
 

Applications of Iridium-Catalyzed Isomerization Claisen 
Rearrangements (ICR) to Complex Molecule Synthesis 

 
 

 
 
 
 
 

by 

Benjamin D. Stevens 

B.S., University of Rochester, 2001 

M.S., University of Rochester, 2002 
 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 

The University of Pittsburgh in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 
 
 

2007 

 



 ii 

UNIVERSITY OF PITTSBURGH 

FACULTY OF ARTS AND SCIENCES 
 
 
 
 
 
 
 
 

This dissertation was presented 

 
by 

 
 

Benjamin D. Stevens 
 
 
 

It was defended on 

March 21st, 2007 

and approved by 

Dennis P. Curran, Distinguished Service Professor, Chemistry 

Billy W. Day, Professor, Pharmaceutical Sciences 

Peter Wipf, University Professor, Chemistry 

 Dissertation Advisor: Scott G. Nelson, Associate Professor, Chemistry 

 

 



 iii 

 

The iridium-catalyzed isomerization Claisen rearrangement (ICR) methodology developed in the 

Nelson group has provided access to a broad range of diastereomerically enriched α,β-

disubstituted, δ,γ-unsaturated aldehydes.  Allylsilyl aldehydes produced by the ICR reaction have 

been further elaborated into substrates for highly diastereoselective intramolecular Hosomi-

Sakurai annulation reactions.  The Sakurai annulation has proven to be particularly powerful 

when carried out in tandem with intramolecular aldol or Mannich reactions to form complex 

fused ring systems.  An attempted strategic application of this methodology toward the synthesis 

of the Rauwolfia alkaloids (−)-reserpine and α-yohimbine is detailed.  
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Vinyl boronic esters have been demonstrated to be effective precursors for the ICR 

reaction providing diastereomerically enriched β-boronic aldehydes.  The potential for 

intramolecular chelation between the newly formed aldehyde and proximal boronic ester has 

been investigated.  The boron functionality has proven to be useful for accessing alkoxy- and 

aryl-substituted compounds that are typically unavailable from the ICR reaction.  A synthesis of 

the plant growth inhibitor (−)-penienone was explored in order to demonstrate the practical 

application of this methodology to complex molecule construction. 
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1.0  DEVELOPMENT OF DIASTEREOSELECTIVE INTRAMOLECULAR 

SAKURAI-ALDOL AND MANNICH REACTIONS 

1.1 BACKGROUND 

1.1.1 Intramolecular Hosomi-Sakurai Annulation 

Terpenes are a broad class of functionalized small molecule natural products.  In addition to 

serving as building blocks for complex synthetic targets, these compounds represent important 

members of the “chiral pool” and are particularly useful as auxiliaries or ligands for asymmetric 

catalysis.1 Though readily available in enantiomerically enriched form at minimal cost from 

natural sources, many of the common six-membered ring terpenes possess limited functionality 

and are not amenable to direct modification at particular ring positions.  This factor considerably 

restricts the utility of these compounds in synthetic endeavors.  A general methodology that 

grants access to a wide variety of differentially substituted six-membered carbocycles in a highly 

diastereo- and enantioselective manner would be of great synthetic value. 

Significant efforts have been directed towards the use of vinylic, allylic, and propargylic 

silanes in ring forming reactions.2-6  In 1977, Sakurai and Hosomi reported the first example of a 

Lewis acid-mediated conjugate addition of allyl silanes to α,β-unsaturated ketones.7 Since that 

time, the intramolecular variant of the Hosomi-Sakurai reaction has become a powerful method 
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for the synthesis of various ring systems.  The four basic cyclization classes that have been 

explored are monoannulation, extended annulation, spirocyclization, and ring fusion (Figure 1). 
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Figure 1. Major classes of intramolecular Hosomi-Sakurai annulations 

  

Spirocyclization reactions have been studied extensively in the context of natural product 

synthesis.  In 1990, Yamamoto and Furuta described an intramolecular Hosomi-Sakurai 

spirocyclization utilizing unsaturated ketone 1.8  Unfortunately, this reaction provided a nearly 

equimolar mixture of diastereomers from which the desired spirocycle 2 resulting from 

cyclization via a synclinal transition state was separated (Figure 2).  The advanced intermediate 2 

was then elaborated into the natural product (±)-α-acoradiene in 3 steps. 
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Figure 2. Yamamoto's synthesis of (±)-α-acoradiene 

 

A wide variety of ring fusion reactions have been performed utilizing the intramolecular 

Hosomi-Sakurai reaction, many of which proceed with significant degrees of 

diastereoselectivity.  Both Majetich and Schinzer have explored the moderately 

diastereoselective intramolecular conjugate addition of allyl silanes to α,β-unsaturated 

cyclohexanones leading to substituted hydrindanones.9, 10 The observed relative stereochemistry 

of the cyclization products is strongly dependent on the nature of the reaction mediator (Figure 

3).  Interestingly, fluoride and Lewis acid-induced cyclizations give epimeric products at the R2 

bearing stereocenter.  Majetich rationalized that the synclinal attack mode may be favored for the 

Lewis acid-mediated cyclization due to minimization of charge separation in the transition state.  

Alternatively, fluoride-mediated cyclizations, which generally proceed under kinetic control, 

favor the sterically less encumbered anti-transition state.  For this reason, the diastereoselectivity 

of fluoride-mediated bicyclizations falls off markedly with decreasing size of the R1 and R2 

substituents. 
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Figure 3. Majetich's hydrindanone syntheses 

 

Tokoroyama et al. achieved an elegant synthesis of the natural product (±)-linaridial 

utilizing a novel, highly diastereoselective Hosomi-Sakurai ring fusion reaction (Figure 4).11, 12  

Cyclization of α,β-unsaturated cyclohexanone 3 gave the intermediate titanium enolate 4 which 

reacted with chloromethyl methyl sulfide leading to the alkylated product 7 in 77% yield as a 

single stereoisomer.  cis-Decalinone 7 served as an advanced intermediate that was readily 

transformed into the target natural product over several steps.  
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Figure 4. Tokoroyama's synthesis of (±)-linaridial 

  

Extended annulations with allyl silanes can effectively provide access to complex 

carbocycles containing internal olefins.  For example, Majetich et al. demonstrated the synthesis 

of fused [6.4.0] ring systems utilizing fluoride-mediated intramolecular addition of allyl silane 6 

to yield bicyclic unsaturated ketone 7 (Eq. 1).13  As expected, this sequence is strongly dependent 

on the reaction mediator and use of Lewis acids leads primarily to the analogous [4.4.0] ring 

system.  

TBAF
HMPA/DMF

60%

Me
Me

O
6 7

(1)

Me
Me

TMS

O

 There is little precedent for the intramolecular Hosomi-Sakurai cyclization of linear chain 

allyl silyl α,β-unsaturated ketones.  Wilson and Price reported the earliest example of this 

annulation in 1982 whereby δ,γ-allylsilyl enone 8 was converted into the corresponding 
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cyclohexanone 9 in 73% yield with boron trifluoride etherate (Eq. 2).14  More recently, Huang 

and Pi demonstrated a diastereoselective variant of this annulation reaction.  Hydrozirconation of 

propargyl trimethylsilane and conjugate addition of the vinyl zirconocene to 

dibenzylideneacetone derivatives via copper catalysis afforded the δ,γ-allylsilyl unsaturated 

ketone substrates 10 (Scheme 1).15  Intramolecular Hosomi-Sakurai annulation of the unsaturated 

ketones 10 mediated by titanium tetrachloride leads to the desired trisubstituted cyclohexanones 

 

Scheme 1. A diastereoselective Hosomi-Sakurai monoannulation reaction 

68 81
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11 in excellent yields.  The authors note that the diastereoselectivity of this transformation is 

‘remarkable’ but do not provide analytical data to support their claim.  The relative 

stereochemistry was established by examining the nOe data for one of the symmetrically 

substituted cyclohexanone products.  Unfortunately, the symmetrical nature of the molecule 
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leaves some ambiguity in determining whether the cis- or trans-relative stereochemistry is 

formed across the new carbon-carbon bond. 

1.1.2 Introduction to ICR Methodology; Application to Hosomi-Sakurai Annulation 

Reactions that selectively activate stable atomic bonds are among the most powerful methods 

available in modern synthetic chemistry.  These transformations proceed without dependence on 

reactive functional groups which serves to streamline synthetic routes to complex molecules.  

Unfortunately, functional groups also target reactivity, hence it is often a difficult task to identify 

reactions that activate inert bonds in a selective fashion. Transition metals have proven to be 

useful in this regard as demonstrated by their employment for selective C-H bond activation.16-18 

In 2003, the Nelson group identified a highly reactive cationic iridium(I)-

tricyclohexylphosphine catalyst that selectively activates the allylic C-H bond of diallyl ethers 

(Figure 5).  The thermodynamic bias offered by both increasing olefin substitution (when R1 = 

O

R2R3
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Claisen
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R2R3

R1

High d.r.

1 mol% NaBPh4

0.5 mol% [Ir(COE)2Cl]2
3 mol% PCy3 O R2
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R1

IrCy3P
Cy3P S

PCy3

Proposed Active 
Catalyst

 

Figure 5. Selective C-H activation leading to Claisen precursors 

 

H) and conjugation with oxygen lone pairs facilitates alkene isomerization providing 

intermediate vinyl ethers with high geometrical purity (>95:5 E:Z).19  Allyl vinyl ethers are 

precursors for the thermal Claisen rearrangement, which leads to diastereomerically enriched 



 8 

α,β-disubstituted, δ,γ-unsaturated aldehydes.20-24  It is notable that the vinyl ether isomeric ratio 

is directly related to the diastereomeric ratio of the aldehyde produced by the Claisen 

rearrangement.  The ICR route provides access to a wide assortment of vinyl ethers that are 

difficult to prepare using previously established methods.25-29  Earlier C-H activation catalysts 

utilized for such isomerizations exhibited poor geometrical selectivity or employed basic 

additives that lead to aldehyde epimerization.30  The ICR catalyst does not suffer from these 

drawbacks, giving aldehydes with a wide range of functionality all in excellent yields and 

diastereomeric ratios (Figure 6).  Aldehydes may be prepared from enantioenriched precursors 

arrived at via asymmetric additions to α,β-unsaturated aldehydes. 
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Figure 6. Represenative products of the ICR reaction 

 

We envisioned that δ,γ-allyl silyl aldehydes such as 12 and 13 could serve as synthetic 

precursors for a wide array of Hosomi-Sakurai annulation substrates.  Retrosynthetically, simple 

allyl or vinyl metal additions to the ICR-derived aldehydes followed by oxidation would lead to 

α,β-unsaturated ketone starting materials required for the annulation reaction (Figure 7).  This 

convergent sequence would provide access to a diverse family of carbocycles limited only by the 

spectrum of viable vinyl nucleophiles or ICR-derived allylsilyl aldehydes.  Based on the existing 
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precedent, we predicted that the cyclization reactions would proceed with a significant degree of 
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O
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O
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TMS
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Figure 7. Retrosynthetic analysis of Sakurai products 

 

diastereoselectivity.  Higher levels of complexity could be achieved by direct trapping of the 

intermediate titanium enolate with a variety of electrophiles.  Formulation of this reaction 

sequence in a fully intramolecular manifold would potentially lead to complex bicyclic ring 

construction.  The following pages describe the development of this sequence and observations 

regarding the mechanism and stereoselectivity of the cyclization. 

1.2 RESULTS AND DISCUSSION 

1.2.1 ICR Precursor Synthesis and Optimization 

The first objective of this project was to develop a convenient and scalable synthesis of the 

allylsilyl aldehyde substrates.  The preparation of diallyl ether precursors was problematic in this 
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case given the propensity of β-silyl alcohols to undergo Peterson olefination under Williamson 

etherification conditions (Figure 8).31, 32  A mild etherification method employing an in situ-

prepared zinc alkoxide had been employed in the original ICR study to synthesize the requisite 

β-silyl diallyl ethers.33  The enhanced covalency of the zinc-oxygen bond compared to that of the 

sodium or lithium-oxygen bond effectively minimizes competing Peterson olefination while 

enabling effective attack on π-allyl palladium complexes to yield the desired ether products. 

OM
TMS

R

O
TMS

R
M = Na M = Zn

X

Pd (0)

OAc
O

TMS
R

Zn

2
Peterson 

Olefination
14, R = Me  15, R = Ph  16, R = iPr

R

 

Figure 8.  Synthesis of silyl diallyl ethers 

 

The π-allyl etherification reactions had been performed on small scale with 

tetrakis(triphenylphosphine)palladium (0) resulting in variable yields.  In order to establish an 

effective general approach, the synthesis of diallyl ethers 17-19 was optimized using in situ 

generated catalysts.  Several phosphine ligands were screened and ligand-to-metal stoichiometry 

was varied in order to determine the effect on reaction conversion (Table 1).  The highest 

conversions from alcohols 14 and 16 to diallyl ether products were observed for reactions 

employing a 5:1 ratio of phosphine to palladium acetate.  Following a 12 hr reaction time, 

conversions with either strongly σ-basic phosphines or π-acidic phosphines were approximately 

60%.  The independence of the reaction rate and conversion on ligand electronics indicated that 

the formation of the palladium allyl complex or generation of Pd(0) is not rate limiting, implying 
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that zinc alkoxide attack is the slowest step.  After an initial 12 hour period, 5 days or longer was 

required for reactions to reach conversions of 90% by 1H-NMR, which demonstrates that a rate  

 

Table 1. Optimization of in situ generated Pd(0)-catalyzed allyl etherification 

Conditionsa Conversion to Ether (%)bAlcohol

7.5% PPh3

a5% Pd(OAc)2 was used in all cases.  bConversion was determined by 
comparrison of the alcohol methine and ether allylic methylene integration 
by crude 1H-NMR.  cReaction was performed over 5 d.

7.5% PCy3

25% PPh3

25% PPh3

25% PCy3

14 16

10

63

61

88c

25% PPh3

25% P(furyl)3

25% AsPh316 30

61

92c

"

"

"

"

"

"

OH
TMS

R 5 mol% Pd(OAc)2
Ligand, allylacetate

Et2Zn, THF, rt

14-16

O
TMS

R
17-19

reduction occurs during the course of the reaction.  One possible explanation for this behavior is 

interference of the reaction due to product inhibition (e.g., Zn(OAc)2).  Although long reaction 

times (5-7 days) are a considerable drawback, the etherification of β-silyl alcohols 14-16 with 

5% palladium(0) prepared in situ from triphenylphosphine and palladium(II) acetate proved to be 

a reliable protocol.  The method is also scaleable, enabling the routine production of 3-8 g 

batches of diallyl ethers 17-19 (Figure 9).  Homostyryl alcohol 15 was prone to competing 

Peterson olefination during the reaction due to labilization of the C-O bond. 
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O
TMS

Me

O
TMS

Ph

O
TMS iPr

17, 8.0 g, 79% (7d) 18, 3.1 g, 52% (2d) 19, 5.7 g, 93% (7d)
 

Figure 9. Diallyl ethers prepared by in situ palladium(0) conditions 

 

Having optimized the synthesis of diallyl ethers 17-19, the next priority was to 

demonstrate the performance of the ICR reaction on preparatory scale (Table 2).  The standard 

allyl ether isomerization was performed over 15-30 minutes at ambient temperature, followed by  

 

Table 2. Optimized synthesis of aldehydes 20-22 

R

O
TMS

R

O
TMS

Me

1 mol% NaBPh4
0 °C to r.t., then PPh3, 

μW 100 °C

0.5 mol% [Ir(COE)2Cl]2
3 mol% PCy3

asyn:anti:Z Ratios determined by integration of aldehyde resonances by 1H-NMR or combination 
500 MHz 1H-NMR and GC for aldehyde 22.

Aldehyde R Yield (%) d.r.aTime (min)

20

21

22

-Me

-Ph

-iPr

98

100

100

93:7

92:8

81:7a (syn & anti E), 12 (Z)

45

60

75

addition of triphenylphosphine to quench the Lewis acidic catalyst.  Unfortunately, large-scale 

isomerizations were observed to be mildly exothermic, yielding aldehydes of diminished 

diastereomeric ratios.  Cooling the reaction vessel to 0 °C during catalyst addition effectively 

prevented this erosion of diastereoselectivity.  By the original protocol, vinyl ethers derived from 

substrates 17 and 18 required 12 hours in refluxing CH2Cl2 to affect the Claisen rearrangement.  
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For less active substrates such as 19, however, only 60-70% conversion to the desired aldehyde 

was observed following 3 days in refluxing CH2Cl2.  Fortunately, microwave irradiation was 

found to be an effective alternative to conventional heating for the thermal Claisen 

rearrangement.  Irradiation of the intermediate vinyl ethers derived from 17-19 at 100 °C 

facilitated rapid conversion (45-75 min) to the desired aldehydes 20-22 in excellent 

diastereomeric ratios.  This optimized procedure was used routinely to prepare multi gram 

batches of the desired aldehyde substrates. 

1.2.2 Sakurai Substrate Preparation 

Table 3. Synthesis of allylic and homoallylic alcohols 23-27 

20-22

R

O
TMS

Me
MgBr

MgBr

or

R

OH

TMS

Me

R

OH

TMS

Me
or

68 (27)

72 (24) 62 (26)

R

-Ph

-iPr

-Me 50 (23) 66 (25)

23-24 25-27

Yield (%) Allylic OHa Yield (%) Homoallylic OHa

aAll alcohols were isolated as an approximately 1:1 - 3:1 mixture of diastereomers.

With substantial quantities of the allylsilyl aldehydes now available, efforts were made to 

elaborate these compounds into the unsaturated ketone Sakurai substrates.  Commercially 

available vinyl and allyl Grignard reagents were added to crude aldehydes 20-22 to yield the 

desired allylic and homoallylic alcohols 23-27 in moderate yields (avg. 65%) as a 
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inconsequential mixture of diastereomers (Table 3).  It was impossible to observe the allylic 

alcohols produced from the anti-aldehyde diastereomer by routine inspection of the crude 1H-

NMR.  At this stage, allylic alcohols 23 and 24 could be directly oxidized to the desired 

unsaturated ketones, while homoallylic alcohols 25-27 required an olefin transposition step prior  

Table 4. Synthesis of Sakurai substrates 

TMS

OH
Me

R1 TMS

OH
Me

R1

Me

TMS

O
Me

R1

R2

-iPr 81

-Ph 81

R1 Yield (%)

-Me 90

-iPr 83

-Ph 62

R1 R2 Yield (%)

-Me

-Me

-Me -Me 86

-Ph 63

-Me 85

-H

-H

NaBPh4, 12 h, r.t.

[Ir(COE)2Cl]2, PCy3

25-27 28-30

31-35

28

29

30

31

32

33

34

35

Catalyst (mol%)

Oxidant

SO3•Pyr.

DMP

"

"

"

1

1

2

Isolated Product Ratioa

82.5:7.9:9.7

86:6:8b

81.4:6.0:10.6:2.0c

77.4:10.2:12.3

83.8:8.1:8.1
aProduct ratios determined by GC-MS following flash chromatography.  Listed in order: 
syn-ketone, anti-ketone, Z-allyl silane.  bProduct ratio determined by 500MHz 1H-NMR by 
integration of Me3Si- resonances.  cDue to the lower d.r. of the iPr Claisen, the anti-Z-
ketone accounts for the fourth impurity.

23-24, 28-30
Oxid.

to oxidation.  Gratifyingly, exposure of 25-27 to the ICR catalyst for 12 hours at ambient 
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temperature gave the allylic alcohols 28-30 in 80-90% yield as the E-olefin isomer exclusively 

(Table 4).  Unexpectedly, 2% catalyst loading was necessary to efficiently isomerize substrate 

28.  It is unlikely that the isopropyl moiety could impede catalyst activity sterically given its 

distal relationship to the reactive site, hence the molecular conformation must play a 

considerable role in determining isomerization rate.  Oxidation of alcohols 23 and 28-30 was 

accomplished using Parikh-Doering conditions to afford the desired unsaturated ketones 31-34 in 

good yields.34  Interestingly, SO3•Pyr oxidation of 24 failed to afford ketone 35, while Dess-

Martin periodinane provided 63% yield of desired enone.35-38 

Following purification by flash chromatography, isolated unsaturated ketones 31-35 

contained two contaminants (excluding ketone 33, which contained a third minor impurity) of 

equal molecular mass to the parent compound as indicated by GC-MS (Figure 10).  The minor 

O
Me

Me
TMS

O
Me

Me
TMS

R R

Z-allyl silaneanti-
diastereomer

anti-
diastereomer

Z-allyl silane

anti-
diastereomer Z-allyl silane

3134

 

Figure 10. GC-EIMS total ion chromatogram of isolated 34 and 31 

 

components cannot be Z-enone isomers by virtue of the fact that unsubstituted enones 34 and 35 

possess an equal number of impurities to methyl enones 31 and 32.  Subjecting enone 32 to 
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repeated cycles of flash chromatography gave a small aliquot of one impurity for which the 1H-

NMR spectra closely resembled syn-32 (unsaturated ketone, allylsilyl olefin and methylene, 

aromatic ring, methyl doublets), with slightly altered chemical shifts (Figure 11).  The coupling 

TMS

O
Me

Ph

Me

syn-32

TMS

O
Me

Ph

Me

anti-32

 

Figure 11. 1H-NMR spectra of 32 enriched in impurities (top) and isolated impurity (bottom) 

 

constant calculated for the allylsilyl olefin C-H resonance at 5.5 ppm is 15.2 Hz, implying a 

trans geometry.  These observations suggest that the impurity is anti-32 derived from the minor 
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anti-diastereomer of aldehyde 20.  The only remaining possibility for the identity of the second 

impurity is the Z-allylsilane isomer, which has yet to be isolated.  It is unclear at which point 

during the synthetic sequence that this isomerization occurs. 

1.2.3 Intramolecular Sakurai Annulation 

Table 5. Sakurai annulation reactions 

TMS

O
Me

R1

R2 TiCl4, –78 °C

CH2Cl2, 15-30 min

O
Me

R1R2

-iPr 87 (38)

-Ph 82 (37)

R1 R2 Yield (%)

-Me

-Me

-Me -Me 67 (36)b

-Ph 82 (40)d

-Me 59 (39)b,c

-H

-H

Iso. Pdt. Ratioe

91.7:8.3

94.6:3.8:1.7

89.0:8.2:2.7

89.8:10.2

92.6:5.3:2.1

31-35 36-40

aCompound ratios determined by GC-MS following flash chromatography.  Listed in order: syn-
ketone, anti-ketone, Z-allyl silane.  bCompounds are volatile.  c~10% Polymeric material isolated with 
product by 1H-NMR.  d ~1% Unidentified impurity indicated in GC-MS.  eCompound ratios 
determined by GC-MS following flash chromatography.  fsyn:anti:Z Ratios determined by integration 
of aldehyde resonances by 1H-NMR or combined 500MHz 1H-NMR and GC for aldehyde 22

Ketone Ratioa

82.5:7.9:9.7 (31)

86:6:8 (32)

81.4:6.0:10.6:2.0 (33)

77.4:10.2:12.3 (34)

83.8:8.1:8.1 (35)

Claisen d.r.f

81:7:12 (22)

92:8 (21)

93:7 (20)

92:8 (21)

93:7 (20)

Having determined the composition unsaturated ketones 31-35, the performance of the substrates 

in the Hosomi-Sakurai annulation process was assessed.  Gratifyingly, exposure of 31-35 to 

BF3·OEt2 or TiCl4 resulted in a highly stereoselective cyclization that yielded cyclohexanones 

36-40 following an ammonium chloride quench (Table 5).  Yields for the cyclization coincide 



 18 

with values observed by Huang and Pi, excluding those for the volatile compounds 36 and 39.15  

The cyclization of unsubstituted enones 34 and 35 produced polymeric byproducts that were 

easily distinguished by laddering on TLC and broad peaks in the alkyl region of the crude 1H-

NMR.  Polymerization occurs by intermolecular Michael addition of the formed titanium enolate 

to enone starting material followed by propagation of the newly formed enolate.  Weak Lewis 

acids (TiCl4(THF)2, BiBr3) promoted this polymerization by producing low concentrations of the 

reactive enolate in the presence of the electrophilic starting material (Figure 12).  Running the 

 

Figure 12. TiCl4 (left) and TiCl4(THF)2 (right) mediated cyclizations of 35 

 

cyclization reaction in dilute conditions (0.05M enone) with reverse addition of substrate to 

Lewis acid effectively minimizes the formation of these polymeric impurities. 

Although the isolated diastereomeric ratios of cyclohexanones 36-40 were excellent, the 

multiple components of the Sakurai products were yet to be identified.  This analysis was 

particularly problematic owing to the isomeric contaminants present in unsaturated ketone 

starting materials.  Upon cyclization of crude unsaturated ketone 31 (syn-ketone 82.5 : anti-

ketone 7.9 : Z-allylsilane 9.7), GC-MS analysis indicated the conversion of the three starting 
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materials 31a-c into two diastereomeric cyclization products 36a/b & 36c (91.7:8.3) (Figure 13).  

The integration of the major diastereomeric product peak 36a/b was equal to the sum of the syn-

ketone peak 31a and the Z-allylsilane peak 31b.  The cyclization product ratio was nearly 

identical to the observed Claisen diastereomeric ratio (92:8 vs. 93:7).  Though it is possible that 

36a/b may be due to an overlap of two compounds that possess identical retention times, enone 

34 and cyclohexanone 39 behaved similarly (three starting materials, two products), suggesting 

that coincidental elution rates are unlikely to be responsible.  This data implies that the E- and Z-

allylsilane isomers form the same diastereomeric cyclohexanone and that the minor product 

stems from cyclization of the anti-ketone diastereomer.  This analysis is consistent with 

observations made during Tokoroyama’s synthesis of (±)-linaridial. 

 

Me
MeO

Me

Standard Isolated 
Enone Mixture

GCMS of Isolated 
Product

31a

31b
36c

36a/b

31c

Stereochemistry unaffected 
by silane geometry
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O TMS

Me

Me
31a = syn-ketone

31b = Z-allyl silane

31c = anti-ketone

36a/b = major diastereomer

36c = minor diastereomer

Me

TMS

31a & b

31c

 

Figure 13. Effect of allylsilane geometry on diastereomeric ratios for 36 
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For the phenyl substrates 37 and 40, three products were detected by GC-MS, which 

initially suggested that the Z-allylsilane isomers produced new diastereomeric cyclohexanones, 

in contrast to 31 (Figure 14).  Closer inspection of the integration values for the major product 

peaks in 37 and 40 revealed that they equal the sum of the syn-ketone and Z-allyl silane peaks in 

32 and 35 [8 + 86 (32) = 94 (37 = 94.6) and 8.1 + 83.8 (35) = 91.9 (40 = 92.6)].  The sum of the 

two minor cyclization diastereomer peaks matched the integration value of the anti-ketone peak 

in the starting material [1.7 + 3.8 (37) = 5.5 (32 = 6) and 5.3 + 2.1 (40) = 7.4 (35 = 8.1)].  

35a

B
C*

40a/b

C

35a = syn-ketone

35b = Z-allyl silane

35c = anti-ketone

40a/b = major diastereomer
40c1 & c2 = minor diastereomers

40c1 & c2

Ph
MeO

H

Stereochemistry unaffected 
by silane geometry

Anti diastereomer gives 
rise to 2 new products due 

to poor conformational 
control in transition state

O TMS

Ph

H

Me

TMS

35a & b

35c

Standard Isolated 
Enone Mixture

GCMS of Isolated 
Product

 

Figure 14. Rationalization of diastereomeric ratios for 37 & 40 

 

Comparison of the integration of the major diastereomer of 37 and 40 to the sum of the two 

minor diastereomers gave ratios almost identical to the syn-anti ratio of the Claisen 

rearrangement (37 = 95:5, 40 = 93:7 vs. 92:8).  Taken together, these calculations suggest that 

the anti-ketones derived from 32 and 35 cyclize with poor diastereoselectivity while the anti-
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ketones from 31 and 34 cyclize with high diastereoselectivity.  Therefore, anti-ketones must 

proceed through a transition state in which diastereoselectivity is highly dependent on the 

functionality at the enone α and β stereocenters.  Conversely, the stereoselectivity of the syn-

enone cyclization appears to be independent of the identity of proximal functional groups.   

Support for this hypothesis would be strengthened by demonstrating that the cyclization 

of syn- and anti-ketones proceeds through different transition states.  Following workup, 

concentration of crude 36 unintentionally led to a significant degree of α-epimerization by 

residual Lewis acidic titanium salts.  Analysis of this product mixture by GC-MS indicated the 

presence of two compounds in addition to the two that were normally observed (Figure 15).  

GCMS of 36
(epimerization)

O

MeMe

Me

α-epimers give 
only 2 possible 

compounds

A & B must differ at 
these stereocenters

A

B

A

B

epimers

GCMS of 36
(no epimerization)

 

Figure 15. GC-EIMS total ion chromatagram of epimerized cyclohexanone 36 

 

Epimerization of cyclohexanones differing only at the α-stereocenter would simply cause a shift 

in the product ratios.  Therefore, syn- and anti-ketones must lead to cyclohexanones differing at 



 22 

multiple stereocenters, which implies that the two cyclizations occur through different transition 

states.  

The most important remaining question at this point regarded the intrinsic 

diastereoselectivity of the syn-ketone cyclization reaction.  In order to determine this value, 

approximately 1 mg of pure unsaturated ketone 31 was isolated by analytical HPLC (chiral OD-

H column).  Cyclization of 31 was induced with excess titanium tetrachloride and the product 

ratio determined by GC-MS of the crude reaction mixture (Figure 16).  The GC-MS data clearly 

indicated that cyclization of 31 produced a single diastereomer of cyclohexanone 34, 

demonstrating that the syn-enone Hosomi-Sakurai annulation is exclusively diastereoselective. 

 

Pure 31 
via HPLC

GCMS of Crude 
Rxn Mixture

O

MeMe

Me

TMS

O
Me

Me

Me
TiCl4

−78 °C

 

Figure 16. GC-EIMS total ion chromatogram following cyclization of pure 31 

1.2.4 Tandem Intermolecular Sakurai-Aldol Reactions  

Given the encouraging results from the Sakurai cyclizations, we set out to explore the feasibility 

of a tandem aldol reaction.  Gratifyingly, addition of isobutyraldehyde or benzaldehyde to the 

cyclized enolate of 31 at –78 °C afforded the desired aldol products 41 and 42 in good 
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diastereomeric ratios and moderate yields (Table 6).  Note that the reported diastereomeric ratios 

were determined following purification by flash chromatography.  The isolated product ratios are 

reflective of the crude product ratios since the diastereomeric products were inseparable on silica 

gel.  The approximate intrinsic diastereoselectivity of the aldol reaction can be determined by 

analyzing the data for β-hydroxy cyclohexanone 41.  In this case, 7% of the product mixture for 

41 should be from the minor anti-ketone.  The remaining product ratio (84.7:8.1) is produced by 

the aldol reaction of the major syn-ketone 31, hence the intrinsic aldol diastereoselectivity with 

isobutyraldehyde is 91:9. 

 

Table 6. Sakurai-aldol reactions 

O
Me

MeMe

84.7:8.1:7.2

84.9:10.4:3.2:1.6

HO

R

O
Me

MeMe

M

TMS

O
Me

Me

Me TiCl4, –78 °C

CH2Cl2, 15-30 min
31 41-42

Iso. Pdt. Ratioc

asyn:anti:Z Ratios determined by integration of aldehyde resonances by 1H-NMR.  bListed in order: 
syn-ketone, anti-ketone, Z-allyl silane.  cIsolated product ratios determined by GC-MS following 
flash chromatography.

Ketone Pdt. Ratiob

82.5:7.9:9.7 (31)

Claisen d.r.a

93:7 (20)

R

-Ph

-iPr

52 (42)

Yield (%)

52 (41)

RCHO

H

30 min

""
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1.2.5 Intermolecular Sakurai-Aldol Relative Stereochemistry 

In order to establish the relative stereochemistry of β-hydroxy cyclohexanone 42, esterification 

was carried out using p-bromobenzoyl chloride to give 80% yield of benzoate 43 that provided 

crystals suitable for X-ray analysis (Figure 17).  From the X-ray structure of 43, it is clear that 

the initial Sakurai annulation gives the trans relative stereochemistry across the pre-existing 

carbon-carbon bond and the cis stereochemistry across the newly formed carbon-carbon bond.  

The ensuing syn-aldol reaction occurs from the bottom face of the cyclohexanone, trans to the 

axial C−3 methyl group. 

O
Me

Me Me

O

Ph

O

Br

43

H

Trans, cis-
Sakurai

Syn-aldol

 

Figure 17. X-Ray structure of compound 43 
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There are two possible explanations for the observed relative stereochemistry produced 

by the Sakurai annulation (Figure 18A).  Majetich proposed that the considerable build-up of 

charge manifested at the α-center of the ketone and the β-position of the allylsilane would be 

mutually stabilized if brought into proximity through a four-centered transition state.9  This type 
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Figure 18. Rationalization of Sakurai-aldol stereochemistry 

 

of secondary orbital overlap is not unlike the Alder-endo effect, and also explains the common 

formation of cyclobutanes during Sakurai reactions with less reactive allylsilanes.39  

Alternatively, the relative stereochemistry of polyene cyclizations is well rationalized by the 

Stork-Eschenmoser postulate; however, in this case, the electrophile is not a simple alkene, but 

an unsaturated ketone that must remain in conjugation for effective LUMO activation by the 
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Lewis acid.40, 41  This conformational distinction could lead to a pseudo-boat transition state that 

produces the observed cis stereochemistry. 

The trans stereochemistry between C2−C3 is determined strictly by facial approach of the 

electrophile on the half-chair enolate (Figure 18B).  Steric shielding of the enolate top face by 

the axial methyl group effectively screens this point of approach.  Top-face attack also leads to a 

twist-boat product conformation, while bottom face attack produces a chair conformation, further 

favoring the latter trajectory.  Therefore, the observed stereochemistry is favored in either an 

early or late transition state, which is an important consideration since the thermodynamics of 

aldol reactions is often strongly substrate dependant. 

It is perplexing that the syn-aldol reaction occured predominantly, since ring constraints 

preclude Z-enolate formation (Figure 18C).  Given that typical closed transition states with E-

enolates give anti-aldol products, this situation must be considerably more complex.  It is certain 

that closed transition states with titanium would be significantly distorted from the standard 

Zimmerman-Traxler model by unique bond angles of the metal (e.g., 90o if Oh), possibly leading 

unexpected selectivity.  Evans has observed this behavior for aliphatic anti-aldol reactions with 

zirconium enolates.42  Alternatively, the aldol reaction could proceed through a boat transition 

state in order to avoid steric interactions with the six-membered ring.  In this arrangement, 

equatorial placement of the R-group is clearly preferable to the axial conformation.  Reetz has 

observed similar results for a closely related syn-aldol reaction using alkoxytitanium enolates of 

cyclohexanone (Figure 19).43  In this case, the basicity of the alkoxide ligands on titanium would 

favor reaction via an open transition state, hence the direct relevance to the chlorotitanium 

enolate system is questionable. 
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Figure 19. Reetz's syn-selective titanium aldol reaction 

1.2.6 Tandem Intramolecular Sakurai-Aldol Bicyclization 

Scheme 2. Preparation of bicyclization precursor 46 

O
Me

Me
TMS Cp2Zr(H)Cl, AgAsF6

OH
Me

Me
TMS

81%

1% NaOH
MeOH, 94%

DMP
68%

OH
Me

Me
TMS

20a 44b

4546c

a93:7 syn:anti Determined by integration of aldehyde resonances in 1H-NMR.  b1:1 Mixture of 
alcohol stereoisomers.  cCompound ratio determined by GC-MS following flash chromatography. 
 Isolated ratio 87.8:6.1:6.1.

O
O

Me

Me

TMS

H

BzO

HO
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Having demonstrated a one-pot intermolecular diastereoselective Sakurai-aldol reaction, we 

envisioned that both transformations could be carried out in an intramolecular fashion to produce 

highly functionalized bicycles.  An efficient sequence was designed and implemented for the 

preparation of ketoaldehyde substrate 46 (Scheme 2).  Hydrozirconation of benzoyl pentynol and 

silver-catalyzed addition to ICR-derived aldehyde 20 gave allylic alcohol 44 in 81%.44  Removal 
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of the benzoate under alkaline conditions gave 94% of diol 45, which could be subsequently 

oxidized with Dess-Martin periodinane to afford 46 in 68% yield.  Initial attempts at employing 

allyl protecting groups failed due to scrambling of the internal olefin position of 47 by the ICR 

catalyst and poor yields with alternative isomerization catalysts (Eq. 3).  Exposure of 46 to 

OH
Me

Me
TMS

O
OH

Me

Me
TMS

Internal Olefin Isomers

then H

47

HOIr
(3)

titanium tetrachloride produced the characteristic red enolate color, but the solution quickly 

paled following intramolecular attack of the aldehyde.  Hydrindanone 46 was obtained in 52% 

yield following aqueous workup and purification by flash chromatography (Table 7).45  

Assuming that 6% of the hydrindanone product mixture is produced by the anti-ketoaldehyde 

impurity in 46, the remaining product ratio, 88:12 (83:6+5), is reflective of the intrinsic 

intramolecular aldol diastereoselection. 

 

Table 7. Intramolecular Sakurai-aldol reaction 

HO O
Me

Me

82.8:6.1:5.8:5.3

4846

Yield (%)

52 (48)

Iso. Pdt. RatiobKetone Pdt. Ratio

87.8:6.1:6.1 (46)

Claisen d.r.a

93:7 (20)

TiCl4, –78 °C

CH2Cl2, 15-30 min

asyn:anti:Z Ratios determined by integration of aldehyde resonances by 1H-NMR. 
bIsolated product ratios determined by GC-MS following flash chromatography.
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1.2.7 Intramolecular Sakurai-Aldol Relative Stereochemistry 
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Figure 20. X-ray structure of compound 49 

 

Hydrindanone 46 was acylated to give bromobenzoate 49 in 55% yield as a crystalline solid that 

was suitable for X-ray analysis (Figure 20).  The Sakurai reaction gave the expected trans, cis 

relative stereochemistry, however, facial approach on the enolate was reversed, as was the 

relative stereochemistry of the aldol reaction.  Facial approach of the aldehyde on the half-chair 

enolate determines the stereochemical relationship across C2−C3.  In the most stable half-chair 

conformer, the aldehyde occupies the axial position and must be attacked from the top-face of 

the enolate (Figure 21B).  Note that in the intramolecular case, the aldehyde has replaced the 
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sterically shielding axial methyl group, effectively eliminating this factor.  It is possible to 

rationalize the anti-aldol reaction via a Zimmerman-Traxler transition state; however, this 

invokes the formation of a nine-membered chelate, which is much larger than the more common 

six- or seven-membered titanium chelates (Figure 21C).46 
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Figure 21. Rationalization of the intramolecular bicyclization relative stereochemistry 

1.2.8 Tandem Intramolecular Sakurai-Mannich Bicyclization 

The formation of hydrindanone 48 was an important observation since it implied that the 

intramolecular bicyclization reaction may be general for a variety of electrophiles.  Iminium ions 

were particularly interesting in this context since cyclization of these substrates in an 

intramolecular Mannich reaction would provide a general route to highly functionalized N-
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heterocycles.47-51  The Lewis acidic conditions of the Sakurai reaction could potentially be used 

for the in situ formation of iminium ions from stable aminal precursors (Figure 22).  Allylsilyl 
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Figure 22. A tandem intramolecular Sakurai-Mannich reaction 

 

aldehydes derived from the ICR reaction would again serve as substrate precursors for this 

transformation.  Identification of a suitable iminium ion precursor would be integral to both the 

substrate preparation and the success of the Mannich reaction.  

At the outset, we planned to use geminal alkoxy dialkylamines due to their high reactivity 

and exploitation in related systems.52-54  Acyclic alkyl aminals are only moderately stable to 

ambient conditions, hence a synthetic sequence was designed to employ a protected nitrogen 

which could be unveiled and functionalized at a late stage (Scheme 3).55  Hydrozirconation of 

Fmoc-protected benzylamino alkyne 50 and addition to allylsilyl aldehyde 21 gave the desired 

allylic alcohol 51 in poor yield as a mixture of epimers.56-58  Dess-Martin oxidation of 51 

produced ketone 52 quantitatively; however, repeated attempts at deprotection of the fluorenyl 

carbamate with piperidine lead only transiently to the highly unstable free amine 53. 

Discouraged by both the poor yielding vinyl metal addition and the instability of 53, a 

new approach using a robust nitrogen protecting group that would liberate the free amine under 

Lewis acidic conditions was considered (Figure 23).59  It was envisioned that an appropriate 

electrophile could then be added to the reaction leading to in situ generation of the iminium ion  
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Scheme 3. Attempted preparation of Sakurai-Mannich precursor 53 
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and subsequent Mannich cyclization.  Alternatively, in the event of enolate alkylation, β-alkoxy 

elimination would produce an unsaturated ketone, which could manufacture the formal Mannich 
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Figure 23. Alternative approach to tandem intramolecular Sakurai-Mannich reaction 
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product through an intramolecular amino-Michael addition.60  In order to avoid the inefficient 

vinyl zirconocene addition reaction, we opted to proceed through propargylic alcohol 55, which 

was prepared by addition of the alkynyl lithium species generated from carbamate 54 to aldehyde 

21 (Scheme 4).  Reduction of 55 to the corresponding allylic alcohol 56 with Red-Al yielded the 

  

Scheme 4. Attempted in situ deprotection approach to Sakurai-Mannich reaction 
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product in a mediocre 43% yield due to substantial carbamate deprotection.61  Oxidation with 

Dess-Martin periodinane produced the desired cyclization substrate 57 in excellent yield.  

Subjection of substrate 57 to the standard Sakurai reaction followed by addition of various 
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electrophiles including paraformaldehyde, chloromethyl methyl ether and sulfide, and 

iodoacetonitrile yielded only the intermediate amino cyclohexanone 58 as determined by 1H-

NMR analysis of the crude products.  Attempts to isolate 58 were fruitless due to decomposition 

upon concentration in vacuo.  Deprotection of the Boc group failed under a variety of mild 

conditions that were consistently incompatible with the allylsilane moiety.62 

1.2.9 Preparation and Evaluation of Cyanoaminals for Sakurai-Mannich Bicyclization 

With the variety of challenges involved in preparing acyclic alkyl aminals, we sought a more 

stable leaving group that could be selectively activated under Lewis acidic conditions.  

Cyanoaminals appeared to be appealing targets in this regard due to their high stability and use 

as iminium ion precursors in the presence of various acids.63-66  Furthermore, Yang has 

demonstrated that cyanoaminal substrate 59 is able to engage in a tandem Diels-Alder Mannich 

cyclization which proceeds via a titanium enolate iminium ion addition to form the bicyclic 

alkaloid 60 (Eq. 4).67, 68  This route is reminiscent of our strategy, hence it seemed reasonable to 

investigate these iminium ion precursors more closely. 
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Cl3TiO 60, 82%59

(4)

 A test synthetic sequence based on hydrocinnamaldehyde was designed to evaluate the 

preparation of cyanoaminals and their stability to oxidative conditions (Scheme 5).  Addition of 

the alkynyl lithium species generated from the known benzyl aminoalkyne to 
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hydrocinnamaldehyde followed by Red-Al reduction of the crude propargylic alcohol gave 

allylic alcohol 61 in 53% yield over two steps.  Interestingly, addition of greater than one 

equivalent of butyllithium to the starting alkyne resulted in a purple colored solution that could 

be back-titrated by addition of excess alkyne.  This phenomenon enables the convenient 

determination of anion stoichiometery.  Selective N-alkylation of the benzylamine in the 

presence of the free hydroxyl using iodoacetonitrile and triethylamine produced cyanoaminal 62 

  

Scheme 5. Evaluation of cyanoaminal substrate synthesis on test aldehyde 
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in 76% yield.  Cyanoaminal 62 was completely stable to mild oxidative conditions, which 

afforded unsaturated ketone 63 in 83% yield.  Having demonstrated the viability of this sequence 

in the context of a test substrate, the alkynyl lithium addition was performed on aldehyde 21 to 

give the desired propargylic alcohol 64 in 91%.  Unfortunately, Red-Al reduction of this 

intermediate was problematic and only gave poor conversion to allylic alcohol 65. 

Given the poor performance of the Red-Al reduction with multiple substrates, the vinyl 

zirconium addition chemistry was reevaluated in the context of more robust bis-N-protected 

alkynes.  Since the deprotection of Boc analogues was problematic in the presence of the allyl 

silane, the trichloroethyl carbamate protecting group (Troc), which is highly stabile but can be 

cleaved under mild reductive conditions, was used.69-71  Following preparation of Troc-protected 

alkyne 66, treatment with Schwartz’s reagent and addition of the vinyl zirconocene to aldehyde 

21 under Suzuki’s conditions provided allylic alcohol 67 in a gratifying 87% yield (Scheme 6).  

This result clearly demonstrates that the poor yields observed previously were due to the acidic 

fluorenyl hydrogen.  Addition of aqueous potassium dihydrogen phosphate to a mixture of 

alcohol 67 and zinc dust cleanly produced the free amine 65 in 84% yield.  Standard oxidation 

conditions afforded the cyclization substrate 69 in good yield.  Exposing cyanoaminal 69 to the 

optimized Sakurai conditions led to rapid monocyclization; however, the desired 

perhydroisoquinilone was not observed even upon warming of the reaction mixture.   

From these observations, it can be concluded that the cyanoaminal is reluctant to ionize 

under the reaction conditions, which is puzzling in light of Yang’s precedent.  In order to form 

the iminium ion more effectively, silver salts were examined given their propensity to strongly 

coordinate with cyano groups.  Addition of silver triflate or hexafluoroantimonate to a solution  
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Scheme 6. Evaluation of cyanoaminal substrate 69 for Sakurai-Mannich bicyclization 
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of 69 immediately formed a precipitate and produced an intermediate which is consistent with 

iminium ion 71 as determined by 1H-NMR analysis of the reaction mixture (Eq. 5).  Subsequent 

introduction of titanium tetrachloride to the reaction medium unfortunately yielded only complex 

oligomeric mixtures. 
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Substrate 70 is a potential intermediate for the synthesis of perhydroisoquinilones by a 

less elegant 2-step approach.  Husson has demonstrated the protic acid-mediated Mannich 

69
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cyclization of neopentyl cyanoaminal 72 to give bicycle 73 in 90% yield (Eq. 6).72  Cyanoaminal 

substrate 70 was reluctant to ionize in refluxing 10% hydrochloric acid in methanol or Amberlyst 

sulfonic acid resin, however, resulting only in minor amounts of α-epimerization. 
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1.2.10 Preparation and Evaluation of Acyl Aminals for Sakurai-Mannich Bicyclization 

The completed studies indicated that a more effective ionizable group would be necessary to 

facilitate the formation of iminium ions under the Sakurai reaction conditions.  Acyl aminals 

seemed a prudent choice given their balance between reactivity and ease of preparation.73, 74  

Methyl (Moc) and trimethylsilylethyl (Teoc) carbamate-protected alkynes 74 and 75 were 

obtained by a Curtius rearrangement of pentynoic acid followed by addition of methanol or 

trimethylsilyl ethanol, respectively, and subsequent N-alkylation with chloromethyl methyl ether 
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(Table 8).75-77  Trimethylsilylethyl carbamate substrate 75 was chosen primarily since it should 

deprotect at low temperature affording a neutral imine, which could potentially function more 

effectively than the corresponding iminium ion.  Hydrozirconation of 74 and 75 followed by 

 

Table 8. Synthesis and attempted cyclization of acyl aminals 78 & 79 
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silver-catalyzed addition to aldehyde 21 gave good yields of the allylic alcohols 76 and 77.  

Interestingly, yields of the vinyl zirconium addition reaction were highly sensitive to the purity 
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of the starting aldehyde.  Crude ICR-derived 21 that had been stored at –20 °C for several 

months gave inferior yields in the addition reaction even though the aldehyde had only minor 

additional impurities as determined by 1H-NMR analysis.  Oxidation of 76 and 77 proceeded 

uneventfully to give the desired enones 78 and 79.  Regrettably, upon exposure to titanium 

tetrachloride, both 78 and 79 failed to form the desired perhydroisoquinilones, giving complex 

mixtures by crude 1H-NMR analysis. 

1.2.11 Preparation and Evaluation of Tosyl Aminals for Sakurai-Mannich Bicyclization 

We hypothesized that the primary reason for the decomposition of 78 and 79 under the 

Sakurai reaction conditions was related to carbamate deprotection and subsequent formation of 

various undesired reactive intermediates.  Tosyl aminals are electronically related to acyl aminals 

with the distinction that sulfonamides are exceptionally robust protecting groups and have no 

propensity to deprotect under Lewis acidic conditions.78  Motivated by this insight, the standard 

synthetic route was applied to the preparation of enone substrate 87 (Scheme 7).  The alkynyl 

sulfonamide was produced according to Weinreb’s protocol followed by alkylation with 

chloromethyl methyl ether to give aminal 81.79, 80  Surprisingly, addition of the vinyl zirconocene 

prepared in situ from 81 to aldehyde 21 was highly inefficient, giving only 15% isolated yield of 

alcohol 84 following extended reaction times.  Oxidation was not problematic, however, 

providing 68% yield of enone 87 in a comparable ratio of diastereomers to those observed for the 

related Sakurai substrates 31-35.  Gratifyingly, exposure of enone 87 to the optimized Sakurai 

conditions afforded the desired cis-perhydroisoquinilone 90 in 46-51% yield as a single isolated 

stereoisomer as determined by HPLC analysis.  This diastereomeric ratio cannot be rationalized 

in light of the product mixtures obtained for the analogous Sakurai cyclizations (31-35, 46).81  It 
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is tempting to reason that the minor products are separated chromatographically, yet crude 1H-

NMR analysis of 90 does not indicate the presence of minor diastereomeric components. 

  

Scheme 7. Evaluation of tosylaminal substrate 85 for Sakurai-Mannich bicyclization 
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Although the desired Sakurai-Mannich cascade reaction was successfully affected, the 

yield of the vinyl metal addition to form requisite alcohol 84 was unacceptable.  It is likely that 

the cationic zirconium species generated following halide abstraction is incompatible with the 

sulfonamide protecting group.  Transmetallation of vinyl zirconocenes to the corresponding zinc 

species has been pioneered by Wipf and demonstrated to be a broadly applicable approach to the 

preparation of highly sensitive allylic alcohols.82, 83  Hydrozirconation of 81 followed by 
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treatment with dimethylzinc and addition of 21 produced to the desired allylic alcohol 84 in a 

greatly improved 53% yield with moderate degrees of Felkin induction (Table 9).  

  

Table 9. Application of tandem intramolecular Sakurai-Mannich reaction 
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We recognized that modification of the tether length for alkyne 81 would potentially access 

various heterocyclic ring sizes through the ensuing bicyclization reaction.  To determine the 

viability of this approach, the n-1 (80) and n+1 (82) analogues of 81 were prepared and used for 
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the subsequent vinyl metal addition reaction.  Addition of substrate 82 to 21 performed 

respectably, giving 85 in good yield, while reaction with 80 was far less effective, yielding only 

33% of 83.  Interestingly, the fidelity of the oxidation reaction followed the opposite trend; 

alcohol 85 gave the poorest conversion to enone 88, which contained multiple impurities, while 

oxidation of 83 was clean and high yielding.  Subjecting 86 and 88 to the standard Sakurai 

conditions lead to the expected fused pyrrolidine (89) and azapane (91) ring systems with 

excellent diastereoselectivity; however, isolated yields were attenuated.  It is worth mentioning 

that although these reactions were low yielding, the crude mixture was remarkably clean and 

generally exhibited only a single spot by thin layer chromatography.  Although the origin of 

these diminished yields has yet to be determined, it is likely that optimization of reaction 

conditions should address the issue. 

 

Scheme 8. Alternative pathway to sulfonamide-substituted allylic alcohols 
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Given the labile nature of the aminal functionality, it was expected that a protected 

variant of the tosyl alkyne substrate would provide higher yields for the problematic vinyl metal 

addition reaction.  Indeed, addition of Troc-protected alkyne 92 to crude aldehyde 21 was 

equally effective as the reaction of 81, whereas prior purification of 21 lead to a dramatically 

enhanced 94% yield of 93 (Scheme 8).  Deprotection of 93 gave free sulfonamide 94, which 

should be a suitable intermediate for derivatization into various useful iminium ion precursors. 

1.2.12 Intramolecular Sakurai-Mannich Relative Stereochemistry 

Reduction of perhydroisoquinilone 90 with diisobutylaluminium hydride gave the corresponding 

alcohol 95 in 83% as a 90:10 ratio of stereoisomers.  X-ray analysis of crystals prepared from 95  
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Figure 24. X-Ray structure of alcohol 95 
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demonstrated that the Sakurai reaction produces the same trans, cis relative stereochemistry, 

while the Mannich reaction occurs from the top face of the enolate (Figure 24).  The 

diastereoselectivity of the reduction is clearly driven by steric effects with the bulky aluminium 

hydride preferring approach to the convex face of the cup-shaped quinilone.  It is worth 

emphasizing that this sequence enables the formation of products possessing six contiguous 

stereocenters arrayed around a cyclohexane with nearly perfect stereocontrol in seven steps from 

commercially available reagents. 

1.2.13 A General Route to Optically Active Substrates 

The methodology presented thus far is limited to the preparation of the racemic product series.  

This fact considerably restricts the potential implementation of the Sakurai annulation for 

industrial or academic applications.  Fortunately, these reactions benefit from the fact that all of 

the cyclization substrates stem from a common silyl alcohol precursor.  An enantioselective 

synthesis of these alcohols would immediately render all of the subsequent Sakurai products 

available in optically enriched forms.  Enantioselective reduction of the corresponding α-silyl 

ketone precursors would provide the most direct route to the requisite alcohols.   

The CBS (Corey-Bakshi-Shibata) is among the most convenient methods for catalytic, 

asymmetric alcohol synthesis.84, 85  Either antipode of the CBS catalyst is available from 

commercial sources for a nominal price, common borane reducing agents are employed in the 

reaction, and catalyst loadings are typically low.  For these reasons, we felt a precursor synthesis 

relying on this technique would be particularly valuable to the scientific community.  Synthesis 

of α-silyl ketone 96 was accomplished by addition of the trimethylsilyl methylene cuprate to 

commercially available cinnamoyl chloride (Scheme 9).86  Use of alternative iron-catalyzed 
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coupling reactions resulted in significant α-desilylation.87, 88  Silyl ketones are highly unstable to 

acid, hence 96 could be utilized crude for the ensuing reduction or isolated on Iatrobeads pH 7 

silica gel in 65% yield.  Reduction of 96 with 20 mol% of the CBS catalyst with BH3·THF gave 

the desired optically active alcohol (+)-15 in 74% yield with 90% enantiomeric excess.  Any 

alteration of reaction temperature resulted in attenuated enantioselectivity.  Reduction with 

catecholborane occurred at much lower catalyst loadings (<5%) giving nearly an enantiopure 

product (>98% ee).  Unfortunately, significant decomposition presumably due to Peterson-type 

elimination led to low isolated yields. 

 

Scheme 9. Formation of optically enriched Sakurai precursors 
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1.3 CONCLUSIONS 

The power of the intramolecular Sakurai reaction for the preparation of a wide array of 

diastereomerically enriched cyclohexanones has been demonstrated.  Reaction precursors were 
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prepared from ICR-derived allylsilyl aldehydes using a concise synthetic sequence.  Various 

analytical techniques were exploited to observe the intrinsic diastereoselectivity of these 

reactions.  Coupling the Sakurai reaction with inter- and intramolecular electrophile addition 

reactions revealed a highly effective method for the synthesis of various carbo- and 

heterocycles.81  Although the Sakurai-Mannich reaction is low yielding, there are few 

precedented methods that promote such a significant augmentation of molecular complexity in 

the course of a single reaction.  The entire family of Sakurai reaction products was rendered 

asymmetric by virtue of a convenient synthesis of optically enriched alcohol precursors using the 

reliable CBS reduction. 
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2.0  EFFORTS TOWARD A TOTAL SYNTHESIS OF (–)-RESERPINE AND 

RELATED INDOLE ALKALOIDS 

2.1 BACKGROUND 

2.1.1 A General Introduction to (–)-Reserpine and Related Alkaloids 

The indole alkaloids are a broad class of complex natural products that have been the focus of 

intense research efforts for nearly a century.  Among the most complicated members of this 

family is (–)-reserpine (97), which was first isolated in 1952 by Schlittler from Rauwolfia 

serpentina Benth (Figure 25).89, 90  The yohimbine alkaloids, which are primarily isolated from 

the bark of the Pausinystalia yohimbe tree, possess a perhydroisoquinoline core structure that is 

closely related to reserpine but lack the additional trimethoxybenzoyl group.91-94  In particular, 

the core of α-yohimbine (99), a diastereomer of yohimbine (98), exhibits identical relative 

stereochemistry to the reserpine core.  Both reserpine and the yohimbine alkaloids have been 

widely employed as folk medicines, the former serving as a cure for snake bites and a sedative, 

the later finding applications as a fertility drug and an aphrodisiac.  Reserpine was one of the first 

widely utilized hypertensive agents in modern medicine, although it has been almost completely 

replaced by contemporary theraputics.95  The lack of therapeutic application is largely due to the 

significant side effects of reserpine treatment, which include fatigue and depression.  There are 
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also reports that implicate reserpine in neoplastic disorders, although these findings continue to 

be the subject of debate.96, 97  Yohimbine continues to be sold commercially as an herbal 

aphrodisiac and male potency enhancement.  Although the biological activity of this natural 

product has been validated, limited clinical investigations have suggested that it is perhaps more 

suited for a group treatment regimen with drugs that activate the nitric oxide pathway in the 

corpus cavernosum.98 
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Figure 25. Structures of (–)-reserpine, (+)-yohimbine and (–)-α-yohimbine 
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2.1.2 Biological Activity 

Interestingly, (–)-reserpine and the yohimbine alkaloids exhibit opposing bioactivities, which are 

manifested in the peripheral sympathetic nervous system (Figure 26).  Reserpine is able to 
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Figure 26. Bioactivity of (–)-reserpine, (+)-yohimbine and (–)-α-yohimbine 

 

enter nerve cells via uptake-1, the primary route by which norepinephrine reenters cells 

following its release into the nerve synapse.  Once in the cell, reserpine inhibits dopamine active 

transports that are membrane-bound to catecholamine storage vesicles while simultaneously 

replacing norepinephrine contained in these vesicles.  This significantly reduces the basal cell 

level of norepinephrine, resulting in an attenuated adrenergic response following depolarization 

of the nerve.  This effect is characterized by reduced heart rate and blood pressure, hence the role 

of reserpine as an anti-hypertensive.  Yohimbine and α-yohimbine are particularly interesting 

among related alkaloids since they selectively inhibit the α2 adrenergic receptor class.99  The α2 
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receptors are predominantly pre-ganglionic and regulate the adrenergic response through 

feedback inhibition triggered by excess norepinephrine in the synapse.  Inhibition of peripheral 

α2 receptors results in an increased adrenergic response characterized by increased heart rate, 

hypertension and anxiety.100-103  The overall action of these alkaloids is far more complex, 

however, due to various poorly understood interactions with 5HT receptors and activity in the 

central nervous system. 

