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JOINT VELOCITY SCALAR FILTERED DENSITY FUNCTION FOR

LARGE EDDY SIMULATION OF TURBULENT REACTING FLOWS

M. Reza Haji-Sheikhi, PhD

University of Pittsburgh, 2005

The joint “velocity-scalar” filtered density function (FDF) methodology is developed and

implemented for large eddy simulation (LES) of turbulent reacting flows. In FDF, the ef-

fects of the unresolved subgrid scales (SGS) are taken into account by considering the joint

probability density function (PDF) of the velocity and scalar fields. An exact transport

equation is derived for the FDF in which the effects of SGS convection and chemical reac-

tion are in closed forms. The unclosed terms in this equation are modeled by considering an

equivalent set of stochastic differential equations (SDEs) which is similar to that typically

used in Reynolds-averaged simulation (RAS) procedures. The SDEs are solved numerically

by a Lagrangian Monte Carlo procedure in which the Itô-Gikhman character of the SDEs is

preserved. The consistency of the proposed SDEs and the convergence of the Monte Carlo

solution are assessed. It is shown that the FDF results agree well with those obtained by a

“conventional” finite-difference LES procedure in which the transport equations correspond-

ing to the filtered quantities are solved directly. The FDF results are also compared with

those obtained by the Smagorinsky closure, and all the results are assessed via comparison

with data obtained by direct numerical simulation of a temporally developing mixing layer

involving transport of a passive scalar. It is shown that all the first two moments including

the scalar fluxes are predicted well by FDF. The predictive capabilities of the FDF are further

demonstrated by LES of reacting shear flows. The predictions show favorable agreements

with laboratory data, and demonstrate several of the features as observed experimentally.
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1.0 INTRODUCTION

The probability density function (PDF) approach has proven useful for large eddy simulation

(LES) of turbulent reacting flows.1–4 The formal means of conducting such LES is by con-

sidering the “filtered density function” (FDF)2,4 which is essentially the filtered fine-grained

PDF of the transport quantities. The fundamental property of FDF is to account for the

effects of subgrid-scale (SGS) fluctuations in a probabilistic manner.

The FDF, since its original conception,2,4 has become very popular in the combustion

community.5,6 Most contributions so far are based on the marginal scalar FDF (SFDF),

originally considered by Madnia and Givi7, Gao and O’Brien8, Colucci et al.9 and Jaberi

et al.10 This popularity is due to the capacity of this formulation to provide a closed form

for the chemical reaction effect. However, in SFDF the effect of convection needs to be

modeled similar to that in “conventional” LES. Gicquel et al.11 developed the marginal

FDF of the velocity vector (VFDF) in which the effect of SGS convection is in a closed

form. However since the information about scalars is not embedded in the VFDF, this

method is only suitable for constant-density, non-reacting flows. Following the developments

as cited above, the FDF methodology has experienced widespread usage. Examples are

contributions in its basic implementation,12–23 fine-tuning of its sub-closures,24,25 and its

validation via laboratory experiments.26–30 The FDF is finding its way into commercial

codes31,32 and has been the subject of detailed discussions in several books,1,33–35 Givi3

provides a comprehensive review of the state of progress in LES/FDF.

The objective of this dissertation is to develop a more comprehensive FDF closure for

LES of turbulent reacting flows. This is accomplished by considering the FDF of joint

“velocity-scalars” (VSFDF). In this formulation, the SGS convection and chemical reaction

are in closed forms. With definition of the FDF, the mathematical framework for its im-
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plementation in LES is established. A transport equation is developed for the FDF. The

unclosed terms in this equation are modeled in a fashion similar to those in Reynolds-

averaged simulation (RAS) procedures.1 A Lagrangian Monte Carlo procedure is developed

and implemented for the numerical solution of the modeled FDF transport equation. The

consistency of this procedure is assessed by comparing the first two scalar moments of the

FDF with those obtained by the Eulerian finite-difference solutions of the same moments’

transport equations. The joint VSFDF is considered first for constant-density flows. Subse-

quently, for the reacting flows with variations in fluid density, this methodology is extended

by developing the joint “velocity-scalar filtered mass density function” (VSFMDF) method.

Both methodologies are scrutinized extensively for consistency and accuracy. Furthermore,

the predictive capabilities and the advantages of these methods over “conventional” LES

closures are demonstrated.

1.1 SCOPE

This dissertation is organized as follows. In Chapter 2, the joint velocity-scalar filtered den-

sity function (VSFDF) for constant-density flows is considered. The work described in this

chapter has been presented at several conferences36,37 and is published in Physics of Fluids.38

In Chapter 3, the joint velocity-scalar filtered mass density function (VSFMDF) methodol-

ogy is developed. This is an extension of VSFDF and accounts for the variations of fluid

density. A shorter version of this chapter has been presented at several conferences39–41 and is

currently under submission for publication. For the convenience of the readers, both of these

chapters are self-contained. In Chapter 4, some final remarks regarding the methodologies

are discussed, with some suggestions for future research.
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2.0 JOINT VELOCITY SCALAR FILTERED DENSITY FUNCTION FOR

CONSTANT-DENSITY FLOWS

In this chapter, the previously developed “marginal” FDF methodologies are extended to

account for the “joint” SGS components of velocity and scalar fields. This is accomplished

by considering the joint “velocity-scalar filtered density function” (VSFDF). Following its

mathematical definition, the “exact” VSFDF transport equation is derived. The unclosed

terms in this equation are modeled using an equivalent system of stochastic differential

equations. A hybrid Eulerian/Largrangian numerical solution procedure is developed. In

the Eulerian part, the filtered transport equations are solved by finite-difference method. In

the Lagrangian part, the solution of the modeled VSFDF transport equation is obtained by

Monte Carlo method. The unclosed statistics in the Eulerian part are obtained from the

Monte Carlo solver. Simulations are conducted of a temporally developing mixing layer in

which, the consistency and accuracy of the methodology are established. The comparative

capabilities of the VSFDF is assessed by comparing the predicted results with those of

direct numerical simulation (DNS) and those obtained by the conventional LES via the

Smagorinsky42 SGS closure. The sensitivity of the calculations to the model’s constants is

assessed and it is shown that the first and the total components of the second order moments

are not sensitive to these constants.

2.1 FORMULATION

For the general formulation, we consider an incompressible (unit density), isothermal, tur-

bulent reacting flow involving Ns species. The primary transport variables describing such a

3



flow are the three components of the velocity vector ui(x, t) (i = 1, 2, 3), the pressure p(x, t),

and the species’ mass fractions φα(x, t) (α = 1, 2, . . . , Ns). The equations which govern the

transport of these variables in space (xi) and time (t) are

∂uk

∂xk

= 0, (2.1a)

∂ui

∂t
+
∂ukui

∂xk

= − ∂p

∂xi

+
∂σik

∂xk

, (2.1b)

∂φα

∂t
+
∂ukφα

∂xk

= −∂J
α
k

∂xk

+ Sα, (2.1c)

where Sα ≡ Ŝα (φ(x, t)) denotes the chemical reaction term for species α, and φ ≡ [φ1, φ2, . . . , φNs
]

denotes the scalar variable array. For an incompressible, Newtonian fluid, with Fick’s law of

diffusion, the viscous stress tensor σik and the scalar flux Jα
k are represented by

σik = ν

(
∂ui

∂xk

+
∂uk

∂xi

)
, (2.2a)

Jα
k = −Γ

∂φα

∂xk

, (2.2b)

where ν is the fluid kinematic viscosity and Γ = ν
Sc

is the diffusion coefficient of all species

with Sc denoting the molecular Schmidt number. We assume a constant value for ν = Γ; i.e.

Sc = 1. In reactive flows, molecular processes are much more complicated than portrayed

by Eq. (2.2). Since the molecular diffusion is typically less important than that of SGS, this

simple model is adopted with justifications and caveats given in Refs.43–45

Large eddy simulation involves the spatial filtering operation1,46–49

〈f(x, t)〉 =

∫ +∞

−∞

f(x′, t)G(x′,x)dx′, (2.3)

where G(x′,x) denotes a filter function, and 〈f(x, t)〉 is the filtered value of the transport

variable f(x, t). We consider a filter function that is spatially and temporally invariant and

localized, thus: G(x′,x) ≡ G(x′ − x) with the properties G(x) ≥ 0,
∫ +∞

−∞
G(x)dx = 1.

Applying the filtering operation to Eqs. (2.1) yields

∂ 〈uk〉
∂xk

= 0, (2.4a)

∂ 〈ui〉
∂t

+
∂ 〈uk〉 〈ui〉

∂xk

= −∂ 〈p〉
∂xi

+ ν
∂2 〈ui〉
∂xk∂xk

− ∂τ(uk, ui)

∂xk

, (2.4b)

∂ 〈φα〉
∂t

+
∂ 〈uk〉 〈φα〉

∂xk

= ν
∂2 〈φα〉
∂xk∂xk

− ∂τ(uk, φα)

∂xk

+ 〈Sα〉 , (2.4c)

4



where the second-order SGS correlations

τ(a, b) = 〈ab〉 − 〈a〉 〈b〉 , (2.5)

are governed by

∂τ(ui, uj)

∂t
+

∂ 〈uk〉 τ(ui, uj)

∂xk

= ν
∂2τ(ui, uj)

∂xk∂xk

− τ(uk, ui)
∂ 〈uj〉
∂xk

− τ(uk, uj)
∂ 〈ui〉
∂xk

−
[
2ντ

(
∂ui

∂xk

,
∂uj

∂xk

)
+ τ

(
ui,

∂p

∂xj

)
+ τ

(
uj,

∂p

∂xi

)]
− ∂τ(uk, ui, uj)

∂xk

,

(2.6a)

∂τ(ui, φα)

∂t
+

∂ 〈uk〉 τ(ui, φα)

∂xk

= ν
∂2τ(ui, φα)

∂xk∂xk

− τ(uk, ui)
∂ 〈φα〉
∂xk

− τ(uk, φα)
∂ 〈ui〉
∂xk

−
[
2ντ

(
∂ui

∂xk

,
∂φα

∂xk

)
+ τ

(
φα,

∂p

∂xi

)]
+ τ(ui, Sα) − ∂τ(uk, ui, φα)

∂xk

,

(2.6b)

∂τ(φα, φβ)

∂t
+

∂ 〈uk〉 τ(φα, φβ)

∂xk

= ν
∂2τ(φα, φβ)

∂xk∂xk

− τ(uk, φα)
∂ 〈φβ〉
∂xk

− τ(uk, φβ)
∂ 〈φα〉
∂xk

−
[
2ντ

(
∂φα

∂xk

,
∂φβ

∂xk

)]
+ τ(φα, Sβ) + τ(φβ, Sα) − ∂τ(uk, φα, φβ)

∂xk

.

(2.6c)

In this equation, the third order correlations

τ(a, b, c) = 〈abc〉 − 〈a〉 τ(b, c)

−〈b〉 τ(a, c) − 〈c〉 τ(a, b) − 〈a〉 〈b〉 〈c〉 , (2.7)

are unclosed along with the other terms within square brackets.
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2.2 VELOCITY-SCALAR FILTERED DENSITY FUNCTION (VSFDF)

2.2.1 Definitions

The “velocity-scalar filtered density function” (VSFDF), denoted by P , is formally defined

as2

P (v,ψ;x, t) =

∫ +∞

−∞

̺ (v,ψ;u(x′, t),φ(x′, t))G(x′ − x)dx′, (2.8)

̺ (v,ψ;u(x, t),φ(x, t)) =
3∏

i=1

δ (vi − ui(x, t)) ×
Ns∏

α=1

δ (ψα − φα(x, t)) , (2.9)

where δ denotes the delta function, and v,ψ are the velocity vector and the scalar array

in the sample space. The term ̺ is the “fine-grained” density,44,50 hence Eq. (2.8) defines

VSFDF as the spatially filtered value of the fine-grained density. With the condition of a

positive filter kernel,51 P has all of the properties of the PDF.44 For further developments

it is useful to define the “conditional filtered value” of the variable Q(x, t) as

〈
Q(x, t)

u(x, t) = v,φ(x, t) = ψ
〉

≡
〈
Q
v,ψ

〉

=

∫ +∞

−∞
Q (x′, t) ̺ (v,ψ;u(x′, t),φ(x′, t))G (x′ − x) dx′

P (v,ψ;x, t)
.

(2.10)

Equation (2.10) implies the following:

(i) for Q(x, t) = c,
〈
Q(x, t)

v,ψ
〉

= c, (2.11a)

(ii) for Q(x, t) ≡ Q̂(u(x, t),φ(x, t))
〈
Q(x, t)

v,ψ
〉

= Q̂(v,ψ), (2.11b)

(iii) Integral properties: 〈Q(x, t)〉 = (2.11c)
∫ +∞

−∞

∫ +∞

−∞

〈
Q(x, t)

v,ψ
〉
P (v,ψ;x, t)dvdψ.

(2.11d)

From Eqs. (2.11) it follows that the filtered value of any function of the velocity and/or

scalar variables is obtained by its integration over the velocity and scalar sample spaces

〈Q(x, t)〉 =

∫ +∞

−∞

∫ +∞

−∞

Q̂(v,ψ)P (v,ψ;x, t)dvdψ. (2.12)
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2.2.2 VSFDF Transport Equations

To develop the VSFDF transport equation, we consider the time derivative of the fine-grained

density function (Eq. (2.9))

∂̺

∂t
= −

(
∂uk

∂t

∂̺

∂vk

+
∂φα

∂t

∂̺

∂ψα

)
. (2.13)

Substituting Eqs. (2.1b), (2.1c), and Eqs. (2.2a), (2.2b) into Eq. (2.13) we obtain

∂̺

∂t
+
∂uk̺

∂xk

=

(
∂p

∂xi

− ν
∂2ui

∂xk∂xk

)
∂̺

∂vi

−
(
ν
∂2φα

∂xk∂xk

+ Sα (φ)

)
∂̺

∂ψα

. (2.14)

Integration of this according to Eq. (2.8), while employing Eq. (2.10) results in

∂P

∂t
+
∂vkP

∂xk

=
∂ 〈p〉
∂xk

∂P

∂vk

− ∂

∂ψα

[Sα(ψ)P ]

+
∂

∂vk

[(〈
∂p

∂xk

v,ψ
〉
− ∂ 〈p〉

∂xk

)
P

]
,

− ∂

∂vi

(〈
ν

∂2ui

∂xk∂xk

v,ψ
〉
P

)
,

− ∂

∂ψα

(〈
ν
∂2φα

∂xk∂xk

v,ψ
〉
P

)
. (2.15)

This is an exact transport equation for the VSFDF. It is observed that the effects of con-

vection (second term on LHS) and chemical reaction (the second term on RHS) appear in

closed forms. The unclosed terms denote convective effects in the velocity-scalar sample

space. Alternatively, the VSFDF equation can be expressed as

∂P

∂t
+
∂vkP

∂xk

= ν
∂2P

∂xk∂xk

+
∂ 〈p〉
∂xk

∂P

∂vk

− ∂

∂ψα

[Sα(ψ)P ]

+
∂

∂vk

[(〈
∂p

∂xk

v,ψ
〉
− ∂ 〈p〉

∂xk

)
P

]

− ∂2

∂vi∂vj

[〈
ν
∂ui

∂xk

∂uj

∂xk

v,ψ
〉
P

]

− 2
∂2

∂vi∂ψα

[〈
ν
∂ui

∂xk

∂φα

∂xk

v,ψ
〉
P

]

− ∂2

∂ψα∂ψβ

[〈
ν
∂φα

∂xk

∂φβ

∂xk

v,ψ
〉
P

]
. (2.16)

This is also an exact equation, but the unclosed terms are exhibited by the conditional

filtered values of the dissipation fields as shown by the last three terms on the RHS.
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2.2.3 Modeled VSFDF Transport Equation

For closure of the VSFDF transport equation, we consider the general diffusion process,52

given by the system of stochastic differential equations (SDEs):

dX+
i (t) = DX

i (X+,U+,φ+; t)dt+BX
ij (X+,U+,φ+; t)dWX

j (t)

+ FXU
ij (X+,U+,φ+; t)dWU

j (t) + FXφ
ij (X+,U+,φ+; t)dW φ

j (t), (2.17a)

dU+
i (t) = DU

i (X+,U+,φ+; t)dt+BU
ij (X

+,U+,φ+; t)dWU
j (t)

+ FUX
ij (X+,U+,φ+; t)dWX

j (t) + FUφ
ij (X+,U+,φ+; t)dW φ

j (t), (2.17b)

dφ+
α (t) = Dφ

α(X+,U+,φ+; t)dt+Bφ
αj(X

+,U+,φ+; t)dW φ
j (t)

+ F φX
αj (X+,U+,φ+; t)dWX

j (t) + F φU
αj (X+,U+,φ+; t)dWU

j (t). (2.17c)

where X+
i , U

+
i , φ

+
α are probabilistic representations of position, velocity vector, and scalar

variables, respectively. The D terms denote drift in the composition space, the B terms

denote diffusion, the F terms denote diffusion couplings, and theW terms denote the Wiener-

Lévy processes.53,54 Following Refs.,9,11,55,56 we consider the generalized Langevin model

(GLM) and the linear mean square estimation (LMSE) model50

dX+
i = U+

i dt+
√
ν1dW

X
i , (2.18a)

dU+
i =

[
−∂ 〈p〉
∂xi

+ ν2
∂2 〈ui〉
∂xk∂xk

+Gij

(
U+

j − 〈uj〉
)]
dt

+
√
ν3
∂ 〈ui〉
∂xk

dWX
k +

√
C0ǫdW

U
i , (2.18b)

dφ+
α =

[
νS1

∂2 〈φα〉
∂xk∂xk

− Cφω
(
φ+

α − 〈φα〉
)

+ Sα(ψ)

]
dt

+
√
νS2

∂ 〈φα〉
∂xk

dWX
k , (2.18c)

where the variables ν1, ν2, . . . are all diffusion coefficients (to be specified), and

Gij = −ω
(

1

2
+

3

4
C0

)
δij, ω =

ǫ

k
,

ǫ = Cǫ
k3/2

∆L

, k =
1

2
τ (uk, uk) .

