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ABSTRACT 

A focus of engineering education is to prepare future engineers with problem solving, design and 

modeling skills. In engineering education, the former two skill areas have received copious 

attention making their way into the ABET criteria. Modeling, a representation containing the 

essential structure of an event in the real world, is a fundamental function of engineering, and an 

important academic skill that students develop during their undergraduate education. Yet the 

modeling process remains under-investigated, particularly in engineering, even though there is 

an increasing emphasis on modeling in engineering schools (Frey 2003). Research on modeling 

requires a deep understanding of multiple perspectives, that of cognition, affect, and knowledge 

expansion.    

In this dissertation, the relationship between engineering modeling skills and students‘ 

cognitive backgrounds including self-efficacy, epistemic beliefs and metacognition is 

investigated using model-eliciting activities (MEAs).  Data were collected from sophomore 

students at two time periods, as well as senior engineering students. The impact of each cognitive 

construct on change in modeling skills was measured using a growth curve model at the 

sophomore level, and ordinary least squares regression at the senior level.  

Findings of this dissertation suggest that self-efficacy, through its direct and indirect 

(moderation or interaction term with time) impact, influences the growth of modeling abilities of 
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an engineering student. When sophomore and senior modeling abilities are compared, the 

difference can be explained by varying self-efficacy levels. Epistemology influences modeling 

skill development such that the more sophisticated the student beliefs are, the higher the level of 

modeling ability students can attain, after controlling for the effects of conceptual learning, 

gender and GPA. This suggests that development of modeling ability may be constrained by the 

naiveté of one‘s personal epistemology. Finally, metacognition, or ‗thinking about thinking‘, has 

an impact on the development of modeling strategies of students, when the impacts of four 

metacognitive dimensions are considered: awareness, planning, cognitive strategy and self-

checking. Students who are better at self-checking show higher growth in their modeling abilities 

over the course of a year, compared to students who are less proficient at self-checking. The 

growth in modeling abilities is also moderated by the cognitive strategy and planning skills of 

the student. After some experience with modeling is attained, students who have enhanced skills 

in these two metacognitive dimensions are observed to do better in modeling.  Therefore, 

inherent metacognitive abilities of students can positively affect the growth of modeling ability.  
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1.0  INTRODUCTION 

Modeling is a fundamental function of engineering and learning to model an engineering system 

is an important academic skill students develop during their undergraduate education. Yet, 

developing one‘s modeling ability is not trivial. There is increasing interest in modeling, 

particularly in mathematics and physics, as there are several investigations into what promotes 

one‘s modeling ability. Unfortunately in engineering, where modeling encompasses much more 

than mathematical formulations; there is a paucity of research in modeling relative to how 

students acquire their modeling skills.  Thus, it is not surprising that there is an increasing 

emphasis on engineering modeling (Frey 2003). Further, at a time when research on thinking and 

learning brings together multiple perspectives; social cognition and beliefs of students are 

expected to play a role in development of modeling skills, research on bridging these two areas 

appears to be opportune.  

This dissertation serves to extend this multi-perspective on modeling and investigates the 

impact of three cognitive constructs on growth of modeling ability: self-efficacy, epistemology 

and metacognition.  Hence, we have the following objectives: (1) to describe the importance of 

modeling, the stages of modeling process, and what it means to develop modeling ability; (2) 

using these activities, to assess the impact of students‘ self-efficacy, epistemic beliefs and 

metacognitive abilities on development of students‘ modeling skills; and (3) to create and adapt 
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the instruments necessary to engineering to correctly measure modeling ability as well as self-

efficacy, epistemic beliefs and metacognitive abilities. To assess their modeling skills, we 

provide students with special modeling scenarios called model-eliciting activities (MEAs). As a 

side objective, therefore, we provide MEAs as a means for improving students‘ self-efficacy, 

epistemic beliefs and metacognitive abilities. 

To achieve these objectives, we developed theoretical frameworks of hypotheses on how 

the self-efficacy, epistemic beliefs and metacognition influence modeling growth. We measured 

students‘ modeling ability longitudinally using data from sophomore (Fall 2009 and Spring 2010 

terms), and a cohort of senior students. We conducted an experiment in which participants 

(engineering students) worked on two MEAs. In addition, students‘ cognitive backgrounds were 

assessed using instruments described in the methodology section.   

The first of the measured social cognitive constructs, self-efficacy, refers to one‘s beliefs 

of how well she can perform a task of interest (Bandura 1986).  An individual has high self-

efficacy for a task when she believes that she possesses the capabilities necessary to successfully 

perform it. The body of rich empirical research on self-efficacy beliefs and educational outcomes 

dates back to the 1970s. Social cognitive theory has established that the individual differences or 

beliefs influence and predict performance. Students with higher levels of self-efficacy typically 

achieve higher outcomes in the assessed domain (Bandura 1997, Pajares 1996), have higher 

academic achievement (Multon, Brown, and Lent 1991), and display greater job performance 

(Stajkovic and Luthans 1998). Given prior literature, it is fitting to assert that self-efficacy should 

influence development of certain fundamental, critical engineering abilities, specifically 

modeling (Schreuders 2007).   
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Previous measurements of self-efficacy have employed proxies in the form of test scores, 

and assignment grades to generalize self-efficacy scales as overall self-efficacy.  Conclusions 

from these measurements are that self-efficacy instruments that are not based on the concerned 

task provide results in contrast to the true nature of self-efficacy beliefs and carry less predictive 

value (Bandura 1997).  In this dissertation, therefore, a scale entitled the ―Engineering Modeling 

Self-efficacy Scale‖ (EMSS) was created to prevent measurement errors. It was tested to 

measure whether there are differences in self-efficacy levels of students from different 

disciplines and years.  

The second construct, epistemology, is concerned with the nature of knowledge, 

justification, evidence, and related notions. Epistemic beliefs were shown to correlate with 

learning on multiple dimensions (Duell and Schommer-Aikins 2001, Bendixen and Hartley 

2003), including metacognition (Hofer 2004, Bendixen and Hartley 2003), self-regulation (Muis 

2007), comprehension (Hartley and Bendixen 2001), scientific argumentation and reasoning 

(Duschl and Osborne 2002, Sandoval 2003, Sandoval and Reiser 2004) and ability to solve a 

problem (Schommer-Aikins, Duell, and Hutter 2005). Sophistication levels of epistemic beliefs 

were used to test their impact on development of modeling skills.  

The last construct, metacognition, is defined to be ―the ability to reflect upon, understand, 

and control one‘s learning‖ (Schraw and Dennison, 1994, p. 460); and is a critical cognitive 

process that can impact a student‘s ability to learn to model.  Operating through two separate 

mechanisms, knowledge about cognition and the knowledge about the regulation of cognition, 

metacognition includes both an awareness of cognition and an understanding of strategies to 

change cognitions by facilitating self-reflection, that of understanding and control of one‘s own 
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cognitions. Therefore, there is reason to expect that the modeling strategies of students are 

influenced by their metacognitive properties.  For each construct - self-efficacy, epistemology 

and metacognition, we developed a theoretical framework on how and why the background of 

self-efficacy, epistemology and metacognition can translate into growth in modeling ability. We 

discuss, in specific, the relationship between the use of MEAs and the three constructs. 

Collecting data from both sophomore and senior level engineering students over a year long 

period, we test whether metacognition impacts the growth of modeling abilities in engineering 

students.  

The overarching results of this dissertation suggest that self-efficacy beliefs are similar 

within disciplines; and, as expected, often are higher for seniors compared to sophomore 

students, as well as for male engineering students compared to female. Tests showed that self-

efficacy, epistemology and metacognition impact the development of modeling skills.  

The rest of the dissertation is organized as follows. In the next section, we are providing a 

summary of the background on modeling and its characteristics, as well as modeling skill shift. 

Next, we describe the common methodology to all four studies in the dissertation including data 

collection and the instruments used to measure modeling outcomes, self-efficacy, epistemic 

beliefs and metacognition and interviews following the data collection. Following the 

methodology section, in the first study, we describe the creation of EMSS and build a theory of 

how self-efficacy is expected to influence the growth of modeling ability. Second study focuses 

on developing a framework to estimate the impact of epistemology and explains the tests 

conducted for assessing the significance of this impact.  Third study follows the same 

methodology by creating the hypotheses and measuring the influence of metacognitive 
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dimensions on modeling. Finally, in the fourth study, a report of strategies used in modeling is 

provided, using a qualitative and descriptive methodology. Following all four studies, we 

provide a specific overall summary section. This part of the dissertation aims to provide a quick 

review as well as suggestions for future research and implications, and includes a theory of 

propositions on growth of modeling, summary of the findings in all four studies, discussion of 

limitations and future work, and also a section of suggestions for the practitioners.  Finally, a 

section is devoted to list the contributions of this dissertation to the literature of engineering.   
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2.0  LITERATURE SUMMARY ON MODELING 

2.1 DEFINITION OF MODELING  

In a broad definition, the term model refers to a simplified or idealized description or conception 

of a particular system, situation, or process, often in mathematical terms, that is put forward as a 

basis for theoretical or empirical understanding, or for calculations, predictions, etc.; as well as a 

conceptual or mental representation of something.  The term modeling also refers to devise a 

model or simplified description of a phenomenon or system (Bodner, Gardner and Briggs 2005). 

Modeling is the essence of thinking and working scientifically (Harrison and Treagust 2000). 

Other definitions of modeling abound. Definitions of modeling from various authors are given in 

Figure 1.  
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Reference Definition of Modeling  

Lesh and Harel 

(2003) 

Conceptual systems that generally tend to be expressed using a variety of 

interacting representational media – which may involve written symbols, 

spoken language, computer-based graphics, paper-based diagrams or 

graphs, or experience-based metaphors.  

Voskoglou (1995) An idealized (simplified) representation of a real-world system.   

Gilbert (1997) Representation of an idea, object, event, process, or system, which 

concentrates attention on certain aspects of the system. 

Ingham and Gilbert 

(1991) 

Facilitating scientific inquiry.  

Johnson–Laird 

(1989) 

Mental entities that people construct with which they reason; all of our 

knowledge of the world therefore depends on our ability to construct 

models of it.  

Norman (1997) To a target system or phenomenon with which we have a common 

experience or set of experiences. 

Bower and Morrow 

(1990) 

Representations of physical and social world which we manipulate when 

we think, plan, and try to explain events in that world. 

 

Figure 1.Various definitions of modeling 

 

According to the definitions in Figure 1, models are built to construct, describe or explain 

single or integrated systems. Narrowing these definitions for engineering; modeling can refer to: 

(i) a conceptual system for describing or explaining the relevant mathematical objects, 
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relationships, actions, patterns, and regularities that are attributed to the problem solving 

situation, and (ii) accompanying procedures for generating useful constructions, manipulations, 

or predictions for achieving clearly recognized goals (Lesh and Harel 2003). A model is 

comprised of fragments; in other words, abstractions of some physical system, mechanism, 

structure that lead to inclusion of constraints to the overall model behavior.  The selection of 

model fragments and the way to compose small fragments into bigger model fragments is what 

creates the aggregate model (Blum et al. 2007). 

In this dissertation, the term modeling is used to describe the process of constructing a 

representation of a real-world system. The properties, classifications and descriptions of 

modeling process are provided next.  

 

2.2 CATEGORIES OF MODELS  

One can see that models are mentioned in three different ways in the literature: as content (study 

of modeling itself), as a vehicle (use of modeling as a tool to understand other phenomena) and 

as a way to reflect on the society (particularly for mathematics society, understanding the role of 

modeling for students and instructors) (Barbosa 2006). Accordingly, models have been 

categorized in various ways by different studies.  

Stockburger (1996) classified models into two groups: (1) physical, as in a product 

prototype or architectural model of a building or (2) symbolic models, such as conceptual or 

mathematical models, which are constructed using a natural (e.g., English, German) or a formal 
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language (e.g., algebra, computer language).  According to the author, models can further be 

divided into several other categories like analytical models, statistical models, structural models, 

numerical models, etc.  The categorization of physical vs. symbolic models resembles the 

categorization of analogical models (scaled or exaggerated objects, symbols, equations, graphs, 

diagrams, and maps) vs. simulation models. 

Another classification is mental models that exist within the mind of individual and 

physical and conceptual models that are shared among members of a community (Greca and 

Moreira 2000). Mental models are defined as internal, personal, idiosyncratic, incomplete, 

unstable and essentially functional; whereas conceptual models are external representations that 

are shared by a given community.  

A classification of models based on the thinking process is suggested by Gilbert (1997) as  

(1) a mental model is product of an individual‘s thought process; (2) an expressed model is 

produced when a mental model is placed in the public domain through action, speech, or writing; 

(3) a consensus model is an expressed model that has been generally accepted among a 

community of scientists; and (4) a teaching model is an expressed model that was specifically 

developed to help students understand an historical or conceptual model. 

The most common models in engineering can be grouped into conceptual and 

calculational models (Tsang 1991). According to this classification, a conceptual model consists 

of three main components: structure (physical structure of the system), processes (physical, 

chemical, etc. phenomena that take place in the system), and boundary and initial conditions 

(constant or time dependent conditions imposed on the boundaries of the model domain).  
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Calculational models are the computational (mathematical model, computer code, etc.) 

representations of the system that solves a given set of equations with given inputs by numerical 

manipulations. In such, a calculational model can involve a set of mathematical equations, a 

computer code, or any system that estimates the performance criteria of the model. The 

relationship between a conceptual and a calculational model are given in Figure 2, as originally 

represented by Tsang (1991). In this figure, the author refers to the mathematical or calculational 

model with the word ‗code‘.  

Structure and boundary and initial conditions are dependent on the system and scale of 

the system and both appear within data and the calculational model. These involve constraints on 

the representation of the real-world system as well as the analysis of extreme cases which can 

exist in the system. Processes can be described by mathematical equations, as well as conceptual 

or pictorial relationships; and they also can be solved by the calculational model. 
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Figure 2. Relation of conceptual and calculational model (Tsang 1991) 
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2.3 PROPERTIES OF MODELS 

 

Various properties of modeling are mentioned in different research studies. A summary of the 

major properties of models is presented in the following list: 

  

2.3.1 Representation 

In models, variables and the relations between the variables by operators are represented by 

symbols, or figures, logic, language, etc. (Murthy 1979). The systems integrated in real life are 

decomposed and translated into languages of modeling and represented. 

 

2.3.2 Association with Real World 

The structure of how models relate to real life should take place as follows: variables should be 

capable of being associated with physical quantities in an external (real or physical) world; 

operators in the model should be capable of being associated with relationships between the 

physical variables of the external world Murthy (1979). 
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2.3.3 Simplification/ Scaling Down of External World 

In general, models should not be related to the external world on a one to-one basis. This implies 

that the model does not contain information regarding all aspects of the external world. The 

amount of information on the external world contained in a mathematical model depends on how 

it is to be used; i.e., on the goals of the model builder (Murthy 1979). This implies that the same 

system of the external world can have different mathematical models depending on the final 

purpose; where no single model is better than the others.  This property can also relate to what 

Smith (1996) calls cost-effectiveness: It is more cost-effective to use the model for this purpose 

than to use the referent itself. Rothenberg (1989) compliments this view by suggesting that 

modeling is ―the cost-effective use of something in place of something else for some cognitive 

purpose.‖ 

 

2.3.4 Purpose 

Smith (1996) says that a model represents ‗reality for the given purpose‘, and it is an ‗abstraction 

of reality in the sense that it cannot represent all aspects of reality‘. It has an intended cognitive 

purpose with respect to its referent. 
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2.3.5 Incompleteness 

Because a model is a scaled down representation, no model includes every aspect of the real 

world. In order to create a model, an engineer must make some assumptions about the essential 

structure and relationships of objects and/or events in the real world. These assumptions are 

about what is necessary or important to explain the phenomena (Stockburger 1996). 

 

2.3.6 Ease of manipulation 

Models are easy to manipulate and experiment on, compared to the real world.  An engineer can 

manipulate the model by changing the assumptions, variables, data or relationships, and observe 

a prediction of what might happen in reality, rather than doing a similar operation in the real 

world. Manipulating the model rather than the real life system is more convenient, simpler, less 

time and money consuming, and results that might be catastrophic in real life can be prevented 

(Stockburger 1996). It is noted that changing symbolic models is generally much easier than 

changing physical models. 
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2.3.7 Use of Heuristics and Strategies 

An important property of modeling in engineering is the use of heuristics (Koen 1985). 

According to this view, modeling goes hand in hand with heuristic building: although they do not 

always guarantee a solution or they may contradict or give different answers to the same 

question; heuristics help solving difficult problems or reduce the solution time therefore the cost 

significantly. Further, heuristics are solved based on the context (considering the assumptions 

made) instead of the holistic system.    

Further, typical engineering heuristics that are employed in modeling are classified as: 

‗(1) rules of thumb and orders of magnitude; (2) factors of safety; (3) heuristics that determine 

the engineer's attitude toward his or her work; (4) heuristics that engineers use to keep risk 

within acceptable bounds; and (5) rules of thumb that are important in resource allocation‘ (Koen 

1985). 
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2.4 MODELING PROCESS 

 

The modeling process is defined as ‗to specify a description of a device and its operating 

environment that can be used to infer some information about the device (Gruber 1992)‘. The 

process (of mathematical modeling) is sometimes given the name modeling cycle (Kaiser 2005). 

Modeling cycles are often characterized by diagrammatic representations (Galbraith and Stillman 

2006). In mathematics education, for example, researchers often use diagrams to analyze 

students‘ modeling. Other methods of analysis of modeling processes are often carried through 

use of discourse or use of following categories of verbal information: mathematical (ideas 

belonging to mathematics); technological (ideas referring to techniques of building the 

mathematical model) and reflexive (criteria used in building a model and its consequences) 

(Barbosa 2006).  

Modeling process involves making decisions about relevant physical domains, 

abstractions, approximations, and other assumptions (Gruber 1992). Depending on the purpose 

and focus of the research modeling processes might look different (Crouch and Haines 2004).  

Some of these different descriptions of the modeling processes are given next. Thus modeling is 

a search of a space defined by multiple criteria.  Modeling process is constructive since it 

involves putting together partial solutions under constraints and explicitly representing the 

information used to select, assemble, and evaluate the model. 
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Lesh and Harel (2003) focus on the transitions from one stage within the modeling 

process and define the stages as quantifying, organizing, systematizing, dimensionalizing, 

coordinatizing, and (in general) mathematizing objects, relations, operations, patterns, or rules 

that are attributed to the modeled system.  

 A formulation of the process of forming a model in four stages is given in Figure 3 from 

Stockburger (1996).  

 

Stage  Description 

Simplification/ 

Idealization  

Identifying the relevant features of the real world. 

Representation/

Measurement 

Translating ‗word problems‘ to formal languages. This process is called 

representation of the world. In statistics, the symbols of algebra 

(numbers) are given meaning in a process called measurement. 

Manipulation/ 

Transformation 

Sentences in the language are transformed into other statements in the 

language. In this manner implications of the model are derived. 

Verification Selected implications derived in the previous stage are compared with 

experiments or observations in the real world.  

 

 Figure 3. Process of forming a model (Stockburger 1996) 
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These four stages and their relationship to one another are illustrated in Figure 4 below 

(Stockburger 1996). 

 

 

Figure 4. Stockburger‘s (1996) modeling process and the relationships to real world 

Stockburger‘s model is an intuitive and fundamental description of what is happening in 

modeling. More detailed process descriptions follow such basic models. For example, Van Der 

Schaff et al. (2006) define the process of modeling as a subset of problem solving and define 

four steps, but add each some several sub-steps of the modeling process, as given in Figure 5.  
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Stage Description of Stage and Sub-steps 

General 

Analysis 

  

 Obtain a clear view on the question that is to be answered using the 

model, in what way the model is going to help to solve the problem and 

what system the problem is related to. 

 Determine the function of the model, what question should be answered 

by the model. 

 Describe the system to be modeled in words. 

 Make a schematic drawing of the system to be modeled. 

Detailed 

Analysis 

 

 Make assumptions explicit. 

 Define the system boundaries & define subsystems. 

 Make a drawing including all available data. 

 Determine which variables and parameters could be important. 

Compose 

the Model 

 Search for and select a set of usable standard equations. 

 Check the number of equations and the number of unknowns. 

 Check the units. 

Answer the 

Question / 

Evaluate 

 Use the model to answer the question. 

 Evaluate the answer. 

  

Figure 5. Process of forming a model Van der Schaff et al. (2006) 
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Mathematical modeling process is demonstrated as illustrated in Figure 6, which is a 

reference to Arleback (2009), Blum and Leiss (2007) and Borromeo Ferri (2006, p. 92).  

Accordingly, Borromeo Ferri (2006) describes the phases of mathematical modeling as (1) 

understanding the task, (2) simplifying/structuring the task, (3) mathematizing, (4) working 

mathematically, (5) interpreting, and (6) validating. During these steps, the model builder makes 

decisions about choice of the domain of relevant physical phenomena to model, which aspects of 

the system to use, determines appropriate assumptions to make and chooses abstractions at the 

appropriate level of detail.  

 

 

Figure 6. The mathematical modeling cycle (Blum and Leiss 2007)  

 

Among the studies that cover modeling process, the one of Tsang (1991) is well suited to 

modeling process of engineering.  His steps of a modeling process are given in Figure 7.  
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1. Modeling Stage 

(Notation) 

Description  

2. Review and Evaluation 

of Data (RED)  

Searching a database to obtain numbers necessary to calculate results 

of a model; trying to obtain as good as data as possible to represent 

the overall picture of the site and relevant processes occurring.  

3. Conceptual Modeling & 

Potential Scenarios 

(CON)  

Abstracting the essence of the database to construct the structure of 

the physical model, to identify the physical and chemical processes 

involved in the system, and to determine the appropriate boundary 

and initial conditions.  

4. Establishment of  

5. Performance Criteria 

(EPS)  

Modifying the performance criteria for something plausible yet still 

acceptable for the problem on hand; where a performance criterion is 

defined as the quantity of interest that the model is asked to predict. 

6. Development of 

Calculational Models/  

7. Associated Parameters  

8. (CAL)  

Creating simplified models using the conceptual models (author 

refers them as calculational models) and defining lumped parameters 

(parameter values averaged over spatial regions, and elementary 

parameters). 

9. Modeling Calculations, 

Sensitivity Analysis 

(CUS)  

Calculations (author considers computer runs), creating tables of 

results and graphical outputs.  Studying the sensitivity of the results 

on parameter or data uncertainties.  

Results Evaluation (RE)  Understanding and evaluating the calculational results.  The results, 

including the estimated uncertainties are evaluated according to the 

performance criteria; where uncertainties may arise from data and the 

steps preceding, such as choice of a calculational model.   

Validation 

/ Verification (VV)  

Ensuring that the model is built right and the right model is built.  

 

Figure 7. Tsang‘s (1991) modeling stages 
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It is clear from this model that the processes of modeling in engineering and mathematics 

are very similar, and the modeling process description of engineering comprehends the process 

of mathematical modeling. Tsang‘s model, in particular, includes all the steps in Blum‘s model.  

Tsang, Van der Schaff et al., Blum et al. and Stockburger models show that modeling 

processes can be defined in different ways, but the descriptions are similar. Among these, 

Tsang‘s modeling process descriptions seem to be the most detailed and suited. Thus, in this 

dissertation, this process model is embraced.  
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2.5 MODELING ABILITY GROWTH 

The dictionary definition of expertise is mechanism(s) underlying the superior achievement of an 

expert, and an expert is one who has acquired special skill in or knowledge of a particular subject 

through professional training and practical experience (Webster's dictionary, 1976, p. 800). 

Accordingly, skill shift, or growth in ability is this process of becoming an expert, or gaining 

expertise. 

A growth in modeling ability is the shift occurring in observable and non-observable 

properties of modeling processes of students.  According to this definition, skill shift is a path of 

describable change in modeling strategies (Chase and Simon 1973). It is difficult to determine in 

advance whether this path is similar for different individuals or whether it is based on personal 

characteristics.  Thus, this dissertation in-part investigates if there are identifiable patterns of 

change in how students go about modeling an engineering system as their domain knowledge, 

modeling experience, and cognitive processes enhance or change. In the following figure, the 

growth of modeling ability in engineering students is represented. The figure shows that there 

should be a change in the strategies of modeling as engineering students are learning new 

domain specific information; gain expertise and their backgrounds allow them to learn.  
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Figure 8. Modeling skill shift  

 

In various disciplines, like physics and mathematics, the differences between expert and 

novice strategies have been noted for problem solving (Chase and Simon 1973, Chi, Feltovich, 

and Glaser 1981).  Most of this analysis has been conducted using well-structured problems and 

puzzles such as chess (Chase and Simon 1973) and physics problems (Champagne, Gunston and 

Klopfer 1983, Chi, Feltovich and Glaser 1981). Among such differences is an expert having a 

substantial body of organized knowledge (Chase and Simon 1973). In physics problem solving, 

Chi, Feltovich and Glaser (1981) notes the differences in time to solve a problem and pause 

times. Simon and Simon (1978) notes that there is a significant difference in the time it takes a 

novice to solve the problem, such as a four to one ratio. This posits that in terms of time, experts 

are more efficient in reaching a solution. These time differences are measured in the context of 

Basic 

Modeling 

Skills   

More Sophisticated 

Modeling Skills 

Engineering Domain 

Knowledge (Instruction)  

 

Experience in Modeling 

 

Student Cognitive Background  

 

Other unobserved effects 

Use of novice modeling strategies                    Use of expert-like modeling strategies 
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well-defined problems and may not replicate in presence of open ended problems. Chi et al. 

mentions the difference in the pause times taken between novices and experts.  Experts tend to 

group their information in chunks. Thus while solving a problem they tend to remember a 

sequence of equations with small inter-response times followed by a long pause. While experts 

are more likely to focus on hidden relational properties of a problem, novices are more likely to 

focus on less important surface features of a problem.  When presented with deduction problems, 

novices often tended to ignore the argument's logic (i.e., its deep structure) while relying on the 

argument's surface features, such as content and believability (Evans, Newstead,  Byrne, 1993; 

Johnson- Laird and Byrne, 1991).  

It is suggested that the contrast of novice and expert differences may be subject to 

environmental constraints such as context and the availability of time and other resources. This 

can explain the differences that exist among students and professionals in modeling (Barbosa 

2006). For example, while trying to do their best in an exercise, students often use a judgment on 

how they are expected to approach a problem. Professionals, on the other hand, are expected to 

find the best solution possible, and cannot use expectations of management as a clue. To 

decrease such environmental effects of modeling practices of students and professionals, more 

implementations of ill-defined, project based, open ended problems are integrated into 

engineering curriculums.  

In engineering, students deal with ‗ill-defined‘ problems, where the actual problem, 

constraints, data, etc. are not clearly defined; and the solution to the problem is open ended and 

the complexity of real life is reflected. Therefore, each engineering problem presents a real life 

model. From an engineering management point of view, the goal of the engineer is to create 

simple models with high representative power. In general, the greater the number of simplifying 
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assumptions made about the essential structure of the real world, the simpler the model. A trade-

off occurs between the power of the model and the number of simplifying assumptions made 

about the world. The engineer must decide at what point the gain in the explanatory power of the 

model no longer warrants the additional complexity of the model. A characteristic of a good 

model is a series of iterative ‗modeling cycles‘ where trial descriptions (constructions, 

explanations) are tested and revised repeatedly (Lesh and Harel 2003). Thus, as engineering 

students become more aware of the engineering contexts, domain knowledge and gain expertise, 

differences in modeling strategies can become clear.  

Tsang (1991) suggests that a difference between novices and experts is the inclusion or 

exclusion of validation. It is expected that senior students provide more justification, sensitivity 

analysis, or references to another model while creating their own, compared to the novice 

engineers. A list of different validity types used by engineering modelers is provided in Figure 9. 

Based on the expectancy of use by novice or experienced student, each type is noted, and the 

explanation for why they are likely to be used by these groups of engineering students are given 

next.  
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Validity 

Type 

Description Likely to be 

used by 

Event 

Validity 

Initial validation of qualitative nature, in which events of 

occurrences of a model is compared to those of real system. 

Novice & 

expert 

students  

Face 

Validity 

Considered as part of peer review, asking people knowledgeable in 

the field whether the model is reasonable; checking for correctness 

of model‘s flowchart and input-output relations.  

Novice and 

expert 

students 

Tracing  Tracing the behavior of different elements or entities of a model to 

determine if the logic and the program are correct.  

Expert 

students  

Historical 

Methods  

Examining the model‘s assumptions in theory, observations, 

general knowledge, and intuition; validating each of model‘s 

assumptions, where possible by empirically testing them; 

comparing the input-output relationship of the model to the field 

behavior.  

Expert 

students 

Internal 

Validity 

Determining the stochastic variability in the model by using 

several realizations in the model.  

Expert 

students 

Historical 

Data 

Validation 

If historical data exists for a given site, part of the data may be 

used to construct the model and the remaining to check against the 

calculated results.  

Expert 

students 

Predictive 

Validation 

The model is used to provide predictions and further 

measurements are made to check these predictions. 

Expert 

students 

Turing 

Tests 

Asking people knowledgeable in the field if they can discriminate 

between model output and field observations.  

Expert 

students 

 

Figure 9. Types of validity in engineering modeling 

 

 



28 

 

According to the figure, expert student modelers can be expected to use any of the 

validity types and can use some or all common forms of validity. Event and face validity are 

used more often, and more frequently in those of novice modelers. Students claim the model they 

build ‗looks all right‘. They make overall statements on why it is appropriate to use a certain 

methodology.  

In addition to the types added by Tsang (1991), construct validity (without calculations of 

construct validity measures) and external validity are rather common in upper level modeling 

skills. It may be possible that after experiencing multiple modeling cases and having the domain 

knowledge, an engineering student will have experienced a shift of modeling ability. The goal of 

this research is to understand the differences between weak and strong modeling strategies 

through an analysis of different student modeling exercises and hopefully translate these analyses 

into practices to elevate most of the students to the level of strong modelers.  

The expectance characteristics of more experienced modelers are based on the model of 

De Corte (1993) which proposes an analysis of good learning characteristics. Using this study as 

an example, in this dissertation, it is expected that more experienced students should have the six 

qualitative characteristics in their modeling strategies. Accordingly, experienced strategies 

should be as follows: 

 

1. Constructive Learning:  To be constructive means that learning is a student centered 

process where the learner creates meanings through cognitive processing. When 

modeling abilities are developed, students should be expected to not just transfer 

knowledge and skills as passive recipients, but they should be processing the meaning of 

the exercise. This links strongly back into metacognitive skills of the student. If she is 
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able to reflect on the exercise, the student can not only implement already known models 

and methods, but can adjust, create and expand models using their own skills.  

2. Cumulative Learning: Learning is based on formal as well as informal knowledge and 

cognitive structures and is seen as a linking process between prior and new knowledge, 

and skills. Accordingly, when students develop modeling ability, they should be expected 

use multidisciplinary knowledge while creating models, for example, knowledge from the 

areas of statistics, engineering economics, ethics, etc. This ‗cumulative learning‘ property 

ties nicely back to the cognitive-strategy dimension of metacognition, where a student is 

expected to use multiple strategies to model a real-world system, if better at 

metacognition.  Instruction is definitely key in this process in that the more approaches 

the students learn, the more flexible they are in implementing them.  

3. Co-operative Learning: Learning has a strong social character (Slavin 1990). Social 

interaction can lead to a process of knowledge construction and transformation where 

learners create common concepts and skills cooperatively (Sharan and Sharan 1992). 

Accordingly, more experienced students are expected to make better use of the team 

processes and social interaction while creating a model. The co-operative learning 

property fits into the MEA implementation, where modeling is not only an individual 

process, but a team endeavor.  
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4. Self-regulated Learning: Self-regulated learning ties back to self-efficacy and meta-

cognitive characteristics such as planning, managing and reflecting. Self-regulation 

means that a student has the skills to design, control and guide his or her learning process, 

is willing to learn and is able to evaluate and reflect on the entire learning process. As 

will be mentioned in the metacognition section subsequently, more experienced modelers 

are expected to have a higher level of awareness of their own cognitive processes.  

5. Goal-oriented Learning: Effective, meaningful learning is facilitated by explicit 

awareness of an orientation towards a goal. If we see good learning as a constructive, 

cumulative, co-operative and self-regulated transformative action it is natural to suppose 

that good learning also requires student stated learning goals. In the case of modeling 

skills, experienced modelers, students should be able to set learning goals for the 

modeling exercises that they are working on.  

6. Contextual Learning: Learning can be empowered by linking it to real life contexts 

where both social and physical components exist as such. The MEAs as a measurement 

tool of modeling also fits into this property, since the models are all given in a real-world 

context. When students develop better modeling abilities, one could expect that they 

relate their in-class modeling exercises to the real-world problems they face.   

 

Based on these characteristics; experienced modelers can be expected to not just use 

domain knowledge, but also be able to generate further meanings, conceptions, and be able to put 

this knowledge in context and in practice, particularly in the context of solving MEA-like 

problems, which are framed in real-life stories. Students who develop better modeling abilities 

can be expected to use the information they have learned in the past with the new information 
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they gain and use them in conjunction while creating a model.  They should be able to regulate 

the modeling task on their own overall; reflect on their thinking process, and identify the 

objective of the modeling task clearly.  

Finally, good modelers should be able to integrate their learning and practice to their 

social environment. Learning should not only be an individual achievement, but should extend to 

the team members and other class-mates. Students gain modeling abilities can be expected to 

communicate and apply what they learned in modeling, and use them for real life problems they 

encounter in the future. 
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3.0  METHODOLOGY 

In this section, we describe the approach used to test the impact of the three cognitive constructs 

on students‘ ability to model. We first describe our data; and then describe the method of testing 

on development of modeling ability.  

 

3.1 DATA COLLECTION 

A data set from 91 students (seniors and sophomore industrial engineering students) was 

collected. The students in this group completed the instruments (to be described) to measure their 

level of self-efficacy, epistemic beliefs and metacognition, as well as their modeling skills.  

The participants were given course credit and payment (as in the case of sophomores) or 

were paid for their time and effort (seniors). Thirty percent of the sample was female, which is 

proportional to the engineering student body at the University of Pittsburgh. Of the respondents, 

82% were between the ages of 18 and 22 years; 10% were between the ages 23 to 27 years; and 

3% were between 28 and 32. The students‘ ethnicity was not reported as part of this research 

work, but ethnicity was proportional to the engineering student body at the University of 

Pittsburgh. Further, all subjects were fluent in writing and speaking English.  Instruments for the 
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dissertation were administered via the web (with the exception of a sample of civil engineering 

students who were given a paper-pencil version of the self-efficacy instrument). Proper human 

subjects‘ clearance was obtained for this research and for this publication.   

3.1.1 Procedure 

The sample consisted of three cohorts of students (referred to as cohorts I, II and III). Cohort I 

involved first semester sophomore level industrial engineering students (n=49, 31% female). 

Data from these students were collected during the fall 2009. Cohort II students included second 

semester sophomore level industrial engineering (n=51, 32 % female), of which data were 

collected during spring 2010.  Since University of Pittsburgh is a semester based institution; 

cohorts I and II capture the entire sophomore population for this particular engineering program. 

Thirty-nine students overlapped between cohort I and cohort II students. All students in cohort I 

and cohort II participated in the study in exchange for course credit and payment ($40).  Cohort 

III included senior level industrial engineering students (n=41, 31% female). These students 

participated in the experiment in exchange for monetary payment ($80).  Nine of the students left 

the experiment prior to completion, resulting in a final sample size of n=32.  

To determine each student‘s modeling ability, two modeling exercises (i.e., Model 

Eliciting Activities or MEA from here on) were assigned per cohort. The two exercises given in 

this dissertation were the Tire Reliability and CNC Machine MEAs, (please visit 

www.modelsandmodeling.net for a copy of these exercises, or see Appendices), both of which 

are simulated open ended real life problems that involved or ideally required use of statistical 

concepts like mean, standard deviation, probability plots, goodness of fit tests, and knowledge of 
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various distributions.  Further, the MEAs are built around engineering systems that potentially 

require engineering economy knowledge domain as well; and it is possible for students to solve 

the models in another creative engineering approach of their own.  Participating students were 

asked to solve the exercise in teams of three to four students.  Students turned in their solution 

approach in the form of written memorandums. 

Students of cohort I were given MEA 1 (Tire MEA) first and MEA 2 (CNC Machine 

MEA) next. In cohort II, the order was reversed. The reversed order was done to properly 

incorporate the MEAs into the course curriculum. Students did not receive feedback about the 

solution after the first time, and from a descriptive analysis of the solutions received, it is noted 

that students used different methodologies in modeling the exercises in both sessions.  

Senior students of cohort III were given the exercises in the same order as cohort I.  By 

providing the students the same exercises, we were able to (1) monitor the different modeling 

strategies students use at different times of their education, and (2) control for the differences in 

different modeling exercises. It is possible that the nature of the modeling exercise can cause 

differences in estimation of the effect of epistemic beliefs; therefore, to eliminate such 

differences, we opted to use the same exercises.  
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3.2 MEASURES 

3.2.1 Modeling Skills Assessment  

Assessment of modeling skills was carried out by analyzing student responses to the MEAs.  A 

grading sheet was developed and used to assess and evaluate the resulting student models. This 

grading sheet was based on the MEA development principles and Tsang‘s (1991) modeling 

process definitions; hence, the grading sheet specifically addresses each of the seven modeling 

steps, as given in Figure 10. Prior to use in this experiment, a grading sheet was tested on pilot 

data.  
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Figure 10. Assessment sheet for the modeling outcomes 
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For each grading element, the student‘s memorandum is assessed and a rating between 

one and six is given.  The summation of the individual elements provides the modeling level. 

The measurement was conducted by two separate researchers for reliability. A high reliability 

score was maintained for between the researchers to ensure measurement error was eliminated 

(i.e., score between the two researchers ranged between 0.75 and 0.94 for different cohorts). The 

average of the two ratings of the two researchers was used as the final modeling level score. 

For cohorts I and II, the measurement of modeling skills followed a longitudinal 

assessment. This included implementation of two types of MEAs over four time points: 

September 2009 (Time point 1=T1), November 2009 (T2), January 2010 (T3) and April 2010 

(T4). Implementation of the exercises were based on course syllabus, but followed a time gap of 

seven to nine weeks between MEA exercises.  Cohort III was data was collected separately and 

not in a longitudinal manner. The longitudinal measurement means and standard deviations were 

as follows:  
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Table 1. Modeling outcome measurements – longitudinal 

 

 

Cohort I  

(n=49) 

Cohort II 

(n=51) 

Modeling 

stage 

Tire MEA 

Grade 

(out of six) 

 

CNC Machine 

MEA Grade 

(out of six) 

 

CNC Machine 

MEA Grade 

(out of six) 

 

Tire MEA 

Grade  

(out of six) 

 

 

Mean Stdev Mean Stdev Mean Stdev Mean Stdev 

RED 2.15 0.90 3.59 1.08 3.85 0.83 4.06 0.67 

CON 2.04 1.00 3.02 1.05 3.8 0.94 3.58 0.82 

EPS 2.76 0.65 3.02 1.16 3.96 1.24 4.10 0.83 

CAL 2.04 1.58 2.68 1.23 3.97 1.18 3.59 0.78 

CAL 2.32 1.00 2.10 0.97 3.29 0.90 3.88 0.87 

RE 2.04 0.41 2.12 1.26 2.92 1.05 3.71 0.88 

VV 0.04 0.28 0.31 0.74 1.40 1.50 1.04 1.50 
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3.2.2 Self-Efficacy Beliefs Assessment 

A specific self-efficacy scale titled Engineering Modeling Self-efficacy Scale (EMSS) was 

developed for this study on the domain of engineering modeling. The development and use of 

this scale are given in detail in Study 1, section 4.4. The scale can be seen in Appendix A.  

A factor analysis of the instrument resulted in seven dimensions of engineering modeling 

self-efficacy, namely Review and Evaluation of Data Self-efficacy (SERED), Process Modeling 

Self-efficacy (SEPM), Conceptual Modeling & Potential Scenarios Self-efficacy (SECON),  

Establishment of Performance Criteria Self-efficacy (SEEPS), Interpretation and Evaluation Self-

efficacy (SEIE), Calculational Model Self-efficacy (SECAL) and Uncertainty and Validation Self-

efficacy (SEUV). All throughout the document, these dimensions are represented by the letters SE 

with the subscripts relating to the specific dimension name.  

The mean and standard deviation of each dimension for the sophomore and seniors are 

given in Table 2. According to the table, there is an increasing trend in each dimension of self-

efficacy from the sophomore to senior year. The analysis of this trend is conducted in detail in 

Study 1 as well.  
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Table 2. Mean and standard deviations of the self-efficacy level 

 

Modeling Self-efficacy Factor (Notation) Cohort I 

mean (stdev) 

n=49 

Cohort II 

mean (stdev) 

n=51 

Cohort III 

mean(stdev) 

n=32 

Review and Evaluation of Data (SERED) 3.75 (0.51) 3.74 (0.56) 3.84 (0.50) 

Process Modeling (SEPM) 3.48 (0.54) 3.51 (0.61) 3.86 (0.50) 

Conceptual Modeling (SECON) 3.69 (0.51) 3.66 (0.64) 3.76 (0.59) 

Establishment of Performance Criteria (SEEPS) 3.53 (0.61) 3.57 (0.65) 3.8 (0.70) 

Interpretation and Evaluation (SEIE) 3.27 (0.69) 3.28 (0.74) 3.79 (0.49) 

Calculational Model (SECAL) 2.78 (0.71) 2.82 (0.74) 3.14 (0.82) 

Uncertainty and Validation (SEUV) 3.38 (0.63) 3.37 (0.72) 3.77 (0.52) 

 

3.2.3 Epistemic Beliefs  

Different conceptualizations of epistemic beliefs tend to suggest different research methods. For 

example, studies focusing on epistemic cognition and cognitive resources tend to use qualitative 

methodologies, while studies of epistemic beliefs largely use quantitative data. Since the nature 

of the current dissertation is geared towards testing claims, we followed a quantitative approach. 
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According to Maggioni and Parkinson (2008), epistemic beliefs are composed of stable and 

semi-independent dimensions. This finding suggests that while learning occurs, epistemic beliefs 

of individuals remain relatively stable. Based on this suggestion, in our study, measurement of 

epistemic beliefs has not been repeated over different time points, whereas outcomes of learning 

have been repeatedly measured.   

Epistemic beliefs were assessed using the Epistemic Beliefs Inventory (EBI) (Schraw, 

Dunkle and Bendixen 2002). The item is given in Appendix B and it consists of 32 elements that 

tend to cover the five dimensions previously mentioned using a scale ranging from one to five 

(1= do not agree at all, 5= completely agree).  

Based on the median level, we then coded each student as being high or low on each of 

the five dimensions and created binary dummy variables to represent them. Therefore, students 

were equally divided on each epistemic dimension and as having either low or high strength in 

their beliefs. These binary variables were subsequently used in growth curve models and 

regressions.  

3.2.3.1 Confirmatory Factor Analysis on EBI 

EBI has been subject to many different interpretations. Therefore, it is found useful to conduct a 

confirmatory factor analyses (CFA) with principal components method, utilizing SAS 9.2 on the 

EBI responses. Before the analysis of the factor structure, each item‘s reliability (i.e., Cronbach‘s 

alpha) and discrimination power were analyzed. We checked for items with negative item-total 

correlation or items with item-total correlation lower than 0.10; and dropped these items from the 

analysis. This resulted in eight items being eliminated from the 32 item instrument.  
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Schommer‘s description (1990) of personal epistemology involved independent beliefs 

conceptualized about the simplicity, certainty, and source of knowledge, as well as beliefs about 

the control and speed of knowledge acquisition. The hypothesized five dimensions of 

epistemology were as follows: 

1. Simple Knowledge: ranges from the belief that knowledge is best characterized as isolated 

bits and pieces to the belief that knowledge is best characterized as highly interrelated concepts; 

2. Certain Knowledge: ranges from the belief that knowledge is absolute and unchanging to 

the belief that knowledge is tentative and evolving;  

3. Innate Ability (Fixed Ability): ranges from the belief that ability to learn is given at birth to 

the view that ability to learn can be increased; 

4.  Quick Learning: ranges from the belief that learning takes place quickly or not at all to the 

belief that learning is gradual;  

5. Source of Knowledge (Omniscient Authority): ranges from the belief that knowledge is 

handed down by authority to the belief that knowledge is derived from reason. 

