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ABSTRACT 

 
 

A 3-D COMPUTER MODEL TO SIMULATE THE SINTERING OF A RANDOMLY 
PACKED GREEN COMPACT IN ORDER TO INVESTIGATE THE EVOLUTION OF THE 

MICROSTRUCTURE 
 
 

Brian Michael Ennis, PhD 
 
 

University of Pittsburgh, 2005 
 
 
 

The objective of this research project was to develop a three-dimensional computer 

model to simulate the sintering of a randomly packed green compact in order to investigate the 

evolution of the microstructure as densification progresses. The model randomly generates a 

population of spheres to simulate the particle size distributions present in commercial alumina 

powders. The spheres were packed into a cubic volume to construct a Representative Volume 

Element (RVE) with properties statistically comparable to the properties measured in real 

sintered materials. Sintering was modeled as uniform flattening of the contact between spheres. 

The sintering process was assumed to be isotropic and homogenous. The simulation of the 

sintering process was later expanded to include Local Particle Rearrangement (LPR). The model 

was compared to experimental data obtained from measurements on sintered alumina samples 

using two techniques: the stereological parameters for the RVE determined by the simulation, 

and additional measurable quantities obtained from applying tessellation to cross sections taken 

from the RVE to further describe the characteristics of the microstructure. Based on the 

measured stereological parameters and the properties of the tessellated cells, the simulation 
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reproduced behavioral trends in the microstructure similar to those observed in the measurement 

of the experimental samples thus demonstrating the feasibility of employing this type of model to 

explore the microstructure. The results also indicate that the generation of agglomerated particle 

packing arrangements may be useful in simulating the microstructural evolution of sintering 

since the presence of the large voids used to simulate agglomeration had a significant effect on 

the results. The use of LPR in the simulation did not appear to affect the results for a particle 

arrangement with no agglomerations, but it did influence the results for the particle arrangement 

with agglomeration. The results for the LPR simulations suggest that the ability of the particles 

to slide past each other, modeled in the simulation by the tangential viscosity, may influence the 

rate at which small pores are formed and/or eliminated in the RVE. However, the LPR 

simulations indicate that more particles are needed to effectively model the influence of 

agglomeration in the particle arrangement. 
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1.0 INTRODUCTION 

 
 
 
 
Sintering is a common material forming process by which a shaped part made from a powder is 

heated to form a solid object. Sintering is the primary material consolidation process for ceramic 

products. Many common ceramics such as bricks, earthen wares, and glass, have been 

manufactured using sintering for centuries. In recent years, additional ceramic materials have 

been developed to meet the design requirements for new applications. Many advanced ceramic 

materials have insulating or dielectric properties which have led to significant improvements in 

electronic circuitry by increasing the capacity of a wide range of electronic components 

including capacitors, inductors, and piezoelectric materials. Other applications for ceramic 

materials include such uses as high temperature resistant components for jet turbines and rocket 

nozzles, refractory materials for furnaces, and uranium oxide fuel rods for nuclear reactors. 

Sintering can also be an alternative to other manufacturing methods, such as casting or forging, 

for products made from a variety of metals depending on the production costs or the application. 

Some examples of sintered metal products are oil-impregnated bearings (bronze), incandescent 

lamp filaments (tungsten) and permanent magnets (iron).  

Prior to sintering, the powder material is pressed into a die to form a green compact. The 

fluid-like characteristics of the material powder provides the capability to produce complex solid 

shapes. This near net shape capability minimizes waste material and machining operations 

leading to potentially lower production costs. This is particularly true for mass production in 

 



 

cases where the die used to form the shape can be used repeatedly. The subsequent sintering of 

the green compact densifies the powder into a solid and generally improves the properties. 

Unfortunately, sintering involves large amounts of shrinkage, usually about 18% linear 

shrinkage, and can result in less favorable engineering properties when compared to other 

manufacturing processes. Hence, the capability to improve and optimize material properties 

during sintering is essential. There are two important design considerations when using sintering 

as the means of production. The first design consideration is the ability to predict volume 

shrinkage and shape changes to predetermine the dimensions of the initial green piece. It is often 

difficult to predict the final shape from the initial shape due to the inhomogeneity of the 

dimensional changes as densification progresses. Consequently, in many cases, trial and error is 

the only means to determine the best technique to achieve the desired final shape. The second 

design consideration is the ability to predict the desired material properties of the final piece. 

Since both the dimensional changes and material properties are related to the evolution of the 

microstructure, there is a need to develop models capable of accurately predicting the 

microstructural behavior of materials during the sintering process. (1-3) 

Traditionally, two general types of models have been used as design tools to engineer the 

fabrication of parts using the sintering process. The first type, continuum models (4, 5), has been 

developed to predict dimensional changes. However, in such models, the internal structure of the 

powder compact is often only represented by the change in the relative density. Since the specific 

details of the microstructure geometry are not considered, this results in obvious difficulty when 

attempting to incorporate the effects of microstructural evolution into the predictive model. The 

second type, contact flattening models (6, 7) with ordered geometry, has been used for many 

decades to predict the effect of temperature and time on sintered density.(8-10) The main drawback 
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to these models is the assumption of a fixed, ordered packing, or a dense, random packing. This 

assumption allows the unit cell to be simplified to one particle and its attendant porosity. 

However, it also precludes the direct modeling of the packing arrangement and its subsequent 

effect on sintering.  

With advances in computer technology, other modeling techniques have been developed. 

Some attempts have been made to model two-dimensional sintering of monosized spheres to 

evaluate differential sintering, (11, 12) but the extension of a model into three dimensions is not as 

common.(13) Several studies have analyzed the three-dimensional packing arrangement of 

particles modeled as spheres. However, these models limit their focus to the efficiency of the 

particle packing by only evaluating the model based on the initial (green) density of the packing 

arrangement; the subsequent effect of the sintering process is not considered.(14-20) A few of the 

more recent models employ a multiscale approach. Generally, algorithms to control the 

interaction of the particles are developed using either phenomenological behavior (11, 12) or 

constitutive relationships (21, 22) as the basis for building a network of particles.    

The present model is a three-dimensional (3-D) simulation of sintering for randomly 

packed particle arrangements. This model differs from previous attempts in several ways. First, 

the manner in which the particles are packed is improved by utilizing a control algorithm that 

randomly moves each particle as it is placed in the containing volume. Second, Monte Carlo 

integration techniques were adapted for the first time to calculate the stereological parameters to 

permit a comparison to data commonly reported in experimental studies to characterize sintered 

materials. Third, the model introduces a technique to simulate agglomerations in the particle 

arrangement to demonstrate how particle agglomerations can influence sintering behavior. 

Fourth, the model demonstrates how tessellation can be applied to 2-D cross sections from the 
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simulation to provide additional information for comparing the model results to experimental 

results. Finally, equilibrium equations are developed to allow for local particle motion in the 

packing arrangement.  
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2.0 BACKGROUND 

 
 
 
 

This section describes the essential details of the fundamental concepts forming the basis for the 

development of the sintering model presented in this paper. The background has been separated 

into four main topics: a review of the sintering process with a brief summary of common 

sintering models, the computer modeling of particle packing arrangements, stereology, and the 

basic concepts of tessellation.  

 
 
 
 

2.1 SINTERING 

 
 
Sintering is a common material forming process used to manufacture ceramic and metallic 

products. The process begins with a material powder being placed in a die and then compressed 

using an applied external pressure. The powder at this point is often referred to as the green 

compact. After the green compact is formed, heat is then applied during sintering to transform 

the material from a powder into a solid object. The sintering temperature varies based on the 

material and the desired properties, but it is generally 50% to 80% of the melting temperature of 

the powder material. The applied heat activates the material transport mechanisms, called 

diffusion, which lead to densification of the material. Densification occurs primarily because of 

the high surface area per unit volume of the powder. At first, the reduction of the surface area is 
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through the formation of necks between adjacent particles. In later stages, the reduction of the 

surface area is usually achieved through a decrease in pore size and/or removal of the pores. The 

change in density results in shrinkage (generally anisotropic) of the material. The sintering 

process is influenced by several important factors including, but not limited to: the sintering 

temperature, the particle size, the sintering time, the heating rate and the applied pressure. For 

the sintering process, there are two main concerns for the design and manufacturing of products 

made using sintering: the dimensional change which can occur as a result of the densification of 

the material and the evolution of the microstructure which is the primary factor influencing many 

of the material properties such as strength, conductivity, magnetic permeability and corrosion 

resistance. Characterization of the microstructure is generally made by examining the pore 

structure and/or the size and shape of the grains. (1, 3) 

The sintering process is typically separated into three generic stages: initial, intermediate 

and final. These stages indicate the general geometric progression of the microstructure as the 

powder compact evolves into the final solid object. The initial stage of sintering is characterized 

by neck growth between adjacent particles in contact with each other. In this stage, the void 

phase exists as one continuous network. The initial stage continues until adjacent necks begin to 

overlap. This signifies the start of the next stage. The intermediate stage of sintering is 

characterized by the interaction between adjacent necks as neck growth proceeds. The voids 

generally decrease in size in this stage. However, the void phase still remains a continuous 

network. The final stage of sintering is characterized by the breakup of the void phase network as 

densification progresses to the point where the voids become isolated. It is important to note that 

the transition between sintering stages is not always distinct, or even uniform throughout the 
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sintered object. Hence, the range of densities for which the characteristics of a particular stage 

apply can vary for different materials. 

 
 
 
 
2.1.1 Sintering Fundamentals 

 
 
The ability to predict the dimensional change is an important design consideration for the 

manufacture of product made from sintered materials. Historically, manufacturers have relied on 

measurements obtained through trial and error to predict the dimensional changes which can 

occur during the sintering process. From a measured change ( L∆ ) in the initial dimension ( ), 

the overall volume change ( ∆ ) from the green volume (V ) can be estimated for small 

shrinkages by the relationship 

L

V

(1),  

0

3

00

311
L

L
L

L
V

V ∆
≈







 ∆
−−=

∆ . 

 

However, this approximation does not account for anisotropic dimensional changes which can 

occur during the sintering process.  

The fundamental description of the sintering process is typically based on the interaction 

of two identically sized spheres of diameter, D, in contact with each other (1) as shown in Figure 

1. During sintering, matter moves to the contact region between the two spheres, eventually 

forming a neck of diameter, X. This is often referred to as contact flattening. For solid-state 

sintering, empirical data indicates that it is possible to estimate the initial shrinkage using the 

neck size ratio (X/D) by the relationship (1),   
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However, this is only an approximation for very small neck size ratios (X/D) ≤ 0.2. 

 

R

D 

X

 

Figure 1. Two sphere model of contact flattening. 

 

The driving force for the transfer of matter in the sintering process is a gradient chemical 

potential resulting from differences in curvature of the surfaces. The curvature of the spheres 

(diameter D in Figure 1) is much larger than the curvature at the interface (radius R in Figure 1) 

and the neck (diameter X in Figure 1). Various mass transport mechanisms move matter from the 

surface or from between the sphere centers to the neck region. As the size of the neck increases, 

the radius of curvature in the neck region decreases resulting in a reduction of the surface energy.  
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2.1.2 Phenomenological Models  

 
Phenomenological models have been developed to predict sintering behavior using observations 

made on the mass transport mechanisms. The possible mechanisms contributing to mass 

transport include surface diffusion, evaporation-condensation, volume diffusion, grain boundary 

diffusion, viscous flow, plastic flow and vapor transport. Several studies have been conducted to 

examine the various mass transport mechanisms for different materials. (6, 7, 10) For 

phenomenological models, a single dominant mass transport mechanism is typically assumed to 

be responsible for the mass transfer. The initial stage geometry is generally based on the contact 

flattening model as shown in Figure 1. Using empirical data from experiments, a general rule has 

been developed linking the neck ratio size to the sintering rate for isothermal sintering by the 

relationship (1),  

m

n

D
Bt

D
X

=





 . 

Where, 

X = Neck diameter. 
 D = Particle diameter. 
 B = Constant which is a function of material properties and geometric constants. 
 t  = Time. 

n, m = Coefficients. 

 

Using this information, it is possible to estimate the shrinkage from the relationship (1), 

 

mn

n

D
Bt

L
L

2

2/

0
=







 ∆ . 
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Not all the mass transport mechanisms result in shrinkage. Surface transport mechanisms 

such as surface diffusion and evaporation-condensation do not affect particle spacing. Instead, 

these mechanisms promote neck growth without densification as shown in Figure 1. On the other 

hand, bulk transport mechanisms such as volume diffusion, grain boundary diffusion, viscous 

flow, plastic flow and vapor transport result in shrinkage as the location of the particle centers 

move together (1) as shown in Figure 2.  

 

D 
X

Lo - ∆L

Lo  

 

Figure 2. Two sphere contact flattening model with shrinkage. 

 
Over the years, experimental studies have reported estimated values for the parameters 

based on experimental observations. The variance in the parameter value for the different mass 

transport mechanisms, summarized in Table 1, demonstrate the complexity of the sintering 

process. The assumption of a single mass transport mechanism is valid for some materials. 

However, Ashby (8, 9)  developed the concept of sintering diagrams as a tool to illustrate that the 

contributions of the different mass transport mechanism to the total mass transport can vary, not 
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only for each stage of the sintering process, but also for different materials and particle sizes. 

