottom 

of the model restrained against displacements in the x, y, and z-directions; with the rotation 

about the longitudinal axis prevented at that point.  At the top of the column, the model was 

restrained against displacements in the x and z-directions in addition to the rotation about the y-

axis.   
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The analysis is run using the Modified Riks method of analysis using an imperfection 

seed for the postbuckling analysis.  An ABAQUS buckle file is run analyzing the first five 

buckling modes to locate the appropriate buckling shape for superposition onto the column as an 

initial imperfection.  Using the CAE viewer, the buckling mode shapes could be evaluated and 

mode 1 was chosen as the appropriate shape (See Figure 22). 

 

 

Figure 22: Mode 1 Buckled Shape of Tee Model at Scale Factor L/1000 

 

 

The postbuckling analysis is run using this mode with multiple scale factors ranging between 

L/500 and L/5000.  The message file produced by ABAQUS lists the eigenvalues for each 

increment of the analysis.  The first occurrence of a negative eigenvalue indicates the increment 

where the critical load for the model is achieved.  According to the message file, the critical load 
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occurs at increment 18, which corresponds to a load proportionality factor of 3.729, or a critical 

buckling load of 37.29 kips.  This is the load at which the column begins to buckle.  When 

looking at the shape in CAE, it is obvious that the tee shape is experiencing lateral-torsional 

buckling (See Figure 23); this is in agreement with the results of the experimental test column. 

 

 

Figure 23: Postbuckled Shape of Tee Model at L/1000 

 

 

To verify that the critical buckling load is captured, a plot of the load proportionality factors 

versus the rotation about the y-axis gives a critical load of approximately 37 kips shown below.  

It is important to utilize a number of scale factors to ensure that as the scale factor becomes 

smaller, the column parallels a perfect member.  It is obvious from the plot that as the scale 

factor is decreased towards L/5000, the load versus deflection becomes more flat.  This behavior 
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is representative of the effect of smaller initial imperfections and approaches the behavior of a 

“perfect” column. 
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Figure 24: Load vs. Rotation for Tee Section for Various Scale Factors 

 

 

Once it is established that the model is behaving as a column should according to stability 

theories, there is confidence established in the analysis. 

 In order to determine whether Wagner’s Hypothesis is valid for the open-profile thin-

walled section, the critical load must be calculated using both theories and then compared to the 

experimental results as well as the finite element analysis results.  The equation provided by 

Ojalvo does not make use of Wagner’s hypothesis and is equal to the following: 
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The critical load found utilizing this equation is equal to 44 kips.  The calculations performed to 

arrive at this result are included in Appendix C3.  The equation provided by Galambos, which 

does make use of the Wagner Hypothesis, is presented as the following: 
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Calculating the critical load using these theoretical equations (Eqn 4-7), the buckling load is 

found to be equal to 39 kips (See Appendix C3).  When converting the critical load stated in the 

results given in Chen’s paper, the load is equal to 37 kips.  The finite element analysis gives a 

result of 37.29 kips, and therefore it is shown that the finite element analysis is in good 

agreement with the experimental results, which are both in agreement with the theoretical results 

derived from Galambos’ equation for the critical load.  This series of finite element models also 

confirms that the Wagner effect should be included in the second-order theories used to compute 

critical buckling loads of thin-walled open-profile sections. 

   It is important to note that Ojalvo had analyzed the tee results provided by Chen (1980) 

(Ojalvo 1990).  His results are not consistent with the results achieved from the finite element 

analysis or the experimental results presented by Chen (1980).  In an attempt to duplicate 

Ojalvo’s derivation of the critical buckling load, the equations presented were worked and an 

error in that derivation does exist.  This possibly explains the inconsistent results that Ojalvo’s 

second order theory provides when compared with the finite element results. 

 So as to further prove that the Wagner effect does exist for mono-symmetric cross-

sections, the direction of the principal stresses for the model need to be evaluated.  As in the case 

of the cruciform section, ABAQUS was used to look at a graphical representation of the 

inclination of the maximum principal stresses (See Figure 25).   
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Figure 25: Maximum Principal Angles on Tee Flange Section 

 

 
 
Note that the graphic shown in Figure 25 is the upper half of the flange section of the tee.  By 

interpreting the graphical representation, it is obvious that the direction of the principal stresses 

follows the geometry of the deformation of the member.  So that the reliability of the ABAQUS 

interface could be verified, it was essential to use the normal and shear stresses on each element 

to calculate the inclination of the principal plane in the same way that it was calculated for the 

cruciform section.  This would prove numerically that the graphics are accurate.  To calculate the 

inclination of the principal plane, it was coded into the input file that when the analysis was 

executed, a list of the normal stresses would be printed to the data file produced by the 

postbuckling analysis.  Then using mechanics of materials principles, the angle is calculated 
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using the normal and shear stresses from each element (See Eqn. 4-4).  These computations are 

included in Appendix D2.  An Excel plot was then created including the principal angles along a 

strip of elements extracted from the flange of the tee, as well as the rotation about the z-axis for 

the same strip of elements along the length of the column at approximately 25% of the load, or 

increment 11 of the analysis (See Figure 26).  This twist will correspond directly to the plane in 

which the inclination of the principal angles exists and therefore a direct relationship can be 

formed.   
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Figure 26: Principal Angles and Rotation about Z-Axis along Flange Length (1/4 of  Pcr) 

 

 

By interpreting the plot shown above, it can be concluded that the tee section is producing helical 

shaped principal angle inclinations as the model twists; these inclinations follow the geometric 
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deformation of the column.  These plots do not match exactly, and therefore can be said to be in 

disagreement with the Wagner Hypothesis.  Wagner’s Hypothesis was developed based on the 

concept of a cross section being comprised of a bundle of fibers.  Galambos’ development of the 

theory does not rely heavily on the concept of fibers, and furthermore steel is a homogeneous 

material, which is not made of fibers.  In fact, the plots do follow the same shape, and thus 

conform to the theory.  These results, in conjunction with the agreement of the experimental test 

results, finite element analysis results, and numerical solutions further developed by Galambos 

verify that for a mono-symmetric cross-section the Wagner Hypothesis is valid. 
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5.0 CONCLUSIONS AND RECOMMENDATIONS 

 

The current study examines the Wagner Hypothesis as it applies to torsional problems of thin-

walled open-profile sections.  Second-order theories have been developed based on the line of 

shear centers to calculate critical buckling loads for beams, columns, and beam-columns.  In 

addition to the classical theory, considering a longitudinal axes defined by the line of shear 

centers, that has been accepted and used for nearly a hundred years, a new opposing second-

order theory has been derived based on the line of centroids (Ojalvo 1990).  This new theory 

does not accept the use of the Wagner effect, while the classical theories do make use of the 

hypothesis.  The Wagner Hypothesis states that when a thin-walled open-profile member is 

subjected to a loading that will cause a torsional failure mode, the longitudinal stresses become 

inclined to the normal plane and produce a torsional moment in that plane.  The principal stresses 

along the length of the member will form a helical shape that follows the geometry of the 

deformed member.  Ojalvo does not trust that this phenomenon is possible, and therefore felt it 

was necessary to develop a new theory excluding the Wagner effect. 

Based on the results obtained from the current study, it can be concluded that the Wagner 

Hypothesis is valid for thin-walled open-profile sections.  There is close agreement between the 

analytical solutions, developed by Timoshenko (1905) and reported by Galambos (1968) and the 

finite element analysis results for a doubly symmetric beam section.  In addition, there is similar 

agreement for the case of a flanged cruciform section.  It is necessary to perform a finite element 

analysis on a mono-symmetric cross-section due to the question of the capacity calculated when 

the Wagner effect is used.  Ojalvo states that if the critical buckling load of a mono-symmetric I-

beam is calculated using theories that employ the Wagner effect, the same value will be achieved 
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regardless of whether the larger or smaller flange is in compression.  A tee-shaped column 

presented by Ojalvo was used to verify the behavior of a mono-symmetric section.  This finite 

element analysis is based on experimental tests performed by Chen with the results of those tests 

presented by both Chen (1980) and Ojalvo (1990).  Again, there is agreement of the critical 

buckling loads achieved from the finite element analysis, the experimental test results, and the 

numerical solutions developed by Timoshenko (i.e. the classical theory that includes Wagner’s 

Hypothesis).  The supporting calculations can be found in Appendix C.  Due to the agreement 

between finite element analysis results and classical theories related to the models, it is 

reasonable to believe that the Wagner Hypothesis valid. 

To further verify that the Wagner effect is valid, graphical representations of the 

maximum principal stresses for the cruciform and tee-shaped columns are created.  In both cases, 

the stresses for each element follow the deformation of the model.  These graphical 

representations were verified numerically to ensure the accuracy of the picture.  The calculations 

found in Appendix D prove that the helical shape of principal stresses does exist, and there is 

good basis for use of the Wagner effect in second-order theories.  However, the inclination of the 

principal plane for the elements does not match the deformations exactly, and the agreement of 

the plots is therefore somewhat at odds with the Wagner Hypothesis.  Wagner’s Hypothesis was 

developed based on the concept of the cross-section being comprised of a bundle of fibers.  The 

helical plots are said to follow the deformation of those fibers.  Galambos’ further development 

of the classical second-order theories does not rely heavily on the idea of fiber orientations.  

Steel is a homogeneous material that is not made from a bundle of fibers, and this may account 

for the difference in the plot of the principal angles compared with the rotations of the elements.  

Based on the fact that the plots follow the trend that the Hypothesis prescribes in addition to the 
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agreement between the finite element results and the classical second-order theories, the Wagner 

Hypothesis is valid for thin-walled open-profile members. 

Further research should be performed to confirm that Wagner’s effect is valid for all thin-

walled open-profile sections.  The current study proves that the hypothesis is warranted based on 

finite element results.  To further discredit the opposing theory it would be effective to perform 

experimental tests on mono-symmetric I-beams to determine the critical buckling load as well as 

record the stresses for the specimen along its length at multiple stages of the loading.  This would 

ensure that ABAQUS is computing the principal stresses correctly.  It is also important to further 

explore the agreement between the principal angles and the deformations of each section.  The 

plots created during the current study exhibit the same helical shape; yet do not show exact 

agreement.  In addition to performing the experimental tests, a finite element analysis could be 

executed on the mono-symmetric I-beam model to find agreement with the numerical solutions 

as well as with the new experimental results. 
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APPENDIX A 

 
 
 

ELEVATION VIEWS OF COLUMN SECTIONS 
 

 

Appendix A includes elevation views of the column sections used for the finite element analyses 

employed to verify the validity of the Wagner Hypothesis.  Appendix A1 shows the elevation for 

the cruciform model with the boundary conditions placed at the intersection of the two web 

sections; the loading is also placed at this location.  The length of the column is shown as L = 

240”.  Appendix A2 includes the elevation views of the tee section.  The first set of views shows 

the column with metric dimensions.  It depicts the setup used by Chen for the experimental tests 

as well as the column used for the finite element analysis with both the boundary conditions and 

loadings shown.  The second set of elevations is the same as the first with the exception that the 

dimensions are shown in English units.  The length of the tee column is equal to 2322 

millimeters or 91.42 inches. 
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APPENDIX A1 
 
 

 

Figure 27: Elevation of Cruciform Model 
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APPENDIX A2 
 

 

Figure 28: Elevation of Tee Model with Metric Dimensions 
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Figure 29: Elevation of Tee Model with English Dimensions 
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APPENDIX B 
 

 
ABAQUS INPUT FILES 

 
Typical input files created in ABAQUS that were used to perform the finite element analysis 

section of the study are presented in this appendix.  There are files included for each segment of 

the project.  The first section, B1, includes the file used to complete the verification study which 

analyzed a simply supported beam with an eccentric loading at the mid-span.  The results from 

this analysis were used to duplicate a plot presented by Galambos to verify that ABAQUS would 

give accurate results for this project.  Appendix B2 shows an input file used for a linearized-

eigenvalue buckling analysis performed on a simply supported I-beam with a uniform moment 

loading.  This model was used to aid in finding the critical moment.  Appendix A3 is similar to 

the input file shown in Appendix B2 with the exception of how the analysis is performed.  The 

model in B3 is analyzed using nonlinear geometry and Modified Riks computation.  This model 

is used to detect the critical moment in the section and compare it to the closed form solution. 

 Appendix B4 includes a linearized-eigenvalue buckling analysis for a cruciform-shaped 

column with an axial compressive load applied.  This analysis is used as an imperfection seed to 

input the buckling mode shape into the postbuckling analysis for the same column.  Appendix B5 

is identical to B4 with the exception that there is an imperfection file used to account for initial 

imperfections in the column.  B5 is a postbuckling analysis of the cruciform column and is used 

to compare the critical load at the point of bifurcation to the theoretical equations provided by 

Ojalvo.  The final input files for the study are included in Appendix B6 and Appendix B7.  

Appendix B6 shows an input file for the linearized-eigenvalue buckling analysis of a tee-shaped 
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column.  It is used as an imperfection seed for the postbuckling analysis of the same member.  