(2.19)

Here ω is the SGS mixing frequency, ǫ is the SGS dissipation rate, k is the SGS kinetic

energy, and ∆L is the LES filter size. The parameters C0, Cφ and Cǫ are model constants
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and need to be specified. The limit ν1 = ν3 = νS1
= νS2

= 0 is the standard high Reynolds

number GLM-LMSE closure.44

The Fokker-Planck equation57 for f(v,ψ,x, t), the joint PDF of X+,U+,φ+, evolving

by the diffusion process as given by Eq. (2.18) is:

∂f

∂t
+

∂

∂xk

(vkf) =

[
∂ 〈p〉
∂xi

− (ν2 −
√
ν1ν3)

∂2 〈ui〉
∂xk∂xk

]
∂f

∂vi

− ∂

∂vi

[Gij (vj − 〈uj〉) f ]

−
[
νS1

−√
ν1νS2

] ∂2 〈φα〉
∂xk∂xk

∂f

∂ψα

+
∂

∂ψα

[Cφω (ψα − 〈φα〉) f ] − ∂

∂ψα

[Sα(ψ)f ]

+
ν1

2

∂2f

∂xk∂xk

+
√
ν1ν3

∂ 〈uj〉
∂xi

∂2f

∂xi∂vj

+
√
ν1νS2

∂ 〈φα〉
∂xi

∂2f

∂xi∂ψα

+
ν3

2

∂ 〈ui〉
∂xk

∂ 〈uj〉
∂xk

∂2f

∂vi∂vj

+
1

2
C0ǫ

∂2f

∂vk∂vk

+
√
ν3νS2

∂ 〈ui〉
∂xk

∂ 〈φα〉
∂xk

∂2f

∂vi∂ψα

+
νS2

2

∂ 〈φα〉
∂xk

∂ 〈φβ〉
∂xk

∂2f

∂ψα∂ψβ

, (2.20)

The transport equations for the filtered variables are obtained by integration of Eq. (2.20)

according to Eq. (2.12):

∂ 〈uk〉
∂xk

= 0, (2.21a)

∂ 〈ui〉
∂t

+
∂ 〈uk〉 〈ui〉

∂xk

= −∂ 〈p〉
∂xi

+
(ν1

2
+ ν2 −

√
ν1ν3

) ∂2 〈ui〉
∂xk∂xk

− ∂τ(uk, ui)

∂xk

,

(2.21b)

∂ 〈φα〉
∂t

+
∂ 〈uk〉 〈φα〉

∂xk

=
(
νS1

−√
ν1νS2

+
ν1

2

) ∂2 〈φα〉
∂xk∂xk

+ 〈Sα (φ)〉 − ∂τ(uk, φα)

∂xk

.

(2.21c)

The transport equations for the second order SGS moments are

∂τ(ui, uj)

∂t
+

∂ 〈uk〉 τ(ui, uj)

∂xk

=
ν1

2

∂2τ(ui, uj)

∂xk∂xk

− τ(uk, ui)
∂ 〈uj〉
∂xk

− τ(uk, uj)
∂ 〈ui〉
∂xk

+ (ν1 − 2
√
ν1ν3 + ν3)

∂ 〈ui〉
∂xk

∂ 〈uj〉
∂xk

+ [Gikτ(uk, uj) +Gjkτ(uk, ui) + C0ǫδij] −
∂τ(uk, ui, uj)

∂xk

,

(2.22a)
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∂τ(ui, φα)

∂t
+

∂ 〈uk〉 τ(ui, φα)

∂xk

=
ν1

2

∂2τ(ui, φα)

∂xk∂xk

− τ(uk, ui)
∂ 〈φα〉
∂xk

− τ(uk, φα)
∂ 〈ui〉
∂xk

+
(
ν1 −

√
ν1ν3 −

√
ν1νS2

+
√
ν3νS2

) ∂ 〈ui〉
∂xk

∂ 〈φα〉
∂xk

+ [Gikτ(uk, φα) − Cφωτ(ui, φα)] + τ(ui, Sα) − ∂τ(uk, ui, φα)

∂xk

,

(2.22b)

∂τ(φα, φβ)

∂t
+

∂ 〈uk〉 τ(φα, φβ)

∂xk

=
ν1

2

∂2τ(φα, φβ)

∂xk∂xk

− τ(uk, φα)
∂ 〈φβ〉
∂xk

− τ(uk, φβ)
∂ 〈φα〉
∂xk

+
(
ν1 − 2

√
ν1νS2

+ νS2

) ∂ 〈φα〉
∂xk

∂ 〈φβ〉
∂xk

− [2Cφωτ(φα, φβ)] + τ(φα, Sβ) + τ(φβ, Sα) − ∂τ(uk, φα, φβ)

∂xk

.

(2.22c)

A term-by-term comparison of the exact moment transport equations (Eqs. (2.4), (2.6)),

with the modeled equations (Eqs. (2.21), (2.22)), suggests ν1 = ν2 = ν3 = νS1
= νS2

= 2ν.

However, this violates the realizability of the scalar field. A set of coefficients yielding a

realizable stochastic model requires: ν1 = ν2 = ν3 = 2ν and νS1
= νS2

= 0. That is,

dX+
i = U+

i dt+
√

2νdWX
i , (2.23a)

dU+
i =

[
−∂ 〈p〉
∂xi

+ 2ν
∂2 〈ui〉
∂xk∂xk

+Gij

(
U+

j − 〈uj〉
)]
dt

+
√

2ν
∂ 〈ui〉
∂xk

dWX
k +

√
C0ǫdW

U
i , (2.23b)

dφ+
α = −Cφω

(
φ+

α − 〈φα〉
)
dt. (2.23c)

The Fokker-Planck equation for this system is

∂f

∂t
+

∂

∂xk

(vkf) =
∂ 〈p〉
∂xi

∂f

∂vi

− ∂

∂vi

[Gij (vj − 〈uj〉) f ] +
∂

∂ψα

[Cφω (ψα − 〈φα〉) f ]

+ ν
∂2f

∂xk∂xk

+ 2ν
∂ 〈uj〉
∂xi

∂2f

∂xi∂vj

+ ν
∂ 〈ui〉
∂xk

∂ 〈uj〉
∂xk

∂2f

∂vi∂vj

+
1

2
C0ǫ

∂2f

∂vk∂vk

, (2.24)
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and the corresponding equations for the moments are:

∂ 〈uk〉
∂xk

= 0, (2.25a)

∂ 〈ui〉
∂t

+
∂ 〈uk〉 〈ui〉

∂xk

= −∂ 〈p〉
∂xi

+ ν
∂2 〈ui〉
∂xk∂xk

− ∂τ(uk, ui)

∂xk

, (2.25b)

∂ 〈φα〉
∂t

+
∂ 〈uk〉 〈φα〉

∂xk

= ν
∂2 〈φα〉
∂xk∂xk

− ∂τ(uk, φα)

∂xk

, (2.25c)

∂τ(ui, uj)

∂t
+

∂ 〈uk〉 τ(ui, uj)

∂xk

= ν
∂2τ(ui, uj)

∂xk∂xk

− τ(uk, ui)
∂ 〈uj〉
∂xk

− τ(uk, uj)
∂ 〈ui〉
∂xk

+ [Gikτ(uk, uj) +Gjkτ(uk, ui) + C0ǫδij] −
∂τ(uk, ui, uj)

∂xk

, (2.26a)

∂τ(ui, φα)

∂t
+

∂ 〈uk〉 τ(ui, φα)

∂xk

= ν
∂2τ(ui, φα)

∂xk∂xk

− τ(uk, ui)
∂ 〈φα〉
∂xk

− τ(uk, φα)
∂ 〈ui〉
∂xk

+ [Gikτ(uk, φα) − Cφωτ(ui, φα)] + τ(ui, Sα) − ∂τ(uk, ui, φα)

∂xk

, (2.26b)

∂τ(φα, φβ)

∂t
+

∂ 〈uk〉 τ(φα, φβ)

∂xk

= ν
∂2τ(φα, φβ)

∂xk∂xk

− τ(uk, φα)
∂ 〈φβ〉
∂xk

− τ(uk, φβ)
∂ 〈φα〉
∂xk

+

[
2ν
∂ 〈φα〉
∂xk

∂ 〈φβ〉
∂xk

− 2Cφωτ(φα, φβ)

]
+ τ(φα, Sβ) + τ(φβ, Sα)

− ∂τ(uk, φα, φβ)

∂xk

, (2.26c)

which may be compared to Eqs. (2.4) and (2.6). Therefore, the stochastic diffusion process

described by the SDEs (2.23) implies the following closure for the VSFDF:

∂

∂vk

[(〈
∂p

∂xk

v,ψ
〉
− ∂ 〈p〉

∂xk

)
P

]
− ν

∂2

∂vi∂vj

[〈
∂ui

∂xk

∂uj

∂xk

v,ψ
〉
P

]

−2ν
∂2

∂vi∂ψα

[〈
∂ui

∂xk

∂ψα

∂xk

v,ψ
〉
P

]
− ν

∂2

∂ψα∂ψβ

[〈
∂ψα

∂xk

∂ψβ

∂xk

v,ψ
〉
P

]

≈ ν
∂ 〈ui〉
∂xk

∂ 〈uj〉
∂xk

∂2f

∂vi∂vj

+
1

2
C0ǫ

∂2f

∂vk∂vk

+ 2ν
∂ 〈ui〉
∂xk

∂2f

∂xk∂vi

− ∂

∂vi

[Gij (vj − 〈uj〉) f ] +
∂

∂ψα

[Cφω (ψα − 〈φα〉) f ] , (2.27)
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which yields the closures at the second order levels:

−
[
2ν τ

(
∂ui

∂xk

,
∂uj

∂xk

)
+ τ

(
ui,

∂p

∂xj

)
+ τ

(
uj,

∂p

∂xi

)]
= Gikτ(uk, uj)+Gjkτ(uk, ui)+C0ǫδij

= −ω
(

1 +
3

2
C0

)[
τ(ui, uj) −

2

3
kδij

]
− 2

3
ǫδij, (2.28a)

−
[
2ν τ

(
∂ui

∂xk

,
∂φα

∂xk

)
+ τ

(
φα,

∂p

∂xi

)]
= Gikτ(uk, φα) − Cφωτ(ui, φα)

= −ω
(

1

2
+

3

4
C0 + Cφ

)
τ (ui, φα) , (2.28b)

− 2ν τ

(
∂φα

∂xk

,
∂φβ

∂xk

)
= −2Cφωτ(φα, φβ) + 2ν

∂ 〈φα〉
∂xk

∂ 〈φβ〉
∂xk

. (2.28c)

This indicates a spurious source term in the scalar covariance equation, which is negligible

at high Reynolds number flows.

2.3 NUMERICAL SOLUTION PROCEDURE

Numerical solution of the modeled VSFDF transport equation is obtained by a hybrid finite

difference-Monte Carlo procedure. The basis is similar to those in RAS58,59 and in previous

FDF simulations,9–11 with some differences which are described here. For simulations, the

FDF is represented by an ensemble of Np statistically identical Monte Carlo (MC) particles.

Each particle carries information pertaining to its position, X(n)(t), velocity, U (n)(t), and

scalar value, φ(n)(t), n = 1, . . . , Np. This information is updated via temporal integration

of the SDEs. The simplest way of performing this integration is via Euler-Maruyamma

approximation.60 For example, for Eq. (2.17a),

Xn
i (tk+1) = Xn

i (tk) +
(
DX

i (tk)
)n

∆t+
(
BX

ij (tk)
)n

(∆t)1/2
(
ζX
j (tk)

)n

+
(
FXU

ij (tk)
)n

(∆t)1/2
(
ζU
j (tk)

)n
+
(
FXφ

ij (tk)
)n

(∆t)1/2
(
ζφ
j (tk)

)n

, (2.29)
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where Di(tk) = Di(X
(n)(tk),U

(n)(tk),φ
(n)(tk); tk), . . . , and ζ(tk)’s are independent standard-

ized Gaussian random variables. This scheme preserves the Itô character of the

SDEs.61

The computational domain is discretized on equally spaced finite-difference grid points.

These points are used for two purposes: (1) to identify the regions where the statistical infor-

mation from the MC simulations are obtained, (2) to perform a set of complementary LES

primarily by the finite-difference methodology for assessing the consistency and convergence

of the MC results. The LES procedure via the finite-difference discretization is referred to

as LES-FD and will be further discussed below. Statistical information is obtained by con-

sidering an ensemble of NE computational particles residing within an ensemble domain of

characteristic length ∆E centered around each of the finite-difference grid points. This is

illustrated schematically in Fig. 1. For reliable statistics with minimal numerical dispersion,

it is desired to minimize the size of ensemble domain and maximize the number of the MC

particles.44 In this way, the ensemble statistics would tend to the desired filtered values:

〈a〉E ≡ 1

NE

∑

n∈∆E

a(n) −−−−→
NE→∞
∆E→0

〈a〉 ,

τE (a, b) ≡ 1

NE

∑

n∈∆E

(
a(n) − 〈a〉E

) (
b(n) − 〈b〉E

)
−−−−→
NE→∞
∆E→0

τ (a, b) , (2.30)

where a(n) denotes the information carried by nth MC particle pertaining to transport variable

a.

The LES-FD solver is based on the compact parameter finite-difference scheme.62,63 This

is a variant of the MacCormack scheme in which fourth-order compact differencing schemes

are used to approximate the spatial derivatives, and second-order symmetric predictor-

corrector sequence is employed for time discretization. All of the finite-difference operations

are conducted on fixed grid points. The transfer of information from the grid points to the

MC particles is accomplished via a second-order interpolation. The transfer of information

from the particles to the grid points is accomplished via ensemble averaging as described

above.