2.1.3 Previous Total Syntheses of (–)-Reserpine 

Reserpine has served as a benchmark in the scientific community for the evaluation of novel 

methodology in the context of target-oriented synthesis.  Over the years since its isolation, the 
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Figure 27. Strategic approaches to (–)-reserpine 
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groups of Woodward, Pearlman, Stork, Fraser-Reid, Liao, Hanessian, Mehta, Wender, Martin 

and Shea have successfully surmounted the synthetic challenges posed by this complex 

alkaloid.104-118  Two major retrosynthetic disconnections have emerged from the cumulative 

discoveries made by these individual groups.  By far the most commonly used strategy involves 

a linchpin appendage of methoxytryptamine 100 across a fully functionalized E ring 101 

followed by a Bischler-Napieralski indole alkylation (Figure 27).  This route was pioneered by 

Woodward and continues to be a highly effective strategy for the synthesis of reserpine.105  The 

syntheses of Fraser-Reid and Hanessian were carried out in an asymmetric manner using D-

glucose and (–)-quinic acid, respectively, while optically enriched 3-cyclohexene carboxylic acid 

was employed for Stork’s enantioselective synthesis.108, 109, 112 

The second retrosynthetic strategy engages the fully formed DE ring system 103 in an 

oxidative cyclization with bromo or tosyl methoxytryptophan 102 following its attachment to the 

perhydroisoquinoline core via N-alkylation.  This disconnection has only been applied to racemic 

syntheses of reserpine since the enantioenriched series would require unknown asymmetric 

variants of the Diels-Alder reactions, which are employed in all three routes to form 

intermediates 104-106 (Figure 28).  Though elegant, this route suffers from low yields and 

regioselectivity during the oxidative cyclization reaction to form the C ring. 

Intermediates that are prepared using the known E ring or DE ring routes are relatively 

limited in terms of their capacity to be differentiated at selected positions.  This is especially the 

case for the asymmetric routes of Hanessian and Frasier-Reid, which rely on starting materials 

derived from the chiral pool.109, 112  This fact has severely limited the availability of 

comprehensive studies regarding the biological activity of synthetic derivatives, which is 

reflected by a dearth of literature precedence.  These same considerations are also true for the 
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yohimbine alkaloids, as pointed out by Aube; “Finally, note that practically the entire structure-

activity relationship described in the literature has been obtained with naturally occurring 

compounds instead of incrementally modified synthetic derivatives.”91  Furthermore, industrial 

interest in these compounds is limited due to the fact that their maturity in the chemical field 

presents issues regarding patentability.  This unique combination of factors has made reserpine 

and yohimbine ‘orphan’ drugs with a huge potential for producing unique biological activity 

given a synthetic strategy that would enable rapid derivative synthesis.119 
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Figure 28. Application of Diels-Alder reactions to the synthesis of the (–)-reserpine core (all 

products are racemates) 
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2.1.4 Retrosynthesis of (–)-Reserpine 

Here, initial interest in reserpine was driven by its obvious structural and stereochemical 

relationship to perhydroisoquinilones derived from the intramolecular Sakurai-Mannich 

chemistry described previously (ch. 1).  Martin’s intermediate 105, which is six steps from (–)-

reserpine, would emerge from the Sakurai-Mannich reaction of oxygenated unsaturated ketone 

107 followed by several subsequent functional group manipulations (Figure 29).  Disconnection 
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Figure 29. Retrosynthetic analysis of (–)-reserpine 

 

of 107 across the unsaturated ketone reveals fragments 108 and 109, which are of comparable 

complexity.  We felt that this approach was particularly well suited for derivative synthesis 

because it is convergent and enables the direct modification of every position of the reserpine 



 55 

core.  The availability of enantioenriched starting materials using the CBS reduction would 

provide clear advantages to derivative synthesis via ICR methodology over chiral pool or 

resolution-based approaches.  In order to prepare the parent natural product however, it is clear 

that amide 108 is unavailable from Claisen-based approaches.  It was envisioned that an Evans 

glycolate aldol reaction would facilitate the enantioselective preparation of 108 and various other 

derivatives given the high substrate generality of this methodology.  Vinyl metal fragment 109 

would be prepared along similar lines as described previously. 

2.2 RESULTS AND DISCUSSION 

2.2.1 Synthesis of Vinyl Bromide Fragment 113 

The most direct route to vinyl metal species 109 is through lithium halogen exchange of a 

suitable vinyl halide.  Given the previous success of tosyl protecting groups for the 

intramolecular Sakurai-Mannich process, we speculated that aminal 113 would be an appropriate 

vinyl metal precursor (Scheme 10).  Bromoalcohol 110 was prepared by a two-step literature 

procedure in high yields from 1-butynol.120  Using Weinreb’s precedent, 110 was converted into 

the Boc-protected sulfonamide 111 in 92% yield.79  Deprotection of 111 using trifluoroacetic 

acid produced the free sulfonamide 112, which was then subject to alkylation using chloromethyl 

methyl ether to give 76% yield of the desired tosylaminal 113.  This sequence would readily 

tolerate a significant degree of substrate diversity. 
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Scheme 10. Synthesis of vinyl bromide 113 
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2.2.2 Synthesis of Weinreb Amide Fragments 118-120 

Scheme 11. Synthesis of Weinreb amides 118-120 
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Synthesis of methoxy enone 118 began with the known Evans glycolate aldol reaction of benzyl 

oxazolidinone 114 with acrolein to give 115 in 85% yield as a 92:8 ratio of diastereomers 
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(Scheme 11).121-125  Transformation of 115 into known Weinreb amide 116 was accomplished in 

good yield using standard conditions.126  The free benzyl oxazolidinone and amide 116 were 

inseparable by flash chromatography under various solvent systems without a 5% triethylamine 

additive in the eluent.  Gratifyingly, subjecting 116 to Grubbs’ second generation catalyst and 

allyltrimethylsilane gave the desired cross-metathesis product 117 in 74% yield as a 83:17 ratio 

of geometrical isomers.127-130  Alkylation of 117 with sodium hydride and methyl iodide 

produced ether 118 in 76% yield.131  As noted in the literature, the free hydroxy group of 116 

dramatically enhances its reactivity as a cross metathesis partner with allyltrimethylsilane 

(Scheme 11).  Exposure of 121, which was prepared by methylation of 116, to the 

  

Scheme 12. Effects of the free hydroxy group of 116 on cross-metathesis 
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metathesis reaction resulted in only ~30% conversion and 23% isolated yield of 118 (Scheme 

12).  This difference in reactivity is obviously not related to sterics, hence it is likely that the 

hydroxyl acts as a directing group for the catalyst. 

During the design of the reserpine synthesis, it became apparent that Lewis acid 

coordination to the β-alkoxy group of enone 107 could cause undesired side reactions.   

Substrates 119 and 120 prepared in order to provide a selection of sterically hindered β-alkoxy 

groups that would reduce Lewis acid coordination in the case that parent methoxy enone 118 

suffered from this issue. 
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2.2.3 Fragment Joining 
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Figure 30. Rearrangement of vinyl bromide 113 

 

Initial attempts at affecting the desired metal-halogen exchange with substrate 113 using 

butyllithium in THF at –78 °C met with considerable difficulty.  The vinyl bromide was prone to 

competing geminal deprotonation and carbene formation under the reaction conditions, leading 

to a rapid 1,2-hydride shift that yielded alkyne 81 following workup (Figure 30).  Fortunately, 

the intermediate vinyllithium species was successfully prepared by employing conditions 

  

Table 10. Preparation of enones 122-124 via vinyl lithium addition 
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developed by Seebach (2.1 equiv. t-butyllithium, –115 °C, Trapp solvent mixture).132  Addition 

of Weinreb amide substrates 118-120 to the reaction mixture followed by warming to 0 °C led to 

formation of the expected unsaturated ketones 122-124 in moderate yield (Table 10).  Substrate 

119 suffered considerable desilylation under the reaction conditions, accounting for the 

attenuated yield of enone 123.  Given the disappointing yields of the vinyllithium coupling 

reaction, studies into alternative enone preparations were initiated (Scheme 13).  Specifically, 

  

Scheme 13. Alternative sequence to unsaturated ketone substrates 
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preparation of the corresponding phosphonate esters from amides 118-120 would enable Horner-

Emmons homologation with aldehyde 129 to give 122-124.  Application of the standard aminal 
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synthetic sequence to 1-butenol led to intermediates 126-128 in the highest yields of any 

substrates yet prepared.  Aldehyde 129 has yet to be prepared via oxidative olefin cleavage, 

although precedent for such transformations exists.133-138 

2.2.4 Evaluation of 122-124 for Sakurai-Mannich Bicyclization 

At this point, the propensity of ketones 122-124 to engage in a diastereoselective Sakurai-

Mannich annulation that would afford the (–)-reserpine core was investigated.  Unfortunately, 

this cyclization reaction has yet to be realized under a variety of reaction conditions. 
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Figure 31. Attempted Sakurai-Mannich reaction of bisalkoxy enone substrates 122-124 

 

Exposure of 122 to the standard Sakurai conditions led to a complex reaction mixture from 

which a compound that appeared consistent with diene 130 by 1H-NMR was isolated (Figure 
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31).  Structure 130 is the expected product of coordination of the Lewis acid to the β-methoxy 

group and subsequent allylsilane elimination in addition to iminium ion hydrolysis.  Compound 

123 performed comparably, and analysis of the crude product by 1H-NMR indicated nearly 

complete elimination of the silyl peaks at ~0 ppm and new alkene peaks suggestive of diene 

formation.  Since this setback was anticipated, it was envisioned that the exceptionally bulky and 

Lewis acid stabile tert-butyldiphenylsilyl (TBDPS) protected substrate 124 would resist the β-

alkoxy elimination.  Subjecting 124 to the Sakurai reaction conditions again lead to a complex 

reaction mixture.  Analysis of the 1H-NMR spectra of the major isolated compound from the 

reaction was consistent with enone 131.  Note that the structures of 130 and 131 have not been 

confirmed by full characterization. 

Formation of 131 implies that the TBDPS group effectively protects the alkoxy group 

from Lewis acid coordination; however, the substrate is unable to undergo the intramolecular 

Sakurai annulation.  One possible explanation for this behavior is that the steric bulk of the 

TBDPS group prevents alignment of the allylsilane moiety with the electrophilic enone, which 

effectively prevents the cyclization reaction.  Another possibility is that the α-chelating 

benzyloxy group causes the Lewis acid to coordinate to the opposite side of the carbonyl oxygen, 

thereby permitting the enone to occupy the more stable extended conformation (Figure 32).  The 

extended conformation is normally disfavored by allylic interactions with the Lewis acid, leading 

to population of the reactive conformation for the Sakurai reaction. 
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Figure 32. Possible involvement of α-chelation with failed cyclization of substrates 122-124 

 

2.2.5 Effects of α-Chelation and Retrosynthesis of α-Yohimbine 

In order to explore the effect of α-chelation on the subsequent cyclization event, plans were 

made to prepare enone substrate 132.  Although the interest in this reaction was primarily 

mechanistic in origin, the Sakurai-Mannich reaction product of 132 would be a direct progenitor 

to the indole alkaloid (–)-α-yohimbine (Figure 33).  Enone 132 would be prepared using the 

previously established synthetic route from alkyne 81 and the allyl silane fragment derived from 

enantioenriched β-lactone 133 or β-hydroxy ester 134.139-141  A direct asymmetric and 

diastereoselective synthesis of (–)-α-yohimbine has yet to be reported.142 
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Figure 33. Retrosynthesis of (–)-α-yohimbine 

 

Synthesis of 132 began with the known acetate aldol reaction of tert-butyl acetate with 

acrolein to give 134 in 72% yield (Scheme 14).139  Cross metathesis of the terminal alkene with 

allyltrimethylsilane effectively produced the corresponding product 135 in 72% yield with good 

selectivity for the E-isomer.  Protection of the free hydroxyl group as the TBDPS ether 

proceeded to give 136 in excellent yield.  Subsequent reduction of ester 136 yielded 82% of the 

desired aldehyde 137.  The vinyl zinc species was again prepared from 81 using the Wipf 

protocol and was added to 137 to give allylic alcohol 138 in 68% yield as approximately a 1:1 

mixture of diastereomers.  Oxidation with the Dess-Martin reagent afforded the expected 

cyclization substrate 132 in 77% yield.  Unfortunately, attempts to promote the cyclization of 

132 under the standard Sakurai conditions produced exceptionally complex reaction mixtures 

that were devoid of diagnostic peaks by analysis of the 1H-NMR spectra.  This result indicates 
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that the α-chelating group does indeed reduce the activity of the Lewis acid (hence, the isolation 

131); however, it is not responsible for the inability of alkoxy functionalized enones to undergo 

the annulation reaction. 

 

Scheme 14. Synthesis and attempted cyclization of α-unsubstituted enone 132 
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2.3 CONCLUSIONS 

A convergent, asymmetric route to two indole alkaloid natural products, (–)-reserpine and (–)-α-

yohimbine was investigated.  The synthetic approach to these compounds depended on a 

diastereoselective intramolecular Sakurai-Mannich reaction of alkoxy-substituted allylsilyl 

enones based on previous results with the related ICR-derived systems.  Expeditious routes to the 

cyclization substrates 122-124, and 132 were developed, although the synthetic yields for several 

transformations require optimization.  Regretfully, the cyclization reaction of these substrates has 

yet to be affected under the narrow range of reaction conditions explored. 
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3.0  BROADENING THE SCOPE OF ICR METHODOLOGY THROUGH THE 

SYNTHESIS OF β-BORONIC ALDEHYDES 

3.1 BACKGROUND 

3.1.1 Limitations of the ICR Reaction 

Although the ICR reaction has proven to be a remarkably general method for the synthesis of 

various diastereomerically enriched α,β-disubstituted aldehydes, there are several noteworthy 

limitations.  The iridium-catalyzed isomerization reaction is driven forward by the increasing 

thermodynamic stability gained by engaging the transposed olefin in conjugation with oxygen 

lone pairs.  Due to this fact, most groups at R1 that are conjugated to the apical olefin completely 

shut down isomerization (Figure 33).  Therefore, aldehydes possessing aryl, alkoxy or amino 

functionality are inaccessible from the original ICR reaction.  Aldehydes prepared from the ICR 

reaction also exhibit poor diastereoselectivity with several common nucleophilic reagents.  As 

demonstrated previously (ch. 1), this fact complicates analysis of synthetic intermediates and can 

reduce the throughput and efficiency of a sequence that requires a single diastereomeric product. 

One solution that would circumvent both of these issues was the implementation of a 

replaceable directing group.  This group would guide a broad range of nucleophiles in the 

transition state to give diastereoenriched alcohol products.  Following its role as a directing 
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group, this functionality would be readily manipulated to produce a diverse range of compounds 

that are inaccessible from the parent ICR reaction. 
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Figure 34. Limitations of the ICR reaction and product aldehydes 

3.1.2 Intramolecular Coodination Can Mimic Cram Chelation 

Manipulating chelation is often a crucial consideration in stereoselective organic synthesis.  This 

is exemplified by the extensive impact of Cram-type chelation on acyclic stereoinduction.143  In 

most cases, chelation occurs in an intermolecular fashion between a substrate and an external 

Lewis acid.  There is limited precedent for intramolecular chelation between Lewis acidic and 

basic functional groups on the same molecule.  For example, Molander et al. have demonstrated 

the highly diastereoselective reduction of γ-boronic ketones with excellent diastereoselectivity 

(Eq. 7).144  It is presumed that the enhanced diastereoselectivity is due to an internal six-

membered chelate between the boronic ester and carbonyl of 140, leading to a half-chair 

conformation in which hydride delivery occurs from the top face to give anti-acetate 141.  No 
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spectroscopic evidence was used to support internal chelation (11B-NMR, X-ray), hence the 

authors suggest that small concentrations of this intermediate react preferentially with the 

hydride nucleophile.  An enantioselective variant of this reaction relying on 1,7-stereoinduction 

from chiral ligands at boron (142 to 143) has also been reported (Eq. 8).145 
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Whiting et al. have demonstrated the deprotonation of β-boronate carbonyl derivatives to 

form the corresponding internally chelated enolates (Figure 35).146  Treatment of a variety of 

boronate-substituted carbonyls 144 with LDA lead to the expected E- and Z-enolates 145 and 

146.  The proximal boronic ester moiety formed an internal chelate 148 in the case of the Z-

enolates 146; however, geometrical constraints precluded this mode of coordination for the 

corresponding E-enolates 145, leading to intermolecular chelates 147.  Interestingly, the E-

enolates 147 gave attenuated anti-selectivity in the aldol reaction with benzaldehyde (~1:1) while 

the Z-enolates produced syn-aldolates with enhanced diastereoselection. 
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Figure 35. Internally chelated borate enolates 

 

Whiting also investigated enantioselective reductions of ketones and oximes that 

presumably proceed through a five-membered internal boron chelate.147-149  Although the 

enantioselectivity for reductions using achiral reagents were poor, the authors demonstrated that 

the effects of double diastereoselectivity are pronounced when employing chiral boranes (Figure 

36).  Treatment of 149 and its enantiomer with the same oxazoborolidine reagent followed by 

several further synthetic transformations gave the acetamide products (S)- and (R)-150, 

demonstrating the inability of the chiral reducing agent to override the stereoinduction of the 

boronate ester.   This observation implies that internal chelation is operative in these systems; 
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however, it is not clear whether this coordination occurs between the boron and nitrogen atom 

(five-membered) or the boron and oxygen atom (six-membered) of the oxime.  As in the case of 

Molander’s studies, spectroscopic evidence was not provided to support the hypothetical internal 

coordination complex. 
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Figure 36. Double diastereoselection guided by internal boron chelation 

 

3.1.3 Isomerization of Vinyl Boronic Esters 

The prospect of using internal boron chelation to drive diastereoselective carbonyl addition 

reactions was intriguing.  Further manipulation of the versatile boronate into alkoxy, aryl and 

amino functionality would enhance the scope and utility of the ICR reaction.  It was not initially 
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clear how we would arrive at suitable Claisen substrates that would afford the desired boron-

containing aldehydes.  Fortunately, Miyaura et al. investigated the isomerization of vinyl boronic 

esters and silyl ethers using cationic iridium catalysts (Scheme 15).150-153  Hydroboration of 

readily available propargyl silyl ether 151 followed by treatment with acetaldehyde gave the 

desired ethoxyvinyl boronic ester 152, which could be transesterified with pinacol to provide 

153.  Treatment of boronate 153 and several other boronic esters with a cationic iridium species 

generated in situ by precatalyst hydrogenation yielded the corresponding silyl enol ether 154 in 

60-90% conversion with excellent selectivity for the E-olefin isomer. 

 

Scheme 15. Isomerization of vinyl boronic esters with cationic iridium catalysts 
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Miyaura’s work suggested that replacement of the silyl ether from 154 with a homoallyl 

group would provide effective substrates for the ICR reaction (Figure 37).  The most direct route 

to the requisite vinyl boronic ester precursors would be through hydroboration of propargylic 

ethers 155.  Subsequent isomerization would lead to vinyl ethers 156, which would afford the 

desired β-boronic aldehydes 157 following thermolysis.  Internal boron chelation to the aldehyde 
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would be expected to enhance the diastereoselectivity of nucleophile additions while providing 

an adaptable handle for derivatization (158). 
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Figure 37. Strategy for the preparation of β-boronic aldehydes through ICR methodology 

3.2 RESULTS AND DISCUSSION 

3.2.1 Synthesis of β-Boronic Aldehydes 

At the outset, the requisite propargylic ethers 162-164 were prepared (Table 11).  Addition of 

Grignard or organolithium reagents to α,β-unsaturated aldehydes gave good yields of the 

intermediate allylic alcohols 155-157.  Alkylation was accomplished using sodium hydride and 

propargyl bromide affording the desired ethers 158-161.  Although 158-161 were pure as 

determined by 1H-NMR analysis, distillation was necessary to remove minor contaminants.   
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Table 11. Preparation of propargylic ethers 162-164 

R1R2

OH

R1

O

H
R2MgX or R2Li

R1R2

O
NaH, BrCH2CCH

THF,

-Me 66 (161)

-Me 93 (160)

R1 R2 Addn. Yield (%)

-Ph

-Np

-Ph -nBu 89 (159)

73 (164)

84 (163)

Ether Yield (%)

75 (162)

159-161 162-164

 

 

Hydroboration of 162-164 proved to be a difficult task, and a wide variety of reagents 

including 9-BBN, dimesityl-, pinacol-, catechol-, and Ipc borane gave complex mixtures from 

which the desired boranes could not be isolated.  Fortunately, a modified procedure by Srebnik et 

al. utilizing Schwartz’s reagent as a catalyst efficiently facilitated the selective hydroboration of 

alkynes 162-164 to give vinyl boronic esters 165-167 (Table 12).154, 155  The isolated vinyl 

boronic esters were subject to 2 mol% of the active ICR catalyst for 90 min. then heated in 

refluxing dichloroethane to promote the thermal Claisen rearrangement which provided β-

boronic aldehydes 168-170 in good yields and diastereomeric ratios.156  Aldehydes 168-170 are 

prone to hydrolysis and epimerization on silica gel, hence isolation on Iatrobeads neutral silica 

gel was necessary to ensure reproducible results.  As mentioned previously, minor impurities 

contained in propargylic ethers 162-164 that were carried into the ICR reaction significantly 

retarded the isomerization in a batch dependant fashion.  This negative effect is presumably due 

to strong coordination of the cationic catalyst to alkyne moieties contained in these contaminants. 
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Table 12. Hydroboration and boron-ICR reactions 

R2 R1

O B(OR)2

R2 R1

O B(OR)2
5 mol% Cp2Zr(H)Cl

CH2Cl2, μW 100 °C

Pinacolborane

2 mol% NaBPh4

1 mol% [Ir(COE)2Cl]2
6 mol% PCy3

-Me 77 (167)

-Me 83 (166)

R1 R2 Hydroboration Yield (%)

-Ph

-Np

-Ph -nBu 75 (165)

76 (170)

84 (169)

Claisen Yield (%)

67 (168)

d.r.b

91:9

92:8

92:8

Δ

162-164

165-167a 168-170

aB(OR)2 Refers to pinacolboronic ester.  bCompound ratios determined by 1H-NMR 
following flash chromatography on Iatrobeads pH 7 silica.  Listed in order syn:anti.

 

3.2.2 Asymmetric Induction by Chiral Boronic Ester Ligands 

Following the successful preparation of boronic aldehydes 168-170, we subsequently recognized 

that chiral boronic esters could potentially serve as cleavable auxiliaries for the preparation of 

enantioenriched aldehydes.  To evaluate this strategy, achiral propargylic ether 171 was prepared 

using the standard protocol and subjected to hydroboration using Matteson’s chiral pinanediol-

derived reagent (Scheme 16).157  Vinyl boronic ester 172 was exceptionally stable compared to 

the corresponding pinacolate esters and underwent facile isomerization to vinyl ether 173 upon 

exposure to 2 mol% of the active ICR catalyst.  Unfortunately, thermolysis of 173 led to 
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considerable decomposition and no appreciable stereoinduction in the limited amount of 

aldehyde 174 produced (1:1 d.r. by 1H-NMR analysis of the crude product). 

 

Scheme 16. Attempted asymmetric boron ICR reaction 

O

Ph

O

Ph

B(OR)2

O

Ph

B(OR)2

5 mol% Cp2Zr(H)Cl
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3.2.3 Solid State Structure of Aldehyde 170 

A solid state structure of a carbonyl compound possessing a proximal ‘chelatable’ boronic ester 

has yet to be reported.  Fortunately, under very select conditions (pentane, −20 °C), aldehyde 170 

formed crystals that were suitable for X-ray analysis.  The boron atom is approximately 2.9 Å 

from the oxygen of the carbonyl and there is no angle deviation from an sp2 hybridization (120°) 

(Figure 38).  From this data, it is clear that intra- or intermolecular boron chelation is not an 

important factor in determining the solid state conformation of β-boronic aldehydes; however, 

this observation does not dismiss its potential importance in the solution phase.  The X-ray 
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structure of aldehyde 170 indicates that it occupies the most stable ground state conformation as 

described by Karabatsos with the boronic ester group eclipsing the carbonyl.158  By Karabatsos’ 

model, the boron methylene substituent would therefore act as the ‘medium’ sized group in a 

Felkin transition state.  Nucleophiles would then be expected to approach from the same 

trajectory regardless of whether the reaction proceeded through the chelated or unchelated 

aldehyde.159, 160 

 

Rm

RlRs

2.9 Å

No Deviation 
From sp2 

Hybridization

 

Figure 38. X-ray structure of aldehyde 170 
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3.2.4 Mukaiyama Aldol Reactions and Access to Oxygenated Products 

To probe the inherent electrophilicity of the β-boronic aldehydes, acetate-derived thioester 

trimethylsilyl ketene acetal was added to several substrates in dichloromethane.  Following an 

extended time period (>24 h), only recovered starting material was observed.  This result further 

implies the lack of internal chelate activation in solution.  Addition of external Lewis acids, such 

as dimethylaluminum chloride, however, promoted a highly diastereoselective Mukaiyama aldol 

reaction at –78 °C.161-163  In order to arrive at alkoxy compounds that are unavailable through the 

parent ICR reaction, intermediates from the aldol reaction were treated under optimized 

oxidative conditions to afford thioester 175 or δ-lactone 176 (Scheme 17). 

 

Scheme 17. Mukaiyama aldol reaction of β-boronic aldehyde 168 
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Figure 39. X-ray structure of δ-lactone 177 

 

The relative stereochemistry of the related naphthyl δ-lactone 177 derived from aldehyde 

170 was determined by X-ray analysis and is identical to that observed by Heathcock for 

products of highly diastereoselective Mukaiyama aldol reactions on simple α-chiral aldehydes 

(Figure 39).164, 165  Aldehyde 178, which possesses a similar structure to 168-170 but lacks a β-

borane moiety, performed comparably in the aldol reaction giving 179 in 98:2 d.r.166  The 

observation that both aldehydes react similarly leads to the conclusion that the high 

stereoselectivity of Mukaiyama aldol reactions with β-boronic aldehydes is a product of Felkin 

control through an open transition state, not a function of internal boron chelation (Figure 40). 
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Figure 40. Control experiment and rationale for relative stereochemistry 

 

3.2.5 Stoichiometric Formation of a Boron ‘ate’ Acetal 

We suspected that the reason for the apparent lack of internal chelation observed with aldehydes 

168-170 was due to the fact that the carbonyl carbon and oxygen and the boron atom are sp2 

hybridized.  Organizing these atoms in the context of a five-membered ring intramolecular 

coordination complex would impose a significant degree of angle strain.  This conclusion was 

supported by observations made during the attempted formation of boron ‘ate’ complexes.  

Based on recent literature precedent, it was hypothesized that conversion of the boronic ester to 

the ‘ate’ complex would affect the selectivity of subsequent nucleophilic additions.167  To form 
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the ‘ate’ complex, aldehyde 168 was added to an in situ generated solution of lithium n-

propoxide and the reaction mixture was then subjected to a four-fold excess of tert-butyllithium.  

Surprisingly, following 1 h of stirring and an aqueous workup, the starting aldehyde was re-

isolated with no detectable change in diastereomeric ratio.  This result suggests that the lithium 

alkoxide attacks the aldehyde instead of the boronic ester, leading to a rehybridization of the 

carbonyl carbon and oxygen from sp2 to sp3.  This rehybridization consequently enables internal 

coordination of the newly formed alkoxide to boron, leading to a stabilized boron ‘ate’ acetal. 

A 1H-NMR study provided ample support to this postulate (Figure 41).168  Upon addition 

of the lithium alkoxide solution to the aldehyde, a 1H-NMR taken within 5 min indicates a slight 

reduction in the aldehyde integration, along with new resonances appearing at ~ 3.0 ppm.  It is 

believed that this peak at 3.0 ppm represents the methane protons at the newly formed acetal 

center.  Following 15 min at ambient temperature, subsequent 1H-NMR analysis indicates 

complete disappearence of the aldehyde resonance; the methane resonance now becomes 

increasingly intense.  Even more revealing is the fact that the characteristic resonance for the 

methylene protons α to the boronate at ~ -1.0 ppm disappears, and is replaced by a high-field 

resonance at ~ -2.0 ppm.  This is strong evidence for the formation of the ‘ate’ complex, which 

would increase local electron density, effectively serving to shield the methylene protons. 

This selective acetal formation could be of significant use for differential protection of 

aldehydes that are otherwise similar in reactivity.  The resilience of this temporary protecting 

group in presence of alkyl carbanions has already been demonstrated, while cleavage appears to 

be rapid and complete with a simple aqueous workup. 
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Figure 41. 1H-NMR experiment for boron 'ate' acetal formation 

 

3.2.6 Access to β-Aryl Substituted ICR products through Suzuki Crosscoupling 

As demonstrated in the previous section, β-boronic aldehydes increase the scope of the 

ICR reaction by providing access to oxygenated products.  Ideally, Suzuki crosscoupling 

reactions could be implemented to append a variety of aryl and vinyl substituents, greatly 

complementing the original ICR methodology.  Attempts to affect direct Suzuki crosscoupling 
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on aldehyde 168 or the corresponding potassium trifluoroborate salt with bromobenzene were 

unfruitful due primarily to competing β-hydride elimination or epimerization.169-175  Reduction of 

the aldehyde using diisobutylaluminum hydride lead in moderate yield to intermediate 180, 

which was assigned the putative cyclic borinic acid structure.  This assignment was based 

primarily on chemical behavior (non-polar, low tendency for ligand exchange), although the free 

boronic acid or a polymeric form cannot be excluded based on the spectroscopic data.  Borane 

180 readily participates in Suzuki reactions with a variety of aryl and heteroaryl bromides, 

leading to substrates unavailable from the original ICR methodology (Table 13).176, 177 

 

Table 13. Suzuki crosscoupling of intermediate 180 

168
O B

OH

nBu Ph

iBu2AlH, −78 °C

50 - 60%

180

HO

nBu Ph

5 mol% Pd(OAc)2, 
PPh3, Na2CO3

 tAmyl-OH, H2O
80 °C ~6 - 12h

R1

181-186

-Np 67 (183)

-4-NO2Ph 81 (182)

R1 Suzuki Yield (%)a

-Ph 67 (181)

aYields and catalyst loadings are calculated based 
on free boronic acid molecular mass.  Values based 
on structure 180 are ~5% lower than reported.

-3-Quinoline 89 (186)

-3-Pyr 78 (185)

-2-Pyr 36 (184)
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 As a final example of the utility of ICR-derived β-boronic aldehydes for synthetic 

purposes, the combined use of nucleophile addition and Suzuki reaction was demonstrated 

(Table 14).  Addition of allylmagnesium bromide to aldehyde 168 yielded an inconsequential 

mixture of diastereomeric homoallylic borinic acids 187.  Note that the poor diastereomeric ratio 

observed for this transformation reflects those obtained for allyl additions to the standard ICR- 

 

Scheme 18. Nucleophile addition to 168 followed by Suzuki crosscoupling 
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nBu Ph

OH

NPh

O

N

nBu Ph

O B
OH

78%, ~2:1 d.r.a

MgBr

5 mol% Pd(OAc)2, PPh3, 
Na2CO3, tAmyl-OH, 

H2O, 2-Bromoquinoline, 
80 °C, 58%

1.) 5 mol% Grubbs I

2.) Dess-Martin, 48%

187b

188189

O
nBu Ph

B(OR)2

(OR)2 = pinacol

aDetermined by 1H-NMR of 188 following isolation.  bStructure 
tentatively assigned, not confirmed by full characterization.

 

derived aldehydes (~1:1 – 2:1).  This casts further doubt on the role of internal chelation in 

determining the stereoselectivity of these transformations.  Exposing 187 to optimized Suzuki 

conditions with 2-bromoquinoline gave the coupling product 188 in 58% yield as an equimolar 

mixture of diastereomers.  Subjection of 188 to Grubbs’ first generation catalyst followed by 

oxidation of the epimeric alcohols using the Dess-Martin reagent afforded the desired β,γ-
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unsaturated ketone 189 in 48% yield.178-182  This route demonstrates the versatility of boron ICR 

products for rapid diversification into a variety of potentially useful compounds. 

3.3 CONCLUSIONS 

Vinyl boronic esters have been demonstrated to be effective precursors for the ICR reaction, 

leading to β-boronic aldehydes in high diastereoselectivities and yields.183  Mukaiyama aldol 

reactions carried out on these aldehydes are highly diastereoselective and the boron moiety can 

be oxidized under mild conditions.  The potential for intramolecular aldehyde chelation to the 

proximal boronic ester has been shown to be relatively unimportant in determining the 

stereoselectivity of various nucleophilic addition reactions.  Suzuki reaction conditions have 

been derived which enable the synthesis of aryl-substituted products that are typically 

unavailable from the ICR reaction. 
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4.0  ATTEMPTED SYNTHESIS OF (–)-PENIENONE VIA BORON ICR 

METHODOLOGY 

4.1 BACKGROUND 

4.1.1 Structure and Bioactivity 

Penienone (190) and penihydrone (191) were isolated from the fermentation broth of the fungus 

Penicillium sp. No. 13 by Kimura, Mizuno and Shimada in 1997.184  Both molecules are 

promising potential herbicides.  While penienone completely inhibited hypocotyl elongation and 

root growth of lettuce seedlings at 300 mg/L, penihydrone only inhibited elongation by 41% 

while accelerating root growth by 280%.  The hydroxymethylene group has been shown to be 

critical for maintaining the biological activity of these natural products.185 

 

OHO

nPr

(−)-penienone (190)

OHO

nPr

(+)-penihydrone (191)

HO

 

Figure 42. Structures of the plant growth regulators penienone and penihydrone 
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4.1.2 Prior Syntheses of Penienone and Penihydrone 

Both 190 and 191 were prepared by Sato and coworkers two years following their isolation 

(Scheme 19).186  Enantioenriched 3-chloro-2-oxybutyrate 192 was obtained by an 

enantioselective Ru-BINAP hydrogenation (98% ee) and readily underwent a Finkelstein 

reaction and hydroxyl protection to produce silyl ether 193 in excellent yields.187  Displacement 

of the primary iodide with in situ generated vinyl cuprate followed by an intramolecular 

Kulinkovich reaction yielded the desired cyclopentane 194 as a mixture of alcohol epimers.188 

   

Scheme 19. Sato's synthesis of (–)-penienone and (+)-penihydrone 
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Fragmentation of the cyclopropane of 194 using iron trichloride followed by halide elimination 

with sodium acetate produced the versatile intermediate cyclohexenone 195, which was used as a 
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template for several stereoselective conjugate addition reactions.  Copper-mediated conjugate 

addition of the in situ prepared dienyl zirconocene followed by trapping of the transient copper 

enolate with formaldehyde afforded advanced intermediate 196 in 68% yield as a single 

diastereomer.  Hydroxycyclohexanone 196 was converted into 190 via β-elimination or into 191 

through hydroxyl group deprotection. 

Meyers et al. reported a second synthesis of 190 in 2000 based on enantioselective 

bicyclic lactam auxiliary methodology (Scheme 20).189  Starting with cyano-substituted bicycle 

197, alkylation with heptenal followed by hydrolysis of the enamine produced the corresponding 

 

Scheme 20. Meyers' synthesis of (–)-penienone 
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lactam 198 as 7:5 ratio of alcohol stereoisomers.  Conversion of 198 to the sulfenate ester and 

subsequent Mislow-Evans rearrangement gave the intermediate sulfoxide in 81% yield.  Thermal 

elimination of the sulfenic acid afforded 93% of the desired diene 199 in a 9.5:1 ratio of alkene 

isomers which were carried through the synthesis.  Reduction of 199 to the bis-aminal and acid-

mediated hydrolysis unveiled the transient keto-aldehyde 200, which promptly underwent an 

intramolecular aldol condensation which yielded cyclohexanone 201.  The enolate of 201 was 

treated with formaldehyde to produce 190 with only modest diastereoselectivity. 

4.1.3 Retrosynthesis of (–)-Penienone 

We were initially drawn to 190 as a synthetic target due to the trans-relationship between the 

dienyl and hydroxymethylene cyclohexenone ring substituents.  Retrosynthetically, 190 could be 

envisioned to proceed from olefin transposition and oxidation of cyclic secondary alcohol 202 

(Scheme 21).190-193  Cyclohexene 202 would arrive from a selective ring closing metathesis of 

homoallylic alcohol 203, following the strategy described in the previous chapter.  Though 

clearly a challenging step, this disconnection seemed rational since dienes are known to tolerate 

metathesis conditions in the presence of more reactive olefins.194,195  Also, if metal carbene 

formation could be forced to occur on the internal olefin (206), there would be only one ring 

closing metathesis partner available due to geometrical and spatial constraints.  Alternatively, 

carbene formation on the terminal olefin would allow for RCM at multiple sites (207).  It was 

envisioned that 203 could be derived from allylation of aldehyde 204, which in turn would be 

accessed via boron ICR methodology.  The requisite diallyl ether Claisen substrate would be 

prepared from aldehyde 205 following an enantioselective addition reaction.  This approach is 
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beneficial since nearly any enantioselective carbon-carbon bond forming reaction could be used 

to obtain 204 in enantioenriched form. 

 

Scheme 21. Retrosynthesis of (–)-penienone 
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4.2 RESULTS AND DISCUSSION 

4.2.1 Synthesis of Vinyl Boronic Ester Precursor 210 

Synthesis of aldehyde 205 was carried out in two steps according to the literature procedure.196  

The trienal aldehyde was then subjected to an asymmetric diethyl zinc addition reaction 

catalyzed by the MIB ligand to give alcohol 208 in 73% yield and 89-90% ee.197-201  Alcohol 208 

was highly sensitive and could only be stored for several days when frozen in a benzene matrix 

at –80 °C.  Etherification of 208 proceeded uneventfully with sodium hydride and propargyl 

  

Scheme 22. Synthesis of vinyl boronic ester 210 
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bromide affording propargylic ether 209 in 83% yield.  Hydroboration of 209 was found to be 

highly sensitive to the reaction temperature, and optimal yields of vinyl boronic ester 210 (55%) 

were obtained with microwave heating to 80 °C for 45 min. 

4.2.2 An Unexpected Side Reaction 

The low yield for the hydroboration reaction of 209 was initially perplexing.  During 

optimization studies, the formation of a single major byproduct along with boronic ester 209 was 

observed.  The byproduct was determined to be bicyclic furan 211, which is formed by the 

intramolecular Diels-Alder reaction of 210 (Scheme 23).  Analogous reactions are well known in 

the literature; however, these generally rely on the more highly reactive alkyl borane 

  

Scheme 23. Boron Diels-Alder reaction 
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reducing agents and must be derivatized prior to isolation.202-204  Furan 211, however, is quite 

stable and can be isolated by standard silica gel chromatography and stored for extensive periods 

of time.  The optimized reaction conditions for the synthesis of 211 is depicted above (Scheme 

23).  The boronic ester moiety of 211 can be readily modified by standard transformations.  For 
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example, exposing 211 to basic hydrogen peroxide gave the desired furanol 212 in 79% yield.  

Furanol 212 is a highly crystalline material; however, an X-ray structure of this intermediate was 

not obtained, and therefore its relative stereochemistry was not rigorously established.  The 

depicted relative stereochemistry of 212 is derived from a very closely related literature reaction 

emerging from the expected ‘endo’ transition state.205  A one-pot hydroboration, Diels-Alder 

reaction has also been accomplished, however yields stand at approximately 30-40%. 

4.2.3 Preparation of RCM Precursors 214 and 216 

With reasonable quantities of 210 available from the optimized hydroboration reaction, the 

ensuing key Claisen rearrangement was explored.  Treatment of 210 with 2 mol% of the active 

cationic iridium complex followed by heating in refluxing dichloroethane provided the 58% 

yield of aldehyde 211 with 22:2:1 d.r..  Aldehyde 211 was treated with an in situ prepared allyl 

titanium species and the intermediate borane oxidized with basic hydrogen peroxide, providing 

homoallylic diol 214 in 56% yield.206  Unfortunately, 214 was inert in the subsequent RCM 

reaction with either generation of the Grubbs catalyst presumably due to catalyst deactivation by 

the diol moiety.  To circumvent this complication, the free diol of 214 was protected as the 

corresponding acetonide 216.  Acetonide 216 was also a poor metathesis substrate for formation 

of cyclohexene 217 with Grubbs’ first generation catalyst.  The second generation catalyst and 

Schrock’s molybdenum catalyst appeared to react primarily with the internal diene of 217, 

suggesting that the isolated olefins are particularly hindered.207  Various attempts at protecting 

the free diene of 213, 214 or 216 as the corresponding iron complex with UV activation or using 

Knolker’s iron transfer reagent were unsuccessful.208-215 
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Scheme 24. Preparation and evaluation of ring closing metathesis substrates 214 and 216 
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4.3 CONCLUSIONS 

An approach to the total synthesis of the plant growth inhibitor (−)-penienone was explored in 

order to demonstrate the practical application of boron ICR methodology to complex molecule 

construction.  During the course of these studies, a remarkable variant of the intramolecular 

boron Diels-Alder reaction was discovered.  It is likely that further studies into this 

transformation would provide the basis for a novel methodology project.  The key boron Claisen 

rearrangement was effective for the preparation of advanced intermediates 214 and 216 which 

were unfortunately ineffective substrates for RCM under various conditions.  This failure is 

likely due to sterics, a conjecture which is supported by results with related systems lacking the 

bulky silane moiety.216 
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5.0  EXPERIMENTAL SECTION FOR CHAPTER 1 

General Information for Chapters 5-8:  Unless otherwise stated all reactions were performed 

in dry glassware under an atmosphere of oxygen free nitrogen using standard inert atmosphere 

techniques for the manipulation of solvents and reagents.  Anhydrous solvents were obtained by 

passing through successive alumina columns on a solvent purification system.   [IrCl(C8H14)2]2 

and PCy3  were stored and weighed out in a glove box.217  Pinacolborane was purchased from 

Aldrich, distilled under partial vacuum, and stored under nitrogen in a freezer.  Temperatures for 

the thermal Claisen rearrangements were controlled using an Ika® Werke hotplate/stirrer.  

Infrared spectra were recorded on a Nicolet Avatar 360 FT-IR spectrometer.  1H-NMR spectra 

were recorded on a Bruker Advance-300 (300 MHz) or Advance-500 (500 MHz) spectrometer.  

Chemical shifts are reported relative to following reference peaks for 1H-NMR (multiplicity, 

shift); CDCl3 (1, 7.27 ppm), C6D6 (1, 7.16 ppm), D3CCN (5, 1.94 ppm), d6-DMSO (5, 2.50 ppm) 

and for 13C-NMR (multiplicity, shift); CDCl3 (1, 77.0 ppm), C6D6 (3, 128.39 ppm), D3CCN (1, 

118.69 ppm or 7, 1.39 ppm), d6-DMSO (7, 39.51 ppm).  Mass spectra were obtained on a VG-

7070 or Fisons Autospec high-resolution magnetic sector mass spectrometer.  Analytical thin 

layer chromatography was performed on EM Reagent 0.25 mm silica gel 60-F plates.  Flash 

chromatography was performed as previously described on EM silica gel 60 (230-240 mesh) or 

Iatrobeads 6RS-8060 (pH 7 silica gel), purchased from Shell-USA, or EM silica gel 60 (230-240 

mesh).218  Medium pressure liquid chromatography was performed on a Biotage Flash-25TM 
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MPLC system.  Analytical high performance liquid chromatography (HPLC) was performed on 

a Hewlett Packard 1100 liquid chromatograph equipped with a variable wavelength UV detector 

(deuterium lamp, 190-600 nm), using a ChiracelTM OD-H or AS-H column (250 x 4.6 mm) 

(Daicel Inc.) or a ZorbaxTM Sil column (240 x 4.6 mm) (Rockland Technologies, Inc.).  HPLC 

grade ethyl acetate, isopropanol and hexanes were used as the eluting solvents.  Analytical gas 

liquid chromatography (GLC) was performed on a Varian 3900 gas chromatograph with a flame 

ionization detector and split mode capillary injection system using a ChrompackTM CP-Sil 5 CB 

(30 m x 0.25 mm) (Varian Inc.) or a Varian CP-Wax 52 CB (30 m x 0.25 mm) (Varian Inc.). 

GC-MS was performed on a Hewlett Packard 5890 Series II gas chromatograph with a Hewlett 

Packard Series 5970 mass selective detector in electron ionization (EI) mode and split mode 

capillary injection system using a HP-1 (12 m x 0.20 mm) (Hewlett Packard Inc.). LC-MS was 

performed on a Hewlett Packard 1100 Series liquid chromatograph system with using a X-terra 

C-18 column.  Microwave reactions were performed using a CEM Discover microwave.  

Melting points were determined using a Laboratory Devices Mel-temp II. 

  

  

 

(E)-1-Trimethylsilyl-4-phenylbut-3-en-2-one (96):86  To 0.84g (4.4 mmol) of CuI in 2.0 mL of 

THF at –40 °C was added 7.3 mL (4.4 mmol) of TMSCH2MgCl in Et2O (0.6 M).  Following 10 

min, a solution of 0.66 g (4.0 mmol) of cinnamoyl chloride in 2.2 mL of THF was added via 

cannula.  The reaction was stirred for 2h and quenched with H2O.  The mixture was passed 

through a plug of celite with Et2O and the biphasic mixture was transferred to a separatory 

funnel.  The aqueous layer was extracted with Et2O (3x) and the combined organic extracts were 

O

Ph
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dried over Na2SO4 and filtered.  The crude product was concentrated in vacuo.  Purification by 

flash chromatography (10:1 hexanes/EtOAc) on Iatrobeads afforded 0.56 g (65%) of the ketone 

as a clear oil: IR (thin film) 3027, 2956, 1674, 1640, 1607, 1576, 1495, 1251, 979, 852, 707 cm-1; 

1H-NMR (300 MHz, CDCl3): δ 7.57–7.53 (m, 2H), 7.48 (d, J = 16.0 Hz, 1H), 7.42–7.38 (m, 3H), 

6.69 (d, J = 16.0 Hz, 1H), 2.46 (s, 2H), 0.15 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 198.8, 

141.7, 134.6, 130.1, 128.8, 128.1, 127.3, 36.8, –1.1; MS (EI) m/z 218 (M+•), 203, 161, 131, 128, 

103, 75; HRMS (EI) m/z calculated for C13H18OSi: 218.1127, found 218.1117. 

 

  

 

(+)-(E)-1-Trimethylsilyl-4-phenylbut-3-en-2-ol (15):84  In a dry round bottom flask, 0.10 g 

(0.46 mmol) of ketone 96 was diluted to 0.28 mL with THF.  A 92 μL (0.092 mmol) aliquot of 

commercial (R)-methyloxazaborolidine in toluene (1M) was added to a separate dry round 

bottom flask, the toluene was removed in vacuo, and 2.3 mL of THF was added.  The 

oxazaborolidine solution was cooled to 0 °C and both the ketone solution and 0.28 mL (0.28 

mmol) of BH3 in THF (1M) were added simultaneously by syringe pump over 1 h.  Following 

the addition, the reaction was slowly quenched with 0.11 mL of MeOH, stirred 10-20 min at 0 

°C (H2 evolution), then raised to rt for 30 min.  The reaction mixture was transferred to a 

separatory funnel with H2O and Et2O, the aqueous layer was extracted with Et2O (3x) and the 

combined organic layers were dried over Na2SO4.  The organic extracts were filtered and the 

crude product was concentrated in vacuo.  Purification by flash chromatography on SiO2 (10:1 

hexanes/EtOAc) yielded 76 mg (74%) of the alcohol as a wax (low melting point).  Separation of 

the enantiomers by chiral HPLC (Daicel ChiracelTM AS-H column, flow rate 1.0 mL/min, 3.0% 

TMS
OH

Ph
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i-PrOH, 97.0% hexanes) provided the enantiomeric ratio: 5.2% (S, Tr = 8.1): 94.8% (R, Tr = 9.6) 

(90% ee): [α]D
26 = +41.2 (c 1.13, CHCl3)219; 1H-NMR (300 MHz, CDCl3): δ 7.40–7.26 (m, 5H), 

6.54 (d, J = 15.8 Hz, 1H), 6.22 (dd, J = 15.8, 7.2 Hz, 1H), 4.52–4.44 (m, 1H), 1.51 (d, J = 3.9 

Hz, 1H), 1.14 (dd, J = 14.2, 6.9 Hz, 1H), 1.02 (dd, J = 14.3, 7.8 Hz, 1H), 0.07 (s, 9H). 

 

 

 

(E)-5-Methyl-1-trimethylsilylhex-3-en-2-ol (16):  To a 250 mL single-neck flask containing  

3.7 g (0.15 mol) of mechanically activated Mg(0) equipped with stirbar and condenser with dry 

ice sleeve was added 75 mL of Et2O.  A solution of I2 in BrCH2CH2Br (cat.) was added to the 

stirring suspension.  Upon reaction initiation (brown → clear/white color shift), 11 mL (9.4 g, 76 

mmol) of chloromethyltrimethyl silane in 10 mL of Et2O was carefully added at a rate to 

maintain a gentle reflux.  Following stirring at ambient temperature for 1 h, the resulting 

Grignard reagent was added slowly via syringe to a solution of 5.0 g (5.9 mL, 51 mmol) of 4-

methyl-2-pentenal in 150 mL of Et2O at –78 °C.  After 30 min, the reaction was quenched at –78 

°C with sat. aq. NH4Cl and the resulting biphasic mixture was warmed to ambient temperature.  

The aqueous layer was extracted with Et2O (3x), the combined organics were dried over MgSO4, 

and concentrated to give the crude product.  Purification via Kughelrohr distillation (43 °C, 200 

mtorr) yielded 7.7 g (81%) of the title compound as a colorless oil: IR (thin film) 3358, 2957, 

1670, 1248, 971, 839 cm-1; 1H-NMR (300 MHz, CDCl3): δ 5.59 (dd, J = 15.4, 6.3 Hz, 1H), 5.42 

(dd, J = 15.4, 7.4 Hz, 1H), 4.28–4.20 (m, 1H), 2.36–2.23 (m, 1H), 1.35 (d, J = 3.7 Hz, 1H), 1.03 

(dd, J = 14.1, 6.2 Hz, 1H), 1.00 (d, J = 6.8 Hz, 6H), 0.92 (dd, J = 14.1, 8.5 Hz, 1H), 0.03 (s, 9H); 

13C-NMR (75 MHz, CDCl3): δ 137.6, 132.2, 71.3, 30.3, 26.7, 22.1, 22.0, –1.0; MS (EI) m/z 185 

TMS
OH

iPr
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(M+•-H), 169, 143, 73; HRMS (EI) m/z calculated for C10H21OSi (M+•-H): 185.1362, found 

185.1363. 

 

General Procedure A for Preparation of Diallylethers 17–19:33  Optimal reaction times were 

found to be approximately 5-7 d.  To a solution of the allylic alcohol (20 mmol) in 13 mL THF 

was added 13 mL (13 mmol) of Et2Zn in hexanes (1.0 M) dropwise.  The solution was stirred at 

ambient temperature for 1 h.  Into a separate flask, 0.22 g (1.0 mmol) of Pd(OAc)2 and 1.3 g (5.0 

mmol) of PPh3 were weighed, purged with N2 and were dissolved in 26 mL THF.  Following 10 

min of vigorous stirring, 3.2 mL (3.0 g, 30 mmol) of allyl acetate was added to the active catalyst 

in a single portion and the mixture was stirred an additional 10 min.  The zinc alkoxide solution 

was then cannulated into the active catalyst, and the reaction mixture was stirred for the indicated 

time.  The reaction underwent a color change from yellow → orange, returning to the original 

color upon complete conversion.  The solvent was removed in vacuo and salts were precipitated 

by addition of Et2O followed by filtration through florisil.  The crude product mixture was 

purified as indicated. 

 

 

 

(E)-2-Allyloxypent-3-enyltrimethylsilane (17):19  The general procedure A was followed 

employing 8.0 g (51 mmol) of (E)-1-trimethylsilanylpent-3-en-2-ol for 7 d.220  Purification via 

Kughelrohr distillation (35 °C, 150 mtorr) followed by Biotage MPLC (39:1 hexanes/Et2O) 

yielded 8.0 g (79%) of the title compound as a colorless oil: 1H-NMR (300 MHz, CDCl3): 

δ 5.96–5.84 (m, 1H), 5.55 (dq, J = 15, 6.4 Hz, 1H), 5.28 (ddq, J = 15, 8.5, 1.6 Hz, 1H), 5.23 (dq, 

O
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J = 17, 1.7 Hz, 1H), 5.12 (dq, J = 10, 1.3 Hz, 1H), 3.97 (ddt, J = 13, 5.3, 1.5 Hz, 1H), 3.80–3.70 

(m, 2H), 1.70 (dd, J = 6.5, 1.5 Hz, 1H), 1.06 (dd, J = 14, 6.7 Hz, 1H), 0.85 (dd, J = 14, 8.0 Hz, 

1H), 0.01 (s, 9H). 

 

 

 

(E)-2-Allyloxy-4-phenylbut-3-enyltrimethylsilane (18):19  The general procedure A was 

followed employing 5.0 g (23 mmol) of (E)-4-phenyl-1-trimethylsilanylbut-3-en-2-ol for 2 d.221  

Purification by Biotage MPLC (39:1 hexanes/Et2O) yielded 3.1 g (52%) of the title compound as 

a colorless oil: 1H-NMR (300 MHz, CDCl3): δ 7.61–7.24 (m, 5H), 6.04 (dd, J = 16, 8.3 Hz, 1H), 

5.92 (m, 1H), 5.26 (ddd, J = 17, 3.5, 1.6 Hz, 1H), 5.15 (ddd, J = 10, 3.2, 1.3 Hz, 1H), 4.10–3.95 

(m, 2H), 3.83 (ddt, J = 13, 5.9, 1.4 Hz, 1H), 1.17 (dd, J = 14, 7.2 Hz, 1H), 0.96 (dd, J = 14, 7.5 

Hz, 1H), 0.28 (s, 9H). 

 

 

 

(E)-2-Allyloxy-5-methylhex-3-enyltrimethylsilane (19):  The general procedure A was 

followed employing 5.1 g (27 mmol) of α-silyl alcohol 16 for 7 d.  Purification via Kughelrohr 

distillation (35 °C, 150 mtorr) followed with Biotage MPLC (39:1 hexanes/Et2O) yielded 5.7 g 

(93%) of the title compound as a colorless oil: IR (thin film) 2957, 1670, 1650, 1247, 1071, 972, 

838 cm-1; 1H-NMR (300 MHz, CDCl3): δ 5.91, (dddd, J = 17.2, 10.4, 5.8, 5.3 Hz, 1H), 5.51 (dd, 

J = 15.5, 6.5 Hz, 1H), 5.28–5.17 (m, 2H), 5.14 (ddt, J = 9.1, 1.9, 1.3 Hz, 1H), 3.98 (ddt, J = 14.2, 

5.3, 1.5 Hz, 1H), 3.80–3.72 (m, 2H), 2.39–2.23 (m, 1H), 1.08 (dd, J = 14.3, 6.5 Hz, 1H), 0.88 
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(dd, J = 14.3, 8.3 Hz, 1H), 1.01 (d, J = 6.8 Hz, 3H); 13C-NMR (75 MHz, CDCl3): δ 140.0, 135.5, 

129.5, 116.2, 78.5, 68.4, 30.6, 25.1, 22.4, 22.1, –0.6; MS (EI) m/z 183 (M+•-iPr), 169, 139, 73; 

HRMS (EI) m/z calculated for C10H19OSi (M+•-iPr): 183.1205, found 183.1200. 

 

General Procedure B for ICR Reactions 20–22:19  Large scale isomerizations (~ 2.0 g) were 

shown to be moderately exothermic; cooling to 0 °C prior to allyl ether addition generally 

facilitated a higher E:Z ratio of the vinyl ether. Microwave irradiation was found to be a practical 

alternative to conventional heating. 

A solution of 6.8 mg (0.020 mmol) of NaBPh4 in CH2Cl2/acetone (25:1) (1.5 mL) was 

added to 9.0 mg (0.010 mmol) of [IrCl(C8H14)2]2 and 17 mg of (0.060 mmol) PCy3 in 1.5 mL of 

anhydrous CH2Cl2 and the resulting yellow solution stirred for 30 min at ambient temperature.  

The allyl ether substrate (2.0 mmol) was added dropwise at 0 °C and following addition the 

reaction was stirred for 15-30 min while warming to ambient temperature.  Triphenylphosphine 

(16 mg, 0.060 mmol) was added and the resulting solution was transferred to a microwave tube.  

The mixture was irradiated at 100 °C, 150 W for the indicated period of time, and the solvent 

was removed in vacuo.  Residual salts were removed by adding hexanes and filtering through 

celite to yield the crude aldehyde, which was used as isolated.  An aliquot of each compound was 

further purified via flash chromatography on SiO2 to provide the included spectral data. 

