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AND ITS APPLICATION IN VAPOR PHASE MERCURY CONTROL 

 
 

Wenguo Feng, PhD 
 

University of Pittsburgh, 2005 
 

Based on the concept of industrial ecology, this study investigated the interaction between 

hydrogen sulfide and carbonaceous surfaces, and the application of the resulting sulfur 

impregnated material for vapor phase mercury control. A fixed bed reactor system was used to 

study adsorption and oxidation of hydrogen sulfide and mercury uptake by carbonaceous 

materials. The carbon surface chemistry was characterized using state of the art techniques 

before and after sulfur impregnation. 

Adsorption of hydrogen sulfide onto carbonaceous surfaces at low temperatures and under 

dry and anoxic conditions included both reversible and irreversible components.  Reversible 

adsorption was affected mainly by pore structure and pore filling is likely the dominating 

mechanism.  On the other hand, hydrogen sulfide retention (or irreversible adsorption) was 

affected by surface chemistry.   

Retention of hydrogen sulfide occurred through strong and possibly dissociative surface 

interactions. The retained amount of hydrogen sulfide increased with an increase in the surface 

area. The retained amount of H2S correlates well with the density of basic surface groups, 
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especially those derived from basic oxygen containing surface groups. Therefore, hydrogen 

sulfide retention was enhanced by surface treatments, such as heat treatment and ammonia 

treatment. 

Sulfurization at temperatures between 200-800 ˚C resulted in high sulfur content and very 

stable sulfur forms such as organic sulfur. Higher temperatures also led to more uniform sulfur 

distribution inside the sorbent pores. Uptake of hydrogen sulfide under these conditions occurs as 

a result of substitution of the surface oxygen or active carbon atoms.  The most effective mercury 

sorbents were produced by the reaction between H2S and carbonaceous surface at 600 °C. The 

presence of H2S during the cooling process increased the amount of relatively unstable species 

like elemental sulfur, and sorbents produced under these conditions also showed effective 

mercury uptake. It was found that sulfur forms are important parameters affecting mercury 

uptake; the amounts of elemental sulfur, thiophene, and sulfate showed good correlation with 

mercury uptake capacity, with active elemental sulfur species being the most effective.   

 

Keywords: Hydrogen Sulfide (H2S), Mercury (Hg), Activated Carbon, Activated Carbon Fiber, 

Adsorption, Sulfurization, Oxidation 
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GLOSSARY 
 

 

Sulfurization:  

The incorporation of hydrogen sulfide onto carbon surface in an inert atmosphere at high 

temperatures is defined as sulfurization in this dissertation. The high temperature and strong 

interaction distinguish it from low temperature H2S adsorption; and the absence of oxygen makes it 

different from H2S oxidation.  

Virgin (raw) carbon: 

Carbon material that are as received, they are dried but without surface treatment of any type. 

SEM: Scanning electron microscope  

EDAX: Energy dispersive analysis, X-ray 

XPS: X-ray photoelectron spectroscopy 

FTIR: Fourier transform infrared spectroscopy 

TGA: Thermogravimetric analysis 

TPD: Temperature programmed desorption 

XAFS: Sulfur K-edge X-ray adsorption fine structure analysis 

XANES: Part of XAFS, X-ray adsorption near-edge structure (XANES) 
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1.0 INTRODUCTION 

 

1.1 MERCURY 

1.1.1 Toxicity and Regulations 

Elemental mercury is a volatile metal. After being released from different sources, it can be 

transported to a great distance. It can be oxidized and deposited in water bodies and soils and it can 

also bioaccumulate in the food chain. Current air pollution control technologies can not effectively 

remove elemental mercury because of its volatility and low solubility in water. 

Mercury can pose serious threat to public health in its various forms. If inhaled, mercury 

accumulates mainly in the brain and kidney. Interstitial pneumonitis and symptoms of respiratory 

disorders, including chest pain, cough and hemoptysis will occur upon acute exposure. Oxidized 

inorganic mercury compounds are a greater threat because of their water solubility 1. However, 

organic mercury compounds, especially methyl mercury, are most toxic because they can be easily 

accumulated into the food chain 2-6. Central nervous system defects, kidney damage and even some 

kinds of tumors have been associated with mercury exposure 3, 7. 

Title III of the 1990 Clean Air Act Amendments (CAAA) identified 189 pollutants, 

including mercury, as potentially hazardous or toxic, and required EPA to evaluate their emissions 

by source, health and environmental implications, and the need to control these emissions. Two 

reports, namely the Mercury Study Report to Congress (1997) and the Study of Hazardous Air 
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Pollutant Emissions from Electric Utility Steam Generating Units -- Final Report to Congress 

(1998) were generated after systematic studies.  It was concluded that mercury from combustion 

facilities was the hazardous air pollutant (HAP) of greatest potential concern to the environment 

and human health. 

Based on the above work and subsequent collection of additional information, EPA 

confirmed the threat of mercury emission to human health and concluded further control of 

mercury emission from coal-fired and oil-fired power plants was deemed necessary. EPA started 

to regulate mercury emission in December 2000. Then EPA proposed that final control 

regulations be issued by December 15, 2004 and installation of mercury emission control 

technology would then be required no later than three years after finalized regulations go into 

effect on February 2008. On March 15, 2005, EPA issued the first-ever federal rule to 

permanently reduce mercury emissions from utility boilers. This Clean Air Mercury Rule will 

build on EPA’s Clean Air Interstate Rule (CAIR) to significantly reduce emissions from coal-

fired power plants through a two-phased “cap and trade” method. The first phase cap will be 38 

tons/year (about 25% removal from current 52 tons/year) and emissions will be reduced by 

taking advantage of “co-benefit” reductions – that is, mercury reductions achieved by reducing 

sulfur dioxide (SO2) and nitrogen oxides (NOx) emissions under CAIR. In the second phase, due 

in 2018, a second cap of 15 tons/year (70% removal) will be fully implemented. 

 

1.1.2 Sources and Discharge Conditions  

Nriagu and Pacyna 8 estimated that about 1,000-6,000 tons of mercury is emitted from global 

anthropogenic sources. According to the Mercury Study Report to Congress (1997) 9, 
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approximately 87% of anthropogenic mercury emission is from combustion point sources, 10% is 

from manufacturing point sources, 3% is from other sources. Utility boilers, municipal waste 

combustors, commercial/industrial boilers, and medical waste incinerators contribute 33%, 19%, 

18%, and 10% respectively to mercury emission from combustion sources.  

Current emission estimates indicate that utility boilers are the single largest emission source 

(51.8 tons/yr), and about 80% of the utility boilers are fueled by coal 9. Because the combustion 

zone in boilers operates at temperatures above 1000 °C (1800 °F), mercury in the coal is partly 

(about 42%) vaporized and emitted as a vapor. The rest of mercury bound to the fly ash is removed 

by particulate matter collectors.  Oxidized mercury can be well collected by wet scrubbing system 

or via a sorbent injection method. Due to its high volatility and low solubility, Hg0 is not well 

collected in the currently installed air pollution control systems, which are mainly designed for 

particulate matter and/or SO2 control.  

Besides utility boilers, municipal waste combustors (MWCs) and medical waste incinerators 

(MWIs) were also reported as major sources for the emission of mercury. The total mercury 

concentrations from these two streams are much higher. Because of the higher concentrations of 

HCl in these flue gases, mercury is mainly in its oxidized form. However, the final forms of 

mercury depend very much on the type of waste incinerated. Elemental mercury can still be a 

problem for MWCs and MWIs. Table 1 summarizes the conditions and compositions from coal 

fired power plants (CFPP) and municipal waste incinerators 10. 
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Table 1. Flue gas from coal fired power plants and municipal waste incinerators 10 

 Coal Fired Power Plants Municipal Waste Incinerators 

Temperature (°C) 121-177 177-299 

Mercury Concentration 
(μg/m3) 

1-10 100-1000 

Major Mercury Forms Elemental or oxidized Mainly oxidized 

HCl Concentration (ppm) 5-100 100-1000 

SO2 Concentration (ppm) 100-3000 100-300 

Excess Air (%) 15-25 50-110 
 

 

1.2 HYDROGEN SULFIDE 

1.2.1 Toxicity and Regulations 

Hydrogen sulfide is an odorous pollutant commonly regarded as toxic. Hydrogen sulfide 

mainly attacks the neural system and important organs, such as the liver and the kidney 11-13. Acute 

inhalation of high concentrations of hydrogen sulfide can be lethal 14, 15. Although not clearly 

defined, adverse effects of exposure to low concentrations of hydrogen sulfide are suggested 12, 16.    

Because of its acute and chronic toxicity, EPA has derived an oral reference dose (RfD) of 

0.003 mg/kg/day and an inhalation reference concentration (RfC) of 0.001 mg/ m3 for chronic 

exposure to hydrogen sulfide. OSHA has established an acceptable ceiling concentration of 20 

ppm for hydrogen sulfide in the workplace, with a maximum level of 50 ppm allowed for a 10 

minute maximum duration 17.  
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1.2.2 Sources and Discharge Conditions 

Naturally occurring hydrogen sulfide originates mainly from bacterial anaerobic 

decomposition of sulfur-containing organic or inorganic compounds. A significant amount of 

hydrogen sulfide can be found in natural gas, volcanic gases, and petroleum. Human activities 

generate a significant amount of hydrogen sulfide through many processes including natural gas 

processing, petroleum refining, petrochemical manufacturing, paper production, coal gasification, 

and so on. H2S concentrations in the gas streams from these processes vary from 0 to 60% by 

volume 18. 

The Claus process is usually used to control gas streams with high concentrations of 

hydrogen sulfide. The feed gas into the Claus process is very concentrated hydrogen sulfide 

(concentrations from 5% to 60%). A single stage Claus reactor can only achieve conversion of 

hydrogen sulfide of about 70%. Current Claus processes are usually designed to achieve 

conversion of about 95-97.5% by using several stages. Typical tail gas from Claus plant still 

contains about 0.8% to 1.5% of H2S with other gases such as COS, CS2, and CO2 at various 

concentrations. The discharging gas temperature is about 100-315 °C. The Claus process was 

previously considered as satisfying hydrogen sulfide reduction process. However, emissions from 

this process are now becoming an important source of H2S pollution. For new sources, it is 

required to reduce H2S emission from the Claus process tail gas. 

Some processes generate gas streams containing hydrogen sulfide of relatively low 

concentrations. For example, for Integrated Gasifier Combined Cycle (IGCC) technology 19, 20 the 

main composition of the produced gas is carbon monoxide and hydrogen with hydrogen sulfide as 

an undesired component present at concentrations of about 0.5-1.1%. The gas temperature ranges 
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from 500 to 1000 °C, with the average of 550 °C. IGCC first converts coal into a combustible gas 

through a gasification process, during which the coal reacts with air or oxygen. Typical gas 

compositions are the following 21, 22:  

• Oxygen-blown gasifier (in vol %): 27.7% H2, 39.4% CO, 13.1% CO2, 18.4% H2O, 1.1% 

H2S, and 0.0% N2  

• Air-blown gasifier (in vol %): 14.2% H2, 23.1% CO, 5.8% CO2, 6.6% H2O, 0.5% H2S, 

and 49.8% N2. 

 

1.3 MERCURY CONTROL BY HYDROGEN SULFIDE ADSORPTION/OXIDATION 

 

Removing low concentrations of vapor phase mercury from different flue gases, especially 

from coal fired power plants, is a very challenging task. Although sorbent injection method seems 

to be promising, the cost of injecting expensive sorbents is unacceptable to most plants.  

Both mercury and hydrogen sulfide are toxic air pollutants, which require serious attention. 

In some cases, such as coke production and coal gasification, both mercury and hydrogen sulfide 

are generated in the same process. Common to both pollutants, adsorption is an effective method 

for their control. In addition, using sulfur compounds to control mercury is a well known method, 

which prompted the idea of controlling mercury pollution using hydrogen sulfide as the chemical 

regent.  
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Hg control by hydrogen sulfide adsorption/oxidation is a good example of the concept of 

industrial ecology. Similar to an ecological system, this concept uses a waste stream from one 

process to control the waste stream from another (or the same) processes, and is beneficial to the 

efficiency of industrial production as well as to the environment. This approach promises to be a 

low cost solution: it eliminates both wastes while no extra chemical agents are needed. The final 

products, sulfurized mercuric compounds, are stable and will no longer pose threat to the 

environment and public health. 

 

1.4 OBJECTIVES AND SCOPE  

 

The scope of this study is confined to the adsorption/oxidation of hydrogen sulfide on carbon 

surfaces and its application in vapor phase mercury control. The intent of this study was to 

investigate the interactions between hydrogen sulfide and carbonaceous surfaces and to understand 

the important factors and the mechanisms involved in these interactions. More specifically, the 

objectives of this study were: 

• To investigate the nature and mechanisms of hydrogen sulfide adsorption process, both at 

low temperatures and high temperatures. The adsorption/incorporation of hydrogen sulfide 

into/onto carbon surfaces is defined as sulfurization. 

• To study the effects of sorbent/operation parameters on the pore structure and surface 

chemistry of produced sorbents. 
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• To identify the most important sorbent characteristics (especially surface chemsitry) for 

effective removal of vapor phase mercury from the gas streams under consideration.  

Focusing on a practical problem, this study is conducted to provide better understanding 

about both hydrogen sulfide removal and mercury removal, which will help in the design of more 

effective mercury control technologies. Connecting with adsorption, heterogeneous catalysis, 

surface chemistry, and air pollution control, the results of this study would also contribute to better 

understanding of surface phenomena in general. 
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2.0 LITERATURE REVIEW 

2.1 ADSORPTION AND CATALYSIS 

2.1.1 Physical and Chemical Adsorption 

When a gas molecule approaches a surface, adsorption occurs at some short distance from 

actual contact due to the attractive and repulsive forces between them. Depending on the 

reactivities of surface and the gas molecule, as well as the interaction conditions, the bonding 

between the surface and the gas molecules can be either physisorption (physical adsorption) or 

chemisorption (chemical adsorption).  Physisorption and chemisorption differ in the magnitude and 

origins of the interacting forces and the extent of perturbation of the respective electronic structures 

23. 

The attractive forces in physisorption are van der Waals forces, which originate from the 

difference in electron density and charge fluctuations of the adsorbate molecules and the 

adsorbent molecules. Physisorption is characterized by largely unperturbed electronic structures 

of both the adsorbate and the surface. In physisorption, the binding energy is usually below 0.25 

eV, and the distance between the adsorbate and the surface is about 3–10Å 24, 25. As a result, 

physical adsorption is reversible.  
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On the contrary, chemisorption occurs when there is an overlap between the electronic 

orbitals of the adsorbate and the surface molecules. There is an electron loss/gain or an electron 

sharing between the two groups of molecules after the rapture of the respective electronic 

structures. When there is a complete electron transfer, the bond is ionic; when the there is sharing 

of electrons, it is covalent. The equilibrium distance between the adsorbate and the surface is 

much shorter than that in physical adsorption, typically 1–3 Å. The bonding energy,  about 1 eV 

24, is much higher than that for physisorption,. Therefore, chemisorption is normally irreversible. 

Table 2 compares the difference between chemisorption and physisorption.  

The nature of adsorption can be distinguished through the heat of adsorption analyses. Heat 

of adsorption can be measured by accurate microcalorimeter, by analysis of the adsorption 

isotherms at different temperatures 26, or by temperature programmed desorption (TPD) 

experiment. TPD applies to reversible adsorption processes and it is the easiest way to determine 

the heat of adsorption 27. 
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Table 2. Differences between physical adsorption and chemical adsorption 

 Physisorption Chemisorption 

Bonding 
Nature  

Weak interaction through van der 
Waals forces, electronic structure 
of the system is not disturbed 

Strong Chemical bond, with 
loss/gain or share of electrons 

Bonding 
Strength 

Potential well 0.25 eV or less Potential well greater than 0.25 
eV 

Reversibility Reversible Irreversible 

Adsorption 
Sites 

Random sites, normally at defects 
like vacancies, kinks et al. 

At some specific sites where 
chemical bonding is possible 

Number of 
Layers 

Can be multi-layer Normally monolayer 

Heat Exothermic Exothermic or endothermic, 
depends on the reaction 

Molecular 
integrity 

Intact Intact or dissociative 

 

 

2.1.2 Surface Catalysis 

Surface catalysis is the phenomena of accelerating the chemical reaction in the presence of a 

catalyst surface. A catalyst works by generating intermediates through strong interactions 

(chemical bonds), and these intermediates react more readily to give products than the reactants 

alone—and the catalyst is freed after the reaction is completed. It is well accepted that chemical 

bonding of one or two reactants with the catalyst surface is a necessary step for the catalysis to 

occur 27. For a catalyst to be useful, it must bind the reactants quickly and effectively, stabilize the 

activated complex, and then quickly release the products of the reaction. 
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Chemisorption of molecules of at least one reactant is a necessary step for heterogeneous 

catalysis. The steps in heterogeneous catalysis include:  (1) diffusion of reactant molecules to the 

surface; (2) adsorption on the catalyst surface; (3) surface reaction of the adsorbed species; (4) 

desorption of the products; and (5) diffusion of the products from the surface. 

 

2.1.3 The Micropore Filling Theory and DR Equation 

The Dubinin–Radushkevich (DR) equation is widely used to describe adsorption of vapors in 

microporous solids such as zeolites and carbon materials with low burn-offs 28. DR Equation is 

based on the existence of a characteristic curve --- if the adsorption data at different temperatures 

are plotted as the logarithm of the amount adsorbed versus the square of desorption potential, all 

the data points should fall onto a smooth curve. The adsorption potential is expressed as  

 

A = RT ln (x) (1) 

 

Where x=p/p0. Numerous studies by Dubinin and others 29-32 have already proven the 

validity of this equation. The basic form of the D-R equation can be written as: 

 

W/W0 = exp[-(A/E)2 ] or  (2) 

W/W0=exp [-(RTln(x)/E)2] (3) 
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With x=p/p0. The characteristic energy, E, is unique for each adsorbent-adsorbate system. 

Activated carbon-benzene system with characteristic energy of E0 was chosen as the reference, and 

the characteristic energies of other systems were obtained by multiplying E0 with a scaling factor β, 

which is denoted as the similarity coefficient: 

 

E= β E0 (4) 

 

The characteristic curve of a system is established by plotting the logarithm of the amount 

adsorbed W versus log 2(1/x). If the equation is applicable, the plot would be a straight line with a 

slope -(RT/E)2 and an intercept log (W0 ), from which the characteristic energy and the micropore 

volume can be obtained 30. 

Mangun et al. 33 studied the effect of pore size on adsorption of hydrocarbons using activated 

carbon fibers. For the normal alkane series, the adsorbents with smaller pores demonstrated higher 

adsorption capacities for low boiling point alkanes as well as for adsorbing molecules at low 

concentrations. A formula was developed to predict the capacity of hydrocarbon uptake capacity 

based on the experimental data and the DR equation.  
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2.2 CARBON SURFACE CHEMISTRY 

2.2.1 Structure of Carbonaceous Materials 

Carbon is a versatile element, forming many allotropes through several ways of bonding. 

Graphite and amorphous carbons are formed through the sp2 (trigonal) structures; Diamond is 

formed through the sp3 (tetragonal) structures. Activated carbon and activated carbon fibers are 

graphitic materials composed of stacked layers of carbon atoms. Each layer is composed of 

continuous hexagons of carbon atoms and each carbon atom is in contact with three neighboring 

atoms. The C-C bond is covalent, with bond length of 1.42 Å and bond strength of 524 kJ/mole 

34. The adjacent layers are bonded with weak π bonds (7kJ/mole), and the spacing is 3.35 Å 34. 

The structure of the graphite crystal can be illustrated in Figure 1 34. Graphite has a density of 

2.26 g/cm3, with an extremely high boiling point of over 3700 °C. Upon heating, the graphite 

structure expands, especially at the interplane direction.  
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Figure 1. Structure of graphite 34 

 

In reality, the graphite structure is not as ideal as described above. Activated carbons or 

carbon fibers are formed by crystallites of considerably different sizes with many defects in the 

crystallites, including edges, dislocations, vacancies and steps. As a result, pores with different 

shapes and high surface area are formed. In addition, oxygen, sulfur, hydrogen, halogens, and 

metals can be incorporated into the carbon structure, forming various surface functionalities or 

impurities.  

