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TRANSIENT CONJUGATE HEAT TRANSFER IN A CIRCULAR DUCT FOR POWER-LAW FLUID WITH
VISCOUS DISSIPATION

Alan L Briggs, PhD

University of Pittsburgh, 2003

The study of unsteady forced convection heat transfer in tubes imposed to cyclic variations has been
motivated by heat exchanger applications. This study investigates the heat transfer behavior associated with a
thermal transient in a forced convection.

In this analysis, the effects of the duct wall heat capacity and convection from the ambient are considered,
while axial conduction is neglected. The fluid inlet temperature is varied periodically with time. Incompressible,
hydrodynamically developed laminar flow of non-Newtonian fluid flow is assumed. The transient conjugate heat
transfer problem for fully-developed laminar flow of non-Newtonian fluids in circular duct is studied by numerical
analysis. Control volume based finite difference method is adopted in the numerical procedure for the integration of
the governing equations. For the non-Newtonian fluid part, power-law model is used. Heat generation from viscous
dissipation is also taken into account and is represented by Brinkman number. The study investigates the effects of
non-dimensional parameters on wall, fluid and bulk temperatures. In this dissertation, special focus is placed on the

effects of the flow index, Brinkman, and Nusselt numbers.



TABLE OF CONTENTS

NOMENCLATURE ...ttt st e s b e e Rt e et e R e e s he e eh e e b e e ab e e s b e es e e s b e e s EeenReenesaneaneenreenneenns Xi
1.1 LITERATURE SURVEY ...ttt sh bt r et nb e b e e nbe e nne e e e 2
2.0 AN ALY SIS bt e R R R R R R R R R R e Rt R R bR r s 4
2.1 STATEMENT OF THE PROBLEM ... ..ooiiiiii ettt et nne e 4
2.2 GOVERNING EQUATIONS ...ttt ettt b ettt e ke be e be e be e e e aeeabeenbeanneens 4
2.3 DISCRETIZATION ..ttt b ekt h et b e b e e bt et he e ehe e eb e e bt e st e es b e et b e sb e e nbeenbeebesnneenes 7
3.0 VERIFICATION ...t h bbbt h e b e e e b e s b e e s Rt e nee e ee s e e eneeeneenneenneereans 12
3.1 ANSYS RESULTS ...t h ket e e bt bbbt bbbttt b e r e e 12
3.11 Analytical SOIUtion FOr VEIOCILY .......cccviiiicicicc e e 13

3.1.2 TeMPEratUrE SOTULION.......oiiiiiieicte it bbbttt bttt 20

3.2 BENCHMARK SOLUTION: GRAETZ PROBLEM ......cooiiiiitiice et 44
4.0 RESULTS ettt bttt h e h e bt e s bt ekt oAbt e R e oo he e b £ 2 bt 2R bt eh b e eE e e sbe e nE e e nbeenbeeaneeaeesbeenbeebean 49
4.1 STABILITY ANALYSIS . ettt e s r e re e nne e e e 49
4.2 GRID INDEPENDENT STUDY ..ottt et s r bt nnesne b bt nnens 55
4.3 HEAT TRANSFER WITH VISCOUS DISSIPATION ....cciiiiiiiiiiiie ettt 60
431 NON-NEWLONTAN FIUIT ....c.voiiiiiiee e e 62

4.3.2 BriNKMan NUMDEL ..o bbbt 67

433 INUSSEIE NUIMIDET ..ottt 73

4.4 CONCLUSIONS AND FUTURE WORK .....coiiiiiiiie et 78
APPENDIX A et R R et R Rt R e R e Re e ne e e ane e re e an 80
APPENDIX Bttt ettt b ettt s et e bkt e ke ekt oAt e R e e SR e eRe oAbt e R bt oAb e R £ e e R e e b e e Ee e EeeneeeReeeheenbeenbeenbe e 89
F N o =\ ] G TP 103
APPENDIX D .ttt b btttk ekt ke R R Rt e e R e e Re e eR£ £ R e e AR e R b e R b e b e e Ee e nbe e nbeebe e e eheenaeenas 115



BIBLIOGRAPHY



LIST OF TABLES

Table 1 Comparison of centerline velocity, mean velocity and mass flow rate..........c.ccoccovveievciiiiiisie e, 15
Table 2 ANSYS OULPUL PAFAIMELEIS. .......iiuiieiieeeeeteiteste st stestesteeae st e besee st e stesseasae e esbeseestesteaaeeteeseesee e e bestesaeateaneenseseenees 32
Table 3 Ansys time history of wall temperatures at various [0Cations............cccoverereriiriesiieienee e 33
Table 4 Control volume based Finite difference OUIPUL ..........ccoiiiiiiiiie s 34
Table 5 Temperature values at Z=0.0075 M | 1232 S. ..ottt e bbbt eneeene s 39
Table 6 Comparison of time history of wall temperatures at z=0.0075 M......cccccoiiiiiiiiiiiiie e 40
Table 7 Comparison of Temperature in time at z=0.0075 m, r= 0.92600E-04 M.........c.cccecveiverieieiesinsieseeieereesie e 42

Table 8 Comparison of Temperature with different time schemes with Nu, =23.76425, Br =279E-09, a'=
0.00378,€2 =0.05459, Pe =14.01245, T ., =0.15, AT =0.0000375, ®_ =-0.5,n=1, Z*=3......c..c0ccerrrr... 54

final

Table 9 Dimensionless Wall Temperature with different Brinkman numbers at various locations, Nu, =1.0, n=1.8,

a"=0.1, Q =0.05459, Pe=05,T,,  =28.78464, AT = 3.59808, O, =05 i 67

final

Table 10 Local Nusselt number at different Brinkman numbers, Nu, =1.0, n=1.8, a = 0.1, Q =0.05459, Pe =
0.5, Tj;, =28.78464, AT =3.59808, @ = -0.5 ....ccooiriiiriiiriiniiiniinsiscnsssissn s 68

final

Vi



LIST OF FIGURES

Figure 1 Physical Description of the ProbIem ... e 1
Figure 2 Control Volume fOr DISCIEtiZatioN ..........ccciviiieiiiiie ettt s te e et e resaestesne e e e e enes 9
Figure 3 Half Control Volume near the BOUNUAIY ..........cccviviieiiieie ettt s nn e neens 10
Figure 4 Control Volume Adjacent to Plane of SYMMELrY........cooiiiiiiiiiii e 11
Figure 5 Finite Element Subdivision of the half PIPe ... 15
Figure 6 Contours of Axial Velocity for ANSYS SOIULION ..........ociiiiiiiiiie e 16
Figure 7 Vectors of Axial Velocity for ANSYS SOIULION.........ccccvciiiiiiiiiisc et 17
Figure 8 Axial Velocity Profile for ANSYS SOIULION .........ccviviieiiice ettt nnens 18

Figure 9 Dimensionless Velocity Profiles for the steady-state laminar flow of power-law liquids in a straight pipe. 19

Figure 10 Inlet TempPerature Profile ... et 22
Figure 11 Contours Of TEMPEIATUIE @ To8SEE .....coveeueiieiieite ittt ettt bt st sb e bbb e neeneennens 23
Figure 12 Contours Of TEMPErATUIe @ t=16 SEC .....ecviverieitirieriieieei ettt sttt sb sttt sbe bbb e e e neennens 24
Figure 13 Contours Of TEMPEIATUIE @t t524 SEC ......cviiveiiiiiieieeeeie et steste e te e e e e st s b e besaeste e e esee st e sbestesaesteeneenaeseens 25
Figure 14 Contours Of TEMPEIAtUIe @t t=32 SEC .....veververiirerieieeeeeeie e ste e te s e e e e ae st e tesae e e e eseeseestestesnesreeneeneeseens 26
Figure 15 Temperature vs. time for various Nodal 10CAtIONS ............ccoiiiiiiiinii i 27
Figure 16 Wall temperature profile t t=8 SEC ..o e 28
Figure 17 Wall temperature Profile at t21BSEC .....c.eevieeiiitiiterie ettt ettt sbe bbb aneenee e 29
Figure 18 Wall temperature Profile at T224SEC ......viviieiiiiie et sr et e besaesteeneeneeneens 30
Figure 19 Wall temperature Profile at t=32S8C ... ..ucviiiiiiiiie ettt besreste e e enaenrens 31

Figure 20 Dimensionless Temperature Profile at Z = 3, with Nu, =23.76425, Br =279E-09, a =0.00378,Q) =
0.05459, Pe = 14.01245, T, ., =115.13856, AT = 3.59808, ©_ = -0.5, N=1. ...ooerovieiiririreieieisieissennnns 36

final

Vii



Figure 21 Dimensionless Wall Temperature vs.Dimensionless Time at Z =3, R=1 with Nu, =23.76425, Br =
279E09, a” =0.00378, Q2 =0.05459, Pe =14.01245, T, . =115.13856, AT =3.59808, ®_=-05, n=1........ 37

final

Figure 22 Dimensionless Temperature vs. Dimensionless Time at Z = 3, R=0.03704, with Nu, =23.76425, Br =

279E09,a” =0.00378, ) =0.05459, Pe =14.01245, T ina =115.13856, AT =3.59808, ©_ =-0.5, n=1............ 38
Figure 23 Comparison of Temperature profile at z=0.0075 M, 1232 S. ..ccuiiiiiiiiiie e 39
Figure 24 Comparison of Wall Temperatures in time at Z=0.0075 M .....cccoviiieiieiiie i 41
Figure 25 Comparison of Temperature in time at z=0.0075 m, r=0.92600E-04 M ...........ccccveivereerereriereseereereerieseens 43

Figure 26 Comparison of Control Volume based Finite Difference Solution and Graetz Solution at Z" = 0.01 with,

Figure 29 Explicit Scheme Solution with Nu, =23.76425, Br =279E-09, a” = 0.00378, O = 0.05459, Pe =
14.01245, T, =0.15, AT =0.0018, O = -0.5, N=1, Z*=3.....couiiiiiiriiiieineeieeesesesese s 51

final

Figure 30 Comparison of Explicit and Fully-Implicit Scheme Solution with Nu, =23.76425, Br =279E-09, a'=
0.00378,€2 =0.05459, Pe = 14.01245, T, . =0.15, AT =0.00015, ®_=-0.5,n=1, Z*=3....cc.ccccerrrrrrrrrrrn. 52

final

Figure 31 Comparison of Explicit and Fully-Implicit Scheme Solution with Nu, =23.76425, Br =279E-09, a'=
0.00378,Q2 =0.05459, Pe = 14.01245, T, . =0.15, AT =0.0000375, ®_ =-0.5,n=1, Z*=3......cc.ceoce0rsr.... 53

final

Figure 32 Grid Study with different grid size in Z* direction with Nu, =23.76425, Br =279E-09, a’=
0.00378,€2 =0.05459, Pe = 14.01245, T, ., =115.13856, AT =3.59808, ® =-0.5,n=1, Z*=3................ 56

final

Figure 33 Grid Study with different grid size in R direction Nu, =23.76425, Br =279E-09, a =0.00378,Q =
0.05459, Pe = 14.01245, T, ., =115.13856, AT = 3.59808, @w =-05N=1,Z*=3...ccii e 57

final

viii



Figure 34 Grid Study with different grid size in R and Z* directions Nu, =23.76425, Br =279E-09, a’=
0.00378,€2 =0.05459, Pe = 14.01245, T,. ., =115.13856, AT =3.59808, ® =-0.5,n=1, Z*=3................ 58

final

Figure 35 Grid Study with different grid size in Z* directions Nu, =23.76425, Br =279E-09, a =0.00378,Q =
0.05459, Pe = 14.01245, T =115.13856, AT =3.59808, ®_ =-0.5, n=1, Z*=0.01, 50 nodes in R direction

final

Figure 36 Dimensionless Inlet Temperature vs. Dimensionless Time = 0.05459, T. . =115.13856, AT =

final

3.59808, O |\ i1 = SINEAT | ZHZ0 oo 61

Figure 37 Comparison of Dimensionless Wall Temperature Profiles at different power-law index Nu_ 6 =1.0,

Br=0.1, a" =0.1,Q =0.05459, Pe =05, T, =28.78464, AT = 3.59808, ®,_=-05Z*=02....cccce0..... 63

final

Figure 38 Comparison of Dimensionless Temperature Profiles at different power-law index, Nu, =1.0, Br =0.1,

a"=0.1,Q =0.05459, Pe =05, T,  =28.78464, AT = 3.59808, O, =-05,Z*=0.2.ccccrvrirrerreirrienen, 64

final

Figure 39 Comparison of Dimensionless Bulk Temperature Profiles at different Power-law index, Nu, =1.0,

Br=0.1,a"=0.1, Q =0.05459, Pe=05,T, , =28.78464, AT = 3.59808, ®_=-05Z*=3....ccccouunu... 65

final

Figure 40 Comparison of Dimensionless Bulk Temperature Profiles at different Power-law index, Nu, =1.0,

Br=0.1, a"=0.1, Q =0.05459, Pe=05,T, , =28.78464, AT = 3.59808, ®_=-05,Z*=02............. 65

final

Figure 41 Comparison of Nusselt number at different Power-law index, Nu, =1.0, Br =0.1, a=01 Q =
0.05459, Pe =0.5, T.. | =28.78464, AT =3.59808, ©  =-0.5,Z*=0.2........ceesrrrrmrrrrrrrrerrnrereneresesesesenens 66

final

Figure 42 Comparison of Dimensionless Wall Temperature Profiles at different Brinkman numbers, Nu_, =1.0,

n=1.8, a =0.1, Q =0.05459, Pe=05, T, , =28.78464, AT = 3.59808, ®,=-05Z*=02...cccccourrrn. 69

final

Figure 43 Comparison of Dimensionless Wall Temperature Profiles at different Brinkman numbers, Nu, =1.0,

n=1.8, @ =0.1, Q =0.05459, Pe =05, T, , =28.78464, AT = 3.59808, O, =-05Z*=3..ccccoerrrrrrnn. 70

final



Figure 44 Dimensionless Temperature Profiles at different Brinkman numbers, Nu, =1.0, n=1.8, a’=01 Q =
0.05459, Pe=0.5T, ., =28.78464, AT =3.59808, ®_ =-0.5, Z*=0.2.....ccccecosrrrrmrrrrrrirmrerrsrereriersniernnnns 71

final

Figure 45 Nusselt number at different Brinkman numbers, Nu, =1.0, n=1.8, a’=01, Q =005459, Pe=
0.5, Ty, =28.78464, AT =3.59808, O = -0.5, Z*=0.2......c0uiriiriiricriirierinesisesisessssisssssesssssss s 72