 

 

 

R*-(E,2S,3R)-2,3-Dimethyl-6-trimethylsilylhex-4-enal (20):  The general procedure B was 

followed employing 2.00 g (10.1 mmol) of diallylether 17 and μW time of 45 min.   1.96 g 

O
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(98%) of the crude compound was isolated as a yellow oil.  Alternatively, the aldehyde can be 

purified on Iatrobeads (pH 7 silica, 23:1 hexanes/EtOAc) to yield 1.8 g (90%) of the product as a 

clear oil (d.r. 93:7 via 300 MHz 1H-NMR, aldehyde CHO):  IR (thin film) 3018, 2958, 2700, 

1727, 1673, 1248, 967, 854 cm-1;  1H-NMR (300 MHz, CDCl3): δ 9.67 (d, J = 2.2 Hz, 1H), 5.46 

(dtd, J = 15.3, 8.0, 1.0 Hz, 1H) 5.21 (ddt, J = 15.2, 7.7, 1.1 Hz, 1H), 2.54 (m, 1H), 2.31 (pd, J = 

7.0, 2.2 Hz, 1H), 1.44 (dd, J = 8.0, 0.9 Hz, 2H), 1.05 (d, J = 7.0 Hz, 3H), 1.02 (d, J = 6.9 Hz, 

3H), 0.01 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 205.6, 131.0, 127.0, 51.4, 37.9, 22.7, 17.4, 

10.3, –2.0; MS (EI) m/z 198 (M+•), 183, 130, 115, 73; HRMS (EI) m/z calculated for C11H22OSi: 

198.1440, found 198.1431. 

 

 

 

R*-(E,2S,3R)-2-Methyl-6-trimethylsilyl-3-phenylhex-4-enal (21):  The general procedure B 

was followed employing 2.0 g (7.7 mmol) of diallylether 18 and μW time of 60 min.   2.0 g 

(100%) of the crude compound was isolated as a yellow oil (d.r. 92:8 via 300 MHz 1H-NMR, 

aldehyde CHO): IR (thin film) 3062, 3027, 2955, 2706, 1727, 1653, 1601, 1248, 966, 851 cm-1; 

1H-NMR (300 MHz, CDCl3): δ 9.68 (d, J = 3.3 Hz, 1H), 7.39–7.16 (m, 5H), 5.54 (dt, J = 15.1, 

6.9 Hz, 1H), 5.50 (dd, J = 15.2, 7.3 Hz, 1H), 3.46 (dd, J = 9.5, 7.5 Hz, 1H), 2.73 (dqd, J = 9.6, 

6.9, 3.2 Hz, 1H), 1.43 (d, J = 6.7 Hz, 2H) 0.91 (d, J = 6.9 Hz, 3H), –0.04 (s, 9H); 13C-NMR (75 

MHz, D3CCN): δ 205.8, 143.8, 130.6, 129.6 (2C), 129.0, 127.5, 51.8, 51.7, 23.3, 13.1, –1.7; MS 

(EI) m/z 260 (M+•), 203, 130, 73; HRMS (EI) m/z calculated for C16H24OSi: 260.1596, found 

260.1602. 
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R*-(E,2S,3R)-3-Isopropyl-2-methyl-6-trimethylsilylhex-4-enal (22):  The general procedure B 

was followed employing 2.0 g (8.8 mmol) of diallylether 19 and μW time of 75 min.  2.0 g 

(100%) of the crude compound was isolated as a yellow oil (d.r. E syn:anti 81:7.1 (A:A*), Z 

syn:anti 9.9:1.5 (B:B*) via combined 500 MHz 1H-NMR (A = δ 9.61, A* = δ 9.57, B = δ 9.64, 

B* = δ 9.59, aldehyde CHO) and GC (TrA + TrA* = 27.47, TrB = 29.04, TrB* = 28.83) [CP-Wax 52 

CB (30 m x 0.25 mm), method: 60 °C for 5.00 min, ramp @ 3 °C/min to 250 °C, hold for 20 

min]): IR (thin film) 2958, 2701, 1727, 1655, 1248, 971, 853 cm-1; 1H-NMR (300 MHz, CDCl3): 

δ 9.61 (d, J = 3.1 Hz, 1H), 5.42 (dt, J = 15.1, 8.0 Hz, 1H), 5.07 (ddt, J = 15.1, 9.7, 1.1 Hz, 1H), 

2.47 (pd, J = 6.9, 3.2 Hz, 1H), 1.97 (ddd, J = 9.7, 7.7, 5.8 Hz, 1H), 1.89–1.76 (m, 1H), 1.46 (dd, 

J = 7.9, 1.0 Hz, 2H), 1.05 (d, J = 6.9 Hz, 3H), 0.92 (d, J = 6.7 Hz, 3H), 0.83 (d, J = 6.8 Hz, 3H), 

0.00 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 205.8, 130.1, 126.4, 51.9, 48.1, 28.4, 23.0, 21.4, 

18.3, 12.5, –1.8; MS (EI) m/z 183 (M+•-iPr), 169, 139, 84, 73; HRMS (EI) m/z calculated for 

C10H19OSi (M+•-iPr): 183.1205, found 183.1197. 

  

General Procedure C for Preparation of Allylic and Homoallylic Alcohols 23–30:  To a 

solution of the crude aldehyde (1.0 mmol) in 2.5 mL of CH2Cl2 at –78 °C was added a solution 

of either 1.5 mL (1.5 mmol) of allylmagnesium bromide in Et2O (1.0 M) or 1.5 mL (1.5 mmol) 

of vinylmagnesium bromide in THF (1.0 M).  Following 15 min-1 h of stirring, the mixture was 

carefully quenched with sat. aq. NH4Cl, then slowly warmed to ambient temperature.  The 

aqueous layer was extracted with Et2O (3-5x), the organics were dried over MgSO4, and the 

solvent was removed in vacuo.  The crude oil was purified as specified to yield a ~ 1:1 – 3:1 
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diastereomeric mixture of the allylic or homoallylic alcohols.  The diastereomeric ratios were not 

established for these reactions.  In each case, the high Rf diastereomer was isolated via flash 

chromatography and fully characterized.   

 

 

 

R*-(E,3R,4S,5R)-4,5-Dimethyl-8-trimethylsilylocta-1,6-dien-3-ol + R*-(E,3S,4S,5R)-4,5-

Dimethyl-8-trimethylsilylocta-1,6-dien-3-ol (23):  The general procedure C was followed 

using 1.38 g (6.96 mmol) of aldehyde 20 and 10.4 mL (10.4 mmol) of vinylmagnesium bromide.  

Purification of the crude extract by flash chromatography on SiO2 (25:1 hexanes/EtOAc) yielded 

792 mg (50%) of the product as a yellow oil: IR (thin film) 3373, 3078, 2958, 1650, 1644, 1248, 

851 cm-1;  1H-NMR (300 MHz, CDCl3): δ 5.88 (ddd, J = 17.2, 10.5, 5.4 Hz, 1H), 5.43 (dt, J = 

15.8, 8.0 Hz, 1H), 5.24 (dt, J = 17.2, 1.6 Hz, 1H), 5.14 (dt, J = 10.5, 1.6 Hz, 1H), 5.27–5.12 (m, 

1H), 4.29–4.23 (m, 1H), 2.17 (sextet, J = 7.1 Hz, 1H), 1.48 (d, J = 5.3 Hz, 1H), 1.43 (dd, J = 7.8, 

0.9 Hz, 2H), 1.47–1.33 (m, 1H), 0.97 (d, J = 6.8 Hz, 3H), 0.88 (d, J = 6.9 Hz, 3H), 0.00 (s, 9H); 

13C-NMR (75 MHz, CDCl3): δ 140.9, 133.9, 125.8, 114.3, 74.4, 43.7, 39.5, 22.7, 18.1, 10.6, –

1.9; MS (EI) m/z 226 (M+•), 211, 141, 73; HRMS (EI) m/z calculated for C13H26OSi: 226.1753, 

found 226.1756. 

 

 

 

R*-(E,3R,4S,5R)-4-Methyl-8-trimethylsilyl-5-phenylocta-1,6-dien-3-ol + R*-(E,3S,4S,5R)-4-

Methyl-8-trimethylsilyl-5-phenylocta-1,6-dien-3-ol (24):  The general procedure C was 
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followed using 1.00 g (3.84 mmol) of aldehyde 21 and 5.76 mL (5.76 mmol) of vinylmagnesium 

bromide.  Purification of the crude extract by flash chromatography on SiO2 (25:1 → 10:1 

hexanes/EtOAc) yielded 802 mg (72%) of the product as a yellow oil: IR (thin film) 3475, 3083, 

3062, 3026, 2954, 1645, 1601, 1248, 966, 854 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.34–7.15 

(m, 5H), 5.95 (ddd, J = 17.2, 10.6, 4.8 Hz, 1H), 5.55 (dt, J = 15.0, 7.4 Hz, 1H), 5.46 (dd, J = 

15.1, 8.2 Hz, 1H), 5.28 (dt, J = 17.2, 1.6 Hz, 1H), 5.18 (dt, J = 10.6, 1.6 Hz, 1H), 4.55–4.50 (m, 

1H), 3.24 (dd, J = 10.2, 8.7 Hz, 1H), 1.91 (dqd, J = 10.3, 6.9, 2.3 Hz, 1H), 1.46 (d, J = 4.1 Hz, 

1H), 1.43 (d, J = 6.2 Hz, 2H), 0.66 (d, J = 6.9 Hz, 3H), –0.05 (s, 9H); 13C-NMR (75 MHz, 

CDCl3): δ 144.7, 140.7, 131.6, 128.4, 127.7 (2C), 125.8, 114.1, 72.9, 53.1, 42.9, 22.9, 10.9, –1.8; 

MS (EI) m/z 288 (M+•), 270, 203, 73; HRMS (EI) m/z calculated for C18H28OSi: 288.1909, found 

288.1918. 

 

 

 

R*-(E,4R,5S,6R)-5,6-Dimethyl-9-trimethylsilylnona-1,7-dien-4-ol + R*-(E,4S,5S,6R)-5,6-

Dimethyl-9-trimethylsilylnona-1,7-dien-4-ol (25):  The general procedure C was followed 

using 1.9 g (9.4 mmol) of aldehyde 20 and 11 mL (1.2 equiv., 11 mmol) of allylmagnesium 

bromide.  Purification of the crude extract by flash chromatography on SiO2 (25:1 

hexanes/EtOAc) yielded 1.5 g (66 %) of the product as a yellow oil: IR (thin film) 3423, 3077, 

2958, 1650, 1641, 1248, 853 cm-1;  1H-NMR (300 MHz, CDCl3): δ 5.82 (ddt, J = 17.1, 10.2, 7.0 

Hz, 1H), 5.42 (dt, J = 15.6, 8.0 Hz, 1H), 5.19 (dd, J = 15.2, 8.4 Hz, 1H), 5.15–5.08 (m, 2H), 3.79 

(ddd, J = 8.2, 5.0, 3.2 Hz, 1H), 2.31–2.08 (m, 3H), 1.50 (s, 1H), 1.43 (dd, J = 7.9, 0.8 Hz, 2H), 

1.33 (pd, J = 6.9, 3.1 Hz, 1H), 0.98 (d, J = 6.8 Hz, 3H), 0.90 (d, J = 6.9 Hz, 3H), 0.00 (s, 9H) ; 
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13C-NMR (75 MHz, CDCl3): δ 135.7, 133.8, 125.7, 117.2, 71.8, 42.9, 40.0, 39.9, 22.7, 18.5, 

10.6, –1.9; MS (EI) m/z 240 (M+•), 225, 199, 141, 73; HRMS (EI) m/z calculated for C14H28OSi: 

240.1909, found 240.1912. 

 

 

 

R*-(E,4R,5S,6R)-5-Methyl-9-trimethylsilyl-6-phenylnona-1,7-dien-4-ol + R*-(E,4S,5S,6R)-

5-Methyl-9-trimethylsilyl-6-phenylnona-1,7-dien-4-ol (26):  The general procedure C was 

followed using 918 mg (3.52 mmol) of aldehyde 21 and 5.29 mL (5.29 mmol) of allylmagnesium 

bromide.  Purification of the crude extract by flash chromatography on SiO2 (25:1 → 10:1 

hexanes/EtOAc) yielded 0.660 g (62%) of the product as a yellow oil: IR (thin film) 3475, 3081, 

3026, 2953, 1650, 1641, 1601, 1248, 966, 851 cm-1;  1H-NMR (300 MHz, CDCl3): δ 7.31–7.14 

(m, 5H), 5.85 (ddt, J = 17.1, 10.1, 6.9 Hz, 1H), 5.52 (dt, J = 15.1, 7.6 Hz, 1H), 5.42 (dd, J = 15.1, 

8.8 Hz, 1H), 5.15 (dq, J = 17.1, 1.6 Hz, 1H), 5.12 (dm, J = 10.0 Hz, 1H), 4.02 (dtd, J = 9.2, 4.7, 

2.0 Hz, 1H), 3.21 (dd, J = 10.3, 9.0 Hz, 1H), 2.38–2.16 (m, 2H), 1.82 (dqd, J = 10.4, 6.8, 1.8 Hz, 

1H), 1.42 (br. d, J = 7.2 Hz, 2H), 1.41 (d, J = 4.4 Hz, 1H), 0.69 (d, J = 6.9 Hz, 3H), –0.05 (s, 

9H); 13C-NMR (75 MHz, CDCl3): δ 145.0, 135.6, 131.5, 128.4, 127.7, 127.5, 125.8, 117.5, 70.7, 

53.6, 42.0, 40.1, 22.8, 10.5, –1.9; MS (EI) m/z 302 (M+•), 261, 245, 203, 73; HRMS (EI) m/z 

calculated for C19H30OSi: 302.2066, found 302.2081. 
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R*-(E,4R,5S,6R)-6-Isopropyl-5-methyl-9-trimethylsilylnona-1,7-dien-4-ol + R*-

(E,4S,5S,6R)-6-Isopropyl-5-methyl-9-trimethylsilylnona-1,7-dien-4-ol (27):  The general 

procedure C was followed using 1.07 g (4.70 mmol) of aldehyde 22 and 7.06 mL (7.06 mmol) of 

allylmagnesium bromide.  Purification of the crude extract by flash chromatography on SiO2 

(25:1 hexanes/EtOAc) yielded 853 mg (68%) of the product as a yellow oil: IR (thin film) 3439, 

3076, 2957, 1646, 1641, 1248, 974, 854 cm-1; 1H-NMR (300 MHz, CDCl3): δ 5.81 (ddt, J = 

17.2, 10.1, 7.1 Hz, 1H), 5.40 (dt, J = 15.5, 7.9 Hz, 1H), 5.13–5.01 (m, 3H), 3.83 (dtd, J = 9.3, 

4.9, 1.7 Hz, 1H), 2.35–2.24 (m, 1H), 2.16–2.07 (m, 1H), 1.95–1.71 (m, 2H), 1.55–1.46 (m, 1H), 

1.48 (br. d, J = 8.4 Hz, 2H), 1.45 (br. d, J = 4.4 Hz, 1H), 0.87 (d, J = 5.9 Hz, 3H), 0.85 (d, J = 5.7 

Hz, 3H), 0.75 (d, J = 6.7 Hz, 3H), 0.01 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 136.0, 129.3, 

127.8, 116.9, 71.4, 52.2, 40.0, 38.5, 27.7, 23.1, 22.2, 16.5, 10.5, –2.1; MS (EI) m/z 268 (M+•), 

253, 225, 211, 167, 73; HRMS (EI) m/z calculated for C16H32OSi: 268.2222, found 268.2218. 

 

 

 

R*-(2E,4R,5S,6R,7E)-5,6-Dimethyl-9-trimethylsilylnona-2,7-dien-4-ol + R*-

(2E,4S,5S,6R,7E)-5,6-Dimethyl-9-trimethylsilylnona-2,7-dien-4-ol (28):  The catalyst was 

prepared according to general procedure B with 25 mg (0.028 mmol) of [IrCl(C8H14)2]2, 19 mg 

(0.056 mmol) of NaBPh4 and 47 mg (0.17 mmol) of PCy3.  To the active catalyst mixture was 

cannulated 1.34 g (5.57 mmol) of allylic alcohol 25 in 1.5 mL of CH2Cl2.  The flask was rinsed 

with an additional 1.5 mL of CH2Cl2.  After 12 h, the reaction was quenched with hexanes and 

filtered through florsil.  The crude product was purified via flash chromatography on SiO2 (25:1 

hexanes/EtOAc) to afford 1.21 g (90%) of the title compound mixture as an oil.  The high Rf 
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diastereomer was isolated via flash chromatography and fully characterized: IR (thin film) 3385, 

2958, 1671, 1652, 1248, 967, 851 cm-1; 1H-NMR (300 MHz, CDCl3): δ 5.65 (dqd, J = 15.3, 7.5, 

1.0 Hz, 1H), 5.51 (ddq, J = 15.3, 6.4, 1.4 Hz, 1H), 5.41 (dtd, J = 15.2, 7.7, 0.7 Hz, 1H), 5.21 (ddt, 

J = 15.2, 8.0, 1.0 Hz, 1H), 4.15–4.10 (m, 1H), 2.16 (sextet, J = 7.0 Hz, 1H), 1.72 (dt, J = 6.2, 1.1 

Hz, 3H), 1.43 (dd, J = 7.9, 0.7 Hz, 2H), 1.42–1.34 (m, 2H), 0.94 (d, J = 6.8 Hz, 3H), 0.88 (d, J = 

6.9 Hz, 3H), 0.00 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 134.0, 133.6, 126.3, 125.5, 74.6, 44.1, 

39.1, 22.7, 17.7, 17.4, 10.7, –1.9; MS (EI) m/z 240 (M+•), 225, 197, 141, 73; HRMS (EI) m/z 

calculated for C14H28OSi: 240.1909, found 240.1913. 

 

 

 

R*-(2E,4R,5S,6R,7E)-5-Methyl-9-trimethylsilyl-6-phenylnona-2,7-dien-4-ol + R*-

(2E,4S,5S,6R,7E)-5-Methyl-9-trimethylsilyl-6-phenylnona-2,7-dien-4-ol (29):  The catalyst 

was prepared according to general procedure B with 14.1 mg (0.0157 mmol) of [IrCl(C8H14)2]2, 

10.8 mg (0.0315 mmol) of NaBPh4 and 26.5 mg (0.0944 mmol) of PCy3 in 1.6 mL of 50:1 

CH2Cl2:acetone.    The active catalyst mixture was added to a solution of 476 mg (1.57 mmol) of 

allylic alcohol 26 in 1.6 mL of 50:1 CH2Cl2:acetone.  After 12 h, the reaction was quenched with 

hexanes and filtered through florsil.  The crude product was purified via flash chromatography 

on SiO2 (15:1 hexanes/EtOAc) yielding 384 mg (81%) of the product as an oil.  The high Rf 

diastereomer was isolated via flash chromatography and fully characterized: IR (thin film) 3469, 

3061, 3026, 2954, 1653, 1601, 1248, 964, 854 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.34–7.14 

(m, 5H), 5.70 (dqd, J = 15.3, 6.2, 1.0 Hz, 1H), 5.63–5.56 (m, 1H), 5.53 (dd, J = 12.7, 5.4 Hz, 

1H), 5.44 (dd, J = 15.1, 8.2 Hz, 1H), 4.44–4.37 (m, 1H), 3.23 (dd, J = 10.2, 8.5 Hz, 1H), 1.87 
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(dqd, J = 10.3, 6.9, 2.5 Hz, 1H), 1.74 (d, J = 6.0 Hz, 3H), 1.43 (br. d, J = 7.5 Hz, 2H), 1.39 (d, J 

= 5.4 Hz, 1H), 0.68 (d, J = 6.9 Hz, 3H), –0.04 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 144.8, 

133.2, 131.6, 128.4, 127.7, 127.6, 126.2, 125.8, 72.9, 53.1, 43.2, 22.8, 17.8, 11.1, –1.9; MS (EI) 

m/z 302 (M+•), 287, 203, 73; HRMS (EI) m/z calculated for C19H30OSi: 302.2066, found 

302.2057. 

 

 

 

R*-(2E,4R,5S,6R,7E)-6-Isopropyl-5-methyl-9-trimethylsilyl-nona-2,7-dien-4-ol + R*-

(2E,4S,5S,6R,7E)-6-Isopropyl-5-methyl-9-trimethylsilylnona-2,7-dien-4-ol (30):  The catalyst 

was prepared according to general procedure B with 4.1 mg (0.0046 mmol) of [IrCl(C8H14)2]2, 

3.1 mg (0.0091 mmol) of NaBPh4 and 7.6 mg (0.027 mmol) of PCy3 in 1.5 mL 50:1 of 

CH2Cl2:acetone.  The active catalyst mixture was added to 123 mg (0.458 mmol) of neat allylic 

alcohol 27.  After 12 h, the reaction was quenched with hexanes and filtered through florsil.  The 

crude product was purified via flash chromatography on SiO2 (25:1 hexanes/EtOAc) yielding 

0.100 g (81%) of the product as an oil.  The high Rf diastereomer was isolated via flash 

chromatography and fully characterized: IR (thin film) 3465, 2958, 1665, 1655, 1248, 969, 851 

cm-1; 1H-NMR (300 MHz, CDCl3): δ 5.64 (dqd, J = 15.4, 6.2, 1.1 Hz, 1H), 5.54 (ddq, J = 15.4, 

5.5, 1.2 Hz, 1H), 5.41 (dt, J = 15.2, 7.9 Hz, 1H), 5.09 (ddt, J = 15.2, 9.9, 1.0 Hz, 1H), 4.29–4.26 

(m, 1H), 1.93–1.77 (m, 2H), 1.71 (dt, J = 6.0, 1.1 Hz, 3H), 1.59–1.47 (m, 1H), 1.49 (dt, J = 7.9, 

1.2 Hz, 2H), 1.43 (d, J = 5.4 Hz, 1H), 0.86 (d, J = 6.9 Hz, 3H), 0.85 (d, J = 6.6 Hz, 3H), 0.76 (d, 

J = 6.7 Hz, 3H), 0.02 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 133.5, 129.4, 127.9, 125.4, 73.3, 
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51.7, 40.0, 27.6, 23.1, 22.2, 17.7, 16.3, 11.1, –1.8; MS (EI) m/z 225 (M+•-iPr), 169, 149, 73; 

HRMS (EI) m/z calculated for C13H25OSi (M+•-iPr): 225.1675, found 225.1669. 

 

General Procedure D for Preparation of Unsaturated Ketones 31–35:34  To the allylic or 

homoallylic alcohol (1.0 mmol) in 3.7 mL of CH2Cl2 and 2.9 mL of DMSO was added 0.70 mL 

(5.0 mmol) of triethylamine.  The stirring solution was chilled to 0 °C and 0.48 g (3.0 mmol) of 

pyridine sulfur trioxide was added in a single portion.  The reaction was stirred for ~ 1-4 h until 

complete by TLC, then quenched with pH 7 buffer.  The aqueous layer was extracted with Et2O 

(3x), the combined organic layers were dried over MgSO4, and the solvent was removed in 

vacuo.  The product was purified as indicated. 

The final product mixture is comprised of the desired compound, the Claisen 

diastereomer, and the Z-allyl silane isomer (~ 10%).  Aliquots of each sample were further 

purified for the purpose of characterization; as a consequence, spectra are not indicative of 

isolated product purity.  Isolated purity is established by means of GC-MS [HP-1 (12 m x 0.20 

mm), pressure 21 kPa, method: 70 °C for 2.00 min, ramp @ 10 °C/min to 300 °C, hold for 60 

min], and/or 1H-NMR, which are included in all cases. 

 

 

 

R*-(2E,5S,6R,7E)-5,6-Dimethyl-9-trimethylsilylnona-2,7-dien-4-one (31):  The general 

procedure D was followed employing 1.38 g (5.74 mmol) of allylic alcohol 28.  Flash 

chromatography on SiO2 (25:1 hexanes/EtOAc) afforded 1.18 g (86%) of the product as a clear 

oil.  Product ratio by GC-MS: 7.88% (Tr = 10.35), 82.5% (Tr = 10.49), 9.65% (Tr = 11.69).  
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Product ratio by 1H-NMR (300 MHz) (Si–(CH3)3): 7.61% (δ 0.0114), 6.91% (δ –0.0054), 85.5% 

(δ –0.0286): IR (thin film) 2959, 1696, 1670, 1631, 1248, 969, 853 cm-1;  1H-NMR (300 MHz, 

CDCl3): δ 6.90 (dq, J = 15.6, 6.9 Hz, 1H), 6.18 (dq, J = 15.5, 1.6 Hz, 1H), 5.37 (dtd, J = 15.2, 

8.0, 6.9 Hz, 1H), 5.16 (ddt, J = 15.2, 7.6, 1.0 Hz, 1H), 2.65 (p, J = 6.9 Hz, 1H), 2.56–2.36 (m, 

1H), 1.89 (dd, J = 6.9, 1.6 Hz, 3H), 1.38 (br. dd, J = 7.9, 0.8 Hz, 2H), 1.02 (d, J = 6.9 Hz, 3H), 

0.93 (d, J = 6.8 Hz, 3H), –0.03 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 202.9, 141.5, 132.2, 

131.1, 125.9, 49.0, 38.9, 22.6, 18.0, 17.2, 12.8, –2.1; MS (EI) m/z 239 (M+•+H), 170, 155, 141, 

73, 69; HRMS (EI) m/z calculated for C14H26OSi: 238.1753, found 238.1758. 

 

 

 

R*-(2E,5S,6R,7E)-5-Methyl-9-trimethylsilyl-6-phenylnona-2,7-dien-4-one (32):  The general 

procedure D was followed employing 272 mg (0.899 mmol) of allylic alcohol 29.  Flash 

chromatography on SiO2 (20:1 hexanes/EtOAc) afforded 167 mg (62%) of the product as a clear 

oil.  Product ratio by 1H-NMR (500 MHz) (Si–(CH3)3): 7.73% (δ –0.0260), 86.3% (δ –0.0852), 

5.98% (δ –0.1141): IR (thin film) 3027, 2954, 1694, 1668, 1629, 1247, 851 cm-1; 1H-NMR (300 

MHz, CDCl3): δ 7.33–7.17 (m, 5H), 6.91 (dq, J = 15.6, 6.9 Hz, 1H), 6.21 (dq, J = 15.5, 1.4 Hz, 

1H), 5.38 – 5.34 (m, 2H), 3.50 (dtd, J = 10.4, 6.4, 3.2 Hz, 1H), 3.14 (dq, J = 10.4, 6.9 Hz, 1H), 

1.92 (dd, J = 6.8, 1.4 Hz, 3H), 1.35–1.33 (m, 2H), 0.92 (d, J = 6.9 Hz, 3H), –0.09 (s, 9H); 13C-

NMR (75 MHz, CDCl3): δ 203.1, 143.2, 142.5, 131.3, 129.9, 128.4, 128.1, 127.9, 126.2, 52.1, 

48.9, 22.8, 18.2, 16.2, –1.9; MS (EI) m/z 301 (M+•+H), 286, 232, 203, 73; HRMS (EI) m/z 

calculated for C19H28OSi: 300.1909, found 300.1921. 
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R*-(2E,5S,6R,7E)-6-Isopropyl-5-methyl-9-trimethylsilylnona-2,7-dien-4-one (33):  The 

general procedure D was followed employing 1.08 g (4.02 mmol) of allylic alcohol 30.  Flash 

chromatography on SiO2 (40:1 hexanes/EtOAc) afforded 893 mg (83%) of the product as a clear 

oil.  Product ratio by GC-MS: 81.6% (Tr = 12.02), 5.99% (Tr = 12.10), 10.6% (Tr = 12.23), 

2.01% (Tr = 12.34).  Product ratio by 1H-NMR (500 MHz) (Si–(CH3)3): 1.71% (δ = 0.0199), 

8.16% (δ 0.0038), 5.09% (δ –0.0013), 85.0% (δ –0.0350): IR (thin film) 2958, 1696, 1671, 1630, 

1247, 969, 853 cm-1; 1H-NMR (300 MHz, CDCl3): δ 6.82 (dq, J = 15.4, 6.9 Hz, 1H), 6.15 (dq, J 

= 15.5, 1.6 Hz, 1H), 5.29 (dt, J = 15.3, 7.9 Hz, 1H), 5.00 (ddt, J = 15.1, 9.6, 1.2 Hz, 1H), 2.81 

(dq, J = 9.3, 6.9 Hz, 1H), 2.05 (dt, J = 9.4, 4.3 Hz, 1H), 1.88 (dd, J = 6.9, 1.6 Hz, 3H), 1.90–1.80 

(m, 1H), 1.38 (dd, J = 7.9, 1.2 Hz, 2H), 1.05 (d, J = 6.9 Hz, 3H), 0.87 (d, J = 6.8 Hz, 3H), 0.79 

(d, J = 6.8 Hz, 3H), –0.04 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 211.1, 145.5, 134.2, 132.9, 

129.0, 50.1, 44.3, 24.4, 19.7, 18.5, 14.7, 13.1, 11.6, –6.6; MS (EI) m/z 266 (M+•), 251, 223, 197, 

73, 69; HRMS (EI) m/z calculated for C16H30OSi: 266.2066, found 266.2065. 

 

 

 

R*-(E,4S,5R)-4,5-Dimethyl-8-trimethylsilylocta-1,6-dien-3-one (34):  The general procedure 

D was followed employing 792 g (3.50 mmol) of allylic alcohol 23.  Flash chromatography on 

SiO2 (25:1 hexanes/EtOAc) afforded 665 mg (85%) of the product as a clear oil.  Product ratio 

by GC-MS: 10.2% (Tr = 8.72), 77.4% (Tr = 8.90), 12.3% (Tr = 8.98).  Product ratio by 1H-NMR 
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(300 MHz) (Si–(CH3)3): 8.58% (δ 0.0114), 9.85% (δ –0.0054), 81.6% (δ –0.0286): IR (thin film) 

2958, 1698, 1678, 1612, 1248, 966, 855 cm-1; 1H-NMR (300 MHz, CDCl3): δ 6.43 (dd, J = 17.4, 

10.4 Hz, 1H), 6.23 (dd, J = 17.4, 1.6 Hz, 1H), 5.73 (dd, J = 10.4, 1.6 Hz, 1H), 5.38 (dtd, J = 15.2, 

8.0, 1.0 Hz, 1H), 5.16 (ddt, J = 15.2, 7.6, 1.1 Hz, 1H), 2.74 (p, J = 6.9 Hz, 1H), 2.54–2.43 (m, 

1H), 1.38 (br. dd, J = 8.0, 0.9 Hz, 2H), 1.05 (d, J = 6.9 Hz, 3H), 0.94 (d, J = 6.9 Hz, 3H), –0.03 

(s, 9H); 13C-NMR (75 MHz, CDCl3): δ 203.2, 135.6, 131.9, 127.5, 126.1, 49.1, 38.9, 22.5, 17.2, 

12.7, –2.1; MS (EI) m/z 224 (M+•), 209, 141, 73; HRMS (EI) m/z calculated for C13H24OSi: 

224.1596, found 224.1599. 

 

 

 

R*-(E,4S,5R)-4-Methyl-8-trimethylsilyl-5-phenylocta-1,6-dien-3-one (35):35-38  To 813 mg 

(2.82 mmol) of allylic alcohol 24 in 30 mL of CH2Cl2 at 0 °C was added 1.80 g (4.23 mmol) of 

Dess-Martin periodinane.  The reaction was stirred at 0 °C for 1 h, then slowly warmed to 

ambient temperature over an additional 1.5 h.  The reaction was quenched with excess hexanes, 

filtered through florsil (5:1 hexanes/EtOAc) and the crude product mixture was concentrated in 

vacuo.  Flash chromatography on SiO2 (25:1 hexanes/EtOAc) yielded 513 mg (63%) of the title 

compound as a clear oil.  Product ratio by GC-MS: 8.12% (Tr = 14.15), 83.8% (Tr = 14.30), 

8.11% (Tr = 14.36).  Product ratio by 1H-NMR (300 MHz) (Si–(CH3)3): 6.90% (δ –0.0346), 

86.7% (δ –0.862), 6.42% (δ –0.1120): IR (thin film) 3061, 3026, 2954, 1698, 1678, 1611, 1248, 

964, 854 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.34–7.18 (m, 5H), 6.46 (dd, J = 17.5, 10.3 Hz, 

1H), 6.29 (dd, J = 17.5, 1.4 Hz, 1H), 5.80 (dd, J = 10.3, 1.4 Hz, 1H), 5.39–5.36 (m, 2H), 3.52 

(ddd, J = 10.4, 4.1, 2.7 Hz, 1H), 3.21 (dq, J = 10.4, 6.9 Hz, 1H), 1.35–1.33 (m, 2H), 0.88 (d, J = 

TMS
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6.9 Hz, 3H), –0.09 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 203.4, 143.0, 135.9, 129.8, 128.5, 

128.1 (2C), 127.9, 126.3, 52.0, 48.5, 22.8, 16.1, –1.9; MS (EI) m/z 286 (M+•), 271, 257, 203, 73; 

HRMS (EI) m/z calculated for C18H26OSi: 286.1753, found 286.1755. 

 

General Procedure E for Sakurai Annulations 36–40:81, 222  Titanium salts were found to 

epimerize the α-chiral ketone products upon crude product concentration.  Filtration through a 

fine glass frit effectively minimizes these deleterious byproducts.  Products 36 and 39 were 

found to be volatile, therefore improved yields are often observed on larger scale reactions.  Due 

to the enhanced reactivity of acrylates, the cyclized product 39 is isolated with ~10-15% 

inseparable polymeric material.  Reported yield includes these products, however Kughelrohr 

distillation can be used to eliminate the non-volatile byproduct, and was performed to obtain 

pure material for full characterization. 

To 1.2 mL (1.2 mmol) of a vigorously stirred solution of TiCl4 in CH2Cl2 (1.0 M) at –78 

°C was slowly added the unsaturated ketone (1.0 mmol) in 10 mL of CH2Cl2 (clear → deep red).  

The syringe and receptacle were washed with 1 mL of additional CH2Cl2 and added to the 

reaction vessel.  Following 15 min of stirring at –78 °C, the reaction was carefully quenched 

with sat. aq. NH4Cl, then the biphasic mixture was slowly warmed to ambient temperature.  The 

aqueous layer was extracted with CH2Cl2 (3x), and the combined organic layers were dried over 

Na2SO4 and filtered with Et2O through a fine glass frit.  Removal of the solvent in vacuo yielded 

the crude product, which was purified as specified.  Isolated diastereomeric ratio is quoted from 

included GC-MS data [HP-1 (12 m x 0.20 mm), pressure 21 kPa, method: 70 °C for 2.00 min, 

ramp @ 10 °C/min to 300 °C, hold for 60 min]. 
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R*-(2S,3R,4S,5S)-2,3,5-Trimethyl-4-vinylcyclohexanone (36):  The general procedure E was 

performed employing 0.10 g (0.42 mmol) of enone 31.  Flash chromatography on SiO2 (20:1 

pentane/Et2O) afforded 46 mg (67%) of the product as a clear, volatile, oil.  Isolated 

diastereomeric ratio by GC-MS: 91.7% (Tr = 6.49), 8.30% (Tr = 6.99): IR (thin film) 3076, 2969, 

1713, 1638, 915 cm-1; 1H-NMR (300 MHz, CDCl3): δ 5.67 (dt, J = 18.0, 9.3 Hz, 1H), 5.11–5.06 

(m, 2H), 2.63 (dd, J = 13.0, 5.0 Hz, 1H), 2.37–2.18 (m, 3H), 2.02 (dqd, J = 12.9, 6.5, 0.7 Hz, 

1H), 1.60–1.46 (m, 1H), 1.04 (d, J = 6.5 Hz, 3H), 0.98 (d, J = 6.5 Hz, 3H), 0.83 (d, J = 6.9 Hz. 

3H); 13C-NMR (75 MHz, CDCl3): δ 212.2, 140.6, 116.2, 52.2, 50.6, 48.6, 38.8, 36.9, 19.2, 13.9, 

11.8; MS (EI) m/z 166 (M+•), 138, 96, 68; HRMS (EI) m/z calculated for C11H18O: 166.1358, 

found 166.1357. 

 

 

 

R*-(2S,3R,4S,5S)-2,5-Dimethyl-3-phenyl-4-vinylcyclohexanone (37):  The general procedure 

E was performed employing 0.050 g (0.17 mmol) of enone 32.  Flash chromatography on SiO2 

(20:1 pentane/Et2O) afforded 31 mg (82%) of the product as a white solid.  Isolated 

diastereomeric ratio by GC-MS: 94.6% (Tr = 12.80), 3.75% (Tr = 12.99), 1.66% (Tr = 13.08): 

m.p. 86-88 °C; IR (thin film) 3064, 3027, 2969, 1712, 1639, 914 cm-1; 1H-NMR (300 MHz, 

CDCl3): δ 7.34–7.13 (m, 5H), 5.52 (ddd, J = 17.8, 9.8, 8.5 Hz, 1H), 4.82 (dm, J = 10.0 Hz, 1H), 

4.81 (dm, J = 17.0 Hz, 1H), 2.97 (td, J = 9.8, 3.3 Hz, 1H), 2.86 (dd, J = 13.0, 5.4 Hz, 1H), 2.65 
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(t, J = 11.6 Hz, 1H), 2.65–2.55 (m, 1H), 2.50–2.45 (m, 1H), 2.38 (dd, J = 12.9, 2.9 Hz, 1H), 0.97 

(d, J = 7.1 Hz, 3H), 0.79 (d, J = 6.1 Hz, 3H); 13C-NMR (75 MHz, CDCl3): δ 211.6, 142.4, 139.3, 

128.5, 128.0, 126.6, 116.3, 51.7, 50.8, 50.2, 48.8, 37.0, 13.7, 12.2; MS (EI) m/z 228 (M+•), 118, 

68; HRMS (EI) m/z calculated for C16H20O: 228.1514, found 228.1512. 

 

 

 

R*-(2S,3R,4S,5S)-3-Isopropyl-2,5-dimethyl-4-vinylcyclohexanone (38):  The general 

procedure E was performed employing 0.10 g (0.38 mmol) of enone 33.  Flash chromatography 

on SiO2 (25:1 hexanes/EtOAc) afforded 65 mg (87%) of the product as a clear oil.  Isolated 

diastereomeric ratio by GC-MS: 89.0% (Tr = 8.83), 8.24% (Tr = 8.99), 2.73% (Tr = 9.07): IR 

(thin film) 3090, 2960, 1713, 1637, 913 cm-1; 1H-NMR (300 MHz, CDCl3): δ 5.65 (dt, J = 16.8, 

10.0, 1H), 5.04 (dd, J = 10.3, 1.8 Hz, 1H), 5.00 (dd, J = 16.8, 1.8 Hz, 1H), 2.42 (dd, J = 16.2, 4.8 

Hz, 1H), 2.47–2.36 (m, 2H), 2.34–2.23 (m, 1H), 2.11 (d, J = 16.0, 8.9 Hz, 1H), 2.04–1.94 (m, 

1H), 1.39 (ddd, J = 8.3, 5.5, 2.8 Hz), 1.06 (d, J = 6.4 Hz, 3H), 0.96 (d, J = 7.0 Hz, 3H), 0.95 (d, J 

= 7.0 Hz, 3H), 0.90 (d, J = 6.8 Hz, 3H); 13C-NMR (75 MHz, CDCl3): δ 214.4, 140.1, 115.7, 

50.4, 45.2, 45.0, 44.5, 32.7, 29.6, 20.3, 17.5, 16.9, 13.2; MS (EI) m/z 194 (M+•), 179, 166, 151, 

68; HRMS (EI) m/z calculated for C13H22O: 194.1671, found 194.1680. 

 

 

 

R*-(2S,3R,4R)-2,3-Dimethyl-4-vinylcyclohexanone (39):  The general procedure E was 

performed employing 0.050 g (0.22 mmol) of acrylate 34.  Flash chromatography on SiO2 (20:1 
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pentane/Et2O) afforded 0.020 g (59%) of the product as a clear, highly volatile oil.  Isolated 

diastereomeric ratio by GC-MS: 89.8% (Tr = 5.43), 10.2% (Tr = 5.92): IR (thin film) 3077, 2971, 

1713, 1643, 914 cm-1; 1H-NMR (300 MHz, CDCl3): δ 5.57 (ddd, J = 17.2, 10.1, 8.8 Hz, 1H), 

5.06 (dd, J = 17.1, 2.0 Hz, 1H), 5.03 (dd, J = 10.2, 1.8 Hz, 1H), 2.47–2.33 (m, 2H), 2.17–2.08 

(m, 1H), 2.09 (dd, J = 11.2, 6.7 Hz, 1H), 2.06–1.95 (m, 1H), 1.67–1.50 (m, 1H), 1.34–1.20 (m, 

1H), 1.04 (d, J = 6.5 Hz, 3H), 1.01 (d, J = 6.5 Hz, 3H); 13C-NMR (75 MHz, CDCl3): δ 212.2, 

141.6, 115.3, 50.4, 48.8, 44.6, 40.9, 33.2, 18.7, 11.8; MS (EI) m/z 152 (M+•), 126, 111; HRMS 

(EI) m/z calculated for C10H16O: 152.1201, found 152.1196. 

 

 

 

R*-(2S,3R,4R)-2-Methyl-3-phenyl-4-vinylcyclohexanone (40):  The general procedure E was 

performed employing 0.050 g (0.17 mmol) of acrylate 35.  Flash chromatography on SiO2 (10:1 

pentane/Et2O) afforded 0.030 g (82%) of the product as a clear, viscous oil.  Isolated 

diastereomeric ratio by GC-MS: 92.6% (Tr = 12.10), 5.31% (Tr = 12.31), 2.14% (Tr = 12.14), + 

~1% impurity: IR (thin film) 3081, 3027, 2970, 1712, 913 cm-1; 1H-NMR (300 MHz, CDCl3): δ 

7.34–7.12 (m, 5H), 5.44 (ddd, J = 17.6, 10.4, 7.5 Hz, 1H), 4.81 (dm, J = 17.3 Hz, 1H), 4.78 (dm, 

J = 10.4 Hz, 1H), 2.82–2.51 (m, 4H), 2.37 (t, J = 11.5 Hz, 1H), 2.20 (ddt, J = 13.4, 6.1, 3.1 Hz, 

1H), 1.75 (qd, J = 13.4, 5.1 Hz, 1H), 0.78 (d, J = 6.5 Hz, 3H); 13C-NMR (75 MHz, CDCl3): δ 

211.8, 142.2, 140.1, 128.5, 127.9, 126.6, 114.9, 57.9, 49.9, 47.2, 41.1, 32.5, 12.3; MS (EI) m/z 

214 (M+•), 147, 118, 68; HRMS (EI) m/z calculated for C15H18O: 214.1358, found 214.1353. 
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General Procedure F for Tandem Intermolecular Sakurai-Aldol Reactions 41–42:81  The 

general procedure for the Sakurai annulation was followed as stated above with the following 

modifications.  The neat aldehyde (1.2 mmol) was added dropwise to the pre-generated titanium 

enolate.  The solution was stirred for ~ 1 h at –78 °C until complete by TLC.  Workup was 

performed in the same fashion as above.  Compounds were purified as specified.  Isolated 

diastereomeric ratio is quoted from included LC-MS [X-terra C-18, method: 35%:65% 

MeCN:H2O for 24.00 min, ramp to 50:50 MeCN:H2O] or 500 MHz 1H-NMR data. 

 

 

 

R*-(2R,3R,4R,5R,6S)-2-(S)-1-Hydroxy-2-methylpropyl-3,5,6-trimethyl-4-

vinylcyclohexanone (41):  The general procedure F was performed employing 0.050 g (0.21 

mmol) of enone 31 and 23 μL (18 mg, 0.25 mmol) of isobutyraldehyde.  Flash chromatography 

on SiO2 (5:1 hexanes/EtOAc) afforded 26 mg (52%) of the product as a clear oil.  Isolated 

diastereomeric ratio by 1H-NMR (500 MHz, CDCl3) (CH–OH): 8.05% (δ 3.98), 84.7% (δ 3.88), 

7.24% (δ 3.32): IR (thin film) 3454, 3076, 2965, 1704, 1639, 999, 914 cm-1; 1H-NMR (300 

MHz, CDCl3): δ 5.67 (ddd, J = 16.8, 10.4, 9.0 Hz, 1H), 5.10 (dm, J = 10.3 Hz, 1H), 5.07 (dm, J 

= 16.8 Hz, 1H), 3.92–3.86 (m, 1H), 2.38–2.28 (m, 3H), 2.12 (qdd, J = 7.1, 4.3, 3.1 Hz, 1H), 1.90 

(pd, J = 6.9, 3.5 Hz, 1H), 1.63–1.52 (m, 1H), 1.51 (d, J = 7.8 Hz, 1H), 1.08 (d, J = 6.5 Hz, 3H), 

1.04 (d, J = 6.9 Hz, 3H), 1.01 (d, J = 6.4 Hz, 3H), 0.89 (d, J = 7.2 Hz, 3H), 0.85 (d, J = 6.8 Hz, 

3H); 13C-NMR (75 MHz, CDCl3): δ 214.7, 140.4, 116.4, 75.7, 61.2, 48.4, 48.1, 38.6, 37.9, 30.5, 

20.1, 19.2, 15.1, 14.7, 12.4; MS (EI) m/z 220 (M+•-H2O), 205, 195, 166, 98, 68; HRMS (EI) m/z 

calculated for C15H24O (M+•-H2O): 220.1827, found 220.1835. 
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R*-(2R,3R,4R,5R,6S)-2-(R)-Hydroxyphenylmethyl-3,5,6-trimethyl-4-vinylcyclohexanone 

(42):  The general procedure F was performed employing 0.050 g (0.21 mmol) of enone 31 and 

25 μL (27 mg, 0.25 mmol) of benzaldehyde.  Flash chromatography on SiO2 (5:1 

hexanes/EtOAc) afforded 31 mg of the product (52%) as a clear oil.  Isolated diastereomeric 

ratio by LC-MS (X-terra C-18 column, flow rate 1.0 mL/min, 35.0% CH3CN, 65.0% H2O 24 

min, then ramp to 50.0% CH3CN, 50.0% H2O): 3.17% (Tr = 34.68), 84.9% (Tr = 37.49), 10.4% 

(Tr = 39.56), 1.6% (Tr = 42.32): IR (thin film) 3427, 3067, 3030, 2970, 1698, 1639, 915 cm-1; 

1H-NMR (300 MHz, CDCl3): δ 7.39–7.24 (m, 5H), 5.67 (ddd, J = 17.6, 9.6, 8.7 Hz, 1H), 5.15–

5.06 (m, 3H), 2.61 (dd, J = 7.9, 3.8 Hz, 1H), 2.60 (d, J = 3.8 Hz, 1H), 2.55–2.43 (m, 2H), 1.92 

(dq, J = 10.6, 6.5 Hz, 1H), 1.53 (ddq, J = 10.6, 8.9, 6.5 Hz, 1H), 1.00 (d, J = 6.5 Hz, 3H), 0.92 

(d, J = 6.4 Hz, 3H), 0.90 (d, J = 6.9 Hz, 3H); 13C-NMR (75 MHz, CDCl3): δ 213.9, 141.5, 139.9, 

128.6, 128.2, 126.3, 116.4, 73.3, 64.0, 49.8, 48.3, 39.0, 35.6, 19.6, 15.3, 12.2; MS (EI) m/z 272 

(M+•), 254, 166, 106, 69; HRMS (EI) m/z calculated for C18H24O2: 272.1776, found 272.1784. 

 

 

 

 

R*-(R)-(1R,2R,3R,4R,5S)-2,4,5-Trimethyl-6-oxo-3-vinylcyclohexylphenylmethyl-4-

bromobenzoate (43):  To 54 mg (0.20 mmol) of cyclohexanone 41 in 2 mL of CH2Cl2 at 0 °C 

was added 2.4 mg (0.020 mmol) of 4-(dimethylamino)pyridine and 52 mg (0.24 mmol) of 4-
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bromobenzoyl chloride.  42 μL (31 mg, 0.24 mmol) of N,N-diisopropylethylamine was then 

added dropwise.  The solution was stirred for 5 h while slowly warming to ambient temperature, 

and quenched with aq. 1M HCl.  The aqueous layer was extracted with EtOAc (4x), the 

combined organic layers were dried over MgSO4, and the crude product mixture was 

concentrated in vacuo.  Purification by flash chromatography on SiO2 (10:1 hexanes/EtOAc) 

yielded 71 mg (80%) of the title compound as a colorless crystalline solid.  Recrystallization 

from hexanes/EtOAc (slow evaporation) gave crystals suitable for X-ray analysis: m.p. 154-156 

°C; IR (thin film) 3069, 2972, 1713, 1591, 1267, 914 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.92 

(d, J = 8.5 Hz, 2H), 7.60 (d, J = 8.5 Hz, 2H), 7.37–7.31 (m, 5H), 6.56 (d, J = 10.5 Hz, 1H), 5.64 

(dt, J = 17.1, 10.0 Hz, 1H), 5.09 (d, J = 17.2 Hz, 1H), 5.08 (d, J = 10.1 Hz, 1H), 2.99 (dd, J = 

10.5, 2.3 Hz, 1H), 2.75 (td, J = 10.8, 4.1 Hz, 1H), 2.43–2.28 (m, 1H), 2.16 (dq, J = 12.7, 6.4 Hz, 

1H), 1.63–1.53 (m, 1H), 1.05 (d, J = 6.4 Hz, 3H), 0.94 (d, J = 7.7 Hz, 3H), 0.92 (d, J = 6.6 Hz, 

3H); 13C-NMR (75 MHz, CDCl3): δ 210.4, 165.0, 139.8, 137.2, 131.8, 131.2, 129.0, 128.8, 

128.7, 128.4, 127.1, 116.9, 74.6, 64.0, 49.7, 47.3, 39.5, 38.2, 19.2, 14.5, 11.8; MS (EI) m/z 456 

(M+•), 271, 254, 185, 183; HRMS (EI) m/z calculated for C25H27O3Br: 454.1144, found 

454.1139. 

 

 

Pent-4-ynyl benzoate:223  To 1.1 mL (1.0 g, 12 mmol) of 4-pentyn-1-ol in 40 mL of CH2Cl2 at 0 

°C was added 2.0 g (14 mmol) of benzoyl chloride and 145 mg (1.19 mmol) of 4-

(dimethylamino)pyridine, then 2.5 mL (1.8 g, 14 mmol) of N,N-diisopropylethylamine.  The 

solution was slowly warmed to ambient temperature and stirred for ~ 12 h.  The reaction was 

quenched with excess aq. 1M HCl, and the aqueous layer was extracted with EtOAc (4x).  The 

BzO
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combined organic layers were washed with brine, dried over MgSO4, and the crude product 

mixture was concentrated in vacuo.  Flash chromatography on SiO2 (20:1 hexanes/EtOAc) 

afforded 2.0 g (90%) of the product as a clear oil: 1H-NMR (300 MHz, CDCl3): δ 8.08–8.04 (m, 

2H), 7.60–7.54 (m, 1H), 7.48–7.42 (m, 2H), 4.44 (t, J = 6.2 Hz, 2H), 2.40 (td, J = 7.1, 2.6 Hz, 

2H), 2.02 (p, J = 6.5 Hz, 2H), 2.01–1.99 (m, 1H). 

 

 

 

R*-(4E,6R,7S,8R,9E)-6-Hydroxy-7,8-dimethyl-11-trimethylsilylundeca-4,9-dienylbenzoate 

+ R*-(4E,6S,7S,8R,9E)-6-Hydroxy-7,8-dimethyl-11-trimethylsilylundeca-4,9-dienylbenzoate 

(44):44, 224   To 221 mg (0.861 mmol) of Cp2Zr(H)Cl in 2.5 mL of CH2Cl2 at 0 °C was added 171 

mg (0.909 mmol) of pent-4-ynyl benzoate.  The mixture was warmed to ambient temperature and 

stirred until homogenous.  To the stirring solution was then added 0.100 g (0.504 mmol) of 

aldehyde 20.  A separate flask was charged with 15 mg (0.050 mmol) of AgAsF6 and 2.5 mL of 

CH2Cl2 and the original aldehyde mixture was added carefully via syringe (clear → brown color 

shift).  The reaction was stirred for 10 min, then quenched with sat. aq. NaHCO3.  The aqueous 

layer was extracted with EtOAc (4x), the combined organics were dried over Na2SO4, and the 

crude product mixture was concentrated in vacuo.  Flash chromatography on SiO2 (5:1 

hexanes/EtOAc) yielded 159 mg (81%) of the title compound mixture as a clear oil.  The high Rf 

diastereomer was isolated via flash chromatography and fully characterized: IR (thin film) 3515, 

2957, 1721, 1602, 1274, 1248, 970, 853, 675 cm-1; 1H-NMR (300 MHz, CDCl3): δ 8.05 (dd, J = 

7.1, 1.4 Hz, 2H), 7.57 (tt, J = 7.3, 1.3 Hz, 1H), 7.45 (t, J = 7.3 Hz, 2H), 5.68 (dt, J = 15.4, 6.5 Hz, 

1H), 5.55 (dd, J = 15.4, 6.0 Hz, 1H), 5.41 (dt, J = 15.2, 7.9 Hz, 1H), 5.21 (dd, J = 15.2, 8.1 Hz, 
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1H), 4.35 (t, J = 6.6 Hz, 2H), 4.21–4.14 (m, 1H), 2.24 (q, J = 6.9 Hz, 2H), 2.22–2.09 (m, 1H), 

1.88 (p, J = 6.6 Hz, 2H), 1.43–1.33 (m, 1H), 1.43 (br. d, J = 7.9 Hz, 2H), 0.95 (d, J = 6.8 Hz, 

3H), 0.88 (d, J = 6.9 Hz, 3H), 0.00 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 166.6, 133.9, 133.4, 

132.8, 130.5, 129.8, 129.6, 128.3, 125.6, 74.2, 64.3, 44.1, 39.3, 28.8, 28.4, 22.7, 17.7, 10.7, –1.9; 

MS (ESI) m/z 411 (M+Na)+; HRMS (ESI) m/z calculated for NaC23H36O3Si (M+Na)+: 411.2331, 

found 411.2340. 

 

 

 

R*-(4E,6R,7S,8R,9E)-7,8-Dimethyl-11-trimethylsilylundeca-4,9-diene-1,6-diol + R*-

(4E,6S,7S,8R,9E)-7,8-Dimethyl-11-trimethylsilylundeca-4,9-diene-1,6-diol (45):225  To 524 

mg (1.39 mmol) of benzoate 44 was added 13.9 mL of a 1% w/v solution of NaOH in MeOH at 

ambient temperature.  The mixture was stirred for 1 h, then diluted with brine to form a biphasic 

mixture.  The aqueous layer was extracted with Et2O (3x), the combined organic layers were 

dried with Na2SO4, and the crude product mixture was concentrated in vacuo.  Purification by 

flash chromatography on SiO2 (1:1 hexanes/EtOAc) yielded 373 mg (94%) of the product as a 

clear oil.  The high Rf diastereomer was isolated at the benzoate stage, cleaved under identical 

conditions, isolated via flash chromatography and fully characterized: IR (thin film) 3353, 2957, 

1656, 1247, 969, 852 cm-1; 1H-NMR (300 MHz, CDCl3): δ 5.66 (dt, J = 15.6, 6.5 Hz, 1H), 5.53 

(dd, J = 15.5, 6.1 Hz, 1H), 5.42 (dt, J = 15.4, 7.8 Hz, 1H), 5.21 (dd, J = 15.2, 8.1 Hz, 1H), 4.17 

(t, J = 4.9 Hz, 1H), 3.67 (t, J = 6.5 Hz, 2H), 2.19–2.12 (m, 1H) 2.16 (q, J = 6.8 Hz, 2H), 1.68 (p, 

J = 6.5 Hz, 2H), 1.44–1.34 (m, 1H), 1.43 (br. d, J = 7.3 Hz, 2H), 0.94 (d, J = 6.8 Hz, 3H), 0.88 

(d, J = 6.9 Hz, 3H), 0.00 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 134.0, 133.0, 130.6, 125.6, 74.3, 
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62.4, 44.1, 39.2, 32.2, 28.6, 22.7, 17.8, 10.7, –1.7; MS (EI) m/z 284 (M+•), 269, 266, 169, 141, 

73; HRMS (EI) m/z calculated for C16H32O2Si: 284.2172, found 284.2170. 

 

 

 

 

 

R*-(4E,7S,8R,9E)-7,8-Dimethyl-11-trimethylsilyl-6-oxoundeca-4,9-dienal (46):  To 237 mg 

(0.833 mmol) of allylic alcohol 45 in 8.3 mL of CH2Cl2 at 0 °C was added 883 mg (2.08 mmol) 

of Dess-Martin periodinane.  The reaction was stirred at 0 °C for 1 h, then slowly warmed to 

ambient temperature over an additional 3 h.  The reaction was quenched with excess hexanes, 

filtered through florsil (5:1 hexanes/EtOAc) and the crude product mixture was concentrated in 

vacuo.  Flash chromatography on SiO2 (5:1 hexanes/EtOAc) yielded 0.160 g (68%) of the title 

compound as a clear oil.  Product ratio by GC-MS: 6.05% (Tr = 14.51), 87.8% (Tr = 14.71), 

6.12% (Tr = 14.90).  Product ratio by 1H-NMR (300 MHz): 7.78% (δ 0.0127), 6.94% (δ –

0.0070), 85.3% (δ –0.0289): IR (thin film) 2958, 1727, 1694, 1668, 1628, 1247, 971, 853 cm-1; 

1H-NMR (300 MHz, CDCl3): δ 9.91 (s, 1H), 6.80 (dt, J = 15.7, 6.7 Hz, 1H), 6.18 (dt, J = 15.6, 

1.4 Hz, 1H), 5.37 (dt, J = 15.2, 7.9 Hz, 1H), 5.15 (dd, J = 15.2, 7.6 Hz, 1H), 2.69–2.42 (m, 6H), 

1.38 (br. d, J = 7.8 Hz, 2H), 1.02 (d, J = 6.9 Hz, 3H), 0.93 (d, J = 6.8 Hz, 3H), –0.02 (s, 9H); 13C-

NMR (75 MHz, CDCl3): δ 202.9, 200.3, 143.6, 132.1, 130.1, 126.2, 49.9, 42.0, 39.0, 24.7, 22.6, 

16.9, 12.8, –2.0; MS (EI) m/z 280 (M+•), 265, 183, 73; HRMS (EI) m/z calculated for 

C16H28O2Si: 280.1859, found 280.1857. 
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R*-11-Allyloxy-4,5-dimethyl-1-trimethylsilanylundeca-2,7-dien-6-ol (47):226  To 814 mg 

(6.55 mmol) of 5-allyloxy-pent-1-yne in 13 mL of CH2Cl2 at 0 °C was added 1.56 g (6.05 mmol) 

of Cp2Zr(H)Cl in portions.227  The mixture was then slowly warmed to ambient temperature 

(cloudy → clear yellow color shift) for 20 min, upon which time the flask was immersed in a –60 

°C bath (CHCl3/dry ice).  To the solution was added 6.1 mL (6.1 mmol) of Et2Zn in hexanes (1.0 

M) via syringe pump over 90 min, following which time the mixture was raised to 0 °C.  At 0 

°C, 1.00 g (5.04 mmol) of aldehyde 20 was added dropwise and the reaction was stirred for 4 h.  

