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Obesity has become a widespread epidemic threatening the health of millions of Americans and 

costing billions of dollars in health care. In both obesity research and clinical intervention, an 

accurate tool for diet evaluation is required.  In this thesis, a new approach to the estimation of 

the volume of food from a single input image is presented based on the virtual reality (VR) 

technology. A software system is constructed for food image acquisition, camera parameters 

calibration, virtual reality modeling, virtual object manipulation, and food volume estimation. 

Our system utilizes a checkerboard to calibrate the intrinsic and extrinsic parameters of the 

camera using image process techniques. Once these parameters are obtained, we establish a VR 

space in which a virtual 3D wireframe is projected into the food image in a well-defined 

proportional relationship. Within this space, the user is able to scale, deform, translate and rotate 

the virtual wireframe to fit the food in the image. Finally, the known volume of the wireframe is 

utilized to compute the food volume using the proportional relationship. Our experimental study 

has indicated that our VR system is highly accurate and robust in estimating volumes of both 

regularly and irregularly shaped foods, providing a powerful diet evaluation tool for both obesity 

research and treatment. 
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1.0  INTRODUCTION 

Obesity has become an epidemic that threatens the health of millions of Americans and costs 

billions of dollars in health care. In the last 30 years, adult obesity rates have doubled and 

childhood obesity rates have more than tripled [1]. Obesity has been linked to many types of 

diseases, including cancers, respiratory diseases, cardiovascular diseases, digestive diseases, 

osteoarthritis, stroke, and birth defects. And approximately 300,000 deaths each year are related 

to obesity [2]. According to a number of studies, obesity increases health care costs within the 

U.S. by more than 25% [3]. 

The primary causes of obesity are excessive calorie intake and inadequate physical 

activity. Thus, in studies of obesity and its potential treatments, accurate dietary assessment is 

essential. Currently, the most common type of dietary assessment used is derived from self-

reports by respondents [4,5,6]. However, this method is subject to significant error [7] because it 

depends on the accuracy of respondents’ memories and their willingness to report their true 

dietary intake. Nutritional experts have questioned whether the full number of calories ingested 

by subjects is recorded. Lack of accurate dietary assessment has been a major stumbling block in 

both researches on obesity and treatment programs for the condition. 

With recent rapid advances in the fields of image processing and electronic engineering, 

many sophisticated technologically based methods have been introduced into the process of 

dietary assessment. One of the main differences between these and the traditional self-report 
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method is the use of recorded images or videos. This technology makes it possible to record the 

actual eating process in front of an individual throughout the entire recording period. There is no 

doubt that the visual electronic memory can provide highly accurate data on participants' food 

intake.  

In addition to the use of recorded images or video, in recent years, computer vision 

techniques have been developed to estimate food volume and the use of image-based 

computational algorithms and software has been proposed to monitor and manage dietary intake. 

Approaches to food volume estimation based on fixed relative positions of camera and objects 

were reported by Rashidi [8] and Koc [9].These approaches require restrictive camera 

parameters and are suitable only for certain kinds of fruit (e.g., watermelon and kiwifruit). The 

calibration of camera parameters based on checkerboard [10] and spherical objects [11] have 

been proposed to reconstruct 3D objects from 2D images. These camera calibration methods 

which provide intrinsic and extrinsic parameters, are preliminary features of most approaches to 

volume estimation. For example, Woo [12] proposed a portion estimation approach that used a 

checkerboard pattern card inside the food image to provide scale for estimating food volume in 

the same image. Their estimation objects consisted of prismatic and spherical like food. These 

researchers also provided a method to derive the nutritional value from the volume of the foods 

based on the USDA Food and Nutrient Database for Dietary Studies (FNDDS) [13]. Similarly, 

Puri et al presented an approach to estimating food volume using a checkerboard as a 

dimensional reference [14]. Jia et al. [15] proposed another approach to estimating food 

dimensions using a circular object, such as a dining plate, as a dimensional reference without 

depending on restrictive camera parameters. Yao [16] proposed a similar approach for food-

dimension estimation using structured lights including an LED spotlight and a simple laser beam 
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pattern. In all these approaches, food volumes have been calculated indirectly and the errors of 

intermediate dimensional estimation have produced large errors that undermine the final results 

of volumetric estimation. 

This thesis aims to propose a new approach to reduce errors caused by indirect estimation 

of food volume. Our system utilizes virtual reality (VR) techniques, an advanced simulation 

technology that represents experience in an imaginary world [17] to design and construct 

software based on this approach. Eliminating the intermediate processes, our approach estimated 

specific food volume directly, thus producing more accurate estimates of the volume of food 

from a single image. The software constructed a virtual space based on real camera intrinsic and 

extrinsic parameters obtained by the checkerboard method. Within this space, a virtual 3D 

wireframe was constructed and projected into the food image in a well-defined proportional 

relationship. The user was able to deform, scale, translate, or rotate the virtual wireframe until it 

fits the food inside the image, allowing the volume of food to be derived from the volume of the 

wireframe and the proportional relationship between the virtual space and real space. 

Next, experiments were conducted to test and analyze the performance of this approach, 

comparing the affects of different experimental variables including camera position, object 

position, object shape, and so on. Statistical results of the experiments have indicated that our 

VR system is highly accurate and robust in estimating volumes of both regularly and irregularly 

shaped foods under various experimental conditions. Our system's positive performance in 

estimating food volume suggests that our approach has the potential to act as a powerful diet 

evaluation tool for obesity research as well as treatment. 
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2.0  BACKGROUND 

2.1 VIRTUAL REALITY TECHNOLOGY 

Virtual reality (VR) is an advanced technology that uses computer-generated 

environments to simulate places in the real world. As business, industry, and medicine have 

developed over the past ten years, more and more applications of virtual reality have been 

proposed to solve problems in these and other fields. The major advantages of VR is that it 

enables the users to function in a virtual environment dynamically with virtual objects, feel 

virtual environment by their hands, and obtain virtual feedback, all of which are created by 

computer and a number of advanced input and output devices. 

The VR technology has brought computer-aided design (CAD) into a completely new 

environment based on a so-called VR-based CAD system [18,19,20], in which users can directly 

build and modify 3D models through 3D manipulation. In the business field, the collaborative 

VR (CVR) is an approach that enables a number of users to interact in a shared virtual 

environment, such as a Web3D applications X3D that constructs practical platforms for 

customers and companies to interact in the same virtual world. To date, a large number of 

approaches have been proposed in this field [21,22]. In the mechanical field, VR techniques have 

been extensively utilized for functions such as virtual layout design [23], assembly process 

simulation [24,25], and internet-based fault manufacturing [26]. However, one problem related 
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to the application of VR application in mechanics is the conflict between the requirements of 

high-quality images and real-time operations. In the medical field, VR has been widely used in 

surgical training [27,28,29], psychotherapy [30,31,32], and disability rehabilitation [33,34]. 

Furthermore, the increasing trend of globalized manufacturing environments requires real-time 

exchange of information between different nodes in a product-development cycle, including 

design, setup planning, production, scheduling, machining, and assembly [35]. To date, VR 

technology has been applied to simulate these manufacturing processes before they are carried 

out, which has greatly enhanced the efficiency of manufacturing and made it more economically 

competitive. 

Augmented reality (AR) is a new form of VR that overlays computer-generated models 

on real-world environments. The difference between AR and VR is that whereas the first one 

simply enhances the existing environment, the second one actually creates the whole 

environment. The design of an emerging type of see-through Head-Mounted Display (UMD) 

[36,37,38] is a typical AR technique which allows users to observe the virtual object in an 

existing scene, rather than creating a new world in front of the users. Moreover, many 

approaches are proposed for using AR to enhance manufacturing and industrial processes, e.g., 

industrial training [39], interior design and modeling [40], assembly planning [41], and 

computer-aided instruction [42].  

The food volume estimation system described here is based on AR techniques, using 

virtual objects to enhance real scenes and calculate the volume of food in the scenes. Since AR 

technique is a part of VR technique, we will use only the term VR in the remainder of this thesis. 
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2.2 CAMERA PINHOLE MODEL 

The pinhole camera model is use to represent the relationship between the coordinates of a 3D 

point and its projection on the image plane. A pinhole camera is a camera without a lens but has 

a single small aperture, which functions as a point to focus light [43]. The mathematical pinhole 

camera model is extensively used in the computer vision community. The principle of a pinhole 

camera is illustrated in Figure 1, where light from a scene passes through the pinhole and 

projects an inverted image on the image plane. 

 

Figure 1. Principle of pinhole camera. 