The input files presented in Appendix B do not include all input files analyzed during this study, 

but are representative of each type of structure that was considered.     
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APPENDIX B1 
 

*HEADING 
 Verification of Galambos' Plot shown on  
 page 64 of "Structural Members and Frames" 
 Simply supported I-Beam 12WF50 
 Eccentric Loading 
*NODE 
**Left side of the TOP Flange 
1,0,12.19,0 
965,4.0385,12.19,0 
1929,8.077,12.19,0 
**Right side of the TOP Flange 
241,0,12.19,240 
1205,4.0385,12.19,240 
2169,8.077,12.19,240 
**Left side of the BOTTOM Flange 
2170,0,0,0 
3134,4.0385,0,0 
4098,8.077,0,0 
**Right side of the BOTTOM Flange 
2410,0,0,240 
3374,4.0385,0,240 
4338,8.077,0,240 
**Web 
4339,4.0385,11.174,0 
5544,4.0385,6.095,0 
6749,4.0385,1.016,0 
4579,4.0385,11.174,240 
5784,4.0385,6.095,240 
6989,4.0385,1.016,240 
**TOP FLANGE 
*NGEN,NSET=TFB 
1,241,1 
*NGEN,NSET=TFM 
965,1205,1 
*NGEN,NSET=TFT 
1929,2169,1 
*NFILL,NSET=TF1 
TFB,TFM,4,241 
*NFILL,NSET=TF2 
TFM,TFT,4,241 
**BOTTOM FLANGE 
*NGEN,NSET=BFB 
2170,2410,1 
*NGEN,NSET=BFM 
3134,3374,1 
*NGEN,NSET=BFT 
4098,4338,1 
*NFILL,NSET=BF1 
BFB,BFM,4,241 
*NFILL,NSET=BF2 
BFM,BFT,4,241 
**WEB NODES 
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** 
*NGEN,NSET=WEBB 
6749,6989,1 
*NGEN,NSET=WEBM 
5544,5784,1 
*NGEN,NSET=WEBT 
4339,4579,1 
*NFILL,NSET=W1 
WEBT,WEBM,5,241 
*NFILL,NSET=W2 
WEBM,WEBB,5,241 
**NSET FOR BOUNDARY CONDITION 
*NSET,NSET=PINNED 
5544 
*NSET,NSET=ROLLER 
5784 
*NODE 
6990,5.0385,6.095,120 
** 
**ELEMENT DEFINITIONS 
 
** 
** 
*ELEMENT,TYPE=S4R 
1,1,2,243,242 
*ELGEN,ELSET=TOPFLANGE 
1,240,1,1,8,241,240 
*ELEMENT,TYPE=S4R 
1921,2170,2171,2412,2411 
*ELGEN,ELSET=BOTTOMFLANGE 
1921,240,1,1,8,241,240 
*ELEMENT,TYPE=S4R 
3841,965,966,4340,4339 
*ELGEN,ELSET=WEBTOP 
3841,240,1,1 
*ELEMENT,TYPE=S4R 
4081,4339,4340,4581,4580 
*ELGEN,ELSET=WEBMIDDLE 
4081,240,1,1,10,241,240 
*ELEMENT,TYPE=S4R 
6481,6749,6750,3135,3134 
*ELGEN,ELSET=WEBBOTTOM 
6481,240,1,1 
**GROUPING ELEMENTS 
*ELSET,ELSET=WEB 
WEBTOP,WEBBOTTOM,WEBMIDDLE 
*ELEMENT,TYPE=B31,ELSET=LEVERARM 
6722,5664,6990 
*BEAM SECTION, SECTION=RECT, ELSET=LEVERARM, MATERIALS=RIGID 
 
5.,5. 
*ELEMENT,TYPE=B31,ELSET=RIGIDBEAMTF 
6723,121,362 
6724,362,603 
6725,603,844 
6726,844,1085 
6727,1085,1326 
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6728,1326,1567 
6729,1567,1808 
6730,1808,2049 
*BEAM SECTION, SECTION=RECT,ELSET=RIGIDBEAMTF, MATERIALS=RIGID 
5.,5. 
*ELEMENT,TYPE=B31,ELSET=RIGIDBEAMBF 
6731,2290,2531 
6732,2531,2772 
6733,2772,3013 
6734,3013,3254 
6735,3254,3495 
6736,3495,3736 
6737,3736,3977 
6738,3977,4218 
*BEAM SECTION, SECTION=RECT,ELSET=RIGIDBEAMBF, MATERIALS=RIGID 
5.,5. 
*ELEMENT,TYPE=B31,ELSET=RIGIDBEAMWEB 
6739,1085,4459 
6740,4459,4700 
6741,4700,4941 
6742,4941,5182 
6743,5182,5423 
6744,5423,5664 
6745,5664,5905 
6746,5905,6146 
6747,6146,6387 
6748,6387,6628 
6749,6628,6869 
6750,6869,3254 
*ELEMENT, TYPE=B31,ELSET=RIGIDBEAMLEFT 
6751,3374,6989 
6752,6989,6748 
6753,6748,6507 
6754,6507,6266 
6755,6266,6025 
6756,6025,5784 
6757,5784,5543 
6758,5543,5302 
6759,5302,5061 
6760,5061,4820 
6761,4820,4579 
 
6762,4579,1205 
*BEAM SECTION, SECTION=RECT,ELSET=RIGIDBEAMLEFT, MATERIALS=RIGID 
5.,5. 
*ELEMENT,TYPE=B31,ELSET=RIGIDBEAMRIGHT 
6763,3134,6749 
6764,6749,6508 
6765,6508,6267 
6766,6267,6026 
6767,6026,5785 
6768,5785,5544 
6769,5544,5303 
6770,5303,5062 
6771,5062,4821 
6772,4821,4580 
6773,4580,4339 
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6774,4339,965 
*BEAM SECTION, SECTION=RECT,ELSET=RIGIDBEAMRIGHT, MATERIALS=RIGID 
5.,5. 
*NSET, NSET=OUTPUT, GENERATE 
965,1205,1 
3134,3374,1 
*BEAM SECTION, SECTION=RECT,ELSET=RIGIDBEAMWEB, MATERIALS=RIGID 
5.,5. 
**MATERIAL PROPERTIES 
*SHELL SECTION,MATERIAL=STEEL,ELSET=TOPFLANGE 
0.641 
*SHELL SECTION,MATERIAL=STEEL,ELSET=BOTTOMFLANGE 
0.641 
*SHELL SECTION,MATERIAL=STEEL,ELSET=WEB 
0.371 
*MATERIAL,NAME=STEEL 
*ELASTIC 
29500,0.3 
*MATERIAL, NAME=RIGID 
*ELASTIC 
295000,0.3 
*BOUNDARY 
PINNED,1 
PINNED,2 
PINNED,3 
PINNED,6 
ROLLER,1 
ROLLER,2 
ROLLER,6 
*STEP 
*STATIC 
*CLOAD 
6990,2,-1 
*ELPRINT,FREQUENCY=0 
*NODE PRINT,FREQUENCY=1,NSET=OUTPUT 
U 
*END STEP 
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*HEADING 
 Linearized-eigenvalue Buckling Analysis 
 Simply supported 12WF50 with Uniform 
 Moment Applied 
*NODE 
**Left side of the TOP Flange 
1,0,12.19,0 
965,4.0385,12.19,0 
1929,8.077,12.19,0 
**Right side of the TOP Flange 
241,0,12.19,240 
1205,4.0385,12.19,240 
2169,8.077,12.19,240 
**Left side of the BOTTOM Flange 
2170,0,0,0 
3134,4.0385,0,0 
4098,8.077,0,0 
**Right side of the BOTTOM Flange 
2410,0,0,240 
3374,4.0385,0,240 
4338,8.077,0,240 
**Web 
4339,4.0385,11.174,0 
5544,4.0385,6.095,0 
6749,4.0385,1.016,0 
4579,4.0385,11.174,240 
5784,4.0385,6.095,240 
6989,4.0385,1.016,240 
** 
**TOP FLANGE 
** 
*NGEN,NSET=TFB 
1,241,1 
*NGEN,NSET=TFM 
965,1205,1 
*NGEN,NSET=TFT 
1929,2169,1 
*NFILL,NSET=TF1 
TFB,TFM,4,241 
*NFILL,NSET=TF2 
TFM,TFT,4,241 
**BOTTOM FLANGE 
*NGEN,NSET=BFB 
2170,2410,1 
*NGEN,NSET=BFM 
3134,3374,1 
*NGEN,NSET=BFT 
4098,4338,1 
*NFILL,NSET=BF1 
BFB,BFM,4,241 
*NFILL,NSET=BF2 
BFM,BFT,4,241 
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** 
**WEB NODES 
** 
*NGEN,NSET=WEBB 
6749,6989,1 
*NGEN,NSET=WEBM 
5544,5784,1 
*NGEN,NSET=WEBT 
4339,4579,1 
*NFILL,NSET=W1 
WEBT,WEBM,5,241 
*NFILL,NSET=W2 
WEBM,WEBB,5,241 
**NSET FOR BOUNDARY CONDITION 
*NSET,NSET=PINNED 
5544 
*NSET,NSET=ROLLER 
5784 
** 
**ELEMENT DEFINITIONS 
** 
** 
*ELEMENT,TYPE=S4R 
1,1,2,243,242 
*ELGEN,ELSET=TOPFLANGE 
1,240,1,1,8,241,240 
*ELEMENT,TYPE=S4R 
1921,2170,2171,2412,2411 
*ELGEN,ELSET=BOTTOMFLANGE 
1921,240,1,1,8,241,240 
*ELEMENT,TYPE=S4R 
3841,965,966,4340,4339 
*ELGEN,ELSET=WEBTOP 
3841,240,1,1 
*ELEMENT,TYPE=S4R 
4081,4339,4340,4581,4580 
*ELGEN,ELSET=WEBMIDDLE 
4081,240,1,1,10,241,240 
*ELEMENT,TYPE=S4R 
6481,6749,6750,3135,3134 
*ELGEN,ELSET=WEBBOTTOM 
6481,240,1,1 
**GROUPING ELEMENTS 
*ELSET,ELSET=WEB 
WEBTOP,WEBBOTTOM,WEBMIDDLE 
*ELEMENT, TYPE=B31,ELSET=RIGIDBEAMLEFT 
6751,3374,6989 
6752,6989,6748 
6753,6748,6507 
6754,6507,6266 
6755,6266,6025 
6756,6025,5784 
6757,5784,5543 
6758,5543,5302 
6759,5302,5061 
6760,5061,4820 
6761,4820,4579 
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6762,4579,1205 
*BEAM SECTION, SECTION=RECT,ELSET=RIGIDBEAMLEFT, MATERIALS=RIGID 
5.,5. 
*ELEMENT,TYPE=B31,ELSET=RIGIDBEAMRIGHT 
6763,3134,6749 
6764,6749,6508 
6765,6508,6267 
6766,6267,6026 
6767,6026,5785 
6768,5785,5544 
6769,5544,5303 
6770,5303,5062 
6771,5062,4821 
6772,4821,4580 
6773,4580,4339 
6774,4339,965 
*BEAM SECTION, SECTION=RECT,ELSET=RIGIDBEAMRIGHT, MATERIALS=RIGID 
5.,5. 
*NSET, NSET=OUTPUT, GENERATE 
965,1205,1 
3134,3374,1 
**MATERIAL PROPERTIES 
*SHELL SECTION,MATERIAL=STEEL,ELSET=TOPFLANGE 
0.641 
*SHELL SECTION,MATERIAL=STEEL,ELSET=BOTTOMFLANGE 
0.641 
*SHELL SECTION,MATERIAL=STEEL,ELSET=WEB 
0.371 
*MATERIAL,NAME=STEEL 
*ELASTIC 
30000,0.3 
*MATERIAL, NAME=RIGID 
*ELASTIC 
300000,0.3 
*BOUNDARY 
PINNED,1 
PINNED,2 
PINNED,3 
PINNED,6 
ROLLER,1 
ROLLER,2 
ROLLER,6 
*STEP 
*BUCKLE 
2,2,50,100 
*CLOAD 
5544,4,6000 
5784,4,-6000 
*NODE FILE,LAST MODE=1,GLOBAL=YES 
U 
*ELPRINT,FREQUENCY=0 
*NODE PRINT,FREQUENCY=1 
CF 
*END STEP 
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APPENDIX B3 
 