The reaction was carefully quenched with 5% NaHCO3 in 100 mL ice water and passed through 

celite.  The aqueous layer was extracted with Et2O (4x), and the combined organics back-

extracted with brine.  The solvent was filtered and removed in vacuo.  Purification via flash 

chromatography on SiO2 (7:1 hexanes/EtOAc) gave 0.750 g (46%) of the product as a clear oil.  

The diastereomeric ratio for this substrate was not determined: IR (thin film) 3434, 2957, 1648, 

1248, 1104, 969, 852 cm-1; 1H-NMR (300 MHz, CDCl3): δ 5.91 (ddt, J = 17.2, 10.5, 5.6 Hz, 1H), 

5.63 (dt, J = 15.5, 6.5 Hz, 1H), 5.50 (dd, J = 15.4, 6.2 Hz, 1H), 5.40 (dt, J = 15.4, 7.9 Hz, 1H), 

5.26 (dm, J = 17.2 Hz, 1H), 5.20 (dd, J = 15.2, 7.0 Hz, 1H), 5.17 (dm, J = 10.4 Hz, 1H), 4.13 (dt, 

J = 5.3, 4.9 Hz, 1H), 3.96 (dt, J = 5.6, 1.1 Hz, 2H), 3.43 (t, J = 6.6 Hz, 2H), 2.13 (q, J = 7.1 Hz, 

2H), 2.21–2.10 (m, 1H), 1.67 (p, J = 7.7 Hz, 2H), 1.48 (d, J = 4.9 Hz, 1H), 1.43–1.32 (m, 1H), 

1.42 (br. d, J = 7.7 Hz, 2H), 0.93 (d, J = 6.8 Hz, 3H), 0.87 (d, J = 6.9 Hz, 3H), –0.01 (s, 9H); 13C-

NMR (75 MHz, CDCl3): δ 134.9, 133.9, 132.7, 130.7, 125.4, 116.7, 74.4, 71.8, 69.6, 44.0, 39.0, 

29.2, 28.8, 22.6, 17.4, 10.7, –2.0; MS (EI) m/z 324 (M+•), 309, 306, 141, 73; HRMS (EI) m/z 

calculated for C19H36O2Si: 324.2485, found 324.2488. 
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R*-(3aS,5S,6R,7R,7aR)-Octahydro-3-hydroxy-5,6-dimethyl-7-vinylinden-4-one (48):  To 65 

mg (23 mmol) of ketoaldehyde 46 in 4.6 mL of CH2Cl2 at –78 °C was added 0.28 mL (0.28 

mmol) of TiCl4 in CH2Cl2 (1.0 M).  Following 20 min, the reaction was carefully quenched with 

an equal volume of sat. aq. NH4Cl and the biphasic mixture was slowly raised to ambient 

temperature.  The aqueous layer was extracted with CH2Cl2 (3x), the combined organic layers 

were dried over Na2SO4, filtered through a fine glass frit with Et2O, and the crude product 

mixture was concentrated in vacuo.  Purification of the crude compound by flash 

chromatography on SiO2 (2:1 hexanes/EtOAc) gave 25 mg (52%) of the title compound as a 

clear, viscous oil.  Isolated diastereomeric ratio by GC-MS: 5.78% (Tr = 10.15), 6.10% (Tr = 

10.42), 5.33% (Tr = 11.63), 82.8% (Tr = 11.95): IR (thin film) 3400, 3075, 2969, 1706, 1639, 

998, 913 cm-1; 1H-NMR (300 MHz, CDCl3): δ 5.59 (dt, J = 17.1, 9.8 Hz, 1H), 5.12 (dd, J = 17.0, 

1.9 Hz, 1H), 5.09 (dd, J = 9.9, 1.9 Hz, 1H), 4.83 (dd, J = 6.4, 2.3 Hz, 1H), 2.85–2.73 (m, 2H), 

2.48 (td, J = 10.3, 4.7 Hz, 1H), 2.20–2.09 (m, 2H), 1.81–1.71 (m, 1H), 1.58–1.40 (m, 3H), 1.26–

1.09 (m, 1H), 1.03 (d, J = 6.5 Hz, 3H), 0.99 (d, J = 6.4 Hz, 3H); 13C-NMR (75 MHz, CDCl3): δ 

212.2, 140.5, 116.2, 72.3, 61.2, 50.1, 49.2, 46.6, 39.4, 33.1, 23.7, 18.7, 11.7; MS (EI) m/z 208 

(M+•), 190, 140, 122, 68; HRMS (EI) m/z calculated for C13H20O2: 208.1463, found 208.1468. 
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R*-(3aS,5S,6R,7R,7aR)-Octahydro-5,6-dimethyl-4-oxo-7-vinyl-1H-inden-3-yl-4-

bromobenzoate (49):  To 25 mg (0.12 mmol) of hydrindanone 48 in 1.2 mL of CH2Cl2 at 0 °C 

was added 1.5 mg (0.012 mmol) of 4-(dimethylamino)pyridine and 31.4 mg (0.143 mmol) of 4-

bromobenzoyl chloride.  25 μL (19 mg, 0.15 mmol) of N,N-diisopropylethylamine was then 

added dropwise.  The reaction was stirred 24 h while slowly warming to ambient temperature, 

and then quenched with aq. 1M HCl.  The aqueous layer was extracted with EtOAc (4x), and the 

combined organic layers were dried over Na2SO4.  The crude product mixture was concentrated 

in vacuo.  Purification by flash chromatography on SiO2 (2x) (2:1 hexanes/EtOAc then 10:1 

hexanes/EtOAc) yielded 26 mg (55%) of the title compound as a colorless crystalline solid.  

Recrystallization from pentane/Et2O (slow evaporation) gave crystals suitable for X-ray analysis: 

m.p. 98-100 °C; IR (thin film) 3090, 2971, 1718, 1590, 1270 cm-1; 1H-NMR (300 MHz, CDCl3): 

δ 7.86 (d, J = 8.5 Hz, 2H), 7.57 (d, J = 8.5 Hz, 2H), 5.90 (dd, J = 7.1, 1.9 Hz, 1H), 5.61 (dt, J = 

17.1, 9.8 Hz, 1H), 5.15 (dd, J = 17.1, 1.8 Hz, 1H), 5.12 (dd, J = 10.0, 1.9 Hz, 1H), 3.05 (d, J = 

7.3 Hz, 1H), 2.82–2.72 (m, 1H), 2.52 (td, J = 10.6, 5.1 Hz, 1H), 2.41–2.27 (m, 1H), 2.23–2.13 

(m, 1H), 1.86–1.66 (m, 2H), 1.62–1.48 (m, 1H), 1.33–1.18 (m, 1H), 1.05 (d, J = 6.5 Hz, 3H), 

1.00 (d, J = 6.4 Hz, 3H); 13C-NMR (75 MHz, D3CCN): δ 211.6, 166.1, 142.0, 132.8, 132.1, 

130.9, 128.4, 116.7, 77.4, 59.5, 50.6, 49.7, 48.5, 40.4, 31.0, 24.3, 19.0, 12.1; MS (ESI) m/z 413 

(M+Na)+; HRMS (ESI) m/z calculated for NaC20H23O3Br (M+Na)+: 413.0728, found 413.0749. 

 

 

 

N-Fluoren-9-ylmethyl-N-benzylbut-3-ynylcarbamate (50):56  To a mixture of 1.0 g (6.3 

mmol) of N-benzylbut-3-yn-1-amine and 1.7 g (16 mmol) of Na2CO3 in 8.1 mL of dioxane and 
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17 mL of H2O at 0 °C was added a solution of 1.6 g (6.3 mmol) of fluorenyl methyl 

chloroformate in 16.2 mL of dioxane.  Following 30 min at 0 °C, the reaction was raised to 

ambient temperature over 3 h.  The reaction was quenched with H2O and the mixture transferred 

to a separatory funnel.  The aqueous layer was extracted with Et2O (3x), and the combined 

organic layers were dried over Na2SO4, filtered and concentrated in vacuo.  Purification by flash 

chromatography on SiO2 (5:1 hexanes/EtOAc) afforded 2.2 g (92%) of the title compound as a 

clear oil: IR (thin film) 3291, 3064, 2949, 1699, 1476, 1451, 1240, 1213, 740 cm-1; 1H-NMR 

(300 MHz, D6-DMSO, 358 K): δ 7.83 (d, J = 7.5 Hz, 2H), 7.59 (d, J = 7.2 Hz, 2H), 7.39 (t, J = 

7.4 Hz, 2H), 7.32–7.23 (m, 5H), 7.09–7.06 (m, 2H), 4.53 (d, J = 5.7 Hz, 2H), 4.36 (s, 2H), 4.28 

(t, J = 5.7 Hz, 1H), 3.18 (br. t, J = 5.5 Hz, 2H), 2.61 (t, J = 2.6 Hz, 1H), 2.17 (br. s, 2H); 13C-

NMR (75 MHz, D6-DMSO, 353 K): δ 155.0, 143.5, 140.5, 137.4, 127.9, 127.0, 126.8, 126.6, 

126.5, 124.3, 119.5, 81.2, 71.4, 66.1, 49.7, 46.6, 45.0, 16.9; MS (ESI) m/z 404 (M+Na)+; HRMS 

(ESI) m/z calculated for NaC26H23NO2 (M+Na)+: 404.1626, found 404.1628. 

 

 

 

Tert-butyl-N-benzylbut-3-ynylcarbamate (54):59  To 1.4 g (8.8 mmol) of N-benzylbut-3-yn-1-

amine in 16 mL of CHCl3 was added 0.74 g (8.8 mmol) of NaHCO3 in 13 mL of H2O.  A 1.5 g 

(26 mmol) aliquot of NaCl was then added followed by slow addition of a solution of 2.1 g (9.7 

mmol) of Boc anhydride in ~2.8 mL of CHCl3.  The reaction vessel was equipped with a 

condenser and the mixture was brought to reflux for 2 h, then quenched with sat. aq. NaHCO3.  

The mixture was partitioned between sat. aq. NaHCO3 and CH2Cl2 and the aqueous layer was 

extracted with CH2Cl2 (3x).  The combined organic layers were dried over Na2SO4, filtered, and 
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the crude product was concentrated in vacuo.  Purification by flash chromatography on SiO2 

(25:1 hexanes/EtOAc) afforded 2.2 g (97%) of the title compound as a clear oil: IR (thin film) 

3303, 2976, 1694, 1496, 1413, 1366, 1247, 1165 cm-1; 1H-NMR (300 MHz, D6-DMSO, 343 K): 

δ 7.37–7.22 (m, 5H), 4.44 (s, 2H), 3.23 (t, J = 7.1 Hz, 2H), 2.66 (t, J = 2.6 Hz, 1H), 2.34 (td, J = 

7.0, 2.7 Hz, 2H), 1.41 (s, 9H); 13C-NMR (75 MHz, D6-DMSO, 343 K): δ 154.4, 138.1, 127.9, 

126.8, 126.6, 81.5, 78.7, 71.3, 49.8, 45.1, 27.6, 17.3; MS (EI) m/z 259 (M+•), 220, 203, 164, 120, 

91; HRMS (EI) m/z calculated for C16H21NO2: 259.1572, found 259.1545. 

 

 

 

2,2,2-Trichloroethylbenzylbut-3-ynylcarbamate (66):69  To 2.0 g (13 mmol) of N-benzylbut-

3-yn-1-amine in 24.5 mL of CH2Cl2 was added 1.1 g (13 mmol) of NaHCO3 in 18.8 mL of H2O.  

A 2.3 g (39 mmol) aliquot of NaCl was then added followed by slow addition of a solution of 3.0 

g (14 mmol) of 2,2,2-trichloroethyl chloroformate in ~4.1 mL of CH2Cl2.  The reaction vessel 

was equipped with a condenser and the mixture was brought to reflux for 2 h, then quenched 

with sat. aq. NaHCO3.  The mixture was partitioned between sat. aq. NaHCO3 and CH2Cl2 and 

the aqueous layer was extracted with CH2Cl2 (3x).  The combined organic layers were dried over 

Na2SO4, filtered, and the crude product was concentrated in vacuo.  Purification by flash 

chromatography on SiO2 (15:1 hexanes/EtOAc) afforded 3.9 g (92%) of the title compound as a 

clear oil: IR (thin film) 3302, 2952, 1717, 1496, 1471, 1207, 1126, 718, 700 cm-1; 1H-NMR (300 

MHz, D6-DMSO, 353 K): δ 7.38–7.25 (m, 5H), 4.88 (s, 2H), 4.59 (s, 2H), 3.42 (t, J = 7.1 Hz, 

2H), 2.67 (t, J = 2.7 Hz, 1H), 2.44 (td, J = 7.1, 2.6 Hz, 2H); 13C-NMR (75 MHz, D6-DMSO, 353 
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K): δ 153.4, 136.8, 128.0, 127.0, 126.9, 95.5, 80.9, 74.2, 71.5, 50.2, 45.3, 17.0; MS (EI) m/z 334 

(M+•), 298, 294, 91; HRMS (EI) m/z calculated for C14H14NO2Cl3: 333.0090, found 333.0097. 

 

General Procedure G for Preparation of Methoxyaminals 74, 75, 80–82:  To a solution of the 

carbamate or sulfonamide (1.0 mmol) in 10 mL of THF was added 1.1 mL (1.1 mmol) of 

KHMDS in toluene (0.5M) at 0 °C.  After 5 min, 0.23 mL (0.24 g, 3.0 mmol) of chloromethyl 

methyl ether was added dropwise and the mixture was stirred for 15 min at 0 °C then raised to rt 

for 15 min.  The reaction was quenched with H2O, partitioned between H2O and Et2O and the 

aqueous layer was extracted with Et2O (3x).  The combined organic extracts were dried over 

Na2SO4, filtered and the crude product was concentrated in vacuo.  The products were purified 

by flash chromatography under the specified conditions.  

 

 

 

Methyl-but-3-ynylmethoxymethylcarbamate (74):  The general procedure G was performed 

employing 0.10 g (0.79 mmol) of methyl-but-3-ynylcarbamate.76  Flash chromatography on SiO2 

(5:1 hexanes/EtOAc) afforded 89 mg (66%) of the product as an oil: IR (thin film) 3288, 2955, 

1710, 1480, 1444, 1213, 668 cm-1; 1H-NMR (300 MHz, D6-DMSO, 353 K): δ 4.69 (s, 2H), 3.65 

(s, 3H), 3.39 (t, J = 7.2 Hz, 2H), 3.20 (s, 3H), 2.65 (t, J = 2.7 Hz, 1H), 2.42 (td, J = 7.3, 2.6 Hz, 

2H); 13C-NMR (75 MHz, D6-DMSO, 353 K): δ 155.5, 81.3, 78.6, 71.1, 54.5, 51.9, 44.6, 17.6; 

MS (EI) m/z 171 (M+•), 156, 140, 132, 102, 88; HRMS (EI) m/z calculated for C8H13NO3: 

171.0895, found 171.0896. 
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2-Trimethylsilylethyl-but-3-ynylcarbamate:76  To a mixture of 1.0 g (10 mmol) of 4-pentynoic 

acid and 1.4 mL (1.0 g, 10 mmol) of triethylamine in 0.7 mL of toluene was slowly added 2.2 

mL (2.8 g, 10 mmol) of diphenylphosphoryl azide.  The resulting mixture was heated at 80 °C 

(N2 evolution) for 2h.  The reaction was then cooled to 50 °C whereupon 4.2 mL (3.5 g, 30 

mmol) of trimethylsilyl ethanol was added and the mixture was stirred for an additional 12 h.  

The crude reaction mixture was concentrated in vacuo, partitioned between H2O and Et2O and 

the aqueous layer was extracted with Et2O (10x).  The combined organic layers were washed 

with brine, dried over MgSO4, filtered and the crude product was concentrated in vacuo.  

Purification by flash chromatography on SiO2 (5:1 hexanes/EtOAc) yielded 1.7 g (80%) of the 

product as a yellow oil: IR (thin film) 3312, 2953, 1698, 1526, 1250, 860, 838, 636 cm-1; 1H-

NMR (300 MHz, D6-DMSO, 353 K): δ 6.8 (br. s, 1H), 4.06 (t, J = 8.1 Hz, 2H), 3.11 (td, J = 7.1, 

6.0 Hz, 2H), 2.60 (t, J = 2.7 Hz, 1H), 2.29 (td, J = 7.2, 2.7 Hz, 2H), 0.93 (t, J = 8.2 Hz, 2H), 0.03 

(s, 9H); 13C-NMR (75 MHz, D6-DMSO, 353 K): δ 155.7, 81.5, 70.8, 61.1, 39.2, 18.8, 17.1, –2.0; 

MS (EI) m/z 214 (M+•+H), 170, 146, 101, 73; HRMS (EI) m/z calculated for C10H20NO2Si 

(M+•+H): 214.1263, found 214.1279. 

 

 

 

2-Trimethylsilylethylbut-3-ynylmethoxymethylcarbamate (75):  The general procedure G 

was performed employing 0.50 g (2.3 mmol) of 2-(trimethylsilyl)ethyl-but-3-ynylcarbamate.  
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Flash chromatography on SiO2 (10:1 hexanes/EtOAc) afforded 0.50 g (83%) of the product as an 

oil: IR (thin film) 3311, 2954, 1706, 1477, 1251, 939, 839, 636 cm-1; 1H-NMR (300 MHz, D6-

DMSO, 333 K): δ 4.68 (s, 2H), 4.16 (t, J = 8.1 Hz, 2H), 3.38 (t, J = 7.2 Hz, 2H), 3.20 (s, 3H), 

2.68 (t, J = 2.7 Hz, 1H), 2.41 (td, J = 7.3, 2.6 Hz, 2H), 0.98 (t, J = 8.2 Hz, 2H), 0.04 (s, 9H); 13C-

NMR (75 MHz, D6-DMSO, 343 K): δ 155.1, 81.3, 78.4, 71.4, 62.8. 54.6, 44.5, 17.7, 16.9, –1.9; 

MS (EI) m/z 242 (M+•-Me), 229, 214, 190, 174, 101, 89, 75; HRMS (EI) m/z calculated for 

C11H20NO3Si (M+•-Me): 242.1212, found 242.1215. 

 

 

 

N-Methoxymethyl-N-tosylprop-2-yn-1-amine (80):  The general procedure G was performed 

employing 0.60 g (2.9 mmol) of N-tosylprop-2-yn-1-amine.228  Flash chromatography on SiO2 

(6:1 hexanes/EtOAc) afforded 0.59 g (79%) of the product as a white solid: m.p. 39-41 °C; IR 

(thin film) 3279, 2936, 1598, 1495, 1446, 1347, 1170, 1072, 815, 661 cm-1; 1H-NMR (300 MHz, 

CDCl3): δ 7.74 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 4.79 (s, 2H), 4.12 (d, J = 2.5 Hz, 

2H), 3.36 (s, 3H), 2.43 (s, 3H), 2.08 (t, J = 2.5 Hz, 1H); 13C-NMR (75 MHz, CDCl3): δ 143.6, 

136.8, 129.5, 127.2, 78.3, 76.7, 73.3, 55.7, 34.8, 21.4; MS (EI) m/z 253 (M+•), 222, 155, 98, 91, 

65; HRMS (EI) m/z calculated for C12H15NO3S: 253.0773, found 253.0766. 

 

 

 

N-Methoxymethyl-N-tosylbut-3-yn-1-amine (81): The general procedure G was performed 

employing 1.0 g (4.5 mmol) of N-tosylbut-3-yn-1-amine.79  Flash chromatography on SiO2 (6:1 
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hexanes/EtOAc) afforded 1.1 g (91%) of the product as a white solid: m.p. 39-41 °C; IR (thin 

film) 3287, 2937, 1598, 1452, 1341, 1159, 1077, 815, 658 cm-1; 1H-NMR (300 MHz, CDCl3): δ 

7.74 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 4.78 (s, 2H), 3.35 (t, J = 7.3 Hz, 2H), 3.31 (s, 

3H), 2.51 (td, J = 7.4, 2.7 Hz, 2H), 2.43 (s, 3H), 1.97 (t, J = 2.6 Hz, 1H); 13C-NMR (75 MHz, 

CDCl3): δ 143.5, 137.3, 129.6, 127.2, 80.9, 80.7, 70.1, 55.6, 46.0, 21.5, 19.5; MS (EI) m/z 228 

(M+•-OMe), 198, 155, 129, 91, 65; HRMS (EI) m/z calculated for C12H14NO2S (M+•-OMe): 

236.0745, found 236.0744. 

 

 

 

2,2,2-Trichloroethyl-N-tosylcarbamate:79  To 4.8 mL (7.5 g, 50 mmol) of 2,2,2-

trichloroethanol was slowly added 1.5 mL (2.0 g, 10 mmol) of tosyl isocyanate while monitoring 

the reaction temperature by a thermometer.  The mixture was stirred for 24 h, upon which time 

the residual alcohol was removed by Kughelrohr distillation.  The crude material was passed 

through a silica gel plug (20:1 CH2Cl2/MeOH) and the product was concentrated in vacuo.  

Residual impurities were removed by washing the solid with pentane (3x) which afforded 3.0 g 

(87%) of the product as a white solid: m.p. 99-101 °C; IR (thin film) 3236, 1763, 1597, 1448, 

1351, 1209, 1159, 813 cm-1; 1H-NMR (300 MHz, D6-DMSO): δ 7.79 (d, J = 7.4 Hz, 2H), 7.43 

(d, J = 7.9 Hz, 2H), 4.82 (s, 2H), 3.60–3.10 (br. s, 1H), 2.39 (s, 3H); 13C-NMR (75 MHz, D6-

DMSO): δ 150.0, 144.5, 136.0, 129.7, 127.6, 94.9, 74.0, 21.1; MS (EI) m/z 347 (M+•+H), 310, 

281, 197, 155, 108, 91; HRMS (EI) m/z calculated for C10H10NO4SCl3 (M+•): 344.9396, found 

344.9389. 
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General Procedure H for Synthesis of Boc-Protected Sulfonamides:79  To a solution of the 

sulfonamide (1.5 mmol) in 9.1 mL THF was added 0.79 g (3.0 mmol) of PPh3.  The alcohol (1.0 

mmol) was then added followed by 0.30 mL (0.30 g, 1.5 mmol) of DIAD.  The mixture was 

stirred between 3-12 h, concentrated in vacuo, and the crude product was purified by flash 

chromatography under the specified conditions. 

 

 

 

2,2,2-Trichloroethyl-N-tosylbut-3-ynylcarbamate (92):  The general procedure H was 

performed employing 1.5 g (4.3 mmol) of 2,2,2-trichloroethyl-N-tosyl-carbamate and 0.22 mL 

(0.20 g, 2.9 mmol) of 3-butyn-1-ol.  Flash chromatography on SiO2 (10:1 hexanes/EtOAc) 

afforded 1.2 g (100%) of the product as a white solid: m.p. 95-97 °C; IR (thin film) 3296, 2961, 

1745, 1597, 1449, 1361, 1271, 1172, 813 cm-1; 1H-NMR (300 MHz, D6-DMSO, 353 K): δ 7.89 

(d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 4.87 (s, 2H), 4.02 (t, J = 7.1 Hz, 2H), 2.75 (t, J = 

2.7 Hz, 1H), 2.65 (td, J = 7.1, 2.7 Hz, 2H), 2.41 (s, 3H); 13C-NMR (75 MHz, D6-DMSO, 353 K): 

δ 149.9, 144.5, 135.3, 129.1, 127.5, 94.1, 79.7, 74.9, 72.4, 45.2, 20.5, 18.8; MS (EI) m/z 397 

(M+•), 360, 155, 91, 65; HRMS (EI) m/z calculated for C14H14NO4SCl3: 396.9709, found 

396.9693. 

 

 

Tert-butyl-N-tosylpent-4-ynylcarbamate:  The general procedure H was performed employing 

2.4 g (8.9 mmol) of t-butyl-N-tosyl-carbamate and 0.55 mL (0.50 g, 5.9 mmol) of 4-pentyn-1-ol.  

Flash chromatography on SiO2 (10:1 hexanes/EtOAc) afforded 1.8 g (90%) of the product as a 
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white solid: m.p. 99-101 °C; IR (thin film) 3287, 2980, 1728, 1598, 1495, 1455, 1355, 1286, 

1258, 1157, 1088, 814, 674 cm-1; 1H-NMR (300 MHz, D6-DMSO): δ 7.76 (d, J = 8.3 Hz, 2H), 

7.43 (d, J = 8.2 Hz, 2H), 3.82 (t, J = 7.4 Hz, 2H), 2.82 (t, J = 2.6 Hz, 1H), 2.40 (s, 3H), 2.21 (td, 

J = 7.0, 2.6 Hz, 2H), 1.80 (p, J = 7.1 Hz, 2H), 1.25 (s, 9H); 13C-NMR (75 MHz, D6-DMSO): δ 

150.3, 144.2, 136.8, 129.5, 127.4, 83.8, 83.2, 71.6, 45.9, 28.6, 27.3, 21.0, 15.2; MS (ESI) m/z 

360 (M+Na)+; HRMS (ESI) m/z calculated for NaC17H23NO4S (M+Na)+: 360.1245, found 

360.1247. 

 

 

N-Tosylpent-4-yn-1-amine:79  To 0.90 g (2.7 mmol) of tert-butyl-N-tosylpent-4-ynylcarbamate 

in 9.0 mL CH2Cl2 was slowly added 0.62 mL (0.92 g, 8.1 mmol) of trifluoroacetic acid at rt.  

Following 16 h, the reaction mixture was cooled to 0 °C and carefully quenched with sat. aq. 

NaHCO3.  The aqueous layer was extracted with CH2Cl2 (3x) and the combined organic layers 

are dried over Na2SO4, filtered, and the crude product was concentrated in vacuo.  Purification 

by flash chromatography on SiO2 (4:1 hexanes/EtOAc) yielded 0.58 g (89%) of the product as a 

white solid: m.p. 60-62 °C; IR (thin film) 3275, 2950, 1446, 1320, 1157, 816, 672 cm-1; 1H-

NMR (300 MHz, CDCl3): δ 7.76 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.5 Hz, 2H), 4.54 (br. t, J = 5.7 

Hz, 1H), 3.09 (q, J = 6.7 Hz, 2H), 2.44 (s, 3H), 2.24 (dt, J = 6.9, 2.6 Hz, 2H), 1.96 (t, J = 2.7 Hz, 

1H), 1.70 (p, J = 6.8 Hz, 2H); 13C-NMR (75 MHz, CDCl3): δ 143.4, 136.8, 129.7, 127.0, 82.8, 

69.3, 42.1, 28.1, 21.5, 15.6; MS (EI) m/z 237 (M+•), 184, 172, 155, 145, 91, 82, 65; HRMS (EI) 

m/z calculated for C12H15NO2S (M+•-allyl): 236.0745, found 236.0742. 
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N-Methoxymethyl-N-tosylpent-4-yn-1-amine (82):  The general procedure G was performed 

employing 0.29 g (1.2 mmol) of N-tosylpent-4-yn-1-amine.  Flash chromatography on SiO2 (6:1 

hexanes/EtOAc) afforded 0.27 g (80%) of the product as an oil: IR (thin film) 3287, 2936, 1598, 

1494, 1461, 1339, 1159, 1083, 815, 658 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.73 (d, J = 8.3 

Hz, 2H), 7.30 (d, J = 8.6 Hz, 2H), 4.73 (s, 2H), 3.32 (s, 3H), 3.26 (t, J = 7.3 Hz, 2H), 2.43 (s, 

3H), 2.20 (td, J = 7.0, 2.7 Hz, 2H), 1.96 (t, J = 2.6 Hz, 1H), 1.82 (p, J = 7.1 Hz, 2H); 13C-NMR 

(75 MHz, CDCl3): δ 143.3, 137.1, 129.5, 127.1, 83.0, 80.3, 69.0, 55.5, 46.2, 27.5, 21.4, 15.7; MS 

(EI) m/z 281 (M+•), 280, 250, 222, 155, 91, 65; HRMS (EI) m/z calculated for C14H18NO4S (M+•-

H): 280.1007, found 280.1005. 

 

General Procedure I for Silver(I)-Mediated Preparation of Amino-Substituted Allylic 

Alcohols 51, 67, 76, 77, & 93:44  Use of ICR-derived aldehydes freshly purified by flash 

chromatography generally results in yield increases of approximately 20%.  In all cases, the 

diastereoselectivity of the addition reaction is approximately ~1:1 however the ratios were not 

rigorously determined.  Products were either partially characterized by IR and MS for the 

diastereomeric mixture of alcohols or fully characterized for the high Rf product that was isolated 

by flash chromatography. 

To 0.44 g (1.7 mmol) of Cp2Zr(H)Cl in 5.0 mL of CH2Cl2 at 0 °C was added the amino 

alkyne (1.8 mmol).  The mixture was warmed to ambient temperature and stirred until 

homogenous.  To the stirring solution was then added the aldehyde (1.0 mmol).  A separate flask 

was charged with 0.030 g (0.10 mmol) of AgAsF6 and 5.0 mL of CH2Cl2 and the original 
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aldehyde mixture was added carefully via syringe (clear → brown color shift).  The reaction was 

stirred for the specified time, then quenched with sat. aq. NaHCO3.  The aqueous layer was 

extracted with EtOAc (3-4x), the combined organics were dried over Na2SO4 and filtered 

through a plug of 1:1 celite:florsil followed by concentration of the crude product in vacuo.  

 

 

 

R*-N-Fluoren-9-ylmethyl-N-benzyl-(3E,5R,6S,7R,8E)-5-hydroxy-6-methyl-10-

trimethylsilyl-7-phenyldeca-3,8-dienylcarbamate + R*-N-Fluoren-9-ylmethyl-N-benzyl-

(3E,5S,6S,7R,8E)-5-hydroxy-6-methyl-10-trimethylsilyl-7-phenyldeca-3,8-dienylcarbamate 

(51):  The general procedure I was performed employing 0.84 g (2.2 mmol) of carbamate 50 and 

0.30 g (1.2 mmol) of aldehyde 21 for ~30 min.  Flash chromatography on SiO2 (3:1 

hexanes/EtOAc) afforded 0.29 g (38%) of the product as an highly viscous oil.  The 

diastereomeric mixture was characterized by IR and MS: IR (thin film) 3458, 3026, 2953, 1698, 

1477, 1451, 1246, 967, 852, 740 cm-1; MS (EI) m/z 643 (M+•), 625, 513, 495, 423, 342, 179; 

HRMS (EI) m/z calculated for C42H49NO3Si: 643.3482, found 643.3484. 

 

 

 

R*-2,2,2-Trichloroethylbenzyl-(3E,5R,6S,7R,8E)-5-hydroxy-6-methyl-10-trimethylsilyl-7-

phenyldeca-3,8-dienylcarbamate + R*-2,2,2-Trichloroethylbenzyl-(3E,5S,6S,7R,8E)-5-

hydroxy-6-methyl-10-trimethylsilyl-7-phenyldeca-3,8-dienylcarbamate (67):  The general 

procedure I was performed employing 0.90 g (2.7 mmol) of carbamate 66 and 0.40 g (1.5 mmol) 
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of aldehyde 21 for ~30 min.  Flash chromatography on SiO2 (5:1 hexanes/EtOAc) afforded 0.78 

g (87%) of the product as a clear oil.  The high Rf diastereomer was fully characterized: IR (thin 

film) 3479, 3026, 2952, 1717, 1470, 1453, 1247, 1124, 966, 848, 759, 718, 700 cm-1; 1H-NMR 

(300 MHz, C6D6, 333 K): δ 7.20–7.00 (m, 10H), 5.63–5.46 (m, 4H), 4.68 (s, 2H), 4.50–4.44 (m, 

1H), 4.40 (s, 2H), 3.37–3.31 (m, 1H), 3.26 (t, J = 6.8 Hz, 2H), 2.21 (qd, J = 6.2, 1.3 Hz, 2H), 

1.85 (dqd, J = 9.4, 6.8, 2.4 Hz, 1H), 1.40–1.38 (m, 2H), 1.02 (d, J = 5.1 Hz, 1H), 0.79 (d, J = 6.8 

Hz, 3H), –0.06 (s, 9H); 13C-NMR (75 MHz, D6-DMSO, 353 K): δ 153.8, 144.7, 137.2, 136.0, 

131.7, 128.1 (2C), 127.8, 127.6, 127.2, 127.0, 126.2, 125.2, 95.8, 74.4, 70.3, 51.6, 50.2, 46.6, 

42.9, 30.3, 22.0, 10.7, –2.2; MS (EI) m/z 597 (M+•), 595, 579, 577, 449, 420, 375, 203; HRMS 

(EI) m/z calculated for C30H38NO2SiCl3 (M+•-H2O): 577.1737, found 577.1718. 

 

 

 

R*-Methyl-(3E,5R,6S,7R,8E)-5-hydroxy-6-methyl-10-trimethylsilyl-7-phenyldeca-3,8-

dienylmethoxymethylcarbamate + R*-Methyl-(3E,5S,6S,7R,8E)-5-hydroxy-6-methyl-10-

trimethylsilyl-7-phenyldeca-3,8-dienylmethoxymethylcarbamate (76):  The general 

procedure I was performed employing 0.15 g (0.88 mmol) of carbamate 74 and 0.13 g (0.49 

mmol) of purified aldehyde 21 for 12 h.  Flash chromatography on SiO2 (3:1 hexanes/EtOAc) 

afforded 0.17 g (80%) of the product as an oil.  The diastereomeric mixture was characterized by 

IR and MS: IR (thin film) 3475, 3025, 2954, 1712, 1479, 1451, 1247, 1087, 967, 851, 701 cm-1; 

MS (EI) m/z 433 (M+•), 418, 401, 383, 271, 203, 73; HRMS (EI) m/z calculated for 

C24H39NO4Si: 433.2648, found 433.2636. 
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R*-2-Trimethylsilylethyl-(3E,5R,6S,7R,8E)-5-hydroxy-6-methyl-10-trimethylsilyl-7-

phenyldeca-3,8-dienylmethoxymethylcarbamate + R*-2-trimethylsilylethyl 

(3E,5S,6S,7R,8E)-5-hydroxy-6-methyl-10-trimethylsilyl-7-phenyldeca-3,8-

dienylmethoxymethylcarbamate (77):  The general procedure I was performed employing 0.15 

g (0.58 mmol) of carbamate 75 and 83 mg (0.32 mmol) of purified aldehyde 21 for 12 h.  Flash 

chromatography on SiO2 (4:1 hexanes/EtOAc) afforded 0.12 g (72%) of the product as an oil.  

The diastereomeric mixture was characterized by IR and MS: IR (thin film) 3479, 2953, 1705, 

1249, 1086, 965, 839, 700 cm-1; MS (EI) m/z 519 (M+•), 504, 487, 476, 460; HRMS (EI) m/z 

calculated for C28H49NO4Si2: 519.3200, found 519.3223. 

 

 

 

R*-2,2,2-Trichloroethyl-N-tosyl-(3E,5R,6S,7R,8E)-5-hydroxy-6-methyl-10-trimethylsilyl-7-

phenyldeca-3,8-dienylcarbamate + R*-2,2,2-Trichloroethyl-N-tosyl-(3E,5S,6S,7R,8E)-5-

hydroxy-6-methyl-10-trimethylsilyl-7-phenyldeca-3,8-dienylcarbamate (93): The general 

procedure I was performed employing 0.47 g (1.4 mmol) of carbamate 92 and 0.20 g (0.77 

mmol) of purified aldehyde 21 for ~30 min.  Flash chromatography on SiO2 (5:1 

hexanes/EtOAc) afforded 0.43 g (94%) of the product as an oil.  The diastereomeric mixture was 

characterized by IR and MS: IR (thin film) 3565, 3026, 2956, 1745, 1598, 1494, 1385, 1248, 

1171, 968, 852, 702 cm-1; MS (EI) m/z 659 (M+•), 643, 420, 342, 203, 155, 91, 73; HRMS (EI) 

m/z calculated for C30H40NO5SSi: 659.1462, found 659.1421. 
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R*-(3E,5R,6S,7R,8E)-6-Methyl-10-trimethylsilyl-7-phenyl-1-tosylaminodeca-3,8-dien-5-ol + 

R*-(3E,5S,6S,7R,8E)-6-Methyl-10-trimethylsilyl-7-phenyl-1-tosylaminodeca-3,8-dien-5-ol 

(94):71  To a solution of 0.060 g (0.091 mmol) of alcohol 93 in 0.33 mL of THF was added 65 

mg (1.0 mmol) of zinc dust and 65 μL of aq. 1M KH2PO4.  After 24 h, an identical mixture of 

THF, zinc dust and 1M KH2PO4 is added.  Following a further 24 h period, the heterogeneous 

mixture is filtered through glass wool with Et2O and the crude product is concentrated in vacuo.  

Purification by flash chromatography on SiO2 (5:2 → 2:1 hexanes/EtOAc) afforded 33 mg 

(75%) of the title compound as an oil. The high Rf diastereomer was fully characterized: IR (thin 

film) 3455, 3284, 3026, 2953, 1599, 1494, 1453, 1325, 1247, 1159, 1094, 967, 853, 701 cm-1; 

1H-NMR (300 MHz, CDCl3): δ 7.75 (d, J = 8.3 Hz, 2H), 7.33–7.13 (m, 7H), 5.61–5.48 (m, 3H), 

5.43 (dd, J = 15.1, 8.5 Hz, 1H), 4.48–4.38 (m, 2H), 3.19 (dd, J = 10.2, 8.8 Hz, 1H), 3.03 (q, J = 

6.7 Hz, 2H), 2.44 (s, 3H), 2.23 (q, J = 6.5 Hz, 2H), 1.84 (dqd, J = 10.3, 7.0, 2.6 Hz, 1H), 1.43 (d, 

J = 6.8 Hz, 2H), 0.63 (d, J = 6.9 Hz, 3H), –0.07 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 144.6, 

143.4, 137.1, 136.0, 131.4, 129.7, 128.4, 127.9, 127.8, 127.1, 125.9 (2C), 72.2, 53.1, 43.0, 42.5, 

32.4, 22.9, 21.5, 11.1, –1.9; MS (EI) m/z 485 (M+•), 467, 370, 355, 338, 256, 203, 91, 73; HRMS 

(EI) m/z calculated for C27H39NO3SSi: 485.2420, found 485.2378. 

 

 

 

(E)-7-Benzylamino-1-phenylhept-4-en-3-ol (61):  A solution of 0.53 g (3.3 mmol) of N-

benzylbut-3-yn-1-amine in 30 mL of Et2O at –78 °C was treated with 2.1 mL (3.3 mmol) of n-
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butyllithium in hexanes (1.6 M).  Following 15 min, 0.39 mL (0.40 g, 3.0 mmol) of 

hydrocinnamaldehyde was added and the mixture was slowly raised to rt over 30 min.  The 

reaction was quenched with H2O, and the aqueous layer was extracted with Et2O (3x) and 

filtered.  The crude product was concentrated in vacuo and utilized directly for the following 

transformation. 

A round bottom flask equipped with a condenser was charged with the crude alkyne and 

15 mL of THF and cooled to 0 °C.  To this mixture was added 1.9 mL (6.0 mmol) of Red-Al in 

toluene (65%/wt) (blue solution) and the solution was slowly warmed to rt over 2 h (blue → 

yellow solution, H2 evolution).  The reaction was brought to reflux for 24 h (yellow → red 

solution), then carefully quenched with sat. aq. Rochelle’s salt.  The crude mixture was 

partitioned between water and Et2O, extracted with Et2O (3x), and the combined organic layers 

were dried over Na2SO4.  The extracts were filtered and the crude product concentrated in vacuo.  

Purification by flash chromatography on SiO2 (5:1 EtOAc/hexanes + 5% TEA) afforded 0.48 g 

(53%) of the product over 2-steps as a yellow oil: IR (thin film) 3304, 3025, 2921, 2854, 1495, 

1453, 1100, 1061, 971, 744, 698 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.28–7.14 (m, 10H), 

5.69–5.49 (m, 2H), 4.05 (q, J = 5.9 Hz, 1H), 3.76 (s, 2H), 2.74–2.59 (m, 4H), 2.24 (q, J = 6.8 Hz, 

2H), 1.89–1.70 (m, 2H), 1.46 (br. s, 2H); 13C-NMR (75 MHz, CDCl3): δ 142.0, 140.0, 135.0, 

129.0, 128.3, 128.2 (2C), 128.1, 126.9, 125.7, 71.8, 53.7, 48.4, 38.7, 32.5, 31.7; MS (EI) m/z 296 

(M+•+H), 295 (M+•), 160, 120, 91; HRMS (EI) m/z calculated for C20H25NO (M+•): 295.1936, 

found 295.1950. 
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2-N-Benzyl-N-(E)-5-hydroxy-7-phenylhept-3-enylaminoacetonitrile (62):  To 0.10 g (0.34 

mmol) of amine 61 in 1.7 mL of CH2Cl2 was added 39 μL (68 mg, 0.41 mmol) of 

iodoacetonitrile and 56 μL (41 mg, 0.41 mmol) of triethylamine.  Following 1h, an identical 

quantity of iodoacetonitrile and triethylamine was added.  The reaction was stirred for 12 h at 

ambient temperature, then quenched with H2O.  The mixture was partitioned between H2O and 

EtOAc and the aqueous layer was extracted with EtOAc (3x), the combined organic layers were 

dried over Na2SO4, filtered and concentrated in vacuo.  The crude material was filtered through a 

pad of SiO2 (2:1 hexanes/EtOAc) and was further purified by flash chromatography on SiO2 (2:1 

hexanes/EtOAc) to give 87 mg (76%) of the product as a yellow oil: IR (thin film) 3424, 3027, 

2924, 1495, 1454, 1421, 1127, 969 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.34–7.15 (m, 10H), 

5.69 (dt, J = 15.5, 6.1 Hz, 1H), 5.60 (dd, J = 15.5, 5.9 Hz, 1H), 4.15–4.07 (m, 1H), 3.68 (s, 2H), 

3.46 (s, 2H), 2.79–2.63 (m, 4H), 2.31 (q, J = 7.3 Hz, 2H), 1.95–1.76 (m, 2H), 1.46 (d, J = 3.9 Hz, 

1H); 13C-NMR (75 MHz, CDCl3): δ 141.8, 137.1, 134.8, 128.9, 128.7, 128.6, 128.4 (2C), 127.8, 

125.8, 114.7, 72.1, 58.3, 53.7, 41.2, 38.7, 31.7, 30.2; MS (ESI) m/z 357 (M+Na)+; HRMS (ESI) 

m/z calculated for NaC22H26N2O (M+Na)+: 357.1943, found 357.1976. 

 

 

 

 

R*-(E,5R,6S,7R)-1-Benzylamino-6-methyl-10-trimethylsilyl-7-phenyldec-8-en-3-yn-5-ol + 

R*-(E,5S,6S,7R)-1-Benzylamino-6-methyl-10-trimethylsilyl-7-phenyldec-8-en-3-yn-5-ol 

(64):  A solution of 0.35 g (2.2 mmol) of N-benzylbut-3-yn-1-amine in 22 mL of Et2O at –78 °C 

was treated with 1.4 mL (2.2 mmol) of n-butyllithium in hexanes (1.6 M) (clear → bright 
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pink).58  Additional amine was added to the solution until the pink color dissipated.  Following 

15 min, 0.52 g (2.0 mmol) of aldehyde 21 was added as a solution in 2.0 mL of Et2O and the 

mixture was slowly raised to rt over 1 hr.  The reaction was quenched with H2O, and the aqueous 

layer was extracted with Et2O (3x) and filtered.  Purification by flash chromatography on SiO2 

(2x) (5:1 EtOAc/hexanes then 2:1 EtOAc/hexanes) provided 0.85 g (91%) of the title compound 

as an oil.  The diastereomeric mixture was characterized by IR and MS: IR (thin film) 3300, 

3026, 2953, 1601, 1494, 1453, 1247, 965, 851, 736, 699 cm-1; MS (EI) m/z 419 (M+•), 404, 346, 

328, 318, 300, 120; HRMS (EI) m/z calculated for C27H37NOSi: 419.2644, found 419.2669. 

 

 

 

 

R*-N-Tert-butyl-N-benzyl-(E,5R,6S,7R)-5-hydroxy-6-methyl-10-trimethylsilyl-7-phenyldec-

8-en-3-ynylcarbamate + R*-N-Tert-butyl-N-benzyl(E,5S,6S,7R)-5-hydroxy-6-methyl-10-

trimethylsilyl-7-phenyldec-8-en-3-ynylcarbamate (55):  A solution of 0.29 g (1.1 mmol) of 

carbamate 54 in 11 mL of Et2O at –78 °C was treated with 0.69 mL (1.1 mmol) of n-butyllithium 

in hexanes (1.6 M).  Following 15 min, 0.26 g (1.0 mmol) of aldehyde 21 was added as a 

solution in 1.0 mL of Et2O and the mixture was slowly raised to rt over 1 hr.  The reaction was 

quenched with sat. aq. NH4Cl, and the aqueous layer was extracted with Et2O (3x) and filtered.  

Purification by flash chromatography on SiO2 (8:1 hexanes/EtOAc) provided 0.35 g (67%) of the 

title compound as an oil.  The diastereomeric mixture was characterized by IR and MS: IR (thin 

film) 3443, 3027, 2974, 1659, 1495, 1465, 1415, 1367, 1248, 1164, 852, 700 cm-1; MS (ESI) m/z 
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542 (M+Na)+; HRMS (ESI) m/z calculated for NaC32H45NO3Si (M+Na)+: 542.3066, found 

542.3021. 

 

 

 

R*-N-Tert-butyl-N-benzyl-(3E,5R,6S,7R,8E)-5-hydroxy-6-methyl-10-trimethylsilyl-7-

phenyldeca-3,8-dienylcarbamate + R*-N-Tert-butyl-N-benzyl-(3E,5S,6S,7R,8E)-5-hydroxy-

6-methyl-10-trimethylsilyl-7-phenyldeca-3,8-dienylcarbamate (56):61  To a solution of 0.16 g 

(0.30 mmol) of alkyne 55 in 3.0 mL of THF at 0 °C was added 0.12 mL (0.40 mmol) of Red-Al 

in toluene (65%/wt) and the solution was stirred for 30 min, then slowly warmed to rt over 1 h.  

The reaction was then heated to 45 °C for 7 h, then carefully quenched with sat. aq. Rochelle’s 

salt.  The crude mixture was partitioned between water and Et2O, extracted with Et2O (3x), and 

the combined organic layers were dried over Na2SO4.  The extracts were filtered and the crude 

product concentrated in vacuo.  Purification by flash chromatography on SiO2 (8:1 

hexanes/EtOAc) afforded 0.070 g (43%) of the product as an oil.  The diastereomeric mixture 

was characterized by IR and MS: IR (thin film) 3466, 3026, 2973, 1694, 1495, 1453, 1416, 1366, 

1247, 1165, 965, 854, 699 cm-1; MS (EI) m/z 521 (M+•), 503, 447, 421, 334, 203, 120, 73; 

HRMS (EI) m/z calculated for C32H47NO3Si: 521.3325, found 521.3308. 

 

 

 

R*-(3E,5R,6S,7R,8E)-1-Benzylamino-6-methyl-10-trimethylsilyl-7-phenyldeca-3,8-dien-5-ol 

+ R*-(3E,5S,6S,7R,8E)-1-Benzylamino-6-methyl-10-trimethylsilyl-7-phenyldeca-3,8-dien-5-
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ol (65):71  To a solution of 0.37 g (0.62 mmol) of alcohol 67 in 2.3 mL of THF was added 0.44 g 

(6.8 mmol) of zinc dust and 0.45 mL of aq. 1M KH2PO4.  After 24 h, an identical mixture of 

THF, zinc dust and 1M KH2PO4 is added.  Following a further 24 h period, the heterogeneous 

mixture is filtered through glass wool with Et2O and the crude product is concentrated in vacuo.  

Purification by flash chromatography on SiO2 (20:1 CH2Cl2/MeOH) gave 0.22 g (84%) of the 

title compound as an oil. The high Rf diastereomer was fully characterized: IR (thin film) 3407, 

3026, 2952, 1494, 1453, 1247, 966, 853, 699 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.36–7.13 (m, 

10H), 5.72–5.60 (m, 2H), 5.53 (dt, J = 15.0, 7.3 Hz, 1H), 5.45 (dd, J = 15.1, 8.3 Hz, 1H), 4.47–

4.42 (m, 1H), 3.81 (s, 2H), 3.21 (dd, J = 10.1, 8.5 Hz, 1H), 2.72 (t, J = 6.9 Hz, 2H), 2.31 (q, J = 

6.4 Hz, 2H), 1.87 (dqd, J = 9.4, 6.9, 2.4 Hz, 1H), 1.50–1.38 (m, 4H), 0.66 (d, J = 6.9 Hz, 3H), –

0.06 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 144.7, 140.3, 134.3, 131.6, 128.3 (3C), 128.1, 

127.8, 127.6, 126.9, 125.8, 72.5, 53.8, 53.0, 48.6, 43.2, 32.8, 22.8, 11.1, –1.9; MS (EI) m/z 421 

(M+•), 406, 334, 272, 218, 203, 121; HRMS (EI) m/z calculated for C27H39NOSi: 421.2801, 

found 421.2814. 

 

 

 

R*-2-N-Benzyl-N-(3E,5R,6S,7R,8E)-5-hydroxy-6-methyl-10-trimethylsilyl-7-phenyldeca-

3,8-dienylaminoacetonitrile + R*-2-N-Benzyl-N-(3E,5S,6S,7R,8E)-5-hydroxy-6-methyl-10-

trimethylsilyl-7-phenyldeca-3,8-dienylaminoacetonitrile (68): To 0.27 g (0.64 mmol) of 

amine 65 in 2.1 mL of CH2Cl2 was added 70 μL (0.12 g, 0.96 mmol) of bromoacetonitrile and 

0.13 mL (97 mg, 0.96 mmol) of triethylamine.  Following 1h, an identical quantity of 

iodoacetonitrile and triethylamine was added.  The reaction was stirred for 24 h at ambient 
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temperature, then quenched with H2O.  The mixture was partitioned between H2O and EtOAc 

and the aqueous layer was extracted with EtOAc (3x), the combined organic layers were dried 

over Na2SO4, filtered and concentrated in vacuo.  The crude material was purified by filtration 

through a plug of SiO2 (2:1 hexanes/EtOAc) to afford 0.23 g (78%) of the title compound as an 

oil.  The high Rf diastereomer was fully characterized: IR (thin film) 3519, 3027, 2952, 1601, 

1494, 1453, 1247, 1152, 966, 852, 740, 700 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.40–7.15 (m, 

10H), 5.75–5.62 (m, 2H), 5.55 (dt, J = 15.1, 7.6 Hz, 1H), 5.46 (dd, J = 15.1, 8.3 Hz, 1H), 4.50–

4.45 (m, 1H), 3.68 (s, 2H), 3.46 (s, 2H), 3.22 (dd, J = 10.1, 8.8 Hz, 1H), 2.72 (t, J = 7.1 Hz, 2H), 

2.33 (q, J = 7.1 Hz, 2H), 1.88 (dqd, J = 10.3, 6.9, 2.4 Hz, 1H), 1.46–1.41 (m, 3H), 0.67 (d, J = 

6.9 Hz, 3H), –0.05 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 144.7, 137.1, 134.2, 131.5, 128.9, 

128.6, 128.4, 127.7 (4C), 125.8, 114.7, 72.5, 58.3, 53.8, 53.1, 43.2, 41.1, 30.4, 22.8, 11.0, –1.9; 

MS (EI) m/z 460 (M+•), 445, 434, 220, 369, 361, 203; HRMS (EI) m/z calculated for 

C29H40N2OSi: 460.2910, found 460.2908. 

 

General Procedure J for Zinc(II)-Mediated Preparation of Diastereomerically-Enriched 

Amino-Substituted Allylic Alcohols 83–85:82, 83, 226  To the alkyne (1.0 mmol) in 3.3 mL of 

CH2Cl2 at 0 °C was added 0.28 g (1.1 mmol) of Cp2Zr(H)Cl in portions.  The mixture was then 

slowly warmed to ambient temperature (cloudy → clear yellow color shift) for 20 min, then 

stirred 20 min longer following dissolution of the solid.  The flask was immersed in a –55 °C 

bath (cryocool) and 0.58 mL (1.15 mmol) of Me2Zn in toluene (2.0 M) was added.  The reaction 

was stirred for 45 min at –55 °C then warmed to 0 °C for 5 min whereupon 0.31 g (1.2 mmol) of 

aldehyde 21 was added dropwise and the reaction was stirred for the specified time period.  The 

reaction was carefully quenched with sat. aq. Rochelle’s salt, stirred for 30 min, then the aqueous 
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layer was extracted with Et2O (3x).  The combined organic layers were dried over Na2SO4, 

filtered through florsil with Et2O, and the crude product was concentrated in vacuo.  The product 

was purified via flash chromatography under the specified conditions.  In each case, the high Rf 

diastereomer was isolated via flash chromatography and fully characterized.  Diastereomeric 

ratios were determined by 1H-NMR analysis of the recombined epimeric alcohols following flash 

chromatography. 

 

 

 

R*-(2E,4S,5S,6R,7E)-1-N-Methoxymethyl-N-tosylamino-5-methyl-9-trimethylsilyl-6-

phenylnona-2,7-dien-4-ol (83):  General procedure J was carried out with 0.10 g (0.40 mmol) 

of alkyne 80 with 1h for transmetallation at –50 °C, addition of aldehyde 21 at –40 °C and 

stirring at this temperature for 6 h, followed by warming to –25 °C for 14 h.  Flash 

chromatography on SiO2 (3:2 hexanes/Et2O) gave 69 mg (33%) of the product as an oil.  

Diastereomeric ratio by 1H-NMR (300 MHz, CDCl3) (CH3O–CH2–N): 87% (δ 4.71), 13% (δ 

4.68): IR (thin film) 3566, 2956, 1652, 1495, 1340, 1247, 1162, 1060, 851, 701 cm-1; 1H-NMR 

(300 MHz, CDCl3): δ 7.74 (d, J = 8.3 Hz, 2H), 7.32–7.10 (m, 7H), 5.69 (dd, J = 15.6, 4.9 Hz, 

1H), 5.60–5.37 (m, 3H), 4.71 (s, 2H), 4.50–4.42 (m, 1H), 3.84 (d, J = 6.3 Hz, 2H), 3.28 (s, 3H), 

3.18 (t, J = 10.0 Hz, 1H), 2.42 (s, 3H), 1.81 (dqd, J = 10.4, 6.6, 2.3 Hz, 1H), 1.41 (d, J = 7.3 Hz, 

2H), 1.38 (d, J = 5.6 Hz, 1H), 0.59 (d, J = 6.9 Hz, 3H), –0.08 (s, 9H); 13C-NMR (75 MHz, 

CDCl3): δ 144.5, 143.4, 137.6, 137.4, 131.3, 129.6, 128.5, 127.9, 127.6, 127.3, 125.9, 124.1, 

78.4, 71.7, 55.7, 53.1, 47.5, 42.9, 22.8, 21.5, 10.9, –1.9; MS (ESI) m/z 538 (M+Na)+; HRMS 

(ESI) m/z calculated for NaC28H41NO4SSi (M+Na)+: 538.2423, found 538.2413. 
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R*-(3E,5S,6S,7R,8E)-1-N-Methoxymethyl-N-tosylamino-6-methyl-10-trimethylsilyl-7-

phenyldeca-3,8-dien-5-ol (84):  General procedure J was carried out with 86 mg (0.32 mmol) of 

alkyne 81 for 5.5 h.  Flash chromatography on SiO2 (4:1 hexanes/EtOAc) gave 0.10 g (59%) of 

the product as an oil.  Diastereomeric ratio by 1H-NMR (300 MHz, CDCl3) (CH3O–CH2–N): 

82% (δ 4.73), 18% (δ 4.70): IR (thin film) 3539, 3026, 2952, 1599, 1494, 1451, 1342, 1247, 

1158, 964, 852, 701 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.72 (d, J = 8.3 Hz, 2H), 7.32–7.10 

(m, 7H), 5.63–5.55 (m, 2H), 5.51 (dt, J = 15.1, 7.4 Hz, 1H), 5.44 (dd, J = 15.2, 8.4 Hz, 1H), 4.73 

(s, 2H), 4.43–4.39 (m, 1H), 3.31 (s, 3H), 3.24–3.17 (m, 3H), 2.43 (s, 3H), 2.39–2.32 (m, 2H), 

1.84 (dqd, J = 10.3, 7.1, 2.4 Hz, 1H), 1.44–1.39 (m, 3H), 0.64 (d, J = 6.9 Hz, 3H), –0.07 (s, 9H), 

; 13C-NMR (75 MHz, D3CCN): δ 146.4, 144.7, 138.7, 136.7, 132.9, 130.6, 129.3, 128.8 128.2, 

128.1, 126.9, 126.6, 81.0, 72.2, 56.0, 53.8, 47.8, 44.0, 32.6, 23.2, 21.5, 11.4, –1.8; MS (ESI) m/z 

552 (M+Na)+; HRMS (ESI) m/z calculated for NaC29H43NO4SSi (M+23)+: 552.2580, found 

552.2589. 