These defects and impurities are the possible “active sites” with chemical reactivity, in 

contrast to perfect graphite, which is one of the most chemical inert materials. The chemical 

reactivity of graphite increases with the increase in temperature. Graphite carbons can react with 

acids, alkalis, and gases under different conditions. Activated carbons and activated carbon fibers 

are actually “activated” through these reactions after carbonization of the precursor materials 

(usually organic carbon containing materials). The morphology of carbon materials is important 
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to physisorption of gases or vapors. However, the carbon surface chemistry is critical for 

chemisorption of gas species 35. Carbonaceous materials are a combination of the bulk graphite 

structure and the “active sites” on the carbon surface. Both the graphite structure and the “active 

sites” are affected by many factors, including the elemental composition, carbonization and 

activation method and storage environment 34. 

 

2.2.2 Oxygen Containing Functionalities 

Among the various functionalities present on the activated carbon surface, the oxygen-

containing surface groups are significant because of their ubiquitous presence and vital influence 

on the adsorption properties of activated carbons. Much of the current understanding of oxygen 

containing functionalities relies on established knowledge of oxygen containing surface 

functionalities in organic chemistry. Functionalities detected on the carbon surface include the 

following: carboxylic, lactonic, phenolic, carbonyl, pyrone, chromene, quinine, and ether groups. 

Carboxylic groups can also exist in the form of carboxylic anhydride.  
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Figure 2. Acidic and basic surface functionalities on a carbon basal plane 36 

 

 

2.2.3 Characterization 

Characterization of the oxygen-containing surface functionalities on activated carbons is 

complicated, partly because of the complexity of functionalities on the carbon surface, and partly 

because of the incomplete understanding of their behavior. The most common method is 

titration, which was first proposed by Boehm 37. The basic principle of Boehm titration is that 

different acidic/basic functionalities can be neutralized using bases/acids of different strength. 

Currently, the total basic surface functionalities are measured as a single value because the 

nature of basic functionalities is not well known. The Boehm titration method has limited 

application with small samples 38. Generally, normal infrared spectroscopy application is 

hindered by the high absorbance of carbon materials. Currently, the most successful technique 
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for small quantities of oxygen containing surface functionalities is X-ray photoelectron 

spectroscopy (XPS). However, even with XPS, the preparation of samples and interpretation of 

the spectrum still need further development. 

Besides the above techniques, other commonly used methods include thermal desorption 

spectroscopy and electrokinetic measurements 39. Recently, Inverse gas chromatography has 

emerged as a new method for detecting oxygen surface functionalities 40. Surface imaging 

techniques, such as SEM and STM, are also starting to be used in probing the activated carbon 

surface functionalities 41.  

 

2.2.4 Oxidation of Carbon Surface 

Oxygen containing functionalities are created when the carbon surface is oxidized. Several 

oxidation methods can be used to introduce oxygen containing surface functionalities. These 

methods include oxidation by gases (air, carbon dioxide, steam, and so on), oxidation by aqueous 

oxidants (such as nitric acid, hypochlorite, permanganate, bichromate, and other strong 

acid/base), electrochemical oxidation, oxidation with oxygen plasma, and microwave treatment 

in the presence of oxygen. The most common activation processes used to produce activated 

carbons are oxidation by gases and aqueous chemical solutions.  

HNO3 is believed to be more effective than H2O2 and (NH4)2S2O8 in introducing a large 

amount of oxygen containing surface functionalities 42, 43. With the increase in oxidation time, 

the surface functionalities will shift from carboxylic groups to other oxygen containing 

functionalities 44. Pore volume increase and pore size distribution changes were observed after 

HNO3 oxidation 45. Activated carbons were modified with HCl and HNO3 optionally followed by 
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NaOH 46. NaOH causes an increase in the amount of hydroxyl groups, while the HCl treatment 

results in an increase in the amount of oxygen functional groups such as phenols, ethers, and 

lactones. Ozone and NaOH treatment increased hydroxyl and carboxyl groups on the carbon 

surface 47. Figueiredo et al. 38 has shown that oxidation of activated carbons by oxygen increases 

mainly the concentration of hydroxyl and carbonyl surface groups, while oxidation in the liquid 

phase increases the concentration of carboxylic acids on the carbon surface.  

Reactions in oxygen plasma yield a low surface acidity, mostly due to carboxylic groups, 

with minimal modification of the initial sample porosity 48. Oxygen plasma treatment of an 

isotropic carbon fiber introduced stable oxygen functionalities after short exposure. However, 

prolonged treatment will eliminate some of the grafted groups 49. 

Electrochemical method combines electrical oxidation and chemical oxidation 50, 51. 

Increases in carboxyl or ester groups were observed after HNO3 and electrical oxidation. 

Electrochemical oxidation increased surface activity by introducing polar oxygen-containing 

groups over extended ultramicropore surface 52.  

Oxygen containing functionalities can be removed in an inert environment or in vacuum at 

elevated temperatures. However, once it is exposed to air, oxygen is chemisorbed and oxygen 

containing surface functionalities will be reintroduced onto the carbon surface. 

 

2.2.5 Adsorption Properties 

The presence of oxygen containing functionalities has different effects on different gas 

adsorbates. Graphite planes were considered to be nonpolar with strong potential toward organic 
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molecules. Addition of oxygen containing functionalities is believed to increase the polarity of 

the carbon surface. As a result, the adsorption capacity for polar adsorbates usually increases. 

This is supported by computer simulation conducted by Muller et al. 53. In their study of the 

adsorption of methane/water vapor mixtures on porous activated carbons, they found the 

selectivity for methane adsorption dramatically decreased with the increase in the density of 

surface oxygen containing functionalities. This indicates that these functionalities were the 

primary sites for water vapor adsorption.  

The effect of carbon surface chemistry on adsorption of water vapor adsorption has been 

well studied. Microcalorimetric techniques 54 revealed the importance of carbon surface 

chemistry on water adsorption and three possible mechanisms were proposed: (i) chemical 

adsorption with Hads > 12 kcal/mol, (ii) condensation with Hads of approximately 10 kcal/mol, 

and (iii) physical adsorption with Hads bellow 10 kcal/mol. The primary adsorption sites for 

chemisorption and micropore filling were created by N2 treatment at 950 ˚C and drying at 175 ˚C 

respectively. Hydrophobic carbon surfaces subsequently oxygenated at 150 ˚C showed 

significant increases in the amount of water adsorbed through physical adsorption. Analyses 

revealed that acidic surface groups might be the primary adsorption sites for water vapor 55. By 

comparing the enthalpy of immersion of carbon into water, it was found that the interaction 

between acidic sites (surface oxygen) and water was higher than the interaction between basic 

sites and water vapor 56. Both computer simulation and experimental data showed that an 

increase in site density (caused by oxidation of the carbon surface) led to an increase in 

adsorption prior to micropore filling 57.   

For nonpolar gas molecules, it was reported 58 that the higher the total number of oxygen 

surface groups (through HNO3 and H2O2 oxidation), the lower the adsorption capacity. This is 

20 



 

especially true in humid conditions when competitive adsorption with water vapor is involved. It 

was proposed that addition of surface functionalities on the pore walls can also cause steric 

hindrance for big molecules 59.  

Similar explanations were proposed in the liquid phase since the basal plane of the graphite 

material is considered hydrophobic, while introduction of oxygen containing surface 

functionalities makes the carbon surface more hydrophilic. Oxidized fibers displayed increased 

wettability compared to the raw fibers44. Quinlivan et al. 60 proposed that the best activated 

carbon for drinking water treatment should exhibit an elemental (O+N):C ratio below 0.05 to 

assure sufficient hydrophobicity. The adsorption of dyes from wastewater also reflects the 

importance of negatively charge surface, which has showed higher capacity for cation dyes 61. It 

is suggested 62 that the irreversible adsorption of phenol from aqueous solution is caused by the 

complex formation between phenol and surface functionalities, as well as through 

polymerization. However, the decrease of phenol adsorption with the increase in oxygen 

containing functionalities was also reported 63.  

 

 

2.2.6 Nitrogen Containing Functionalities and Other Functionalities 

Nitrogen containing surface functionalities can be introduced through either reaction with 

nitrogen containing reagents (such as NH3 and amines) or activation with nitrogen containing 

precursors. Activated carbon fibers were grafted with a high concentration of amine groups by 

nitric acid oxidation followed by reaction with excess tetraethylenepentamine (TEPA). The 

grafting process was believed to occur through the acidic oxygen containing functionatlities 
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except hydroxyl groups 64. Possible structures of the nitrogen containing surface functionalities 

include the following: amide group, imide group, lactame group, pyrrolic group, and pyridinic 

group 35. 

Nitrogen containing surface functionalities incorporated into the activated carbon fiber 

surface are usually basic in nature and these functionalities probably account for the increase in 

adsorption of SO2 from simulated flue gas 65. Enhancement of CH3SH adsorption by nitrogen 

containing functionalities was also reported 66. Nitrogen containing surface functionalities are 

very stable. Heat treatment studies show that the order of stability of the functional groups is 

quaternary nitrogen > pyridinic > pyrrolic > pyridine N-oxide. Pyridine N-oxide surface groups 

desorb NO and form N2 via surface reactions at low temperature. Pyrrolic and pyridinic 

functional groups decompose and react with other surface species to give NH3, HCN, and N2 as 

desorption products, but most pyrrolic groups are preferentially converted to pyridinic and 

quaternary nitrogen. Approximately 15-40 wt % of the original nitrogen was retained on the 

carbon mainly as quaternary nitrogen after heat treatment to 1400 °C 67. 

Halogen containing surface functionalities can also be prepared through carbon surface 

reaction with halogen containing reagents 45. It was postulated that chlorination of activated 

carbon increases its Lewis acidity but decreases it Bronsted acidity, which can be explained by 

the resonance effect introduced into the aromatic rings of graphene layers by the chlorine atoms 

covalently bound to their edges 68. 
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It was reported 69 that hydrogenation increased the carbon basicity and effectively 

protected the carbon surface from air oxidation through the following changes of the carbon 

surface: removal of surface oxygen,  stabilization of some of the active sites by forming C-H 

bonds,  and gasification of the most reactive unsaturated carbon atoms 70.  

Sulfur can form very stable surface functionalities with carbon 71, 72 (see Section 2.5 for 

additional information). In addition, metals embedded into the activated carbon structures also 

have significant effect on the carbon surface chemistry 37.  

 

2.2.7 Carbon Acidity and Basicity 

Different basal planes and/or different surface functionalities yield carbon surface that 

show different acidic and basic properties. Boehm 37 reported that carbons with acidic surface 

groups have cation exchange properties. Carbons with low oxygen content exhibit basic surface 

properties and an anion exchange behavior. Most functionalities, including carboxylic, lactonic, 

phenolic, and carbonyl groups, are grouped as acidic surface functionalities 37 and their acidity 

decreases in the given order, which is the basis of Boehm titration for quantifying different 

surface functionalities.  

On the other hand, the origin of the carbon’s basicity is still not well understood. It was 

proposed that certain oxygen containing surface functionalities can contribute to the carbon 

basicity. These functionalities include chromene, ketone, and pyrone 36 as shown in Figure 2. 

Theoretical analysis 73 and quantum mechanic calculation 36 proved that pyrone like groups can 
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indeed exhibit basicity in a wide range of pK(a) values. The basicity of pyrone-like structures is 

explained by the electronic -conjugation throughout the sp2 skeleton. Through the insertion of 

an additional carbon ring, the basicity of the resulted compound significantly increases with the 

highest possible pK(a) value of 14.2 36. Without the inserted carbon ring, the pK(a)s of these 

pyrone groups were lower than 6.0. Other effects, such as the modification of the etheric position 

and the relative position of oxygen atoms were also studied. The reaction energies of these 

pyrone-type structures with H3O+ support the importance of pyrone-type structures to carbon 

basicity 74. 

Some researchers 75, 76 attributed the basicity of carbon surface to nitrogen containing 

functionalities because the basicity of the carbon materials increased markedly after the 

introducing nitrogen containing functionalities. H2 treatments at high temperatures (> 800 °C) 

also created basic (hydrophobic) surfaces, which are stable after prolonged air exposure. 70 

The contribution of basal planes of the graphitic crystals to the carbon basicity is very 

important. It was pointed out that the -electrons of these layers could act as Lewis bases 68. Ab 

initio calculations on various cluster models were carried out to study the contribution of basal 

planes to the carbon basicity 77. Calculations indicate that the size of the basal plane slightly 

affects the strength of the interaction between the plane and H3O+, whereas the presence of the 

−  contacts strongly reinforces this electrostatic interaction. These results support the 

contribution of carbon basal planes to the carbon bascity. They also revealed that the -cation 

interactions may play an important role in the acidity and basicity of carbon materials. XPS 

revealed that the highest concentration of basic sites were found for the samples with the 

narrowest graphite peaks 78. The correlation between the concentration of basic sites and the full 

width at half maximum (FWHM, related to the heterogeneity of carbon surface) of the graphite 
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peak is very good, which suggests that the basic sites on carbon blacks are associated with the 

basal planes of the graphene layers. Studies of solid base catalysts found that the basic catalytic 

properties appear only upon the removal of water and carbon dioxide from the surfaces 79. It is 

believed that surface and bulk atoms rearrange with increasing temperature, indicating the 

importance of the bulk structure to the basicity of the catalysts. For the most extensively oxidized 

sample, the number of basic sites is approximately zero, while for a heat treated carbon the 

number of acidic sites is very small 80. This again indicates that acid surface sites are oxygen 

based while basic sites are associated with the carbon surface itself 36. 

It seems that both the -electrons of graphite structure and oxygen containing surface 

functionalities can contribute to carbon basicity. For example, the basicity of pyrone groups is 

actually a combination of the basal plane and the adjacent rings containing ketone and etheric 

groups 81. However, the issue of whether the carbon basicity is mainly due to basic-oxygen-

containing groups or the delocalized -electrons is still under debate.  

 

2.2.8 Decomposition of Oxygen Containing Functionalities 

Oxygen containing surface functionalities decompose upon heating by releasing CO2 at 

lower temperatures and CO at higher temperatures. Although the actual temperature of 

decomposing specific oxygen containing surface functionalities depends on several factors, 

including the heating rate, carbon materials, and experimental system, the assignment of these 

decompositional peaks to specific oxygen containing functionalities and specific temperatures 

can be summarized as shown in Figure 3 38. Carboxylic groups decompose at 100-400 °C to 

release CO2; lactonic groups decompose at relatively higher temperatures to produce CO2; 
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anhydride groups decompose at about the same temperature range as lactonic groups (350-630 

°C) generating both CO and CO2; phenol, carbonyl, ether, and quinine groups decompose at 600-

1000 °C to release  CO. Oxygen containing surface functionalities can be estimated by 

deconvoluting the CO and CO2 peaks observed during the heating process 38. IR studies have 

shown the same trend of decomposition of oxygen containing surface functionalities 82.  

 

 

 

 

Figure 3. Thermal decomposition of oxygen containing functionalities 38 
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Many reports have confirmed that the decomposition of oxygen containing surface 

functionalities at elevated temperatures increases basicity of the carbon surface 78, 83. This is due 

to the fact that strongly acidic functionalities decompose at lower temperatures, while the weakly 

acidic groups decompose at higher temperatures. Carbon materials after complete removal of 

oxygen containing functionalities show strong basicity. This is an indication that the -electrons 

of the graphite crystals plays an important role in the carbon basicity. 

The concept of “active surface area”, or the density of active sites on the carbon surface, 

was proposed by Laine et al. in 1963 84. Highly graphitized carbon black was oxidized at 

different levels to create different amount of “active sites”. The amount of “active sites” was 

measured by the coverage of the surface by oxygen containing surface functionalities, which 

were formed after oxidation of the sample by air at 300 °C for 24 hours. Decomposition of these 

functionalities will create a constant amount of unoccupied “active sites” again. 

It was found that gradual annealing in vacuum removed mainly acidic surface groups that 

are located in macropores or on the outer surface of the carbon, and at the same time, rearranged 

weak acidic functionalities 59. Darmstadt 85 proposed that the increase in the surface energy on 

the carbon surface might be related to the formation of active sites that are formed upon removal 

of non-carbon elements during the carbon black formation. Detailed scheme on the formation of 

active sites was proposed by Phillips 83. 

Compared to traditional electrical heating, microwave treatment in an inert environment 

promises to be an efficient and attractive way of removing oxygenated functionalities from 
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carbon surfaces, as well as increasing the hydrophobicity and basicity of carbons 86. Microwave 

treatment is a very effective method for modifying the surface chemistry of the ACFs with the 

production of pyrone groups. As a result very basic carbons are readily obtained.87 

Daley et al. 88 found that oxidation of the ACFs by aqueous oxidant decreased the 

adsorption capacity for SO2. However, the subsequent heat treatment increased SO2 adsorption 

after decomposition of the surface oxygen containing functionalities. This increase in adsorption 

capacity was directly correlated to the amount of CO2 evolved during heat-treatment of the 

oxidized ACFs. These results indicated that the new active sites were formed during oxidation, 

but they were occupied by CO2 evolving functionalities. After decomposition of these surface 

functionalities, these new sites were ready for SO2 adsorption. “Oxidation followed by heat 

treatment” was proposed as an effective way of producing sorbents for acidic gases.  

Fundamental interpretation of the acidity and basicity involves proton or electron transfer, 

corresponding to the definition of Bronsted and Lewis acidity/basicity respectively. Leon y Leon 

and Radovic 89 reviewed the carbon surface chemistry from different perspectives, suggesting 

that both the pyrone groups and the basal planes with π electrons account for the basicity of the 

carbon surface 89, 90.  

 

2.2.9 Summary 

Graphite materials are composed of carbon basal planes with different kinds of defects and 

impurities. While the surface area and pore structure are important to physisorption through van 

der Waal’s forces, defects and imputrities are important for chemisorption of gaseous species, 
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especially oxygen. Oxygen containing surface functionalities have similar structure to organic 

chemical functional groups, and different surface functionalities have different thermal stability. 

Addition of surface oxygen containing functionalities can be achieved using different oxidants 

under various conditions. The presence of these functionalities increased the carbon surface 

acidity, polarity, and hydrophobicity, affecting the adsorption properties toward many 

adsorbates. Decomposition of oxygen containing surface functionalities increased the carbon 

basicity. The carbon basicity originates from certain oxygen containing functionalities (i. e. 

pyrone groups) and from the π electrons of basal planes. 
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2.3 MERCURY REMOVAL BY ADSORPTION  

2.3.1 Mercury Control Technologies 

Currently, only a few technologies are considered effective for vapor phase mercury 

removal. These technologies include wet scrubber, sodium sulfide injection, spray dryer 

adsorption (SDA), and activated carbon injection. Wet scrubbers are currently installed in many 

power plants. In general, wet scrubber is ineffective in removing elemental mercury. Wet 

scrubber can only achieve 25-50% removal of elemental mercury 91, with the highest removal 

efficiency of 70% reported. 92 In addition, wet scrubbing has the potential problem of secondary 

pollution: treatment of mercury in the water phase is another complex task. Sodium sulfide has 

been used for mercury control in municipal waste combustors in many countries. Similar 

technology is also proposed for Hg removal from power plants 93. However, the fine particles 

from the reaction of Na2S with mercury are very difficult to remove and hydrogen sulfide 

formation is an additional problem with this method. SDA method is very effective in removing 

most air contaminants. However, its mercury removal efficiency is only about 3-50% 94 because 

it can not remove mercury in elemental form.  

 

30 



 

2.3.2 Mercury Removal by Activated Carbon Injection 

Compared with above mentioned technologies, activated carbon injection is currently 

considered to be the most promising technology in terms of Hg removal efficiency and 

reliability. Raw activated carbon can be effective in removing mercury at high sorbent to 

mercury ratios 9, 10, 95. Although very effective, the high cost involved hinders the practical 

application of this technology in mercury control. It is estimated that cost for mercury emission 

control by activated carbon injection method ranges from $14,200 to $70,000 per pound 96, 97. In 

order to lower the cost, improvements on the sorbent (either to decrease the cost or to increase 

the adsorption capacity) must be made to facilitate the application of this technology. 

The factors affecting the performance of this method include: sorbent properties (carbon 

type, particle size, pore structure, surface chemistry, moisture content, and so on), 

sorbent/mercury ratio, temperature, and flue gas composition 98. Modification on the surface 

chemistry of activated carbon may be the most effective way of improving mercury adsorption 

capacity. Although introducing oxygen containing functionalities 99, 100 and halogens 101, 102 can 

improve Hg uptake capacity, the more promising method is to introduce sulfur onto the carbon 

surface 103. The latter method improves Hg uptake capacity more significantly and produces 

more stable products 104, thus eliminating long-term liabilities of the adsorption technology. 