Similar to Schraw, Dunkle and Bendixen (2002), our reliability analysis resulted in 

Cronbach‘s alpha ranging between 0.4 and 0.7. Although 0.4 appears to be low, it is in 

accordance with the reliability levels cited in prior studies using this instrument; thus, we chose 

to keep all factors in this study. Table 3 demonstrates the means and standard deviations for each 

epistemic dimension. The score of each dimension was obtained by summing the item scores and 

then dividing it by the number of items in the dimension. Some of the items were reverse scored; 

and thus an epistemic dimension can take a negative or positive value. The table provides for 

each of the dimension the possible range of values, as well as a theoretical mean value based on 

this range.  
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Table 3. Means and standard deviations of epistemic beliefs 

 

 

Epistemic Dimensions 

 

Cohort I 

Sophomore  

(mean/ std) 

n=49 

Cohort II 

Sophomore 

(mean/ std) 

n=51 

Cohort III 

Senior 

(mean/ std) 

n=32 

Simple Knowledge  

(Range: -0.4 to 2.6, theoretical mean: 1.1) 

0.64 (0.35) 0.64 (0.35) 0.50 (0.39) 

Innate Ability  

(Range: 1 to 5, theoretical mean: 3) 

2.87 (0.65) 2.86 (0.71) 2.62 (0.60) 

Quick Learning 

(Range: 1 to 5, theoretical mean: 3) 

2.15 (0.73) 2.13 (0.75) 2.04 (0.42) 

Omniscient Authority 

(Range: 1 to 5, theoretical mean: 3) 

3.33 (0.71) 3.28 (0.72) 3.17 (0.67) 

Certain Knowledge  

 (Range: -0.2  to 3.18, theoretical mean: 

1.49) 

0.91 (0.64) 0.94 (0.6) 1.05 (0.5) 

 

 

 

According to EBI, the lower the score in a dimension, the more sophisticated the 

epistemic beliefs are. Comparing the observed means to the theoretical means, engineering 

students score lower than average (and hence have a higher sophistication level) for: simple 

knowledge, innate ability, quick learning, and certain knowledge.  However, engineering 

students scored higher than average for on the omniscient authority dimension indicating they 

are less sophisticated. This suggests that students believe in the power and exclusiveness of 

being an authority, which may suggest feeling distanced from the instructor.   
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Based on comparisons to the theoretical mean, the students are more sophisticated in the 

simple knowledge dimension. This is a significant finding and a departure from the science 

education literature in that, even at the sophomore level, engineering students realize the 

importance of theory versus facts and are open to complex explanations.  

 

3.2.4 Metacognitive Dimensions 

The four metacognitive dimensions were measured using the inventory of O‘Neil and Abedi 

(1996) (Given in Appendix C). The instrument consists of 20 statements, five statements per 

dimension. The students were asked to what extent they ―exhibit‖ the statement on a scale from 

one to five (1=not at all, 5= at all times, conduct the task). Developed by the Stanford 

researchers, this inventory has been used for over 15 years. Subscale reliabilities reported for the 

instrument range from 0.82 to 0.87, and correlations to achievement were reported to range from 

0.19 to 0.31.   

Table 4 demonstrates the mean and standard deviations of the measured metacognitive 

levels for each student cohort.  
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Table 4. Means and standard deviations of modeling score and metacognitive ability 

 Cohort I 

Sophomore Fall  

mean (stdev) 

n=49 

 

Cohort II 

Sophomore 

Spring  

mean (stdev)  

n=51 

Cohort III 

Senior year Fall  

mean (stdev)  

n=32 

Awareness  (Out of 25) 19.19 (2.14) 19.16 (2.17) 19.46 (2.28) 

Self-Checking (Out of 25) 18.59 (2.60) 18.64 (2.55) 18.66 (2.88) 

Cognitive Strategy (Out of 25) 18.46 (2.37) 18.41 (2.39) 18.70 (2.53) 

Planning (Out of 25) 18.97 (2.51) 19.01 (2.53) 19.54 (2.51) 

 

According to Table 4, we notice that cohort I students report feeling weakest in their 

cognitive strategy, the ability to use multiple techniques and strongest in their awareness. 

Despite the fact that it seems there is not much variability, the results were sensitive enough to 

measure the differences between these dimensions. The weakness in cognitive strategy can be 

explained through their lack of domain knowledge. The students are limited in their knowledge 

which prevents them to create multiple methods. Cohort II students also report a similar attitude. 

Finally, cohort III students seem to differ from the others by feeling the strongest in planning and 

weakest in self-checking.  Also from the sophomore year to senior year, the students report 

increasing levels of metacognitive ability; however these changes are not significant. 

Appendix D provides a table that demonstrates the correlations of the variables in the 

longitudinal study, averaged for the four time points.. According to the table, one would note 

that, in general, there is a moderate positive correlation between the stages of modeling, except 
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for the validation and verification dimension, where the correlation is negative between some of 

the stages. The general positive trend of correlation among the variables points to modeling skill 

development occurring in multiple modeling stages together. We note that the correlations 

between self-efficacy, epistemology and metacognition are mostly small. This finding potentially 

justifies discriminant validity and the need to individually test the impact of these constructs on 

modeling skill development.  

Another observation is the overall trend of negative correlations between the 

metacognitive dimensions and the epistemic beliefs. We note that negative epistemic beliefs 

imply a more naïve epistemology. The negative relationship indicates that those students who 

hold more sophisticated epistemic beliefs also tend to have higher metacognitive abilities. The 

relationship between self-efficacy and the other constructs do not suggest a direct relationship 

between these constructs. Note that in the testing of the paper, we make the self-efficacy variable 

a dummy that differentiates between high and self-efficacy, and the results are based on this 

categorization, as opposed to the self-efficacy variable itself.  

One should note that in this study, we are not measuring the direct relationship between 

the variables given, but the impact of time and the relationship between these variables and 

change in modeling stages, when the impact of time is controlled for. In addition, the 

correlations, even when moderate, can be significant due to smaller sample size. Therefore, the 

correlations by themselves do not imply casual relationships; and one should be careful not to 

place much meaning on the correlation numbers.  
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3.2.5 Control Variables  

We used GPA and Gender variables as a control in the experiment.  A cumulative GPA data, 

measured the semester before the student took the exercises was plugged to control for the 

success of student overall. Gender and GPA differences in the correlates of modeling skills and 

epistemic beliefs were not a primary focus in this investigation but were examined for 

descriptive purposes. We found that cohort I had an average CGPA of 2.92 and age 19.8; cohort 

II had an average CGPA of 2.97 and age 20.04 and finally, cohort III had an average CGPA of 

3.18 and age 21.6.  

3.2.6 Interview Procedure 

Interview responses included in this dissertation consist of transcribed interviews of ten 

sophomore (cohort II) and eight (cohort III) senior teams of engineering students of University of 

Pittsburgh, after each MEA. Some interviews were conducted with members of the teams 

separately, due to unavoidable occurrences like sickness or job interviews. This resulted in over 

39 transcriptions. The students were paid for their participation in the interview, which was 

conducted as a team based interview (i.e., a single member to four members met with the 

interviewer at the same time). The interviews ranged from 40 to 90 min following the submission 

of each MEA. Teams from the first cohort were not interviewed, as the questions aimed to 

capture changes in students‘ self-assessed modeling abilities.   

The interviewer followed an open-ended question session, based on a pre-determined 

protocol, as given in Table 5. The questions aimed at understanding students‘ background and 
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modeling process. A few questions focused on students‘ modeling structure, others elicited 

knowledge related to the model and inquired about the behavioral mechanisms of modeling. 

Where needed, the interviewer asked participants for further clarifications to elicit participants‘ 

knowledge about statistics and engineering economics. In addition, several ―what-if‖ questions 

were posed asking participants what would happen if their model was perturbed. All interviews 

were audio recorded and transcribed.  

The coding of the interview, as well as the detailed descriptions of the student answers 

are provided in Study 4, section 7.2.1 in detail.  
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Table 5. Interview questions 

 

Questions  

 

Goal of the Question 

Background  

1. Background information including name, year, the MEA to be talked about  

 

Background information for the talk  

Modeling Process   

2. Can you describe me the process of modeling this exercise?  

2.1 What was your first intuition on how you can solve it? 

2.2 Did you use analogies in solving the problem- were you able to make connections 

to some of your previous life experiences or class exercises? 

 

Aimed at understanding the process of solving the MEA 

and the developed model, how the thinking changed, 

what the methods tried out that did not make it to the 

final report were, how the student got the idea on how to 

model the problem. 

 

3. What did you think of the data? 

3.1 Did you think the data was enough /adequate?  

3.2 Did you look up similar problems before you solved this one?  

3.3. Did you search for any information before working on the model?  

3.4 What resources did you use to search for information/ data?  

 

Understanding the students‘ review and evaluation of 

data, information search strategies, information resources  
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Table 5 (Continued) 

4. What are some of the unknowns left in this problem? 

4.1 Do you think you had enough information to solve this problem? 

4.2 What were the variables in this problem- what you could manipulate?  

4.3 What were some of the scenarios in which your analysis would differ?  

 

Understanding student‘s conceptual modeling, 

assumptions and boundaries on the model, the variables 

assumed the restrictions and limitations on the model, 

scenarios considered.  

5. What kind of a model did you use?  

5.1 How did you decide the right / appropriate mathematical model? 

5.2 Did you consider any other models?  

 

Understanding the approach to decide and construct the 

mathematical model, alternative models considered.  

6. How sure were you of your calculations- did you do anything to make sure your 

solution is error free?   

6.1 What software did you use?  

6.2 How did you decide what software to use? 

6.3 Did you play around with the data / model to see if your results could change?  

 

Understanding the effort put into carrying out the 

calculations, the method and tools including the software, 

and understanding why students prefer certain tools over 

the others. Understanding students‘ reaction to 

uncertainty, and sensitivity analysis habits.   

7. Did you think about how your suggestions / particularly a wrong solution might 

affect people?  

 

Understanding the interpretation of the numerical results.  

8.1 How do you determine if you solved the right question?  

8.2 How do you determine if you solved the problem right? 

 

 

Understanding the validation and verification thinking.  
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Table 5 (Continued) 

Other Questions   

9. Did you have a goal/ constraint in your mind before you started to work on the 

problem?   

 

Understanding the main motivation of the student (e.g. 

getting a good grade, spending least amount of time, etc.) 

10. 1 What do you think you gained from this experience?   

10.2 Did you find the problem … [complex/ ambiguous/ difficult/ straightforward]?  

10.3 Would you like to see other exercises like this? 

10. 4 How motivated were you to work on this exercise? 

 

Understanding whether the MEA made a change from 

students‘ point of view.  Understanding the attitudes 

towards the problem itself.  

 

11. 1How much guidance did you get from your own experiences when you were 

trying to decide on how to solve the problem? 

11.2 Did you make any associations to how this problem can relate to your career 

when you were working on it? 

 

Connections to real life and generalizability. 

12.1 While solving the problem, did you use any drawings/ figures/ lists to help you 

solve the problem?  

 

Understanding the extent and use of visual aids. 

13.1 How would you solve this if you were given this problem in your sophomore 

/junior year?  

13.2 What do you think you have learned over time?  

13.3 Do you think some of your skills have deteriorated?  

 

Understanding the changes in methodology, students‘ 

awareness of his/ her own progress, learning and skill 

acquisition  
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Table 5 (Continued) 

14. Are you ready/ excited to be an engineer soon?  

 

Understanding students‘ overall motivation to perform 

engineering functions.  

15. How happy are you with your education here?  

15.1 Do you think you gather the knowledge to handle this exercise?  

 

Understanding students‘ perception of his education and 

knowledge  

16. 1 What was your personal role in the solution process? 

16. 2 How happy were you with your teamwork? 

 

Understanding the teaming process of students 
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4.0  STUDY 1: IMPACT OF SELF-EFFICACY ON GROWTH OF MODELING 

4.1 MOTIVATION 

Self-efficacy is defined as personal judgments of one‘s capabilities to organize and execute 

courses of action to attain designated goals and has been shown to be a powerful predictor of 

performance in various learning settings (Bandura 1977, 1986, 1997). In this study, we extend 

the findings of self-efficacy to modeling, and investigate the impact of modeling self-efficacy as 

one social cognitive factor in helping to develop better modeling ability.  The objective is to 

understand the short term and long term changes in modeling skills and the prediction power of 

self-efficacy in modeling. We achieve this objective through the use and analysis of special 

engineering modeling exercises called Model-eliciting activities (MEAs). In addition, this essay 

presents the implementation of a newly developed Engineering Modeling Self-efficacy Scale 

(EMSS). 

Previous measurements of self-efficacy have employed proxies in the form of test scores, 

and assignment grades to generalize self-efficacy scales as overall self-efficacy.  Conclusions 

from these measurements are that such self-efficacy ―instruments‖ are not based on the 

concerned task, which, in turn, provide results in contrast to the true nature of self-efficacy 

beliefs; and thus carry less predictive value (Bandura 1997).  Therefore, it is important to 
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measure self-efficacy based on the task itself. Measurement examples to date, in engineering, 

exist for design self-efficacy (Carberry et al. 2010), tinkering self-efficacy (Baker, Krause and 

Purzer 2008, Richardson 2008),  self-efficacy of engineering and computer use (Hutchinson et al. 

2006, Marra and Bogue 2006, Amato-Henderson et al. 2007, Shull and Weiner 2002); as well as 

generalized self-efficacy in engineering instruments. To our knowledge, there are no self-

efficacy instruments specific to engineering modeling. 

For the ―Engineering Modeling Self-efficacy Scale‖ (EMSS), we generate items of 

behavioral orientation that aim to measure the strength of engineering students‘ beliefs about 

their capabilities to accomplish modeling tasks. Building on Tsang‘s (1991) modeling stages, we 

created seven theoretical subscales within the EMSS and then tested for the latent factors that 

potentially explain the variation in modeling self-efficacy. Our analysis revealed seven 

dimensions that roughly correspond to Tsang‘s stages with high internal reliability. Following 

our item reduction and exploratory factor analysis, we demonstrate how the EMSS can be used 

to identify differences within varying engineering disciplines, academic year and gender. The 

findings suggest that self-efficacy beliefs are similar within disciplines, and, as expected, are 

higher for seniors compared to sophomore students, as well as for male engineering students. In 

addition, we discuss the predictability of this scale and its validity.   

Our methodology further develops a theoretical argument on how and why the benefits of 

self-efficacy can translate into modeling. We discuss, in specific, the relationship between the 

use of MEAs and self-efficacy. Collecting data from sophomore and senior level engineering 

students, we show that self-efficacy impacts the growth of modeling abilities in engineering 

students. The differences in varying modeling abilities can be explained by varying self-efficacy 
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levels, which is in itself a surprising finding.  The rest of the study develops as follows. We 

provide a summary of the literature to help the reader understand the relationship between self-

efficacy and modeling. We summarize the theoretical framework that shows the predicted effects 

of self-efficacy on engineering modeling outcomes; describe the data of the study, as well as how 

EMSS was used to measure engineering modeling self-efficacy.  Next, we provide our findings, 

with implications and discussions. Finally, we give suggestions for practitioners and ideas for 

future research to the engineering education community.  

4.2 BACKGROUND  

4.2.1 Self-efficacy 

An educational observation is that individuals with strong outcome expectations can have low 

perceived capabilities. For example, even when a student expects a good grade from an 

educational task, he can still carry doubts about how capable he is of doing it. Similarly, 

statements like ‗I have no idea how I got an A‘ potentially point to differences in one‘s beliefs 

and his external ability assessment. 

The observations in differences of outcome expectations and one‘s belief in his abilities 

was what led Bandura to define the concept of self-efficacy (Zimmerman and Schunk 2003). 

Self-efficacy is a person‘s belief in his or her capability to successfully perform a certain task 

(Bandura 1986). Perceived self-efficacy helps to account for a wide variety of individual 

behaviors, including: changes in coping behavior (Bandura 1982), levels of physiological stress 
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reactions (O‘Leary 1992), self-regulation (Schunk and Zimmerman 1994), achievement strivings 

(Bandura 1982), growth of intrinsic interest (Bandura and Schunk 1981), choice of career 

pursuits (Hackett and Betz 1989), choice of majors in college, success in course work, and 

perseverance (Hackett and Betz 1989; Lent, Brown, and Larkin, 1984).  

In addition to having high predictive power, self-efficacy is also known to increase 

performance, such as improvements in assumptions (Bandura 1977) and strategies or reacting 

less defensively when negative feedback is received (Heslin and Klehe 2006). In contrast, low 

self-efficacy can lead to erratic analytic thinking that undermines the quality of problem solving 

(Wood and Bandura 1989), which can result in poor modeling outcomes. Students with low self-

efficacy tend to blame either the situation or another person when things go wrong (Heslin and 

Klehe 2006). For example, an individual‘s reaction to a low grade on an exam is manifested by 

blaming the instructor‘s ability to teach. Denial of responsibility for poor performance inhibits 

one‘s chances to learn how to perform more effectively in the future.  

To understand the construct of self-efficacy, it is important to note its distinctive 

characteristics, particularly the difference between self-efficacy, self-confidence and self-esteem 

(Pajares 2006). Self-confidence is defined as the general personality trait that relates to how 

confidently people feel and act in most situations and self-esteem is the extent to which a person 

likes himself. Self-efficacy is a task specific characteristics and it is generally also more readily 

developed than self-confidence or self-esteem. Self-efficacy has also been shown to be a stronger 

predictor of how effectively people will perform a given task than self-confidence or self-esteem. 

Self-efficacy is task specific, implying that people may simultaneously have high self-efficacy 

for some tasks and low self-efficacy for others.  
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Self-efficacy beliefs are measured in a task-specific manner, thus there is no single 

standardized measure for self-efficacy. Such measures are developed to assess capacity to either 

achieve a certain outcome on a particular task or engage in the processes likely to lead to a 

certain desired outcome. The items in EMSS are geared towards measuring process self-efficacy 

- aiming to be informative, predictive, and useful for addressing areas where self-efficacy 

influences specific modeling behaviors, tasks, or objectives (Yildirim, Besterfield-Sacre, 

Shuman 2010a). 

 

4.2.2 Self-efficacy Measurement in the Literature 

The instruments that have been developed to measure self-efficacy in a variety of domains range 

in their generalizability and content. In educational environments, measurements of self-efficacy 

can be conducted using a test, or the student‘s grade at the end of a course. Measurements have 

also been conducted using self-efficacy scales that do not refer to any specific domain. Such 

global measures refer to general competence with items related to   ‗accomplishing goals in 

general‘ and ‗performing effectively on different tasks‘ (e.g., Chen, Gully, and Eden, 2001; 

Scholz, Gutiérrez-Doña, Sud, and Schwarzer, 2002).  

Several overall self-efficacy scales have been created, under the heading ‗general self-

efficacy‘. These scales intend to measure belief in one‘s overall competence or perception of 

one‘s ability to perform across a variety of different situations (Judge, Erez and Bono 1998). 

Measurement of general self-efficacy is in direct contrast with the task-dependent nature of self-

efficacy and most carry low predictive value (Bandura 1997). In Bandura‘s (2006) resource for 
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researchers interested in creating self-efficacy scales, he confirms that an all-purpose self-

efficacy measure is likely to fail because the items in such scales may have little or no relevance 

to the domain of functioning. He suggests instead that proper self-efficacy measurement must be 

tailored to a specific domain and tasks in which individuals can differ in their success rates and 

beliefs about their success rates. Pajares (1996) provides a comprehensive list of previously 

constructed self-efficacy scales for academic settings. We used a combination of this list and 

more recently added scales to create a comparison list for our instrument. This list is provided in 

Table 6. 

 

Table 6. List of various self-efficacy scales 

Source Sample Question or Direction Answer 

Options 

Teaching Efficacy 

(Bandura 1993)   

How much can you influence the decisions that are 

made in your school? (Completed by various teaching 

related tasks) 

1-9 scale 

with 

1=lowest 

Mathematics problem 

solving self-efficacy 

(Pajares and Miller 

1995)  

How confident are you that you that you would give the 

correct answer to the following problem without using a 

calculator…? [a sample math problem] 

1-6 scale 

with 

1=lowest 

Self-Efficacy for self-

regulated learning 

(Bandura 1989)  

How well can you …? (completed by 11 self regulatory 

tasks) 

1-7  scale 

with 

1=lowest 

Self-efficacy for 

writing skills (Shell, 

Murphy, Bruning 

1989)  

How confident are you that you can perform each of the 

following skills? (8 skills presented-e.g., "correctly spell 

all words in a one-page passage") 

Scale of 0 to 

100 

Mathematics courses 

self-efficacy (Betz 

and Hackett 1983
) 
 

How much confidence do you have that you could 

complete the following course with a final grade of B or 

better? 

0 to 9 scale 
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Table 6 (Continued) 

Collective efficacy 

(Bandura 1993)  

Please indicate your confidence that you can attain the 

following gains with the students in your class this year. 

[gains in 2-month presented] 

0 to 10 scale 

Self-efficacy for 

performance division 

problems (Schunk 

1981)  

[Division problem shown for 2 seconds] Circle the 

number on the matches how sure you are that you could 

work problems like those shown and get the right 

answers. 

Scale of 10 to 

100- in 

intervals of 

10 

Self-efficacy for 

reading tasks (Shell, 

Colvin, Bruning 

1995)  

How confident are you that you can perform each of the 

following tasks? (18 tasks presented-e.g., "read a letter 

from a friend") 

1 to 5 scale 

Self-efficacy for 

academic 

achievement 

(Bandura 1989) 

How well can you .? completed by 9 academic domains-

e.g. general mathematics, learn reading and writing 

language skills 

1 to 7 scale 

Self-efficacy for 

learning
  
(Schunk 

1996)
 

 

Students are presented with sample mathematics 

problems or reading/ writing tasks for a brief time. They 

are asked to provide a confidence judgment to correctly 

solve the problems, perform paragraph writing tasks, 

etc.]  

Scale of 10 to 

100- in 

intervals of 

10 

Carberry et al. (2010) Students are presented with engineering design tasks 

and are asked how confident they feel in accomplishing 

the tasks  

Scale of 10 to 

100- in 

intervals of 

10 

 

 

An investigation of these scales reveals some notable generalizations. First, as shown in 

the table, all the scales are domain specific and serve distinct purposes; and each is created to 

measure self-efficacy of a certain academic task. Hence, we surmise that if one wishes to 

measure students‘ abilities in engineering modeling, a scale distinct from the existing scales 

should be constructed. Second, almost all academic self-efficacy scales include a measurement 

of a task by providing immediate examples or a measurement context (i.e., they provide material 

for measuring the task).  For example, to measure self-efficacy in reading, students are asked to 
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read a text; in the case of writing self-efficacy, they are asked to write one. Thus, we conclude 

that to measure self-efficacy of modeling, a relevant modeling task should be given to the 

students along with the instrument.   Third, there is no agreement on a universal measurement 

scale (i.e., some researchers use a 0-100 interval scale; others prefer a Likert type scale). 

Bandura (2006) indicates a 0-100 interval is indeed beneficial; however, current scales available 

in the literature do not necessarily adhere to this suggestion. For our EMSS we utilized a one to 

five point rating scale since it better suited to the context of our overall study.   

A particularly relevant self-efficacy scale to engineering modeling is the engineering 

design self-efficacy scale (EDSS) constructed by Carberry et al. (2010). This scale provides a 

suitable benchmark for comparison for several reasons. First, it is created for measuring self-

efficacy of engineers in the relevant concept of engineering; i.e., design. Design of a system or 

component includes modeling abilities as well as problem solving skills. Second, this scale is 

relatively new, ensuring that certain problems with older self-efficacy scales have not been 

repeated.  

We have constructed the EMSS based on the modeling stage descriptions and subtasks 

that are listed by Tsang (1991). We note that the process of engineering modeling looks different 

than mathematical modeling, but we argue that mathematical modeling appropriately 

corresponds to the engineering modeling steps through the development of calculation models, 

carrying out modeling calculations and sensitivity analysis, and results evaluation. Therefore, we 

make the assumption that mathematical modeling is a subset of engineering modeling. 
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4.3 THEORY 

4.3.1 Impact of Self-efficacy on Modeling 

A rich stream of studies related to self-efficacy and academic outcomes have been conducted in 

the domain of mathematics (Hackett and Betz 1989, Lent, Brown, and Gore 1997), reading, and 

writing (Shell, Colvin, and Bruning, 1995, Shell, Murphy, and Bruning, 1989). Based on the 

literature on self-efficacy and academic achievements, we describe how and why one can expect 

the self-efficacy beliefs to influence modeling outcomes.   

We summarize the findings on self-efficacy in the educational literature and discuss how 

and why self-efficacy is expected to influence the modeling outcomes. Figure 11 lists those 

mechanisms that are likely to influence modeling outcomes; namely, effort, strategy, learning, 

emotional and social pressure, self-regulation, goal setting and metacognition. Each of these 

effects is described in detail next.  
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Figure 11. Consequences of self-efficacy expected to influence modeling 

 

 

The impact of self-efficacy on the outcome is noted to be bidirectional (Paunonen and 

Hong 2010) implying that it is possible for the difference in the outcome of two students with 

different levels of self-efficacy to result from (i) the student with higher self-efficacy doing better 

than expected, (ii) the student with low self-efficacy doing worse than expected, or (iii) both. 

However, studies often only investigate the direction where high-self-efficacy levels are assumed 

to result in higher outcomes.  
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4.3.1.1 Effort 

Self-efficacy influences students‘ skill acquisition by increasing their persistence (Schunk 1981); 

and self-efficacious students participate more readily, work harder, persist longer (Bandura 

1997). Further, self-efficacy for learning correlates positively with students‘ rate of solution of 

arithmetic problems (Schunk, Hanson, and Cox 1987; Schunk and Hanson 1985). Salomon 

(1984) found that self-efficacy is positively related to self-rated mental effort and achievement 

during students‘ learning from text material that was perceived as difficult. This influence on 

perseverance is likely to suggest that higher self-efficacy helps students in cases of complex 

modeling problems. How much effort people will expend on a task, as well as, how long they 

will persist when they face difficult situations is also influenced by self-efficacy (Bandura 1977). 

Modeling exercises can pose a challenge to the students since they are often open-ended and 

involve complex analysis, as well as mathematical competency. If students have higher self-

efficacy, they are likely to spend more effort on a modeling task even if it is challenging. As a 

result, such students have better coping strategies, resulting in better outcomes than what their 

abilities alone would permit.  

 

4.3.1.2 Strategy 

Another mechanism influencing modeling is the choice of activities and strategies involved. 

Self-efficacious students have been shown to undertake difficult and challenging tasks more 

readily than do inefficacious students. Bandura and Schunk (1981) found that students‘ 

mathematical self-efficacy beliefs were predictive of their choice of arithmetic activity to engage 

in.  Modeling is an open-ended task, which can possibly be addressed by different sets of 
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mathematical representations. Students‘ self-efficacy can influence the choice and complexity of 

mathematical model and thereby influence the engineering model.  For example, a student who 

foresees two possible mathematical representations of an engineering model may choose the 

more challenging one if he is more efficacious. This effect is particularly situated for MEA 

implementations, because they allow students to create their own models. Students with higher 

self-efficacy might be more inclined towards trying new or more complicated models or 

discovering concepts on their own. In other words, the discoverer role‘s success of MEAs 

(Yildirim, Shuman, Besterfield-Sacre 2010b) can depend on the self-efficacy level of the student.  

 

4.3.1.3 Learning 

Zimmerman and Kitsantas (1996) found students‘ interest in learning and writing revision to be 

highly correlated to self-efficacy and writing revision is linked to MEAs. Further, engineering 

models are created through some symbolic or formal language; and these languages can take the 

form of concepts, figures, mathematical symbols, spoken language, or computer codes. In 

documenting a model, revision can help to eliminate errors, repetitions, redundancies as well as 

improve details. Therefore, self-efficacy, can through its effect on writing revision improve a 

student‘s modeling outcome.  
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4.3.1.4 Emotional and Social Pressure 

There is thus an emotional link to self-efficacy through stress, anxiety, and depression (Bandura 

1997).  Students can prefer to convey a positive image to others by expressing strong self-

efficacy beliefs and they can become anxious or depressed when they perceive themselves as 

untalented. Low self-efficacy can be distressing, preventing even gifted students from effectively 

performing. This, in turn, influences their ability to learn and to cope more effectively with the 

challenges. For example, Pajares and Kranzler (1995) studied the relationship between self-

efficacy and students‘ anxiety reactions regarding mathematics, and found that self-efficacy was 

predictive of mathematics performance. Similarly, Siegel, Galassi, and Ware (1985) found that 

self-efficacy beliefs were predictive of mathematics performance, in relationship to mathematics 

anxiety.  

 

4.3.1.5 Self-Regulation, Goal-Setting, Metacognition 

Self-efficacy influences a student‘s self-regulation and goal setting. Zimmerman, Bandura, and 

Martinez-Pons (1992) found that the more capable students judged themselves to be, the more 

challenging the goals they embraced. Zimmerman and Bandura (1994) demonstrated that self-

efficacy beliefs and goal setting significantly add to the predictability of the relationship between 

self-efficacy and achievement. 

Self-efficacy has been shown to influence metacognitive skills of students, in particular 

through the dimensions of self-monitoring during concept learning (Bouffard-Bouchard, Parent, 

and Larivee, 1991). Efficacious students were better at monitoring their working time, more 

persistent, less likely to prematurely reject correct hypotheses, and better at solving conceptual 
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problems than inefficacious students of equal ability. Overall, there are multiple ways in which 

students‘ self-efficacy for modeling can influence their modeling outcome. Based on which 

mechanism(s) is active, self-efficacy can be a direct (main) effect, or an indirect (moderation 

effect), or both. Using grounded theory approach, we explore in subsequent sections the 

influence of self-efficacy on separate modeling outcomes by testing for main and moderation 

effects.  

 

4.3.2 MEAs and Modeling Self-efficacy  

One‘s self-efficacy levels can be expected to show in modeling exercises such as MEAs. The 

main three major antecedents to self-efficacy (Staples, Hulland and Higgins 1999); enactive self-

mastery, vicarious experience, verbal persuasion can all be observed while implementing an 

MEA. We explain each source and discuss how a MEA educational environment can help 

develop self-efficacy via these sources.  

When working on a MEA, students have minimal guidance from their instructors, and 

they rely heavily on their own abilities. They work on these exercises in and out of class with a 

small team or individually; hence, the MEA acts like an unguided discovery situation potentially 

maximizing students‘ self-efficacy with respect to working on their own or within a team.  
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4.3.2.1 Enactive self-mastery  

Enactive self-mastery is achieved when people successfully perform a task.  The student is 

convinced that he has what it takes to build a model, upon successfully accomplishing the 

assigned tasks. Gradually escalating the difficulty of tasks helps students to increase the effect of 

self-mastery, i.e., breaking down tasks into small steps that are relatively easy, ensuring a high 

level of initial success (Heslin and Klehe 2006).  

MEAs can be instrumental in achieving enactive self-mastery, when (i) implementation 

follows a gradual increase in task difficulty, and (ii) achievements of students on challenging 

tasks are celebrated. If these conditions are met, repeated MEA experience can develop enactive 

self-mastery in modeling (as well as working in a team and writing reports) and likely contribute 

to modeling performance.  

 

4.3.2.2 Vicarious experience or role modeling 

Vicarious experience or role modeling becomes a source of self-efficacy when a student 

observes another student perform and accomplish a task. Heslin and Klehe (2006) suggests that 

vicarious experiences are more effective in raising self-efficacy levels when the person observed 

is liked and has similar characteristics (e.g., age, gender, and ethnicity) to the person observing 

them. In other words, a student who observes his friend of the same gender, knowledge level, age 

etc. conducting the tasks, can be inspired to persist.  An anecdotal example of this observation is 

where students suggest they learn better in the recitation in which a (senior) fellow student is 

responsible for the teaching, rather than the instructor. 
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In an educational environment where MEAs are implemented, a student‘s team members 

as well as the instructor can become an effective role model by demonstrating to team members 

it is possible.  To successfully achieve role modeling effect, first, MEA implementations can 

follow mentoring and feedback to expose the student to role models. Second, students can be 

teamed up with students they like and are similar to.  This way, students can learn from 

observing the successes and failures of others.  

 

4.3.2.3 Verbal persuasion 

A third source of self-efficacy is verbal persuasion; by a person who is often respected and 

influential, convincing another that he can perform the tasks successfully. It is not uncommon for 

students to perform better following a praise or encouragement from an instructor (Heslin and 

Klehe 2006). Verbal persuasion has also been shown to have a significant influence even in the 

form of positive self-talk. Repetition of student‘s will and desire to perform can help to increase 

levels of self-efficacy.  

Verbal persuasion by another person is more likely to boost self-efficacy when it is 

coming from a credible source, and when it focuses on success resulting from devoting effort to 

mastering acquirable skills, rather than an inherent talent (Heslin and Klehe 2006). When 

instructors emphasize the importance of effort and persistence in achievements, and match their 

verbal recommendations with their behavior, students are more likely to be encouraged.  
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Conflicts with the verbal persuasion occur when students are told they are capable of a 

modeling task, but then the assigned case is too advanced for their knowledge level; hence, 

wearing down both the students‘ self-efficacy and the instructor‘s credibility. Bandura (1986) 

suggests, where applicable, having students develop a progress chart prior to complimenting 

them on their genuine progress as a way of raising their sense of what they can achieve.  

 

 

4.4 CREATION AND TESTING OF EMSS  

Our approach for testing the impact of modeling self-efficacy on students‘ ability to model was 

divided into two phases.  In the first phase, we derived a scale to measure modeling self-efficacy.  

During this phase, testing of the instrument for reliability and validity was primarily exploratory, 

with the main purpose being to assess the reliability of the projected scale and to gather data to 

further refine the items into a finalized instrument. In the second phase, we investigated the 

dimensions of engineering modeling self-efficacy for two engineering disciplines, and 

subsequently tested the reliability and validity of the items. Based on the self-efficacy literature, 

we expected that the self-efficacy scale would likely have latent factors (dimensions) apart from 

the observable stages of modeling tasks. 
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4.4.1 Test Data Collection 

The respondents took the EMSS for course credit and/ or monetary compensation. The sample 

included a total of 180 students (22% female, which is proportional to the engineering student 

body), sophomores and seniors, at the University of Pittsburgh during the 2009-2010 academic 

year. Forty-nine percent were majoring in industrial engineering, and fifty-two percent were in 

civil engineering. The majority of the respondents (82%) were between the ages of 18 and 22 

years; 10% of the respondents were between the ages 23 to 27 years; and 3% were between 28 

and 32. The students‘ ethnicity was not reported as part of this research work, but ethnicity is 

proportional to the engineering student body at the University of Pittsburgh. Further, all subjects 

were fluent in English.  Surveys were administered via paper and pen to the civil students and 

through a web-based surveying tool to the industrial engineering students. Proper human 

subjects‘ clearance was obtained for this research and for this publication.  

4.4.2 Item Generation  

To build our self-efficacy scale, we followed two guiding sources: (1) we investigated relevant 

scales in engineering and fields that are closely related to engineering modeling and (2) we 

observed Bandura‘s (2006) suggested guidelines. We defined specific performance tasks that 

directly related to engineering modeling as the targets of our subjects‘ self-efficacy ratings, and 

then we tested this scale with many engineering students from two engineering sub-domains. 
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Subtasks of the modeling process were identified and listed based on Tsang‘s definitions 

for the modeling processes creating a large pool of potential scale items. This initial list of over 

60 items was reduced through combination and elimination, to minimize redundancy while 

maximizing coverage of the modeling context. To derive the final list, items were pilot tested 

through in-depth interviews conducted with student teams. Multiple task-oriented statements 

were developed similar to the engineering design self-efficacy scale of Carberry et al. (2010). 

The resultant 36 item instrument (seven modeling stages times five to six items per stage) 

is provided in Appendix A.  Each item and the specific tasks that are covered are given in Figure 

12.  
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It
em

s 
 

Related 

modeling stage  

ITEMS OF EMSS – Description  
1
-6

 

Review and 

evaluation of 

data (RED) 

 Deciding what data is necessary to test and evaluate a model,  

 Searching a database to find data to use in a model,  and finding 

exemplary models to use as a starting point,  

 Determining whether the data on hand or found from the 

literature is representative of the entire system, whether the data 

is reliable or the sample size is sufficiently large, relevant to the 

model. Managing missing data where needed. 

7
-1

3
 

Conceptual 

modeling & 

potential 

scenarios 

(CON)  

 Developing a schematic representation of the system,  

 Identifying (e.g. Physical, biological or chemical) processes 

involved in the system, and specifying inputs and outputs of the 

system, exploring relationships between the processes within the 

system (creating the conceptual model),  

 Deciding external conditions that can influence the system, 

necessary conditions for a system to exist or function normally, 

and extreme cases of how the system functions. 

1
4
-1

6
 

Establishment 

of performance 

criteria (EPS) 

 Deciding what is to be measured quantitatively using the model 

(referred to as the performance criteria) and determining how to 

improve upon the performance criteria. 

1
7
 –

 2
2

 

Development of 

calculational 

models (CAL)  

 Developing calculational or computational models to estimate 

the performance criteria, identifying the constraints, boundary 

conditions, etc. 

 Writing a computer program, or hand calculations. 

2
3
 –

 2
7
 Calculations, 

sensitivity 

analysis (CUS)  

 Carrying out the actual calculations,  

 Determining reliability and error in calculations,  

 Sensitivity analysis 

2
8
 –

 3
2
 Results 

evaluation (RE)  
 Transfer of the numerically found results back to qualitative 

information, and interpretation of the results 

3
3
 –

 3
6
 Validation/ 

verification 

(VV)  

 Validation and verification of the overall model results 

 

Figure 12. Items of EMSS 
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The instructions asked students to rate how well they think they can perform each of the 

tasks listed in the items via a five-point rating scale ranging from ―Cannot Do at All‖ to Can Do 

Very Well‖. The order of items was randomized within each modeling stage.  Additionally, the 

survey asked students to provide basic demographic information including gender, age, major, 

and year in school.  

 

4.4.3 Item Reduction and Factor Analysis  

The first phase of scale testing was for internal consistency. Using the 36 items, a Cronbach‘s 

alpha of 0.94 was calculated for the entire instrument, as measured in SAS Software (version 

9.2). A factor analysis using maximum likelihood estimation and varimax rotation resulted in a 

solution with eight factors having eigenvalues higher than 1.00. Using a conservative minimum 

factor loading of 0.40 or higher, we eliminated one factor to arrive at seven dimensions that 

properly correspond to the seven theoretical subscales. Nine of the original 36 items in the pool 

were eliminated completely from the analysis because their factor loadings were less than 0.40. 

Two items cross-loaded on more than one factor, but were included in the analysis. The 

remaining items were tested using a minimum gap of 0.10 between salient coefficients to 

confirm that each item loaded on a single factor (Nunnally 1978). The overall reliability of the 

remaining items was 0.90. These remaining items and the factors they load are given in Table 7. 

In the case of the two items that cross-loaded more than one factor (items 20 and 28), the higher 

loading factor was chosen. 
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Table 7. Loadings of EMSS items on factors 

 

Loadings of the Items on Factors 

It
em

 N
o
 

T
sn

a
g

’s
 

m
o

d
el

in
g

 

d
im

en
si

o
n

 

 

 

 ITEM 

F
a

ct
o

r 
1
 

F
a

ct
o

r2
 

F
a

ct
o

r3
 

F
a

ct
o

r4
 

F
a

ct
o

r5
 

F
a

ct
o

r6
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1 RED Decide what data is necessary to use in the 

model. 
.40       

3 RED Determine whether the collected/given data 

sample is representative of the population. 
.64       

4 RED Decide whether the data is reliable and 

sample size is large enough. 
.58       

8 CON List the sub-processes within the system 

(e.g. physical, biological, and/or chemical, 

economical relationships, etc.) 

 .54      

9 CON Identify the relationships between sub-

processes (how changes in one affect 

changes another). 

 .66      

17 CAL Quantify the impact of sub-processes on the 

performance criteria (goal of the model). 

 .50      

18 CAL Simplify the relationships between 

processes that exist in the system. 

 .50      

10 CON Identify inputs and outputs of the system.    .64     

11 CON Determine the (initial and boundary) 

conditions for the system to start/ stop 

functioning. 

  .64     

12 CON Determine the necessary conditions for a 

system to exist/ survive once started 

functioning. 

  .52     

13 CON Predict how the system will function in 

extreme cases.  

  .46     

14 EPS Determine the criteria to decide if the model 

performs well. 

   .70    

15 EPS Determine whether the performance criteria 

chosen are appropriate for the system. 

   .65    

16 EPS Find ways to modify the performance 

criteria to make it better. 

   .66    

19 CAL Identify the variables and parameters in a 

model.  
    .56   

20 CAL Identify the constraints on the model.   .47  .41   
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Table 7 (Continued) 

28 RE Understand/ evaluate the results of a 

calculational model 
    .56  .42 

32 RE Explain how the results of a calculational 

model are obtained.  
    .73   

33 VV Determine qualitatively if the developed 

model looks ‗alright‘.  
    .61   

34 VV Determine numerically if the model results 

are valid.  
    .61   

21 CAL Write a computer program to calculate the 

outcomes of the model. 

     .77  

22 CAL Choose a mathematical/ statistical model to 

calculate the performance criteria/ results of 

a developed model. 

     .60  

24 CUS Calculate the outcomes of the model using a 

computer code. 

     .70  

26 CUS Determine the uncertainty in the parameters 

and data. 

      .54 

27 CUS Conduct a sensitivity analysis on the 

numerical results. 

      .57 

35 VV Determine ways to measure if the created 

model generates results in line with the 

actual system. 

      .68 

36 VV Determine how the model developed 

compares to other models of the same 

system. 

      .69 

 

An analysis of factors reveals that they are comparable to the seven latent dimensions of 

engineering modeling. Accordingly, three of the factors directly map to the theoretical modeling 

stages listed by Tsang; namely, Review and Evaluation of Data (RED), Development of 

Conceptual Model (CON), and Establishment of Performance Criteria (EPS).  

The remaining four factors are reasonable combinations of Tsang‘s stages; enabling us to 

examine how students actually group certain modeling tasks together compared to how it is 

hypothesized in the literature. For example, Factor 2 is a combination of Conceptual Model 
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Development (CON) and Development of Calculational Model (CAL) tasks; however, the 

common threads are those items related to understanding the sub-processes within a system. The 

students are evaluating the relationships within a system, and thus we call this factor, ―Process 

Modeling‖. Factor 5, includes items from Creation of a Calculational Model (CAL), Results 

Evaluation (RE) and Validation and Verification (VV).  The items within this factor are about 

understanding the model and explaining it; hence, this dimension is labeled ―Interpretation‖. 

Factor 6 is a combination of items from Development of Calculation Model (CAL) and Carrying 

out Calculational model (CUS) stages. We certainly recognize that students may look upon 

Developing a Calculational Model (CAL) and Carrying out Calculational Models (CUS) as 

compliments; hence this dimension is labeled as ―Calculational Modeling‖. Finally, the seventh 

factor involves items from both Carrying out Calculational Models (CUS) and Validation and 

Verification (VV).  The items are relevant to sensitivity analysis (CUS) and Validation and 

Verification (VV), implying that sensitivity analysis is also considered as a way of validation in 

students‘ minds. They form a dimension together; resulting in the label ―Uncertainty and 

Validation.‖  

Internal reliability for each dimension is reported in Table 8. All results for Cronbach‘s 

alpha were between 0.6 and 0.9, supporting the argument that within each dimension the 

responses of students were reliable.  
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Table 8. The dimensions of engineering modeling self-efficacy 

 

DIMENSION Factor 

No 

Items Reliability 

Review and Evaluation of Data  1 1,3,4 0.61 

Process Modeling  2 8,9,17,18 0.74 

Conceptual Modeling & Potential Scenarios  3 10-13 0.82 

Establishment of Performance Criteria  4 14-16 0.81 

Interpretation  5 19,20,28,32-34 0.84 

Calculational Modeling  6 21,22,24 0.74 

Uncertainty and Validation  7 26,27,35,36 0.84 

 

 

 

The internal consistency tables shows the values for each of the dimensions of self-

efficacy. This table presents the inter-correlations, where the diagonal element is the square root 

of the average variance extracted. This table can be used to assess the discriminant validity of the 

constructs. 
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Table 9. Internal consistency of EMSS factors 

 

Internal Consistency of the Constructs 

Modeling Self-efficacy Dimension  

(Notation )  

Number 

of Items 

Internal 

Consistency 

Cronbach's 

Alpha 

Average 

Variance 

Extracted 

Review and Evaluation of Data Self-

efficacy (SERED) 

3 .69 .76 .35 

Process Modeling Self-efficacy (SEPM) 4 .84 .74 .52 

Conceptual Modeling & Potential 

Scenarios Self-efficacy (SECON) 

4 .69 .74 .35 

Establishment of Performance Criteria 

Self-efficacy (SEEPS) 

3 .59 .77 .48 

Interpretation and Evaluation Self-

efficacy (SEIE) 

6 .66 .68 .71 

Calculational Model Self-efficacy 

(SECAL) 

3 .83 .78 .50 

Uncertainty and Validation Self-

efficacy (SEUV) 

4 .85 .69 .61 
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According to this table, the reliability and validity of all factors were acceptable. Two 

factors (i.e., Interpretation and Evaluation, and Uncertainty and Validation) had lower 

Cronbach's alpha scores and acceptable internal consistency values similar to Staples, Hulland 

and Higgins (1999). The Cronbach's alpha for the 36 items which were used to construct the 

single score was 0.9, indicating strong internal consistency.  
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Table 10. Discriminant validity analysis 

 

Discriminant Validity Analysis 

Modeling Self-efficacy Dimensions 

1
. 

2
. 

3
. 

4
. 

5
. 

6
. 

7
. 