 

 

 

R*-(2E,4R,5S,6S,7E)-11-N-Methoxymethyl-N-tosylamino-5-methyl-1-trimethylsilyl-4-

phenylundeca-2,7-dien-6-ol (85):  General procedure J was carried out with 0.10 g (0.36 mmol) 

of alkyne 82 for 5.5 h.  Flash chromatography on SiO2 (4:1 hexanes/EtOAc) gave 0.13 g (67%) 

of the product as an oil.  Diastereomeric ratio by 1H-NMR (300 MHz, CDCl3) (CH3O–CH2–N): 

86% (δ 4.72), 14% (δ 4.70): IR (thin film) 3537, 3026, 2951, 1651, 1599, 1341, 1247, 1159, 
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1079, 964, 851, 701 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.71 (d, J = 8.3 Hz, 2H), 7.34–7.14 

(m, 7H), 5.66–5.49 (m, 3H), 5.45 (dd, J = 15.1, 8.1 Hz, 1H), 4.72 (s, 2H), 4.47–4.40 (m, 1H), 

3.31 (s, 3H), 3.21 (dd, J = 9.9, 8.3 Hz, 1H), 3.15 (t, J = 7.3 Hz, 2H), 2.41 (s, 3H), 2.04 (q, J = 6.9 

Hz, 2H), 1.85 (dqd, J = 10.3, 6.8, 2.3 Hz, 1H), 1.69 (p, J = 7.6 Hz, 2H), 1.44 (d, J = 3.0 Hz, 1H), 

1.43 (d, J = 6.4 Hz, 2H), 0.65 (d, J = 6.8 Hz, 3H), –0.06 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 

144.7, 143.3, 137.4, 133.1, 131.5, 129.5, 128.4, 127.7 (2C), 127.1 (2C), 125.8, 79.9, 72.6, 55.6, 

53.0, 46.6, 43.2, 29.3, 28.1, 22.8, 21.5, 11.1, –1.9; MS (EI) m/z 543 (M+•), 512, 494, 398, 358, 

338, 292, 205, 184, 124; HRMS (EI) m/z calculated for C30H45NO4SSi: 543.2839, found 

543.2864. 

 

General Procedure K for the Preparation of Amino-Substituted Unsaturated Ketones 52, 

57, 63, 69, 78, 79, 86-88:35-38  To a solution of the allylic alcohol (1.0 mmol) in 10 mL of CH2Cl2 

at 0 °C was added Dess-Martin periodinane (1.5-3.0 mmol) and the mixture was stirred for the 

specified time period.  The mixture was warmed to rt and again stirred for the specified time 

period with addition of further Dess-Martin reagent for less reactive substrates.  The reaction was 

then quenched by addition of hexanes, filtered through florsil (2:1 hexanes/EtOAc) and 

concentrated in vacuo.  Purification by flash chromatography under the specified conditions 

afforded the desired products.  In all cases, the ketones were isolated as product mixtures that 

were quantified by HPLC analysis in representative cases. 
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R*-N-Fluoren-9-ylmethyl-N-benzyl-(3E,6S,7R,8E)-6-methyl-10-trimethylsilyl-5-oxo-7-

phenyldeca-3,8-dienylcarbamate (52):  The general procedure K was performed employing 33 

mg (0.051 mmol) of alcohol 51 and 33 mg (0.077 mmol) of Dess-Martin periodinane for 10 min 

at 0 °C, 45 min at rt, then an additional 33 mg of oxidant for 15 min at rt.  Purification by flash 

chromatography on SiO2 (6:1 hexanes/EtOAc) afforded 33 mg (100%) of the title compound as 

an oil.  The compound ratio was not determined for this substrate: IR (thin film) 3027, 2953, 

1701, 1668, 1626, 1477, 1451, 1246, 1122, 964, 852, 741 cm-1; 1H-NMR (300 MHz, D6-DMSO, 

353 K): δ 7.83 (d, J = 7.5 Hz, 2H), 7.58 (d, J = 7.3 Hz, 2H), 7.39 (t, J = 7.4 Hz, 2H), 7.31–7.13 

(m, 10H), 7.08 (d, J = 7.8 Hz, 2H), 6.63 (dt, J = 15.7, 6.6 Hz, 1H), 6.05 (d, J = 15.8 Hz, 1H), 

5.40–5.21 (m, 2H), 4.55 (d, J = 5.6 Hz, 2H), 4.31 (s, 2H), 4.30–4.25 (m, 1H), 3.44 (dd, J = 9.9, 

7.0 Hz, 1H), 3.22–3.12 (m, 3H), 2.23–2.16 (m, 2H), 1.29 (d, J = 6.8 Hz, 2H), 0.75 (d, J = 6.9 Hz, 

3H), –0.14 (s, 9H); 13C-NMR (75 MHz, D6-DMSO, 353 K): δ 201.3, 155.2, 143.6, 142.7, 142.6, 

140.5, 137.4, 130.6, 129.8, 127.9, 127.8, 127.5, 127.1, 126.9, 126.6 (2C), 126.5, 125.6, 124.2, 

119.4, 66.0, 51.0, 49.7, 47.2, 46.8, 45.1, 30.3, 21.7, 15.3, –2.5; MS (ESI) m/z 664 (M+Na)+; 

HRMS (ESI) m/z calculated for Na1C42H47NO3Si (M+Na)+: 664.3223, found 664.3161. 

 

 

 

 

R*-N-Tert-butyl-N-benzyl-(3E,6S,7R,8E)-6-methyl-10-trimethylsilyl-5-oxo-7-phenyldeca-

3,8-dienylcarbamate (57): The general procedure K was performed employing 0.16 g (0.31 

mmol) of alcohol 56 and 0.33 g (0.78 mmol) of Dess-Martin periodinane for 1 h at rt, then 

additional oxidant was added until the reaction was complete by TLC.  Purification by flash 
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chromatography on SiO2 (8:1 hexanes/EtOAc) afforded 0.15 g (94%) of the title compound as an 

oil.  The compound ratio was not determined for this substrate: IR (thin film) 3027, 2955, 1694, 

1626, 1495, 1453, 1413, 1366, 1247, 1164, 964, 852, 700 cm-1; 1H-NMR (300 MHz, D6-DMSO, 

353 K): δ 7.36–7.13 (m, 10H), 6.77 (dt, J = 15.8, 7.0 Hz, 1H), 6.17 (dt, J = 15.8, 1.4 Hz, 1H), 

5.36 (dd, J = 15.3, 6.9 Hz, 1H), 5.28 (dt, J = 15.2, 7.2 Hz, 1H), 4.40 (s, 2H), 3.45 (dd, J = 9.9, 

7.0 Hz, 1H), 3.32 (t, J = 7.0 Hz, 2H), 3.19 (dq, J = 10.0, 6.9 Hz, 1H), 2.39 (qd, J = 7.0, 1.3 Hz, 

2H), 1.39 (s, 9H), 1.31 (d, J = 6.8 Hz, 2H), 0.76 (d, J = 6.9 Hz, 3H), –0.12 (s, 9H); 13C-NMR (75 

MHz, D6-DMSO, 353 K): δ 201.1, 154.4, 143.1, 142.6, 138.1, 130.4, 129.9, 127.8 (2C), 127.7, 

127.5, 126.8, 126.5, 125.5, 78.6, 51.0, 49.6, 47.2, 45.0, 30.6, 27.6, 21.7, 15.2, –2.5; MS (EI) m/z 

464 (M+•-tBu,+H), 419, 333, 236, 203, 120, 91, 73; HRMS (EI) m/z calculated for C28H37NO3Si 

(M+•-tBu,+H): 463.2543, found 463.2524. 

 

 

 

2-N-Benzyl-N-(E)-5-oxo-7-phenylhept-3-enylaminoacetonitrile (63):  The general procedure 

K was performed employing 30 mg (0.090 mmol) of alcohol 62 and 59 mg (0.14 mmol) of Dess-

Martin periodinane for ~10 min at 0 °C, ~45 min at rt, then additional oxidant was added until 

the reaction was complete by TLC.  The mixture was passed through a plug of silica (2:1 

hexanes/EtOAc) and concentrated in vacuo to afford 25 mg (83%) of the product as an oil: IR 

(thin film) 3061, 2922, 1673, 1629, 1495, 1454, 974, 740, 699 cm-1; 1H-NMR (300 MHz, 

CDCl3): δ 7.37–7.18 (m, 10H), 6.80 (dt, J = 15.9, 6.8 Hz, 1H), 6.17 (dt, J = 15.9, 1.5 Hz, 1H), 

3.68 (s, 2H), 3.46 (s, 2H), 2.99–2.94 (m, 2H), 2.91–2.85 (m, 2H), 2.78 (t, J = 7.0 Hz, 2H), 2.45 

(qd, J = 6.8, 1.4 Hz, 2H); 13C-NMR (75 MHz, CDCl3): δ 199.2, 143.9, 141.2, 136.8, 131.5, 
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128.9, 128.7, 128.5, 128.3, 127.9, 126.1, 114.5, 58.2, 52.4, 41.8, 41.3, 30.3, 30.0; MS (ESI) m/z 

355 (M+Na)+; HRMS (ESI) m/z calculated for NaC22H24N2O (M+Na)+: 355.1786, found 

355.1786. 

 

 

 

R*-2-N-Benzyl-N-(3E,6S,7R,8E)-6-methyl-10-trimethylsilyl-5-oxo-7-phenyldeca-3,8-

dienylaminoacetonitrile (69):  The general procedure K was performed employing 0.23 g (0.50 

mmol) of alcohol 68 and 0.32 g (0.75 mmol) of Dess-Martin periodinane for ~10 min at 0 °C and 

30-45 min at rt.  Purification by flash chromatography on SiO2 (7:1 hexanes/EtOAc) afforded 

0.20 g (88%) of the title compound as an oil.  Isolated compound ratio by HPLC (ZorbaxTM Sil 

column, flow rate 1.0 mL/min, 2.0% i-PrOH, 98.0% hexanes): 87.9% (Tr = 8.90), 5.7% (Tr = 

9.58), 6.3% (Tr = 10.16): IR (thin film) 3027, 2953, 1692, 1667, 1626, 1494, 1453, 1247, 967, 

853, 740, 700 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.38–7.19 (m, 10H), 6.86 (dt, J = 15.8, 6.8 

Hz, 1H), 6.24 (dt, J = 15.7, 1.4 Hz, 1H), 5.41–5.33 (m, 2H), 3.71 (s, 2H), 3.55–3.49 (m, 1H), 

3.47 (s, 2H), 3.14 (dq, J = 10.2, 6.9 Hz, 1H), 2.80 (t, J = 7.1 Hz, 2H), 2.48 (qd, J = 6.9, 1.2 Hz, 

2H), 1.35–1.33 (m, 2H), 0.88 (d, J = 6.9 Hz, 3H), –0.09 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 

202.7, 143.7, 143.0, 136.7, 130.9, 129.6, 128.9, 128.6, 128.4, 128.0 (2C), 127.9, 114.5, 58.1, 

52.4, 52.0, 49.0, 41.1, 30.3, 22.7, 16.2, –2.1; MS (EI) m/z 458 (M+•), 431, 359, 229, 203, 159, 91, 

73; HRMS (EI) m/z calculated for C29H38N2OSi: 458.2753, found 458.2765. 
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R*-Methyl-N-methoxymethyl-(3E,6S,7R,8E)-6-methyl-10-trimethylsilyl-5-oxo-7-

phenyldeca-3,8-dienylcarbamate (78):  The general procedure K was performed employing 

0.17 g (0.39 mmol) of alcohol 76 and 0.33 g (0.78 mmol) of Dess-Martin periodinane for 1.5 h at 

0 °C and 45 min at rt.  Purification by flash chromatography on SiO2 (4:1 hexanes/EtOAc) 

afforded 0.11 g (64%) of the title compound as an oil.  The compound ratio was not determined 

for this substrate: IR (thin film) 3026, 2954, 1713, 1669, 1626, 1476, 1451, 1247, 1086, 851, 701 

cm-1; 1H-NMR (300 MHz, D6-DMSO, 353 K): δ 7.35–7.13 (m, 5H), 6.81 (dt, J = 15.8, 7.0 Hz, 

1H), 6.21 (dt, J = 15.8, 1.4 Hz, 1H), 5.37 (dd, J = 15.3, 7.0 Hz, 1H), 5.29 (dt, J = 15.2, 5.1 Hz, 

1H), 4.66 (s, 2H), 3.65 (s, 3H), 3.46 (dd, J = 10.0, 6.9 Hz, 1H), 3.41 (t, J = 6.4 Hz, 2H), 3.22 (dq, 

J = 10.0, 6.9 Hz, 1H), 3.22 (s, 1H), 2.47 (qd, J = 7.0, 1.4 Hz, 2H), 1.32 (d, J = 6.8 Hz, 2H), 0.76 

(d, J = 6.8 Hz, 3H), –0.10 (s, 9H); 13C-NMR (75 MHz, D6-DMSO, 353 K): δ 201.3, 155.6, 

143.0, 142.6, 130.5, 129.9, 127.7, 127.5, 126.5, 125.5, 78.4, 54.5, 51.8, 51.0, 47.2, 44.6, 30.9, 

21.7, 15.2, –2.6; MS (EI) m/z 431 (M+•), 416, 399, 384, 301, 271, 257; HRMS (EI) m/z 

calculated for C24H37NO4Si: 431.2492, found 431.2488. 

 

 

 

 

R*-2-Trimethylsilylethylmethoxymethyl-(3E,6S,7R,8E)-6-methyl-10-trimethylsilyl-5-oxo-7-

phenyldeca-3,8-dienylcarbamate (79):  The general procedure K was performed employing 
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0.12 g (0.23 mmol) of alcohol 77 and 0.20 g (0.46 mmol) of Dess-Martin periodinane for 1.5 h at 

0 °C and 45 min at rt.  Purification by flash chromatography on SiO2 (5:1 hexanes/EtOAc) 

afforded 0.10 g (83%) of the title compound as an oil.  The compound ratio was not determined 

for this substrate: IR (thin film) 3027, 2953, 1705, 1670, 1626, 1452, 1249, 961, 839, 700 cm-1; 

1H-NMR (300 MHz, D6-DMSO, 353 K): δ 7.30–7.14 (m, 5H), 6.81 (dt, J = 15.8, 6.9 Hz, 1H), 

6.20 (d, J = 15.8 Hz, 1H), 5.36 (dd, J = 15.4, 7.1 Hz, 1H), 5.29 (dt, J = 15.2, 7.2 Hz, 1H), 4.65 (s, 

2H), 4.15 (t, J = 8.1 Hz, 2H), 3.45 (dd, J = 10.0, 6.9 Hz, 1H), 3.40 (t, J = 7.1 Hz, 2H), 3.29–3.15 

(m, 1H), 3.21 (s, 3H), 2.46 (qd, J = 7.1, 1.2 Hz, 2H), 1.31 (d, J = 6.8 Hz, 2H), 0.98 (t, J = 8.3 Hz, 

2H), 0.75 (d, J = 6.8 Hz, 3H), 0.03 (s, 9H), –0.11 (s, 9H); 13C-NMR (75 MHz, D6-DMSO, 353 

K): δ 201.2, 155.2, 143.0, 142.6, 130.5, 129.9, 127.7, 127.5, 126.5, 125.5, 78.3, 62.6, 54.5, 51.0, 

47.2, 44.4, 31.0, 21.7, 16.9, 15.2, –2.1, –2.5; MS (ESI) m/z 540 (M+Na)+; HRMS (ESI) m/z 

calculated for NaC28H47NO4Si2 (M+Na)+: 540.2941, found 540.2968. 

 

 

 

R*-(2E,5S,6R,7E)-1-N-Methoxymethyl-N-tosylamino-5-methyl-9-trimethylsilyl-6-

phenylnona-2,7-dien-4-one (86):  The general procedure K was performed employing 63 mg 

(0.12 mmol) of alcohol 83 and 0.15 g (0.36 mmol) of Dess-Martin periodinane for 15 min at 0 

°C, 45 min at rt.  Purification by flash chromatography on SiO2 (3:1 hexanes/EtOAc) afforded 52 

mg (83%) of the title compound as an oil.  Isolated compound ratio by HPLC (ZorbaxTM Sil 

column, flow rate 1.0 mL/min, 2.0% i-PrOH, 98.0% hexanes): 84.6% (Tr = 11.21), 7.5% (Tr = 

11.97), 7.9% (Tr = 12.97): IR (thin film) 3026, 2953, 1696, 1673, 1633, 1599, 1494, 1453, 1346, 

1248, 1162, 1076, 852, 702 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.75 (d, J = 8.3 Hz, 2H), 7.33–
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7.09 (m, 7H), 6.59 (dt, J = 15.8, 5.9 Hz, 1H), 6.19 (d, J = 15.8 Hz, 1H), 5.38–5.30 (m, 2H), 4.71 

(d, J = 10.5 Hz, 1H), 4.67 (d, J = 10.5 Hz, 1H), 3.98 (dd, J = 5.8, 1.2 Hz, 2H), 3.54–3.39 (m, 

1H), 3.30 (s, 3H), 3.06 (dq, J = 9.9, 6.9 Hz, 1H), 2.42 (s, 3H), 1.33 (d, J = 6.5 Hz, 2H), 0.82 (d, J 

= 6.9 Hz, 3H), –0.10 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 202.4, 143.8, 142.8, 139.7, 137.3, 

131.4, 129.7, 129.6, 128.5, 128.2, 128.0, 127.3, 126.3, 79.3, 55.8, 51.9, 49.1, 47.0, 22.8, 21.5, 

16.0, –2.0; MS (ESI) m/z 536 (M+Na)+; HRMS (ESI) m/z calculated for NaC28H39NO4SSi 

(M+Na)+: 536.2267, found 536.2288. 

 

 

 

 

R*-(3E,6S,7R,8E)-1-N-Methoxymethyl-N-tosylamino-6-methyl-10-trimethylsilyl-7-

phenyldeca-3,8-dien-5-one (87):  The general procedure K was performed employing 63 mg 

(0.12 mmol) of alcohol 84 and 0.15 g (0.36 mmol) of Dess-Martin periodinane for 15 min at 0 

°C, 45 min at rt.  Purification by flash chromatography on SiO2 (3:1 hexanes/EtOAc) afforded 52 

mg (83%) of the title compound as an oil.  Isolated compound ratio by HPLC (ZorbaxTM Sil 

column, flow rate 1.0 mL/min, 3.0% i-PrOH, 97.0% hexanes): 87.1% (Tr = 9.25), 6.6% (Tr = 

10.08), 6.3% (Tr = 11.00): IR (thin film) 3027, 2953, 1693, 1668, 1627, 1599, 1494, 1453, 1344, 

1247, 1160,  1078, 963, 852, 702 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.73 (d, J = 8.3 Hz, 2H), 

7.33–7.16 (m, 7H), 6.75 (dt, J = 15.8, 7.0 Hz, 1H), 6.18 (dt, J =15.8, 1.4 Hz, 1H), 5.39–5.31 (m, 

2H), 4.72 (s, 2H), 3.52–3.47 (m, 1H), 3.32 (s, 3H), 3.28 (t, J = 7.3 Hz, 2H), 3.12 (dq, J = 10.3, 

6.8 Hz, 1H), 2.55 (qd, J = 7.3, 1.3 Hz, 2H), 2.44 (s, 3H), 1.33-1.31 (m, 2H), 0.85 (d, J = 6.9 Hz, 

3H), –0.10 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 202.7, 143.5, 143.0, 142.4, 137.2, 131.4, 

N

O
Me

Ph

TMS

Ts
MeO



 155 

129.8, 129.7, 128.4, 128.0 (2C), 127.2, 126.2, 80.4, 55.7, 52.0, 48.9, 45.9, 32.1, 22.8, 21.5, 16.1, 

–2.0; MS (EI) m/z 527 (M+•), 495, 480, 397, 382, 228, 91, 73; HRMS (EI) m/z calculated for 

C29H41NO4SSi: 537.2526, found 527.2519. 

 

 

 

R*-(2E,4R,5S,7E)-11-N-Methoxymethyl-N-tosylamino-5-methyl-1-trimethylsilyl-4-

phenylundeca-2,7-dien-6-one (88):  The general procedure K was performed employing 0.14 g 

(0.26 mmol) of alcohol 85 and 0.33 g (0.78 mmol) of Dess-Martin periodinane for 15 min at 0 

°C, 45 min at rt.  Purification by flash chromatography on SiO2 (4:1 hexanes/EtOAc) afforded 85 

mg (62%) of the title compound as an oil.  Isolated compound ratio by HPLC (ZorbaxTM Sil 

column, flow rate 1.0 mL/min, 3.0% i-PrOH, 97.0% hexanes): 7.7% (Tr = 8.07), 83.4% (Tr = 

9.09), 4.2% (Tr = 9.82), 4.6% (Tr = 10.64): IR (thin film) 3027, 2952, 1693, 1667, 1625, 1599, 

1494, 1452, 1343, 1247, 1159, 1079, 962, 852, 702 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.72 (d, 

J = 8.3 Hz, 2H), 7.40–7.12 (m, 7H), 6.82 (dt, J = 15.7, 6.8 Hz, 1H), 6.18 (dt, J = 15.7, 1.4 Hz, 

1H), 5.45–5.29 (m, 2H), 4.72 (s, 2H), 3.56–3.46 (m, 1H), 3.32 (s, 3H), 3.17 (t, J = 7.2 Hz, 2H), 

3.17–3.05 (m, 1H), 2.43 (s, 3H), 2.23 (q, J = 7.2 Hz, 2H), 1.78 (p, J = 7.2 Hz, 2H), 1.33–1.31 (m, 

2H), 0.86 (d, J = 6.9 Hz, 3H), –0.10 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 202.9, 145.5, 143.4, 

143.1, 137.3, 130.1, 129.9, 129.6, 128.4, 128.1, 127.9, 127.2, 126.2, 80.2, 55.7, 52.0, 49.1, 46.8, 

29.5, 27.3, 22.8, 21.5, 16.2, –2.0; MS (ESI) m/z 564 (M+Na)+; HRMS (ESI) m/z calculated for 

NaC30H43NO4SSi (M+Na)+: 564.2580, found 564.2560. 
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General Procedure L for Tandem Intermolecular Sakurai-Mannich Reactions 70, 89-91:  

To 1.5-2.0 mL (1.5-2.0 mmol) of a vigorously stirred solution of TiCl4 in CH2Cl2 (1.0 M) at –78 

°C was slowly cannulated the unsaturated ketone (1.0 mmol) in 20 mL of CH2Cl2 (clear → deep 

red).  The cannula and receptacle were washed with 2x1 mL of CH2Cl2 and added to the reaction 

vessel.  Following 15 min of stirring at –78 °C, the reaction was warmed to rt over 15-20 min 

(red → yellow-brown precipitate).  The reaction was quenched with H2O and the aqueous layer 

was extracted with CH2Cl2 (3x), the combined organic layers were dried over Na2SO4 and 

filtered.  Removal of the solvent in vacuo yielded the crude product, which was purified as 

specified.  Isolated diastereomeric ratio was established by HPLC analysis. 

 

 

 

R*-2-N-Benzyl-N-2-(1S,2S,3R,4S)-4-methyl-5-oxo-3-phenyl-2-vinylcyclohexylethylamino-

acetonitrile (70):  The general procedure L was performed with 58 mg (0.13 mmol) of ketone 

69 and 0.20 mL (0.20 mmol) of TiCl4 in CH2C12 (1M) for 30 min at –78 °C followed by 

quenching with H2O at this temperature.  Purification via flash chromatography on SiO2 (5:1 

hexanes/EtOAc) yielded 39 mg (77%) of the product as an oil.  The diastereomeric ratio was not 

determined for this substrate: IR (thin film) 3062, 2970, 1709, 1639, 1494, 1453, 918, 740, 700 

cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.35–7.14 (m, 10H), 5.55 (ddd, J = 17.8, 9.9, 8.2 Hz, 1H), 

4.88 (br. d, J = 12.1 Hz, 1H), 4.88 (br. d, J = 15.2 Hz, 1H), 3.70 (d, J = 13.2 Hz, 1H), 3.60 (d, J = 

13.2 Hz, 1H), 3.42 (s, 2H), 3.08–2.98 (m, 1H), 2.77–2.60 (m, 5H), 2.51 (dd, J = 13.5, 3.5 Hz, 

1H), 2.48–2.39 (m, 1H), 1.84–1.73 (m, 1H), 1.36–1.24 (m, 1H), 0.80 (d, J = 5.8 Hz, 3H); 13C-

NMR (75 MHz, CDCl3): δ 211.3, 142.2, 138.6, 137.0, 128.9, 128.6 (2C), 127.9, 127.7, 126.7, 
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117.0, 114.6, 58.3, 52.6, 51.8, 50.6, 50.1, 45.1, 41.1, 39.4, 24.7, 10.0; MS (EI) m/z 386 (M+•), 

346, 295, 159, 91; HRMS (EI) m/z calculated for C26H30N2O: 386.2358, found 386.2348. 

 

 

 

R*-(3aS,5S,6R,7R,7aR)-Octahydro-5-methyl-6-phenyl-2-tosyl-7-vinylisoindol-4-one (89):  

The general procedure L was performed with 47 mg (0.091 mmol) of ketone 86 and 0.18 mL 

(0.18 mmol) of TiCl4 in CH2C12 (1M).  Purification via flash chromatography on SiO2 (1:1 

hexanes/Et2O) yielded 15 mg (41%) of the product as an oil.  Isolated diastereomeric ratio by 

HPLC (ZorbaxTM Sil column, flow rate 1.0 mL/min, 15.0% EtOAc, 85.0% hexanes): 100% (Tr = 

29.16): IR (thin film) 3028, 2974, 1714, 1641, 1598, 1454, 1341, 1160, 921, 703 cm-1; 1H-NMR 

(300 MHz, CDCl3): δ 7.77 (d, J = 8.2 Hz, 2H), 7.37–7.17 (m, 5H), 7.06 (d, J = 8.4 Hz, 2H), 5.32 

(ddd, J = 16.5, 10.8, 8.6 Hz, 1H), 4.83 (d, J = 10.3 Hz, 1H), 4.82 (d, J = 17.4 Hz, 1H), 4.23 (d, J 

= 9.8 Hz, 1H), 3.54 (td, J = 6.9, 1.4 Hz, 1H), 3.26 (dd, J = 9.8, 6.2 Hz, 1H), 3.15–3.07 (m, 1H), 

3.07 (t, J = 6.0 Hz, 1H), 2.97–2.87 (m, 1H), 2.84 (dd, J = 11.6, 8.5 Hz, 1H), 2.70–2.59 (m, 1H), 

2.48 (t, J = 11.7 Hz, 1H), 2.46 (s, 3H), 0.67 (d, J = 6.4 Hz, 3H); 13C-NMR (75 MHz, CDCl3): δ 

207.3, 143.4, 140.9, 137.2, 134.6, 129.6, 128.7, 127.8, 127.5, 127.0, 117.6, 51.7, 50.9, 49.2, 46.6 

(3C), 46.3, 21.6, 12.2; MS (EI) m/z 409 (M+•), 254, 227, 222, 155, 136; HRMS (EI) m/z 

calculated for C24H27NO3S: 409.1712, found 409.1712. 
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R*-(4aR,5S,6R,7S,8aS)-Octahydro-7-methyl-6-phenyl-2-tosyl-5-vinylisoquinolin-8(8aH)-

one (90):  The general procedure L was performed with 0.15 g (0.28 mmol) of ketone 87 and 

0.42 mL (0.42 mmol) of TiCl4 in CH2C12 (1M).  Purification via flash chromatography on SiO2 

(3:1 hexanes/EtOAc) yielded 57 mg (46%) of the product as a white solid.  Isolated 

diastereomeric ratio by HPLC (ZorbaxTM Sil column, flow rate 1.0 mL/min, 15.0% EtOAc, 

85.0% hexanes): 100% (Tr = 18.16): m.p. 191-193 °C; IR (thin film) 2926, 1714, 1598, 1494, 

1454, 1340, 1165, 914, 817, 720 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.72 (d, J = 8.2 Hz, 2H), 

7.34–7.15 (m, 5H), 7.10 (d, J = 8.2 Hz, 2H), 5.48 (ddd, J = 17.6, 9.9, 8.5 Hz, 1H), 4.82 (br. d, J = 

15.7 Hz, 1H), 4.81 (br. d, J = 11.9 Hz, 1H), 4.40 (dt, J = 11.5, 1.7 Hz, 1H), 3.82 (d, J = 11.4 Hz, 

1H), 3.02 (ddd, J = 11.6, 8.6, 4.1 Hz, 1H), 2.81 (s, 1H), 2.66 (t, J = 11.8 Hz, 1H), 2.53 (p, J = 6.3 

Hz, 1H), 2.44 (s, 3H), 2.25–2.13 (m, 3H), 1.76 (dd, J = 13.0, 2.2 Hz, 1H), 1.46 (qd, J = 12.9, 4.0 

Hz, 1H), 0.86 (d, J = 6.4 Hz, 3H); 13C-NMR (75 MHz, D6-DMSO, 353 K): δ 207.0, 143.3, 

141.9, 138.1, 133.6, 129.5, 128.6, 128.0 (2C), 126.8, 117.0, 51.2, 50.2, 50.1, 48.3, 46.0, 44.4, 

43.5, 23.2, 21.5, 12.3; MS (EI) m/z 423 (M+•), 358, 304, 268, 155, 91; HRMS (EI) m/z calculated 

for C25H29NO3S: 423.1868, found 423.1871. 

 

 

 

 

R*-(5aR,6S,7R,8S,9aS)-Octahydro-8-methyl-7-phenyl-2-tosyl-6-vinyl-1H-benzo[c]azepin-

9(9aH)-one (91):  The general procedure L was performed with 85 mg (0.16 mmol) of ketone 88 

and 0.32 mL (0.32 mmol) of TiCl4 in CH2C12 (1M).  Purification via flash chromatography on 

SiO2 (3:1 hexanes/EtOAc) yielded 31 mg (44%) of the product as a white foam.  Isolated 
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diastereomeric ratio by HPLC (ZorbaxTM Sil column, flow rate 1.0 mL/min, 15.0% EtOAc, 

85.0% hexanes): 87.9% (Tr = 8.46), 12.1% (Tr = 10.72): IR (thin film) 3027, 2976, 1704, 1599, 

1494, 1454, 1335, 1157, 924, 701 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.69 (d, J = 8.2 Hz, 2H), 

7.35–7.10 (m, 7H), 5.50 (ddd, J = 17.9, 10.6, 7.5 Hz, 1H), 4.91 (br. d, J = 17.8 Hz, 1H), 4.90 (br. 

d, J = 10.5 Hz, 1H), 3.99 (dd, J = 13.8, 4.0 Hz, 1H), 3.89 (dd, J = 15.5, 7.6 Hz, 1H), 3.48–3.32 

(m, 2H), 3.10 (ddd, J = 11.3, 7.4, 3.9 Hz, 1H), 2.74 (dt, J = 9.4, 4.7 Hz, 1H), 2.65–2.49 (m, 2H), 

2.44 (s, 3H), 1.82 (dt, J = 14.2, 3.6 Hz, 1H), 1.77–1.52 (m, 3H), 1.08–0.94 (m, 1H), 0.76 (d, J = 

6.1 Hz, 3H); 13C-NMR (75 MHz, D3CCN): δ 211.7, 144.5, 143.7, 140.7, 138.3, 130.8, 129.4, 

129.1, 127.6, 127.5, 117.0, 53.1, 53.0, 52.8, 51.4, 51.3, 48.0, 47.3, 30.8, 24.2, 21.5, 12.6; MS 

(EI) m/z 437 (M+•), 282, 197, 179; HRMS (EI) m/z calculated for C26H31NO3S: 437.2025, found 

437.2027. 

 

 

 

R*-(4aR,5S,6R,7S,8S,8aS)-Decahydro-7-methyl-6-phenyl-2-tosyl-5-vinylisoquinolin-8-ol 

(95):  To 0.010 g (0.024 mmol) of perhydroisoquinilone 90 in 0.24 mL of toluene was added 29 

μL (0.029 mmol) of DIBAl-H in hexanes (1.0 M).  Following 30 min, the reaction was quenched 

with sat. aq. Rochelle’s salt and stirred 30 min while warming to rt.  The aqueous layer was 

extracted with EtOAc (3x) and the combined organic layers were dried over Na2SO4 and filtered.  

Concentration of the extracts in vacuo gave 8.5 mg (83%) of the pure product as a white solid.  

Diastereomeric ratio by 1H-NMR (300 MHz, CDCl3) (C–CH3): 10% (δ 0.83), 90% (δ 0.75): m.p. 

249-251 °C; IR (thin film) 3496, 3061, 2852, 1597, 1343, 1162, 939, 714, 701 cm-1; 1H-NMR 

(300 MHz, CDCl3): δ 7.68 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 7.28–7.08 (m, 5H), 5.51 
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(ddd, J = 16.9, 10.4, 9.0 Hz, 1H), 4.72–4.65 (m, 2H), 4.15 (s, 1H), 3.99–3.88 (m, 2H), 3.40 (s, 

1H), 2.79 (t, J = 11.5 Hz, 1H), 2.56–2.48 (m, 1H), 2.48–2.43 (m, 1H), 2.46 (s, 3H), 2.37–2.25 

(m, 1H), 2.20–2.10 (m, 1H), 1.85 (s, 1H), 1.78–1.63 (m, 3H), 0.75 (d, J = 6.8 Hz, 3H); MS (ESI) 

m/z 448 (M+Na)+; HRMS (ESI) m/z calculated for NaC25H31NO3S (M+Na)+: 448.1922, found 

448.1907. 



 161 

6.0  EXPERIMENTAL SECTION FOR CHAPTER 2 

General Procedure A for Synthesis of Boc-Protected Sulfonamides 111 & 126:79  To a 

solution of the sulfonamide (1.5 mmol) in 9.1 mL THF was added 0.79 g (3.0 mmol) of PPh3.  

The alcohol (1.0 mmol) was then added followed by 0.30 mL (0.30 g, 1.5 mmol) of DIAD.  The 

mixture was stirred between 3-12 h, concentrated in vacuo, and the crude product was purified 

by flash chromatography under the specified conditions. 

 

 

 

N-Tert-butylcarbamate-N-tosyl-(E)-4-bromobut-3-ene (111):  The general procedure A was 

performed employing 0.54 g (2.0 mmol) of t-butyl-N-tosyl-carbamate and 0.20 g (1.3 mmol) of 

(E)-4-bromobut-3-en-1-ol.120  Flash chromatography on SiO2 (10:1 hexanes/EtOAc) afforded 

0.47 g (92%) of the product as a white solid: m.p. 70-72 °C; IR (thin film) 2980, 1727, 1622, 

1598, 1447, 1356, 1287, 1258, 1156, 814 cm-1; 1H-NMR (300 MHz, D6-DMSO, 353 K): δ 7.77 

(d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 6.34 (dt, J = 13.5, 1.2 Hz, 1H), 6.18 (dt, J = 13.5, 

7.2 Hz, 1H), 3.85 (t, J = 7.0 Hz, 2H), 2.44 (qd, J = 7.2, 1.2 Hz, 2H), 2.42 (s, 3H), 1.30 (s, 9H); 

13C-NMR (75 MHz, D6-DMSO, 353 K): δ 149.9, 143.6, 136.7, 133.8, 128.9, 126.9, 106.3, 83.4, 

44.8, 32.5, 27.0, 20.4; MS (EI) m/z 349, 347 (M+•-tBu), 268, 184, 155, 91; HRMS (EI) m/z 

calculated for C12H14NO4SBr (M+•-tBu): 346.9827, found 346.9830. 
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N-Tert-butylcarbamate-N-tosyl-(E)-but-3-ene (126): The general procedure A was performed 

employing 1.0 g (3.7 mmol) of t-butyl-N-tosyl-carbamate and 0.21 mL (0.18 g, 2.5 mmol) of 3-

butene-1-ol.  Flash chromatography on SiO2 (10:1 hexanes/EtOAc) afforded 0.80 g (100%) of 

the product as a white solid: m.p. 56-57 °C; IR (thin film) 3078, 2980, 1729, 1643, 1598, 1449, 

1356, 1258, 1155, 919, 812 cm-1; 1H-NMR (300 MHz, D6-DMSO, 353 K): δ 7.77 (d, J = 8.4 Hz, 

2H), 7.42 (d, J = 8.1 Hz, 2H), 5.80 (ddt, J = 17.1, 10.2, 6.8 Hz, 1H), 5.10 (dq, J = 17.3, 1.4 Hz, 

1H), 5.06 (dq, J = 10.3, 1.2 Hz, 1H), 3.83 (t, J = 7.2 Hz, 2H), 2.42 (qt, J = 7.2, 1.3 Hz, 2H), 2.41 

(s, 3H), 1.29 (s, 9H); 13C-NMR (75 MHz, D6-DMSO, 353 K): δ 150.0, 143.5, 136.9, 134.1, 

128.8, 126.9, 116.4, 83.2, 45.4, 33.4, 27.0, 20.4; MS (EI) m/z 284 (M+•-allyl), 269, 184, 155; 

HRMS (EI) m/z calculated for C13H18NO4S (M+•-allyl): 284.0957, found 284.0954. 

 

General Procedure B for the Deprotection of Boc-Protected Sulfonamides 112 & 127:79  To 

the carbamate (1.0 mmol) in 3.3 mL CH2Cl2 was slowly added 0.23 mL (0.34 g, 3.0 mmol) of 

trifluoroacetic acid at rt.  Following 16 h, the reaction mixture was cooled to 0 °C and carefully 

quenched with sat. aq. NaHCO3.  The aqueous layer was extracted with CH2Cl2 (3x) and the 

combined organic layers were dried over Na2SO4, filtered, and the crude product was 

concentrated in vacuo.  The product was purified by flash chromatography under the specified 

conditions. 

 

(E)-4-Bromo-N-tosylbut-3-en-1-amine (112):  General procedure B was carried out with 0.23 g 

(0.57 mmol) of carbamate 111.  Flash chromatography on SiO2 (4:1 hexanes/EtOAc) yielded 
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0.15 g (86%) of the product as a white solid: m.p. 55-57 °C; IR (thin film) 3281, 3065, 2924, 

1622, 1598, 1422, 1324, 1158, 940, 814, 550 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.75 (d, J = 

8.3 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 6.08 (d, J = 13.6 Hz, 1H), 5.99 (dt, J = 13.6, 6.6 Hz, 1H), 

4.43 (br. t, J = 5.8 Hz, 1H), 3.03 (q, J = 6.6 Hz, 2H), 2.45 (s, 3H), 2.23 (q, J = 6.6 Hz, 2H); 13C-

NMR (75 MHz, CDCl3): δ 143.4, 136.5, 133.5, 129.6, 126.9, 107.2, 41.7, 32.8, 21.4; MS (EI) 

m/z 304 (M+•), 302, 240, 224, 184, 155, 91; HRMS (EI) m/z calculated for C11H14NO2SBr: 

302.9929, found 302.9922. 

 

 

N-Tosylbut-3-en-1-amine (127):  General procedure B was carried out with 0.40 g (1.2 mmol) 

of carbamate 126.  Flash chromatography on SiO2 (5:1 hexanes/EtOAc) yielded 0.27 g (100%) 

of the product as an oil: IR (thin film) 3281, 3078, 2979, 1642, 1598, 1495, 1325, 1160, 918, 815 

cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.75 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.5 Hz, 2H), 5.63 

(ddt, J = 17.1, 10.3, 6.9 Hz, 1H), 5.08 (dq, J = 10.3, 1.1 Hz, 1H), 5.04 (dq, J = 17.0, 1.5 Hz, 1H), 

4.39 (m, 1H), 3.03 (q, J = 6.6 Hz, 2H), 2.21 (qt, J = 6.7, 1.2 Hz, 2H), 2.44 (s, 3H); 13C-NMR (75 

MHz, CDCl3): δ 143.3, 136.9, 134.1, 129.6, 127.0, 117.8, 42.1, 33.5, 21.4; MS (EI) m/z 225 

(M+•), 198, 184, 155, 91, 65; HRMS (EI) m/z calculated for C11H15NO2S: 225.0824, found 

225.0821. 

 

General Procedure C for Preparation of Methoxyaminals 113 & 128:  To a solution of the 

sulfonamide (1.0 mmol) in 10 mL of THF was added 1.1 mL (1.1 mmol) of KHMDS in toluene 

(0.5M) at 0 °C.  After 5 min, 0.23 mL (0.24 g, 3.0 mmol) of chloromethyl methyl ether was 

added dropwise and the mixture was stirred for 15 min at 0 °C then raised to rt for 15 min.  The 

TsHN
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reaction was quenched with H2O, partitioned between H2O and Et2O and the aqueous layer was 

extracted with Et2O (3x).  The combined organic extracts were dried over Na2SO4, filtered and 

the crude product was concentrated in vacuo.  The products were purified by flash 

chromatography under the specified conditions. 

 

 

 

(E)-4-Bromo-N-methoxymethyl-N-tosylbut-3-en-1-amine (113): General procedure C was 

performed using 0.30 g (0.99 mmol) of sulfonamide 112.  Flash chromatography on SiO2 (7:1 

hexanes/EtOAc) gave 0.26 g (76%) of the product as an oil: IR (thin film) 3066, 2931, 1621, 

1598, 1495, 1453, 1341, 1159, 1082, 941, 815, 583 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.71 (d, 

J = 8.3 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 6.09 (d, J = 13.6 Hz, 1H), 6.02 (dt, J = 13.5, 6.9 Hz, 

1H), 4.71 (s, 2H), 3.32 (s, 3H), 3.21 (t, J = 7.2 Hz, 2H), 2.44 (s, 3H), 2.35 (q, J = 7.4 Hz, 2H); 

13C-NMR (75 MHz, CDCl3): δ 143.5, 137.0, 133.9, 129.7, 127.1, 106.8, 80.3, 55.6, 46.0, 32.6, 

21.5; MS (EI) m/z 318 (M+•-OMe), 228, 198, 155, 139, 91, 65; HRMS (EI) m/z calculated for 

C12H15NO2SBr (M+•-OMe): 316.0007, found 315.9992. 

 

 

 

N-Methoxymethyl-N-tosylbut-3-en-1-amine (128): General procedure C was performed using 

0.13 g (0.58 mmol) of sulfonamide 127.  Flash chromatography on SiO2 (5:1 hexanes/EtOAc) 

gave 0.14 g (90%) of the product as an oil: IR (thin film) 3077, 2935, 1642, 1598, 1495, 1453, 

1341, 1159, 1077, 943, 815 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.73 (d, J = 8.3 Hz, 2H), 7.30 
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(d, J = 8.3 Hz, 2H), 5.69 (ddt, J = 17.0, 10.2, 6.8 Hz, 1H), 5.05 (dq, J = 17.1, 1.5 Hz, 1H), 5.02 

(dm, J = 10.2 Hz, 1H), 4.73 (s, 2H), 3.28 (s, 3H), 3.22 (t, J = 7.6 Hz, 2H), 2.39 (s, 3H), 2.34 (qd, 

J = 7.6, 1.1 Hz, 2H); 13C-NMR (75 MHz, CDCl3): δ 143.3, 137.4, 134.6, 129.5, 127.1, 116.9, 

80.0, 55.6, 46.4, 33.1, 21.4; MS (EI) m/z 238 (M+•-OMe), 228, 198, 155, 139, 91, 65; HRMS 

(EI) m/z calculated for C12H16NO2S (M+•-OMe): 238.0902, found 238.0896. 

 

 

 

(E,2S,3R)-2-Benzyloxy-3-hydroxy-N-methoxy-N-methyl-6-trimethylsilylhex-4-enamide 

(117):128  A round bottom flask equipped with a condenser was charged with 43 mg (0.16 mmol) 

of (2S,3R)-2-benzyloxy-3-hydroxy-N-methoxy-N-methylpent-4-enamide and 0.80 mL of 

CH2Cl2.125, 229  To this mixture was cannulated a premixed solution of 0.10 mL (74 mg, 0.64 

mmol) of trimethylallylsilane and 6.8 mg (0.0080 mmol) of Grubbs II catalyst (stored in 

glovebox) in 0.80 mL of CH2Cl2.  The reaction was stirred for 15 min at rt, heated to reflux for 2 

h then cooled to rt and quenched with 28 μL of DMSO.  After 12 h further stirring at rt, the 

mixture was concentrated in vacuo.  Purification by flash chromatography on SiO2 (2:1 

hexanes:EtOAc) afforded 43 mg (75%) of the product as a brown oil.  Geometrical isomer ratio 

by 1H-NMR (300 MHz, CDCl3) (CH2–CH=CH–CH–OH): 87% (δ 5.77), 13% (δ 5.64) and 87% 

(δ 2.72), 13% (δ 2.66): [α]D
26 = –44.4 (c 1.20, CHCl3); IR (thin film) 3454, 3030, 2952, 1663, 

1497, 1455, 1248, 1094, 989, 854, 739 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.39–7.28 (m, 5H), 

5.77 (dtd, J = 15.3, 8.2, 0.8 Hz, 1H), 5.34 (ddt, J = 15.2, 7.4, 1.3 Hz, 1H), 4.74 (d, J = 11.7 Hz, 

1H), 4.51 (d, J = 11.7 Hz, 1H), 4.37 (td, J = 7.0, 3.8 Hz, 1H), 4.30 (br. d, J = 5.6 Hz, 1H), 3.58 

(s, 3H), 3.19 (s, 3H), 2.72 (d, J = 3.7 Hz, 1H), 1.48 (dt, J = 8.2, 1.3 Hz, 2H), –0.01 (s, 9H); 13C-
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NMR (75 MHz, CDCl3): δ 170.8, 137.3, 131.9, 128.4, 128.1, 127.9, 125.6, 78.8, 73.7, 72.1, 61.3, 

32.4, 23.0, –2.0; MS (ESI) m/z 374 (M+Na)+; HRMS (ESI) m/z calculated for NaC18H29NO4Si 

(M+Na)+: 374.1764, found 374.1755. 

 

General Procedure D for O-Methylation 118 & 121:131  To a mixture of the hydroxyamide 

(1.0 mmol) and 0.62 mL (1.4 g, 10 mmol) of iodomethane in 10 mL of 2:1 THF:DMF was added 

0.10 g (2.5 mmol) of sodium hydride (60% dispersion in mineral oil) in portions.  Following the 

specified time period, the reaction was quenched at 0 °C with aq. pH 7 buffer and the aqueous 

layer was extracted with Et2O (3x).  The combined organic extracts were dried over Na2SO4, 

filtered and concentrated in vacuo.  The compounds were purified by flash chromatography 

under the specified conditions. 

 

 

 

(E,2S,3R)-2-Benzyloxy-N-3-dimethoxy-N-methyl-6-trimethylsilylhex-4-enamide (118): 

General procedure D was performed using 59 mg (0.17 mmol) of hydroxyamide 117 for 1.5 h.  

Flash chromatography on SiO2 (2x) (4:1 hexanes/EtOAc) gave 48 mg (76%) of the product as an 

oil: [α]D
26 = –23.8 (c 1.04, CHCl3); IR (thin film) 3030, 2953, 1673, 1497, 1454, 1248, 1097, 

991, 853, 698 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.12–6.96 (m, 5H), 5.45 (dt, J = 15.3, 8.1 

Hz, 1H), 4.94 (dd, J = 15.3, 8.8 Hz, 1H), 4.46 (d, J = 12.1 Hz, 1H), 4.33 (d, J = 12.2 Hz, 1H), 

4.12 (br. s, 1H), 3.68 (dd, J = 8.5, 7.1 Hz, 1H), 3.22 (s, 3H), 3.04 (s, 3H), 2.87 (s, 3H), 1.26–1.19 

(m, 2H), –0.27 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 170.7, 138.0, 133.8, 128.2, 127.9, 127.1, 

123.7, 83.7, 78.8, 72.2, 61.1, 56.3, 32.6, 23.1, –1.9; MS (EI) m/z 351 (M+•+H, -Me), 281, 224, 
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228, 209, 190, 157; HRMS (ESI) m/z calculated for NaC19H31NO4Si (M+Na)+: 388.1920, found 

388.1885. 

 

 

 

 (2S,3R)-2-Benzyloxy-N-3-dimethoxy-N-methylpent-4-enamide (121):  General procedure D 

was performed using 0.050 g (0.19 mmol) of (2S,3R)-2-benzyloxy-3-hydroxy-N-methoxy-N-

methylpent-4-enamide for 16-18 hr.  Flash chromatography on SiO2 (2:1 hexanes/EtOAc) gave 

32 mg (58%) of the product as an oil: [α]D
26 = –34.4 (c 1.04, CHCl3); IR (thin film) 3030, 2936, 

1670, 1497, 1454, 1093, 991, 739 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.40–7.25 (m, 5H), 5.77 

(ddd, J = 17.7, 10.3, 7.9 Hz, 1H), 5.31 (d, J = 17.3 Hz, 1H), 5.29 (d, J = 10.3 Hz, 1H), 4.75 (d, J 

= 12.2 Hz, 1H), 4.59 (d, J = 12.2 Hz, 1H), 4.42 (br. d, J = 5.6 Hz, 1H), 4.01 (t, J = 7.3 Hz, 1H), 

3.49 (s, 3H), 3.37 (s, 3H), 3.16 (s, 3H); 13C-NMR (75 MHz, CDCl3): δ 170.5, 137.8, 134.1, 

128.3, 127.9, 127.7, 119.5, 83.9, 78.5, 72.3, 61.1, 57.2, 32.5; MS (EI) m/z 280 (M+•+H), 264, 

248, 219, 180, 173, 141, 111; HRMS (EI) m/z calculated for C15H22NO4 (M+•+H): 280.1549, 

found 280.1551. 

 

General Procedure E for O-Silylation 119, 120, 136:  To the alcohol (1.0 mmol) in 3.3 mL of 

DMF was added 12 mg (0.10 mmol) of DMAP and 0.12 g (1.8 mmol) of imidazole followed by 

the chlorosilane (1.5 mmol).  The reaction was quenched after 12 h by the addition of brine and 

the aqueous layer was extracted with CH2Cl2 (3x).  The combined organic layers were dried over 

Na2SO4, filtered and concentrated in vacuo.  The products were purified by flash 

chromatography under the specified conditions. 
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(E,2S,3R)-2-Benzyloxy-3-tert-butyldimethylsilyloxy-N-methoxy-N-methyl-6-

trimethylsilylhex-4-enamide (119): General procedure E was carried out with 37 mg (0.11 

mmol) of hydroxyamide 117 and 26 mg (0.17 mmol) of t-butyldimethylsilyl chloride.  

Purification via flash chromatography on SiO2 (8:1 hexanes/EtOAc) provided 41 mg (80%) of 

the product as a clear oil: [α]D
26 = –11.9 (c 1.08, CHCl3); IR (thin film) 2954, 2856, 1672, 1463, 

1249, 1115, 967, 837, 777 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.38–7.26 (m, 5H), 5.64 (dt, J = 

15.2, 8.1 Hz, 1H), 5.26 (dd, J = 15.3, 7.5 Hz, 1H), 4.68 (d, J = 12.1 Hz, 1H), 4.59 (d, J = 12.2 

Hz, 1H), 4.42 (t, J = 7.5 Hz, 1H), 4.29 (br. d, J = 6.5 Hz, 1H), 3.45 (s, 3H), 3.12 (s, 3H), 1.44–

1.41 (m, 2H), 0.90 (s, 9H), 0.09 (s, 3H), 0.07 (s, 3H), 0.00 (s, 9H); 13C-NMR (75 MHz, CDCl3): 

δ 171.6, 138.1, 130.2, 128.1, 127.9, 127.5, 127.2, 80.5, 75.7, 72.5, 61.1, 32.4, 25.9, 22.9, 18.2, –

1.9, –4.4; MS (EI) m/z 450 (M+•-OMe), 408, 257, 232, 190, 127, 115, 73; HRMS (EI) m/z 

calculated for C20H34NO4Si2 (M+•-tBu): 408.2026, found 408.2027. 

 

 

 

(E,2S,3R)-2-Benzyloxy-3-tert-butyldiphenylsilyloxy-N-methoxy-N-methyl-6-

trimethylsilylhex-4-enamide (120): General procedure E was carried out with 0.080 g (0.23 

mmol) of hydroxyamide 117 and 87 μL (93 mg, 0.34 mmol) of t-butyldiphenylsilyl chloride.  

Purification via flash chromatography on SiO2 (8:1 hexanes/EtOAc) provided 0.12 g (87%) of 

the product as a clear oil: [α]D
26 = –29.4 (c 1.14, CHCl3); IR (thin film) 3070, 2955, 1669, 1472, 
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1427, 1248, 1076, 852, 701 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.71 (d, J = 6.6 Hz, 2H), 7.66 

(d, J = 6.7 Hz, 2H), 7.40–7.22 (m, 11H), 5.33–5.19 (m, 2H), 4.64–4.52 (m, 1H), 4.56 (d, J = 12.4 

Hz, 1H), 4.47 (d, J = 11.5 Hz, 1H), 4.36 (br. s, 1H), 3.42 (s, 3H), 3.03 (s, 3H), 1.24 (d, J = 6.6 

Hz, 2H), 1.05 (s, 9H), –0.13 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 171.0, 137.8, 136.1, 136.0, 

134.4 (2C), 131.3, 129.2 (2C), 128.0 (2C), 127.4, 127.2, 127.1, 126.5, 82.0, 76.1, 72.2, 60.9, 

32.4, 27.0, 22.7, 19.4, –2.0; MS (EI) m/z 574 (M+•-Me), 532, 381, 281, 239, 190, 135; HRMS 

(EI) m/z calculated for C33H44NO4Si2 (M+•-Me): 574.2809, found 574.2791. 

 

General Procedure F for Vinyl Lithium Addition to Weinreb Amides 122-124:132  Addition 

of t-butyllithium to vinyl bromide at –115 °C can occasionally cause the reaction mixture to 

freeze following several minutes.  Addition of the amide solution to this solidified medium 

remains an effective method for carrying out the reaction. 

 To a solution of 0.52 g (1.5 mmol) of vinyl bromide 113 in 6.5 mL of the Trapp solvent 

mixture (4:1:1 THF:Et2O:pentane) was added 2.0 mL (3.0 mmol) of t-butyllithium in pentane 

(titrated to 1.53 M) (clear → yellow) at –115 °C (liquid N2 in EtOH).  Following 10 min, a 

solution of the Weinreb amide (1.0 mmol) in 6.5 mL of the Trapp solvent mixture was added 

dropwise via a microliter syringe followed by 2 x 2 mL washes with the same solvent system.  

The reaction was maintained at –115 °C for 10 min and flask was then immersed in an ice water 

bath (yellow → dark brown) and stirred for 30 min at 0 °C.  Quench, workup and purification by 

flash chromatography were carried out as specified. 
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(3E,6S,7R,8E)-N-Methoxymethyl-N-tosylamino-6-benzyloxy-7-methoxy-10-

trimethylsilyldeca-3,8-dien-5-one (122):  The general procedure F was performed employing 

0.020 g (0.055 mmol) of Weinreb amide 118.  The reaction was quenched with water and the 

aqueous layer was extracted with Et2O (3x).  The aqueous layer was then acidified with sat. aq. 

NaHSO4 and extracted again with Et2O (3x).  The combined organic extracts were dried over 

Na2SO4, filtered and the crude product was concentrated in vacuo.  Flash chromatography on 

SiO2 (4:1 hexanes/EtOAc) afforded 17 mg (55%) of the product as a clear oil: [α]D
26 = –34.2 (c 

1.07, CHCl3); IR (thin film) 3030, 2951, 1694, 1653, 1626, 1598, 1496, 1454, 1343, 1248, 1159, 

1079, 970, 853, 816, 698 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.71 (d, J = 8.3, 2H), 7.40–7.25 

(m, 7H), 6.78 (dt, J = 15.7, 6.8 Hz, 1H), 6.58 (d, J = 15.8 Hz, 1H), 5.70 (dt, J = 15.3, 8.2 Hz, 1H), 

5.29 (dd, J = 15.2, 8.2 Hz, 1H), 4.71 (s, 2H), 4.62 (d, J = 11.8 Hz, 1H), 4.48 (d, J = 11.9 Hz, 1H), 

3.85–3.80 (m, 2H), 3.31 (s, 3H), 3.26 (t, J = 7.1 Hz, 2H), 3.20 (s, 3H), 2.52 (q, J = 6.6 Hz, 2H), 

2.43 (s, 3H), 1.51 (d, J = 8.1 Hz, 2H), –0.02 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 199.7, 143.5, 

143.1, 137.3, 137.2, 133.5, 129.7, 128.4, 128.2, 127.9, 127.8, 127.2, 124.0, 87.3, 83.9, 80.3, 73.5, 

56.3, 55.7, 45.8, 32.2, 23.1, 21.5, –1.7; MS (ESI) m/z 596 (M+Na)+; HRMS (ESI) m/z calculated 

for NaC30H43NO6SSi (M+Na)+: 596.2478, found 596.2453. 
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(3E,6S,7R,8E)-N-Methoxymethyl-N-tosylamino-6-benzyloxy-7-tert-butyldimethylsilyloxy-

10-trimethylsilyldeca-3,8-dien-5-one (123):  The general procedure F was performed 

employing 0.10 g (0.21 mmol) of Weinreb amide 119.  The reaction was quenched with sat. aq. 