The LES-FD procedure determines the pressure field which is used in the MC solver.

The LES-FD also determines the filtered velocity and scalar fields. That is, there is a
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“redundancy” in the determination of the first filtered moments as both the LES-FD and

the MC procedures provides the solution of this field. This redundancy is actually very useful

in monitoring the accuracy of the simulated results as shown in previous works.10,11,58,59 To

establish consistency and convergence of the MC solver, the modeled transport equations for

the generalized second order SGS moments (Eq. (2.26)) are also solved via LES-FD. In doing

so, the unclosed third order correlations are taken from the MC solver. The comparison of

the first and second order moments as obtained by LES-FD with those obtained by the MC

solver is useful to establish the accuracy of the MC solver. These simulations are referred

to as VSFDF-C. Attributes of all the simulation procedures are summarized in Table 1. In

this table and hereinafter, VSFDF simulations refer to the hybrid MC/LES-FD procedure

in which the LES-FD is used for only the first order filtered variables. In VSFDF-C, the

LES-FD procedure is used for both first and second order filtered values. Further discussions

about the simulation methods are available in Refs.9,11,58,59

Table 1: Attributes of the computational methods.

VSFDF quantities LES-FD quantities
LES-FD VSFDF used by the used by the Redundant
variables variables LES-FD system VSFDF system quantities

VSFDF 〈p〉, 〈ui〉 X+
i τ(ui, uj) 〈ui〉, ∂〈p〉

∂xi
〈ui〉

〈φα〉 U+
i τ(ui, φα) ∂〈ui〉

∂xk
, ∂2〈ui〉

∂xk∂xk
〈φα〉

φ+
α 〈Sα(φ)〉 〈φα〉

VSFDF-C 〈p〉, 〈ui〉 X+
i τ(ui, uj) 〈ui〉, ∂〈p〉

∂xi
〈ui〉,〈φα〉

〈φα〉 U+
i τ(ui, φα) ∂〈ui〉

∂xk
, ∂2〈ui〉

∂xk∂xk
τ(ui, uj)

τ(ui, uj) φ+
α τ(ui, uj , uk) 〈φα〉 , k τ(ui, φα)

τ(ui, φα) τ(ui, uj , φα) τ(φα, φβ)
τ(φα, φβ) τ(ui, φα, φβ)
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2.4 FLOWS SIMULATED

Simulations are conducted of a two-dimensional (2D) and a three-dimensional (3D) tempo-

rally developing mixing layer involving transport of a passive scalar variable. The 2D simula-

tions are performed to establish and demonstrate the consistency of the MC solver. The 3D

simulations are used to assess the overall predictive capabilities of the VSFDF methodology.

These predictions are compared with data obtained by direct numerical simulation (DNS)

of the same layer.

The temporal mixing layer consists of two parallel streams travelling in opposite di-

rections with the same speed.64–66 In the representation below, x, y (and z) denote the

streamwise, the cross-stream, (and the span-wise) directions (in 3D), respectively. The ve-

locity components along these directions are denoted by u, v, (and w) in the x, y, (and

z) directions, respectively. Both the filtered streamwise velocity and the scalar fields are

initialized with a hyperbolic tangent profiles with 〈u〉 = 1, 〈φ〉 = 1 on the top stream and

〈u〉 = −1, 〈φ〉 = 0 on the bottom stream. The length L is specified such that L = 2NPλu,

where NP is the desired number of successive vortex pairings and λu is the wavelength of

the most unstable mode corresponding to the mean streamwise velocity profile imposed at

the initial time. The flow variables are normalized with respect to the half initial vorticity

thickness, Lr = δv(t=0)
2

, (δv = ∆U

|∂〈u〉/∂y|max

, where 〈u〉 is the Reynolds-averaged value of the

filtered streamwise velocity and ∆U is the velocity difference across the layer). The reference

velocity is Ur = ∆U/2.

All 2D simulations are conducted for 0 ≤ x ≤ L, and −2L
3

≤ y ≤ 2L
3

. The forma-

tion of large scale structures is facilitated by introducing small harmonic, phase-shifted,

disturbances containing sub-harmonics of the most unstable mode into the stream-wise and

cross-stream velocity profiles. For Np = 1, this results in formation of two large vortices

and one subsequent pairing of these vortices. The 3D simulations are conducted for a cu-

bic box, 0 ≤ x ≤ L, −L
2

≤ y ≤ L
2
, (0 ≤ z ≤ L). The 3D field is parameterized in

a procedure somewhat similar to that by Vreman et al.67 The formation of the large scale

structures are expedited through eigenfunction based initial perturbations.68,69 This includes
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two-dimensional65,67,70 and three-dimensional65,71 perturbations with a random phase shift

between the 3D modes. This results in the formation of two successive vortex pairings and

strong three-dimensionality.

2.5 NUMERICAL SPECIFICATIONS

Simulations are conducted on equally-spaced grid points with grid spacings ∆x = ∆y =

∆z (for 3D) = ∆. All 2D simulations are performed on 32 × 41 grid points. The 3D

simulations are conducted on 1933 and 333 points for DNS and LES, respectively. The

Reynolds number is Re = UrLr

ν
= 50. To filter the DNS data, a top-hat function of the form

below is used

G(x′ − x) =
3∏

i=1

G̃(x′i − xi),

G̃(x′i − xi) =





1
∆L

|x′i − xi| ≤ ∆L

2
,

0 |x′i − xi| > ∆L

2
.

(2.31)

No attempt is made to investigate the sensitivity of the results to the filter function51 or the

size of the filter.72

The MC particles are initially distributed throughout the computational region. All

simulations are performed with a uniform “weight”44 of the particles. Due to flow periodicity

in the streamwise (and spanwise in 3D) direction(s), if the particle leaves the domain at one of

these boundaries new particles are introduced at the other boundary with the same velocity

and compositional values. In the cross-stream directions, the free-slip boundary condition

is satisfied by the mirror-reflection of the particles leaving through these boundaries. The

density of the MC particles is determined by the average number of particles NE within the

ensemble domain of size ∆E×∆E (×∆E). The effects of both of these parameters are assessed

to ensure the consistency and the statistical accuracy of the VSFDF simulations. All results

are analyzed both “instantaneously” and “statistically.” In the former, the instantaneous

contours (snap-shots) and scatter plots of the variables of interest are analyzed. In the latter,

16



the “Reynolds-averaged” statistics constructed from the instantaneous data are considered.

These are constructed by spatial averaging over x (and z in 3D). All Reynolds averaged

results are denoted by an overbar.

2.6 CONSISTENCY AND CONVERGENCE ASSESSMENTS

The objective of this section is to demonstrate the consistency of the VSFDF formulation

and the convergence of its MC simulation procedure. For this purpose, the results via MC

and LES-FD are compared against each other in VSFDF-C simulations. Since the accuracy

of the FD procedure is well-established (at least for the first order filtered quantities), such

a comparative assessment provides a good means of assessing the performance of the MC

solution. No attempt is made to determine the appropriate values of the model constants;

the values suggested in the literature are adopted73 C0 = 2.1, Cǫ = 1 and Cφ = 1. The

influence of these parameters are assessed in Section (2.7).

The uniformity of the MC particles is checked by monitoring their distributions at all

times, as the particle number density must be proportional to fluid density. The Reynolds

averaged density field as obtained by both LES-FD and MC are shown in Fig. 2. Close to

unity values for the density at all times is the first measure of the accuracy of simulations.

Figures 3, 4 show the instantaneous contour plots of the filtered scalar and vorticity fields at

several times. These figures provide a visual demonstration of the consistency of the VSFDF.

This consistency is observed for all first order moments without any statistical variability.

Also, all of these moments show very little dependence on the values of ∆E and NE consistent

with previous FDF simulations.9–11 In the presentation below we only focus on second order

moments. Specifically, the scalar-velocity correlations are shown since all other second order

SGS moments behave similarly.

Figures 5, 6 show the statistical variability of the results for simulations with NE = 40.

It is observed that these moments exhibit spreads with variances decreasing as the size of

the ensemble domain is reduced. Figures 7-10 show the sensitivity to NE and ∆E. All these

results clearly display convergence suggested by Eq. (2.30). As the ensemble domain size
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decreases, the VSFDF results converge to those of LES-FD. Ideally, the LES-FD results

should become independent of the MC results, as the latter become more reliable, i.e. when

NE → ∞, ∆E → 0). It is observed that best match is achieved with ∆E ≤ ∆/2 andNE ≥ 40.

This conclusion is consistent with previous assessment studies on the scalar FDF,9,10 and the

velocity FDF.11 All the subsequent simulations are conducted with ∆E = ∆/2 and NE = 40.

2.7 COMPARATIVE ASSESSMENTS OF THE VSFDF

The objective of this section is to analyze some of the characteristics of the VSFDF via

comparative assessments against DNS data. In addition, comparisons are also made with

LES via the “conventional” Smagorinsky42,74 model

τL(ui, uj) −
2

3
k δij = −2 νt Sij,

τL(ui, φ) = −Γt
∂ 〈φ〉
∂xi

,

Sij =
1

2

(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)
,

νt = Cν ∆2
L S, Γt =

νt

Sct
.

(2.32)

Cν = 0.04, Sct = 1, S =
√
SijSij and ∆L is the characteristic length of the filter. This

model considers the anisotropic part of the SGS stress tensor aij = τL(ui, uj)−2/3k δij. The

isotropic components are absorbed in the pressure field.

For comparison, the DNS data are transposed from the original high resolution 1933

points to the coarse 333 points. In the comparisons, we also consider the “resolved” and the

“total” components of the Reynolds averaged moments. The former are denoted by R(a, b)

with R(a, b) =
(
〈a〉 − 〈a〉

)(
〈b〉 − 〈b〉

)
; and the latter is r(a, b) with r(a, b) = (a− a)

(
b− b

)
.

In DNS, the “total” SGS components are directly available, while in LES they are approx-

imated by r(a, b) ≈ R(a, b) + τ(a, b).67 Unless indicated otherwise, the values of the model
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constants are C0 = 2.1, Cǫ = 1, Cφ = 1; but the effects of these parameters on the predicted

results are assessed.

Figure 11 shows the iso-surface of the instantaneous filtered passive scalar fields at t = 80.

By this time, the flow has gone through pairings and exhibits strong 3D effects. This is

evident by the formation of large scale span-wise rollers with presence of mushroom like

structures in streamwise planes.68 Similar to previous results,11 the amount of SGS diffusion

with the Smagorinsky model is significant. Thus, the predicted results are overly smooth.

The Reynolds averaged values of the filtered scalar field at t = 80 are shown in Fig. 12, and

the temporal variation of the “scalar thickness,”

δs(t) =
∣∣y(〈φ〉 = 0.9)

∣∣+
∣∣y(〈φ〉 = 0.1)

∣∣, (2.33)

is shown in Fig. 13. The filtered and unfiltered DNS data yield virtually indistinguishable

results. The dissipative nature of the Smagorinsky model at initial times resulting in a

slow growth of the layer is shown. All VSFDF predictions compare well with DNS data in

predicting the spread of the layer.

Several components of the planar averaged values of the second order SGS moments

are compared with DNS data in Figs. 14, 15 for several values of the model constants. In

general, the VSFDF results are in better agreement with DNS data than those predicted

by the Smagorinsky model. In this regard, therefore, the VSFDF is expected to be more

effective than the Smagorinsky type closures for LES of reacting flows since the extent of

SGS mixing is heavily influenced by these SGS moments.5,75 However, it is not possible to

suggest “optimum” values for the model constants, except that at small Cǫ and Cφ values,

the SGS energy is very large.

Several components of the resolved second order moments are presented in Figs. 16,

17. As expected, the performance of the Smagorinsky model is not very good as it does not

predict the spread and the peak value accurately. The VSFDF yields reasonable predictions

except for small Cφ values. However, the total values of these moments are fairly independent

of the model constants and yield very good agreement with DNS data as shown in Figs. 18,

19. It is also noted that while the SGS moments and/or the resolved moments may be over-

and/or under-estimated depending on the values of the model coefficients, the total values
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of the moments are fairly independent of these coefficients, at least in the range of values

as considered. But low values of Cφ, Cǫ are not recommended as they would result into too

much SGS energy in comparison to the resolved energy.
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∆

∆E 1
2

3

Figure 1: Concept of ensemble-averaging. Shown are three different ensemble domains:

1(∆E = ∆/2, NE ≈ 10), 2(∆E = ∆, NE ≈ 40), 3(∆E = 2∆, NE ≈ 160). Black squares de-

note the finite-difference grid points, and the circles denote the MC particles.
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Figure 2: Cross-stream variations of the Reynolds-averaged values of 〈ρ〉 at t=34.3: (a)

NE = 40, (b) ∆E = ∆/2.
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(a) t=13.98 (b) t=23.94 (c) t=33.90

(d) t=13.98 (e) t=23.94 (f) t=33.90

Figure 3: Temporal evolution of the scalar (with superimposed vorticity iso-lines) (top) and

the vorticity (bottom) fields for LES-FD, with ∆E = ∆/2 and NE = 40 at several times.
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(a) t=13.98 (b) t=23.94 (c) t=33.90

(d) t=13.98 (e) t=23.94 (f) t=33.90

Figure 4: Temporal evolution of the scalar (with superimposed vorticity iso-lines) (top) and

the vorticity (bottom) fields for VSFDF with ∆E = ∆/2 and NE = 40 at several times.
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Figure 5: Statistical variability of LES-FD and VSFDF-C simulations with NE = 40 for

Reynolds-averaged values of τ(u, φ) at t=34.4. Solid lines: LES-FD, dashed lines: VSFDF-

C.
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Figure 6: Statistical variability of LES-FD and VSFDF-C simulations with NE = 40 for

Reynolds-averaged values of τ(v, φ) at t=34.4. Solid lines: LES-FD, dashed lines: VSFDF-

C.
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Figure 7: Cross-stream variations of the Reynolds-averaged values of τ(u, φ) (a) ∆E = ∆/2,

(b) ∆E = ∆, (c) ∆E = 2∆.
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Figure 8: Cross-stream variations of the Reynolds-averaged values of τ(v, φ) (a) ∆E = ∆/2,

(b) ∆E = ∆, (c) ∆E = 2∆.
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Figure 9: Cross-stream variations of the Reynolds-averaged values of τ(u, φ) (a) NE = 20,

(b) NE = 40, (c) NE = 80.
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Figure 10: Cross-stream variations of the Reynolds-averaged values of τ(v, φ) (a) NE = 20,

(b) NE = 40, (c) NE = 80.
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Figure 11: Contour surfaces of the 〈φ〉 field in the 3D mixing layer at t = 80 as obtained by:

(a) DNS, (b) Smagorinsky, (c) VSFDF.
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Figure 12: Cross-stream variations of the Reynolds-averaged values of the filtered scalar field

at t = 80.
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Figure 13: Temporal variations of the scalar thickness.
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Figure 14: Cross stream variations of some of the components of τ at t = 60.
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Figure 15: Cross stream variations of some of the components of τ at t = 80.
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Figure 16: Cross-stream variations of some of the components of R at t = 60.
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Figure 17: Cross-stream variations of some of the components of R at t = 80.

37



(a)

    −20   −10     0     10    20    

 0  

0.02

0.04

0.06

0.08

r(
u
,φ

)

y

(b)

    −20   −10     0     10    20    
−0.06

−0.04

−0.02

  0  

r(
v
,φ

)

y

(c)

    −20   −10     0     10    20    
 0  

0.05

 0.1

 0  

0.05

 0.1

r(
φ
,φ

)

y

VSFDF: C
0
=2.1, Cε= 1  , Cφ= 1 

VSFDF: C
0
=2.1, Cε=0.5, Cφ= 1  

VSFDF: C
0
= 1  , Cε= 1  , Cφ= 1

VSFDF: C
0
=2.1, Cε= 1  , Cφ=0.5

Smagorinsky                                
Filtered DNS                               
Unfiltered DNS                             

Figure 18: Cross-stream variations of some of the components of r at t = 60.