1.  Review and Evaluation of Data Self-  

efficacy (SERED) 

0

.59 

      

2. Process Modeling Self-efficacy 

(SEPM) 

0

.14 

0

.72 

     

3.  Conceptual Modeling & Potential 

Scenarios Self-efficacy (SECON) 

0

.16 

0

.27 

0

.59 

    

4. Establishment of Performance 

Criteria Self-efficacy (SEEPS) 

0

.30 

0

.34 

0

.31 

0

.69 

   

5.  Interpretation and Evaluation Self-

efficacy (SEIE) 

0

.39 

0

.55 

0

.29 

0

.49 

0

.84 

  

6.  Calculational Model Self-efficacy 

(SECAL) 

0

.05 

0

.01 

0

.18 

0

.12 

0

.19 

0

.71 

 

7.  Uncertainty and Validation Self-

efficacy (SEUV) 

0

.24 

0

.39 

0

.55 

0

.38 

0

.64 

0

.16 

0

.78 

 

The bold diagonal elements are the square root of the variance shared between the 

constructs and their measures (i.e., the average variance extracted). Off diagonal elements are the 

correlations between constructs. For discriminant validity, the diagonal elements should be larger 

than any other corresponding row or column entry. This can be seen by examining the 
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correlations among the two factors and the square root of the average variance extracted. An 

examination of table shows that the discriminant validity was relatively weaker between 

Uncertainty and Validation factor and Interpretation and Evaluation factor (0.64), indicating that 

the two constructs are closely inter-related.  Since this correlation (0.64) does not exceed the 

average variance extracted (0.78/ 0.84), there is a still able to claim proper discriminant validity 

between the modeling self-efficacy factors.  The correlations with other constructs were 

generally low implying adequate discriminant validity. 

 

 

4.4.4 Characteristics of EMSS 

It is important to note the converging and diverging characteristics of a scale during its 

development. Several characteristics of the EMSS are consistent with other scales. Both the 

EDSS and EMSS have a behavioral focus utilizing student tasks from the literature. Therefore, 

according to Bandura (2006)‘s generality dimension, they are both limited to the respective 

domains of their interest (design and modeling, respectively), but also generalizable to different 

design and modeling tasks. This suggests it is consistent with our aim to make the scale 

comprehensive and applicable to all engineering disciplines. In addition, in regards to the 

strength of self-efficacy, both scales pose questions that aim to measure the confidence of 

student about herself.  
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Among the characteristics that differentiate the EMSS from other scales; our statements 

attempt to uniquely represent specific modeling tasks compared to other more general self-

efficacy scales previously developed. Note that certain items violate the rule to avoid compound 

statements, where respondents might agree with one part but disagree with a second part. 

Although we edited the items to make them as elemental as possible, it became clear that certain 

theoretical perspectives could not be adequately represented with a single clause. Compound 

statements were employed only when deemed necessary. Finally, most items are written in the 

―positive‖ direction for a subscale (i.e., agreement with an item indicates endorsement of that 

subscale perspective), whereas traditional methods of scale construction call for balancing 

positive and negative items. The decision to do this was made intentionally, as initial attempts to 

change some subscale items to negative tended both to change the meaning of the item and to 

make it fit more appropriately with different subscales. Extent of agreement with items was 

graded rather than dichotomous response scales (i.e., agree or not agree) and different 

respondents to the scale would find different items positive and negative. Therefore, the danger 

of positive or negative response set affecting the results seemed greatly reduced. 
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4.5 ANALYSIS  

 

4.5.1 Analysis of Sophomore Year Change 

A growth curve analysis was used to examine changes during the sophomore year. Primary 

hypotheses were tested using multilevel models that included both random and fixed effects 

(Singer 2002), using full maximum likelihood estimation, through SAS statistical package, 

Version 9.2 (Littell, Milliken, Stroup and Wolfinger 1996). The analyses consisted of two levels; 

between-subjects factors and within-subject factors, on linear and quadratic changes in growth of 

modeling skills.  We conducted exploratory analyses specifying our models with alternative error 

covariance matrix structures.  Model fit was strongest with an unstructured covariance matrix; 

therefore an unstructured error covariance matrix was specified for the models (Long and 

Pellegrini 2003).  
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4.5.1.1 Unconditional Models: Means and Growth Models 

To describe and partition the modeling skill development variation, an unconditional means 

model was built. We estimated a two-level model not including any predictors, which takes the 

following form:   

Level 1:                                          ,0 ijkjkijk eY    

Level 2:                                         ,0000 jkkjk           

where k=1,2,…7 stands respectively for each of the modeling outcome measures, RED, CON, 

EPS, CAL, CUS, RE and VV. We remind the reader that these outcomes are the grades obtained 

from the modeling grading sheet; not the theoretical self-efficacy factor scores obtained from 

EMSS. In this model, the dependent variable, ,ijkY the i
th

 month modeling skill level of the j
th

 

student for the k
th

 modeling factor, is a linear function of a grand mean (
k00 ), a deviation of the 

j
th

 student from the grand mean (
jk0 ), and a random error term associated with the skill level of 

the i
th

 month of the j
th

 student )( ijke . The model separates the variation of modeling skill 

development into variation between student means (
k00 ), and variation among month within the 

students ( k
2 ) (Singer 1998).  Unconditional models for each outcome are shown in Table 11. 

The intercepts at Table 11 demonstrate the overall score of a sophomore student on each 

modeling outcome four months after the semester (i.e., after one semester).  Note that an overall 

list of the various models tested is provided in Appendix E, for self-efficacy, epistemology, and 

metacognition. 
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Table 11. Unconditional means model for modeling growth of sophomores 

 

Unconditional Means Models Longitudinal Growth in Modeling- Sophomore Year 

Predictors RED 

 

Est. (std.err) 

CON 

 

Est. (std.err) 

EPS 

 

Est. (std.err) 

         CAL 

 

Est. (std.err) 

CUS 

 

Est. (std.err) 

RE 

 

Est. (std.err) 

          VV 

 

Est. (std.err) 

Intercept 3.39 (0.08)*** 3.08 (0.07)*** 3.43 (0.09)*** 3.05 (0.11)*** 2.84 (0.09)*** 2.66 

(0.08)*** 

0.68 

(0.09)*** 

 

Fit Statistics 

       

-2 Log Likelihood 598.6 608.5 606.2 691.8 598.0 605.6 634.3 

***denotes p<0.01; **denotes p<.05; *denotes p < 0.10. Sample size, n=39 with four time periods. 
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Following the means model, we then introduced the time variable (i.e., months) and fitted 

an unconditional linear growth model. The level 1 equation estimates the individual student‘s 

trajectory of modeling growth (
j1 ) in addition to the mean (

j0 ). The level 2 equation 

simultaneously partitions the two estimates into sample averages and error components.  

Level 1:                                   ,10 ijkijkkjjkijk eMonthY    

Level 2:                                          ,0000 jkkjk    

                                                      
,1101 jkkjk                                     

where k=1,2,…7 stands respectively for each modeling outcome grade for RED, CON, EPS, 

CAL, CUS, RE and VV.                                          

The month variable ranges from one to eight and represents the number of months since 

the sophomore semester started. This variable was mean-centered; thus, the intercept of the 

model reflects the modeling level of a student midway through the eight months. The SAS Proc 

Mixed procedure generated the results given in Table 12. 
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Table 12. Unconditional linear growth on modeling for sophomores 

 

 

Unconditional Linear Growth Models - Sophomore Year 

Predictors RED 

 

Est. (std.err) 

CON 

 

Est. (std.err) 

EPS 

 

Est. (std.err) 

         CAL 

 

Est. (std.err) 

CUS 

 

Est. (std.err) 

           RE 

 

Est. (std.err) 

         VV 

 

Est. (std.err) 

Intercept 3.41 (0.07)*** 3.09(0.07)*** 3.45(0.08)*** 3.07(0.11)*** 2.88(0.08)*** 2.68(0.07)*** 0.68(0.09)*** 

Month 0.25(0.03)**** 0.22(0.03)*** 0.21(0.03)*** 0.24(0.04)*** 0.25(0.03)*** 0.25(0.03)*** 0.17(0.03)*** 

 

Fit Statistics 

       

-2 Log Likelihood 543.1 568.4 563.5 659.6 546.8 543.1 614.5 

Incremental Chi-Square  56.5 40.1 42.7 32.2 51.2 62.5 19.8 

Incr. degree of freedom 1 1 1 1 1 1 1 

P-Value p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 

***denotes p<0.01; **denotes p<.05; *denotes p < 0.10. 
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To improve the growth analysis further, a nonlinear model was tested by adding a 

quadratic term (the squared mean-centered months).  As shown in Table 13, the results support a 

nonlinear growth model. Compared to the unconditional linear growth model, the unconditional 

nonlinear growth model was significantly better based on the incremental chi-square criterion, 

given in the fit statistics. In addition, intercept, linear and quadratic time variables were all 

significant at the 0.05 level. Therefore, in the rest of the analysis, the unconditional nonlinear 

growth model was used as the base model. 
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Table 13. Unconditional nonlinear growth model - sophomores 

 
Unconditional Nonlinear Growth Models - Sophomore Year 

Predictors RED 

 

Est. (std.err) 

CON 

 

Est. (std.err) 

EPS 

 

Est. (std.err) 

CAL 

 

Est. (std.err) 

CUS 

 

Est. (std.err) 

RE 

 

Est. (std.err) 

VV 

 

Est. (std.err) 

Intercept 3.85 (0.10)*** 3.53 (0.10)*** 3.56 (0.11)*** 3.48 (0.14)*** 2.74 (0.11)*** 2.56 (0.24)*** 0.94 (0.12)*** 

Months 0.30 (0.03)*** 0.27 (0.03)*** 0.22 (0.03)*** 0.29 (0.04)*** 0.23 (0.03)*** 0.24 (0.03)*** 0.20 (0.04)*** 

Months
2
 -0.07 (0.01)*** -0.07(0.01)*** -0.02 (0.01)*** -0.06 (0.01)*** -0.02 (0.01)* -0.02 (0.01)* -0.04 (0.01)*** 

 

Fit Statistics 

       

-2 Log Likelihood 506.3 538.2 561.5 641.5 543.4          540.6  604.9 

Incremental Chi-Square  36.8 30.2 2.0 18.1 3.4 2.5 9.6 

Degree of Freedom 1 1 1 1 1 1 1 

P-Value p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 

***denotes p<0.01; **denotes p<.05; *denotes p < 0.10. Sample size, n=39. 
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4.5.1.2 Conditional Nonlinear Growth Model with Self-efficacy  

Using the unconditional nonlinear growth model, student-level predictors were added (i.e., 

the self-efficacy factors) to investigate whether the intercepts and linear and nonlinear 

slopes of modeling performance growth vary as a function of self-efficacy. A specific non-

linear growth model was specified for each modeling outcome, where the outcome was the 

dependent variable and associated theoretical self-efficacy factors were the independent 

variables.  

Similar to the unconditional models, only the linear and quadratic terms of the time 

variable (i.e., months and squared months) were included in the level 1 equations. In the 

level 2 equations, we included all the related self-efficacy factors as the student-level 

predictor. We tested models using various combinations of the independent variables and 

control variables, and report the models that provided the most meaningful interpretations in 

Figure 13. Accordingly, 
k00
 
represents the average intercepts in of the growth model, 

k10

represents the average slopes of the linear term (where k=1,2,…7 stands respectively for the 

modeling outcomes RED, CON, EPS, CAL, CUS, RE and VV). To ensure that the fixed 

effects can be interpreted properly, self-efficacy scores were centered at mean zero, as well 

as the time variable.   
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Figure 13. The conditional nonlinear growth models tested for self-efficacy impact 

 

The Conditional Nonlinear Growth Models Tested for Self-Efficacy 

Modeling 

Outcome 

Model/ Level 1 Model / Level 2 

RED 

   

 

                                                  
      

 

CON                                                    
      

 

EPS                                                    
      

 

CAL                                                    
      

 

CUS                                                    
      

 

RE                                                    
      

 

VV                                                    
      

 

,2

210 ijREDjREDjREDjREDREDij eMonthMonthY   ,001000 REDjREDREDj SE  

REDjREDREDj SE 111101  

ijCONjCONCONjCONijCON eMonthMonthY  2

210  ,00201000 CONjPMCONCONj SESE  

CONjPMCONCONj SESE 11211101  

ijEPSjEPSjEPSjEPSijEPS eMonthMonthY  2

210  ,002000 EPSjEPSEPSj SE  

EPSjEPSEPSj SE 111101  

,2

210 ijCALjCALjCALjCALijCAL eMonthMonthY   ,00201000 jCALIEPMjCAL SESE  

jCALIEPMjCAL SESE 11211101  

,2

210 ijCUSjCUSjCUSjCUSijCUS eMonthMonthY   ,00201000 jCUSUVCALjCUS SESE  

jCUSUVCALjCUS SESE 11211101  

,2

210 ijREjREjREjREijRE eMonthMonthY   ,001000 jREIEjRE SE  

REIEjRE SE 111101  

,2

210 ijVVjVVjVVjVVijVV eMonthMonthY   ,00201000 jVVUVIEjVV SESE  

jVVUVIEjVV SESE 11211101  
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The factor scores (independent variables) were coded (0,1) to indicate low or high 

self-efficacy category, where the students obtained a one if their self-efficacy was above the 

mean level for that factor, and zero otherwise. We used a dummy coding since the results 

were more meaningful than the ones obtained using the continuous values. Results of the 

unconditional models are given the following sets of tables.  
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Table 14. Growth models with self-efficacy-part I   

 

Mark *** denotes p <0.001, ** denotes p <0.05, * denotes p <0.1 and close values. Sample size n=39.  

 

 

 

 

 

 

Growth Models with Self-efficacy- Sophomore Year- Linear Effect 

Predictors             RED 

 

Est. (std.err) 

CON 

 

Est. (std.err) 

EPS 

 

Est. (std.err) 

Intercept 

 
2.97 (0.47)*** 2.86 (0.44)*** 1.68 (0.46)** 

Main Effects    
Months     0.27 (0.03)*** 0.23 (0.03)*** 0.20(0.03)*** 

SERED -0.19 (0.31)   

SEPM  0.74 (0.5)*  

SECON  -0.01 (0.25)  

SEEPS   0.50 (0.27)* 

Interaction    
SERED x Months 0.04 (0.11)   

SEPM  x Months  -0.20 (0.21)  

SECON  x Months  0.09 (0.11)  

SEEPS  x Months 

 
  0.05 (0.10) 

Control Variables    

Gender (Female) 0.09 (0.16) 0.07 (0.14) -0.01 (0.15) 

MEA (Tire MEA)       -0.75 (0.11)*** -0.71 (0.13)*** -0.11 (0.14) 

CGPA 0.27 (0.16)* 0.19 (0.15)      0.61 (0.15)** 

 

Fit Statistics    

-2 Log Likelihood 500.6 537.2 546.4 

P-Value p<0.05 p<0.05 p<0.05 
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Table 14 (Continued) 

 

Growth models with self-efficacy- Sophomore Year 

Predictors CAL 

 

Est. (std.err) 

CUS 

 

Est. (std.err) 

RE 

 

Est. (std.err) 

VV 

 

Est. (std.err) 

Intercept 2.44 (0.65)*** 1.36 (0.46)*** 1.51 (0.45) ** 0.85 (0.58) 

Main Effects     

Months 0.24 (0.04)*** 0.24 (0.03)*** 0.24 (0.03)** 0.19 (0.04)*** 

SEPM 0.49 (0.77)     

SEIE -0.19 (0.23)  0.03 (0.19) -0.28 (0.28) 

SECAL 0.87 (0.53)* 0.56 (0.30) *  0.37 (0.36) 

SEUV      0.34 (0.23)   

Interaction     

SEPM  x Months 0.04 (0.29)    

SEIE  x Months 0.11 (0.11)  0.02 (0.07) -0.12 (0.10) 

SECAL x Months -0.13 (0.19) 0.01 (0.11)  0.14 (0.13) 

SEUV x Months  0.04( 0.10)   

 

Control Variables 

    

Gender (Female)    0.44 (0.22)* - 0.08 (0.16) 0.01 (0.15) - 0.10 (0.20) 

MEA (Tire MEA) 0.07 (0.16) 0.2 (0.12)* 0.28 (0.13)*    0.38 (0.14)** 

CGPA 0.26 (0.22) 0.4 (0.16)* 0.35 (0.15)* 0.03 (0.20) 

 

Fit Statistics 

    

-2 Log Likelihood 631.7 525.6 533.2 603.2 

P-Value p<0.05 p<0.05 p<0.05 p<0.05 

 

Mark *** denotes p <0.001, ** denotes p <0.05 , * denotes p <0.1 and close values. Sample size n=39 with four 

time points. 
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Fit Statistics 

    

-2 Log Likelihood 498.6            533.4  539.2 

P-Value p<0.05             p<0.05  p<0.05 

 

Mark *** denotes p <0.001, ** denotes p <0.05, * denotes p <0.1 and close values. Sample size=39.  

Table 15. Growth models with self-efficacy-part II   

 

Growth Models with Self-efficacy- Sophomore Year- Nonlinear  

Predictors             RED 

Est. (std.err) 

CON 

Est. (std.err) 

EPS 

Est. (std.err) 

Intercept 

 
2.98 (0.47)*** 2.95 (0.44)*** 1.73 (0.46)*** 

Main Effects    
Months     0.27 (0.03)*** 0.26 (0.04)*** 0.23(0.03)*** 

Months
2
 -0.02 (0.03) -0.06 (0.03)* -0.05 (0.03)* 

SERED -0.02 (0.41)   

SEPM   0.75 (0.41)*  

SECON  -0.02 (0.37)  

SEEPS   1.09 (0.41)** 

Interaction    
SERED x Months 0.09 (0.12)   

SEPM  x Months  -0.15 (0.22)  

SECON  x Months  0.09 (0.12)  

SEEPS  x Months   0.15 (0.11) 

Trajectory     
SERED x Months

2 

-0.03 (0.04)   

SEPM  x Months
2
  0.04 (0.10)  

SECON  x Months
2
  0.01 (0.04)  

SEEPS  x Months
2
   -0.09 (0.06) 

 

Control Variables 

   

Gender (Female) 0.09 (0.16) 0.08 (0.14) 0.01 (0.15) 

MEA (Tire MEA) -0.54 (0.29)* -0.10 (0.35) 0.47 (0.32) 

CGPA 0.27 (0.16)* 0.19 (0.15)      0.61 (0.15)** 

 

. 
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Table 15 (Continued) 

 

Growth models with self-efficacy- Sophomore Year 

Predictors CAL 

 

Est. (std.err) 

CUS 

 

Est. (std.err) 

RE 

 

Est. (std.err) 

VV 

 

Est. (std.err) 

Intercept 2.49 (0.65)*** 1.34 (0.46)*** 1.50 (0.45) ** 0.90 (0.58) 

Main Effects     

Months 0.27 (0.04)*** 0.24 (0.03)*** 0.25 (0.03)** 0.21 (0.04)*** 

Months
2
 -0.07 (0.04)* -0.02 (0.03) -0.02 (0.03) -0.05 (0.03) 

SEPM 0.28 (0.99)     

SEIE -0.23 (0.37)  0.29 (0.26) -0.27 (0.35) 

SECAL 1.37 (0.60)** 0.94 (0.40) **  0.64 (0.48) 

SEUV  0.45 (0.33) †   

Moderation      

SEPM  x Months -0.06 (0.33)    

SEIE  x Months 0.10 (0.12)  0.07 (0.08) † -0.09 (0.12) 

SECAL x Months 0.07 (0.24) 0.10 (0.13)  0.16 (0.14) 

SEUV x Months  0.07(0.10)   

Trajectory      

SEPM x Months
2 

0.07 (0.12)    

SEIE  x Months
2
 0.01 (0.04) -0.07 (0.05) * -0.04 (0.03) 0.01 (0.04) 

SECAL x Months
2
 -0.11 (0.07)† -0.02 (0.04)  0.04 (0.05) 

SEUV x Months
2
     

Control Variables     

Gender (Female) 0.44 (0.22)* - 0.07 (0.16) 0.02 (0.15) - 0.09 (0.20) 

MEA (Tire MEA) 0.07 (0.41) 0.49 (0.29) 0.49 (0.32) 0.15 (0.35) 

CGPA 0.27 (0.22) 0.46 (0.15)** 0.35 (0.15)** 0.03 (0.20) 

     

Fit Statistics     

-2LogLikelihood 625.8  522.4 530.5 599.6 

P-value          p< 0.05 p< 0.05 p< 0.05 p< 0.05 

 
Mark *** denotes p <0.001, ** denotes p <0.05 , * denotes p <0.1 and close values. Sample size=39. 
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An analysis of the tables shows that self-efficacy influences modeling growth through 

two mechanisms, its main effect and its moderating effect on the linear slope of growth on four 

out of the seven outcomes that were of interest. Overall, we observe that four of the modeling 

outcomes had the main effects, and nearly two models showed moderating impact.  

The significant main effects of self-efficacy are observed for Conceptual Modeling 

(CON), Establishing Performance Criteria (EPS), Calculational Modeling (CAL), and Carrying 

out the Computations and Sensitivity Analysis (CUS). All effects were significant with positive 

coefficients.  The coefficients imply that for these three particular modeling outcomes, one can 

observe the impact of high self-efficacy starting from the early days of education for the student, 

and without having to wait for the modeling experience to take place. The commonality between 

them is the math ability: the ability of the student to understand what is to be calculated, then 

build and calculate the model correctly. Based on this outcome, one could speculate that the 

direct effects of self-efficacy on modeling can be linked to the math self-efficacy of the student. 

Higher self-efficacy levels prove to be an important determinant of the modeling outcome. In 

particular, when a student is categorized as having high self-efficacy, as opposed to low self-

efficacy, his outcome grade on the sheet can be higher than his counterpart with lower self-

efficacy.  

In addition, self-efficacy was observed to have a higher impact on certain modeling 

outcomes as more time passes. This moderating impact (or significant interaction with Months) 

of self-efficacy was observed for Development of a Calculational Model (CON) and Results 

Evaluation (RE). We also note that significant linear interaction was positive; and nonlinear 

interaction was negative, suggesting that higher self-efficacy, paired with time (learning and 

experience effects) can lead to even further gaps in the modeling outcomes in a concave manner. 
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In other words, at the end of sophomore year the impact of self-efficacy is higher in determining 

the grade of a student compared to the middle of the semester.  It is possible to explain, looking 

at the sophomore level curriculum, why the differences might be higher for these three modeling 

outcomes at the end of the sophomore year, when the student has higher self-efficacy.  

Conceptual Model Development (CON) can be linked more to the experience with 

modeling than to learning effects. Here, the more the student is exposed to MEAs, the more 

likely that there is improvement over time. Paired with higher levels of self-efficacy, we observe 

that students are better able to reflect their enhanced modeling experience on the modeling 

outcomes.  

Finally, Results Evaluation (RE) is related to the enhanced understanding of numerical 

results over time. In addition, we observe no effect of self-efficacy on Validation and 

Verification (VV). This is partially due to the fact that there was minimal change in this 

outcome. Validation and Verification is typically taught at the upper level (junior and senior) 

classes at the institution of measurement. Review and Analysis of Data (RED), using statistical 

techniques, is taught and well practiced all through the sophomore year. At the end of the 

sophomore level, the students learn descriptive statistics, distributions, sampling, outliers, 

plotting data and other commonly used engineering data analysis methods, many of which are 

first introduced during the freshman year. The small change in knowledge even when paired to 

higher levels of self-efficacy is not observable in the modeling outcomes at the end of the two 

semesters. The fact that self-efficacy can lead to a difference in the modeling outcomes is a 

significant finding since it suggests that pairing high self-efficacy with education can further 

achievements in modeling outcomes . The educational practice take-away from this observation 

is that, it is not enough to have high self-efficacy to observe superior modeling outcomes.  
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However, it is also clear that without high levels of self-efficacy, educational premises 

are not reaching their full potential. This study, therefore, can be seen as a call for engineering 

educators to develop and implement practices that are geared towards increasing self-efficacy 

while providing modeling experiences.  

Next we tested whether having higher self-efficacy increases the trajectory of growth. If 

observed to be significant, self-efficacy would prove to accelerate or decelerate the time to reach 

an outcome score, beyond the linear effect.  However, our statistical tests showed that the 

nonlinear time moderation effects were not significant.   

We tested the impact of gender, specific MEA and GPA. In four of the models GPA had 

a significant and positive influence on the development (i.e., RED, EPS, CUS and RE). Why 

would a student with higher cumulative GPA over time achieve higher scores on setting the goal, 

and interpreting the results? The explanation for this finding is rather intuitive. If a student is 

inherently better at identifying what is being asked of her and reporting the results correctly, 

these are likely to have an impact on her traditional course grades. In the non-linear models, 

gender was significant only in CAL and MEA only in RED, thus no consistent pattern of Gender 

and MEA existed over all the outcomes. Additional models that included the interactions of 

gender and self-efficacy levels were tested, but no consistent, significant patterns were observed. 

Since these variables are not the focus of this research, these analyses are not further described.  
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4.5.2 Analysis of Sophomore and Senior Student Differences  

A secondary set of models were developed to understand the predictive power of  self-efficacy 

given differences in student level , as well as GPA, gender and the type of MEA. In doing so, we 

ask the question, assuming that students grow in their modeling skills from the sophomore to 

senior year, how does the self-efficacy level effect the changes in modeling?  To answer this 

question, with self-efficacy factor scores as independent variables, the difference in modeling 

outcomes was tested. In the testing, only cohorts II and III were included. Both the data from 

Tire and CNC Machine MEAs were included in the tests, where a dummy MEA variable 

differentiated which MEA the outcome scores were coming from.  

 Similar to the growth models, these regression models tested for differences between 

sophomores and seniors accounting for whether or not the student held high self-efficacy beliefs. 

Yet the independent variables, unlike the growth models, were not dummy coded, and 

continuous self-efficacy scores were used (i.e., scores were mean centered around zero). The 

cohort variable was dummy coded, and it equaled one if the student belonged to senior year and 

zero otherwise. Gender and MEA were dummy coded (1 = female, 1= Tire Reliability MEA, and 

zero otherwise). Cumulative GPA (CGPA), which controls for the overall success of the student, 

was continuous; and was measured from the semester prior to the MEAs.  The results of the 

regression models are given in Table 16 and Table 17.  
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Table 16. Sophomore to senior year change in modeling with self-efficacy- Part I 

 

 
 

Sophomore to senior year changes- Part I 

  

Predictors RED 

 

Est. (std.err) 

CON 

 

Est. (std.err) 

EPS 

 

Est. (std.err) 

Intercept 3.17 (0.61)*** 3.50 (0.68)*** 3.63 (0.54)*** 

Cohort (Seniors) 0.26 (0.2) 0.65 (0.21)** 1.26 (0.17)*** 

SERED 0.41(0.21)*   

SERED x Cohort (Seniors) 0.94(0.48)*   

SEPM  0.13 (0.21)  

SEPM x Cohort (Seniors)  -0.46 (0.41)  

SECON  -0.07 (0.18)  

SECON x Cohort (Seniors)  0.64 (0.35)*  

SEEPS   0.25(0.16) 

SEEPS x Cohort (Seniors)   0.20(0.24) 

Gender (Female) 0.15 (0.20) -0.03 (0.22) 0.18 (0.18) 

CGPA 0.27 (0.21) 0.14 (0.23) 0.17 (0.18) 

MEA (Tire) -0.14 (0.17) -0.36(0.19)* -0.22 (0.15) 

    
 

Fit Statistics 

   

R
2
 0.16 0.12 0.37 

F-value 4.99 2.56 14.96 

Degrees of Freedom 6 6 6 

P-Value for model p<0.01 p<0.01 p<0.001 

 

***denotes p<0.01; **denotes p<.05; *denotes p < 0.10. 
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Table 17. Sophomore to senior year change in with self-efficacy- part II 

 

 

Sophomore to senior year changes with self-efficacy- Part II 

 

Predictors CAL 

 

Est. (std.err) 

CUS 

 

Est. (std.err) 

RE 

 

Est. (std.err) 

VV 

 

Est. (std.err) 

Intercept 2.83 (0.86)** 2.92 (0.53) *** 1.74 (0.77)** 2.25 (0.84)** 

Cohort (Seniors) -0.10 (0.30) 0.52 (0.18)** 0.89 (0.25)** 0.82 (0.26)** 

SEPM 0.29 (0.29)    

SEPM x Cohort (Seniors) -0.86 (0.55)    

SEIE -0.10 (0.23) 0.89 (0.38)** 0.34 (0.19)*  

SEIE x Cohort (Seniors) 0.90 (0.55) 0.75 (1.13) - 0.64 (0.40)  

SECAL 1.34 (0.62)** 0.14 (0.13)   

SECAL x Cohort (Seniors) -0.74 (1.83) -0.15 (0.27)   

SEUV    -0.30 (0.24) 

SEUV x Cohort (Seniors)    0.24 (0.27) 

Gender (Female) 0.44(0.27) -0.22(0.17) 0.17 (0.26) 0.04 (0.26) 

CGPA 0.39(0.29) 0.23 (0.18) 0.51 (0.26) -0.22 (0.28) 

MEA (Tire) -0.70 (0.23)** 0.08 (0.15) 0.25 (0.22) -0.61(0.23)** 

     

 

Fit Statistics 
    

R
2
 0.14 0.19 0.18 0.14 

F-value 1.97 3.22 5.32 3.10 

Degrees of Freedom 9 9 9 9 

P-Value p<0.05 p<0.001 p<0.001 p<0.001 

 

***denotes p<0.01; **denotes p<.05; *denotes p < 0.10. 
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As shown in the tables, models were all significant as measured by the F-value, but the 

R
2
 values were low (0.12-0.37). Given that almost all the independent variables were categorical 

in the regression, the low R
2
 values were rather expected. R

2
 levels are higher (0.37) in the model 

for EPS, where the change is independent of any variables other than the cohort. Yet, based on 

the low R
2
 levels, the findings will be treated as exploratory rather than explanatory.  

We find that the intercepts and cohort variable (being a senior student) are significant 

(and positive) in five out of the seven models. This implies that even without accounting for the 

impact of self-efficacy, there is a growth in modeling skills after the sophomore year is over, as 

well. We notice that that there is a not significant change in Review and Evaluation of Data 

(RED), and Development of Calculational Models (CAL). The finding that RED does not change 

much is complementary to the results from the sophomores. From the growth models, it was 

found that by the end of the sophomore year, the students are reaching a high level in RED. It is 

likely that majority of the learning related to data analysis takes place in the sophomore year.  

Similarly, development of calculational models not showing a significant development is 

relatively puzzling. This finding might be a function of the MEAs requiring statistical 

knowledge, which is commonly taught at the sophomore year.  

The highest jump in outcomes between the sophomore and seniors (before self-efficacy 

effects are accounted for) is observed in Establishing the Performance Criteria (EPS), which the 

cohort coefficient 1.26. This implies that by the time a student reaches senior year, he is much 

more accurate in identifying the expected goal of the exercise. This includes accurately 

identifying what is asked of the student and what is to be calculated within the model.  
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Between the sophomore and senior years, the students develop significantly in regards to 

identification of goals and criteria to be calculated out of the created models. The most likely 

reason for the high development in EPS is the increasing exposure to modeling exercises.  

Complementary to the findings of the growth models, self-efficacy has a significant main 

effect on four models, including Review and Evaluation of Data (RED), Development of a 

Calculational Model (CAL), Carrying out Calculational Models (CUS), and Results Evaluation 

(RE). This implies that comparing the changes between sophomore to senior year, the main 

effect of higher self-efficacy on CAL and CUS are still observable. Once again, these factors of 

self-efficacy are significantly related to math self-efficacy, and one could speculate that the 

inherent differences in math self-efficacy remain to influence the students‘ ability to model over 

the years.  Differently from the sophomore year, we observe now the main effects of Review and 

Evaluation of Data (RED) and Results Evaluation (RE) are significantly influenced by the level 

of self-efficacy. It is possible that after the sophomore year, the self-efficacy levels better reflect 

the abilities in these two categories. Similarly, the moderating influence of self-efficacy on time 

was observed positively and significantly for the modeling outcomes RED and CON. Self-

efficacy further enhances the modeling outcome achieved.   

The only two outcomes where no significant influences were observed were EPS and 

VV. The results once again suggest and validate the outcomes obtained at the sophomore level 

with respect to the influence of self-efficacy. In addition, no significant gender or CGPA effects 

were observed. The only influence of the control variables were the MEA type, where Tire 

Reliability MEA resulted in lower outcomes for CON, CAL, and VV outcomes of the model for 

the average student. It was observed that the students struggled more with the Tire MEA; as 

such, cohort and self-efficacy had higher coefficients than the coefficient of Tire MEA, except 
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for Validation and Verification. However, this outcome overall was not observed for all the 

students. The most likely reason for it is the fact that students learn about validation and 

verification much later in their undergraduate education and therefore they are not able to reflect 

it on their work fully.  

 

 

4.6 SUMMARY OF STUDY 1 

 

In this study we developed a self-efficacy instrument directed at engineering modeling. 

Modeling is a critical and fundamental aspect of being an engineer; and in an already crowded 

curriculum, teaching modeling is becoming an increasingly bigger challenge. Self-efficacy has 

been widely studied in other academic fields.  Yet, in engineering education, there are few 

studies that attempt to understand how self-efficacy effects the motivation of the engineering 

student.  

EMSS instrument provided a potentially reliable scale of the modeling stages that 

matches the theoretical stages. In addition, the conducted studies help to validate the scale and 

provide confirmatory results. The scale was tested on data collected from industrial and civil 

engineering students at both the sophomore and senior levels.  

Our empirical results suggest that the factors of self-efficacy can be discriminated from 

one another empirically, we support the use of substitute methods of data collection in future 

studies. For example, assessments of student self-efficacy and modeling performance could be 



106 

 

obtained from teachers and peers, or from more objective sources. With the exception of 

Validation and Verification, we were able to show that the self-efficacy did influence the 

expected outcome. Therefore, we contribute to the external validity of self-efficacy theory by 

showing its applicability in a new research domain.  

Despite the overall positive trend in one of the two disciplines, there were only a few 

dimensions in which significant improvement was observed.  Further, students themselves were 

not rating themselves excellent in any of these dimensions, such as carrying out calculational 

models. Industrial engineering students had an improvement over the civil engineers by the time 

both had reached their senior year, and overall, there was a tendency for lower variation in self-

efficacy scores when students reached their senior year.  It is plausible to suggest that additional 

real life experiences are required at the undergraduate level to change this observation, since 

more modeling experiences can help to establish higher self-efficacy. Educational interventions 

such as MEAs, problem based learning, etc., may contribute to development of self-efficacy 

beliefs by providing better modeling experience compared to text-book problems.  

Results of the study suggest that differences between sophomores and seniors imply that 

improvement in student self-efficacy in engineering modeling can be realized; and in particular 

significance was observed in the industrial engineering group for three dimensions (i.e., Process 

Modeling, Interpretation, and Uncertainty and Validation). For the most part, these three 

dimensions are relatively abstract, and it is expected that such concepts and how students cope 

with them as they build their skills in modeling evolves as they matriculate to seniors. In 

addition, there is a tendency for the female students and sophomore level students to report lower 

levels of self-efficacy.  
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In the rest of the study, we demonstrate that for certain modeling exercises, self-efficacy 

can also precede the level of development in modeling ability growth.  In the growth models, the 

significant main effects of self-efficacy are observed for Conceptual Model Development 

(CON), Establishing a Performance Criteria (EPS), Calculational Modeling (CAL), and Carrying 

out the Computations and Sensitivity Analysis (CUS). All effects were significant with positive 

coefficients, implying that one can observe the impact of high self-efficacy starting from the 

early days of education for the student, and without having to wait for the modeling experience 

to take place. Based on this outcome, modeling self-efficacy can be linked to the math self-

efficacy of the student. Higher self-efficacy levels prove to be an important determinant of the 

modeling outcome. In addition, self-efficacy was observed to have a moderating impact for 

Development of a Conceptual Model (CON) and Results Evaluation (RE). Linear interaction was 

positive; suggesting that higher self-efficacy, paired with time (learning and experience effects) 

can lead to even further gaps in the modeling outcomes. In other words, at the end of sophomore 

year the impact of self-efficacy is higher in determining the grade of a student compared to the 

middle of the semester.   

In comparing the sophomores to seniors, self-efficacy had a significant main effect on 

four models, including Review and Evaluation of Data (RED), Development of a Calculational 

Model (CAL), Carrying out Calculational Models (CUS), and Results Evaluation (RE). Again, 

the factors of self-efficacy were significantly related to math self-efficacy. Differently from the 

sophomore year, main effects of Review and Evaluation of Data (RED) and Results Evaluation 

(RE) were significantly influenced by the level of self-efficacy. The moderating influence of 

self-efficacy on time was observed positively and significantly for the modeling outcomes RED 

and CON. Self-efficacy further enhances the modeling outcome achieved.  The only two 
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outcomes where no significant influences were observed were the EPS and VV outcomes. In 

addition, no significant gender or CGPA effects were observed. The only influence of the control 

variables were the MEA type, where Tire Reliability MEA resulted in lower outcomes for CON, 

CAL, and VV outcomes of the model for the average student. It is observed that the students had 

more difficulty with the Tire MEA;  and as such cohort and self-efficacy had higher coefficients 

than the coefficient of Tire MEA, except for the Validation and Verification model. The 

implications of these results, along with suggestions for the educators are discussed in detail in 

the overall summary, section 8.1. 
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5.0  STUDY 2: IMPACT OF EPISTEMOLOGY ON GROWTH OF MODELING  

5.1 MOTIVATION 

The emphasis on modeling in engineering schools is increasing. For instance, the engineering 

systems division (EDS) at MIT has adopted an official vision statement to become the leader in 

modeling complex systems. Following this, the faculty at MIT reflected on epistemology and its 

relationship to engineering systems as a first step (Frey 2003). In agreement with recent calls to 

action, the relationship between epistemology and engineering modeling is the focus of this 

study. 

Epistemology is concerned with the nature of knowledge, justification, evidence, and 

related notions. By epistemic cognition, we refer to the processes in which individuals engage in 

order to consider the criteria, limits, and certainty of knowing (Kitchener 1983).  Epistemic 

beliefs have been shown to correlate with learning on multiple dimensions (Duell and 

Schommer-Aikins 2001, Bendixen and Hartley 2003), including metacognition (Hofer 2004; 

Bendixen and Hartley 2003), self-regulation (Muis 2007), comprehension (Hartley and Bendixen 

2001), scientific argumentation and reasoning (Duschl and Osborne 2002, Sandoval 2003, 

Sandoval and Reiser 2004) and the ability to solve a problem (Schommer-Aikins, Duell, and 

Hutter 2005). 
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In this study, we extend prior findings and investigate whether an engineering student‘s 

epistemic beliefs can influence his modeling skills. Although previous research suggests that 

motivational processes are related to academic achievement (Ames and Archer 1988, Dweck 

1986), to date, we have not observed that the ability to abstract and represent real world aspects 

through a model has been the subject of rigorous inquiry.   

Based on prior literature on epistemology, we investigate three objectives. First, we aim 

to understand how students‘ epistemic cognition influences the growth of their modeling skills 

over the course of one academic year. Second, we aim to investigate differences between 

modeling skills of engineering students at sophomore and senior years, and how their epistemic 

beliefs impact these differences. We conduct this modeling skills assessment through the use of 

Model-eliciting activities (MEAs), which are special engineering modeling exercises. Our final 

objective is to discuss the potential epistemic characteristics of MEAs; and how students‘ 

epistemic beliefs may contribute to the understanding of how students can be educated to 

become better modelers.   

Our findings suggest that development of modeling skills are affected by personal 

epistemology. Overall, the more sophisticated a student‘s beliefs are, the higher the level of 

modeling ability is attained, having controlled for effects of conceptual learning, gender and 

GPA. This suggests that development of modeling ability may be constrained if one‘s personal 

epistemology is naïve.  
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5.2 BACKGROUND  

5.2.1 Epistemic Beliefs and Modeling  

Epistemic beliefs characterize the way in which individuals view the world (the external, 

physical reality, themselves, or ideas) to gain knowledge (Maggioni and Parkinson 2008). The 

literature in the area of epistemology started with Perry‘s (1970) study of undergraduate 

epistemological beliefs and regained momentum with Schommer (1990). Whereas Perry and 

earlier works assumed that epistemic beliefs were unidimensional, beginning with Schommer 

(1990) personal epistemology was depicted with multiple dimensions.   

Schommer‘s description (1990) of personal epistemology involved independent beliefs 

conceptualized about the simplicity, certainty, and source of knowledge, as well as beliefs about 

the control and speed of knowledge acquisition. The hypothesized five dimensions of 

epistemology were as follows: 

1. Simple Knowledge: ranges from the belief that knowledge is best characterized as isolated 

bits and pieces to the belief that knowledge is best characterized as highly interrelated concepts; 

2. Certain Knowledge: ranges from the belief that knowledge is absolute and unchanging to 

the belief that knowledge is tentative and evolving;  

3. Innate Ability: ranges from the belief that ability to learn is given at birth to the view that 

ability to learn can be increased); 

4.  Quick Learning: ranges from the belief that learning takes place quickly or not at all to the 

belief that learning is gradual; and  
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5. Source of Knowledge (Omniscient Authority): ranges from the belief that knowledge is 

handed down by authority to the belief that knowledge is derived from reason. 

 

Schommer- Aikins suggested a 63-item questionnaire, often referred to as Epistemic 

Beliefs Questionnaire (EBQ), with multiple items written to assess each of the five proposed 

dimensions. Despite the theoretical dimensions, reported factor analyses yielded only the first 

four factors (Schommer, Crouse, and Rhodes 1992, Schommer 1990). The dimension "source of 

knowledge" (omniscient authority) was not a significant factor.  Although commonly used, EBQ 

has been criticized, because the factor analysis utilized only 12 subsets of the 63 items as 

variables rather than the individual items, suggesting an erroneous methodology potentially 

impacting the observed factor solutions (Hall, Snell, and Foust 1999). This failure resulted in 

follow up studies to test for similar factor structures. For example Qian and Alverman (1995) 

extracted factors of EBQ after eliminating the items related to source of knowledge, yet, only 

simple knowledge, certain knowledge, fixed ability, and quick learning survived. Furthermore, 

the dimensions of simple and certain knowledge were combined into a single factor. In another 

study, Hofer (2000) analyzed the factor structure of 32 items of EBQ and obtained all four 

factors individually.  
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Schraw, Bendixen, and Dunkle (2002) failed to extract these four factors using all of the 

63 items. Later, they reduced EBQ into 32 items, and called it the Epistemic Beliefs Inventory 

(EBI). Unlike EBQ, EBI reported five clean factors (also noted above) as (1) quick learning 

(learning occurs in a quick or not-at-all fashion), (2) simple knowledge (knowledge consists of 

discrete facts), (3) certain knowledge (knowledge is certain and not flexible), (4) innate ability 

(the ability to acquire knowledge is innate), (5) omniscient authority (authorities have access to 

otherwise inaccessible knowledge). The internal consistency coefficients for these factors ranged 

from 0.67 to 0.87. As a result, in this study, we preferred to use the EBI.   

Epistemological beliefs may differ for students in hard (e.g., mathematics and science) or 

soft (e.g., social science and humanities) domains. Some studies report that students hold more 

naive epistemological beliefs in hard domains; for instance, engineering students were reported 

to be more likely to believe in the certainty of knowledge than students in social science and 

humanities (Jehng, Johnson, and Anderson 1993), and medical students expressed more dualistic 

views of knowledge (knowledge is right or wrong, true or false) than psychology students 

(Lonka and Lindblom-Ylanne 1996). Hofer (2000) suggested that students regarded knowledge 

more certain, less justified by personal knowledge and first-hand experience in science than in 

psychology.  

The term naïve epistemic beliefs should not give the impression that some students are 

better or worse than others.  Rather, naiveté is related to the nature of the domain, for example, 

how structured it is (Hofer 2000, Buehl and Alexander 2001, Hofer and Pintrich 1997) or the 

traditional educational practices in a particular domain. In addition, based on the task, such 

naiveté can be helpful or hurtful. Buehl and Alexander (2001) concluded differences in 

epistemological beliefs are related to differences in the nature of domains, differences in the way 
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domains are taught, or differences in the nature of domains and instruction combined.  In 

particular, if the task is ill-structured (i.e., when information is complex and probabilistic, and 

the required tasks cannot be definitely predetermined), students holding less sophisticated and 

less flexible epistemic beliefs recall, learn, argue, and solve problems worse than students who 

hold sophisticated and flexible epistemic beliefs (Stathopoulou and Vosniadou 2007, Mason and 

Scirica 2006).  On the other hand, when tasks are well-structured, holding sophisticated 

epistemological beliefs can interfere with recall and comprehension (Braten, Stromso and 

Olaussen 2008).  Further, epistemic beliefs depend on age, education, and political affiliations of 

college students (Unger, Draper, and Pendergrass 1986). It is therefore possible for each student 

even within the same domain (here, engineering) to hold different epistemologies formed before 

starting their formal engineering education; and these initial beliefs can potentially intervene 

with the ability to learn and develop modeling skills. 

 

5.2.2  MEAs and Epistemology  

In this section, we state the case for linking MEAs to an epistemic pedagogy. Model Eliciting 

Activities (MEAs) are activities that are designed to help students link their prior knowledge 

while constructing new knowledge as they engage in solving the posed problem; thereby 

learning to identify engineering content, as well as implementing modeling skills.  They are built 

around different engineering content knowledge and topics, which are explored adhering as 

much as possible to constructivist principles.  Students are given opportunities to think, control 

and manage their thinking as they solve problems and perform modeling tasks, activating their 



115 

 

metacognitive abilities while working on an MEA.  Activities are designed for students to 

construct their knowledge either from given empirical evidence or let them link their prior 

knowledge to develop a better understanding of different engineering concepts.   