2.2.1 Perspective projection 

Figure 2 represents a frontal pinhole imaging model. The reference frame            centers at 

the camera’s optical center  , and the   axis is the optical axis of the camera’s lens. The image 

point   with the coordinates          is the projection of the point   with the coordinates 

          . Since the point   is on a line determined by the point   and the point  , the 

relationship between point   and its image with the similar triangles method can be easily written 

as 

 

http://en.wikipedia.org/wiki/3D_projection
http://en.wikipedia.org/wiki/Camera
http://en.wikipedia.org/wiki/Photographic_lens
http://en.wikipedia.org/wiki/Aperture
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                                                                 (2.1) 

where   indicates the focal length. 

This camera model is a so-called ideal pinhole camera model, and this projection method 

is known as perspective projection. [44] 

 

 

Figure 2. Frontal pinhole imaging model. 

2.2.2 Camera parameters 

Camera parameters consist of intrinsic parameters and extrinsic parameters. In general, intrinsic 

parameters describe the internal properties of the camera and extrinsic parameters describe the 

camera’s posture and position relative to the world. 

The intrinsic parameters encompass skew, principal point, image format, and focal 

length. In most cameras the skew parameter is negligible, the principal point is simply 

          for the width and height       of the image plane, the image format depends on the 

http://en.wikipedia.org/wiki/Principal_point
http://en.wikipedia.org/wiki/Image_sensor_size
http://en.wikipedia.org/wiki/Focal_length
http://en.wikipedia.org/wiki/Focal_length
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pixel size, and the most important focal length can be obtained using several approaches, which 

will be described in Section 2.4. 

The extrinsic parameters specify the position and rotation of a camera in the world. In 

practice, people always use the translation matrix in combination with the rotation matrix to 

transfer the real-world coordinate frame to a camera coordinate frame, as will be explained in 

Section 2.3. 

2.3 VIRTUAL CAMERA MODEL 

2.3.1 Representation of model 

The fundamental problem for virtual geometric modeling is model representation. In this thesis, 

the model representation method is triangle-based polygon representation (also known as, 

“triangle mesh”). This triangle-based method describes each face of a geometric model using a 

series of single triangle units. Figure 3 shows an example of how triangle mesh can be used to 

approximate a teapot. 

 

Figure 3. A Teapot described by triangle mesh. 
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With this model representation method, the intersection of two adjacent borders of 

triangle is called the vertex. Once the positions of the vertex are identified, the corresponding 

triangle unit is determined. In real applications of virtual model construction, the vertex is also 

used to store information of color, material, texture and the normal properties of each triangle 

unit.  

2.3.2 Object coordinate frame and world coordinate frame 

Object coordinate frame 

In a virtual environment, the geometric object modeling is always associated with the 

object coordinate frame (also known as the modeling coordinate frame or body coordinate 

frame). In the object coordinate frame, an object modeling will be entirely specified, and every 

point in an object coordinate frame can be identified with three coordinates 

            
   

  

  

  

  

In some cases, we may also use          to represent the three individual coordinates of 

a single point instead of           
 .The reason for constructing a model in an object coordinate 

frame instead of a world coordinate frame is that this approach allows people to construct the 

model without needing to consider its position, scale, and orientation relative to a world 

coordinate frame. Figure4 illustrates a teapot model which has been constructed in such an object 

coordinate frame. 
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Figure 4. A teapot defined in an object coordinate frame. 

World coordinate frame 

As the first step of object modeling, models are constructed in an object coordinate 

frame. One must then organize and transfer these models to the world coordinate frame  : 

        in order to build a virtual world scene. Each model in the object coordinate frame must 

undergo a world transformation to be introduced into the world coordinate frame.  

This world transformation includes translation, rotation and scaling. Figure 5 illustrates 

that the teapot has been transformed into a world coordinate frame. If this teapot had applied 

only the translation and rotation operations, but not the scaling operation, the transform would be 

the so-called rigid-body motion, which means that the individual points will not move relative to 

each other within the object coordinate frame. Thus, the distance between any two points of the 

teapot will never change, unless we introduced the scaling operation to the world transformation. 

 

Figure 5. A teapot transformed to the world coordinate frame. 
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World transformation 

In real application of virtual camera model construction, one needs a 4×4 matrix G to 

indicate a world transformation. The matrix G, having different values of elements, demonstrates 

the different transformations. In order to implement the matrix manipulation for the world 

transformation, we must express a 3D point as a 4×1 vector. This can be done by rewriting the 

three coordinates of a point as the first three elements of the new vector and then appending a 

“1” to the new vector, which is called the homogeneous coordinate transformation. Thus, if we 

have the a point             
 , in homogeneous coordinates, it should be denoted by 

    
 
 
   

  

  
  

 

  

Thus, the product of the world transformation matrix G and the point   equals a new 

vector   
                  

  that indicates the coordinates of the point relative to the world 

frame  ,  

  
                                                                    (2.2)  

As mentioned earlier, we use the triangle-based polygon to represent the models here, 

and the triangle-based method is demonstrated by the position information of vertexes in 

coordinates x, y and z. Then, if we create a vector set                to indicate all the point 

s (replace the terms of vertex) of a modal, the model   undergoing a world transformation   can 

be simply expressed as  

  
                                                                  (2.3)  

where    indicates the new vector set that describes the model relative to world frame. 
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Translation matrix 

During a translation process, the coordinates   of a fixed 3D point p relative to its object 

frame are transformed to its coordinates relative to world frame   by 

  
                                                                     (2.4) 

where the translation matrix   can be written as 

    

























1000

100

010

001

z

y

x

p

p

p

 

                                                  (2.5)

 

where   ,    and    are the values of the translation vector   from the object frame to the world 

frame, as shown in Figure 6. 

 

Figure 6. A translation between an object frame to a world frame. 

Rotation matrix 

For the rotation transformation from the object coordinates   of a fixed 3D point p to its 

coordinates relative to world frame  , the configuration of rotating can be written by 

  
                                                                      (2.6) 
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where matrix   indicates the rotation matrix and vector    indicates the coordinates of point p 

relative to frame  . We have three different kinds of rotation matrix, for rotation along   axis,   

axis and   axis, respectively. 

The matrix that indicates a rotation about   axis by an angle θ is 

  (θ) = 





















1000

0cossin0

0sincos0

0001




 

The matrix that indicates a rotation about   axis by an angle θ is 

  (θ) = 





















1000

0cos0sin

0010

0sin0cos





 

The matrix that indicates a rotation about   axis by an angle θ is 

  (θ) = 

















 

1000

0100

00cossin

00sincos





 

Scaling matrix 

For the object coordinates   of a fixed point, the configuration of the scaling, along   

axis by     times, along   axis by    times and along   axis by     times, can be written as 

  
                                                                       (2.7) 

where vector    indicates the coordinates of the same point relative to world frame  , and  

matrix   represents the scaling matrix: 
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  = 



















1000

000

000

000

z

y

x

q

q

q

 

Combination of different world transformations 

For the entire process of world transformation, one model must always implement several 

different world transformations instead of implementing only one. In such a case, the order of 

matrix manipulation must be the same as the order of the different world transformations. For 

example, if we have the task to use a translate matrix   to move a virtual model along   axis by 

two units, and then use a rotation matrix   to make it rotate about   axis by π rad, and finally use 

a scaling matrix   to scale the y coordinate of all the point of the model by two times, the object 

coordinates   of a single point of the model should be transformed by the following equations, in 

the order,   

          

               

  
                                                                               (2.8) 

where vector    indicates the world coordinates of the point, and vectors   ,     ,      are the 

intermediate variables for the transformation. 

In this formula, the order of multiplication is identified. Changing the order of the 

multiplication involves taking a totally different operation to the vector  , which would 

introduce a large error. The advantage of matrix operation is that the different world 

transformation matrix can be synthesized. For the same example, we can use matrix 

multiplication to multiply the three different matrixes  ,    and   to produce a single world 

transformation matrix  , and then multiply   with   to gain   , as following 
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                                                                       (2.9) 

As mentioned before, one can express a model as a vector set. Then, the product of this 

vector set and the world transformation matrix   is the new vector set that can determine the 

result coordinates of all the points of the model relative to the world frame  . 

2.3.3 Camera coordinate frame 

Visualization is the main task following the identification of a geometric model. The 

fundamental of visualization is to configure a virtual camera in the world frame  . As the world 

transformation of a model requiring position information, one must determine the coordinates of 

a camera and its shooting target (here we use a single point which determines the camera’s 

optical axle with the camera’s optical center) in Frame  . The purpose of fixing these two points 

is to identify the relationship between the camera and a scene. Furthermore, one must identify 

the rotation angle of the camera around its optical axis. Because the rotation angle is small in 

most cases, the default angle is set to zero in the following work, which means that the horizontal 

center line of the camera's image plane is parallel to the experiment platform, e.g. a table surface 

used for locating specific food. 

After the configuration, the virtual camera has been fixed in the frame  . In order to 

explicitly demonstrate this orientation process of the virtual camera, we use another object 

coordinate frame, in this case a camera coordinate frame C :           , to determine the posture 

and position of the camera relative to the frame   :        , as illustrated in the Figure 7. We 

define the pinhole of the virtual camera as the origin of the frame C, the principal axis    parallel 

with the horizontal center line of the image plane of the camera, the principal axis    parallel 
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with the vertical center line of the image plane, and the principal axis    coinciding with the 

camera’s optical axis. 