38



(a)

    −20   −10     0     10    20    

0   

0.02

0.04

0.06

0.08

r(
u
,φ

)

y

(b)

    −20   −10     0     10    20    
−0.06

−0.04

−0.02

  0  

r(
v
,φ

)

y

(c)

    −20   −10     0     10    20    
0   

0.02

0.04

0.06

0.08

 0.1

r(
φ
,φ

)

y

VSFDF: C
0
=2.1, Cε= 1  , Cφ= 1 

VSFDF: C
0
=2.1, Cε=0.5, Cφ= 1  

VSFDF: C
0
= 1  , Cε= 1  , Cφ= 1

VSFDF: C
0
=2.1, Cε= 1  , Cφ=0.5

Smagorinsky                                
Filtered DNS                               
Unfiltered DNS                             

Figure 19: Cross-stream variations of some of the components of r at t = 80.
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3.0 JOINT VELOCITY SCALAR FILTERED MASS DENSITY FUNCTION

FOR VARIABLE-DENSITY FLOWS

In this chapter, the VSFDF methodology is extended for variable-density turbulent reacting

flows, by considering the joint “velocity-scalar filtered mass density function” (VSFMDF).

Following its mathematical definition, an exact transport equation is derived for the VSFMDF.

This equation is modeled in a probabilistic manner. Two models, in the form of systems

of stochastic differential equations are considered, each containing different forms of the

fluid density. The procedure for numerical solution of the VSFMDF is based on a hybrid

Eulerian/Largrangian procedure. The Eulerian part involves finite-difference solution of

the transport equations. The Lagrangian part involves Monte Carlo solution of the modeled

VSFMDF transport equation. The unclosed moments in the Eulerian part are obtained from

the Monte Carlo solver. The consistency and accuracy of this procedure are established in

the simulation of a three-dimensional mixing layer involving the transport of a passive scalar.

These simulations are assessed by comparing the VSFMDF results with those of direct nu-

merical simulation (DNS), and those predicted by a conventional LES via the Smagorinsky42

SGS closure. In addition, the predictive capabilities of VSFMDF is demonstrated by LES

of a reacting shear layer. The predicted results are compared with experimental data.76

3.1 FORMULATION

In a compressible flow undergoing chemical reaction involving Ns species, the primary

transport variables are the density ρ(x, t), the velocity vector ui(x, t) (i = 1, 2, 3), the

pressure p(x, t), the total specific enthalpy h(x, t) and the species’ mass fractions Yα(x, t)
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(α = 1, 2, . . . , Ns). The equations which govern the transport of these variables in space (xi)

(i = 1, 2, 3) and time (t) are the continuity, momentum, enthalpy (energy) and species’ mass

fraction equations, along with an equation of state

∂ρ

∂t
+
∂ρuj

∂xj

= 0, (3.1a)

∂ρui

∂t
+
∂ρujui

∂xj

= − ∂p

∂xi

+
∂τji
∂xj

, (3.1b)

∂ρφα

∂t
+
∂ρujφα

∂xj

= −
∂Jα

j

∂xj

+ ρSα, α = 1, 2, . . . , σ = Ns + 1, (3.1c)

p = ρR0T

Ns∑

α=1

Yα/Mα = ρRT, (3.1d)

where R0 and R are the universal and mixture gas constants and Mα denotes the molecular

weight of species α. The chemical reaction source terms Sα ≡ Ŝα (φ(x, t)) are functions of

compositional scalars (φ ≡ [φ1, φ2, . . . , φNs+1]). Equation (3.1c) represents the transport of

species’ mass fraction and enthalpy in a common form with

φα ≡ Yα, α = 1, 2, ..., Ns, φσ ≡ h =
Ns∑

α=1

hαφα, (3.2)

and

hα = h0
α +

∫ T

T0

cpα
(T ′)dT ′. (3.3)

Here T and T0 denote the temperature field and the reference temperature, respectively. In

this equation, h0
α and cpα

denote the absolute enthalpy at T0 and the specific heat at constant

pressure for species α. For a Newtonian fluid, with Fick’s law of diffusion, the viscous stress

tensor τij and the scalar flux Jα
j are represented by

τij = µ

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3

∂uk

∂xk

δij

)
, (3.4a)

Jα
j = −γ ∂φα

∂xj

, (3.4b)

where µ is the fluid dynamic viscosity and γ = ρΓ denote the thermal and mass molecular

diffusivity coefficients for all the scalars. We assume a constant value for µ = γ; i.e. unity

Schmidt(Sc) and Lewis (Le) numbers. In reactive flows, molecular processes are much more

complicated than portrayed by Eq. (3.4). Since the molecular diffusion is typically less
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important than that of SGS, this simple model is adopted with justifications and caveats

given in Refs.43–45

Large eddy simulation involves the spatial filtering operation1,46–49

〈f(x, t)〉l =

∫ +∞

−∞

f(x′, t)G(x′,x)dx′, (3.5)

where G(x′,x) denotes a filter function, and 〈f(x, t)〉l is the filtered value of the transport

variable f(x, t). In variable-density flows it is convenient to use the Favre-filtered quantity

〈f(x, t)〉L = 〈ρf〉l / 〈ρ〉l. We consider a filter function that is spatially and temporally invari-

ant and localized, thus: G(x′,x) ≡ G(x′−x) with the properties G(x) ≥ 0,
∫ +∞

−∞
G(x)dx = 1.

Applying the filtering operation to Eqs. (3.1) yields

∂〈ρ〉l
∂t

+
∂ 〈ρ〉l 〈uj〉L

∂xj

= 0, (3.6a)

∂ 〈ρ〉l 〈ui〉L
∂t

+
∂ 〈ρ〉l 〈uj〉L 〈ui〉L

∂xj

= −∂ 〈p〉l
∂xi

+
∂

∂xj

[
µ

(
∂ 〈ui〉l
∂xj

+
∂ 〈uj〉l
∂xi

)]

− 2

3

∂

∂xi

(
µ
∂ 〈uj〉l
∂xj

)
− ∂ 〈ρ〉l τL(ui, uj)

∂xj

, (3.6b)

∂ 〈ρ〉l 〈φα〉L
∂t

+
∂ 〈ρ〉l 〈uj〉L 〈φα〉L

∂xj

=
∂

∂xj

(
µ
∂ 〈φα〉l
∂xj

)
− ∂ 〈ρ〉l τL(uj, φα)

∂xj

+ 〈ρSα〉l ,

(3.6c)

where the second-order SGS correlations

τL(a, b) = 〈ab〉L − 〈a〉L 〈b〉L (3.7)
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are governed by

∂ 〈ρ〉l τL(ui, uj)

∂t
+
∂ 〈ρ〉l 〈uk〉L τL(ui, uj)

∂xk

= −∂ 〈ρ〉l τL(uk, ui, uj)

∂xk

− 〈ρ〉l τL(ui, uk)
∂ 〈uj〉L
∂xk

− 〈ρ〉l τL(uj, uk)
∂ 〈ui〉L
∂xk

+

[
∂

∂xk

(
µ
∂ 〈uiuj〉l
∂xk

)
− 〈uj〉L

∂

∂xk

(
µ
∂ 〈ui〉l
∂xk

)
− 〈ui〉L

∂

∂xk

(
µ
∂ 〈uj〉l
∂xk

)]

+

[〈
uj

∂

∂xk

(
µ
∂uk

∂xi

)〉

l

− 〈uj〉L
∂

∂xk

(
µ
∂ 〈uk〉l
∂xi

)]

+

[〈
ui

∂

∂xk

(
µ
∂uk

∂xj

)〉

l

− 〈ui〉L
∂

∂xk

(
µ
∂ 〈uk〉l
∂xj

)]

− 2

3

[〈
uj

∂

∂xi

(
µ
∂uk

∂xk

)〉

l

− 〈uj〉L
∂

∂xi

(
µ
∂ 〈uk〉l
∂xk

)]

− 2

3

[〈
ui

∂

∂xj

(
µ
∂uk

∂xk

)〉

l

− 〈ui〉L
∂

∂xj

(
µ
∂ 〈uk〉l
∂xk

)]

−
[〈

uj
∂p

∂xi

〉

l

− 〈uj〉L
∂ 〈p〉l
∂xi

]
−
[〈

ui
∂p

∂xj

〉

l

− 〈ui〉L
∂ 〈p〉l
∂xj

]
−
[
2µ

〈
∂ui

∂xk

∂uj

∂xk

〉

l

]
,

(3.8a)

∂ 〈ρ〉l τL(ui, φα)

∂t
+
∂ 〈ρ〉l 〈uj〉L τL(ui, φα)

∂xj

= −∂ 〈ρ〉l τL(uj, ui, φα)

∂xj

− 〈ρ〉l τL(ui, uj)
∂ 〈φα〉L
∂xj

− 〈ρ〉l τL(uj, φα)
∂ 〈ui〉L
∂xj

+

[
∂

∂xj

(
µ
∂ 〈uiφα〉l
∂xj

)
− 〈φα〉L

∂

∂xj

(
µ
∂ 〈ui〉l
∂xj

)
− 〈ui〉L

∂

∂xj

(
µ
∂ 〈φα〉l
∂xj

)]

+

[〈
φα

∂

∂xj

(
µ
∂uj

∂xi

)〉

l

− 〈φα〉L
∂

∂xj

(
µ
∂ 〈uj〉l
∂xi

)]

− 2

3

[〈
φα

∂

∂xi

(
µ
∂uj

∂xj

)〉

l

− 〈φα〉L
∂

∂xi

(
µ
∂ 〈uj〉l
∂xj

)]

−
[〈

φα
∂p

∂xi

〉

l

− 〈φα〉L
∂ 〈p〉l
∂xi

]
−
[
2µ

〈
∂ui

∂xj

∂φα

∂xj

〉

l

]

+ [〈ρ〉l τL(ui, Sα(φ))] , (3.8b)
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∂ 〈ρ〉l τL(φα, φβ)

∂t
+
∂ 〈ρ〉l 〈uj〉L τL(φα, φβ)

∂xj

= −∂ 〈ρ〉l τL(uj, φα, φβ)

∂xj

− 〈ρ〉l τL(φα, uj)
∂ 〈φβ〉L
∂xj

− 〈ρ〉l τL(φβ, uj)
∂ 〈φα〉L
∂xj

+

[
∂

∂xj

(
µ
∂ 〈φαφβ〉l
∂xj

)
− 〈φα〉L

∂

∂xj

(
µ
∂ 〈φβ〉l
∂xj

)
− 〈φβ〉L

∂

∂xj

(
µ
∂ 〈φα〉l
∂xj

)]

−
[
2µ

〈
∂φα

∂xj

∂φβ

∂xj

〉

l

]

+ 〈ρ〉l [τL(φα, Sβ(φ)) + τL(φβ, Sα(φ))] . (3.8c)

In this equation, the third order correlations

τL(a, b, c) = 〈abc〉L − 〈a〉L τL(b, c)

−〈b〉L τL(a, c) − 〈c〉L τL(a, b) − 〈a〉L 〈b〉L 〈c〉L (3.9)

along with the other terms within square brackets are unclosed. Equations (3.6), (3.8)

provide an “exact” form of the transport equations. Applying the conventional LES approx-

imation (〈f〉l ≈ 〈f〉L) to diffusion terms in these equations, we obtain

∂ 〈ρ〉l 〈ui〉L
∂t

+
∂ 〈ρ〉l 〈uj〉L 〈ui〉L

∂xj

= −∂ 〈p〉l
∂xi

+
∂

∂xj

[
µ

(
∂ 〈ui〉L
∂xj

+
∂ 〈uj〉L
∂xi

)]

− 2

3

∂

∂xi

(
µ
∂ 〈uj〉L
∂xj

)
− ∂ 〈ρ〉l τL(ui, uj)

∂xj

, (3.10a)

∂ 〈ρ〉l 〈φα〉L
∂t

+
∂ 〈ρ〉l 〈uj〉L 〈φα〉L

∂xj

=
∂

∂xj

(
µ
∂ 〈φα〉L
∂xj

)
− ∂ 〈ρ〉l τL(uj, φα)

∂xj

+ 〈ρSα〉l ,

(3.10b)
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∂ 〈ρ〉l τL(ui, uj)

∂t
+
∂ 〈ρ〉l 〈uk〉L τL(ui, uj)

∂xk

= −∂ 〈ρ〉l τL(uk, ui, uj)

∂xk

− 〈ρ〉l τL(ui, uk)
∂ 〈uj〉L
∂xk

− 〈ρ〉l τL(uj, uk)
∂ 〈ui〉L
∂xk

+
∂

∂xk

(
µ
∂τL (ui, uj)

∂xk

)

+ τL

(
uj,

∂

∂xk

(
µ
∂uk

∂xi

))
+ τL

(
ui,

∂

∂xk

(
µ
∂uk

∂xj

))

− 2

3
τL

(
uj,

∂

∂xi

(
µ
∂uk

∂xk

))
− 2

3
τL

(
ui,

∂

∂xj

(
µ
∂uk

∂xk

))

−
[〈

uj
∂p

∂xi

〉

l

− 〈uj〉L
∂ 〈p〉l
∂xi

]
−
[〈

ui
∂p

∂xj

〉

l

− 〈ui〉L
∂ 〈p〉l
∂xj

]
− 2µτL

(
∂ui

∂xk

,
∂uj

∂xk

)
,

(3.11a)

∂ 〈ρ〉l τL(ui, φα)

∂t
+
∂ 〈ρ〉l 〈uj〉L τL(ui, φα)

∂xj

= −∂ 〈ρ〉l τL(uj, ui, φα)

∂xj

− 〈ρ〉l τL(ui, uj)
∂ 〈φα〉L
∂xj

− 〈ρ〉l τL(uj, φα)
∂ 〈ui〉L
∂xj

+
∂

∂xj

(
µ
∂τL (ui, φα)

∂xj

)

+ τL

(
φα,

∂

∂xj

(
µ
∂uj

∂xi

))
− 2

3
τL

(
φα,

∂

∂xi

(
µ
∂uj

∂xj

))

−
[〈

φα
∂p

∂xi

〉

l

− 〈φα〉L
∂ 〈p〉l
∂xi

]
− 2µτL

(
∂ui

∂xj

,
∂φα

∂xj

)

+ [〈ρ〉l τL(ui, Sα(φ))] , (3.11b)

∂ 〈ρ〉l τL(φα, φβ)

∂t
+
∂ 〈ρ〉l 〈uj〉L τL(φα, φβ)

∂xj

= −∂ 〈ρ〉l τL(uj, φα, φβ)

∂xj

− 〈ρ〉l τL(φα, uj)
∂ 〈φβ〉L
∂xj

− 〈ρ〉l τL(φβ, uj)
∂ 〈φα〉L
∂xj

+
∂

∂xj

(
µ
∂τL (φα, φβ)

∂xj

)

− 2µτL

(
∂φα

∂xj

,
∂φβ

∂xj

)
+ 〈ρ〉l [τL(φα, Sβ(φ)) + τL(φβ, Sα(φ))] . (3.11c)
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3.2 VELOCITY-SCALAR FILTERED MASS DENSITY FUNCTION

(VSFMDF)

3.2.1 Definitions

The “velocity-scalar filtered mass density function” (VSFMDF), denoted by PL, is formally

defined as2

PL (v,ψ;x, t) =

∫ +∞

−∞

ρ(x′, t)ζ (v,ψ;u(x′, t),φ(x′, t))G(x′ − x)dx′, (3.12)

where

ζ (v,ψ;u(x, t),φ(x, t)) =
3∏

i=1

δ (vi − ui(x, t)) ×
Ns+1∏

α=1

δ (ψα − φα(x, t)) . (3.13)

In this equation, δ denotes the Dirac delta function, and v,ψ are the velocity vector and

the scalar array in the sample space. The term ζ is the “fine-grained” density.44,50 Eq.

