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TRANSFER RULE LEARNING FOR BIOMARKER DISCOVERY FROM

RELATED DATA SETS

Philip Ganchev, PhD

University of Pittsburgh, 2010

Biomarkers are a critical tool for the detection, diagnosis, monitoring and prognosis of dis-

eases, and for understanding disease mechanisms in order to create treatments. Unfortu-

nately, finding reliable biomarkers is often hampered by a number of practical problems,

including scarcity of samples, the high dimensionality of the data, and measurement error.

An important opportunity to make the most of these scarce data is to combine information

from multiple related data sets for more effective biomarker discovery. Because the costs of

creating large data sets for every disease of interest are likely to remain prohibitive, methods

for more effectively making use of related biomarker data sets continues to be important.

This thesis develops TRL, a novel framework for integrative biomarker discovery from

related but separate data sets, such as those generated for similar biomarker profiling studies.

TRL alleviates the problem of data scarcity by providing a way to validate knowledge learned

from one data set and simultaneously learn new knowledge on a related data set. Unlike

other transfer learning approaches, TRL takes prior knowledge in the form of interpretable,

modular classification rules, and uses them to seed learning on a new data set.

We evaluated TRL on 13 pairs of real-world biomarker discovery data sets, and found

TRL improves accuracy twice as often as degrading it. TRL consists of four alternative

methods for transfer and three measures of the amount of information transferred. By

experimenting with these methods, we investigate the kinds of information necessary to

preserve for transfer learning from related data sets. We found it is important to keep track

of the relationships between biomarker values and disease state, and to consider during
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learning how rules will interact in the final model. If the source and target data are drawn

from the same distribution, we found the performance improvement and amount of transfer

increase with increasing size of the source compared to the target data.
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1.0 INTRODUCTION

Biomarkers are a critical tool for the detection, diagnosis, monitoring and prognosis of dis-

eases, and for the understanding of disease mechanisms in order to create treatments. A

biomarker is any measurable indicator of a particular biological state of interest, particularly

one relevant to the risk of contraction, the presence or the stage of disease [Rifai et al., 2006].

For example, a biomarker might be the concentration of a particular type of protein in the

blood of a human subject or the presence of a particular gene in the tissue of the subject.

Reliable biomarkers for a particular disease can be used to create screens for easy or early

detection of the disease, which greatly improves the health outcome for the patient. Simi-

larly, biomarkers can be used to monitor the disease progression and response to treatment.

Another value of biomarkers is that they can be used in further research to understand the

mechanism of disease, and ultimately create treatments. Therefore, the discovery of more

accurate biomarkers has great utility to humankind.

The goal in biomarker discovery is to find a small set of biomarkers that can be measured

and the measurements used together to accurately predict a biological state, such as a

disease state. The discovery process typically begins with identifying the types of biological

states that we seek to distinguish. This defines the groups of subjects that are used in the

study, such as patients diagnosed with a particular disease, patients diagnosed with certain

related diseases and healthy control subjects. It also helps to define the types of biological

samples, such as blood or cerebrospinal fluid, that we will collect from each subject. Once

the biological samples are collected, they are often then treated either with physical or

chemical processes or with biological agents to prepare them for more accurate measurement.

Variables associated with possible biomarkers are measured in the treated samples using

molecular profiling. For example, the abundance of proteins in a particular range of masses
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might be measured in each sample, creating a data set. The data set is analyzed using

statistical techniques to find small subsets of the variables that discriminate between the

groups of patients with high accuracy. Finally, these putative markers are linked to bio

molecules such as proteins or genes.

There are a wide variety of technologies and techniques that are used for the measurement

and the associated preparation of samples. For molecular profiling, those include:

• Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-

TOF MS),

• Surface-assisted laser desorption-ionization time-of-flight mass spectrometry (SELDI-

TOF-MS),

• Gene expression profiling using DNA micro-arrays, and

• Immunoassays.

In the statistical analysis, computational variable selection aims to find small sets of

variables that can discriminate well between the groups of instances. Machine learning is

used to estimate how well those variables can discriminate between the groups. This is done

by learning a classifier using those variables, and applying that classifier on unseen data.

1.1 THE PROBLEM

The statistical analysis of the data aims to find a small subset of variables that can discrim-

inate between the groups of samples. However, this is particularly challenging because of

several problems that underlie all biomarker discovery studies:

1. Small data sets. From a statistical point of view, the number of biological samples

available for a clinical molecular profiling study is relatively small, typically in the tens or

hundreds. This is because it is difficult to recruit suitable patients and control subjects

matched by age, gender and other possibly important variables. It is also expensive to

draw and store samples and process them to measure the potential biomarkers.
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2. Many uncontrolled variables. Many variables among the subjects in a study that

are possibly important, such as age and exposure to harmful chemicals, often are not

properly controlled. This is because there are so many such variables that controlling all

of them would require a very large number of subjects. Moreover, the exact variables to

control for are not known in the first place.

3. High dimensionality. Because the mechanisms of the human body are so complicated,

and because scientific understanding of them is currently incomplete, the number of mea-

surable quantities that are candidates for biomarkers is enormous. In order to broaden

the search for biomarkers, studies typically measure a wide range of variables for the

biological samples. For example, proteomic mass profiling studies using high-throughput

techniques such as SELDI-TOF and MALDI-TOF typically measure hundreds of thou-

sands of m/z values. Gene expression studies measure the expression of thousands or

tens of thousands of genes. This problem is smaller when using technologies such as

immunoassays, where typically tens of potential markers are evaluated, but the other

problems still exist.