 

Figure 7. A transformation between a world frame and a camera frame. 

Once the frame   has been fixed, the camera coordinate transformation can be 

implemented. In order to simplify the mathematic manipulation of the virtual camera model in 

future work, people always transform the camera relative to the frame   to the frame  . 

Following this step, all the geometric models in the frame   should be transformed along with 

the camera, to keep the relationship between the camera and all the geometric models in frame 

 . This kind of transform is the rigid-body motion because we only implement translation and 

rotation transform here, which will not change the relationship between any two points in the 

virtual model. The camera coordinate transformation could also be implemented by matrix 

manipulation, similar to the world coordinate transformation. We define the camera coordinate 

transformation matrix as 

                                                                  (2.10) 

where    indicates the rotation matrix and    indicates the translation matrix, for the transform 

from the world frame   to the camera frame  . 
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Camera coordinate transformation is a rigid-body motion; therefore, the relative position 

of the camera and the objects will not change during the camera coordinate transformation. 

2.3.4 Projection in virtual camera model 

When finishing the rigid-body motion from world frame   to camera frame C, the main 

task is to obtain the 2D projection from the 3D virtual models. Here we also adopt the pinhole 

camera model to construct the virtual camera model, so that the images we obtain will be the 

perspective projection of the virtual objects, as illustrated in Figure 2. A point            in 

frame C is projected onto the image plane at the point 
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In homogeneous representation, the above equation can be written as 

    
 
 
 
  

 

 
 
  
  

  
  

    
  

 
 
 
 

  

We can rewrite the above equation as 
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is defined as the perspective projection matrix. 
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Furthermore, in virtual camera model construction, one must identify the field of vision 

for the camera. To determine the field of vision, as illustrated in Figure 8, parameters are 

required: 

 focal length   

 angle α of vertical field of vision 

 aspect ratio r, the value of image width a / image height b 

 distance from camera to near plane 

 distance from camera to far plane 

 

Figure 8. Identification of the field of vision of a fixed virtual camera. 

For a virtual camera model, the angle of field of vision describes the angular extent of the 

image plane, which can be measured horizontally, vertically, or diagonally. These angles in the 

field of vision can identify the image (screen or projection) plane with a given focal length  . We 

also require the angle of vertical field of vision here because the horizontal field of vision will be 

http://en.wikipedia.org/wiki/Angle
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determined by the vertical field of vision and another parameter, the aspect ratio. A single angle 

of field of vision of a camera can be written by 

                                                                (2.13) 

where   is the camera’s focal length and   is the dimension corresponding to the angle  . 

In the case of the angle of vertical field of vision, the above equation can be rewritten as 

                  

where   is the angle of vertical field of vision and   is the height of the image plane. Then, the 

height   can be obtained by the above equation 

             

And the width a of the projection window can be fixed by 

     

where   is the given aspect ratio. 

In this way, the projection screen can be determined by the fixed values of   and  . In 

Figure 8, we can see a pyramidal tetrahedron determined by the screen and the fixed camera’s 

optical center  The field of vision of a virtual camera is the part of the pyramidal tetrahedron 

which is limited by the near plane, the nearest plane that can be imaged, and the far plane, the 

furthest plane which can be imaged. Thus, one must provide the distances from the camera's 

optical center to the near plane and to the far plane in order to identify the field of vision of the 

virtual camera. [45] 
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2.4 CAMERA CALIBRATION 

There are two world coordinate frames in our system: one is the real world coordinate frame, and 

the other is the virtual world coordinate frame. Before creating the virtual world, we must 

implement the camera calibration to identify the camera’s intrinsic and extrinsic parameters 

relative to the real world coordinate frame. In our approach, we used a checkerboard approach 

based on an Matlab toolbox provided by Jean-Yves Bouguet [46]. 

At first, we calculated the camera’s intrinsic parameters based on a total of twenty images 

of a planar checkerboard, partially shown in Figure 9. The major processes included images 

reading, corners extracting, and main calibration. The final result included all intrinsic 

parameters of the camera, including the focal length which was our primary interest. 

 

Figure 9. Checkerboard images used for camera intrinsic parameters calibration. 

The next step was to construct the world coordinate and identify the camera’s extrinsic 

parameters. Most processes were similar with the calibration of the intrinsic parameters. Figure 

10 shows the world coordinate frame constructed based on a checkerboard which was placed on 

the table. Simultaneously, the coordinates of the camera’s optical center and its orientation 
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relative to the world frame were provided in the final results. Furthermore, we needed the 

position of the intersection point of the camera’s optical axis and the table surface in the future 

process, so the checkerboard pattern card was adjusted on the table, satisfying the condition that 

a grid corner was presented on the camera’s optical axis. And then, this grid corner’s coordinates 

could be abstracted to describe the position of the intersection point. Figure 10 shows the world 

coordinate frame constructed by the checkerboard method, in which the camera’s target point has 

been described. Unlike the first step, we needed to provide only one image to the toolbox in 

order to do the extrinsic parameters calibration. 

 

Figure 10. A world coordinate frame constructed by Checkerboard method. 
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3.0  RESEARCH DESIGN AND STRATEGY 

The term virtual reality (VR) describes the use of computer-simulated environments to represent 

similar scenes in the real world as well as in imaginary worlds [47]. We propose a VR approach 

to simulate a food volume measurement process that cannot be accomplished easily in the real 

world using a single digital image as the input. The motivation for using VR in research design is 

described in Section 3.1, the mathematic model is presented in Section 3.2, and the application of 

the software based on the VR approach is discussed in Section 3.3. 

3.1 MOTIVATION OF USING VR IN RESEARCH DESIGN 

Once the correspondence between the real world frame and the camera frame has been 

established after the camera calibration, food volume can be estimated based on this 

correspondence. Our initial approach required human-computer interaction. For a food image, 

one must first select the image pixels that define the relevant dimensions (e.g., length, height, 

and/or diameter) and then use them to calculate the volume of the food. However, with this 

method, a number of obstacles prevented the accurate estimation of volume. First, the selection 

of image pixels was severely affected by image quality. For example, when the boundaries of the 

food were unclear, the measured dimensions became ambiguous. Second, in most cases, it was 

difficult to select a pair of points to represent the object’s height or radius. Figure 11(a) shows 

http://en.wikipedia.org/wiki/Computer-simulated
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how a circular surface became an ellipse in most cases, and Figure 11(b) shows that selecting 

two points to represent the height of the hamburger produced ambiguous results. Third, the 

bottom surfaces of the food images were often difficult to extract due to occlusion, as illustrated 

in Figure 11(c). Finally, our analytical and experimental studies showed that when the food 

volume was computed from dimensional measurements, the volumetric errors increased 

significantly, especially for irregularly shaped objects. The reason for this was that when each 

dimension was measured separately, all the relative errors combined to create a large error in the 

final volume measurement. 

 
                                    (a)                              (b)                               (c) 

 
                                    (d)                               (e)                              (f) 

 
Figure 11. The original food images and the effects of images after volume estimation. 

In order to estimate food volume more accurately, we designed the software based on the 

proposed VR approach. This software created a virtual world to simulate the real world and then 

created a number of 3D wireframe models to fit the specific food item within a digital image, as 

illustrated in the bottom row of Figure 11. By assessing the relationship between and on the 

volume of the virtual object, the software can calculate the volume of real foods. The 
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relationship between these two worlds and the estimation process will be described in the 

remainder of this chapter. Using this method, the 3D volumetric model was directly with respect 

to the volume of specific food. Hence, dimensional measurements can be bypassed and the error-

accumulation effect is avoided. Errors arising from occlusion and/or irregular shapes are also 

reduced because people can adjust the shape of the virtual object based on the whole picture and 

obtain the optimal fit and then get the results. Our experimental study has indicated that our VR 

system is highly accurate and robust in estimating the volume of both regularly and irregularly 

shaped foods. 

3.2 MECHANISM OF THE VR APPROACH 

3.2.1 Basic description of the VR system 

The general idea of the proposed system is to use only one food image together with a virtual 

object built by computer graphics to approximate and estimate the food volume, as illustrated in 

Figure 11. The method is to create a virtual camera in the virtual world to simulate the camera in 

the real world, and make the two camera optical centers, as well as the two image planes, 

coincide. Inside the virtual world, virtual object can be built to simulate the interested object. 

When the images of virtual object and real object overlapped, the volume of the real object can 

be estimated by the volume of the virtual object and a scale ratio between the real world and the 

virtual world. 
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Figure 12. The proposed virtual camera model based on the VR approach. 