Figure 46 Dimensionless Bulk Temperature Profile at different Outside Nusselt numbers with n=1, a’=10,Q =
0.05459, Pe=1.0, Br=0.1, T,  =28.78464, AT =3.59808, ©®_ =-0.5, Z*=3......ccccecesrrrrsrrsrrsrrsrrsrrerrirens 73

final

Figure 47 Dimensionless Bulk Temperature Profile at different Outside Nusselt numbers with n=1, a’ =10, Q =
0.05459, Pe=1.0, Br=0.1, T,  =28.78464, AT =3.59808, ©®_ =-0.5, Z*=0.2....ccccccersrsrrrrrsrrsrrsrrerrernns 74

final

Figure 48 Dimensionless Temperature Profile at different Outside Nusselt numbers with n=1, a’=10 Q =
0.05459, Pe=1.0, Br=0.1, T, , =28.78464, AT =3.59808, ©®  =-0.5, Z*=0.2.....cccccsrrrrrrrrrrrrrrrrrrrerrrrnns 75

final

Figure 49 Dimensionless Wall Temperature Profile at different Outside Nusselt numbers with n=1, a’=10Q =
0.05459, Pe=1.0, Br=0.1, T, ,=28.78464, AT =3.59808, © = -0.5, Z*=3.....cccccecrsrmrrrrrmrrrrrrrrrrrerrsrans 76

final

Figure 50 Dimensionless Wall Temperature Profile at different Outside Nusselt numbers with n=1, a’=10Q =
0.05459, Pe=1.0, Br =0.1, T, ,, =28.78464, AT =3.59808, ®_ =-0.5, Z*=0.2......ccccruvrrmrrrrmrrrmrrrnrrnrres 76
Figure 51 Local Nusselt number at different Outside Nusselt numbers with n=1, @" = 1.0, Q =0.05459, Pe =1.0,

Br =0.1, T,  =28.78464, AT =3.59808, ©_ =-0.5, Z*=0.2.....ccceccsrrrrrmrrrrrrmrrernreerminseesssesesssssssssnssessnenns 77

final



Br

Pe

Pr

Re

NOMENCLATURE

Duct radius
. . . pc,a
Dimensionless wall heat capacity =
PuCy |
Body force
n+l
Brinkman number=_M Y™
a"t AT,k

Fluid specific heat

Heat transfer coefficient
Thermal conductivity of fluid
Wall thickness

Consistency index

Power-law index

ha
Outside Nusselt number :T , external thermal resistance

. . . me P
Dimensionless pressure quantity = —————
U

Ua . . .
Peclet number =—— , dimensionless independent heat transfer parameter
a

mc, U™ -
ﬁ , ratio of momentum and thermal diffusivities

Prandtl number =

2-n 4N

pUa
m

Reynolds number = , ratio of inertia and viscous forces
Radial coordinate

Xi



Greek Symbols

C

T X &

a
AT,

Subscript
M

N

Dimensionless radial coordinate = —
a

. . i ot
Dimensionless time =—

a
Temperature

Cycle mean temperature
Mean velocity

: ) .V
Dimensionless velocity :UZ

Frequency of oscillations

Axial coordinate

. . . . YA
Dimensionless axial coordinate =—
a

Dimensionless temperature =

) . . T
Dimensionless ambient temperature =°°A—_I_

Dimensionless frequency oscillations =

Dissipation function

Density
Fluid dynamic viscosity
Thermal diffusivity of fluid

Amplitude of inlet oscillations

Mean value

North control volume face

Xii




Grid point in north direction
South control volume face
Grid point in south direction

Wall

Free stream value

Xiii



ACKNOWLEDGEMENT

This work could not be completed without encouragement, support, and assistance of many individuals.
First and foremost, my deepest gratitude goes to my family who has stood behind me in this work and shared the
burden of my prolonged PhD program.

I would like to express my special thanks to committee chairperson and my academic advisor Professor
Minking Chyu for his encouragement, guidance, support and understanding.

A special note of gratitude must be extended to Professor James Chen for his support and valuable critical
comments throughout this work.

It was my good fortune to have Professor Laura Schaefer serve as my committee member. | extend my
gratitude for her helpful suggestions and constructive criticism.

A special thanks is extended to Professor Scott Mao for his valuable suggestions and comments.

Xiv



1.0 INTRODUCTION

The study of unsteady forced convection heat transfer in tubes imposed to cyclic variations has been
motivated by heat exchanger applications. This study investigates the heat transfer behavior associated with a
thermal transient in a forced convection in a circular duct. The motivation behind the thermal response of internal
flow subject to variations is provided by devices of the regenerative type of heat exchanger through which hot and
cold fluid pass in succession. Usually, the conditions at the inner surface of the solid are assumed to be given, but in
fact the thermal conditions at the wall are generally unknown, and the heat transfer problem for the solid wall must

be analyzed simultaneously with the heat transfer for the fluid.

¥ T.

Periodic Temperature Input

Figure 1 Physical Description of the Problem

In this analysis, the effects of the duct wall heat capacity and convection from the ambient are considered,

while axial conduction is neglected. The fluid inlet temperature is varied periodically with time. Incompressible,



hydrodynamically developed laminar flow of non-newtonian fluid flow is assumed. The last assumption implies that
a hydrodynamic entrance length is present which allows establishing a fully developed flow. Except for liquidmetals
and gases, the hydrodynamic entrance region is much shorter than the thermal entrance region. It is also assumed
that physical properties of the wall and fluid are constant.

In this present work, viscous dissipation effects will also be taken into account. Viscous dissipation can
result in large local temperature increases, especially in the wall region. Undesired reactions may occur if those
temperatures are not controlled properly. Lin et al. [27] points out the importance of viscous dissipation in the
design of the control systems of heat transfer devices in organic-cooled nuclear reactors. We believe it is important

to investigate any physical effects, such as viscous dissipation, which may lead to pronounced heat transfer.

1.1 LITERATURE SURVEY

Unsteady forced convection in tubes with periodic variation of the inlet condition is of interest in heat
exchangers. The available work in this area is still limited.
Sparrow and DeFarios [33] studied the transient conjugate problem of a slug flow inside a parallel plate duct with a
periodically varying inlet temperature (1968). The series solution results in a complex eigenvalue problem.
Cotta, Mikhailov and Ozisik [18]extended their work to a circular duct (1987). They solved the complex eigenvalue
problem by applying the Count method. The results are presented in the graphical form as a function of axial
position for different values of the parameters. In both studies, the viscous dissipation is considered to be negligible.
Travelho and Santos [35] solved the Sparrow and DeFarios’ problem by using the Laplace transform (1991). The
amplitudes and phase lags with respect to the inlet conditions are determined for the complex wall temperature, fluid
bulk temperature, and wall heat flux from the solution. However, their solution becomes inaccurate as Z becomes
equal to or larger than one.
Santos and Travelho [36] solved the transient laminar forced convection in the thermal entrance region of a circular
duct with a periodically varying inlet temperature by applying a Laplace transformation (1998). They also included
convection interaction with an ambient medium outside the duct. In their study, viscous dissipation effects are

neglected, and slug flow idealization of the velocity field is utilized. However, in the design of heat transfer devices



in organic-cooled nuclear reactors, where Non-Newtonian fluids are used, viscous dissipation becomes significant
[27]. In the analysis of laminar forced convection of Newtonian fluids flowing in circular ducts, Barletta (1997)
showed that the effect of viscous dissipation is very relevant in the fully developed region, both if the wall

temperature is uniform and if convection with an external isothermal fluid occurs [5].



2.0 ANALYSIS

2.1 STATEMENT OF THE PROBLEM

The objective of this work presented in the following text is to study the heat transfer problem presented by
Santos and Travelho [36] (1998). We will extend their work by considering Non-Newtonian fluid flow and by
taking the effect of the viscous dissipation into account. The assumptions we make for the particular problem are as
follows:
*Fluid flow is hydrodynamically developed and laminar
*Power-law fluids are to be studied
*Convective heat transfer from the ambient outside and the duct thermal capacity effects are considered
Axial conduction is neglected

Physical properties of the wall and fluid are constant

2.2 GOVERNING EQUATIONS

The linear momentum equation is given in Eulerian form by:

p%:divT+pb (2-1)

D
where F is the material time derivative, which denotes differentiation with respect to t, holding x fixed where b

is the body force vector and T is the Cauchy stress tensor. The
balance of angular momentum yields that the Cauchy stress is symmetric: T=T".

The energy equation for forced convection heat transfer with viscous dissipation is as follows:

pcp%:div(k grad T)+ @ (2-2)



where @ is dissipation function.

For the problem under consideration, the reduced momentum equation for a circular duct in the axial direction is

10 op
——(rr,,)=—— (2-3)
For ) =75,
dv, | dv, N . .
where, 7., =M ar T m consistency index and n is power-law index.

Under the conditions we stated in section 2.1, the temperature field is described by the energy equation in the

following form:

oT oT 0T 10T dv
c,(—+V,—)=k +——)+7, (—= 2-4
P p(at Zaz) (ar2 rar) frz(dr) (2-4)

With the initial, inlet and boundary conditions given respectively by:

T(r,z,0)=T, (2-5)

T(r0,t) =T, + AT, Sinat (2-6)

arzy _o (2-7)
or -0

K % ~1(pc), Wm(r (a,2,t)-T,) (2-8)

The last boundary condition was obtained from the energy balance on the wall where T is the ambient

temperature.

We introduce the following dimensionless quantities:

r

R=— dimensionless radial coordinate (2-9)
a

' == dimensionless axial coordinate (2-10)
at o .

T= — dimensionless time (2-11)
a



* I:)me_l:)
pr——me
U
vz*_ﬁ
U
0= T'——1b
AT,
@ :Toc_TO
AT,
o _PCa
PuCu |
a?
Q-2
a

dimensionless pressure quantity

dimensionless velocity

dimensionless temperature

dimensionless temperature

dimensionless wall heat capacity

dimensionless frequency oscillations

(2-12)

(2-13)

(2-14)

(2-15)

(2-16)

(2-17)

Applying the dimensionless quantities to the momentum and energy equations, .the problem under

consideration is given in dimensionless form as:

1 o0 dv; dP”
— —(R "Y=Re _
R&R((dR)) (dZ)

2-n An
Where Re:pU—a

m

2 % |n-1 *\ 2

9.,y y: 00y (00, 100y g 0" (av:
oT oz OR R oR dR dR

with boundary conditions,

O(R,Z2°,0)=0

@(R,0,T) = Sin QT

60(R,Z",T)
R

=0

R=0

_00(R,Z",T)
oR

R=1

1 00(,27,T)

a oT

+Nu,(®1,2"°,7)-0,)

(2-18)

(2-19)

(2-20)

(2-21)

(2-22)

(2-23)

(2-24)



where

u2"g" mc U™ cUa Ua
Pe=Re Pr= £ i = P = —— s the Peclet number, (2-25)
m k a k a
m U n+1
'=————— isthe Brinkman number,and (2-26)
a"" AT k
ha . :
Nu, = T , is the outside Nusselt number, (2-27)

2.3 DISCRETIZATION

The algebraic equations involving the unknown values of the dependent variable @ at the chosen grid
points are derived from the differential equation governing @ . The calculation domain is divided into a number of
nonoverlapping control volumes shown in Figures 2 and 4, such that one control volume surrounds each grid point.
Then the differential equation is integrated over each control volume. Piecewise profiles between the grid points are

used to evaluate the integrals. Integrating the energy equation over the control volume and using a fully-implicit

scheme we have as follows,

®,-0° 2 2

=0 Ry —Rs Az +PeV,(©,-0 )—R

AT 2 2

® v v v v Y
=| R (———~ p) R( S)AZ +AZ"Br R, AR s n__ s
AR, Rs | AR | AR
(2-28)
Rearranging the equation in the form as:
a,0,=a,0,+a, O, +a; O, +a, O) +d (2-29)
2
a, =(Pe V - Ry ) (2-30)



2-31
" AR, (2-31)
R, AZ™
g = (2-32)
AR
o, RZ-RZAZ"
a,=————— (2-33)
2 AT
* * n-1 * * 2
. V. -V V. -V
d=AZ BrR, AR |-—/——° L > (2-34)
| AR | | AR
— 0]
a,=a, +a, +as +a, -

We need to construct an additional equation for ® at the boundary since the boundary temperature is not
given. The equation for the wall boundary condition is integrated over half the control volume adjacent to the wall

as shown in Figure 3, which leads to,

®,-0 -@°
—(——=)= 1* (M)+ NUo(@p _@w)

Rearranging the equation gives the following;

1
ag = -
ARq (2-37)
ag ==
a AT
(2-38)
d=Nu,0, (2-39)
a, =ag +ag + Nu, (2-40)

Equation 2-29 is solved using LU decomposition method. Once the coefficient matrix is converted to LU
equivalent, the solution can be found. The L matrix is a record of operations required to make the coefficient matrix
into the upper-triangular matrix U. The same transformations are applied to the right hand side. Then after we

augment the right hand side to U and back-substitute, the solution appears. [39]



Figure 2 Control Volume for Discretization
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Figure 3 Half Control VVolume near the Boundary
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Figure 4 Control Volume Adjacent to Plane of Symmetry
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3.0 VERIFICATION

3.1 ANSYS RESULTS

In order to verify our results obtained using control volume based finite difference, computations have been
performed on ANSYS, a commercial FEM code. The model in Figure 5 is run on an Intel NT with four processors
by ANSYS 5.7. The results and comparisons are summarized in the following. In order to be consistent with what
we have for a control volume based finite difference model, half size of the quad elements in radial direction is used
adjacent to the symmetry line. The half model shown in Figure 5 is generated using total of 1020 nodes and 950
quad elements to save CPU time. The pipe wall is designed to be sufficiently thin so that the temperature variations
across the thickness of the wall are negligible.

For the given problem, the momentum equation can be solved independently. Once a solution for the flow
field is obtained, the energy equation is activated and transient solution is switched on. It takes 3941 cumulative
iterations to reach the desired convergence,1.0E-17. The specified convergence criterion is met using the MSU
advection formulation. The global iteration is set to be 350, and total CPU time in seconds is 164.70, where 136.06
seconds are spent for calculations. The results are reflected about the symmetry line to have a full model for post-
processing purpose. Computations have been performed for the following conditions:

Fluid Properties:
Air at 300 K

P =11614 kg/m**3
M = 184.6e-07 kg/m-s
k = 0.0263 W/m-K

Cp = 1007 J/kg-K

12



Solid Properties:

Stainless Steel (AISI 304) at 300 K p = 8055 kg/m**3
k =15 W/m-K
Cp =480 J/kg-K

Geometric Properties:

a=0.0025 m
z=0.0125m

1=0.0002 m

Loading:

AP = 0.0375 Pa

T(r,z,0)=320K
T,=320K

AT, =40K

T(r,0,t) =T, + AT, Sinwt

w=27132 1is
h =250 W/m**2-K

T,=300K

3.1.1 Analytical Solution for Velocity

(n+1)/n
n+1 r
The axial component of the velocity field is given by,V, (r) = 3 1 U {1— [—j } where the case
n+ a

n=1 corresponds to a Newtonian fluid [8]. In dimensionless form, the velocity profile for non-Newtonian flows

_3n+1

o [1_ R(n+1)/n]l

becomes V, (R)
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Figure 9 displays the dimensionless velocity profiles of Newtonian and non-Newtonian flows. The curve labeled as
n=1 corresponds to Newtonian fluid profile. The curves labeled n<1 represent shear-thinning non-Newtonian flow.
Those fluids deliver the highest localized viscous heating due to high near-wall shear rates. These high shear rates
contribute to elevated local viscous heating effects. The curves labeled n>1 represent shear-thickening non-

Newtonian flows. Note in Figure 9, the increase in the wall shear rate and the increasingly plug-like nature of the
profile as power-law index decreases.
The velocity field for this problem is fully-developed throughout the pipe. The velocity profile for

Newtonian-fluid follows the “Hagen-Poiseuille” paraboloid, given by,

r ry’
V,(r)=—(-AP/L)[1-| -

4u a
From the above, the centerline velocity is:

V,|,,=02539 m/s

z
The mean velocity is half of the centerline velocity,

U =0.1269 m/s

U
Re= pa =40 (laminar flow)
Y7

The mass flow rate is,

m = pUA, = 2.894*E-06 kg/s where A is the flow area

The flow is considered to be Newtonian where n is equal to one.