 

2.3.3 Sulfur Impregnated Activated Carbons 

Sinha and Walker 105 tested mercury adsorption capacity of sulfur impregnated activated 

carbon, which was produced through H2S oxidation at 140 ºC. Breakthrough of mercury from a 

fixed-bed reactor at room temperature decreased with an increase in sulfur content. Such 

31 



 

behavior was explained by the narrowing of micropores in the virgin sorbent through sulfur 

deposition. However, at 150 oC, the sulfurized carbon had much higher capacity than the original 

carbon. Otani et al. 106 added sulfur onto activated carbon surface by soaking in CS2 solution. 

Mercury adsorption capacity was found to increase with an increase in sulfur content up to 13% 

and no decrease in mercury adsorption capacity was observed even for very high sulfur content 

on the sorbent. The authors suggested that a decrease in activated carbon surface area in their 

method of sulfur impregnation was less pronounced than that in the method used by Sinha and 

Walker 105.  

Impregnation of sulfur onto activated carbon through the reaction between elemental sulfur 

and the carbon surface at elevated temperatures was studied by Vidic and co-workers 101, 103, 104, 

107-109. Their studies suggested that the following factors are important for mercury uptake by 

sulfur impregnated sorbents: sulfur content, sulfur forms, sulfur distribution, and pore 

structure/surface area of the sorbent. Sulfur impregnated carbons produced at higher 

impregnation temperatures (400-600 ºC) performed better than those produced at lower 

temperatures (25-150 ºC). The authors suggested that higher temperature produced short chain 

sulfur allotropes and more uniform sulfur distribution on the sorbent’s surface. Liu 103, 104 argued 

that the short-chained elemental sulfur such as S2 is the most important sulfur form for vapor 

phase mercury removal. This short-chained sulfur interacts strongly with the carbon surface. 

However, he did not explore the nature of this interaction. Liu and Vidic 103 tested the impact of 

temperature and the initial sulfur to carbon ratio (SCR) on developing better sorbent for mercury 

removal. The impregnation temperature was found to be more important than SCR. This was 

attributed to the fact that sorbents generated under higher temperature still retained their high 

surface area and mesopore structure. Kwon et al. 109 compared mercury adsorption capacity of 

32 



 

BPL carbon impregnated with sulfur through two different methods: reaction with elemental 

sulfur at 600 ºC and oxidation of H2S at 150 ºC. They found the former method to be much more 

effective in producing high capacity sorbents than the latter. Sorbents impregnated through H2S 

oxidation exhibited highly non-linear correlation between sulfur content and mercury uptake 

capacity, with optimal sulfur content around 5 wt% 109. However, the stability of sulfur deposited 

on carbon surface through H2S oxidation at 150 ºC is not adequate for full scale applications. 

Sulfur impregnation through H2S oxidation can be justified by the industrial ecology approach 

for producing effective sorbents where waste stream from one process serves as a raw material 

for another process. Also, the low temperature during H2S oxidation means lower cost. 

Similar results were found by Hsi et al. 110, 111 using sulfur impregnated activated carbon 

fibers (ACFs). ACF impregnated with elemental sulfur at 400 ºC was found to be the most 

effective mercury sorbent 111. Although this sulfur impregnated sorbent had a surface area of 

only 94 m2/g, 86% of the surface area was attributed to micropores (d < 2 nm). It should be 

mentioned that this study used simulated flue gas to test the mercury uptake capacity. Sulfur 

deposited on activated carbon fiber existed in three forms, namely elemental sulfur, organic 

sulfur, and sulfate, with only the first two forms acting as mercury adsorption sites 110. Hsi et al. 

112 also observed that the significant effect of organic sulfur remaining in the coal derived 

activated carbon was very effective in removing vapor phase mercury. The authors suggested 

that both sulfur content and micropore structure are important for the uptake of vapor phase 

mercury.  

Lee and Park 113 reported that the adsorption performance of sulfur-impregnated activated 

carbon depended on the pore characteristics of virgin activated carbon used as raw material and 

the types of sulfur, rather than on the amount of sulfur impregnated. The authors observed two 
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types of sulfur impregnated through interaction between elemental sulfur and activated carbon 

surface: one desorbed around 250 °C and the other desorbed around 400 °C. Higher content of 

the latter form of sulfur significantly improved Hg uptake. They suggested that the raw activated 

carbon for sulfur impregnation should have an average pore diameter above 2 nm.  

Other researchers also looked into the effect of sulfur forms and pore structure on vapor 

phase mercury uptake. Daza et al. 114 applied various techniques to characterize Palygorskite (a 

fibrous mineral with hydrated magnesium silicate, Mg3Si4O10(OH)2) impregnated with sulfur 

through catalytic oxidation of hydrogen sulfide. The impregnation was achieved in a fixed bed 

reactor operated at 140 °C with O2:H2S = 1:1. They found that the π form of sulfur and a pore 

diameter larger than about 7.5 nm yielded the best sorbents. In addition, the authors proposed 

that monolayer coverage of sulfur molecules on the internal surface will produce the most 

efficient sorbent for Hg removal. They also suggested that pore structure that creates no steric 

hindrance for HgS formation is a general requirement for good mercury sorbent 115, with a 

minimum pore size per monolayer of deposited sulfur of around 8 nm. Recently, Guijarro et al. 

116 tested the mercury uptake capacity of sulfurized sepiolite. They suggested that macropores 

above 400 nm are of utmost important for mercury uptake because high surface area sorbents 

impregnated with high sulfur content would result in quick blockage of the pore entrance by 

HgS. 

In summary, sulfur forms, sulfur content/distribution, and sorbent pore structure affect the 

mercury uptake capacity of sulfur impregnated sorbents. Using elemental sulfur as the 

sulfurizing agent, higher temperature (up to 600 °C) generates better sorbents. Elemental sulfur 
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and organic sulfur are probably the key species for Hg removal. A good balance between sulfur 

content, sulfur distribution, and sorbent pore structure produces sorbents with maximum 

capacity.  

 

2.4 HYDROGEN SULFIDE ADSORPTION ON CARBON SURFACE 

H2S adsorption/oxidation onto carbon surfaces was widely studied. However, some basic 

questions are still not clear in the literature. Whether the adsorption of H2S is physical or 

chemical in nature? What are the roles of oxygen containing functionalities on the carbon 

surface?  

Some researchers reported that physical adsorption is the dominant mechanism for H2S 

uptake by carbon materials under certain conditions.  If the adsorption is occurring under 

vacuum and without the disturbance of surface functionalities, the micropore filling theory117, 118 

can explain the adsorption isotherms very well. This means physisorption is the dominant 

mechanism for adsorption of H2S. Boki and Tanada 119 studied the adsorption of H2S onto 

activated carbon surface using a vacuum system at three different temperatures. The Dubinion-

Astakhov equation can be applied to describe the adsorption isotherm. The isosteric heat of 

adsorption of two carbon samples were less than twice the value of the heat of condensation, 

while the heat of adsorption of one carbon sample was more than twice the value of heat of 

condensation. By comparing the pore size distribution of the three carbon samples, the authors 
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believe that the higher heat of adsorption of the third carbon sample was due to the small pore 

size. The adsorption of H2S on activated carbon is mainly physical in nature. At the same time, 

the authors observed that a small amount of H2S was chemisorbed onto carbon surfaces, and the 

lower the temperature, the smaller this amount.  

Other studies also showed that the adsorption of H2S onto microporous sorbents is physical 

in nature. In studying the adsorption isotherms of different sorbates onto microporous 

adsorbents, Aranovich and Donohue 120 compared the predicted results using Dubinin-

Radushkevich (DR) equation and experimental results. The authors found that the adsorption of 

all the adsorbates including H2S follows the micropore filling mechanism. Lee et al 121-123 used a 

gravimetric adsorption apparatus equipped with electrobalance and also reported that adsorption 

of hydrogen sulfide can be explained by the micropore filling theory.  

Bagreev et al 124 studied the sorption of hydrogen sulfide on activated carbons by inverse 

gas chromatography (IGC) at infinite dilution under dry and anaerobic conditions. Surface 

modifications were conducted for some carbons by HNO3 and ammonium persulfate oxidation. 

The structures of carbons were evaluated based on the adsorption of nitrogen. Heats of 

adsorption were calculated from the IGC experiments at various temperatures. There was a good 

correlation between the heat of H2S adsorption and the characteristic energy of nitrogen 

adsorption calculated from the Dubinin–Raduskevich (DR) equation. These results indicate that 

under dry and anaerobic conditions, the adsorption of H2S is mainly physical, and surface 

functionalities have no contribution. The authors also pointed out that this result may indicate 

that during H2S oxidation on carbon surfaces, oxygen from the air, rather than from the carbon 

surfaces is the major oxidant. In another paper, Bagreev and Bandosz 125 studied the adsorption 

of H2S on fifteen samples of activated carbon using inverse gas chromatography (IGC) at infinite 
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dilution in Helium. The results showed that the lower the average pore size, the stronger the 

interaction between H2S and the carbon surface, which is due to the increase in adsorption 

potential.  

The above claims of physical adsorption of H2S are all based on studies at ideal conditions 

(at low temperature, anaerobic, or in vacuum). Studies conducted under real conditions (higher 

temperature, with the presence of other gases like oxygen, and uncleaned surface) revealed that 

chemical adsorption was unavoidable and important. 

Bandosz and co-workers126-128  studied the importance of carbon surface chemistry by 

comparing the H2S breakthrough capacities of activated carbons with significantly different 

surface properties. While the effect of pore of pore structure is not clear, surface treatment using 

ammonia or nitric acid can result in significant change in H2S removal capacities due to the 

modification on carbon surface chemisty. They reported that a good performance of carbons as 

hydrogen sulfide adsorbents was the result of a proper combination of surface chemistry and 

carbon porosity; more acidic environment promotes the formation of high-valent sulfur 

compounds and decrease the H2S removal capacities; a basic environment favors the formation 

of elemental sulfur (sulfur radicals) and increases sulfur removal capacity. A critical acidity, 

estimated at pH≈5, should not be exceeded for a good catalyst. Otherwise, the carbon will have 

negligible H2S breakthrough capacity. 

Mikhalovsky 129 showed that H2S adsorption from an inert atmosphere on activated 

carbons resulted in the formation of surface oxygen-containing complexes and elemental sulfur. 

This result indicated that the adsorption of hydrogen sulfide on carbon surface was dissociative 

and chemical in nature. Pieplu et al 130 reported that H2S adsorption on catalyst surface is a 
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possible step for H2S oxidation. There are two modes of H2S adsorption onto these surfaces: 

dissociative and non-dissociative. TPD studies showed that the two desorption peaks associated 

with H2S adsorbed by the two adsorption modes were around 105-130 ºC and 290-315 ºC. The 

dissociative adsorption may be due to the interaction between H2S and -OH group or cations, 

such as Na+, Al3+ and Ti4+. 

Since modification of surface chemistry is likely to be more effective for improving H2S 

removal capacity by activated carbons, different kinds of impregnates were introduced. Bagreev 

et al. 131 studied the effect of NaOH on adsorption of H2S, using four different kinds of carbons, 

with different amounts of impregnated NaOH. They found that impregnation of NaOH 

significantly improved H2S removal capacity. However, when more than 10% of NaOH was 

introduced, it likely resulted in pore blocking. Again, they found the H2S removal capacities 

were dominated by the presence of NaOH, and were not sensitive to surface areas and pore 

structures of these activated carbons. Other reports on NaOH 132, 133 or K2CO3
134, 135 

impregnation also showed significant improvement of the H2S removal capacity. It is believed 

that presence of alkaline chemicals facilitates the dissociation of H2S on carbon surfaces. 

There are numerous reports on the decomposition of hydrogen sulfide on metal, metal 

oxides and other surfaces 136-139. These studies indicate that chemical adsorption, even the 

decomposition of H2S, can occur on the carbon surface because of the presence of metal and 

metal oxides in many carbon materials.  

In summary, both surface chemistry and pore structure are important for H2S 

adsorption/removal. The relative contribution of the two parameters, whether obvious or not to 

the investigators, is very much depend on the experimental conditions. Only when the 
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functionalities are significantly removed or reaction conditions are ideal, the effect of pore 

structure is obvious and physical adsorption is dominant. For physical adsorption, smaller pore 

size can exert stronger interaction between H2S and carbon according to the micropore filling 

theory. However, under real conditions, surface functionalities are almost unavoidable. As a 

result, the effect of surface chemistry is more prominent. The interaction between surface 

functionalities and H2S is much stronger than forces exerted during physical adsorption (van der 

Waals forces) and H2S dissociation might occur. It seems that alkaline impregnates are very 

effective to improve H2S removal capacity.  

2.5 SULFURIZATION OF CARBON SURFACES 

The interaction between active gases and the carbon surfaces under high temperatures is 

quite different from that under low temperatures. The fundamental difference is that high 

temperature provides enough energy to initiate chemical reactions between the gas molecules and 

carbon substance. Under these circumstances, physical adsorption is normally negligible and the 

interactions are mainly chemical in nature. The species retained on the carbon surface are either the 

dissociated adsorbates or the product of adsorbate-carbon reaction. The term sulfurization is used 

to describe the process of incorporation of sulfur onto the carbon surface. 

Puri systematically summarized the research work on carbon-sulfur solid complexes 71. It 

was found that formation of C-S complex was reported at the temperature range of 100-1000°C 

with sulfur containing gases like H2S, CS2, SO2, and sulfur vapor. Decomposition of H2S on 
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surfaces of charcoals was reported at temperatures as low as 100 °C 140. The amount of combined 

sulfur decreased with the decrease in hydrogen or oxygen content of the carbon. The fixation of 

sulfur was believed to take place through addition to unsaturated sites as well as substitution of 

hydrogen or oxygen or hydroxyl groups initially presented on the charcoals. All these results 

support the idea that hydrogen sulfide can react chemically with carbon surfaces even at relatively 

low temperatures.  

Blayden and Patrick 141 studied the formation and behavior of sulfur carbons by heating the 

polymer carbon in the presence of sulfur vapor and elemental sulfur. The experimental work 

indicated that the unpaired spin centers and hydrogen content might play important roles in the 

sulfurization of the carbon surface. The authors suggested that the bonding of C-S complexes was 

akin to that of thioethers or disulfides. Formation of peripheral heterocyclic structures or bridging 

of neighboring carbon atom layers might also take place. Valenzuela Calahorro et al. 142 reported 

that about 9.9% of sulfur was incorporated into carbon surface by heating activated carbon in high 

concentrations of hydrogen sulfide.  

All carbon-sulfur complexes formed were found to be very stable 71. It was not possible to 

recover any bonded sulfur by boiling in 2.5N NaOH solution; hydrogen sulfide and carbon sulfide 

were found in the effluent gas when the product was heated to 500 °C and the amount of emitted 

gases increased with the increase in temperature. An appreciable amount of sulfur was retained 

even after heating the samples to 1200 °C. The sulfur could only be completely removed by 

heating the product in hydrogen at 900°C.  

The mechanism of sulfurization on the carbon surface is still not clear although many studies 

proposed the possible pathways. Puri and Hazra 72 observed that the amount of sulfur fixed on the 
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carbon surface correlates well with the oxygen content present as “CO-Complex” (the oxygen 

containing complex that releases CO upon heat treatment). The authors believe that oxygen and 

hydrogen content, extent of surface instauration, and pore structure were more important 

parameters than surface area. It was found that the strongly bonded amount of sulfur on H2S 

treated charcoals was close to the surface instauration of the charcoals. It was postulated that H2S 

interacts with quinonic and phenolic hydroxyl groups and then produce thioquinone and thiophenol 

groups 143. The rest of the loosely bonded sulfur was added to the unsaturated sites that are not very 

reactive. The produced C-S complexes can catalyze the sodium azide-iodine reaction, which 

indicated the formation of sulfide and hydrosulfide groups. 

To evaluate the possibility of using activated carbon as the sorbent for removing hydrogen 

sulfide from coal gasification environment (simulated coal gas containing 0.5% H2S, 49.5% N2, 

13% H2, 8.5% H2O, 21% CO, and 7.5% CO2), Cal et al. 19, 20 conducted systematic experimental 

studies. Activated carbons after various kinds of surface modification were used to remove H2S at 

550 °C. The results showed that both HNO3 oxidation and Zn impregnation improved the H2S 

adsorption capacity. They also found that temperatures between 400-600 °C had no significant 

impact on the process. H2 regeneration was found to be the most effective method with all the 

sulfur being removed from the carbon surface. Based on literature review and the above 

observations, Cal et al. proposed that the following three mechanisms may possibly explain the 

adsorption of hydrogen sulfide on activated carbon surface: 

• Addition to carbon active sites: 

  C+H2S = C-S + H2O      (5) 
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• Substitution of oxygen: 

        C-O + H2S = C-S + H2O     (6) 

• Reaction with metals: 

        C-M +H2S = C-M-S + H2                                                        (7) 

 

Sugawara et al. 144 studied the effect of hydrogen sulfide on the behavior of organic sulfur in 

coal and char during heat treatment up to 800 °C. They concluded that a considerable amount of 

hydrogen sulfide was absorbed during heat treatment, forming organic sulfur forms, such as 

thiophenes and sulfides. Sulfur forms in the samples were determined using Sulfur K-edge X-ray 

adsorption near-edge structure spectroscopy. These forms of sulfur tend to concentrate as the 

gasification proceeds. 

Recently, Ozaki et al. 145 reported the decomposition of H2S on the thermally stable 

turbostratic carbons, which is derived from furan resin. Iron was added to the surface of the carbon. 

0.5 vol% H2S passed through a fixed bed reactor and decomposition of H2S was observed. The 

surface iron species were believed to be responsible for the decomposition of H2S around 350 °C, 

while decomposition of H2S above 600 °C might be due to the Lewis acidic site. 

Besides the sulfurization of carbon surfaces, sulfur can be easily incorporated into 

hydrocarbons and other compounds. There are several reports about sulfurization of organic matter 

by sulfides in aqueous phase under low temperature (around 50 °C) 146, 147. Van Dongen et al. 147 

proposed that the reaction most likely starts with sulfurization of the carbonyl functionality. 

Studies 148, 149 also showed that sulfur can be incorporated into the surface of polymers and result in 
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significant increase in the surface sulfur content. Thiophenes and polysulfides were believed to be 

the possible products. CH4 and H2S were found to react in a plasma reactor to produce a thin film 

containing about 27% of sulfur 150, 151. The produced film was believed to have a structure of 

polymeric (CS2)x. Many metal/metal oxide surfaces can be easily sulfided by hydrogen sulfide. 

Saleh observed the chemisorption of H2S on Pd at 80 °C, and the reaction with Pd to be 

dissociative 152.  

In summary, significant amount of sulfur was incorporated into the carbon surface at in the 

absence of oxygen high temperatures higher than 100 °C. Higher hydrogen/oxygen content and 

greater extent of insaturation seem to lead to higher sulfur content. Sulfurization is probably 

achieved through the following mechanisms: addition to carbon active sites, substitution of 

hydrogen/oxygen or other non-carbon elements, and combination with metals. The sulfurization 

products seem to be organic sulfur and/or sulfides, with possible organic sulfur structure as 

thiophene or thioquinone. Sulfurization by hydrogen sulfide may be a possible way of producing 

mercury removal sorbents since the sulfur produced is low-valent. 

2.6 OXIDATION OF HYDROGEN SULFIDE ON ACTIVATED CARBON 

The direct oxidation of H2S by oxygen is a catalytic exothermic reaction 130:  

 

H2S + ½ O2 = H2O + 1/n Sn                    ∆H=-222 kJ/mol  (8) 
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The oxidation process based on this overall reaction (the actual process is comprised of 

several steps) is patented as the Claus reaction in 1890 and widely used for sulfur recovery from 

many industrial processes. The reaction needs catalyst to proceed because the kinetics without 

catalysts is extremely low. Various materials showed catalytic effect for this reaction, with 

alumina-based catalyst as the most common one. Activated carbon is also a very effective 

catalyst, but it is limited by its thermal stability in the presence of oxygen. The reaction can take 

place even at room temperature with catalysts. However, in real sulfur-recovering processes, the 

reaction temperature is normally much higher (usually above 200 °C). Depending on many 

reaction parameters, but mainly on temperature and O2/H2S ratio and gas composition, other side 

reactions can occur. The following are a few examples: 

 

H2S + 1½ O2 = SO2 + H2O        (9) 

1/n Sn + O2 = SO2       (10) 

SO2 + ½ O2 = SO3       (11) 

CO2 + H2S = CO + 1/n Sn + H2O     (12) 

CO + S = COS       (13) 

SO3 + H2O = H2SO4       (14) 

 

Higher temperature results in higher reaction rate. However, for activated carbon in the 

presence of oxygen, high temperature can burn the carbon and destroy the porous structure. The 
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carbon activity was maximized between 150 °C and 200 °C 153, 154. Stejins et al. 155 reported that 

the only product formed below 200 °C are water and elemental sulfur. However, for temperatures 

above 300 °C, formation of SO2 becomes significant.  