MEA implementation calls for teams that provide the student with an environment to 

work with other students interested in achieving diverse learning goals. Students engage in these 

activities on their own and within their team, linking their prior knowledge to reinforce what they 

already know. By working in teams, students not only become more aware of their actual 

behaviors in their group, but also potentially influence others.  Within a group environment, 

students may feel more comfortable in acknowledging their lack of knowledge to approach the 

problem at hand.  

MEAs may be helpful in evoking and constructing complex epistemology at an early 

stage and are valuable in helping students learn how to process new knowledge, particularly 

when the student does not already possess the full conceptual background. The ―real life‖ stories 

used to form the basis of the MEAs can help to reinforce the value of engineering practice and 

make it more accessible to students. The students, having been asked to write down their process 

instead of a single numerical answer, might also be prompted to ask themselves questions to 

induce better reflection. The multiple avenues to model a particular MEA can suggest to students 

that consensus on certain engineering problems is difficult; and thus teach them ways to achieve 

resolution.  
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The questions posed in the MEAs require reasoning, thus helping students to correct 

wrong assumptions, as opposed to textbook problems and examples which have a defined single 

answer and a presumed solution path. The open ended challenging questions potentially provide 

the students the opportunity to discuss and offer their solutions with team members, and 

acknowledge that their ideas can be mutually enriching. All these activities feed back into the 

epistemic belief systems. 

 

 

 

5.3 THEORY 

5.3.1 Impact of Epistemic Beliefs on Modeling Growth 

A series of articles investigating the impact of epistemic beliefs on learning has provided the 

underlying theory for this study.  In line with the purpose of examining the relationship between 

epistemic beliefs and engineering modeling skills, we focus on two questions that have not been 

addressed in preceding studies.  
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The first is whether or not epistemic beliefs are related to the development of engineering 

modeling skills, when effects of other critical variables such as age, education, gender, and 

knowledge are controlled. We hypothesized that epistemic beliefs, apart from other social and 

personal variables (King and Kitchener 1994, Kohlberg 1984, Kuhn 1991, Piaget 1965), can 

significantly influence the development of such abilities. The second question is concerned with 

the specific dimensions of epistemic beliefs and how each dimension relates to stages of 

modeling. We subsequently construct our theory related to these dimensions.  

5.3.1.1 Quick Learning  

Findings (based on reading a text) in the epistemic literature suggest that students who believe 

learning must occur quickly or not at all tend to oversimplify information and perform poorly 

(Buehl et al. 2001).  They tend to make conclusions too quickly, neither providing themselves 

with sufficient time nor making several iterations to understand the material. Such students 

tended to draw oversimplified conclusions from the text (after controlling for verbal ability, prior 

knowledge, and gender), and did poorly on a comprehension test (Buehl et al. 2001). Gifted 

students were found to believe that intelligence is fixed and that learning occurs quickly or not at 

all, in accordance with their intellectual gift.  

Oversimplification or exclusion of information may be closely linked to evaluation of 

data. If the student is quick in reading the text, it is likely that some of the important information 

will be left out, or some of the redundant information is mistaken as important and included in 

their model. Therefore, we surmise that there may be two modeling stages likely to be less 

developed when a student believes in quick learning: Review and Evaluation of Data (RED), and 

Construction of the Model (CAL). Based on the information that is analyzed, or data that is 
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included in the model, a student may carry out the calculational model she developed in the 

correct form, and develop the right results; but, overall, the input to the modeling process will be 

influenced by the level of quick learning.  Therefore, we posit the following hypotheses.  

 

H1a: Students believing learning occurs quickly or not at all will develop lower 

modeling skills to review and evaluate data (RED) compared to students who do not.   

 

H1b: Students believing learning occurs quickly or not at all will develop lower 

modeling skills to construct a mathematical model of the system (CAL) compared to students 

who do not.   

5.3.1.2 Certain Knowledge  

Similar to quick learning, students who believe knowledge is certain tend to draw more absolute 

and definitive conclusions than students who regard knowledge as more tentative (Buehl et al. 

2001). On the contrary, when students believe in uncertainty of knowledge, they are more likely 

to derive expressions that are inconclusive on a controversial topic (Kardash and Scholes 1996). 

Students who view knowledge as certain are more likely to misinterpret conclusions from their 

results and they tend to limit further methods to analyze the data and calculate performance 

criteria. A proper model should acknowledge the uncertain nature of the real world; and 

therefore, it is preferred that a student would tend to believe in the uncertainty of knowledge to 

convey it in a constructed model In addition, too much uncertainty can be expected to have a 

reverse effect on the engineers. 
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Certainty of knowledge, therefore, is likely to influence the modeling stages, where the 

student is expected to conduct analyses based on information received or obtained, such as the 

stage of Review and Evaluation of data (RED), as well as the uncertainty analysis stage of 

Calculational Modeling (CUS). If the student believes that the data received do not hold 

uncertainty, certain engineering concepts (e.g., random variable, variation, or statistical 

distribution) may be difficult to comprehend during the data evaluation stage. Similarly, when a 

student believes that the output of a model is certain, it is less likely that he will follow up with 

sensitivity analysis. We put forward the following hypotheses regarding certain knowledge. 

 

H2a: Students believing knowledge is certain will develop lower modeling skills 

relative to constructing a mathematical model of the system (CAL) compared to students who 

do not.   

 

H2b: Students believing knowledge is certain will develop lower modeling skills to 

carry out calculations and consider the uncertainty of a model of the system (CUS) compared 

to students who do not.   
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5.4 ANALYSIS  

 

5.4.1 Analysis of Epistemological Impact: Sophomore Year Change 

Similar to the analysis of self-efficacy, to analyze changes that took during the sophomore 

academic year, we used a growth curve model. Again, all models were estimated with full 

maximum likelihood using PROC MIXED in the SAS statistical package, Version 9.2 (Littell, 

Milliken, Stroup and Wolfinger, 1996). Our analyses focused on the influence of between-

subject factors (i.e., simple knowledge, omniscient authority, fixed ability, certain knowledge 

and quick learning) on linear and quadratic time as within-subject changes in growth of modeling 

skills.  An unstructured error covariance matrix was specified for each of the models (Long and 

Pellegrini, 2003). The two unconditional multilevel models (means model, linear and nonlinear 

growth models) were given in section 4.5.1.1. The results repeat for measuring the impact of 

epistemic beliefs, and were again used to build the foundation for subsequent analyses.   

5.4.1.1 Conditional Nonlinear Growth Model  

After selecting the unconditional nonlinear growth model with random effects, we added 

student-level predictors, i.e., epistemic dimensions (specifically, simple knowledge – SK, 

omniscient authority – OA, certain knowledge – CK, innate ability – IA, and quick learning – 

QL) to further investigate whether the intercepts and linear and nonlinear slopes of modeling 

performance growth vary as a function of these variables. Results from these models can then be 

used to test the hypotheses. The growth models are as follows.  
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Level 1:                     ,2

210 ijkjkjkjkijk eMonthMonthY  
   

where k=1,….7 for each modeling stage.
 

Level 2:                 

,00504030201000 jkkkkkkkjk QLIAOACKSK                                                     
         

.11514131211101 jkkkkkkkjk QLIAOACKSK    

As in the unconditional models, only the linear and quadratic terms of the time variable 

(i.e., months and squared months) were included in the level 1 equations. However, in the level 2 

equations, we included all the epistemic dimensions as the student-level predictor. To ensure that 

the fixed effects can be interpreted properly, we centered the student level predictors at mean 

zero (Singer 1998). Thus, in this model, k00 represents the average intercept in the individual 

growth model, whereas k10 represents the average slopes of the linear term. The proposed 

hypotheses were tested by examining the coefficients in the level 2 equations corresponding to 

the student-level variables. For example, the signs and significance of k01  and k11 reflect the 

impact of student‘s epistemic belief on the modeling level and growth trajectory of the modeling 

skills, respectively. The results are reported in Table 18. 

The table demonstrates that the intercepts of all models are significant, as well as the 

months and months squared. In addition the level of epistemic beliefs that the students have 

shows itself on the growth level and at some instances, also the growth trajectory. The intercept 

of each model demonstrates the average score of a student after four months, when the impact of 

epistemic dimensions is taken into account.  
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Table 18. Growth models with epistemic beliefs- sophomores 

 

Longitudinal Growth in Modeling with Epistemic Beliefs- Sophomore Year 

Predictors             RED 

 

Est. (std.err) 

CON 

 

Est. (std.err) 

EPS 

 

Est. (std.err) 

CAL 

 

Est. (std.err) 

CUS 

 

Est. (std.err) 

RE 

 

Est. (std.err) 

VV 

 

Est. (std.err) 

Intercept 3.85(0.14)*** 3.73(0.15)*** 3.52(0.16)*** 3.48(0.21)*** 2.75(0.17)*** 2.60(0.16)*** 0.93(0.20)*** 

Months 0.24(0.05)*** 0.26(0.06)*** 0.18(0.06)*** 0.24(0.07)*** 0.22(0.06)*** 0.16(0.05)** 0.21(0.07)** 

Months
2
 -0.07 (0.01)*** -0.07(0.01)*** -0.02(0.01) -0.06(0.01)*** 0.02(0.01)* 0.02(0.01)* -0.04(0.01)** 

Innate Ability -0.48 (0.15)*** -0.36(0.15)** -0.28(0.17)* -0.48(0.23)** -0.08(0.18) -0.30(0.16)* -0.05(0.21) 

Quick Learning -0.38(0.16)** -0.03(0.16) -0.09(0.17) -0.37(0.23)* 0.13(0.19) -0.08(0.17) 0.29(0.22) 

Omniscient Authority 0.18(0.13) -0.04(0.13) 0.12(0.15) 0.24(0.2) 0.12(0.16) 0.13(0.14) -0.07(0.19) 

Simple Knowledge -0.25(0.14)* -0.02(0.14) -0.39(0.15)** -0.36(0.20)* 0.02(0.17) -0.02(0.15) -0.23(0.19) 

Certain Knowledge 0.36(0.16)* -0.02(0.16) -0.03(0.18) 0.16(0.24) -0.16(0.19) 0.12(0.18) -0.28(0.23) 

Innate Ability x Months 0.10(0.06) 0.12(0.07)* 0.04(0.06) 0.11(0.08) 0.02(0.07) -0.05(0.06) 0.01(0.08) 

Quick Learning x 

Months 
0.07(0.06) 0.02(0.07) 0.01(0.07) 0.03(0.09) -0.03(0.07) 0.03(0.06) 0.08(0.08) 

Omniscient Authority x 

Months 
0.08(0.05) 0.05(0.06) 0.11(0.06)* 0.08(0.07) 0.08(0.06) 0.12(0.05)* -0.01(0.07) 

Simple Knowledge x 

Months 
-0.07(0.05) -0.10(0.06) -0.05(0.06) -0.08(0.07) -0.01(0.06) 0.03(0.05) -0.02(0.07) 

Certain Knowledge x 

Months 
-0.05(0.06) -0.08(0.07) -0.02(0.07) -0.02(0.09) -0.05(0.07) 0.05(0.06) -0.08(0.08) 

 

 

 

Fit Statistics 

       

-2 Log Likelihood 480.9 525.8 547.7 627.7 528.0 527.3 599.3 

P-Value p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 

        

***denotes p<0.01; **denotes p<.05; *denotes p < 0.10. Sample size is 39, with four time points included in the measurement. 
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As expected in hypotheses H1a and H1b, it was suggested that the quick learning (QL) 

dimension should influence the modeling stages that relate to in depth evaluation of data and 

information. In two of the models, review and evaluation of data (RED) and constructing a 

mathematical model (CAL), the particular modeling processes are significantly and negatively 

influenced by the student‘s beliefs in ‗quick learning‘. Specifically, when a student believes that 

learning should occur quickly, the student is less likely to spend time on the tasks, resulting in 

lower improvement over these stages.  

It was posited that certain knowledge (CK) would influence the modeling processes that 

relate to dealing with uncertainty in information (CUS) and mathematical modeling (CAL). The 

information or the data given to student can include multiple unknowns, and some randomness, 

but if the student believes that there is no flexibility in the truth of information, he is less likely to 

evaluate data recognizing the randomness, test the results of a mathematical model for 

sensitivity, and possibly test for validation and verification. Results fail to support hypotheses 

H2a and H2b. However, we find a significant effect on review and evaluation of data (RED). It is 

likely that the uncertainty in the model stems from data, and when students are not educated 

about sensitivity analysis, uncertainty is likely handled though data analysis.    

Simplicity of knowledge (SK), a dimension that measures to what extent a student prefers 

factual information to theory, was claimed to be important in modeling stages that are rather 

involved where simple facts vs. complex theories can be implemented. This type of complexity 

can play a role in understanding the data that is provided (RED), setting the goals for a system 

(EPS), and working on the mathematical calculations of the problem (CAL, CUS), as posited in 

H3a- H3d. The models indicate support for the hypotheses for the first three models, but not the 

last model (CUS). One possible explanation for lack of a relationship between simple knowledge 
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(SK) and modeling calculations and sensitivity analysis (CUS) is that a student may be able to 

carry out calculations as an automated process in such a way that it does not depend on his way 

of thinking. For example, whether a student prefers facts or not, there is only one approach to 

carry out a regression or solve a particular equation once an engineering model is constructed. 

Innate ability (IA) was posited to play a significant role in conceptual changes and one‘s 

ability to draw conclusions from a text. Eventually, innate ability influences a students‘ 

motivation to work because it controls the extent to which a student believes he can achieve his 

goal by just trying. In other words, it is a controlling factor of self-efficacy. As a result, we 

conjecture that it is an overarching factor that controls one‘s motivation; hence, innate ability can 

potentially influence all the modeling stages in H4. We found that for five of the seven modeling 

stages innate ability (IA) was, in fact, a main effect all with negative coefficients.  

Two modeling stages, carrying out calculations (CUS) and validation and verification 

(VV), had no epistemic dimensions in their models.  For the former, CUS, the same explanation 

that held in simple knowledge also applies; it is possible that the student follows a routine of 

mathematical steps to calculate the mathematical model, creating low variation in the dependent 

variable for this data. The extent of human error in calculation is lessened due to the use of 

software and computers for calculations.  The latter, validation and verification (VV), was not 

observed with sufficient variation to suggest that epistemic beliefs contribute to the outcome; 

however, because little validation and verification is covered during the sophomore year in 

industrial engineering, it is still plausible for epistemic beliefs to be significant under other 

conditions. 
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Finally, as posited in hypothesis H5, we did not expect a significant effect of omniscient 

authority (OA) to appear in any of the models.  From Table 3 where the average epistemic 

beliefs were reported, it is clear that engineering students from all three cohorts were above the 

theoretical mean indicating that engineering students have higher reliance on authority.  

However, by design MEAs have minimal instructional guidance, so this dimension may not be a 

factor for this particular experiment. This statement can be supported since there was no 

evidence to suggest that omniscient authority was a factor in the models to measure modeling 

skill development when MEAs are implemented; hence the hypothesis is supported. 

Based on the intercepts, sophomore students after four months scored highest on review 

and evaluation of data (RED). The weakest model is the one for validation and verification stage 

(VV) of the modeling process. This is not a surprise, as instruction related to validation and 

verification in modeling at the sophomore level is minimal. 

In terms of growth rate, the students have the highest linear growth coefficient in 

conceptual model development (CON). Identifying the boundaries on the model, stating the 

assumptions is a practice that is well coined in the sophomore semester. The lowest rate of 

growth is observed for results evaluation (RE), implying there is not much change in this 

modeling stage over the two semesters.  
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5.4.1.2 Impact of Gender, MEA Difference and CGPA  

We tested additional models (not shown) to determine whether modeling skill change is a 

function of gender, specific MEA (Tire Reliability and CNC Machine) or CGPA. These 

variables were found not to significantly contribute in a systematic manner to the models. 

Similar to the self-efficacy models tested, effects of these variables vary.  In addition, we 

conducted exploratory analyses to determine if interactions of these variables and the epistemic 

dimensions (e.g., Gender x Certainty of Knowledge) impacted the model. None of the specified 

interactions approached significance; and accordingly, we did not include these variables so as 

not to overcrowd the final models. We did keep them in the analysis of sophomore senior 

differences, to demonstrate the non-consistent pattern of effects on modeling.   

 

5.4.2 Analysis of Sophomore and Senior Student Differences  

In addition to the growth analysis, we conducted a means analysis similar to the analysis of self-

efficacy to observe differences in modeling skills at the senior and sophomore levels. We tested 

the hypotheses given in the theory section using ordinary least squares regression, with each 

epistemic dimension score as independent variables and the modeling scores (from both the Tire 

and CNC Machine MEAs combined together) being the dependent variables. The modeling 

scores were again centered on the mean.  

Similar to the growth models, the epistemic dimensions were coded as dummy variables 

(i.e., students were coded as being either greater or lower than the median for that particular 

dimension). The resulting regression equation is the following. 
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In the model, the variable Yk stands for each of the modeling stages (where 

k=1,2,…7, respectively is RED, CON, EPS, CAL, CUS, RE and VV). We differentiate the 

effect of time with a dummy variable, Cohort, that identifies whether the student is from 

cohort III, a senior, otherwise, the student belonged to cohort II, second semester 

sophomores. As mentioned the five dimensions of epistemology (simple knowledge (SK), 

certain knowledge (CK), omniscient authority (OA), innate ability (IA), and quick learning 

(QL)) were coded as binary variables. The control variables were gender (binary with 1 = 

female), MEA (binary with 1 = Tire Reliability MEA), CGPA (continuous variable).   

The comparison was conducted using cohort II and cohort III students; and the 

regression models are given in Table 19. 
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Table 19. Regression model – comparison of sophomores to seniors with epistemic beliefs

 

Regression model – Comparison of Cohort II (Sophomore Level) to Cohort III (Senior Level) 

Predictors Model 3: 

RED 

 

Est. (std.err) 

Model 4: 

CON 

 

Est. (std.err) 

Model 5: 

EPS 

 

Est. (std.err) 

Model 6: 

CAL 

 

Est. (std.err) 

Model 7: 

CUS 

 

Est. (std.err) 

Model 8: 

RE 

 

Est. (std.err) 

Model 9: 

VV 

 

Est. (std.err) 

Intercept 3.38 (0.64)*** 4.07(0.67)*** 4.08(0.56)**** 3.52 (0.82)* 2.98 (0.54)*** 1.88 (0.77)** 2.46 (0.83)** 

Cohort (Seniors) 0.55 (0.19)** 0.72 (0.20)*** 1.41(0.17)*** -0.01 (0.25) 0.64(0.16)*** 0.97 (0.23)*** 0.98 (0.25)** 

Simple Knowledge -0.22(0.20) -0.13(0.21) -0.21(0.17) -0.39 (0.24)* -0.05(0.17) 0.07 (0.24) -0.27(0.26) 

Quick Learning -0.39 (0.21)* -0.37 (0.22)* -0.32(0.18) -0.81 (0.27)** 0.11(0.17) -0.50 (0.25)** 0.06(0.27) 

Omniscient Authority 0.02 (0.19) 0.12 (0.20) -0.04 (0.17) -0.12 (0.25) 0.02(0.16) 0.19 (0.23) 0.35(0.25) 

Innate Ability -0.43(0.19)** -0.33 (0.20)* -0.50 (0.16)** -0.38 (0.24)* 0.02(0.16) -0.67 (0.22)*** -0.22(0.24) 

Certain Knowledge      0.17 (0.20) 0.33 (0.24) -0.30 (0.18)* 0.14 (0.26) 0.23(0.17) 0.03 (0.25) 0.24(0.27) 

Gender (Female) -0.01(0.22) -0.01 (0.23) -0.04 (0.19) 0.13(0.28) -0.33(0.18)* 0.17 (0.27) -0.00 (0.29) 

CGPA 0.25 (0.21) -0.02 (0.22) 0.05 (0.18) 0.34(0.28) 0.28(0.18) 0.38 (0.26) -0.22(0.28) 

MEA (Tire) -0.10(0.18) -0.36(0.19)* -0.22 (0.15) -0.69 (0.23)** 0.09(0.15) 0.25 (0.21) -0.61(0.23)** 

        

 

 

       

R
2
 0.16 0.16 0.41 0.19 0.16 0.22 0.15 

F-value 3.07 3.24 11.57 3.83 3.22 4.66 2.96 

Degrees of Freedom 9 9 9 9 9 9 9 

P-Value p<0.01 p<0.001 p<0.001 p<0.001 p<0.001 p<0.001 p<0.01 

***denotes p<0.01; **denotes p<.05; *denotes p < 0.10. 
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When we investigate the impact of the different epistemic dimensions, we again observe, 

as hypothesis H5 posited, that omniscient authority has no significant effect on any of the 

models.  In particular, we find that the effects of quick learning (QL) appear in several of the 

models, and that innate ability (IA) is also prevalent in several of the models.   It does appear that 

these two variables, coupled with the prior results with the growth models, do influence learning 

of modeling abilities.  

Although the regression models were all significant as measured by the F-value, their R
2
 

values were relatively low with the exception of the EPS model (R
2
 = 0.41). This value is 

relatively a decent value. This suggests that there is indeed a strong change in being able to 

identify the goals of a given exercise from the sophomore to senior year. It is possible that this 

improvement is correlated with increasing experience and feedback students received over the 

years in their education. Being able to identify the goals is practiced in each exercise, project or 

homework that a student completes, regardless whether it involves a model or not. And if 

students fail to correctly identify the goal, they receive negative feedback through their grades. 

Therefore, students have many more chances to practice goal identification compared to the 

other modeling stages. This might imply the strength of modeling skill development for seniors 

in comparing the two cohorts.   

The low R
2
 values for the other modeling stages are somewhat expected as the 

independent variables were categorical in nature.    With that said; the impact of epistemology on 

the models does warrant discussion as there were a few similarities to the growth models. The 

two commonly significant effects were the intercept, and resembling the Months variable in the 

growth model, the cohort variable. The coefficients for the cohort variable were positive and 
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significant with the exception of the CAL model, suggesting that growth did occur in the 

modeling stages from sophomore to senior year. The highest cohort coefficient is in the 

Establishing the Performance Criteria (EPS) dimension. A student with sophisticated epistemic 

beliefs could potentially reach over 5.4 points out of the maximum level six (4.08+1.41+ impact 

of epistemic dimension), which suggests that for this stage of modeling students are well 

developed by the end of the sophomore year. The least significant improvement based on 

seniority level was observed for Development of Calculational Model (CAL), and despite 

insignificant, reversing the pattern, had a negative cohort coefficient, implying that sophomores 

might be better in this area. The reason why this reversal effect is taking place might be related 

to the MEAs requiring statistical knowledge, and statistics knowledge is fresher in the minds of 

sophomores (due to curriculum and instruction), compared to the seniors.  

For the control variables, gender effects are only present and to the disadvantage of 

female students for the model Calculations and Sensitivity Analysis (CUS). It is recognized in 

the mathematics literature that females tend to have lower self-efficacy than males. This could 

possibly be the reason for the presence of this variable in this model. Cumulative GPA was not a 

significant effect in any of the models, which is possible since the assessment of modeling in this 

experiment was independent of the GPA (i.e., the CGPA was based on the semester prior to the 

MEA implementation). Finally, the Tire MEA appeared in three of the models with a negative 

coefficient indicating that the participants found this MEA to be more challenging than the other 

MEA.  
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5.5 SUMMARY OF STUDY 2 

The role of epistemological beliefs of learning is both subtle and ubiquitous. This study is aimed 

at understanding the impact of students‘ epistemic perspectives on their modeling skills. In doing 

so, we provided a summary of the epistemology literature and theorized the impact of epistemic 

beliefs on engineering modeling. We collected data from sophomore and senior engineering 

students about their modeling abilities and epistemic beliefs by employing MEAs. The results 

indicate that the majority of engineering students tested are still at a naïve epistemic level across 

the five dimensions measured.  

The statistical information provided by the factor analysis used in this study proved that 

the EBI, despite lower reliability levels, was capable of illuminating epistemological beliefs from 

participants.  While actual factor loading values differed from the original results reported in 

Schraw, Dunkle and Bendixen (2002), the obvious similarity of factor loadings (i.e., items to 

particular factors) demonstrates that the theories behind personal epistemological beliefs can be 

considered reliable and reproducible. 

Table 20 summarizes the overall results of the study. The results demonstrate that the 

students are indeed negatively influenced on modeling ability development when they have naïve 

ways of thinking in simple knowledge, certain knowledge, innate ability and quick learning 

dimensions. Innate ability was one of the most influential beliefs for students, influencing five 

out of seven stages for the sophomores and seniors. One possible explanation for these results is 

that students who come to engineering are often more talented, particularly in mathematics, and 

they may unconsciously developed the idea that one can either ―get it‖, or not. 
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Table 20. Summary of All Hypothesized and Observed Effects for Epistemic Beliefs 

                                                                Modeling Stages 

Epistemic 

Dimension 

 RED CON EPS CAL CUS RE VV 

Quick 

Learning 

Hypothesized 

Effects (H1) 

(-)   (-)    

Sophomore Effect (-)   (-)    

Senior 

Effect 

(-) (-)  (-)  (-)  

Conclusion 

 

Full   Full    

Certain 

Knowledge 

Hypothesized 

Effects  (H2) 

   (-) (-)   

Sophomore (+)       

Senior    (-)     

Conclusion 

 

   None None   

Simple 

Knowledge 

Hypothesized 

Effects (H3) 

(-)  (-) (-) (-)   

Sophomore (-)  (-) (-)    

Senior     (-)    

Conclusion 

 

Partial  Part. Full None   

Innate 

Ability 

Hypothesized 

Effects (H4) 

(-) (-) (-) (-) (-) (-) (-) 

Sophomore (-) (-) (-) (-)  (-)  

Senior  (-) (-) (-) (-)  (-)  

Conclusion 

 

Full Full Full Full None Full None 

Fixed 

Ability 

 No effects found 

 

Note: Epistemic dimension omniscient authority did not have any significant effects on any stage, at both 

sophomore and senior levels. The sign (-) stands for the negative coefficient.  
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Innate ability has been shown to be in unison with quick learning, and students who 

believed in quick learning received lower scores compared to their counterparts, for Review and 

Evaluation of Data (RED) and Creating a Calculational Model (CAL). Several unanticipated 

effects were also found. For example, certainty of knowledge (CK) influenced the Review and 

Evaluation of Data (RED) model. Finally, students preferring factual information (i.e., simple 

knowledge (SK)) tended to do poorly in Review and Evaluation of Data (RED), setting the goal 

of the model (i.e., Establishment of Performance Criteria (EPS)), and Calculational Model 

Development (CAL). This information should not be surprising given that a student who is 

focused on numerical information would likely not enjoy MEA exercises, preferring textbook 

examples.  Omniscient authority (OA) was not a significant factor, since MEAs are rather 

autonomous with little instructor involvement. Still, based on the conversations with the 

students, we can see that during the implementation of MEAs, students exhibited a need for their 

instructor to be a guiding authority figure to help supply factual information as well as general 

guidance on methodology. They expressed frustration with the not knowing what to do with 

some of the given information. The implications of these findings, as well as the suggesting for 

practitioners and future work is discussed in the overall summary, section 8.1. 
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6.0  STUDY 3: IMPACT OF METACOGNITION ON GROWTH OF MODELING 

6.1 MOTIVATION 

 

Suppose a student is asked to come up with example engineering scenarios for which a particular 

model can be applied.  The first two or three examples may easily come to mind; after that, the 

task becomes difficult and the student has to search her memory for additional examples.   What 

can an educator conclude from the difficulty the student experienced in coming up with 

additional examples? Are there no additional ways to apply the model to real life?  Is the 

student‘s memory for engineering problems poor and her recall is problematic?  Or does the 

student lack the necessary engineering content knowledge relative to the model? Each 

explanation is plausible and provides a different perspective of the metacognitive link to 

engineering modeling, i.e., one‘s monitoring of her memory and actions. 

Relative to engineering, teaching a student to become a good modeler requires an 

understanding of the antecedents and consequences of the process itself, including important 

behavioral and cognitive influences. In this study, we begin by proposing that the metacognitive 

characteristics of engineering students can influence the way they approach and model real life 

systems.   
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We suggest that an analysis of the metacognitive thinking undertaken in an educational 

environment will lead to enhanced understanding of the within and between-student differences 

in learning.  We measure students‘ metacognitive characteristics on four dimensions: (1) self-

checking, (2) awareness, (3) planning and (4) cognitive strategy. The rest of the study provides a 

summary of the research in metacognition, and hypothesizes how metacognition influences 

modeling. We detail our methodology, and report the findings.   

 

 

6.2 BACKGROUND  

6.2.1 Metacognition and Metacognitive Inventories 

Metacognition can be described as a series of thought processes related to planning, monitoring, 

evaluating and regulating function. According to Flavell (1976), metacognitive knowledge 

consists of what one learns through experience about cognitive activities; and this knowledge can 

be categorized into personal, task, and strategy variables. Flavell further notes that a 

metacognitive knowledge base is critical for successful learning; and that a good learner is one 

who has ample knowledge about the self as a learner, about the nature of the cognitive task at 

hand, and about appropriate strategies for achieving academic goals.   
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Brown (1987) suggested metacognition had two categories: knowledge of cognition (or 

awareness) and cognitive strategy (which involves reflection on cognitive abilities and activities 

during the accomplishment of a task); and regulation of cognition (referring to the mechanisms 

used; e.g., planning, self-checking activities as well as evaluating activities).  

Exhibiting metacognitive behaviors implies that one must demonstrate knowledge about 

herself and her thinking processes; and furthermore, manifest that she can control her thinking 

process. Studies suggest that cognitive strategies and self-checking behaviors are part of a series 

of metacognitive behaviors that can enhance learning (Yap 1993, O‘Neil et al. 1997). According 

to Brown, better learners are equipped with a high degree of metacognitive awareness and are 

able to strategically monitor and evaluate their learning activities.  For students, being 

metacognitive means to be aware of the information needed to accomplish a task, concerning 

one‘s attitude and attention to learning new or complex tasks, and the knowledge about the steps, 

procedures and strategies on how certain tasks are done.  Knowing why certain strategies work, 

when to use them, and why one strategy is better than another are also cues that students are 

metacognitive (Marzano 1998).  Figure 14 provides a list of possible metacognitive strategies, as 

given by Pulmones (2010), which have been adapted for the MEA tasks.  
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METACOGNITIVE STRATEGIES FOR STUDENTS 

 Identifying ―what you know and ―what you don‘t know‖ 

 Talking about thinking 

 Keeping a thinking journal 

 Planning and self-regulation  

 Debriefing the thinking process 

 Self-evaluation 

 Mind mapping (use of concept maps) 

 Writing to learn (expository and expressive writing) 

 Illustrating and drawing 

 Brainstorming 

 Generating questions and other inquiry strategies 

 Portfolio-based assessment 

 

Figure 14. Metacognitive strategies for students 
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6.2.2 Metacognition and Model Eliciting Activities (MEAs)   

MEAs are activities that are designed to help students link their prior knowledge and construct 

new knowledge as they engage in a modeling exercise, thereby helping them to learn the 

identified topics (Lesh, Lester, and Hjalmarson, 2003, Chalmers 2009, Chan 2008).  MEAs can 

be constructed around various engineering topics and force students to think, control and self-

assess their thinking as they perform modeling tasks, activating their metacognitive abilities.  

Students engage in these activities both on their own and within their team, linking their prior 

knowledge to reinforce what they already know.  Following the modeling activity, students 

reflect on their thinking about how they modeled the activity.  Hence, as students engage in an 

MEA, they engage in each of the four dimensions of metacognition, namely, awareness, self-

checking, cognitive strategy, and planning.  We have provided a list of the metacognitive tasks 

adapted from Pulmones (2010) for the dimensions of O‘Neill and Abedi (1996) in Figure 14; 

Figure 15 gives a list of the expected behaviors in the four major dimensions of metacognition.  
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Metacognitive 

Dimension  

Possible Metacognitive Behaviors  

Cognitive 

Strategy 

 Thinking / deciding on the multiple ways of solving the MEA 

 Comparing the different ways of modeling the problem and deciding on 

which one(s) to pursue 

Planning   Choosing and writing the purpose/ goal of the model, or the performance 

criteria 

 Listing the tasks to be carried to get to the performance criteria 

 Identifying how to do the search functions for the information that is 

necessary to build the model 

 Planning on the schedule / time for carrying out the modeling tasks 

Awareness   Realizing the ongoing thinking processes that take place during modeling 

 Identifying the reasons for the thinking process that is taking place and 

relationship to the knowledge attained  

Self-checking   Evaluating the performance criteria to decide if the purposes of constructing 

the model are met 

 Reflecting on modeling strategies that worked and did not work 

 Assessing how the developed model can be applied in other learning 

context 

 Rewarding self after constructing the model 

 

Figure 15. Metacognitive dimensions and example manifestations 
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MEAs provide students with opportunities to practice their metacognitive abilities.  The 

difficulty of modeling could affect students‘ metacognitive behavior and learning; further, the 

time allotted for the completion of tasks could also influence students‘ demonstration of their 

metacognitive behaviors. If students can reflect on their thinking as they plan, monitor and 

evaluate their learning, they can influence the development of modeling abilities.  In the next 

section, we develop more specific predictions as to how students‘ metacognition is linked to 

modeling skill development.  

6.3 THEORY 

 

6.3.1 Impact of Metacognition on Modeling Skill Development  

Of special importance is the way in which metacognition adds to modeling skill development. 

The dimensions of metacognition, as enumerated in the measurement instrument we used are (a) 

awareness, (b) self-checking, (c) cognitive strategy and (d) planning. We describe each of these 

dimensions below and hypothesize how we expect them to influence the development of 

modeling ability. 
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6.3.1.1 Awareness 

Awareness implies that one is conscious of her ongoing thinking processes (O‘Neil and Abedi 

1996). Awareness is a higher order and vague construct, and is different from the other 

metacognitive dimensions in that it is an ability to execute metacognitive monitoring along with 

working on the task itself. It is not uncommon that a student, focusing on the physical or 

cognitive efforts of a task, fails to take time to separately consider the questions that are related 

to understanding the thinking process itself. Therefore, even though one would expect 

metacognitive awareness to execute properties that can help develop modeling skills, in reality, 

we expect that awareness will be less influential, or will not be observed as a significant factor.  

Hence, the first hypothesis: 

 

H1: Awareness does not have an observable impact on the development of engineering 

modeling skills at the undergraduate level.  

 

6.3.1.2 Self-Checking  

Self-checking ability implies students‘ ensuring that the work is carried out according to the 

goals of the study and is correctly conducted. One would expect that this would be key to 

developing better modeling skills, as checking one‘s work on a regular basis is not only making 

sure the task is completed to expectations, but is also providing instant feedback about what is 

learned and how it is working. In fact, such ability should be the key in developing modeling 

abilities. Therefore, our second hypothesis is: 
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H2: Higher self-checking ability results in development of better engineering modeling 

skills compared to students with lower ability to self-check.  

 

6.3.1.3 Cognitive Strategy  

Cognitive strategy is defined as the ability to use multiple thinking techniques or strategies to 

model a system.  This ability enables the student modeler in several ways. First, due to 

awareness of multiple techniques, the student can have more and better ways to construct the 

mathematical model. Second, these multiple methods can enable the student to see more 

scenarios related to the model and double check the results using different methods. However, 

without sufficient domain knowledge of multiple techniques, this may not occur.  For example, if 

a student only knows how to draw histograms to decide on the fit of a distribution, then she is 

likely to be limited in the cognitive strategies she can use to approach a problem. In contrary, 

once the student learns about chi-square goodness of fit tests, she is more likely to double check 

the distribution using the two techniques.  

Therefore, we expect that the cognitive strategy will become a moderator of the effect of 

modeling experience, or time, on development of modeling ability. Specifically, we expect that 

the higher the cognitive ability of the student, the better she will be in modeling; and this effect 

will be more pronounced for more experienced students.  This leads to our third hypothesis, 

which has two parts: 

 

H3a: Higher cognitive strategy results in the development of better modeling skills 

compared to students with lower cognitive strategy.  



143 

 

 

H3b: Cognitive strategy positively moderates the impact of experience on the development 

of modeling skills. Specifically, the higher the cognitive strategy of a student and the 

more experienced he is in modeling, the higher is the modeling growth.   

 

6.3.1.4 Planning  

Planning stands for one‘s attempt to first understand a task before working on it. In the modeling 

context, planning would refer to understanding what needs to be done and how it should be done, 

i.e., planning the actual modeling process itself.  When a student is a better planner, it is likely 

that she will be better in allocating the right amount of time and tasks to the process, resulting in 

better outcomes. In return, a positive outcome would itself feed the learning process.  

 

 

Similar to cognitive strategy, however, planning is also likely to become more effective 

over time. However, without testing how a plan works, or actually experiencing the task a few 

times, even if planning occurs, it might not be effective. Specifically, we expect that the better 

the planning ability of a student, the better she is in modeling, and that this effect is more 

prominent for more experienced students.  This leads to our last hypothesis, which also has two 

parts: 

 

H4a: More advanced planning results in the development of better modeling skills 

compared to students with lower planning abilities.  
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H4b: Planning positively moderates the impact of experience on the development of 

modeling skills. Specifically, the more advanced planning ability and more experience, 

together, will result in higher modeling ability.  

 

6.3.2 Metacognition and MEAs 

Using the descriptions of the modeling exercises, Figure 16 and Figure 17 provide examples of 

the metacognitive properties of MEAs.  A description is given of the metacognitive activities that 

were observed while students solved the Tire and CNC Machine MEAs. 
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Metacognitive Activity 

 

 

Description (related metacognitive dimension) 

Nature, Purpose and 

significance of Model 

Eliciting Activity 

Students were asked to determine if the tires from different 

manufacturing batches are reliable.  Students first determined what it 

means to be reliable (self-checking), and then decided on how to 

measure reliability (cognitive strategy and self-checking).  Students 

determined the purpose of the exercise, and then decided on what 

information, data and techniques to use to analyze data (planning).  

Determination of 

Performance Criteria  

Using the analysis of the data, students determined what quantities 

to measure and use to identify reliability (cognitive strategy). This 

involved thinking about what students know (self-checking, 

awareness), how they can use what they know (planning), and how 

they can interpret what they derive (self-checking).  

Analysis, Modeling and 

Reporting 

Using analysis, students identified the distributions of the data, and 

whether the variance in the data is small enough to consider the 

batch reliable (cognitive strategy, self-checking).  In teams, students 

discussed how to model the problem (self-checking).  Students 

verbalized and wrote about their thinking (planning, self-checking).  

  

Figure 16.  Examples to metacognitive activities during the Tire MEA 
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Metacognitive Activity 

 

 

Description 

Nature, Purpose and 

significance of Model 

Eliciting Activity 

Students were asked to decide if the investment into a new CNC 

machine is justifiable (awareness, self-checking). Students 

determined from a given data set which machine is better, and 

whether the investment was worthy (planning, cognitive-strategy).  

Determination of 

Performance Criteria  

Using the analysis of the data, students determined whether the new 

machine was better than the current one (cognitive strategy). This 

step, again, involved thinking about both what students know 

(awareness), how they can use what they know (planning), and how 

they can interpret what they derive (self-checking).  

Analysis, Modeling and 

Reporting 

Using analysis, students identified the distributions of the data (self-

checking), tested the difference, and decided on break-even points to 

consider the investment worthy (cognitive strategy, self-checking).  

In teams, students discussed how to model the problem (self-

checking).  Students verbalize and write down their thinking 

(planning, self-checking).   

 

Figure 17. Summary of metacognitive activities of the CNC Machine MEA 
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Teams of students solved the two MEAs, which were of similar level of difficulty as 

assessed by the faculty who implemented them in their sophomore classes.  As students solved 

the MEAs, they discussed their answers with team members, and wrote about their methodology, 

allowing them to be conscious of their own thinking and modeling process, thus demonstrating 

the metacognitive behaviors that are listed in the figures.  

 

 

6.4 ANALYSIS  

6.4.1 Analysis of Metacognition Impact: Sophomore Year Change 

Similar to the other two studies, to analyze the potential longitudinal changes that took place 

during the sophomore year (i.e., two semesters), we used a random coefficients model. However, 

this model measured the overall change in modeling, as measured by the sum of all seven 

modeling stages, as opposed to developing a separate model for each modeling stage. This 

approach is followed deliberately to provide the reader with a more complete picture of the 

change in modeling, in addition to the micro pictures provided in sections 4.5.1.1 and 4.5.1.2. 

The unconditional means model, an unconditional linear model and an unconditional 

nonlinear growth model were fit first. The results were then used to build the foundation for 

subsequent analyses as per Singer and Willett (2003).   
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6.4.1.1 Unconditional Means Model  

We estimated a two-level model not including any predictors, captured in the following form:   

Level 1:                                          ,0 ijjij eY    

Level 2:                                         .0000 jj                                                                           

In this model, ,ijY  the i
th

 month modeling skill level of the j
th

 student, is a linear function 

of a grand mean ( 00 ), a deviation of the j
th

 student from the grand mean ( j0 ), and a random 

error term associated with the skill level of the i
th

 month of the j
th

 student )( ije . The model 

decomposes the variation of modeling skill development into the variation between student 

means ( 00 ), and the variation among months within the students (
2 ) (Singer 1998).  

Similar to Littell et al. (2006), a maximum likelihood estimation approach was used. The 

model converged after two iterations. The covariance parameter estimates show that the 

estimated value of 00 is 22.74 and that of 
2  is 5.4. Both variance components are significantly 

different from zero. The estimated intra-class correlation   is  








4.574.22

 22.74

ˆˆ

ˆ
ˆ

2

00

00




 0.80. 

The 0.80 derived correlation suggests that substantial variation of modeling skill 

development exists between students and thus the ordinary least squares (OLS) assumption that 

all observations are statistically independent from one another is likely violated (Berry 1993). 

Such violation may lead to biased estimates and justifies the usage of a growth curve modeling 

approach (Bliese 1998).  
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6.4.1.2 Unconditional Linear Growth Model (Model 1) 

Following the means model, we then introduced the variable time (i.e., months) and fitted an 

unconditional linear growth model. The level 1 equation estimates the individual student‘s 

trajectory of modeling growth ( j1 ) in addition to the mean ( j0 ). The level 2 equation 

simultaneously partitions the two estimates into sample averages and error components.  

Level 1:                                   ,10 ijijjjij eMonthY    

Level 2:                                          ,0000 jj    

                                                      
.1101 jj                                                                     

The month variable ranges from 1 to 8 and represents the number of months since the 

sophomore academic year started. The variable was mean-centered; thus, the intercept reflects 

the modeling level of a student midway through the 8 month academic year. Note that the 

modeling stage outcomes were not mean-centered. The SAS Proc Mixed procedure (Version 9.2) 

generated the results given in Table 21.  
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Table 21. Individual Growth Models for Longitudinal Growth in Modeling- Sophomore Year

   

 Individual Growth Models for Longitudinal Growth in Modeling- Sophomore Year   

Predictors   

Unconditional 

Means Model 

Est. (std.err) 

Model 1: 

Unconditional 

Growth 

   Est. (std.err) 

Model 2: 

Nonlinear  

Unc. Growth 

Est. (std.err) 

Model 3: 

Awareness 

Est. (std.err) 

Model 4: 

Self-checking 

Est. (std.err) 

Model 5: 

Planning 

Est. (std.err) 

Model 6: 

Cognitive 

Strategy 

Est. (std.err) 

Intercept 19. 15 

(0.4)*** 

19.24(0.39)*** 20.65(0.54)*** 20.93(0.56)*** 20.90(0.55)*** 20.91 (0.56)*** 20.93(0.56)*** 

Months  1.6(0.16)*** 1.74 (0.17) *** 1.77 (0.18)*** 1.77 (0.18)*** 1.76 (0.18) *** 1.77 (0.18)*** 

Months
2
   -0.22 (0.06) *** -0.25 (0.061)*** -0.25 (0.061)*** -0.25 (0.07)*** -0.25 

(0.061)*** 

Awareness     0.42 (0.26)    

Awareness x Months    0.11 (0.08)    

Awareness x Months
2
    -0.04 (0.03)    

Self-checking     0.50 (0.22)**   

Self-checking x Months        0.10 (0.07)   

Self-checking x Months
2
       -0.03 (0.02)   

Cognitive Strategy        0.47 (0.23)* 

Cognitive Strategy x Months        0.07 (0.06) * 

Cognitive Strategy x Months
2
         -0.05 (0.03)  

Planning      0.41 (0.22)*  

Planning x Months      0.10 (0.06)*  

Planning x Months
2
        -0.04 (0.02)  

 

Fit Statistics 

       

-2 Log Likelihood 1271.5 1213.8 1200.5 1040.7 1037.5 1039.7 1039.8 

Model  Fit p<0.001        p<0.001 p<0.001        p<0.001 p<0.001 p<0.001        p<0.001 

Note. ***denotes p<0.01; **denotes p<.05; *denotes p < 0.10. Sample size is 39 with four time points.  
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Fixed Effects. As shown in Table 21 Model 1, the intercept is 19.24, and slope is 1.6. The 

intercept is the estimate of the average modeling level roughly at the end of the first sophomore 

semester, and the slope is the estimate of the average slope across students (i.e., the average 

growth per month). Hence, the average student achieved 19.24 (out of 42) points on the 

modeling rubric four months after the semester started, and on average, she increased her 

modeling skill level by 1.6 points per month. Both null hypotheses that these parameters are zero 

in the population were rejected.  