The inspection of the results depicted in Table 1 reveals that centerline velocity, mean velocity, and mass
flow rate are appeared to be in good agreement with the analytical solution. As depicted in Figures 6, 7 and 8, the
velocity profile is found to be consistent with the Hagen-Poiseuille paraboloid. Figure 8 shows that the maximum
velocity is at the center of the pipe, whereas we have zero velocity at the walls as a result of the no-slip boundary

condition.
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Table 1 Comparison of centerline velocity, mean velocity and mass flow rate.

Target ANSYS
AR m/s 0.2539 0.2539
U mls 0.1269 0.1263

m kgls 2.894e-06 2.880e-06

Figure 5 Finite Element Subdivision of the half pipe
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Figure 7 Vectors of Axial Velocity for Ansys Solution
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Figure 9 Dimensionless Velocity Profiles for the steady-state laminar flow of power-law liquids in a straight pipe.
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3.1.2 Temperature Solution

Using the conditions stated earlier leads to the following dimensionless values,

ha
NU =T =23.76425

0

Br = 279 E-09
a’ =0.00378

Q =0.05459
Pe =14.01245
T, =115.13856
AT = 3.59808
@, =-05

During the energy equation solution, a bug was discovered within Ansys version 5.7. An initial attempt was
made to solve the energy equation using the Initial Condition command (1.C.) of ANSYS. It is found that this
command tends to set the initial conditions to zero all the time, not to the specified one. Discovering this error forces
us to set the desired initial condition as a boundary condition for steady-state case. After running for the steady-state
case, boundary conditions are deleted for all nodes, and a new set of boundary conditions are applied for the
transient solution. Since all the results are stored in memory for the steady-state case, ANSYS recognizes those
nodal results as if they were initial conditions for the transient solution. This method appears to work fine, as can be
seen in Figure 10. At zero time, we have the specified initial condition for temperature.

The same figure shows the specified inlet temperature in time. For our problem, the inlet temperature field
is subject to a sine function in time. Figures 11, 12, 13, and 14 show temperature contours at different times. The
inlet temperature takes the value of its initial one at t=32 s. As seen from these figures, forced convection dominates
the temperature profile in this case. The fluid temperature is damped within a distance from the inlet. Figure 15

shows the temperature profiles at different axial locations of the inner wall. The temperature profile in time tends to
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flatten as the distance from the inlet increases. The effect from ambient is more noticeable downstream, where the
inlet temperature has less effect on those regions. Figures 16, 17, 18, and 19 exhibit this effect more clearly.

The influence of forced convection can be seen in Figure 20. Dimensionless temperature increases as we
move towards the center of the pipe. Comparing Figures 21 and 22, we can see this result more clearly. The thermal
wave has more penetration near the center than the wall, where the dimensionless wall temperature decays with
time.

The results we obtained from the control volume based finite difference output are put in dimensional form
in order to compare with the Ansys solution. As seen in Figure 23, the two solutions are in good agreement. In fact,
the maximum error is found to be 0.6 percent at z=0.0075 m. We also compared two results at the wall as a function
of time (Figure 24). The maximum error is found to be 1.9 percent, but keep in mind that those results are obtained
from two different algorithms with different solution techniques. Also, using the finite difference solution, we have
made some approximations and used additional equations for the wall temperature. Ansys results appear to be higher
values in magnitude than the finite difference solution for each case. The difference between the two solutions in
time is less pronounced as we move away from the wall. This difference may be reduced by decreasing the time

step, AT . This fact will be clear later as we do a stability analysis. Since it is very expensive in terms of CPU time

and storage to work with small time steps AT , we adopt the current one.
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Figure 11 Contours of Temperature at t=8sec
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Figure 12 Contours of Temperature at t=16 sec
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Table 2 Ansys output parameters

PARAMETER STATUS- ( 46 PARAMETERS DEFINED)
(INCLUDING 25 INTERNAL PARAMETERS)

NAME VALUE TYPE DIMENSIONS
CP 1007.00000 SCALAR

H 250.000000 SCALAR

K 2.630000000E-02 SCALAR

L 1.250000000E-02 SCALAR

MDOT 2.883928751E-06 SCALAR

MU  1.846000000E-05 SCALAR

Pl 3.14159265 SCALAR

PIN  3.750000000E-02 SCALAR

R 2.500000000E-03 SCALAR

RF  9.260000000E-05 SCALAR

RHO  1.16140000 SCALAR

RSO 2.000000000E-04 SCALAR

TAMB  300.000000 SCALAR

TAU  3.605977865E-03 SCALAR

TC_O  309.784274 SCALAR

TIME TABLE 6 12 1
TIN  300.000000 SCALAR

TM_O  305.290971  SCALAR

TW_O 320.000000 SCALAR

VXC  0.253957389 SCALAR

VXM  0.126465718  SCALAR
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Table 3 Ansys time history of wall temperatures at various locations

TIME 173TEMP 156 TEMP 146 TEMP 136 TEMP
INLET L/5WALL 2L/5WALL 3L/5 WALL
0.0000 320.000  320.000  320.000  320.000
0.0000 320.000 320.000  320.000  320.000
1.0000 327.804  318.314  316.782  316.487
2.0000 335.307 318200 313.962  312.889
3.0000 342,223 319506 312435  310.238
4.0000 348.284  321.498  312.027  308.626
5.0000 353.259  323.631  312.315  307.834
6.0000 356.955 325,567  312.933  307.583
7.0000 359.231  327.090 313.621  307.637
8.0000 360.000 328.066  314.211  307.823
9.0000 359.231  328.408 314594  308.020
10.000 356.955  328.077  314.701  308.146
11.000 353.259  327.068 314495  308.151
12.000 348.284  325.408  313.964  308.005
13.000 342,223  323.153  313.114  307.693
14.000 335.307  320.387 311969  307.217
15.000 327.804  317.213  310.568  306.585
16.000 320.000 313.750 308.961  305.819
17.000 312,196 310130  307.208  304.943
18.000 304.693  306.492  305.373  303.990
19.000 297.777 302975  303.528  302.995
20.000 291.716  299.714  301.742  301.995
21.000 286.741  296.834  300.083  301.029
22.000 283.045 294445  298.616  300.133
23.000 280.769  292.640  297.395  299.341
24.000 280.000 291.487  296.469  298.683
25.000 280.769  291.032  295.872  298.186
26.000 283.045  291.290 295.628  297.867
27.000 286.741  292.253  295.746  297.740
28.000 291.716  293.883  296.221  297.808
29.000 297777  296.118  297.035  298.070
30.000 304.693  298.872  298.157  298.515
31.000 312.196  302.039  299.543  299.126
32.000 320.000 305.497  301.141  299.880
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Program to solve unsteady conjugate heat transfer problem SOLUTION at Z= 3.00000

Table 4 Control volume based Finite difference output

**********RESU LTS**********

NEAR-CENTER TEMP= 0.08952493263542 AT TIME= 3.5980800000000
NEAR-CENTER TEMP= 0.18814268660827 AT TIME= 7.1961600000000
NEAR-CENTER TEMP= 0.28525034552911 AT TIME= 10.794240000000
NEAR-CENTER TEMP= 0.37408152311415 AT TIME= 14.392320000000
NEAR-CENTER TEMP=0.44900897659823 AT TIME= 17.990400000000
NEAR-CENTER TEMP= 0.50551081052496 AT TIME= 21.588480000000
NEAR-CENTER TEMP= 0.54019686355965 AT TIME= 25.186560000000
NEAR-CENTER TEMP= 0.55083008931134 AT TIME= 28.784640000000
NEAR-CENTER TEMP= 0.53633168303619 AT TIME= 32.382720000000
NEAR-CENTER TEMP= 0.49676251153875 AT TIME= 35.980800000000
NEAR-CENTER TEMP= 0.43327618586320 AT TIME= 39.578880000000
NEAR-CENTER TEMP= 0.34804159145023 AT TIME= 43.176960000000
NEAR-CENTER TEMP= 0.24413489326620 AT TIME= 46.775040000000
NEAR-CENTER TEMP= 0.12540297096191 AT TIME= 50.373120000000
NEAR-CENTER TEMP= -0.003.6980950629 AT TIME=  53.971200000000
NEAR-CENTER TEMP= -0.13828448523566 AT TIME= 57.569280000000
NEAR-CENTER TEMP= -0.27323996877993 AT TIME= 61.167360000000
NEAR-CENTER TEMP= -0.40341825146715 AT TIME= 64.765440000000
NEAR-CENTER TEMP= -0.52384505431667 AT TIME= 68.363520000000
NEAR-CENTER TEMP= -0.62991251696682 AT TIME= 71.961600000000
NEAR-CENTER TEMP= -0.71755871985305 AT TIME= 75.559680000000
NEAR-CENTER TEMP= -0.78342562141196 AT TIME= 79.157760000000
NEAR-CENTER TEMP= -0.82498948466387 AT TIME= 82.755840000000
NEAR-CENTER TEMP= -0.84065888709783 AT TIME= 86.353920000000
NEAR-CENTER TEMP= -0.82983662609632 AT TIME= 89.952000000000
NEAR-CENTER TEMP= -0.79294319974349 AT TIME= 93.550080000000
NEAR-CENTER TEMP= -0.73140100523563 AT TIME= 97.148160000000
NEAR-CENTER TEMP= -0.64757989657428 AT TIME= 100.74624000000
NEAR-CENTER TEMP= -0.54470622103384 AT TIME= 104.34432000000
NEAR-CENTER TEMP= -0.42673885241873 AT TIME= 107.94240000000
NEAR-CENTER TEMP= -0.29821700398014 AT TIME= 111.54048000000
NEAR-CENTER TEMP= -0.16408568595541 AT TIME= 115.13856000000
NODE= 1 TEMPERATURE= -0.497200566213283 AT R=1.00000
NODE= 2 TEMPERATURE= -0.470287883059376 AT R=0.92593
NODE= 3 TEMPERATURE= -0.441305854226295 AT R=0.85185
NODE= 4 TEMPERATURE= -0.410393541707785 AT R=0.77778
NODE= 5 TEMPERATURE= -0.377967528071125 AT R=0.70370
NODE= 6 TEMPERATURE= -0.344700939566505 AT R=0.62963
NODE= 7 TEMPERATURE= -0.311478540982138 AT R=0.55556
NODE= 8 TEMPERATURE= -0.279328470579036 AT R=0.48148
NODE= 9 TEMPERATURE= -0.249337901944855 AT R=0.40741
NODE=10 TEMPERATURE= -0.222565105345318 AT R=0.33333
NODE=11 TEMPERATURE= -0.199961914507722 AT R=0.25926
NODE=12 TEMPERATURE= -0.182317513586017 AT R=0.18519
NODE= 13 TEMPERATURE= -0.170227669407784 AT R=0.11111
NODE= 14 TEMPERATURE= -0.164085685955409 AT R=0.03704
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WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=
WALL TEMP=

-0.11972192219324
-0.20809788001526
-0.27305373700169
-0.32059197856653
-0.35526429046777
-0.38052510568670
-0.39899570905171
-0.41266149024978
-0.42301937498003
-0.43118825844394
-0.43799208748776
-0.44402283233687
-0.44968876455213
-0.45525207125117
-0.46085877957736
-0.46656315980858
-0.47234816065036
-0.47814296162384
-0.48383837182467
-0.48930053687106
-0.49438321793345
-0.49893876422317
-0.50282780236596
-0.50592760420080
-0.50813906189337
-0.50939219017420
-0.50965008515788
-0.50891129329936
-0.50721057874040
-0.50461811906041
-0.50123720501307
-0.49720056621328

AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=
AT TIME=

3.5980800000000
7.1961600000000
10.794240000000
14.392320000000
17.990400000000
21.588480000000
25.186560000000
28.784640000000
32.382720000000
35.980800000000
39.578880000000
43.176960000000
46.775040000000
50.373120000000
53.971200000000
57.569280000000
61.167360000000
64.765440000000
68.363520000000
71.961600000000
75.559680000000
79.157760000000
82.755840000000
86.353920000000
89.952000000000
93.550080000000
97.148160000000
100.74624000000
104.34432000000
107.94240000000
111.54048000000
115.13856000000
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Figure 20 Dimensionless Temperature Profile at Z" =3, with Nu, =23.76425, Br =279E-09, a"=0.00378,Q) =
0.05459, Pe = 14.01245, T ., =115.13856, AT = 3.59808, ®_ =-0.5, n=1.
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Dimensionless Wall Temperature

Dimensionless Time

Figure 21Dimensionless Wall Temperature vs.Dimensionless Time at

Z" =3, R=1with Nu, =23.76425, Br =279E09, a"=0.00378,Q) =0.05459, Pe =14.01245, T

=3.59808, ®_ =-0.5, n=1.
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Dimensionless Near-Center
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Dimensionless Time

Figure 22 Dimensionless Temperature vs. Dimensionless Time at Z" = 3,
R=0.03704,with Nu, =23.76425, Br =279E09, a”=0.00378, Q) =0.05459, Pe =14.01245, Tina =115.13856, AT

=3.59808, ®_ =-0.5, n=1.
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Table 5 Temperature values at z=0.0075 m , t=32s.