In terms of sulfur retention, Blayden and Patrick 141 found that lower sulfurization 

temperature resulted in higher sulfur retention, while the sulfur retained on activated carbon rarely 

exceeded 5% at temperature at 300-500 °C. Coskun and Tollefson 156 showed that sulfur loading 

increased with the increase in reaction temperature from 24 °C to 152 °C. 

Klein and Henning 157 proposed that depending on the reaction conditions reaction orders for 

oxygen and hydrogen sulfide were 0-1 and 0.5-1, respectively depending on the reaction 

conditions. Mikhalovsky and Zaitsev 158 compared the sulfur loading with and without the 

presence of oxygen. Under inert environment, sulfur content of only 6% was achieved, while sulfur 

content as high as 95% was found for the same carbon in the presence of air.  

Catalytic reactions should involve the chemisorption of at least one of the reactants. For 

the oxidation of H2S, chemisorption of oxygen is obvious and there are strong indications that 

H2S may also be chemisorbed before the oxidation reaction. 

Pieplu et al 130 reviewed the Claus catalysis and H2S selective oxidation. The second step 

of the Claus reaction (the reaction between SO2 and H2S) was believed to take place between 

chemisorbed SO2 and gaseous or adsorbed H2S. The intermediate state of chemically adsorbed 

SO2 is most likely to be HSO3
-, which is produced from SO2 linked to -OH surface groups. 

Studies on the oxidation of H2S at room temperature by Bandosz and co-workers 124, 126, 127, 

131, 159, 160 revealed that a more acidic environment promotes the formation of sulfur oxides and 

sulfuric acid while a basic environment favors the formation of elemental sulfur (sulfur radicals). 
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The proposed reaction mechanism involved reaction of adsorbed hydrogen sulfide ion with 

dissociatively adsorbed oxygen as the limiting step 126. Bagreev and Bandosz 131 found the 

catalytic effect of the impregnated NaOH. It was believed that NaOH neutralizes H2S and shifts 

the dissociation reaction of hydrogen sulfide forward, thus increasing the content of HS- ions, 

which facilities the oxidation process.  

Mikhalovsky 158 suggested that carbon surface functionalities and transition metals 

affected the catalytic activity and selectivity to different products. It was proposed that surface 

functionalities contribute significantly to the formation of SOx during H2S oxidation. By varying 

different impregnation procedures, a vanadium-grafted catalyst with high selectivity towards 

elemental sulfur (over sulfur oxides) was developed, which worked effectively at the temperature 

exceeding the melting point of sulfur 158. 

Yan et al. 161, 162 suggested that elemental sulfur and oxidized sulfur species were major 

products of  H2S oxidation on activated carbon surface at low temperature and in the presence of 

water vapor. The authors discussed the effect of surface pH at three ranges: pH > 7.0, 7.0 > pH > 

4.5, and pH < 4.5. The first range favors the formation of elemental sulfur; the second range 

favors the formation of sulfur oxides and sulfuric acid in the presence of water, while physical 

adsorption dominates in the last range.  

In summary, literature review on H2S oxidation suggests that important parameters 

affecting the oxidation of hydrogen sulfide include: temperature, O2/H2S ratio, and carbon 

surface chemistry. Lower temperature and basic surface functionalities favor the formation of 
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elemental sulfur and activated carbon exhibits maximum activity between 125-200 °C.  High 

temperature and functionalities of lower pH increase the selectivity to sulfur oxides and decrease 

the catalytic activity.  
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3.0 MATERIALS AND METHODS 

3.1 CARBON MATERIALS 

3.1.1 Activated Carbon Fibers 

One of the carbonaceous sorbents selected for this study is activated carbon fiber (ACF).  

ACFs obtained from American Kynol, Inc. (Pleasantville, NY) have carbon content of over 95%. 

ACFs are produced from the novolac resin that is manufactured by polymerization of phenol and 

formaldehyde. Detailed information about the surface properties and structure of this sorbent is 

available in the literature 163.  These ACFs have uniform pore size distribution comparing to other 

carbon materials. Slit shaped micropores below 2 nm in diameter are predominant, with very few 

pores in the mesopore range (2 nm < d < 50 nm) and no pores in the macropore range (> 50 nm). 

ACFs were dried at 120 °C for 2 hours and ground into powder before H2S adsorption and 

oxidation.  

ACF10, ACF15, ACF20, and ACF25 were produced using increasing activation time that 

leads to higher surface area and larger pores. The properties of ACF10 to ACF 25 reported by 

literature 164 and the manufacturer were summarized in Table 3. ACF-10, ACF15, ACF20, and 

ACF-25 are expected to have estimated surface areas of 1000, 1500, 2000, and 2500 m2/g, 

respectively. However, the BET surface area values reported in the literature 164 are not always 
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the same as the estimated values. The average pore width increases from ACF-10 to ACF-25. 

ACFs are good materials for studying the effect of pore size because they have relatively narrow 

pore size distribution.  The pore size distribution of raw ACFs was also investigated in this study 

and the results are shown in Figure 7 (Chapter 4). ACFs have negligible ash content (about 0.01 

wt%), which is probably from the manufacturing process and impurities of the raw materials. 

The major elements are carbon and oxygen with very limited amount of hydrogen and nitrogen. 

Previous studies indicated that with the increase in serial number, the oxygen content decreased 

65, 165, 166. 

 

Table 3.       Properties of Kynol ACFs from literature and the manufacture 

ACF Properties ACF-10 ACF-15 ACF-20 ACF-25 

Average Pore Width* 7.1 7.8 7.8 9.7 

BET Surface Area (m2/g)** 1000 1500 2000 2500 

BET Surface Area (m2/g)* 877 1518 1615 1918 

Micropore Volume (cm3/g)* 0.307 0.631 0.686 0.884 

Total Pore Volume (cm3/g)* 0.307 0.686 0.686 0.893 

Fractional Microporosity (%)* 100 100 99 69.3 

Benzene Adsorption (wt%)** 23.7 40.1 50 66 

Iodine Adsorption (mg/g)** 1110 1630 1670 2290 
* Reference 164   ** American Kynol, Inc, shipping invoice 
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Table 4. Sources and chemical compositions of BPL and ACFs 

Carbon  Base Material Ash Content Elemental Composition (wt%) 
     (wt%) O C H N 

BPL Bituminous 
Coal 

6.6 5.40# --- --- --- 

ACF-10 Resin 0.01 8.11* 91.4* 0.33* 0.16* 
ACF-20 Resin 0.01 --- --- --- --- 
ACF-25 Resin 0.01 4.50* 95.2* 0.06* 0.24* 

*Mangun et al. 2001 65, 165; similar data were also reported by Foster et al.166 
#Zhu et al. 167. 

 

 

 

3.1.2 Activated Carbons 

Five virgin activated carbons, namely BPL, F400, PCB, BD, and Centaur, were obtained 

from Calgon Carbon Corporation (Pittsburgh, PA). As received carbons were grounded and 

sieved, only particles of 10×16 U.S. mesh size were used for H2S uptake test and further surface 

modification. All the virgin carbon samples were thoroughly washed and dried in an oven at 120 

°C. Dried carbons were stored in a dessicator until use. The basic information about these five 

virgin carbons can be found in Table 8 (Chapter 4). BPL carbon is derived from bituminous coal 

and it was chosen as a typical activated carbon for experimental study.   
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3.2 EXPERIMENTAL SETUP AND PROCEDURE 

3.2.1 Sample Preparation 

 

Surface Treatment on ACFs 

For H2S adsorption test, the ACFs were mechanically ground into powder and dried at 

120°C for 2 hours before any further treatment. 1g of powder ACF was fed to the fixed bed 

reactor for each run. “Dried” virgin samples were dried in nitrogen at 140°C for 2 hrs; “Heat 

treated” samples were heated to 900 °C for 4 to 6 hours. “Oxidized” samples were first dried, 

then heated up to 200°C for 2 hrs in a pure O2 stream. After surface treatment, the samples were 

cooled down to room temperature for H2S adsorption. 

  

Surface Treatment on Activated Carbons 

Heat treatment: Three carbon samples (BPL, PCB, and F400) were heated in a ultra high 

purity (UHP) nitrogen or argon stream at 10 °C/min up to 300 °C,  600 °C, and  900 °C 

separately for 3 hours, then the samples were cooled down to 23 °C at 10 °C/min for H2S uptake 

test.  
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Ammonia Treatment: 2 g of each carbon sample was soaked in 25 ml of 29 wt% ammonia 

solution in a sealed bottle. The carbon-solution mixture was kept for 24 hours with shaking. 

Then the carbon sample was separated by filtration and dried at 110 °C for 5 hours.  

 

3.2.2 H2S Adsorption, Sulfurization, and Oxidation 

 

H2S Adsorption 

Figure 4 shows the fixed bed reactor system for H2S adsorption/oxidation. The gases were 

supplied by pressurized tanks. For H2S adsorption, standard H2S gas of 200 ppm (Praxair, in 

nitrogen, certified) was used for adsorption test. Higher concentrations of H2S were generated by 

diluting 5% H2S standard gas (Praxair, diluted in nitrogen, certified) with nitrogen (Praxair, 

UHP). Mixed gas with a total flow rate of 150 ml/min was fed through a quartz reactor (38cm 

long with 1cm OD), which was positioned vertically in the middle of a tubular furnace (Lindberg 

Heavi-Duty, Watertown, WI) with a temperature controller. The effluent gases were analyzed 

continuously by a QMS 300 (Stanford Research Systems, Sunnyvale, CA).  
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Figure 4. Experimental setup for H2S adsorption/oxidation 

 

 

The fixed-bed reactor was first flushed with pure N2 for 30 min then the inlet gas was 

switched to gas mixture with desired H2S concentration and the data collection was initiated. The 

H2S concentration was continuously monitored by QMS until saturation was reached. After 

saturation the inlet gas was switched back to pure N2 and the H2S concentration desorbed from the 

carbon surface was recorded continuously. As a result, a breakthrough curve and a desorption 

curve were generated. Figure 5 illustrates the experimental procedure to obtain adsorbed amount 

and desorbed amount. The “adsorbed amount” can be obtained by integrating the area above the 

breakthrough curve. The desorbed amount can be obtained by integrating the area below the 

desorption curve. This is defined as the “desorbed amount”. The difference between adsorbed 
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amount and desorbed amount is defined as the “retained amount” on the ACFs’ surface. The 

adsorption of H2S onto activated carbons was studied in the same way as the adsorption onto ACFs 

except that the “retained amount” was determined using a sulfur analyzer (SC-132, Leco Sulfur 

Analyzer, St. Joseph, MI).  
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Figure 5. H2S breakthrough and desorption curves 

 

 

Sulfurization of Carbon Surface 

The same fixed bed reactor system was used for H2S uptake test with similar procedures. 

Sulfurization was conducted at the temperature range of 200-800 °C. 3000 ppm H2S was 

generated by diluting 5% H2S standard gas (Praxair, diluted in nitrogen, certified) with nitrogen 

(Praxair, UHP). 500 mg of carbon sample was loaded in the quartz reactor. After drying at 120 

°C for 2 hours with nitrogen flowing through the reactor, sulfurization of carbon surfaces was 
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carried out using different sulfurization protocols at different temperatures. While all samples 

were subjected to the same temperature programmed process, different sulfurization protocols 

expose the carbon surface to H2S at different stages. As shown in Figure 6, the following 

samples were prepared at maximum temperature of 600 °C and H2S concentration of 3000 ppm: 

for 600C-S, H2S was present during stable temperature only; for 600C-H+S, H2S was present 

during heating and stable temperature; for 600C-H+S+C, H2S was present during heating, stable 

temperature, and cooling; for 600C-S+C, H2S was present during stable temperature and 

cooling; and for 600C-C, H2S was present during the cooling process only. Using QMS to 

monitor the exit gas, it was determined that 6 hours of exposure to H2S was sufficient to reach 

complete breakthrough of H2S. Sulfur analysis also confirmed that no increase in the sulfur 

content was observed even if the impregnation time was increased to 14 hours. For all the runs, 

the stable temperature period lasted for 6 hours. 
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Figure 6. Experimental protocols for the sulfurization process 

 

 

H2S Oxidation 

For H2S oxidation, the same fixed reactor system was employed with an additional oxygen 

tank. 5% H2S (Praxair, 5% in nitrogen, certified) and O2 (Praxair, Pure) were diluted by N2 

(Praxair, UHP) to a desired concentration (3000 ppm H2S and 12,000 ppm O2) by controlling the 

flow rate of each gas with mass flow controllers. The total gas flow rate to a quartz reactor was 

maintained at 150 ml/min. Other conditions were the same for H2S adsorption. 

ACF10 was impregnated with sulfur at 80 oC and 150 oC until the effluent H2S concentration 

reached the influent level after 24 hours. These samples were labeled as ACF10-80C-24hrs and 

ACF10-150C-24hrs. ACF25 was impregnated with sulfur at 150 ºC for 2, 6, and 24 hours. 
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Designation for these sorbents includes temperature and duration of the impregnation process, i.e. 

ACF25-150C-2hrs means the ACF-25 was impregnated with H2S at 150 ºC for 2 hours. The 

amount of sulfur deposited on the sorbent was determined from the breakthrough curve. 

 

Temperature Programmed Reaction on H2S-Carbon Interaction 

1 g of carbon materials was first loaded into the fixed bed reactor, then at room 

temperature 12,000 ppm H2S (generated by diluting 5% H2S by argon) was introduced into the 

reactor. After adsorption for 40 min, the reactor was heated up at 10 °C/min up to 900 °C. In this 

process, atomic mass units (AMUs) 1 to 100 were monitored, and only the active AMUs were 

selected and analyzed.  

 

3.2.3 Hg Uptake Test 

All the mercury uptake tests followed the same procedure. Raw and sulfur-impregnated 

carbon materials (ACFs and BPL carbon) were tested for vapor phase elemental mercury uptake at 

140 °C in a fixed-bed reactor. Industrial grade nitrogen (99.5%) was used as the carrier gas with a 

flow rate of 550 ml/min, which is controlled by a mass flow controller (Tylan General, Torrance, 

CA). The inlet mercury concentration was maintained at 350 µg/m3 by controlling the temperature 

of the permeation tube (VICI Metrons Inc. Santa Clara, CA) filled with liquid mercury. Mercury 

concentration was analyzed continuously using an atomic absorption spectrophotometer (Model 

403, Perkin-Elmer, Norwalk, CT) equipped with 18-cm hollow quartz cell (Varian Australis Pty, 

Ltd., Mulgrave, Victoria, Australia) and the mercury adsorption capacity was calculated by 

integrating the area above the breakthrough curve. For each sample, the mercury uptake test was 

conducated at least twice. Repeated measurements showed that the mercury uptake capacities can 

be determined with a relative standard deviation less than 12%.  
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3.3 SORBENT CHARACTERIZATION 

3.3.1 Surface Area and Pore Structure Analysis 

The surface area and pore size distribution of virgin and impregnated ACFs were analyzed 

using nitrogen adsorption at 77 K in a Quantachrome Autosorb Automated Gas Sorption System 

(Quantachrome Corporation, Boynton Beach, FL).  

 

3.3.2 SEM-EDAX Analysis 

SEM (Scanning Electron Microscope) – EDAX (Energy Dispersive Analysis, X-ray) 

analysis was conducted using a Philips XL30 SEM equipped with an EDAX detector. Besides 

observing the image of ACFs, the EDAX detector was used to measure the surface elemental 

composition of the ACF samples that were pasted as a thick layer onto a tape before insertion into 

the vacuum chamber.  

 

3.3.3 XPS Analysis 

XPS (X-ray photoelectron spectroscopy) analysis was performed using a Physical 

Electronics Model 550 equipped with a cylindrical, double-pass energy analyzer. The ACF 

samples were attached to a tantalum surface by conductive silver paste (LADD Research 

Industries) before insertion into the vacuum chamber. 
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3.3.4 Thermogravimetric Analysis 

Thermogravimetric analysis (TGA) was conducted using TGA7 (Perkin-Elmer, Norwalk, 

CT) where the sample was maintained at 120 ºC for 2 hours and then heated to 850 ºC with a 

heating rate of 10 ºC/min in a high purity nitrogen atmosphere. For some analysis, the QMS 300 

was attached to the exiting tube of the TGA gas line to enable simultaneous detection of the weight 

loss and gas species evolved from the sample.  

For the ACFs samples impregnated with sulfur through H2S oxidation, TGA data can also 

be used to estimate the activation energy for the desorption of impregnated sulfur from the 

carbon surface. TGA analysis of a sample (ACF10-150C-24hrs) at different heating rates (2, 6, 

10, and 14 oC/min) yields different rates of weight loss versus temperature. The activation energy 

can be estimated according to the following equation 168: 

 

Ea = -18.18 d (logB) / d (1/T)     (15) 

 

where, Ea is the activation energy for desorption in J/mol; B is the heating rate in K/sec; 

and T is the temperature corresponding to a given weight loss at a given heating rate in K. 

 

3.3.5 Temperature Programmed Desorption 

Two kinds of temperature programmed desorption tests were carried out. A typical 

temperature programmed desorption was conducted inside the fixed bed reactor after H2S 
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adsorption/desorption or sulfurization. Starting from room temperature, the temperature of the 

tubular furnace was raised at 10°C/min (or 3.3°C/min in some cases) up to 900°C in a nitrogen or 

argon gas stream and effluent gas was monitored with the QMS 300. AMUs of interest and the 

desorption temperatures were recorded continuously.    

A special temperature programmed desorption (TPD) was conducted for H2S oxidation 

samples using a TGA coupled to the QMS 300 to sample the effluent gas from the TGA. This 

method enabled simultaneous detection of the weight loss and gas species released from ACF10-

Raw and ACF10-150C. However, elemental sulfur released during heating was observed to 

quickly condense as yellow solid at the outlet of the TGA chamber, and could not be detected by 

the QMS. The nitrogen or argon gas flow rate was 12 ml/min and heating rate was 10 ºC/min if not 

specified.  

 

3.3.6 Sulfur Analysis 

Sulfur analysis was conducted using a Leco Model SC-132 Sulfur Determinator (Leco Co., 

St. Joseph, MI). The basic principle of the instrument is to completely oxidize the sample in a pure 

oxygen stream under extremely high temperatures to produce SO2 that is quantitatively analyzed 

by an IR cell. The sulfur content can be determined based on the weight of the sample and amount 

of sulfur detected. 

To analyze the sulfur content of each sample, the furnace temperature was first preheated to 

1200 °C and a ceramic boat containing about 100 mg of sample was placed inside the furnace. 

Sulfur content is displayed based on calibration. For each set of analyses, calibration was 
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conducted using the standard sample (Leco Co., St. Joseph, MI) of known sulfur content (3.11 

wt% ±0.06%). Repeated anyses on one sample showed that the relative standard deviation of sulfur 

analysis is within 8%. 

 

3.3.7 Surface Functional Groups and pH Measurement 

The Boehm titration was conducted according to the methods decribed by Bohem169, 170. 

Titration followed the ASTM Method 2310B and 2320B. The basic principle is explained by 

Boehm 37. The procedure is briefly described as follows: 

1. Prepare standard acidic and basic solutions: 0.25N and 0.05N NaOH, 0.05N NaHCO3, 

0.05N Na2CO3, and 0.05N HCl. 

2. Weigh 2 g of each carbon sample and put it into five 160 ml vials, with each vial 

containing 100 ml of the above prepared solutions. 

3. Completely seal the vials and put them into a shaker for 24 hours. 

4. Remove the carbon samples by filtration and titrate the basic solutions using HCl and 

titrate the HCl solution using 0.05 N NaOH to pH=7 as the endpoint. 