NH4Cl and the aqueous layer was extracted with Et2O (3x).  The combined organic extracts were 

dried over Na2SO4, filtered and the crude product was concentrated in vacuo.  Flash 

chromatography on SiO2 (3:1 hexanes/Et2O) afforded 55 mg (39%) of the product as a clear oil: 

[α]D
26 = –34.2 (c 0.97 , CHCl3); IR (thin film) 3031, 2929, 1695, 1626, 1496, 1471, 1345, 1160, 

1079, 838 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.71 (d, J = 8.3 Hz, 2H), 7.38–7.27 (m, 7H), 

6.74 (dt, J = 15.7, 6.9 Hz, 1H), 6.53 (d, J = 15.8 Hz, 1H), 5.58 (dt, J = 15.7, 8.4 Hz, 1H), 5.31 

(dd, J = 15.3, 7.4 Hz, 1H), 4.70 (s, 2H), 4.59 (d, J = 12.0 Hz, 1H), 4.44 (d, J = 12.0 Hz, 1H), 4.33 

(dd, J = 7.1, 4.9 Hz, 1H), 3.79 (d, J = 4.9 Hz, 1H), 3.31 (s, 3H), 3.23 (t, J = 7.2 Hz, 2H), 2.50 (q, 

J = 7.0 Hz, 2H), 2.43 (s, 3H), 1.44 (d, J = 7.9 Hz, 2H), 0.84 (s, 9H), 0.06 (s, 3H), 0.01 (s, 3H), 

0.02 (s, 9H); 13C-NMR (125 MHz, CDCl3): δ 199.5, 143.5, 142.6, 137.5, 137.1, 129.8, 129.7, 

128.5, 128.3, 128.0, 127.7, 127.4, 127.2, 88.5, 80.3, 75.5, 72.9, 55.6, 45.7, 32.2, 25.8, 22.7, 21.5, 

18.1, –1.9, –4.4, –4.8; MS (ESI) m/z 696 (M+Na)+; HRMS (ESI) m/z calculated for 

NaC35H55NO6SSi2 (M+Na)+: 696.3186, found 696.3155. 
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(3E,6S,7R,8E)-N-Methoxymethyl-N-tosylamino-6-benzyloxy-7-tert-butyldiphenylsilyloxy-

10-trimethylsilyldeca-3,8-dien-5-one (124):  The general procedure F was performed 

employing 0.12 g (0.20 mmol) of Weinreb amide 120.  The reaction was quenched with sat. aq. 

NH4Cl and the aqueous layer was extracted with Et2O (3x).  The combined organic extracts were 

dried over Na2SO4, filtered and the crude product was concentrated in vacuo.  Flash 

chromatography on SiO2 (3:1 hexanes/Et2O) afforded 0.10 g (65%) of the product as a clear oil: 

[α]D
26 = –30.8 (c 1.18 , CHCl3); IR (thin film) 3031, 2953, 1695, 1626, 1428, 1345, 1160, 1112, 

1078, 852, 702 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.75–7.64 (m, 6H), 7.40–7.18 (m, 13H), 

6.69 (dt, J = 15.8, 6.8 Hz, 1H), 6.46 (d, J = 15.8 Hz, 1H), 5.27 (dd, J = 15.3, 7.1 Hz, 1H), 5.16 

(dt, J = 15.3, 7.8 Hz, 1H), 4.69 (s, 2H), 4.43 (d, J = 11.8 Hz, 1H), 4.45–4.38 (m, 1H), 4.30 (d, J = 

11.6 Hz, 1H), 3.80 (d, J = 5.2 Hz, 1H), 3.20 (s, 3H), 3.18 (t, J = 7.5 Hz, 2H), 2.44 (q, J = 7.4 Hz, 

2H), 2.42 (s, 3H), 1.27–1.12 (m, 2H), 0.99 (s, 9H), –0.15 (s, 9H); 13C-NMR (125 MHz, CDCl3): 

δ 198.9, 143.5, 142.6, 137.5, 137.1, 136.0, 135.9, 133.9 (2C), 131.0, 129.6, 129.5, 129.3, 128.3, 

128.2, 127.9, 127.6, 127.4, 127.2, 127.1, 126.2, 88.5, 80.3, 76.2, 72.7, 55.6, 45.7, 32.2, 26.9, 

22.6, 21.4, 19.3, –2.1; MS (ESI) m/z 820 (M+Na)+; HRMS (ESI) m/z calculated for 

NaC45H59NO6SSi2 (M+Na)+: 820.3499, found 820.3463. 

 

 

(E)-Tert-butyl-3-hydroxy-6-trimethylsilylhex-4-enoate (135):128  A round bottom flask 

equipped with a condenser was charged with 0.50 g (2.9 mmol) of tert-butyl 3-hydroxypent-4-
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enoate and 14.5 mL of CH2Cl2.139  To this mixture was cannulated a premixed solution of 1.9 mL 

(1.4 g, 12 mmol) of trimethylallylsilane and 0.13 g (0.15 mmol) of Grubbs II catalyst (stored in 

glovebox) in 14.5 mL of CH2Cl2.  The reaction was stirred for 15 min at rt, heated to reflux for 

22 h then cooled to rt and quenched with 0.52 mL of DMSO.  After 12 h further stirring at rt, the 

mixture was concentrated in vacuo.  Purification by flash chromatography on SiO2 (3:1 

hexanes:Et2O) afforded 0.54 g (72%) of the product as a brown oil.  Geometrical isomer ratio by 

1H-NMR (300 MHz, CDCl3) (CH–OH): 9% (δ 4.75), 91% (δ 4.44) and 87% (δ 2.94), 13% (δ 

2.83) (Avg. = 89:11 E:Z): IR (thin film) 3439, 2978, 1731, 1393, 1249, 1155, 965, 852 cm-1; 1H-

NMR (300 MHz, CDCl3): δ 5.71 (dt, J = 15.3, 8.2 Hz, 1H), 5.33 (dd, J = 15.2, 6.8 Hz, 1H), 4.44 

(p, J = 6.5 Hz, 1H), 2.94 (d, J = 4.0 Hz, 1H), 2.49-2.41 (m, 2H), 1.59-1.40 (m, 2H), 1.47 (s, 9H), 

0.00 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 171.8, 129.4, 129.0, 81.1, 69.3, 43.0, 28.1, 22.7, –

2.0; MS (EI) m/z 201 (M+•-tBu), 169, 143, 117, 112, 101, 91, 73; HRMS (EI) m/z calculated for 

C9H17O3Si (M+•-tBu): 201.0947, found 201.0949. 

 

 

(E)-Tert-butyl-3-tert-butyldiphenylsilyloxy-6-trimethylsilylhex-4-enoate (136): General 

procedure E was carried out with 0.40 g (1.5 mmol) of hydroxyester 135 and 0.59 mL (0.63 g, 

2.3 mmol) of t-butyldiphenylsilyl chloride.  Purification via flash chromatography on SiO2 (50:1 

hexanes/Et2O) provided 0.64 g (87%) of the product as a clear oil: IR (thin film) 3072, 2956, 

1732, 1659, 1473, 1428, 1367, 1249, 1136, 1070, 850, 702 cm-1; 1H-NMR (300 MHz, CDCl3): δ 

7.73–7.66 (m, 4H), 7.44–7.32 (m, 6H), 5.36–5.24 (m, 2H), 4.54 (q, J = 6.4 Hz, 1H), 2.48 (dd, J = 

14.4, 6.0 Hz, 1H), 2.32 (dd, J = 14.4, 6.0 Hz, 1H), 1.38 (s, 9H), 1.32–1.24 (m, 2H), 1.04 (s, 9H), 

–0.09 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 170.1, 135.9 (2C), 134.3 (2C), 130.2, 129.5, 129. 
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4, 128.3, 127.4, 127.3, 80.1, 72.0, 45.3, 28.1, 27.0, 22.4, 19.3, –2.0; MS (ESI) m/z 519 (M+Na)+; 

HRMS (ESI) m/z calculated for NaC29H44O3Si2 (M+Na)+: 519.2727, found 519.2723. 

 

 

(E)-3-Tert-butyldiphenylsilyloxy-6-trimethylsilylhex-4-enal (137):140  To a solution of 0.30 g 

(0.60 mmol) of ester 136 in 3.5 mL of toluene at –78 °C was added 0.72 mL (0.72 mmol) of 

DIBAl-H in hexanes (1.0 M).  Following 30 min, the reaction was quenched at –78 °C with sat. 

aq. NH4Cl, warmed to rt, and diluted with sat. aq. Rochelle’s salt.  The mixture was stirred 

vigorously for 15 min, then partitioned between brine and EtOAc.  The aqueous layer was 

extracted with EtOAc (3x) and the combined organic layers were dried with Na2SO4.  The 

organic layers were filtered and crude product concentrated in vacuo.  Purification by flash 

chromatography on SiO2 (30:1 hexanes/EtOAc) afforded 0.21 g (82%) of the product as an oil: 

IR (thin film) 3072, 2955, 1726, 1659, 1248, 1112, 851, 702 cm-1; 1H-NMR (300 MHz, CDCl3): 

δ 9.73 (t, J = 2.6 Hz, 1H), 7.71–7.66 (m, 4H), 7.48–7.35 (m, 6H), 5.49 (dt, J = 15.1, 7.7 Hz, 1H), 

5.36 (dd, J = 15.3, 6.4 Hz, 1H), 4.63 (q, J = 5.9 Hz, 1H), 2.51–2.41 (m, 2H), 1.37 (d, J = 7.5 Hz, 

2H), 1.07 (s, 9H), –0.04 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 201.8, 135.9, 135.8, 133.8 (2C), 

129.8 (2C), 129.6, 128.8, 127.7, 127.5, 70.5, 51.6, 27.0, 22.6, 19.3, –2.0; MS (ESI) m/z 447 

(M+Na)+; HRMS (ESI) m/z calculated for NaC25H36O2Si2 (M+Na)+: 447.2152, found 447.2127. 
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R*-(3E,5S,7R,8E)-1-N-Methoxymethyl-N-tosylamino-7-tert-butyldiphenylsilyloxy-10-

trimethylsilyldeca-3,8-dien-5-ol + R*-(3E,5R,7R,8E)-1-N-Methoxymethyl-N-tosylamino-7-

tert-butyldiphenylsilyloxy-10-trimethylsilyldeca-3,8-dien-5-ol (138):83  To 0.050 g (0.19 

mmol) of alkyne 81 in 0.63 mL of CH2Cl2 at 0 °C was added 54 mg (0.21 mmol) of Cp2Zr(H)Cl 

in portions.  The mixture was then slowly warmed to ambient temperature (cloudy → clear 

yellow color shift) for 20 min, then stirred 20 min longer following dissolution of the solid.  The 

flask was immersed in a –55 °C bath (cryocool) and 0.11 mL (1.15 mmol) of Me2Zn in toluene 

(2.0 M) was added.  The reaction was stirred for 45 min at –55 °C then warmed to 0 °C for 5 min 

whereupon 98 mg (0.23 mmol) of aldehyde 137 was added dropwise and the reaction was stirred 

for 4 h.  The reaction was carefully quenched with sat. aq. Rochelle’s salt, stirred for 30 min, 

then the aqueous layer was extracted with Et2O (3x).  The combined organic layers were dried 

over Na2SO4, filtered through florsil with Et2O, and the crude product was concentrated in 

vacuo.  Purification by flash chromatography on SiO2 (3:2 hexanes/Et2O) gave 91 mg (68%) of 

the product as an oil.  The diastereomeric ratio for this substrate was not determined 

(approximately 1:1).  The diastereomeric mixture was characterized by IR and MS: IR (thin film) 

3521, 2953, 1428, 1343, 1158, 1111, 967, 852, 703 cm-1; MS (ESI) m/z 716 (M+Na)+; HRMS 

(ESI) m/z calculated for NaC38H55NO5SSi2 (M+Na)+: 716.3237, found 716.3252. 

 

 

 

 

(3E,8E)-1-N-Methoxymethyl-N-tosylamino-7-tert-butyldiphenylsilyloxy-10-

trimethylsilyldeca-3,8-dien-5-one (132):35, 36  To 0.090 g (0.13 mmol) of alcohol 138 in 1.3 mL 
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of CH2Cl2 was added 0.17 g (0.39 mmol) of Dess-Martin periodinane at 0 °C.  The mixture was 

stirred at 0 °C for 1.5 hr then raised to rt for 1 h.  The reaction was quenched with hexanes, 

filtered through florsil (2:1 hexanes/EtOAc) and the crude product was concentrated in vacuo.  

Purification by flash chromatography on SiO2 (3:2 hexanes/Et2O) afforded 72 mg (77%) of the 

product as an oil: IR (thin film) 2954, 1695, 1668, 1471, 1345, 1248, 1160, 1073, 965, 851, 703 

cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.72–7.61 (m, 6H), 7.45–7.25 (m, 8H), 6.44 (dt, J = 15.9, 

6.9 Hz, 1H), 5.92 (d, J = 15.9 Hz, 1H), 5.32 (dt, J = 15.1, 7.3 Hz, 1H), 5.24 (dd, J = 15.3, 6.4 Hz, 

1H), 4.69 (s, 2H), 4.60 (q, J = 6.4 Hz, 1H), 3.31 (s, 3H), 3.20 (t, J = 7.3 Hz, 1H), 2.75 (dd, J = 

14.4, 6.3 Hz, 1H), 2.54 (dd, J = 14.3, 6.9 Hz, 1H), 2.44 (q, J = 7.3 Hz, 2H), 2.43 (s, 3H), 1.28 (d, 

J = 7.0 Hz, 2H), 1.02 (s, 9H), –0.12 (s, 9H); 13C-NMR (75 MHz, CDCl3): δ 197.8, 143.6, 142.6, 

137.2, 135.9 (2C), 134.1 (2C), 132.6, 130.1, 129.7, 129.6, 129.5, 128.4, 127.5, 127.4, 127.2, 

80.4, 71.8, 55.7, 49.2, 45.8, 32.1, 27.0, 22.4, 21.5, 19.3, –2.0; MS (ESI) m/z 714 (M+Na)+; 

HRMS (ESI) m/z calculated for NaC38H53NO5SSi2 (M+Na)+: 714.3081, found 714.3053. 
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7.0  EXPERIMENTAL SECTION FOR CHAPTER 3 

 

 

1-Phenylhept-1-en-3-ol (159):230  To 1.90 mL (2.00 g, 15.1 mmol) of cinnamaldehyde in 15 mL 

of Et2O at –78 °C was added 10.4 mL (16.6 mmol) of n-butyllithium in hexanes (1.6 M) via 

syringe.  The mixture was stirred at –78 °C for 30 min, then quenched carefully with sat. aq. 

NH4Cl.  The aqueous layer was extracted with Et2O (3x), the combined organic layers were dried 

over Na2SO4, filtered and the crude product mixture concentrated in vacuo.  Purification by flash 

chromatography on SiO2 (7.5:1 hexanes/EtOAc) yielded 2.57 g (89%) of the title compound as a 

yellow oil: 1H-NMR (300 MHz, CDCl3): δ 7.46–7.22 (m, 5H), 6.58 (d, J = 16.0 Hz, 1H), 6.23 

(dd, J = 15.9, 6.8 Hz, 1H), 4.29 (q, J = 6.5 Hz, 1H), 1.69–1.50 (m, 2H), 1.49–1.30 (m, 4H), 0.93 

(t, J = 6.7 Hz, 3H). 

 

 

1-Phenylbut-2-en-1-ol (160):231  To 4.74 g (3.18 mL, 30.2 mmol) of bromobenzene in 200 mL 

of Et2O at –78 °C was added 35.5 mL (60.4 mmol) of t-butyllithium in pentane (1.7 M).  

Following 1 h, 2.51 mL (2.12 g, 30.2 mmol) of crotonaldehyde was added slowly via syringe, 

and the mixture was stirred an additional 20 min.  The reaction was quenched carefully with H2O 

and slowly raised to ambient temperature.  The aqueous layer was extracted with Et2O (3x), the 
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combined organic layers were dried over Na2SO4, filtered and the crude product mixture 

concentrated in vacuo.  The crude product was used as isolated: 1H-NMR (300 MHz, CDCl3): δ 

7.40–7.27 (m, 5H), 5.85–5.67 (m, 2H), 5.18 (br. dd, J = 6.4, 3.2 Hz, 1H), 1.85 (d, J = 3.5 Hz, 

1H), 1.73 (d, J = 5.5 Hz, 3H). 

 

 

1-Naphthalen-2-ylbut-2-en-1-ol (161):232  To 1.2 g (49 mol) of mechanically activated Mg(0) 

was added 15 mL of THF and I2 (cat., in 0.5 mL of THF).  Initiation was afforded by brief 

warming with a heatgun (brown → clear/white color shift), following which 0.010 kg (48 mmol) 

of 2-bromonapthalene in 10 mL of THF was carefully added over 30 min to maintain a gentle 

reflux.  The mixture was refluxed 15 min longer with a heatgun, then stirred at ambient 

temperature for 1 h.  In a separate flask, 4.8 mL (4.1 g) of crotonaldehyde was dissolved in 19 

mL of THF and the temperature reduced to –78 °C.  The active Grignard reagent was added via 

syringe over 15 min and after 1 h, the reaction was quenched carefully with sat. aq. NH4Cl and 

raised to ambient temperature.  The aqueous layer was extracted with Et2O (3x), the combined 

organic layers were dried over Na2SO4, filtered and the crude product mixture concentrated in 

vacuo.  The product was purified by flash chromatography on SiO2 (6:1 hexanes/EtOAc) to 

afford 7.5 g (79%) of the product as a highly viscous, yellow oil: 1H-NMR (300 MHz, CDCl3): δ 

7.86–7.82 (m, 4H), 7.51–7.45 (m, 3H), 5.90–5.73 (m, 2H), 5.35 (d, J = 5.1 Hz, 1H), 2.00 (s, 1H), 

1.76 (d, J = 5.6 Hz, 3H). 

 

General Procedure A for Preparation of Propargylic Ethers 162-164, 171:  To 0.080 g (2.0 

mmol) of sodium hydride (60% dispersion in mineral oil, pre-washed 3x with pentane) was 

OH
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added 1.4 mL of THF.  The solution was cooled to 0 °C, and the allylic alcohol (1.0 mmol) was 

added via syringe or Pasteur pipette.  The reaction was stirred at 0 °C for ~15 min, then warmed 

slowly to ambient temperature.  At this time, a condenser was attached to the reaction vessel and 

the reaction mixture was heated to reflux for 30 min, whereupon 0.30 g (2.0 mmol) of propargyl 

bromide in toluene (80%/wt) was added carefully through the condenser.  Following 1 h at 

reflux, the solution was cooled to ambient temperature and quenched carefully with H2O.  The 

aqueous layer was extracted with Et2O (3x), the combined organic layers were dried over 

MgSO4, and the solvent was filtered and removed in vacuo.  The product was purified as 

indicated. 

 

 

3-Prop-2-ynyloxyhept-1-enylbenzene (162):  The general procedure A was followed 

employing 1.14 g (6.00 mmol) of allylic alcohol 159.  Purification by flash chromatography on 

SiO2 (40:1 hexanes/EtOAc) afforded 1.03 g (75%) of the product as a red-orange oil.  Further 

purification was accomplished by distillation at low pressure (~100 °C): IR (thin film) 3301, 

3027, 2956, 2116, 1494, 1071, 969, 750, 693 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.43–7.24 (m, 

5H), 6.58 (d, J = 15.9 Hz, 1H), 6.03 (dd, J = 15.9, 8.3 Hz, 1H), 4.23 (dd, J = 15.6, 2.1 Hz, 1H), 

4.08 (dd, J = 15.5, 2.1 Hz, 1H), 4.05 (q, J = 6.7 Hz, 1H), 2.42 (t, J = 2.2 Hz, 1H), 1.78–1.69 (m, 

1H), 1.65–1.53 (m, 1H), 1.49–1.32 (m, 4H), 0.91 (t, J = 6.7 Hz, 3H); 13C-NMR (75 MHz, 

CDCl3): δ 136.3, 133.0, 129.3, 128.5, 127.7, 126.4, 80.2, 79.6, 73.8, 55.0, 35.2, 27.4, 22.5, 13.9; 

MS (EI) m/z 228 (M+•), 198, 189, 171, 131, 85, 57; HRMS (EI) m/z calculated for C16H20O: 

228.1514, found 228.1508. 
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1-Prop-2-ynyloxybut-2-enylbenzene (163):  The general procedure A was followed employing 

889 mg (6.00 mmol) of allylic alcohol 160.  The product was purified by flash chromatography 

on SiO2 (40:1 hexanes/EtOAc) to afford 939 mg (84%) of the product as a red-orange oil: IR 

(thin film) 3295, 3029, 2916, 2116, 1493, 1451, 1062, 968, 755, 700 cm-1; 1H-NMR (300 MHz, 

CDCl3): δ 7.39–7.26 (m, 5H), 5.78 (dq, J = 15.3, 6.2 Hz, 1H), 5.60 (ddq, J = 15.3, 7.2, 1.3 Hz, 

1H), 4.98 (d, J = 7.4 Hz, 1H), 4.17 (dd, J = 15.7, 2.4 Hz, 1H), 4.09 (dd, J = 15.7, 2.4 Hz, 1H), 

2.42 (t, J = 2.4 Hz, 1H), 1.74 (dd, J = 6.4, 1.4 Hz, 3H); 13C-NMR (75 MHz, CDCl3): δ 140.7, 

131.1, 129.1, 128.3, 127.5, 126.8, 80.8, 79.9, 74.1, 54.7, 17.1; MS (EI) m/z 186 (M +•), 171, 147, 

131, 105, 91, 77, 69; HRMS (EI) m/z calculated for C13H14O: 186.1045, found 186.1039. 

 

 

2-1-Prop-2-ynyloxybut-2-enylnaphthalene (164):  The general procedure A was followed 

employing 1.42 g (7.16 mmol) of allylic alcohol 161, 0.480 g (12.0 mmol) of NaH, and 1.79 g 

(12.0 mmol) of propargyl bromide.  Purification by flash chromatography on SiO2 (50:1 → 25:1 

hexanes/EtOAc) afforded 1.23 g (73%) of the product as a viscous, red-orange oil.  Further 

purification was accomplished by distillation at low pressure (~120 °C): IR (thin film) 3293, 

3056, 2854, 2116, 1508, 1440, 1062, 967, 750 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.86–7.82 

(m, 4H), 7.50–7.45 (m, 3H), 5.83 (dq, J = 15.2, 6.2 Hz, 1H), 5.68 (ddq, J = 15.4, 7.2, 1.4 Hz, 

1H), 5.15 (d, J = 7.2 Hz, 1H), 4.22 (dd, J = 15.6, 2.3 Hz, 1H), 4.12 (dd, J = 15.8, 2.3 Hz, 1H), 

2.45 (t, J = 2.4 Hz, 1H), 1.75 (d, J = 6.4 Hz, 3H); 13C-NMR (75 MHz, CDCl3): δ 138.0, 133.2, 

133.0, 131.0, 129.5, 128.2, 127.9, 127.6, 126.0, 125.8, 125.7, 124.8, 81.0, 79.9, 74.3, 55.0, 17.7; 
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MS (EI) m/z 236 (M+•), 221, 197, 179, 155, 141, 127; HRMS (EI) m/z calculated for C17H16O: 

236.1201, found 236.1201. 

 

General Procedure B for Preparation of Vinylborolanes 165-167, 170:154, 155  The alkyne (1.0 

equiv) was added to a suspension of Cp2Zr(H)Cl (0.05 equiv) in CH2Cl2 (3.0 M) at 0 °C in a 

microwave reaction vessel.  Pinacolborane (1.1 equiv) was added and the resulting suspension 

was warmed directly to ambient temperature, then heated at 100 οC in a microwave reactor for 

45 min. The solvent was removed in vacuo and the residue purified by flash chromatography on 

Iatrobeads 6RS-8060 silica gel. 

 

 

2-(1E)-3-(E)-1-Phenylhept-1-en-3-yloxyprop-1-enyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

(165):  General Procedure B was followed employing 1.00 g (4.38 mmol) of alkyne 162.  

Purification by flash chromatography (5% EtOAc/hexanes) gave 1.18 g (75%) of the title 

compound as a colorless oil: 1H-NMR (300 MHz, CDCl3): δ 7.42–7.20 (m, 5H), 6.66 (dt, J = 18, 

4.6 Hz, 1H), 6.49 (d, J = 16 Hz, 1H), 6.05 (dd, J = 16, 8.0 Hz, 1H), 5.73 (dt, J = 18, 1.8 Hz, 1H), 

4.15 (ddd, J = 15, 4.4, 1.9 Hz, 1H), 3.96 (ddd, J = 15, 4.8, 1.8 Hz, 1H), 3.85 (dt, J = 6.5, 7.3 Hz, 

1H), 1.78–1.50 (m, 2H), 1.27 (s, 12H), 1.40–1.24 (m, 4H), 0.89 (m, 3H); 13C-NMR (75 MHz, 

CDCl3): δ 149.8, 136.5, 132.0, 130.5, 128.4, 127.5, 126.3, 118.6 (br), 83.0, 80.4, 69.5, 35.5, 

27.4, 24.6, 22.6, 14.0; MS (EI) m/z 356 (M+•), 341, 326, 299, 270, 257, 199, 173, 167, 155, 143, 

131, 117, 105, 91, 85, 77, 67, 57; HRMS m/z calculated for C22H33BO3: 356.2523, found 

356.2523. 
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2-(1E)-3-(E)-1-Phenylbut-2-enyloxyprop-1-enyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

(166):  General Procedure B was followed employing 1.14 g (6.14 mmol) of alkyne 163. 

Purification by flash chromatography (5% EtOAc/hexanes) gave 1.60 g (83%) of the title 

compound as a colorless oil: 1H-NMR (300 MHz, CDCl3): δ 7.40–7.20 (m, 5H), 6.67 (dt, J = 18, 

4.5 Hz, 1H), 5.76 (dt, J = 16, 1.8 Hz, 1H), 5.70 (ddq, J = 15, 5.9, 0.6 Hz, 1H), 5.57 (ddq, J = 15, 

7.2. 1.2 Hz, 1H), 4.74 (d, J = 7.0 Hz, 1H), 4.07 (ddd, J = 15, 4.5, 1.8 Hz, 1H), 4.00 (ddd, J = 15, 

4.5, 1.8 Hz, 1H), 1.70 (dd, J = 6.3, 1.3 Hz, 3H), 1.27 (s, 12H); 13C-NMR (75 MHz, CDCl3): 

δ 149.4, 141.5, 132.0, 128.2, 128.0, 127.2, 126.5, 118.9 (br), 83.0, 81.8, 69.3, 24.6, 17.6; MS 

(EI) m/z 314 (M+•), 299, 284, 271, 256, 230, 214, 208, 199, 169, 147, 131, 119, 91, 85, 69, 59; 

HRMS m/z calculated for C19H27BO3: 314.2053, found 314.2060. 

 

 

2-(1E)-3-(E)-1-Naphthalen-2-ylbut-2-enyloxyprop-1-enyl-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (167):  General Procedure B was followed employing 1.00 g (4.23 mmol) of 

alkyne 164. Purification by flash chromatography (8% EtOAc/hexanes) gave 1.19 g (77%) of the 

title compound as a colorless oil: 1H-NMR (300 MHz, CDCl3): δ 7.81 (m, 4H), 7.46 (m, 3H), 

6.70 (dt, J = 18, 4.5 Hz, 1H), 5.81–5.61 (m, 3H), 4.92 (d, J = 6.6 Hz, 1H), 4.11 (ddd, J = 15, 4.5, 

1.8 Hz, 1H), 4.05 (ddd, J = 15, 4.5, 1.9 Hz, 1H), 1.72 (d, J = 5.8 Hz, 3H), 1.27 (s, 12H); 13C-

NMR (75 MHz, CDCl3): δ 149.4, 138.9, 133.1, 132.8, 131.8, 128.2, 128.0, 127.8, 127.5, 125.8, 

125.6, 125.2, 124.7, 118.8 (br), 83.0, 81.9, 69.3, 24.6, 17.6; MS (EI) m/z 364 (M+•), 349, 280, 
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197, 181, 169, 155, 141, 127, 115, 101, 85, 69, 59; HRMS m/z calculated for C23H29BO3: 

364.2210, found 364.2228. 

 

General Procedure C for Preparation of Boronic Aldehydes 168-170:19, 183  Note that 

distillation of propargylic ethers 162-164 benefits the reproducibility of iridium catalyzed 

isomerizations.  A solution of [IrCl(C8H14)2]2 (1.0 mol%, 0.02 equiv Ir) and PCy3 (6.0 mol%, 

0.06 equiv) in anhydrous CH2Cl2 or 1,2-dichloroethane (1,2-DCE) was added to a solution of 

NaBPh4 (2.0 mol%, 0.02 equiv) in and equal volume of CH2Cl2/acetone (25:1) or 1,2-

DCE/acetone (25:1) (0.67M final concentration in substrate) and the resulting yellow solution 

stirred for 5 min at ambient temperature.  The vinylborolane (1.0 equiv) was added and the 

reaction stirred for 90 min at ambient temperature whereupon PPh3 (6.0 mol%, 0.06 equiv) was 

added and the resulting solution heated at (40 or 80 °C) for the indicated time.  The solvent was 

removed in vacuo and the residue purified by flash chromatography on Iatrobeads 6RS-8060 

silica gel.  Diastereomeric ratios were determined by integration of the specified resonances from 

300 MHz 1H-NMR. 

 

 

 

 R*-(E,2R,3S)-2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-ylmethyl-3-phenylnon-4-enal 

(168):  General Procedure C (1,2-DCE, 80 οC) was followed employing 1.15 g (3.23 mmol) of 

boronic ester 165 and a reaction time of 2.5 h.  Purification by flash chromatography (6% 

EtOAc/hexanes) gave 0.772 g (67%) of the title compound as a colorless oil (CHO, syn:anti = 

92:8): 1H-NMR (300 MHz, CDCl3): δ 9.77 (d, J = 1.8 Hz, 1H), 7.35–7.25 (m, 2H), 7.25–7.15 
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(m, 3H), 5.67 (ddt, J  = 15, 8.7, 1.2 Hz, 1H), 5.53 (dt, J = 15, 6.6 Hz, 1H), 3.53 (t, J = 8.6 Hz, 

1H), 2.94 (m, 1H), 2.00 (m, 2H), 1.21 (s, 6H), 1.35–1.19 (m, 4H), 1.18 (s, 6H), 0.87 (m, 3H), 

0.80 (dd, J = 16, 9.6 Hz, 1H), 0.68 (dd, J = 16, 5.0 Hz, 1H); 13C-NMR (75 MHz, CDCl3): 

δ 205.1, 142.1, 132.9, 129.9, 128.4, 127.8, 126.4, 83.0, 52.6, 51.1, 32.1, 31.3, 24.7, 24.5, 22.0, 

13.8, 9.7 (br). 

 

 

 

R*-(E,2R,3S)-3-Methyl-2-4,4,5,5-tetramethyl-1,3,2-dioxaboro-lan-2-ylmethyl-5-phenylpent-

4-enal (169):  General Procedure C (CH2Cl2, 40 οC) was followed employing 0.500 g (1.59 

mmol) of boronic ester 166 and a reaction time of 4 h.  Purification by flash chromatography 

(8% EtOAc/hexanes) gave 0.326 g (65%) of the title compound as a colorless oil (vinyl CH, 

syn:anti = 92:8): 1H-NMR (300 MHz, CDCl3): δ 9.76 (d, J = 0.8 Hz, 1H), 7.36–7.20 (m, 5H), 

6.42 (d, J = 16 Hz, 1H), 6.19 (dd, J = 16, 7.5 Hz, 1H), 2.85 (m, 1H), 2.70 (m, 1H), 1.24 (s, 6H), 

1.21 (s, 6H), 1.12 (d, J = 6.9 Hz, 1H), 1.00 (dd, J = 16, 10 Hz, 1H), 0.82 (dd, J = 16, 5.0 Hz, 1H); 

13C-NMR (75 MHz, CDCl3): δ 204.8, 137.1, 132.7, 130.1, 128.4, 127.1, 126.0, 83.1, 53.2, 37.8, 

24.7, 24.5, 16.4, 6.7 (br). 

 

 

 

R*-(E,2R,3S)-3-Methyl-2-4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-ylmethyl-5-naphthalen-

2-ylpent-4-enal (170):  General Procedure C (CH2Cl2, 40 οC) was followed employing 0.264 g 

(0.723 mmol) of boronic ester 167 and a reaction time of 4 hr.  Purification by flash 
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chromatography (10% EtOAc/hexanes) gave 0.159 g (61%) of the title compound as a colorless 

oil (CHO, syn:anti = 91:9).  Slow evaporation from pentane at –22 °C afforded crystals which 

were suitable for X-Ray analysis: 1H-NMR (300 MHz, CDCl3): δ 9.79 (d, J = 0.9 Hz, 1H), 7.80–

7.75 (m, 3H), 7.69 (s, 1H), 7.56 (dd, J = 8.6, 1.7 Hz, 1H), 7.48–7.39 (m, 2H), 6.58 (d, J = 16 Hz, 

1H), 6.32 (dd, J = 16, 7.5 Hz, 1H), 2.91 (m, 1H), 2.76 (m, 1H), 1.24 (s, 6H), 1.21 (s, 6H), 1.16 

(d, J = 6.9 Hz, 3H), 1.04 (dd, J = 16, 10 Hz, 1H), 0.86 (dd, J = 16, 5.1 Hz, 1H); 13C-NMR (75 

MHz, CDCl3): δ 204.7, 134.5, 133.5, 133.1, 132.7, 130.2, 128.0, 127.7, 127.5, 126.1, 125.7, 

125.5, 123.4, 83.1, 53.2, 37.9, 24.7, 24.5, 16.4, 6.9 (br). 

 

 

1-(E)-3-Prop-2-ynyloxyprop-1-enylbenzene (171):  The general procedure A was followed 

employing 1.0 g (7.5 mmol) of cinnamyl alcohol.  Purification by flash chromatography on SiO2 

(25:1 hexanes/EtOAc) followed by Kughelrohr distillation (65-68 °C, 150 mtorr) gave 1.0 g 

(77%) of the product as a clear oil: IR (thin film) 3293, 3082, 2851, 2116, 1655, 1599, 1386, 

1117, 1081, 967, 744 cm-1; 1H-NMR (500 MHz, CDCl3): δ 7.41 (d, J = 7.4, 2H), 7.35 (t, J = 7.3 

Hz, 2H), 7.28–7.24 (m, 1H), 6.66 (d, J = 15.9 Hz, 1H), 6.29 (dt, J = 15.9, 6.2 Hz, 1H), 4.26 (dd, 

J = 6.2, 1.0 Hz, 2H), 4.22 (d, J = 2.3 Hz, 2H), 2.47 (t, J = 2.3 Hz, 1H); 13C-NMR (75 MHz, 

CDCl3): δ 136.5, 133.3, 128.5, 127.7, 126.5, 125.0, 79.7, 74.4, 70.1, 57.0; MS (EI) m/z 172 

(M+•), 142, 129, 117, 91, 79, 65; HRMS (EI) m/z calculated for C12H12O (M+•-H): 171.0810, 

found 171.0815. 
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(R,S)-3,6,6-Trimethylbicyclo[3.1.1]heptane-2,3-oxy-(1E)-3-cinnamyloxy-prop-1-enylboronic 

ester (172):  General Procedure B was followed employing 0.10 g (0.58 mmol) of alkyne 171 

and 0.12 g (0.64 mmol) of (–)-pinaneborane as an alternative to pinacolborane.157  Purification 

by flash chromatography on SiO2 (15:1 hexanes/EtOAc) gave 0.16 g (78%) of the title 

compound as a colorless oil: [α]D
26 = –10.8 (c 1.10, CHCl3); IR (thin film) 3026, 2917, 1645, 

1599, 1495, 1121, 1031, 776 cm-1; 1H-NMR (500 MHz, CDCl3): δ 7.39 (d, J = 7.4, 2H), 7.32 (t, 

J = 7.4 Hz, 2H), 7.28–7.23 (m, 1H), 6.69 (dt, J = 18.1, 4.7 Hz, 1H), 6.63 (d, J = 15.9, 1H), 6.30 

(dt, J = 15.9, 5.9 Hz, 1H), 5.78 (d, J = 18.2 Hz, 1H), 4.33 (dd, J = 8.8, 1.8 Hz, 1H), 4.18 (dd, J = 

5.9, 1.0 Hz, 2H), 4.14 (dd, J = 4.7, 1.6 Hz, 2H), 2.36 (ddt, J = 13.7, 8.8, 2.4 Hz, 1H), 2.22 (dtd, J 

= 10.9, 6.1, 2.2 Hz, 1H), 2.08 (t, J = 5.3 Hz, 1H), 1.94–1.91 (m, 1H), 1.91–1.86 (m, 1H), 1.56 (s, 

3H), 1.30 (s, 3H), 1.16 (d, J = 10.9 Hz, 1H), 0.86 (s, 3H); 13C-NMR (75 MHz, CDCl3): δ 149.0, 

136.8, 132.3, 128.5, 127.6, 126.5, 126.0, 119 (br), 85.7, 77.8, 71.7, 70.9, 51.4, 39.5, 38.1, 35.5, 

28.6, 27.1, 26.4, 24.0; MS (EI) m/z 352 (M+•), 283, 248, 200, 133, 117, 105; HRMS (EI) m/z 

calculated for C22H29BO3: 352.2210, found 352.2202. 

 

 

 

R*-3-Hydroxy-4-hydroxymethyl-5-phenylundec-6-enethioic acid S-tert-butyl ester (175):  

To 0.15 g (0.42 mmol) of β-boronic aldehyde 168 (92:8 syn:anti) in 4.2 mL CH2Cl2 was added 

112 mg (0.547 mmol) of (1-tert-butylsulfanyl-vinyloxy)-trimethyl-silane, and the flask was 

immersed in a –78 °C bath.233  To the mixture was added 0.63 mL (0.63 mmol) of 

dimethylaluminum chloride in hexanes (1.0 M) dropwise and the reaction was stirred for 1 h at –

78 °C.  The reaction was quenched with 10% w/w citric acid in MeOH and slowly raised to 
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ambient temperature.  Water was added to form a biphasic mixture, and the aqueous layer was 

extracted with Et2O (3x).  The combined organic layers were dried over Na2SO4, filtered, and the 

solvent removed.  The crude borane was passed through a plug of silica (5:1 hexanes/EtOAc) 

and isolated in vacuo.  The compound mixture was then subject to 12 mL of a 2:1:1 CH2Cl2:1M 

NaOH:30% HOOH solution for 1.5 h.  Following this time, the aqueous layer was extracted with 

CH2Cl2 (3x), and the combined organic layers were dried over Na2SO4.  The solvent was filtered 

and removed in vacuo.  Purification by flash chromatography on SiO2 (5:1 hexanes/EtOAc) 

yielded 95 mg (60%) of the product as a clear, viscous oil: IR (thin film) 3364, 3027, 2960, 

1679, 1454, 1364, 1054, 969, 758, 700 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.33–7.17 (m, 5H), 

5.68–5.52 (m, 2H), 4.55 (dq, J = 9.6, 3.3 Hz, 1H), 3.79 (dt, J = 11.6, 2.6 Hz, 1H), 3.74 (dd, J = 

10.9, 8.4 Hz, 1H), 3.33 (ddd, J = 11.8, 8.0, 3.8 Hz, 1H), 3.31 (d, J = 4.1 Hz, 1H), 2.95 (dd, J = 

15.6, 9.6 Hz, 1H), 2.67 (dd, J = 15.7, 3.3 Hz, 1H), 2.62 (dd, J = 8.0, 2.6 Hz, 1H), 2.03 (q, J = 6.7 

Hz, 2H), 1.64–1.56 (m, 1H), 1.49 (s, 9H), 1.40–1.24 (m, 4H), 0.88 (t, J = 7.1 Hz, 3H); 13C-NMR 

(75 MHz, CDCl3): δ 200.2, 143.6, 132.6, 131.6, 128.6, 127.8, 126.2, 69.8, 60.5, 50.3, 48.5, 48.0, 

47.6, 32.2, 31.4, 29.7, 22.1, 13.8; MS (EI) m/z 360 (M+•-H2O), 304, 173, 117, 91; HRMS (EI) 

m/z calculated for C22H32O2S (M+•-H2O): 360.2123, found 360.2128. 

 

 

 

 

R*-4-Hydroxy-5-1-phenylhept-2-enyl-tetrahydropyran-2-one (176):  To 0.050 g (0.14 mmol) 

of β-boronic aldehyde 168 (92:8 syn:anti) in 1.4 mL CH2Cl2 was added 37 mg (0.18 mmol) of 

(1-tert-butylsulfanyl-vinyloxy)-trimethyl-silane, and the flask was immersed in a –78 °C bath.233  
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To the mixture was added 0.21 mL (0.21 mmol) of dimethylaluminum chloride in hexanes (1.0 

M) dropwise and the reaction was stirred for 1 h at –78 °C.  The reaction was quenched at –78 

°C by addition of H2O and slowly raised to ambient temperature.  The aqueous layer was 

extracted with Et2O (3x) and the combined organic layers were dried over Na2SO4.  Filtration of 

the organic extracts followed by removal of the solvent in vacuo left a residue that was 

immediately subject to 4 mL of a 2:1:1 MeOH:1M NaOH:30% HOOH solution for 1 h.  

Following this time, the solution was acidified with aq. 1M HCl to ~pH 0.5 and stirred for 2 h.  

The aqueous layer was then extracted with Et2O (3x) and the combined organic layers were dried 

over Na2SO4, filtered and the crude product mixture was concentrated in vacuo.  Remaining 

solvents were removed under high vacuum.  Purification of flash chromatography on SiO2 (7:3 

hexanes/EtOAc) afforded 29 mg (71%) of the title compound as a clear, viscous oil.  Separation 

of the diastereomers by GC-MS provided the diastereomer ratio: 2.7% (Tr = 19.26), 97.3% (Tr = 

19.38).  IR (thin film) 3431, 3028, 2957, 2926, 1720, 1188, 1064, 982, 702 cm-1; 1H-NMR (300 

MHz, CDCl3): δ 7.36–7.16 (m, 5H), 5.69–5.54 (m, 2H), 4.48–4.35 (m, 1H), 4.32 (t, J = 11.5 Hz, 

1H), 3.81 (dd, J = 11.6, 4.9 Hz, 1H), 3.25 (dd, J = 10.9, 8.3 Hz, 1H), 2.79 (dd, J = 18.2, 2.9 Hz, 

1H), 2.72 (dd, J = 18.2, 3.9 Hz, 1H), 2.24 (tdd, J = 11.6, 4.9, 1.6 Hz, 1H), 2.02 (q, J = 6.8 Hz, 

2H), 1.36–1.25 (m, 4H), 0.88 (t, J = 7.0 Hz, 1H); 13C-NMR (75 MHz, CDCl3): δ 170.3, 141.7, 

133.1, 130.3, 128.9, 127.2, 126.9, 68.3, 63.4, 47.5, 41.8, 39.3, 32.1, 31.3, 22.2, 13.8; MS (EI) m/z 

270 (M+•-H2O), 210, 173, 117, 91; HRMS (EI) m/z calculated for C18H22O2 (M+•-H2O): 

270.1620, found 270.1623. 
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R*-4-Hydroxy-5-3-naphthalen-2-yl-1-phenylallyl-tetrahydropyran-2-one (177):  To 0.17 mg 

(0.48 mmol) of β-boronic aldehyde 170 (91:9 syn:anti) (1 mmol) in 4.8 mL CH2Cl2 was added 

127 mg (0.621 mmol) of (1-tert-butylsulfanyl-vinyloxy)-trimethyl-silane, and the flask was 

immersed in a –78 °C bath.233  To the mixture was added 0.72 mL (0.71 mmol) of 

dimethylaluminum chloride in hexanes (1.0 M) dropwise and the reaction was stirred for 1 h at –

78 °C.  The reaction was quenched at –78 °C with 10% w/w citric acid in MeOH and slowly 

raised to ambient temperature.  Water was added to form a biphasic mixture and the aqueous 

layer was extracted with Et2O (3x).  The combined organic layers were dried over Na2SO4, 

filtered and the solvent removed.  The crude borane was passed through a plug of silica (5:1 

hexanes/EtOAc) and isolated in vacuo.  The product mixture was then subject to 12 mL of a 

2:1:1 CH2Cl2:1M NaOH:30% HOOH solution for 1.5 h.  Following this time, the aqueous layer 

was extracted with CH2Cl2 (3x), and the organic layers were dried over Na2SO4.  The layers were 

filtered and the solvent removed in vacuo.  The crude product was then treated with 12 mL 1M 

NaOH in MeOH for 1 h at ambient temperature, then acidified to ~ pH 2 with aq. 1M HCl and 

stirred for an additional 1 h.  The reaction was then diluted with H2O, and aqueous layer was 

extracted with Et2O (3x).  The combined organic layers were dried over Na2SO4, filtered, and the 

crude product mixture concentrated in vacuo.  Remaining solvents were removed under high 

vacuum.  Purification by flash chromatography on SiO2 (3:2 hexanes/EtOAc) gave 54 mg (38%) 

of the product as a white foam.  Recrystallization from hexanes/EtOAc (slow evaporation) gave 

crystals suitable for X-ray analysis: m.p. 117-119 °C; IR (KBr) 3362, 3053, 2965, 1709, 1195, 
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1041, 971 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.81–7.43 (m, 7H), 6.66 (d, J = 15.8 Hz, 1H), 

6.21 (dd, J = 15.8, 9.3 Hz, 1H), 4.54 (t, J = 11.1 Hz, 1H), 4.47 (dd, J = 10.9, 5.7 Hz, 1H), 4.35–

4.30 (m, 1H), 2.73 (dd, J = 18.1, 2.8 Hz, 1H), 2.65 (dd, J = 18.1, 3.7 Hz, 1H), 2.51 (tq, J = 9.2, 

6.8 Hz, 1H), 1.87 (td, J = 9.7, 5.9 Hz, 1H), 1.18 (d, J = 6.7 Hz, 3H); 13C-NMR (75 MHz, 

CDCl3): δ 170.1, 134.2, 133.5, 133.0, 132.8, 130.8, 128.2, 127.8, 127.6, 126.3, 125.9 (2C), 

123.3, 68.3, 63.9, 42.5, 39.4, 36.0, 18.6; MS (EI) m/z 296 (M+•), 278, 181; HRMS (EI) m/z 

calculated for C19H20O3: 296.1412, found 296.1401. 

 

 

 

R*-3-Hydroxy-4-methyl-5-phenylnon-6-enethioic acid S-tert-butyl ester (179):  To 0.100 g 

(0.494 mmol) of aldehyde 178 in 5 mL CH2Cl2 was added 131 mg (0.641 mmol) of (1-tert-

butylsulfanyl-vinyloxy)-trimethyl-silane, and the flask was immersed in a –78 °C bath.19, 233  To 

the mixture was added 0.74 mL (0.74 mmol) of dimethylaluminum chloride in hexanes (1.0 M) 

dropwise and the reaction was stirred for 1 h at –78 °C.  The reaction was quenched by addition 

of 10% w/v citric acid in MeOH and slowly raised to ambient temperature; stirring was 

continued for 1 h.  The reaction was diluted with H2O and the aqueous layer was extracted with 

Et2O (3x).  The combined organic layers were dried over Na2SO4, filtered and the crude product 

mixture was concentrated in vacuo.  Remaining solvents were removed under high vacuum.  

Purification via flash chromatography on SiO2 (10:1 hexanes/EtOAc) afforded 143 mg (86%) of 

the product as a clear, viscous oil.  Separation of the diastereomers by GC-MS provided the 

diastereomer ratio: 97.8% (Tr = 17.70), 2.2% (Tr = 17.77): IR (thin film) 3485, 3026, 2964, 1678, 

1454, 1364, 969, 753, 700 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.32–7.14 (m, 5H), 5.63–5.52 
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(m, 2H), 4.42 (ddd, J = 9.5, 3.1, 2.2 Hz, 1H), 3.23 (dd, J = 10.4, 8.6 Hz, 1H), 2.77 (dd, J = 15.5, 

9.5 Hz, 1H), 2.54 (dd, J = 15.5, 3.2 Hz, 1H), 2.03 (qd, J = 7.4, 4.7 Hz, 2H), 1.73 (ddq, J = 10.5, 

6.9, 2.2 Hz, 1H), 1.49 (s, 9H), 0.97 (t, J = 7.4 Hz, 3H), 0.68 (d, J = 6.8 Hz, 3H); 13C-NMR (75 

MHz, CDCl3): δ 200.3, 144.5, 133.4, 131.5, 128.5, 127.8, 126.0, 68.3, 52.8, 49.9, 48.4, 42.4, 

29.8, 25.5, 13.7, 10.9; MS (ESI) m/z 357 (M+Na)+; HRMS (ESI) m/z calculated for 

NaC20H30O2S (M+Na)+: 357.1864, found 357.1847. 

 

 

 

Cyclic borinic acid (180):  Note that emulsions can form following large-scale reductions.  In 

order to prevent this complication, aqueous 1M HCl can be added dropwise until the salts 

dissolve or a florsil plug can be utilized following extraction.  Yield is based on the free boronic 

acid molecular weight. 

To a solution of 1.1 g (3.1 mmol) boronic aldehyde 168 in 31 mL pentane at –78 °C is 

slowly added 3.7 mL (3.7 mmol) DIBAl-H in hexanes (1.0M).  The reaction is stirred at –78 °C 

for 30 min, then quenched slowly with H2O and warmed to ambient temperature.  The cloudy 

biphasic mixture is extracted with Et2O (3x) and the combined organic extracts are dried over 

Na2SO4.  Following filtration, the solvents are removed in vacuo to afford the crude boronic 

alcohol.  Purification of the product via flash chromatography on SiO2 (3:1 hexanes/EtOAc) 

afforded 0.46 g (55%) of the product as a clear, viscous oil. 

 

General Procedure D for Suzuki Crosscoupling Reactions 181-186, 188:176, 177  CEM 

microwave tubes with snap-on septa were utilized for all coupling reactions and were found to be 

PhnBu

BO
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convenient alternatives to Schlenk tubes for low temperature applications.  For reproducible 

results, it is essential to remove all atmospheric oxygen from the borane/pre-catalyst mixture via 

high vacuum prior to introduction of the solvent.  Degassed solvents are required to give optimal 

yields for large-scale applications.  Yields and catalyst loadings are based on the free boronic 

acid molecular weight. 

A mixture of 11 mg (0.05 mmol, 5 mol%) of palladium acetate, 39 mg (0.15 mmol) of 

triphenylphosphine and the boronic alcohol (1.0 mmol) are placed in a CEM microwave tube.  

The tube is sealed with Teflon tape and the atmosphere is removed under vacuum for 30 min.  

The reaction vessel is backfilled with nitrogen 3x, following which time 2 mL of tamyl alcohol is 

added.  To the stirring solution is immediately added the aryl bromide (2.1 mmol) followed by 

0.92 mL of aq. 1.3M sodium carbonate.  The reaction is stirred for 60 min at ambient 

temperature followed by heating at 80 °C for the indicated period of time (yellow → white 

suspension or clear solution).  Upon completion, the reaction is diluted with H2O, the biphasic 

mixture is transferred to a separatory funnel and the aqueous layer is extracted 3x with EtOAc.  

The combined organics are dried over Na2SO4, filtered, and the solvent is removed in vacuo.  

The crude alcohol is purified as specified.  Representative isolated diastereomeric ratios were 

determined by GC-MS [HP-1 (12 m x 0.20 mm), pressure 21 kPa, method: 70 °C for 2.00 min, 

ramp @ 10 °C/min to 300 °C, hold for 60 min]. 

 

 

 

R*-(E,2S,3R)-2-Benzyl-3-phenylnon-4-en-1-ol (181):  General Procedure D was followed 

employing 75 mg (0.27 mmol) of boronic alcohol 180, 3.1 mg (0.014 mmol) of palladium 
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acetate, 11 mg (0.042 mmol) of triphenylphosphine, 0.060 mL (0.090 g, 0.57 mmol) of 

bromobenzene, 0.25 mL of aq. 1.3M sodium carbonate, and a reaction time of 5.5 h.  Purification 

by flash chromatography (6:1 hexanes/EtOAc) on SiO2 gave 54 mg (67%) of the title compound 

as a colorless oil.  Separation of the diastereomers by GC-MS provided the diastereomer ratio: 

4.5% (Tr = 18.80), 95.5% (Tr =18.97): IR (thin film) 3389, 3026, 2926, 1601, 1494, 1453, 1030, 

970, 700 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.37–7.09 (m, 10H), 5.69 (dd, J = 15.2, 8.8 Hz, 

1H), 5.58 (dt, J = 15.1, 6.1 Hz, 1H), 3.70 (dd, J = 11.2, 4.0 Hz, 1H), 3.55 (dd, J = 11.3, 4.2 Hz, 

1H), 3.34 (t, J = 9.1 Hz, 1H), 2.55 (dd, J = 13.8, 4.8 Hz, 1H), 2.46 (dd, J = 13.7. 9.7 Hz, 1H), 

2.14 (m, 1H), 2.03 (q, J = 6.8 Hz, 2H), 1.33 (m, 4H), 0.88 (t, J = 7.0 Hz, 3H); 13C-NMR (75 

MHz, CDCl3): δ 144.0, 140.9, 132.0, 131.9, 129.0, 128.6, 128.3, 127.9, 126.2, 125.8, 62.1, 51.2, 

47.7, 35.2, 32.2, 31.5, 22.2, 13.9; MS (EI) m/z 308 (M+•), 290, 233, 199, 173, 117, 91; HRMS 

(EI) m/z calculated for C22H28O: 308.2140, found 308.2147. 

 

 

 

R*-(E,2S,3R)-2-(4-Nitrobenzyl)-3-phenylnon-4-en-1-ol (182):  General Procedure D was 

followed employing 75 mg (0.27 mmol) of boronic alcohol 180, 3.1 mg (0.014 mmol) of 

palladium acetate, 11 mg (0.042 mmol) of triphenylphosphine, 0.12 g (0.57 mmol) of 1-bromo-

4-nitrobenzene, 0.25 mL of aq. 1.3M sodium carbonate, and a reaction time of 15 h.  Purification 

by flash chromatography (5:1 hexanes/EtOAc) on SiO2 gave 79 mg (81%) of the title compound 

as a colorless oil.  Separation of the diastereomers by GC-MS provided the diastereomer ratio: 

1.2% (Tr = 22.58), 98.8% (Tr = 22.74): IR (thin film) 3441, 3027, 2927, 1600, 1518, 1345, 700 

cm-1; 1H-NMR (300 MHz, CDCl3): δ 8.10 (d, J = 8.8 Hz, 2H), 7.38 – 7.21 (m, 7H), 5.66 (dd, J = 
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15.2, 8.3 Hz, 1H), 5.58 (dt, J = 15.1, 6.0 Hz, 1H), 3.71 (dt, J = 11.1, 4.3 Hz, 1H), 3.50 (ddd, J = 

11.0, 5.6, 3.9 Hz, 1H), 3.32 (t, J = 9.1 Hz, 1H), 2.68 (dd, J = 13.6, 9.5 Hz, 1H), 2.58 (dd, J = 

13.6, 4.7 Hz, 1H), 2.14 (m, 1H), 2.03 (q, J = 6.7 Hz, 2H), 1.31 (m, 4H), 0.88 (t, J = 7.3 Hz, 3H); 

13C-NMR (75 MHz, CDCl3): δ 149.2, 146.4, 143.5, 132.4, 131.5, 129.9, 128.8, 127.8, 126.5, 

123.5, 61.5, 51.3, 47.5, 35.1, 32.2, 31.5, 22.2, 13.9; MS (EI) m/z 353 (M+•), 278, 253, 199, 174, 

131, 115; HRMS (EI) m/z calculated for C22H27NO3: 353.1991, found 353.2002. 

 

 

 

R*-(E,2S,3R)-2-(Naphthalen-3-ylmethyl)-3-phenylnon-4-en-1-ol (183):  General Procedure D 

was followed employing 75 mg (0.27 mmol) of boronic alcohol 180, 3.1 mg (0.014 mmol) of 

palladium acetate, 11 mg (0.042 mmol) of triphenylphosphine, 0.12 g (0.57 mmol) of 2-

bromonapthalene, 0.25 mL of aq. 1.3M sodium carbonate, and a reaction time of 1.5 h.  

Purification by flash chromatography (8:1 hexanes/EtOAc) on SiO2 gave 63 mg (67%) of the 

title compound as a colorless oil.  Separation of the diastereomers by GC-MS provided the 

diastereomer ratio: 1.4% (Tr = 23.15), 98.6% (Tr = 23.39): IR (thin film) 3382, 3025, 2926, 1600, 

1452, 1028, 969, 815, 747, 700 cm-1; 1H-NMR (300 MHz, CDCl3): δ 7.81–7.73 (m, 3H), 7.54 (s, 

1H), 7.48–7.21 (m, 8H), 5.71 (dd, J = 15.2, 9.1 Hz, 1H), 5.60 (dt, J = 15.2, 6.4 Hz, 1H), 3.73 (dt, 

J = 11.1, 5.6 Hz, 1H), 3.57 (dt, J = 10.9, 5.9 Hz, 1H), 3.39 (t, J = 9.0 Hz, 1H), 2.71 (dd, J = 13.7, 

5.1 Hz, 1H), 2.64 (dd, J = 13.6, 9.2 Hz, 1H), 2.29–2.18 (m, 1H), 2.04 (q, J = 6.7 Hz, 2H), 1.41–

1.27 (m, 4H), 0.89 (t, J = 6.9 Hz, 3H); 13C-NMR (75 MHz, CDCl3): δ 144.0, 138.4, 133.5, 132.1, 

132.0, 131.8, 128.6, 127.9, 127.8, 127.6, 127.5, 127.4, 127.3, 126.3, 125.9, 125.1, 62.0, 51.3, 
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47.6, 35.3, 32.2, 31.5, 22.2, 13.9; MS (EI) m/z 358 (M+•), 340, 283, 269, 255, 199, 173, 142, 117; 

HRMS (EI) m/z calculated for C26H30O: 358.2297, found 358.2300. 