R CV ANSYS
0.25000E-02 300.11 299.88
0.23148E-02 301.18 301.31
0.21296E-02 302.34 302.84
0.19444E-02 303.58 304.43
0.17593E-02 304.88 306.06
0.15741E-02 306.21 307.67
0.13889E-02 307.54 309.22
0.12037E-02 308.82 310.66
0.10185E-02 310.02 311.95
0.83334E-03 311.09 313.05

0.64815E-03 312.00 313.96
0.46297E-03 312.70 314.64
0.27778E-03 313.19 315.11
0.92600E-04 313.43 315.35

0.0025

0.0020

0.0015 - ANSYS

—CV

0.0010 -

0.0005 \ \

0.0000 ‘
295 310 325

Temperature

Figure 23 Comparison of Temperature profile at z=0.0075 m, t=32 s.
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Table 6 Comparison of time history of wall temperatures at z=0.0075 m

TIME ANSYS CV
0.0000 320.000 320.000
1.0000 316.487 315.211
2.0000 312.889 311.676
3.0000 310.238 309.077
4.0000 308.626 307.176
5.0000 307.834 305.789
6.0000 307.583 304.778
7.0000 307.637 304.040
8.0000 307.823 303.493
9.0000 308.020 303.079
10.000 308.146 302.752
11.000 308.151 302.239
12.000 308.005 302.239
13.000 307.693 302.012
14.000 307.217 301.789
15.000 306.585 301.565
16.000 305.819 301.337
17.000 304.943 301.106
18.000 303.990 300.874
19.000 302.995 300.646
20.000 301.995 300.427
21.000 301.029 300.224
22.000 300.133 300.042
23.000 299.341 299.886
24.000 298.683 299.762
25.000 298.186 299.674
26.000 297.867 299.624
27.000 297.740 299.613
28.000 297.808 299.643
29.000 298.070 299.711
30.000 298.515 299.815
31.000 299.126 299.950
32.000 299.880 300.111
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Figure 24 Comparison of Wall Temperatures in time at z=0.0075 m
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Table 7 Comparison of Temperature in time at z=0.0075 m, r= 0.92600E-04 m

Node 14-Near Center Temperature
TIME ANSYS CV
0.0000 320.000 320.000
1.0000 324736  323.580

2.0000 329.969 327.525
3.0000 335.097 331.410
4.0000 339.837 334.963
5.0000 343.888 337.960
6.0000 347.014  340.220
7.0000 349.047 341.607
8.0000 349.882 342.033
9.0000 349.470 341.453
10.000 347.816 339.870
11.000 344978 337.331
12.000 341.060 333.921
13.000 336.211 329.765
14.000 330.616 325.016
15.000 324.488 319.852
16.000 318.062 314.468
17.000 311.584 309.070
18.000 305.304 303.863
19.000 299.463 299.046
20.000 294.284  294.803
21.000 289.967 291.297
22.000 286.677 288.662
23.000 284.542  287.000
24.000 283.642 286.373
25.000 284.013 286.806
26.000 285641 288.282
27.000 288.462 290.743
28.000 292.369 294.096
29.000 297.211 298.211
30.000 302.802 302.930
31.000 308.927 308.071
32.000 315.351 313.436
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Figure 25 Comparison of Temperature in time at z=0.0075 m, r=0.92600E-04 m
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3.2 BENCHMARK SOLUTION: GRAETZ PROBLEM

The problems of steady state conduction of heat and diffusion in a fluid flowing in a circular duct have
been studied by many investigators. Let’s take the case when the duct wall is maintained at a constant temperature
different from the uniform temperature of the fluid at the entrance, and the fluid axial conduction, viscous
dissipation, flow work, and thermal energy sources are negligible. This problem is known as the Graetz problem
named after Graetz who presented the first published solution [26]. The assumptions and boundary conditions made
by Graetz are constant thermal diffusivity, constant tube wall temperature, temperature symmetrical about the axis,
uniform temperature at the tube inlet, fully developed parabolic velocity profile at the tube inlet, and negligible
conduction in the direction of flow. With those assumptions, for one directional flow in a circular tube, the energy

equation becomes,

oT 10, 0T
c,V,—=k=—(r— 3-1
P Ty rar(ar) (31
Equation (3.1) can be written in dimensionless form as
1-R*) 0@ 1 0 00

LR)P 12 RY) (32)

2 oL ROR ™ OR

* al
,Where 2 =———— 3-3
DZ VAVE ( )

R=' (3-4)

a

T-T
= s (3-5)

Te _TS
The assumptions stated before correspond to the following boundary conditions:
0=1 at Z*=0 (3.6)
®=0 at R=1 (3.7)
6—6 =0 at R=0 (3.8)
OR
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The solution to Equation (3-2) may be written as [26]

® =) C,R,exp(-222Z") (3.9)

n=0
where 4., R, C, are the eigenvalues, eigenfunctions, and constants, respectively.

Integrating equation (3.2) over the control volume, we have:

1 R? - R? R -R!? O,-06
§(®p_®W)M “2 SJ—( ”4 Sﬂz{R”(NAT) S( R S) AZ" (3.10)
n S

Rearranging the equation in the form as:

a,0,=a,0,+a, O +a; O (3.11)
R2 —R? R —R!
== = = S (3.12)
2 4
a, = Ry AZ (3.13)
" TUAR, '
R, AZ™
a, = (3.14)
AR
ap =a, +ay +as (3.15)

The dimensionless temperature distribution for the Graetz problem is displayed in Figures 26, 27 and, 28.
As seen from these figures, the control volume based finite difference solution and the Graetz solutions are in

excellent agreement.
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Figure 26 Comparison of Control VVolume based Finite Difference Solution and Graetz Solution at Z" = 0.01 with,
Oua =0, O yer=1

46



Z*=0.03
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Figure 27 Comparison of Control Volume based Finite Difference Solution and Graetz Solution at Z =003,
Oua =0 O yer=1
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Z*=0.1

b e JORY
—— Graetz

0 0.2 0.4 0.6 0.8 1
Dimensionless Temperature

Figure 28 Comparison of Control Volume based Finite Difference Solution and Graetz Solution at Z" = 0.1,
Oua =0, Oy er=1
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4.0 RESULTS

4.1 STABILITY ANALYSIS

We adopted the fully implicit scheme in our work up to this point. It would be interesting to see how our

solution would look like if another time scheme is used. For this purpose, we seek a solution for the same energy
equation using an explicit scheme. The explicit scheme essentially assumes that the old value G)‘; prevails
throughout the entire time step except at time T + AT . Also, on the other hand, the fully implicit scheme assumes
that, at time T, © , suddenly drops from G)% to © , and then stays at © ; over the whole time step.

Integrating the energy equation (2.20) over the control volume and using the explicit scheme we have as

follows,
e -06° 2 2
P i R RSAZ +PeV (®°—® )u
AT 2 2
n-1 2
O —-0° ° y gy oV
SR, (A" g (e =95 LY PVARDY. "Br R, AR Vo Ve (Ve Y
R, AR | AR | AR
4.1)
Rearranging the equation in the form as:
a, ®,=a, Oy +ay 0@y +a; 03 +a, O) +d (4.2)
2
ay =(Pe V, Rs ) (4.3)
N —LAZ* (4.4)
" AR '

n
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al=—— 4.5

* AR, (49)

0 Rr?_Rs2 AZ* 0 0 0

ap:TE_aW —-a; —ag (4.6)
VARRVA R AVANRVAR

d=AZ"BrR, AR |--—= s (4.7)
| AR | | AR

a,=ay +ay +a5 +a, 4.8)

The equation for the wall boundary condition is integrated over the half control volume adjacent to the wall, which

leads to,
_[©r =05 :i* ©, -0, +Nu, (@% -0,) (4.9)
AR a AT

Rearranging the equation gives the following;

ag = 1
S AR (4.10)
ap = *1 b Nu, (4.11)
a AT  ARg
d=Nu,®, (4.12)
a, =ad +ag + Nu, (4.13)

For the explicit scheme, ®pis explicitly obtainable in terms of the known temperatures

Qy, ,0% ,03 ,®% Examining equations 4.6 and 4.11, we note that the coefficient of G)C,’J can become negative,

which violates the rule of positive coefficients. If this rule is violated, physically unrealistic results could emerge,

because the negative coefficient implies that a higher @‘; results in a lower ® » [28]. This condition is the stability

criterion for the explicit scheme. The time step AT would have to be small enough so that a,‘,’ is positive. With the

current input values, an unrealistic solution can be obtained for AT > 0.0018 as displayed in Figure 29. For this
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time step and larger, the coefficient of @‘; is negative. As we use a smaller time step, the result of the explicit

scheme shows in very good agreement with the fully implicit scheme as shown in Table 8. Since we are restricted to

use small time steps to avoid instability for the explicit scheme, it becomes very costly in terms of CPU time and
storage. On the other hand, the fully implicit scheme ensures that the coefficient of ®‘; iS never negative. It can be

used with a large time step and it satisfies the requirement of physically satisfactory behavior. For this reason, we

will continue to use the fully implicit scheme in this work.

0.8

L 00 -+ Explicit

0.4 DT=0.0018

0.2

0 \
-0.5 0 0.5

Dimensionless
Temperature

Figure 29 Explicit Scheme Solution with Nu, =23.76425, Br =279€-09, a” = 0.00378, Q = 0.05459, Pe =
14.01245, T, . =0.15, AT =0.0018, ®_ =-0.5,n=1, Z*=3.

final

51



0.9
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0.6

—&— Explicit DT=0.00015
—l— Fully-Implicit

X 05
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0.2
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0
-0.008 -0.007 -0.006 -0.005 -0.004 -0.003 -0.002 -0.001 0 0.001

Dimensionless Temperature

Figure 30 Comparison of Explicit and Fully-Implicit Scheme Solution with NU, =23.76425, Br =279E-09, a'=
0.00378,Q2 =0.05459, Pe =14.01245, T, =0.15, AT =0.00015, ® =-0.5, n=1, Z*=3.

final
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Dimensionless Temperature

0.002

—Explicit DT=0.0000375
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Figure 31 Comparison of Explicit and Fully-Implicit Scheme Solution with Nu, =23.76425, Br =279E-09, a’

0.00378,€2 =0.05459, Pe = 14.01245, T, ., =0.15, AT = 0.0000375, ®  =-0.5, n=1, Z*=3.

final
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Table 8 Comparison of Temperature with different time schemes with Nu, =23.76425, Br =279E-09, a’=
0.00378,€2 =0.05459, Pe = 14.01245, T ., =0.15, AT =0.0000375, ® = -0.5, n=1, Z*=3.

final

Explicit-Scheme

TEMPERATURE=  -0.00669 AT R= 1
TEMPERATURE=  -0.00557 ATR= 0.92593
TEMPERATURE=  -0.00459 ATR= 0.85185
TEMPERATURE=  -0.00374 ATR= 0.77778
TEMPERATURE=  -0.00299 AT R= 0.7037
TEMPERATURE=  -0.00232 AT R= 0.62963
TEMPERATURE=  -0.00174 ATR= 0.55556
TEMPERATURE=  -0.00122 AT R= 0.48148
TEMPERATURE=  -0.00077 AT R= 0.40741
TEMPERATURE=  -0.00039 ATR= 0.33333
TEMPERATURE=  -8.1E-05 AT R= 0.25926
TEMPERATURE= 0.000158 AT R= 0.18519
TEMPERATURE= 0.000321 ATR= 0.11111
TEMPERATURE= 0.000403 ATR= 0.03704

Fully-Implicit Scheme

TEMPERATURE=  -0.00669 ATR= 1
TEMPERATURE=  -0.00557 AT R= 0.92593
TEMPERATURE=  -0.00459 AT R= 0.85185
TEMPERATURE=  -0.00373 ATR= 0.77778
TEMPERATURE=  -0.00297 AT R= 0.7037
TEMPERATURE=  -0.00231 AT R= 0.62963
TEMPERATURE=  -0.00173 AT R= 0.55556
TEMPERATURE=  -0.00121 AT R= 0.48148
TEMPERATURE=  -0.00077 AT R= 0.40741
TEMPERATURE=  -0.00039 AT R= 0.33333
TEMPERATURE=  -7.8E-05 AT R=0.25926
TEMPERATURE= 0.000159 AT R= 0.18519
TEMPERATURE= 0.00032 ATR= 0.11111
TEMPERATURE= 0.000401 AT R= 0.03704
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4.2 GRID INDEPENDENT STUDY

In general, an accurate solution should be obtained when the grid is sufficiently fine. But there is no need to

employ a fine grid in regions where the dependent variable (in this case ®) changes rather slowly with the
independent variable. On the other hand, a fine grid is required where the dependent variable~independent variable
is steep [27]. The number of grid points needed for a given accuracy is a matter that depends on the nature of the
problem to be solved.

In order to find the pattern of the dependent variable~independent variable variation, the grid sizes were
varied. As seen from figure 32 and figure 35, the dependent variable ® changes slowly with Z*. That is the reason

we don’t see much change in ® with a different grid size in the Z* direction. On the other hand, the maximum

solution difference with various grid sizes in R and Z* directions is found to be 10 percent (Figure 34). It is found

*

that an appropriate grid size would be R, 4. *Z g = 90*30, since there is not significant change in the

nodes

*

solution. The independent variable became independent of grid size beyond R *Z >50*30 as it can

nodes nodes

be seen from Figure 34. Hence, with the given parameters and boundary conditions, it is concluded

thatR_ . *Z~

nodes nodes

>50*30 should be good enough to get a satisfactory solution for this problem. The

*Z o =50*30and R, .. *Z . =10*10is

maximum solution difference between grid sizes of R j.c * Z odes nodes L rodes
found to be 1.3 percent. Keep in mind that using a very small grid size requires more CPU time and storage.
But if parameters and boundary conditions are changed, the preliminary grid solutions can be used to

construct suitable grid. The grid spacing should be directly linked to the way the dependent variable changes in the

calculation domain.
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Grid Study in Z* direction

—&— Rnodes*Znodes*=50*3
—l— Rnodes*Znodes*=50*5
Rnodes*Znodes*=50*10
—>¢—Rnodes*Znodes*=50*20
—¥— Rnodes*Znodes*=50*30

-0.6 -0.4 -0.2 0
Dimensionless Temperature

Figure 32 Grid Study with different grid size in Z* direction with Nu, =23.76425, Br =279E-09, a'=
0.00378,Q2 =0.05459, Pe =14.01245, T, =115.13856, AT =3.59808, ®  =-0.5, n=1, Z*=3.

final
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Grid Study in R Direction

—&— Rnodes*Znodes*=3*30
—l— Rnodes*Znodes*=10*30
Rnodes*Znodes*=20*30
~—>¢—Rnodes*Znodes*=30*30
—X¥— Rnodes*Znodes*=50*30

-0.6 -0.4 -0.2 0

Dimensionless Temperature

Figure 33 Grid Study with different grid size in R direction NU_, =23.76425, Br =279E-09, a"=0.00378,Q) =
0.05459, Pe = 14.01245, T, =115.13856, AT = 3.59808, ®_=-05,n=1,Z*=3.

final
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Grid Study
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-0.6 -0.4 -0.2 0
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Figure 34 Grid Study with different grid size in R and Z* directions Nu, =23.76425, Br =279E-09,a" =
0.00378,Q2 =0.05459, Pe =14.01245, T, =115.13856, AT =3.59808, ®  =-0.5, n=1, Z*=3.

final
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Z*=0.01
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Temperature

—— ZNODE*=3
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Figure 35 Grid Study with different grid size in Z* direction NU, =23.76425, Br =279E-09, a"=0.00378,Q) =
0.05459, Pe = 14.01245, T, ., =115.13856, AT =3.59808, @ =-0.5, n=1, Z*=0.01, 50 nodes in R direction

final
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4.3 HEAT TRANSFER WITH VISCOUS DISSIPATION

Since it has been established that results of our work are in good agreement with a commercial package and
the benchmark solution, we would like to study the physical parameters. It will be interesting to see the effects of
non-dimensional parameters especially on wall and fluid temperatures. The next step will be investigating these
effects as a function of the parameters of the problem. In order to distinguish the effects of inlet temperature and

ambient temperature, we use only a quarter cycle of the inlet temperature profile, which assures a positive inlet
temperature (Figure 36), while using ®  =—0.5 as ambient dimensionless temperature. At this point, we would

like to introduce dimensionless bulk mean temperature, defined as

1
[V, ®RdR
e, =" (4.14)

jv; RdR
0

This is usually applied in the case of forced convection inside a closed duct and is the mean fluid temperature at a

cross section. Also, the local Nusselt number is given by,

00

R
NU,, ., =—2—FRL 4.15
(z*7) 6. -0, (4.15)
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Dimensionless Inlet Temperature

0 28.78464 57.56928 86.35392 115.13856

DImensionless Time

Figure 36 Dimensionless Inlet Temperature vs. Dimensionless Time € =0.05459, Ty, =115.13856, AT =

359808, 0, o1 = SINQT, 2*=0
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4.3.1 Non-Newtonian Fluid

Figure 37 displays the dimensionless wall temperature profiles of non-Newtonian flows. The curve labeled
as n=0.4 corresponds shear-thinning non-Newtonian flow, while the curve labeled n=1.8 represents shear-thickening
non-Newtonian flow. Note in Figure 37, the increase in the dimensionless wall temperature as the power-law index
decreases. Pseudo-plastic flows contribute to elevated viscous heating effects, thus forming higher temperatures near
the liquid-solid interface. Figure 38 shows the dimensionless temperature profile at Z*=0.2. Due to viscous heating,
the pseudo-plastic flow generates higher temperatures near the wall. As we move away from the wall, the effect of
dilatant flow becomes more dominant. The dimensionless temperature increases as we move towards the center of
the pipe for this kind of flow. The thermal wave of the inlet temperature has more penetration near the center than
the wall.