5. The amount of acidic sites for a specific group were calculated under the assumption that 

0.25N NaOH neutralizes total acidity; 0.05N NaOH neutralizes carboxyl, phenolic, and 

lactonic groups; Na2CO3 neutralizes carboxylic and lactonic groups; and NaHCO3 only 

reacts with carboxylic groups. 
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Repeated anayses on one sample showed that the deviation of Boehm titration is less than 

0.05 mmol/g (50 μmol/g). 

The pH of the carbon sample was measured by placing 2 g of carbon in 100 ml deionized 

water. After the sample was shaked for 24 hours, the filtrate pH was measured using a pH meter 

(Accument pH meter 25, Fisher Scientific, Pittsburgh, PA). 

 

3.3.8 Ash and Metal Content Analysis 

Ash content was determined by heating 1 g of carbon sample at 500°C for 24 hours in a 

Type F62730 muffle furnace (Barnstead/Thermolyne, Dubuque, IA). The residuals were 

weighed and calculated as percent ash content. The residue ash was dissolved in 25 ml of 12 N 

HCl, then filtered through an acid-resistant cellulose acetate filter (Millipore, Bedford, MA). The 

filtrate was analyzed using atomic adsorption spectrophotometer (AAS, Perkin Elmer, 1100B) 

equipped with flame and graphite furnace. Contents of six different metals were analyzed: iron, 

copper, aluminum, magnesium, manganese, and calcium.  

 

3.3.9 XAFS Analysis 

The sulfur K-edge X-ray adsorption fine structure analysis (XAFS) spectra were recorded 

at beam-line X-19A at the National Synchrotron Light Source (NSLS) at Brookhaven National 

Laboratory, NY. Before analysis, the sulfur impregnated carbon samples were grounded into 

powders. The X-ray adsorption near-edge structure (XANES) region of the spectra were 
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analyzed by the means of least-squares to obtain peaks associated with electronic transition from 

1s to 3p levels within the sulfur atoms. Further information about the sulfur K-edge XAFS 

measurement are reported by Huggins et al. 171-173. 
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4.0 RESULTS AND DISCUSSION 

4.1 H2S ADSORPTION ONTO ACFS 

4.1.1 Characterization of Activated Carbon Fibers 

Table 5 summarizes the surface area and pore volume of ACFs before and after heat 

treatment, while Figure 7 shows the pore size distribution of selected samples. Based on these 

results, the pores of raw ACFs were divided into three ranges corresponding to three peaks 

consistently shown in the pore size distribution figures. The pore volume of each region was 

obtained from the BET analysis and is listed in Table 5.  

With the increase in serial number of raw ACFs (from ACF10 to ACF25), both surface area 

and pore volume increased, which is consistent with the manufacturer’s specifications. After heat 

treatment at 900 °C for 4 hours (sample ACF10-900C-4hrs), the pore volume and surface area of 

ACFs increased slightly, which may be due to the release of adsorbed species, or the expansion of 

pores because of additional volatilization of ACFs. Another explanation is the reaction between 

active gases with the ACFs to form higher surface area and bigger pore volume. Although present 

in very limited amount (<3 ppm), oxygen from the ultra high purity (UHP) nitrogen gas stream 
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may contribute to the surface area and pore volume increase. Similar results were also reported by 

Daley et al. 88, although they concluded that heat treatment has almost no effect on the pore 

structure of ACFs.  

Analysis of the pore volume change in different ranges shows that higher serial number of 

ACF has higher portion of bigger pores. From ACF10 to ACF20, there is a significant increase in 

both medium and big micropores as a result of longer activation, but the small micropore volumes 

did not change significantly. From ACF20 to ACF25, the pore volume increase is mainly due to 

the increase in big micropores. Figure 7 (a) also shows that with the increase in serial number, the 

pore size distribution becomes less uniform in all ranges. The same behavior was obtained after 

heat treatment in this study (as shown in Figure 7 (b) and (c)) because the heat treatment increased 

mainly the medium and big micropores for ACF10 and only big micropores for ACF25. 

 

Table 5. Micropore structure of ACFs before and after heat treatment 

Samples Pore Volume (cm3/g) Surface Area 

Small Pores Medium Pores Big Pores Total  (m2/g)  

 (4.0-7.2 Å) (7.2-9.0 Å) (>9.0 Å) (>4.0 Å )   

ACF10-Raw 0.274 0.039 0.065 0.378 920 

ACF20-Raw 0.258 0.104 0.329 0.691 1453 

ACF25-Raw 0.263 0.101 0.489 0.853 1920 

ACF10-900C-4hrs 0.291 0.069 0.112 0.472 965 

ACF25-900C-6hrs  0.276 0.095 0.554 0.925 1964 
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 (b).   ACF10 before and after heat treatment in N2 
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(c). ACF25 before and after heat treatment in N2 

 

Figure 7. Pore size distribution of ACFs before and after heat treatment 
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Table 6 summarizes the surface functionalities obtained through Boehm titration. The total 

acidic surface functionalities decreased with an increase in serial number. However, the total 

amount of basic functionalities increased with the increase in serial number. The basicity on carbon 

surfaces is reported to be associated with, such as pyrone, chromene, or quinone groups 36. Also, 

the increase in the density of graphitic platelets carrying π electrons during extended activation 

might contribute to the increase in basicity 36. 

 

Table 6. Surface functionalities on raw ACFs determined by Boehm titration (mmol/g) 

ACF # Total Acidic Carbonyl Carboxyl Lactonic Phenolic Total basic

ACF10 3.11 2.42 0.348 0.037 0.309 0.439 

ACF20 2.70 2.04 0.326 0.068 0.270 0.670 

ACF25 2.09 1.43 0.309 0.079 0.273 0.790 
 

 

4.1.2 Effect of Pore Structure and Surface Treatment on H2S Uptake 

Raw ACFs before and after surface treatment (oxidation at 200 ºC and heat treatment in 

nitrogen at 900 ºC) were subjected to H2S adsorption/desorption tests. The H2S adsorption 

experiments were carried out at room temperature, with 200 ppm H2S in pure nitrogen. Table 7 

summarizes test results. As mentioned above, the adsorbed amount is divided into retained amount 

and desorbed amount. The latter one is the amount desorbed in nitrogen. The desorbed amount can 

be viewed as physically adsorbed, while the retained amount can be viewed as chemisorbed.  
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Table 7 shows that regardless of the surface treatment, with the increase in serial number of 

the ACFs, the adsorbed and retained amount of H2S increased. According to the sorbent 

characterization shown in the previous section, the surface area, pore volume, average pore size, 

and total basic functionalities increased with the increase in serial number of ACFs. Considering 

the fact that retained amount could not be easily removed from the carbon surface, it is believed 

that the increase in the retained amount is mainly due to the change in the amount of active sites 

that may be related to surface area.  

The desorbed amount decreased with the increase in serial number. However, the decrease in 

desorbed amount (about 1 mg/g for all cases) is not significant compared with the increase in 

retained amount. A slight decrease in desorbed amount with the increase in serial number can be 

qualitatively explained by the micropore filling theory 117, 118, which predicts that pores of smaller 

size will adsorb more adsorbates at lower concentrations due to the higher adsorption potential 

exerted by their walls. Figure 8 shows the N2 adsorption isotherms of raw ACFs at 77K. Indeed, at 

a relative pressure (p/p0) of 1.2E-5, there is a crossing point, below which ACF10 has higher 

adsorption capacity than ACF25. Although the average pore size increased with the increase in 

serial number, the micropore volume did not change significantly, leading to relatively small 

changes in desorbed amount (Table 5). 

Table 7 consistently shows that both oxidized and heat treated ACFs have higher adsorbed 

and retained amount than the raw ACFs (dried), with oxidized ACFs achieving the highest 

retention of hydrogen sulfide. Oxidation at low temperature (200 ºC) is not likely to change the 

pore structure. It can, therefore, be concluded that surface chemistry contributed more to this 

phenomenon. Oxidation obviously increases the surface oxygen containing functionalities, which 

may be one form of the active sites for H2S uptake. The amount of H2S retained on the ACF 
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surface was likely oxidized by, or strongly bonded to these surface functionalities. Bouzaza et al. 

174 observed that oxidation of H2S occurred even if the gaseous oxygen was not present in a dry 

atmosphere. They concluded that the oxidation is due to the oxygen-containing surface 

functionalities of the carbon fibers. Therefore, oxidized carbon surface probably enhanced H2S 

retention through oxidation. 

The increased H2S uptake by heat treated ACFs can also be explained by the change in 

surface chemistry but through a different mechanism. It is commonly believed that heat treatment 

under inert environment will decrease and even totally eliminate the surface oxygen containing 

functionalities, especially acidic oxygen containing surface functionalities, without significantly 

changing the pore structure. Decomposition of acidic surface functionalities increased the basicity 

of ACF surface 36, which is helpful for retaining the acidic H2S. It is reported 70 that the removal of 

oxygen during high-temperature N2 treatment leaves unsaturated carbon atoms at crystallite 

edges, which lead to very high heat of adsorption during adsorption of oxygen. Since the retained 

amount increased after heat treatment, these unsaturated sites are likely responsible for H2S uptake.  
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Table 7. Adsorbed, desorbed and retained amount (mg/g) of H2S by ACFs before and after 

different surface treatments 

Surface 
Treatment 

  ACF10 ACF20 ACF25 

Adsorbed 1.43 2.18 2.65 

Retained 0.37 1.29 1.77 

 

Raw(Dried) 

Desorbed 1.06 0.89 0.88 

Adsorbed 1.96 3.62 4.57 

Retained 0.86 2.71 3.77 

 

Oxidized 

Desorbed 1.1 0.91 0.8 

Adsorbed 1.61 2.74 3.86 

Retained 0.57 2.14 3.34 

 

Heat 
Treated Desorbed 1.04 0.6 0.52 
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Figure 8. N2 isotherms at 77K for raw ACFs 
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The adsorbed and retained amounts per unit pore volume or per unit surface area can be 

calculated using the data shown in Table 5 and Table 7. All the data were obtained at 23 °C. The 

results in terms of surface area depicted in Figure 9 clearly show that the retained amount per unit 

surface area of raw (virgin) ACF increased with the increase in surface area.  ACFs with higher 

serial numbers were produced after longer activation time, leading to an increase in both surface 

area and oxygen containing active sites per unit surface area. If the surface area alone were 

responsible for increased retention of H2S, the retained amount per unit surface area should remain 

constants for all ACFs.  However, Figure 9 clearly shows that the retained amount per unit surface 

area changed from one ACF to another.  It can therefore, be concluded that the surface chemistry is 

more important for H2S chemisorption. The retained amount of H2S per unit surface area increased 

after heat treatment (ACF10-Raw vs. ACF10-900C-4hr and ACF25-Raw vs. ACF25-900C-6hr), 

which can be explained by the increase in the amount of active sites. The desorbed amount, which 

is the difference between adsorbed and retained amount, decreased with the increase in pore 

volume and pore size, which can be explained in terms of micropore filling theory.   
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Figure 9. Adsorbed and retained amount of H2S on ACFs per unit surface 

 

Surface basic functionalities represent possible active sites that are responsible for H2S 

retention through acid/base interactions. The amount of basic functionalities detected by Boehm 

titration was correlated with the retained amount on raw ACFs in Figure 10. Strong linear 

correlation between the basic surface functionalities and the amount of H2S retained by raw ACF is 

not unexpected because H2S is an acidic gas. Bashkova et al. 175 reported a strong correlation 

between basic functionalities and adsorption of methyl mercaptan, which also revealed the 

importance of acid-base interactions in acidic gas adsorption. 
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Figure 10. Correlation of basic surface functionalities with H2S retention (chemisorption) on 

raw ACFs 

 

4.1.3 Temperature Programmed Desorption 

Temperature programmed desorption (TPD) reveals possible interactions between adsorbed 

H2S and carbon surface because higher desorption temperature reflects stronger bonding. The 

effluent during TPD experiments was monitored at specific AMUs, namely 16 (O), 28 (CO or N2), 

32 (S or O2), 34 (H2S), 44 (CO2), 64 (S2 or SO2) and 76 (CS2).  

Figure 11(a) shows the TPD profiles for raw ACF10 after adsorption of 3000 ppm H2S 

followed by desorption in nitrogen. The desorption in nitrogen was carried out for 24 hours to 

ensure that all reversibly adsorbed sulfur species were removed. Figure 11(a) shows that most 

sulfur species were released between 260-450 °C. TGA test also shows that most of the weight loss 

occurred between 220-420 °C for raw ACF10 after adsorption and desorption at 23 ºC. According 

to Pieplu et al. 130, the dissociatively adsorbed H2S desorbed at 290-315 ºC. Among the sulfur 
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containing species, SO2 was released first, while COS was released at slightly higher temperatures. 

Figure 11 (b) shows that a trace amount of O2 was released around 160 °C. Raw sorbent has 

oxygen content around 5%, which is the most probable source of O2 because ultra high purity of 

N2 was used as the carrier gas. The results in Figure 11 indicate that H2S was strongly bonded to 

the carbon surface and that most of the H2S was probably oxidized by oxygen (at the carbon 

surface) during the adsorption process or during the TPD run. Figure 11 (b) shows that there was 

sufficient amount of oxygen on the ACFs surface for complete H2S oxidation because CO2 

desorption was still observed at temperatures above 200 °C 59, 176. These results revealed that the 

oxygen containing surface functionalities are important active sites for retaining H2S onto the raw 

ACF surface. 

Sulfur analysis shows that indeed there is a significant amount of sulfur retained on the 

carbon surface after nitrogen desorption and that some sulfur remained on the carbon surface even 

after exposure to 850 °C (Figure 12). The sulfur that remained after TPD run may have been 

imbedded deeply into the carbon structure during the heating process.  
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Figure 11. Gas species released during TPD of ACF10-raw: (a) sulfur containing 

species, (b) other species 

(16 (O), 32 (S or O2), 34 (H2S), 44 (CO2), 64 (S2 or SO2) and 76 (CS2)) 
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Figure 12. Sulfur content of ACF-10 after desorption and TPD 

 

Figure 13 shows TPD profiles for heated treated ACF10 (ACF10-900C-4hr) after adsorption 

of 3000 ppm H2S and desorption in nitrogen. In contrast to the results obtained for raw ACF10 

(Figure 11), the major sulfur species desorbed in the effluent was H2S, while small amount of SO2 

was released at lower temperatures (Figure 13(a)). Another major difference is that there was no 

significant amount of CO2 evolving from heat treated ACF10 (Figure 13 (b)). Such behavior was 

expected because most of the surface oxygen was removed during sample pretreatment. These 

results show that the sulfur species can be strongly bonded to the carbon surface even when most 

of the oxygen was removed from the surface. In that case, the majority of the sulfur species were 

present on the carbon surface in the reduced form. These results on Figure 11 and Figure 13 show 

different pathways responsible for the increase in the retained amount of H2S for raw and heat 

treated samples (Table 7). For raw ACF10, the presence of oxygen promotes the oxidation of H2S, 
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as reported by previous researchers 158, 174. For heat treated ACF10, the decomposition of oxygen 

containing functionalities creates unsaturated basic sites 70 or liberated π-electrons associated with 

basal planes, thereby promoting the retention of H2S mainly through acid-base interactions.  
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Figure 13. Gas species released during TPD of ACF10-900C-4hrs: (a) sulfur 

containing species, (b) other species 

(16 (O), 32 (S or O2), 34 (H2S), 44 (CO2), 64 (S2 or SO2) and 76 (CS2)) 
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4.1.4 Summary 

To understand the nature of H2S adsorption onto carbon surfaces under dry and anoxic 

conditions, effect of carbon pore structure and surface chemistry were studied using activated 

carbon fibers (ACFs) with different pore structures and surface areas. Surface pretreatment 

including oxidation and heat treatment were also conducted before adsorption/desorption test in a 

fixed bed reactor. Raw ACFs with higher surface area showed greater adsorption and retention of 

sulfur and heat treatment in nitrogen further enhanced adsorption and retention of sulfur. The 

retained amount of hydrogen sulfide correlated well with the amount of basic functionalities on 

the carbon surface, while the desorbed amount reflected the effect of pore structure. TPD and 

TGA anayses showed that the retained sulfurous compounds were strongly bonded to the carbon 

surface. In addition, surface chemistry of the sorbent might determine the predominant form of 

adsorbate on the surface. 
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4.2 H2S ADSORPTION ONTO ACTIVATED CARBONS 

4.2.1 Characterization of Activated Carbons 

Table 8 lists the origin, surface area, and metal content of virgin activated carbons used in 

this study. BD and PCB were derived from wood and coconut shells, respectively; Centaur, BPL, 

and F400 were derived from bituminous coal. Because of the difference in origin, the latter 

carbons have much higher ash contents, especially the Fe and Al contents, while PCB has the 

lowest ash content. The BET surface areas were obtained from the literature 125, 177, 178.  

Table 9 lists the density of different surface functionalities on virgin activated carbons as 

determined by Boehm titration. The carbonyl group seems to be the major acidic functional 

group although it is the weakest acidic group 89. The density of total acidic functionalities is 

higher than total basic groups for all carbons. The pH values of different carbons are consistent 

with the ratio of acidic and basic surface groups on the carbon surface (i.e. more basic groups 

and less acidic groups resulted in higher pH of the carbon sample) except Centaur. Centaur is 

produced through special chemical treatment at high temperatures. It is patented and specifically 

designed for catalytic applications 179, 180. 
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Table 8. Precursor, surface area, and metal content of activated carbons 

Carbons Base 

Material 

BET Surface 

Area  

Ash 

Content 

Metal Content (mg/kg) 

    (m2/g)  (wt%) Al Ca Cu Mg Mn Fe 

BD Wood 510 2.7 48 378 53 313 603 140 

Centaur Bituminous 

Coal 
632 4.1 1290 350 108 139 41 1040

BPL Bituminous 

Coal 
1067 6.6 1292 841 251 198 21 2868

PCB Extruded 

Coconut 
1124 0.8 6 105 13 365 9 182 

F400 Bituminous 

Coal 
1224 7.3 86 325 21 101 5 2984

 

Table 9. Functionalities and pH of activated carbons 

Activated 
Carbons 

Carboxyl Lactonic Phenolic Carbonyl Total 
Acidity 

Total 
Basicity 

Total 
Groups 

Acidity/ 
Basicity 

pH 

BD 0.300 0.112 0.608 0.138 1.158 0.215 1.373 5.39 4.72 
Centaur 0.042 0.012 0.074 0.410 0.538 0.390 0.928 1.38 5.26 

BPL 0.070 0.130 0.130 0.408 0.738 0.313 1.050 2.36 5.45 
PCB 0.150 0.000 0.123 0.568 0.840 0.535 1.375 1.43 7.80 
F400 0.025 0.030 0.195 0.760 1.010 0.588 1.598 1.89 5.88 

Unit: mmol/g 
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4.2.2 Effect of Carbon Surface Chemistry on H2S Uptake 

Figure 14 depicts the correlation between irreversibly adsorbed (retained) H2S and surface 

area, ash content, and specific metal contents for the five sobents evaluated in this study. It is 

clear that ash and specific metal content had no significant effect on H2S retention at 23 °C under 

dry and anoxic conditions. Such behavior is expected because metals as active sites for H2S 

uptake usually require much higher temperature 20. With the increase in the BET surface area of 

the carbon samples, there is a trend of increase in the H2S uptake capacity, which is consistent 

with the adsorption results with ACFs. This indicates that the density of active sites for H2S 

uptake increases with the increase in BET surface area of the carbons. During the formation of 

higher surface area, more defects and higher heterogeneity must be created at the same time. 

This explains why the “active surface area” sometimes has good correlation with the BET 

surface area of carbon materials 84. 
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Figure 14. Correlation of increased sufur content with surface area and metal contents 
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Figure 15 depicts the correlation between irreversibly adsorbed H2S and different surface 

functional groups, including total acidic and total basic surface functionalities. Generally, there is 

a weak inverse correlation between the density of strong acidic functionalities (carboxylic, 

lactonic, and phenolic) and H2S retention. There appears to be no correlation between total acidic 

functionalities and H2S retention. These results suggest that strong acidic functionalities have 

adverse effects on irreversible H2S uptake. The higher density of acidic surface groups suggests 

that more “active sites” created during activation of these carbons had already been occupied by 

oxygen, leaving less sites for hydrogen sulfide bonding. In addition, these acidic oxygen 

containing surface groups do not seem to bond hydrogen sulfide under dry and anoxic 

conditions. 