This emphasizes the necessity, as well as the difficulty, of developing better models to accurately 

predict shrinkage and the evolution of the microstructure. (1-3) 

 
 
 

Table 1: Parameter Values for Two Sphere Models in the initial stage of sintering. (1) 

Material Transport 
Mechanism n m Constant, B 

Viscous Flow 2 1 f (surface energy, viscosity) 

Plastic Flow 2 1 f (surface energy, Burgers vector, volume diffusivity,     
    temperature) 

Evaporation-
Condensation 3 2 f (surface energy, vapor pressure, temperature) 

Volume Diffusion 5 3 f (surface energy, volume diffusivity, temperature) 
Grain Boundary 
Diffusion 6 4 f (surface energy, grain boundary diffusivity, 

    temperature)   
Surface Diffusion 7 4 f (surface energy, surface diffusivity, temperature) 
 
 

 

2.1.3 Ordered Geometry Models 

 
The phenomenological models are generally valid only for the initial stage of sintering where the 

neck size ratio (X/D) ≤ 0.3. As sintering progresses into the intermediate stage, neck to neck 

impingement begins to occur. For higher neck size ratios, impingement of adjacent necks begins 

to occur. As a result, the two sphere models become an inadequate representation of the actual 

geometry. Consequently, other models were developed based on the assumption of different 

geometric shape. The model for the initial stage of sintering approximates the geometry with a 

body centered sphere inside a unit cell which overlaps with adjacent spheres. This essentially 

creates an octahedral shape which is expanded to simulate sintering. For the intermediate and 
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final stages of the sintering process, tetrakaidecahedra (polyhedra with 14 sides) are typically 

used as the main shape because this shape provides a close approximation to the average number 

of grain contacts observed in many experiments. For the intermediate stage, interconnected 

cylinders, located at the edges of the tetrakaidecahedra, are used to model the continuous pore 

network. For the final stage, the cylinders are replaced by spheres at the intersection of the 

tetrakaidecahedra to model the breakup of the pore network into isolated pores. For all the 

geometries, it is assumed that the microstructure has an ordered geometric arrangement. This 

reduces the problem to the consideration of a unit cell thereby simplifying the calculation of the 

geometric parameters. These models are valid only for those values of the solid volume fraction 

where the assumed geometry holds. (1, 23, 24) 

There are several facts which limit the usefulness of ordered geometry models. First, 

experimental measurements demonstrate that actual packing arrangements are not ordered. Also, 

the particles in ordered geometry models are assumed to be monosized in order to reduce the 

problem to the consideration of a unit cell. Consequently, the models cannot capture the effect of 

the particle size distribution or the presence of agglomerations on the sintering process since the 

models inherently lack the means to simulate their behavior. Lastly, the assumed geometries do 

not allow for local variations in the microstructure caused by particle rearrangement. 

 
 
 
 
2.1.4 Constitutive Models 

 
Using continuum mechanics, constitutive models (4, 5, 25-28) have been developed based on the 

simulation of the sintering process as the deformation of a porous viscous material. Olevsky(4) 

and Cocks(5) have provided comprehensive reviews of the techniques and their application to 
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several sintering situations. Although the governing equations differ depending on the 

application to specific cases, the constitutive relationships essentially link the sintering stress to 

the strain rate of deformation through bulk material properties and the density of the material. 

The microstructure is quantified by tracking the change in density as sintering progresses. The 

effect of porosity on the material properties is derived based on assumptions concerning the pore 

shape (spherical or cylindrical) and the overall geometry. The main drawback to employing 

constitutive models is their reliance on material parameters to quantify material behavior. Since 

the material properties used in constitutive models are generally derived from macroscale 

measurements of experimental samples, it can be difficult to predict the microscale influence on 

the material properties of variations in particle size distribution or the presence of 

agglomerations.  

 

 

 
 

2.2 COMPUTER MODELS OF PARTICLE PACKING ARRANGEMENTS 

 
 
2.2.1 Random Packing Models 

 
 
A number of studies have analyzed the packing arrangement of particles modeled as spheres.(14-

19) Most of the models can be classified into one of two general methods. The first method 

randomly places a distribution of particles inside a specific containing volume. (14-16) The 

particles are then moved in an iterative process to eliminate any overlaps between particles. The 

second method, sometimes referred to as the ballistic deposition method, places the particles in 

 13



 

the containing volume one particle at a time.(17-19) In this case, the particles are moved based on 

gravity. When particles make contact with each other, the moving particle is rotated around the 

contacted particle by rolling motion. Motion is stopped when the particle reaches a 

gravitationally stable position (defined as when the center of the particle is directly over the 

plane region connecting the points of contact of the supporting particles). Both methods treat the 

particles as hard spheres with a log-normal size distribution. Spheres are used to model the 

particles because their simple geometry is easy to use. The shape of the containing volume varies 

from model to model, but the most common shapes utilized are spheres, cylinders, or cubes. 

While there are several different size distributions which can be employed (29), the log-normal 

size distribution is the most commonly used in sintering models. The models are generally 

evaluated based solely on the solid volume fraction (i.e. the volume occupied by the particles 

divided by the volume being considered) for the initial packing arrangement. Nolan and 

Kavanagh have investigated the efficiency of the particle packing by varying the mean and 

standard deviation of the particle sizes.(14-16) Their analysis of different arrangements of 

randomly packed spheres report values for the volume fraction ranging from 0.509 to 0.638.  

 
 
2.2.2 Multiscale Models 

 
 
In recent years, a few models have been proposed to simulate the sintering of the particle 

packing arrangement using a multiscale approach. Jagota and Dawson developed constitutive 

relationships for the interaction of individual particles (11) which was extended to a two 

dimensional network of particles linked by the contact between particles.(12) Parhami and 

McMeeking (22) created a network of monosized spheres using a diffusional creep law.(21) In 

these simulations, the multiscale models use phenomenological or constitutive relationships to 
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develop algorithms to govern the behavior of a pair of particles. The model is then extended, 

using the behavior of the discrete particles to predict particle behavior, into a network of 

particles. The main drawback to these methods is that the models rely on the relative density to 

describe the microstructure. 

 

 
 
 

2.3 STEREOLOGY 

 
 
There are several different techniques available to obtain the data used to characterize the 

microstructure of real sintering materials including optical microscopy, scanning electron 

microscopy and transmission electron microscopy. However, these methods suffer from the same 

drawback — the necessity of using measurements of features on two-dimensional (2-D) scanned 

images to quantify the properties of a three dimensional (3-D) sintered solid. To overcome this 

difficulty, the science of stereology was developed, based on statistical sampling and spatial 

geometry, to determine the geometric properties used to describe the characteristics of the 3-D 

solid from measurements of 2-D surfaces or sections. (30-33)  

 
 
2.3.1 Basic Assumption 

 
 
Stereology is based on the assumption that the 2-D sections(s) taken from the solid are an 

accurate statistical representation of the 3-D properties of the solid volume. If the features being 

measured are randomly placed in the volume under consideration, then the assumption is valid 
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and any arbitrary section(s) will meet the requirement for statistical representation. However, 

there are cases where the features are not randomly placed or uniform in the volume (material 

structures with preferred orientations for example). In these instances, a sufficient number of 

randomly oriented and located (or statistically uniform) sections taken from the solid are needed 

to adequately describe the features in the volume to meet the requirement for statistical 

representation.  

To illustrate how the location of the sections can affect the results of the measurements, 

consider the first case of a sphere with the radius, RB, as shown in Figure 3. If the section is 

located away from the center of the sphere (see Section A-A), the surface shows a circle with 

radius, RA, which is less than the true radius of the sphere. However, if the section is taken 

through the center of the spheres (see Section B-B), the section shows a circle with radius, RB, 

corresponding to the true radius of the sphere.  
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A A

B B

Section A-A 

RB 

RB 

Section B-B  

Figure 3. Difference in measured particle size and contact due to section location. 

  

The orientation of the sections can also affect the measurements. Asymmetrical shapes 

with preferred orientations can lead to incorrect statistical information concerning the size and 

the shape of the features. This is illustrated by the case of a cylinder as shown in Figure 4. If a 

section is taken along the cylinder length (Section C-C in Figure 4), the projected area implies 

that the shape of feature is a rectangle. However, if the section is taken perpendicular to the 

length (Section D-D in Figure 4), the projected area implies that the shape of the feature is a 

circle. This disparity in section shape demonstrates the necessity of taking multiple, randomly 

located and oriented sections to obtain sufficient information to adequately quantify the 

measured feature(s). If the sections taken from the solid are not randomly oriented for this case, 
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the results will be skewed leading to a misinterpretation of the actual size and shape of the 

objects being measured. 

C 

RC RC

D D RC 
H 

Section C-C Section D-D 
C 

 

Figure 4. Difference in projected area due to asymmetrical shape. 

 
 
Since the shapes of the features are generally unknown before the measurements, multiple 

randomly located and oriented sections are typically used to provide sufficient statistical data to 

determine the true size and shape of the features present in the sample. 

 

 
2.3.2 Terminology 

 
 
The science of stereology has its own nomenclature to identify measured quantities. Each 

quantity is specified using three variables: a main variable, a subscript and a superscript. The 

main variable specifies the geometric property being measured (identified by V for volume, S for 

surface area, L for line, and P for points). The subscript refers to the region under consideration. 
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In general, the superscript identifies the phase being measured. For this investigation, the 

superscript is used to distinguish between the solid space occupied by particles (identified by S 

for solid) and the void space between them (identified by V for void). Thus, as an example, the 

volume (specified by main variable V) occupied by the solid particles (specified by superscript 

S) per unit volume (specified by subscript V) is identified in stereological notation as S
VV . 

 
 
2.3.3 Relationship between Measured 2-D and 3-D Properties 

 
 
There are several methods which can be applied to the measurement of the features on the 2-D 

plane section (or surface): areal analysis, lineal analysis and point analysis. Consequently, there 

are different, but equivalent, techniques which may be employed to determine the same 

stereological parameter. For sintered materials, the measured properties of interest are the solid 

volume fraction ( S
VV ), the solid-solid surface area per unit volume ( ), and the solid-void 

surface area per unit volume ( ). In general, the volume and surface area are related to 

equivalent areal, lineal or point properties through the following relationships 

SS
VS

SV
VS

(33):  

 

S
P

S
L

S
A

S
V PLAV ===  

LV PS ⋅= 2  

 

The proof of the relationship for the volume measurements is summarized here for each 

method.(32, 33) For areal analysis, the proof to find the solid volume fraction is based on the 

concept that the volume of an object can be determined from integrating the area over the length 
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of the object. If features are randomly placed in a volume as shown in Figure 5, then a slice of 

thickness, dx, and area, , taken from the volume will intersect some of the features.  0A

 

dx
Z A0 = A1 + A2

L
A1

A2

L 
X

L
Y  

Figure 5. Area of the sample section taken from the solid. 

 

 
The features on the intersecting plane will have some area, A, which can be determined. The 

calculated area of the features will vary for each slice depending on the size, shape and number 

of the intersected features. Hence, if multiple slices are taken, a distribution of the area of the 

features as a function of the length of the examined volume can be profiled as shown in Figure 4. 
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Figure 6. Variation of the feature area over the length of the volume. 

 

The average area, A , of the features for the different slices could then be determined. The 

differential volume of the features on the slice is given by 

 

AdxadxdvdV =∑=∑= . 

 

This expression is integrated over the length to determine the volume of the feature, 

 

LAAdxdVV
LL

S ⋅=∫=∫=
00

. 

 

The calculated feature volume is then divided by the total volume, V , considered to determine 

the feature volume per unit volume, 

0

LA
LA

V
VV

S
S

V ⋅
⋅

==
00

. 
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Thus, the solid volume fraction, S
VV , is equivalent to the solid area fraction,  through the 

relationship, 

S
AA

S
A

S
V A

A
AV ==

0
. 

 

A similar argument can be made to use lineal analysis instead of the areal analysis. In this case, 

consider the surface of the 2-D section taken from the 3-D solid as shown in Figure 5.  

y 

L 
da1 

da2 

x0 
L0 dx 

 

Figure 7. Lineal analysis on a surface to find area of feature. 

 

 

If multiple lines are considered, then a distribution of the line length intersecting the features 

over the length of the area can be profiled (similar to the previous example) as shown in Figure 

6. 
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Figure 8. Feature line length variation. 

 

 

Thus, the differential area, which is a function of the feature line length from the section, is given 

by 

LdxldxdadA =∑=∑= . 

 

This expression can be integrated to determine the area of the feature, 

 

LLLdxdAA
LL

⋅=∫=∫=
00

. 

 

The calculated feature area is then divided by the total area considered to determine the feature 

area per unit area, 

2L
AAA = . 

Thus proving the relationship, 
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Finally, a point analysis can be employed as well to find the solid volume fraction. Point analysis 

is based on a random distribution of points on the body being examined. For a volume, the 

probability that a point resides in the space occupied by the features is proportional to the 

number of points inside the features divided by the number of total points considered,  

 

S
P

S
V PV = . 

 

Thus, it has been shown that the solid volume fraction can be determined using point, lineal and 

areal solid fractions are equivalent to 
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S
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In actual practice, the solid volume fraction is determined using a point analysis by 

applying a grid of points to the surface of the sample since it is not possible to apply a 3-D grid 

of points to the actual volume. An example of this measurement is illustrated in Section 2.3.4.1. 

The decision to employ areal, lineal or point analysis is generally based on the most efficient 

manner of calculating the particular quantity being measured. Similar proofs, omitted here, are 

available for applying lineal or point analysis to determine the surface area properties as well. (33)    
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2.3.4 Measured Stereological Parameters. 

 
 
The geometric parameters measured by applying stereology are used to quantify the 

microstructure when comparing the simulation and experimental results. While there are several 

stereological parameters, the three most important independent parameters commonly reported in 

experimental studies examining the sintering process are: the solid volume per unit volume, S
VV , 

the solid-solid surface area per unit volume, , and the solid-void surface area per unit volume, 

. Examples of how the stereological principles are used to determine each of these quantities 

in experimental studies is provided in the remainder of this section. In practice, the stereological 

measurements for experiments are conducted using computer software to analyze the pixels from 

scanned images of the sample surface to determine the quantities. Despite this, the basic 

measurement techniques commonly employed in experimental studies are essentially the same as 

described below.    

SS
VS

SV
VS

 

2.3.4.1 Solid Volume Fraction. The solid volume fraction, 
S

VV , is defined as the ratio of the 

volume occupied by the solid particles divided by the total volume considered. To measure this 

quantity, the stereological procedure is to superimpose a grid of evenly spaced points on the 

plane section being examined. This is illustrated in Figure 9. Some points (indicated by the red 

dots) will lie on a solid region (shaded grey) of the surface of the plane section while other points 

(indicated by the blue dots) will lie on the voids (the white regions) between the particles. The 

number of points lying on the solid phase is then counted. The solid volume fraction is the ratio 

 25



 

of the number of points lying on a solid region divided by the total number of points used in the 

grid (i.e. using the stereological relationship,V ). 
S

P
S

V P=

 

 

Figure 9.  Measuring the solid volume fraction using stereology. 

 
 

2.3.4.2 Solid-Solid Surface Area. The solid-solid surface area, , is defined as the surface 

area of contact between particles which overlap divided by the total volume considered. This 

quantity is usually measured using random chords placed along the surface of the sample plane 

section. As shown in Figure 10, the red line represents the measuring chord with the green dots 

indicating the points where the line crosses a solid-solid interface. The solid-solid surface area is 

equal to two times the ratio of the number of points on the chord intersecting a solid-solid 

interface divided by the total length of the chord (i.e. using the stereological 

relationship, ). 
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 26



 

 

Figure 10. Measuring the solid-solid surface area using stereology. 