(3.12) defines VSFMDF as the spatially filtered value of the fine-grained density. With the

condition of a positive filter kernel,51 PL has all of the properties of a mass density function

(mdf).44 For further developments it is useful to define the “conditional filtered value” of

the variable Q(x, t) as

〈
Q(x, t)

u(x, t) = v,φ(x, t) = ψ
〉

l
≡
〈
Q
v,ψ

〉
l
=

∫ +∞

−∞
Q (x′, t) ρ(x′, t)ζ (v,ψ;u(x′, t),φ(x′, t))G (x′ − x) dx′

PL (v,ψ;x, t)
.

(3.14)
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Equation (3.14) implies the following:

(i) for Q(x, t) = c,
〈
Q(x, t)

v,ψ
〉

l
= c, (3.15a)

(ii) for Q(x, t) ≡ Q̂(u(x, t),φ(x, t)),
〈
Q(x, t)

v,ψ
〉

l
= Q̂(v,ψ). (3.15b)

(iii) Integral properties: 〈ρ(x, t)〉l 〈Q(x, t)〉L = 〈ρ(x, t)Q(x, t)〉l =
∫ +∞

−∞

∫ +∞

−∞

〈
Q(x, t)

v,ψ
〉

l
PL(v,ψ;x, t)dvdψ.

(3.15c)

From Eqs. (3.15) it follows that the filtered value of any function of the velocity and/or

scalar variables is obtained by its integration over the velocity and scalar sample spaces

〈ρ(x, t)〉l 〈Q(x, t)〉L =

∫ +∞

−∞

∫ +∞

−∞

Q̂(v,ψ)PL(v,ψ;x, t)dvdψ. (3.16)

3.2.2 VSFMDF Transport Equations

To develop the VSFMDF transport equation, we consider the time derivative of the fine-

grained density function (Eq. (3.13))

∂ζ

∂t
= −

(
∂uk

∂t

∂ζ

∂vk

+
∂φα

∂t

∂ζ

∂ψα

)
. (3.17)

Substituting Eqs. (3.1b), (3.1c), and Eqs. (3.4a), (3.4b) into Eq. (3.17) we obtain

∂ρζ

∂t
+
∂ujρζ

∂xj

=

(
∂p

∂xj

− ∂τkj

∂xk

)
∂ζ

∂vj

+

(
∂Jα

j

∂xj

− ρSα (φ)

)
∂ζ

∂ψα

. (3.18)

Integration of this equation according to Eq. (3.12), while employing Eq. (3.14) results in

∂PL

∂t
+
∂viPL

∂xi

= − ∂

∂ψα

[Sα(ψ)PL]

+
∂

∂vi

(〈
1

ρ(φ)

∂p

∂xi

v,ψ
〉

l

PL

)

− ∂

∂vi

(〈
1

ρ(φ)

∂τji
∂xj

v,ψ
〉

l

PL

)

+
∂

∂ψα

(〈
1

ρ(φ)

∂Jα
i

∂xi

v,ψ
〉

l

PL

)
.

(3.19)
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This is an exact transport equation and indicates that the effects of convection (second

term on LHS) and chemical reaction (the first term on RHS) appear in closed forms. The

unclosed terms denote convective effects in the velocity-scalar sample space. Alternatively,

the VSFMDF equation can be expressed as

∂PL

∂t
+
∂viPL

∂xi

=
∂

∂xi

[
µ
∂ (PL/ρ(ψ))

∂xi

]
− ∂

∂ψα

[Sα(ψ)PL]

+
∂

∂vi

[〈
1

ρ(φ)

∂p

∂xi

∣∣∣∣ v,ψ
〉

l

PL

]
− ∂2

∂vi∂vj

[〈
µ

ρ(φ)

∂ui

∂xk

∂uj

∂xk

∣∣∣∣ v,ψ
〉

l

PL

]

− ∂

∂vi

[〈
1

ρ(φ)

∂

∂xj

(
µ
∂uj

∂xi

) ∣∣∣∣ v,ψ
〉

l

PL

]
+

∂

∂vi

[〈
1

ρ(φ)

∂

∂xi

(
2

3
µ
∂uj

∂xj

) ∣∣∣∣ v,ψ
〉

l

PL

]

− 2
∂2

∂vi∂ψα

[〈
µ

ρ(φ)

∂ui

∂xj

∂φα

∂xj

∣∣∣∣ v,ψ
〉

l

PL

]
− ∂2

∂ψα∂ψβ

[〈
µ

ρ(φ)

∂φα

∂xi

∂φβ

∂xi

∣∣∣∣ v,ψ
〉

l

PL

]
.

(3.20)

This is also an exact equation. The unclosed terms are exhibited by the conditional filtered

values as shown by the last six terms on the RHS.

3.2.3 Modeled VSFMDF Transport Equation

For closure of the VSFMDF transport equation, we consider the general diffusion process,52

given by the system of stochastic differential equations (SDEs):

dX+
i (t) = DX

i (X+,U+,φ+; t)dt+BX
ij (X+,U+,φ+; t)dWX

j (t)

+ FXU
ij (X+,U+,φ+; t)dWU

j (t) + FXφ
ij (X+,U+,φ+; t)dW φ

j (t), (3.21a)

dU+
i (t) = DU

i (X+,U+,φ+; t)dt+BU
ij (X

+,U+,φ+; t)dWU
j (t)

+ FUX
ij (X+,U+,φ+; t)dWX

j (t) + FUφ
ij (X+,U+,φ+; t)dW φ

j (t), (3.21b)

dφ+
α (t) = Dφ

α(X+,U+,φ+; t)dt+Bφ
αj(X

+,U+,φ+; t)dW φ
j (t)

+ F φX
αj (X+,U+,φ+; t)dWX

j (t) + F φU
αj (X+,U+,φ+; t)dWU

j (t), (3.21c)

where X+
i , U

+
i , φ

+
α are probabilistic representations of position, velocity vector, and scalar

variables, respectively. TheD terms denote drift coefficient, the B terms denote diffusion, the

F terms denote diffusion couplings, and the W terms denote the Wiener-Lévy processes.53,54

To model these coefficients, we utilize the generalized Langevin model (GLM) and the linear
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mean square estimation (LMSE) model,50 following Refs.9,11,55,56 To account for fluid density

variations, two stochastic models in the form of Eq. (3.21) are constructed:

3.2.3.1 Model 1 (M1): In this model the fluctuations of density within the SGS are

taken into account.

dX+
i = U+

i dt+

√
2µ

ρ(φ+)
dWi, (3.22a)

dU+
i =

[
− 1

ρ(φ+)

∂ 〈p〉l
∂xi

+
2µ

ρ(φ+)

∂2 〈ui〉L
∂xj∂xj

+
µ

ρ(φ+)

∂2 〈uj〉L
∂xj∂xi

− 2

3

µ

ρ(φ+)

∂2 〈uj〉L
∂xi∂xj

]
dt

+ Gij

(
U+

j − 〈uj〉L
)
dt+

√
C0ǫdW

′
i +

√
2µ

ρ(φ+)

∂ 〈ui〉L
∂xj

dWj, (3.22b)

dφ+
α = −Cφω

(
φ+

α − 〈φα〉L
)
dt+ Sα(φ+)dt, (3.22c)

where

Gij = −ω
(

1

2
+

3

4
C0

)
δij ω =

ǫ

k

ǫ = Cǫ
k3/2

∆L

k =
1

2
τ (uk, uk) .

(3.23)

Here ω is the SGS mixing frequency, ǫ is the SGS dissipation rate, k is the SGS kinetic

energy, and ∆L is the LES filter size. The parameters C0, Cφ and Cǫ are model constants

and need to be specified. The Fokker-Planck equation57 for FL(v,ψ,x; t), the joint PDF of

X+,U+,φ+, evolving by the diffusion process as given by Eq. (3.22) is

∂FL

∂t
+
∂viFL

∂xi

=
1

ρ(ψ)

∂ 〈p〉l
∂xi

∂FL

∂vi

− 2µ

ρ(ψ)

∂2 〈ui〉L
∂xj∂xj

∂FL

∂vi

− µ

ρ(ψ)

∂2 〈uj〉L
∂xi∂xj

∂FL

∂vi

+
2

3

µ

ρ(ψ)

∂2 〈uj〉L
∂xj∂xi

∂FL

∂vi

−Gij

∂
[(
vj − 〈uj〉L

)
FL

]

∂vi

+
µ

ρ(ψ)

∂2FL

∂xj∂xj

+
2µ

ρ(ψ)

∂

∂xj

(
∂ 〈ui〉L
∂xj

∂FL

∂vi

)
+

µ

ρ(ψ)

∂ 〈ui〉L
∂xk

∂ 〈uj〉L
∂xk

∂2FL

∂vi∂vj

+
1

2
C0ǫ

∂2FL

∂vj∂vj

+ Cφω
∂ [(ψα − 〈φα〉L)FL]

∂ψα

− ∂ [Sα(ψ)FL]

∂ψα

. (3.24)
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The transport equations for the filtered variables are obtained by integration of Eq. (3.24)

according to Eq. (3.16)

∂〈ρ〉l
∂t

+
∂ 〈ρ〉l 〈uj〉L

∂xj

= 0, (3.25a)

∂ 〈ρ〉l 〈ui〉L
∂t

+
∂ 〈ρ〉l 〈uj〉L 〈ui〉L

∂xj

= −∂ 〈p〉l
∂xi

+
∂

∂xj

(
µ
∂ 〈ui〉l
∂xj

)
+

∂

∂xj

(
µ
∂ 〈uj〉L
∂xi

)

− 2

3

∂

∂xi

(
µ
∂ 〈uj〉L
∂xj

)
− ∂ 〈ρ〉l τL(ui, uj)

∂xj

, (3.25b)

∂ 〈ρ〉l 〈φα〉L
∂t

+
∂ 〈ρ〉l 〈uj〉L 〈φα〉L

∂xj

=
∂

∂xj

(
µ
∂ 〈φα〉l
∂xj

)
− ∂ 〈ρ〉l τL(φα, uj)

∂xj

+ 〈ρ〉l 〈Sα(φ)〉L . (3.25c)

The transport equations for the second order SGS moments are

∂ 〈ρ〉l τL(ui, uj)

∂t
+

∂ 〈ρ〉l 〈uk〉L τL(ui, uj)

∂xk

= −∂ 〈ρ〉l τL(uk, ui, uj)

∂xk

− 〈ρ〉l τL(ui, uk)
∂ 〈uj〉L
∂xk

− 〈ρ〉l τL(uj, uk)
∂ 〈ui〉L
∂xk

+

[
∂

∂xk

(
µ
∂ 〈uiuj〉l
∂xk

)
− 〈uj〉L

∂

∂xk

(
µ
∂ 〈ui〉l
∂xk

)
− 〈ui〉L

∂

∂xk

(
µ
∂ 〈uj〉l
∂xk

)]

+
(
〈uj〉l − 〈uj〉L

) [ ∂

∂xk

(
µ
∂ 〈uk〉L
∂xi

)
− 2

3

∂

∂xi

(
µ
∂ 〈uk〉L
∂xk

)]

+ (〈ui〉l − 〈ui〉L)

[
∂

∂xk

(
µ
∂ 〈uk〉L
∂xj

)
− 2

3

∂

∂xj

(
µ
∂ 〈uk〉L
∂xk

)]

−
(
〈uj〉l − 〈uj〉L

)(∂ 〈p〉l
∂xi

)

− (〈ui〉l − 〈ui〉L)

(
∂ 〈p〉l
∂xj

)

+ 〈ρ〉l GikτL(uj, uk) + 〈ρ〉l GjkτL(ui, uk) + 〈ρ〉l C0ǫδij

− 2µ

(
∂ 〈ui〉l
∂xk

∂ 〈uj〉L
∂xk

+
∂ 〈uj〉l
∂xk

∂ 〈ui〉L
∂xk

−∂ 〈ui〉L
∂xk

∂ 〈uj〉L
∂xk

)
, (3.26a)
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∂ 〈ρ〉l τL(ui, φα)

∂t
+

∂ 〈ρ〉l 〈uj〉L τL(ui, φα)

∂xj

= −∂ 〈ρ〉l τL(uj, ui, φα)

∂xj

− 2µ
∂ 〈ui〉L
∂xk

∂ 〈φα〉l
∂xk

− 〈ρ〉l τL(ui, uj)
∂ 〈φα〉L
∂xj

− 〈ρ〉l τL(uj, φα)
∂ 〈ui〉L
∂xj

+

[
∂

∂xj

(
µ
∂ 〈uiφα〉l
∂xj

)
− 〈φα〉L

∂

∂xj

(
µ
∂ 〈ui〉l
∂xj

)
− 〈ui〉L

∂

∂xj

(
µ
∂ 〈φα〉l
∂xj

)]

+ (〈φα〉l − 〈φα〉L)

[
∂

∂xj

(
µ
∂ 〈uj〉L
∂xi

)
− 2

3

∂

∂xi

(
µ
∂ 〈uj〉L
∂xj

)
− ∂ 〈p〉l

∂xi

]

+ 〈ρ〉l GijτL(uj, φα) − 〈ρ〉l CφωτL(ui, φα) + 〈ρ〉l τL(ui, Sα(φ)),

(3.26b)

∂ 〈ρ〉l τL(φα, φβ)

∂t
+

∂ 〈ρ〉l 〈ui〉L τL(φα, φβ)

∂xi

= −∂ 〈ρ〉l τL(ui, φα, φβ)

∂xi

− 〈ρ〉l τL(φα, ui)
∂ 〈φβ〉L
∂xi

− 〈ρ〉l τL(φβ, ui)
∂ 〈φα〉L
∂xi

+

[
∂

∂xi

(
µ
∂ 〈φαφβ〉l
∂xi

)
− 〈φα〉L

∂

∂xi

(
µ
∂ 〈φβ〉l
∂xi

)
− 〈φβ〉L

∂

∂xi

(
µ
∂ 〈φα〉l
∂xi

)]

− 2 〈ρ〉l CφωτL(φα, φβ) + 〈ρ〉l τL(φα, Sβ(φ)) + 〈ρ〉l τL(φβ, Sα(φ)). (3.26c)

The implied closure for the SDEs (3.22) is obtained by comparing the Fokker-Planck equation

(Eq. (3.24)) to VSFMDF transport equation (Eq. (3.20))

∂

∂vi

[〈
1

ρ(φ)

∂p

∂xi

∣∣∣∣ v,ψ
〉

l

PL

]
− ∂2

∂vi∂vj

[〈
µ

ρ(φ)

∂ui

∂xk

∂uj

∂xk

∣∣∣∣ v,ψ
〉

l

PL

]

− ∂

∂vi

[〈
1

ρ(φ)

∂

∂xj

(
µ
∂uj

∂xi

) ∣∣∣∣ v,ψ
〉

l

PL

]
+

∂

∂vi

[〈
1

ρ(φ)

∂

∂xi

(
2

3
µ
∂uj

∂xj

) ∣∣∣∣ v,ψ
〉

l

PL

]

− 2
∂2

∂vi∂ψα

[〈
µ

ρ(φ)

∂ui

∂xj

∂φα

∂xj

∣∣∣∣ v,ψ
〉

l

PL

]
− ∂2

∂ψα∂ψβ

[〈
µ

ρ(φ)

∂φα

∂xi

∂φβ

∂xi

∣∣∣∣ v,ψ
〉

l

PL

]
=

1

ρ(ψ)

∂ 〈p〉l
∂xi

∂FL

∂vi

− 2µ

ρ(ψ)

∂2 〈ui〉L
∂xj∂xj

∂FL

∂vi

− µ

ρ(ψ)