At the same time, the density of total basic surface groups showed good correlation with 

the H2S uptake capacity (Figure 15). Basic surface groups are believed to be associated with the 

pyrone groups and the π electrons of the carbon basal planes 73, 89. The high electron density 

makes these functionalities strong Lewis basic sites, which is beneficial for fixing the hydrogen 

sulfide molecule through interaction with hydrogen. In this case, carbon basicity seems to be a 

measurement of the surface insaturation toward acidic molecules. Previous studies also support 

that basic environment enhance the adsorption of H2S onto carbonaceous surfaces 126,181. High 

CO2 uptake by activated carbon was also attributed to the presence of more basic functionalities 

182. Similar results were obtained for tests with ACFs (section 4.1). For this set of experiment, the 

uptake of H2S showed good correlation with the density of carbonyl group too. Carbonyl groups 

are the weakest acidic functionalities, and some of the carbonyl groups could show basic 

properties if surrounded by other neighboring functional groups 73. 
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Figure 15. Effect of different carbon surface groups on irreversible H2S adsorption without oxygen 
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The correlation between H2S retention and the density of basic surface functionalities on 

both ACFs and activated carbons is summarized in Figure 16, which reveals the importance of 

acid-base interactions for H2S adsorption onto carbonaceous surfaces. However, the contribution 

of carbonyl group to the uptake of H2S by ACF surface is not obvious, which may be because 

that ACF is a different carbon material from activated carbons.  
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Figure 16. Effect of basic surface functionalities on H2S retention for all carbons 

 

The effect of surface functionalities on the retention of H2S in the presence of oxygen is 

not obvious. The retained amount of H2S in the presence of oxygen increased significantly when 

compared to the uptake in the absence of oxygen but neither the basic surface functionalities nor 

the total surface groups showed good correlations with the retention of H2S. The oxidation of 

H2S in the presence of oxygen can be catalyzed by the carbon surface and this difference in 
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mechanism can explain the high H2S retention and weak correlation with the surface 

functionalities.  However, it seems that Centaur carbon has exceptionally high H2S uptake 

capacity, as shown in Figure 40(a). Such behavior is clearly due to the special treatment used for 

the production of this carbon 179, 180. If this carbon was not included in the analysis, the H2S 

retention increased with the increase in total surface groups and basic surface groups. As shown 

in Figure 40(b), the total surface groups seem to have better correlation with the H2S uptake 

capacity.  

 

4.2.3 Effect of Surface Treatment 

The effect of heat treatment temperature on carbon basicity is shown in Figure 17. The 

increase in heat treatment temperature led to higher basicity of the resulted carbon material. This 

can be understood because most acidic functionalities decompose at lower temperatures while 

weak acidic groups decompose at higher temperatures. Many reports have confirmed that the 

decomposition of oxygen containing surface functionalities at elevated temperatures increases 

carbon basicity 85. Phillips 83 further postulated that the evolution of the oxygen containing gases 

during heating always take away carbon atoms from the carbon basal plane, forming unsaturated 

“active sites”.  

As shown in Figure 18, heat treatment (outgassing) in argon increased the retained amount 

of H2S for all three activated carbons used in these epxeriments. However, maximum H2S 

retention was observed after 300 °C heat treatment and higher surface treatment temperature 

resulted in lower H2S uptake capacity under dry and anoxic conditions. It was reported that 

different oxygen containing surface groups decompose at different temperatures to release CO2 
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at lower temperatures and CO at higher temperatures 38. Carboxylic groups decompose at 100-

400 °C to release CO2 ; lactonic groups decompose at somewhat higher temperatures to produce 

CO2; anhydride groups decompose in the same temperature range as lactonic groups to release 

both CO and CO2; phenol, carbonyl, ether, and quinine groups decompose at 600-1000 °C to 

release CO. IR study also showed the same trend of decomposition of oxygen containing surface 

functionalities 82. These results indicate that functionalities that are stable at higher temperatures, 

i.e. carbonyl groups, pyrone groups, are important sites for chemisorption of H2S onto the carbon 

surface because their removal decreases H2S retention. 
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Figure 17. Change of carbon basicity after surface treatment 
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Figure 18. Effect of heat treatment on irreversible H2S uptake without oxygen 

 

In contrast to the results with virgin activated carbons, samples obtained after heat 

treatment did not show linear relationship between the density of basic surface functionalities 

and H2S uptake capacity. The higher basicity after heat treatment is attributed to π-electrons of 

the graphite structure as well as the more stable oxygen containing surface groups. With more 

oxygen containing surface functionalities decomposed at higher temperatures, the impact of the 

π-electrons of the graphite structure becomes more important. Since the H2S uptake capacities of 

the three activated carbons after 900 °C treatment was still higher than that of the virgin carbons, 

carbon basicity due to the carbon basal planes did enhance H2S uptake. The enhanced uptake of 

H2S is possibly through the formation of more active sites as proposed Phillips 83.   However, the 

maximum H2S uptake occured after exposure to 300 °C when strong acidic functionalities have 
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decomposed. The results with virgin and heat treated samples support the hypothesis that the 

surface functionalities responsible to carbon basicity (i. e. pyrone and chromene groups) are 

extremely important for the uptake of H2S on the carbon surface.  However, the contribution of 

weak acidic groups (i. e. carbonyl groups) to H2S uptake could not be ruled out. 

H2S retention was possibly through addition to Lewis basic sites as a first step. These 

Lewis basic sites include strong basic functionalities such as chromene group or weak acidic 

groups such as carbonyl group. At the same time, Lewis basic sites can also be produced after 

the decomposition of acidic functionalities during heat treatment. After the chemisorption of 

H2S, scission of H-S bond can produce .SH radical, which is a very important intermediate for 

the formation of other sulfur species 183. Similar to the effect of carbon surface chemistry on H2S 

uptake, the catalytic activity of carbon surface toward specific chemical reactions can be 

optimized at medium basicity, when some of the CO2 yielding functionalities are removed 73, 89. 

This enhanced catalytic activity is probably due to the improved retention and dissociation 

reactions after the elimination of strong acidic functionalities.  

As shown in Figure 19, carbon surfaces treated with ammonia showed a dramatically 

increased retention of H2S. This can possibly be attributed to the increase in nitrogen containing 

surface functionalities. Nitrogen containing surface groups can also increase the carbon basicity, 

as shown in Figure 17. Activated carbons after ammonia treatment were found to be grafted with 

nitrogen containing surface functionalities, which are responsible for the high basicity of the 

resulted carbon materials 67. The nitrogen containing surface groups are likely to be the active 

sites accounting for the increase in irreversible H2S uptake, probably by mechanisms similar to 

those for untreated carbons. Enhancement of CH3SH adsorption by nitrogen containing 

functionalities was also reported 66.  
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Figure 19. Effect of ammonia treatment on irreversible H2S uptake without oxygen 

 

4.2.4 Summary 

Five activated carbons were evaluated for H2S retention (irreversible adsorption) in a fixed 

bed reactor system. H2S retention was tested under dry and anoxic conditions at room 

temperature. Before retention test, the metal contents and oxygen containing surface 

functionalities were characterized by atomic adsorption spectrophotometer (AAS) and Boehm 

titration. Metal contents did not show significant effect on the H2S uptake capacity. There was a 

good correlation between the retained amount of H2S and the density of total basic 

functionalities, indicating the importance of acid-base interaction for H2S uptake under dry and 

anoxic conditions. The removal of strongly acidic surface functionalities by heat treatment 

enhanced H2S retention but further heat treatment did not lead to higher H2S retention although 
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carbon basicity increased. Ammonia treatment increased H2S retention probably through the 

formation of nitrogen containing surface functionalities. With the presence of oxygen, the 

retained amount of H2S increased dramatically; there seem to be a better correlation between the 

H2S retention and total surface groups. 

4.3 SULFURIZATION OF ACFS AND BPL CARBON 

4.3.1 Effect of Carbon Materials 

Four carbon materials (i.e., three ACFs and BPL carbon) were tested for H2S uptake at 600 

°C (600C-S Only). The results in Figure 20 clearly show that for all the carbon materials tested, 

the increased sulfur content (the ultimate sulfur content minus the sulfur content of the virgin 

carbons) showed good correlation with the surface area of virgin carbon material. Surprisingly, 

significantly higher metal content on BPL carbon did not promote the hydrogen sulfide uptake, 

indicating that metals are not effective sites for hydrogen sulfide uptake. As shown in Table 4, 

with the increase in ACF serial number, the oxygen content decreases. This suggests that the 

oxygen containing functionalities are not the major factor for H2S uptake either. These results 

support the hypothesis that the active sites for H2S uptake at high temperature are closely related 

to the pore structure, indicating that they are derived from the carbon structure itself. As 

discussed by Mangun et al. 165, the active sites on ACFs for SO2 uptake are probably the defect 

sites, which can be created by oxidation and then degassing. 
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Figure 20. Effect of sorbent surface area on the increased sulfur content after sulfurization 

 

 

4.3.2 Effect of Temperature 

Figure 21 shows the effect of temperature in the range of 400-800 °C on ultimate sulfur 

content of ACF-25 and BPL carbon with H2S fed to the reactor during the stable temperature 

only (S Only). Sulfur loading on these carbonaceous sorbents increased with an increase in 

temperature. These samples have much higher sulfur content than those produced at low 

temperatures (section 4.1).  Such behavior is reasonable since the higher temperature can provide 

more energy to facilitate greater interaction between H2S and carbon surface and promote 

formation of more active sites for H2S uptake.  
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Figure 21. Effect of temperature on sulfurization of ACF25 and BPL in the presence of H2S 

during stable temperatures only ( S only) 

 

 

Figure 22 depicts temperature programmed desorption (TPD) profile of virgin BPL. The 

major decomposition products of the surface functionalities are CO2 at lower temperatures and 

CO at higher temperatures. The maximum release of the two gases occurred at 370 °C (643K) 

and 790 °C (1063K), respectively. Similar results were also reported by Li et al. 100. The increase 

in temperature leads to the decomposition of more surface functionalities, thereby, creating more 

active sites for sulfur bonding, leading to higher sulfur content at higher temperatures. These 

observations agree with the mechanism proposed by Mangun et al. 165 for SO2 uptake. Since the 

temperature ranges for the decomposing of the surface functionalities are different, the reactivity 

of these active sites towards H2S may not be the same.  
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Figure 22. CO2 and CO evolution during temperature programmed desorption 

 

 

The temperature programmed reaction results shown in Figure 23 can provide further 

insight into the reaction mechanism. Complete breakthrough of H2S at room temperature 

occurred after about 25 minutes. Once the reactor heating commenced, two H2S peaks 

representing the desorption of weakly and strongly adsorbed H2S were observed at 50 and 450 

oC, respectively. Similar results were reported in previous studies of H2S adsorption onto carbon 

surfaces at low temperatures (section 4.1).  At reactor temperatures between 150 °C to 600 °C, 

there was no significant decrease in H2S concentration and no other sulfur containing gas species 

were observed in the gas stream. This indicates adsorption of H2S in this temperature range could 

be attributed to addition to unsaturated active sites created by the decomposition of CO2 yielding 
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functionalities or addition to “CO-Complex” as proposed by Puri and Hazra 72. Above 600 °C, 

the concentration of H2S started to decrease dramatically. At the same time, the formation of H2 

was observed (Figure 41 in APPENDIX), indicating the decomposition of H2S to H2 and S that is 

catalyzed by the carbon surface. This hypothesis is supported by the observation of yellow 

elemental sulfur at the exit of the reactor. Above 800 °C, another species, CS2, started to evolve. 

This suggests the direct chemical reaction between carbon and H2S, and incorporation of sulfur 

into the graphite structure.  
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Figure 23. Temperature programmed reaction between H2S and BPL surface 
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EDAX was used to determine elemental composition of the surface of ACF-25. The S, O, 

and C contents on the surface were determined after sulfurization at different temperatures and 

the surface sulfur content is compared with that obtained from the bulk sulfur analysis by the 

Leco Sulfur Analyzer in Table 10. The increase in temperature led to a decrease in 

oxygen/carbon content and increase in the sulfur content. Such behavior suggest that uptake of 

H2S is associated with the decomposition of carbon surface functionalities and loss of active 

carbon atoms. The loss of active carbon atoms, forming volatile carbon disulfide, was observed 

at temperatures above 500 °C (Figure 23b). Sulfur content on the surface is higher than that in 

the bulk because the gas-solid reaction between H2S and carbon occurs mainly on the surface. 

 

Table 10. Sulfur content in the bulk (sulfur analysis) and on the surface (EDAX) 

Surface Content 
[wt.%] 

 
Sample 

Bulk Sulfur Content 
[wt.%] 

S O C 
ACF25-Virgin 0.2 0.2 4.38 95.41 

ACF25-400C-S Only 3.0 6.04 2.13 91.83 
ACF25-600C-S Only 4.8 6.95 1.61 91.44 
ACF25-800C-S Only 7.9 11.52 1.31 87.17 

 

 

Figure 24 shows the effect of temperature on ultimate sulfur content of BPL carbon 

exposed to H2S throughout the entire process and associated TGA results. Figure 24 shows that 

the sulfur content increases with the increase in temperature, which can be explained by the 
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creation of more active sites for sulfur binding. The peak in sulfur content around 300 °C may be 

associated with the peak in decomposition of functionalities yielding CO2. This result seems to 

support the hypothesis of Puri and Hazra 184 that “CO-Complex” enhances H2S adsorption.  

TGA test results in Figure 24 indicate that the dominant weight loss occurred in the 

temperature range from 300 °C to 500 °C. It is also evident that activated carbons impregnated 

with sulfur at temperatures below 400 °C lost most of the deposited sulfur during the TGA test. 

On the other hand, the sulfur content of carbons impregnated at 600 °C and 800 °C was much 

higher than the total weight loss, which means that sulfur was more strongly bonded to the 

carbon surface, which may be due to the formation of strongly bonded sulfur forms (e. g. organic 

sulfur). Formation of very stable sulfur species at 800 °C were also reported by Sugawara et al. 

144.  
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Figure 24. Sulfur content and TGA results of BPL sorbents produced at different temperatures 

(H+S+C) 
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4.3.3  Effect of Sulfurization Protocol 

It can be seen from Figure 25 that the presence of H2S during the heating and cooling 

process can increase the total sulfur content of BPL at 600 °C.  Similar behavior was observed at 

other impregnation temperatures (Figure 42 in APPENDIX). The difference in the ultimate 

sulfur content of samples produced at different temperatures is clearly due to the presence of H2S 

during heating and cooling process. For BPL-600C-C only, the sulfur content is lower than the 

other samples. However, considering the short duration of the cooling process (about 60 

minutes), the uptake of sulfur is significant. Two factors may contribute to the increased uptake 

of sulfur during the cooling process. Firstly, the hydrogen sulfide molecules could not escape 

from the carbon surface once they are attached to the active sites (created at higher temperatures) 

because of the decreasing temperature; secondly, the carbon structure itself experiences an 

annealing process, which may also help to capture more sulfur species due the structural 

changes. 

TGA test depicted in Figure 25 showed that the three samples (600C-C Only, 600C-

H+S+C and 600C-S+C) with the presence of H2S during the cooling process have much higher 

weight loss than 600C-H+S only and that 600C-H+S+C has the highest weight loss. Weight loss 

mainly occurred at the temperature range of 300-500 °C. Again this indicates that the sulfur 

added during the cooling process was not very strongly bonded to the carbon surface, but most 

probably trapped as free elemental sulfur.  
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Figure 25. Sulfur content and TGA results of BPL sorbent produced by different sulfurization 

protocols at 600 °C 

 

 

4.3.4 Sulfur Distribution 

Pore size distribution for BPL before and after hydrogen sulfide uptake shown in Figure 26  

suggests a slight change in pore volume in the 10-20 Å range after sulfurization. The presence of 

H2S during the cooling process further decreased the pore volume at smaller pore size range. 

However, the change in pore size distribution after hydrogen sulfide uptake is not significant. 

Such observation leads to the conclusion that the sulfurous compounds produced are extremely 
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well distributed on the surface of the sorbent.  Furthermore, it is more likely that the organic 

sulfur or chemically fixed elemental sulfur is the dominant sulfur form since the free elemental 

sulfur would tend to agglomerate into isolated islands on the carbon surface and significantly 

alter the pore size distribution of the sorbent. 
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Figure 26. Pore size distribution of BPL before and after H2S uptake at high temperatures 

 

4.3.5 Forms of Sulfurous Products --- XPS Results 

XPS analysis was conducted to identify the produced sulfur species on ACFs and the 

typical spectra are shown in Figure 27. Standard library spectra provide the following 

information about the peaks related to sulfur species: free elemental sulfur has a peak around 
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164.05 eV; chemisorbed sulfur has a peak at 161.8-162.6 eV; organic sulfur has a peak between 

163-164.1 eV; and oxidized sulfur shows a peak above 167 eV. Unfortunately, there is an 

overlap between the region of elemental sulfur and that of organic sulfur. The results depicted in 

Figure 27 suggest that either organic sulfur or elemental sulfur were the dominant sulfur forms 

on ACF surface.  According to Sugawara et al.144, thiophene may be the possible structure of 

organic sulfur products deposited on the carbon surface at high temperatures.  
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Figure 27. XPS analysis of ACF25 before and after sulfurization 
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4.3.6 Forms of Sulfurous Products on BPL --- XANES Results 

Figure 28 shows the sulfur K-edge XAFS spectra and the summary of different sulfur 

forms. By applying the least-squares technique, the relative ratio of different sulfur species can 

be obtained from the spectra. The total sulfur content was obtained from sulfur analysis and the 

sulfur content of each species is shown in Figure 28 (b). Sulfur was deposited on the carbon 

surface in three major forms, namely elemental sulfur, organic sulfur, and sulfate. This is 

consistent with the previous results reported by Hsi et al. 110. It is interesting to point out that 

sulfate was not detected on ACFs by XPS, which may be due to the extremely low metal content 

of this carbonaceous material (Table 4).  

The major difference among samples is in the elemental sulfur and thiophene content. For 

those samples prepared without the presence of H2S during the cooling process, i.e. BPL-400C-S 

only, BPL-600C-S only, and BPL-800C-S Only, thiophene content increased with the increase in 

temperature, with an abrupt increase in metal sulfide content from 600 °C to 800 °C.  

For samples produced at 600 °C, the presence of H2S during the cooling process (BPL-

600C-S+C versus BPL-600C-S only) increased both the elemental sulfur content and thiophene 

content. When elemental sulfur was used as the sulfurizing agent (BPL-600C-El. Sulfur), the 

majority of the sulfur content was mainly in elemental and organic sulfur form. These 

observations suggest that exposure to H2S during cooling process facilitate the formation of low 

valent sulfur forms. The sulfur species may be formed through the interaction between carbon 

and sulfur atoms after the decomposition of H2S (Figure 23). 

103 



 

0

1

2

3

4

5

6

-10 -5 0 5 10 15 20
Energy, eV

N
or

m
al

iz
ed

 A
bs

or
pt

io
n

S2-

S0

Sth

SO4
2-

R2SO2

Sth +

R2SO

BPL-400C-S Only
BPL-600C-S Only

BPL-800C-S Only
BPL-600C-S + C

BPL-600C-El. 

BPL- Virgin

 
 

(a) Summary of XANES spectra of prepared samples 

(S2-: metal sulfide; S0: Elemental sulfide; R2SO: Sulfoxide; R2SO2: Sulfone; SO4
2-:Sulfate) 

 
 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

BPL-Virgin BPL-400C
- S only

BPL-600C
- S only

BPL-800C
- S Only

BPL-600C
- S+C

BPL-600C-
El. Sulfur

Samples

Su
lfu

r C
on

te
nt

 in
 S

pe
ci

fic
 F

or
m

 (w
t%

)

Metal Sulfide
Elemental
Thiophene
Sulfoxide
Sulfone
Sulfate

 
 

(b) Different Sulfur forms in prepared samples 
 
 

Figure 28. Contents of different sulfur forms from XANES results 
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4.3.7 Mercury Uptake Studies 

Effect of impregnation temperature 

As shown in Figure 29, the H+S+C sulfurization protocol at 400-600 °C produced 

effective mercury sorbents, with 600 °C being the best impregnation temperature for the 

production of effective mercury sorbents. This is consistent with previous studies using 

elemental sulfur for sulfur impregnation onto activated carbons 103, 104, 111. Considering that 

neither the pore structure nor the sobent surface area was significantly changed during the 

impregnation process (Figure 26), it can be concluded that the forms of sulfur species played a 

key role in the very high capacity of the sorbent produced at 600 °C. Because elemental sulfur 

and thiophene are the two major species produced at higher temperatures, it is reasonable to 

assume that either one or both of the two species function as the key mercury uptake sites.  