 
 

2.3.4.3 Solid-Void Surface Area. The solid-void surface area, , is defined as the surface 

area of the particles exposed to voids divided by the total volume considered. This quantity is 

usually measured using random chords placed along the surface of the sample plane section. As 

shown in Figure 11, the red line represents a chord with the green dots indicating the points 

where the line crosses a solid-void interface. The solid-void surface area is two times the ratio of 

the number of points on the chord intersecting a solid-void interface divided by the total length 

of the chord (i.e. using the stereological relationship, ). 
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Figure 11. Measuring the solid-void surface area using stereology. 

 
 
 
 

2.4 TESSELLATION 

 
 
As noted in the previous section, stereological parameters ( S

VV , , and ) are the traditional 

measurements used to quantify the characteristics of the microstructure for sintered materials. 

However, the information derived from the stereological parameters quantifies the properties for 

the overall volume only. This information may be insufficient to distinguish between two 

similar, but distinct, microstructures. For example, it is possible for two green compacts to have 

the same solid volume fractions (

SS
VS SV

VS

S
VV ), but different microstructures due to dissimilar particle 

packing arrangements — one green compact could have a uniform distribution of particles, while 

another has agglomerations of particles with larger voids interspaced between the clusters of 

particles. As a result, other means are required to identify the distinguishing characteristics of the 
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microstructure since the differences between the two compacts are only evident at a length scale 

different from the one at which the stereological parameters are measured. For such cases, 

another measuring method, tessellation, has been proposed as a means to provide additional 

information pertaining to the population distribution to differentiate the characteristics of the 

microstructures. (34, 35)  

Tessellation is a technique used to uniquely segment an area into cells based on a feature 

of interest.(36) Tessellation separates the area, containing a spatial distribution of the feature, by 

establishing cell boundaries such that the positions inside a particular cell boundary are closer to 

the feature of interest contained within the cell than to any other point. Once the cell boundaries 

are established, the cell can then be characterized by determining cell parameters such as the 

area, the perimeter length, the aspect ratio and the number of adjacent cells. Tessellation can be 

applied for different features such as the location of the particle centers, the size of the particles, 

or the mass of the particles.(34-36)  

The description of the tessellation presented below details how the technique is applied to 

characterize 2-D surfaces. The application of tessellation for two dimensions was chosen to 

allow the comparison of the simulation results to experimental data. Since the experimental data 

was obtained from the measurements taken from the surfaces of the samples, it was necessary to 

use a similar method to the simulation. However, it should be noted that the tessellation can be 

applied in three dimensions as well. Hence, when experimental techniques improve to permit the 

3-D measurement of sintered objects, it will still be possible to adapt the tessellation technique to 

determine parameters to characterize the microstructure.   
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2.4.1 Point Tessellation 

 
 
The simplest case to illustrate how tessellation is implemented is to consider point tessellation. In 

Figure 12, points A through H represent the features of interest located on a surface under 

examination. To construct the tessellation cell for point A, the surface is segmented by lines 

which bisect the distances between point A and its neighboring points B through H. For example, 

Line 1 bisects the distance between point A and point H. Completion of the process for all the 

points on the surface results in the outline of a shape enclosing each point on the surface. This 

shape is called a tessellation cell. The boundary of the tessellation cell surrounding point A is 

indicated by the dashed lines in Figure 12. Note the intersection of the boundary lines between 

points A and H and points A and E at the right corner of the cell. This intersection closes off the 

tessellation cell at this corner. This makes the boundary line between points A and G irrelevant 

since it does not contribute to the outline of the tessellation cell enclosing point A. Thus, it is 

omitted in Figure 12. The other interior solid lines represent the boundaries of the cells for the 

remaining points (B through H) on the surface. 
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Figure 12. Illustration of how point tessellation is used to segment an area into cells. 

 

 
2.4.2 Feature Tessellation 

 
 
Tessellation can also be applied for features of interest on the surface instead of just points. 

Feature tessellation is implemented using the same basic method as described for point 

tessellation in the previous section. However, the size and morphology of the chosen feature will 

influence the size and the morphology of the resulting tessellation cells.(35-37) This is 

demonstrated by the example shown in Figure 13. In this case, the features of interest on the 

surface are the shaded regions bounded by a circle and a straight line. The resulting boundary for 

the tessellation cell, indicated by the dashed line, is a parabolic arc equidistant from the 

boundaries of the features.  Since the tessellation cells are formulated from a feature of interest, 

the tessellation parameters can provide additional measurable quantities based on the selected 

feature of interest which can be used to characterize the microstructures of the sintered materials.  
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Tessellation cell boundary. Feature of 
interest. 

Feature of 
interest. 

 

Figure 13. Influence of feature outline on the tessellation cell formation. 

 
 
 
2.4.3 Solid Area Fraction (SAF) 

 
 
When applying the tessellation technique to cross sections of sintered material samples, the 

feature of interest selected as the basis of the tessellation usually is the void space (i.e. the pores) 

between the particles. In the sample tessellation cell shown in Figure 14, the tessellation cell has 

two measures, the size of the pore contained inside the boundaries of the cell and the size of the 

cell itself, which are useful in quantifying the material being investigated. To allow comparisons 

between materials with different characteristic length scales and the model, the non-dimensional 

quantity solid area fraction (SAF) for a cell is defined, in terms of the cell area (CA) and the pore 

area (PA), as 
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( )CAPASAF /1−= .    [2.4.3.1] 

   

 

Thus, the solid area fraction is an indicator of the percentage of the tessellation cell area 

occupied by solid particles. The specific application of tessellation to the simulation is described 

in more detail in Section 3.5.2.  

 

 

(a) Outline of Cell Area (CA).  

(b) Pore Area (PA) contained inside the cell. 

Figure 14. Pictorial of the Cell Area (CA) and the Pore Area (PA) for a tessellated cell. 
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3.0 MODEL DESCRIPTION 

 
 
 
The essential feature of the simulation is the creation of the Representative Volume Element 

(RVE). The purpose of the RVE is to create a particle packing arrangement with geometrical 

properties which are statistically similar to the experimental properties obtained from 

measurements of real sintered materials. This section describes the details of the model 

formulation including the generation of the particle size distribution, the formation of the green 

compact, the creation of the RVE, the simulation of agglomerated packing arrangements, the 

methods used to simulate sintering, and the measurement techniques used to evaluate the model. 

The simulation was programmed in the C++ computer language and executed using Microsoft 

Visual C++ 6.0 on a personal computer. The images for the simulation results were generated 

using 3-D image rendering software package POV-Ray. 

 
 
 
 

3.1 GENERATION OF THE PARTICLE SIZE DISTRIBUTION 

 
 
The particles comprising the RVE are modeled as spheres. The first step in the construction of 

the model is to create the distribution of particle sizes needed by the model to simulate the 

particle size distributions observed in real powders. While there are several possible distributions 

available to model particle sizes (the Weibull, Gamma, and Log-Normal distributions are the 
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more commonly employed options), experimental evidence indicates that many real powders 

have particle size distributions which fit a log-normal relationship (15, 16, 29) given by 
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where r is the sphere radius, x  is the median of the distribution, and σ is the standard deviation. 

Since it was the best fit to the experimental data chosen for comparison with the simulation, the 

log-normal distribution was used in the simulation. (29) 

The generation of a random set of particle sizes with a log-normal distribution was done 

in two stages. First, a normal (Gaussian) distribution is created using standard program routines 

for the generation of random numbers.(38, 39) The normal distribution is then transformed into log-

normal distribution using specified values for the mean and the standard deviation of the 

exponential function.(38) The generated log normal distribution was then normalized for 

comparison to the experimental particle size distribution. As shown in Figure 15, the simulation 

data fits the experimental data over most of the particle size distribution with only minor 

deviations at the extreme percentiles (<10% and >90%) of the distribution. 
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Figure 15. Comparison of simulation and experiment particle size distributions. 

 

 
 

 

3.2 FORMATION OF THE GREEN COMPACT 

 
 
After generating the particle size distribution, the next step is to place the particles into a volume 

to form the green compact. To do this, each particle is individually placed into a cubic virtual 

box. The particle center is initially assigned random x and y coordinates within the domain of the 

box but with a z coordinate greater than that of any of the other particles already in the box – 

Location 1 in Figure 16. From this initial location, the particle is then moved in the negative z 

direction to a plane just above the particles already in the virtual box – Location 2 in Figure 16. 
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Figure 16. The placement of new particles into the virtual box. 

 

From Location 2, the particle motion is controlled by a potential function. The potential 

of the particle is proportional to the “height” z, with a penalty applied for any overlap (i.e. 

physical interference) with other particles. The overlap ratio is determined from the distance 

between particle centers (CDIST) and the particle radii (Ri and Rj) as shown in Figure 17. 
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Figure 17. Geometry used to determine the overlap for a pair of particles. 

 
The overlap ratio is the defined as, 

 

i

ji
ij R

CDISTRR
OVERLAP

−+
= .      

 

The assessed penalty for overlap ratio is determined using a power law relationship,  

 

P
ijOVERLAPCPENALTY )(∗= ,    

 

where PENALTY is the contribution to potential function due to the overlap, C is a constant 

coefficient of penalty function, and  P is a constant exponent for the penalty function. The 

amount of the applied penalty can be varied by specifying different values for constants C and P. 
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This provides the simulation with the capability of permitting smaller or larger overlaps as 

necessary to simulate the desired particle arrangement in the model. The particle’s potential ( iφ ) 

for a particular location is calculated by,  
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where  is the height of current particle inside the virtual box and  is the number of overlaps 

for the current particle with other particles already in the virtual box.  

iZ N

From Position 2, a random displacement of the particle less than some specified 

magnitude, d, is considered. Several new locations are possible for the particle – these are 

labeled 3A, 3B, 3C, and 3D in Figure 16. Location 3A has a greater potential since the new 

location is at a higher z position in the box. Location 3B has a lower potential due to a lower 

height and the lack of any overlap with other particles. Location 3C may have a lower potential 

due to a lower height, but the penalty for the overlap with other particles also has to be 

considered. If the new position reduces the particle’s potential, then it is accepted; otherwise it is 

rejected.  Location 3D would be rejected since it would place the particle outside the limits of the 

cubic box. This procedure is repeated until a specified number of consecutive rejections occur. 

The maximum random displacement d is then reduced and more random displacements are 

considered. By proceeding in this way, a local minimum of the particle’s potential is 

approximated. The severity of the penalty for particle overlap, the number of consecutive 

rejections before moving on to a smaller value of displacement d, and the schedule of decreasing 

values of d are established via a trial and error balance between computational efficiency and the 
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desire to minimize particle overlap and maximize packing density. This procedure is repeated for 

each new particle until the virtual box is filled.  

 
 
 
 

3.3 CREATION OF THE REPRESENTATIVE VOLUME ELEMENT (RVE) 

 
 
From the set of particles in the filled virtual box, a subset of particles is obtained to create the 

Representative Volume Element (RVE). The 3-D image in Figure 18 shows the filled box for a 

simulation of approximately 14,000 particles with an average particle overlap of 0.5%. This 

particle arrangement has an initial green density of 0.61. The RVE is arbitrarily defined as a cube 

with unit volume. The limits defining the original cubic box are larger in size than the desired 

RVE by approximately 10% on each side. For those spheres that intersect the boundary of the 

RVE, only the portions inside the RVE are included, as shown in Figure 19. By making the RVE 

a smaller volume within the confines of the virtual box, the influence on the results caused by 

packing anomalies near the boundaries of the cubic box is minimized. Recent simulations have 

suggested that, for a log-normal distribution of sphere sizes, approximately 10,000 spheres are 

needed to generate reproducible values of the solid volume fractions.15, 20 
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Figure 18. 3-D image of the filled virtual box generated by the simulation. 
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Figure 19. 3-D image of the Representative Volume Element (RVE). 
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3.4 SIMULATION OF AGGLOMERATIONS 

 
 
For some materials, there is a tendency for the particles to agglomerate, or clump, as the initial 

green compact is formed. When this occurs, the result is a packing arrangement containing 

groups of closely packed particles with larger voids. Particle agglomeration is important when 

examining the behavior of sintered materials since the tails of the particle size distribution are 

critical factors in determining the relative densification and coarsening rates.(1) To replicate this 

phenomenon in the model, additional voids were created in the initial packing arrangement. This 

was done by selecting random points inside the virtual box and removing any particle 

intersecting with the point from the RVE. This creates additional voids in the original particle 

packing arrangement as shown in Figure 20. By varying the number of void creating points, it is 

possible to simulate agglomerated packing arrangements with voids of different frequency and 

size.  
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Larger voids created by particle 
removal to simulate agglomeration. 

Normal voids 
between particles. 

 

Figure 20. Random removal of spheres to create larger voids to simulate particle agglomeration. 

 
 
 
 

3.5 SIMULATION OF SINTERING 

 
 
After generation of the initial particle packing arrangement (i.e. the green compact), the next step 

in the model is to simulate the sintering process. As described in Section 2.1, there are several 

different approaches that have been proposed to model the behavior of sintered materials. In the 

present model, a technique defined as isotropic, homogenous sintering is initially used to 

simulate the densification of the particle packing arrangement. Sintering via Local Particle 

Rearrangement (LPR) was later implemented. The essential features of these methods are 

outlined in this section. 
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3.5.1 Isotropic, Homogenous Sintering  

 
 
Densification occurs in the model by the self-similar reduction in distances between sphere 

centers to simulate uniform contact flattening. For the purposes of this investigation, this 

behavior is defined as isotropic, homogeneous sintering. This concept is illustrated by the 

interaction of a pair of particles modeled as spheres as shown in Figure 21. Initially, the particles 

have little or no contact as shown in Figure 21(a). Densification is simulated by the movement of 

the particle centers towards each other at a uniform rate as shown in Figure 21(b). The 

overlapping volume of the particles (indicated by the hatched regions) is assumed to be 

uniformly redistributed around the available solid-void surface area of the spheres resulting in an 

expansion of the particle radii (indicated by the dashed lines). The geometric relationships of the 

particles are then magnified to return to the original spacing between particle centers as shown in 

Figure 21(c). This magnification is permitted since the model is dimensionless due to the 

absence of material properties which would impose a length scale to the simulation. This process 

is implemented in the model by fixing the location of the particle centers while uniformly 

expanding the radii of the particles. This accomplishes the same net effect as the steps illustrated 

in Figure 21, but the procedure is computationally more efficient since the particle centers do not 

have to be moved. It is important to note that the time dependence of the sintering process and 

rearrangement of the particles were neglected. Consequently, the properties of the simulated 

material are not incorporated in this part of the simulation. 
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Figure 21. Graphical representation of isotropic, homogenous sintering. 