∂2 〈uj〉L
∂xi∂xj

∂FL

∂vi

+
2

3

µ

ρ(ψ)

∂2 〈uj〉L
∂xj∂xi

∂FL

∂vi

−Gij

∂
[(
vj − 〈uj〉L

)
FL

]

∂vi

+
2µ

ρ(ψ)

∂

∂xj

(
∂ 〈ui〉L
∂xj

∂FL

∂vi

)
+

µ

ρ(ψ)

∂ 〈ui〉L
∂xk

∂ 〈uj〉L
∂xk

∂2FL

∂vi∂vj

+
1

2
C0ǫ

∂2FL

∂vi∂vi

+ Cφω
∂ [(ψα − 〈φα〉L)FL]

∂ψα

. (3.27)
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The set of Eqs. (3.25), (3.26) may be compared to Eqs. (3.6), (3.8). The closure at the

second order level is

− 2µ

(〈
∂ui

∂xk

∂uj

∂xk

〉

l

−
(
∂ 〈ui〉l
∂xk

∂ 〈uj〉L
∂xk

+
∂ 〈ui〉L
∂xk

∂ 〈uj〉l
∂xk

)
+
∂ 〈ui〉L
∂xk

∂ 〈uj〉L
∂xk

)

+

[〈
uj

∂

∂xk

(
µ
∂uk

∂xi

)〉

l

− 〈uj〉L
∂

∂xk

(
µ
∂ 〈uk〉l
∂xi

)
−
(
〈uj〉l − 〈uj〉L

) ∂

∂xk

(
µ
∂ 〈uk〉L
∂xi

)]

+

[〈
ui

∂

∂xk

(
µ
∂uk

∂xj

)〉

l

− 〈ui〉L
∂

∂xk

(
µ
∂ 〈uk〉l
∂xj

)
− (〈ui〉l − 〈ui〉L)

∂

∂xk

(
µ
∂ 〈uk〉L
∂xj

)]

− 2

3

[〈
uj

∂

∂xi

(
µ
∂uk

∂xk

)〉

l

− 〈uj〉L
∂

∂xi

(
µ
∂ 〈uk〉l
∂xk

)
−
(
〈uj〉l − 〈uj〉L

) ∂

∂xi

(
µ
∂ 〈uk〉L
∂xk

)]

− 2

3

[〈
ui

∂

∂xj

(
µ
∂uk

∂xk

)〉

l

− 〈ui〉L
∂

∂xj

(
µ
∂ 〈uk〉l
∂xk

)
− (〈ui〉l − 〈ui〉L)

∂

∂xj

(
µ
∂ 〈uk〉L
∂xk

)]

− τl

(
ui,

∂p

∂xj

)
− τl

(
uj,

∂p

∂xi

)
= 〈ρ〉l GikτL(uj, uk) + 〈ρ〉l GjkτL(ui, uk) + 〈ρ〉l C0ǫδij,

(3.28a)

− 2µ

(〈
∂ui

∂xj

∂φα

∂xj

〉

l

− ∂ 〈ui〉L
∂xj

∂ 〈φα〉l
∂xj

)

+

[〈
φα

∂

∂xj

(
µ
∂uj

∂xi

)〉

l

− 〈φα〉L
∂

∂xj

(
µ
∂ 〈uj〉l
∂xi

)
− (〈φα〉l − 〈φα〉L)

∂

∂xj

(
µ
∂ 〈uj〉L
∂xi

)]

− 2

3

[〈
φα

∂

∂xi

(
µ
∂uj

∂xj

)〉

l

− 〈φα〉L
∂

∂xi

(
µ
∂ 〈uj〉l
∂xj

)
− (〈φα〉l − 〈φα〉L)

∂

∂xi

(
µ
∂ 〈uj〉L
∂xj

)]

− τl

(
φα,

∂p

∂xi

)
= 〈ρ〉l GijτL(uj, φα) − 〈ρ〉l CφωτL(ui, φα), (3.28b)

µτl

(
∂φα

∂xi

,
∂φβ

∂xi

)
= 〈ρ〉l CφωτL(φα, φβ) − µ

∂ 〈φα〉l
∂xi

∂ 〈φβ〉l
∂xi

, (3.28c)

where

τl(a, b) = 〈ab〉l − 〈a〉l 〈b〉l . (3.29)

It is clear that the transport equations implied by the model 1 (M1) are consistent with the

original LES equations without the conventional LES approximation for the diffusion terms

(Eqs. (3.6), (3.8)). As indicated in Eq. (3.28c), in scalar covariance equation, there is a

spurious source term which is negligible at high Reynolds number flows.
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3.2.3.2 Model 2 (M2): In this model, the density fluctuations within the SGS are

ignored.

dX+
i = U+

i dt+

√
2µ

〈ρ〉l
dWi, (3.30a)

dU+
i =

[
− 1

〈ρ〉l
∂ 〈p〉l
∂xi

+
2µ

〈ρ〉l
∂2 〈ui〉L
∂xj∂xj

+
µ

〈ρ〉l
∂2 〈uj〉L
∂xj∂xi

− 2

3

µ

〈ρ〉l
∂2 〈uj〉L
∂xi∂xj

]
dt

+ Gij

(
U+

j − 〈uj〉L
)
dt+

√
C0ǫdW

′
i +

√
2µ

〈ρ〉l
∂ 〈ui〉L
∂xj

dWj, (3.30b)

dφ+
α = −Cφω

(
φ+

α − 〈φα〉L
)
dt+ Sα(φ+)dt, (3.30c)

where the parameters are defined in Eq. (3.23). The Fokker-Planck equation for FL(v,ψ,x; t)

corresponding to SDE in Eq. (3.30) is given by

∂FL

∂t
+
∂viFL

∂xi

=
1

〈ρ〉l
∂ 〈p〉l
∂xi

∂FL

∂vi

− 2µ

〈ρ〉l
∂2 〈ui〉L
∂xj∂xj

∂FL

∂vi

− µ

〈ρ〉l
∂2 〈uj〉L
∂xi∂xj

∂FL

∂vi

+
2

3

µ

〈ρ〉l
∂2 〈uj〉L
∂xj∂xi

∂FL

∂vi

−Gij

∂
[(
vj − 〈uj〉L

)
FL

]

∂vi

+ µ
∂2 (FL/ 〈ρ〉l)
∂xj∂xj

+
∂

∂xj

(
2µ

〈ρ〉l
∂ 〈ui〉L
∂xj

∂FL

∂vi

)
+

µ

〈ρ〉l
∂ 〈ui〉L
∂xk

∂ 〈uj〉L
∂xk

∂2FL

∂vi∂vj

+
1

2
C0ǫ

∂2FL

∂vj∂vj

+ Cφω
∂ [(ψα − 〈φα〉L)FL]

∂ψα

− ∂ [Sα(ψ)FL]

∂ψα

. (3.31)

The transport equations for the filtered variables are obtained by integration of Eq. (3.31)

according to Eq. (3.16)

∂〈ρ〉l
∂t

+
∂ 〈ρ〉l 〈uj〉L

∂xj

= 0, (3.32a)

∂ 〈ρ〉l 〈ui〉L
∂t

+
∂ 〈ρ〉l 〈uj〉L 〈ui〉L

∂xj

= −∂ 〈p〉l
∂xi

+
∂

∂xj

(
µ
∂ 〈ui〉L
∂xj

)
+

∂

∂xj

(
µ
∂ 〈uj〉L
∂xi

)

− 2

3

∂

∂xi

(
µ
∂ 〈uj〉L
∂xj

)
− ∂ 〈ρ〉l τL(ui, uj)

∂xj

, (3.32b)

∂ 〈ρ〉l 〈φα〉L
∂t

+
∂ 〈ρ〉l 〈ui〉L 〈φα〉L

∂xi

=
∂

∂xi

(
µ
∂ 〈φα〉L
∂xi

)
− ∂ 〈ρ〉l τL(φα, ui)

∂xi

+ 〈ρ〉l 〈Sα(φ)〉L .

(3.32c)
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The transport equations for the second order SGS moments are

∂ 〈ρ〉l τL(ui, uj)

∂t
+

∂ 〈ρ〉l 〈uk〉L τL(ui, uj)

∂xk

= −∂ 〈ρ〉l τL(uk, ui, uj)

∂xk

+
∂

∂xk

(
µ
∂τL(ui, uj)

∂xk

)

− 〈ρ〉l τL(ui, uk)
∂ 〈uj〉L
∂xk

− 〈ρ〉l τL(uj, uk)
∂ 〈ui〉L
∂xk

+ 〈ρ〉l GikτL(uj, uk) + 〈ρ〉l GjkτL(ui, uk) + 〈ρ〉l C0ǫδij, (3.33a)

∂ 〈ρ〉l τL(ui, φα)

∂t
+

∂ 〈ρ〉l 〈uj〉L τL(ui, φα)

∂xj

= −∂ 〈ρ〉l τL(uj, ui, φα)

∂xj

+
∂

∂xj

(
µ
∂τL(ui, φα)

∂xj

)

− 〈ρ〉l τL(ui, uj)
∂ 〈φα〉L
∂xj

− 〈ρ〉l τL(uj, φα)
∂ 〈ui〉L
∂xj

+ 〈ρ〉l GijτL(uj, φα) − 〈ρ〉l CφωτL(ui, φα) + 〈ρ〉l τL(ui, Sα(φ)), (3.33b)

∂ 〈ρ〉l τL(φα, φβ)

∂t
+

∂ 〈ρ〉l 〈ui〉L τL(φα, φβ)

∂xi

= −∂ 〈ρ〉l τL(ui, φα, φβ)

∂xi

+
∂

∂xi

(
µ
∂τL(φα, φβ)

∂xi

)

− 〈ρ〉l τL(φα, ui)
∂ 〈φβ〉L
∂xi

− 〈ρ〉l τL(φβ, ui)
∂ 〈φα〉L
∂xi

+ 2µ
∂ 〈φα〉L
∂xi

∂ 〈φβ〉L
∂xi

− 2 〈ρ〉l CφωτL(φα, φβ) + 〈ρ〉l τL(φα, Sβ(φ)) + 〈ρ〉l τL(φβ, Sα(φ)).

(3.33c)

The implied closure for the SDEs (3.30) is obtained by comparing the Fokker-Planck equation

(3.31) to VSFMDF transport Eq. (3.20)

∂

∂vi
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∂xi
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l
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∂
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µ
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∂

∂vi

[〈
1

ρ(φ)

∂

∂xi

(
2

3
µ
∂uj

∂xj
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〉

l
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− 2
∂2
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µ
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∂xj

∂φα

∂xj
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〉

l
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− ∂2

∂ψα∂ψβ

[〈
µ

ρ(φ)

∂φα

∂xi

∂φβ

∂xi
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〉

l

PL
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=

1

〈ρ〉l
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∂xi

∂FL

∂vi

− 2µ
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∂FL

∂vi

− µ
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∂FL

∂vi

+
2

3

µ
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∂FL

∂vi

−Gij

∂
[(
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)
FL
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+
∂

∂xj

(
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∂FL
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+

µ
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∂xk

∂ 〈uj〉L
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∂2FL
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+
1

2
C0ǫ

∂2FL

∂vi∂vi

+ Cφω
∂ [(ψα − 〈φα〉L)FL]

∂ψα

. (3.34)
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The set of Eqs. (3.32), (3.33) may be compared to Eqs. (3.10), (3.11). The closure at the

second order level is

− 2µτL

(
∂ui

∂xk

,
∂uj

∂xk

)
+ τL

(
uj,

∂

∂xk

(
µ
∂uk

∂xi

))
+ τL

(
ui,

∂

∂xk

(
µ
∂uk

∂xj

))

− 2

3
τL

(
uj,

∂

∂xi

(
µ
∂uk

∂xk

))
− 2

3
τL

(
ui,

∂

∂xj

(
µ
∂uk

∂xk

))

−
(〈

uj
∂p

∂xi

〉

l

− 〈uj〉L
∂ 〈p〉l
∂xi

)
−
(〈

ui
∂p

∂xj

〉

l

− 〈ui〉L
∂ 〈p〉l
∂xj

)
=

〈ρ〉l GikτL(uj, uk) + 〈ρ〉l GjkτL(ui, uk) + 〈ρ〉l C0ǫδij, (3.35a)

− 2µτL

(
∂ui

∂xj

,
∂φα

∂xj

)
+ τL

(
φα,

∂

∂xj

(
µ
∂uj

∂xi

))
− 2

3
τL

(
φα,

∂

∂xi

(
µ
∂uj

∂xj

))

−
(〈

φα
∂p

∂xi

〉

l

− 〈φα〉L
∂ 〈p〉l
∂xi

)
= 〈ρ〉l GijτL(uj, φα) − 〈ρ〉l CφωτL(ui, φα), (3.35b)

µτL

(
∂φα

∂xi

,
∂φβ

∂xi

)
= 〈ρ〉l CφωτL(φα, φβ) − µ

∂ 〈φα〉L
∂xi

∂ 〈φβ〉L
∂xi

.

(3.35c)

The stochastic model 2 (M2), as shown, results in a much more compact form for the

moment transport equations which are also consistent with the conventional LES equations

for variable-density flows (Eqs. (3.10), (3.11)).

3.3 NUMERICAL SOLUTION PROCEDURE

Numerical solution of the modeled VSFMDF transport equation is obtained by a hybrid

finite-difference/Monte Carlo procedure. The basis is similar to those in RAS,58,59 in previous

FDF simulations9–11 and in VSFDF simulations (Chapter 2), with some differences which are

described here. For simulations, the FDF is represented by an ensemble of Np statistically

identical Monte Carlo (MC) particles. Each particle carries information pertaining to its

position, X(n)(t), velocity, U (n)(t), and scalar value, φ(n)(t), n = 1, . . . , Np. This information
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is updated via temporal integration of the SDEs. The simplest way of performing this

integration is via Euler-Maruyamma discretization.60 For example, for Eq. (3.21a),

Xn
i (tk+1) = Xn

i (tk) +
(
DX

i (tk)
)n

∆t+
(
BX

ij (tk)
)n

(∆t)1/2
(
ζX
j (tk)

)n

+
(
FXU

ij (tk)
)n

(∆t)1/2
(
ζU
j (tk)

)n
+
(
FXφ

ij (tk)
)n

(∆t)1/2
(
ζφ
j (tk)

)n

, (3.36)

where Di(tk) = Di(X
(n)(tk),U

(n)(tk),φ
(n)(tk); tk), . . . , and ζ(tk)’s are independent standard-

ized Gaussian random variables. This scheme preserves the Itô character of the SDEs.61

The computational domain is discretized on equally spaced finite-difference grid points.

These points are used for three purposes: (1) to compute the pressure field, (2) to identify

the regions where the statistical information from the MC simulations are obtained and (3)

to perform a set of complementary LES primarily by the finite-difference methodology for

assessing the consistency and convergence of the MC results. The LES procedure via the

finite-difference discretization is referred to as LES-FD and will be further discussed below.

Statistical information is obtained by considering an ensemble of NE computational

particles residing within an ensemble domain of characteristic length ∆E centered around

each of the finite-difference grid points. This is illustrated schematically in Fig. 20. For

reliable statistics with minimal numerical dispersion, it is desired to minimize the size of

ensemble domain and maximize the number of the MC particles.44 In this way, the ensemble

statistics would tend to the desired filtered values:

〈a〉E ≡ 1

NE

∑

n∈∆E

a(n) −−−−→
NE→∞
∆E→0

〈a〉L ,

τE (a, b) ≡ 1

NE

∑

n∈∆E

(
a(n) − 〈a〉E

) (
b(n) − 〈b〉E

)
−−−−→
NE→∞
∆E→0

τL (a, b) , (3.37)

where a(n) denotes the information carried by nth MC particle pertaining to transport variable

a.