It is important to note that BPL-800C-H+S+C had significantly lower mercury uptake 

capacity than BPL-600C-H+S+C despite much higher total sulfur content. As shown in Figure 

28, this sorbent also had the highest metal sulfide contents. It can therefore, be concluded that 

sorbents prepared at very high temperatures contain sulfur species already combined with metals 

or other compounds, which are no longer effective for mercury uptake. The sulfur species 

formed at very high temperatures may be imbedded into the graphite structure (Figure 23), 

affecting their mercury uptake capacity. 

Sulfurization probably occurred after the decomposition of certain oxygen containing 

surface functionalities. Temperature programmed desorption studies with virgin BPL carbon 

found that different oxygen containing surface functionalities decompose at different 

temperatures 38. For example, acidic functionalities will decompose to CO2 at temperatures 
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below 600 °C. Phenolic and carbonyl groups will decompose at higher temperatures, yielding 

CO as the main product 185. The results of this study suggest that the decomposition of CO2 

evolving groups is helpful for the formation of sulfur forms active in mercury uptake since 

effective mercury sorbents were produced at temperatures lower than or at 600 °C. 
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Figure 29. Effect of impregnation temperature on Hg uptake capacity of sorbents produced using 

the (H+S+C) protocol 
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Effect of impregnation protocol 

Besides temperature, the impregnation protocol was found to be important for producing 

effective mercury sorbents. As shown in Figure 30, the production of sorbents at 600 °C by 

exposure to H2S during the stable phase (600C-S only) and during both heating and stable phase 

(600C-H+S) did not produce effective mercury sorbents. The presence of H2S during the cooling 

process has a unique impact as can be seen from the performance of 600C-S+C, 600C-H+S+C, and 

600C-C only. The effectiveness of 600C-C only indicates that the formation of sulfur species 

effective in mercury capture actually occurs between 400°C to 600 °C. However, heating up to 

around 600 °C might have created the active sites necessary for the formation of such species 

during the cooling process. These active sites may be created by decomposing CO2-yielding 

oxygen containing functionalities, most probably lactone group 185. The performance of 600C-S 

only and 600C-H+S also indicates that the effective sulfur species are not thermally stable because 

they are easily removed if H2S is not present in the gas stream during the cooling process.  

Figure 30 also shows that adding H2S during the heating process can improve the 

performance of the Hg sorbent created by exposure to H2S during the stable process and the 

cooling process. It has been reported that metal sulfides can catalyze the decomposition of 

hydrogen sulfide into hydrogen and elemental sulfur 138, 186. The difference in the performance of 

600C-H+S+C and 600C-S+C suggests that the species (probably elemental sulfur) formed during 

the heating process are also effective in mercury capture.  
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Figure 30. Effect of impregnation methods at 600 °C on Hg uptake capacity  

 

The results depicted in Figure 31 show that the presence of H2S during the cooling process 

also significantly increased Hg uptake capacity at 400 °C. However, the 400C-H+S+C was not as 

effective as 600C-H+S+C. This again indicates the creation of active sites for producing effective 

sulfur species requires temperature as high as 600 °C. Increasing the temperature to 800 °C 

resulted in higher sulfur content, but sulfur species created under such conditions are not effective 

for mercury removal. As mentioned above, this may be related to the formation of other metal 

sulfides or the removal of certain surface functionalities that were formed at lower temperatures. 

The results above indicate that the most effective sulfur species were formed during the 

cooling process after high temperature (400-600 °C) treatment. Temperatures as high as 800 °C 

will eliminate or block the active sites for the formation of these sulfur species. Liu et al. 103, 104 has 
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reported that very effective mercury sorbents were produced using elemental sulfur as the 

sulfurizing agent at 600 °C. The same temperature was found to be effective in this study using 

H2S as the sulfuring agent. However, besides the importance of temperature, the exposure to H2S 

during the cooling process is also found to be an important factor in producing effective mercury 

sorbents. 
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Figure 31. Effect of exposure to H2S during heating and cooling on Hg uptake at different 

temperatures 

 

 

 

 

 

109 



 

 

Effect of different sulfur forms on Hg uptake 

The correlation between mercury uptake capacity and total sulfur content is shown in Figure 

32. The fairly good correlation shows the importance of sulfur content for sorbents with similar 

pore structure. Previous studies had proposed the effect of pore structure 110, 111, 187. However, this 

study clearly showed that sulfur forms are more important for impregnated sorbents with similar 

pore structure. 

The correlations between mercury uptake capacity and different sulfur forms are shown in 

Figure 33. Based on the slope of the linear correlation and the R2 value, it seems that three forms of 

sulfur, namely, elemental sulfur, thiopene (typical organic sulfur on carbon surface), and sulfate, 

could possibly contribute to mercury uptake capacity. Elemental sulfur and organic sulfur were 

previously considered to be effective mercury removal agents 38. However, sulfate also showed 

good correlation with mercury uptake capacity in this study.  

It should be noted that the thiophene content on the samples produced in the presence of H2S 

at stable temperatures only (BPL-400C-S Only, BPL-600C-S Only, and BPL-800C-S Only), 

increased more than three times with the increase in temperature, but the mercury uptake capacity 

remained unchanged. Such behavior suggests that thiophene might not be the major active site for 

mercury uptake although fairly good correlation was found between mercury uptake capacity and 

thiophene content. Comparing to the other two possible effective sulfur species, the sulfate content 

is very low. This also indicates that sulfate may not be the most effective sulfur forms for mercury 

uptake regardless of the good linear correlation between mercury uptake capacity and sulfate 

content.  
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Elemental sulfur can react with elemental mercury even at room temperature. However, 

not all elemental sulfur forms function equally. As described in section 4.3.2, temperature 

programmed reaction between H2S and carbon surface released H2 at temperatures around 600 

°C during. This suggests the decomposition of H2S into H2 and S that is likely catalyzed by the 

carbon surface. This reaction pathway can easily create short-chain elemental sulfur species, 

such as S2, S3, and S4, which are believed to be much more effective in Hg uptake than longer 

chained elemental sulfur 103, 104, 111.  
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Figure 32. Correlation of Hg uptake capacity with total sulfur content for sorbent produced by 

sulfurization above 400 °C 
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Figure 33. Correlation of Hg uptake capacity with different sulfur species on sulfurized sorbents 

 

 

 

 

112 



 

 

4.3.8 Summary 

The uptake of hydrogen sulfide by carbon materials (ACFs and BPL) under dry and anoxic 

conditions at high temperatures (200-800 °C) was tested using a fixed bed reactor system. The 

uptake of hydrogen sulfide at 600 oC correlates well with the surface area of the carbon 

materials, indicating the formation of active sites during the formation of the pore structure. 

Sulfurization at higher temperatures resulted in higher sulfur content and more stable sulfur 

species. At temperatures below 600 °C, sulfurization is likely occurring through the addition of 

H2S onto active sites enhanced by decomposition of CO2 yielding oxygen containing 

functionalities, while at higher temperatures direct reaction between H2S and the carbon 

occurred. The presence of H2S during the cooling process obviously increased the ultimate sulfur 

content, especially with relatively unstable species. Sulfurized sorbents produced at temperatures 

higher than 400 °C maintained pore structures similar to that of the virgin carbon.  

XPS and XAFS analysis of the sorbents produced at different temperatures and different 

sulfurization protocols showed that most of the produced sulfur is either organic sulfur, 

elemental sulfur, or metal sulfide. High temperatures promote the formation of organic sulfur, 

and the presence of H2S during the cooling process increased elemental sulfur content. Hg 

uptake test indicates that 400-600 °C is the optimum temperature range to produce effective 

mercury sorbents. The presence of H2S during the cooling process creates the most effective 

sulfur species for mercury binding. Elemental sulfur species are probably the most effective for 

capturing mercury although thiophene and sulfate content also showed good correlation with 

mercury uptake capacity.  
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4.4 OXIDATION OF H2S ON ACFS FOR MERCURY UPTAKE 

4.4.1 Structure of Raw ACFs 

Figure 34(a) depicts pore size distribution of raw ACFs after grinding into powders. It is 

clear that the diameter of most pores in these ACFs is below 2nm. These micropores can be 

divided into three ranges corresponding to three peaks on Figure 34(a): small micropores (d < 0.72 

nm), medium micropores (0.72 nm < d < 0.90 nm) and big micropores (d > 0.90 nm). As the serial 

number increases from ACF10 to ACF25, medium and big micropore volume (> 0.72 nm) 

increases while the small micropore volume (< 0.72 nm) decreases. This is not surprising because 

ACFs with increasing serial numbers were produced under extended activation time.  

 

4.4.2 Sulfur Content and Distribution 

Table 11 summarizes general properties of the sorbents produced in this study and their 

respective Hg uptake capacities. It is clear from these results that low temperature (e.g., 80 ºC) 

does not facilitate significant sulfur deposition through H2S oxidation, even if a complete H2S 

breakthrough was attained. Both ACF-10 and ACF-25 achieved much higher sulfur content at 

150ºC. This is due to the fact that a predominant mechanism for H2S adsorption at low 

temperatures is physisorption 119-121, which leads to filling of small micropores (d < 0.72 nm) 

first. As a result, the catalytic oxidation of H2S could only take place in small micropores. This 
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hypothesis is supported by pore size distribution measurements shown in Figure 34 (b), which 

depicts changes in the pore size distribution of ACF10 after sulfur impregnation at 80 °C and 

150 °C. It is clear that sulfur deposition at 80 °C is accomplished more by pore filling rather than 

by monolayer deposition as the loss in the small micropores is obvious, while very few medium 

micropores were occupied by sulfur molecules.  

 

Table 11. Summary of sorbent properties and mercury adsorption capacity 

Sample Name 
S 

Content  Vs Vm Vb Vt 
BET Surface 

Area** 
Hg Uptake 
Capacity 

S Utilization 
Ratio 

  (wt%) (cm3/g) (cm3/g) (cm3/g) (cm3/g) (m2/g) (µg/g) (%) 
ACF10-Raw 0.2 0.274 0.039 0.065 0.371 920 214  --- 
ACF10-80C-
24hrs 6.7 0.164 0.040 0.095 0.299 710 450 0.107 
ACF10-
150C-24hrs    26.3 0.001 0.001 0.003 0.005 8 220 0.013 
ACF25-Raw 0.2 0.263 0.101 0.489 0.741 1950 319* --- 
ACF25-
150C-2hrs 4.1 0.227 0.069 0.454 0.714 1880 790 0.307 
ACF25-
150C-6hrs 10.2 0.173 0.052 0.409 0.634 1610 480 0.075 
ACF25-
150C-24hrs 30.5 0.006 0.002 0.007 0.015 100 230 0.012 

Vs: small micropore volume Vb: big micropore volume; Vm: medium micropore volume, Vt: total pore volume 

*deviation was ±8% based on three runs. ** Pressure used: P/P0=1.0 × 10-5 ~ 1.0. 
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Figure 34. Pore size distribution of ACFs before and after sulfur impregnation 
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Figure 34 (c) shows changes in the pore size distribution of ACF25 as a result of sulfur 

impregnation at 150°C for 2, 6, and 24 hours. It is clear that the initial losses in the pore volume 

after only 2 hours of impregnation occurred in small and medium micropores, while large 

micropores were not affected by sulfur deposition.  The loss of small micropores was also 

observed by Hsi et al. 110, 111. As the impregnation time was extended to 6 hours, further 

reduction in small and medium size micropores was observed.  Reduction in the large micropore 

volume was observed only after the amount of sulfur deposited on the ACF surface exceeded 20 

wt% after 24 hours of impregnation.  A similar conclusion can be made for the data shown in 

Figure 34 (b) and Table 11, where the sulfur content exceeded 20 wt% before filling of large 

micropores was accomplished.  

SEM-EDAX analysis was conducted for ACFs before and after sulfur impregnation. 

EDAX provided the elemental composition (wt%) of the outer layer of the ACF samples. The 

results obtained at 15 kV are shown in Table 12. Sulfur contents based on QMS detection, which 

represent the average sulfur content (wt%) of the sample, are also listed in the same table. At low 

temperatures (i.e., 80 ºC) and short impregnation times (i.e., 2 and 6 hours), sulfur content at the 

outer surface of the ACF is much lower than the bulk average. This means that sulfur tends to 

deposit more inside the fibers than on the outside at lower impregnation temperatures and during 

the initial stages of impregnation at higher temperatures. However, pore filling is not the only 

mechanism for sulfur deposition on ACF. Some sites at the outer surface, especially at high 

temperatures, were also important for sulfur deposition because the sulfur content on the outer 
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surface was higher than the bulk average after 24 hours of impregnation, when almost all pores 

are filled or blocked. In addition, sulfur is melted at a temperature of 150 °C, which may also 

achieve a more uniform distribution of sulfur on the carbon surface. 

 

Table 12. Comparison of surface (EDAX) and average (QMS) sulfur content 

Samples EDAX Analysis#, wt% Average S%, wt%* 
 C O S S 

ACF10-Raw 97.60 2.38 0.20 0.2 

ACF10-80C 96.44 2.42 1.14 6.7 

ACF10-150C 62.97 2.52 34.50 26.3 

ACF25-Raw 95.41 4.38 0.20 0.2 

ACF25-150C-2hrs 94.95 4.03 1.02 4.1 

ACF25-150C-6hrs 89.67 2.97 7.36 10.2 

ACF25-150C-24hrs 61.14 4.45 34.41 30.5 

*Calculated from QMS analysis. 
#SEM-EDAX operation conditions: Magnification: 100, Voltage: 15kV, Scan time: 60 seconds 

 

 

It is clear that pore size analysis conducted through nitrogen adsorption measurements can 

not determine if the loss in pore volume is due to sulfur deposition by complete filling of the 

pores or just blockage of the pore entrance. This question can only be answered by calculating 

the volume of sulfur added per gram of ACFs and comparing it with the lost pore volume. The 

volume of deposited sulfur can be calculated assuming that the predominant form of elemental 

sulfur deposited in the ACF pores is Sλ with a density of 1.96 g/cm3 because of low temperatures 

used in this study 188. Table 13 compares the loss in pore volume to the volume of impregnated 

sulfur.  Column six of this table clearly suggests that the total pore volume lost during the 

impregnation process was not completely filled with sulfur. Pore blocking must account for a 
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significant fraction of the lost pore volume. The lower temperature resulted in a higher ratio of 

pore filling. This further supports the hypothesis that pore filling is the dominant mechanism for 

sulfur deposition at low temperature.  At 150 ºC, all samples showed that less than 50% of the 

lost pore volume was filled with sulfur. This indicates that most of the pores were blocked, rather 

than filled. Comparing the volume of sulfur added through impregnation with the loss in volume 

of medium and big micropores shows that some sulfur must be added into small micropores 

(SEM-EDAX showed that the excess sulfur was not on the outer surface, Table 12) because it is 

not possible to have over 100% filling of the pores for ACF10-80C and ACF10-150C. This result 

suggests that impregnated sulfur can not be entirely in the form of S8 because of size restriction 

(see text bellow) for the entrance of these large molecules into small micropores. It is more likely 

that, H2S and O2, which are much smaller molecules, first entered into small micropores and 

were then oxidized in-situ.  

 

Table 13. Comparison of the loss in pore volume and the volume of impregnated sulfur 

Samples 
Average 

S%* S added 
Volume of 

S added 
Vt 

Loss 
% of Lost 
Vt filled 

Lost 
Vb+Vm 

% of Lost 
Vm+Vb filled 

 (Wt%) 
 (mg/g raw 

ACF) (cm3) (cm3) (%) (cm3) (%) 
ACF10-80C 6.7 71.8 0.037 0.05 73 0.003 1078 
ACF10-150C    26.3     356.9 0.182 0.36 50 0.143   127 
ACF25-150C-

2hrs 4.1 42.8 0.022 0.11 20 0.067      33 
ACF25-150C-

6hrs     10.2     113.6 0.058 0.15 39 0.062     93 
ACF25-150C-

24hrs     30.5     438.8 0.224 0.83 27 0.452     50 
Vb: big micropore volume; Vm: medium micropore volume, Vt: total pore volume 
Assume all sulfur in S8 form with a density of 1.96 g/cm3 
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According to Meyer 189, the sulfur at 150 oC should be predominantly in the Sλ form, which 

is a ring of eight sulfur atoms. Assuming that Sλ is a spherical sulfur allotrope, its diameter is 

calculated to be 0.73 nm based on the sulfur density. Hsi et al 110, also reported a diameter of 

0.76 to 0.84 nm depending if the molecule exists as a ring or as a chain. Figure 34 (a) shows that 

ACF25-150C-2hrs and ACF25-150C-6hrs actually developed more small micropores with 

diameter below 0.75nm. This is most probably because the sulfur molecules plugged small 

micropores with diameter larger than that of one sulfur molecule but smaller than that of two.  

 

4.4.3 Stability of Sulfur 

Stability of sulfur on the carbon surface is important for practical application since the 

temperature of mercury laden gas streams is usually above 100 oC. Figure 35 shows TGA 

analysis of ACF10 before and after sulfur impregnation at 80 and 150 oC (it can be assumed that 

ACF20 and ACF25 impregnated at 150ºC would exhibit similar behavior). After heating to 

800ºC, the raw ACF10 lost less than 2% of its weight, while ACF10-80C and ACF10-150C 

showed weight loss of 6 and 17 %, respectively. These data show that not all the sulfur 

impregnated on the ACF surface is removed by heating to 800 ºC in an inert environment 

(elemental sulfur has a melting point around 119 °C and a boiling point about 444 °C). Such 

behavior is reasonable because some of the sulfur may be embedded into the carbon structure to 

form C-S complexes. Puri et al. 143 reported that C-S complexes formed by the reactions between 

various sulfur containing gases, including S, H2S, SO2 and CS2, and activated carbon are very 

stable and that heating the complex up to 600 oC could not remove all the sulfur impregnated on 
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the carbon surface. Although it is not directly proven in this study, it can be expected that the 

sulfur vapor created during thermal gravimetric analysis can react with the carbon surface to 

form these strong bonds at higher temperatures. 

The derivative weight loss curve (Figure 35 (b)) shows that there are two weight-loss 

peaks that appear between 200-300 ºC and between 400-500 ºC. The two peaks may represent 

different bond strength between the deposited sulfur and carbon structure of the fiber. Figure 35 

also shows that the increase in sulfur impregnation temperature results in greater area for the 

second peak. Such behavior is expected because higher temperature provides greater energy for 

creating stronger bonds. Another observation from Figure 35 is that the elemental sulfur loss 

occurred at a temperature that is much higher than any of the temperatures used during the 

impregnation process. Such behavior can be explained by the strength of the interaction between 

carbon and sulfur and by the porous structure of the sorbent that helps to retain deposited sulfur. 

Such behavior is beneficial for the mercury removal process as the adsorbed mercury will not be 

easily released from the sorbent surface if this result can be extrapolated to realistic mercury 

removal conditions. 

Using the method described before 168, the activation energy can be estimated based on the 

results shown in Figure 36. Figure 36 (a) shows the weight loss of ACF10-150C-24hrs at 

different heating rates. From the slope of the line correlating –logB vs 1/T, it was estimated that 

the activation energy of the decomposition of the impregnated sulfur on ACF10-150C-24hr is 

90.0 kJ/mol (elemental sulfur sublimation energy is 16.28 kJ/mol, Appendix C, Table 17). 

Compared to a typical C-S chemical bond energy of about 272 kJ/mol 190, this low activation 
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energy indicates that the sulfur lost during TGA analysis did not form chemical bonds with the 

carbon surface but is likely bound to the sulfur that remained on the ACF surface at the end of 

the TGA experiment.  
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Figure 35. TGA analysis of ACF-10 before and after sulfur impregnation: (a) total weight loss, (b) 

derivative weight loss 

(Sample weight: ~15 mg, nitrogen flow rate: 40 ml/min, heating profile: 120 °C for 2 hrs, ramp 
from 120 °C to 800 °C at 10 ºC/min) 
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Figure 36. Estimation of the activation energy for desorption of impregnated sulfur on ACF10-

150C-24hrs: (a) weight loss at different heating rates; (b) plot of –logB vs 1/T 

(Sample weight: ~18 mg, Nitrogen flow rate: 20 ml/min, Heating profile: 120°C for 2 hrs, ramp 
from 120°C to 800°C at 10ºC/min) 

 
 

123 



 

 

4.4.4 Forms of Sulfur 

In order to obtain information on the forms of sulfur on the carbon surface, the QMS 300 

was coupled with the TGA 7 to simultaneously monitor the sulfur loss and species released from 

the ACFs. For this study, a slow nitrogen flow of 12 ml/min and a much higher heating rate of 60 

°C/min were employed.  