 

 

3.5.2 Sintering with Local Particle Rearrangement (LPR) 

 
 
The isotropic, homogenous sintering technique described in the previous section assumes that the 

particle centers move together at a constant rate. However, experimental evidence indicates that 

local rearrangement of the particle centers can occur during sintering. To simulate this behavior, 

Particle i Particle j 

(a) Initial contact between two adjacent particles. 

(b) Reduction in distance between particle centers. 

(c) Magnification of geometry.
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Local Particle Rearrangement (LPR) was incorporated into the simulation by modeling the 

particle arrangement as a viscous, porous medium.  

To determine the motion of the particles, force and moment equilibrium is established for 

each sintering step. The conceptual basis for the force and moment equilibrium equations is 

described here; a step by step derivation of the equations for an overlap for a pair of particles is 

provided in the Appendix. When an overlap is present between a pair of particles, the contact 

force is resolved into a normal component to represent contact flattening and a tangential 

component to represent sliding along the grain boundary as shown in Figure 22.  

 

Ft
ij 

Fn ij 

Fn ji

Ft ji 

 
 

Figure 22. Free body diagram of the contact forces between two overlapping particles. 

 

A linear relationship is assumed between the forces acting on the particles and the 

corresponding relative velocity of the particle centers. Densification occurs by assuming the 

particles centers move together at a constant rate - this is implemented in the simulation by 

applying a free centering velocity (V ) to the centers of overlapping particles.  The properties of 

the simulated material are introduced to the model using the shear and normal viscosities. The 

normal viscosity, , is defined as the relationship between the normal force per contact area 

and the normal component of the relative velocity. The tangential (or shear) viscosity, , is 

0

nµ

tµ
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defined as the relationship between the tangential force per contact area and the tangential 

component of the relative velocity. Normally, these material parameters are dependent on the 

sintering temperature and would be determined from experimental data for the sintering case 

being examined. However, for the purposes of this investigation, assumed values for the 

viscosities were used to explore their influence on the evolution of the microstructure.  

Since each particle may have multiple contact surfaces, it is necessary to combine the 

equations for each individual overlap to determine the resultant force acting on a particular 

particle. The result is a system of linear equations which has to be solved for each time step in 

the sintering process. The system of equations is compiled for all the particles in the cubic 

volume (not just the RVE), hence individual particles are free to move into or out of the RVE. 

The linear system of equations is compiled into the matrix form BXA =⋅  using the 

contributions of each overlap as derived in the Appendix. Matrix A contains the coefficients of 

the unknown variables in the system of equations. Vector X contains the unknown scalar 

components of the linear velocities (V ) and angular velocities (ω ) of all the particles in the 

cubic volume. For n particles in the cubic volume, there are 6n unknown variables – three scalar 

components to specify the linear velocity and three scalar components to specify the angular 

velocity for each particle. Vector B is essentially the forcing function and is based on the free 

centering velocity (V ) which drives the sintering process in the simulation. The resulting matrix 

is of the form, 

0
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Since the equations of motion are based on the relative velocity between particles, 

boundary conditions are necessary to prevent rigid body displacement and rotation of the 

RVE.(40) The boundary conditions imposed were to set the linear and angular velocities to zero 

for the particle located at (or nearest to) the center of the RVE. The resulting physical behavior 

of the particles is illustrated in Figure 23. The green compact is an interconnected arrangement of 

particles with minimal overlap as shown in Figure 23(a). The particle highlighted in red 

identifies the particle at the center which is fixed to establish the boundary conditions. As 

sintering progresses, the particles collapse towards the fixed particle located at the center of the 

RVE as shown in Figure 23(b).  

  A LU Decomposition routine was used to calculate the solution to the system of linear 

equations. Once the velocities are determined, the locations of the particle centers are calculated 

for the time step, the stereological parameters are determined, and then a new system of 

equations is developed for the next specified time step. The process is repeated for the number of 

time steps needed to simulate full densification of the sintered material.  
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Center point of RVE.
Coordinate  Outline of 

RVE limits. (0.5, 0.5, 0.5) 

(a) Particle Arrangement - Initial 

(b) Particle Arrangement - After Sintering 
 

Figure 23.  Sintering using Local Particle Rearrangement (LPR). 
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3.6 MEASUREMENT OF SIMULATION RESULTS 

 
 
The evolution of the microstructure is monitored in the simulation using two measuring methods 

to determine the properties of the particles either entirely or partially inside the RVE for each 

step of the simulate sintering. The first method is the calculation of the stereological parameters. 

The second method is the application of tessellation to sections taken from the RVE. The 

application of each of these methods to the simulation is described in this section. It should be 

noted that these measuring methods function independently of the techniques used to simulate 

the sintering process. Hence, the measurements are the same for both the isotropic, homogenous 

sintering model (Section 3.5.1) and the sintering model with local particle rearrangement 

(Section 3.5.2), and can be applied to future sintering models.   

 
 
3.6.1 Stereological Parameters 

 
 
The evolution of the microstructure during the sintering process is simulated by the geometrical 

interaction of an assemblage of spheres which represent the particles comprising the compact. 

The model determines the same parameters used to quantify experimental samples of sintered 

materials: the solid volume fraction ( S
VV ), the solid-solid surface area ( ), and the solid-void 

surface area ( ). Subroutines in the computer program are used to calculate these properties 

for the particles and the portions of the particles inside the limits of the Representative Volume 

Element (RVE). For each subroutine, a random number generator is used to create an even 

SS
VS

SV
VS
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distribution of points, either inside the volume (for S
VV ) or on the surface of the particles (for 

 and ), of the quantity to be measured. Then, acceptance / rejection criteria are applied to 

the points to ascertain the percentage of the feature which contributes to the global value of the 

quantity inside the RVE. In general, the accuracy of the calculation is related to the square root 

of the number of points considered. Detailed descriptions of the subroutines used to determine 

each parameter are provided below.  

SS
VS SV

VS

The accuracy of the calculations of each stereological parameter was estimated using 

several tests. The first test was to apply the program subroutines to the simple case of two, 

monosized overlapping spheres. The calculated values for the stereological quantities were 

compared to the results determined analytically using solid geometry. The second test was to 

vary the orientation of the second particle relative to the first particle to confirm that the 

calculations were not location sensitive. The final test was the simulation of isotropic, 

homogenous sintering using eight spheres with the sphere centers located at the corners of the 

RVE. Again, the results were confirmed for each sintering step using equations derived from 

analytic solid geometry. From the results of these tests, the minimum number of random points 

for each calculation was determined to ensure a deviation from the analytical results of less than 

1%.  

 

3.6.1.1 Determining the Solid Volume Fraction. The solid volume fraction,
S

VV , is the ratio of 

the volume occupied by the solid particles divided by the total volume of the RVE. The solid 

volume fraction is calculated for each sintering step in the simulation using Monte Carlo 

integration. Points are generated with random coordinates inside the limits of the Representative 

Volume Element (RVE). The location of each point is checked to determine whether it resides 
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inside the spherical volume for any particle, or portion of a particle, in the RVE. The ratio of the 

number of points residing inside any particle divided by the total number of points considered, 

, determines the solid volume fraction, 
S

PP S
VV  using the stereological relationship, V , 

derived in Section 2.3.3. 

S
P

S
V P=

SV
VS

 

3.6.1.2 Determining the Solid-Void Surface Area. The solid-void surface area, , of a 

particle is the portion of a particle’s surface area exposed to void space (i.e. not in contact or 

overlapping with any other particle).  The model calculates the total solid-void surface area for 

all the particles and portions of particles inside the RVE for each step of the simulated sintering 

process. Figure 24 depicts the case of two overlapping particles - particle i is the current particle 

for which the solid-void surface area is being calculated and particle j is an adjacent particle 

which overlaps with the current particle. For this case, the shaded region (ΩINT) indicates the 

portion of the surface area of current particle i which intersects with the overlapping particle j. 

The remaining surface area of particle i (ΩSV) is the solid-void surface area for the current 

particle. 
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ΩSVParticle i 
ΩINT

Particle j 

Figure 24. Particles modeled as overlapping spheres. 

 

 

For the two sphere case illustrated in Figure 24, it is a simple task to determine  using 

analytic geometry. However, if the current particle intersects with more than one mutually 

overlapping particle, it becomes difficult to calculate  analytically. Consequently, a different 

approach to determining S  is needed. For the simulation, the Monte Carlo integration 

technique was adapted as the most efficient means to determine . To implement this 

technique, points are randomly generated on the surface of the sphere. Since the particles are 

modeled as spheres, spherical coordinates using randomized values of angles φ and θ were used 

to locate the points on the surface of the particle. A differential surface area element 

SV
VS

SV
VS

SV
V

SV
VS

(40) is 

determined from the geometry shown in Figure 25. 
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Figure 25. Differential surface area, dS, for a particle in spherical coordinates. 

 

 

The differential area is given by . The range of values for the randomized 

angles used to locate the points on the surface are, 

θφφ ddRdS sin2=

 

0  ≤  φ  ≤  π   and   0  ≤  θ  ≤  2 π. 

 

This will generate an even distribution of points on the θ-φ plane. The location of each point is 

checked versus each particle overlapping with the current particle being considered. If the point 

is inside the volume of any other sphere, it does not contribute to the solid-void surface area. If 

the point lies outside any other sphere, it does contribute to the amount of the solid-void surface 

area. Computationally, this results in the following rule: 

( ) φφθ sin, 2Rf =  if ( ) SVf Ω′∈φθ ,  
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     = 0 if ( )f SVΩ′∉φθ , . 

The solid-void surface area for each particle is the sum of the contributions of the points outside 

any other sphere divided by the total number of points considered and is given by,  

 

( ) φθφθ ddfS
SV

SV ∫
Ω

=
'

, . 

 

The solid-void surface area per unit volume, , is determined from the summation of the solid-

void surface areas for all the particles and the portions of particles inside the RVE divided by the 

volume of the RVE.  

SV
VS

 

3.6.1.3 Determining the Solid-Solid Surface Area. The solid-solid surface area, , is the 

portion of the surface area in contact with another particle for all the particles either entirely, or 

the portions of the particles, inside the RVE. Unlike the solid-void surface area, the solid-solid 

surface area is determined, not from the portion surface area of the sphere overlapping with other 

particles, but from the circular contact area of radius, rc, formed at the intersection of the 

overlapping spheres as shown in Figure 26.  

SS
VS
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Figure 26. Contact surface area between two adjacent, overlapping spheres. 
 

 

The equations used to determine the solid-solid surface area, , are derived using the 

distance between centers of the overlapping particles, (CDIST), the radius of contact (r

SS
VS

c), the 

radii of the particles (Ri and Rj) and the distances from the center of each particle to the contact 

surface (dij and dji). The following relationships are obtained from the geometry in Figure 26:  

 

jiij ddCDIST +=     [3.6.1.3.1] 

222
icij Rrd =+      [3.6.1.3.2] 

djidij 

Contact surface, SSS Particle i 

Exposed 
Surface, SSV 

RjRi 

CDIST 

Particle j 
A

rc rc 

Section A-A
A
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222
jcji Rrd =+      [3.6.1.3.3] 

If equations [3.6.1.3.2] and [3.6.1.3.3] are rearranged to solve for r , the equations can be set 

equal to each yielding the following, 

2
c

 

22222
jijijic dRdRr −=−=    [3.6.1.3.4] 

 

Then, solving equation [3.6.1.3.1] for  and substituting for  in the right hand side of 

equation [3.6.1.3.4] results in the following expression, 

jid jid

 

    ( )2222
ijjiji dCDISTRdR −−=−    [3.5.1.3.5] 

 

Expanding the right hand side of equation [3.6.1.3.5], 

 

( )22222 2 ijijjiji ddCDISTCDISTRdR +⋅⋅−−=−  

22222 2 ijijjiji ddCDISTCDISTRdR −⋅⋅+−=− . 

 

The expression can be simplified by canceling like terms to give, 

 

ijji dCDISTCDISTRR ⋅⋅+−= 2222 . 
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This can be then solved for , ijd

  

2222 CDISTRRdCDIST jiij +−=⋅⋅  

( ) CDISTCDISTRRd jiij ⋅+−= 2222 .  [3.6.1.3.6] 

 

Since , and are all known quantities, the distances from the particle centers to the 

contact surface,  and d , can be determined analytically using equations [3.6.1.3.6] and 

[3.6.1.3.1]. Then, the contact radius, r , can be determined from either equation [3.6.1.3.2] or 

[3.6.1.3.3].  Finally, the contact surface area is calculated as the area of a circle using the contact 

radius. 

iR jR CDIST

ijd ji

c

However, for multiple, mutually overlapping spheres, the solid-solid surface area must be 

adjusted for the change in the geometrical relationships caused by the additional intersecting 

sphere(s). For the case of three mutually overlapping spheres shown in Figure 27, a portion of 

the circular contact area (the shaded region of Section B-B) between particles i and j has to be 

removed from the solid-solid surface area calculation to account for the overlap of the additional 

particle k. As the number of mutually overlapping spheres increases, it becomes increasingly 

difficult to use solid geometry to calculate the portion of surface area to remove due to the 

complexity of the geometry of the overlapping particles. To overcome this difficulty, a technique 

was developed to compute the correct solid-solid surface area utilizing Monte Carlo integration 

and vector algebra. 
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Particle i 

 

Figure 27. Geometric interaction between mutually overlapping spheres. 