*HEADING 
 Simply supported 12WF50 with Uniform 
 Moment applied to each end 
 Compared to Eqn. 3.32 on Page 91 
 of "Structural Members and Frames" 
*NODE 
**Left side of the TOP Flange 
1,0,12.19,0 
965,4.0385,12.19,0 
1929,8.077,12.19,0 
**Right side of the TOP Flange 
241,0,12.19,240 
1205,4.0385,12.19,240 
2169,8.077,12.19,240 
**Left side of the BOTTOM Flange 
2170,0,0,0 
3134,4.0385,0,0 
4098,8.077,0,0 
**Right side of the BOTTOM Flange 
2410,0,0,240 
3374,4.0385,0,240 
4338,8.077,0,240 
**Web 
4339,4.0385,11.174,0 
5544,4.0385,6.095,0 
6749,4.0385,1.016,0 
4579,4.0385,11.174,240 
5784,4.0385,6.095,240 
6989,4.0385,1.016,240 
** 
**TOP FLANGE 
** 
*NGEN,NSET=TFB 
1,241,1 
*NGEN,NSET=TFM 
965,1205,1 
*NGEN,NSET=TFT 
1929,2169,1 
*NFILL,NSET=TF1 
TFB,TFM,4,241 
*NFILL,NSET=TF2 
TFM,TFT,4,241 
**BOTTOM FLANGE 
*NGEN,NSET=BFB 
2170,2410,1 
*NGEN,NSET=BFM 
3134,3374,1 
*NGEN,NSET=BFT 
4098,4338,1 
*NFILL,NSET=BF1 
BFB,BFM,4,241 
*NFILL,NSET=BF2 
BFM,BFT,4,241 
** 
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**WEB NODES 
** 
*NGEN,NSET=WEBB 
6749,6989,1 
*NGEN,NSET=WEBM 
5544,5784,1 
*NGEN,NSET=WEBT 
4339,4579,1 
*NFILL,NSET=W1 
WEBT,WEBM,5,241 
*NFILL,NSET=W2 
WEBM,WEBB,5,241 
**NSET FOR BOUNDARY CONDITION 
*NSET,NSET=PINNED 
5544 
*NSET,NSET=ROLLER 
5784 
** 
**ELEMENT DEFINITIONS 
** 
** 
*ELEMENT,TYPE=S4R 
1,1,2,243,242 
*ELGEN,ELSET=TOPFLANGE 
1,240,1,1,8,241,240 
*ELEMENT,TYPE=S4R 
1921,2170,2171,2412,2411 
*ELGEN,ELSET=BOTTOMFLANGE 
1921,240,1,1,8,241,240 
*ELEMENT,TYPE=S4R 
3841,965,966,4340,4339 
*ELGEN,ELSET=WEBTOP 
3841,240,1,1 
*ELEMENT,TYPE=S4R 
4081,4339,4340,4581,4580 
*ELGEN,ELSET=WEBMIDDLE 
4081,240,1,1,10,241,240 
*ELEMENT,TYPE=S4R 
6481,6749,6750,3135,3134 
*ELGEN,ELSET=WEBBOTTOM 
6481,240,1,1 
**GROUPING ELEMENTS 
*ELSET,ELSET=WEB 
WEBTOP,WEBBOTTOM,WEBMIDDLE 
*ELEMENT, TYPE=B31,ELSET=RIGIDBEAMLEFT 
6751,3374,6989 
6752,6989,6748 
6753,6748,6507 
6754,6507,6266 
6755,6266,6025 
6756,6025,5784 
6757,5784,5543 
6758,5543,5302 
6759,5302,5061 
6760,5061,4820 
6761,4820,4579 
6762,4579,1205 
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*BEAM SECTION, SECTION=RECT,ELSET=RIGIDBEAMLEFT, MATERIALS=RIGID 
5.,5. 
*ELEMENT,TYPE=B31,ELSET=RIGIDBEAMRIGHT 
6763,3134,6749 
6764,6749,6508 
6765,6508,6267 
6766,6267,6026 
6767,6026,5785 
6768,5785,5544 
6769,5544,5303 
6770,5303,5062 
6771,5062,4821 
6772,4821,4580 
6773,4580,4339 
6774,4339,965 
*BEAM SECTION, SECTION=RECT,ELSET=RIGIDBEAMRIGHT, MATERIALS=RIGID 
5.,5. 
*NSET, NSET=OUTPUT, GENERATE 
965,1205,1 
3134,3374,1 
**MATERIAL PROPERTIES 
*SHELL SECTION,MATERIAL=STEEL,ELSET=TOPFLANGE 
0.641 
*SHELL SECTION,MATERIAL=STEEL,ELSET=BOTTOMFLANGE 
0.641 
*SHELL SECTION,MATERIAL=STEEL,ELSET=WEB 
0.371 
*MATERIAL,NAME=STEEL 
*ELASTIC 
30000,0.3 
*MATERIAL, NAME=RIGID 
*ELASTIC 
300000,0.3 
*BOUNDARY 
PINNED,1 
PINNED,2 
PINNED,3 
PINNED,6 
ROLLER,1 
ROLLER,2 
ROLLER,6 
*STEP,NLGEOM,INC=30 
*STATIC,RIKS 
0.01,1.,0.0000000001 
*CLOAD 
5544,4,6000 
5784,4,-6000 
*ELPRINT,FREQUENCY=0 
*NODE PRINT,FREQUENCY=1,NSET=OUTPUT 
U 
*END STEP 
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APPENDIX B4 
 
 

*Heading 
 Cruciform Cross-section 
 Linearized-eigenvalue Buckling Analysis 
 Axial Compressive Loading 
*NODE 
**BOTTOM 1ST FLANGE 
1,9,0,0 
724,12,0,0 
1447,15,0,0 
**TOP 1ST FLANGE 
241,9,240,0 
964,12,240,0 
1687,15,240,0 
**BOTTOM 2ND FLANGE 
1688,0,0,9 
2411,0,0,12 
3134,0,0,15 
**TOP 2ND FLANGE 
1928,0,240,9 
2651,0,240,12 
3374,0,240,15 
**BOTTOM 3RD FLANGE 
3375,9,0,24 
4098,12,0,24 
4821,15,0,24 
**TOP 3RD FLANGE 
3615,9,240,24 
4338,12,240,24 
5061,15,240,24 
**BOTTOM 4TH FLANGE 
5062,24,0,9 
5785,24,0,12 
6508,24,0,15 
**TOP 4TH FLANGE 
5302,24,240,9 
6025,24,240,12 
6748,24,240,15 
**WEB 1 
6749,12,0,1 
6869,12,120,1 
6989,12,240,1 
9400,12,0,12 
9520,12,120,12 
9640,12,240,12 
12051,12,0,23 
12171,12,120,23 
12291,12,240,23 
**WEB 2 
12300,1,0,12 
12540,1,240,12 
14710,11,0,12 
14950,11,240,12 
16000,13,0,12 
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16240,13,240,12 
18410,23,0,12 
18650,23,240,12 
** 
**1ST FLANGE 
** 
*NGEN,NSET=R1 
1,241,1 
*NGEN,NSET=M1 
724,964,1 
*NGEN,NSET=L1 
1447,1687,1 
*NFILL,NSET=O1 
R1,M1,3,241 
*NFILL,NSET=O2 
M1,L1,3,241 
** 
**2ND FLANGE 
** 
*NGEN,NSET=R2 
1688,1928,1 
*NGEN,NSET=M2 
2411,2651,1 
*NGEN,NSET=L2 
3134,3374,1 
*NFILL,NSET=T1 
R2,M2,3,241 
*NFILL,NSET=T2 
M2,L2,3,241 
** 
**3RD FLANGE 
** 
*NGEN,NSET=R3 
3375,3615,1 
*NGEN,NSET=M3 
4098,4338,1 
*NGEN,NSET=L3 
4821,5061,1 
*NFILL,NSET=TH1 
R3,M3,3,241 
*NFILL,NSET=TH2 
M3,L3,3,241 
** 
**4TH FLANGE 
** 
*NGEN,NSET=R4 
5062,5302,1 
*NGEN,NSET=M4 
5785,6025,1 
*NGEN,NSET=L4 
6508,6748,1 
*NFILL,NSET=F1 
R4,M4,3,241 
*NFILL,NSET=F2 
M4,L4,3,241 
 
** 
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**WEB 1 
** 
*NGEN,NSET=WEB1L 
6749,6989,1 
*NGEN,NSET=WEB1M 
9400,9640,1 
*NGEN,NSET=WEB1R 
12051,12291,1 
*NFILL,NSET=WEB11 
WEB1L,WEB1M,11,241 
*NFILL,NSET=WEB12 
WEB1M,WEB1R,11,241 
** 
**WEB 2 
** 
*NGEN,NSET=WEB2R 
12300,12540,1 
*NGEN,NSET=WEB2M1 
14710,14950,1 
*NGEN,NSET=WEB2M2 
16000,16240,1 
*NGEN,NSET=WEB2L 
18410,18650,1 
*NFILL,NSET=WEB21 
WEB2R,WEB2M1,10,241 
*NFILL,NSET=WEB22 
WEB2M2,WEB2L,10,241 
** 
**BOUNDARY CONDITIONS 
** 
*NSET,NSET=PINNED 
9400 
*NSET,NSET=ROLLER 
9640 
** 
**ELEMENT DEFINITIONS 
** 
*ELEMENT,TYPE=S4R 
1,1,2,243,242 
*ELGEN,ELSET=FLANGE1 
1,240,1,1,6,241,240 
** 
*ELEMENT,TYPE=S4R 
1441,1688,1689,1930,1929 
*ELGEN,ELSET=FLANGE2 
1441,240,1,1,6,241,240 
** 
*ELEMENT,TYPE=S4R 
2881,3375,3376,3617,3616 
*ELGEN,ELSET=FLANGE3 
2881,240,1,1,6,241,240 
** 
*ELEMENT,TYPE=S4R 
4321,5062,5063,5304,5303 
*ELGEN,ELSET=FLANGE4 
4321,240,1,1,6,241,240 
** 
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*ELEMENT,TYPE=S4R 
5761,724,725,6750,6749 
*ELGEN,ELSET=WEB111 
5761,240,1,1 
** 
*ELEMENT,TYPE=S4R 
6001,6749,6750,6991,6990 
*ELGEN,ELSET=WEB112 
6001,240,1,1,22,241,240 
** 
*ELEMENT,TYPE=S4R 
11281,12051,12052,4099,4098 
*ELGEN,ELSET=WEB113 
11281,240,1,1 
** 
*ELSET,ELSET=WEB1 
WEB111,WEB112,WEB113 
** 
*ELEMENT,TYPE=S4R 
11600,2411,2412,12301,12300 
*ELGEN,ELSET=WEB2R1 
11600,240,1,1 
** 
*ELEMENT,TYPE=S4R 
11841,12300,12301,12542,12541 
*ELGEN,ELSET=WEB2R2 
11841,240,1,1,10,241,240 
** 
*ELEMENT,TYPE=S4R 
14241,14710,14711,9401,9400 
*ELGEN,ELSET=WEB2M1 
14241,240,1,1 
** 
*ELEMENT,TYPE=S4R 
14481,9400,9401,16001,16000 
*ELGEN,ELSET=WEB2M2 
14481,240,1,1 
** 
*ELEMENT,TYPE=S4R 
14721,16000,16001,16242,16241 
*ELGEN,ELSET=WEB2L1 
14721,240,1,1,10,241,240 
** 
*ELEMENT,TYPE=S4R 
17121,18410,18411,5786,5785 
*ELGEN,ELSET=WEB2L2 
17121,240,1,1 
** 
*ELSET,ELSET=WEB2 
WEB2R1,WEB2R2,WEB2M1,WEB2M2,WEB2L1,WEB2L2 
** 
** 
*ELEMENT, TYPE=B31,ELSET=RIGIDTOP1 
18000,964,6989 
18001,6989,7230 
18003,7230,7471 
18004,7471,7712 
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18005,7712,7953 
18006,7953,8194 
18007,8194,8435 
18008,8435,8676 
18009,8676,8917 
18010,8917,9158 
18011,9158,9399 
18012,9399,9640 
18013,9640,9881 
18014,9881,10122 
18015,10122,10363 
18016,10363,10604 
18017,10604,10845 
18018,10845,11086 
18019,11086,11327 
18020,11327,11568 
18021,11568,11809 
18022,11809,12050 
18023,12050,12291 
18024,12291,4338 
*BEAM SECTION, SECTION=RECT,ELSET=RIGIDTOP1, MATERIALS=RIGID 
5.,5. 
0,-1,0 
*ELEMENT,TYPE=B31,ELSET=RIGIDBOTTOM1 
18025,724,6749 
18026,6749,6990 
18027,6990,7231 
18028,7231,7472 
18029,7472,7713 
18030,7713,7954 
18031,7954,8195 
18032,8195,8436 
18033,8436,8677 
18034,8677,8918 
18035,8918,9159 
18036,9159,9400 
18037,9400,9641 
18038,9641,9882 
18039,9882,10123 
18040,10123,10364 
18041,10364,10605 
18042,10605,10846 
18043,10846,11087 
18044,11087,11328 
18045,11328,11569 
18046,11569,11810 
18047,11810,12051 
18048,12051,4098 
*BEAM SECTION, SECTION=RECT,ELSET=RIGIDBOTTOM1, MATERIALS=RIGID 
5.,5. 
0,-1,0 
*ELEMENT, TYPE=B31,ELSET=RIGIDTOP2 
18049,2651,12540 
18050,12540,12781 
18051,12781,13022 
18052,13022,13263 
18053,13263,13504 
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18054,13504,13745 
18055,13745,13986 
18056,13986,14227 
18057,14227,14468 
18058,14468,14709 
18059,14709,14950 
18060,14950,9640 
18061,9640,16240 
18062,16240,16481 
18063,16481,16722 
18064,16722,16963 
18065,16963,17204 
18066,17204,17445 
18067,17445,17686 
18068,17686,17927 
18069,17927,18168 
18070,18168,18409 
18071,18409,18650 
18072,18650,6025 
*BEAM SECTION, SECTION=RECT,ELSET=RIGIDTOP2, MATERIALS=RIGID 
5.,5. 
0,-1,0 
*ELEMENT,TYPE=B31,ELSET=RIGIDBOTTOM2 
18073,2411,12300 
18074,12300,12541 
18075,12541,12782 
18076,12782,13023 
18077,13023,13264 
18078,13264,13505 
18079,13505,13746 
18080,13746,13987 
18081,13987,14228 
18082,14228,14469 
18083,14469,14710 
18084,14710,9400 
18085,9400,16000 
18086,16000,16241 
18087,16241,16482 
18088,16482,16723 
18089,16723,16964 
18090,16964,17205 
18091,17205,17446 
18092,17446,17687 
18093,17687,17928 
18094,17928,18169 
18095,18169,18410 
18096,18410,5785 
*BEAM SECTION, SECTION=RECT,ELSET=RIGIDBOTTOM2, MATERIALS=RIGID 
5.,5. 
0,-1,0 
** 
** 
**MATERIAL PROPERTIES 
** 
*SHELL SECTION,MATERIAL=STEEL,ELSET=FLANGE1 
0.25 
*SHELL SECTION,MATERIAL=STEEL,ELSET=FLANGE2 
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0.25 
*SHELL SECTION,MATERIAL=STEEL,ELSET=FLANGE3 
0.25 
*SHELL SECTION,MATERIAL=STEEL,ELSET=FLANGE4 
0.25 
*SHELL SECTION,MATERIAL=STEEL,ELSET=WEB1 
0.25 
*SHELL SECTION,MATERIAL=STEEL,ELSET=WEB2 
0.25 
*MATERIAL,NAME=STEEL 
*ELASTIC 
29000,0.3 
*MATERIAL, NAME=RIGID 
*ELASTIC 
290000,0.3 
*BOUNDARY 
PINNED,1 
PINNED,2 
PINNED,3 
PINNED,5 
ROLLER,1 
ROLLER,3 
ROLLER,5 
*STEP 
*BUCKLE 
5,5,50,100 
*CLOAD 
9640,2,-1000 
*ELPRINT,FREQUENCY=0 
*NODE FILE,LAST MODE=1,GLOBAL=YES 
U 
*END STEP 
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APPENDIX B5 
 