In real application, we set the digital food image as the background of the scene for a 

virtual camera, and then the virtual objects will be constructed between the virtual camera’s 

image plane and the background as shown in Figure 12. Without considering the virtual object, 

under a given intrinsic parameters setting, the virtual camera will provide us the same image 

which has been taken by the real camera. When the virtual object is considered, we are able to 

use a real camera and a virtual camera, respectively, to capture objects in the real and virtual 

worlds, and then make the two cameras coincide to create an integrated image. In the following 

mathematic deduction, we will combine both the two world coordinate frames and the two 

cameras to form a model with a single camera that can image the objects in both worlds.  

In order to achieve this goal, we distinguish two world coordinate frames, one is the 

virtual world coordinate frame          , and the other one is the real world coordinate 

frame              , as shown in Figure 13. In the whole process of this VR method, we 

always make the virtual camera’s intrinsic parameters equivalent to the real camera, and at the 

mean time, we set the two camera coincide with each other, which means the two optical center 
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and two image plane are overlapped completely. Thus, we will use a same camera coordinate 

frame          ,  to indicate both the virtual camera coordinate frame and the real camera 

coordinate frame. 

 

Figure 13. Geometric model of the VR approach. 

Let us consider a generic point   of the real object, with the coordinates                

relative to the frame   . In order to implement camera coordinate transformation   , we transfer 

   into homogeneous coordinates. Then, after the camera coordinate transformation, we have the 

coordinates         of the point    relative to the camera coordinate frame  , written as 

         

   

   

   

 

                                                              (3.1) 

Then, using (2.12), we will have the perspective projection of the point     on the image 

plane       , 
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Now, suppose we construct a virtual object together with the frame   and point   is a 

generic point in it. Similar to the above equation, the perspective projection of the point   on the 

image plane can be written by 
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where    is the coordinate of point   relative to the frame  . 

In order to make the projection of virtual object and real object overlap on the image 

plane, the system must satisfy 
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The above equation can be reduced to 
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or in fraction equation form 

  

   
 

  

   
 

  

   
                                                           (3.2) 

Then, if we can fix the generic point  , with its coordinates    relative to the frame C 

satisfying (3.2), the perspective projection of point   and point    will overlap on the image 

plane. 

Most important, when the coordinates    of a generic point of the virtual object and its 

corresponding coordinates     of a generic point of the real object satisfies 

  

   
 

  

   
 

  

   
   

or in vector form 

                                                                    (3.3) 

where   is an constant ratio, satisfying      , the volume of real object can be written as 

            

  

     

Use Jacobian matrix to change the variables of the above equation according to (3.3), we have 

          

 

    
     
     
     

  
 

  
       

 

         

where   indicates the volume of the virtual object. 

In the above equation, we can obtain a fixed relationship between the volumes of the 

virtual object and the real object, written as 

                                                                   (3.4) 

Thus, if we can construct a virtual camera model to simulate the real cameral model, 

make the two cameras coincide with each other, and also make the virtual geometric object 
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satisfy (3.3), the volume of the real object can be estimated by the volume of the virtual 

geometric object and (3.4). 

3.2.2 Construction method of the VR model 

The objective of the method presented in this section is to construct a VR model that satisfies the 

three requirements for the volume estimation system, as indicated at the end of Section 3.2.1.  

In practical applications, a virtual camera can be constructed with any intrinsic 

parameters as a real camera, so we start from the point that we have already had the two cameras 

that are identical. Thus, the problem need to be solved here is how to create a VR model, in 

which the two cameras are coincided with each other and the virtual geometric object satisfies 

(3.3). The method to solve this problem is to construct a virtual table on which virtual objects 

could be located, simulating the real foods on a real table. The details will be described as 

follows. 

For a real camera model, we use the checkerboard method (Section 2.4) to calculate its 

extrinsic parameters. Since foods are essentially always located on a table to be imaged, the 

checkerboard calibration pattern should also be placed upon the table and then undertake the 

camera calibration. After the implement of the checkerboard method, the real world coordinate 

frame    will be constructed, where the table’s upper surface will be described as the plane 

      , as shown in Figure 14. The camera’s optical center   position will also be described in 

the frame     as 

  
     

    
    

   . 

The checkerboard method would also provide us with the position of the camera target 

point, which is the same as the intersection point of the camera’s optical axis and the table 
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surface, described in section 2.4. It is straightforward to translate the origin    of the frame    to 

the camera target point, and then use the new coordinate frame to describe the real world. This 

operation simplifies the identification of virtual camera model in the next step. Thus, in the 

following, we will use the coordinates   
     

    
    

    to describe the real camera’s optical 

center, and use point            to indicate the real camera’s target point, all relative to the 

frame   . 

 

Figure 14. Construction method of VR model. 

Now, a virtual camera model should be constructed and combined with the real camera 

model. As mentioned previously, the virtual camera’s optical center and image plane will be 

located coincide with the ones of the real camera, which means that the two cameras have the 

same camera coordinate frame   here. Then, we set the origin   of the virtual coordinate frame, 

which is also the virtual camera’s target point, on the real camera optical axis    , satisfies 

                ,       
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where R is a constant factor  providing the proportional relationship between the virtual world 

and the real world. Since the constant ratio   in (3.4) also satisfies     , we are able to 

make    . Then, the above equation can be written as, 

                ,                                                         (3.5) 

It is straightforward to obtain the coordinates   
  of point   relative to frame   , written 

by  

  
         

          
         

         
    

Then, based on the known point  , we construct the virtual frame  , where the three 

principle axis  ,  and   are parallel with the frame    principle axis   ,   and    of frame   , 

respectively. Actually, the plane     is the virtual table surface, which will be discussed at the 

end of this section. 

Let us consider a generic point    with the coordinates   
  relative to the frame    (see 

Figure 14). In homogeneous representation, the coordinates    of the same point relative to the 

frame  , can be written as 

  
      

  

  
  

 

      
      , 

where   and   are the rotation matrix and the translation matrix of the coordinate 

transformation, respectively. 

Since the three principle axes of frame   are parallel with the three principle axes of 

frame   , there are no rotations between these two coordinates, which means that    is an 

identity matrix. Moreover, since the coordinates of origin   of frame   relative to frame    is 

  
          

         
         

   , referring (2.5), the translation matrix can be written as 
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Then, the coordinates    of the camera’s optical center   relative to frame   can be 

written as 
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Now, we have finished the construction of the virtual world coordinate frame. The next 

step is to translate both of the real world frame and the virtual world frame into the single camera 

frame  , and consider how to construct the virtual geometric objects. 

As mentioned previously in this section, there are no 3D rotations between frames   and 

  . Therefore, we can implement the same rotation matrix    on both of the two frames. The 

two translation matrixes of the camera coordinate transformation can be determined by the 

coordinates        
     

     
    and the coordinates   

     
    

    
   , both of which are the 

coordinates of the camera’s optical centers, but relative to different frames. Then, similar to 

(3.6), we can write the two translation matrixes as 
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where      provides the translation matrix between  virtual world frame   and  camera frame    

and     indicates the translation matrix between  real world frame    and  camera  . 
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Then, let us consider two generic point    of a real object and point   of a virtual object, 

described in the frame   and frame   as    
      

     
     

    and              
  

respectively. In order to describe the relationship between the virtual object and real object in 

frame  , as expressed by (3.3), we use the rotation matrix    and the two translation matrix     

and     to obtain the coordinates     and    of the two points relative to the frame  , written by 
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As described in Section 3.2.1, if and only if the coordinates    of a generic point   of the 

virtual object and its corresponding coordinates     of a generic point    of the real object satisfy 

        (3.3), the real object volume can be estimated by (3.4). Therefore, we must construct a 

virtual object that can satisfy (3.3), described as 
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 on both sides, we obtain 
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or in the form of fraction equations 
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It can be found that the above equation is satisfied when the generic point   of the virtual 

object with coordinates    has been related with the corresponding generic point    of the real 

object with the coordinates    
  as 

    

  

  
  

    

   
 

   
 

   
 

      
                                            (3.10) 

Satisfying the above constrains, the image of virtual object will perfectly fit the image of 

the real object, and similar to (3.4), the volume of the real object    can be obtained by the 

volume of the virtual object   with the equation (3.4). 

Since we have set the table surface as the plane        and set the axis    to be 

perpendicular to the table surface in the upward direction, the generic point    of the real object 

on the table surface has a positive    value. Thus, according to (3.5) and    , it is necessary to 

set the Z value of any point of the virtual object larger than or equal to 0, which means that we 

“put” the virtual object on the “virtual table surface”, the plane    .  

A question arises whether we can construct a virtual object satisfying (3.10). The answer 

is yes. The reason lies in that the software only provides typical geometric objects to estimate the 

volume of the real food in a digital image. When we adjust the virtual object in the virtual world 

until comprehensively the images of the virtual object and an interested real object are 

overlapped, we can guarantee that their relationship will satisfy (3.10). The reason is that in the 

estimation process, we use typical geometric object to fit an approximately typical geometric 
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object. If they did not satisfy (3.10), the virtual object would be an anomalistic 3D object which 

is in conflict with the fact that the software only provides typical geometric objects.  