 

Random Effects. We then focused on the random effects by examining the variance-covariance 

components. As variance components of both intercept and slope are significant, we concluded 

that there exists variation that potentially could be explained by student-level variables (Singer 

1998). We further examined this notion by fitting the data into a simplified model. This model 

had both fixed and random effects on the intercepts but only a fixed effect on the slopes. We then 

used goodness-of-fit indices to compare these two models. The indices show that the random-

slope model is a better fit because -2Log Likelihood is much smaller. Based on these results, we 

chose random-slope models for all subsequent analyses (
2 = 57.7, d.f. = 1, p <.001).  

6.4.1.3 An Unconditional Nonlinear Growth (Model 2) 

Following the analysis of the linear growth model, we tested a nonlinear model by adding a 

quadratic term (the squared mean-centered months); the results supported this nonlinear growth 

model. This testing is given as well in Table 21.  
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Compared to the unconditional linear growth model, the unconditional nonlinear growth 

model was significantly better based on the incremental chi-square criterion (
2 = 13.5, d.f. = 1, 

p <.001).  In addition, intercept, linear and quadratic time variables were all significant at the 

0.05 level. Therefore, for the rest of the analyses, the unconditional nonlinear growth model was 

used as the base model.  

6.4.1.4 Conditional Nonlinear Growth with Awareness (Model 3) 

After selecting the unconditional nonlinear growth model with random effects, we added the 

student -level predictor (i.e., students‘ awareness) to investigate whether the intercepts and linear 

and nonlinear slopes of modeling performance growth vary as a function of these variables. 

These results can then be used to test the hypotheses that awareness has no effect on modeling 

ability development.  The models are as follows:  

Level 1:                     ,2

210 ijjjjij eMonthMonthY    

Level 2:                 

                                 ,001000 jj Awareness                                                         

                                 
.111101 jj Awareness    

As in the unconditional models, only the linear and quadratic terms of the time variable 

(i.e., months and squared months) were included in the level 1 equation. However, in the level 2 

equations, we included awareness as the student-level predictor. To ensure that the fixed effects 

can be interpreted properly, we centered the student level predictors at mean zero (Singer 1998). 

Thus, in this model, 00
 
represents the average intercept in the individual growth model, whereas 

10 represents the average slopes of the linear term.  
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The proposed hypotheses would be tested by examining the coefficients in the level 2 

equations corresponding to the student-level variables. For example, the signs and significance of 

01  and 11 reflect the impact of a student‘s awareness on the modeling level and growth 

trajectory of the modeling skills, respectively.  

The results are reported in Table 21. As posited in hypothesis H1, we did not expect a 

significant effect for awareness on the modeling ability development.  In fact, we found that for 

this hypothesis there was not enough evidence to suggest that awareness was a significant factor 

in modeling development. Additionally, we tested its impact on the growth trajectory; again, no 

significant effects were observed.   

 

6.4.1.5 Conditional Nonlinear Growth with Self-Checking (Model 4) 

Subsequently, we added the self-checking dimension of metacognition to further investigate 

whether the intercepts and linear and nonlinear slopes of modeling performance growth vary as a 

function of these variables. These results then could be used to test the hypotheses that self-

checking has a significant impact on modeling ability development. The models are as follows:  

Level 1:                           ,2

210 ijjjjij eMonthMonthY    

Level 2:                 

                                       ,001000 jj checkingSelf                              

.111101 jj checkingSelf    
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Similar to the previous models, in the unconditional models, only the linear and quadratic 

terms of the time variable (i.e., time in months and months squared) were included in the level 1 

equation and in the level 2 equations, we included self-checking as the student-level predictor. 

Similar to before, we centered self-checking at its grand mean (Singer 1998), implying that 

model, 00 represents the average intercept in the individual growth model, whereas 10

represents the average slopes of the linear term.  

The results are again reported in Table 21. As posited in hypothesis H2, we did find a 

significant positive main effect for self-checking on development of modeling ability. This 

hypothesis was supported by the fact that 10 = 0.5 (p < 0.0001). This positive and significant 

coefficient suggests that, holding all other variables constant, when self-checking increases by 

one unit, the score on the development ability on average increase by 1.77 points. In addition, the 

cross-level interaction was not significant indicating that students‘ self-checking does not 

significantly change the growth trajectory.  Therefore we found support for hypothesis H2. We 

also tested for the moderation effect of self-checking, but there was no evidence to suggest that 

self-efficacy moderated the growth trajectory.  

As in Table 21, Model 3, which consists of student‘s self-checking as the level 2 

predictor, has a -2 Log Likelihood of 1037.5. With two degrees of freedom, the incremental Chi-

square was statistically significant (
2 = 63; p< 0.0001) when compared to Model 2, the 

unconditional nonlinear model, thus justifying the inclusion of student‘s self-checking and 

providing additional support for H2.  
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6.4.1.6 Moderation Analyses of Planning (Model 5) 

We then repeated the process of simple slope analysis by using planning (Model 5) as a main 

factor and the moderator of time. The results are reported in Table 21, which depicts the impact 

of student‘s planning on modeling skill trajectory. Specifically, a student who reported a high 

planning level obtained 0.41 points more than another student who had a lower planning level, 

and the growth trajectory was faster (0.1 points) than a student who had lower planning level. 

This implies that when a student is higher on the planning skills for one point, her pace of 

development is increasingly over time, compared to the student with lower planning skills, 

reaching a 0.8 difference at the end of the two semesters. It is possible to interpret this 

moderation impact from the time perspective. A student who had a one point advantage over 

another student in planning reached a higher modeling skill level earlier within the year than did 

the other student. In contrast, the low planning counterparts spent extra days to close the gap. 

These results support H3a and H3b. 

 

6.4.1.7 Moderation Analyses of Cognitive Strategy (Model 6) 

Similar to the previous section, we then repeated the process of simple slope and moderation 

analysis by using cognitive strategy (Model 6) as the moderator. The results are reported in Table 

21, which depicts the impact of students‘ cognitive strategy on modeling trajectory. In particular, 

for each unit of difference in cognitive strategy, students are observed to have a higher score of 

0.47 unit, in addition to having a trajectory that is more upward trend. These results support H4a 

and H4b that state that cognitive strategy has a significant main effect and a significant interaction 

term with time. 
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6.4.1.8 Impact of Gender, MEA Difference and CGPA 

In addition to the six models developed, we also developed and tested models to determine 

whether modeling skill change is a function of gender, the specific MEA or cumulative GPA. 

The impact of these variables did not improve upon or change what was learned from the 

previously developed models on metacognition. Therefore, the reported models excluded the 

effect of these variables not to overcrowd the model.   

 

6.4.2 Analysis of Sophomore and Senior Differences  

In addition to the growth analysis, we conducted a means analysis to determine the differences 

between senior and sophomore levels. The comparison was made to account for the changes that 

take place after having finished the senior year; therefore, the data consisted of cohort II and 

cohort III. We tested the same hypotheses, with each dimension score being the independent 

variable and the modeling scores (from both the Tire and CNC Machine together) being the 

dependent variable, as given in the equations below. Interaction terms were kept in the analysis 

for completeness. In these equations, cohort is a dummy variable that determines whether the 

student belongs to cohort II (sophomore, cohort=0) or cohort III (senior, dummy=1). 
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,6543210 ii eMEACGPAGenderCohortxAwarenessAwarenessCohortY  

 

,6543210 ii eMEACGPAGenderCohortxngSelfcheckingSelfcheckiCohortY  

                                      

,6543210 ii eMEACGPAGenderCohortxPlanningPlanningCohortY  

                                                                        

,6543210 ii eMEACGPAGenderCohortxyCogStrategyCogStrategCohortY  

 

 

The overall modeling scores were again centered at the mean. The results of the 

regression models are given in Tables 26.  We found two significant main effects that hold for all 

models; specifically, both intercept and being a senior have significant positive coefficients. In 

particular, seniors appear to score in the range of 4.03 to 5.02 units better than the sophomore 

second semester students. The R
2
 values, as expected are small, since there are multiple factors 

like gender, type of MEA and cohort that are categorical, yet all models are significant according 

to the F-value.  
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Table 22. ANOVA- Sophomore to Senior Change when Metacognitive Effects are Included 

 

 

Predictors  Model 7: 

Awareness 

Est. (std.err) 

Model 8: 

Self-checking 

Est. (std.err) 

Model 9: 

Cognitive       

Strategy 

Est. 

(std.err) 

Model 10: 

Planning 

 

Est. (std.err) 

Intercept 15.46 (4.04) *** 17.21 (3.99) *** 16.98 

(4.06)*** 

18.61 (3.69) *** 

Cohort (Senior) 4.32 (1.13) *** 5.02 (1.11) *** 4.52 (1.11) 

*** 

4.03 (1.14) **** 

Awareness  0.39 (0.32)    
Awareness x 

Cohort 
0.37(0.48) 

 

   

Self-checking  0.57 (0.27)*   
Self-checking x 

Cohort 

 

 -0.30 (0.36)   

Cognitive Strategy    0.13 (0.3) *  
Cognitive Strategy 

x Cohort 

 

  0.72 (0.42) *  

Planning    0.51 (0.27) * 
Planning x Cohort    0.31 (0.44) 

 

 
Gender 0.42 (1.19) 0.58 (1.19) 0.45(1.20) 0.79 (1.19) 
CGPA 1.95 (1.29) 1.29 (1.27) 1.40 (1.28) 2.09 (1.26) 
MEA  1.68 (1.04) 1.68 (1.04) 1.68 (1.03) -1.68 (1.03) 
     

R- square 0.20 0.20 0.21 0.21 
Model F-value 6.86 6.18 6.67 6.86 
P-Value p<0.0001 p<0.0001 p<0.0001 p<0.0001 

 
***denotes p<0.01; **denotes p<.05; *denotes p < 0.10.   
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 As posited in hypothesis 1, awareness, once again failed to show a significant impact on 

the level of modeling, both as a main effect and as a moderator (Model 7). Therefore, even for 

the seniors, awareness is not a distinctive factor. For self-checking, we found a similar effect on 

the change observed at the sophomore level. In particular, we found that a single unit change in 

the self-checking results in 0.57 unit change in the modeling score (Model 8).  When seniors and 

sophomores were compared, cognitive strategy did not repeat as a significant main effect, but did 

have a higher significant term (Model 9). In particular, being a senior implied having a higher 

score on modeling compared to a lower level student with the same cognitive strategy score, or 

the student with a higher cognitive strategy implied that she had a better score when both 

students came from the same cohort. That is, the impact of cognitive strategy strengthened with 

time.  In particular, if a student was a senior, she had 0.72 average score in modeling for every 

incremental point of cognitive strategy.   

Finally, for planning, we found a significant main effect on the modeling score. The 

students obtained a 0.57 higher modeling score for each incremental point in modeling (Model 

10). The interaction term was not significant, implying that planning has an overall impact on 

both cohorts, and being a senior does not imply this effect, alone, is significantly stronger. 

Accordingly, we find support for hypotheses 1, 2, 3b and 4a.  As demonstrated in the table, when 

the metacognitive effects are already accounted for, gender, cumulative GPA (CGPA) and type 

of MEA did not have significant effects on modeling score. 
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6.5 SUMMARY OF STUDY 3 

In this study, we aimed to achieve the following goals: decide on the metacognitive properties of 

MEAs, and decide on the role of metacognitive dimensions on development of modeling skills. 

Collecting data from sophomore and senior engineering students on their modeling levels and 

metacognitive properties, we have determined the impact of metacognition on modeling.  We 

find that MEAs show metacognitive properties for engaging students to think about what they 

have learned, and how they can use it.  

Difficulty in learning how to conduct and understand engineering modeling can be a 

function of having poor initial domain knowledge, as well as difficulty in not being able to 

connect one‘s thinking process to domain knowledge and to implementation. When students 

engage in an effort to: (1) think about formulating a model to solve a problem, (2) explain their 

modeling strategy to group members verbally, and (3) write about their model, they strengthen 

their discussions. Students are more likely to retrieve discussions of modeling principles from 

long-term memory and thus strengthen those memories. In addition, they may consult books and 

the internet to find verbal descriptions of other modeling examples, and thus strengthen this 

knowledge. Sharing their information with group members, or observing that a method does not 

work as intended, students can also correct their misconceptions and incorrect knowledge.  

In this work, we aimed to answer the question about the degree to which metacognitive 

properties influence a student‘s modeling skill change. By using a growth model, we observed 

that three of the four dimensions of metacognition (namely planning, cognitive strategy, and self-

checking) had a significant impact on the modeling change.  
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Figure 18 summarizes the assessment that is carried out for the growth model. In Figure 

18, the four dimensions of metacognition are demonstrated with the circles, as well as the 

experience. The experience in the figure refers to more than just time effect, but instruction, as 

well as maturation of the student. The overall concave curve shows the direction and trajectory 

of modeling growth. The arrows, regardless of where they intersect this curve, show that there is 

a significant main effect of the variable to modeling ability growth. The arrows that go to 

experience and then to the curve imply that the interaction term of time and the construct are 

significant. The figure implies that self-checking and experience have the stronger effects on 

development of modeling ability.  
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Figure 18. Conceptual framework of metacognition effects on modeling growth 
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The testing conducted on sophomores demonstrated that students who show higher 

metacognitive abilities are better or faster in developing modeling skills, as measured by their 

MEA report scores. We observe that students who scored higher on self-checking, planning and 

cognitive strategy scored higher on their modeling ability over the course of two semesters, 

compared to students with lower skills. In particular, students with higher scores on planning and 

cognitive strategy had a more upward sloping growth trajectory, implying that it took them less 

time to gain a desired level of modeling ability or they had higher scores after the same time 

period, compared to their lower metacognition level counterparts. We did not observe the same 

impact for awareness. Further, at the senior level the results we found were repeated to a large 

extent. In particular, we found that self-checking and planning retained their significant positive 

main effect, and cognitive strategy had a strong significant effect on the senior students. 

Awareness, once again, did not result in significant coefficients.   
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7.0  STUDY 4: QUALITATIVE ANALYSIS OF MODELING CHANGE 

 

7.1 MOTIVATION 

In this study, grounded in the empirical findings we present how students develop in engineering 

modeling, as they matriculate through their engineering programs. To do this, we explore 

modeling practices of different levels of engineering students using a qualitative methodology. 

Cohorts of sophomore and senior students were asked to provide written solutions; an open-

ended interview with the team then followed. These solutions and interviews were then evaluated 

using a number of factors for quality in modeling. This section is added to the dissertation to 

provide further justification for the modeling growth, and to provide a discussion to help 

practitioners who are not in the field of engineering, but interested in engineering education.  

This study thus aims to contribute to the dialogue on engineering modeling by creating a 

descriptive framework on changes that take place during undergraduate engineering education, 

with the long term goal of aiding instructors in understanding development of modeling skills. 
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7.2 ANALYSIS 

7.2.1 Response Coding  

Participants‘ transcribed interviews were analyzed according to a coding scheme, listed in Table 

23, which provided for each modeling stage the many different approaches students could use 

along with the desirable educational outcome; hence, the corresponding behaviors were graded 

relative to level of sophistication.   

The researcher analyzed each interview for evidence of the presence of desirable 

modeling skills. For example, any indication or reference of an alternative modeling method was 

considered as evidence of multiple thinking. Similarly, an assumption related to modeling was 

regarded in evaluating students‘ conceptual modeling process. Additional qualitative analyses 

focused on analyzing the various modeling strategies that were executed to capture the richness 

and depth of participants‘ modeling skills. A single researcher conducted the coding of the 

transcripts.   

Based on these categories, an analysis of the desirable modeling skills was conducted and 

summarized in Table 24. We have commented on the desirability of the modeling outcomes 

given in this table.  
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Table 23. Classification of modeling approaches students used 

 

Classification of Modeling Approaches 

 

Category  Possible Approach   Classification 

1. Review and Evaluation of Data  

 Visual / Graphical observation  Less sophisticated  

  Scatter plots 

  Histograms 

  Box-plots 

 Numerical analysis of the data  

  Calculation of mean More sophisticated  

  Calculation of standard deviation 

  Calculation of other descriptive stats 

(skewness etc.) 

 

2. Conceptual Modeling- Creation / checking assumptions  and restrictions to 

simplify the real world problem 

 

 Checking data distribution More Sophisticated  

  Probability plots  

  Ryan Joiner Normality  Test  

  Chi-square goodness of fit test 

 Creating assumptions related to data  

  Assumption of reliable data 

  Assumption of Normality 

 Assumption related to simplification of real life More Sophisticated  

 

 

 

Assumptions related to expected work from them Less sophisticated  

 

3. Establishing the Performance Criteria/  Understanding the goal of the 

Problem 

 

 Recognition of problem goals and establishment criteria  More Sophisticated  
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Table 23 (Continued) 

 

Category  Possible Approach   Classification 

 

4. Development of Mathematical Model- Comparison of data sets   

 Visual comparison Less sophisticated  

  Probability plots 

  Eye-balling  

 Numerical comparison More Sophisticated  

  Hypothesis testing   

  Confidence interval  

  ANOVA 

  Comparison of failure rates 

  F-tests 

  Quality control chart 

 

5. Carrying out Calculations and Uncertainty analysis   

 Calculations  A combination of all 

tasks is the most 

sophisticated   

 Sensitivity analysis 

 Recognizing data uncertainty  

  Checking outliers   

 

6. Results Evaluation & Reporting   

 Memo 

writing  

  

  Process description clarification focus  Providing both 

analysis is the    Process justification focus 

 Presentation   

 

N/A 

7. Validation/ Verification    

 Face validity  Less sophisticated  

 External 

validity  

 More sophisticated 

 Verification  More sophisticated 
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Table 24. Modeling Categories, Ideas, and Desirable Modeling Outcomes 

Category Definition Desirable Outcome/ Deliverable  

1. Review and Evaluation of Data  

1.1 Data 

Evaluation 

Method 

The mathematical or 

nonmathematical methods used to 

understand the nature and behavior 

of the data/ information to be used in 

the model.  

 

A formal methodology, including descriptive statistics, plotting of data, 

and investigation of data quality, where applicable.  

1.2 Search and 

Collection of 

Data 

The methods to search and collect 

data and information. 

Search for missing information, searching for extra data to validate the 

solution, searching for conceptual information that is missing from the 

learned material. Use of search materials, including the class notes, text 

book and online material.  

 

1.3Determination 

of the Quality of 

Data 

Deciding whether the size of the data 

to be used in the model is enough 

and data is of good quality.  

Testing for the data reliability, where possible, obtaining different types, 

sources, samples of information. If not possible, stating the possible 

outcomes of low quality data, and statement of assumptions related to data 

quality.  

 

2. Conceptual Modeling  

2.1 Making 

Assumptions 

The simplifications and assumptions 

made to narrow down the complexity 

of real life density in the model. 

Statement of all assumptions made in solving the problem and related to 

the data used. Sophistication in the assumptions by capturing real life 

concerns. A balance between assumptions made and the effort spent to 

model complexity.  If additional tests can identify how realistic an 

assumption is, carrying them out.  

 

 



169 

 

Table 24 (Continued)  

 

Category Definition Desirable Outcome/ Deliverable  

2.2 Pictorial 

Representation. 

Representation of the relationships 

within a system using visual tools, 

figures, schemas, outlines, etc. 

Ability of representation of the systems using visual aids.  (In the context 

of the current study, this task was not a requirement.) 

3. Establishment of Performance Criteria  

3.1 Influence of 

Authority on  

Goal  

Extent of coming up with the goal 

independently from a manipulation 

of an authority.   

Understanding the main purpose of a model (and not perturbing it based 

on the request from the authority).  

3.1 Goal setting  Understanding the goal of the 

exercise / purpose of the 

mathematical model to be developed. 

Deriving a meaningful goal for development of the model, in line with 

what is in the minds of the client (or instructor).  

4. Development of Conceptual Model and Potential Scenarios 

4.1 Mathematical 

Models Used 

The type and complexity of 

mathematical model used in the 

overall engineering model. 

The mathematical model developed should represent the knowledge and 

sophistication level of the student, as well as providing a clear path to 

obtain the established goal. The model should leave as few uncertainties as 

possible, and should take various aspects and constraints from real life.  

4. 2 Multiple 

Thinking 

Strategies    

Different type of models students can 

envision using for representing the 

system (even if they are not used).  

The ability of multiple thinking is limited to students‘ domain knowledge. 

Therefore, at the senior level, students should be able to see and model the 

problem using different engineering backgrounds. Overall, the more 

thinking strategies, the better.  

5. Modeling Calculations, Sensitivity Analysis, and Uncertainty Analysis 

5.1 Tools used to 

Carry out 

Calculational 

Models 

Calculational tools including 

resources and software that were 

instrumental in reaching the ultimate 

model. 

Students should be able to utilize a range of computational tools that are 

available, as well as carrying autonomy in ability to derive results without 

the tools.  
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Table 24 (Continued)  

 

Category Definition Desirable Outcome/ Deliverable  

5.3 Calculational 

Error Checks 

Checking to make sure that the 

calculations are free of error / 

trembling hand error.  

Students should ensure that their calculations are free of error, either by 

double checking the calculations by repeating them twice or by hand / 

computer calculations.  

6. Results Evaluation  

6.1 What- if 

Analysis  

Interpretation of results beyond the 

obvious, being able to take the results 

and interpret them under fictitious 

scenarios. 

Models reports ideally should contain comments on what would happen if 

under extreme case scenarios. We note that this analysis does not have to 

be numerical, as in the case of sensitivity analysis.  

6.2 Causal 

Explanations 

Interpretations and explanations of 

why, as opposed to how the results 

are achieved.  

Students should be able to correctly identify the sources of numerical 

results and make suggestions based interpreting them.  

6.3 Ethical 

Interpretation 

Interpretations of the numerical 

results based on the ethical 

considerations.  

Students should be able to correctly identify the ethical consequences of 

their interpretations and suggestions, including estimating what would 

happen to the society, public, their company, environment, colleagues, etc.  

7. Validation and Verification  

7.1 Validation 

and Verification 

Ensuring that the right model is built 

and that it is built in the right way.  

Students should ensure that the model is built in the right way by 

comparing it to other models, as well as providing face validity. 

Questioning whether the model serves the purpose ensures whether the 

right model is built.   
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7.2.2 Qualitative Analysis 

Identifying the differences among modeling skills through a qualitative analysis of the overall 

strategies was obtained by (1) analyzing the team reports and (2) the open-ended interviews 

focusing on the students‘ choice of modeling tasks and the reasons for their choices. In addition, 

an analysis of the student MEA responses that identified certain solution paths is provided. In the 

following sections, we describe the qualitative analysis that was conducted.  

7.2.2.1 Qualitative Analysis of the Strategies Used By Different Cohorts 

The first analysis studied the various pathways student teams chose when solving their particular 

MEA. The literature in problem solving indicates that experts and novices use different strategies 

to solve problems (Chi, Feltovich, and Glaser, 1981). This implies that as students‘ expertise 

increases, one is likely to observe a change in the strategies used to solve a problem. Following 

the literature that focused on expert- novice differences, we also identify the differences in 

modeling strategies of the both groups.  

As the solution reports were graded, the graders were able to track and decipher the 

various solution paths students used. Figure 19 and Figure 20 provide these solution paths for the 

Tire Reliability MEA and for the CNC Machine MEA.  Paths of modeling approaches were 

created by finding the commonalities and listing them all together. Next, this list was narrowed 

down to five strategies of possible routes (depending on whether the solution was desirable/ 

undesirable and correct/incorrect), and they were ranked based on their correctness and 

desirability from the point of engineering learning.  
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Note: Y stands for ‗yes‘ for procedure followed and N stands for ―no‘ as in procedure not followed. 

Figure 19. Approaches used to model Tire Reliability MEA 
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According to the figure, strategies are classified (along the bottom of the figure A through 

E) from the most to least desired in terms of how students approached the problem from a 

modeling perspective. The terms ―correctness‖ is used to refer to whether or not students were 

able to identify the correct result.  Each strategy is explained below. 

 

A. Ideal solution: (desired procedure, correct answer) Students calculated descriptive 

statistics, tested the data for different types of distributions, noticed that the standard data 

is Weibull, used probability plots to test if other batches came from the same distribution, 

and determined that one batch passed the reliability requirements and the other did not.  

B. Less ideal solution:  (desired procedure, incorrect answer) Students in this group often 

used the procedure described in A; however, they made an improper calculation and were 

not able to arrive at the correct solution.  

C. Acceptable solution: (desired procedure, incorrect answer) Students in this group often 

made an immediate and poor assumption that the data comes from a normal distribution.  

Even if rest of the procedure was correct, the result tends to be incorrect. However, when 

students state the assumption they make, we cannot conclude that they are entirely amiss 

in their solution approach, but rather that the student teams made a poor assumption.  

D. Lucky solution: (undesired procedure, correct answer) Students utilized another 

approach, most often finding a cut-off point to determine the reliability (e.g., deciding 

that if 98% of the sample is within the limits, the batch will pass).  As such, the students 

were fortunate in how they set these limits and arrived at the correct answer.  
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E. Poor solution: (undesired procedure, incorrect answer) Students either developed an ad-

hoc method or used only descriptive statistics to arrive at their solution; and often these 

solutions were neither sophisticated nor desired.  

An initial path analysis suggests that as the expertise of the student becomes greater, the 

students better utilize their domain knowledge, resulting in correct identification of the procedure 

in quantitative analysis of the students.  

For the CNC Machine MEA, the following strategies are classified from the most to least 

desired in terms of how students approached the problem from a modeling perspective. Here the 

term ―correctness‖ is used to refer to whether or not they were able to identify the correct result.   
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Figure 20. Approaches to model the CNC Machine MEA 
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A. Ideal solution: (desired procedure, correct answer) Students calculated ANOVAs/ t-tests 

for each type of data given to them, concluded that data gave conflicting results and 

decided not to recommend machine purchase; or students took an economic cost benefit 

analysis approach, determined a breakeven point for when to purchase the new machine; 

or took a quality control analysis approach and discovered that the machines did not 

operate within a desired quality level and recommended not to purchase the new 

machine.  

B. Less ideal solution:  (desired procedure, incorrect answer) Students in this group often 

used one of the procedures described in A; however, they made adjustments to the data 

set (e.g., removed outliers without assignable causes, etc.), and ended up recommending 

the purchase of the new machine.  

C. Acceptable solution: (desired procedure, incorrect answer) Students in this group often 

assumed that since the memorandum was written in a manner that convince them to find 

a way to recommend purchasing the new machine.  Hence, students tended to neglect a 

portion of the data and reported support information for purchasing the new machine.   

D. Lucky solution: (undesired procedure, correct answer) For this group, students developed 

ad-hoc procedures other than those described in solution A ended up not recommending 

the purchase (i.e., creating certain limits on the number of products to accept a machine). 

E. Poor solution: (undesired procedure, incorrect answer) Students either developed an ad-

hoc method or used only descriptive statistics to arrive at a solution; and often these 

solutions were neither sophisticated nor desired. Students also recommended purchasing 

the machine, which is the incorrect response based on these procedures.   
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7.2.3 Qualitative Analysis of the Student Responses and Interviews  

Based on the coding scheme provided in Table 24, Table 25 and Table 26 list the various trends 

emerging from the analysis of student solutions/reports and interviews. The tables classify which 

methodologies/approaches each cohort used for each MEA. We comment on each stage of 

modeling given in Figure 7. 

 

7.2.3.1 Review and Evaluation of Data  

The RED modeling stage focuses on how data collection and analysis will be integrated into a 

model. The tasks include: deciding on what kind of data/ information is required to build a 

model, determining how to collect the data, determining how to prioritize data, and when the 

data is available, deciding on the data quality and quantity.  The search of data, as well as 

knowing where to search for data is also included in this category. The initial analysis included 

statistical tests to identify the characteristics of data, or tests to clarify the information other 

tasks. 
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Table 25. Overall procedure to model Tire MEA 

 

Modeling Task Modeling sub-step Method Used % carried out 

   Cohort I Cohort 

II 

Cohort III 

Review and Analysis of Data     

 Visual / Graphical observation     

  Scatter plots 29 12 6 

  Histograms 88 35 44 

  Box-plots 24 12 0 

 Numerical analysis of the data    

  Calculation of mean 88 100 100 

  Calculation of standard deviation 76 100 100 

  Calculation of other descriptive stats 

(skewness etc.) 

 

18 12 0 

Conceptual Modeling, Creation / checking assumptions  and restrictions to simplify the real world problem    

 Checking data distribution    

  Probability plots 76 65 22 

  Ryan Joiner Normality  Test 0 29 22 

  Chi-square goodness of fit test 0 82 33 

 Creating assumptions related to data    

  Assumption of reliable data 41 24 67 

  Assumption of Normality 35 11 56 

 Assumption related to simplification of real life    

 Assumptions related to expected work from them 

 

   

Establishing the Performance Criteria/  Understanding the goal of the Problem    

 Recognition of problem goals and establishment criteria  100 100 100 

 Recognition of ethical dilemmas  17.6 100 78 

Mathematical Model- Comparison of data sets     

 Visual comparison    
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Table 25 (Continued)  

  Probability plots 76 65 22 

  Eye-balling  12 24 44 

 Numerical comparison    

  Hypothesis testing   18 88 44 

  Confidence interval  0 35 33 

  ANOVA 0 6 0 

  Comparison of failure rates 53 24 44 

  F-tests 0 24 22 

  Quality control chart 0 6 33 

Calculations and Uncertainty analysis     

 Calculations     

 Sensitivity analysis    

 Recognizing data uncertainty     

  Checking outliers   0 12 33 

Results Evaluation & Reporting     

 Memo writing      

  Process description clarification focus  23 88 100 

  Process justification focus 12 88 66 

 Presentation   (N/A) (N/A) (N/A) 

Validation/ Verification      

 Face validity  35 88 100 

 External validity   0 18 100 

 Verification  0 0 22 
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Table 26. Overall procedure to model CNC Machine Problem 

Modeling Task Modeling sub-step Method Used % carried out  

 

   Cohort 

I 

Cohort 

II 

Cohort 

III 

Review and Analysis of Data 

 Visual / Graphical observation      

  Scatter plots 13 24 56 

  Histograms 19 35 56 

  Box-plots 0 6 0 

 Numerical analysis of the data     

  Calculation of mean 100 100 100 

  Calculation of standard deviation 100 100 100 

  Calculation of other descriptive stats 

(skewness etc.) 

6 6 0 

 Checking data distribution     

  Probability plots  0 12 22 

  Ryan Joiner Normality  Test  0 0 22 

  Chi-square goodness of fit test 0 0 0 

 

Conceptual Modeling, Creation / checking assumptions  and restrictions to simplify the real world 

problem  

   

 Creating assumptions related to 

data  

    

  Assumption of reliable data 47 29 100 

  Assumption of Normality 88 88 89 

 Assumption related to simplification of real life    

 Assumptions related to expected work from them    

 

Establishing the Performance Criteria/  Understanding the goal of the Problem 

   

 Recognition of problem goals and 

establishment criteria  

 100 100 100 



181 

 

Table 26 (Continued)  

 

 Recognition of ethical dilemmas   30 94 89 

 

Mathematical Method for Comparison of data sets  

   

 Visual comparison     

  Probability plots 0 12 22 

  Eye-balling  0 30 100 

 Numerical comparison Hypothesis testing   82 88 66 

  Confidence interval  71 88 66 

  ANOVA 0 84 78 

  Comparison of failure rates 12 24 33 

  F-tests 0 0 11 

  Quality control chart 0 0 22 

      

Calculations and  uncertainty analysis      

 Calculations      

 Sensitivity analysis     

 Recognizing data uncertainty      

  Checking outliers   6 12 22 

Results Evaluation & Reporting      

 Memo writing      

  Process description clarification focus  47 83 100 

  Process justification focus 59 88 78 

 Presentation (N/A)     

Validation/ verification       

 Face validity  0 39 100 

 External validity   0 0 67 

 Verification  0 0 0 
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Data Evaluation Method. A breakdown of the methodologies used by the students are provided 

in Table 25 and Table 26. Accordingly, as students become more experienced, there is a higher 

tendency to rely on numerical methods as opposed to the visual methods. For example, in Table 

25 all cohort II and cohort III members use mean and standard deviation in identifying the 

characteristics of data (100% in each). The most important change taking place is the number of 

methods used to analyze data . We notice that as students become more practiced, they have a 

higher tendency to check for the descriptive statistics before modeling the problem, as well as 

using figures and drawings including probability plots, histograms or box plots to watch the 

behavior of data. This makes sense given that students are gaining more content knowledge and 

have practiced this content knowledge.  

 

Search and Collection of Data. The MEAs assigned in this study did not involve data collection 

(i.e., data were provided as part of the problem), therefore, we do not speculate on the changes in 

data collection skills.  Since the modeling tasks did not involve collection or search for data, we 

are not able to comment on how such  skills develop over time.  

However, through the interviews it was demonstrated that search for information at the 

senior level becomes increasingly more reliant on internet based sources (e.g., Wikipedia) as 

opposed to text books or class notes. This is a significant finding for many reasons. First, it 

potentially implies that students go beyond the resources on hand to obtain information, which is 

a self-regulated learning or potential lifelong learning behavior.  
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On the other hand, sophomores mention primarily consulting their class notes and 

textbooks. Of sophomore groups interviewed, six mentioned using their classroom notes; and of 

the senior groups, all but one mentioned using internet as the only a source for information.  For 

example, a sophomore team mentioned that while solving the CNC Machine exercise:  

―[…] textbook and notes were the two primary—probably the only sources.  I don’t think 

we really used the internet.‖   

Although the search tool was different, the content of the search was similar between 

seniors and sophomores, as both groups searched for reminders of what statistical tests to use 

(e.g., which test to use to compare means of two data sets), how to interpret results (what does it 

mean to have a p-value less than 0.1), how to use software to conduct tests, and occasionally 

looking up the definitions for concepts mentioned in the MEAs, such as ‗reliability‘ and 

‗tolerance‘. 

 

Determination of the quality of data. When asked whether they found data sufficient to solve 

the MEA, students replied yes on all accounts; however, they also mentioned the need for 

additional samples or other types of information, particularly if they were in the situation in real 

life.  All student teams suggested that the size (i.e., the number of samples) was sufficient for 

both examples, but would have preferred more samples for the CNC Machine MEA if the case 

were encountered in real life. For example, one of the sophomore teams suggested for the CNC 

Machine MEA:   
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―[..] if we were able to take our own sample, maybe we’d take a lot more data.  It might 

cost more but you’d have more accurate results and you could actually see the viability 

of buying a new one [machine].‖  

As the CNC example suggests in Table 26, students accounted for the cost/ benefit ratio 

of collecting more data versus operating on the available data. Of groups interviewed, all treated 

the sample size in the Tire MEA (n=1000 data points) as sufficient and the sample sizes in the 

CNC Machine MEA (n=25) as small. When the students were asked whether they would require 

other types of information to come to a decision about the same problem in real life, the majority 

of the teams suggested that the type of data given in the CNC Machine MEA was appropriate; 

however, for the Tire MEA, they would need additional information. When the students were 

asked to further clarify the type of data they would need, they listed several types of information 

that are conveyed in other engineering courses apart from statistics. In the case of seniors, many 

recalled an exercise they were assigned two years prior (please see the SUV Rollover MEA, 

which can be obtained from  www.modelsandmodeling.net).  

This finding suggests that such problems, in this case MEAs, potentially have (a) long 

term learning and recall effects, and (b) impact on integrating concepts from different courses.  

This is referred to as the integrator role of MEAs (see Yildirim, Shuman, Besterfield-Sacre 

2010b).  Information most commonly referred to by sophomores and seniors are given in Table 

27.  
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Table 27. Examples for extra information the students mentioned they would ask for  

 

MEA  Information Asked Related Course / 

Concepts  or MEA 

Tire MEA  Road conditions  SUV Rollover MEA 

 Cost of testing / manufacturing the tire Engineering economics 

SUV rollover MEA 

 Details of customer complaints   

 How serious the tire wear is  Engineering ethics  

CNC Machine  Lifetime of machine Engineering economics  

 The opinions of the operators to use the machines  Human Factors/ 

production  

 Likelihood of machines to break down and 

maintenance  

Production/ Operations 

research  

 Expected rate of return on the investment and 

time scope of the machines 

Engineering Economics  

 Manufacturing quantity  Operations and  

Production  
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 According to Table 27, evoking a modeling exercise in one course enabled the students 

to recall and make connections between multiple courses (i.e., statistics, engineering economics, 

production, operations research, engineering ethics), as well as previous modeling exercises. 

Overall, the data and information filtering ability of the students has developed to a desirable 

state. This category corresponds to Review and Evaluation of Data (RED) and was found to not 

be significant between to the sophomore and senior years, a desirable result from an engineering 

education perspective.  

 

7.2.3.2 Development of Conceptual Model and Potential Scenarios 

Conceptual modeling is possibly the most abstract and difficult part of modeling. The task 

requires seeing beyond the information provided, understanding the complexity of the real world, 

reducing and simplifying that complexity, as well as putting assumptions, limitations and 

boundaries on the model.  

 

Making assumptions. Students‘ practice of assumption making was measured by investigating 

both the memorandum responses as well as the interviews. A major change taking place between 

sophomore and senior year is the type and number of assumptions. For example, at the 

sophomore year, first semester, when students were asked to list assumptions they made in 

modeling, they often listed ones that were secondary, or related to what the authority (in this case 

the instructor) has asked of them, such as assuming that the data provided is correct, or assuming 

that the story in the MEA is credible, etc. Student reports indicate that students made more 

sophisticated assumptions at the senior level. For example, some stated assuming that the data is 
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normal to apply ANOVA, or that machines in the CNC MEA operate for 8 hours a day and 

produce a certain number of products in a year. Yet, most students created mathematical models 

without stating the assumptions in their reports. This implies that the reports of students do not 

fully reflect their thinking and knowledge level, and the interviews or verbal protocol discussions 

following the modeling tasks can reveal more information about the effectiveness of teaching. It 

is not uncommon for oral tests to be used in Europe at the college level and stated by some to be 

a more effective way of assessment than written tests.  

In the interviews some students stated no assumptions when asked, despite, sometimes 

operating on certain assumptions while building their model. For example, some students 

decided to use an ANOVA in the CNC Machine MEA, implicitly assuming that the underlying 

distribution of data is normal. Similarly, to determine whether the batches were reliable, when 

students use probability plots, they implicitly assumed that the distribution of data sets should be 

the same. (Note, in this MEA it is possible, despite different distributions, that the data sets could 

still be reliable.) For example, one of the senior group members suggested that   

―We checked normality before we assumed normality […]. I think [I learned]a lot more 

looking at the assumptions for all the tests and making sure we weren’t over-assuming or 

completely contradicting some of the assumptions before we started applying things 

[…]‖.  

Students expressed relative confidence in their solutions (70% to 97% confident), which 

may be desirable given that students had to make assumptions and were aware of the real life 

limitations. For example, suggesting that due to limited data, the results might not be 100% 

correct:  
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―We’re confident [with our recommendations] given this data but if we were given more 

data we wouldn’t be so sure. I don’t even know how to answer that question [question of 

whether the student is confident in her answer] because we made a lot of assumptions.‖ 

 

Though not the general case, by the time students reach their senior year, several teams, 

although a minority, practiced checking assumptions related to their mathematical models before 

implementing them. Only four out of the senior groups followed the practice, whereas only one 

group in sophomore interviews reported having checked for the normality assumption before 

using the tests that require normality. Further, students were more comfortable in making 

assumptions at the senior level. A possible explanation is the increased level of knowledge in 

limiting conditions on models and the higher self-confidence in making assumptions. Table 28 

provides a list of the assumptions that were stated by the students. 
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Table 28. Common assumptions listed and mentioned by the students 

 

MEA Assumptions  (Mentioned By) Related engineering domain 

Tire MEA Normality of data (Senior 3 teams/ Sophomore 2 

teams) 

Statistics  

CNC 

Machine  

Working days and hours (e.g. 8 hours per day and 

250 work days) (Senior / 3 teams) 

Production and Operations  

 Normality of data (Senior 3 teams / Sophomore 2 

teams) 

Statistics  

 Production volume of the machines (Senior- 7 

teams ) 

Production and Operations 

 Tooling costs (Senior – 6 teams ) Engineering economics 

 Salvage value of machines (Senior- 4 teams / 

Sophomore- 5 teams) 

Engineering Economics 

 

According to Table 28, students made assumptions related to different domains of 

engineering. It is important to note that most of these assumptions were mentioned by the senior 

groups. Overall, there was a change in the quantity of assumptions stated, however, the 

assumptions related to the model and data for sophomores is more related to the assignment and 

expectations of the instructor, whereas seniors‘ assumptions were more specific to the 

construction of the model itself. 
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Pictorial Representation. Despite the fact that schematic resprentations are helpful in 

understanding the relationships among model parameters, the inputs and outputs to the system 

were mostly mathematical representations and numbers in the two MEAs. Therefore, it is 

possible that the students did not feel the need to create a pictorial representation of the model. 

No groups mentioned using pictorial representations. Students, however, did use figures like 

scatter plots, box plots, etc. to understand the behavior of the data (often generated by Minitab or 

Excel). Most groups answered the question of whether or not they used drawings with similar 

responses; the following quote provides an example.  

―We used, the graphs we produced using the ANOVAs on Minitab, so after we’d put the 

data in and done the ANOVA—and we found—I think it was like four different graphs for 

each of the different things—and we compared the first machine to the second machine 

for all of those‖ 

 

Overall, findings related to conceptual modeling show that abstract thinking is relatively 

weak; but findings are supported by the literature on student reactions to complex phenomena. 

For instance, Resnick and Wilensky (1998) found that most people have a centralized mindset, 

preferring explanations with single causality. Similarly, Jacobson (2001) interviewed 

undergraduate students and found that students favored simple causality and predictability. It is 

likely that students in this study did not use multiple relationships in the models.  
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7.2.3.3 Establishment of Performance Criteria 

 

Influence of the authority on goal. Influence of authority (in this study, the instructor) was 

observed from the interview transcripts. An important observation was made related to the 

influence of authority (ethical dilemma manipulation) on the purpose of model building, and its 

expected impact on the results. This influence was clear in the CNC Machine MEA. The MEA 

posed asked the students to develop a model that supports the purchase of the new machine.  A 

student described his process for coming up with performance criteria as follows: 

 

―I guess, conceptually, when I start, the first thing is – after reading the memo – is, 

―Okay, what are they exactly asking for? Like, what do they want? They want a model.‖ 

Like, for this one, they wanted one. So like, that’s where you have to start. Like, ―Okay, 

we want a model.‖ Then start, ―How are we going to form the model?‖ 

 

Some students treated the question as a true real life experience, believing that the request 

of authority was not worthy of risking their ―job security‖. For example, one senior team 

member stated: 

Member 1: ―I think at first we thought it [the result] was gonna be how are we gonna, 

you know, agree with our boss and say that we were for doing this machine and then I 

think we realized that there was so much evidence against agreeing with him that—and I 

think our main decision was how are we gonna disagree.‖ 
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Member 2: ―Yeah, I think we were like more—like should we try to manipulate the data 

or manipulate the results so that we’re agreeing with our boss? Or should be just be 

straight up… [..] and be like…This is what the data shows and I don’t know.‖  

 

This dialogue shows the students‘ interpretation of the goal and awareness of the ethical 

dilemma influenced by the write-up of the memorandum. This particular group chose not to 

manipulate the data, and stated in their memo that there is not enough information to suggest that 

the new machine is better. Despite the fact that students believe the results should support the 

purchase, they chose not to manipulate their results or the report; and hence, according to this 

argument some groups really treated the MEA case as an exercise for real-life (which is one of 

the intents behind the MEA construct). On the other hand, several sophomore groups implied 

that they thought they were manipulated by the directions given in the exercise, particularly 

when they addressed the MEAs in the first term sophomore year. Even as second term 

sophomores, cohort II students believed that their analysis should show that the new machine is 

better. For example, one team suggested in explaining their understanding of the goal:  

 

―They wanted us to say the one was better or something, Vanguard was better.‖ 

 

Overall, even though the majority of the students correctly understood the purpose of the 

model, some students were influenced by the authority in the CNC Machine MEA, believing that 

the goal of the exercise was to demonstrate the new machine is better.  
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Establishment of Goal of Model. The majority of students were clear on what was asked of them 

except for the situations when they believed they were being manipulated by the authority.  

Overall there was no confusion on the goal of Tire Reliability MEA, and only minor confusion 

with the CNC Machine MEA; students thought that the goal was (a) finding a way to justify the 

purchase of the new machine, or (b) whether it is justifiable to buy the new machine.  However, 

both these goals were equally reasonable to assume.  

 

7.2.3.4 Construction of Calculational Models  

Mathematical models used. Constructing a mathematical model that represents a system requires 

a person to construct relationships between concepts and principles about engineering 

phenomena and the interrelationships among different levels of the system. One of the most 

obvious changes in the practice of modeling between sophomores and seniors is the change in 

the methods a student uses to solve the problem.  