 

*Heading 
 Postbuckling Analysis of Cruciform Column 
 Axial Compressive Load 
 Scale Factor=L/1000 
*NODE 
**BOTTOM 1ST FLANGE 
1,9,0,0 
724,12,0,0 
1447,15,0,0 
**TOP 1ST FLANGE 
241,9,240,0 
964,12,240,0 
1687,15,240,0 
**BOTTOM 2ND FLANGE 
1688,0,0,9 
2411,0,0,12 
3134,0,0,15 
**TOP 2ND FLANGE 
1928,0,240,9 
2651,0,240,12 
3374,0,240,15 
**BOTTOM 3RD FLANGE 
3375,9,0,24 
4098,12,0,24 
4821,15,0,24 
**TOP 3RD FLANGE 
3615,9,240,24 
4338,12,240,24 
5061,15,240,24 
**BOTTOM 4TH FLANGE 
5062,24,0,9 
5785,24,0,12 
6508,24,0,15 
**TOP 4TH FLANGE 
5302,24,240,9 
6025,24,240,12 
6748,24,240,15 
**WEB 1 
6749,12,0,1 
6869,12,120,1 
6989,12,240,1 
9400,12,0,12 
9520,12,120,12 
9640,12,240,12 
12051,12,0,23 
12171,12,120,23 
12291,12,240,23 
**WEB 2 
12300,1,0,12 
12540,1,240,12 
14710,11,0,12 
14950,11,240,12 
16000,13,0,12 
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16240,13,240,12 
18410,23,0,12 
18650,23,240,12 
** 
**1ST FLANGE 
** 
*NGEN,NSET=R1 
1,241,1 
*NGEN,NSET=M1 
724,964,1 
*NGEN,NSET=L1 
1447,1687,1 
*NFILL,NSET=O1 
R1,M1,3,241 
*NFILL,NSET=O2 
 
M1,L1,3,241 
** 
**2ND FLANGE 
** 
*NGEN,NSET=R2 
1688,1928,1 
*NGEN,NSET=M2 
2411,2651,1 
*NGEN,NSET=L2 
3134,3374,1 
*NFILL,NSET=T1 
R2,M2,3,241 
*NFILL,NSET=T2 
M2,L2,3,241 
** 
**3RD FLANGE 
** 
*NGEN,NSET=R3 
3375,3615,1 
*NGEN,NSET=M3 
4098,4338,1 
*NGEN,NSET=L3 
4821,5061,1 
*NFILL,NSET=TH1 
R3,M3,3,241 
*NFILL,NSET=TH2 
M3,L3,3,241 
** 
**4TH FLANGE 
** 
*NGEN,NSET=R4 
5062,5302,1 
*NGEN,NSET=M4 
5785,6025,1 
*NGEN,NSET=L4 
6508,6748,1 
*NFILL,NSET=F1 
R4,M4,3,241 
*NFILL,NSET=F2 
M4,L4,3,241 
** 
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**WEB 1 
** 
*NGEN,NSET=WEB1L 
6749,6989,1 
*NGEN,NSET=WEB1M 
9400,9640,1 
*NGEN,NSET=WEB1R 
12051,12291,1 
*NFILL,NSET=WEB11 
WEB1L,WEB1M,11,241 
*NFILL,NSET=WEB12 
WEB1M,WEB1R,11,241 
** 
**WEB 2 
** 
*NGEN,NSET=WEB2R 
12300,12540,1 
*NGEN,NSET=WEB2M1 
14710,14950,1 
*NGEN,NSET=WEB2M2 
16000,16240,1 
*NGEN,NSET=WEB2L 
18410,18650,1 
*NFILL,NSET=WEB21 
WEB2R,WEB2M1,10,241 
*NFILL,NSET=WEB22 
WEB2M2,WEB2L,10,241 
** 
**BOUNDARY CONDITIONS 
** 
*NSET,NSET=PINNED 
9400 
*NSET,NSET=ROLLER 
9640 
** 
**ELEMENT DEFINITIONS 
** 
*ELEMENT,TYPE=S4R 
1,1,2,243,242 
*ELGEN,ELSET=FLANGE1 
1,240,1,1,6,241,240 
** 
*ELEMENT,TYPE=S4R 
1441,1688,1689,1930,1929 
*ELGEN,ELSET=FLANGE2 
1441,240,1,1,6,241,240 
** 
*ELEMENT,TYPE=S4R 
2881,3375,3376,3617,3616 
*ELGEN,ELSET=FLANGE3 
2881,240,1,1,6,241,240 
** 
*ELEMENT,TYPE=S4R 
4321,5062,5063,5304,5303 
*ELGEN,ELSET=FLANGE4 
4321,240,1,1,6,241,240 
** 
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*ELEMENT,TYPE=S4R 
5761,724,725,6750,6749 
*ELGEN,ELSET=WEB111 
5761,240,1,1 
** 
*ELEMENT,TYPE=S4R 
6001,6749,6750,6991,6990 
*ELGEN,ELSET=WEB112 
6001,240,1,1,22,241,240 
** 
*ELEMENT,TYPE=S4R 
11281,12051,12052,4099,4098 
*ELGEN,ELSET=WEB113 
11281,240,1,1 
** 
*ELSET,ELSET=WEB1 
WEB111,WEB112,WEB113 
** 
*ELEMENT,TYPE=S4R 
11600,2411,2412,12301,12300 
*ELGEN,ELSET=WEB2R1 
11600,240,1,1 
** 
*ELEMENT,TYPE=S4R 
11841,12300,12301,12542,12541 
*ELGEN,ELSET=WEB2R2 
11841,240,1,1,10,241,240 
** 
*ELEMENT,TYPE=S4R 
14241,14710,14711,9401,9400 
*ELGEN,ELSET=WEB2M1 
14241,240,1,1 
** 
*ELEMENT,TYPE=S4R 
14481,9400,9401,16001,16000 
*ELGEN,ELSET=WEB2M2 
14481,240,1,1 
** 
*ELEMENT,TYPE=S4R 
14721,16000,16001,16242,16241 
*ELGEN,ELSET=WEB2L1 
14721,240,1,1,10,241,240 
** 
*ELEMENT,TYPE=S4R 
17121,18410,18411,5786,5785 
*ELGEN,ELSET=WEB2L2 
17121,240,1,1 
** 
*ELSET,ELSET=WEB2 
WEB2R1,WEB2R2,WEB2M1,WEB2M2,WEB2L1,WEB2L2 
** 
** 
*ELEMENT, TYPE=B31,ELSET=RIGIDTOP1 
18000,964,6989 
18001,6989,7230 
18003,7230,7471 
18004,7471,7712 
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18005,7712,7953 
18006,7953,8194 
18007,8194,8435 
18008,8435,8676 
18009,8676,8917 
18010,8917,9158 
18011,9158,9399 
18012,9399,9640 
18013,9640,9881 
18014,9881,10122 
18015,10122,10363 
18016,10363,10604 
18017,10604,10845 
18018,10845,11086 
18019,11086,11327 
18020,11327,11568 
18021,11568,11809 
18022,11809,12050 
18023,12050,12291 
18024,12291,4338 
*BEAM SECTION, SECTION=RECT,ELSET=RIGIDTOP1, MATERIALS=RIGID 
5.,5. 
0,-1,0 
*ELEMENT,TYPE=B31,ELSET=RIGIDBOTTOM1 
18025,724,6749 
18026,6749,6990 
18027,6990,7231 
18028,7231,7472 
18029,7472,7713 
18030,7713,7954 
18031,7954,8195 
18032,8195,8436 
18033,8436,8677 
18034,8677,8918 
18035,8918,9159 
18036,9159,9400 
18037,9400,9641 
18038,9641,9882 
18039,9882,10123 
18040,10123,10364 
18041,10364,10605 
18042,10605,10846 
18043,10846,11087 
18044,11087,11328 
18045,11328,11569 
18046,11569,11810 
18047,11810,12051 
18048,12051,4098 
*BEAM SECTION, SECTION=RECT,ELSET=RIGIDBOTTOM1, MATERIALS=RIGID 
5.,5. 
0,-1,0 
*ELEMENT, TYPE=B31,ELSET=RIGIDTOP2 
18049,2651,12540 
18050,12540,12781 
18051,12781,13022 
18052,13022,13263 
18053,13263,13504 
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18054,13504,13745 
18055,13745,13986 
18056,13986,14227 
18057,14227,14468 
18058,14468,14709 
18059,14709,14950 
18060,14950,9640 
18061,9640,16240 
18062,16240,16481 
18063,16481,16722 
18064,16722,16963 
18065,16963,17204 
18066,17204,17445 
18067,17445,17686 
18068,17686,17927 
18069,17927,18168 
18070,18168,18409 
18071,18409,18650 
18072,18650,6025 
*BEAM SECTION, SECTION=RECT,ELSET=RIGIDTOP2, MATERIALS=RIGID 
5.,5. 
0,-1,0 
*ELEMENT,TYPE=B31,ELSET=RIGIDBOTTOM2 
18073,2411,12300 
18074,12300,12541 
18075,12541,12782 
18076,12782,13023 
18077,13023,13264 
18078,13264,13505 
18079,13505,13746 
18080,13746,13987 
18081,13987,14228 
18082,14228,14469 
18083,14469,14710 
18084,14710,9400 
18085,9400,16000 
18086,16000,16241 
18087,16241,16482 
18088,16482,16723 
18089,16723,16964 
18090,16964,17205 
18091,17205,17446 
18092,17446,17687 
18093,17687,17928 
18094,17928,18169 
18095,18169,18410 
18096,18410,5785 
*BEAM SECTION, SECTION=RECT,ELSET=RIGIDBOTTOM2, MATERIALS=RIGID 
5.,5. 
0,-1,0 
** 
** 
**MATERIAL PROPERTIES 
** 
*SHELL SECTION,MATERIAL=STEEL,ELSET=FLANGE1 
0.25 
*SHELL SECTION,MATERIAL=STEEL,ELSET=FLANGE2 
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0.25 
*SHELL SECTION,MATERIAL=STEEL,ELSET=FLANGE3 
0.25 
*SHELL SECTION,MATERIAL=STEEL,ELSET=FLANGE4 
0.25 
*SHELL SECTION,MATERIAL=STEEL,ELSET=WEB1 
0.25 
*SHELL SECTION,MATERIAL=STEEL,ELSET=WEB2 
0.25 
*MATERIAL,NAME=STEEL 
*ELASTIC 
29000,0.3 
*MATERIAL, NAME=RIGID 
*ELASTIC 
290000,0.3 
*IMPERFECTION, FILE=Cruc3LEBimp, STEP=1 
1,0.24 
*BOUNDARY 
PINNED,1 
PINNED,2 
PINNED,3 
PINNED,5 
ROLLER,1 
ROLLER,3 
ROLLER,5 
*STEP,NLGEOM,INC=30 
*STATIC,RIKS 
0.01,1.,0.0000000001 
*CLOAD 
9640,2,-100 
*EL PRINT,FREQUENCY=16,ELSET=FLANGE1 
S 
*NODE PRINT,FREQUENCY=16 
UR3 
*END STEP 
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APPENDIX B6 
 