3.3 APPLICATION OF THE VR SYSTEM 

This section describes how the volume-estimation software constructed using the VR approach is 

implemented. Figure 15 below presents an overview of the system. It consists of two sections, 

one for the pre-estimation process and the other for the estimation process. The pre-estimation 

process includes image acquisition, calibration of camera parameters, and virtual camera 

modeling and construction. The estimation process includes virtual object manipulation, food 

volume estimation, and data storage. 

 

Figure 15. Volume estimation system based on the VR approach. 
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3.3.1 Pre-estimation process 

As the first part of the food volume estimation system, the pre-estimation process attempts to: 1) 

calibrate the parameters of the real camera, 2) create a virtual camera identical to the real camera, 

and 3) build a virtual environment that can be used to implement manipulation of virtual objects. 

We used the checkerboard method, introduced in Section 2.4, to calibrate camera 

parameters, including the focal length, angle of field of vision, target point position, and position 

of optical center. All the camera parameters obtained with this method were relative to the real-

world coordinate frame, in which the upper table surface was described as a plane    , as stated 

in Section 3.2.2 above. Also, we had to refer to the camera's user manual to find the specific 

dimensions of the camera’s image plane.  

The second part of the pre-estimation process involved construction of the virtual-camera 

model. Section 2.3.3 has defined the four parameters required to specify a virtual camera. In 

practice, we set the angle of field of vision in the virtual camera model to that of the real camera 

model. The aspect ratio was calculated using the image width and height obtained from the 

camera user manual. Finally, we set the near plane to the camera’s optical center to coincide with 

the image plane, and set the distance from the far plane to the camera’s optical center, ensuring 

that it was long enough for the view field to contain any virtual geometric object required for use 

with the application. 

As the final step of the pre-estimation process, the construction of the virtual coordinate 

frame followed the method described in Section 3.2. In the real application, both the real camera 

target point and the virtual camera target point have been translated to the origin of the 

coordinate frame, relative to the virtual world frame and the real world frame, respectively. 

Then, presuming that the given position of the real camera’s optical center is   
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relative to the real world frame   , we should provide a proper ratio  , to obtain the position of 

the virtual camera’s optical center                   relative to the virtual world frame  . 

For greater convenience, the value of   was set inside the software and the user only needed to 

input the position of the real camera’s optical center. Then, a specific digital food image was 

loaded into the operation window as the background of the scene for the virtual camera. The 

settings of camera position and virtual world background are presented in Figure 16. 

 

Figure 16. A screen shot of the interface of our software: (a) Operation window; (b) Camera setting panel; (c) 

Geometric class selection panel; (d) Virtual object manipulation panel; (e) Result Panel; (f) Result storage 

Panel. 

Although the value of   doesn’t affect the mathematic model used to described this VR 

system, it should be set as a proper ratio, say      , because if the   is too big, the virtual 

object will be hidden by the digital image and if the   is too small, the virtual camera may not 

show the images of all the required virtual objects during the experiment. 
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3.3.2 Estimation process 

This section describes the estimation process, including virtual object manipulation, food 

volume estimation, and feedback with the proposed system. 

3.3.2.1 Virtual model manipulation 

Virtual object manipulation is an essential component of the entire estimation system. To 

approximate the food item of interest, the software provides adjustable and rotatable virtual 

geometric wireframes that can fit real objects presented on digital images, as described in 

Section 3.2. And then, when an excellent fitting is achieved between a virtual wireframe and an 

object in the original image, we were able to use the (3.4) to estimate the food volume. 

The food volume-estimation software partitioned the virtual objects into geometric 

classes, each with its own set of parameters. The software provided four geometric classes 

including the rectangular box, the conical frustum, the spheroid, and the triangular prism. After 

loading a real food image, users select the geometric class that is most similar to the food item in 

the digital image. Figure 17 below presents the four geometric classes. 

 

Figure 17. Four geometric classes of virtual wireframe provided by the VR system. 
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Once a geometric class is selected, a default wireframe corresponding to the selection 

will appear on the surface of the virtual table, as illustrated at the end of Section 3.2.2. Then, 

users can use the control panel (Figure 16), the mouse, or the keyboard to deform, scale, move or 

rotate the object on the virtual table surface until a good fit with the target food is achieved. All 

these manipulations are carried out using the transform matrix introduced in Section 2.3.3. Care 

must be taken that the virtual object always be located on the virtual plane     during the 

adjustment process. Figure 18 shows an example of virtual model manipulation, using a conical 

frustum model to fit half a grapefruit inside a digital image. 

 
                                  (a)                                 (b)                                (c) 

 
                                        (d)                                 (e)                                (f) 

 
Figure 18. An example of virtual model manipulation: (a) Original image of half a grapefruit; (b) A selected conical 

frustum wireframe is located on the virtual table; (c) The wireframe has been dragged into the grapefruit; 

(d) The radius of bottom surface is adjusted; (e) The height is adjusted; (f) The ratio of the radius of top 

surface over the radius of bottom surface is adjusted and an excellent fitting is achieved. 

3.3.2.2 Volume estimation 

 This section explains how the software carried out volume estimation. After 

manipulating the virtual objects, we obtained the overlapped images of the virtual object and the 

specific object presented in the operation window (Figure 16), indicating that the proportional 



 40 

relationship between the two objects had been obtained. Once this occurred, the volume of real 

objects could be obtained using the ratio R and the volume of the virtual object using (3.4). 

Formulas to calculate the volumes of the four virtual geometric classes are listed below. 

The volume of a rectangular box is 

                                                                  (3.11) 

where  ,    and   indicate the dimensions of the rectangular box. 

The volume of a conical frustum is 

    
      

 
 
 

                                                      (3.12) 

where   and   indicate, respectively, the radius of the bottom surface and the height of the 

conical frustum, and   is the ratio equal to the radius of the upper surface over the radius of the 

bottom surface of the conical frustum. 

The volume of a spheroid is 

  
 

 
                                                              (3.13) 

where   ,     and    are the lengths of the three semi-axes. 

And the volume of a triangular prism is 

  
 

 
                                                            (3.14) 

where   and   are the lengths of hemline and altitude of the triangular surfaces, and   is the 

height of the triangular prism. 

Then, substituting equation (3.11), (3.12), (3.13) or (3.14) into (3.4), we can obtain the 

estimated volume of the real object, written as 
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where r is the constant ratio indicates the proportional relationship between the virtual world and 

the real world (Section 3.2.2). 

Our system has the ability to do the volumetric estimation automatically. Together with 

the final result of the estimated volume, values for geometric parameters of the real object are 

also presented on the result panel (Figure 16). 

3.3.2.3 Feedback system 

The existing camera calibration method is essentially an open-loop system in which a 

checkerboard feature pattern produces calibration parameters. The accuracy of these camera 

parameters is not checked, which may introduce error. In order to reduce this kind of error, we 

propose a feedback system (Figure 19). At first, an initial rough estimate of the camera 

parameters is provided by the checkerboard method to the system, enabling the camera model to 

estimate the area and principal axes of a regular dinner plate expressed by a vector   . The 

difference between    and its true value   produces a multidimensional error   which adjusts the 

camera parameters for creating the new estimate of   . The feedback system is repeated 

continually until      is minimized, at which point the parameters are then utilized to estimate the 

volume of real food in the image. 

 

Figure 19. Proposed closed-loop calibration system. 

In practice, we use focal length as the controllable parameter, which affects the image of 

virtual objects, according to (2.1). Actually, the value of focal length   obtained by the 
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checkerboard method is described as a range      . Therefore, the feedback system has been 

designed to scan the range       for the optimal value of   that leads to the minimum    . Once 

this value has been found, the virtual camera’s focal length is set as the optimal value of   to 

estimate food volume. 

In order to prove the feasibility of the proposed feedback system, we performed an 

experiment in which the focal length   was changed in small steps while a fitting of the plate 

area was maintained and         was evaluated. We found that varying   brought   across 

zero in a nearly linear fashion (left panel in Figure 20). An excellent fitting was also achieved 

between the virtual plate and the plate in the original image at      This experiment 

demonstrated that the scanning method can be used to obtain the optical focal length that will 

reduce error of the estimators. Thus, we constructed the feedback system based on this scanning 

method. Section 4.2 will show the volume estimation results of the proposed feedback system, 

which outperformed the results of none feedback system by a large margin. 