 
 
 

The procedure to do this begins by randomly generating an even distribution of points to 

represent the area of the contact surface between particles i and j. Vector algebra is then 

employed to ascertain what percentage of the points on the surface have to be rejected due to the 

overlap with particle k. The vector (ζik) from the center of particle k to the location of each point 

representing the contact surface is determined. The dot product is used to calculate the projected 

distance of vector (ζik) on the unit vector (eik) identifying the direction from the center of the 

particle k to the center of particle i. If the resulting projected distance is less than the distance 

(dki) from the center of the particle k to its contact surface with particle i, then the point resides 

inside the overlap with particle k (i.e. the shaded region of Section B-B) and therefore the point 

B

B

Particle j Current contact surface 
under consideration to 
determine SSS 

rc 

Section B-B
ζik

eik

dki 
Particle k 
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does not contribute to the solid-solid surface area.  If not, the point is outside the contact surface 

of particle k and therefore the point does contribute to the solid-solid surface area. The points are 

also separately checked to reject any portion of the solid-solid surface area residing outside the 

limits of the RVE. Finally, the percentage of points accepted is multiplied by the area of the 

contact circle to determine the solid-solid surface area for the overlap. The procedure is repeated 

for each overlap. The results are summed to arrive at the solid-solid surface area for all the 

particles residing in the RVE. 

 
 
3.6.1.4 Dimensionless Parameters. Traditionally, the stereological parameters described above 

are the measured quantities used to characterize the microstructure of sintered materials. 

However, given the range of particle sizes in the powder materials, it can sometimes be difficult 

to compare the microstructures of diverse sintered materials. Thus, to aid in comparing different 

microstructures, several non-dimensional parameters have been proposed to further analyze the 

evolution of the microstructure.(17, 23, 24) In particular, Krishnan et al.(17) have proposed using 

the fractional solid-solid surface area (
SS
VS ) and the fractional solid-void surface area (

SV
VS ). 

These parameters are determined from the measured and . The fractional solid-solid 

surface area (

SS
VS SV

VS

SS
VS ) and the fractional solid-void surface area (

SV
VS ) are defined as, 

 

SV
V

SS
V

SS
VSS

V SS
S

S
+

=       

and, 

SV
V

SS
V

SV
VSV

V SS
S

S
+

= .      
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Thus, the fractional solid-void and solid-solid surface areas represent the relative percentage of 

each quantity with respect to the other. Note also that, based on their definitions, 1=+ SV
V

SS
V SS . 

 

 

3.6.2 Applying Tessellation to the Simulation 

 
 
The stereological parameters provide information to quantify the overall properties of the RVE, 

but they may not provide sufficient information to distinguish between similar, yet distinct 

microstructures. Tessellation has been proposed as an additional tool to further quantify the 

microstructure of sintered materials (35, 37) since tessellation cells can be analyzed to obtain 

information related to the distribution of the particles inside the RVE. In experiments, 

tessellation is applied to the surface of samples taken from the sintered object using the pores as 

the feature of interest for determining the outline of the cell boundaries. As noted earlier, the size 

and shape of the pore areas will influence the size and shape of the resulting tessellation cell.  

In a similar manner, tessellation can also be applied to 2-D cross sections, using image 

generating software POV-RayTM, taken from the 3-D Representative Volume Element for each 

step of the simulated sintering process. A sample cross section from a simulation with 

approximately 100 spheres inside the RVE is shown in Figure 28(a). In the cross section, the 

white regions are areas from the section occupied by solid particles; the black regions are void 

areas. The tessellation analysis applied to the cross section generates the tessellation cells based 

on the pores as the feature of interest. The result is the tessellated image shown in Figure 28(b) 

with the shapes of the tessellated cells distinguished by the different colors. To illustrate the 
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relationship between the feature (pores) and the shape of the cells, the outlines of the tessellated 

cells from Figure 28(b) are superimposed on the cross section as shown in Figure 28(c).  

Tessellation can not always be freely applied to cross sections from sintered materials. 

The presence of the continuous pore network for low solid volume fractions can hinder the 

ability to segment the surface into tessellation cells. For example, if a group of pores are open to 

the edge of the examined area as shown by Region A in Figure 28(a), the number of tessellation 

cells obtained from the cross section as shown by Region B in Figure 28(b)] can be significantly 

reduced, thereby affecting the measurements. As a result, for practical measurements, 

tessellation is generally employed for higher ( S
VV  > 0.75) solid volume fractions. This is a 

concern when applying tessellation to measurements of material samples as well as the cross 

sections taken from the simulation. 
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Region B Region A 

 
(a) Simulation cross section.    (b) Tessellated image showing cells. 

   
 

1.0 

       
 
 
 

Cell C

SAF 

0.5 
1.0 0.001 CA / Section Area Cell D 

(c) Overlay of cell outlines from (b) onto (a). (d) 2-D SAF vs. CA / Section Area map. 
 

Figure 28. Tessellation of RVE sections to form cells (for a simulation with 100 spheres in the RVE). 
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The RVE is systematically sampled using multiple cross sections taken at evenly spaced 

intervals in parallel X, Y and Z planes as shown in Figure 29. This is done to obtain sufficient 

statistical data to characterize the particle arrangement inside the RVE.  

 

Outline of RVE limits

Z 

X 
Parallel Y Planes Parallel Z Planes Parallel X Planes 

Y 
 

Figure 29. Sectioning the RVE for tessellation analysis. 

 

The spatial data obtained from the analysis of the tessellation cells using these sections 

are tabulated and the resulting cell property distribution are plotted using the solid area fraction 

(SAF) versus the cell area (CA) per section area map as shown in Figure 28(d). This map is a 

graphical representation which displays the frequency of the tessellation cells (ranging from high 

frequencies for red areas to low frequencies for black areas) corresponding to the values of SAF 

and CA / Section Area for the cell characteristics used to quantify the microstructure. For each 

tessellated cell, the pore area (PA) and the cell area (CA) are determined and the solid area 

fraction (SAF) calculated for each tessellated cell. As shown by Cell C in Figure 28(c), the 

presence of the interconnected pore network can generate cells predominantly comprised of void 

space, resulting in a cell with a low SAF. On the other hand, even at low densities, small, 
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isolated pores can generate cells with a high SAF as shown by Cell D in Figure 28(c).  By 

implementing this procedure for each step of the simulated sintering process, a series of maps are 

created for different solid volume fractions. The maps are analyzed to ascertain the behavior of 

the microstructure inside the RVE as densification progresses in the simulation.  

 
 
 
3.6.3 Analysis of Microstructural Behavior Using SAF vs. CA Maps. 

 
 
In order to use SAF vs. CA maps to analyze microstructural behavior during densification, it is 

necessary to understand the relationship between the measured parameters and the corresponding 

physical characteristics of the microstructure. The motivation for employing tessellation is to 

obtain data related to the population distribution which can be used to characterize the 

microstructure. Therefore, the frequency (or number of cells) corresponding to the different 

values of cell properties is crucial to the analysis. The best way to visualize the distribution of 

cell properties is to plot the data using a 3-D SAF vs. CA Map. A sample map from the 

simulation is shown in Figure 30(a). This map characterizes the microstructure by sorting the 

cells into the bins based on the values of the cell properties (i.e. SAF and CA). The data is then 

plotted using the SAF - CA plane to identify the measured characteristics of the cells. The 

frequency (or number) of cells corresponding to the properties are plotted orthogonal to the SAF 

- CA plane. The colors in Figures 30(a) and 30(b) specify the frequency range. In descending 

order, the frequency range is red (identifying the highest frequency), purple, green, blue, and 

black (identifying the lowest frequency). 

While the 3-D SAF vs. CA Map is useful in visualizing the distribution of the tessellation 

cell properties, it is easier to use a 2-D SAF vs. CA Map to interpret the physical characteristics 
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of the microstructure. The 2-D SAF vs. CA Map corresponding to the data in Figure 30(a) is 

shown in Figure 30(b). The extreme combinations of the tessellation cell properties occur at the 

corners of the 2-D SAF vs. CA Map. Graphical representations for these combinations are 

labeled as Cell A, Cell B, Cell C and Cell D in Figure 30(b). These are: 

 

o Cell A is small in size (low CA) with a relatively small pore yielding a high SAF.  

o Cell B is large in size (high CA) with a relatively small pore yielding a high SAF.  

o Cell C is small in size (low CA) with a relatively large pore yielding a low SAF.  

o Cell D is large in size (high CA) with a relatively large pore yielding a low SAF. 
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(a) 3-D Solid Area Fraction (SAF) vs. Cell Area (CA) Map. 
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(b) 2-D Solid Area Fraction (SAF) vs. Cell Area (CA) Map. 

 
Figure 30.  Equivalent Solid Area Fraction (SAF) vs. Cell Area (CA) Maps for (a) 2-D and (b) 3-D. 

 

 68



 

An examination of the SAF versus the CA maps for the different solid volume fractions 

can provide insight into the physical behavior of the microstructure. McAfee et al (35, 37) have 

shown that the movement of the cells with the highest frequency (referred to as the peak) from 

one SAF versus CA map to another for different solid volume fractions can indicate trends in the 

general evolution of the microstructure. For this purpose, the 2-D SAF vs. CA map is generally 

employed since it is easier to plot the path of the changes in the peak and relate it to the 

measured cell properties.  

When using the SAF vs. CA maps to interpret microstructural behavior, it is important to 

keep in mind that the tessellation cells are formulated based on the pores as the feature of 

interest. By rearranging equation 2.4.3.1, it is possible to express the pore area (PA) in terms of 

the cell area (CA) and the solid area fraction (SAF) using,   

 
 

)1( SAFCAPA −⋅= .    [3.6.4.1] 
 
 
 
Using equation 3.6.4.1, lines of constant pore area (PA), called isopore lines, can be 

superimposed on the 2-D SAF vs. CA Map to assist in the interpretation of the microstructural 

behavior. It should be noted that the horizontal axis (CA) is a logarithmic scale indicating the 

order of magnitude of cell size while the vertical axis (SAF) is a linear scale indicating the 

relative size of the pore inside the tessellation cell. Because of this, the isopore lines have a 

logarithmic scale as indicated in Figure 31. 

The principle directions of peak motion are shown on the sample 2-D plane of the SAF 

versus the CA/ Section Area shown in Figure 31. Movement of the peak in the direction 

indicated by arrow (a) is an increase in the solid area fraction (SAF) without a change in cell size 
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(CA). This results from a general decrease in pore size (i.e. shrinkage) in the microstructure. 

Movement of the peak in the direction indicated by arrow (b) is an increase in cell size (CA) 

without a change in solid area fraction (SAF). This may result from pore coalescence. Movement 

of the peak in the direction of arrow (c) is a decrease in cell area (CA) without a change in solid 

area fraction (SAF). This indicates the breakup of the pore sections. Movement of the peak in the 

direction indicated by arrow (d) indicates the shrinkage and/or the elimination of the pores. 

Movement of the peak in the direction indicated by arrow (e) indicates the breakup of the pores 

with pore shrinkage. 

 

1.0 
PA = 1 µm2

PA = 0.01 µm2

PA = 0.1 µm2

(b) (c)
SAF 

(e)
(d) 

(a)

0.5 
CA [µm2] 100.01 

 
Figure 31. Monitoring peak motion to interpret the physical behavior of the microstructure. Arrow (a) is pore 
shrinkage, (b) is pore coalescence, (c) is pore break-up, (d) is pore shrinkage and elimination while (e) is pore 

break-up and shrinkage. 

(Courtesy of the MSE Dept., University of Pittsburgh, McAfee37) 
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4.0 EXPERIMENTAL DATA 

 
 
 
 
Since the purpose of the proposed model is to simulate the behavior of real sintered materials, it 

is important to note the general trends observed in the experimental data in order to properly 

evaluate the simulation results. To obtain the necessary information for comparison to the 

simulation results, the author has relied upon the work of others for the experimental data and 

images presented in this section. In particular, the primary experimental data used for 

comparison to the simulation results were obtained from the studies of alumina samples 

conducted at the University of Pittsburgh by Krishnan, et al (17) and McAfee (35, 37). Other 

published studies by Shaw and Brook(42) on the grain coarsening of alumina powder, a study by 

Aigeltinger and DeHoff(43) on the sintering of spherical copper powders, and a study by 

Aigeltinger and Exner(44) are also cited. 

In general, experimental data is obtained from an analysis of digital images taken from 

scans of the sample surface. Scanning Electron Microscopy (SEM) is typically used generate a 

grayscale micrograph of the sample surfaces similar to the image shown in Figure 32. The 

specific details of the step-by-step experimental procedure are omitted here, but they are 

described by McAfee(35) (p.50-51).  
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Figure 32. SEM micrograph of sintered alumina - dispersed case.  

(Courtesy of the MSE Dept., University of Pittsburgh, McAfee(35), p. 4) 
 

 

For this investigation, the primary sources of experimental data used for comparison to 

the simulation results are the studies by Krishnan (17) and McAfee (29, 35, 37) conducted on alumina 

samples. The particle size distribution measured in these studies (29) was used as the benchmark 

for the simulation particle size distribution as outlined in Section 3.1. These investigations 

examined two different arrangements of alumina powder – referred to as the dispersed and 

flocculated cases. Examples of the scanned images obtained from experimental samples are 

shown in Figure 33 for the dispersed alumina and Figure 34 for the flocculated alumina. A 

comparison of these two images shows that the dispersed sample has a more uniform distribution 
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of the alumina particles than the flocculated sample which has a more agglomeration (i.e. there 

are regions of closely clumped particles interspaced with pores which are relatively larger in size 

than the dispersed case). Computer programs are employed to analyze the pixels of the scanned 

grayscale images like the examples shown in Figure 33 and Figure 34 to determine the 

stereological parameters and the population distributed properties of the tessellation cells. 

 

 

 
 

Figure 33. SEM Micrograph of dispersed alumina sintered for 0.6 hours at 1350 °C with VV
S =0.87. 

(Courtesy of the MSE Dept., University of Pittsburgh, McAfee(35), p. 79) 
 

 

 73



 

 
 

Figure 34. SEM Micrograph of flocculated alumina sintered for 1.1 hours at 1350 °C with VV
S = 0.85. 