 

*Heading 
 Tee-shaped Column with Eccentric Loading 
 Linearized-eigenvalue Buckling Analysis 
  
*NODE 
**BOTTOM OF FLANGE 
1,0,0,0 
280,2.01,0,0 
559,4.02,0,0 
**TOP OF FLANGE 
93,0,91.42,0 
372,2.01,91.42,0 
651,4.02,91.42,0 
**BOTTOM OF WEB 
700,2.01,0,0.152 
793,2.01,0,1.3705 
886,2.01,0,2.52 
1165,2.01,0,4.912 
**TOP OF WEB 
792,2.01,91.42,0.152 
885,2.01,91.42,1.3705 
978,2.01,91.42,2.52 
1257,2.01,91.42,4.912 
** 
**NODE SETS 
** 
**FLANGE 
** 
*NGEN,NSET=FLL 
1,93,1 
*NGEN,NSET=FLM 
280,372,1 
*NGEN,NSET=FLR 
559,651,1 
*NFILL,NSET=FLANGE1 
FLL,FLM,3,93 
*NFILL,NSET=FLANGE2 
FLM,FLR,3,93 
** 
**WEB 
** 
*NGEN,NSET=WEB1 
700,792,1 
*NGEN,NSET=WEB2 
886,978,1 
*NFILL,NSET=WEB4 
WEB1,WEB2,2,93 
*NGEN,NSET=WEB3 
1165,1257,1 
*NFILL,NSET=WEB5 
WEB2,WEB3,3,93 
** 
**BC'S 
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** 
*NSET,NSET=PINNED 
793 
*NSET,NSET=ROLLER 
885 
** 
**ELEMENT DEFINITIONS 
** 
*ELEMENT,TYPE=S4R 
1,1,2,95,94 
*ELGEN,ELSET=FLANGE1 
1,92,1,1,3,93,92 
*ELEMENT,TYPE=S4R 
277,280,281,374,373 
*ELGEN,ELSET=FLANGE2 
277,92,1,1,3,93,92 
** 
*ELEMENT,TYPE=S4R 
553,280,281,701,700 
*ELGEN,ELSET=WEB1 
553,92,1,1 
** 
*ELEMENT,TYPE=S4R 
645,700,701,794,793 
*ELGEN,ELSET=WEB2 
645,92,1,1,2,93,92 
** 
*ELEMENT,TYPE=S4R 
829,886,887,980,979 
*ELGEN,ELSET=WEB3 
829,92,1,1,3,93,92 
** 
*ELSET,ELSET=WEB 
WEB1,WEB2,WEB3 
** 
*ELEMENT, TYPE=B31,ELSET=RIGIDTOPFLANGE 
1106,93,186 
1107,186,279 
1108,279,372 
1109,372,465 
1110,465,558 
1111,558,651 
*BEAM SECTION, SECTION=RECT,ELSET=RIGIDTOPFLANGE, MATERIALS=RIGID 
5.,5. 
0,-1,0 
*ELEMENT, TYPE=B31,ELSET=RIGIDBOTTOMFLANGE 
1112,1,94 
1113,94,187 
1114,187,280 
1115,280,373 
1116,373,466 
1117,466,559 
*BEAM SECTION, SECTION=RECT,ELSET=RIGIDBOTTOMFLANGE, MATERIALS=RIGID 
5.,5. 
*ELEMENT, TYPE=B31,ELSET=RIGIDTOPWEB 
1118,372,792 
1119,792,885 
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1120,885,978 
 
1121,978,1071 
1122,1071,1164 
1123,1164,1257 
*BEAM SECTION, SECTION=RECT,ELSET=RIGIDTOPWEB, MATERIALS=RIGID 
5.,5. 
0,-1,0 
** 
*ELEMENT, TYPE=B31,ELSET=RIGIDBOTTOMWEB 
1124,280,700 
1125,700,793 
1126,793,886 
1127,886,979 
1128,979,1072 
1129,1072,1165 
*BEAM SECTION, SECTION=RECT,ELSET=RIGIDBOTTOMWEB, MATERIALS=RIGID 
5.,5. 
0,-1,0 
** 
** 
**MATERIAL PROPERTIES 
** 
*SHELL SECTION,MATERIAL=STEEL,ELSET=FLANGE1 
0.303 
*SHELL SECTION,MATERIAL=STEEL,ELSET=FLANGE2 
0.303 
*SHELL SECTION,MATERIAL=STEEL,ELSET=WEB 
0.303 
*MATERIAL,NAME=STEEL 
*ELASTIC 
29000,0.3 
*MATERIAL, NAME=RIGID 
*ELASTIC 
290000,0.3 
*BOUNDARY 
PINNED,1 
PINNED,2 
PINNED,3 
PINNED,5 
ROLLER,1 
ROLLER,3 
ROLLER,5 
*STEP 
*BUCKLE 
5,5,50,100 
*CLOAD 
1164,2,-1 
*NODE FILE,LAST MODE=1,GLOBAL=YES 
U 
*END STEP 
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APPENDIX B7 
 
 

*Heading 
 Tee-shaped Column with Eccentric Loading 
 Postbuckling Analysis 
 Scale Factor =L/1000 
*NODE 
**BOTTOM OF FLANGE 
1,0,0,0 
280,2.01,0,0 
559,4.02,0,0 
**TOP OF FLANGE 
93,0,91.42,0 
372,2.01,91.42,0 
651,4.02,91.42,0 
**BOTTOM OF WEB 
700,2.01,0,0.152 
793,2.01,0,1.3705 
886,2.01,0,2.52 
1165,2.01,0,4.912 
**TOP OF WEB 
792,2.01,91.42,0.152 
885,2.01,91.42,1.3705 
978,2.01,91.42,2.52 
1257,2.01,91.42,4.912 
** 
**NODE SETS 
** 
**FLANGE 
** 
*NGEN,NSET=FLL 
1,93,1 
*NGEN,NSET=FLM 
280,372,1 
*NGEN,NSET=FLR 
559,651,1 
*NFILL,NSET=FLANGE1 
FLL,FLM,3,93 
*NFILL,NSET=FLANGE2 
FLM,FLR,3,93 
** 
**WEB 
** 
*NGEN,NSET=WEB1 
700,792,1 
*NGEN,NSET=WEB2 
886,978,1 
*NFILL,NSET=WEB4 
WEB1,WEB2,2,93 
*NGEN,NSET=WEB3 
1165,1257,1 
*NFILL,NSET=WEB5 
WEB2,WEB3,3,93 
** 
**BC'S 
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** 
*NSET,NSET=PINNED 
793 
*NSET,NSET=ROLLER 
885 
** 
**ELEMENT DEFINITIONS 
** 
*ELEMENT,TYPE=S4R 
1,1,2,95,94 
*ELGEN,ELSET=FLANGE1 
1,92,1,1,3,93,92 
*ELEMENT,TYPE=S4R 
277,280,281,374,373 
*ELGEN,ELSET=FLANGE2 
277,92,1,1,3,93,92 
 
** 
*ELEMENT,TYPE=S4R 
553,280,281,701,700 
*ELGEN,ELSET=WEB1 
553,92,1,1 
** 
*ELEMENT,TYPE=S4R 
645,700,701,794,793 
*ELGEN,ELSET=WEB2 
645,92,1,1,2,93,92 
** 
*ELEMENT,TYPE=S4R 
829,886,887,980,979 
*ELGEN,ELSET=WEB3 
829,92,1,1,3,93,92 
** 
*ELSET,ELSET=WEB 
WEB1,WEB2,WEB3 
** 
*ELEMENT, TYPE=B31,ELSET=RIGIDTOPFLANGE 
1106,93,186 
1107,186,279 
1108,279,372 
1109,372,465 
1110,465,558 
1111,558,651 
*BEAM SECTION, SECTION=RECT,ELSET=RIGIDTOPFLANGE, MATERIALS=RIGID 
5.,5. 
0,-1,0 
*ELEMENT, TYPE=B31,ELSET=RIGIDBOTTOMFLANGE 
1112,1,94 
1113,94,187 
1114,187,280 
1115,280,373 
1116,373,466 
1117,466,559 
*BEAM SECTION, SECTION=RECT,ELSET=RIGIDBOTTOMFLANGE, MATERIALS=RIGID 
5.,5. 
*ELEMENT, TYPE=B31,ELSET=RIGIDTOPWEB 
1118,372,792 
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1119,792,885 
1120,885,978 
1121,978,1071 
1122,1071,1164 
1123,1164,1257 
*BEAM SECTION, SECTION=RECT,ELSET=RIGIDTOPWEB, MATERIALS=RIGID 
5.,5. 
0,-1,0 
** 
*ELEMENT, TYPE=B31,ELSET=RIGIDBOTTOMWEB 
1124,280,700 
1125,700,793 
1126,793,886 
1127,886,979 
1128,979,1072 
1129,1072,1165 
*BEAM SECTION, SECTION=RECT,ELSET=RIGIDBOTTOMWEB, MATERIALS=RIGID 
5.,5. 
0,-1,0 
** 
**MATERIAL PROPERTIES 
** 
*SHELL SECTION,MATERIAL=STEEL,ELSET=FLANGE1 
0.303 
*SHELL SECTION,MATERIAL=STEEL,ELSET=FLANGE2 
0.303 
*SHELL SECTION,MATERIAL=STEEL,ELSET=WEB 
0.303 
*MATERIAL,NAME=STEEL 
*ELASTIC 
29000,0.3 
*MATERIAL, NAME=RIGID 
*ELASTIC 
290000,0.3 
*IMPERFECTION,FILE=TeeIMP2, STEP=1 
1,0.09142 
*BOUNDARY 
PINNED,1 
PINNED,2 
PINNED,3 
PINNED,5 
ROLLER,1 
ROLLER,3 
ROLLER,5 
*STEP,NLGEOM,INC=30 
*STATIC,RIKS 
0.01,1.,0.0000000001 
*CLOAD 
978,2,-10 
*CLOAD 
886,2,10 
*EL PRINT,FREQ=11,ELSET=FLANGE1 
S 
*EL PRINT,FREQ=11,ELSET=FLANGE2 
S 
*NODE PRINT,FREQ=11 
UR3 
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*END STEP 
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APPENDIX C 
 
 

THEORETICAL RESULTS 
 
 

Appendix C includes all calculations performed to arrive at theoretical results for this study.  The 

computations are presented in a MathCAD worksheet with cross-sections of each member 

included.  The results provided by these computations are used to compare with the finite 

element analysis in order to prove or discount the validity of the Wagner Hypothesis.  Appendix 

C1 shows the calculations related to the simply supported 12WF50 section with a uniform 

moment applied to each end of the beam.  Appendix C2 illustrates the theoretical results 

associated with the cruciform-shaped column.  For this member there were equations presented 

by Ojalvo for both the critical buckling load including the Wagner effect and the critical load 

calculated without the use of the Wagner effect. 

 Appendix C3 demonstrates the theoretical equations used for the tee-shaped column.  

This member was used due to the fact that experimental tests were performed on various tee-

shaped columns at the Xian Institute of Metallurgy and Construction Engineering in the late 

1970’s.  In this case, the finite element results could be compared to both the theoretical results 

presented in Appendix C3 as well as the finite element results found in the ABAQUS modeling.  