 

Figure 20. Results of the experiment proving the feasibility of the feedback system: (Left) estimation error vs. focal 

length; (Top right) Original image of a circular plate; (Bottom right) Overlapped images of the circular 

plate and the virtual wireframe when the estimation error is zero. 
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4.0  EXPERIMENTAL DESIGN AND RESULTS 

This section describes the experimental design and results of our VR system. Section 4.1 

describes the experiment design.  Section 4.2 discusses the findings of our comparative 

experiments with and without the use of the feedback system. Next, Section 4.3 presents 

experiments using different camera positions. Finally, Section 4.4 discusses the effect of 

different object positions within the food image on the estimation accuracy. 

4.1  EXPERIMENTAL DESIGN  

Experiments using twenty-one regularly shaped objects and food replicas were designed to test 

the performance of the proposed approach and system. The selected objects include a small box, 

a big box, a cornbread, a cream cake, a piece of chicken breast, rice, a slice of bread, a baked 

potato, half of a hard-boiled egg, half of a grapefruit, a hamburger, a scoop of ice cream, a bowl 

of jello, a glass of orange juice, a glass of milk, a slice of onion, an orange and a peach (shown in 

Figure 21). Three different groups of experiments were performed to test the effect of three parts 

of the design on the outcome, including the feedback, the camera position and the location of 

subject item. Figure 22 shows the equipment used in our experiment. 
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Figure 21. Objects used in experiments. 

 

Figure 22. Equipment used in experiments. 

In the statistical analysis of the experiment results, the mean value and standard 

deviations (STD) were used to describe the accuracy and the stability of the estimators. To 

precisely quantify measurement errors, Root Mean Squared Error (RMSE) was also used in the 

experiments to measure the differences between an estimator and the values actually observed. 

The RMSE is defined as 

       

 
  

     

 
 
 

 
                                                 (4.1) 

where n is the sample size,     is the estimated value, and v is the true value, measured in 

centimeters. 
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For food replicas, the true volumes were measured using the water displacement method, 

as illustrated in Figure 23. 

       
             (a)                              (b)                              (c)                              (d) 

Figure 23. Volume measurements of artificial food models using water displacement method: (a) Baseline; (b) 

Peach; (c) Cornbread; (d) Hamburger. 

4.2 EXPERIMENT WITH AND WITHOUT FEEDBACK SYSTEM 

An experiment was performed to compare the results of using the open-loop system vs. the 

closed-loop system. The volumes of eighteen food items were estimated based on readings from 

four different camera positions. The camera was set to simulate a reading taken by patient sitting 

in front of the table on which the items were placed. The angle   between the plane of the 

camera image and the plane of the table was between            . Parameters of the camera 

were obtained using the checkerboard method (Section 2.4). The range of focal length obtained 

for the camera was between 3.6596 cm and 3.7940 cm. Table 1, below, lists the coordinates of 

the four different camera optical points relative to the world coordinate frame constructed by the 

checkerboard method.  

Table 1. Camera's extrinsic parameters for four positions. 

 Coordinates of Camera Optical Center  

  coordinate (mm)   coordinate (mm)   coordinate (mm)        
Camera Position 1 36.09 536.20 261.067 25.96 

Camera Position 2 46.77 462.30 256.46 29.02 

Camera Position 3 25.42 324.25 212.36 33.22 

Camera Position 4 40.50 303.94 239.07 38.19 
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For the non-feedback system, we used the average value of the focal length range to serve 

as the virtual camera’s focal length. For example, for a range between 3.6596 mm and 3.7940 

mm, we have 

  
             

 
             

For the feedback system, we used the diameter of a regular-sized dinner plate in the 

image as feedback to estimate volumes, as explained in Section 3.4. The estimation results for 

both the non-feedback system and feedback system are listed below in Tables 2-5. The RMSE in 

the volume estimation results for all the samples are shown in Figure 24. 
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Table 2. Volume estimates derived using non-feedback system with camera positions 1 and 2. 

Estimated 

Object 

 

True Value 

(   ) 

Camera Position 1 Camera Position 2 

Estimated 

Value (   ) 

Relative 

Error (%) 

Estimated 

Value (   ) 

Relative 

Error (%) 

Small box 56.65 64.75 14.30 63.84 12.69 

Big box 248.57 284.86 14.60 283.57 14.08 

Bread 106 126.17 19.03 127.69 20.46 

Cornbread 93 94.58 1.70 101.86 9.53 

Cream cake 93.67 99.41 6.13 86.77 -7.37 

Chicken breast 64 44.84 -29.94 39.68 -38.00 

Rice 52.33 31.45 -39.91 29.43 -43.75 

Potato 112.67 161.18 43.05 143.29 27.18 

Egg 20.67 17.97 -13.06 20.56 -0.53 

Grapefruit 272 319.10 17.32 309.54 13.80 

Hamburger 307.67 341.17 10.89 336.72 9.44 

Ice Cream 79.67 81.01 1.68 77.92 -2.20 

Jello 109.67 139.31 27.03 137.15 25.06 

Juice 180 207.11 15.06 217.29 20.72 

Milk 240 308.59 28.58 306.79 27.83 

Onion Slice 32.63 26.42 -19.02 25.11 -23.04 

Orange 151.67 163.55 7.83 167.74 10.60 

Peach 151.67 163.55 7.83 172.01 13.41 
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Table 3. Volume estimates derived using non-feedback system with camera positions 3 and 4. 

Estimated 

Object 

 

True Value 

(   ) 

Camera Position 3 Camera Position 4 

Estimated 

Value (   ) 

Relative 

Error (%) 

Estimated 

Value (   ) 

Relative 

Error (%) 

Small box 56.65 59.70 5.38 63.95 12.88 

Big box 248.57 265.70 6.89 289.77 16.57 

Bread 106 119.16 12.42 125.71 18.59 

Corn Bread 93 90.34 -2.86 99.37 6.85 

Cream cake 93.67 86.95 -7.17 103.01 9.97 

Chicken breast 64 36.64 -42.75 51.79 -19.07 

Rice 52.33 40.92 -21.81 35.24 -32.65 

Potato 112.67 135.39 20.16 144.67 28.40 

Egg 20.67 17.69 -14.43 21.77 5.30 

Grapefruit 272 278.67 2.45 337.07 23.92 

Hamburger 307.67 322.65 4.87 372.26 20.99 

Ice Cream 79.67 75.57 -5.14 78.22 -1.82 

Jello 109.67 130.57 19.06 144.68 31.92 

Juice 180 195.15 8.42 215.23 19.57 

Milk 240 272.69 13.62 308.67 28.61 

Onion Slice 32.63 27.24 -16.53 26.09 -20.04 

Orange 151.67 163.55 7.83 172.01 13.41 

Peach 151.67 167.74 10.60 176.34 16.27 
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Table 4. Volume estimates derived using feedback system with camera positions 1 and 2. 

Estimated 

Object 

 

True Value 

(   ) 

Camera Position 1 Camera Position 2 

Estimated 

Value (   ) 

Relative 

Error (%) 

Estimated 

Value (   ) 

Relative 

Error (%) 

Small box 56.65 55.61 -1.83 58.57 3.38 

Big box 248.57 252.05 1.40 247.52 -0.42 

Bread 106 96.62 -8.85 106.67 0.63 

Corn Bread 93 87.86 -5.53 86.49 -7.01 

Cream cake 93.67 101.75 8.62 105.02 12.12 

Chicken breast 64 50.10 -21.72 50.10 -21.71 

Rice 52.33 41.38 -20.93 46.82 -10.52 

Potato 112.67 128.61 14.15 139.21 23.55 

Egg 20.67 18.04 -12.71 17.64 -14.64 

Grapefruit 272 262.25 -3.58 267.70 -1.58 

Hamburger 307.67 290.37 -5.62 293.11 -4.73 

Ice Cream 79.67 80.05 0.48 81.19 1.90 

Jello 109.67 122.74 11.92 108.99 -0.62 

Juice 180 186.04 3.35 188.04 4.47 

Milk 240 263.74 9.89 262.26 9.28 

Onion Slice 32.63 26.52 -18.73 26.16 -19.81 

Orange 151.67 159.43 5.11 155.37 2.44 

Peach 151.67 143.63 -5.30 159.43 5.11 
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Table 5. Volume estimates derived using feedback system with camera positions 3 and 4. 

Estimated 

Object 

 

True Value 

(   ) 

Camera Position 3 Camera Position 4 

Estimated 

Value (   ) 

Relative 

Error (%) 

Estimated 

Value (   ) 

Relative 

Error (%) 

Small box 56.65 53.30 -5.91 56.55 -0.17 

Big box 248.57 236.52 -4.85 246.18 -0.96 

Bread 106 99.57 -6.07 104.92 -1.02 

Corn Bread 93 84.75 -8.87 81.45 -12.42 

Cream cake 93.67 95.40 1.85 90.86 -3.00 

Chicken breast 64 46.94 -26.65 50.55 -21.01 

Rice 52.33 45.26 -13.51 37.53 -28.27 

Potato 112.67 132.32 17.44 126.12 11.93 

Egg 20.67 18.72 -9.43 17.61 -14.82 

Grapefruit 272 249.89 -8.13 281.97 3.67 

Hamburger 307.67 318.70 3.58 285.56 -7.19 

Ice Cream 79.67 71.36 -10.44 76.20 -4.36 

Jello 109.67 112.46 2.55 121.08 10.41 

Juice 180 184.02 2.23 194.49 8.05 

Milk 240 255.06 6.28 266.71 11.13 

Onion Slice 32.63 28.64 -12.21 27.24 -16.53 

Orange 151.67 159.43 5.11 155.37 2.44 

Peach 151.67 147.47 -2.77 159.43 5.11 
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Figure 24. Comparison of volume estimates using non-feedback and feedback systems. 