Figures 39 and 40 show the dimensionless bulk temperature profile at different dimensionless axial
distance. The bulk temperature profile flattens as distance from the inlet increases. The bulk temperature is higher
for shear thickening fluids, since it has more effect of the positive inlet temperature on the overall fluid temperature
than the shear thinning fluids.

Figure 41 shows the local Nusselt number for different power-law index. The steeper velocity gradient in
the wall region for lower power-law index causes enhancement of the local Nusselt number. At locations very far

from the inlet, local Nusselt number approaches to a certain value.
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——n=0.4
n=1.8

Dimensionless Wall Temperature

0.00 0.05 0.10 0.15 0.20

Z*

Figure 37 Comparison of Dimensionless Wall Temperature Profiles at different power-law index Nu, =1.0,

Br=0.1, a =0.1,Q =0.05459, Pe=05,T,  =28.78464, AT = 3.59808, ®_=-05,7*=0.2

final
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—n=0.4
—n=1.8

0 0.1 0.2 0.3 0.4 0.5

Dimensionless Temperature

Figure 38 Comparison of Dimensionless Temperature Profiles at different power-law index, Nu, =1.0, Br =0.1,
a"=0.1,Q =0.05459, Pe =05, T, ., =28.78464, AT = 3.59808, ®_=-05,7*=0.2

final
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——n=0.4
—n=1.8

Dimensionless Bulk
Temperature

Figure 39 Comparison of Dimensionless Bulk Temperature Profiles at different Power-law index, Nu, =1.0,

Br=0.1, a =0.1, Q =0.05459, Pe=05,T,  =28.78464, AT = 359808, ®_=-05,7*=3

final

Dimensionless Bulk Temperature

0.00 0.05 0.10 0.15 0.20
Z*

Figure 40 Comparison of Dimensionless Bulk Temperature Profiles at different Power-law index, NU, =1.0,
Br=0.1, a"=0.1, Q =0.05459, Pe=05,T, ., =28.78464, AT = 3.59808, ®_=-05,7*=0.2

final
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Figure 41 Comparison of Nusselt number at different Power-law index, Nu, =1.0, Br =0.1, a’=01 Q =
0.05459, Pe =0.5, T,  =28.78464, AT =3.59808, ®  =-0.5,Z*=0.2

final
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4.3.2 Brinkman Number

In this section, heat generation from viscous dissipation is taken into account, which is represented by the
Brinkman number. Figure 42 and Figure 43 show the dimensionless wall temperature for different Brinkman
numbers at different dimensionless axial distances. It is noticeable that dimensionless wall temperature increases as
the Brinkman number increases. From the figure, this effect seems insignificant at the first glance. But Table 9

exhibits the effect of Brinkman number more clearly.
Table 9 Dimensionless Wall Temperature with different Brinkman numbers at various locations, Nu, =1.0, n=1.8,

a"=0.1, Q =0.05459, Pe=05,T,,  =28.78464, AT = 3.59808, ®, =-05.

final

Dimensionless Brinkman=3 Brinkman=0.1 Difference
Wall Temperature at

Z*=0.10 0.21850 0.21434 1.9%
Z*=0.15 0.11415 0.10908 4.4 %
Z*=0.18 0.06340 0.05788 8.7 %
Z*=0.20 0.03171 0.02590 18.3%

Table 9 shows the dimensionless wall temperature at selected nodes for different Brinkman number. The
effect from viscous dissipation is more noticeable downstream, where the inlet temperature has less effect on those
regions.

The local Nusselt number also increases with increasing Brinkman number due to viscous heating. The

variation of local Nusselt number with axial dimensionless distance is shown in Table 10.
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Table 10 Local Nusselt number at different Brinkman numbers, Nu, =1.0, n=1.8, a = 0.1, Q =0.05459, Pe =

0.5, Ty, =28.78464, AT =3.59808, ®,_=-05

Local Nusselt Number at Br=0.1 Br=3
Z*=0.00267 11.59833 11.62345
Z*=0.04933 4.59676 4.62307
Z*=0.18 3.96616 4.00349
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Figure 42 Comparison of Dimensionless Wall Temperature Profiles at different Brinkman numbers, NU, =1.0,
n=1.8, a =0.1, Q =0.05459, Pe =05, T, , =28.78464, AT = 3.59808, ®_=-05,7*=0.2

final
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Figure 43 Comparison of Dimensionless Wall Temperature Profiles at different Brinkman numbers, Nu, =1.0,

n=18, a =0.1, Q =0.05459, Pe=05,T,  =28.78464, AT = 359808, 0, =-05,27*=3.

final
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—— Br=3

0 0.2 0.4

Dimensionless Temperature

Figure 44 Dimensionless Temperature Profiles at different Brinkman numbers, Nu, =1.0, n=1.8, a’=01, Q =
0.05459, Pe =05, T, =28.78464, AT =3.59808, ®_ =-0.5, Z*=0.2
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0 0.05 0.1 0.15 0.2
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Figure 45 Nusselt number at different Brinkman numbers, NU, =1.0, n=1.8, a’=01, Q =005459, Pe=
0.5, T}, =28.78464, AT =3.59808, ©  =-0.5, Z*=0.2

final
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4.3.3 Nusselt Number

The outside Nusselt number is one of the major parameters containing information on the wall heat flux. It
represents the external thermal resistance. When the NU,, is small, when the thermal resistance is large, the thermal

wave from the inlet has more penetration along the pipe as in Figures 46 and 47. Note that the dimensionless inlet

temperature takes the value of one in this case.

For higher values of Nu,, the influence of the ambient temperature on the wall temperature is very

significant. When the external resistance is very small, with a high Nu, number, the dimensionless wall

temperature approaches the dimensionless ambient temperature, as displayed in Figure 49 and Figure 50.
The local Nusselt number increases with the increase in external resistance as displayed in Figure 51. At

locations very far from the inlet, the local Nusselt number approaches a certain value.
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—— Nuo=0.1
—— Nuo=1
Nuo=5

0.3 L
0.1

-0.1
-0.3

Dimensionless Bulk Temperature

Z*

Figure 46 Dimensionless Bulk Temperature Profile at different Outside Nusselt numbers with n=1, a’=10 Q =
0.05459, Pe=1.0, Br =0.1, T, ., =28.78464, AT =3.59808, ®_=-0.5, Z*=3.

final
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Figure 47 Dimensionless Bulk Temperature Profile at different Outside Nusselt numbers with n=1, a’=10 Q =
0.05459, Pe=1.0, Br =0.1, T, , =28.78464, AT =3.59808, ®_ =-0.5, Z*=0.2

final
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Figure 48 Dimensionless Temperature Profile at different Outside Nusselt numbers with n=1, a’=10 Q =
0.05459, Pe=1.0, Br =0.1, T, , =28.78464, AT =3.59808, ®_ =-0.5, Z*=0.2

final
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Figure 49 Dimensionless Wall Temperature Profile at different Outside Nusselt numbers with n=1, a’=10,Q =
0.05459, Pe=1.0, Br =0.1, T, =28.78464, AT =3.59808, ®  =-0.5, Z*=3.
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0 0.05 0.1 0.15 0.2
Z*

Figure 50 Dimensionless Wall Temperature Profile at different Outside Nusselt numbers with n=1, a’=10,Q =
0.05459, Pe=1.0, Br =0.1, T, =28.78464, AT =3.59808, ®  =-0.5,Z*=0.2
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Figure 51 Local Nusselt number at different Outside Nusselt numbers with n=1, 8" = 1.0, Q =0.05459, Pe = 1.0,
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4.4 CONCLUSIONS AND FUTURE WORK

Transient forced convection heat transfer in ducts is of great importance to the design of heat exchanger
systems. The variety of applications ranges from compact heat exchangers to cooling devices in electronics and
aerospace, involving Newtonian as well as non-Newtonian fluids. Especially regenerative type heat exchangers,
through which hot and cold fluids pass in succession, motivated the study of thermal response of duct flows to
imposed cyclic variation in boundary conditions. The processes such as start-up, shut-down, power-surge, pump
failure have also stimulated investigations to determine the transient thermal response of duct flows.

There are a large number of heat exchangers designed and manufactured for the food and chemical process
industries to heat and cool non-Newtonian fluids. In the design of the control systems of heat transfer devices in
organic-cooled nuclear reactors, it is important to have a detailed knowledge of the non-Newtonian fluid flow and
heat transfer for circular ducts. The fluids, such as polymer solutions or melts, greases, starch suspensions,
mayonnaise, paper pulp, soap and detergent slurries, are non-Newtonian.

In most polymer processing applications and in lubrication systems the changes of temperature with
position and time are significant. In the manufacture of plastic objects, it starts by melting plastic pellets and then
performing a sequence of processing operations on the molten material. The heat transfer plays significant role in
the cooling process to obtain the finished product. In high speed processing operations, such as extrusion, and in
lubrication problems, the temperature rise by viscous dissipation is considerable. The estimation of viscous heating
effects and local temperatures is of particular interest in polymer flow problems because of the thermal instability of
polymeric liquids; chemical degradation can occur if hot spots develop in the processing line.

In this dissertation, the transient conjugate heat transfer problem for fully-developed laminar flow of non-
Newtonian fluids in a circular duct is studied by numerical analysis. A control volume based finite difference
method is adopted in the numerical procedure for the integration of the governing equations. For the non-Newtonian
fluid part, the power-law model is used. Heat generation from viscous dissipation is also taken into account and is
represented by the Brinkman number. The steady-state results agree with the Graetz solution very well, and the

transient solution is in good agreement with the results obtained from commercial engineering software as well. We
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also investigated the effects of non-dimensional parameters especially on wall, fluid and bulk temperatures. In this
study, a special focus is placed on the effects of the flow index, Brinkman and, Nusselt numbers. The increment of
flow index leads to the increase of wall temperature. The steeper velocity gradient in the wall region for lower
power-law index causes enhancement of the local Nusselt number. At locations very far from the inlet, local Nusselt
number approaches to a certain value. The Brinkman number has the same effect on the wall temperature as well.
The dimensionless wall temperature increases as the Brinkman number increases. The local Nusselt number also
increases with increasing Brinkman number due to viscous heating. Another parameter, outside Nusselt number,
represents the external resistance. Higher outside Nusselt numbers cause the wall temperature to approach to the
ambient temperature. The local Nusselt number also increases with the increase in external resistance.

The viscosity of non-Newtonian fluids varies with both shear rate and temperature. Consequently, the heat
transfer differs from those obtained with a constant property fluid. As part of the future work, temperature dependent
model can be used to consider the temperature-dependent viscosity of a non-Newtonian fluid.

Relative to the complex geometries often found in industry. Therefore, different geometries should also be
studied in the future. As an example, the physical mechanism of the heat transfer enhancement for the non-
Newtonian fluids in the rectangular ducts has not been clearly understood, an interesting phenomenon that has never
been observed in a circular pipe flow.

Even today, there is a lack of experimental data for heat transfer coefficients which are required for the
design of heat exchangers. An experimental study is required to fully verify the correlation of the numerical
investigation. The current study will help to set up such an experimental research, especially for rig design and

planning.
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APPENDIX A

ANSYS INPUT FILE

TANSYS INPUT FILE by Alan L.Briggs
IThis program calculates the velocity and the temperature distributions !for conjugate heat transfer problem.
/batch

/TITLE,CONJUGATE HEAT TRANSFER

/config,nproc,4 1 4 processors to be used

/PREP7

{unit,si

SMRT,OFF

ET,1,FLUID141,,,2 12D AXISYMMETRIC XR SYSTEM
MSHK,1 I MAPPED AREA MESH

MSHA,0,2D I QUAD ELEMENTS

IDIMENSIONS AND PROPERTIES

PI = ACOS(-1)

L =0.0125 | PIPE LENGTH (M)

R =0.0025 | PIPE RADIUS (M)

RF =0.0000926 I NEAR CENTER LOCATION (M)
PIN =0.0375 I INLET PRESSURE (PA)

TIN =300.0 I INLET TEMPERATURE (K)

TAMB = 300.0 I AMBIENT TEMPERATURE (K)
RHO =1.1614 | FLUID DENSITY (KG/M**3)

MU = 184.6E-07 I FLUID VISCOSITY (KG/(M*SEC))
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K =0.0263 I FLUID THERMAL CONDUCTIVITY (W/(M*K))

CP =1007 I FLUID SPECIFIC HEAT (J/(KG*K))

RSO =0.0002 1 SOLID WIDTH

H =250 I HEAT TRANSFER COFFICIENT (W/M**2*K)
RECTNG, L, RF

RECTNG,,L,RF,R

RECT,,L,R,R+RSO

nummrg,all,0.0000001 IINCREASE RANGE OF TOLERANCE
numcmp,all

LSEL,S,,.2,4,2

ILESIZE,ALL,,,12,-2 ! GRADED RADIAL LINE DIVISIONS
LESIZE,ALL,,1

LSEL,S,,,5,7,2

LESIZE,ALL,,,13

LSEL,S,,,1,3,2

LSEL,A,,,6

ILESIZE,ALL,,,50,1 I GRADED AXIAL LINE DIVISIONS
LESIZE,ALL,,50

ASEL,S,,,1

ASELA,, 2

ALLSEL,BELOW,AREA

MAT,1 I FLUID

AMESH,ALL

/PNUM,MAT,1

ALLSEL,ALL

ASEL,S,,,3

ALLSEL,BELOW,AREA

LSEL,S,,,8,10,2



LESIZE,ALL,,5
LSEL,S,,,9
LESIZE,ALL,,,50
MAT,2
AMESH,3
ALLSEL,ALL
ILSEL,S,,,3
INSLL,S,1
ID,ALL,VX
ID,ALL,VY
allsel,all
LSEL,S,,1
NSLL,S,1