The equations used in these computations are specified by both Galambos and Ojalvo.     
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APPENDIX C1 
 

Doubly Symmetric I-Beam 
Closed Form Solution presented in "Structural Members and Frames" page 59 

** All measurements are in inches and kips 

t

w

d

b

L 240:=  G 11500:=  E 30000:=  Iw 1881:=  w 0.371:=  

Kt 1.82:=  Iy 56.4:=  Ix 394.5:=  Sx 64.7:=  Sw 30.18:=  

d 12.19:=  b 8.077:=  t 0.641:=  wn 23.32:=  

λ
G Kt⋅

E Iw⋅
:=  

λ
2

3.709 10 4−
×=  λ L⋅ 4.622=  

Critical Moment: 

n 1:=  

Mo
π n⋅
L

E Iy⋅ G⋅ Kt⋅ 1
n2

π
2

⋅ E⋅ Iw⋅

G Kt⋅ L2
⋅

+
⎛⎜
⎜
⎝

⎞

⎠
⋅⋅:=  (Eqn. 3.32 on page 91) 

Mo 2.978 103
×=  kip in⋅  

 Summary: 
 
 Galambos Mcr = 248.2 kips 
 ABAQUS Mcr = (6000 kips * 0.5025) = 251.25 kips 

Mo
12

248.206=  kip ft⋅  

 

114 



 

APPENDIX C2 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

 
 
 

 

 
 

Cruciform Cross-section with Flanges 
Closed Form Solution presented in "Thin-Walled Open-Profile Bars" pages 145 and 147 

** All measurements are in inches and kips 

         2d    2d

t
2d

     t
0.5d

0.5d

2d

0.5d 0.5d

d 6:=  t 0.25:=  L 240:=  E 29000:=  ν 0.3:=  

G
E

2 1 ν+( )⋅
:=  

Critical Moment (including Wagner's Hypothesis): 

3
2

23

2

2

0 27
16

9
16)( td

L
E

d
tG

L
EIGJ

I
AP ππ

ωθ +=+= (Eqn. 16 on page 145) 

P
16
9

G⋅
t3

d
⋅

⎛
⎜
⎝

⎞

⎠
16
27

E⋅
π

2

L2
⋅ t⋅ d3

⋅+:=  

P 210.648=  kips  
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 Critical Moment (excluding Wagner's Hypothesis): 

3
2

23

2

2
2

2 4
3

4
9)}2{(4 Etd

Ld
tG

L
dEIEIGJ

a
P y

ππ
ωθ +=++= (Eqn. 19 on page 147) 

P
9
4

G⋅
t3

d
⋅

⎛
⎜
⎝

⎞

⎠
3
4

π
2

L2
⋅ E⋅ t⋅ d3⋅+:=  

P 266.602=  kips 

Summary: 
 
 Including Wagner Pcr = 210.65 kips 
 Without Using Wagner Pcr = 266.60 kips 
 ABAQUS  Pcr = 206.75 kips  
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APPENDIX C3 
 
 

 

Calculation of the critical buckling load of Chen's experimental specimen PD3-1 
(Corrected eccentricity): 

d 5.067:=  tf 0.303:=  tw 0.303:=  h d tf−:=  bf 4:=  

Af bf tf⋅:=  Aw h tw⋅:=  A Af Aw+:=  D d
tf
2

−:=  

y
1
A

Af tf⋅

2
Aw tf

h
2

+⎛⎜
⎝

⎞
⎠

⋅+⎡⎢
⎣

⎤⎥
⎦

⋅:=  y 1.529=  ybar y
tf
2

−⎛⎜
⎝

⎞
⎠

1−⋅:=  ybar 1.377−=  

Ix
bf tf 3⋅ h3 tw⋅+

12
Af y

tf
2

−⎛⎜
⎝

⎞
⎠

2
⋅+ Aw tf

h
2

+ y−⎛⎜
⎝

⎞
⎠

2
⋅+:=  Ix 6.968=  

Iy
bf 3 tf⋅ h tw3⋅+

12
:=  Iy 1.627=  ro ybar2 Ix Iy+

A
+:=  

H 1
ybar
ro

⎛⎜
⎝

⎞
⎠

2
−:=  J

bf tf 3
⋅ D tw3

⋅+

3
:=  
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βx
1
Ix

tw
4

D y−( )4 y tf−( )4
−⎡⎣ ⎤⎦⋅ bf tf⋅ y

tf
2

−⎛⎜
⎝

⎞
⎠

⋅
bf 2

12
y

tf
2

−⎛⎜
⎝

⎞
⎠

2
+

⎡
⎢
⎣

⎤
⎥
⎦

⋅−
⎡
⎢
⎣

⎤
⎥
⎦

⋅ 2 ybar⋅−:=  

root Py P−( ) ro2 Pz⋅ 1.15 P⋅ βx⋅− P ro2
⋅−( )⋅ P ybar⋅ 1.15 P⋅−( )2

− P,⎡⎣ ⎤⎦ 38.817=  

Pcritical = 38.8kips 

Apply AISC LRFD Appendix E Equation (A-E3-7): 

rx
Ix
A

:=  ry
Iy
A

:=  Fex
π

2
E⋅

L
rx

⎛⎜
⎝

⎞
⎠

2
:=  Fey

π
2

E⋅

L
ry

⎛⎜
⎝

⎞
⎠

2
:=  

Fez
G J⋅

A ro2
⋅

:=  
F 30:=  

root F Fex−( ) F Fey−( )⋅ F Fez−( )⋅ F2 F Fex−( )⋅
ybar
ro

⎛⎜
⎝

⎞
⎠

2
⋅− F,

⎡
⎢
⎣

⎤
⎥
⎦

18.407=  

18.407A⋅ 48.88=  

Pcritical = 49kips 

Considering TVG's solution on p.249 of "Structural Members and Frames": 

Assume that: E=29000ksi, G=0.385E, Mo=-1.15P, and Iw=0 

E 29000:=  G 0.385 E⋅:=  L 91.5:=  

Py
π

2
E⋅ Iy⋅

L2
:=  Pz

G J⋅

ro 2
:=  

Buckling Condition: 

P 10:=  
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 Ojalvo p. 113 eqn (3-33b) approach to computing Pcr: 

e 2.52:=  The sign for this is consistent with regard to Ojalvo's notation (see p.111 & T3.1) 

ρ
G J⋅

e ybar⋅
:=  Py

π
2

E⋅ Iy⋅

L2
:=  

P 20:=  

root P2 1
e

ybar
−⎛⎜

⎝
⎞
⎠

⋅ P Py ρ+( )⋅− Py ρ⋅+ P,⎡⎢
⎣

⎤⎥
⎦

44.131=  

Thus according to Ojalvo's theory, Pcr = 44kips 

Summary: 
 
 Chen's Experiment Pcr = 37 kips 
 Galambos  Pcr = 39 kips 
 Ojalvo   Pcr = 44 kips 
 ABAQUS  Pcr = 38 kips 
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APPENDIX D 

 
 

PRINCIPAL STRESS CALCULATIONS 
 
 

Appendix D includes Excel spreadsheets used to numerically verify graphical representations of 

inclinations of principal stresses for each column model.  Appendix D1 includes the calculations 

performed for the cruciform-shaped column.  The normal and transverse stresses were imported 

into the worksheet from an ABAQUS data file.  These stresses were then used to calculate the 

inclination of the principal plane for each element along a strip from the flange piece.  The 

stresses extracted from the data file were computed during increment 16 of the analysis which 

corresponds to the location of the critical buckling load where the load proportionality factor is 

equal to 2.07, and the critical load is equal to 207 kips.  In addition to the stresses, the rotation of 

each element was also extracted for comparison with the inclination of the principal plane. 

 Appendix D2 consists of Excel spreadsheets used to calculate principal stress inclinations 

for the tee-shaped column.  Much like the cruciform model, the normal and shear stresses for the 

tee are extracted from the data file produced during the finite element analysis and they are then 

imported into Excel.  The inclination of the principal plane is then computed using these values 

for a strip of elements along the web plate of the tee.  The stresses taken from the data file were 

computed during increment 11 of the analysis, which corresponds to approximately one-third of 

the critical buckling load.  Along with the stresses, the rotation of each element was used to 

compare with the inclination of the principal plane along the length of the column. 
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APPENDIX D1 
 
 

 Flange 1 of Cruciform Column (Increment 16) 

Table 1: Inclination of Principal Plane (Cruciform) 
Node UR3  Element S11 S22 S12 θ X X/L 
965 0.011343  961 1.691 0.8719 0.1118 -0.1332448 0 0 
966 0.011343  962 1.252 -1.681 0.7754 -0.2431879 1 0.0041667 
967 0.011617  963 -1.581 -6.525 1.369 -0.252879 2 0.0083333 
968 0.011771  964 2.28 -6.378 -0.3057 0.03524987 3 0.0125 
969 0.011743  965 -0.1013 -5.942 -0.020382 0.00348959 4 0.0166667 
970 0.011833  966 0.7916 -6.85 -0.9435 0.12104727 5 0.0208333 
971 0.011828  967 -0.0020969 -6.942 -1.015 0.14228617 6 0.025 
972 0.011859  968 0.396 -7.399 -1.265 0.15692012 7 0.0291667 
973 0.011863  969 0.02462 -7.695 -1.354 0.16869121 8 0.0333333 
974 0.01188  970 0.314 -7.982 -1.476 0.17093139 9 0.0375 
975 0.011882  971 0.064465 -8.277 -1.555 0.17843614 10 0.0416667 
976 0.011893  972 0.2761 -8.525 -1.652 0.17956399 11 0.0458333 
977 0.011891  973 0.085374 -8.795 -1.736 0.18635083 12 0.05 
978 0.011896  974 0.2343 -9.028 -1.814 0.18666339 13 0.0541667 
979 0.01189  975 0.086475 -9.275 -1.899 0.19270752 14 0.0583333 
980 0.011888  976 0.1876 -9.495 -1.96 0.19234018 15 0.0625 
981 0.011879  977 0.075715 -9.722 -2.037 0.19703101 16 0.0666667 
982 0.011871  978 0.1416 -9.927 -2.085 0.1963262 17 0.0708333 
983 0.011857  979 0.059593 -10.13 -2.149 0.19957979 18 0.075 
984 0.011844  980 0.1005 -10.33 -2.185 0.19837334 19 0.0791667 
985 0.011826  981 0.042234 -10.52 -2.235 0.20017503 20 0.0833333 
986 0.011808  982 0.066377 -10.69 -2.263 0.19914273 21 0.0875 
987 0.011785  983 0.02592 -10.87 -2.3 0.19973829 22 0.0916667 
988 0.011761  984 0.039296 -11.03 -2.32 0.19846432 23 0.0958333 
989 0.011734  985 0.01164 -11.2 -2.346 0.19817341 24 0.1 
990 0.011705  986 0.018388 -11.35 -2.359 0.19668954 25 0.1041667 
991 0.011673  987 -0.0004121 -11.51 -2.377 0.19585145 26 0.1083333 
992 0.011638  988 0.0024024 -11.65 -2.385 0.1942736 27 0.1125 
993 0.011602  989 -0.010444 -11.8 -2.395 0.19295928 28 0.1166667 
994 0.011563  990 -0.0098799 -11.94 -2.399 0.19119013 29 0.1208333 
995 0.011521  991 -0.018803 -12.07 -2.404 0.1898067 30 0.125 
996 0.011477  992 -0.019472 -12.21 -2.404 0.18783672 31 0.1291667 
997 0.01143  993 -0.025836 -12.34 -2.404 0.186121 32 0.1333333 
998 0.011381  994 -0.02714 -12.47 -2.401 0.18415672 33 0.1375 
999 0.01133  995 -0.031837 -12.6 -2.398 0.18227181 34 0.1416667 