The methods that students picked highly depends on their knowledge base. The first 

cohort mostly used probability plots in the Tire MEA and hypothesis testing with t-tests for the 

CNC Machine MEA, cohort II relied on chi-square tests for Tire MEA and ANOVA for the 

CNC Machine MEA. Cohort III (seniors) used a wider range of strategies, from quality control 

methods to engineering economics for the CNC Machine MEA. They also used failure rates for 

the Tire MEA, a concept that the sophomores had not yet studied. 
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Based on the change in the mathematical modeling, one could surmise that two types of 

conceptual change is taking place: (1) enrichment of an existing conceptual structure (i.e., the 

addition of new information to an existing theoretical framework) and (2) revision (i.e., 

acquisition of learning that is inconsistent with existing beliefs or presuppositions).  

 

Multiple thinking strategies.   When asked about the different strategies students used to model 

the problem, more and different types of strategies were mentioned by seniors. When asked how 

the problem would be solved, sophomore responses ranged from suggesting that they could not 

think of additional methods other than the one they used, to one or two additional statistical 

methods. We did not observe sophomores suggesting alternative methods from other areas (e.g., 

engineering economy) to model the problem.At the senior level, though, there were often three to 

four major areas of industrial engineering used to approach the problem. The conceptual 

knowledge from statistics, production, quality control and engineering economy were all 

mentioned in the interviews.  

 

7.2.3.5 Calculations, Sensitivity and Uncertainty Analysis 

 

Tools to carry out calculational models.  There is a clear shift in the ways students carry out 

calculational models from the sophomore to senior year. Students are limited in their sophomore 

year to carrying out calculations by hand due to lack of software knowledge. This hand 

calculation practice completely switches to statistical packages (in this case Minitab), such that 

by the time they are seniors, more general software packages are used, like Excel. At the senior 
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level students‘ use of hand calculations was limited. A potential indirect implication of the use of 

software is that the models built are limited to the type of software packages used. In a few 

instances, where students decided to test different methods, they stated they changed their minds 

when they could not figure out how to implement it on the particular software package. Students 

also expressed feeling more comfort during their second term sophomore year than their first 

term for several reasons. One reason was that statistical software was introduced, as opposed to 

having to use hand calculations or a single limited program:  

―[We are] more confident that we actually got a right answer rather than just handing in 

something.  We used to just plug stuff into Excel because that’s all we knew how to use. 

So I think learning how to use, like – The Minitab – and all the other software, helps us, 

like, expand on it.‖ 

 

Changes in sensitivity analysis. Sensitivity analysis as a concept did not appear to be a regular 

practice for neither seniors nor sophomores. As one potential example, a senior group changed 

the tolerance limits in the CNC Machine MEA:  

―[…] we widened the tolerance a little bit just to see how sensitive they were to the 

tolerance. They were increased a little bit.‖  
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Another group checked the robustness of their model comparing the results with and 

without the suspected outlier points: 

―[…] we left it [outlier point] in to start with.‖ ―It [Its change in results without the 

outlier] was negligible. It wasn’t a very significant change.‖ 

 

There was also a contrast in checking for outliers between the sophomores and the 

seniors. In fact, sophomores, in general, did not check for outliers. The following dialogue 

related to the Tire MEA respresents how sophomores generally ignored checking outliers, 

indicating that in large sample sizes the impact of outliers would not be strong.  

 

Interviewer: ―Did you check for the outliers?‖ 

Student Team: ―We knew that there were probably some especially the 25K but we didn’t 

know if that was just pertinent to the data.[…] since it was 1000 points we thought it 

wasn’t going to affect it all that much.‖ 

 

In the CNC Machine MEA, sophomore teams who believed the results of their analysis 

should support the purchase of the new machine mentioned ―playing around‖ with the data: 

 

―[We played around with data] A lot. […] If our boss is telling us to do something, we’re 

trying to find things to support that.‖  
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Students also felt the need, when the results did not make sense, to conduct some type of 

sensitivity analysis. For example, a sophomore team struggling in using confidence intervals 

with the Tire MEA mentioned; 

 

―We did that  [playing with data] when we were struggling with the confidence intervals 

[…] we changed it to like 5% confidence, and then  it still wasn’t working, and it would 

just like – it was still between 4 miles.  And then the ranges of the miles to failure or 

whatever were much greater than that, so very few fit into this confidence interval.‖ 

 

Changes in the calculational error checking.  Checking for calculational errors appeared to be 

one area where the students deteriorated over the course of their undergraduate education, 

possibly resulting from the reliance on software packages. Particularly, when using more 

structured statistical packages like Minitab, the students conducted less error checking compared 

to students who used semi-structured packages like Excel where the student enters or chooses a 

formula or conducted calculations by hand. However, calculational errors decreased when the 

students switched from hand calculations to the software packages. In fact, the following 

standard phrase was often repeated: 

 ―We trusted Minitab‖. 
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Interestingly, some students checked their calculations by hand when they were not 

confident with the software package, as one team suggested:  

―We checked one or two [calculations], cause we weren’t sure if we were doing it right 

in Minitab, but…I think that was really it.‖ 

 

―We kinda as we went along [the calculations] made sure they made sense with what was 

there and what we knew was supposed to happen. But after the graphs were done, we 

didn’t revisit it […] we were just like ―eh.‖‖ 

 

7.2.3.6 Results Evaluation.   

 

What- if Analysis of Alternate Scenarios. In the interviews, the students were asked to evaluate 

what-if type of questions. For example, they were asked how they would react if their 

recommendations in the reports were incorrect. Further, students were asked to consider 

situations where their recommendations might differ from those in their memorandums. In 

particular, we asked students if they were faced with the same problem in real life, would they 

consider doing something additional. Many student teams mentioned collecting more data. 

Student responses to these questions ranged from the naïve to sophisticated considerations. The 

following dialogue with a sophomore team provides an example for a sophisticated answer.  
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Interviewer:  ―If you wanted to come up with a similar decision [whether the tire batch is 

reliable or not] in real life, what other information would you consider?‖ 

Member 1:  ―Um, probably like where the tires are like, I don’t know, like the area that 

they’re being driven on.  Weather conditions, road conditions, because obviously a tire 

wouldn’t be as reliable if they were like traveling up like a cliff as opposed to like a 

highway.‖ 

Member 2: ―Material of the tire.‖ 

Member 1: ―I mean if it’s, obviously it’s rubber for the most part, but if they like were 

designed in a different way, like the shape and the actual tread.  If it’s like different from 

their other brands or models or something… ‖ 

Member 3:  ―Maybe like costs especially. How long it takes to make and how much you   

have to pay for the labor.‖ 

Students suggested that their solutions might have been better in real life, the major 

reason being MEAs are graded; and hence, they are not true reflections of real life:  

 

―I mean, technically it was just an assignment in class and only is worth very little bit of 

your grade and everything‖. 
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Causal Explanations. Perkins and Grotzer (2000) found that students tended towards simple 

causal explanations of complex phenomena, missing the links within a system, as well as 

complex causal relationships. One reason for this is that learners tended to focus on the structure 

of systems rather than on the underlying function. As a result of feeling more comfortable in 

using mathematical models, the students felt more comfortable in interpreting the results as well. 

Comparing their own methodology from fall and spring sophomore semesters, one team 

suggested:   

―I think it [results] definitely fit better this semester after knowing how to do the 

ANOVAs, and… I know when we worked on it last semester with our other team member 

we were all kind of confused as to what exactly we were supposed to do… t-tests weren’t 

really so straight forward at that point, like we were kind of, like I think it fit better—I 

think it fit a lot better now in this semester.‖ 

 

Ethical interpretation. In the posed modeling questions, it was intended that students realize and 

reason ethical implications of the MEA. For the Tire problem, the ethical issue was possible 

damage to the end-use customers; and the CNC Machine MEA, the ethical issue was the boss‘ 

insistence on finding results that favors the purchase of the new machine.  

When asked about the ethical consequences of their decisions, the majority of students 

decided they would do what is in the best interest to the public. However, when the decision had 

no direct risk to human life, ethical issues were more likely to be overlooked or given less 

weight. An example conversation from the CNC Machine shows the following: 
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Interviewer: “If you made the decision to purchase the new machine, and it turned out it 

actually was not a good idea.  So what do you think would happen?‖ 

 

Member 1: ―Okay, you’d get in big trouble.  Well, your boss told you to do it.‖ 

 

Member 2: “Back and forth.  And also I feel like purchasing one machine is not gonna be 

the end of the world—it’s a first thing—I mean, yeah, it’s important, but it was replacing 

one machine and it’s a factory and they have all these different things—we’re not 

replacing all their CNC machines and they have 80 of them—it’s deciding whether to buy 

a new machine or not.  It depends how much the difference was and bad or how drastic it 

was, but—it wouldn’t be good, but.‖ 

 

Member 3: ―I feel like if they found out that you purposely skewed the data,  that you 

would get in trouble, but if they were just like ―Oh, we probably should’ve gone with the 

other machine‖ and, you know, ―You didn’t do so good—try better next time.‖  But if 

they found out like ―Hey, I know you messed with this data, or you didn’t report it 

correctly,‖ then you’d be in trouble.‖ 

 

Member 2: I don’t think I’d be able to just do it. The bad thing is though if you got away 

with it once, you’d do it again. I just couldn’t do it.  My conscience would kill me. I 

wouldn’t do it. Yeah, my conscience would just kill me.‖ 
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According to the memorandums and interviews, we observed that recognition of ethical 

issues was obtained with esposure to discussions of ethical discussions given throughout the 

engineering program. This finding clearly emphasizes the benefits of integrating ethics education 

into engineering education. Even though the majority of the groups interviewed did not have a 

formal ethics education, they had been exposed to ethical responsibilities of engineers 

throughout their engineering program, either through discussions in the class, multiple seminar 

talks, or similar MEA exercises in other courses; and it was noted that the ability to recognize 

and reason out ethical dilemmas was better for the senior level students.  
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7.2.3.7 Validity and Verification  

 

From the interviews, it was evident that students implicity used face validity. Students, for 

example, used figures and summary statistics such as mean and variance to obtain an overall 

conception about the solution. They recognized unsystematic approaches to analyzing data from 

multiple ways, such as repeating the solution approach, or eyeballing the results to see if they 

made sense. Students suggested that they got a ‗feeling‘ for the result, and they tried to justify 

that feeling. A group member from cohort II suggested that while solving the Tire Reliability 

MEA: 

 

―We’ve done it a couple of times, just like, see if we’re on the right track if we’re not sure 

we’re doing the right process. I think it’s easier to choose if you know what they’re 

asking for and we have a set amount of tools that we’re able to use after learning this 

class, we can apply what we know and see if it’ll work….‖ 
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7.3 SUMMARY OF STUDY 4 

In this study, we have reported on the comparisons of strategies for modeling and changes 

between seniors and sophomores that are observed in the interviews in a descriptive manner. 

According to this analysis, the effect of domain knowledge on modeling was not found to be as 

straightforward as expected. In fact, the results suggest that seniors, when given a problem that 

can be solved in multiple ways, actually do present the awareness that multiple methods could be 

used to solve the problem. However, this does not necessarily translate to a higher quality 

solution. It was generally found that seniors provided a less complicated solution method by 

providing sufficient assumptions. 

This study presented seven aspects of modeling and the potential changes that take place 

between sophomore and senior years. The use of MEAs followed an analysis of the 

memorandum reports and interviews from several aspects of modeling.  Though not exhaustive 

to all aspects of modeling and educational programs, contexts analyzed were common to 

majority of the engineering disciplines.  

Findings indicate that it is important to encourage the modeling process by providing 

modeling experiences to students early in their undergraduate program.  Models built evolved 

over time; and providing such exercises helps to put engineering practice in context.  

Though the analysis presented here is not sufficient to explain and predict behavioral 

changes of all students, it does contribute to the understanding of how students think about 

modeling.  Indeed it suggests that students, by and large, are able to improve and replace their 

modeling thinking and approaches. Further, students are aware that knowledge acquired is 

subject to change.  
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This analysis also discussed changes in students‘ modeling abilities. First, seniors were 

able to provide solutions that were more generalizable than the sophomores; and they used mixed 

methods, such as combining statistics with economic analysis, etc. Further, experience was a 

contributing factor. Students indicated that both their experience in class as well as out of class 

helped them to develop their solutions. Seniors generally agreed that their co-op or internship 

experiences increased their level of realization of how certain methods could be used. However, 

they also indicated that classroom exercises were helpful.  

Seniors in particular were able to make use of previous ethical reasoning experiences in 

resolving their decisions. For example, a previous MEA given to the seniors in their sophomore 

year had provided them with a benchmark on how the lives of people could be affected by 

unreliable products. Students recalled this experience and their reasoning from this experience to 

understand the overall impact of their suggestions on the new MEA.  

Another issue that we probed was the students‘ attitude towards MEAs. Overall; students 

expressed a positive attitude change from first term to second term sophomore year. For example 

a sophomore student suggested:  

―I like them [MEAs] better.  I think we dreaded them like first semester of this year, and 

then like, we’ve gotten better, so, and we do well on them, so it makes us feel better about 

them.‖ 
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Students liked the modeling practice more as they became better at it. Overall, the 

students were able to suggest that the education they received in the classroom may be improved 

further by adding more real life experiences. Students felt that they were given the theoretical 

background, but often the applicability of these methods or the reasoning (as to why and how 

engineers use these methods) was neglected, indicating that it is often not until their co-op 

rotations that they were able to see the applications of what they learned in the classroom. One 

student, in particular, referred to his manufacturing co-op experience where he had seen similar 

problems of quality and reliability and he knew how important it was to a company.  
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8.0  DISCUSSION, FUTURE WORK AND SUGGESTIONS 

8.1 OVERALL SUMMARY 

In this dissertation, the impact of three cognitive factors on development of engineering students‘ 

modeling skills has been analyzed. These three factors were self-efficacy, metacognition and 

epistemology. To the best of our knowledge, the studies described here are the first to develop 

and test the impacts of these factors on modeling, using responses of students from sophomore 

and senior levels in engineering education. Although ABET does not specifically list modeling 

as a targeted outcome of engineering education, many of the eleven outcomes have a direct link 

to engineering modeling. Thus, from a practical as well as an intellectual level, findings of this 

dissertation could improve students‘ ability to model by implementing pedagogical practices 

aimed at improving students‘ self-efficacy, epistemology and metacognition. The specific 

achievements of each study of the dissertation are summarized in the given figure.  
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Contribution  Specific Titles of Contribution to Engineering Education Field  

Study 1: Self-

Efficacy Scale 

Construction & 

Measurement of 

Impact of Self-

Efficacy on Modeling  

 

 Developed EMSS  

 Conducted factor analysis and laid out the factors of modeling self-

efficacy 

 Analyzed differences between the modeling self-efficacy levels of 

different years and disciplines of engineering 

 Laid out the sources of building self-efficacy and how MEAs can 

be instrumental in development of self-efficacy 

 Developed a theoretical framework of how modeling self-efficacy 

influences growth of modeling skills through testing of main effects 

and moderation 

 Provided a testing on the validation of EMSS including 

nomological and discriminant validity 

Study 2: 

Measurement of 

Impact of 

Epistemology on 

Modeling  

 

 Built a framework between epistemic beliefs and their expected 

impact on modeling growth 

 Developed a theoretical framework of how epistemology influences 

growth of modeling skills through testing of main effects and 

moderation  

Study 3: 

Measurement of 

Impact of 

Metacognition on 

Modeling  

 

 Listed metacognitive properties of working on MEA type tasks  

 Developed a theoretical framework of how metacognition 

influences growth of modeling skills through testing of main effects 

and moderation 

Study 4: Qualitative 

Analysis of Change in 

Modeling Skills 

 Provided a summary of detail changes observed from student 

reports and interviews in a descriptive manner, using examples 

from student responses 

 Analyzed and broke down the specific methodologies and paths 

used by students in modeling the MEAs 

 

 

Figure 21. Summary of dissertation sections 
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In the first study of the dissertation, under the self-efficacy chapter, a novel engineering 

modeling self-efficacy instrument titled the Engineering Modeling Self-efficacy Scale (EMSS) is 

created. Testing of this instrument was conducted on a broader engineering group including 

students from civil and industrial engineering disciplines. The overall scale was created based on 

a comparison with other scales from the literature. An analysis of the factor structure revealed 

that there were seven underlying dimensions of modeling self-efficacy, which are well suited to 

match the stages of self-efficacy laid out by Tsang (1991). The EMSS was tested on data 

collected from industrial and civil engineering students at both the sophomore and senior levels. 

Results suggested differences between sophomores and seniors in particular for three dimensions 

of modeling self-efficacy (i.e., Process Modeling, Interpretation, and Uncertainty and 

Validation). Female students and sophomores reported lower levels of self-efficacy overall. 

Following this analysis, the impact of self-efficacy on modeling skill growth was tested. Results 

indicated that self-efficacy has a substantial explanatory power in a modeling ability 

development.  

In the second dissertation study, testing was carried out on how epistemic beliefs 

influence modeling. Results demonstrated that the students are negatively influenced by the 

naïve ways of thinking in simple knowledge, certain knowledge, innate ability and quick 

learning dimensions. Innate ability influenced five out of seven dimensions for the sophomores 

and seniors. Certainty of knowledge influenced the review and evaluation of data. Omniscient 

authority was not a significant factor.  
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In the third dissertation study, the impact of metacognition on modeling skill growth was 

tested.  MEAs were demonstrated to show metacognitive properties for engaging students to: (1) 

think about formulating a model to solve a problem, (2) explain their modeling strategy to group 

members, and (3) write about their model. Sharing their experience with group members, or 

observing that a method does not work as intended, students can also correct their 

misconceptions and incorrect knowledge. The testing conducted on sophomores suggested that 

students who show higher metacognitive abilities are better or faster in developing modeling 

skills, as measured by their MEA rubric scores. Student who scored higher on self-checking, 

planning and cognitive strategy scored higher on their modeling ability over the course of two 

semesters, compared to students with lower skills. In particular, students with higher scores on 

planning and cognitive strategy had a more upward sloping growth trajectory, implying that it 

took them less time to gain modeling ability of a desired level or they had higher scores after the 

same time period, compared to their lower metacognition level counterparts. At the senior level 

these findings were repeated to a large extent. In particular, self-checking and planning retained 

their significant positive main effect, and cognitive strategy has a strong significant effect for the 

senior students. Awareness, in both levels, did not result in a significant impact.   

Despite the relatively small sample size and short time frame, in these three studies, 

particularly for the sophomore students, we were able to demonstrate that all three factors - self-

efficacy, metacognition, and epistemology - have significant impact. The dissertation thus 

informs the discussion in engineering education about the impact of students‘ cognitive 

backgrounds on their success. Similar to other quantitative disciplines, it is important to 

understand the behavioral aspects of engineering; indeed, this is one of the earlier studies taking 

that initiative in engineering modeling. When the significance of the results is tested using a 
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Bonferroni correction, we still find significant contribution and meaningful results, which is 

important given that we are simultaneously testing multiple hypotheses on related constructs. 

The results of this work provide promise that future research might capture additional effects of 

cognitive backgrounds on modeling, if a larger sample and a longer time framework is taken into 

account.   

 

8.2 A THEORY OF CHANGE IN MODELING 

Based on the findings of the four studies described in the dissertation, the following propositions 

can be made for the growth of modeling skills in undergraduate education.  The list of 

propositions relating to modeling is given in Table 29. These propositions can be considered as a 

call for action to understand and test the impact of each on various educational environments. 

 

Proposition 1. Modeling development is achieved as a function of the system analyzed, the 

domain knowledge of reference, and the interpretations that students are able to make from the 

modeling exercise based on their own cognitive, social and motivational limitations. 
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Table 29. Summary of Propositions Relating to Modeling 

 

Proposition 1 Modeling development is achieved as a function of the system analyzed, the 

domain knowledge of reference, and the interpretations that students are able to 

make from the modeling exercise; based on their own cognitive, social and 

motivational limitations. 

Proposition 2 Making the model parts discrete is useful for idea generation.  

Proposition 3   Requirement of skills from various different domains of engineering, different 

points of seeing the modeling problem, and transformation of one domain to 

another help in development of modeling. 

Proposition 4 Modeling exercises as a way of introducing a new but highly domain related 

concept does not work well in formalization of new knowledge. 

Proposition 5  No single theory explains the idea generation process in development of a 

mathematical model. It develops based on students’ knowledge, experiences, 

perceptions, analogies, and without considering the student’s history, 

interpretation of their development in mathematical models does not make 

sense. 

Proposition 6 Modeling exercises help students grasp the complexity of real life, within a 

frame.  

Proposition 7 Modeling exercises have benefits in developing social skills of students, 

including the ability to communicate, write and work in teams.  
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 In order to achieve this balance, an educator should focused on understanding the 

students‘ background and ideas related to science, their degree of understanding of engineering 

concepts, as well as how well the students can associate with the problem or system under study 

given their current knowledge base. A more relatable system may achieve higher educational 

benefits than an alternative that is less relevant or interesting. The clarity of the instructor, as 

suggested by students, was an important factor. Reflecting on why they were not as successful as 

they could have been, students often blamed the instructor‘s teaching ability; and as to why they 

learned better, students also commonly stated the instructor. 

 

Proposition 2. Making the model parts discrete is useful for idea generation.  

  

Students‘ level of abstraction was not found to be sophisticated.  The idea of making 

something discrete is a useful practice to help select general ideas that are consistent with the real 

problem, such as the part of the model and quantities of the parts of the model.  The relationships 

between the parts of the model, and how they are conserved within the system, are key aspects of 

the model. 

 

Proposition 3.  Skills from various domains of engineering, different perspectives for modeling 

the problem, and transformations from one domain to another all contribute to the development 

of modeling. 
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The idea of interpreting data and findings by pulling together various backgrounds helps 

to develop a powerful educational model (Gobert and Buckley, 2000). In the more difficult MEA 

(Tire), students‘ concept of reliability was enhanced from their interpretation of statistics, 

engineering economics, and quality assurance.  

 

Proposition 4. As a way of introducing and formalizing new but highly domain related concepts, 

MEAs do not work well. 

 

MEAs introduced throughout this study allowed the students understand the relationships 

between what is learned in the classroom and actual engineering practice taking place, as well as 

recognize similarities and differences to approaches to solve the problem.  With that said, MEAs 

were not helpful in introducing new concepts. For example, students showed low interest in 

understanding what reliability / tolerance implies, as measured by their searching (both online 

and in their texts) for new information.  

MEA exercises can be described as a means for students to put into practice their 

classroom knowledge, discuss and think about how to use their knowledge with respect to 

classroom goals.  From this perspective, MEAs help to integrate and reinforce information, 

rather than help to discover new concepts.  

 

Proposition 5.  No single theory explains the idea generation process in development of a 

mathematical model. It develops based on students’ knowledge, experiences, perceptions, 

analogies; and consideration of this background is necessary to interpret students’ development 

in mathematical models. 
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The generation of a mathematical model and interpretation of the results of the model 

were initiated by students‘ experience with previous similar problems, real life experiences, the 

analogies made from other models, and the way they perceived the information given to them. 

Students, based on their previous experience with a particular MEA could decide to use a similar 

mathematical model. For example, some sophomore students decided to use hypothesis testing 

for the CNC machine MEA in both semesters.  On the other hand, the student‘s experience with 

hypothesis testing in the first semester partially determines whether they kept the same model or 

not in the second semester. A group of students who felt that they did not understand the MEA 

the first time opted to use ANOVA the second semester.   

 

Proposition 6. Within a framework, modeling exercises help students grasp the complexity of 

real life. 

 

An MEA‘s function in understanding the complexity in real life is significant. Students‘ 

ability to link their statistical results to economic and operational constraints in an engineering 

environment is important and provides a quick start to their engineering career. Yet, interviews 

also showed that while working on these problems students kept in mind that it was a class 

assignment. Sophomores kept time limitations as a constraint in their mind, often stating that 

they wanted to spend minimal time on the exercise as possible; seniors indicated that a ―good 

enough‖ answer was acceptable. Thus, even though students considered the extra complexity of 

the problem, classroom constraints (or experimental study constraints in the case of seniors) 

limited in their motivation.  
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This proposition may be linked to: (1) students‘ motivation to learn on their own, or self-

regulated learning, and (2) lifelong learning practices. Students created limited relationships 

between their day-to-day learning goals (e.g., understand the concept of ANOVA) and overall 

learning goals from engineering (e.g., be able to use ANOVA as a professional engineer in their 

career). This finding may provide a future engineering education research goal - improving 

students‘ self-regulated learning strategies.  

 

Proposition 7. Modeling exercises have benefits in developing the social skills of students, 

including the ability to communicate, write and work in teams.  

 

The modeling practice, and in particular the MEAs, goes beyond the general exercises 

used in the classroom. The documenting and teamwork aspects of the practice help students to 

learn to integrate their ideas and solution to arrive at the best possible model. Students are forced 

to think more collectively than individually while working on the problems.  The development of 

a model, as well as changes in conceptualization and calculations being performed are discussed 

before implementation, thus helping students‘ discourse skills as well.  
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8.3 LIMITATIONS AND FUTURE WORK  

There are several limitations to this overall study. Because the dissertation does not control for 

the effects of university or engineering discipline, it cannot investigate potential differences 

among institutions and disciplines. Consequently, it must be left to future research work to 

determine, for example, whether substantial differences in engineering modeling self-efficacy, 

metacognition and epistemic beliefs exist between different schools or engineering programs of 

students and if these differences can equally reflect on the development of modeling abilities.  

In developing our initial research model, we drew heavily on theory and educational 

research. Researchers following up on this study may want to compare the theories in areas 

where they lead to different predictions. Even though self-efficacy theory offers significant 

promise for modeling research, future researchers might consider complementary theories that 

may also be relevant in modeling context. Also, we relied on student reports collected within a 

class and the survey instruments conducted via online systems. As a consequence of using self-

reported data it is possible that some common response bias across constructs was introduced. 

This may partially explain the significant relationships observed between cognitive constructs 

and the various outcomes studied. Future research might replicate the testing using 

measurements that do not depend on self-reports.  
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For the EMSS instrument, although our analysis suggests that certain items should be 

discarded, it is possible that for other engineering disciplines in which this instrument may be 

used those items do matter.  It is recommended that researchers who utilize this scale employ all 

36 items and perform a confirmatory factor analysis. Our sample includes students from a single 

institution and two disciplines, and thereby might not represent the characteristics of student 

from other institutions and other engineering disciplines.  

From a pedagogic point of view, more future research is required to understand the role 

of the instructor on students‘ views on modeling. This aspect could be useful in realization of 

why some students model engineering systems differently than others.  In the future extensions 

of this study, we intend to include other cognitive skills and background factors that might play a 

role in how students model. 

The findings ultimately need to be replicated by future work across other settings and 

over time before they can be fully accepted. Future studies should aim to develop scales for 

engineering modeling, and should test for differences in measurements with the various available 

instruments on different engineering populations.  Our analysis included a year of data 

collection. If possible, future research should extend the time period of the data collection.  

Additionally, other instruments can be tested to measure the constructs of self-efficacy, 

metacognition and epistemic beliefs to increase robustness of the findings.   
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It is also interesting to study the retention of students in engineering careers and how the 

students‘ backgrounds potentially influence this retention rate. For example, how do students‘ 

epistemic beliefs influence their career choice is an interesting question that waits to be 

answered. Such a study would require a longer term longitudinal experiment of the cognitive 

backgrounds as well as a follow up on the career choices after graduation, which is beyond the 

scope of this dissertation. 

In addition, future work could address a study where the three constructs are tested 

together for their impact. It is possible for one or more constructs to mediate or moderate the 

relationship between another construct and modeling skill growth. Again, such a study would 

require a larger sample size due to the increasing number of variables tested, but is likely to 

contribute to the understanding of the relationship between modeling and the cognitive 

background of students. 

A distinct challenge in this study was the collection of data and the time of data 

collection. In particular, to measure the backgrounds, we had a single time point in the growth 

curve models. Future work should try to address measurement of cognitive background on 

multiple time points, and if possible, as many times as the modeling outcome measurement.  

The results of the current study can be used to assist in creation of tests to identify 

students who are better suited to becoming engineers and modelers. Modeling skills could be 

incorporated into an assessment tool that could then be used to identify high school students with 

high levels of self-efficacy in modeling, who may be better suited to study engineering. By 

selecting and accepting these students who score highly on the self-efficacy instrument, 

engineering schools might improve their longer-term educational success. 
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Most importantly, to improve self-efficacy, metacognitive abilities, and epistemology, 

specific MEAs can be designed to include additional activities requiring cooperation and pooling 

of ideas such as general discussions on activities, comparisons between approaches to modeling 

before or after the exercise. This action may help to develop the students‘ understanding of how 

engineering modeling is also a social process. 

 

8.4 SUGGESTIONS FOR PRACTITIONERS 

Educating students so that they achieve higher modeling abilities will benefit educational 

institutions. How might engineering faculty use the developed scale and information given in this 

dissertation? First, studies make it clear that independent of the amount of education and 

experience a student receives, their learning or academic performance can be hindered by low 

self-efficacy, metacognition and naïve epistemic beliefs. Hence, despite instruction, faculty may 

not be able to change the modeling abilities of a student within a course or a semester period. 

Realizing this constraint, practitioners can viably set their outcome expectations. An instructor‘s 

effort in teaching might not be fully reflected in the student‘s ultimate course grade, due to the 

cognitive barriers.  Further, institutions should consider the backgrounds of students in 

evaluating the performance of teachers. To do this, it may be necessary to create systems that 

evaluate the motivational and cognitive systems of students which can then be feed into 

educational curriculums and teaching evaluations.  
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In initiating dialogue with students about modeling, an instructor may benefit by shifting 

the students‘ attention from the outcome to the process of model development. Thinking about 

their process builds a metacognitive improvement role.  Engineering educators can focus on the 

fact that the inputs and outputs of a system and the relationship between them are subject to 

one‘s abstraction and interpretation, coupled to their knowledge base. 

Addressing the importance of abstract and vague information (i.e., external conditions of 

the model that are not obvious from reading the MEA) in determining the results and their 

impact on the results, can help students to create connections between the model they created in 

the classroom and potential future models they may build as professional engineers.  

A result from this dissertation is that self-efficacy in engineering modeling is not well 

developed as students move from the sophomore to the senior level. Attempts to increase the 

modeling experience through the use of MEAs (e.g., having students with demonstrated 

modeling abilities as mentors to novice student modelers, and training them to be ‗role models‘ 

for modeling) may be a way to reduce low self-efficacy.  Further, faculty can focus developing 

self-efficacy in their courses, by providing further practice for modeling, giving verbal 

encouragement to help increase the level of self-efficacy, as well as enabling students to observe 

successful modeling outcomes of their peers. Reducing math anxiety levels also can be beneficial 

by leading to increased modeling self-efficacy, which in turn increases modeling outcomes.  

For students with naïve epistemic beliefs, educators can adapt instruction to guide those 

into higher level thinking; and adapt instruction for low scoring students to assist their growth. 

Traditional teaching roles are transitioning from transmitting knowledge to facilitating learning 

(Brookfield ad Preskill 1999, Sarasin 1999, Goodlad 1992).  A basis for this idea is presented by 

Knowles (1980), who defines andragogy compared to pedagogy. Andragogy encourages students 



222 

 

to be more autonomous, assessing their own capacities and needs, and accepting responsibility 

for their own and others‘ actions. MEAs can support andragogy practice by allowing students to 

become more autonomous, determining through their own actions how to best model and solve 

the posed MEA problem, as well as accept team-based responsibilities. Therefore, as MEAs 

become more common in engineering, classrooms can become less hierarchical environments. 

As modeling tasks are conducted in teams, the role of an instructor involves more than just 

delivering course content, but rather requires for helping the students in their inquiry of 

abstracting the real world. This should not give the impression that teaching is de-valued when 

MEAs are implemented. As Mayer (2004) suggests, unguided discovery methods can only be 

attained if they are supported by trained facilitation. Implementation of MEAs should provide a 

metacognitive practice, helping students to better reflect on their thinking, modeling process, as 

well as use of cognitive strategies and planning. To summarize the points made, we provide a list 

of ten important things that practitioners can do to improve learning to model in their classroom: 

 

1. Give information to students about their own backgrounds. Students are often unconscious 

of the epistemic beliefs and metacognitive habits they have or will form, as well as their level of 

self-efficacy. Helping the students to realize their weaknesses in cognitive backgrounds and the 

possible effects can help to minimize possible negative effects.  

2. Pay attention to how student teams are constructed.  Constructing student teams in a 

balanced manner, whereby students can learn from each other and thus increase each other‘s 

self-efficacy through role modeling, can contribute to learning to model.  



223 

 

3. Encourage students. When an instructor feels that a student is not reflecting her full ability, 

encouraging the student that she can do better can help to repair low self-efficacy, which, in turn, 

will result in higher modeling learning.  

4. Make modeling exercises relevant, and gradually increase their difficulty. When increasing 

the self-efficacy level of a student, it is important that the modeling tasks assigned match their 

capability, as well as their knowledge. Introducing tasks that match their capabilities and then 

gradually increasing the difficulty is likely to result in higher self-efficacy, helping them to learn 

to model.  

5. Ask for a plan / sketch of solution. To improve metacognitive thinking, the students can be 

asked to produce a sketch and a plan of their model prior to diving into their solution.  This 

precursor step can help students‘ thinking to clarify the method to be implemented.  

6. Ask for multiple ways to approach a problem. Often instructors ask students to provide a 

single solution for a model; however, in real life it is not uncommon that an engineer is expected 

to exhaust all possible options to come up with alternatives. Therefore, encouraging students to 

think and report a number of different ways can help to build metacognition through cognitive 

strategy.   

7. Use reflective statements. Metacognitive abilities of students can be improved by 

implementation of reflective statements over the course of a project. Carrying out reflections 

during and after the modeling exercise can help students master the planning and self-checking 

dimensions of metacognition.    

8. Give information on scientific thinking. Providing the students with more sophisticated 

epistemic beliefs and scientific thinking is important to challenge naïve epistemologies, which 

can contribute to learning to model.  
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9. Give more real-life experiences.  We observed that students often think in terms of short term 

goals, such as getting an A or graduating, rather than preparing for the long term goal of being a 

successful engineer. By providing real-life modeling experiences, students are more prepared 

and hopefully motivated to feel and act like engineers. Therefore, giving modeling exercises, in 

particular, MEA-like real-life based exercises, contributes to this thinking.   

10. Expect more and communicate it.  Similar to the previous recommendation, expecting that 

students prepare their answers as if they were actually working as engineers and making this 

expectation clear can help to sever the naïve student thinking, such as ‗it is just a class‘ or ‗it 

only contributes so little to my grade‘, and help engineering students to obtain full benefit of 

modeling experience.  
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8.5 CONTRIBUTION  

Modeling is a fundamental aspect of engineering; and the study of modeling in engineering 

education is a growing area of research.  The overarching objective of this dissertation is to 

understand the differences between engineering students‘ modeling practices; and indirectly 

improving the modeling abilities and performance of engineering students through this 

understanding.  

Although substantial amount of literature has recently been devoted to investigate the 

factors involved in modeling practices, such studies have been primarily in the domain of 

mathematics and physics. In the engineering education field, although there is a recent emphasis, 

there are few studies that investigate modeling.  As a result, the differences between the 

modeling practices of engineers and those of other disciplines remain an under-researched area 

of engineering. This dissertation thus begins to fill in a gap in the engineering education 

literature by investigating the engineering students‘ modeling process.  

The contributions of this dissertation to the field of engineering can be listed as follows: 

The dissertation starts with a search of the relevant literature in modeling, and links the current 

findings in modeling to the engineering arena. The objective of this undertaking is to initiate a 

conversation in engineering about the importance of modeling and modeling instruction.  

A second contribution of this dissertation is measuring the growth of modeling outcomes 

along seven distinct stages. Although instructors theoretically would expect an incremental 

growth in modeling, until now, there have been no studies that documented the type and extent 

of change. We observe, in general, a concave curve in modeling stages, with validation and 

verification being significantly under-developed, compared to other stages.  
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In measuring the change of growth, a significant effort was devoted to data collection. 

The instruments, including model-eliciting activities and the surveys, were embedded in course 

curriculum. Students were given the instruments coinciding with their instruction; hence, data 

collection lasted an academic year and included both sophomores and seniors.  Longitudinal data 

collection is an expensive methodology in terms of time, and few studies in engineering 

education have collected such data over a course of a year. In addition, the analysis of the data 

included both quantitative and qualitative approaches.  

A third contribution of this dissertation to the literature of engineering and education is 

the development of an Engineering Modeling Self-efficacy Scale. The impact of self-efficacy is 

widely measured in almost every area using specific self-efficacy instruments, such as design 

self-efficacy (Carberry et al. 2010), tinkering self-efficacy (Baker, Krause and Purzer 2008, 

Richardson 2008),  self-efficacy of engineering and computer use (Hutchinson et al. 2006, Marra 

and Bogue 2006, Amato-Henderson et al. 2007, Shull and Weiner 2002); as well as generalized 

self-efficacy in engineering instruments but modeling self-efficacy has not been measured, and 

there are currently no other instruments to measure self-efficacy in modeling. By creating the 

instrument, this dissertation opens a way for future work in self-efficacy and modeling.  

The fourth and most significant contribution of this dissertation is estimating the impact 

of self-efficacy, epistemology and metacognition on modeling ability development. That is, this 

is the first study to focus on the relationship between these constructs and modeling. Different 

from other research, we are focusing on the impact of self-efficacy, epistemology and 

metacognition on change, as opposed to studies that measure the correlation between the level 

and the modeling outcome, or correlation between the extent of change in these three constructs 

and the change in modeling outcome.  
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The final contribution of this dissertation is to document the strategies of modeling from 

resulting MEA reports as well as coded student interviews. The investigation of the MEA reports 

provides a contribution to the ongoing research on MEAs and modeling. Universities across the 

U.S., including but not limited to the University of Pittsburgh, Purdue University, U.S. Air Force 

Academy, Colorado School of Mines, California Poly San Luis Obispo and the University of 

Minnesota have used many of these modeling cases and have integrated them into their 

educational programs.  

By providing a guide on the relationship between these cases and the three specific 

cognitive constructs, this dissertation will assist scholars in their future work on creating and 

implementing new engineering MEAs. 

The dissertation is timely and relevant to the engineering community for several reasons. 

Schoenfeld (1992) suggests that there are two important issues that remain unresolved in 

learning how to think mathematically - one is consideration of cognitive factors that play a role 

in the process and the other one is extending the mathematical thinking situations beyond 

problem solving. This dissertation responds to both, which, in the past 18 years still remain 

unresolved.  By demonstrating the impact that self-efficacy, epistemic beliefs and metacognition 

impact modeling ability growth; we indicate that to reach the full potential of educational 

interventions, additional parameters should be integrated into engineering education to guarantee 

students‘ cognitive development. This argument is potentially discordant to the current 

engineering education practice; and thus this research can play an important role in initiating a 

dialogue in the future direction of engineering education.  
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APPENDIX A 

ENGINEERING MODELING SELF-EFFICACY SCALE 

Instructions  

Please think of a real life SYSTEM that you would be expected to build or design within your 

engineering discipline (e.g. bridges, buildings, an automobile, a machine, a factory, a computer 

software etc.) 

Assume that you are building a model of this system (such as a physical or symbolic model, like 

a mathematical or computer simulation representation), and that you are the only one in charge 

of the following tasks.  Sincerely rate how well you think you can do each of them. 
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ENGINEERING MODELING SELF-EFFICACY SCALE 

ITEMS 
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1 Decide what data is necessary to use in the model.      

2 Search databases to find necessary data.       

3 Determine whether the collected/given data sample is 

representative of the population. 

     

4 Decide whether the data is reliable and sample size is 

large enough. 

     

5 Identify which parts of the dataset are relevant to the 

model.  

     

6 Develop/use a method to estimate missing data.       

7 Create a schematic representation of the system in two or 

three dimensions (create a prototype). 

     

8 List the sub-processes within the system (e.g. physical, 

biological, and/or chemical, economical relationships, 

etc.) 

     

9 Identify the relationships between sub-processes (how 

changes in one affect changes another). 

     

10 Identify inputs and outputs of the system.       

11 Determine the (initial and boundary) conditions for the 

system to start/ stop functioning. 

     

12 Determine the necessary conditions for a system to exist/ 

survive once started functioning. 

     

13 Predict how the system will function in extreme cases.       

14 Determine the criteria to decide if the model performs 

well. 

     

15 Determine whether the performance criteria chosen are 

appropriate for the system. 

     

16 Find ways to modify the performance criteria to make it 

better. 

     

17 Quantify the impact of sub-processes on the performance 

criteria (goal of the model). 

     

18 Simplify the relationships between processes that exist in 

the system. 

     

19 Identify the variables and parameters in a model.       
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20 Identify the constraints on the model.      

21 Write a computer program to calculate the outcomes of 

the model. 

     

22 Choose a mathematical/ statistical model to calculate the 

performance criteria/ results of a developed model. 

     

23 Calculate the outcomes of the model by hand.      

24 Calculate the outcomes of the model using a computer 

code. 

     

25 Create tables and graphs of the results (manual or 

computerized). 

     

26 Determine the uncertainty in the parameters and data.       

27 Conduct a sensitivity analysis on the numerical results.      

28 Understand/ evaluate the results of a calculational model      

29 Determine if the results indicate an error.      

30 Use the results to predict future behavior of the system.      

31 Determine if the uncertainty in results indicates a need 

for an update or redesign of the model.  

     

32 Explain how the results of a calculational model are 

obtained.  

     

33 Determine qualitatively if the developed model looks 

‗alright‘.  

     

34 Determine numerically if the model results are valid.       

35 Determine ways to measure if the created model 

generates results in line with the actual system. 

     

36 Determine how the model developed compares to other 

models of the same system. 
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APPENDIX B 

EPISTEMIC BELIEFS INVENTORY 

 

 

ITEMS 
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)  

1. It bothers me when instructors don‘t tell students 

the answers to complicated problems. 

     

2. Truth means different things to different people.* 

† 

     

3. Students who learn things quickly are the most 

successful. 

     

4. People should always obey the law.      

5. Some people will never be smart no matter how 

hard they work. 

     

6. Absolute moral truth does not exist.* †      

7. Parents should teach their children all there is to 

know about life. † 

     

8. Really smart students don‘t have to work as hard 

to do well in school. 

     

9. If a person tries too hard to understand a 

problem, they will most likely end up being 

confused.  
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Epistemic Beliefs Inventory (Continued) 

 

10. Too many theories just complicate things. †      

11. The best ideas are often the most simple.      

12. People can‘t do too much about how smart they 

are.  

     

13. Instructors should focus on facts instead of 

theories.  

     

14. I like teachers who present several competing 

theories and let their students decide which is best.* 

† 

     

15. How well you do in school depends on how 

smart you are.  

     

16. If you don‘t learn something quickly, you won‘t 

ever learn it. 

     

17. Some people just have a knack for learning and 

others don‘t.  

     

18. Things are simpler than most professors would 

have you believe. † 

     

19. If two people are arguing about something, at 

least one of them must be wrong. 

     

20. Children should be allowed to question their 

parents‘ authority.* † 

     

21. If you haven‘t understood a chapter the first 

time through, going back over it won‘t help. 

     

22. Science is easy to understand because it 

contains so many facts.  

     

23. The moral rules i live by apply to everyone.      

24. The more you know about a topic, the more 

there is to know.* 

     

25. What is true today will be true tomorrow.      

26. Smart people are born that way.      

27. When someone in authority tells me what to do, 

i usually do it.  

     

28. People who question authority are trouble 

makers. 

     

29. Working on a problem with no quick solution is 

a waste of time. 

     

30. You can study something for years and still not 

really understand it.* 

     

31. Sometimes there are no right answers to life‘s 

big problems.* 

     

32. Some people are born with special gifts and 

talents. † 
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APPENDIX C 

METACOGNITIVE INVENTORY  

 

Please select the answer that best reflects your thinking when you are working on an exercise/ 

homework. 
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1 I am always aware of my own thinking. 
 

     

2 I always double check my work. 
 

     

3 I attempt to discover the main ideas in an exercise. 
 

     

4 I try to understand the goals of an exercise before I 
attempt to solve it. 

     

5 I am aware of what modeling/ problem solving 
strategies to use and when to use them to in order to 
solve an exercise. 