(Courtesy of the MSE Dept., University of Pittsburgh, McAfee(35), p. 79) 

 

 

 

 

4.1 PLOT OF S  vs. VV  CURVES – EXPERIMENTS SS S

 
 
The first method used to evaluate the experimental samples was the determination of the 

stereological parameters — the solid-solid surface area per unit volume, , the solid-void 

surface area per unit volume, , and the solid volume fraction,

SS
VS

SV
VS S

VV

17)

. As noted earlier, the main 

experimental data used for comparison to the simulation results are the studies by Krishnan (  

and McAfee (29, 35, 37) for alumina powders. There are also other studies published in the literature 

on the behavior of sintered materials. Unfortunately, many of the studies do not report sufficient 
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information on the stereological parameters (i.e. the values for and  as a function of SS
VS SV

VS S
VV ) 

to allow the calculation of the fractional solid-solid surface area. The primary difficulty is that 

most studies present their measurements of the sample surfaces in terms of the grain size or pore 

size as a function of S
VV . As noted by Nettleship, et al (45), it is not possible to distill the 

measured stereological quantities ( and ) solely from the reported data. Since the 

fractional solid-solid surface area,

SS
VS SV

VS

SSS , cannot be determined without this information, this 

precludes a comparison of the experimental data to the simulation results. However, there are a 

few studies which do report measured values of and : a study by Shaw and BrookSS
VS SV

VS (42) on 

the grain coarsening of alumina powder, a study by Aigeltinger and DeHoff(43) on the sintering of 

spherical copper powders, and a study by Aigeltinger and Exner(44) examining copper structures. 

The experimental data reported in these studies are used to determine the fractional solid-solid 

surface area as a function of the solid volume fraction and added to the data from Krishnan (17) 

and McAfee.(29, 35, 37) The results from these studies are plotted in Figure 35.   
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Figure 35. Plot of SSS  vs. S
VV  for experimental data. 

 

Some general observations can be made from the experimental data presented in Figure 

35.  First, the general trend for the experimental data is an increase in the fractional solid-solid 

surface area, SSS , as the solid volume fraction, S
VV , increases. This results from the relative 

increase in the solid-solid surface area and the relative decrease in solid-void surface area due to  

contact flattening and the reduction in particle center distance which typically occurs as 

densification progresses during the sintering process. Second, the slopes of the SSS  vs. S
VV   

curves are not necessarily constant. The results for the alumina samples reported by Krishnan et 

al (17) show an increase in the slope of the curve while the slopes of the curves decreased for the 
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other studies at higher densities ( S
VV >0.88). The change in slope at higher densities is more 

prominent for the copper data reported by Aigeltinger and DeHoff(43) and Aigeltinger and 

Exner(44) than for the  alumina data reported by Shaw and Brook(42). The change in the slope of 

the SSS  vs. S
VV   curves may provide insight to the behavior of the microstructure. The key to 

interpreting the behavior of the microstructure from this data is based on the change in 

and . A decrease in the solid-solid surface area, , would imply the presence of grain 

growth while a decrease in the solid-void surface area, , would imply pore coarsening.   

SS
VS SV

VS SS
VS

SV
VS

 

 
 
 

4.2 TESSELLATION RESULTS – EXPERIMENTS 

 
 
The second method used to evaluate the experimental samples was the employment of 

tessellation to generate data characterizing the population distribution. McAfee(35) applied 

tessellation to the dispersed and flocculated alumina samples. The grayscale scanned images of 

the sample surface, similar to the examples shown in Figure 33 and Figure 34, are processed to 

generate a black and white image of solid particles (white) and pores (black). Boundary 

tessellation is then applied to the black and white image to generate cells based on the pores as 

the feature of interest. Figure 36 shows an example of the outlines of the tessellation cells 

superimposed on the original grayscale image used to generate the cells.  
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Figure 36. A scanned image of the pore structure with outlines of the tessellation cells superimposed. 

(Courtesy of the MSE Dept., University of Pittsburgh, McAfee (37) ) 
 

 

Figure 37 shows a processed image with the tessellation cells (the colored regions) 

superimposed over the black and white image showing the pores (black). It is important to note 

that the pores near the edges of the image are not included in the statistics since it is not possible 

to calculate the outline of the boundaries needed to completely enclose the pores at the edges 

inside a tessellation cell.  
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Figure 37.  Tessellated image of the black and white SEM micrographs. 

(Courtesy of the MSE Dept., University of Pittsburgh, McAfee(35), p. 101) 
 

 

After tessellation of the image, the cell area (CA) and the solid area fraction (SAF) are 

calculated for each cell generated from the scanned image. The distribution of the cell properties 

are then graphed using either the 2-D or 3-D SAF vs. CA Map. McAfee (35) applied tessellation 

to scanned images of samples of the dispersed and the flocculated cases for alumina powder. The 

results for the dispersed alumina case are shown in Figure 38 for different solid volume fractions 

using 3-D SAF vs. CA Maps.  The results for the flocculated alumina case are shown in Figure 

39 for different solid volume fractions using 3-D SAF vs. CA Maps. The data for the flocculated 

alumina case presented in Figure 39 are also shown using the 2-D SAF vs. CA Maps in Figure 

40 with the peaks enclosed by the red lines. 
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Figure 38.  3-D SAF vs. CA Maps for dispersed alumina samples. 

(Courtesy of the MSE Dept., University of Pittsburgh, McAfee(35), p. 114) 
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Figure 39.  3-D SAF vs. CA Maps for flocculated samples. 

(Courtesy of the MSE Dept., University of Pittsburgh, McAfee(35), p. 114) 
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Figure 40.  2-D SAF vs. CA Maps for flocculated alumina samples. 

(Courtesy of the MSE Dept., University of Pittsburgh, McAfee(35), p. 113) 
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observations which can be made concerning the evolution of the microstructure. First, the initial 

peak motion for 0.75 < < 0.90 is in the general direction of arrow (e) from Figure 31 (i.e. up 

microstructure – material behavior which commonly occurs during the intermediate stage of 

sintering. Second, at the higher densities ( > 0.90), the peak moves primarily in the general 

n area with high SAF. 

This material behavior commonly occurs during the final stage sintering.  

By identifying the peaks for different solid volume fractions, the changes in the 

microstructure can be analyzed by examining the movement of the peaks as densification 

progresses. The movements of the peaks for the dispersed and flocculated alumina cases are 

shown in Figure 41. While the peak paths differ for these two cases, there are a few general 

V

and to the left on the 2-D SAF-CA Map). A comparison of the peak shift with the isopore lines 

shows a reduction in pore size by an order of magnitude for the peak (i.e. most of the tessellation 

cells). This behavior indicates pore shrinkage and breakup of the pore network in the 

V

direction of arrow (b) from Figure 31 (i.e. to the right on 2-D SAF-CA Map). This indicates a 

general reduction in pore size with the elimination of the smaller pores. The removal of the 

smaller pores results in fewer tessellation cells, but the cells are larger i

SV

SV
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Figure 41.  Peak paths for dispersed (left) and flocculated (right) alumina samples. 

(Courtesy of the MSE Dept., University of Pittsburgh, McAfee(35), p. 147) 
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5.0 SIMULATION RESULTS – ISOTROPIC, HOMOGENEOUS SINTERING 

 
 
 
Simulations were run to examine the influence of several factors on the evolution of the 

microstructure: the particle size distribution, the number of particles within the RVE, the average 

initial overlap for the particles in the packing algorithm, and agglomerated packing 

arrangements. Densification in the simulation was modeled using isotropic, homogenous 

sintering as described in Section 3.5.1. In additional to the simulation of the initial packing 

arrangement, simulations were run for four different agglomerated particle arrangements which 

were created by varying the number of particles removed from the initially generated particle 

packing arrangement as described in Section 3.4. 

 

 

 

 

5.1 PLOT OF S  vs. VV  CURVES – ISOTROPIC, HOMOGENEOUS SINTERING SS S

 
 
For each simulated particle arrangement, the solid-solid surface area, , the solid-void surface 

area, S , and the solid volume fraction,

SS
VS

SV
V

S
VV  were determined. The fractional solid-solid surface 

area SSS  was calculated and plotted as a function of the solid volume fraction S
VV  in Figure 42. 

The results for the experiments conducted on alumina samples from Section 4.1 are also plotted 
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for comparison. The different agglomerated particle arrangements are identified by the total 

number of spheres remaining in the overall containing box. 
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 Figure 42. Comparison of SSS  vs. S

VV  for different number of voids. 

 

 

5.1.1 Effect of particle distribution 

 
 
Simulations were conducted for three different particle size distributions: a mono-sized 

distribution, a distribution duplicating the particle sizes in the alumina experiments reported by 

Nettleship, et al (29) with a ratio of the standard deviation to the mean for the particle sizes of 
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0.24, and a distribution of particle sizes with a standard deviation larger than the alumina 

experiment corresponding to a ratio of the standard deviation over the mean for the particle sizes 

of 0.32. The comparison showed that both the mono-sized particle distribution and the 

experimental particle size distribution had the same green density ( S
VV = 0.61). The wider particle 

distribution had a slightly greater green density ( S
VV = 0.62). Also, for all three distributions, the 

path of the fractional solid-solid surface area, SSS , versus the solid volume fraction, S
VV , curves 

were similar to the “Not agglomerated” curve shown in Figure 42 from green density to full 

densification. Nolan and Kavanuagh (15) noted that certain values of the ratio of the minimum 

particle size over the maximum particle size influenced the efficiency of the particle packing. 

This could explain the similarity between the mono-sized and the experimental distributions, 

since the range of particle sizes for the experimental distribution may not be sufficiently large to 

permit the smaller particles to fill the gaps between the larger particles. The wider distribution 

had a greater range of particle sizes which allowed more of the smaller particles to fill some of 

the voids between the larger particles, hence the slightly greater green density. However, given 

the small change in the green density, varying the standard deviation of the particle sizes over the 

range considered did not significantly alter the evolution of SSS  with S
VV .  

 
 
5.1.2 Effect of number of spheres 

 
 
Simulations were run to determine the effect of varying the number of spheres in the RVE. For 

simulations with less than ~100 spheres in the RVE, the path of the SSS  versus S
VV  curve 

changed as the number of spheres was varied. For simulations with more than 100 spheres, the 
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addition of more spheres to the simulation RVE did not alter the path of the SSS  versus S
VV  

curve. Consequently, a minimum of 100 spheres are needed to model the evolution of the 

parameters used to characterize the microstructure. However, since the agglomerations are 

simulated by eliminating randomly selected particles, additional particles are needed inside the 

RVE to provide sufficient regions of voids interspaced among the solid particles. Hence, a larger 

number of spheres were required in the simulation to create agglomerated packing arrangements 

(10,000+ spheres). 

 
 
5.1.3 Effect of varying amount of permitted overlap 

 
 
Two simulations were run to determine the influence of varying the amount of initial overlap 

between particles produced by the packing algorithm prior to densification. The first simulation 

had a packing arrangement with an average overlap of 0.5%. The second simulation had a 

packing arrangement with an average overlap of 5.7%. The increase in the amount of permissible 

overlap not only increased the initial solid volume fraction (from 0.61 to 0.66), but also increased 

the initial fractional solid-solid surface area (from approximately 0 to 0.05). The combination of 

these two events did not alter the path of the SSS  versus S
VV  curve. Instead, the starting point of 

the simulation shifted along the SSS  versus S
VV  curve from point G to point H as shown in 

Figure 42. Hence, increasing the average overlap essentially starts the simulation at a point 

further in the densification process, but does not affect the subsequent evolution of SSS  in the 

model. 
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5.1.4 Effect of agglomerations in the particle arrangement 

 
 
Simulations were run with different numbers of additional voids randomly spaced in the particle 

packing arrangement to model the agglomeration of particles which may be present in the 

packing arrangements of real materials. The fractional solid-solid surface area SSS  as a function 

of the solid volume fraction S
VV  is plotted in Figure 42 for different agglomerated particle 

arrangements. A comparison of the results shows that the additional voids introduced to the 

particle packing to simulate the agglomerations reduces the solid volume fraction for the green 

compact. This shifts the SSS  versus S
VV  curve for the agglomerated particle arrangements to a 

trajectory different from the particle arrangement without agglomerations. Also, an inflection 

point (see upper right of curves in Figure 42) appears as the simulation approaches full 

densification for the agglomerated curves. The inflection behavior may be due to the smaller 

voids being eliminated first, with the larger voids associated with the removed spheres filling or 

breaking up later in the sintering process. If so, this would alter the rate of change of the surface 

areas versus the solid volume fraction thus creating the inflection in the curve. The curves for the 

agglomerated arrangements all have the same trajectory as they approach full densification. 

 
 
5.1.5 Comparison to experiments 

 
 
Shaw and Brook (42) conducted high temperature experiments (1500°C) on other alumina 

samples. As shown in Figure 42, their experimental results follow a simulated agglomerated 

particle arrangement SSS  versus S
VV  curve closely for the density range 0.60< S

VV <0.88. 

 89



 

However, at higher densities ( S
VV >0.88), the experimental results diverge from the simulation 

curve by cutting across several different simulation curves. This divergence may also occur due 

to grain growth at the higher densities but that resulted in coarsening (not self-similar 

coarsening) of the microstructure in the alumina samples at the higher densities.  

Since the particle size distribution used in the simulation duplicates the particle size 

distribution measured from the experimental samples (17, 29) and the simulation makes the 

common assumption of uniform contact flattening, one might expect that the simulated SSS  

versus  curves would match those for the experimental data from the alumina samples 

reported by Krishnan, et al.

S
VV

(17) and those of Brook and Shaw.(42) Suitable experimental results are 

rare because the determination of SSS  requires the measurement of  and on the same 

samples. 

SS
VS SV

VS

SSS  cannot be calculated directly from a measurement of  by gas absorption 

methods. However, as shown in Figure 42, the experimental data trends for sintering at 1350 °C 

from Krishnan, et al. have flatter trajectories which cross the 

SV
VS

SSS  versus S
VV  curves for the 

simulations with agglomerated particle arrangements. At the lower sintering temperature, one 

might speculate that there is a greater contribution of pore coarsening by surface diffusion which 

lower  and increase SV
VS SSS  at any particular density. This would also decrease the slope of the 

curve. These effects cannot be accommodated in the present simulation. 
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5.2 RVE CROSS SECTIONS – ISOTROPIC, HOMOGENEOUS SINTERING 

 
 
 
Sample cross sections taken from the same plane (mid-height of the RVE) are presented for the 

simulations without any agglomerations (see Figure 43) and with agglomerations (see Figure 44) 

in the particle arrangement for comparable solid volume fractions. A comparison of these cross 

sections can be used to illustrate several features of the simulated microstructural evolution. For 

comparable solid volume fractions, the size of the voids and their frequency differ for the various 

particle arrangements. For the simulation with no agglomerations, an examination of the cross 

section in Figure 43(d) shows a fairly uniform distribution of the voids. This implies spatial 

homogeneity in the microstructure. However, for the simulation with agglomerations, an 

examination of the cross section in Figure 44(d) indicates the presence of local regions of high 

and low density which will vary based on the number of agglomerations present in the RVE. 