 

 

 

R*-(E,2S,3R)-3-Phenyl-2-pyridin-2-ylmethylnon-4-en-1-ol (184):  General Procedure D was 

followed employing 75 mg (0.27 mmol) of boronic alcohol 180, 3.1 mg (0.014 mmol) of 

palladium acetate, 11 mg (0.042 mmol) of triphenylphosphine, 0.090 g (0.57 mmol) of 2-

bromopyridine, 0.25 mL of aq. 1.3M sodium carbonate, and a reaction time of 48 h.  Purification 

by flash chromatography (2:1 → 1:1 hexanes/EtOAc) on SiO2 gave 0.030 g (36%) of the title 

compound as a light yellow oil: IR (thin film) 3373, 3025, 2925, 1593, 1569, 1472, 969, 756, 

701 cm-1; 1H-NMR (300 MHz, CDCl3): δ 8.48 (d, J = 4.8 Hz, 1H), 7.55 (td, J = 7.7, 1.7 Hz, 1H), 

7.35–7.10 (m, 6H), 6.85 (d, J = 7.8 Hz, 1H), 5.56 (dd, J = 15.2, 7.6 Hz, 1H), 5.47 (dt, J = 15.1, 

5.9 Hz, 1H), 5.08 (br. s, 1H), 3.69 (dd, J = 11.6, 4.2 Hz, 1H), 3.61 (dd, J = 11.6, 6.0 Hz, 1H), 

3.21 (dd, J = 10.4, 8.2 Hz, 1H), 2.80 (dd, J = 14.1, 4.2 Hz, 1H), 2.69 (dd, J = 14.1, 7.8 Hz, 1H), 

2.35 (dddt, J = 10.3, 8.1, 6.0, 4.2 Hz, 1H), 1.97 (q, J = 6.5 Hz, 2H), 1.35–1.23 (m, 4H), 0.86 (t, J 

= 6.9 Hz, 3H); 13C-NMR (75 MHz, CDCl3): δ 160.3, 148.5, 144.1, 136.7, 132.1, 131.7, 128.6, 

128.0, 126.2, 124.0, 121.2, 63.5, 51.3, 45.0, 38.4, 32.2, 31.5, 22.2, 13.9; MS (EI) m/z 309 (M+•), 

278, 174, 169, 136, 118, 106, 91; HRMS (EI) m/z calculated for C21H27NO: 309.2093, found 

309.2106. 
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R*-(E,2S,3R)-3-Phenyl-2-pyridin-3-ylmethylnon-4-en-1-ol (185):  General Procedure D was 

followed employing 75 mg (0.27 mmol) of boronic alcohol 180, 3.1 mg (0.014 mmol) of 

palladium acetate, 11 mg (0.042 mmol) of triphenylphosphine, 55 μL (0.090 g, 0.57 mmol) of 3-

bromopyridine, 0.25 mL of aq. 1.3M sodium carbonate, and a reaction time of 20 h.  Purification 

by flash chromatography (1:1 hexanes/EtOAc → 2:1 EtOAc/hexanes) on SiO2 gave 66 mg 

(78%) of the title compound as a light yellow oil: IR (thin film) 3276, 3027, 2925, 1597, 1577, 

1424, 1029, 968, 702 cm-1; 1H-NMR (300 MHz, CDCl3): δ 8.42 (dd, J = 4.8, 1.5 Hz, 1H), 8.34 

(d, J = 1.9 Hz, 1H), 7.40 (dt, J = 7.8, 1.9 Hz, 1H), 7.37–7.21 (m, 5H), 7.17 (dd, J = 7.8, 5.0 Hz, 

1H), 5.66 (dd, J = 15.2, 8.5 Hz, 1H), 5.56 (dt, J = 15.1, 6.2 Hz, 1H), 3.70 (dt, J = 11.2, 4.9 Hz, 

1H), 3.53 (dt, J = 10.8, 4.5 Hz, 1H), 3.33 (t, J = 9.0 Hz, 1H), 2.59–2.47 (m, 2H), 2.18–2.06 (m, 

1H), 2.02 (q, J = 6.7 Hz, 2H), 1.49 (t, J = 5.0 Hz, 1H), 1.39–1.22 (m, 4H), 0.88 (t, J = 6.9 Hz, 

3H); 13C-NMR (75 MHz, CDCl3): δ 150.4, 147.2, 143.7, 136.6, 136.4, 132.2, 131.6, 128.7, 

127.8, 126.3, 123.2, 61.2, 50.9, 47.3, 32.2, 32.0, 31.5, 22.2, 13.9; MS (EI) m/z 309 (M+•), 173, 

117, 91; HRMS (EI) m/z calculated for C21H27NO: 309.2093, found 309.2099. 

 

 

 

R*-(E,2S,3R)-3-Phenyl-2-quinolin-3-ylmethylnon-4-en-1-ol (186):  General Procedure D was 

followed employing 75 mg (0.27 mmol) of boronic alcohol 180, 3.1 mg (0.014 mmol) of 

palladium acetate, 11 mg (0.042 mmol) of triphenylphosphine, 78 μL (0.12 g, 0.57 mmol) of 3-

bromoquinoline, 0.25 mL of aq. 1.3M sodium carbonate, and a reaction time of 12 h.  

Purification by flash chromatography (3:2 hexanes/EtOAc) on SiO2 gave 85 mg (89%) of the 

title compound as a yellow oil: IR (thin film) 3290, 3026, 2925, 1601, 1574, 1495, 1452, 1034, 
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967, 787, 752, 701 cm-1; 1H-NMR (300 MHz, CDCl3): δ 8.66 (d, J = 2.2 Hz, 1H), 8.07 (d, J = 

8.5 Hz, 1H), 7.83 (d, J = 1.8 Hz, 1H), 7.73 (d, J = 8.2 Hz, 1H) , 7.66 (ddd, J = 8.4, 6.9, 1.4 Hz, 

1H), 7.52 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 7.34–7.22 (m, 5H), 5.69 (dd, J = 15.2, 8.6 Hz, 1H), 

5.59 (dt, J = 15.2, 5.9 Hz, 1H), 3.74 (dt, J = 11.0, 4.8 Hz, 1H), 3.60 (dt, J = 11.0, 5.3 Hz, 1H), 

3.38 (t, J = 9.1 Hz, 1H), 2.76 (dd, J = 13.8, 8.7 Hz, 1H), 2.70 (dd, J = 14.0, 5.2 Hz, 1H), 2.28–

2.18 (m, 1H), 2.03 (q, J = 6.7 Hz, 2H), 1.60 (t, J = 5.4 Hz, 1H), 1.40–1.23 (m, 4H), 0.88 (t, J = 

6.9 Hz, 3H); 13C-NMR (75 MHz, CDCl3): δ 152.3, 146.7, 143.7, 135.2, 133.7, 132.3, 131.6, 

129.1, 128.8, 128.6, 128.0, 127.9, 127.3, 126.5, 126.4, 61.4, 51.1, 47.4, 32.2 (2C), 31.5, 22.2, 

13.9; MS (EI) m/z 359 (M+•), 342, 328, 262, 173, 142, 117, 91; HRMS (EI) m/z calculated for 

C25H29NO: 359.2249, found 359.2258. 

 

 

 

Cyclic homoallylic borinic acid (187):  Note that emulsions can form with large-scale 

allylations.  As in the case of reduction product, aqueous 1M HCl can be added dropwise to 

dissolve the salts prior to extraction.  Yield is based on the free boronic acid molecular weight. 

To a solution of 0.96 g (2.7 mmol) boronic aldehyde 168 in 27 mL Et2O at –78 °C is 

slowly added 3.2 mL (3.2 mmol) allylmagnesium bromide in Et2O (1.0M).  The reaction is 

stirred at –78 °C for 1 h, then quenched slowly with H2O and warmed to ambient temperature.  

The cloudy biphasic mixture is extracted with Et2O (3x) and the combined organic extracts are 

dried over Na2SO4.  Following filtration, the solvents are removed in vacuo to afford the crude 

boronic alcohol.  Purification of the product via flash chromatography on SiO2 (4:1 

hexanes/EtOAc) afforded 0.67 g (78%) of the product as a clear, viscous oil. 

PhnBu
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R*-(E,4R,5S,6R)-6-Phenyl-5-(quinolin-3-ylmethyl)dodeca-1,7-dien-4-ol + R*-(E,4S,5S,6R)-

6-phenyl-5-(quinolin-3-ylmethyl)dodeca-1,7-dien-4-ol (188):  General Procedure D was 

followed employing 0.75 g (2.4 mmol) of homoallylic boronic alcohol 187, 27 mg (0.12 mmol) 

of palladium acetate, 94 mg (0.36 mmol) of triphenylphosphine, 0.65 mL (1.0 g, 5.0 mmol) of 3-

bromoquinoline, 2.2 mL of aq. 1.3M sodium carbonate, and a reaction time of 7 h.  Purification 

by flash chromatography (2:1 hexanes/EtOAc) on SiO2 gave 0.54 g (58%) of the title compound 

as a yellow oil (d.r. 2:1 by 300 MHz 1H-NMR, aryl CH): Diastereomer A - IR (thin film) 3336, 

3062, 2955, 1639, 1600, 1573, 1495, 1451, 1049, 750 cm-1;  1H-NMR (300 MHz, CDCl3): δ 8.52 

(d, J = 2.1 Hz, 1H), 8.03 (d, J = 8.3 Hz, 1H), 7.65–7.58 (m, 3H), 7.48 (t, J = 7.7 Hz, 1H), 7.22–

7.09 (m, 5H), 5.84–5.76 (m, 1H), 5.70 (dd, J = 15.0, 9.3 Hz, 1H), 5.53 (dt, J = 14.9, 6.5 Hz, 1H), 

5.17 (d, J = 11.7 Hz, 1H), 5.16 (d, J = 14.5 Hz, 1H), 3.95–3.88 (m, 1H), 3.39 (t, J = 9.0 Hz, 1H), 

2.98 (dd, J = 14.3, 6.0 Hz, 1H), 2.61 (dd, J = 14.2, 6.7 Hz, 1H), 2.53–2.42 (m, 2H), 2.30–2.18 

(m, 1H), 2.02 (q, J = 6.7 Hz, 2H), 1.68 (d, J = 4.3 Hz, 1H), 1.39–1.26 (m, 4H), 0.89 (t, J = 7.0 

Hz, 3H);  13C-NMR (75 MHz, D3CCN): δ 153.3, 147.4, 145.6, 137.0, 136.6, 135.5, 133.4, 132.9, 

129.7, 129.3 (2C), 129.2, 128.9, 128.4, 127.3, 127.0, 117.2, 71.3, 53.2, 49.9, 41.6, 32.9, 32.4, 

31.2, 22.9, 14.2; MS (EI) m/z 399 (M+•), 381, 358, 340, 191, 173, 142, 117; HRMS (EI) m/z 

calculated for C28H33NO: 399.2570, found 399.2562. 

 

Diastereomer B - 1H-NMR (300 MHz, CDCl3): δ 8.52 (d, J = 2.1 Hz, 1H), 8.03 (d, J = 8.3 Hz, 

1H), 7.65–7.58 (m, 3H), 7.48 (t, J = 7.7 Hz, 1H), 7.22–7.09 (m, 5H), 5.84–5.76 (m, 1H), 5.70 

(dd, J = 15.0, 9.3 Hz, 1H), 5.53 (dt, J = 14.9, 6.5 Hz, 1H), 5.17 (d, J = 11.7 Hz, 1H), 5.16 (d, J = 
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14.5 Hz, 1H), 3.95–3.88 (m, 1H), 3.39 (t, J = 9.0 Hz, 1H), 2.98 (dd, J = 14.3, 6.0 Hz, 1H), 2.61 

(dd, J = 14.2, 6.7 Hz, 1H), 2.53–2.42 (m, 2H), 2.30–2.18 (m, 1H), 2.02 (q, J = 6.7 Hz, 2H), 1.68 

(d, J = 4.3 Hz, 1H), 1.39–1.26 (m, 4H), 0.89 (t, J = 7.0 Hz, 3H); MS (EI) m/z 399 (M+•), 381, 

358, 340, 191, 173, 142, 117; HRMS (EI) m/z calculated for C28H33NO: 399.2610, found 

399.2562. 

 

 

 

R*-(5R,6S)-5-phenyl-6-(quinolin-3-ylmethyl)cyclohex-3-enone (189):  To a solution of 32 mg 

(0.08 mmol) of diastereomeric homoallylic alcohols 188 in 8 mL CH2Cl2 is cannulated a solution 

of 3.4 mg (0.0040 mmol) Grubbs II catalyst (stored in glovebox) in 8 mL CH2Cl2.  The reaction 

is stirred at ambient temperature for 3 h, then quenched with 15 μL of DMSO and left for 12 

h.182  The crude reaction mixture is concentrated in vacuo, and the residue subject to purification 

via flash chromatography on SiO2 (2:1 EtOAc/hexanes).  The purified RCM product is 

immediately oxidized using 51 mg (0.12 mmol) of Dess-Martin periodinane in CH2Cl2 (1 mL) 

for 30 min (0 °C → rt).  The crude ketone is passed through a plug of florsil (1:1 

hexanes/EtOAc) to remove heterogeneous impurities, and concentrated in vacuo.  Purification by 

flash chromatography (2:1 hexanes/EtOAc) on SiO2 gave 12 mg (48%) of the title compound as 

a viscous, moderately unstable yellow oil (may contain ~ 5% polymeric material):  IR (thin film) 

3029, 2924, 1716, 1678, 1602, 1571, 1494, 787, 751, 702 cm-1;  1H-NMR (300 MHz, CDCl3): δ 

8.52 (d, J = 1.5 Hz, 1H), 8.04 (d, J = 8.5 Hz, 1H), 7.84 (d, J = 1.3 Hz, 1H), 7.71 (d, J = 8.0 Hz, 

1H), 7.64 (td, J = 7.0, 1.4 Hz, 1H), 7.50 (t, J = 7.8 Hz, 1H), 7.41–7.22 (m, 5H), 5.87–5.82 (m, 

2H), 3.62 (dt, J = 9.5, 2.4 Hz, 1H), 3.27 (dd, J = 13.8, 8.7 Hz, 1H), 3.15–3.09 (m, 2H), 2.95 (dm, 
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J = ~15.8 Hz, 1H), 2.75 (dd, J = 13.8, 3.3 Hz, 1H);  13C-NMR (75 MHz, CDCl3): δ 208.4, 152.0, 

146.5, 142.3, 135.7, 133.1, 131.2, 129.1, 128.8 (3C), 128.0, 127.4 (2C), 126.6, 124.1, 57.5, 50.5, 

40.5, 30.2; MS (EI) m/z 313 (M+•), 222, 182, 143, 130, 115; HRMS (EI) m/z calculated for 

C22H19NO: 313.1467, found 313.1464. 
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8.0  EXPERIMENTAL SECTION FOR CHAPTER 4 

 

 

(S,4E,6E,8E)-Dodeca-4,6,8-trien-3-ol (208):198  To a solution of 41 mg  (0.17 mmol) of MIB in 

3.3 mL toluene was added 6.6 mL (6.6 mmol) of Et2Zn in hexanes (1.0 M) at ambient 

temperature.  Following 30 min, the flask was immersed in an ice bath and 0.50 g (3.3 mmol) of 

the aldehyde was added dropwise by syringe.196  The reaction was stirred at 0 °C for 30 min, 

then quenched carefully with sat. aq. Rochelle’s salt and stirred vigorously for 30 min while 

warming to ambient temperature.  The aqueous layer was extracted with EtOAc (3x), the 

combined organic layers were dried over Na2SO4, filtered, and the crude product mixture was 

concentrated in vacuo.  Purification by flash chromatography on SiO2 (6:1 hexanes/EtOAc) 

yielded 0.43 g (73%) of the title compound as a clear oil.  Separation of the enantiomers by 

chiral HPLC (Daicel ChiracelTM OD-H column, flow rate 1.0 mL/min, 2.0% i-PrOH, 98.0% 

hexanes) provided the enantiomeric ratio: 94.5 (S, Tr = 12.1): 5.5 (R, Tr = 13.3) (89% ee): [α]D
26 

= +24.0 (c 1.24, CHCl3); IR (thin film) 3354, 3015, 2961, 1636, 1436, 995 cm-1; 1H-NMR (500 

MHz, CDCl3): δ 6.26–6.18 (m, 2H), 6.11 (dd, J = 15.0, 10.4 Hz, 1H), 6.07 (dd, J = 15.0, 10.6 

Hz, 1H), 5.73 (dt, J = 14.5, 7.1 Hz, 1H), 5.66 (dd, J = 15.2, 6.9 Hz, 1H), 4.11–4.06 (m, 1H), 2.09 

(q, J = 7.2 Hz, 2H), 1.65–1.51 (m, 2H), 1.46–1.39 (m, 3H), 0.93 (t, J = 7.1 Hz, 3H), 0.91 (t, J = 

7.1 Hz, 3H); 13C-NMR (75 MHz, CDCl3): δ 135.6, 135.0, 133.4, 130.9, 130.3, 129.6, 74.0, 34.8, 

Et

OH
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30.1, 22.4, 13.6, 9.6; MS (EI) m/z 180 (M+•), 162, 147, 133, 119, 105, 91; HRMS (EI) m/z 

calculated for C12H20O: 180.1514, found 180.1506. 

 

 

 

(S,4E,6E,8E)-3-(Prop-2-ynyloxy)dodeca-4,6,8-triene (209):  To 0.97 g (24 mmol) of sodium 

hydride (60% dispersion in mineral oil, pre-washed 3x with pentane) was added 17 mL of THF.  

The solution was cooled to 0 °C, and 2.1 g (12 mmol) of alcohol 208 was added via syringe.  The 

reaction was stirred at 0 °C for ~15 min, then warmed slowly to ambient temperature.  At this 

time, a condenser was attached to the reaction vessel and the reaction mixture was heated to 

reflux.  Following 30 min, the reaction was cooled to ambient temperature whereupon 3.6 g (24 

mmol) of propargyl bromide in toluene (80%/wt) was added carefully through the condenser.  

Following 1.5 h at reflux, the solution was cooled to ambient temperature and quenched carefully 

with H2O.  The aqueous layer was extracted with Et2O (3x), the combined organic layers were 

dried over MgSO4 and filtered.  The crude product was concentrated in vacuo. Purification by 

flash chromatography on SiO2 (50:1 hexanes/EtOAc) afforded 2.2 g (83 %) of the product as a 

yellow oil: [α]D
26 = –141 (c 1.32, CHCl3); IR (thin film) 3307, 3016, 2962, 2116, 1636, 1463, 

1072, 997, 663 cm-1; 1H-NMR (300 MHz, CDCl3): δ 6.27–6.04 (m, 4H), 5.75 (dt, J = 14.6, 7.0 

Hz, 1H), 5.44 (dd, J = 15.4, 8.4 Hz, 1H), 4.17 (dd, J = 15.6, 2.3 Hz, 1H), 4.01 (dd, J = 15.7, 2.3 

Hz, 1H), 3.84 (dt, J = 8.3, 6.5 Hz, 1H), 2.39 (t, J = 2.3 Hz, 1H), 2.09 (q, J = 7.2 Hz, 2H), 1.72–

1.61 (m, 1H), 1.60–1.48 (m, 1H), 1.48–1.37 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H), 0.91 (t, J = 7.5 Hz, 

3H); 13C-NMR (75 MHz, CDCl3): δ 136.0, 133.8 (2C), 131.8, 130.2, 129.4, 80.9. 80.4, 73.6, 

Et
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55.1, 34.9, 28.4, 22.4, 13.6, 9.7; MS (EI) m/z 218 (M+•), 189, 162, 133, 119, 107, 91, 79; HRMS 

(EI) m/z calculated for C15H22O: 218.1671, found 218.1665. 

 

 

 

 

2-(1E)-3-(S,4E,6E,8E)-Dodeca-4,6,8-trien-3-yloxyprop-1-enyl-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (210):154, 155  To a suspension of 52 mg (0.20 mmol) of Cp2Zr(H)Cl and 2.0 mL 

CH2Cl2 in a microwave reaction vessel was added 0.88 g (4.0 mmol) of alkyne 209 at 0 °C.  To 

this mixture was added 0.56 g (4.4 mmol) of pinacolborane and the resulting suspension was 

warmed to ambient temperature, then heated at 80 οC in a microwave reactor for 45 min. The 

solvent was removed in vacuo.  Purification by flash chromatography (22:1 hexanes/EtOAc) on 

Iatrobeads gave 0.75 g (55 %) of the title compound as a colorless oil: [α]D
26 = –14.2 (c 1.22, 

CHCl3); IR (thin film) 2976, 1644, 1463, 1354, 1146, 996, 850, 628 cm-1; 1H-NMR (500 MHz, 

CDCl3): δ 6.64 (dt, J = 18.1, 4.5 Hz, 1H), 6.24–6.04 (m, 4H), 5.72 (dt, J = 14.9, 7.1 Hz, 1H), 

5.71 (d, J = 18.0 Hz, 1H), 5.48 (dd, J = 14.4, 8.1 Hz, 1H), 4.10 (ddd, J = 14.7, 4.2, 1.7 Hz, 1H), 

3.91 (ddd, J = 14.7, 4.7, 1.6 Hz, 1H), 3.66 (dt, J = 7.8, 6.5 Hz, 1H), 2.08 (q, J = 7.1, 2H), 1.70–

1.62 (m, 1H), 1.56–1.49 (m, 1H), 1.46–1.38 (m, 2H), 1.27 (s, 12H), 0.91 (t, J = 7.5 Hz, 3H), 0.89 

(t, J = 7.6 Hz, 3H); 13C-NMR (75 MHz, CDCl3): δ 149.9, 135.6, 133.3, 133.2, 132.8, 130.3, 

129.6, 118.6 (br), 83.1, 81.5, 69.6, 34.9, 28.6, 24.8, 22.4, 13.6, 9.7; MS (EI) m/z 346 (M+•), 317, 

288, 248, 187, 179, 163, 107; HRMS (EI) m/z calculated for C21H35BO3: 346.2679, found 

346.2679. 
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2-(1S)-1-Ethyl-1,3,3a,4,5,7a-hexahydro-5-(E)-pent-1-enylisobenzofuran-4-yl-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane (211):202, 203, 205  The relative stereochemistry has not been 

established for this compound.  A solution of 0.13 g (3.8 mmol) of vinylborolane 210 in 3.8 mL 

of 1,2-DCE was heated in a microwave reactor to 150 °C at 150 W for 45 min.  The crude 

product was concentrated in vacuo.  Purification by flash chromatography on SiO2 (15:1 

hexanes/EtOAc) yielded 79 mg (61%) of the title compound as a clear oil and 11 mg (8%) of a 

diastereomeric product (88:12 d.r. by mass): [α]D
26 = +177 (c 1.98, CHCl3); IR (thin film) 3015, 

2931, 1642, 1464, 1379, 1144, 966, 851 cm-1; 1H-NMR (500 MHz, CDCl3): δ 5.83 (d, J = 9.9 

Hz, 1H), 5.53 (dt, J = 9.8, 3.3 Hz, 1H), 5.49–5.41 (m, 2H), 4.13 (t, J = 7.2 Hz, 1H), 3.44 (ddd, J 

= 10.9, 7.0, 4.6 Hz, 1H), 3.33 (dd, J = 11.2, 7.4 Hz, 1H), 3.14–3.09 (m, 1H), 2.16–2.08 (m, 1H), 

2.03–1.90 (m, 2H), 1.83 (tq, J = 10.6, 1.9 Hz, 1H), 1.65–1.13 (m, 1H), 1.61–1.52 (m, 1H), 1.44–

1.32 (m, 3H), 1.22 (s, 6H), 1.20 (s, 6H), 1.00 (t, J = 7.5 Hz, 3H), 0.89 (t, J = 7.4 Hz, 3H); 13C-

NMR (75 MHz, CDCl3): δ 132.6, 131.8, 131.3, 124.9, 83.1, 82.4, 70.6, 49.6, 41.0, 40.6, 34.6, 

27.4, 25.2, 24.5, 22.4, 13.7, 10.1; MS (EI) m/z 346 (M+•), 288, 231, 205, 188, 160, 133, 101, 84; 

HRMS (EI) m/z calculated for C21H35BO3: 346.2679, found 346.2675. 
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(1S)-1-Ethyl-1,3,3a,4,5,7a-hexahydro-5-(E)-pent-1-enylisobenzofuran-4-ol (212):  To a 

solution of 67 mg (0.19 mmol) of dioxaborolane 211 in 1.9 mL of MeOH at ambient temperature 

was slowly added 1.9 mL of 1:1 1M NaOH:30% HOOH.  Following 2 h, the reaction mixture 

was concentrated in vacuo, diluted with H2O and CH2Cl2 and the aqueous layer was extracted 

with CH2Cl2 (3x).  The combined organic layers were dried over Na2SO4, filtered and the crude 

product was concentrated in vacuo.  Purification by flash chromatography on SiO2 (5:2 

hexanes/EtOAc) gave 35 mg (79%) of the product as a white crystalline solid: m.p. 75-77 °C; 

[α]D
26 = +247 (c 1.18, CHCl3); IR (thin film) 3378, 3018, 2930, 1455, 1344, 1252, 1085, 1001, 

981, 720 cm-1; 1H-NMR (300 MHz, CDCl3): δ 5.77 (d, J = 9.6 Hz, 1H), 5.68 (dt, J = 15.3, 6.8 

Hz, 1H), 5.58 (ddd, J = 9.6, 4.0, 2.7 Hz, 1H), 5.33 (ddt, J = 15.3, 9.2, 1.2 Hz, 1H), 4.09 (t, J = 6.9 

Hz, 1H), 3.93 (dd, J = 10.1, 6.8 Hz, 1H), 3.67 (dd, J = 10.2, 7.8 Hz, 1H), 3.56 (ddd, J = 10.0, 7.2, 

4.5 Hz, 1H), 3.26–3.16 (m, 1H), 2.21–2.02 (m, 4H), 1.79–1.53 (m, 3H), 1.49–1.37 (m, 2H), 1.02 

(t, J = 7.4 Hz, 3H), 0.92 (t, J = 7.3 Hz, 3H); 13C-NMR (75 MHz, CDCl3): δ 137.5, 131.7, 126.7, 

124.8, 82.7, 71.6, 69.5, 49.5, 47.3 (2C), 34.7, 27.5, 22.4, 13.6, 10.2; MS (EI) m/z 236 (M+•), 207, 

163, 151, 121, 109, 91, 79; HRMS (EI) m/z calculated for C15H24O2: 236.1776, found 236.1777. 

 

 

 

 

(2S,3S,4E,6E)-3-(E)-But-1-enyl-2-4,4,5,5-tetramethyl-1,3,2-dioxa-borolan-2-ylmethyldeca-

4,6-dienal (213):  A solution of 13 mg (0.038 mmol) of NaBPh4 in CH2Cl2/acetone (25:1) (1.4 

mL) was added to 17 mg (0.019 mmol) of [IrCl(C8H14)2]2 and 31 mg (0.11 mmol) of PCy3 in 1.4 

mL of anhydrous CH2Cl2 and the resulting yellow solution stirred for 30 min at ambient 
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temperature.  To this solution was added 0.67 g (1.9 mmol) of vinylborolane 210 and the 

reaction was stirred for 90 min.  The reaction was quenched with PPh3 (6.0 mol%, 0.06 equiv) 

and the crude vinyl ether was concentrated in vacuo.  The crude oil was then diluted with 6.7 mL 

1,2-DCE, and the flask was equipped with a reflux condenser.  The solution was heated at 60 °C 

for 5 h following which time the crude aldehyde was concentrated in vacuo.  Purification by 

flash chromatography (18:1 hexanes/EtOAc) on Iatrobeads gave 0.39 g (58 %) of the title 

compound as an orange oil (CHO, = 88:7:5): [α]D
26 = +24.7 (c 1.47, CHCl3); IR (thin film) 2963, 

2725, 1724, 1461, 1371, 1146, 989, 847 cm-1; 1H-NMR (300 MHz, C6D6): δ 9.68 (d, J = 0.8 Hz, 

1H), 6.03 (dd, J = 14.4, 10.4 Hz, 1H), 5.95 (dd, J = 14.4, 10.3 Hz, 1H), 5.51 (dd, J = 14.3, 7.0 

Hz, 1H), 5.46–5.33 (m, 2H), 5.29 (dd, J = 15.4, 7.3 Hz, 1H), 3.00 (q, J = 7.0 Hz, 1H), 2.70 (br dt, 

J = 9.9, 5.9 Hz, 1H), 1.97–1.80 (m, 2H), 1.36–1.23 (m, 1H), 1.17 (dd, J = 16.0, 10.0 Hz, 1H), 

1.10 (s, 6H), 1.09 (s, 6H), 0.96 (dd, J = 16.0, 4.8 Hz, 1H), 0.83 (t, J = 7.4 Hz, 3H), 0.82 (t, J = 

7.3 Hz, 3H); 13C-NMR (75 MHz, CDCl3): δ 204.9, 134.5, 133.9, 131.9, 130.9, 130.0, 128.4, 

83.2, 52.5, 47.7, 34.7, 25.6, 24.8, 24.7, 22.4, 13.7 (B-C = unobserved). 

 

 

 

 

(2R,3R,4S)-2-(S,3E,6E,8E)-Dodeca-3,6,8-trien-5-yl-4-dimethylphenyl-silylhex-5-ene-1,3-diol 

(214):207  To a solution of 86 mg (0.49 mmol) of dimethylphenyl allylsilane in 1.5 mL of THF 

was added 0.31 mL (0.49 mmol) of n-butyllithium in hexanes (1.6 M) at ambient temperature.234  

Following 15 min, the mixture was cooled to –78 °C and 0.13 mL (0.14 g, 0.54 mmol) of 

TiCl(OiPr)3 was added in 0.3 mL THF.  The reaction was stirred for 20 min, then a solution of 
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0.15 g (0.43 mmol) of aldehyde 213 in 0.45 mL of THF was added via cannula followed by two 

0.15 mL THF washes.  After 1.5 h, the reaction was quenched with sat. aq. NH4Cl, and the 

aqueous layer was extracted with Et2O (3x).  The combined organic extracts were dried over 

Na2SO4, filtered through 2:1 celite:florsil and the crude borane was concentrated in vacuo.  The 

crude product was then subject to 4 mL of a 2:1:1 MeOH:1M NaOH:30% HOOH solution for 

15-20 min at 0 °C.  The mixture was diluted with H2O and CH2Cl2, and the aqueous layer was 

extracted with CH2Cl2 (3x).  The combined organic extracts were dried over Na2SO4, filtered, 

and the crude product was concentrated in vacuo.  Purification by flash chromatography on SiO2 

(7:1 hexanes/EtOAc) afforded 0.10 g (56%) of the product as an oil: [α]D
26 = –9.12 (c 2.17, 

CHCl3); IR (thin film) 3383, 3070, 2960, 1622, 1427, 1247, 1112, 989, 834, 700 cm-1; 1H-NMR 

(300 MHz, CDCl3): δ 7.56–7.48 (m, 2H), 7.39–7.32 (m, 3H), 6.03–5.86 (m, 3H), 5.61 (dt, J = 

13.8, 6.8 Hz, 1H), 5.44 (dtd, J = 15.3, 6.2, 1.0 Hz, 1H), 5.37–5.29 (m, 1H), 5.22 (ddt, J = 15.4, 

8.5, 1.4 Hz, 1H), 5.12 (dd, J = 10.2, 2.0 Hz, 1H), 4.98 (dd, J = 16.6, 1.4 Hz, 1H), 3.94 (t, J = 5.4 

Hz, 1H), 3.81 (d, J = 10.7 Hz, 1H), 3.65–3.53 (m, 1H), 2.98 (q, J = 7.1 Hz, 1H), 2.6 (br. s, 1H), 

2.5 (br. s, 1H), 2.22 (dd, J = 10.5, 5.0 Hz, 1H), 2.06 (q, J = 7.0 Hz, 2H), 1.98 (q, J = 7.4 Hz, 2H), 

1.57 (qd, J = 6.3, 2.6 Hz, 1H), 1.49–1.37 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H), 0.93 (t, J = 7.4 Hz, 

3H), 0.35 (s, 3H), 0.33 (s, 3H); 13C-NMR (75 MHz, CDCl3): δ 137.7, 135.4, 134.0, 133.4, 133.1, 

131.8, 131.2, 130.4, 130.1, 129.2, 127.9, 115.7, 73.7, 62.4, 48.0, 44.6, 40.5, 34.7, 25.6, 22.5, 13.7 

(2C), –3.3, –4.1; MS (ESI) m/z 435 (M+Na)+; HRMS (ESI) m/z calculated for NaC26H40O2Si 

(M+Na)+: 435.2695, found 435.2679. 
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(S)-1-(4R,5R)-5-(S,3E,6E,8E)-dodeca-3,6,8-trien-5-yl-2,2-dimethyl-1,3-dioxan-4-

ylallyldimethylphenylsilane (215):  To a solution of 0.11 g (0.27 mmol) of diol 214 in 2.8 mL 

of 1:1 2,2-dimethoxypropane:DMF was added 14 mg (0.054 mmol) of pyridine p-

toluenesulphonic acid.  Following 1 h, the reaction was quenched with H2O and the aqueous 

layer was extracted with Et2O (3x).  The combined organic extracts were dried over Na2SO4, 

filtered and concentrated in vacuo.  Purification by filtration through florsil (5:1 hexanes/EtOAc) 

gave 0.11 g (89%) of the product as a clear oil: [α]D
26 = –8.02 (c 1.47, CHCl3); IR (thin film) 

3070, 2961, 1622, 1456, 1379, 1245, 1198, 1114, 988, 837, 814, 700 cm-1; 1H-NMR (300 MHz, 

CDCl3): δ 7.48–7.44 (m, 2H), 7.38–7.29 (m, 3H), 6.08–5.86 (m, 3H), 5.68 (dt, J = 14.2, 6.9 Hz, 

1H), 5.45–5.34 (m, 2H), 5.27 (ddt, J = 15.4, 6.3, 1.3 Hz, 1H), 5.02 (dd, J = 10.2, 2.2 Hz, 1H), 

4.86 (dd, J = 17.3, 1.9 Hz, 1H), 3.77–3.53 (m, 3H), 2.85–2.79 (m, 1H), 2.21–1.84 (m, 6H), 1.53–

1.40 (m, 2H), 1. 22 (s, 3H), 1.02 (s, 3H), 0.95 (t, J = 7.2 Hz, 3H), 0.94 (t, J = 7.3 Hz, 3H), 0.32 

(s, 3H), 0.24 (s, 3H); 13C-NMR (75 MHz, CDCl3): δ 138.1, 135.1, 134.0, 133.5, 132.9, 132.2, 

130.1, 129.8, 129.5, 128.7, 127.4, 114.7, 97.7, 71.1, 60.7, 43.6, 41.3, 37.2, 34.7, 29.2, 25.5, 22.5, 

18.8, 13.7 (2C), –3.3, –4.5; MS (EI) m/z 452 (M+•), 394, 379, 365, 285, 204, 193, 163, 135; 

HRMS (EI) m/z calculated for C29H44O2Si: 452.3111, found 452.3136. 
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APPENDIX A 

1H AND 13C SPECTRA OF ALL COMPOUNDS 

(in numerical order) 
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A.27 COMPOUND 44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TMS

OH
Me

Me

BzO



 237 

A.28 COMPOUND 45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TMS

OH
Me

Me

HO



 238 

A.29 COMPOUND 46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O
Me

Me

TMS

O H



 239 

A.30 COMPOUND 48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O
Me

Me

HO H

H



 240 

A.31 COMPOUND 49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O
Me

Me

O

O

Br

H

H



 241 

A.32 COMPOUND 50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BnN
Fmoc



 242 

A.33 COMPOUND 52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O
Me

Ph
TMS

BnN
Fmoc



 243 

A.34 COMPOUND 54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BnN
Boc



 244 

A.35 COMPOUND 57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NBn

O
Me

Ph

TMS

Boc



 245 

A.36 COMPOUND 61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

OH

BnHN



 246 

A.37 COMPOUND 62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

OH

BnN

NC



 247 

A.38 COMPOUND 63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

O

BnN

NC



 248 

A.39 COMPOUND 65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH
Me

Ph
TMS

BnHN



 249 

A.40 COMPOUND 66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BnN
Troc



 250 

A.41 COMPOUND 67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH
Me

Ph
TMS

BnN
Troc



 251 

A.42 COMPOUND 68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH
Me

Ph
TMS

BnN

NC



 252 

A.43 COMPOUND 69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

O
Me

Ph

TMS

Bn
CN



 253 

A.44 COMPOUND 70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

O
Me

Ph

Bn
CN



 254 

A.45 COMPOUND 74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

MeO

MeO

O



 255 

A.46  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N
H

O

O
TMS



 256 

A.47 COMPOUND 75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

MeO

O

O
TMS



 257 

A.48 COMPOUND 78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

O
Me

Ph

TMS

Moc
MeO



 258 

A.49 COMPOUND 79 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

O
Me

Ph

TMS

Teoc
MeO



 259 

A.50 COMPOUND 80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TsN

MeO



 260 

A.51 COMPOUND 81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TsN

MeO



 261 

A.52  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TsN
Boc



 262 

A.53  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TsHN



 263 

A.54 COMPOUND 82 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TsN

MeO



 264 

A.55 COMPOUND 83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH
Me

Ph
TMS

Ts
NMeO



 265 

A.56 COMPOUND 84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH
Me

Ph
TMS

TsN

MeO



 266 

A.57 COMPOUND 85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH
Me

Ph
TMS

Ts
N

OMe



 267 

A.58 COMPOUND 86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O
Me

Ph
TMS

Ts
NMeO



 268 

A.59 COMPOUND 87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

O
Me

Ph

TMS

Ts
MeO



 269 

A.60 COMPOUND 88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O
Me

Ph
TMS

Ts
N

OMe



 270 

A.61 COMPOUND 89 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

Ph

O

H

H

TsN



 271 

A.62 COMPOUND 90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TsN
Me

Ph

O

H

H



 272 

A.63 COMPOUND 91 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

Ph

O

H

H
TsN



 273 

A.64  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O NHTs

O

Cl3C



 274 

A.65 COMPOUND 92 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TsN
Troc



 275 

A.66 COMPOUND 94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH
Me

Ph
TMS

TsHN



 276 

A.67 COMPOUND 95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TsN
Me

Ph

OH

H

H



 277 

A.68 COMPOUND 96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

Ph
TMS



 278 

A.69 COMPOUND 111 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TsN
Br

Boc



 279 

A.70 COMPOUND 112 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TsHN
Br



 280 

A.71 COMPOUND 113 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TsN
Br

MeO



 281 

A.72 COMPOUND 117 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OBn

OH

N
MeO

Me

O
TMS



 282 

A.73 COMPOUND 118 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

N
TMS

OBn

OMe
MeO

Me



 283 

A.74 COMPOUND 119 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

N
TMS

OBn

OTBS
MeO

Me



 284 

A.75 COMPOUND 120 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

N
TMS

OBn

OTBDPS
MeO

Me



 285 

A.76 COMPOUND 121 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OBn

OMe

N
MeO

Me

O



 286 

A.77 COMPOUND 122 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TMS

O
OBn

OMe

N

OMe
Ts



 287 

A.78 COMPOUND 123 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TMS

O
OBn

OTBS

N

OMe
Ts



 288 

A.79 COMPOUND 124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TMS

O
OBn

OTBDPS

N

OMe
Ts



 289 

A.80 COMPOUND 126 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TsN
Boc



 290 

A.81 COMPOUND 127 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TsHN



 291 

A.82 COMPOUND 128 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TsN

MeO



 292 

A.83 COMPOUND 132 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TMS

O

OTBDPS

N

OMe
Ts



 293 

A.84 COMPOUND 135 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O OH

tBuO
TMS



 294 

A.85 COMPOUND 136 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

N
TMS

OBn

OTBDPS
MeO

Me



 295 

A.86 COMPOUND 137 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O OTBDPS

H
TMS



 296 

A.87 COMPOUND 159 & 160 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

Ph nBu

OH

Me Ph



 297 

A.88 COMPOUND 161 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

Me



 298 

A.89 COMPOUND 162 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

Ph nBu



 299 

A.90 COMPOUND 163 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

Me Ph



 300 

A.91 COMPOUND 164 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

Me



 301 

A.92 COMPOUND 165 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

PhnBu

B O

O
Me Me

Me

Me



 302 

A.93 COMPOUND 166 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

MePh

B O

O
Me Me

Me

Me



 303 

A.94 COMPOUND 167 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

Me

B O

O
Me Me

Me

Me



 304 

A.95 COMPOUND 168 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O B

PhnBu
O

O

Me Me

Me

Me



 305 

A.96 COMPOUND 169 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O B

MePh
O

O

Me Me

Me

Me



 306 

A.97 COMPOUND 170 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O B

Me
O

O

Me Me

Me

Me



 307 

A.98 COMPOUND 171 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

Ph



 308 

A.99 COMPOUND 172 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

Ph

B
O

O

Me



 309 

A.100 COMPOUND 175 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nBu

OH

Ph

O

tBuS

OH



 310 

A.101 COMPOUND 176 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

O

OH

Ph nBu



 311 

A.102 COMPOUND 177 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

O

OH

Me



 312 

A.103 COMPOUND 179 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Et

OH
Me

Ph

O

tBuS



 313 

A.104 COMPOUND 181 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PhnBu

PhHO



 314 

A.105 COMPOUND 182 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

HO

nBu NO2



 315 

A.106 COMPOUND 183 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

HO

nBu



 316 

A.107 COMPOUND 184 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

HO

nBu

N



 317 

A.108 COMPOUND 185 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

HO

nBu

N



 318 

A.109 COMPOUND 186 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

HO

nBu N



 319 

A.110 COMPOUND 188 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

OH

nBu N



 320 

A.111 COMPOUND 188 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

OH

nBu N



 321 

A.112 COMPOUND 189 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ph

O

N



 322 

A.113 COMPOUND 208 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Et

OH

nPr



 323 

A.114 COMPOUND 209 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Et

O

nPr



 324 

A.115 COMPOUND 210 
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A.116 COMPOUND 211 
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A.117 COMPOUND 212 
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A.118 COMPOUND 213 
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A.119 COMPOUND 214 
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A.120 COMPOUND 216 
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APPENDIX B 

X-RAY STRUCTURE DATA 

B.1 COMPOUND 43 

   
 

Table 1.  Crystal data and structure refinement for bs0405t. 

Identification code  bs0405t 

Empirical formula  C25 H27 Br O3 

Formula weight  455.38 

Temperature  295(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 
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Space group  P2(1)/c 

Unit cell dimensions a = 22.148(3) Å α= 90°. 

 b = 6.0518(8) Å β= 93.333(3)°. 

 c = 16.921(2) Å γ = 90°. 

Volume 2264.1(5) Å3 

Z 4 

Density (calculated) 1.336 Mg/m3 

Absorption coefficient 1.838 mm-1 

F(000) 944 

Crystal size 0.29 x 0.06 x 0.06 mm3 

Theta range for data collection 1.84 to 25.00°. 

Index ranges -26<=h<=26, -7<=k<=7, -20<=l<=20 

Reflections collected 17088 

Independent reflections 3982 [R(int) = 0.1137] 

Completeness to theta = 25.00° 100.0 %  

Absorption correction None 

Max. and min. transmission 0.8977 and 0.6178 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3982 / 0 / 262 

Goodness-of-fit on F2 1.107 

Final R indices [I>2sigma(I)] R1 = 0.0841, wR2 = 0.1723 

R indices (all data) R1 = 0.1744, wR2 = 0.1974 

Largest diff. peak and hole 0.424 and -0.428 e.Å-3 
  
            Table 2.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for bs0405t.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
Br 4217(1) 7461(2) 788(1) 87(1) 

O(1) 6769(2) 12535(8) 2436(3) 85(2) 

O(2) 6869(2) 9060(6) 2839(3) 57(1) 

O(3) 8383(2) 5440(9) 4101(3) 82(2) 

C(1) 5787(3) 7789(10) 2207(4) 49(2) 

C(2) 5253(3) 7072(9) 1825(4) 49(2) 

C(3) 4945(3) 8457(11) 1296(4) 46(2) 
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C(4) 5167(3) 10500(12) 1135(4) 57(2) 

C(5) 5695(3) 11228(11) 1511(4) 49(2) 

C(6) 6012(3) 9873(9) 2043(3) 38(1) 

C(7) 6588(3) 10664(11) 2451(4) 47(2) 

C(8) 7410(3) 9480(9) 3357(4) 48(2) 

C(9) 7844(3) 7628(10) 3132(4) 50(2) 

C(10) 8337(3) 7194(12) 3754(4) 55(2) 

C(11) 8793(3) 9038(12) 3881(4) 64(2) 

C(12) 9103(3) 9408(12) 3107(4) 66(2) 

C(13) 8632(3) 9808(11) 2415(4) 58(2) 

C(14) 8133(3) 8071(9) 2339(4) 54(2) 

C(15) 7225(3) 9421(10) 4184(4) 47(2) 

C(16) 7351(3) 11226(12) 4696(5) 62(2) 

C(17) 7180(3) 11150(14) 5461(5) 70(2) 

C(18) 6893(3) 9346(15) 5753(5) 75(2) 

C(19) 6759(3) 7647(15) 5247(6) 83(2) 

C(20) 6934(3) 7655(11) 4485(5) 65(2) 

C(21) 9240(4) 8542(16) 4585(5) 99(3) 

C(22) 9562(4) 11278(15) 3189(6) 109(3) 

C(23) 8936(5) 10046(16) 1651(5) 109(4) 

C(24) 8799(6) 11041(17) 1062(7) 141(4) 

C(25) 8365(4) 5837(11) 2019(4) 82(2) 

___________________________________________________________________
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Table 3.   Bond lengths [Å] and angles [°] for  bs0405t. 

_____________________________________________________  

Br-C(3)  1.883(6) 

O(1)-C(7)  1.202(7) 

O(2)-C(7)  1.309(7) 

O(2)-C(8)  1.464(7) 

O(3)-C(10)  1.214(7) 

C(1)-C(2)  1.385(8) 

C(1)-C(6)  1.390(7) 

C(2)-C(3)  1.377(8) 

C(3)-C(4)  1.364(8) 

C(4)-C(5)  1.371(8) 

C(5)-C(6)  1.379(8) 

C(6)-C(7)  1.493(8) 

C(8)-C(15)  1.482(8) 

C(8)-C(9)  1.538(8) 

C(9)-C(10)  1.495(9) 

C(9)-C(14)  1.545(9) 

C(10)-C(11)  1.513(9) 

C(11)-C(12)  1.530(9) 

C(11)-C(21)  1.533(9) 

C(12)-C(22)  1.522(9) 

C(12)-C(13)  1.541(9) 

C(13)-C(23)  1.498(11) 

C(13)-C(14)  1.525(8) 

C(14)-C(25)  1.554(8) 

C(15)-C(20)  1.362(8) 

C(15)-C(16)  1.413(9) 

C(16)-C(17)  1.369(10) 

C(17)-C(18)  1.371(10) 

C(18)-C(19)  1.359(10) 

C(19)-C(20)  1.369(10) 

C(23)-C(24)  1.189(11) 

 

C(7)-O(2)-C(8) 121.3(5) 

C(2)-C(1)-C(6) 119.9(6) 
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C(3)-C(2)-C(1) 119.3(6) 

C(4)-C(3)-C(2) 120.8(6) 

C(4)-C(3)-Br 120.6(5) 

C(2)-C(3)-Br 118.7(5) 

C(3)-C(4)-C(5) 120.4(6) 

C(4)-C(5)-C(6) 120.0(6) 

C(5)-C(6)-C(1) 119.6(6) 

C(5)-C(6)-C(7) 120.0(6) 

C(1)-C(6)-C(7) 120.4(6) 

O(1)-C(7)-O(2) 124.0(6) 

O(1)-C(7)-C(6) 124.8(6) 

O(2)-C(7)-C(6) 111.3(6) 

O(2)-C(8)-C(15) 107.4(5) 

O(2)-C(8)-C(9) 103.1(5) 

C(15)-C(8)-C(9) 115.2(5) 

C(10)-C(9)-C(8) 113.3(5) 

C(10)-C(9)-C(14) 108.6(5) 

C(8)-C(9)-C(14) 112.6(5) 

O(3)-C(10)-C(9) 122.1(6) 

O(3)-C(10)-C(11) 122.6(6) 

C(9)-C(10)-C(11) 115.2(6) 

C(10)-C(11)-C(12) 108.3(6) 

C(10)-C(11)-C(21) 111.2(6) 

C(12)-C(11)-C(21) 113.1(6) 

C(22)-C(12)-C(11) 111.2(7) 

C(22)-C(12)-C(13) 111.8(6) 

C(11)-C(12)-C(13) 110.9(5) 

C(23)-C(13)-C(14) 110.7(6) 

C(23)-C(13)-C(12) 110.7(6) 

C(14)-C(13)-C(12) 114.2(5) 

C(13)-C(14)-C(9) 112.4(5) 

C(13)-C(14)-C(25) 112.1(6) 

C(9)-C(14)-C(25) 108.3(5) 

C(20)-C(15)-C(16) 117.3(7) 

C(20)-C(15)-C(8) 122.3(6) 

C(16)-C(15)-C(8) 120.4(6) 
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C(17)-C(16)-C(15) 119.9(7) 

C(16)-C(17)-C(18) 121.9(8) 

C(19)-C(18)-C(17) 117.6(8) 

C(18)-C(19)-C(20) 121.9(8) 

C(15)-C(20)-C(19) 121.4(8) 

C(24)-C(23)-C(13) 131.8(11) 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

  

            Table 4.   Anisotropic displacement parameters  (Å2x 103) for bs0405t.  The anisotropic 

displacement factor exponent takes the form:  -2π2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

Br 64(1)  110(1) 84(1)  10(1) -17(1)  -26(1) 

O(1)89(4)  50(3) 110(4)  35(3) -34(3)  -22(3) 

O(2)52(3)  35(3) 80(3)  10(2) -19(2)  0(2) 

O(3)69(3)  68(4) 107(4)  39(3) -7(3)  2(3) 

C(1)40(4)  51(4) 56(4)  14(4) 10(3)  -1(3) 

C(2)50(4)  30(4) 66(4)  -8(3) 6(3)  -8(3) 

C(3)40(4)  51(4) 46(4)  -1(3) 0(3)  -5(3) 

C(4)57(4)  62(5) 52(4)  12(4) -8(4)  7(4) 

C(5)55(4)  39(4) 53(4)  8(3) 4(3)  -5(3) 

C(6)41(4)  33(4) 40(3)  0(3) 4(3)  -1(3) 

C(7)52(4)  38(4) 50(4)  8(3) 3(3)  5(4) 

C(8)38(4)  30(4) 75(5)  4(3) -6(4)  -12(3) 

C(9)49(4)  31(3) 70(4)  5(4) 0(3)  5(3) 

C(10)51(4)  56(5) 59(4)  6(4) 7(3)  5(4) 

C(11)50(4)  66(5) 75(5)  -3(4) -1(4)  6(4) 

C(12)44(4)  57(5) 98(6)  1(4) 8(4)  -15(4) 

C(13)66(5)  46(4) 62(5)  7(4) 10(4)  0(4) 

C(14)67(4)  31(4) 63(4)  -5(3) -2(4)  4(3) 

C(15)35(4)  41(4) 64(5)  1(4) 1(3)  4(3) 

C(16)49(4)  57(5) 80(6)  1(4) 0(4)  3(4) 

C(17)69(5)  61(5) 80(6)  -13(5) -4(5)  1(4) 

C(18)82(6)  76(6) 66(5)  9(5) 6(5)  9(5) 
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C(19)70(5)  81(6) 100(7)  10(6) 15(5)  -10(5) 

C(20)71(5)  44(4) 83(6)  8(5) 17(4)  -4(4) 

C(21)83(6)  119(7) 92(6)  13(6) -30(5)  -21(5) 

C(22)78(6)  95(7) 154(9)  23(7) 0(6)  -38(5) 

C(23)165(10)  81(7) 83(7)  27(6) 11(7)  21(6) 

C(24)224(14)  84(8) 120(10)  -18(7) 53(10)  20(8) 

C(25)105(6)  60(5) 82(5)  -11(4) 11(5)  25(5) 

______________________________________________________________________________  

 

Table 5.   Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 
for bs0405t. 

________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  
H(1A) 5995 6878 2572 58 

H(2A) 5103 5670 1925 59 

H(4A) 4960 11404 767 69 

H(5A) 5839 12636 1408 58 

H(8A) 7582 10928 3238 58 

H(9A) 7605 6269 3068 60 

H(11A) 8573 10390 4002 76 

H(12A) 9323 8053 2991 79 

H(13A) 8437 11224 2516 69 

H(14A) 7816 8623 1961 65 

H(16A) 7550 12464 4515 75 

H(17A) 7261 12357 5790 84 

H(18A) 6793 9285 6279 90 

H(19A) 6543 6446 5425 100 

H(20A) 6852 6428 4165 78 

H(21A) 9023 8364 5056 149 

H(21B) 9521 9744 4657 149 

H(21C) 9457 7207 4484 149 

H(22A) 9851 10961 3618 164 

H(22B) 9357 12636 3294 164 

H(22C) 9766 11417 2706 164 
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H(23A) 9298 9273 1635 131 

H(24A) 8443 11861 1026 169 

H(24B) 9047 10999 638 169 

H(25A) 8541 6076 1522 123 

H(25B) 8033 4824 1948 123 

H(25C) 8664 5230 2392 123 

________________________________________________________________________________  

B.2 COMPOUND 49 

 
 

Table 1.  Crystal data and structure refinement for bs03171s. 

Identification code  bs03171s 

Empirical formula  C20 H23 Br O3 

Formula weight  391.29 

Temperature  295(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 8.0654(4) Å α= 90°. 

 b = 22.8205(13) Å β= 111.4580(10)°. 

 c = 10.8106(6) Å γ = 90°. 

Volume 1851.84(17) Å3 

Z 4 



 338 

Density (calculated) 1.403 Mg/m3 

Absorption coefficient 2.234 mm-1 

F(000) 808 

Crystal size 0.33 x 0.14 x 0.03 mm3 

Theta range for data collection 1.78 to 32.50°. 

Index ranges -11<=h<=12, -34<=k<=34, -16<=l<=16 

Reflections collected 24011 

Independent reflections 6565 [R(int) = 0.0489] 

Completeness to theta = 32.50° 98.0 %  

Absorption correction Sadabs 

Max. and min. transmission 0.9401 and 0.5260 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6565 / 0 / 309 

Goodness-of-fit on F2 0.987 

Final R indices [I>2sigma(I)] R1 = 0.0523, wR2 = 0.1127 

R indices (all data) R1 = 0.1259, wR2 = 0.1394 

Largest diff. peak and hole 0.447 and -0.179 e.Å-3 
              
            Table 2.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for bs03171s.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
Br 6739(1) 286(1) 2929(1) 76(1) 

O(1) -2014(3) 2437(1) 6891(2) 73(1) 

O(2) 2290(2) 1895(1) 5979(2) 50(1) 

O(3) 382(3) 1145(1) 5368(2) 74(1) 

C(1) -1886(3) 2658(1) 5913(2) 45(1) 

C(2) -3215(3) 3096(1) 5077(3) 50(1) 

C(3) -2277(3) 3681(1) 5030(2) 46(1) 

C(4) -713(3) 3582(1) 4559(2) 44(1) 

C(5) 562(3) 3106(1) 5345(2) 39(1) 

C(6) 1667(4) 3247(1) 6798(2) 50(1) 

C(7) 2260(4) 2661(1) 7486(3) 58(1) 

C(8) 1131(3) 2192(1) 6552(2) 48(1) 

C(9) -331(3) 2525(1) 5488(2) 40(1) 
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C(10) -4759(4) 3169(2) 5539(5) 77(1) 

C(11) -3593(5) 4127(2) 4162(4) 74(1) 

C(12) 276(4) 4139(1) 4573(3) 60(1) 

C(13) 568(6) 4373(2) 3569(5) 92(1) 

C(14) 1754(3) 1368(1) 5435(2) 47(1) 

C(15) 3051(3) 1102(1) 4908(2) 43(1) 

C(16) 2520(4) 604(1) 4118(3) 51(1) 

C(17) 3620(4) 361(1) 3543(3) 53(1) 

C(18) 5259(3) 612(1) 3764(2) 51(1) 

C(19) 5835(3) 1094(1) 4569(3) 53(1) 

C(20) 4714(3) 1341(1) 5141(2) 49(1) 

________________________________________________________________________________  

 

Table 3.   Bond lengths [Å] and angles [°] for  bs03171s. 