     

6 If I realize an error while working on an exercise, I always 
correct it. 

     

7 I ask myself how an exercise is related to what I already 
know. 

     

8 I try to understand what the solution to an exercise 
requires. 
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Metacognitive Inventory (Continued) 
 

9 I am aware of the need to plan my course of action in 
advance to solving an exercise. 

     

10 I know how much of the solution I have left to complete 
an assignment. 

     

11 I think through the meaning of an exercise before I begin 
to solve it. 

     

12 I make sure I understand just what needs to be done to 
solve an exercise and how to do it. 

     

13 I am aware of my ongoing thinking. 
 

     

14 I keep track of my progress and, if necessary, I change 
my solution method. 

     

15 I use multiple solution methods to solve an exercise. 
 

     

16 I determine how to solve an exercise from the questions 
in an exercise. 

     

17 I am aware of my trying to understand an exercise 
before I attempt to solve it. 

     

18 I check my accuracy as I progress through the solution. 
 

     

19 I select and organize relevant information before 
starting to solve an exercise. 

     

20 I try to understand what is asked of me before I attempt 
to solve an exercise. 

     

 

 

 

Note: The instrument is adapted from O‘Neill and Abedi (1996) with some changes. The 

wording of the items has been changed to include the words modeling and exercise to better fit 

the context of the modeling and engineering classrooms, and the measurement is generalized to 

general habits as opposed to a single time or single exercise.   
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APPENDIX D 

CORRELATIONS BETWEEN THE CONSTRUCTS 

 

 

Note: Numbers in each cell represent the following from top to bottom respectively: 

Pearson Correlation Coefficients, Prob > |r| under H0: Rho=0 and the Number of Observations 
 

 

Variables 

 RED CON EPS CAL CUS RE VV SERED 

RED 1.00000 

 

198 

0.70833 

<.0001 

198 

0.55590 

<.0001 

198 

0.65886 

<.0001 

198 

0.47213 

<.0001 

198 

0.58827 

<.0001 

198 

0.35283 

<.0001 

198 

-0.02678 

0.7080 

198 

CON 0.70833 

<.0001 

198 

1.00000 

 

198 

0.66317 

<.0001 

198 

0.75976 

<.0001 

198 

0.63766 

<.0001 

198 

0.55608 

<.0001 

198 

0.47843 

<.0001 

198 

-0.02735 

0.7021 

198 

EPS 0.55590 

<.0001 

198 

0.66317 

<.0001 

198 

1.00000 

 

198 

0.68864 

<.0001 

198 

0.69842 

<.0001 

198 

0.61399 

<.0001 

198 

0.46633 

<.0001 

198 

0.06205 

0.3851 

198 

CAL 0.65886 

<.0001 

198 

0.75976 

<.0001 

198 

0.68864 

<.0001 

198 

1.00000 

 

198 

0.64523 

<.0001 

198 

0.49910 

<.0001 

198 

0.35830 

<.0001 

198 

0.04540 

0.5253 

198 

CUS 0.47213 

<.0001 

198 

0.63766 

<.0001 

198 

0.69842 

<.0001 

198 

0.64523 

<.0001 

198 

1.00000 

 

198 

0.57506 

<.0001 

198 

0.46321 

<.0001 

198 

0.06038 

0.3981 

198 

RE 0.58827 

<.0001 

198 

0.55608 

<.0001 

198 

0.61399 

<.0001 

198 

0.49910 

<.0001 

198 

0.57506 

<.0001 

198 

1.00000 

 

198 

0.27095 

0.0001 

198 

0.00653 

0.9273 

198 

VV 0.35283 

<.0001 

198 

0.47843 

<.0001 

198 

0.46633 

<.0001 

198 

0.35830 

<.0001 

198 

0.46321 

<.0001 

198 

0.27095 

0.0001 

198 

1.00000 

 

198 

-0.04334 

0.5443 

198 

SERED -0.02678 

0.7080 

198 

-0.02735 

0.7021 

198 

0.06205 

0.3851 

198 

0.04540 

0.5253 

198 

0.06038 

0.3981 

198 

0.00653 

0.9273 

198 

-0.04334 

0.5443 

198 

1.00000 

 

198 
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Variables 

 RED CON EPS CAL CUS RE VV SERED 

SEPM -0.07691 

0.2815 

198 

-0.02377 

0.7396 

198 

-0.04558 

0.5237 

198 

-0.05339 

0.4551 

198 

-0.04920 

0.4912 

198 

-0.03833 

0.5918 

198 

0.02882 

0.6869 

198 

0.17230 

0.0152 

198 

SECON -0.09516 

0.1824 

198 

-0.03373 

0.6371 

198 

0.01915 

0.7889 

198 

0.05358 

0.4535 

198 

0.02056 

0.7737 

198 

-0.06009 

0.4004 

198 

0.03705 

0.6043 

198 

0.19330 

0.0064 

198 

SEEPS -0.00614 

0.9316 

198 

0.01988 

0.7810 

198 

0.05304 

0.4580 

198 

-0.00397 

0.9557 

198 

0.06773 

0.3431 

198 

0.05834 

0.4143 

198 

0.06109 

0.3926 

198 

0.35102 

<.0001 

198 

SEIE 0.05978 

0.4028 

198 

-0.02108 

0.7682 

198 

-0.03891 

0.5862 

198 

-0.02970 

0.6779 

198 

0.01878 

0.7928 

198 

0.03433 

0.6311 

198 

0.00219 

0.9756 

198 

0.36495 

<.0001 

198 

SECAL 0.04953 

0.4883 

198 

-0.01496 

0.8343 

198 

0.01095 

0.8783 

198 

-0.00077 

0.9914 

198 

0.02193 

0.7591 

198 

0.04614 

0.5186 

198 

0.01853 

0.7955 

198 

0.09134 

0.2006 

198 

SEUV 0.04818 

0.5003 

198 

-0.01018 

0.8868 

198 

0.06673 

0.3502 

198 

0.06134 

0.3906 

198 

0.08007 

0.2621 

198 

0.08294 

0.2454 

198 

0.04025 

0.5734 

198 

0.23217 

0.0010 

198 

Fixed Ability 

 

-0.07671 

0.2828 

198 

-0.04163 

0.5603 

198 

-0.07304 

0.3065 

198 

-0.05223 

0.4649 

198 

0.03771 

0.5979 

198 

-0.03961 

0.5795 

198 

-0.04913 

0.4919 

198 

-0.04114 

0.5650 

198 

Quick Learning  

 

-0.12150 

0.0882 

198 

-0.08140 

0.2543 

198 

-0.06109 

0.3926 

198 

-0.11134 

0.1184 

198 

0.05045 

0.4803 

198 

-0.04685 

0.5122 

198 

-0.01137 

0.8737 

198 

-0.06328 

0.3758 

198 

Omniscient 

Authority 

 

0.01146 

0.8727 

198 

-0.04724 

0.5087 

198 

0.00604 

0.9327 

198 

0.02541 

0.7223 

198 

0.03328 

0.6416 

198 

-0.03569 

0.6176 

198 

-0.04026 

0.5733 

198 

0.11600 

0.1036 

198 

Simple Knowledge  

 

0.01576 

0.8255 

198 

-0.08722 

0.2218 

198 

0.05936 

0.4061 

198 

0.03871 

0.5882 

198 

-0.12960 

0.0688 

198 

-0.02743 

0.7012 

198 

0.06579 

0.3571 

198 

-0.01950 

0.7851 

198 

Certain Knowledge 

 

0.05598 

0.4334 

198 

-0.05832 

0.4144 

198 

0.03297 

0.6447 

198 

-0.03594 

0.6152 

198 

0.01678 

0.8145 

198 

0.05875 

0.4110 

198 

-0.02412 

0.7358 

198 

-0.14762 

0.0379 

198 

Awareness 

 

0.03370 

0.6607 

172 

-0.08948 

0.2431 

172 

0.08152 

0.2877 

172 

0.07346 

0.3382 

172 

0.07738 

0.3130 

172 

0.00676 

0.9298 

172 

0.05905 

0.4416 

172 

0.46099 

<.0001 

172 

Self-checking  

 

0.07505 

0.3279 

172 

-0.01438 

0.8515 

172 

0.13456 

0.0784 

172 

0.13251 

0.0831 

172 

0.10101 

0.1874 

172 

0.13184 

0.0847 

172 

0.09265 

0.2267 

172 

0.40405 

<.0001 

172 
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Variables 

 RED CON EPS CAL CUS RE VV SERED 

Cognitive Strategy 

 

0.03867 

0.6145 

172 

-0.06431 

0.4020 

172 

0.09508 

0.2147 

172 

0.13631 

0.0746 

172 

0.04982 

0.5163 

172 

-0.00102 

0.9894 

172 

-0.01830 

0.8117 

172 

0.28577 

0.0001 

172 

Planning -0.00476 

0.9506 

172 

0.00538 

0.9442 

172 

0.07151 

0.3512 

172 

0.14388 

0.0597 

172 

0.09457 

0.2172 

172 

0.00506 

0.9475 

172 

0.06667 

0.3849 

172 

0.53707 

<.0001 

172 

 

Variables 

 

SEPM 

SECON SEEPS SEIE SECAL SEUV 

Fixed 

Ability 

RED -0.07691 

0.2815 

198 

-0.09516 

0.1824 

198 

-0.00614 

0.9316 

198 

0.05978 

0.4028 

198 

0.04953 

0.4883 

198 

0.04818 

0.5003 

198 

-0.07671 

0.2828 

198 

CON -0.02377 

0.7396 

198 

-0.03373 

0.6371 

198 

0.01988 

0.7810 

198 

-0.02108 

0.7682 

198 

-0.01496 

0.8343 

198 

-0.01018 

0.8868 

198 

-0.04163 

0.5603 

198 

EPS -0.04558 

0.5237 

198 

0.01915 

0.7889 

198 

0.05304 

0.4580 

198 

-0.03891 

0.5862 

198 

0.01095 

0.8783 

198 

0.06673 

0.3502 

198 

-0.07304 

0.3065 

198 

CAL -0.05339 

0.4551 

198 

0.05358 

0.4535 

198 

-0.00397 

0.9557 

198 

-0.02970 

0.6779 

198 

-0.00077 

0.9914 

198 

0.06134 

0.3906 

198 

-0.05223 

0.4649 

198 

CUS -0.04920 

0.4912 

198 

0.02056 

0.7737 

198 

0.06773 

0.3431 

198 

0.01878 

0.7928 

198 

0.02193 

0.7591 

198 

0.08007 

0.2621 

198 

0.03771 

0.5979 

198 

RE -0.03833 

0.5918 

198 

-0.06009 

0.4004 

198 

0.05834 

0.4143 

198 

0.03433 

0.6311 

198 

0.04614 

0.5186 

198 

0.08294 

0.2454 

198 

-0.03961 

0.5795 

198 

VV 0.02882 

0.6869 

198 

0.03705 

0.6043 

198 

0.06109 

0.3926 

198 

0.00219 

0.9756 

198 

0.01853 

0.7955 

198 

0.04025 

0.5734 

198 

-0.04913 

0.4919 

198 

SERED 0.17230 

0.0152 

198 

0.19330 

0.0064 

198 

0.35102 

<.0001 

198 

0.36495 

<.0001 

198 

0.09134 

0.2006 

198 

0.23217 

0.0010 

198 

-0.04114 

0.5650 

198 

SEPM 1.00000 

 

198 

0.24937 

0.0004 

198 

0.34721 

<.0001 

198 

0.44183 

<.0001 

198 

0.47586 

<.0001 

198 

0.33308 

<.0001 

198 

-0.00332 

0.9630 

198 

SECON 0.24937 

0.0004 

198 

1.00000 

 

198 

0.20699 

0.0034 

198 

0.21138 

0.0028 

198 

0.14535 

0.0410 

198 

0.46455 

<.0001 

198 

-0.07561 

0.2897 

198 
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Variables 

 

SEPM 

SECON SEEPS SEIE SECAL SEUV 

Fixed 

Ability 

SEEPS 0.34721 

<.0001 

198 

0.20699 

0.0034 

198 

1.00000 

 

198 

0.40864 

<.0001 

198 

0.30133 

<.0001 

198 

0.29404 

<.0001 

198 

0.00654 

0.9272 

198 

SEIE 0.44183 

<.0001 

198 

0.21138 

0.0028 

198 

0.40864 

<.0001 

198 

1.00000 

 

198 

0.57824 

<.0001 

198 

0.61808 

<.0001 

198 

-0.05625 

0.4312 

198 

SECAL 0.47586 

<.0001 

198 

0.14535 

0.0410 

198 

0.30133 

<.0001 

198 

0.57824 

<.0001 

198 

1.00000 

 

198 

0.36146 

<.0001 

198 

-0.12501 

0.0793 

198 

SEUV 0.33308 

<.0001 

198 

0.46455 

<.0001 

198 

0.29404 

<.0001 

198 

0.61808 

<.0001 

198 

0.36146 

<.0001 

198 

1.00000 

 

198 

0.05443 

0.4463 

198 

Fixed Ability 
 

-0.00332 

0.9630 

198 

-0.07561 

0.2897 

198 

0.00654 

0.9272 

198 

-0.05625 

0.4312 

198 

-0.12501 

0.0793 

198 

0.05443 

0.4463 

198 

1.00000 

 

198 

Quick Learning  
 

0.06592 

0.3562 

198 

0.04759 

0.5056 

198 

0.19329 

0.0064 

198 

-0.08816 

0.2168 

198 

-0.03209 

0.6535 

198 

0.07711 

0.2803 

198 

0.56322 

<.0001 

198 

Omniscient 

Authority 
 

-0.26583 

0.0002 

198 

0.00195 

0.9782 

198 

0.05840 

0.4138 

198 

0.03138 

0.6608 

198 

-0.21361 

0.0025 

198 

-0.01012 

0.8875 

198 

0.08217 

0.2498 

198 

Simple Knowledge  
 

-0.14097 

0.0476 

198 

-0.08952 

0.2098 

198 

-0.09578 

0.1795 

198 

-0.09974 

0.1621 

198 

-0.14351 

0.0437 

198 

-0.04247 

0.5524 

198 

0.10701 

0.1335 

198 

Certain Knowledge 
 

-0.03501 

0.6243 

198 

-0.14699 

0.0388 

198 

0.09303 

0.1924 

198 

-0.18902 

0.0077 

198 

-0.15249 

0.0320 

198 

-0.03407 

0.6338 

198 

0.49928 

<.0001 

198 

Awareness 
 

0.20235 

0.0078 

172 

0.39555 

<.0001 

172 

0.12934 

0.0908 

172 

0.41212 

<.0001 

172 

0.13933 

0.0683 

172 

0.57891 

<.0001 

172 

-0.03780 

0.6225 

172 

Self-checking  
 

0.35365 

<.0001 

172 

0.35549 

<.0001 

172 

0.21727 

0.0042 

172 

0.29100 

0.0001 

172 

0.39158 

<.0001 

172 

0.49074 

<.0001 

172 

-0.09659 

0.2075 

172 

Cognitive Strategy 
 

0.14793 

0.0528 

172 

0.42831 

<.0001 

172 

-0.07070 

0.3567 

172 

0.29795 

<.0001 

172 

0.14778 

0.0530 

172 

0.53409 

<.0001 

172 

-0.16756 

0.0280 

172 

Planning 0.19463 

0.0105 

172 

0.39552 

<.0001 

172 

0.13160 

0.0853 

172 

0.25358 

0.0008 

172 

0.09316 

0.2242 

172 

0.36975 

<.0001 

172 

0.02342 

0.7604 

172 
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Variables 

 Quick Learning  

Omniscient 

Authority  

Simple 

Knowledge 

Certain 

Knowledge  

RED -0.12150 

0.0882 

198 

0.01146 

0.8727 

198 

0.01576 

0.8255 

198 

0.05598 

0.4334 

198 

CON -0.08140 

0.2543 

198 

-0.04724 

0.5087 

198 

-0.08722 

0.2218 

198 

-0.05832 

0.4144 

198 

EPS -0.06109 

0.3926 

198 

0.00604 

0.9327 

198 

0.05936 

0.4061 

198 

0.03297 

0.6447 

198 

CAL -0.11134 

0.1184 

198 

0.02541 

0.7223 

198 

0.03871 

0.5882 

198 

-0.03594 

0.6152 

198 

CUS 0.05045 

0.4803 

198 

0.03328 

0.6416 

198 

-0.12960 

0.0688 

198 

0.01678 

0.8145 

198 

RE -0.04685 

0.5122 

198 

-0.03569 

0.6176 

198 

-0.02743 

0.7012 

198 

0.05875 

0.4110 

198 

VV -0.01137 

0.8737 

198 

-0.04026 

0.5733 

198 

0.06579 

0.3571 

198 

-0.02412 

0.7358 

198 

SERED -0.06328 

0.3758 

198 

0.11600 

0.1036 

198 

-0.01950 

0.7851 

198 

-0.14762 

0.0379 

198 

SEPM 0.06592 

0.3562 

198 

-0.26583 

0.0002 

198 

-0.14097 

0.0476 

198 

-0.03501 

0.6243 

198 

SECON 0.04759 

0.5056 

198 

0.00195 

0.9782 

198 

-0.08952 

0.2098 

198 

-0.14699 

0.0388 

198 

SEEPS 0.19329 

0.0064 

198 

0.05840 

0.4138 

198 

-0.09578 

0.1795 

198 

0.09303 

0.1924 

198 

SEIE -0.08816 

0.2168 

198 

0.03138 

0.6608 

198 

-0.09974 

0.1621 

198 

-0.18902 

0.0077 

198 

SECAL -0.03209 

0.6535 

198 

-0.21361 

0.0025 

198 

-0.14351 

0.0437 

198 

-0.15249 

0.0320 

198 

SEUV 0.07711 

0.2803 

198 

-0.01012 

0.8875 

198 

-0.04247 

0.5524 

198 

-0.03407 

0.6338 

198 



240 

 

Variables 

 Quick Learning  

Omniscient 

Authority  

Simple 

Knowledge 

Certain 

Knowledge  

Fixed Ability 
 

0.56322 

<.0001 

198 

0.08217 

0.2498 

198 

0.10701 

0.1335 

198 

0.49928 

<.0001 

198 

Quick Learning  
 

1.00000 

 

198 

0.26654 

0.0001 

198 

0.12715 

0.0743 

198 

0.50190 

<.0001 

198 

Omniscient 

Authority 
 

0.26654 

0.0001 

198 

1.00000 

 

198 

0.15682 

0.0274 

198 

0.11705 

0.1005 

198 

Simple Knowledge  
 

0.12715 

0.0743 

198 

0.15682 

0.0274 

198 

1.00000 

 

198 

0.22476 

0.0015 

198 

Certain Knowledge 
 

0.50190 

<.0001 

198 

0.11705 

0.1005 

198 

0.22476 

0.0015 

198 

1.00000 

 

198 

Awareness 
 

0.04942 

0.5197 

172 

0.20033 

0.0084 

172 

0.00719 

0.9254 

172 

-0.08270 

0.2808 

172 

Self-checking  
 

-0.11417 

0.1359 

172 

0.03974 

0.6047 

172 

-0.16910 

0.0266 

172 

-0.23863 

0.0016 

172 

Cognitive Strategy 
 

-0.13377 

0.0802 

172 

0.22782 

0.0027 

172 

-0.00958 

0.9008 

172 

-0.09485 

0.2158 

172 

Planning -0.16673 

0.0288 

172 

0.15069 

0.0485 

172 

-0.12166 

0.1119 

172 

-0.11987 

0.1173 

172 
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Variables 

 Awareness Self-checking 

Cognitive 

Strategy Planning 

RED 0.03370 

0.6607 

172 

0.07505 

0.3279 

172 

0.03867 

0.6145 

172 

-0.00476 

0.9506 

172 

CON -0.08948 

0.2431 

172 

-0.01438 

0.8515 

172 

-0.06431 

0.4020 

172 

0.00538 

0.9442 

172 

EPS 0.08152 

0.2877 

172 

0.13456 

0.0784 

172 

0.09508 

0.2147 

172 

0.07151 

0.3512 

172 

CAL 0.07346 

0.3382 

172 

0.13251 

0.0831 

172 

0.13631 

0.0746 

172 

0.14388 

0.0597 

172 

CUS 0.07738 

0.3130 

172 

0.10101 

0.1874 

172 

0.04982 

0.5163 

172 

0.09457 

0.2172 

172 

RE 0.00676 

0.9298 

172 

0.13184 

0.0847 

172 

-0.00102 

0.9894 

172 

0.00506 

0.9475 

172 

VV 0.05905 

0.4416 

172 

0.09265 

0.2267 

172 

-0.01830 

0.8117 

172 

0.06667 

0.3849 

172 

SERED 0.46099 

<.0001 

172 

0.40405 

<.0001 

172 

0.28577 

0.0001 

172 

0.53707 

<.0001 

172 

SEPM 0.20235 

0.0078 

172 

0.35365 

<.0001 

172 

0.14793 

0.0528 

172 

0.19463 

0.0105 

172 

SECON 0.39555 

<.0001 

172 

0.35549 

<.0001 

172 

0.42831 

<.0001 

172 

0.39552 

<.0001 

172 

SEEPS 0.12934 

0.0908 

172 

0.21727 

0.0042 

172 

-0.07070 

0.3567 

172 

0.13160 

0.0853 

172 

SEIE 0.41212 

<.0001 

172 

0.29100 

0.0001 

172 

0.29795 

<.0001 

172 

0.25358 

0.0008 

172 

SECAL 0.13933 

0.0683 

172 

0.39158 

<.0001 

172 

0.14778 

0.0530 

172 

0.09316 

0.2242 

172 

SEUV 0.57891 

<.0001 

172 

0.49074 

<.0001 

172 

0.53409 

<.0001 

172 

0.36975 

<.0001 

172 
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Variables 

 Awareness Self-checking 

Cognitive 

Strategy Planning 

Fixed Ability 
 

-0.03780 

0.6225 

172 

-0.09659 

0.2075 

172 

-0.16756 

0.0280 

172 

0.02342 

0.7604 

172 

Quick Learning  
 

0.04942 

0.5197 

172 

-0.11417 

0.1359 

172 

-0.13377 

0.0802 

172 

-0.16673 

0.0288 

172 

Omniscient 

Authority 
 

0.20033 

0.0084 

172 

0.03974 

0.6047 

172 

0.22782 

0.0027 

172 

0.15069 

0.0485 

172 

Simple Knowledge  
 

0.00719 

0.9254 

172 

-0.16910 

0.0266 

172 

-0.00958 

0.9008 

172 

-0.12166 

0.1119 

172 

Certain Knowledge 
 

-0.08270 

0.2808 

172 

-0.23863 

0.0016 

172 

-0.09485 

0.2158 

172 

-0.11987 

0.1173 

172 

Awareness 
 

1.00000 

 

172 

0.65544 

<.0001 

172 

0.75258 

<.0001 

172 

0.63380 

<.0001 

172 

Self-checking  
 

0.65544 

<.0001 

172 

1.00000 

 

172 

0.56232 

<.0001 

172 

0.58539 

<.0001 

172 

Cognitive Strategy 
 

0.75258 

<.0001 

172 

0.56232 

<.0001 

172 

1.00000 

 

172 

0.67613 

<.0001 

172 

Planning 0.63380 

<.0001 

172 

0.58539 

<.0001 

172 

0.67613 

<.0001 

172 

1.00000 

 

172 
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Variables 

 Awareness Self-checking Cognitive Strategy Planning 

RED 0.03370 

0.6607 

172 

0.07505 

0.3279 

172 

0.03867 

0.6145 

172 

-0.00476 

0.9506 

172 

CON -0.08948 

0.2431 

172 

-0.01438 

0.8515 

172 

-0.06431 

0.4020 

172 

0.00538 

0.9442 

172 

EPS 0.08152 

0.2877 

172 

0.13456 

0.0784 

172 

0.09508 

0.2147 

172 

0.07151 

0.3512 

172 

CAL 0.07346 

0.3382 

172 

0.13251 

0.0831 

172 

0.13631 

0.0746 

172 

0.14388 

0.0597 

172 

CUS 0.07738 

0.3130 

172 

0.10101 

0.1874 

172 

0.04982 

0.5163 

172 

0.09457 

0.2172 

172 

RE 0.00676 

0.9298 

172 

0.13184 

0.0847 

172 

-0.00102 

0.9894 

172 

0.00506 

0.9475 

172 

VV 0.05905 

0.4416 

172 

0.09265 

0.2267 

172 

-0.01830 

0.8117 

172 

0.06667 

0.3849 

172 

SERED 0.46099 

<.0001 

172 

0.40405 

<.0001 

172 

0.28577 

0.0001 

172 

0.53707 

<.0001 

172 

SEPM 0.20235 

0.0078 

172 

0.35365 

<.0001 

172 

0.14793 

0.0528 

172 

0.19463 

0.0105 

172 

SECON 0.39555 

<.0001 

172 

0.35549 

<.0001 

172 

0.42831 

<.0001 

172 

0.39552 

<.0001 

172 

SEEPS 0.12934 

0.0908 

172 

0.21727 

0.0042 

172 

-0.07070 

0.3567 

172 

0.13160 

0.0853 

172 

SEIE 0.41212 

<.0001 

172 

0.29100 

0.0001 

172 

0.29795 

<.0001 

172 

0.25358 

0.0008 

172 

SECAL 0.13933 

0.0683 

172 

0.39158 

<.0001 

172 

0.14778 

0.0530 

172 

0.09316 

0.2242 

172 

SEUV 0.57891 

<.0001 

172 

0.49074 

<.0001 

172 

0.53409 

<.0001 

172 

0.36975 

<.0001 

172 



244 

 

Variables 

 Awareness Self-checking Cognitive Strategy Planning 

Fixed Ability 

 

-0.03780 

0.6225 

172 

-0.09659 

0.2075 

172 

-0.16756 

0.0280 

172 

0.02342 

0.7604 

172 

Quick Learning  

 

0.04942 

0.5197 

172 

-0.11417 

0.1359 

172 

-0.13377 

0.0802 

172 

-0.16673 

0.0288 

172 

Omniscient Authority 

 

0.20033 

0.0084 

172 

0.03974 

0.6047 

172 

0.22782 

0.0027 

172 

0.15069 

0.0485 

172 

Simple Knowledge  

 

0.00719 

0.9254 

172 

-0.16910 

0.0266 

172 

-0.00958 

0.9008 

172 

-0.12166 

0.1119 

172 

Certain Knowledge 

 

-0.08270 

0.2808 

172 

-0.23863 

0.0016 

172 

-0.09485 

0.2158 

172 

-0.11987 

0.1173 

172 

Awareness 1.00000 

 

172 

0.65544 

<.0001 

172 

0.75258 

<.0001 

172 

0.63380 

<.0001 

172 

Self-checking  

 

0.65544 

<.0001 

172 

1.00000 

 

172 

0.56232 

<.0001 

172 

0.58539 

<.0001 

172 

Cognitive Strategy 

 

0.75258 

<.0001 

172 

0.56232 

<.0001 

172 

1.00000 

 

172 

0.67613 

<.0001 

172 

Planning 0.63380 

<.0001 

172 

0.58539 

<.0001 

172 

0.67613 

<.0001 

172 

1.00000 

 

172 
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APPENDIX E 

GROWTH MODELS TESTED 

Independent 

Variable  

Dependent Variables  Control Variables 

RED Month    

RED Month, Month
2
   

RED Month, Month
2
, Month

3
   

RED Month
2
   

RED Month
3
   

RED Month  Gender 

RED Month, Month
2
 Gender 

RED Month, Month
2
, Month

3
 Gender  

RED Month
2
 Gender  

RED Month
3
 Gender  

RED Month  CGPA 

RED Month, Month
2
 CGPA 

RED Month, Month
2
, Month

3
 CGPA 

RED Month
2
 CGPA 

RED Month
3
 CGPA 

RED Month,    MEA 

RED Month, Month
2
 MEA 

RED Month, Month
2
, Month

3
 MEA 

RED Month
2
 MEA 
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Independent 

Variable  

Dependent Variables  Control Variables 

RED Month
3
 MEA 

RED Month,    MEA, Gender, GPA 

RED Month, Month
2
 MEA, Gender, GPA 

RED Month, Month
2
, Month

3
 MEA, Gender, GPA 

RED Month
2
 MEA, Gender, GPA 

RED Month
3
 MEA, Gender, GPA 

CON Month    

CON Month, Month
2
   

CON Month, Month
2
, Month

3
   

CON Month
2
   

CON Month
3
   

CON Month  Gender 

CON Month, Month
2
 Gender 

CON Month, Month
2
, Month

3
 Gender  

CON Month
2
 Gender  

CON Month
3
 Gender  

CON Month  CGPA 

CON Month, Month
2
 CGPA 

CON Month, Month
2
, Month

3
 CGPA 

CON Month
2
 CGPA 

CON Month
3
 CGPA 

CON Month,    MEA 

CON Month, Month
2
 MEA 

CON Month, Month
2
, Month

3
 MEA 

CON Month
2
 MEA 

CON Month
3
 MEA 

CON Month,    MEA, Gender, GPA 

CON Month, Month
2
 MEA, Gender, GPA 

CON Month, Month
2
, Month

3
 MEA, Gender, GPA 

CON Month
2
 MEA, Gender, GPA 

CON Month
3
 MEA, Gender, GPA 

CON Month    
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Independent 

Variable  

Dependent Variables  Control Variables 

CON Month, Month
2
   

CON Month, Month
2
, Month

3
   

CON Month
2
   

CON Month
3
   

CON Month  Gender 

CON Month, Month
2
 Gender 

CON Month, Month
2
, Month

3
 Gender  

CON Month
2
 Gender  

CON Month
3
 Gender  

CON Month  CGPA 

CON Month, Month
2
 CGPA 

CON Month, Month
2
, Month

3
 CGPA 

CON Month
2
 CGPA 

CON Month
3
 CGPA 

CON Month,    MEA 

CON Month, Month
2
 MEA 

CON Month, Month
2
, Month

3
 MEA 

CON Month
2
 MEA 

CON Month
3
 MEA 

CON Month,    MEA, Gender, GPA 

CON Month, Month
2
 MEA, Gender, GPA 

CON Month, Month
2
, Month

3
 MEA, Gender, GPA 

CON Month
2
 MEA, Gender, GPA 

CON Month
3
 MEA, Gender, GPA 

EPS Month    

EPS Month, Month
2
   

EPS Month, Month
2
, Month

3
   

EPS Month
2
   

EPS Month
3
   

EPS Month  Gender 

EPS Month, Month
2
 Gender 

EPS Month, Month
2
, Month

3
 Gender  
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Independent 

Variable  

Dependent Variables  Control Variables 

EPS Month
2
 Gender  

EPS Month
3
 Gender  

EPS Month  CGPA 

EPS Month, Month
2
 CGPA 

EPS Month, Month
2
, Month

3
 CGPA 

EPS Month
2
 CGPA 

EPS Month
3
 CGPA 

EPS Month,    MEA 

EPS Month, Month
2
 MEA 

EPS Month, Month
2
, Month

3
 MEA 

EPS Month
2
 MEA 

EPS Month
3
 MEA 

EPS Month,    MEA, Gender, GPA 

EPS Month, Month
2
 MEA, Gender, GPA 

EPS Month, Month
2
, Month

3
 MEA, Gender, GPA 

EPS Month
2
 MEA, Gender, GPA 

EPS Month
3
 MEA, Gender, GPA 

CAL Month    

CAL Month, Month
2
   

CAL Month, Month
2
, Month

3
   

CAL Month
2
   

CAL Month
3
   

CAL Month  Gender 

CAL Month, Month
2
 Gender 

CAL Month, Month
2
, Month

3
 Gender  

CAL Month
2
 Gender  

CAL Month
3
 Gender  

CAL Month  CGPA 

CAL Month, Month
2
 CGPA 

CAL Month, Month
2
, Month

3
 CGPA 

CAL Month
2
 CGPA 

CAL Month
3
 CGPA 
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Independent 

Variable  

Dependent Variables  Control Variables 

CAL Month,    MEA 

CAL Month, Month
2
 MEA 

CAL Month, Month
2
, Month

3
 MEA 

CAL Month
2
 MEA 

CAL Month
3
 MEA 

CAL Month,    MEA, Gender, GPA 

CAL Month, Month
2
 MEA, Gender, GPA 

CAL Month, Month
2
, Month

3
 MEA, Gender, GPA 

CAL Month
2
 MEA, Gender, GPA 

CAL Month
3
 MEA, Gender, GPA 

CUS Month    

CUS Month, Month
2
   

CUS Month, Month
2
, Month

3
   

CUS Month
2
   

CUS Month
3
   

CUS Month  Gender 

CUS Month, Month
2
 Gender 

CUS Month, Month
2
, Month

3
 Gender  

CUS Month
2
 Gender  

CUS Month
3
 Gender  

CUS Month  CGPA 

CUS Month, Month
2
 CGPA 

CUS Month, Month
2
, Month

3
 CGPA 

CUS Month
2
 CGPA 

CUS Month
3
 CGPA 

CUS Month,    MEA 

CUS Month, Month
2
 MEA 

CUS Month, Month
2
, Month

3
 MEA 

CUS Month
2
 MEA 

CUS Month
3
 MEA 

CUS Month,    MEA, Gender, GPA 

CUS Month, Month
2
 MEA, Gender, GPA 
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Independent 

Variable  

Dependent Variables  Control Variables 

CUS Month, Month
2
, Month

3
 MEA, Gender, GPA 

CUS Month
2
 MEA, Gender, GPA 

CUS Month
3
 MEA, Gender, GPA 

RE Month    

RE Month, Month
2
   

RE Month, Month
2
, Month

3
   

RE Month
2
   

RE Month
3
   

RE Month  Gender 

RE Month, Month
2
 Gender 

RE Month, Month
2
, Month

3
 Gender  

RE Month
2
 Gender  

RE Month
3
 Gender  

RE Month  CGPA 

RE Month, Month
2
 CGPA 

RE Month, Month
2
, Month

3
 CGPA 

RE Month
2
 CGPA 

RE Month
3
 CGPA 

RE Month,    MEA 

RE Month, Month
2
 MEA 

RE Month, Month
2
, Month

3
 MEA 

RE Month
2
 MEA 

RE Month
3
 MEA 

RE Month,    MEA, Gender, GPA 

RE Month, Month
2
 MEA, Gender, GPA 

RE Month, Month
2
, Month

3
 MEA, Gender, GPA 

RE Month
2
 MEA, Gender, GPA 

RE Month
3
 MEA, Gender, GPA 

VV Month    

VV Month, Month
2
   

VV Month, Month
2
, Month

3
   

VV Month
2
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Independent 

Variable  

Dependent Variables  Control Variables 

VV Month
3
   

VV Month  Gender 

VV Month, Month
2
 Gender 

VV Month, Month
2
, Month

3
 Gender  

VV Month
2
 Gender  

VV Month
3
 Gender  

VV Month  CGPA 

VV Month, Month
2
 CGPA 

VV Month, Month
2
, Month

3
 CGPA 

VV Month
2
 CGPA 

VV Month
3
 CGPA 

VV Month,    MEA 

VV Month, Month
2
 MEA 

VV Month, Month
2
, Month

3
 MEA 

VV Month
2
 MEA 

VV Month
3
 MEA 

VV Month,    MEA, Gender, GPA 

VV Month, Month
2
 MEA, Gender, GPA 

VV Month, Month
2
, Month

3
 MEA, Gender, GPA 

VV Month
2
 MEA, Gender, GPA 

VV Month
3
 MEA, Gender, GPA 

RED Month, SERED   

RED Month, Month
2, 

SERED   

RED Month, Month
2
, Month

3 
SERED   

RED Month
2 
SERED   

RED Month
3 
SERED   

RED Month  SERED Gender 

RED Month, Month
2 
SERED Gender 

RED Month, Month
2
, Month

3 
SERED Gender  

RED Month
2
 SERED Gender  

RED Month
3 
SERED Gender  

RED Month SERED CGPA 
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Independent 

Variable  

Dependent Variables  Control Variables 

RED Month, Month
2 
SERED CGPA 

RED Month, Month
2
, Month

3 
SERED CGPA 

RED Month
2 
SERED CGPA 

RED Month
3 
SERED CGPA 

RED Month,    SERED MEA 

RED Month, Month
2 
SERED MEA 

RED Month, Month
2
, Month

3 
SERED MEA 

RED Month
2 
SERED MEA 

RED Month
3 
SERED MEA 

RED Month,    SERED MEA, Gender, GPA 

RED Month, Month
2
 SERED MEA, Gender, GPA 

RED Month, Month
2
, Month

3 
SERED MEA, Gender, GPA 

RED Month
2 
SERED MEA, Gender, GPA 

RED Month
3 
SERED MEA, Gender, GPA 

CON Month  SECON   

CON Month, Month
2
 SECON   

CON Month, Month
2
, Month

3 
SECON   

CON Month
2 

  SECON   

CON Month
3 

 , SECON   

CON Month  , SECON Gender 

CON Month, Month
2 
, SECON Gender 

CON Month, Month
2
, Month

3 
, SECON Gender  

CON Month
2 

, SECON Gender  

CON Month
3 

, SECON Gender  

CON Month  , SECON CGPA 

CON Month, Month
2 
, SECON CGPA 

CON Month, Month
2
, Month

3 
, SECON CGPA 

CON Month
2 

, SECON CGPA 

CON Month
3 

, SECON CGPA 

CON Month,   , SECON MEA 

CON Month, Month
2 
, SECON MEA 

CON Month, Month
2
, Month

3 
, SECON MEA 
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Independent 

Variable  

Dependent Variables  Control Variables 

CON Month
2 

, SECON MEA 

CON Month
3 

, SECON MEA 

CON Month,    , SECON MEA, Gender, GPA 

CON Month, Month
2 
, SECON MEA, Gender, GPA 

CON Month, Month
2
, Month

3 
, SECON MEA, Gender, GPA 

CON Month
2 

, SECON MEA, Gender, GPA 

CON Month
3 

, SECON MEA, Gender, GPA 

CON Month  , SECON   

CON Month, Month
2 
, SECON   

CON Month, Month
2
, Month

3 
, SECON   

CON Month
2 

, SECON   

CON Month
3 

, SECON   

CON Month  , SECON Gender 

CON Month, Month
2 
, SECON Gender 

CON Month, Month
2
, Month

3 
, SECON Gender  

CON Month
2 

, SECON Gender  

CON Month
3 

, SECON Gender  

CON Month , SECON CGPA 

CON Month, Month
2 
, SECON CGPA 

CON Month, Month
2
, Month

3 
, SECON CGPA 

CON Month
2 

, SECON CGPA 

CON Month
3 

, SECON CGPA 

CON Month,    , SECON MEA 

CON Month, Month
2 
, SECON MEA 

CON Month, Month
2
, Month

3 
, SECON MEA 

CON Month
2 

, SECON MEA 

CON Month
3 

, SECON MEA 

CON Month,   , SECON MEA, Gender, GPA 

CON Month, Month
2 
, SECON MEA, Gender, GPA 

CON Month, Month
2
, Month

3 
, SECON MEA, Gender, GPA 

CON Month
2 

, SECON MEA, Gender, GPA 

CON Month
3 

, SECON MEA, Gender, GPA 
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Independent 

Variable  

Dependent Variables  Control Variables 

EPS Month  , SEEPS   

EPS Month, Month
2 
, SEEPS   

EPS Month, Month
2
, Month

3 
, SEEPS   

EPS Month
2 

, SEEPS   

EPS Month
3 

, SEEPS   

EPS Month  , SEEPS Gender 

EPS Month, Month
2 
, SEEPS Gender 

EPS Month, Month
2
, Month

3 
, SEEPS Gender  

EPS Month
2 

, SEEPS Gender  

EPS Month
3 

, SEEPS Gender  

EPS Month  , SEEPS CGPA 

EPS Month, Month
2 
, SEEPS CGPA 

EPS Month, Month
2
, Month

3 
, SEEPS CGPA 

EPS Month
2
, SEEPS CGPA 

EPS Month
3 

, SEEPS CGPA 

EPS Month,   SEEPS MEA 

EPS Month, Month
2 
, SEEPS MEA 

EPS Month, Month
2
, Month

3 
, SEEPS MEA 

EPS Month
2
, SEEPS MEA 

EPS Month
3
, SEEPS MEA 

EPS Month,   , SEEPS MEA, Gender, GPA 

EPS Month, Month
2
, SEEPS MEA, Gender, GPA 

EPS Month, Month
2
, Month

3
, SEEPS MEA, Gender, GPA 

EPS Month
2
, SEEPS MEA, Gender, GPA 

EPS Month
3
, SEEPS MEA, Gender, GPA 

CAL Month , SEIE, , SEPM, SECAL   

CAL Month, Month
2 
SEIE, , SEPM, SECAL   

CAL Month, Month
2
, Month

3 
SEIE, , SEPM, SECAL   

CAL Month
2 
SEIE, , SEPM, SECAL   

CAL Month
3 
SEIE, , SEPM, SECAL   

CAL Month  SEIE, , SEPM, SECAL Gender 

CAL Month, Month
2 
SEIE, , SEPM, SECAL Gender 
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Independent 

Variable  

Dependent Variables  Control Variables 

CAL Month, Month
2
, Month

3 
SEIE, , SEPM, SECAL Gender  

CAL Month
2 
SEIE, , SEPM, SECAL Gender  

CAL Month
3 
SEIE, , SEPM, SECAL Gender  

CAL Month  SEIE, , SEPM, SECAL CGPA 

CAL Month, Month
2 
SEIE, , SEPM, SECAL CGPA 

CAL Month, Month
2
, Month

3 
SEIE, , SEPM, SECAL CGPA 

CAL Month
2 
SEIE, , SEPM, SECAL CGPA 

CAL Month
3 
SEIE, , SEPM, SECAL CGPA 

CAL Month,    SEIE, , SEPM, SECAL MEA 

CAL Month, Month
2 
SEIE, , SEPM, SECAL MEA 

CAL Month, Month
2
, Month

3 
SEIE, , SEPM, SECAL MEA 

CAL Month
2
 SEIE, , SEPM, SECAL MEA 

CAL Month
3 
SEIE, , SEPM, SECAL MEA 

CAL Month,    SEIE, , SEPM, SECAL MEA, Gender, GPA 

CAL Month, Month
2 
SEIE, , SEPM, SECAL MEA, Gender, GPA 

CAL Month, Month
2
, Month

3 
SEIE, , SEPM, SECAL MEA, Gender, GPA 

CAL Month
2
 SEIE, , SEPM, SECAL MEA, Gender, GPA 

CAL Month
3
 SEIE, , SEPM, SECAL MEA, Gender, GPA 

CUS Month SECAL SEUV   

CUS Month, Month
2 
SECAL SEUV   

CUS Month, Month
2
, Month

3 
SECAL SEUV   

CUS Month
2 
SECAL SEUV   

CUS Month
3 
SECAL SEUV   

CUS Month SECAL SEUV Gender 

CUS Month, Month
2 
SECAL SEUV Gender 

CUS Month, Month
2
, Month

3 
SECAL SEUV Gender  

CUS Month
2 
SECAL SEUV Gender  

CUS Month
3 
SECAL SEUV Gender  

CUS Month  SECAL SEUV CGPA 

CUS Month, Month
2 
SECAL SEUV CGPA 

CUS Month, Month
2
, Month

3 
SECAL SEUV CGPA 

CUS Month
2 
SECAL SEUV CGPA 
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Independent 

Variable  

Dependent Variables  Control Variables 

CUS Month
3 
SECAL SEUV CGPA 

CUS Month,    SECAL SEUV MEA 

CUS Month, Month
2 
SECAL SEUV MEA 

CUS Month, Month
2
, Month

3 
SECAL SEUV MEA 

CUS Month
2 
SECAL SEUV MEA 

CUS Month
3 
SECAL SEUV MEA 

CUS Month,  SECAL SEUV  MEA, Gender, GPA 

CUS Month, Month
2 
SECAL SEUV MEA, Gender, GPA 

CUS Month, Month
2
, Month

3 
SECAL SEUV  MEA, Gender, GPA 

CUS Month
2 
SECAL SEUV MEA, Gender, GPA 

CUS Month
3 
SECAL SEUV MEA, Gender, GPA 

RE Month , SEIE   

RE Month, Month
2,
 SEIE   

RE Month, Month
2
, Month

3,
 SEIE   

RE Month
2 

 SEIE   

RE Month
3 
SEIE   

RE Month  SEIE Gender 

RE Month, Month
2 
SEIE Gender 

RE Month, Month
2
, Month

3 
SEIE Gender  

RE Month
2 
SEIE Gender  

RE Month
3 
SEIE Gender  

RE Month  SEIE CGPA 

RE Month, Month
2 
SEIE CGPA 

RE Month, Month
2
, Month

3 
SEIE CGPA 

RE Month
2 
SEIE CGPA 

RE Month
3 
SEIE CGPA 

RE Month,    SEIE MEA 

RE Month, Month
2 
SEIE MEA 

RE Month, Month
2
, Month

3 
SEIE MEA 

RE Month
2
 SEIE MEA 

RE Month
3 
SEIE MEA 

RE Month,   SEIE MEA, Gender, GPA 
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RE Month, Month
2 
SEIE MEA, Gender, GPA 

RE Month, Month
2
, Month

3 
SEIE MEA, Gender, GPA 

RE Month
2 
SEIE MEA, Gender, GPA 

RE Month
3 
SEIE MEA, Gender, GPA 

VV Month  SEUV   

VV Month, Month
2 
SEUV   

VV Month, Month
2
, Month

3 
SEUV   

VV Month
2
 SEUV   

VV Month
3
 SEUV   

VV Month SEUV Gender 

VV Month, Month
2
 SEUV Gender 

VV Month, Month
2
, Month

3 
SEUV Gender  

VV Month
2
 SEUV Gender  

VV Month
3
 SEUV Gender  

VV Month SEUV CGPA 

VV Month, Month
2
 SEUV CGPA 

VV Month, Month
2
, Month

3
 SEUV CGPA 

VV Month
2 
SEUV CGPA 

VV Month
3
 SEUV CGPA 

VV Month,   SEUV MEA 

VV Month, Month
2
 SEUV MEA 

VV Month, Month
2
, Month

3 
SEUV MEA 

VV Month
2 
SEUV MEA 

VV Month
3 
SEUV MEA 

VV Month,    SEUV MEA, Gender, GPA 

VV Month, Month
2 
SEUV MEA, Gender, GPA 

VV Month, Month
2
, Month

3
 SEUV MEA, Gender, GPA 

VV Month
2  

SEUV MEA, Gender, GPA 

VV Month
3  

SEUV MEA, Gender, GPA 

RED Month  

Quick Learning  

Omniscient Authority 

Simple Knowledge 

Certain Knowledge Fixed Ability 

 

  



258 

 