These differences in the microstructure may provide an explanation for the presence of the 

inflection point in the SSS  versus S
VV  curves for the simulations with agglomerations. For the 

same solid volume fraction, the agglomeration simulation has fewer voids, but the voids are 

larger in size as compared to the simulation with no agglomerations. This is because more 

necking is required in the areas between the large voids to get the same density, thereby 

eliminating many of the small pore sections that are still present in the simulation without large 

voids.  
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The cross sections taken from the RVE also demonstrate the breakup of long, thin voids 

as a natural consequence of densification by contact flattening. This is illustrated by examining 

the region labeled K in Figure 44 for different solid volume fractions. Region K begins as one 

large void as shown in Figure 44(a). It initially reduces in size in the early stages of sintering as 

shown in Figure 44(b). As sintering progresses even further, the breakup of the void begins to 

take place as segments of the void are pinched off as shown in Figure 44(c). Finally, 

densification proceeds to a point where the initially large void is broken into several separate, 

smaller voids as shown in Figure 44(d).  
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Figure 43. Sample cross sections from RVE for simulation without agglomerations (14301 spheres). 
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Figure 44. Sample cross sections from RVE for simulation with agglomerations (13051 spheres). 
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5.3 TESSELLATION RESULTS – ISOTROPIC, HOMOGENEOUS SINTERING 

 
 
Tessellation was applied to multiple cross sections taken from the RVE for the different 

simulations. The tessellated images in Figures 45 and 46 correspond to the sample cross sections 

presented in Figures 43 and 44 respectively. From the tessellated images, the cell properties 

(SAF and CA) are determined for different solid volume fractions. Figure 47 shows the 3-D SAF 

vs. CA Maps and Figure 48 shows the 2-D SAF vs. CA Maps for the simulation without 

agglomerations. Figure 49 shows the 3-D SAF vs. CA Maps and Figure 50 shows the 2-D SAF 

vs. CA Maps for the simulation with agglomerations (13501 spheres). The peaks of the 

distribution are highlighted on the 2-D SAF vs. CA Maps in Figures 48 and 50. The peak for the 

different solid volume fractions are superimposed on a 2-D SAF vs. CA Map (see Figure 51) for 

each simulation in order to trace the movement of the peak as densification progresses.   

In the experiments, the dispersed sample had a more even distribution of the material 

while the flocculated sample had a greater degree of agglomeration present. The first important 

observation from the comparison of the simulation and experimental results is that the same 

general behavior pattern is observed in both the simulations and the experiments. The first 

motion of the peak is up and to the left. This peak motion indicates an order of magnitude 

decrease in pore size and the breakup of the pores characteristic of the intermediate stage of 

sintering ( S
VV  ~ 0.75 to S

VV  ~ 0.85). As mentioned in the previous section, the breakup of the 

pore network in the simulation can be shown using the cross sections taken from the RVE – see 

region K in Figure 44. At higher densities ( S
VV  > 0.90), the peak motion shifts to the right. This 
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indicates a general shrinkage of the pores characteristic of the final stage of sintering. The 

smaller pores are eliminated first which would result in larger tessellated cells.   

Another observable trait is the initial distribution of solid area fraction (SAF) values for 

the tessellated cells. If the 3-D SAF vs. CA maps are examined, there is a higher frequency of 

cells with low SAF for the simulation without agglomerations, see Figure 48(a), and the 

flocculated experiment results, see Figure 40(a), than for the simulation without agglomerations, 

see Figure 50(a), and the dispersed experiment results, Figure 38(a).  

For the simulation without agglomerations and the flocculated experiment results, the 

interconnected pore network has larger pore spaces in the agglomerated and flocculated cases 

resulting in tessellation cells with lower SAF values. As densification progresses, there is a 

decrease in the number of cells with low SAF as the interconnected pore network breaks down. 

As the material approaches full densification during the final stage of sintering, break down of 

the pore network is complete as isolated pores form. Thus, thought the initial distribution differs, 

the tessellation cells begin to shift to similar behavior when the pores get smaller as densification 

occurs.  
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Figure 45. Tessellated images for cross sections from Figure 43 for simulation without agglomerations. 
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Figure 46. Tessellated images of cross sections from Figure 44 for simulation with agglomerations. 
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Figure 47. 3-D SAF vs. CA / Section Area Maps for simulation without agglomeration. 
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Figure 48. 2-D SAF vs. CA / Section Area Maps for simulation with no agglomerations. 
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Figure 49. 3-D SAF vs. CA Maps for simulation with agglomerations. 
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Figure 50.  2-D SAF vs. CA Maps for simulation with agglomerations (13051 spheres in RVE). 
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(a) Simulation without agglomerations. (b) Simulation with agglomerations (13051 spheres). 
 

Figure 51. 2-D SAF vs. CA Maps indicating movement of the peaks for the simulations. 
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6.0 SIMULATION RESULTS – LOCAL PARTICLE REARRANGEMENT (LPR) 

 

A series of simulations were run to determine the effect of using Local Particle Rearrangement 

(LPR), as described in Section 3.5.2, to simulate sintering. Two sets of three simulations were 

run. The first set of simulations applied three different sintering models to a particle arrangement 

with no agglomeration. The second set of simulations applied three different sintering models to 

a particle arrangement with agglomeration. For each set, the three sintering models applied to the 

particle arrangement were: isotropic, homogenous sintering; sintering through Local Particle 

Rearrangement (LPR) using the values of µt=0.01 and µn=0.1 for the viscosities; and sintering 

through Local Particle Rearrangement (LPR) using the values of          µt=0.1 and µn=0.1 for the 

viscosities. The viscosity values for the two cases of sintering using LPR were arbitrarily chosen 

to explore the effect of the tangential viscosity since it models the ability of the particles to slide 

past each other in the simulation. 

The maximum number of particles in the particle arrangement placed in the containing 

box was limited to 806 spheres. This corresponds to approximately 466 spheres residing inside 

the RVE for the green compact. This restriction is due to the maximum allowable size of the 

software application. This limits the amount of memory which can be allocated for the 

simulation. Coupled with the additional memory space required to store the variables and the 

matrix used solve the equations to establish force and moment equilibrium for the simulated 
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sintering using Local Particle Rearrangement (LPR), this significantly reduces the number of 

particles which can be placed in the simulation.  

 

 

 

 

6.1 PLOT OF S  VS. VV  CURVES – LPR SS S

 
 
The results for the first and second sets of simulations are plotted in Figure 52 along with the 

experimental data from Section 4.0. Using this plot, a few general observations can be made 

from a comparison of the
SSS  vs. S

VV  curves for the two sets of simulations.  

 For the first set of simulations examining the particle arrangement with no 

agglomerations, the SSS  vs. S
VV curves for the simulation using isotropic, homogeneous sintering 

and the two simulations using LPR essentially follow the same path. This behavior can be 

explained by the arrangement of the particles in the green (initial) compact. Without the presence 

of the larger voids used to simulate agglomerations in the particle arrangement, the motion of the 

particles in the LPR simulations is restricted due to the close packing of the particles. 

Consequently, densification essentially occurs only through contact flattening as modeled by the 

isotropic, homogeneous sintering for all three simulations - hence the similarity among the
SSS  

vs. S
VV  curves.  

For the second set of simulations examining the particle arrangement with agglomeration, 

the two sintering simulations using LPR essentially have the same the
SSS  vs. S

VV  curves. 
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However, these SSS  vs. S
VV  curves follow a path which has lower values of  SSS  than the SSS  

vs.  curve for the simulation with isotropic, homogeneous sintering. For isotropic, 

homogenous sintering, the densification of the particle arrangement occurs through contact 

flattening. For this sintering model, an increase in density generally corresponds to an increase in 

the solid-solid surface area ( ) which results in an increase in

S
VV

SSS SSS . However, for sintering via 

local particle rearrangement, densification can occur, not only by contact flattening, but also by 

individual particles moving to fill the empty voids spaces in the agglomerated arrangement. 

When the later occurs, there is an increase in the density, but there may not be a corresponding 

increase in solid-solid surface area. The result is a different path for the SSS  vs. S
VV  curves of the 

simulations using LPR. Since simulations have the same initial particle arrangement and will 

eventually approach full density, all three curves start at the same position and will eventually 

converge at higher densities. 
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Simulation Results for 806 spheres (466 spheres inside the RVE).
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Figure 52. Comparison of SSS  vs. S
VV  curves for the simulations examining the effect of LPR. 

 
 
 

 

6.2 RVE CROSS SECTIONS – LPR 

 
 
Sample cross sections taken from the same plane (mid-height of the RVE) are presented for each 

simulation at different solid volume fractions, S
VV . For the first set of simulations, the cross 

sections for the simulations with no agglomeration in the particle arrangement are shown in 

Figure 53 for the case of isotropic, homogeneous sintering, in Figure 54 for the case of sintering 

using LPR with µt=0.01 and µn=0.1, and in Figure 55 for the case of sintering using LPR with 
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µt=0.1 and µn=0.1 for comparable solid volume fractions. A comparison of the cross sections at 

 ≅ 0.95 indicates a different evolution of the microstructure for each simulation. For the 

simulation using isotropic, homogeneous sintering shown in Figure 53(d), there are relatively 

fewer small pores when compared to the sections of the two simulations using LPR in Figure 

54(d) and Figure 55(d). This indicates that using sintering via LPR may create a greater range of 

pores sizes in the simulation. Furthermore, the simulation using LPR with the higher value for 

the tangential viscosity [see Figure 55(d)] has a greater number of small pores than the other 

LPR simulation [see Figure 54(d)]. This suggests that the ability of the particles to slide by each 

other, modeled in the simulation by the tangential viscosity, may influence the rate at which the 

small pores are eliminated in the LPR simulations. 

S
VV
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Figure 53. Cross sections for isotropic, homogeneous  sintering; no agglomerations. 
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Figure 54. Cross sections for sintering via LPR (µt=0.01, µn=0.1); no agglomerations. 
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Figure 55. Cross sections for sintering via LPR (µt=0.1, µn=0.1); no agglomeration. 
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For the second set of simulations, the cross sections for the simulations with 

agglomeration in the particle arrangement are shown in Figure 56 for the case of isotropic, 

homogeneous sintering, in Figure 57 for the case of sintering using LPR with µt=0.01 and 

µn=0.1, and in Figure 58 for the case of sintering using LPR with µt=0.1 and µn=0.1 for 

comparable solid volume fractions. For comparable solid volume fractions, the particle 

arrangements with agglomeration have, in general, fewer small pores than the particle 

arrangement with no agglomerations. The reason for this is the same as noted one noted in 

Section 5.2 (i.e. that more necking is required in the areas between the large voids to get the 

same density, thereby eliminating many of the small pores which are typically present in the 

simulation with no agglomeration).  

 Unfortunately, an examination of the cross sections indicates a problem with the number 

of particles in the simulation. At high densities, there are very few pores remaining in the 

simulation as shown in Figure 56(d) [only two pores], Figure 57(d) [only four pores] and Figure 

58(d) [only three pores]. Some of the pores are open to the edge as seen in Figure 56(d). This 

reduces the number of tessellation cells and affects the data. Consequently, a larger number of 

particles are required inside the RVE before a proper analysis of the effect of sintering using 

LPR on agglomerated particle arrangements can be made.  
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Figure 56. Cross sections for isotropic, homogeneous sintering; agglomeration. 
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Figure 57. Cross sections for sintering via LPR (µt=0.01, µn=0.1); agglomerations. 
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Figure 58. Cross sections for sintering via LPR (µt=0.1, µn=0.1); agglomeration. 
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6.3 TESSELLATION RESULTS – LPR 

 
 
Tessellation was applied to multiple cross sections taken from the RVE for the different 

simulations. The 2-D SAF vs. CA Maps for the first set of simulations of the particle 

arrangement with no agglomerations are shown in Figure 59 for the case of isotropic, 

homogenous sintering, in Figure 60 for the case of sintering using LPR with µt=0.01 and µn=0.1   

, and Figure 61 for sintering using LPR with µt=0.01 and µn=0.1 with the peaks are highlighted. 

The peaks for the different solid volume fractions are superimposed on the 2-D SAF vs. CA 

Maps in Figure 62 for each simulation in order to trace the movement of the peak as 

densification progresses.   

 If the peaks are compared for S
VV  = 0.75, the distribution of the tessellation cell 

properties is wider for the two simulations using LPR [see Figure 62(b) and Figure 62(c)] than 

for the simulation using isotropic, homogeneous sintering [see Figure 62(a)]. The peaks for the 

LPR simulations extend across several isopore lines and indicate a variation in pore size of two 

orders of magnitude. Note that since the simulation is non-dimensional, the pore area (PA) is 

normalized on the 2-D SAF vs. CA Maps by dividing by the section area (SA). This provides 

quantitative support for the observation made from the examination of the cross sections that the 

simulations using LPR have more small pores, in general, than the simulation for isotropic, 

homogenous sintering.  

 An examination of the peak paths shows movement of the peaks upward on the 2-D SAF 

vs. CA Maps with a slight movement to the left as densification occurs. The upward motion of 

the peak indicates a general decrease in pore size. The movement to the left indicates the 

 116



 

presence of some pore breakup. At higher solid volume fractions (i.e. 0.90 < S
VV  < 0.95), the 

peak paths show a slight shift to the right indicating the elimination of the smaller pores. While 

they are not the same, the general behavior of the peak paths is similar to the pattern observed in 

the experimental data for microstructural evolution. 

 

 

 

 117



 

 

 
 

    

1.0 1.0 

SAF SAF 

0.5 0.5 

 
CA / Section Area 0.001 1.0 CA / Section Area 0.001 1.0 

(a) S
VV  = 0.73      (b) S

VV  = 0.842  
   
 
 

    

1.0 1.0 

SAF SAF 

0.5 0.5 
 

 CA / Section Area 0.001 1.0 CA / Section Area 0.001 1.0 
(c) S

VV  = 0.897     (d) S
VV  = 0.954 

 
 

Figure 59. 2-D SAF vs. CA Maps for isotropic, homogeneous sintering; no agglomerations. 
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Figure 60. 2-D SAF vs. CA Maps for sintering via LPR (µt=0.01, µn=0.1); no agglomeration. 
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Figure 61. 2-D SAF vs. CA Maps for sintering via LPR (µt=0.1, µn=0.1); no agglomerations. 
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Figure 62. Comparison of peak motion for
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The 2-D SAF vs. CA Maps for the second set of simulations of the particle arrangement 

with agglomeration are shown in Figure 63 for the case of isotropic, homogenous sintering, in 

Figure 64 for the case of sintering using LPR with µt=0.01 and µn=0.1, and Figure 65 for 

sintering using LPR with µt=0.01 and µn=0.1 with the peaks are highlighted. The peaks for the 

different solid volume fractions are superimposed on the 2-D SAF vs. CA Maps in Figure 66 for 

each simulation in order to trace the movement of the peak as densification progresses.   