D,ALL VY
LSEL,S,, 4
LSEL,A,, 7
NSLL,S,1
D,ALLVY
D,ALL,PRES,PIN
LSEL,S,,,2
LSEL,A,,,5
NSLL,S,1
D,ALLVY
D,ALL,PRES
ALLSEL
MP,DENS,2,8055
mp,kxx,2,15

MP,C,2,480

ISOLID REGION

I NO-SLIP WALL BOUNDARY

I SYMMETRY BOUNDARY

I'INLET BOUNDARY

I OUTLET BOUNDARY

1 SOLID PROPERTIES (AISI 302)
1 SOLID THERMAL CONDUCTIVITY

1 SOLID SPECIFIC HEAT
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MP,DENS,1,RHO ! FLUID DENSITY

MP,VISC,1,MU I FLUID VISCOSITY

MP,C,1,CP ! FLUID SPECIFIC HEAT

mp,kxx,1,K ! FLUID THERMAL CONDUCTIVITY
allsel,all

d,all,temp,320 F'INITIAL TEMPERATURE

/SOLU

FLDATA,SOLU,FLOW,1 I STEADY-STATE SOLUTION

FLDATA,SOLU,TEMP,1

FLDATA,ITER,EXEC,350 1 # OF GLOBAL ITERATIONS
FLDATA,ITER,CHEC,100 ! CHECKPOINT FREQUENCY
FLDATA,TEMP,NOMI,TIN I NOMINAL TEMPERATURE
FLDATA,OUTP, TAUW,T I OUTPUT WALL SHEAR STRESS
FLDA,NOMI,DENS,RHO Iinitial density for all fluid regions
FLDA,NOMI,VISC,MU Vinitial viscosity for all fluid regions
FLDA,NOMI,COND,K I initial conductivity for all fluid regions
FLDA,NOMI,SPHT,CP Vinitial specific heat for all fluid regions

FLDA,TERM,PRES,1.E-09 ! convergence criterion
solve

Iprep7

ddele,all,temp

*DEL,_FNCNAME

*DEL,_FNCMTID

*SET,_FNCNAME,'time'

I /INPUT time.func

*DIM,%_FNCNAME%, TABLE,6,12,1

|

1 Begin of equation: 320+(40*sin((2*{P1}/32)*{TIME}))
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%_FNCNAME%(0,0,1)= 0.0, -999

%_FNCNAME%(2,0,1)= 0.0

%_FNCNAME%(3,0,1)=0.0

%_FNCNAME%(4,0,1)= 0.0

%_FNCNAME%(5,0,1)= 0.0

%_FNCNAME%(6,0,1)=0.0

%_FNCNAME%(0,1,1)= 1.0, -1, 0, 2,0, 0, 0
%_FNCNAME%(0,2,1)=0.0, -2, 0, 3.14159265358979312, 0, 0, -1
%_FNCNAME%(0,3,1)= 0,-3,0,1,-1,3,-2
%_FNCNAME%(0,4,1)=0.0,-1,0, 32,0, 0, -3
%_FNCNAME%(0,5,1)= 0.0, -2, 0, 1, -3, 4, -1
%_FNCNAME%(0,6,1)=0.0,-1,0,1,-2,3,1
%_FNCNAME%(0,7,1)=0.0, -1, 9, 1, -1, 0, 0
%_FNCNAME%(0,8,1)=0.0, -2, 0, 40, 0, 0, -1
%_FNCNAME%(0,9,1)=0.0,-3,0,1,-2,3,-1
%_FNCNAME%(0,10,1)=0.0, -1, 0, 320, 0, 0, -3
%_FNCNAME%(0,11,1)= 0.0, -2, 0, 1, -1, 1, -3
%_FNCNAME%(0,12,1)= 0.0, 99, 0, 1, -2, 0, 0

I End of equation: 320+(40*sin((2*{P1}/32)*{TIME}))

1>

LSEL,S,,.4,7,3 ' INLET TEMPERATURE VARIATIONS
NSLL,S,1

D,ALL, TEMP,%time%

allsel,all

LSEL,S,,,9

NSLL,S,1

SF,ALL,CONV,H,TAMB I APPLY CONVECTION H,TAMB

ALLSEL,all
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/solu

FLDATA,SOLU,TRANS,1 I TRANSIENT SOLUTION
FLDATA,TIME,GLOB,350 I # OF GLOBAL ITERATIONS
FLDATA,SOLU,TEMP,T I ACTIVATE ENERGY EQUATION
FLDATA,SOLU,FLOW,F I DEACTIVATE FLOW EQUATIONS

Ifldata,meth,enrg,3

FLDATA,RELX, TEMP,1.0 I NO RELAXATION FOR TEMP
FLDATA,TIME, TEMP,1e-17,

FLDATA,TIME,STEP,1 I TIME STEP

FLDATA,TIME, TEND,32 I FINAL TIME
FLDATA,TIME,NUMB,32

FLDATA,STEP,APPE,1

FLDATA,OUTP,HFLU,T I OUTPUT HEAT FLUX
FLDATA,OUTP,HFLM, T

save

solve Isolve for temperature only
FINISH

/postl I POSTPROCESSING
SET,LAST

EPLOT

JCONTOUR, 1,50

ITITLE,CONTOURS OF AXIAL VELOCITY
PLNSOL,VX

VXC=VX(2)

PATH,PIPE,2,,50

PPATH,1,,L,0,0

PPATH,2,L,R,0

PDEF,VX,VX
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PDEF, TEMP, TEMP

PCALC,MULT,PROD1,VX,S

PCALC,INTG,VXM,PROD1,S,2/R**2

*GET,VXM,PATH, LAST VXM I MEAN AXIAL VELOCITY
MDOT= RHO*VXM*PI*R**2 I MASS FLOW RATE

/TITLE,CONTOURS OF WALL SHEAR STRESS

pInsol tauw

*GET, TAU,PLNSOL,,MAX I WALL SHEAR STRESS

PCALC,MULT,PROD2,VX, TEMP I MULTIPLY VX TIMES TEMP
PCALC,MULT,PROD3,PROD2,S I MULTIPLY ABOVE TIMES R COORDINATE
PCALC,INTG,TM,PROD3,S,2/VXM/R**2 I INTEGRATE TEMPERATURE ALONG PATH
*GET,TM_O,PATH,,LAST,TM I GET OUTLET MEAN TEMPERATURE

/TITLE,CONTORS OF TEMPERATURE

PLNSOL, TEMP

*GET,TW_O,PLNSOL, MAX ! GET OUTLET WALL TEMPERATURE
TC_O =TEMP(2) I GET OUTLET CENTERLINE TEMPERATURE
*STATUS I'LIST CURRENT PARAMETER VALUES

/TITLE,AXIAL VELOCITY PROFILE, VX(R)
/AXLAB,X,RADIAL COORDINATE, (M)

/AXLAB,Y ,VELOCITY, (M/SEC)

PLPATH,VX

/TITLE,OUTLET TEMPERATURE PROFILE, T(R)
/IAXLAB,Y, TEMPERATURE, (K)

PLPATH,TEMP I PLOT TEMP ALONG PATH
/TITLE,WALL TEMPERATURE PROFILE

/AXLAB,Y, TEMPERATURE, (K)

IAXLAB,X,AXIAL COORDINATE, (M)

PATH,AXIAL,2,,50
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PPATH,1,0,R,0
PPATH,2,L,R,0
PDEF,VX1,VX
PDEF,WALL TEMP,TEMP
plpath, WALL TEMP
NSEL,S,LOC,X,0.0075
PRNSOL, TEMP

FINISH

IRESULTS ALONG PIPE-3L/5
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APPENDIX B

UNSTEADY CONJUGATE HEAT TRANSFER IN A CIRCULAR DUCT (FULLY-IMPLICIT)

R L o o S o 2 2 2 S S S e o o o

* UNSTEADY CONJUGATE HEAT TRANSFER *
* IN A CIRCULAR DUCT (Fully-Implicit) *
* by Alan L. Briggs *

C THE FOLLOWING ASSIGNS VARIABLES AS REAL OR INTEGER

PARAMETER(NDIM=50,NDIMR=50,NDIMZ=1,ZNODES=30)

REAL*8 A(NDIM,NDIM),B(NDIM), TEMP(NDIMR)

. OLDTEMP(NDIMR,ZNODES),INTEMP(NDIMR), FLUX(ZNODES),

. OLDTIME,NEWTEMP(NDIMR,ZNODES),BULK(ZNODES)

. FTIME,DTIME,VEL, THETAINF,RN,RS,ROD,ROU,LOCR,DELRS,
.DELRN,AW,AS,AN,DELZ,POWER,NUSSELT,ASTAR,OMEGA PECKLET
. BRINKMAN,VISD,VELN,VELS,SOMET,CRN,CRS,NODECOUNT

., UPBULK,DOWNBULK,DIMNUSS(ZNODES)

INTEGER IPVT(NDIM),N,1,J,J0UT,IFLAG, IIN,L

N = NDIMR*NDIMZ

* %%k * %%k * %%k * %% * %%k * %%k * %%k * %% * %%k * %%k * %%k * %%k

C INPUT VALUES

B s L b S S e o 2 2 S S S o o o o o

*  OPEN(6,FILE="'WALL.OUT',STATUS='NEW")

NODECOUNT=NDIMR*ZNODES
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POWER=L1.
NUSSELT=23.764
BRINKMAN=0.000000279
ASTAR=0.00378
OMEGA=0.0546
PECKLET=14.01245
1IN=5
I0UT=6
ROD=0
ROU=1
ZIN=0
ZOUT=3
OLDTIME=0
DTIME=0.00015
FTIME=DTIME*1000
TOL=0.00000001
THETAINF=-0.5
GAPR=ROU-ROD
GAPZ=ZOUT-ZIN
DISR=GAPR/(NDIMR-0.5)
write(6,*)'DISR="DISR," ', 'NODECOUNT', NODECOUNT
DISZ=GAPZ/(ZNODES)

*  OPEN(IOUT,FILE='INPUT3.DAT',STATUS='NEW")
WRITE(IOUT,100)

100 FORMAT(/," Program to solve unsteady conjugate heat transfer
. problem’)

C DISTANCES FROM POINT P TO N,S,E,W, RESPECTIVELY

DELRN=DISR
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C

DELRS=DISR
DELZ=DISZ

DO I1=1,NDIMR,1
DO L=1,ZNODES, 1
OLDTEMP(I,L)=0
ENDDO

ENDDO

INLET TEMP DISTRIBUTION

777 OLDTIME=OLDTIME+DTIME

DO I=1,NDIMR,1
INTEMP()=SIN(OMEGA*OLDTIME)
SOMET=INTEMP(l)
ENDDO
write(IOUT,*) somet,'Inlet temp'
ZL.OC=0
DO L=1,ZNODES,1
ZLOC=ZLOC+DISZ
LOCR=1.0
WALL CONDITION
AS=1/DELRS
AO=1/(ASTAR*DTIME)
A(1,1)=AS+AO+NUSSELT
A(1,2)=-AS
B(1)=NUSSELT*THETAINF+OLDTEMP(1,L)*AO
DO J=2,NDIMR-1
LOCR=LOCR-DISR
CRN=LOCR+DISR

CRS=LOCR-DISR
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RN=LOCR+DISR/2
RS=LOCR-DISR/2
VELN=((3*POWER+1)/(POWER+1))*(1-RN**((POWER+1)/POWER))
VEL=((3*POWER+1)/(POWER+1))*(1-LOCR**((POWER+1)/POWER))
VELS=((3*POWER+1)/(POWER+1))*(1-RS**((POWER+1)/POWER))
AW=PECKLET*VEL*((RN**2)-(RS**2))/(2.*DELZ)
AN=(RN)/(DELRN)
AS=(RS)/(DELRS)
AO=(((RN**2)-(RS**2))/2.)*(1./DTIME)
A(J,J)=AW+AN+AS+AO
A(J,J+1)=-AS
A(JJ-1)=-AN
VISD=BRINKMAN*LOCR*DISR*((ABS((VELN-VELS)/DISR))**(POWER-1))
c*((VELN-VELS)**2)
B(J)=AW*INTEMP(J)+OLDTEMP(J,L)*AO+VISD
ENDDO
Next to Center
LOCR=LOCR-DISR
RN=LOCR+DISR/2
RS=0
VEL=((3*POWER+1)/(POWER+1))*(1-LOCR**((POWER+1)/POWER))
VELN=((3*POWER+1)/(POWER+1))*(1-RN**((POWER+1)/POWER))
VELS=((3*POWER+1)/(POWER+1))*(1-RS**((POWER+1)/POWER))
WRITE(6,*) 'CENTER VEL',VELS
AW=PECKLET*VEL*((RN**2))/(2.*DISZ)
AN=(RN)/(DELRN)
AS=0

AO=(((RN**2))/2)*(1.0/DTIME)
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VISD=BRINKMAN*LOCR*DISR*((ABS((VELN-VELS)/DISR))**(POWER-1))
c*((VELN-VELS)**2)
A(NDIMR,NDIMR)=AW+AN+AO
A(NDIMR,NDIMR-1)=-AN
B(NDIMR)=AW*INTEMP(NDIMR)+OLDTEMP(NDIMR,L)*AO+VISD

*  WRITE(IOUT,150)

*150 FORMAT(" The original A matrix is:")

* DOI=1N

* WRITE(IOUT,200) (A(1,J),J=1,N)

*200 FORMAT(400F8.4)

* ENDDO

* WRITE(IOUT,155)

*155 FORMAT(" The original B matrix is:")

* DOI=1N

* WRITE(IOUT,222) B(l)

*222 FORMAT(20F8.4)

* ENDDO

C DO THE LU DECOMPOSTION
CALL LUD(AN,IPVT,NDIM,IOUT,IFLAG)
IF (IFLAG .LT. Q) STOP

*  WRITE(IOUT,300)

*300 FORMAT(/,' The compact LU matrix is:")

* DOI=1N

* WRITE(IOUT,350) (A(1,J),J=1,N)

*350 FORMAT(20F8.4)

* ENDDO

*  WRITE(IOUT,400)

*400 FORMAT(/,' The pivoting order is:")
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*  WRITE(IOUT,450) (IPVT(l), 1=1,N)
*450 FORMAT(516)
CALL SOLVE(A,N,IPVT,B,NDIM)
*  WRITE(IOUT,500)
*500 FORMAT(/," The solution to the set of equations is:")
* DOI=1N
* WRITE(IOUT,550) 1,B(1)
*550 FORMAT(' I =13, X(I) = ',E12.5)
* ENDDO
DO I=1,NDIMR,1
TEMP(1)=B(l)
C WRITE(6,*) TEMPERATURE=",I, TEMP(I)
ENDDO
LOCR=1.0
BULK(L)=0
DIMNUSS(L)=0
UPBULK=0
DOWNBULK=0
DO I=2,NDIMR,1
LOCR=LOCR-DISR
VEL=((3*POWER+1)/(POWER+1))*(1-LOCR**((POWER+1)/POWER))
UPBULK=(VEL*TEMP(I)*LOCR*DISR)+UPBULK
DOWNBULK=(VEL*LOCR*DISR)+DOWNBULK
ENDDO
C BULKTEMPERATURE
BULK(L)=UPBULK/DOWNBULK
C LOCAL NUSSELT NUMBER