To reduce the computational cost, a procedure involving the use of non-uniform weights10

is also considered. This procedure allows a smaller number of particles in regions where a low

degree of variability is expected. Conversely, in regions of high variability, a large number
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of particles is allowed. It has been shown10,44 that the sum of weights within the ensemble

domain is related to filtered fluid density as

〈ρ〉l ≈
∆m

VE

∑

n∈∆E

w(n), (3.38)

where VE is the volume of ensemble domain and ∆m is the mass of particle with unit weight.

The Favre-filtered value of a transport quantity Q(v,φ) is constructed from the weighted

average as

〈Q〉L ≈
∑

n∈∆E
w(n)Q(v(n),φ(n))
∑

n∈∆E
w(n)

. (3.39)

With uniform weights,44 the particle number density decreases significantly in regions of low

density such as reaction zone. The implementation of variable weight allows the increase in

particle density without increasing the particle number density in these regions.

The LES-FD solver is based on the compact parameter finite-difference scheme.62,63 This

is a variant of the MacCormack scheme in which fourth-order compact differencing schemes

are used to approximate the spatial derivatives, and second-order symmetric predictor-

corrector sequence is employed for time discretization. All of the finite-difference operations

are conducted on fixed grid points. The transfer of information from the grid points to the

MC particles is accomplished via a linear interpolation. The transfer of information from

the particles to the grid points is accomplished via ensemble averaging as described above.

The LES-FD procedure determines the pressure field which is further used in the MC

solver. The transport equations to be solved by the LES-FD solver include unclosed second

order moments which are obtained from the MC solver. The LES-FD also determines the

filtered velocity and scalar fields. That is, there is a “redundancy” in the determination of

the first filtered moments as both the LES-FD and the MC procedures provides the solution

of this field. This redundancy is actually very useful in monitoring the accuracy of the

simulated results as described in Chapter 2 and in the previous works.10,11,58,59
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3.4 FLOWS SIMULATED

The following flow configurations are simulated:

1. A three-dimensional temporally developing mixing layer involving transport of a passive

scalar variable.

2. A three-dimensional spatially developing mixing layer involving chemical reaction with

non-premixed reactants.

The simulations (1) are used to assess the consistency and the overall capabilities of the

VSFMDF methodology. These predictions are compared with data obtained by direct numer-

ical simulation (DNS) of the same layer. The simulations (2) are performed to demonstrate

the predictive capabilities of VSFMDF in reacting flows. The appraisal of these simulations

is made by comparing with laboratory data. The predictions obtained from both stochastic

models are compared in both simulations.

In the representation below, x, y and z denote the streamwise, the cross-stream, and the

spanwise directions, respectively. The velocity components along these directions are denoted

by u, v and w in the x, y and z directions, respectively. The temporal mixing layer consists

of two parallel streams travelling in opposite directions with the same speed.64–66 Both the

filtered streamwise velocity, scalar and temperature fields are initialized with a hyperbolic

tangent profiles with 〈u〉L = 1, 〈φ〉L = 1, 〈T 〉L = 1 on the top stream and 〈u〉L = −1,

〈φ〉L = 0, 〈T 〉L = 2 on the bottom stream. The length Lv is specified such that Lv = 2NPλu,

where NP is the desired number of successive vortex pairings and λu is the wavelength of

the most unstable mode corresponding to the mean streamwise velocity profile imposed at

the initial time. The flow variables are normalized with respect to the half initial vorticity

thickness, Lr = δv(t=0)
2

, (δv = ∆U

|∂〈u〉
L

/∂y|max

, where 〈u〉L is the Reynolds-averaged value of the

filtered streamwise velocity and ∆U is the velocity difference across the layer). The reference

velocity is Ur = ∆U/2.

The temporal simulations (1) are conducted for a cubic box, 0 ≤ x ≤ L, −L
2

≤
y ≤ L

2
, 0 ≤ z ≤ L where L = Lv/Lr. The 3D field is parameterized in a procedure

somewhat similar to that by Vreman et al.67 The formation of the large scale structures
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are expedited through eigenfunction based initial perturbations.68,69 This includes two-

dimensional65,67,70 and three-dimensional65,71 perturbations with a random phase shift be-

tween the 3D modes. This results in the formation of two successive vortex pairings and

strong three-dimensionality.

The flow configuration in simulations (2) is similar to the one considered in the laboratory

experiments of Mungal and Dimotakis76. In these experiments, a heat-releasing reacting

planar mixing layer consists of a low concentration of hydrogen (H2) in one stream and a

low concentration of fluorine (F2) in the other stream. Both reactants are diluted in nitrogen

(N2) with the level of dilution determining the extent of heat release. The computational

domain extends the region 54.8 cm× 36.6 cm× 4.6 cm in x, y and z directions, respectively,

which covers the whole region considered experimentally including x = 45.7 cm where the

measured data are reported. In order to simulate a ‘naturally’ developing shear layer, a

modified variant of the forcing procedure suggested in Ref.77 is utilized. The cross-stream

velocity component at the inlet is forced at the most unstable mode as well as four (sub- and

super-) harmonics of this mode with a random phase shift. In these simulations, the variables

are normalized by the values in the high-speed stream. The reference length Lr = 45.7 cm

which is the location in the experiment where the visual width of the layer is 7.4 cm.

3.5 REACTION MECHANISM

The chemical reaction considered in the spatially developing mixing layer simulations (2) in-

volves reaction of hydrogen (H2) and fluorine (F2) as represented by Mungal and Dimotakis76

H2 + F2 → 2HF, ∆Q = −130 kcal−1mole−1, (3.40)

where ∆Q is the heat of reaction. This reaction is sufficiently energetic that 1% of F2 and

1% of H2 in nitrogen will produce an adiabatic flame temperature of 93◦K above ambient.

Thus, dilute concentrations produce significant temperature rise. The reaction actually

consists of two second-order chain reactions with chemical times that are fast compared to

the fluid mechanical timescales. Mungal and Dimotakis76 indicate that for the conditions
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of the experiment, the H2 − F2 mixture is in a stable region. Thus, for the chain reactions

to proceed rapidly, it becomes crucial to provide some means to ensure the presence of F

atoms. The technique used in the experiment consists of introducing a small amount of

nitric oxide in the hydrogen reactant vessel. While it is necessary to add nitric oxide to

initiate the reaction, the addition of excessive amounts would deplete the available F atoms.

It was determined experimentally that by keeping the product of nitric oxide and fluorine

concentrations at 0.03% the reactions would proceed rapidly. In this regard, it is important

to note that the addition of 50% more nitric oxide showed no significant changes in the

mean temperature profile. Thus, the chemistry can be considered to be relatively fast. This

is also shown by Jaberi et al.10 who considered both finite-rate and fast chemistry models

and observed negligible differences. Therefore, the fast chemistry model is considered here.

3.6 NUMERICAL SPECIFICATIONS

Simulations are conducted on equally-spaced grid points. The temporal simulations (1), have

grid spacings ∆x = ∆y = ∆z = ∆ with the number of grid points 1933 and 333 for DNS

and LES, respectively. In these simulations the Reynolds number is Re = UrLr

ν
= 50. To

filter the DNS data, a top-hat function of the form below is used with ∆L = 2 ∆,

G(x′ − x) =
3∏

i=1

G̃(x′i − xi)

G̃(x′i − xi) =





1
∆L

|x′i − xi| ≤ ∆L

2
,

0 |x′i − xi| > ∆L

2
,

(3.41)

No attempt is made to investigate the sensitivity of the results to the filter function51 or the

size of the filter.72,78,79

The spatial simulations (2) are conducted on 81 × 81 × 12 grid points in x, y and z

directions, respectively. The LES filter size in these simulations is ∆L = 2∆ where ∆ =

(∆x∆y∆z)
1

3 .
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A hyperbolic tangent profile is utilized to assign the velocity, scalar and temperature

profiles initially for temporal simulations (1) and at the inlet for spatial simulations (2). The

temporal simulations (1) are provided with periodic boundary conditions in homogeneous

directions (x and z) and zero-derivative boundary condition in cross-stream direction. In

spatial simulations (2), the characteristic boundary condition80 is used at the inlet boundary.

The pressure boundary condition81 is used at the outflow boundary and a zero-derivative

boundary condition is implemented at cross-stream boundaries. The boundary condition at

the spanwise boundaries is considered to be periodic.

All simulations are performed with variable particle weights.10 In temporal simulations,

the MC particles are initially distributed throughout the computational region in a random

fashion. Due to flow periodicity in the streamwise and spanwise directions, if the particle

leaves the domain at one of these boundaries, new particles are introduced at the other

boundary with the same velocity and compositional values. In the cross-stream directions,

the free-slip boundary condition is satisfied by the mirror-reflection of the particles leaving

through these boundaries. The particle weights are set according to filtered fluid density at

the initial time. In spatial evolving mixing layer simulations, the MC particles are initially

distributed within region −0.15Lr ≤ y ≤ 0.15Lr. In these simulations, the same spanwise

boundary condition is employed for particles as in temporal simulations. At the cross-stream

and streamwise boundaries, the leaving particles are disregarded and new particles are in-

troduced at the inlet boundary at a rate according to the desired local particle number

density and fluid velocity. The particle weights are set according to the local filtered fluid

density at initial time and at the inlet, later on throughout the simulation. The composition

and velocity components of the incoming particles are the same as those in the experiment,

and consistent with those on LES grid points. The number of particles per grid point is

NPG = 320 (NE = 40) and the ensemble domain size (∆E) is set equal to half the grid

spacing in each (x,y or z) direction. The effects of both of these parameters are assessed in

the previous works9–11 and in Chapter 2. All results are analyzed both “instantaneously”

and “statistically.” In the former, the instantaneous contours (snap-shots) and scatter plots

of the variables of interest are analyzed. In the latter, the “Reynolds-averaged” statistics

constructed from the instantaneous data are considered. These are constructed by spa-
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tial averaging over homogeneous directions (x and z) in temporal simulations and by time

averaging in spatial simulations. All Reynolds-averaged results are denoted by an overbar.

No attempt is made to determine the appropriate values of the model constants; the

values suggested in the literature are adopted73 C0 = 2.1, Cǫ = 1 and Cφ = 1. The influence

of these parameters are assessed in Chapter 2. The values of Sc (=Pr) are 1 in all simulations.

3.7 CONSISTENCY ASSESSMENTS

The objective of this section is to demonstrate the consistency of the VSFMDF formulation.

Since the accuracy of the LES-FD procedure is well-established (at least for the first order

filtered quantities), such a comparative assessment provides a good means of assessing the

performance of the MC solution. For obvious reasons, this assessment is done via M2.

Figure 21 shows the instantaneous contour plots of the filtered scalar field in temporal

mixing layer simulations at t = 80 as obtained by LES-FD and MC. This figure provides a

visual demonstration of the consistency of the VSFMDF.

The uniformity of the MC particles is checked by monitoring their distributions at all

times. The normalized particle number density must vary around unity while the particle

weight density should be close to filtered fluid density. The Reynolds-averaged density field

as obtained by both LES-FD and MC are shown in Fig. 22. Close to unity values for the

particle number density at all times is the first measure of the accuracy of the simulations.

As also depicted, the particle weight density (see Eq. (3.38)) and the MC density, defined

as

〈ρ〉MC ≡
(∑

n∈∆E
w(n)

(
RT (n)/ 〈p〉l

)
∑

n∈∆E
w(n)

)−1

(3.42)

are in very good agreements with the filtered density obtained from LES-FD.

The consistency is observed for all first order moments. As Fig. 23 shows, the cross-

stream variation of filtered scalar is consistently predicted by LES-FD and MC. The same

consistency is also observed for all other first moments. The first moments show very little

dependence on the values of ∆E and NE consistent with previous FDF simulations9–11,82 and

those in Chapter 2. The consistency of the second order scalar correlation is also shown in
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Fig. 23. As depicted, the predictions via MC show close agreements with LES-FD. With NE

and ∆E chosen, this demonstration is consistent with previous assessment studies.9–11 All

other second order SGS moments behave similarly. In addition, Fig. 23 shows a comparison

of the two stochastic models M1 and M2. As shown, the differences are insignificant.

Complementary consistency assessments are obtained by presenting the scatter plots of

instantaneous results obtained from LES-FD and MC. The MC density as given by Eq.

(3.42) is highly correlated with the fluid filtered density, as Fig. 24 shows. Figure 25 shows

the scatter plots of the velocity components. For all these quantities, there is a high level

of correlation between LES-FD and MC results. In Fig. 26, the consistency of the passive

scalar field is demonstrated. The highly scattered data points along the horizontal axis is an

indication of relatively high numerical oscillations in LES-FD results. In addition, while the

LES-FD scalar field violates the realizability condition for the filtered scalar field, the MC

predictions are always bounded between 0, 1 (without using any additional limiter). The

satisfaction of realizability condition is of primary importance when finite-rate chemistry

models are employed. For all the first order moments the linear regression line almost

coincides with the 45◦ line. The scatter plot of scalar correlation is also shown in Fig. 26.

As shown, the scalar variance shows increased statistical variations and hence, a decreased

correlation coefficient. The high level of correlations for all these quantities further establishes

the consistency of VSFMDF methodology.

3.8 VALIDATION VIA DNS

The objective of this section is to analyze some of the characteristics of the VSFMDF via

comparative assessments against DNS of a three-dimensional temporal mixing layer. In

addition, comparisons are also made with LES via the “conventional” Smagorinsky42,74 model

τL(ui, uj) = −2 νt (Sij −
1

3
Skk δij) +

2

3
k δij,

τL(ui, φ) = −Γt
∂ 〈φ〉L
∂xi

,
(3.43)
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where

Sij =
1

2

(
∂〈ui〉L
∂xj

+
∂〈uj〉L
∂xi

)
,

νt = Cν ∆2
L S, Γt =

νt

Sct
,

(3.44)

Cν = 0.04, Sct = 1, S =
√
SijSij and ∆L is the characteristic length of the filter. The

isotropic part of SGS stress is expressed using Yoshizawa’s83 expression

k = CI∆
2
LS

2. (3.45)

The Yoshizawa’s constant of CI = 0.18 is adopted from the dynamic simulations of Moin

et al.84

For comparison, the DNS data are filtered from the original high resolution 1933 points

to the coarse 333 points. In the comparisons, we also consider the “resolved” and the “total”

components of the Reynolds-averaged moments. The former are denoted by R(a, b) with

R(a, b) =
(
〈a〉L − 〈a〉L

)(
〈b〉L − 〈b〉L

)
; and the latter is r(a, b) with r(a, b) = (a− a)

(
b− b

)
.