Gases exiting the TGA were analyzed by the QMS 300 and the following AMUs (atomic 

mass units) were monitored: 16 (O), 18 (H2O), 28 (CO/N2), 32 (O2/S), 34 (H2S), 44 (CO2), 

48(SO), 64 (SO2/S2), 96 (S3), 128(S4). It was found that major species emitted from ACF10-Raw 

and ACF10-150C were O2, CO2, and SO2. Also, condensed elemental sulfur was clearly 

observed in the tube at the exit of the TGA furnace and no peaks associated with elemental sulfur 

were detected by the QMS because of the condensation. 

During the TPD (TGA-QMS) analysis, oxygen (possibly from the carbon surface) was 

released from the carbon surface. For ACF10-raw, only CO2 was observed, while for ACF10-

150C, both SO2 and CO2 were released (Figure 37). These results can not confirm whether the 

released sulfur was originally retained on the carbon surface as SO2 or in some other form. 

Therefore, these results were combined with XPS study to determine the origin of the SO2 during 

heating. 

The characteristic XPS spectra for ACF-25 before and after sulfur impregnation are shown 

on Figure 38(a). Based on the standard library spectra, the following binding energy data are 

relevant for this experimental system: around 164.05eV for free elemental sulfur, 161.8-162.6eV 

for chemisorbed sulfur, and higher than 167eV for oxidized sulfur. Unbound organic sulfur 
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species, like thiophene, also show peaks around 164 eV. However, in the presence of oxygen, the 

generation of these organic species is highly questionable.  Figure 38(a) shows that sulfur on 

ACF surface is present mainly in free elemental form with negligible amounts of oxidized sulfur 

forms. Figure 38(b) shows that the oxygen intensity on ACF surface increased, but not as 

significant as that of sulfur.  
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Figure 37. TPD of ACF10-150C 

 
(Heating rate: 60°C/min, pure nitrogen flow rate: 12 ml/min. Samples were dried at 120°C for 2 
hours before analysis. Monitored AMUs by QMS: 16,18,28,32,34,44,48,96,128) 
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Figure 38. XPS Spectrum of ACF25 before and after sulfur impregnation: (a) sulfur intensity and 

(b) oxygen intensity 

 

Combining all the observations discussed above, it can be concluded that impregnated 

sulfur on the carbon surface is mainly present in elemental form. Upon heating the impregnated 

sorbent, chemisorbed oxygen was released through decomposition of surface functionalities and 

combined with sulfur to form SO2 that was observed in the effluent gas during TPD. 
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It is important to note that contrary to other studies, which found that the major products 

created during H2S oxidation on activated carbon surface were both elemental and oxidized 

sulfur (i.e. sulfuric acid) 126, 127, 162, this study was conducted under dry conditions.   Furthermore, 

the samples used in this study were exposed to relatively high temperatures, which prevented 

significant retention of water vapor on the carbon surface. 

 

4.4.5 Impact of Sulfur Content on Mercury Adsorption 

Mercury uptake capacity of all adsorbents used in this study as a function of sulfur content 

is depicted on Figure 39. It is clear that higher sulfur content does not necessarily lead to greater 

mercury uptake. Figure 39 and Table 11 suggest that the sulfur content of around 4% deposited 

at 150 ºC produced a sorbent with the highest mercury capacity. Further increase in sulfur 

content hinders mercury uptake because the excess sulfur blocks or fills the pores of the sorbent, 

which are required for mercury adsorption. Similar behavior was observed before 105, 109. Sulfur 

utilization ratio was defined as the ratio of the molar amount of sulfur combined with mercury to 

the total molar amount of impregnated sulfur. The sulfur utilization ratios were calculated and 

included into Table 11. The low utilization ratios show that most of the sulfur did not react with 

mercury. Sulfur utilization ratio decreased with a decrease in pore volume, which is likely due 

reduced accessibility for the reaction with mercury. 
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Figure 39. Correlation of sulfur content with Hg uptake capacity for sorbents produced through 

H2S oxidation 

(Refer to Table 11 for sorbents propterties) 

 

Realizing that both sulfur content and pore structure of the sorbent are important, it is 

likely that the sorbent impregnated with a sulfur monolayer would offer best performance for 

mercury uptake. It is reasonable to suggest that sulfur which deposits on the sorbent surface in 

the second layer would block the access to the first layer and, at the same time, reduce the pore 

volume of the sorbent. 

 

4.4.6 Impact of Pore Volume and Surface Area on Mercury Adsorption  

The effects of pore volume and surface area were analyzed separately for raw ACFs and 

for ACF25 impregnated with sulfur. The pores were divided into three groups as described 

earlier: small micropores, medium micropores and big micropores. Pore volume and surface area 

of each group were determined from surface area analysis.  These values were correlated with 

observed mercury uptake using linear regression and the slope of the linear fit to experimental 
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data (value of the coefficient b in the expression qHg = a + bx) indicates the significance of a 

given parameter for Hg uptake. Sulfur impregnated ACFs were analyzed separately from virgin 

ACFs due to the important contribution of impregnated sulfur on mercury uptake. These analyses 

were done in an attempt to find the most important pore size region for Hg uptake by virgin and 

impregnated ACFs.  

Table 14 shows the effect of pore volume on Hg uptake capacity of the raw ACFs. Vb, 

Vs+Vm, Vm+Vb, and the total pore volume all showed good correlation with Hg uptake. Although 

Vs+Vm has the highest b value, its R2 is much smaller than that of the others. It appears that 

medium and big micropores contribute the most to Hg uptake. Because small micropores do not 

represent a major contribution to mercury uptake by virgin ACFs, it can be concluded that 

mercury adsorption on virgin ACFs at 140 oC is not achieved through physisorption 191. This 

finding supports previous suggestion that mercury uptake by carbonaceous sorbents at 140 oC is 

mainly due to chemisorption 192. As shown in Table 15, attempts to correlate fractions of surface 

area associated with small, medium and big micropores with mercury uptake support the 

conclusions discussed above because the surface area of medium and big micropores (Sm+Sb) 

provided the best correlation with Hg uptake.  

In addition to the impacts of surface morphology that were investigated in this study, it is 

important to consider the impact of surface chemistry on mercury uptake 99, 100. Attempts to 

correlate the pore volume and surface area of sulfur impregnated ACF25 and mercury uptake 

resulted in fairly small R2 values, which suggests that factors other than surface morphology 

affect Hg uptake.  This conclusion is expected because HgS formation is believed to be the 

dominant mechanism for mercury uptake by sulfur impregnated sorbents.  
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Table 14. Effect of pore volume of raw ACFs on Hg uptake capacity 

Sample Name Vs Vm Vb Vs+Vm Vm+Vb Total 
Hg Uptake 
Capacity 

 (cm3/g) (cm3/g) (cm3/g) (cm3/g) (cm3/g) (cm3/g) (µg/g) 
ACF-10-Raw 0.274 0.039 0.065 0.313 0.104 0.378 214 

ACF-20-Raw 0.258 0.104 0.329 0.362 0.433 0.691 271 

ACF-25-Raw 0.263 0.101 0.489 0.364 0.59 0.853 319 

Slope, b -4544 246.7 244.5 1646 209.5 215.8  

Coefficient, R2 0.501 0.757 0.992 0.819 0.977 0.983  

 
 

Table 15. Effect of surface area of raw ACFs on Hg uptake capacity  

Sample Name Ss Sm Sb Ss+Sm Sm+Sb Total 
Hg Uptake 
Capacity 

 (m2/g) (m2/g) (m2/g) (m2/g) (m2/g) (m2/g) (µg/g) 
        

ACF-10-Raw 485 528 196 1012  724   920 214 

ACF-20-Raw 578 388 762   966 1150 1453 271 

ACF-25-Raw 398 533 973   931 1506 1950 319 

Slope, b -2.65 -0.01 0.128 -1.29 0.13 0.10  

Coefficient, R2 0.215 0.003 0.957 0.999 1 0.999  

 
 
 
 

4.4.7 Summary 

Impregnation of sulfur onto the activated carbon fiber surface through H2S oxidation was 

studied at temperatures lower than 150°C followed by the mercury uptake test in nitrogen.  

Sulfur was impregnated mainly as elemental sulfur and the amount of sulfur deposited on the 

ACF increased with an increase in impregnation temperature; higher temperature leads to more 

uniform sulfur distribution inside the sorbent pores. More sulfur was found in the internal pores 
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than on the external surface layer; the impregnation process can be explained by a combination 

of pore filling and monolayer adsorption, with the former mechanism predominating at low 

temperatures. In the absence of sulfur, the mercury adsorption capacity can be correlated with 

surface area and pore volume with medium (0.72nm < d < 0.90nm) and big micropores (d > 

0.90nm) being more important for mercury uptake.    
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5.0 SUMMARY AND CONCLUSIONS 

 

Both mercury and hydrogen sulfide are air pollutants in need of serious attention. Based on 

the concept of industrial ecology, this study investigated hydrogen sulfide adsorption/oxidation 

onto carbon surfaces and its application in mercury pollution control. A fixed bed reactor system 

was used to study adsorption/sulfurization/oxidation of hydrogen sulfide by activated carbon 

fibers (ACFs) and activated carbons. The carbon surface chemistry was characterized before and 

after adsorption/sulfurization/oxidation by various techniques including BET, SEM-EDAX, 

sulfur analysis, XPS, XANES, TGA, TPD, Boehm tiration, and so on. The produced sorbents 

were then tested for mercury uptake in the same fixed bed reactor system. Through this study, 

the following conclusions were obtained: 

 

H2S Adsorption on ACFs and Activated Carbons 
 

• Adsorption of hydrogen sulfide on carbon surfaces at low temperatures under dry and anoxic 

conditions was found to be affected by both pore structure and surface chemistry. Reversible 

adsorption (or physical adsorption) was mainly affected by the pore structure, with smaller 

pores enhancing physical adsorption.  On the other hand, irreversible adsorption (or 

chemisorption) is mainly affected by the carbon surface chemistry.  
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• Chemical fixation of hydrogen sulfide is an important pathway, especially after surface 

treatment. Both air oxidation and heat treatment enhanced retention of hydrogen sulfide on 

the carbon surface, which means both addition and removal of oxygen at carbon surface 

improve hydrogen sulfide retention. 

• The retained amount of hydrogen sulfide correlated well with the amount of basic 

functionalities on the raw ACFs and virgin activated carbon surfaces, indicating the 

importance of acid-base interactions in chemisorption of hydrogen sulfide under dry and 

anoxic conditions.  

• Hydrogen sulfide retention did not increase linearly with the temperature for heat treatment 

in argon, indicating the basic functionalities are more important than the graphite structure 

for hydrogen sulfide uptake.  

 

Sulfurization on ACFs and BPL Carbon 
 

• Sulfurization at higher temperatures resulted in higher sulfur content, which may be due to 

decomposition of more oxygen containing functionalities. Experimental results suggested 

that the uptake of H2S was facilitated through substitution of the surface oxygen or active 

carbon atoms. Sulfur species produced at higher temperatures are more stable and high 

temperatures promote the formation of organic sulfur.  

• The presence of H2S during the cooling process obviously increased the ultimate sulfur 

content, especially relatively unstable sulfurous species. XANES results proved that the 

presence of H2S during the cooling process increased mainly elemental sulfur content. 
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• At temperatures below 600 °C, sulfurization most likely occurred through the addition of 

H2S onto active sites enhanced by decomposition of CO2 yielding oxygen containing 

functionalities; while at higher temperatures decomposition of H2S and direct reaction with 

carbon structure occurred.  

• Surface chemistry was very important for sulfurized sorbents produced at temperatures above 

400 °C, which had similar pore structures. Effective mercury sorbents were produced at Hg 

600 °C with the presence of hydrogen sulfide during the cooling process.   

• Elemental sulfur species are probably the most effective for capturing mercury although 

thiophene and sulfate content also showed good correlation with mercury uptake capacity.  

 

H2S Oxidation on ACFs 
 

• Oxidation of H2S on ACFs at lower temperature range (<150 °C) generated mainly elemental 

sulfur and the amount of sulfur deposited on the ACF increased with an increase in 

impregnation temperature; higher temperature leads to more uniform sulfur distribution 

inside the sorbent pores.  

• More sulfur was found in the internal pores than on the external surface layer; the 

impregnation process can be explained by a combination of pore filling and monolayer 

adsorption, with the former mechanism predominating at low temperatures.  

• The mercury uptake capacity did not correlate linearly with the sulfur content of the sorbents 

produced through oxidation because of the blockage of the pore structure. 
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• In the absence of sulfur, the mercury adsorption capacity can be correlated with surface area 

and pore volume.  Experimental results suggested that medium (0.72nm < d < 0.90nm) and 

big micropores (d > 0.90nm) are very important for mercury uptake.    
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6.0 ENGINEERING SIGNIFICANCE OF THIS STUDY 
 

6.1 DIRECT ENGINEERING APPLICATIONS 

This study focused on the interaction between hydrogen sulfide and carbonaceous surfaces, 

mainly for the development of mercury sorbents. The findings of this study apply directly to both 

H2S removal and vapor-phase mercury removal by carbonaceous sorbents. For both applications, it 

is important to optimize the sorbent performance in terms of pore structure and surface chemistry. 

 For the removal of low concentration of H2S at low temperature, such as indoor air pollution 

control, sorbents with small pores are superior because of high uptake capacity and ease of 

regeneration. However, for the removal of high concentration H2S, such as natural gas sweetening, 

higher surface area and pore volume are more important parameters for sorbent selection.  

In some cases, chemisorption is preferred to prevent desorption of contaminants or 

impurities due to fluctuations in operating conditions. For example, production of high purity 

gases, such as fuel cell feed gas, requires removal of H2S to ppb levels. Good performance of gas 

sensors requires high reactivity and high selectivity. This study suggests that creation of more basic 

active sites, especially more basic surface functionalities, will improve the chemisorption of acidic 

gas species such as H2S onto the carbon surface. The creation of more basic active sites can be 
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achieved through ammonia treatment or heat treatment. Removal of H2S from high temperature 

gas streams requires improvements in the carbon surface chemistry too. Higher chemisorption 

capacity can be achieved by creating more basic active sites.  

Sulfurization of carbon surfaces can produce sorbents or catalysts with different sulfur 

containing surface functionalities, especially for the production of mercury sorbents. It is found 

that sulfur content, sulfur distribution, and sulfur forms can be controlled by changing the 

impregnation temperature and impregnation protocols. Higher temperature helps to strongly bind 

more sulfur species, especially organic sulfur, to the carbon surface. In addition, higher 

temperature facilitates more uniform sulfur distribution. Mercury sorbents of high performance 

require high surface area, pore size/volume, and well distributed short-chained elemental sulfur. 

Such sorbents can be produced by sulfurization of carbon surface at 600 °C with exposure of H2S 

during the cooling process.  

Good mercury sorbents can also be produced by oxidation of H2S on ACF-25 at 150 °C for 2 

hours. This is because the major sulfur species, elemental sulfur, was formed mainly through the 

monolayer adsorption, thereby retaining the pore structure of the original sorbent.  

The results of this study revealed the nature of chemisorption of H2S onto carbon surface, 

implying that carbon surface with high density of basic surface functionalities can serve as 

excellent sorbents for H2S. 
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6.2 GENERAL IMPLICATIONS 

Besides the direct application of the findings mentioned above, this study helps to understand 

some surface phenomena in general, which are beyond practical applications. The following 

conclusions can possibly be extended to other fields: 

This study clarifies that adsorption onto porous materials is generally composed of 

chemisorption and physisorption, the relative contribution of the two processes are associated with 

the pore structure and surface chemistry, as well as experimental conditions. 

The findings of this study help to understand the complexities of carbon surface chemistry, 

especially the importance of oxygen containing surface functionalities (both acidic and basic) and 

the active sites formed after decomposition of these functionalities. The results indicate that 

oxidation followed by heat treatment may be a good method of generating active sites for special 

applications. This study also helps to understand the nature of carbon basicity. 

This study implies the electrical nature of the interaction between H2S and active sites on 

carbonaceous surface. The Lewis acid-base interaction can possibly be extended to the interaction 

between other gas molecules and other surfaces. Further study can facilitate general sorbents and 

catalysts development. 
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7.0 RECOMMENDATIONS FOR FUTURE WORK 
 

Starting from a practical pollution control problem, the project focused on the carbon surface 

chemistry. Surface science is an interdisciplinary study involving chemistry, physics, engineering, 

and many other fields. Rapid developments in these fields can help to understand the puzzle of 

carbon surface chemistry.  

Quantum mechanics theory has shown its success in explaining many experimental 

observations with different surfaces. It is important to introduce this powerful tool to facilitate the 

understanding of carbon surface chemistry as well. Theoretical calculation on the effect of carbon 

surface chemistry on H2S chemisorption and mercury uptake is important in better explaining the 

observations made in this study. Theoretical models should include the carbon basal planes, 

oxygen containing functionalities, sulfur containing functionalities and metals in order to achieve 

better understanding of these complex systems.  

The nature of carbon basicity also needs theoretical explanation. Better understanding of the 

origin of carbon basicity will enhance the application of carbon materials in adsorption, catalysis 

and many other areas. Modification and characterization of carbon surface chemistry is becoming a 

new area of strong research interest. 
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For practical applications, the following topics are found to be interesting and worth 

pursuing:   

• The effect of carbon surface chemistry on selective H2S oxidation, especially on ways 

to improve the selectivity to elemental sulfur by modifying the carbon surface chemistry; 

• Systematic work on the effect of pore structure and carbon surface chemistry on the 

decomposition of H2S into H2 and Sx. 
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Figure 40. Correlation of total functionalities with increased sulfur content: (a) with Centaur, (b) 
without Centaur 
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Figure 41. Hydrogen generation during temperature programmed reaction 
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Figure 42. Effect of sulfurization protocol at different temperatures 

(Carbon amount: 0.5 g, H2S concentration: 3000 ppm, sulfurization time: 6 hours) 
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APPENDIX B 

PHYSICAL PROPERTIES OF CHEMICALS  
 

 

Table 16. Physical properties of chemicals *  

 Mercury (Hg) Hydrogen Sulfide 
(H2S) 

Elemental Sulfur 
(Sx) 

Molecular 
Weight (g/mol) 200.59 34.08 32.07 

Melting Point 
(Tm, K) 234.17 187.65 388.36 

Boiling Point 
(Tb, K) 629.73 212.45 717.75 

Critical Point 
(Tc, K) 1750 --- 1314 

Density (g/cm3) 13.53 at 293K 1.539 g/l 1.96 (monoclinic) 
2.07 (rhombic) 

 
* All the data are from: Lide D. R., CRC Handbook of Chemistry and Physics, 74th edition, 1994, 
Boca Raton: CRC press. 
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APPENDIX C 

ELEMENTAL SULFUR SUBLIMATION ENERGY CALCULATION 
 
 

 

Solid S8 at 
25 °C 

Solid S8 at 
115 °C 

Liquid S8 
at 115 °C 

Liquid S8 
at 444 °C 

Gaseous S8
at 444 °C 

Gaseous S8
at 25 °C 

H1 

H2 

H3 

Hf 

He 

Hsub? 

 

Table 17. Elemental Sulfur sublimation energy calculation at 298 K* 

Cp Regression Coefficients Phase 
Starting 

Temperature 
Ending 

Temperature Heat  NOTE 

A B C D E   (K) (K) (J/mol)   

2.003 
1.20E-

01 
-1.62E-

04     Solid 298.00 388.36 2169 Heating Up Solid, H1 

          S-L     1727 Heat of Fusion, Hf 

108.05 
-2.37E-

01 
2.27E-

04 
-6.00E-

08   Liquid 388.36 717.82 12279 Heating Up Liquid, H2 

          L-G     9620 Heat of Evaporation, He 

24.624 
-5.04E-

03 
2.42E-

06 
-4.22E-

10 
2.52E-

14 Gas 717.82 298.00 -9514 Cooling Gas, H3 

                16280 
Heat of Sublimation, summation 
of the above. 

 
*All data from Yaws, C. L., “Chemical Properties Handbook”, McGraw-Hill, 1999 
** Formula for Cp calculation: Cp=A+BT+CT2+DT3+ET4 

 
Therefore, the sublimation energy of S8 at 298 K is 16.28 kJ/mol. 
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