1000 0.011276  996 -0.033428 -12.73 -2.392 0.18017155 35 0.1458333 
1001 0.01122  997 -0.037028 -12.85 -2.385 0.17819149 36 0.15 
1002 0.011162  998 -0.038711 -12.97 -2.377 0.17614924 37 0.1541667 
1003 0.011101  999 -0.041573 -13.1 -2.368 0.17396201 38 0.1583333 
1004 0.011038  1000 -0.043241 -13.22 -2.358 0.17184891 39 0.1625 
1005 0.010972  1001 -0.045593 -13.34 -2.346 0.1696415 40 0.1666667 
1006 0.010904  1002 -0.04719 -13.46 -2.334 0.16745736 41 0.1708333 
1007 0.010834  1003 -0.049175 -13.58 -2.321 0.16524324 42 0.175 
1008 0.010761  1004 -0.050675 -13.7 -2.306 0.16292394 43 0.1791667 
1009 0.010687  1005 -0.052389 -13.81 -2.292 0.1608141 44 0.1833333 
1010 0.010609  1006 -0.053784 -13.93 -2.276 0.15849101 45 0.1875 
1011 0.01053  1007 -0.055289 -14.04 -2.259 0.15624133 46 0.1916667 
1012 0.010449  1008 -0.056578 -14.16 -2.242 0.15391524 47 0.1958333 
1013 0.010365  1009 -0.057918 -14.27 -2.224 0.15165793 48 0.2 
1014 0.010279  1010 -0.059109 -14.39 -2.206 0.14932899 49 0.2041667 
1015 0.01019  1011 -0.060315 -14.5 -2.187 0.14706457 50 0.2083333 
1016 0.0101  1012 -0.061415 -14.61 -2.167 0.1447638 51 0.2125 
1017 0.010007  1013 -0.062511 -14.73 -2.147 0.14239902 52 0.2166667 
1018 0.0099128  1014 -0.063529 -14.84 -2.126 0.14009256 53 0.2208333 
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1019 0.0098159  1015 -0.064534 -14.95 -2.104 0.13775156 54 0.225 
1020 0.0097169  1016 -0.065479 -15.06 -2.082 0.13543799 55 0.2291667 
1021 0.0096159  1017 -0.066405 -15.17 -2.06 0.13315184 56 0.2333333 
1022 0.0095127  1018 -0.067285 -15.28 -2.037 0.13083116 57 0.2375 
1023 0.0094076  1019 -0.068144 -15.38 -2.014 0.12861801 58 0.2416667 
1024 0.0093003  1020 -0.068966 -15.49 -1.99 0.12628864 59 0.2458333 
1025 0.0091911  1021 -0.069767 -15.6 -1.965 0.12392585 60 0.25 
1026 0.0090799  1022 -0.070537 -15.7 -1.94 0.12166504 61 0.2541667 
1027 0.0089667  1023 -0.071286 -15.8 -1.915 0.11942761 62 0.2583333 
1028 0.0088515  1024 -0.072009 -15.91 -1.89 0.11714193 63 0.2625 
1029 0.0087345  1025 -0.072712 -16.01 -1.864 0.11489262 64 0.2666667 
1030 0.0086155  1026 -0.073392 -16.11 -1.837 0.11260711 65 0.2708333 
1031 0.0084946  1027 -0.074054 -16.21 -1.81 0.1103449 66 0.275 
1032 0.0083719  1028 -0.074694 -16.31 -1.783 0.10810572 67 0.2791667 
1033 0.0082474  1029 -0.075318 -16.41 -1.755 0.10583083 68 0.2833333 
1034 0.0081211  1030 -0.075922 -16.5 -1.727 0.10364023 69 0.2875 
1035 0.0079929  1031 -0.07651 -16.6 -1.699 0.10140953 70 0.2916667 
1036 0.0078631  1032 -0.077081 -16.69 -1.67 0.09920169 71 0.2958333 
1037 0.0077315  1033 -0.077635 -16.79 -1.641 0.09695693 72 0.3 
1038 0.0075982  1034 -0.078174 -16.88 -1.612 0.09478979 73 0.3041667 
1039 0.0074632  1035 -0.078697 -16.97 -1.582 0.09258477 74 0.3083333 
1040 0.0073265  1036 -0.079205 -17.06 -1.552 0.09039932 75 0.3125 
1041 0.0071883  1037 -0.079699 -17.15 -1.522 0.08823327 76 0.3166667 
1042 0.0070485  1038 -0.080178 -17.23 -1.491 0.08607906 77 0.3208333 
1043 0.0069071  1039 -0.080643 -17.32 -1.46 0.08389369 78 0.325 
1044 0.0067641  1040 -0.081094 -17.4 -1.429 0.081774 79 0.3291667 
1045 0.0066197  1041 -0.081532 -17.48 -1.398 0.07967071 80 0.3333333 
1046 0.0064738  1042 -0.081956 -17.56 -1.366 0.07752785 81 0.3375 
1047 0.0063264  1043 -0.082368 -17.64 -1.334 0.07540152 82 0.3416667 
1048 0.0061777  1044 -0.082766 -17.72 -1.301 0.07323613 83 0.3458333 
1049 0.0060276  1045 -0.083151 -17.8 -1.269 0.07114271 84 0.35 
1050 0.0058761  1046 -0.083524 -17.87 -1.236 0.06904869 85 0.3541667 
1051 0.0057233  1047 -0.083885 -17.94 -1.203 0.06696853 86 0.3583333 
1052 0.0055692  1048 -0.084233 -18.01 -1.169 0.06484733 87 0.3625 
1053 0.0054139  1049 -0.084569 -18.08 -1.136 0.06279489 88 0.3666667 
1054 0.0052574  1050 -0.084893 -18.15 -1.102 0.06070159 89 0.3708333 
1055 0.0050996  1051 -0.085206 -18.21 -1.068 0.05865427 90 0.375 
1056 0.0049408  1052 -0.085507 -18.28 -1.034 0.05658754 91 0.3791667 
1057 0.0047808  1053 -0.085796 -18.34 -0.9993 0.05452637 92 0.3833333 
1058 0.0046198  1054 -0.086074 -18.4 -0.9647 0.05248217 93 0.3875 
1059 0.0044577  1055 -0.08634 -18.45 -0.9298 0.05046059 94 0.3916667 
1060 0.0042946  1056 -0.086596 -18.51 -0.8948 0.04841676 95 0.3958333 
1061 0.0041305  1057 -0.08684 -18.56 -0.8597 0.0464041 96 0.4 
1062 0.0039655  1058 -0.087073 -18.61 -0.8243 0.04438465 97 0.4041667 
1063 0.0037996  1059 -0.087296 -18.66 -0.7888 0.04236923 98 0.4083333 
1064 0.0036329  1060 -0.087508 -18.71 -0.7531 0.04035251 99 0.4125 
1065 0.0034653  1061 -0.087709 -18.75 -0.7173 0.03836035 100 0.4166667 
1066 0.0032969  1062 -0.087899 -18.8 -0.6814 0.03635076 101 0.4208333 
1067 0.0031278  1063 -0.088079 -18.84 -0.6453 0.03435829 102 0.425 
1068 0.002958  1064 -0.088248 -18.88 -0.6091 0.03236787 103 0.4291667 
1069 0.0027875  1065 -0.088408 -18.91 -0.5728 0.03039563 104 0.4333333 
1070 0.0026163  1066 -0.088556 -18.95 -0.5363 0.02840307 105 0.4375 
1071 0.0024446  1067 -0.088695 -18.98 -0.4998 0.02643197 106 0.4416667 
1072 0.0022723  1068 -0.088823 -19.01 -0.4632 0.02446097 107 0.4458333 
1073 0.0020995  1069 -0.088942 -19.04 -0.4264 0.02248489 108 0.45 
1074 0.0019263  1070 -0.08905 -19.06 -0.3896 0.02052513 109 0.4541667 
1075 0.0017526  1071 -0.089148 -19.09 -0.3528 0.01855906 110 0.4583333 
1076 0.0015784  1072 -0.089237 -19.11 -0.3158 0.01659681 111 0.4625 
1077 0.001404  1073 -0.089315 -19.12 -0.2788 0.01464583 112 0.4666667 
1078 0.0012292  1074 -0.089384 -19.14 -0.2417 0.01268453 113 0.4708333 
1079 0.0010541  1075 -0.089442 -19.15 -0.2046 0.01073256 114 0.475 
1080 0.0008788  1076 -0.089491 -19.17 -0.1675 0.00877769 115 0.4791667 
1081 0.0007033  1077 -0.08953 -19.18 -0.1303 0.00682497 116 0.4833333 
1082 0.0005276  1078 -0.08956 -19.18 -0.093083 0.00487574 117 0.4875 
1083 0.0003518  1079 -0.089579 -19.19 -0.055857 0.00292435 118 0.4916667 
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1084 0.0001759  1080 -0.089589 -19.19 -0.01862 0.00097485 119 0.4958333 
1085 5.242E-14  1081 -0.089589 -19.19 0.01862 -0.0009748 120 0.5 
1086 -0.0001759  1082 -0.089579 -19.19 0.055857 -0.0029244 121 0.5041667 
1087 -0.0003518  1083 -0.08956 -19.18 0.093083 -0.0048757 122 0.5083333 
1088 -0.0005276  1084 -0.08953 -19.18 0.1303 -0.006825 123 0.5125 
1089 -0.0007033  1085 -0.089491 -19.17 0.1675 -0.0087777 124 0.5166667 
1090 -0.0008788  1086 -0.089442 -19.15 0.2046 -0.0107326 125 0.5208333 
1091 -0.0010541  1087 -0.089384 -19.14 0.2417 -0.0126845 126 0.525 
1092 -0.0012292  1088 -0.089315 -19.12 0.2788 -0.0146458 127 0.5291667 
1093 -0.001404  1089 -0.089237 -19.11 0.3158 -0.0165968 128 0.5333333 
1094 -0.0015784  1090 -0.089148 -19.09 0.3528 -0.0185591 129 0.5375 
1095 -0.0017526  1091 -0.08905 -19.06 0.3896 -0.0205251 130 0.5416667 
1096 -0.0019263  1092 -0.088942 -19.04 0.4264 -0.0224849 131 0.5458333 
1097 -0.0020995  1093 -0.088823 -19.01 0.4632 -0.024461 132 0.55 
1098 -0.0022723  1094 -0.088695 -18.98 0.4998 -0.026432 133 0.5541667 
1099 -0.0024446  1095 -0.088556 -18.95 0.5363 -0.0284031 134 0.5583333 
1100 -0.0026163  1096 -0.088408 -18.91 0.5728 -0.0303956 135 0.5625 
1101 -0.0027875  1097 -0.088248 -18.88 0.6091 -0.0323679 136 0.5666667 
1102 -0.002958  1098 -0.088079 -18.84 0.6453 -0.0343583 137 0.5708333 
1103 -0.0031278  1099 -0.087899 -18.8 0.6814 -0.0363508 138 0.575 
1104 -0.0032969  1100 -0.087709 -18.75 0.7173 -0.0383604 139 0.5791667 
1105 -0.0034653  1101 -0.087508 -18.71 0.7531 -0.0403525 140 0.5833333 
1106 -0.0036329  1102 -0.087296 -18.66 0.7888 -0.0423692 141 0.5875 
1107 -0.0037996  1103 -0.087073 -18.61 0.8243 -0.0443847 142 0.5916667 
1108 -0.0039655  1104 -0.08684 -18.56 0.8597 -0.0464041 143 0.5958333 
1109 -0.0041305  1105 -0.086596 -18.51 0.8948 -0.0484168 144 0.6 
1110 -0.0042946  1106 -0.08634 -18.45 0.9298 -0.0504606 145 0.6041667 
1111 -0.0044577  1107 -0.086074 -18.4 0.9647 -0.0524822 146 0.6083333 
1112 -0.0046198  1108 -0.085796 -18.34 0.9993 -0.0545264 147 0.6125 
1113 -0.0047808  1109 -0.085507 -18.28 1.034 -0.0565875 148 0.6166667 
1114 -0.0049408  1110 -0.085206 -18.21 1.068 -0.0586543 149 0.6208333 
1115 -0.0050996  1111 -0.084893 -18.15 1.102 -0.0607016 150 0.625 
1116 -0.0052574  1112 -0.084569 -18.08 1.136 -0.0627949 151 0.6291667 
1117 -0.0054139  1113 -0.084233 -18.01 1.169 -0.0648473 152 0.6333333 
1118 -0.0055692  1114 -0.083885 -17.94 1.203 -0.0669685 153 0.6375 
1119 -0.0057233  1115 -0.083524 -17.87 1.236 -0.0690487 154 0.6416667 
1120 -0.0058761  1116 -0.083151 -17.8 1.269 -0.0711427 155 0.6458333 
1121 -0.0060276  1117 -0.082766 -17.72 1.301 -0.0732361 156 0.65 
1122 -0.0061777  1118 -0.082368 -17.64 1.334 -0.0754015 157 0.6541667 
1123 -0.0063264  1119 -0.081956 -17.56 1.366 -0.0775278 158 0.6583333 
1124 -0.0064738  1120 -0.081532 -17.48 1.398 -0.0796707 159 0.6625 
1125 -0.0066197  1121 -0.081094 -17.4 1.429 -0.081774 160 0.6666667 
1126 -0.0067641  1122 -0.080643 -17.32 1.46 -0.0838937 161 0.6708333 
1127 -0.0069071  1123 -0.080178 -17.23 1.491 -0.0860791 162 0.675 
1128 -0.0070485  1124 -0.079699 -17.15 1.522 -0.0882333 163 0.6791667 
1129 -0.0071883  1125 -0.079205 -17.06 1.552 -0.0903993 164 0.6833333 
1130 -0.0073265  1126 -0.078697 -16.97 1.582 -0.0925848 165 0.6875 
1131 -0.0074632  1127 -0.078174 -16.88 1.612 -0.0947898 166 0.6916667 
1132 -0.0075982  1128 -0.077635 -16.79 1.641 -0.0969569 167 0.6958333 
1133 -0.0077315  1129 -0.077081 -16.69 1.67 -0.0992017 168 0.7 
1134 -0.0078631  1130 -0.07651 -16.6 1.699 -0.1014095 169 0.7041667 
1135 -0.0079929  1131 -0.075922 -16.5 1.727 -0.1036402 170 0.7083333 
1136 -0.0081211  1132 -0.075318 -16.41 1.755 -0.1058308 171 0.7125 
1137 -0.0082474  1133 -0.074694 -16.31 1.783 -0.1081057 172 0.7166667 
1138 -0.0083719  1134 -0.074054 -16.21 1.81 -0.1103449 173 0.7208333 
1139 -0.0084946  1135 -0.073392 -16.11 1.837 -0.1126071 174 0.725 
1140 -0.0086155  1136 -0.072712 -16.01 1.864 -0.1148926 175 0.7291667 
1141 -0.0087345  1137 -0.072009 -15.91 1.89 -0.1171419 176 0.7333333 
1142 -0.0088515  1138 -0.071286 -15.8 1.915 -0.1194276 177 0.7375 
1143 -0.0089667  1139 -0.070537 -15.7 1.94 -0.121665 178 0.7416667 
1144 -0.0090799  1140 -0.069767 -15.6 1.965 -0.1239258 179 0.7458333 
1145 -0.0091911  1141 -0.068966 -15.49 1.99 -0.1262886 180 0.75 
1146 -0.0093003  1142 -0.068144 -15.38 2.014 -0.128618 181 0.7541667 
1147 -0.0094076  1143 -0.067285 -15.28 2.037 -0.1308312 182 0.7583333 
1148 -0.0095127  1144 -0.066405 -15.17 2.06 -0.1331518 183 0.7625 
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1149 -0.0096159  1145 -0.065479 -15.06 2.082 -0.135438 184 0.7666667 
1150 -0.0097169  1146 -0.064534 -14.95 2.104 -0.1377516 185 0.7708333 
1151 -0.0098159  1147 -0.063529 -14.84 2.126 -0.1400926 186 0.775 
1152 -0.0099128  1148 -0.062511 -14.73 2.147 -0.142399 187 0.7791667 
1153 -0.010007  1149 -0.061415 -14.61 2.167 -0.1447638 188 0.7833333 
1154 -0.0101  1150 -0.060315 -14.5 2.187 -0.1470646 189 0.7875 
1155 -0.01019  1151 -0.059109 -14.39 2.206 -0.149329 190 0.7916667 
1156 -0.010279  1152 -0.057918 -14.27 2.224 -0.1516579 191 0.7958333 
1157 -0.010365  1153 -0.056578 -14.16 2.242 -0.1539152 192 0.8 
1158 -0.010449  1154 -0.055289 -14.04 2.259 -0.1562413 193 0.8041667 
1159 -0.01053  1155 -0.053784 -13.93 2.276 -0.158491 194 0.8083333 
1160 -0.010609  1156 -0.052389 -13.81 2.292 -0.1608141 195 0.8125 
1161 -0.010687  1157 -0.050675 -13.7 2.306 -0.1629239 196 0.8166667 
1162 -0.010761  1158 -0.049175 -13.58 2.321 -0.1652432 197 0.8208333 
1163 -0.010834  1159 -0.04719 -13.46 2.334 -0.1674574 198 0.825 
1164 -0.010904  1160 -0.045593 -13.34 2.346 -0.1696415 199 0.8291667 
1165 -0.010972  1161 -0.043241 -13.22 2.358 -0.1718489 200 0.8333333 
1166 -0.011038  1162 -0.041573 -13.1 2.368 -0.173962 201 0.8375 
1167 -0.011101  1163 -0.038711 -12.97 2.377 -0.1761492 202 0.8416667 
1168 -0.011162  1164 -0.037028 -12.85 2.385 -0.1781915 203 0.8458333 
1169 -0.01122  1165 -0.033428 -12.73 2.392 -0.1801716 204 0.85 
1170 -0.011276  1166 -0.031837 -12.6 2.398 -0.1822718 205 0.8541667 
1171 -0.01133  1167 -0.02714 -12.47 2.401 -0.1841567 206 0.8583333 
1172 -0.011381  1168 -0.025836 -12.34 2.404 -0.186121 207 0.8625 
1173 -0.01143  1169 -0.019472 -12.21 2.404 -0.1878367 208 0.8666667 
1174 -0.011477  1170 -0.018803 -12.07 2.404 -0.1898067 209 0.8708333 
1175 -0.011521  1171 -0.0098799 -11.94 2.399 -0.1911901 210 0.875 
1176 -0.011563  1172 -0.010444 -11.8 2.395 -0.1929593 211 0.8791667 
1177 -0.011602  1173 0.0024024 -11.65 2.385 -0.1942736 212 0.8833333 
1178 -0.011638  1174 -0.0004121 -11.51 2.377 -0.1958514 213 0.8875 
1179 -0.011673  1175 0.018388 -11.35 2.359 -0.1966895 214 0.8916667 
1180 -0.011705  1176 0.01164 -11.2 2.346 -0.1981734 215 0.8958333 
1181 -0.011734  1177 0.039296 -11.03 2.32 -0.1984643 216 0.9 
1182 -0.011761  1178 0.02592 -10.87 2.3 -0.1997383 217 0.9041667 
1183 -0.011785  1179 0.066377 -10.69 2.263 -0.1991427 218 0.9083333 
1184 -0.011808  1180 0.042234 -10.52 2.235 -0.200175 219 0.9125 
1185 -0.011826  1181 0.1005 -10.33 2.185 -0.1983733 220 0.9166667 
1186 -0.011844  1182 0.059593 -10.13 2.149 -0.1995798 221 0.9208333 
1187 -0.011857  1183 0.1416 -9.927 2.085 -0.1963262 222 0.925 
1188 -0.011871  1184 0.075715 -9.722 2.037 -0.197031 223 0.9291667 
1189 -0.011879  1185 0.1876 -9.495 1.96 -0.1923402 224 0.9333333 
1190 -0.011888  1186 0.086475 -9.275 1.899 -0.1927075 225 0.9375 
1191 -0.01189  1187 0.2343 -9.028 1.814 -0.1866634 226 0.9416667 
1192 -0.011896  1188 0.085374 -8.795 1.736 -0.1863508 227 0.9458333 
1193 -0.011891  1189 0.2761 -8.525 1.652 -0.179564 228 0.95 
1194 -0.011893  1190 0.064465 -8.277 1.555 -0.1784361 229 0.9541667 
1195 -0.011882  1191 0.314 -7.982 1.476 -0.1709314 230 0.9583333 
1196 -0.01188  1192 0.02462 -7.695 1.354 -0.1686912 231 0.9625 
1197 -0.011863  1193 0.396 -7.399 1.265 -0.1569201 232 0.9666667 
1198 -0.011859  1194 -0.0020969 -6.942 1.015 -0.1422862 233 0.9708333 
1199 -0.011828  1195 0.7916 -6.85 0.9435 -0.1210473 234 0.975 
1200 -0.011833  1196 -0.1013 -5.942 0.020382 -0.0034896 235 0.9791667 
1201 -0.011743  1197 2.28 -6.378 0.3057 -0.0352499 236 0.9833333 
1202 -0.011771  1198 -1.581 -6.525 -1.369 0.25287899 237 0.9875 
1203 -0.011617  1199 1.252 -1.681 -0.7754 0.24318794 238 0.9916667 
1204 -0.011343  1200 1.691 0.8719 -0.1118 0.13324482 239 0.9958333 
1205 -0.011343       240 1 
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APPENDIX D2 
 