It can be seen that in general the estimation error rate with the non-feedback system is 

much larger than the rate with the feedback system. The averaged RMSE of volume estimation 

with the non-feedback system is 34.49%, but with the feedback system, it is reduced to only 

9.16%, a very large improvement in volume estimation. Given that the system was so greatly 

improved by the feedback, the following experiments were all performed with feedback systems. 

4.3 EXPERIMENT WITH DIFFERENT CAMERA POSITIONS 

In the last section, we analyzed the data came from four camera positions to compare the results 

obtained using the feedback vs. non-feedback system, but we did not consider the effects of 

different camera positions on the results. In this section, we will use the same data obtained with 
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the feedback system described in the last section, but will now analyze the effect of camera 

positions on the estimation results. 

Figure 25 below shows the images of the glass of milk, the piece of cornbread and the 

peach from four different camera positions that were used for volume estimation. Figure 26 

shows the relative error for each food item obtained with four different camera positions. Table 6 

lists the means and STDs of the relative errors for the four camera positions. Figure 27 shows the 

RMSE and STD for each food item across the four groups of experiments. 

 

 

 

 

Figure 25. Result images of food items following volume estimation using four camera positions. 
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Figure 26. Percentage of relative error in volume estimates of each item for four camera positions. 

Table 6. Mean and STD of relative errors for each item obtained with four camera positions. 

 Mean of relative error (%) STD of relative error (%) 

Camera Position 1 -0. 19 8.54 

Camera Position 2 0. 74 8.35 

Camera Position 3 -2.5 8.6 

Camera Position 4 -0.22 6.21 
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Figure 27. RMSE and STD of relative errors in volume estimates for each item obtained from four different camera 

positions. 

Figure 26 shows no strong trend for the four lines, indicating that the relative percentage 

of errors in volume estimation from the four camera positions was very close. Table 6 shows the 

means and STDS of relative errors for all objects across four camera positions. It can be 

observed that the means and STDs of the relative errors do not show explicit trends for the four 

camera positions. Combining these two sets of results, we are able to conclude that our system 

for food-volume estimation exhibits no particular sensitivity to varying camera positions.   

Figure 27 shows that the STDs for all of the samples were less than 10% and that most of 

the RMSEs were below 8% except for the chicken breast, the rice, the potato, the egg and the 

onion slice. The strong results for STD show the high degree of stability in our system. For the 

items with an RMSE less than 10%, the food-volume estimation results shows high accuracies, 

and the five biggest errors all occurred with objects that were irregularly shaped or small. During 

the estimation process for irregularly shaped objects, users used their knowledge to 

approximately fit regularly shaped virtual wireframe into the irregularly shaped object presented 
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in images, instead of exactly overlapping projections of objects and models, which produced a 

higher error rate. The egg and the onion slice were relatively small objects, so the volume 

estimation for each of these objects were very sensitive to the appearance of absolute errors in 

the experiment, which introduced larger relative errors into the results. In summary, the 

estimation results obtained were sensitive to irregularly shaped objects as well as small objects. 

4.4 EXPERIMENT WITH DIFFERENT OBJECT LOCATIONS 

We performed another experiment with a fixed camera position to analyze how locating the 

objects in different locations affected the accuracy of estimates. Eleven food items were used in 

this experiment, and for each item, we estimated its volume at sixteen different locations. As 

shown in Figure 28, we used a circular reference feature to equally divide a table surface in front 

of the camera into sixteen quadrants     , where   and   indicate the integers in the range      . 

We calculated the volumes of each sample for each of the resulting sixteen quadrants and then 

analyzed the results. The camera was set at a position with the angle   around    , and the 

coordinates of the camera optical center in the experiment were                         , 

obtained using the checkerboard method. 
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Figure 28. Sixteen locations of items defined by circular reference features. 

Tables 7-17 show the estimation results for each item at sixteen locations. Table 18 

shows the RMSEs of the volume estimates for items at sixteen locations. Table 19 shows the 

mean values of the relative percentage of errors for volume estimates at each of sixteen locations. 

Figure 29 shows the RMSE and STD for each food item at sixteen locations. 

Table 7. Volume estimates for LEGOs at sixteen locations. 

 Estimated Value (   ) Relative Error (%) 

                                     

    72.07 78.47 80.71 86.87 -7.96 0.22 3.08 10.94 

    72.52 79.27 83.44 84.80 -7.38 1.24 6.56 8.30 

    72.62 76.49 81.87 86.98 -7.25 -2.32 4.56 11.08 

    74.53 78.67 82.77 84.62 -4.81 0.47 5.71 8.07 
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Table 8. Volume estimates for small box at sixteen locations. 

 Estimated Value (   ) Relative Error (%) 

                                     

    51.82 57.93 56.78 59.76 -11.43 -0.97 -2.94 2.16 

    54.14 56.05 56.67 59.05 -7.46 -4.18 -3.13 0.94 

    51.03 54.67 57.48 59.70 -12.78 -6.55 -1.75 2.05 

    54.20 55.38 59.31 58.17 -7.35 -5.33 1.39 -0.57 

Table 9. Volume estimates for onion slice at sixteen locations. 

 Estimated Value (   ) Relative Error (%) 

                                     

    21.67 25.46 26.88 23.52 -33.58 -21.97 -17.63 -27.93 

    24.43 25.81 26.52 25.81 -25.14 -20.89 -18.73 -20.89 

    24.77 25.11 32.71 27.24 -24.09 -23.03 0.23 -16.53 

    24.43 28.25 32.26 29.83 -25.14 -13.41 -1.12 -8.57 

Table 10. Volume estimates for cornbread at sixteen locations. 

 Estimated Value (   ) Relative Error (%) 

                                     

    78.74 87.69 87.07 82.18 -15.33 -5.71 -6.38 -11.64 

    80.22 83.43 86.80 83.50 -13.74 -10.29 -6.67 -10.21 

    77.33 86.23 80.75 87.76 -16.85 -7.28 -13.17 -5.63 

    94.22 81.54 90.35 88.53 1.31 -12.32 -2.85 -4.80 

Table 11. Volume estimates for orange at sixteen locations. 

 Estimated Value (   ) Relative Error (%) 

                                     

    147.47 143.63 163.55 172.01 -2.77 -5.30 7.83 13.41 

    143.63 147.47 163.55 176.34 -5.30 -2.77 7.83 16.27 

    155.37 151.39 163.55 172.01 2.44 -0.19 7.83 13.41 

    151.39 151.39 167.74 167.74 -0.19 -0.19 10.60 10.60 

Table 12. Volume estimates for peach at sixteen locations. 

 Estimated Value (   ) Relative Error (%) 

                                     

    155.37 155.37 151.39 163.55 2.44 2.44 -0.19 7.83 

    147.47 151.39 155.37 163.55 -2.77 -0.19 2.44 7.83 

    159.43 155.37 163.55 172.01 5.11 2.44 7.83 13.41 

    143.63 159.43 151.39 167.74 -5.30 5.11 -0.19 10.60 
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Table 13. Volume estimates for big box at sixteen locations. 

 Estimated Value (   ) Relative Error (%) 

                                     

    233.03 236.01 249.80 256.08 -6.25 -5.05 0.50 3.02 

    230.37 237.14 247.01 256.95 -7.32 -4.60 -0.63 3.37 

    230.97 244.14 251.06 260.49 -7.08 -1.78 1.00 4.79 

    237.00 242.24 253.42 259.80 -4.66 -2.55 1.95 4.52 

Table 14. Volume estimates for hamburger at sixteen locations. 

 Estimated Value (   ) Relative Error (%) 

                                     

    268.18 284.84 298.23 310.70 -12.83 -7.42 -3.07 0.98 

    287.01 288.92 302.36 315.79 -6.71 -6.09 -1.73 2.64 

    284.54 292.65 323.39 325.87 -7.52 -4.88 5.11 5.92 

    274.06 272.46 318.07 335.95 -10.92 -11.44 3.38 9.19 

Table 15. Volume estimates for golf ball at sixteen locations. 