DIMNUSS(L)=-2*(TEMP(1)-TEMP(2))/DISR/(BULK(L)-TEMP(1))
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IF((ABS(OLDTIME-FTIME)).LT.TOL) THEN

WRITE(6,*) ' BULKTEMPERATURE AT Z='ZLOC,' ',BULK(L)

ENDIF

DO I1=1,NDIMR,1

NEWTEMP(I,L)=TEMP(I)

INTEMP(1)=TEMP(l)

ENDDO

ENDDO

IF((ABS(OLDTIME-FTIME)).LT.TOL) THEN

WRITE(6,*) ' SOLUTION at=}  ''T=\FTIME, ''Z='ZLOC

WIte(B, %) Hkkssssssk REG LT Sk

WRITE(IOUT,*) 'WALL TEMP="TEMP(1), AT TIME='OLDTIME
*  WRITE(IOUT,*) 'NEAR-CENTER TEMP=', TEMP(NDIMR)

GO TO 333

ELSE

DO I=1,NDIMR,1

DO L=1,ZNODES, 1

OLDTEMP(I,L)=NEWTEMP(I,L)

ENDDO

ENDDO
*  WRITE(IOUT,*) WALL TEMP="TEMP(1), AT TIME='OLDTIME
*  WRITE(IOUT,*) 'NEAR-CENTER TEMP=", TEMP(NDIMR)
* ' AT TIME='OLDTIME

GO TO 777

ENDIF
e e e e e e e e e e e e e e e
C THE END OF PROGRAM

333 LOCR=1
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DO I1=1,NDIMR,1
WRITE(6,999)1, TEMP(1),LOCR
999 FORMAT(NODE='13; ', TEMPERATURE='F20.15;
/AT R='F8.5)
LOCR=LOCR-DISR
ENDDO
WHERE=0
DO L=1,ZNODES,1
WHERE=WHERE+DISZ
C LOCAL NUSSELT NUMBER
WRITE(6,998) DIMNUSS(L), WHERE
998 FORMAT(NUSSELT='F20.15, ''AT Z='F8.5)
ENDDO
WHERE=0
DO L=1,ZNODES, 1
WHERE=WHERE+DISZ
C WALL TEMPERATURE
WRITE(6,967)NEWTEMP(L,L), WHERE
967 FORMAT(WALL TEMP='F20.15, ''AT Z='F8.5)
ENDDO
STOP
END

SUBROUTINE LUD(AN,IPVT,NDIM,IOUT,IFLAG)

C THIS SUBROUTINE PRODUCES THE LU DECOMPOSITION OF A MATRIX A[l,J].
C THE A-MATRIX IS DESTROYED DURING EXECUTION OF THIS PROCEDURE.
C INPUT: A - ASQUARE MATRIX OF SIZE NDIM BY NDIM

C NDIM - THE MAXIMUM ROW DIMENSION OF A
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C IOUT - LOGICAL DEVICE NUMBER FOR OUTPUT
c N - THE SIZE OF THE MATRIX A[l,J] BEING PROCESSED.

C OUTPUT: A - THE LU DECOMPOSITION OF THE MATRIX A[l,J]

C IPVT - AN ARRAY CONTAINING THE ORDER OF THE ROWS OF THE
C REARRANGED MATRIX DUE TO PIVOTING

C IFLAG - SIGNAL OF STATUS ON RETURN

C IFLAG =1, NORMAL RETURN

Cc IFLAG = -1, INDICATION OF SMALL PIVOT ELEMENT

C

REAL*8 A(NDIM,N), SUM
INTEGER IPVT(N),1,J,JM1,JP1,K,NM1,10UT IFLAG
DO1=1N
IPVT(l) = |
ENDDO
CALL PIVOT_A(A IPVT,N,1,NDIM)
IF (ABS(A(L,1)). LT. 1.0E-09) THEN
WRITE(IOUT,10)
10  FORMAT(/, MATRIX IS SINGULAR OR NEAR SINGULAR '//)
IFLAG = -1
RETURN
ENDIF
C MODIFY THE REST OF THE FIRST ROW
DO 1=2N
A(LI) = A(L,1)/A(L,1)
ENDDO
NM1=N-1
C LOOP THROUGH REST OF ROWS EXCEPT THE LAST

DO J=2NM1
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M1=J-1
C FIND THE VALUES FOR THE L-MATRIX COLUMN
DO1=JN
SUM = 0.0
DOK =1,JM1
SUM = SUM + A(I,K)*A(K,J)
ENDDO
A(1,J) = A(1,J) - SUM
ENDDO
CALL PIVOT_A(A,IPVT,N,J,NDIM)
IF (ABS(A(J,J)). LT. 1.0E-05) THEN
WRITE(IOUT,10)
IFLAG = -1
RETURN
ENDIF
C FIND THE VALUES FOR THE U-MATRIX ROW
PL=J+1
DO K = JPLN
SUM = 0.0
DO I =1,JM1
SUM = SUM + A(J,1)*A(I,K)
ENDDO
A(K) = (AJ,K) - SUM)/AQJ)
ENDDO
ENDDO
C FIND THE LAST DIAGONAL ELEMENT OF THE LU MATRIX
SUM =0.0

DO K=1,NM1
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SUM = SUM + A(N,K)*A(K,N)
ENDDO
A(N,N) = A(N,N) - SUM
IF (ABS(A(N,N)). LT. 1.0E-05) THEN
WRITE(IOUT,10)
IFLAG = -1
RETURN
ENDIF
C NORMAL RETURN WITH GOOD LU MATRIX
IFLAG =1
RETURN
END

SUBROUTINE PIVOT_A(A,IPVT,N,JCOL,NDIM)

C THIS SUBROUTINE SEARCHES THE jTH COLUMN OF THE A[l,J] MATRIX FOR THE
C LARGEST ELEMENT BELOW THE DIAGONAL. IT THEN INTERHANGES ROWS TO

PLACE THIS ELEMENT ON THE DIAGONAL. IT RECORDS THE CHAGES IN

O o

THE ARRAY IPVT(l).

REAL*8 A(NDIM,N),BIG, TEMP

INTEGER IPVT(N),JCOL,I,INDEX,ITEMP,JCOL_P1

O

FIND IF ANY ELEMENTS IN THE COLUMN ARE BIGGER THAN DIAGONAL ELEMENT
INDEX = JCOL
BIG = ABS(A(JCOL,JCOL))
JCOL_P1=JCOL +1
DO | =JCOL_P1,N
TEMP = ABS(A(1,JCOL))

IF (TEMP .GT. BIG) THEN
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INDEX =1

BIG = TEMP

ENDIF

ENDDO

C INTERCHANGE ROWS IF NECESSARY

IF (INDEX .NE. JCOL) THEN
DOI=1N
TEMP = A(JCOL,I)
A(JCOL,I) = A(INDEX, )
A(INDEX,1) = TEMP
ENDDO
ITEMP = IPVT(JCOL)
IPVT(JCOL) = IPVT(INDEX)
IPVT(INDEX) = ITEMP
ENDIF
RETURN
END

SUBROUTINE SOLVE(AN,IPVT,B,NDIM)

THIS SUBROUTINE USES THE COMBINED LU MATRIX "A" TO SOLVE
A SYSTEM OF LINEAR EQUATIONS
INPUT: A -LU MATRIX
N - NUMBER OF EQUATIONS TO BE SOLVED
IPVT - ARECORD OF THE REARRANGEMENT OF THE ROWS
OF A[l,J] FROM THE LU DECOMPOSTION
B - RIGHT HAND SIDE OF THE SET OF EQUATIONS

OUTPUT: B - THE SOLUTION VECTOR
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REAL*8 A(NDIM,N), B(N), B_PRIM(80), SUM
INTEGER IPVT(N),1,J,IM1
C REARRANGE THE ELEMENTS OF THE B VECTOR & STORE THEM IN THE B_PRIM ARRAY.
DOI=1N
B_PRIM(I) = B(IPVT(l))
ENDDO
C OBTAIN B' BY DOING FORWARD SUBSTITUTION--LB' = B
B_PRIM(1) = B_PRIM(1)/A(L,1)
DO 1=2N
IML=1-1
SUM = 0.0
DOJ=1,IM1
SUM = SUM + A(1,3)*B_PRIM(J)
ENDDO
B_PRIM(I) = (B_PRIM(I) - SUMY/A(1,I)
ENDDO
C SOLVE FOR X BY BACK SUBSTITUTION--UX = B'
C RESULTS STORED IN B ARRAY
B(N) = B_PRIM(N)
DO I = (N-1),1,-1
B(I) = B_PRIM(I)
DO J = (I+1),N
B(I) = B(I) - A(1,)*B(J)
ENDDO
ENDDO
RETURN

END
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GRAETZ PROBLEM

R L o o S o 2 2 2 S S S e o o o

* GRAETZ PROBLEM BY ALAN L. BRIGGS *
e e e e e e e e e e e e e e e e
C THE FOLLOWING ASSIGNS VARIABLES AS REAL OR INTEGER

PARAMETER(NDIM=50,NDIMR=50,NDIMZ=1,ZNODES=30)

REAL*8 A(NDIM,NDIM),B(NDIM), TEMP(NDIMR)

,INTEMP(NDIMR), FLUX(ZNODES),

. NEWTEMP(NDIMR,ZNODES)

., THETAINF,RN,RS,ROD,ROU,LOCR,DELRS,

DELRN,AW,AS,AN,DELZ,CRN,CRS,NODECOUNT

INTEGER IPVT(NDIM),N,1,J,JOUT,IFLAG, IIN,L

N = NDIMR*NDIMZ

B s L o 2 2 S S S T o o o o o

C INPUT VALUES

Fhkkkkkhhkkhkkhhkkhkhhkihkkhkhhkhhhrhhdhhihhihhhhkhhhihkkhkhhrhhkhhkhhhihhkhhrkhhihhihkhhhihkikhikikx

*  OPEN(6,FILE="WALL.OUT',STATUS="NEW')
NODECOUNT=NDIMR*ZNODES
1IN=5
IOUT=6
ROD=0

ROU=1
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*

100 FORMAT(/,’ PROGRAM TO SOLVE GRAETZ PROBLEM')

C DISTANCES FROM POINT P TO N,S,E,W, RESPECTIVELY

ZIN=0

Z0UT=0.1
THETAINF=0.0
GAPR=ROU-ROD
GAPZ=Z0OUT-ZIN

DISR=GAPR/(NDIMR+0.5)

WRITE(6,*)'DISR="DISR," ','NODECOUNT', NODECOUNT

DISZ=GAPZ/(ZNODES)

OPEN(IOUT,FILE='INPUT3.DAT',STATUS=NEW")

WRITE(IOUT,100)

DELRN=DISR
DELRS=DISR
DELZ=DISZ
INLET TEMPERATURE
DO I=1,NDIMR,1
INTEMP(1)=1.0
WRITE(IOUT,*) INTEMP(1), INLET TEMP'
ENDDO
ZLOC=0
DO L=1,ZNODES, 1
ZLOC=ZLOC+DISZ
LOCR=1.0
FIRST NODE
LOCR=LOCR-DISR
CRN=LOCR+DISR

CRS=LOCR-DISR
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RN=LOCR+DISR/2

RS=LOCR-DISR/2
AW=0.5*(((((RN**2)-(RS**2)))/(2.*DELZ))
C-((((RN**4)-(RS**4)))/(4.*DELZ)))
AN=(RN)/(DELRN)
AS=(RS)/(DELRS)
A(1,1)=AW+AN+AS
A(1,2)=-AS
B(1)=AW*INTEMP(1)+AN*THETAINF
DO J=2,NDIMR-1

LOCR=LOCR-DISR

WRITE(6,*) J,LOCR,' NODE LOC'

CRN=LOCR+DISR

CRS=LOCR-DISR

RN=LOCR+DISR/2

RS=LOCR-DISR/2
AW=0.5*(((((RN**2)-(RS**2)))/(2.*DELZ))
C-((((RN**4)-(RS**4)))/(4.*DELZ)))
AN=(RN)/(DELRN)

AS=(RS)/(DELRS)

AJ,J)=AW+AN+AS

A(J,J+1)=-AS

A@J,J-1)=-AN

B(J)=AW*INTEMP(J)

ENDDO

NEXT TO CENTER
LOCR=LOCR-DISR

RN=LOCR+DISR/2
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RS=0
AW=((((RN**2)-(RS**2)))/(2.*DELZ))-((((RN**4)-(RS**4)))/(4.*DELZ))
AN=(RN)/(DELRN)

AS=0
A(NDIMR,NDIMR)=AW+AN
A(NDIMR,NDIMR-1)=-AN
B(NDIMR)=AW*INTEMP(NDIMR)

*  WRITE(IOUT,150)

*150 FORMAT(' THE ORIGINAL A MATRIX IS:)

*  DOI=1N

* WRITE(IOUT,200) (A(1,J),J=1,N)

*200 FORMAT (400F8.4)

*  ENDDO

*  WRITE(IOUT,155)

*155 FORMAT(' THE ORIGINAL B MATRIX IS:)

*  DOI=1N

* WRITE(IOUT,222) B(I)

*222 FORMAT(20F8.4)

*  ENDDO

C DO THE LU DECOMPOSTION
CALL LUD(AN,IPVT,NDIM,IOUT,IFLAG)

IF (IFLAG .LT. 0) STOP

*  WRITE(IOUT,300)

*300 FORMAT(/,’ THE COMPACT LU MATRIX IS:")

*  DOI=1N

* WRITE(IOUT,350) (A(1,J),J=1,N)

*350 FORMAT (20F8.4)

* ENDDO
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*  WRITE(IOUT,400)
*400 FORMAT(/,’ THE PIVOTING ORDER IS:)
*  WRITE(IOUT,450) (IPVT(I), 1=1,N)
*450 FORMAT(516)
CALL SOLVE(A,N,IPVT,B,NDIM)
*  WRITE(IOUT,500)
*500 FORMAT(/,’ THE SOLUTION TO THE SET OF EQUATIONS IS:")
* DO I=1,N
* WRITE(IOUT,550) 1,B(1)
*550 FORMAT(' I =13, X(I) = ",E12.5)
*  ENDDO
* DO I=1,NDIMR,1
*  TEMP(1)=B(l)
*  WRITE(6,*) TEMPERATURE=",|, TEMP(I)
*  ENDDO
* WRITE(6,*) 'AXIAL LOCATION=',ZLOC
LOCR=1
DO I1=1,NDIMR,1
LOCR=LOCR-DISR
TEMP(1)=B(1)
*  WRITE(6,999), TEMP(I),LOCR
*999 FORMAT(NODE=",13," ' TEMPERATURE='F20.15' '
* AT R='F8.5)
ENDDO
DO I1=1,NDIMR,1
INTEMP(1)=TEMP(l)
*  WRITE(6,*) TEMPERATURE=",|, TEMP(I)

ENDDO
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ENDDO
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C

THE END OF PROGRAM
WRITE(6,*) 'AXIAL LOCATION=',ZLOC
LOCR=1
DO I=1,NDIMR,1
LOCR=LOCR-DISR
TEMP(1)=B(1)

WRITE(6,999)1, TEMP(I),LOCR

999 FORMAT(NODE='13," 'TEMPERATURE='F20.15," '

O

/AT R='F8.5)
ENDDO
WHERE=0
DO L=1,ZNODES,1
WHERE=WHERE+DISZ
WRITE(6,*) NEWTEMP(L,L), WALL TEMP'
FLUX(LXS)=-(NEWTEMP(1,L)-NEWTEMP(2,L))/DISR/2
WRITE(6,*) ' WALL HEAT FLUX='FLUX(L),  ''AT Z='WHERE
ENDDO
STOP
END

SUBROUTINE LUD(AN,IPVT,NDIM,IOUT,IFLAG)

THIS SUBROUTINE PRODUCES THE LU DECOMPOSITION OF A MATRIX A[lJ].
THE A-MATRIX IS DESTROYED DURING EXECUTION OF THIS PROCEDURE.
INPUT: A - ASQUARE MATRIX OF SIZE NDIM BY NDIM

NDIM - THE MAXIMUM ROW DIMENSION OF A

IOUT - LOGICAL DEVICE NUMBER FOR OUTPUT
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Cc N - THE SIZE OF THE MATRIX A[l,J] BEING PROCESSED.