Independent 

Variable  

Dependent Variables  Control Variables 

RED Month, Month
2 

Quick Learning  

Omniscient Authority 

Simple Knowledge 

Certain Knowledge 

Fixed Ability 

  

RED Month, Month
2
, Month

3 

Quick Learning  Omniscient Authority 

Simple Knowledge Certain Knowledge 

Fixed Ability 

  

RED Month
2 

Quick Learning  Omniscient Authority 

Simple Knowledge Certain Knowledge 

Fixed Ability 

  

RED Month
3 

Quick Learning  Omniscient 

Authority 

Simple Knowledge Certain Knowledge 

Fixed Ability 

  

RED Month  Quick Learning  Omniscient 

Authority 

Simple Knowledge Certain Knowledge 

Fixed Ability 

Gender 

RED Month, Month
2 
Quick Learning  Omniscient 

Authority 

Simple Knowledge Certain Knowledge 

Fixed Ability 

Gender 

RED Month, Month
2
, Month

3 
Quick Learning  

Omniscient Authority 

Simple Knowledge Certain Knowledge 

Fixed Ability 

Gender  

RED Month
2 

Quick Learning  Omniscient 

Authority 

Simple Knowledge Certain Knowledge 

Fixed Ability 

Gender  

RED Month
3 

Quick Learning  Omniscient 

Authority 

Simple Knowledge Certain Knowledge 

Fixed Ability 

Gender  

RED Month Quick Learning  Omniscient 

Authority 

Simple Knowledge Certain Knowledge 

Fixed Ability 

CGPA 
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Independent 

Variable  

Dependent Variables  Control Variables 

RED Month, Month
2
 Quick Learning  Omniscient 

Authority 

Simple Knowledge Certain Knowledge 

Fixed Ability 

CGPA 

RED Month, Month
2
, Month

3 
Quick Learning  

Omniscient Authority 

Simple Knowledge Certain Knowledge 

Fixed Ability  

CGPA 

RED Month
2 

Quick Learning  Omniscient 

Authority 

Simple Knowledge Certain Knowledge 

Fixed Ability 

CGPA 

RED Month
3
 Quick Learning  Omniscient 

Authority 

Simple Knowledge Certain Knowledge 

Fixed Ability 

CGPA 

RED Month,   Quick Learning  Omniscient 

Authority 

Simple Knowledge Certain Knowledge 

Fixed Ability 

MEA 

RED Month, Month
2
 Quick Learning  Omniscient 

Authority 

Simple Knowledge Certain Knowledge 

Fixed Ability 

MEA 

RED Month, Month
2
, Month

3 
Quick Learning  

Omniscient Authority 

Simple Knowledge Certain Knowledge 

Fixed Ability 

MEA 

RED Month
2 

Quick Learning  Omniscient 

Authority 

Simple Knowledge Certain Knowledge 

Fixed Ability 

MEA 

RED Month
3
 Quick Learning  Omniscient 

Authority 

Simple Knowledge Certain Knowledge 

Fixed Ability 

MEA 

RED Month,   Quick Learning  Omniscient 

Authority 

Simple Knowledge Certain Knowledge 

Fixed Ability 

MEA, Gender, GPA 

RED Month, Month
2
 Quick Learning  Omniscient 

Authority, Simple Knowledge Certain 

Knowledge, Fixed Ability 

MEA, Gender, GPA 
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Independent 

Variable  

Dependent Variables  Control Variables 

RED Month, Month
2
, Month

3
 Quick Learning  

Omniscient Authority 

Simple Knowledge Certain Knowledge 

Fixed Ability 

MEA, Gender, GPA 

RED Month
2
 Quick Learning  Omniscient 

Authority 

Simple Knowledge Certain Knowledge 

Fixed Ability 

MEA, Gender, GPA 

RED Month
3
 Quick Learning  Omniscient 

Authority 

Simple Knowledge Certain Knowledge 

Fixed Ability 

MEA, Gender, GPA 

CON Month Quick Learning  Omniscient 

Authority 

Simple Knowledge Certain Knowledge 

Fixed Ability 

  

CON Month, Month
2 
Quick Learning  Omniscient 

Authority 

Simple Knowledge Certain Knowledge 

Fixed Ability 

  

CON Month, Month
2
, Month

3
 , Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

CON Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

CON Month
3
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

CON Month , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender 

CON Month, Month
2
, Quick Learning,   

Omniscient Authority, Simple 

Knowledge,Certain Knowledge, Fixed 

Ability 

Gender 

CON Month, Month
2
, Month

3 
, Quick Learning,   

Omniscient Authority,  Simple Knowledge 

,Certain Knowledge, Fixed Ability 

Gender  
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Independent 

Variable  

Dependent Variables  Control Variables 

CON Month
2 

, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender  

CON Month
3 

, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender  

CON Month , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

CON Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

CON Month, Month
2
, Month

3 
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

CON Month
2 

, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

CON Month
3 

, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

CON Month,   , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

CON Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

CON Month, Month
2
, Month

3 
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

CON Month
2
, Quick Learning,   Omniscient 

Authority, Simple Knowledge ,Certain 

Knowledge, Fixed Ability 

MEA 



262 

 

Independent 

Variable  

Dependent Variables  Control Variables 

CON Month
3
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

CON Month,    , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

CON Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

CON Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

CON Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

CON Month
3
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

CON Month , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

CON Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

CON Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

CON Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

CON Month
3
, Quick Learning,   Omniscient 

Authority, Simple Knowledge ,Certain 

Knowledge, Fixed Ability 

  



263 

 

Independent 

Variable  

Dependent Variables  Control Variables 

CON Month , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender 

CON Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender 

CON Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender  

CON Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender  

CON Month
3
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender  

CON Month , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

CON Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

CON Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

CON Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

CON Month
3
, Quick Learning,   Omniscient 

Authority, Simple Knowledge ,Certain 

Knowledge, Fixed Ability 

CGPA 

CON Month,  Quick Learning,   Omniscient 

Authority, Simple Knowledge ,Certain 

Knowledge, Fixed Ability 

MEA 



264 

 

Independent 

Variable  

Dependent Variables  Control Variables 

CON Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

CON Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

CON Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

CON Month
3
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

CON Month,   , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

CON Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

CON Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

CON Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

CON Month
3
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

EPS Month , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

EPS Month, Month
2
, Quick Learning,   

Omniscient Authority, Simple Knowledge 

,Certain Knowledge, Fixed Ability 
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Independent 

Variable  

Dependent Variables  Control Variables 

EPS Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

EPS Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

EPS Month
3
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

EPS Month , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender 

EPS Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender 

EPS Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender  

EPS Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender  

EPS Month
3
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender  

EPS Month , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

EPS Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

EPS Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority, Simple Knowledge, 

Certain Knowledge, Fixed Ability 

CGPA 



266 

 

Independent 

Variable  

Dependent Variables  Control Variables 

EPS Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

EPS Month
3
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

EPS Month,   , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

EPS Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

EPS Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

EPS Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

EPS Month
3
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

EPS Month,   , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

EPS Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

EPS Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority, Simple Knowledge, 

Certain Knowledge, Fixed Ability 

MEA, Gender, GPA 

EPS Month
2
, Quick Learning,   Omniscient 

Authority, Simple Knowledge ,Certain 

Knowledge, Fixed Ability 

MEA, Gender, GPA 
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Independent 

Variable  

Dependent Variables  Control Variables 

EPS Month
3
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

CAL Month , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

CAL Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

CAL Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

CAL Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

CAL Month
3
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

CAL Month , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender 

CAL Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender 

CAL Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender  

CAL Month
2
, Quick Learning,   Omniscient 

Authority,  Simple Knowledge ,Certain 

Knowledge, Fixed Ability 

Gender  



268 

 

Independent 

Variable  

Dependent Variables  Control Variables 

CAL Month
3
, Quick Learning,   Omniscient 

Authority,  Simple Knowledge ,Certain 

Knowledge, Fixed Ability 

Gender  

CAL Month , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

CAL Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

CAL Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

CAL Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

CAL Month
3
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

CAL Month,   , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

CAL Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

CAL Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

CAL Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

CAL Month
3
, Quick Learning,   Omniscient 

Authority,  Simple Knowledge ,Certain 

Knowledge, Fixed Ability 

MEA 
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Independent 

Variable  

Dependent Variables  Control Variables 

CAL Month,   , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

CAL Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

CAL Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

CAL Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

CAL Month
3
, , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability  

MEA, Gender, GPA 

CUS Month , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

CUS Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

CUS Month, Month
2
, Month

3 
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

CUS Month
2 

, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

CUS Month
3 

, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

CUS Month  , Quick Learning,   Omniscient 

Authority,  Simple Knowledge ,Certain 

Knowledge, Fixed Ability 

Gender 



270 

 

Independent 

Variable  

Dependent Variables  Control Variables 

CUS Month, Month
2 
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender 

CUS Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender  

CUS Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender  

CUS Month
3 

, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender  

CUS Month  , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

CUS Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

CUS Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

CUS Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

CUS Month
3
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

CUS Month,  Quick Learning,   Omniscient 

Authority,  Simple Knowledge ,Certain 

Knowledge, Fixed Ability 

MEA 

CUS Month, Month
2
, Quick Learning,   

Omniscient Authority,  Simple Knowledge, 

Certain Knowledge, Fixed Ability 

MEA 



271 

 

Independent 

Variable  

Dependent Variables  Control Variables 

CUS Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

CUS Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

CUS Month
3
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

CUS Month,   , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

CUS Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

CUS Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

CUS Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

CUS Month
3
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

RE Month , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

RE Month, Month
2
, Quick Learning,   

Omniscient Authority,  Simple Knowledge, 

Certain Knowledge, Fixed Ability 

  

RE Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  Simple Knowledge,  

Certain Knowledge, 

Fixed Ability 
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Independent 

Variable  

Dependent Variables  Control Variables 

RE Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

RE Month
3
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

RE Month , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender 

RE Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender 

RE Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender  

RE Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender  

RE Month
3
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender  

RE Month , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

RE Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

RE Month, Month
2
, Month

3 
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

RE Month
2
, Quick Learning,   Omniscient 

Authority,  Simple Knowledge ,Certain 

Knowledge, Fixed Ability 

CGPA 
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Independent 

Variable  

Dependent Variables  Control Variables 

RE Month
3
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

RE Month,   , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

RE Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

RE Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

RE Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

RE Month
3
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

RE Month,   , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

RE Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

RE Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

RE Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

RE Month
3
, Quick Learning,   Omniscient 

Authority,  Simple Knowledge ,Certain 

Knowledge, Fixed Ability 

MEA, Gender, GPA 



274 

 

Independent 

Variable  

Dependent Variables  Control Variables 

VV Month , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

VV Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

VV Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

VV Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

VV Month
3
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

  

VV Month , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender 

VV Month, Month
2 
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender 

VV Month, Month
2
, Month

3 
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender  

VV Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender  

VV Month
3
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

Gender  

VV Month , Quick Learning,   Omniscient 

Authority,  Simple Knowledge ,Certain 

Knowledge, Fixed Ability 

CGPA 
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Independent 

Variable  

Dependent Variables  Control Variables 

VV Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

VV Month, Month
2
, Month

3 
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

VV Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

VV Month
3
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

CGPA 

VV Month,   , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

VV Month, Month
2
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

VV Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

VV Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

VV Month
3
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA 

VV Month,   , Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

VV Month, Month
2
, Quick Learning,   

Omniscient Authority,  Simple Knowledge 

,Certain Knowledge, Fixed Ability 

MEA, Gender, GPA 
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Independent 

Variable  

Dependent Variables  Control Variables 

VV Month, Month
2
, Month

3
, Quick Learning,   

Omniscient Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

VV Month
2
, Quick Learning,   Omniscient 

Authority,  

Simple Knowledge ,Certain Knowledge, 

Fixed Ability 

MEA, Gender, GPA 

VV Month
3
, Quick Learning,   Omniscient 

Authority,  Simple Knowledge ,Certain 

Knowledge, Fixed Ability 

MEA, Gender, GPA 

RED Month , Awareness   

RED Month, Month
2 
, Awareness   

RED Month, Month
2
, Month

3
, Awareness   

RED Month
2
, Awareness   

RED Month
3
, Awareness   

RED Month , Awareness Gender 

RED Month, Month
2
, Awareness Gender 

RED Month, Month
2
, Month

3
, Awareness Gender  

RED Month
2
, Awareness Gender  

RED Month
3
, Awareness Gender  

RED Month , Awareness CGPA 

RED Month, Month
2
, Awareness CGPA 

RED Month, Month
2
, Month

3,
 , Awareness CGPA 

RED Month
2, 

, Awareness CGPA 

RED Month
3, 

, Awareness CGPA 

RED Month,   , Awareness MEA 

RED Month, Month
2
, Awareness MEA 

RED Month, Month
2
, Month

3
, Awareness MEA 

RED Month
2
, Awareness MEA 

RED Month
3
, Awareness MEA 

RED Month,   , Awareness MEA, Gender, GPA 

RED Month, Month
2
, Awareness MEA, Gender, GPA 

RED Month, Month
2
, Month

3
, Awareness MEA, Gender, GPA 
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Independent 

Variable  

Dependent Variables  Control Variables 

RED Month
2
, Awareness MEA, Gender, GPA 

RED Month
3
, Awareness MEA, Gender, GPA 

CON Month , Awareness   

CON Month, Month
2
, Awareness   

CON Month, Month
2
, Month

3
, Awareness   

CON Month
2
, Awareness   

CON Month
3
, Awareness   

CON Month , Awareness Gender 

CON Month, Month
2
, Awareness Gender 

CON Month, Month
2
, Month

3
, Awareness Gender  

CON Month
2
, Awareness Gender  

CON Month
3
, Awareness Gender  

CON Month , Awareness CGPA 

CON Month, Month
2
, Awareness CGPA 

CON Month, Month
2
, Month

3
, Awareness CGPA 

CON Month
2
, Awareness CGPA 

CON Month
3
, Awareness CGPA 

CON Month,   , Awareness MEA 

CON Month, Month
2
, Awareness MEA 

CON Month, Month
2
, Month

3
, Awareness MEA 

CON Month
2
, Awareness MEA 

CON Month
3
, Awareness MEA 

CON Month,   , Awareness MEA, Gender, GPA 

CON Month, Month
2, 

, Awareness MEA, Gender, GPA 

CON Month, Month
2
, Month

3
, Awareness MEA, Gender, GPA 

CON Month
2
, Awareness MEA, Gender, GPA 

CON Month
3
, Awareness MEA, Gender, GPA 

CON Month , Awareness   

CON Month, Month
2
, Awareness   

CON Month, Month
2
, Month

3
, Awareness   

CON Month
2
, Awareness   

CON Month
3
, Awareness   
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Independent 

Variable  

Dependent Variables  Control Variables 

CON Month , Awareness Gender 

CON Month, Month
2
, Awareness Gender 

CON Month, Month
2
, Month

3
, Awareness Gender  

CON Month
2
, Awareness Gender  

CON Month
3
, Awareness Gender  

CON Month , Awareness CGPA 

CON Month, Month
2
, Awareness CGPA 

CON Month, Month
2
, Month

3
, Awareness CGPA 

CON Month
2
, Awareness CGPA 

CON Month
3
, Awareness CGPA 

CON Month,  Awareness MEA 

CON Month, Month
2
, Awareness MEA 

CON Month, Month
2
, Month

3
, Awareness MEA 

CON Month
2
, Awareness MEA 

CON Month
3
, Awareness MEA 

CON Month,   , Awareness MEA, Gender, GPA 

CON Month, Month
2
, Awareness MEA, Gender, GPA 

CON Month, Month
2
, Month

3
, Awareness MEA, Gender, GPA 

CON Month
2
, Awareness MEA, Gender, GPA 

CON Month
3
, Awareness MEA, Gender, GPA 

EPS Month , Awareness   

EPS Month, Month
2
, Awareness   

EPS Month, Month
2
, Month

3
, Awareness   

EPS Month
2
, Awareness   

EPS Month
3
, Awareness   

EPS Month , Awareness Gender 

EPS Month, Month
2
, Awareness Gender 

EPS Month, Month
2
, Month

3
, Awareness Gender  

EPS Month
2
, Awareness Gender  

EPS Month
3
, Awareness Gender  

EPS Month , Awareness CGPA 

EPS Month, Month
2
, Awareness CGPA 
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Independent 

Variable  

Dependent Variables  Control Variables 

EPS Month, Month
2
, Month

3
, Awareness CGPA 

EPS Month
2
, Awareness CGPA 

EPS Month
3
, Awareness CGPA 

EPS Month,   Awareness MEA 

EPS Month, Month
2
, Awareness MEA 

EPS Month, Month
2
, Month

3
, Awareness MEA 

EPS Month
2
, Awareness MEA 

EPS Month
3
, Awareness MEA 

EPS Month,  Awareness MEA, Gender, GPA 

EPS Month, Month
2
, Awareness MEA, Gender, GPA 

EPS Month, Month
2
, Month

3
, Awareness MEA, Gender, GPA 

EPS Month
2
, Awareness MEA, Gender, GPA 

EPS Month
3
, Awareness MEA, Gender, GPA 

CAL Month , Awareness   

CAL Month, Month
2
, Awareness   

CAL Month, Month
2
, Month

3
, Awareness   

CAL Month
2
, Awareness   

CAL Month
3
, Awareness   

CAL Month , Awareness Gender 

CAL Month, Month
2
, Awareness Gender 

CAL Month, Month
2
, Month

3
, Awareness Gender  

CAL Month
2
, Awareness Gender  

CAL Month
3
, Awareness Gender  

CAL Month , Awareness CGPA 

CAL Month, Month
2
, Awareness CGPA 

CAL Month, Month
2
, Month

3
, Awareness CGPA 

CAL Month
2
, Awareness CGPA 

CAL Month
3
, Awareness CGPA 

CAL Month,  Awareness MEA 

CAL Month, Month
2
, Awareness MEA 

CAL Month, Month
2
, Month

3
, Awareness MEA 

CAL Month
2
, Awareness MEA 
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Independent 

Variable  

Dependent Variables  Control Variables 

CAL Month
3
, Awareness MEA 

CAL Month,   , Awareness MEA, Gender, GPA 

CAL Month, Month
2
, Awareness MEA, Gender, GPA 

CAL Month, Month
2
, Month

3
, Awareness MEA, Gender, GPA 

CAL Month
2
, Awareness MEA, Gender, GPA 

CAL Month
3
, Awareness MEA, Gender, GPA 

CUS Month , Awareness   

CUS Month, Month
2
, Awareness   

CUS Month, Month
2
, Month

3
, Awareness   

CUS Month
2
, Awareness   

CUS Month
3
, Awareness   

CUS Month , Awareness Gender 

CUS Month, Month
2
, Awareness Gender 

CUS Month, Month
2
, Month

3
, Awareness Gender  

CUS Month
2
, Awareness Gender  

CUS Month
3
, Awareness Gender  

CUS Month , Awareness CGPA 

CUS Month, Month
2
, Awareness CGPA 

CUS Month, Month
2
, Month

3
, Awareness CGPA 

CUS Month
2
, Awareness CGPA 

CUS Month
3
, Awareness CGPA 

CUS Month,  Awareness MEA 

CUS Month, Month
2
, Awareness MEA 

CUS Month, Month
2
, Month

3
, Awareness MEA 

CUS Month
2
, Awareness MEA 

CUS Month
3
, Awareness MEA 

CUS Month,   , Awareness MEA, Gender, GPA 

CUS Month, Month
2
, Awareness MEA, Gender, GPA 

CUS Month, Month
2
, Month

3
, Awareness MEA, Gender, GPA 

CUS Month
2
, Awareness MEA, Gender, GPA 

CUS Month
3
, Awareness MEA, Gender, GPA 

RE Month , Awareness   
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Independent 

Variable  

Dependent Variables  Control Variables 

RE Month, Month
2
, Awareness   

RE Month, Month
2
, Month

3
, Awareness   

RE Month
2
, Awareness   

RE Month
3
, Awareness   

RE Month , Awareness Gender 

RE Month, Month
2
, Awareness Gender 

RE Month, Month
2
, Month

3
, Awareness Gender  

RE Month
2
, Awareness Gender  

RE Month
3
, Awareness Gender  

RE Month , Awareness CGPA 

RE Month, Month
2
, Awareness CGPA 

RE Month, Month
2
, Month

3
, Awareness CGPA 

RE Month
2
, Awareness CGPA 

RE Month
3
, Awareness CGPA 

RE Month,  Awareness MEA 

RE Month, Month
2
, Awareness MEA 

RE Month, Month
2
, Month

3
, Awareness MEA 

RE Month
2
, Awareness MEA 

RE Month
3
, Awareness MEA 

RE Month,   , Awareness MEA, Gender, GPA 

RE Month, Month
2
, Awareness MEA, Gender, GPA 

RE Month, Month
2
, Month

3
, Awareness MEA, Gender, GPA 

RE Month
2
, Awareness MEA, Gender, GPA 

RE Month
3
, Awareness MEA, Gender, GPA 

VV Month , Awareness   

VV Month, Month
2
, Awareness   

VV Month, Month
2
, Month

3
, Awareness   

VV Month
2
, Awareness   

VV Month
3
, Awareness   

VV Month , Awareness Gender 

VV Month, Month
2
, Awareness Gender 

VV Month, Month
2
, Month

3
, Awareness Gender  
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Independent 

Variable  

Dependent Variables  Control Variables 

VV Month
2
, Awareness Gender  

VV Month
3
, Awareness Gender  

VV Month , Awareness CGPA 

VV Month, Month
2
, Awareness CGPA 

VV Month, Month
2
, Month

3
, Awareness CGPA 

VV Month
2
, Awareness CGPA 

VV Month
3
, Awareness CGPA 

VV Month,  Awareness MEA 

VV Month, Month
2
, Awareness MEA 

VV Month, Month
2
, Month

3
, Awareness MEA 

VV Month
2
, Awareness MEA 

VV Month
3
, Awareness MEA 

VV Month,   , Awareness MEA, Gender, GPA 

VV Month, Month
2
, Awareness MEA, Gender, GPA 

VV Month, Month
2
, Month

3
, Awareness MEA, Gender, GPA 

VV Month
2
, Awareness MEA, Gender, GPA 

VV Month
3
, Awareness MEA, Gender, GPA 

RED Month , Self-checking   

RED Month, Month
2 
, Self-checking   

RED Month, Month
2
, Month

3
, Self-checking   

RED Month
2
, Self-checking   

RED Month
3
, Self-checking   

RED Month , Self-checking Gender 

RED Month, Month
2 
, Self-checking Gender 

RED Month, Month
2
, Month

3
, Self-checking Gender  

RED Month
2
, Self-checking Gender  

RED Month
3
, Self-checking Gender  

RED Month , Self-checking CGPA 

RED Month, Month
2 
, Self-checking CGPA 

RED Month, Month
2
, Month

3
, Self-checking CGPA 

RED Month
2
, Self-checking CGPA 
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Independent 

Variable  

Dependent Variables  Control Variables 

RED Month
3
, Self-checking CGPA 

RED Month , Self-checking MEA 

RED Month, Month
2 
, Self-checking MEA 

RED Month, Month
2
, Month

3
, Self-checking MEA 

RED Month
2
, Self-checking MEA 

RED Month
3
, Self-checking MEA 

RED Month , Self-checking MEA, Gender, GPA 

RED Month, Month
2 
, Self-checking MEA, Gender, GPA 

RED Month, Month
2
, Month

3
, Self-checking MEA, Gender, GPA 

RED Month
2
, Self-checking MEA, Gender, GPA 

RED Month
3
, Self-checking MEA, Gender, GPA 

CON Month , Self-checking   

CON Month, Month
2 
, Self-checking   

CON Month, Month
2
, Month

3
, Self-checking   

CON Month
2
, Self-checking   

CON Month
3
, Self-checking   

CON Month , Self-checking Gender 

CON Month, Month
2 
, Self-checking Gender 

CON Month, Month
2
, Month

3
, Self-checking Gender  

CON Month
2
, Self-checking Gender  

CON Month
3
, Self-checking Gender  

CON Month , Self-checking CGPA 

CON Month, Month
2 
, Self-checking CGPA 

CON Month, Month
2
, Month

3
, Self-checking CGPA 

CON Month
2
, Self-checking CGPA 

CON Month
3
, Self-checking CGPA 

CON Month , Self-checking MEA 

CON Month, Month
2 
, Self-checking MEA 

CON Month, Month
2
, Month

3
, Self-checking MEA 

CON Month
2
, Self-checking MEA 

CON Month
3
, Self-checking MEA 
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Independent 

Variable  

Dependent Variables  Control Variables 

CON Month, Month
2 
, Self-checking MEA, Gender, GPA 

CON Month, Month
2
, Month

3
, Self-checking MEA, Gender, GPA 

CON Month
2
, Self-checking MEA, Gender, GPA 

CON Month
3
, Self-checking MEA, Gender, GPA 

CON Month , Self-checking   

CON Month, Month
2 
, Self-checking   

CON Month, Month
2
, Month

3
, Self-checking   

CON Month
2
, Self-checking   

CON Month
3
, Self-checking   

CON Month , Self-checking Gender 

CON Month, Month
2 
, Self-checking Gender 

CON Month, Month
2
, Month

3
, Self-checking Gender  

CON Month
2
, Self-checking Gender  

CON Month
3
, Self-checking Gender  

CON Month , Self-checking CGPA 

CON Month, Month
2 
, Self-checking CGPA 

CON Month, Month
2
, Month

3
, Self-checking CGPA 

CON Month
2
, Self-checking CGPA 

CON Month
3
, Self-checking CGPA 

CON Month , Self-checking MEA 

CON Month, Month
2 
, Self-checking MEA 

CON Month, Month
2
, Month

3
, Self-checking MEA 

CON Month
2
, Self-checking MEA 

CON Month
3
, Self-checking MEA 

CON Month , Self-checking MEA, Gender, GPA 

CON Month, Month
2 
, Self-checking MEA, Gender, GPA 

CON Month, Month
2
, Month

3
, Self-checking MEA, Gender, GPA 

CON Month
2
, Self-checking MEA, Gender, GPA 

CON Month
3
, Self-checking MEA, Gender, GPA 

EPS Month , Self-checking   

EPS Month, Month
2 
, Self-checking   
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Independent 

Variable  

Dependent Variables  Control Variables 

EPS Month, Month
2
, Month

3
, Self-checking   

EPS Month
2
, Self-checking   

EPS Month
3
, Self-checking   

EPS Month , Self-checking Gender 

EPS Month, Month
2 
, Self-checking Gender 

EPS Month, Month
2
, Month

3
, Self-checking Gender  

EPS Month
2
, Self-checking Gender  

EPS Month
3
, Self-checking Gender  

EPS Month , Self-checking CGPA 

EPS Month, Month
2 
, Self-checking CGPA 

EPS Month, Month
2
, Month

3
, Self-checking CGPA 

EPS Month
2
, Self-checking CGPA 

EPS Month
3
, Self-checking CGPA 

EPS Month , Self-checking MEA 

EPS Month, Month
2 
, Self-checking MEA 

EPS Month, Month
2
, Month

3
, Self-checking MEA 

EPS Month
2
, Self-checking MEA 

EPS Month
3
, Self-checking MEA 

EPS Month , Self-checking MEA, Gender, GPA 

EPS Month, Month
2 
, Self-checking MEA, Gender, GPA 

EPS Month, Month
2
, Month

3
, Self-checking MEA, Gender, GPA 

EPS Month
2
, Self-checking MEA, Gender, GPA 

EPS Month
3
, Self-checking MEA, Gender, GPA 

CAL Month , Self-checking   

CAL Month, Month
2 
, Self-checking   

CAL Month, Month
2
, Month

3
, Self-checking   

CAL Month
2
, Self-checking   

CAL Month
3
, Self-checking   

CAL Month , Self-checking Gender 

CAL Month, Month
2 
, Self-checking Gender 

CAL Month, Month
2
, Month

3
, Self-checking Gender  
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Independent 

Variable  

Dependent Variables  Control Variables 

CAL Month
2
, Self-checking Gender  

CAL Month
3
, Self-checking Gender  

CAL Month , Self-checking CGPA 

CAL Month, Month
2 
, Self-checking CGPA 

CAL Month, Month
2
, Month

3
, Self-checking CGPA 

CAL Month
2
, Self-checking CGPA 

CAL Month
3
, Self-checking CGPA 

CAL Month , Self-checking MEA 

CAL Month, Month
2 
, Self-checking MEA 

CAL Month, Month
2
, Month

3
, Self-checking MEA 

CAL Month
2
, Self-checking MEA 

CAL Month
3
, Self-checking MEA 

CAL Month , Self-checking MEA, Gender, GPA 

CAL Month, Month
2 
, Self-checking MEA, Gender, GPA 

CAL Month, Month
2
, Month

3
, Self-checking MEA, Gender, GPA 

CAL Month
2
, Self-checking MEA, Gender, GPA 

CAL Month
3
, Self-checking MEA, Gender, GPA 

CUS Month , Self-checking   

CUS Month, Month
2 
, Self-checking   

CUS Month, Month
2
, Month

3
, Self-checking   

CUS Month
2
, Self-checking   

CUS Month
3
, Self-checking   

CUS Month , Self-checking Gender 

CUS Month, Month
2 
, Self-checking Gender 

CUS Month, Month
2
, Month

3
, Self-checking Gender  

CUS Month
2
, Self-checking Gender  

CUS Month
3
, Self-checking Gender  

CUS Month , Self-checking CGPA 

CUS Month, Month
2 
, Self-checking CGPA 

CUS Month, Month
2
, Month

3
, Self-checking CGPA 

CUS Month
2
, Self-checking CGPA 
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Independent 

Variable  

Dependent Variables  Control Variables 

CUS Month
3
, Self-checking CGPA 

CUS Month , Self-checking MEA 

CUS Month, Month
2 
, Self-checking MEA 

CUS Month, Month
2
, Month

3
, Self-checking MEA 

CUS Month
2
, Self-checking MEA 

CUS Month
3
, Self-checking MEA 

CUS Month , Self-checking MEA, Gender, GPA 

CUS Month, Month
2 
, Self-checking MEA, Gender, GPA 

CUS Month, Month
2
, Month

3
, Self-checking MEA, Gender, GPA 

CUS Month
2
, Self-checking MEA, Gender, GPA 

CUS Month
3
, Self-checking MEA, Gender, GPA 

RE Month , Self-checking   

RE Month, Month
2 
, Self-checking   

RE Month, Month
2
, Month

3
, Self-checking   

RE Month
2
, Self-checking   

RE Month
3
, Self-checking   

RE Month , Self-checking Gender 

RE Month, Month
2 
, Self-checking Gender 

RE Month, Month
2
, Month

3
, Self-checking Gender  

RE Month
2
, Self-checking Gender  

RE Month
3
, Self-checking Gender  

RE Month , Self-checking CGPA 

RE Month, Month
2 
, Self-checking CGPA 

RE Month, Month
2
, Month

3
, Self-checking CGPA 

RE Month
2
, Self-checking CGPA 

RE Month
3
, Self-checking CGPA 

RE Month , Self-checking MEA 

RE Month, Month
2 
, Self-checking MEA 

RE Month, Month
2
, Month

3
, Self-checking MEA 

RE Month
2
, Self-checking MEA 

RE Month
3
, Self-checking MEA 



288 

 

Independent 

Variable  

Dependent Variables  Control Variables 

RE Month , Self-checking MEA, Gender, GPA 

RE Month, Month
2 
, Self-checking MEA, Gender, GPA 

RE Month, Month
2
, Month

3
, Self-checking MEA, Gender, GPA 

RE Month
2
, Self-checking MEA, Gender, GPA 

RE Month
3
, Self-checking MEA, Gender, GPA 

VV Month , Self-checking   

VV Month, Month
2 
, Self-checking   

VV Month, Month
2
, Month

3
, Self-checking   

VV Month
2
, Self-checking   

VV Month
3
, Self-checking   

VV Month , Self-checking Gender 

VV Month, Month
2 
, Self-checking Gender 

VV Month, Month
2
, Month

3
, Self-checking Gender  

VV Month
2
, Self-checking Gender  

VV Month
3
, Self-checking Gender  

VV Month , Self-checking CGPA 

VV Month, Month
2 
, Self-checking CGPA 

VV Month, Month
2
, Month

3
, Self-checking CGPA 

VV Month
2
, Self-checking CGPA 

VV Month
3
, Self-checking CGPA 

VV Month , Self-checking MEA 

VV Month, Month
2 
, Self-checking MEA 

VV Month, Month
2
, Month

3
, Self-checking MEA 

VV Month
2
, Self-checking MEA 

VV Month
3
, Self-checking MEA 

VV Month , Self-checking MEA, Gender, GPA 

VV Month, Month
2 
, Self-checking MEA, Gender, GPA 

VV Month, Month
2
, Month

3
, Self-checking MEA, Gender, GPA 

VV Month
2
, Self-checking MEA, Gender, GPA 

VV Month
3
, Self-checking MEA, Gender, GPA 

RED Month
2
, Cognitive Strategy   
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Independent 

Variable  

Dependent Variables  Control Variables 

RED Month
3
, Cognitive Strategy   

RED Month , Cognitive Strategy Gender 

RED Month, Month
2 
, Cognitive Strategy Gender 

RED Month, Month
2
, Month

3
, Cognitive Strategy Gender  

RED Month
2
, Cognitive Strategy Gender  

RED Month
3
, Cognitive Strategy Gender  

RED Month , Cognitive Strategy CGPA 

RED Month, Month
2 , 

Cognitive Strategy CGPA 

RED Month, Month
2
, Month

3
, Cognitive Strategy CGPA 

RED Month
2
, Cognitive Strategy CGPA 

RED Month
3
, Cognitive Strategy CGPA 

RED Month , Cognitive Strategy MEA 

RED Month, Month
2 , 

Cognitive Strategy MEA 

RED Month, Month
2
, Month

3
, Cognitive Strategy MEA 

RED Month
2
, Cognitive Strategy MEA 

RED Month
3
, Cognitive Strategy MEA 

RED Month , Cognitive Strategy MEA, Gender, GPA 

RED Month, Month
2 , 

Cognitive Strategy MEA, Gender, GPA 

RED Month, Month
2
, Month

3
, Cognitive Strategy MEA, Gender, GPA 

RED Month
2
, Cognitive Strategy MEA, Gender, GPA 

RED Month
3
, Cognitive Strategy MEA, Gender, GPA 

CON Month , Cognitive Strategy   

CON Month, Month
2 , 

Cognitive Strategy   

CON Month, Month
2
, Month

3
, Cognitive Strategy   

CON Month
2
, Cognitive Strategy   

CON Month
3
, Cognitive Strategy   

CON Month , Cognitive Strategy Gender 

CON Month, Month
2 , 

Cognitive Strategy Gender 

CON Month, Month
2
, Month

3
, Cognitive Strategy Gender  

CON Month
2
, Cognitive Strategy Gender  

CON Month
3
, Cognitive Strategy Gender  
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Independent 

Variable  

Dependent Variables  Control Variables 

CON Month , Cognitive Strategy CGPA 

CON Month, Month
2 , 

Cognitive Strategy CGPA 

CON Month, Month
2
, Month

3
, Cognitive Strategy CGPA 

CON Month
2
, Cognitive Strategy CGPA 

CON Month
3
, Cognitive Strategy CGPA 

CON Month , Cognitive Strategy MEA 

CON Month, Month
2 , 

Cognitive Strategy MEA 

CON Month, Month
2
, Month

3
, Cognitive Strategy MEA 

CON Month
2
, Cognitive Strategy MEA 

CON Month
3
, Cognitive Strategy MEA 

CON Month , Cognitive Strategy MEA, Gender, GPA 

CON Month, Month
2 , 

Cognitive Strategy MEA, Gender, GPA 

CON Month, Month
2
, Month

3
, Cognitive Strategy MEA, Gender, GPA 

CON Month
2
, Cognitive Strategy MEA, Gender, GPA 

CON Month
3
, Cognitive Strategy MEA, Gender, GPA 

CON Month , Cognitive Strategy   

CON Month, Month
2 , 

Cognitive Strategy   

CON Month, Month
2
, Month

3
, Cognitive Strategy   

CON Month
2
, Cognitive Strategy   

CON Month
3
, Cognitive Strategy   

CON Month , Cognitive Strategy Gender 

CON Month, Month
2 , 

Cognitive Strategy Gender 

CON Month, Month
2
, Month

3
, Cognitive Strategy Gender  

CON Month
2
, Cognitive Strategy Gender  

CON Month
3
, Cognitive Strategy Gender  

CON Month , Cognitive Strategy CGPA 

CON Month, Month
2 , 

Cognitive Strategy CGPA 

CON Month, Month
2
, Month

3
, Cognitive Strategy CGPA 

CON Month
2
, Cognitive Strategy CGPA 

CON Month
3
, Cognitive Strategy CGPA 

CON Month , Cognitive Strategy MEA 
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Independent 

Variable  

Dependent Variables  Control Variables 

CON Month, Month
2 , 

Cognitive Strategy MEA 
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APPENDIX F 

TIRE RELIABILITY MEA 

 

Copyright © 2008 University of Pittsburgh, Swanson School of Engineering 

NSF DUE-0717801 – CCLI-Phase 3 Comprehensive: Collaborative Research: Improving 

Engineering Students‘ Learning Strategies Through Models and Modeling. 

SAFETY+TIRES, INC. 

MEMORANDUM 

TO: ENGINEERING 0020 CONSULTANTS 

FROM: MORGAN PETERSON, VICE PRESIDENT OF ENGINEERING, SAFETY+ TIRES, 

INC. 

SUBJECT: TIRE RELIABILITY 

 

SAFETY+ has earned a national reputation for making high quality, long lasting tires. A tire 

failure on the road is not only a safety hazard that could result in a serious accident or even 

death, but it also reflects poorly on our reputation, which, directly impacts our bottom line and 

the bonuses that we can give out. 

Consequently, making sure that our tires are as reliable as advertised is the number one 

priority of SAFETY+. Of particular concern is the attached article describing a recall of imported 

Chinese tires and the disastrous impact it will have on one of our competitors, Foreign Tire 

Sales. Unfortunately, we have recently received several customer complaints that raise concerns 

about the reliability of SAFETY+ tires. We need to know if these are isolated, independent 
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failures, or if there is a reliability problem with one or more of our tire lines. Although it is 

highly unlikely that there is a problem, if your analysis suggests otherwise we might have to take 

action to resolve the problem. As you now must realize this could be extremely expensive, 

possibly requiring a recall of tires and a retooling of a plant. I trust that you clearly understand 

what the negative impact of a tire recall could be on our company. Consequently, we would like 

you to provide us with a robust procedure that our quality control technicians can use to 

determine if a particular production run has resulted in an acceptable level of reliability (as 

measured by time to failure). Because we plan to use this methodology throughout the company 

to continually monitor reliability, your procedure should be general, allowing quality control 

staff to use it for our various grades and production runs. (Note that we have six different grades 

with over 10 production runs each per year.) 

Attached are the time to failure data (in thousands of miles) from three current production 

runs involving the tire grades of concern (SAFETY+ 25K, 50K and 100K) as well as our ―gold 

standard.‖ The gold standard data represents ―acceptable reliability‖ for the 25K grade. As you 

are well aware, the 50K grade should have lifetime averages twice as long as the 25K and the 

100K should have lifetime averages at least four times as long as the 25K grade. 

As stated, we are requesting that you develop a general procedure that Quality Control 

can use to analyze the reliability of any set of tires based on such data. Once you have developed 

your procedure, you should use it to determine if each of the three production runs have resulted 

in acceptable reliability. 

Please keep in mind that management is extremely concerned about what might be a 

potentially damaging situation, so your procedure and results should be solid and clear, as it 
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could have a significant influence on the future of the company. Please mark your report 

CONFIDENTIAL.  

Please do not share these results with anyone else either inside or outside of SAFETY+. 

 

 

Part 1: Individual Assignment 

1. Read the Memo from Morgan Peterson and the attached news article. 

2. Answer the following questions: 

a. Why is reliability important? Besides recalls, what other consequences could a company with 

reliability problems experience? 

b. Give two specific examples of products, other than tires, where reliability is important. 

c. A ―reliability curve‖ shows the total number of products that have failed versus time. 

Describe what this curve might look like for a product such as tires. 

 

Group Assignment: Tire Reliability 

1. Before beginning, within your team compare each member‘s answers to the individual 

questions. If there are different responses, come to consensus on what the answers should be. 

2. Reread the memo sent to your team from Morgan Peterson. 

3. Morgan Peterson has provided tire data. 

4. Write a memo to Morgan Peterson that includes: 

 A reusable procedure to determine whether a set of data regarding tire performance is 

demonstrating acceptable reliability. 
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 The results of applying your reliability procedure to each of the three sets of tire data 

provided. For each set specifically answer: 

a) Do they have an acceptable reliability? 

b) Do the results show the tires have the correct treadwear grade? 

5. Consider the last line of the Peterson Memo in which he specifically requests: ―Please do not 

share these results with anyone else either inside or outside of SAFETY+.‖ Discuss this request 

with your team and prepare a separate, short essay that describes if there are any circumstances 

that would motivate you to ignore this request. If so, who would you discuss the results with? Do 

any of your results fall into this latter category. 
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Data for the Tire Reliability MEA 
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APPENDIX G 

CNC MACHINE MEA 

 

Copyright © 2008 University of Pittsburgh, Swanson School of Engineering 

NSF DUE-0717801 – CCLI-Phase 3 Comprehensive: Collaborative Research: Improving 

Engineering Students‘ Learning Strategies Through Models and Modeling. 

 

From: John Milgrom, Plant Manager 

To: Christine Roberts, Engineering Analyst I 

Re: Replacement of Barrand 250 CNC machine 

 

Dear Ms. Roberts; 

As mentioned in the production department meeting last week, we would like to purchase a 

Vanguard 360 CNC drilling machine to replace the Barrand 250 CNC machine for our products 

that require precision drilling. The Vanguard is likely to reduce the production time per unit from 

the current value. This new machine is also expected to reduce the production cost, while 

achieving the same or better precision. Since the capital cost for the new machines will not come 
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out of our budget, any reduction in production cost and time, should enhance our end-of-the-year 

bonus. 

In order to do this, we need to justify to Fred Johnson, Vice President of Operations, that 

we can increase the production level at a lower unit cost without sacrificing quality. Mr. Johnson, 

as you know, claimed at the last production meeting that we do not need this purchase now since 

we have extended the life of the Barrand CNC machine by another five years, due to the recent 

preventive maintenance program combined with the upgraded parts. I would like you to prepare 

a report that will convince Johnson and his staff that purchasing this CNC machine is not only 

critical to increasing production, but will also reduce the unit production cost. Further, your 

report should show that we are not likely to benefit from increasing economies of scale with our 

current machine. 

Also, in your report, please address the management committee‘s concerns about the 

quality of the products produced by each machine. I am attaching the data that came from the 

tests that have been conducted on both machines. Keep in mind that the cost for the 

Vanguard is $80,000. Vanguard has stated that the expected life of their machine is 15 

years. We have estimated that we can sell our current machine for $15,000. 

Please send your report to me first; include any concerns that you might have, as well as 

the detailed process that you followed when making your analysis. Also, include issues that you 

think could be a problem or that Johnson‘s people might raise at the next production meeting. 

Although you have only been with us for six months, I know you are a qualified engineer 

who wants to be promoted to a better position and that you can produce a report that proves our 

point. I will be looking forward to hearing from you. 
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J. Milgrom 

Plant Manager EngineerProducts 

Products 
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Memo 2-a: 

From: John Milgrom, Plant Manager 

To: Christine Roberts, Engineering Analyst I 

Re: Establishment of the New CNC machine 

 

Dear Ms. Roberts; 

I have received your report. I regret to tell you that the report was not exactly in line with 

my expectations. I would like to give you another chance to work on the report, to make 

corrections since it is very important that we purchase the Vanguard machine. 

Once again, we would like to prove the following points to the management committee in 

order to convince them that purchase is in the best interest of the company: 

• Vanguard‘s machine has shorter production time 

• Vanguard‘s drilling quality is better than Barrand‘s quality 

• Vanguard‘s manufacturing cost per unit is lower than Barrand‘s 

I would like you to come up with a way to prove these points. Please think about the 

reasons why you were not able to come up with the same conclusion in your first analysis. Send 

me another report and describe your analysis in detail. Also, as you know, our new knowledge 

management system requires you to documents your process of thinking to come up with this 

solution. Make sure you add your process in the report too. 

I hope that this time you will not disappoint the production department. 

J. Milgrom 

Plant Manager 
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Memo 2-b: 

From: John Milgrom, Plant Manager 

To: Christine Roberts, Engineering Analyst I 

Re: Establishment of the New CNC machine 

 

Dear Ms. Roberts; 

I have received your report. I would like to thank you for the report and would like to 

know more about the details of it. 

As you know, we would like to prove the following points to the management committee 

to convince them for the purchase of the new Vanguard CNC Machine: 

• Vanguard‘s machine has shorter production time 

• Vanguard‘s drilling quality is better than Barrand‘s quality 

• Vanguard‘s manufacturing cost per unit is lower than Barrand‘s 

I would like you to come up with additional ways to prove these points. Please think 

about the reasons why you were able to prove these points and what concerns the management 

committee might raise in regards to these results. Send me another report and describe your 

analysis in detail. Also, as you know, our new knowledge management system requires you to 

document your process of thinking to come up with this solution. 

Make sure you add your process in the report too. 

J. Milgrom 

Plant Manager 
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