In DNS, the “total” components are directly available, while in LES they are approximated

by r(a, b) ≈ R(a, b) + τL(a, b).67

Figure 27 shows the instantaneous iso-surface of the 〈φ〉L field at t = 80. By this

time, the flow is going through pairings and exhibits strong 3D effects. This is evident by

the formation of large scale spanwise rollers with the presence of secondary structures in

streamwise planes,68 as also illustrated in Figs. 28-31. These figures show the vorticity

and the scalar fields obtained from DNS, VSFMDF, Smagorinsky on planes in spanwise and

streamwise directions. As Figs. 28, 29 show, the two neighboring rollers are being paired

and in Figs. 30, 31, the formation of secondary structures are evident. As illustrated in

these figures and consistent with the results presented in Chapter 2 and also in the previous

works,11,67 the results obtained from Smagorinsky closure are overly smooth. This is due

to the excessive amount of SGS diffusion with the Smagorinsky model. As shown, there

is a more resemblance in the structures predicted by VSFMDF and DNS. The Reynolds-

averaged values of the filtered temperature field at t = 80 are shown in Fig. 32, The filtered

and unfiltered DNS data yield virtually indistinguishable results. The Smagorinsky model

underpredicts the spread of the layer due to dissipative nature of this model. All VSFMDF
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predictions compare well with DNS data in predicting the spread of the layer. This is also

evident in Fig. 33. This figure shows the temporal variation of the momentum thickness of

the layer and the “scalar thickness” defined as

δs(t) =
∣∣y(〈φ〉L = 0.9)

∣∣+
∣∣y(〈φ〉L = 0.1)

∣∣. (3.46)

Several components of the Reynolds-averaged values of the second order SGS moments are

compared with DNS data in Figs. 34, 35. In general, the VSFMDF results are in better

agreement with DNS data than those predicted by the Smagorinsky model. In this config-

uration, there are no strong velocity and scalar gradients in the streamwise and spanwise

directions and, thus, a gradient-diffusion type model such as Smagorinsky is not capable

of providing correct prediction of scalar flux values in these directions. Consequently, the

VSFMDF is expected to be more effective for LES of reacting flows provided that the extent

of SGS mixing is heavily influenced by these SGS moments.5,75

Several components of the resolved second order moments are presented in Figs. 36,

37. As expected, the performance of the Smagorinsky model is not satisfactory as it does

not predict the spread and peak values accurately. The VSFMDF provides more reasonable

predictions. The “total” components also yield very good agreement with DNS data as shown

in Figs. 38, 39. It is important to note that (as also observed in the VSFDF predictions

in Chapter 2 and in Ref.11) the “total” components predicted by VSFMDF are almost

insensitive to the model parameters. This is pleasing since we are primarily interested in

predicting the total field (for comparison with experimental data, etc.). Obviously, the

values cannot be set in such a way that the contribution of the SGS components to the total

components becomes too large. As all these figures demonstrate, models M1 and M2 yield

very close predictions.

With the constant values chosen for VSFMDF, while the SGS scalar flux in cross-stream

direction predicted by Smagorinsky is in closer agreement with DNS data, VSFMDF yields

much more accurate prediction of the resolved field and, hence, the total field is predicted

much more accurately by VSFMDF.
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3.9 VALIDATION VIA LABORATORY DATA

The three-dimensional spatially developing mixing layer simulations (2) are consistent with

the experimental studies of Mungal and Dimotakis76. These experiments are conducted

with several values of equivalence ratio, defined as φ = c02/c01 where c01 and c02 denote

the high- and low-speed stream mole fractions, respectively. In the current simulations,

the equivalence ratios of φ = 1, 2, 4 are considered by keeping F2 concentration at 1% and

varying the H2 concentration from 1% to 2% and 4%. In addition, the flip experiments

are also considered in which the low- and high-speed compositions are simply switched to

attain the inverse equivalence ratios (φ = 1, 1
2
, 1

4
). These simulations are performed using

VSFMDF. The implementation of DNS and LES-FD are not possible for this flow.

The results are compared to the experimental results both qualitatively and quantita-

tively. Figure 40 shows the instantaneous temperature field as obtained by LES-FD and

VSFMDF. The resemblance of the structures in these figures, is an indication of the con-

sistency of these simulations. The three-dimensionality of the flow in spatially developing

mixing layer simulations is evident by the presence of primary and secondary structures, as

shown in Fig. 41. This figure shows the contour surfaces of the instantaneous filtered scalar

field.

The time series of the filtered temperature field recorded by 15 probes across the layer,

are shown in Fig. 42. These probes are located at x = 45.7 cm downstream and are symmet-

rically distributed in cross-stream direction about the centerline with the vertical distance

of 0.457 cm between each two. The high-speed stream located on top and carries 1%H2 and

the low-speed stream is in the bottom with 1%F2 composition. In this figure, the horizon-

tal axis corresponds to the non-dimensional time starting at one flow-through time. The

vertical axis for each section represents the temperature ranging from the ambient to the

maximum temperature recorded by each probe (denoted as Tmax). Several features observed

experimentally76 are also present in these time series, namely: the presence of large, hot

structures; the cold regions extending deep into the layer and the near-uniformity of temper-

ature within the structure. The non-uniformity of temperatures in the simulations by Jaberi

et al.10 was attributed to the lack of proper small-scale mixing due to two-dimensionality of
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their simulations. The present simulations substantiate this, as the more effective small-scale

mixing in three-dimensional simulations tends to make the temperature more uniform inside

the structures.

Figure 43 shows a comparison of VSFMDF predictions with the experimental data. In

this figure, the time-averaged filtered temperature profile corresponding to the case with

equivalence ratio φ = 1 is compared with the experimental data. The predictions from both

stochastic models M1 and M2 are presented. As this figure shows, both peak value of the

temperature profile and the spread of the layer are very well predicted and the two stochastic

models give very close results. The peak value of the time-averaged temperature profile is

lower than the adiabatic flame temperature, as also indicated in Ref.76

The flip experiment predictions also demonstrate the same features as the laboratory

observations. The time-averaged filtered temperature profiles in these predictions are inte-

grated along the cross-stream direction to obtain the product thicknesses, as defined in the

experiment:76

δP1 =

∫ +∞

−∞

Cp〈T 〉L
c01∆Q

dy, δP2 =

∫ +∞

−∞

Cp〈T 〉L
c02∆Q

dy, (3.47)

where Cp is the molar heat capacity of the carrier gas and ∆Q is the amount of heat release

per mole of the reactant. Figure 44 shows the comparison of product thicknesses obtained

from VSFMDF with the experiment data. Consistent with the experiment, the 1% thickness

δ1 is used to normalize the product thicknesses. The 1% thickness is defined as the distance

at which the mean temperature rise is equal to 1% of the maximum mean temperature. In

the experiment, a mean value of δ1/(x − x0) = 0.165 (where x − x0 = 45.7 cm) is used to

normalize all the product thicknesses. As shown in this figure, at low equivalence ratios,

the product thicknesses vary almost linearly with the equivalence ratio, as the low-speed

reactant reacts with excessive amount of high-speed reactant. At high equivalence ratios,

the product thicknesses reach to asymptotic limits. These limits correspond to reaction of

high-speed reactant with excessive amount of low-speed reactant. As a result, the amount

of product shows little increase with the equivalence ratio. As shown in this figure, the

VSFMDF predictions compare reasonably well with the experimental data.
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Figure 20: Concept of ensemble averaging. Shown are three different ensemble domains:

1(∆E = ∆/2), 2(∆E = ∆), 3(∆E = 2∆). Black squares denote the finite-difference grid

points, and the circles denote the MC particles.
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(a)

(b)

Figure 21: Contours of the instantaneous filtered scalar field as obtained by: (a) LES-FD,

(b) MC.
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Figure 22: Cross-steam variations of the filtered density in the three-dimensional temporal

mixing layer obtained from LES-FD and MC using M1 at t = 60.
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Figure 23: Cross-stream variations of the Reynolds-averaged values of (a) 〈φ〉L, (b) τL(φ, φ).

The thick solid line denotes LES-FD predictions. The thin solid and dashed lines denote

MC predictions via M1 and M2, respectively.
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Figure 24: Scatter plots of density obtained at t = 60 from LES-FD (〈ρ〉l) and MC density

(〈ρ〉MC , as given in Eq. (3.42)). The solid and dashed lines denote the linear regression and

45◦ lines, respectively. The parameter r denotes the correlation coefficient.
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Figure 25: Scatter plots of velocity components at t = 80. (a) 〈u〉L, (b) 〈v〉L and (c) 〈w〉L.

The solid and dashed lines denote the linear regression and 45◦ lines, respectively. The

parameter r denotes the correlation coefficient.
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Figure 26: Scatter plots of scalar statistics at t = 80. (a) 〈φ〉L, (b) τL(φ, φ). The solid

and dashed lines denote the linear regression and 45◦ lines, respectively. The parameter r

denotes the correlation coefficient.
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Figure 27: Contour surfaces of the instantaneous 〈φ〉L field in the 3D mixing layer at t = 80

as obtained by VSFMDF.

75



(a)

x

y

(b)

x

y

(c)

x

y

−0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0

Figure 28: Contour plots of the spanwise vorticity field at z = 0.75L, t = 80 in the 3D

temporal mixing layer as obtained by: (a) DNS, (b) VSFMDF, (c) Smagorinsky.
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Figure 29: Contour plots of 〈φ〉L field on spanwise plane at z = 0.75L, t = 80 in the 3D

temporal mixing layer as obtained by: (a) DNS, (b) VSFMDF, (c) Smagorinsky.
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Figure 30: Contour plots of the streamwise vorticity field at x = 0.25L, t = 80 in the 3D

temporal mixing layer as obtained by: (a) DNS, (b) VSFMDF, (c) Smagorinsky.
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Figure 31: Contour plots of 〈φ〉L field on streamwise plane at x = 0.25L, t = 80 in the 3D

temporal mixing layer as obtained by: (a) DNS, (b) VSFMDF, (c) Smagorinsky.
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Figure 32: Cross-stream variations of the Reynolds-averaged values of the filtered temper-

ature field at t = 80. The thick solid and dashed lines denote VSFMDF predictions via

M1 and M2, respectively. The thin dashed line denote the predictions using Smagorinsky

closure. The white and black circles show the filtered and unfiltered DNS data, respectively.
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Figure 33: Temporal variation of (a) scalar thickness (δs), (b) momentum thickness. The

solid and dashed lines denote predictions via VSFMDF (M1) and Smagorinsky closures,

respectively. The circles show the filtered DNS data.
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Figure 34: Cross-stream variations of some of the Reynolds-averaged components of τL at

t = 60. The thick solid and dashed lines denote VSFMDF predictions via M1 and M2,

respectively. The thin dashed line denote the predictions using Smagorinsky closure. The

circles show the filtered DNS data.
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Figure 35: Cross-stream variations of some of the Reynolds-averaged components of τL at

t = 80. The thick solid and dashed lines denote VSFMDF predictions via M1 and M2,

respectively. The thin dashed line denote the predictions using Smagorinsky closure. The

circles show the filtered DNS data.
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Figure 36: Cross-stream variations of some of the components of R at t = 60. The thick

solid and dashed lines denote VSFMDF predictions via M1 and M2, respectively. The thin

dashed line denote the predictions using Smagorinsky closure. The circles show the filtered

DNS data.
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Figure 37: Cross-stream variations of some of the components of R at t = 80. The thick

solid and dashed lines denote VSFMDF predictions via M1 and M2, respectively. The thin

dashed line denote the predictions using Smagorinsky closure. The circles show the filtered

DNS data.
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Figure 38: Cross-stream variations of r at t = 60. The thick solid and dashed lines denote

VSFMDF predictions via M1 and M2, respectively. The thin dashed line denote the predic-

tions using Smagorinsky closure. The white and black circles show the filtered and unfiltered

DNS data, respectively.
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Figure 39: Cross-stream variations of r at t = 80. The thick solid and dashed lines denote

VSFMDF predictions via M1 and M2, respectively. The thin dashed line denote the predic-

tions using Smagorinsky closure. The white and black circles show the filtered and unfiltered

DNS data, respectively.
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(a)

(b)

Figure 40: Contours of the instantaneous temperature [◦K] field on a spanwise plane as

obtained by: (a) LES-FD, (b) MC.
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Figure 41: Contour surfaces of the instantaneous filtered passive scalar field in the 3D spatial

mixing layer simulations as obtained by VSFMDF.
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Figure 42: Time series of filtered temperature field at different cross-stream locations across

the layer and x = 45.7 cm as obtained by VSFMDF. Tmax denote the maximum temperature

recorded by each probe.
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Figure 43: Cross-stream variations of time-averaged filtered temperature field for the case

with φ = 1. The solid and dashes lines denote VSFMDF predictions using M1 and M2,

respectively. The circles denote experimental data. Tflm denotes the adiabatic flame tem-

perature.
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Figure 44: Product thicknesses as obtained by VSFMDF: (a) Product thickness based on

high-speed stream concentration, (b) Product thickness based on low-speed stream concen-

tration.
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4.0 CONCLUSIONS

The filtered density function (FDF) methodology has proven very effective for large eddy

simulation (LES) of turbulent reactive flows. In previous investigations, the marginal FDF

of the scalar or that of the velocity were considered. The objective of this dissertation is

to develop the joint velocity-scalar FDF methodology. For this purpose, the exact trans-

port equation governing the evolution of FDF is derived. It is shown that effects of SGS

convection and chemical reaction appear in closed forms. The unclosed terms are mod-

eled in a fashion similar to those typically followed in probability density function (PDF)

methods in Reynolds-averaged simulations (RAS). The modeled FDF transport equation is

solved numerically by a Lagrangian Monte Carlo (MC) scheme via consideration of a system

of equivalent stochastic differential equations (SDEs). These SDEs are discretized via the

Euler-Maruyamma discretization.

First, the joint velocity-scalar FDF (VSFDF) is considered for constant-density flows. To

simulate variable-density flows, next the joint “velocity-scalar filtered mass density function”

(VSFMDF) is considered. The consistency and accuracy of both VSFDF and VSFMDF are

assessed in LES of temporally developing mixing layers involving the transport of a passive

scalar. This assessment is made by comparing the moments obtained from the MC solver with

those obtained by solving the corresponding transport equations directly by finite-difference

method (LES-FD). The LES-FD equations are closed by including the moments from the

MC solver. The consistency of the MC solution are demonstrated by good agreements of

the first two SGS moments with those obtained by LES-FD.

The FDF predictions are compared with those obtained using the Smagorinsky42 SGS

closure. All of the results are also compared with direct numerical simulation (DNS) data

of the same flow. It is shown that the FDF performs well in predicting some of the phe-
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nomena pertaining to the SGS transport. Most of the overall flow statistics, including the

mean field, the resolved and total stresses are in good agreements with DNS data. The

VSFMDF methodology is applied to a three-dimensional spatially developing shear layer.

This flow involves a fast chemical reaction with non-premixed reactants. The predictions

are appraised by comparison with laboratory data. The agreement is observed to be very

good and VSFMDF predictions capture many of the features of this flow as observed in the

experiment.

To evaluate the computational requirements of VSFDF, the computational times are

measured for the 3D temporal mixing layer simulations. Table 2 lists the CPU times cor-

responding to LES via the Smagorinsky42 SGS closure, VSFDF; and direct numerical sim-

ulation (DNS). The CPU times are normalized by that required in the simulation via the

Smagorinsky model. The simulations are performed on SGI Altix 3300 computers with

1.3 GHz Intel Ithanium processors. In VSFDF simulations, 320 particles per grid point

(NE = 40) are used. It is observed that the computational time for VSFDF is significantly

less than that of DNS. Considering the close agreements between VSFDF and DNS results,

this suggests that VSFDF can be employed for simulations of reacting flows for which DNS

is not feasible.

Table 2: Computational times for the three-dimensional temporal mixing layer simulations.

Simulation Grid Normalized CPU time

resolution per unit simulation time

Smagorinsky 333 1

VSFDF 333 15.6

DNS 1933 1655.2
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Some suggestions for possible future work are:

• Development of a stochastic FDF formulation to include the SGS mixing frequency. In

the current FDF formulations, this quantity is modeled in an ad hoc manner. A stochas-

tic differential equation may be devised as a model for the SGS mixing frequency in a

fashion similar to that in RAS.56,85

• Implementation of higher order closures for the generalized Langevin model parameter

Gij.
73 The model parameter considered in this dissertation correspond to Rotta’s closure

in RAS.1,86 Higher order closure similar to those considered in RAS55,73 may be imple-

mented.

• Introduction of a stochastic model suitable for high Mach number flows. To account for

the effect of compressibility, the system of stochastic differential equations (SDEs) should

include the corresponding model for thermodynamical variables such as the pressure and

the internal energy, similar to those in RAS.87,88

• Extension of the FDF methodology for flows with differential diffusion effects.89–94 The

models developed in this dissertation are limited to flows with unity Prandtl and/or

Schmidt numbers.

• Extension of the VSFMDF for simulation of complex turbulent reacting flows. The SFDF

has proven very effective in LES of turbulent flames.15,23 It is recommended to implement

the VSFMDF for prediction of these flames.
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