C OUTPUT: A - THE LU DECOMPOSITION OF THE MATRIX A[l,J]

c IPVT - AN ARRAY CONTAINING THE ORDER OF THE ROWS OF THE
C REARRANGED MATRIX DUE TO PIVOTING

C IFLAG - SIGNAL OF STATUS ON RETURN

C IFLAG =1, NORMAL RETURN

C IFLAG = -1, INDICATION OF SMALL PIVOT ELEMENT

REAL*8 A(NDIM,N), SUM
INTEGER IPVT(N),1,J,JM1,JP1,K,NML,I0UT,IFLAG
DOI=1N
IPVT(l) = |
ENDDO
CALL PIVOT_A(A IPVT,N,1,NDIM)
IF (ABS(A(L,1)). LT. 1.0E-09) THEN
WRITE(IOUT,10)
10  FORMAT(//, MATRIX IS SINGULAR OR NEAR SINGULAR "//)
IFLAG = -1
RETURN
ENDIF
C MODIFY THE REST OF THE FIRST ROW
DO 1=2N
AL = A(L1)/A(L,1)
ENDDO
NM1=N-1
C LOOP THROUGH REST OF ROWS EXCEPT THE LAST
DO J = 2,NM1

JM1=J-1
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C FIND THE VALUES FOR THE L-MATRIX COLUMN
DO1=JN
SUM = 0.0
DOK =1,JM1
SUM = SUM + A(I,K)*A(K,J)
ENDDO
A(l,J) = A(1,J) - SUM
ENDDO
CALL PIVOT_A(A IPVT,N,J,NDIM)
IF (ABS(A(J,J)). LT. 1.0E-05) THEN
WRITE(IOUT,10)
IFLAG = -1
RETURN
ENDIF
C FIND THE VALUES FOR THE U-MATRIX ROW
PL=J+1
DO K = JP1,N
SUM = 0.0
DO I =1,JM1
SUM = SUM + A(J,I)*A(1,K)
ENDDO
A(K) = (AJ,K) - SUM)/AQJ)
ENDDO
ENDDO
C FIND THE LAST DIAGONAL ELEMENT OF THE LU MATRIX
SUM =0.0
DO K = 1,NM1

SUM = SUM + A(N,K)*A(K,N)
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ENDDO
A(N,N) = A(N,N) - SUM
IF (ABS(A(N,N)). LT. 1.0E-05) THEN
WRITE(IOUT,10)
IFLAG = -1
RETURN
ENDIF
C NORMAL RETURN WITH GOOD LU MATRIX
IFLAG =1
RETURN
END

SUBROUTINE PIVOT_A(A,IPVT,N,JCOL,NDIM)

(@)

THIS SUBROUTINE SEARCHES THE JTH COLUMN OF THE A[l,J] MATRIX FOR THE
C LARGEST ELEMENT BELOW THE DIAGONAL. IT THEN INTERHANGES ROWS TO

C PLACE THIS ELEMENT ON THE DIAGONAL. IT RECORDS THE CHAGES IN

O

THE ARRAY IPVT(l).

REAL*8 A(NDIM,N),BIG, TEMP

INTEGER IPVT(N),JCOL,I,INDEX,ITEMP,JCOL_P1

(@)

FIND IF ANY ELEMENTS IN THE COLUMN ARE BIGGER THAN DIAGONAL ELEMENT
INDEX = JCOL
BIG = ABS(A(JCOL,JCOL))
JCOL_P1=JCOL +1
DO | = JCOL_P1,N
TEMP = ABS(A(1,JCOL))
IF (TEMP .GT. BIG) THEN

INDEX =1
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BIG = TEMP
ENDIF
ENDDO
C INTERCHANGE ROWS IF NECESSARY
IF (INDEX .NE. JCOL) THEN
DOI=1N
TEMP = A(JCOL,1)
A(JCOL,1) = A(INDEX, )
A(INDEX,1) = TEMP
ENDDO
ITEMP = IPVT(JCOL)
IPVT(JCOL) = IPVT(INDEX)
IPVT(INDEX) = ITEMP
ENDIF
RETURN
END

SUBROUTINE SOLVE(AN,IPVT,B,NDIM)

C THIS SUBROUTINE USES THE COMBINED LU MATRIX "A" TO SOLVE
C ASYSTEM OF LINEAR EQUATIONS

C INPUT: A-LUMATRIX

C N - NUMBER OF EQUATIONS TO BE SOLVED

C IPVT - ARECORD OF THE REARRANGEMENT OF THE ROWS

C OF A[l,J] FROM THE LU DECOMPOSTION

Cc B - RIGHT HAND SIDE OF THE SET OF EQUATIONS

C OUTPUT: B-THE SOLUTION VECTOR

REAL*8 A(NDIM,N), B(N), B_PRIM(80), SUM
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INTEGER IPVT(N),1,J,IM1
C REARRANGE THE ELEMENTS OF THE B VECTOR & STORE THEM IN THE B_PRIM ARRAY.
DOI=1N
B_PRIM(I) = B(IPVT(I))
ENDDO
C OBTAIN B' BY DOING FORWARD SUBSTITUTION--LB' = B
B_PRIM(1) = B_PRIM(1)/A(L,1)
DO 1=2,N
IML1=1-1
SUM = 0.0
DO J=1,IM1
SUM = SUM + A(1,3)*B_PRIM(J)
ENDDO
B_PRIM(I) = (B_PRIM(I) - SUMY/A(1,I)
ENDDO
C SOLVE FOR X BY BACK SUBSTITUTION--UX = B'
C RESULTS STORED IN B ARRAY
B(N) = B_PRIM(N)
DO I = (N-1),1,-1
B(I) = B_PRIM(I)
DO J = (I+1),N
B(I) = B(I) - A(1,)*B(J)
ENDDO
ENDDO
RETURN

END
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UNSTEADY CONJUGATE HEAT TRANSFER IN A CIRCULAR DUCT (EXPLICIT-SCHEME )

R R L S S S o o 2 2 S 2 S S 2 e o o o

*  UNSTEADY CONJUGATE HEAT TRANSFER IN A CIRCULAR DUCT ~ *
* (EXPLICIT SCHEME) *
KRR A AR AR A KA A KA R A KA A A R A KA A A A R A A A R A KA
C THE FOLLOWING ASSIGNS VARIABLES AS REAL OR INTEGER
PARAMETER(NDIM=50,NDIMR=50,NDIMZ=1,ZNODES=30)
REAL*8 TEMP(NDIMR)
,OLDTEMP(NDIMR,ZNODES),INTEMP(NDIMR), FLUX(ZNODES),
. OLDTIME,NEWTEMP(NDIMR,ZNODES)
,FTIME,DTIME,VEL, THETAINF,RN,RS,ROD,ROU,LOCR,DELRS,
DELRN,AW,AS,AN,DELZ,POWER,NUSSELT ASTAR,OMEGA,PECKLET
,BRINKMAN,VISD,VELN,VELS,SOMET,CRN,CRS,NODECOUNT
INTEGER N,1,J,0UT,lIN,L
N = NDIMR*NDIMZ
C  INPUT VALUES
*  OPEN(6,FILE"WALL.OUT',STATUS="NEW')
NODECOUNT=NDIMR*ZNODES
POWER=1
NUSSELT=23.764
BRINKMAN=0.000000279

ASTAR=0.00378
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*

OMEGA=0.0546

PECKLET=14.01245

1IN=5

I0UT=6

ROD=0

ROU=1

ZIN=0

Z0UT=3

OLDTIME=0

DTIME=0.00015

FTIME=DTIME*1000

TOL=0.00000001

THETAINF=-0.5

GAPR=ROU-ROD

GAPZ=ZOUT-ZIN

DISR=GAPR/(NDIMR-0.5)
WRITE(6,*)'DISR="DISR,'

DISZ=GAPZ/(ZNODES)

', 'NODECOUNT', NODECOUNT

OPEN(IOUT,FILE='INPUT3.DAT',STATUS="NEW")

WRITE(IOUT,100)

100 FORMAT(/! PROGRAM TO SOLVE UNSTEADY CONJUGATE HEAT TRANSFER

. PROBLEM-EXPLICIT SCHEME)

DELRN=DISR
DELRS=DISR
DELZ=DISZ

DO I=1,NDIMR,1

DO L=1,ZNODES,1

C DISTANCES FROM POINT P TO N,S,E,W, RESPECTIVELY

117



C

OLDTEMP(I,L)=0
ENDDO
ENDDO

INLET TEMP DISTRIBUTION

777 OLDTIME=OLDTIME+DTIME

DO I=1,NDIMR,1
INTEMP(1)=SIN(OMEGA*OLDTIME)
SOMET=INTEMP(I)

ENDDO

WRITE(IOUT,*) SOMET,'INLET TEMP'
ZLOC=0

DO L=1,ZNODES,1
ZLOC=ZLOC+DISZ

LOCR=1.0

WALL CONDITION

AS=1/DELRS
AO=1/(ASTAR*DTIME)-AS-NUSSELT
WRITE(6,*) AO, AOWALL'
AP=AS+AO+NUSSELT
TEMP(1)=(NUSSELT*THETAINF+OLDTEMP(1,L)*AO+AS*OLDTEMP(2,L))/AP
DO J=2,NDIMR-1

LOCR=LOCR-DISR

CRN=LOCR+DISR

CRS=LOCR-DISR

RN=LOCR+DISR/2

RS=LOCR-DISR/2
VELN=((3*POWER+1)/(POWER+1))*(1-RN**((POWER+1)/POWER))

VEL=((3*POWER+1)/(POWER+1))*(1-LOCR**((POWER+1)/POWER))
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VELS=((3*POWER+1)/(POWER+1))*(1-RS**((POWER+1)/POWER))
AW=PECKLET*VEL*((RN**2)-(RS**2))/(2.*DELZ)
AN=(RN)/(DELRN)
AS=(RS)/(DELRS)
AO=(((RN**2)-(RS**2))/2.)*(1./DTIME))-AW-AN-AS
WRITE(6,*) AO,'AO",J
AP=AW+AN+AS+AO
VISD=BRINKMAN*LOCR*DISR*((ABS((VELN-VELS)/DISR))**(POWER-1))
C*((VELN-VELS)**2)
TEMP(J)=(AW*INTEMP(J)+OLDTEMP(J,L)*AO+VISD
C+AN*OLDTEMP(J-1,L)+AS*OLDTEMP(J+1,L))/AP
ENDDO
NEXT TO CENTER
LOCR=LOCR-DISR
RN=LOCR+DISR/2
RS=0
VEL=((3*POWER+1)/(POWER+1))*(1-LOCR**((POWER+1)/POWER))
VELN=((3*POWER+1)/(POWER+1))*(1-RN**((POWER+1)/POWER))
VELS=((3*POWER+1)/(POWER+1))*(1-RS**((POWER+1)/POWER))
WRITE(6,*) 'CENTER VEL',VELS
AW=PECKLET*VEL*((RN**2))/(2.*DISZ)
AN=(RN)/(DELRN)
AS=0
AO=(((RN**2))/2)*(1.0/DTIME))-AW-AN-AS
WRITE(6,*) AO,NEAR CENTER AO'
VISD=BRINKMAN*LOCR*DISR*((ABS((VELN-VELS)/DISR))**(POWER-1))
C*((VELN-VELS)**2)

AP=AW+AN+AO
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TEMP(NDIMR)=(AW*INTEMP(NDIMR)+OLDTEMP(NDIMR,L)*AO+VISD
C+AN*OLDTEMP(NDIMR-1,L))/AP
DO I1=1,NDIMR,1
WRITE(6,*) TEMPERATURE=',|, TEMP(I)
ENDDO
DO I=1,NDIMR,1
NEWTEMP(1,L)=TEMP(1)
INTEMP(1)=TEMP(l)
ENDDO
ENDDO
WRITE(6,*) OLDTIME,FTIME,'OLDTIME,FTIME'
IF((ABS(OLDTIME-FTIME)).LT.TOL) THEN
WRITE(6,%) ' SOLUTION AT=',  'T="FTIME,' ''Z='ZLOC
WRITE(6, %) "*sssssrrkREG LT S
WRITE(IOUT,*) 'WALL TEMP='TEMP(1), AT TIME='OLDTIME
WRITE(IOUT,*) 'NEAR-CENTER TEMP=", TEMP(NDIMR)
GO TO 333
ELSE
DO I1=1,NDIMR,1
DO L=1,ZNODES, 1
OLDTEMP(I,L)=NEWTEMP(I,L)
ENDDO
ENDDO
WRITE(IOUT,*) WALL TEMP="TEMP(1), AT TIME='OLDTIME
WRITE(IOUT,*) 'NEAR-CENTER TEMP=', TEMP(NDIMR)
. AT TIME='OLDTIME
GO TO 777

ENDIF
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C THE END OF PROGRAM
333 LOCR=1
DO I1=1,NDIMR,1
WRITE(6,999)1, TEMP(1),LOCR
999 FORMAT(NODE='13; ' TEMPERATURE='F20.15, '
/AT R='F8.5)
LOCR=LOCR-DISR
ENDDO
WHERE=0
DO L=1,ZNODES, 1
WHERE=WHERE+DISZ
*  WRITE(6,*) NEWTEMP(L,L) WALL TEMP'
FLUX(LXS)=-(NEWTEMP(L,L)-NEWTEMP(2,L))/DISR/2
*  WRITE(6,*) ' WALL HEAT FLUX='FLUX(L),  ''AT Z= WHERE
ENDDO
STOP

END
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