An examination of the peak paths in Figure 66 shows that the peaks at the lower solid 

volume fractions ( S
V

S
V

V  = 0.75) have a relatively narrow distribution with cells of high SAF when 

compared to the results for the particle arrangements with no agglomerations shown in Figure 

62. As densification progresses, the motion of the peaks is primarily to the right. However, the 

distribution of tessellation cell properties expands at higher solid volume fractions ( S
VV  = 0.95) 

for two of the simulations. A possible explanation for this atypical behavior of the peak motion is 

evident from the cross sections. Initially, some of the large pores are open to the edge of the 

simulation as shown in Figure 56(b). Because the pore is not enclosed, no tessellation cell is 

generated and the pore is not included in the data. Then, as densification progresses in the 

simulation, some of these pores eventually close off at the edges of the cross sections as shown 

in Figure 56(c). This creates large tessellation cells with low solid area fraction (SAF) which 

were not present at the lower solid volume fractions. Because the pore is now enclosed, a 

tessellation cell can be formed and its cell properties included in the data. The appearance of 

these cells in the statistical data results in the shift to a wider peak distribution at the higher solid 

volume fractions (V  = 0.95) as shown in Figure 66(a) and Figure 66(c). To avoid this problem, 

more particles are needed in the simulation to enclose the larger voids present in the 
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agglomeration particle arrangements in order to enclose enough pores to generate sufficient 

statistical data using tessellation. At present, the amount of memory space required to solve the 

force and moment equilibrium equations and the limitations of the software application size 

restrict the maximum number of particles in the containing volume to approximately 800. 
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Figure 63. 2-D SAF vs. CA Maps for isotropic, homogeneous sintering; agglomeration. 
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Figure 64. 2-D SAF vs. CA Maps for sintering via LPR (µt=0.01, µn=0.1); agglomeration. 
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Figure 65. 2-D SAF vs. CA Maps for sintering via LPR (µt=0.1, µn=0.1); agglomeration. 
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Figure 66. Comparison of peak motion for densification of particle arrangements with agglomerations. 
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7.0 SUMMARY AND CONCLUSIONS 

 

To summarize, a 3-D model has been developed with the goal of simulating the behavior of real 

sintered material which incorporated the following main features: 

 

1. The use of an algorithm to control the random motion of the particles to improve the 

efficiency of the packing of the particles into a containing volume.  

2. The adaptation of Monte Carlo integration techniques to calculate, for the simulation, the 

stereological parameters which are commonly used to characterize sintered materials in 

experiments.  

3. The introduction of a technique to simulate agglomerated particle arrangements.  

4. The application of tessellation to 2-D cross sections taken from the Representative 

Volume Element (RVE) generated by the simulation. 

5. The derivation of force and moment equilibrium equations to allow for Local Particle 

Rearrangement in the RVE.  

 

The model was compared to experimental data obtained from measurements on sintered 

alumina samples using two techniques: the stereological parameters for the RVE determined by 

the simulation, and additional measurable quantities obtained from applying tessellation to cross 

sections taken from the RVE to further describe the characteristics of the microstructure. Based 
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on the analysis of the simulation results and a comparison to experimental data, the following 

observations were made:  

 

1. The simulation reproduced behavioral trends in the microstructure similar to those 

observed in the measurement of the experimental samples using the SSS  vs. S
VV  curves 

and tracing the peak movements on the 2-D SAF vs. CA Maps, thereby demonstrating the 

feasibility of employing the 3-D simulations to replicate the microstructural behavior 

observed in real sintered materials.  

2. The results from Section 5.0 indicate that the generation of agglomerated particle packing 

arrangements may be useful in simulating the microstructural evolution of sintering since 

the presence of the large voids used to simulate agglomeration had a significant effect on 

the simulation results.  

3. The simulation results for isotropic, homogenous sintering indicate that approximately 

10,000 particles are needed to properly model agglomeration in the particle arrangement.  

4. Based on the SSS  vs. S
VV  curves, there was no difference between the isotropic, 

homogenous simulation and the LPR simulations for the particle arrangement with no 

agglomerations. However, there was a noticeable difference between the isotropic, 

homogenous simulation and the LPR simulations for the particle arrangement with 

agglomeration.   

5. The comparison of the cross sections for the LPR simulations using different viscosity 

values suggests that the ability of the particles to slide past each other, modeled in the 

simulation by the tangential viscosity, may influence the rate at which small pores are 

formed and/or eliminated in the RVE.  
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6. The LPR simulations for particle arrangements with agglomeration were inconclusive 

since there were insufficient particles (only 800 particles) in RVE to close off the pores 

from the edges. 

  

The analysis of the features shows the advantages of simulations as a tool for examining 

the evolution microstructural. While additional development of the model is needed, once the 

simulation has been fully validated through comparison to experimental results, the behavior of 

different local packing arrangements can be analyzed both in terms of their control of the 

densification rate and the generation of defects by sintering.  
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8.0 FUTURE WORK 

 
 
 
As outlined in the previous section, the model presented in this study has introduced several 

improvements to the techniques used in models to simulate the microstructural behavior of real 

sintered materials. However, there are three primary areas where additional research is needed to 

further improve the model:  

 

1. Increase the number of particles in the Representative Volume Element (RVE) for sintering 

using Local Particle Rearrangement (LPR).  

As demonstrated by the simulation results, it is possible to replicate agglomerations in the 

particle arrangement. Unfortunately, a larger number of particles are required in the RVE n 

order to isolate the pores so the statistical data can be determined. While this is possible for 

the case of isotropic, homogenous sintering (see results from Section 5.0), it is not possible 

for the case of sintering using Local Particle Rearrangement (LPR) due to the amount of 

memory space required to store the variables needed to compile and solve the matrix to 

establish force and moment equilibrium for each step of the simulated sintering process 

which limits the number of particles for the simulation with local particle rearrangement to 

approximately 800 particles. The coefficient matrix used to determine the velocities and 

rotations to establish equilibrium is sparsely populated (i.e. mostly zero terms). Thus, it is 

possible to increase the number of particles in the LPR simulations by implementing sparse 
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matrix techniques to reduce the overall memory space required to store and solve the 

matrix. Once this is achieved, a better analysis of the LPR simulations can be made.  The 

simulation results for the isotropic, homogenous sintering of the agglomerated particle 

arrangement (Section 5.0) indicate that approximately 10,000 particles are needed in the 

RVE to adequately model agglomerated particle arrangements.  

 

2. How to determine the correct values for the normal and tangential viscosities.  

The values for the normal and tangential viscosities used in the simulation were arbitrarily 

chosen to explore how they may influence the simulation results. Before a direct 

comparison to experimental results can truly be made, appropriate values for the viscosities 

have to be determined for the real material being simulated.     

 

3. Exploring better ways to simulate agglomeration in the particle arrangement.  

Ideally, the pore distribution in the RVE for the simulation should match the properties 

distribution of the tessellation cells measured from experimental samples. In the present 

simulation, agglomeration was simulated in the particle arrangement by the random 

removal of particles from the initial packed RVE. This technique may not be sufficient to 

achieve a good statistical match. Therefore, additional research needs to be conducted to 

determine the most efficient manner in which to match the simulation and experimental 

distribution.  
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APPENDIX 

 
 
 
DERIVATION OF THE EQUATIONS OF MOTION GOVERNING LOCAL PARTICLE 
REARRANGEMENT (LPR). 
 
 
 
 

Equations governing the movement of the particles inside the RVE are used to determine 

the linear and angular velocities of the particle centers required to establish force and moment 

equilibrium for all the particles in the simulation. The derivation of the equations is based on the 

model of a pair of overlapping particle as shown in Figure 67: 
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Figure 67. Geometry of particle motion of two particles in contact. 

 

The definitions of the variables labeled in Figure 67 are:  

 

ji,  =  Indices identifying individual particles. Variable i identifies the current particle    

    and variable j identifies the overlapping particle. 

ijd   =  Distance from center of particle i to the contact surface. 

jid  =  Distance from center of particle j to the contact surface. 

ije  =  Unit vector identifying direction from center of particle i to contact surface. 

jie  =  Unit vector identifying direction from center of particle j to contact surface. 

ji ωω ,  =  Angular velocities of particles i and j respectively.  

ji VV ,  =  Linear velocities of particles i and j respectively.  
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For the purposes of this derivation, vector quantities are underlined; the unit vectors for 

coordinates are identified by i, j and k; and the scalar components of a vector are denoted using a 

superscript.  

 

 

A.1 DEFINITION OF NORMAL AND TANGENTIAL VELOCITIES 

 
The difference in velocity of particle j with respects to the velocity of particle i at the center of 

the circular contact surface (labeled as Pt. A in Figure 67) is given by: 

 

( )ijijiijijijjji edVedVV ×+−×+=∆ ωω  

ijijijijijijji ededVVV ×−×+−=∆ ωω  

ijijiijjijijji ededVVV ×−×−−=∆ ωω   (Note: jiij ee −= )  [A1] 

 

 

Expansion of the cross products in equation [A1] yields the following expressions,   
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Y
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Substitution of equations [A2] into equation [A1] and adding the scalar components for the 

velocities results in the follow expression, 
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The coefficients of unit vectors for the Cartesian coordinate system can be combined to give, 
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Since ije  is a unit vector, the relative velocity normal to the contact surface contact ( n
jiV∆ ) is 

given by the projection of jiV∆  onto ije , 

 

( ) ( )[ ] ijijijijiijjijijijijji
n
ji eeededVVeeVV ⋅×−×−−=⋅∆=∆ ωω    [Α5] 

 

where superscripts n and t refer to the vectors normal and tangential to the contact surface 

respectively. In general, ( ) 0=⋅× bba  due to orthogonality. Therefore, the terms ( ) ijijjij eed ⋅×ω  

and ( ) ijijiji eed ⋅×ω  in equation [Α5] are equal to zero. This reduces equation [A5] to, 
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The relative velocity tangential to the contact surface( t
jiV∆ ) is given by: 

 

( ) ( )[ ] ijijijijiijjjiij
n
jiji

t
ji eeVVeddVVVVV ⋅−−×+−−=∆−∆=∆ ωω   [Α7] 

 

 

A.2 EQUATIONS FOR FORCE EQUILIBRIUM 

 
The free body diagram (FBD) of the interaction between two overlapping particles i and j as 

shown in Figure 68 is used to determine the relationship between the forces and the velocities 

acting on the particles. 
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Fij 

Particle i

t

Particle j 

 

Figure 68. Forces resulting from the interaction of two particles in contact. 

 

The definitions of the variables labeled in Figure 68 are: 

 

n
ijF  = Normal contact force exerted on particle i by particle j. 

n
jiF  = Normal contact force exerted on particle j by particle i. 

t
ijF  = Tangential contact force exerted on particle i by particle j. 

t
jiF  = Tangential contact force exerted on particle j by particle i. 

ije  =  Unit vector identifying direction from center of particle i to contact surface. 

ije  =  Unit vector identifying direction from center of particle j to contact surface. 

0V  = Velocity term to model tendency of particles to move towards each other in    

    sintering. Note that ( )ijji CDISTRRf ,,0V = . 

tµ   = Tangential viscosity term to model material properties of the simulated body. 
nµ  = Normal viscosity term to model material properties of the simulated body. 

 

Fij n eji eij  Vo⋅µ  n

Fji  

Fji
t

nVo⋅µ  n
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From Figure 68, a summation of the forces normal and tangential to the surface of contact acting 

on particle i results in the following equations: 
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Substituting equation [A7] ( n
jiji

t
ji VVV ∆−∆=∆ )  gives,  
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Rearranging variables,  
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Recall that kejeiee Z
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ijij ++= . Substituting this and the expressions for n

jiV∆  and jiV∆  (i.e. 

equations [A6] and [A4]) into equation [A11] gives, 
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Rearranging equation [A12] to combine the coefficients of i, j, and k gives: 
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To split up equation [A13] into matrix form, set each i, j, and k component equal to zero and 

determine the scalar coefficients of the unknown linear (V ) and angular 

( ) velocities for particle i and particle j: 
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• Component in the i-direction set equal to zero and expanding the terms: 
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• Separating into coefficients of unknown variables gives: 
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• Component in the j-direction (set equal to zero): 
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• Separating into coefficients of unknown variables gives: 
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• Component in the k-direction (set equal to zero): 
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• Separating into coefficients of unknown variables: 
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The coefficients of the unknown variables from equations [A14], [A15] and [A16] determine the 

terms in matrices A11, A12, A13, and A14 in Section A.4. 
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A.3 EQUATIONS FOR MOMENT EQUILIBRIUM 

 
The free body diagram (FBD) of the interaction between two overlapping particles i and j as 

shown in Figure 68 is used to determine the relationship between the moments and the velocities 

acting on the particles. The following equation must be satisfied for moment equilibrium at the 

contact surface of the overlapping particles,  
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Recall, the expression for n
jiV∆  specified by equation [A6], 
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Note that 0=× ijij ee . Consequently, the second term in equation [A17] (i.e. n
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t
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zero. Thus, the moment equilibrium equation [A17] reduces to: 
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Substituting these expressions into equation [A18] give, 
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Taking cross product and separating the coefficients based on the unknown variables results in 

the following equations that must be satisfied for moment equilibrium:  

 

• Component in the i direction: 
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• Separating into coefficients of unknown variables: 
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• Component in the j direction: 
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• Separating into coefficients of unknown variables: 
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• Component in k direction: 
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• Separating into coefficients of unknown variables: 
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The coefficients of the unknown variables from equations [A19], [A20] and [A21] determine the 

terms in matrices A21, A22, A23, and A24 in Section A.4. 
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A.4 CONTRIBUTIONS TO ASSEMBLAGE OF MATRIX 

 
Thus, we can specify the contributions for the pair particles i and j in contact to the global 

assemblage of the matrix as the following:  
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where the terms in matrices A11, A12, A13, A14, A21, A22, A23 and A24 are defined as follows: 
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