_____________________________________________________  

Br-C(18)  1.892(2) 

O(1)-C(1)  1.209(3) 

O(2)-C(14)  1.339(3) 

O(2)-C(8)  1.464(3) 

O(3)-C(14)  1.195(3) 

C(1)-C(2)  1.501(3) 

C(1)-C(9)  1.516(3) 

C(2)-C(10)  1.510(4) 

C(2)-C(3)  1.545(3) 

C(2)-H(2)  0.91(2) 

C(3)-C(11)  1.522(4) 

C(3)-C(4)  1.540(3) 

C(3)-H(3)  0.99(2) 

C(4)-C(12)  1.498(3) 

C(4)-C(5)  1.524(3) 

C(4)-H(4)  0.85(2) 

C(5)-C(6)  1.530(3) 

C(5)-C(9)  1.542(3) 

C(5)-H(5)  0.92(2) 

C(6)-C(7)  1.520(4) 

C(6)-H(6A)  0.92(2) 
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C(6)-H(6B)  0.88(3) 

C(7)-C(8)  1.525(4) 

C(7)-H(7A)  0.90(3) 

C(7)-H(7B)  0.96(3) 

C(8)-C(9)  1.516(3) 

C(8)-H(8)  0.98(3) 

C(9)-H(9)  0.88(2) 

C(10)-H(10C)  0.98(3) 

C(10)-H(10A)  0.96(4) 

C(10)-H(10B)  0.99(4) 

C(11)-H(11A)  0.99(4) 

C(11)-H(11B)  0.85(3) 

C(11)-H(11C)  0.95(4) 

C(12)-C(13)  1.305(4) 

C(12)-H(12)  0.91(3) 

C(13)-H(13A)  0.97(3) 

C(13)-H(13B)  0.99(3) 

C(14)-C(15)  1.491(3) 

C(15)-C(20)  1.383(3) 

C(15)-C(16)  1.391(3) 

C(16)-C(17)  1.373(3) 

C(16)-H(16)  0.89(3) 

C(17)-C(18)  1.379(4) 

C(17)-H(17)  0.88(3) 

C(18)-C(19)  1.373(4) 

C(19)-C(20)  1.388(3) 

C(19)-H(19)  0.95(3) 

C(20)-H(20)  0.90(3) 

 

C(14)-O(2)-C(8) 116.59(18) 

O(1)-C(1)-C(2) 122.2(2) 

O(1)-C(1)-C(9) 121.7(2) 

C(2)-C(1)-C(9) 116.04(19) 

C(1)-C(2)-C(10) 111.6(3) 

C(1)-C(2)-C(3) 110.14(19) 

C(10)-C(2)-C(3) 112.8(2) 
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C(1)-C(2)-H(2) 104.2(15) 

C(10)-C(2)-H(2) 109.6(15) 

C(3)-C(2)-H(2) 108.0(16) 

C(11)-C(3)-C(4) 111.4(2) 

C(11)-C(3)-C(2) 111.1(2) 

C(4)-C(3)-C(2) 110.74(18) 

C(11)-C(3)-H(3) 105.8(12) 

C(4)-C(3)-H(3) 108.8(12) 

C(2)-C(3)-H(3) 108.9(12) 

C(12)-C(4)-C(5) 110.6(2) 

C(12)-C(4)-C(3) 111.69(19) 

C(5)-C(4)-C(3) 112.81(18) 

C(12)-C(4)-H(4) 106.8(15) 

C(5)-C(4)-H(4) 110.1(15) 

C(3)-C(4)-H(4) 104.5(15) 

C(4)-C(5)-C(6) 116.26(19) 

C(4)-C(5)-C(9) 115.06(18) 

C(6)-C(5)-C(9) 101.33(18) 

C(4)-C(5)-H(5) 109.7(12) 

C(6)-C(5)-H(5) 108.4(12) 

C(9)-C(5)-H(5) 105.2(12) 

C(7)-C(6)-C(5) 106.1(2) 

C(7)-C(6)-H(6A) 111.2(15) 

C(5)-C(6)-H(6A) 107.0(15) 

C(7)-C(6)-H(6B) 112.0(17) 

C(5)-C(6)-H(6B) 114.9(16) 

H(6A)-C(6)-H(6B) 106(2) 

C(6)-C(7)-C(8) 106.8(2) 

C(6)-C(7)-H(7A) 110.1(18) 

C(8)-C(7)-H(7A) 109.0(18) 

C(6)-C(7)-H(7B) 111.5(17) 

C(8)-C(7)-H(7B) 111.0(17) 

H(7A)-C(7)-H(7B) 108(2) 

O(2)-C(8)-C(9) 110.57(17) 

O(2)-C(8)-C(7) 106.6(2) 

C(9)-C(8)-C(7) 105.1(2) 
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O(2)-C(8)-H(8) 105.8(15) 

C(9)-C(8)-H(8) 114.2(14) 

C(7)-C(8)-H(8) 114.4(15) 

C(1)-C(9)-C(8) 111.78(18) 

C(1)-C(9)-C(5) 109.11(17) 

C(8)-C(9)-C(5) 104.17(18) 

C(1)-C(9)-H(9) 104.1(15) 

C(8)-C(9)-H(9) 114.5(15) 

C(5)-C(9)-H(9) 113.3(15) 

C(2)-C(10)-H(10C) 108.7(18) 

C(2)-C(10)-H(10A) 109(2) 

H(10C)-C(10)-H(10A) 104(3) 

C(2)-C(10)-H(10B) 107(2) 

H(10C)-C(10)-H(10B) 110(3) 

H(10A)-C(10)-H(10B) 117(3) 

C(3)-C(11)-H(11A) 110(2) 

C(3)-C(11)-H(11B) 112(2) 

H(11A)-C(11)-H(11B) 107(3) 

C(3)-C(11)-H(11C) 113(2) 

H(11A)-C(11)-H(11C) 106(3) 

H(11B)-C(11)-H(11C) 109(3) 

C(13)-C(12)-C(4) 126.5(3) 

C(13)-C(12)-H(12) 119.7(19) 

C(4)-C(12)-H(12) 113.7(19) 

C(12)-C(13)-H(13A) 118(2) 

C(12)-C(13)-H(13B) 120.6(19) 

H(13A)-C(13)-H(13B) 121(3) 

O(3)-C(14)-O(2) 123.5(2) 

O(3)-C(14)-C(15) 124.5(2) 

O(2)-C(14)-C(15) 111.95(19) 

C(20)-C(15)-C(16) 119.6(2) 

C(20)-C(15)-C(14) 122.6(2) 

C(16)-C(15)-C(14) 117.8(2) 

C(17)-C(16)-C(15) 120.2(2) 

C(17)-C(16)-H(16) 121.7(17) 

C(15)-C(16)-H(16) 118.1(17) 
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C(16)-C(17)-C(18) 119.4(2) 

C(16)-C(17)-H(17) 114.5(17) 

C(18)-C(17)-H(17) 126.1(16) 

C(19)-C(18)-C(17) 121.5(2) 

C(19)-C(18)-Br 119.44(19) 

C(17)-C(18)-Br 119.07(19) 

C(18)-C(19)-C(20) 118.9(2) 

C(18)-C(19)-H(19) 122.1(17) 

C(20)-C(19)-H(19) 118.9(17) 

C(15)-C(20)-C(19) 120.3(2) 

C(15)-C(20)-H(20) 118.1(15) 

C(19)-C(20)-H(20) 121.5(15) 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

  

               Table 4.   Anisotropic displacement parameters  (Å2x 103) for bs03171s.  The anisotropic 

displacement factor exponent takes the form:  -2π2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

Br 87(1)  71(1) 89(1)  -8(1) 56(1)  10(1) 

O(1)74(1)  81(1) 84(1)  25(1) 52(1)  14(1) 

O(2)50(1)  44(1) 62(1)  -1(1) 28(1)  5(1) 

O(3)60(1)  70(1) 105(2)  -24(1) 46(1)  -13(1) 

C(1)44(1)  42(1) 54(1)  -3(1) 23(1)  -6(1) 

C(2)40(1)  50(1) 60(2)  -8(1) 19(1)  -4(1) 

C(3)46(1)  44(1) 50(1)  -1(1) 22(1)  5(1) 

C(4)51(1)  43(1) 41(1)  -4(1) 20(1)  -3(1) 

C(5)40(1)  44(1) 40(1)  -5(1) 22(1)  -1(1) 

C(6)43(1)  54(1) 53(1)  -12(1) 17(1)  -5(1) 

C(7)58(2)  67(2) 43(1)  -4(1) 13(1)  10(1) 

C(8)51(1)  49(1) 49(1)  2(1) 25(1)  7(1) 

C(9)42(1)  39(1) 38(1)  -7(1) 16(1)  -1(1) 

C(10)51(2)  69(2) 124(3)  3(2) 47(2)  1(2) 

C(11)73(2)  71(2) 83(2)  19(2) 34(2)  22(2) 

C(12)71(2)  47(1) 73(2)  2(1) 40(2)  -2(1) 
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C(13)134(3)  61(2) 117(3)  12(2) 88(3)  -2(2) 

C(14)45(1)  47(1) 49(1)  4(1) 18(1)  4(1) 

C(15)46(1)  40(1) 43(1)  5(1) 17(1)  7(1) 

C(16)48(1)  47(1) 59(2)  2(1) 21(1)  0(1) 

C(17)62(2)  44(1) 52(1)  -5(1) 20(1)  1(1) 

C(18)58(1)  46(1) 54(1)  7(1) 27(1)  12(1) 

C(19)46(1)  53(1) 65(2)  2(1) 25(1)  4(1) 

C(20)50(1)  43(1) 53(1)  -3(1) 18(1)  2(1) 

______________________________________________________________________________  

 

Table 5.   Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 
for bs03171s. 

________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  
H(2) -3610(30) 2937(11) 4240(20) 52(7) 

H(3) -1810(30) 3853(9) 5940(20) 34(5) 

H(4) -1210(30) 3479(9) 3750(20) 38(6) 

H(5) 1330(30) 3007(9) 4922(19) 29(5) 

H(6A) 930(30) 3441(10) 7140(20) 47(6) 

H(6B) 2570(40) 3485(11) 6920(20) 52(7) 

H(7A) 3420(40) 2597(12) 7620(30) 65(8) 

H(7B) 2120(40) 2649(13) 8330(30) 69(8) 

H(8) 700(30) 1886(11) 6990(20) 57(7) 

H(9) -820(30) 2335(10) 4730(20) 47(6) 

H(10C) -5280(40) 2782(14) 5560(30) 76(9) 

H(10A) -4310(50) 3294(17) 6450(40) 109(14) 

H(10B) -5640(50) 3427(15) 4890(40) 100(12) 

H(11A) -2960(50) 4498(18) 4140(30) 98(11) 

H(11B) -4400(50) 4213(14) 4470(30) 85(11) 

H(11C) -4150(50) 4002(15) 3270(40) 95(12) 

H(12) 730(40) 4313(13) 5390(30) 73(9) 

H(13A) 1230(50) 4735(16) 3720(40) 104(12) 

H(13B) 90(40) 4187(14) 2680(30) 84(10) 

H(16) 1430(40) 461(12) 3970(30) 56(7) 
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H(17) 3190(30) 44(13) 3070(30) 55(7) 

H(19) 7000(40) 1249(13) 4790(30) 72(8) 

H(20) 5060(30) 1647(11) 5700(20) 52(7) 

________________________________________________________________________________  

 

 

B.3 COMPOUND 95 

 
 

Table 1.  Crystal data and structure refinement for bens021s. 

Identification code  bens021s 

Empirical formula  C25 H31 N O3 S 

Formula weight  425.57 

Temperature  295(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  Cc 

Unit cell dimensions a = 15.6571(16) Å α= 90°. 

 b = 5.7841(6) Å β= 106.896(2)°. 

 c = 26.019(3) Å γ = 90°. 

Volume 2254.6(4) Å3 

Z 4 
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Density (calculated) 1.254 Mg/m3 

Absorption coefficient 0.170 mm-1 

F(000) 912 

Crystal size ? x ? x ? mm3 

Theta range for data collection 1.64 to 27.50°. 

Index ranges -20<=h<=20, -7<=k<=7, -33<=l<=33 

Reflections collected 10587 

Independent reflections 5135 [R(int) = 0.0406] 

Completeness to theta = 27.50° 100.0 %  

Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5135 / 2 / 284 

Goodness-of-fit on F2 0.949 

Final R indices [I>2sigma(I)] R1 = 0.0570, wR2 = 0.1192 

R indices (all data) R1 = 0.0811, wR2 = 0.1285 

Absolute structure parameter 0.40(8) 

Largest diff. peak and hole 0.323 and -0.172 e.Å-3 
 
            Table 2.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for bens021s.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
S(1) -828(1) 13147(1) 8807(1) 44(1) 

O(1) -301(2) 13644(4) 8455(1) 58(1) 

N(1) -167(2) 11731(4) 9317(1) 39(1) 

C(1) -3695(3) 6201(7) 7776(2) 79(1) 

O(2) -1204(2) 15002(4) 9032(1) 58(1) 

C(2) -2997(2) 8006(6) 8020(1) 54(1) 

O(3) 1655(2) 12959(4) 9838(1) 47(1) 

C(3) -3065(2) 9417(7) 8436(2) 61(1) 

C(4) -2432(2) 11009(7) 8665(1) 55(1) 

C(5) -1686(2) 11219(5) 8479(1) 41(1) 

C(6) -1605(2) 9859(7) 8066(1) 54(1) 

C(7) -2261(3) 8273(7) 7840(2) 63(1) 

C(8) -554(2) 11202(6) 9760(1) 48(1) 
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C(9) 186(2) 10588(5) 10262(1) 43(1) 

C(10) 756(2) 8581(5) 10172(1) 36(1) 

C(11) 1064(2) 8971(5) 9666(1) 35(1) 

C(12) 293(2) 9684(5) 9184(1) 41(1) 

C(13) 1870(2) 10589(5) 9761(1) 36(1) 

C(14) 2629(2) 9863(5) 10244(1) 37(1) 

C(15) 3433(2) 11443(6) 10316(2) 54(1) 

C(16) 2315(2) 9715(5) 10752(1) 36(1) 

C(17) 1540(2) 7959(5) 10665(1) 38(1) 

C(18) 1236(2) 7667(6) 11152(1) 47(1) 

C(19) 1098(3) 5743(9) 11362(2) 74(1) 

C(20) 3072(2) 9163(5) 11247(1) 41(1) 

C(21) 3323(2) 10673(6) 11672(1) 50(1) 

C(22) 4038(3) 10197(8) 12118(2) 68(1) 

C(23) 4509(3) 8195(8) 12146(2) 68(1) 

C(24) 4271(3) 6655(7) 11738(2) 67(1) 

C(25) 3556(2) 7133(7) 11290(2) 58(1) 

________________________________________________________________________________  

 

Table 3.   Bond lengths [Å] and angles [°] for  bens021s. 

_____________________________________________________  

S(1)-O(1)  1.428(2) 

S(1)-O(2)  1.428(3) 

S(1)-N(1)  1.645(3) 

S(1)-C(5)  1.764(3) 

N(1)-C(12)  1.477(4) 

N(1)-C(8)  1.484(4) 

C(1)-C(2)  1.511(5) 

C(1)-H(1A)  0.9600 

C(1)-H(1B)  0.9600 

C(1)-H(1C)  0.9600 

C(2)-C(7)  1.372(5) 

C(2)-C(3)  1.386(5) 

O(3)-C(13)  1.439(3) 

O(3)-H(3O)  0.86(5) 

C(3)-C(4)  1.357(5) 
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C(3)-H(3A)  0.9300 

C(4)-C(5)  1.394(4) 

C(4)-H(4A)  0.9300 

C(5)-C(6)  1.366(5) 

C(6)-C(7)  1.376(5) 

C(6)-H(6A)  0.9300 

C(7)-H(7A)  0.9300 

C(8)-C(9)  1.514(5) 

C(8)-H(8A)  0.9700 

C(8)-H(8B)  0.9700 

C(9)-C(10)  1.523(4) 

C(9)-H(9A)  0.9700 

C(9)-H(9B)  0.9700 

C(10)-C(17)  1.538(4) 

C(10)-C(11)  1.546(4) 

C(10)-H(10A)  0.9800 

C(11)-C(12)  1.524(4) 

C(11)-C(13)  1.531(4) 

C(11)-H(11A)  0.9800 

C(12)-H(12A)  0.9700 

C(12)-H(12B)  0.9700 

C(13)-C(14)  1.516(4) 

C(13)-H(13A)  0.9800 

C(14)-C(15)  1.522(4) 

C(14)-C(16)  1.541(4) 

C(14)-H(14A)  0.9800 

C(15)-H(15A)  0.9600 

C(15)-H(15B)  0.9600 

C(15)-H(15C)  0.9600 

C(16)-C(20)  1.509(4) 

C(16)-C(17)  1.547(4) 

C(16)-H(16A)  0.9800 

C(17)-C(18)  1.489(4) 

C(17)-H(17A)  0.9800 

C(18)-C(19)  1.285(5) 

C(18)-H(18A)  0.9300 
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C(19)-H(19A)  0.97(4) 

C(19)-H(19B)  1.03(5) 

C(20)-C(21)  1.374(4) 

C(20)-C(25)  1.385(5) 

C(21)-C(22)  1.385(5) 

C(21)-H(21A)  0.9300 

C(22)-C(23)  1.364(6) 

C(22)-H(22A)  0.9300 

C(23)-C(24)  1.353(6) 

C(23)-H(23A)  0.9300 

C(24)-C(25)  1.389(5) 

C(24)-H(24A)  0.9300 

C(25)-H(25A)  0.9300 

 

O(1)-S(1)-O(2) 119.66(16) 

O(1)-S(1)-N(1) 105.77(13) 

O(2)-S(1)-N(1) 106.31(13) 

O(1)-S(1)-C(5) 108.55(15) 

O(2)-S(1)-C(5) 109.07(15) 

N(1)-S(1)-C(5) 106.75(14) 

C(12)-N(1)-C(8) 110.7(2) 

C(12)-N(1)-S(1) 116.42(19) 

C(8)-N(1)-S(1) 115.23(19) 

C(2)-C(1)-H(1A) 109.5 

C(2)-C(1)-H(1B) 109.5 

H(1A)-C(1)-H(1B) 109.5 

C(2)-C(1)-H(1C) 109.5 

H(1A)-C(1)-H(1C) 109.5 

H(1B)-C(1)-H(1C) 109.5 

C(7)-C(2)-C(3) 117.6(3) 

C(7)-C(2)-C(1) 120.8(4) 

C(3)-C(2)-C(1) 121.6(4) 

C(13)-O(3)-H(3O) 104(3) 

C(4)-C(3)-C(2) 122.0(3) 

C(4)-C(3)-H(3A) 119.0 

C(2)-C(3)-H(3A) 119.0 
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C(3)-C(4)-C(5) 119.1(3) 

C(3)-C(4)-H(4A) 120.5 

C(5)-C(4)-H(4A) 120.5 

C(6)-C(5)-C(4) 120.1(3) 

C(6)-C(5)-S(1) 120.8(2) 

C(4)-C(5)-S(1) 119.0(2) 

C(5)-C(6)-C(7) 119.4(3) 

C(5)-C(6)-H(6A) 120.3 

C(7)-C(6)-H(6A) 120.3 

C(2)-C(7)-C(6) 121.7(3) 

C(2)-C(7)-H(7A) 119.1 

C(6)-C(7)-H(7A) 119.1 

N(1)-C(8)-C(9) 109.5(2) 

N(1)-C(8)-H(8A) 109.8 

C(9)-C(8)-H(8A) 109.8 

N(1)-C(8)-H(8B) 109.8 

C(9)-C(8)-H(8B) 109.8 

H(8A)-C(8)-H(8B) 108.2 

C(8)-C(9)-C(10) 112.5(3) 

C(8)-C(9)-H(9A) 109.1 

C(10)-C(9)-H(9A) 109.1 

C(8)-C(9)-H(9B) 109.1 

C(10)-C(9)-H(9B) 109.1 

H(9A)-C(9)-H(9B) 107.8 

C(9)-C(10)-C(17) 114.4(2) 

C(9)-C(10)-C(11) 111.2(2) 

C(17)-C(10)-C(11) 111.9(2) 

C(9)-C(10)-H(10A) 106.3 

C(17)-C(10)-H(10A) 106.3 

C(11)-C(10)-H(10A) 106.3 

C(12)-C(11)-C(13) 112.8(2) 

C(12)-C(11)-C(10) 111.8(2) 

C(13)-C(11)-C(10) 113.4(2) 

C(12)-C(11)-H(11A) 106.1 

C(13)-C(11)-H(11A) 106.1 

C(10)-C(11)-H(11A) 106.1 
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N(1)-C(12)-C(11) 110.3(2) 

N(1)-C(12)-H(12A) 109.6 

C(11)-C(12)-H(12A) 109.6 

N(1)-C(12)-H(12B) 109.6 

C(11)-C(12)-H(12B) 109.6 

H(12A)-C(12)-H(12B) 108.1 

O(3)-C(13)-C(14) 107.9(2) 

O(3)-C(13)-C(11) 113.0(2) 

C(14)-C(13)-C(11) 112.1(2) 

O(3)-C(13)-H(13A) 107.9 

C(14)-C(13)-H(13A) 107.9 

C(11)-C(13)-H(13A) 107.9 

C(13)-C(14)-C(15) 110.9(3) 

C(13)-C(14)-C(16) 110.9(2) 

C(15)-C(14)-C(16) 112.7(3) 

C(13)-C(14)-H(14A) 107.3 

C(15)-C(14)-H(14A) 107.3 

C(16)-C(14)-H(14A) 107.3 

C(14)-C(15)-H(15A) 109.5 

C(14)-C(15)-H(15B) 109.5 

H(15A)-C(15)-H(15B) 109.5 

C(14)-C(15)-H(15C) 109.5 

H(15A)-C(15)-H(15C) 109.5 

H(15B)-C(15)-H(15C) 109.5 

C(20)-C(16)-C(14) 112.2(2) 

C(20)-C(16)-C(17) 112.0(2) 

C(14)-C(16)-C(17) 110.0(2) 

C(20)-C(16)-H(16A) 107.5 

C(14)-C(16)-H(16A) 107.5 

C(17)-C(16)-H(16A) 107.5 

C(18)-C(17)-C(10) 111.1(2) 

C(18)-C(17)-C(16) 112.3(2) 

C(10)-C(17)-C(16) 111.8(2) 

C(18)-C(17)-H(17A) 107.1 

C(10)-C(17)-H(17A) 107.1 

C(16)-C(17)-H(17A) 107.1 
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C(19)-C(18)-C(17) 126.5(4) 

C(19)-C(18)-H(18A) 116.8 

C(17)-C(18)-H(18A) 116.8 

C(18)-C(19)-H(19A) 123(2) 

C(18)-C(19)-H(19B) 122(2) 

H(19A)-C(19)-H(19B) 115(3) 

C(21)-C(20)-C(25) 116.9(3) 

C(21)-C(20)-C(16) 121.5(3) 

C(25)-C(20)-C(16) 121.6(3) 

C(20)-C(21)-C(22) 121.3(3) 

C(20)-C(21)-H(21A) 119.3 

C(22)-C(21)-H(21A) 119.3 

C(23)-C(22)-C(21) 120.5(4) 

C(23)-C(22)-H(22A) 119.7 

C(21)-C(22)-H(22A) 119.7 

C(24)-C(23)-C(22) 119.7(4) 

C(24)-C(23)-H(23A) 120.2 

C(22)-C(23)-H(23A) 120.2 

C(23)-C(24)-C(25) 119.9(4) 

C(23)-C(24)-H(24A) 120.0 

C(25)-C(24)-H(24A) 120.0 

C(20)-C(25)-C(24) 121.7(3) 

C(20)-C(25)-H(25A) 119.1 

C(24)-C(25)-H(25A) 119.1 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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Table 4.   Anisotropic displacement parameters  (Å2x 103) for bens021s.  The anisotropic 

displacement factor exponent takes the form:  -2π2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

S(1)43(1)  44(1) 43(1)  7(1) 9(1)  -7(1) 

O(1)51(1)  70(2) 48(1)  20(1) 9(1)  -12(1) 

N(1)40(1)  39(1) 38(1)  -1(1) 11(1)  -4(1) 

C(1)65(2)  75(3) 84(3)  -3(2) 2(2)  -26(2) 

O(2)63(1)  39(1) 64(2)  4(1) 9(1)  3(1) 

C(2)40(2)  59(2) 54(2)  4(2) -1(2)  -9(2) 

O(3)53(2)  31(1) 57(2)  -2(1) 16(1)  -5(1) 

C(3)36(2)  82(3) 65(2)  0(2) 16(2)  -5(2) 

C(4)43(2)  70(2) 53(2)  -15(2) 15(2)  -6(2) 

C(5)40(2)  45(2) 37(2)  3(1) 8(1)  -3(1) 

C(6)41(2)  79(3) 44(2)  -3(2) 15(2)  -9(2) 

C(7)60(2)  73(3) 54(2)  -15(2) 14(2)  -9(2) 

C(8)41(2)  53(2) 53(2)  7(2) 18(2)  0(2) 

C(9)45(2)  55(2) 34(2)  1(1) 18(1)  -1(2) 

C(10)39(2)  33(2) 38(2)  -2(1) 13(1)  -9(1) 

C(11)43(2)  28(1) 37(2)  -2(1) 15(1)  -3(1) 

C(12)52(2)  34(2) 36(2)  -7(1) 11(2)  -10(1) 

C(13)43(2)  32(2) 36(2)  -3(1) 16(1)  -4(1) 

C(14)37(2)  36(2) 41(2)  -6(1) 14(1)  -5(1) 

C(15)48(2)  59(2) 60(2)  -2(2) 23(2)  -12(2) 

C(16)42(2)  31(2) 36(2)  -3(1) 13(1)  -3(1) 

C(17)42(2)  35(2) 36(2)  2(1) 11(1)  -5(1) 

C(18)47(2)  56(2) 40(2)  -1(2) 15(2)  -5(2) 

C(19)104(4)  75(3) 53(2)  3(2) 41(3)  -24(3) 

C(20)38(2)  44(2) 42(2)  2(1) 13(1)  -7(1) 

C(21)54(2)  53(2) 45(2)  -8(2) 17(2)  -4(2) 

C(22)74(3)  78(3) 43(2)  -8(2) 3(2)  -18(2) 

C(23)51(2)  87(3) 56(2)  19(2) -1(2)  -5(2) 

C(24)58(2)  59(2) 80(3)  13(2) 11(2)  10(2) 

C(25)58(2)  54(2) 55(2)  -9(2) 5(2)  1(2) 

______________________________________________________________________________ 
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            Table 5.   Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 
for bens021s. 

________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  
H(1A) -4157 6251 7951 118 

H(1B) -3424 4697 7823 118 

H(1C) -3949 6509 7400 118 

H(3O) 1140(30) 13160(70) 9611(17) 72(14) 

H(3A) -3560 9269 8563 73 

H(4A) -2495 11946 8942 66 

H(6A) -1109 10003 7940 65 

H(7A) -2206 7360 7557 75 

H(8A) -968 9918 9659 58 

H(8B) -881 12533 9830 58 

H(9A) -74 10185 10546 52 

H(9B) 564 11931 10378 52 

H(10A) 364 7224 10097 43 

H(11A) 1266 7461 9575 42 

H(12A) 517 10039 8883 49 

H(12B) -127 8415 9080 49 

H(13A) 2086 10520 9444 44 

H(14A) 2812 8306 10172 45 

H(15A) 3598 11490 9989 81 

H(15B) 3924 10862 10601 81 

H(15C) 3284 12972 10405 81 

H(16A) 2081 11237 10807 43 

H(17A) 1770 6458 10591 45 

H(18A) 1136 9011 11322 57 

H(19A) 870(20) 5660(60) 11668(15) 56(10) 

H(19B) 1210(30) 4170(80) 11209(18) 89(14) 

H(21A) 3006 12042 11661 60 

H(22A) 4198 11251 12399 81 

H(23A) 4992 7890 12445 82 

H(24A) 4585 5278 11757 81 
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H(25A) 3399 6062 11012 70 
________________________________________________________________________________  

B.4 COMPOUND 170 

 
 

Table 1.  Crystal data and structure refinement for bs1022. 

Identification code  bs1022 

Empirical formula  C23 H29 B O3 

Formula weight  364.27 

Temperature  295(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  Pca2(1) 

Unit cell dimensions a = 12.5986(6) Å α= 90°. 

 b = 8.2876(4) Å β= 90°. 

 c = 20.2572(10) Å γ = 90°. 

Volume 2115.10(18) Å3 

Z 4 

Density (calculated) 1.144 Mg/m3 

Absorption coefficient 0.073 mm-1 

F(000) 784 

Crystal size 0.29 x 0.21 x 0.21 mm3 

Theta range for data collection 2.01 to 27.50°. 

Index ranges -16<=h<=16, -10<=k<=10, -26<=l<=26 

Reflections collected 19669 

Independent reflections 4849 [R(int) = 0.0223] 
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Completeness to theta = 27.50° 100.0 %  

Absorption correction None 

Max. and min. transmission 0.9848 and 0.9791 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4849 / 1 / 250 

Goodness-of-fit on F2 1.139 

Final R indices [I>2sigma(I)] R1 = 0.0492, wR2 = 0.1268 

R indices (all data) R1 = 0.0614, wR2 = 0.1335 

Absolute structure parameter 0.4(12) 

Extinction coefficient 0.0000(16) 

Largest diff. peak and hole 0.213 and -0.139 e.Å-3 
             
            Table 2.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for bs1022.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
B 5226(2) 8579(2) 1043(1) 53(1) 

C(1) 198(2) 12945(2) 3067(1) 51(1) 

O(1) 2963(2) 8806(3) 1121(2) 130(1) 

O(2) 5405(1) 7171(2) 1357(1) 64(1) 

C(2) -709(2) 12824(2) 3472(1) 53(1) 

O(3) 5453(2) 8509(2) 397(1) 80(1) 

C(3) -1690(2) 13561(3) 3310(1) 69(1) 

C(4) -2546(2) 13400(3) 3713(2) 82(1) 

C(5) -2476(2) 12507(3) 4302(2) 79(1) 

C(6) -1560(2) 11790(3) 4469(1) 69(1) 

C(7) -649(2) 11911(2) 4060(1) 54(1) 

C(8) 324(2) 11139(3) 4215(1) 61(1) 

C(9) 1174(2) 11274(2) 3812(1) 57(1) 

C(10) 1134(1) 12174(2) 3218(1) 49(1) 

C(11) 2036(2) 12267(2) 2766(1) 52(1) 

C(12) 2925(2) 11430(2) 2791(1) 56(1) 

C(13) 3836(2) 11600(2) 2317(1) 54(1) 

C(14) 4067(2) 10003(2) 1941(1) 52(1) 

C(15) 4899(2) 10187(2) 1399(1) 67(1) 
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C(16) 5607(2) 5945(2) 857(1) 57(1) 

C(17) 5966(2) 6969(3) 266(1) 66(1) 

C(18) 4822(2) 12181(3) 2686(1) 74(1) 

C(19) 3082(2) 9271(3) 1668(2) 87(1) 

C(20) 4563(2) 5082(4) 739(2) 115(1) 

C(21) 6430(2) 4780(3) 1113(1) 86(1) 

C(22) 7167(2) 7313(4) 276(2) 105(1) 

C(23) 5637(4) 6405(5) -409(2) 122(1) 

________________________________________________________________________________  

 

Table 3.   Bond lengths [Å] and angles [°] for  bs1022. 

_____________________________________________________  

B-O(3)  1.343(3) 

B-O(2)  1.347(3) 

B-C(15)  1.570(3) 

C(1)-C(10)  1.375(3) 

C(1)-C(2)  1.410(3) 

C(1)-H(1)  0.9300 

O(1)-C(19)  1.182(4) 

O(2)-C(16)  1.458(2) 

C(2)-C(7)  1.413(3) 

C(2)-C(3)  1.417(3) 

O(3)-C(17)  1.455(2) 

C(3)-C(4)  1.360(4) 

C(3)-H(3)  0.9300 

C(4)-C(5)  1.407(4) 

C(4)-H(4)  0.9300 

C(5)-C(6)  1.341(4) 

C(5)-H(5)  0.9300 

C(6)-C(7)  1.420(3) 

C(6)-H(6)  0.9300 

C(7)-C(8)  1.418(3) 

C(8)-C(9)  1.351(3) 

C(8)-H(8)  0.9300 

C(9)-C(10)  1.416(3) 

C(9)-H(9)  0.9300 
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C(10)-C(11)  1.462(3) 

C(11)-C(12)  1.318(3) 

C(11)-H(11)  0.9300 

C(12)-C(13)  1.502(3) 

C(12)-H(12)  0.9300 

C(13)-C(18)  1.528(3) 

C(13)-C(14)  1.554(3) 

C(13)-H(13)  0.9800 

C(14)-C(19)  1.488(3) 

C(14)-C(15)  1.526(3) 

C(14)-H(14)  0.9800 

C(15)-H(15A)  0.9700 

C(15)-H(15B)  0.9700 

C(16)-C(21)  1.509(3) 

C(16)-C(20)  1.516(4) 

C(16)-C(17)  1.536(3) 

C(17)-C(23)  1.502(4) 

C(17)-C(22)  1.539(4) 

C(18)-H(18A)  0.9600 

C(18)-H(18B)  0.9600 

C(18)-H(18C)  0.9600 

C(19)-H(19)  0.9300 

C(20)-H(20A)  0.9600 

C(20)-H(20B)  0.9600 

C(20)-H(20C)  0.9600 

C(21)-H(21A)  0.9600 

C(21)-H(21B)  0.9600 

C(21)-H(21C)  0.9600 

C(22)-H(22A)  0.9600 

C(22)-H(22B)  0.9600 

C(22)-H(22C)  0.9600 

C(23)-H(23A)  0.9600 

C(23)-H(23B)  0.9600 

C(23)-H(23C)  0.9600 

 

O(3)-B-O(2) 112.80(17) 
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O(3)-B-C(15) 122.69(18) 

O(2)-B-C(15) 124.22(18) 

C(10)-C(1)-C(2) 122.20(17) 

C(10)-C(1)-H(1) 118.9 

C(2)-C(1)-H(1) 118.9 

B-O(2)-C(16) 107.75(15) 

C(7)-C(2)-C(1) 118.97(17) 

C(7)-C(2)-C(3) 118.26(18) 

C(1)-C(2)-C(3) 122.76(19) 

B-O(3)-C(17) 108.06(15) 

C(4)-C(3)-C(2) 120.7(2) 

C(4)-C(3)-H(3) 119.7 

C(2)-C(3)-H(3) 119.7 

C(3)-C(4)-C(5) 120.7(2) 

C(3)-C(4)-H(4) 119.6 

C(5)-C(4)-H(4) 119.6 

C(6)-C(5)-C(4) 120.1(2) 

C(6)-C(5)-H(5) 119.9 

C(4)-C(5)-H(5) 119.9 

C(5)-C(6)-C(7) 121.1(2) 

C(5)-C(6)-H(6) 119.4 

C(7)-C(6)-H(6) 119.4 

C(2)-C(7)-C(8) 118.33(17) 

C(2)-C(7)-C(6) 119.10(19) 

C(8)-C(7)-C(6) 122.6(2) 

C(9)-C(8)-C(7) 120.96(19) 

C(9)-C(8)-H(8) 119.5 

C(7)-C(8)-H(8) 119.5 

C(8)-C(9)-C(10) 121.90(18) 

C(8)-C(9)-H(9) 119.1 

C(10)-C(9)-H(9) 119.1 

C(1)-C(10)-C(9) 117.63(17) 

C(1)-C(10)-C(11) 120.22(16) 

C(9)-C(10)-C(11) 122.14(15) 

C(12)-C(11)-C(10) 127.53(16) 

C(12)-C(11)-H(11) 116.2 
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C(10)-C(11)-H(11) 116.2 

C(11)-C(12)-C(13) 125.12(17) 

C(11)-C(12)-H(12) 117.4 

C(13)-C(12)-H(12) 117.4 

C(12)-C(13)-C(18) 109.80(18) 

C(12)-C(13)-C(14) 112.12(15) 

C(18)-C(13)-C(14) 110.82(16) 

C(12)-C(13)-H(13) 108.0 

C(18)-C(13)-H(13) 108.0 

C(14)-C(13)-H(13) 108.0 

C(19)-C(14)-C(15) 110.2(2) 

C(19)-C(14)-C(13) 111.90(16) 

C(15)-C(14)-C(13) 113.39(15) 

C(19)-C(14)-H(14) 107.0 

C(15)-C(14)-H(14) 107.0 

C(13)-C(14)-H(14) 107.0 

C(14)-C(15)-B 115.20(16) 

C(14)-C(15)-H(15A) 108.5 

B-C(15)-H(15A) 108.5 

C(14)-C(15)-H(15B) 108.5 

B-C(15)-H(15B) 108.5 

H(15A)-C(15)-H(15B) 107.5 

O(2)-C(16)-C(21) 109.06(18) 

O(2)-C(16)-C(20) 106.67(19) 

C(21)-C(16)-C(20) 110.4(2) 

O(2)-C(16)-C(17) 102.01(14) 

C(21)-C(16)-C(17) 114.82(18) 

C(20)-C(16)-C(17) 113.2(2) 

O(3)-C(17)-C(23) 108.41(19) 

O(3)-C(17)-C(16) 102.23(15) 

C(23)-C(17)-C(16) 117.1(2) 

O(3)-C(17)-C(22) 105.8(2) 

C(23)-C(17)-C(22) 109.9(3) 

C(16)-C(17)-C(22) 112.4(2) 

C(13)-C(18)-H(18A) 109.5 

C(13)-C(18)-H(18B) 109.5 
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H(18A)-C(18)-H(18B) 109.5 

C(13)-C(18)-H(18C) 109.5 

H(18A)-C(18)-H(18C) 109.5 

H(18B)-C(18)-H(18C) 109.5 

O(1)-C(19)-C(14) 126.0(3) 

O(1)-C(19)-H(19) 117.0 

C(14)-C(19)-H(19) 117.0 

C(16)-C(20)-H(20A) 109.5 

C(16)-C(20)-H(20B) 109.5 

H(20A)-C(20)-H(20B) 109.5 

C(16)-C(20)-H(20C) 109.5 

H(20A)-C(20)-H(20C) 109.5 

H(20B)-C(20)-H(20C) 109.5 

C(16)-C(21)-H(21A) 109.5 

C(16)-C(21)-H(21B) 109.5 

H(21A)-C(21)-H(21B) 109.5 

C(16)-C(21)-H(21C) 109.5 

H(21A)-C(21)-H(21C) 109.5 

H(21B)-C(21)-H(21C) 109.5 

C(17)-C(22)-H(22A) 109.5 

C(17)-C(22)-H(22B) 109.5 

H(22A)-C(22)-H(22B) 109.5 

C(17)-C(22)-H(22C) 109.5 

H(22A)-C(22)-H(22C) 109.5 

H(22B)-C(22)-H(22C) 109.5 

C(17)-C(23)-H(23A) 109.5 

C(17)-C(23)-H(23B) 109.5 

H(23A)-C(23)-H(23B) 109.5 

C(17)-C(23)-H(23C) 109.5 

H(23A)-C(23)-H(23C) 109.5 

H(23B)-C(23)-H(23C) 109.5 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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Table 4.   Anisotropic displacement parameters  (Å2x 103) for bs1022.  The anisotropic 

displacement factor exponent takes the form:  -2π2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

B 52(1)  53(1) 55(1)  -1(1) 8(1)  2(1) 

C(1)59(1)  48(1) 46(1)  -3(1) -5(1)  5(1) 

O(1)118(2)  130(2) 142(2)  -50(2) -29(2)  -14(1) 

O(2)79(1)  64(1) 49(1)  2(1) 8(1)  16(1) 

C(2)54(1)  47(1) 56(1)  -14(1) -5(1)  2(1) 

O(3)121(1)  61(1) 58(1)  10(1) 23(1)  35(1) 

C(3)61(1)  70(1) 76(1)  -11(1) -5(1)  11(1) 

C(4)52(1)  85(1) 110(2)  -21(2) -4(1)  10(1) 

C(5)62(1)  73(1) 102(2)  -17(1) 22(1)  -6(1) 

C(6)72(1)  60(1) 74(1)  -9(1) 18(1)  -10(1) 

C(7)59(1)  49(1) 55(1)  -11(1) 3(1)  -6(1) 

C(8)68(1)  61(1) 54(1)  7(1) 2(1)  1(1) 

C(9)57(1)  62(1) 53(1)  5(1) -3(1)  7(1) 

C(10)53(1)  47(1) 48(1)  -5(1) -3(1)  3(1) 

C(11)60(1)  50(1) 45(1)  1(1) -1(1)  5(1) 

C(12)66(1)  53(1) 50(1)  6(1) 7(1)  10(1) 

C(13)58(1)  52(1) 50(1)  3(1) 6(1)  10(1) 

C(14)56(1)  45(1) 55(1)  3(1) 5(1)  8(1) 

C(15)72(1)  54(1) 76(1)  -7(1) 24(1)  -1(1) 

C(16)59(1)  51(1) 60(1)  -2(1) 4(1)  5(1) 

C(17)84(1)  62(1) 51(1)  -1(1) 7(1)  24(1) 

C(18)74(1)  75(1) 73(1)  -16(1) 3(1)  0(1) 

C(19)65(1)  78(2) 116(2)  -31(2) 9(1)  3(1) 

C(20)74(2)  79(2) 193(4)  -19(2) 11(2)  -14(1) 

C(21)103(2)  73(1) 82(2)  14(1) 2(1)  32(1) 

C(22)83(2)  95(2) 138(3)  18(2) 47(2)  5(1) 

C(23)168(3)  139(3) 59(1)  -27(2) -20(2)  73(3) 

______________________________________________________________________________ 
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            Table 5.   Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 
for bs1022. 

________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  
H(1) 162 13567 2686 62 

H(3) -1748 14161 2923 83 

H(4) -3186 13886 3598 99 

H(5) -3065 12414 4576 95 

H(6) -1522 11203 4860 83 

H(8) 378 10531 4599 73 

H(9) 1804 10761 3928 68 

H(11) 1977 13003 2421 62 

H(12) 2994 10674 3127 68 

H(13) 3645 12424 1991 64 

H(14) 4354 9239 2264 62 

H(15A) 5530 10667 1590 80 

H(15B) 4629 10931 1070 80 

H(18A) 4676 13201 2891 111 

H(18B) 5399 12301 2380 111 

H(18C) 5011 11406 3018 111 

H(19) 2508 9170 1953 104 

H(20A) 4283 4709 1152 173 

H(20B) 4678 4179 451 173 

H(20C) 4068 5813 539 173 

H(21A) 7071 5356 1215 129 

H(21B) 6576 3979 783 129 

H(21C) 6168 4264 1505 129 

H(22A) 7325 8176 -24 158 

H(22B) 7546 6361 144 158 

H(22C) 7378 7615 714 158 

H(23A) 4892 6167 -409 183 

H(23B) 6029 5451 -523 183 

H(23C) 5781 7237 -726 183 

________________________________________________________________________________  
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B.5 COMPOUND 177 

 
 

Table 1.  Crystal data and structure refinement for bens819s. 

Identification code  bens819s 

Empirical formula  C20.50 H20 O3 

Formula weight  314.36 

Temperature  295(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 10.3590(5) Å α= 90°. 

 b = 21.7109(10) Å β= 106.2630(10)°. 

 c = 16.1006(7) Å γ = 90°. 

Volume 3476.2(3) Å3 

Z 8 

Density (calculated) 1.201 Mg/m3 

Absorption coefficient 0.080 mm-1 

F(000) 1336 

Crystal size 0.27 x 0.21 x 0.08 mm3 

Theta range for data collection 1.62 to 25.00°. 

Index ranges -12<=h<=12, -25<=k<=25, -19<=l<=19 

Reflections collected 27806 

Independent reflections 6121 [R(int) = 0.0685] 

Completeness to theta = 25.00° 100.0 %  

Absorption correction None 

Max. and min. transmission 0.9937 and 0.9788 



 365 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6121 / 0 / 432 

Goodness-of-fit on F2 1.079 

Final R indices [I>2sigma(I)] R1 = 0.0764, wR2 = 0.1658 

R indices (all data) R1 = 0.1535, wR2 = 0.1899 

Largest diff. peak and hole 0.176 and -0.129 e.Å-3 
             
            Table 2.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for bens819s.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
O(1) 5103(3) 1857(1) 8135(2) 84(1) 

O(2) 4256(3) 1679(1) 9197(2) 113(1) 

O(3) 3413(3) 3084(1) 7506(2) 89(1) 

O(4) 4473(3) -997(1) 8336(2) 85(1) 

O(5) 2896(3) -894(2) 7132(2) 130(1) 

O(6) 4358(2) 436(1) 8811(2) 74(1) 

C(1) 4619(4) 3132(2) 8180(2) 65(1) 

C(2) 4581(4) 2731(2) 8937(2) 82(1) 

C(3) 4618(4) 2062(2) 8761(3) 80(1) 

C(4) 5503(4) 2264(2) 7534(2) 81(1) 

C(5) 5770(3) 2922(2) 7836(2) 65(1) 

C(6) 5938(4) 3347(2) 7102(2) 77(1) 

C(7) 6253(4) 3980(2) 7441(2) 73(1) 

C(8) 5462(4) 4460(2) 7244(2) 69(1) 

C(9) 5696(4) 5086(2) 7595(2) 65(1) 

C(10) 4646(4) 5485(2) 7491(2) 69(1) 

C(11) 4807(4) 6073(2) 7877(2) 71(1) 

C(12) 3731(5) 6480(2) 7796(3) 96(1) 

C(13) 3923(7) 7034(2) 8199(4) 109(2) 

C(14) 5179(8) 7213(2) 8710(4) 118(2) 

C(15) 6251(6) 6833(2) 8804(3) 105(2) 

C(16) 6091(4) 6252(2) 8377(2) 73(1) 

C(17) 7184(4) 5848(2) 8451(3) 88(1) 

C(18) 6987(4) 5278(2) 8082(3) 81(1) 
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C(19) 6993(5) 3105(2) 6692(3) 127(2) 

C(20) 5235(3) 258(1) 8311(2) 57(1) 

C(21) 4396(4) -58(2) 7495(2) 72(1) 

C(22) 3856(4) -668(2) 7646(3) 84(1) 

C(23) 5528(3) -746(2) 9042(2) 68(1) 

C(24) 6263(3) -201(1) 8814(2) 53(1) 

C(25) 7251(3) 67(2) 9630(2) 59(1) 

C(26) 7888(3) 643(2) 9432(2) 63(1) 

C(27) 7856(3) 1188(2) 9795(2) 65(1) 

C(28) 8477(3) 1763(2) 9629(2) 63(1) 

C(29) 8267(3) 2298(2) 10026(2) 68(1) 

C(30) 8815(4) 2869(2) 9876(2) 68(1) 

C(31) 8568(4) 3425(2) 10254(3) 97(1) 

C(32) 9100(6) 3966(2) 10076(4) 112(2) 

C(33) 9927(6) 3975(3) 9528(4) 117(2) 

C(34) 10197(5) 3451(3) 9155(3) 106(1) 

C(35) 9634(4) 2884(2) 9309(3) 82(1) 

C(36) 9859(4) 2336(2) 8920(3) 96(1) 

C(37) 9289(4) 1795(2) 9059(2) 83(1) 

C(38) 8328(4) -403(2) 10066(2) 82(1) 

C(39) 6398(10) 4874(8) 415(6) 207(4) 

C(40) 5812(17) 5391(5) 387(6) 190(3) 

C(41) 4504(14) 5515(3) 77(6) 157(2) 

________________________________________________________________________________  

 

Table 3.   Bond lengths [Å] and angles [°] for  bens819s. 

_____________________________________________________  

O(1)-C(3)  1.322(4) 

O(1)-C(4)  1.452(4) 

O(2)-C(3)  1.212(4) 

O(3)-C(1)  1.410(4) 

O(4)-C(22)  1.325(5) 

O(4)-C(23)  1.446(4) 

O(5)-C(22)  1.206(4) 

O(6)-C(20)  1.426(4) 

C(1)-C(2)  1.507(4) 
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C(1)-C(5)  1.518(4) 

C(2)-C(3)  1.482(5) 

C(4)-C(5)  1.510(5) 

C(5)-C(6)  1.548(5) 

C(6)-C(7)  1.482(5) 

C(6)-C(19)  1.521(5) 

C(7)-C(8)  1.309(4) 

C(8)-C(9)  1.466(5) 

C(9)-C(10)  1.363(5) 

C(9)-C(18)  1.411(5) 

C(10)-C(11)  1.409(5) 

C(11)-C(12)  1.399(5) 

C(11)-C(16)  1.403(5) 

C(12)-C(13)  1.355(6) 

C(13)-C(14)  1.386(7) 

C(14)-C(15)  1.357(6) 

C(15)-C(16)  1.423(6) 

C(16)-C(17)  1.410(5) 

C(17)-C(18)  1.362(5) 

C(20)-C(24)  1.516(4) 

C(20)-C(21)  1.521(4) 

C(21)-C(22)  1.483(5) 

C(23)-C(24)  1.507(4) 

C(24)-C(25)  1.536(4) 

C(25)-C(26)  1.488(4) 

C(25)-C(38)  1.530(4) 

C(26)-C(27)  1.324(4) 

C(27)-C(28)  1.464(4) 

C(28)-C(29)  1.372(4) 

C(28)-C(37)  1.411(5) 

C(29)-C(30)  1.411(5) 

C(30)-C(31)  1.408(5) 

C(30)-C(35)  1.411(5) 

C(31)-C(32)  1.361(6) 

C(32)-C(33)  1.390(6) 

C(33)-C(34)  1.351(6) 
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C(34)-C(35)  1.413(6) 

C(35)-C(36)  1.394(5) 

C(36)-C(37)  1.361(5) 

C(39)-C(40)  1.271(10) 

C(39)-C(41)#1  1.342(10) 

C(40)-C(41)  1.334(11) 

C(41)-C(39)#1  1.342(10) 

 

C(3)-O(1)-C(4) 123.0(3) 

C(22)-O(4)-C(23) 122.5(3) 

O(3)-C(1)-C(2) 111.1(3) 

O(3)-C(1)-C(5) 108.3(3) 

C(2)-C(1)-C(5) 108.8(3) 

C(3)-C(2)-C(1) 113.8(3) 

O(2)-C(3)-O(1) 117.2(4) 

O(2)-C(3)-C(2) 122.1(4) 

O(1)-C(3)-C(2) 120.6(4) 

O(1)-C(4)-C(5) 114.9(3) 

C(4)-C(5)-C(1) 108.0(3) 

C(4)-C(5)-C(6) 111.6(3) 

C(1)-C(5)-C(6) 111.6(3) 

C(7)-C(6)-C(19) 111.7(3) 

C(7)-C(6)-C(5) 109.4(3) 

C(19)-C(6)-C(5) 112.0(3) 

C(8)-C(7)-C(6) 126.3(4) 

C(7)-C(8)-C(9) 128.3(4) 

C(10)-C(9)-C(18) 118.6(4) 

C(10)-C(9)-C(8) 120.1(3) 

C(18)-C(9)-C(8) 121.1(3) 

C(9)-C(10)-C(11) 122.0(4) 

C(12)-C(11)-C(16) 118.7(4) 

C(12)-C(11)-C(10) 122.6(4) 

C(16)-C(11)-C(10) 118.7(4) 

C(13)-C(12)-C(11) 120.7(5) 

C(12)-C(13)-C(14) 121.3(5) 

C(15)-C(14)-C(13) 119.9(5) 
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C(14)-C(15)-C(16) 120.3(5) 

C(11)-C(16)-C(17) 119.0(4) 

C(11)-C(16)-C(15) 119.1(4) 

C(17)-C(16)-C(15) 121.9(5) 

C(18)-C(17)-C(16) 120.6(4) 

C(17)-C(18)-C(9) 120.9(4) 

O(6)-C(20)-C(24) 109.9(2) 

O(6)-C(20)-C(21) 108.0(3) 

C(24)-C(20)-C(21) 108.1(3) 

C(22)-C(21)-C(20) 114.3(3) 

O(5)-C(22)-O(4) 117.9(4) 

O(5)-C(22)-C(21) 121.8(4) 

O(4)-C(22)-C(21) 120.2(4) 

O(4)-C(23)-C(24) 115.3(3) 

C(23)-C(24)-C(20) 108.6(2) 

C(23)-C(24)-C(25) 110.5(3) 

C(20)-C(24)-C(25) 114.1(3) 

C(26)-C(25)-C(38) 110.4(3) 

C(26)-C(25)-C(24) 111.3(3) 

C(38)-C(25)-C(24) 111.5(3) 

C(27)-C(26)-C(25) 126.0(3) 

C(26)-C(27)-C(28) 128.0(3) 

C(29)-C(28)-C(37) 117.6(3) 

C(29)-C(28)-C(27) 120.2(3) 

C(37)-C(28)-C(27) 122.2(3) 

C(28)-C(29)-C(30) 122.6(3) 

C(31)-C(30)-C(29) 123.3(4) 

C(31)-C(30)-C(35) 118.3(4) 

C(29)-C(30)-C(35) 118.4(4) 

C(32)-C(31)-C(30) 121.0(5) 

C(31)-C(32)-C(33) 120.2(5) 

C(34)-C(33)-C(32) 120.7(5) 

C(33)-C(34)-C(35) 120.6(5) 

C(36)-C(35)-C(34) 122.4(5) 

C(36)-C(35)-C(30) 118.5(4) 

C(34)-C(35)-C(30) 119.1(4) 
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C(37)-C(36)-C(35) 121.9(4) 

C(36)-C(37)-C(28) 120.9(4) 

C(40)-C(39)-C(41)#1 106.8(10) 

C(39)-C(40)-C(41) 128.1(11) 

C(40)-C(41)-C(39)#1 124.0(9) 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

#1 -x+1,-y+1,-z       

 

               Table 4.   Anisotropic displacement parameters  (Å2x 103) for bens819s.  The anisotropic 

displacement factor exponent takes the form:  -2π2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

O(1)116(2)  56(2) 86(2)  2(1) 36(2)  13(1) 

O(2)168(3)  70(2) 117(2)  16(2) 65(2)  2(2) 

O(3)71(2)  80(2) 102(2)  -8(2) 0(2)  14(2) 

O(4)83(2)  65(2) 100(2)  -2(2) 15(2)  -22(1) 

O(5)102(2)  138(3) 127(3)  -3(2) -6(2)  -59(2) 

O(6)77(2)  67(2) 89(2)  4(1) 42(1)  8(1) 

C(1)76(3)  52(2) 64(2)  -6(2) 15(2)  8(2) 

C(2)109(3)  64(3) 80(3)  0(2) 39(2)  0(2) 

C(3)94(3)  68(3) 78(3)  11(2) 23(2)  8(2) 

C(4)99(3)  73(3) 74(3)  4(2) 32(2)  21(2) 

C(5)71(2)  59(2) 63(2)  -2(2) 14(2)  14(2) 

C(6)91(3)  76(3) 67(2)  8(2) 29(2)  15(2) 

C(7)75(2)  77(3) 66(2)  4(2) 18(2)  0(2) 

C(8)75(3)  77(3) 52(2)  7(2) 14(2)  3(2) 

C(9)68(3)  75(3) 57(2)  5(2) 25(2)  -1(2) 

C(10)75(3)  74(3) 59(2)  10(2) 21(2)  -3(2) 

C(11)85(3)  74(3) 59(2)  11(2) 28(2)  -1(2) 

C(12)112(4)  87(3) 96(3)  18(3) 40(3)  20(3) 

C(13)153(5)  78(4) 116(4)  17(3) 71(4)  23(3) 

C(14)199(7)  70(3) 106(4)  1(3) 79(5)  -11(4) 

C(15)144(5)  83(3) 95(3)  2(3) 46(3)  -22(3) 

C(16)91(3)  63(3) 69(2)  7(2) 30(2)  -8(2) 
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C(17)79(3)  96(3) 87(3)  5(3) 20(2)  -16(3) 

C(18)70(3)  87(3) 89(3)  1(2) 27(2)  2(2) 

C(19)175(5)  99(3) 144(4)  10(3) 106(4)  18(3) 

C(20)59(2)  60(2) 55(2)  3(2) 19(2)  -9(2) 

C(21)64(2)  81(3) 68(2)  4(2) 13(2)  -13(2) 

C(22)72(3)  91(3) 87(3)  -9(3) 20(3)  -22(2) 

C(23)74(2)  59(2) 73(2)  3(2) 25(2)  3(2) 

C(24)53(2)  54(2) 55(2)  1(2) 22(2)  3(2) 

C(25)59(2)  70(2) 52(2)  -3(2) 22(2)  0(2) 

C(26)55(2)  79(3) 56(2)  -11(2) 18(2)  -5(2) 

C(27)62(2)  78(3) 56(2)  -2(2) 18(2)  -2(2) 

C(28)62(2)  69(2) 56(2)  -2(2) 12(2)  -5(2) 

C(29)67(2)  74(3) 59(2)  -4(2) 12(2)  -3(2) 

C(30)72(2)  64(3) 58(2)  0(2) 2(2)  -3(2) 

C(31)114(3)  82(3) 86(3)  -10(3) 15(3)  -6(3) 

C(32)138(4)  74(3) 104(4)  1(3) 1(3)  -12(3) 

C(33)134(5)  96(4) 100(4)  29(3) -3(4)  -25(3) 

C(34)114(4)  96(4) 99(3)  18(3) 19(3)  -12(3) 

C(35)81(3)  84(3) 76(3)  14(2) 12(2)  -7(2) 

C(36)98(3)  105(4) 97(3)  3(3) 48(3)  -10(3) 

C(37)91(3)  84(3) 82(3)  -4(2) 35(2)  -8(2) 

C(38)75(3)  93(3) 71(2)  7(2) 10(2)  7(2) 

C(39)197(9)  243(11) 176(8)  -68(9) 45(7)  17(10) 

C(40)226(12)  177(9) 166(7)  16(6) 53(9)  23(8) 

C(41)177(8)  162(6) 124(5)  -25(5) 26(5)  -20(7) 

______________________________________________________________________________  

 

Table 5.   Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 
for bens819s. 

________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  
H(3) 2840(50) 3390(20) 7600(30) 150(20) 

H(6) 4420(50) 870(20) 8840(30) 160(20) 

H(1A) 4761 3562 8370 78 
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H(2A) 5341 2834 9425 98 

H(2B) 3767 2821 9100 98 

H(4A) 4800 2262 6990 97 

H(4B) 6310 2099 7425 97 

H(5A) 6603 2934 8311 78 

H(6A) 5076 3360 6653 92 

H(7A) 7093 4043 7832 88 

H(8A) 4648 4396 6827 83 

H(10A) 3798 5366 7156 83 

H(12A) 2876 6369 7463 115 

H(13A) 3197 7301 8131 131 

H(14A) 5287 7592 8988 141 

H(15A) 7092 6952 9149 126 

H(17A) 8046 5971 8755 106 

H(18A) 7713 5013 8153 97 

H(19A) 7017 3362 6211 191 

H(19B) 6770 2691 6493 191 

H(19C) 7859 3108 7112 191 

H(20A) 5687 620 8161 69 

H(21A) 3650 208 7215 87 

H(21B) 4945 -110 7100 87 

H(23A) 6177 -1069 9271 82 

H(23B) 5139 -624 9500 82 

H(24A) 6787 -346 8432 63 

H(25A) 6740 171 10039 71 

H(26A) 8352 617 9015 75 

H(27A) 7379 1207 10205 78 

H(29A) 7743 2284 10410 81 

H(31A) 8033 3423 10632 116 

H(32A) 8910 4330 10321 134 

H(33A) 10298 4345 9418 141 

H(34A) 10758 3464 8795 127 

H(36A) 10415 2341 8556 115 

H(37A) 9438 1441 8773 100 

H(38A) 8895 -231 10592 122 

H(38B) 8861 -503 9684 122 
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H(38C) 7904 -769 10197 122 

_______________________________________________________ 
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