 Estimated Value (   ) Relative Error (%) 

                                     

    38.72 41.99 40.34 38.72 -4.81 3.23 -0.84 -4.81 

    38.72 37.15 40.34 47.24 -4.81 -8.67 -0.84 16.12 

    38.72 40.34 41.99 43.70 -4.81 -0.84 3.23 7.41 

    38.72 38.72 41.99 45.44 -4.81 -4.81 3.23 11.71 

Table 16. Volume estimates for juice at sixteen locations. 

 Estimated Value (   ) Relative Error (%) 

                                     

    166.49 170.69 184.02 194.66 -7.51 -5.17 2.23 8.14 

    171.73 191.54 197.95 197.95 -4.60 6.41 9.97 9.97 

    172.09 189.06 182.93 197.95 -4.40 5.03 1.63 9.97 

    180.00 198.86 193.63 196.89 0.00 10.48 7.57 9.38 

Table 17. Volume estimates for toy ball at sixteen locations. 

 Estimated Value (   ) Relative Error (%) 

                                     

    118.56 121.94 128.91 132.49 -0.05 2.81 8.68 11.70 

    118.56 121.94 128.91 132.49 -0.05 2.81 8.68 11.70 

    136.14 121.94 128.91 121.94 14.78 2.81 8.68 2.81 

    121.94 125.39 128.91 136.14 2.81 5.72 8.68 14.78 
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Table 18. RMSEs of the volume estimates for items at sixteen locations. 

 RMSE in the Volume Estimation (%)  

                     Average 

    12.98 7.84 6.89 11.75 9.86 

    10.04 8.27 7.94 11.49 9.44 

    11.60 7.97 6.29 9.59 8.86 

    9.10 7.92 5.35 9.22 7.90 

Average 10.93 8.00 6.62 10.51  

 
Table 19. Means of relative errors of volume estimates for items at sixteen locations. 

 Mean of Relative Error of Volume (%)  

                     Average 

    -9.10 -3.90 -0.79 1.26 -3.13 

    -7.75 -4.29 0.34 4.19 -1.88 

    -5.68 -3.33 2.29 4.43 -0.57 

    -5.37 -2.57 3.49 5.90 0.36 

Average -6.97 -3.52 1.33 3.94  

 

 

 

Figure 29. RMSEs and STDs of relative errors of volume estimates for each item at sixteen locations. 

Table 18 shows all the RMSEs and means of relative errors for all objects with sixteen 

locations, where   and   indicates, respectively, the regions        in Figure 28. We found that 
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when     and    , the average value of the RMSEs for the four corresponding vertical 

quadrants were 10.93% and 10.51%, notably larger than the average RMSE values of 8.00% and 

6.62% obtained when     and    , respectively. We also found that in Table 19, the average 

value of the mean for relative errors in estimation volumes changed from -6.97% to 3.94%, 

monotonously with   changing from 1 to 4. The reason for this result is that the camera rotated 

away from its default position. When the horizontal center line of the camera’s image plane is 

parallel with the experiment table surface, the camera is at the default position. In experiments, 

there must have been a small rotation angle of the camera around its optical axis, which means 

that first, the camera rotated away from its default position, and then, this rotation angle 

produced different sized images of a single object at two bilateral symmetry quadrants relative to 

the camera. As shown in the rows of Table 19, the errors change from a negative maximum to a 

positive maximum monotonously when the samples moved from one side of the image to the 

other along a horizontal line. The objects imaged near the vertical center line of the screen were 

characterized by more accurate estimates of their volume. 

In Table 18, we also found that the average values of each row varied monotonously. The 

results were more accurate when the objects were positioned close to the camera. This is because 

a closer object provided a larger image with relatively clear borders for the fitting operation, 

which reduced estimation errors. However, there was no significant trend in the average values, 

and the difference between the maximum value and minimum value was only 1.96%. Thus, we 

can conclude that, the distance between the camera and the object will affect the accuracy of 

volume estimates to a minor degree. 

Figure 29 shows that most of the RMSEs of volume estimates for each item at sixteen 

locations were equal to or less than 10%, and that all the STDs were less than 10%, showing that 
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our system is also highly accurate when testing volume of foods at various locations. The larger 

error came from the estimation of the onion slice, which occurred because its tiny height made it 

sensitive to absolute error, as described in the previous section. 
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5.0  DISCUSSION 

Our experiments and analysis have shown that the proposed approach and system enable 

highly accurate food-volume estimation based on the VR technology. The average relative error 

in volume estimation is less than 7% for regularly shaped food and less than 19% for irregularly 

shaped food, suggesting that our system can be used appropriately as a powerful tool for tracking 

caloric intake in research on, and treatment of, obesity. Also, since in our experiments the 

estimators gave the same readings regardless of the camera position or the distance between the 

camera and the food items, this shows that the system is robust and suitable for a wide variety of 

camera positions and foods. Our results also showed that our VR-based approach is sensitive to 

the rotation angle of camera around its optical axis. One problem we encountered was that, 

during various experiments, we had intended to set the horizontal center line of the camera’s 

image plane parallel with the experiment surface, which can only represent the ideal situation of 

picture taking. We believe this problem can be solved by using the checkerboard method to 

calibrate the camera's rotation angle and then adding this variable into the system’s pre-

estimation process. 

In out experiments, we found the major errors generally occurred with the estimation of 

irregularly shaped food. This is because the volumes of certain foods may not be defined 

correctly because of the non-uniqueness in treating the air spaces near the exterior, e.g., a bowl 

of leafy salad or a hamburger. Currently users of our system can only roughly define the surface 
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as a boundary that smoothes out peaks and valleys of the visible exterior of food. This process 

introduced some error and uncertainty, but the degree of each was acceptable for irregular foods. 

Although the experimental results of volume estimation using our VR approach and 

system have shown an acceptable degree of accuracy, future research should focus on the 

following four ways in order to improve the performance and the practicality of our system: 

1) Introduce a camera calibration method with higher performance on the calibration of 

camera’s intrinsic and extrinsic parameters, including the rotation angle; 

2) Design a multi-dimensional feedback system to replace our current closed-loop 

system, which uses only one variable as a feedback error. The difference between the 

estimated reference and its true value provides knowledge of the type of multi-

dimensional feedback errors which could be used to improve our system; 

3) Provide virtual geometric objects with higher flexibility. As illustrated in our 

experiments, the volume estimation of irregular shaped always lacked accuracy 

because our system provided users with only regularly shaped objects. Providing 

virtual objects that could be deformed more flexibly would greatly enhance the 

performance of our system. 
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6.0  CONCLUSION 

In research on the treatment of obesity, it is essential to accurately assess the volume of 

food consumed. However, thus far, the tools required for such close estimation have proved 

inadequate. This thesis presents a new approach to estimating the volume of food based on the 

use of a single input image, which is made possible through the use of virtual reality (VR) 

software/applications. The basic mechanism of the proposed system involves a two-step process: 

In the first step, a virtual pinhole camera model is created to simulate the picture-taking process 

by a real camera. In the second step, an imaginary 3D frame is created as a powerful 

measurement tool in the virtual space to cover or fit over the foods in the image in order to 

estimate the volume of the real food. 

The construction of the virtual model was based on a well-defined mathematic model  

describing the relationship between the volume of objects in the virtual model and real objects. 

We designed and constructed software to realize the mathematical model, and the resulting 

system consisted of the following five functional units for: 1) food image acquisition, 2) camera 

parameters calibration, 3) virtual reality modeling and construction, 4) virtual object 

manipulation, and 5) food volume estimation. 

Our system used the checkerboard method to determine the intrinsic and extrinsic 

parameters of the camera.  Once these parameters were obtained, we established a VR space in 

which a virtual 3D wireframe was projected onto the food image in a well-defined proportional 
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relationship. Within this space, the user could scale, deform, translate, and/or rotate the virtual 

wireframe to better fit the food in the image. Finally, the volume of the wireframe was utilized to 

compute the food volume based on the established proportional relationship. Finally, the volume 

of the real food was derived from the volume of the virtual wireframe. 

Our experimental study indicated that out system very accurately estimated the volume of 

foods with relatively regular shapes (e.g., cornbread, cake, juice and hamburger), but less 

accurately estimated the volume of foods with irregularly shapes or very small sizes (e.g., 

chicken thigh and onion slice); however, even for the second group of foods, the volume 

estimation results were acceptable. We also found that in most cases our results were not 

sensitive to camera position or the distance from the objects to the camera’s optical center; 

however, we did find that even a slight change in the camera-rotation angle about its optical axis 

could affect the results. In general, the results of our estimates were found to be satisfactory in 

that they provided an accurate measurement tool for dietary assessment in obesity research and 

treatment.  

To enhance the performance of the current system future work in this area should focus 

on improving the accuracy in camera parameter estimation, testing the system using more food 

models and real foods, and designing a multidimensional feedback system to enhance system 

performance. It is hoped that, with the advancement in food portion size measurement using the 

VR technology, overweight and obese individuals can improve their awareness in energy intake, 

implement a more effective plan to lose weight, and live healthier lives. 
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