Flange Plate of Tee Column (Increment 11) 

Table 2: Inclination of Principal Plane (Tee) 
Node UR3 Element S11 S22 S12 X/L θ
559 -0.000597 461 -0.08194 -1.215 -0.21800 0.000 -0.184
560 -0.000612 462 0.06172 -1.493 -0.15520 0.011 -0.099
561 -0.000595 463 -0.00896 -1.711 -0.26130 0.022 -0.149
562 -0.000595 464 -0.00306 -1.668 -0.27190 0.033 -0.158
563 -0.000592 465 -0.00083 -1.592 -0.25730 0.044 -0.156
564 -0.000590 466 0.01092 -1.556 -0.26120 0.055 -0.161
565 -0.000587 467 0.00351 -1.524 -0.27050 0.066 -0.170
566 -0.000583 468 0.00734 -1.499 -0.27540 0.077 -0.175
567 -0.000578 469 0.00265 -1.472 -0.28340 0.088 -0.183
568 -0.000573 470 0.00283 -1.442 -0.28540 0.099 -0.188
569 -0.000568 471 0.00101 -1.411 -0.28780 0.110 -0.194
570 -0.000561 472 0.00075 -1.378 -0.28730 0.121 -0.197
571 -0.000554 473 -0.00026 -1.345 -0.28660 0.132 -0.201
572 -0.000546 474 -0.00024 -1.312 -0.28460 0.143 -0.205
573 -0.000538 475 -0.00118 -1.278 -0.28230 0.154 -0.208
574 -0.000529 476 -0.00087 -1.245 -0.27940 0.165 -0.211
575 -0.000520 477 -0.00184 -1.213 -0.27600 0.176 -0.214
576 -0.000510 478 -0.00142 -1.181 -0.27230 0.187 -0.216
577 -0.000499 479 -0.00235 -1.149 -0.26810 0.198 -0.219
578 -0.000488 480 -0.00194 -1.118 -0.26370 0.209 -0.221
579 -0.000476 481 -0.00279 -1.088 -0.25900 0.220 -0.223
580 -0.000464 482 -0.00246 -1.058 -0.25390 0.231 -0.224
581 -0.000451 483 -0.00320 -1.029 -0.24850 0.242 -0.226
582 -0.000437 484 -0.00298 -1.001 -0.24280 0.253 -0.226
583 -0.000423 485 -0.00360 -0.974 -0.23690 0.264 -0.227
584 -0.000409 486 -0.00349 -0.947 -0.23060 0.275 -0.227
585 -0.000394 487 -0.00401 -0.921 -0.22410 0.286 -0.227
586 -0.000378 488 -0.00399 -0.896 -0.21720 0.297 -0.227
587 -0.000362 489 -0.00443 -0.872 -0.21010 0.308 -0.226
588 -0.000346 490 -0.00447 -0.849 -0.20260 0.319 -0.224
589 -0.000329 491 -0.00485 -0.827 -0.19490 0.330 -0.221
590 -0.000312 492 -0.00494 -0.805 -0.18690 0.341 -0.218
591 -0.000294 493 -0.00526 -0.785 -0.17860 0.352 -0.215
592 -0.000276 494 -0.00539 -0.766 -0.17000 0.363 -0.210
593 -0.000258 495 -0.00567 -0.748 -0.16120 0.374 -0.205
594 -0.000239 496 -0.00582 -0.731 -0.15210 0.385 -0.199
595 -0.000220 497 -0.00607 -0.715 -0.14270 0.396 -0.191
596 -0.000201 498 -0.00622 -0.700 -0.13310 0.407 -0.183
597 -0.000181 499 -0.00645 -0.686 -0.12320 0.418 -0.174
598 -0.000161 500 -0.00661 -0.674 -0.11310 0.429 -0.163
599 -0.000141 501 -0.00681 -0.663 -0.10270 0.440 -0.152
600 -0.000121 502 -0.00696 -0.653 -0.09206 0.451 -0.139
601 -0.000100 503 -0.00714 -0.644 -0.08122 0.462 -0.125
602 -0.000079 504 -0.00729 -0.636 -0.07016 0.473 -0.110
603 -0.000059 505 -0.00745 -0.630 -0.05889 0.484 -0.093
604 -0.000038 506 -0.00758 -0.625 -0.04742 0.495 -0.076
605 -0.000016 507 -0.00772 -0.622 -0.03576 0.505 -0.058
606 0.000005 508 -0.00784 -0.620 -0.02391 0.516 -0.039
607 0.000026 509 -0.00794 -0.619 -0.01190 0.527 -0.019
608 0.000047 510 -0.00806 -0.619 0.00028 0.538 0.000
609 0.000068 511 -0.00813 -0.621 0.01260 0.549 0.021
610 0.000090 512 -0.00823 -0.625 0.02506 0.560 0.041
611 0.000111 513 -0.00827 -0.629 0.03764 0.571 0.060
612 0.000132 514 -0.00835 -0.635 0.05033 0.582 0.080
613 0.000153 515 -0.00836 -0.643 0.06311 0.593 0.098  
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614 0.000174 516 -0.00843 -0.652 0.07597 0.604 0.116
615 0.000195 517 -0.00840 -0.662 0.08890 0.615 0.133
616 0.000215 518 -0.00846 -0.674 0.10190 0.626 0.149
617 0.000235 519 -0.00837 -0.687 0.11490 0.637 0.163
618 0.000256 520 -0.00843 -0.702 0.12790 0.648 0.177
619 0.000275 521 -0.00829 -0.718 0.14090 0.659 0.189
620 0.000295 522 -0.00836 -0.736 0.15390 0.670 0.200
621 0.000314 523 -0.00813 -0.755 0.16690 0.681 0.210
622 0.000333 524 -0.00822 -0.775 0.17980 0.692 0.219
623 0.000351 525 -0.00791 -0.797 0.19270 0.703 0.227
624 0.000370 526 -0.00804 -0.820 0.20540 0.714 0.234
625 0.000387 527 -0.00761 -0.844 0.21800 0.725 0.240
626 0.000405 528 -0.00780 -0.870 0.23050 0.736 0.245
627 0.000421 529 -0.00724 -0.897 0.24280 0.747 0.250
628 0.000438 530 -0.00750 -0.926 0.25500 0.758 0.253
629 0.000453 531 -0.00679 -0.956 0.26690 0.769 0.256
630 0.000468 532 -0.00711 -0.987 0.27860 0.780 0.259
631 0.000483 533 -0.00625 -1.019 0.29000 0.791 0.260
632 0.000497 534 -0.00659 -1.052 0.30100 0.802 0.261
633 0.000511 535 -0.00557 -1.086 0.31170 0.813 0.262
634 0.000523 536 -0.00583 -1.122 0.32180 0.824 0.262
635 0.000536 537 -0.00470 -1.158 0.33130 0.835 0.261
636 0.000547 538 -0.00470 -1.195 0.34010 0.846 0.260
637 0.000558 539 -0.00347 -1.233 0.34790 0.857 0.257
638 0.000568 540 -0.00298 -1.270 0.35480 0.868 0.255
639 0.000577 541 -0.00152 -1.308 0.35970 0.879 0.252
640 0.000585 542 -0.00045 -1.345 0.36340 0.890 0.248
641 0.000593 543 0.00195 -1.381 0.36330 0.901 0.242
642 0.000600 544 0.00295 -1.415 0.36220 0.912 0.236
643 0.000607 545 0.00819 -1.447 0.35390 0.923 0.226
644 0.000612 546 0.00590 -1.475 0.34700 0.934 0.219
645 0.000617 547 0.01339 -1.511 0.33460 0.945 0.207
646 0.000621 548 0.00348 -1.551 0.32600 0.956 0.199
647 0.000623 549 -0.00006 -1.631 0.33550 0.967 0.195
648 0.000626 550 -0.00287 -1.674 0.31750 0.978 0.182
649 0.000627 551 0.06473 -1.446 0.20220 0.989 0.131
650 0.000644 552 -0.06446 -1.115 0.23800 1.000 0.213
651 0.000628 1.011  
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