4. Measurement error. Technologies such as SELDI-TOF and MALDI-TOF have an

associated measurement error. This includes random errors due to measuring small

quantities and physical limitations of the apparatus, as well as systematic errors that

can increase or decrease certain measurements within a data set.

All these aspects make the statistical analysis prone to error, because among all the

measured variables it is likely that by chance alone, some of them will appear to discriminate

among the small number of samples. Such variables will not correspond to real biomarkers,

that is, they will not generalize to the whole population.

On the other hand, there are often a number of similar small studies that examine the

same population groups of subjects using the same technologies. Often this is due to having

a pilot study with a small number of patients, and follow-up studies with additional patient

samples or new patients. This results in having two or more related data sets. We consider

data sets to be related if they represent the same variables. Then the question is, how to

best use the combined information from these multiple data sets to discover more accurate

biomarkers and classifiers?
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1.1.1 Current Methods

In order to combine the information from multiple data sets, researchers typically analyze

each data set separately, then compare the biomarkers discovered. Unfortunately, this might

be sub-optimal because it does not consider the whole of the information in the two data

sets at the same time. That is, there is no interaction between the data sets.

Another simple way to use all the data is to use the union of two data sets and analyze

the whole set in the usual way. But such attempts are typically confounded by variability

in sample processing and by systematic measurement error specific to each data set. For

example, the same numerical measurement might mean a high abundance of some protein in

one data set but a low abundance in another. Thus the variable will not appear discriminative

in the union of the data sets, even if it actually is.

1.2 THE APPROACH

This thesis explores one approach to making better use of available data for biomarker

discovery. The approach is an instance of the paradigm of transfer learning (also called

“inductive transfer”). Transfer learning is the use of knowledge about one task to help in

learning another task [Caruana, 1997]. In particular, this thesis uses a form of sequential

transfer learning, where information is learned from one data set, the source data, and is

used when learning on another data set, the target data.

Thus the aim of using the available data sets is translated to the following questions:

1. How to validate the existing information with new data?

2. How to learn new accurate information in conjunction with the old?

Current transfer learning methods are ill-suited for the small, high-dimensional data sets

often encountered in biomarker discovery. Many of those methods learn a model using all

the available variables and do not help in finding the most discriminative variables. Many of

the models, such as ones that are based on artificial neural networks (ANNs) and Bayesian
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belief networks require many training examples to learn an accurate classifier. ANNs also

and require a long training time.

Instead, to address the questions above, the thesis develops a novel framework for trans-

fer learning using classification rule learning: the Transfer Rule Learner framework (TRL).

The framework is based on the rule learning algorithm Rule Learner (RL), which has

been successfully used in biomarker discovery and verification studies for early detection of

Prior
rule

model

Retained prior rules 
(specialized); 
+ new rules;

Processed 
target
data

TRL:
transfer method = 
tr / tr_nc / ts / ts_nc

RL

Processed
source
data

Preprocessing:
- Alignment, ...
- Peak selection
- Discretization

Target
data

Source
data

Figure 1: The Transfer Rule Learner (TRL) framework. The Rule Learner (RL) algorithm

extracts prior rules, which are input into the transfer rule learning algorithm introduced in

this thesis. “tr” is simple rule transfer; “ts” is structure transfer; “tr nc” and “ts nc” are

the non-coverage variations of simple rule transfer and structure transfer.
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amyotrophic lateral sclerosis (ALS) [Ranganathan et al., 2005, Gopalakrishnan et al., 2006,

Ryberg et al., 2010]. RL learns classifiers that are sets of propositional rules (for an ex-

ample, see Section 2.8). It has some advantages over other learners, including simplicity,

understandability by domain experts and modularity of its learned classification models.

RL requires discrete variable values, and several discretization algorithms are already avail-

able in the implementation. However, discretization provides a unique challenge for transfer

learning, and TRL provides two methods to address that challenge.

The TRL framework is illustrated in Figure 1. First, the source and target data may

optionally be preprocessed to aid in the transfer; then both data sets are discretized. Then

the prior classification rule model is learned on the source data and is used in learning the

target model from the target data. The transfer learning is the central part of the framework,

and is implemented with four algorithms. These algorithms are differentiated by two aspects:

(a) the type of information transferred and (b) the way prior rules interact with new rules

during learning. Thus for the type of information transferred, TRL has two options:

1. Simple rule transfer (tr), which transfers entire rules, versus

2. Structure transfer (ts), which transfers only the sets of variables but not their values

And for the interaction of rules TRL has two options:

1. With coverage and on the beam

2. Non-coverage (nc), only the beam

The framework is evaluated by its classification performance and 3 novel measures of

amount of transfer. Using these measures, the feasibility of the four methods is evaluated

on 13 pairs of real-world clinical data sets from biomarker profiling or verification studies.

Classification performance is compared to the baseline condition of learning on the target

data set alone.

We are now ready to state the thesis.

1.2.1 Thesis

The central thesis of this dissertation is that the TRL framework is sufficient for evaluating

the effect of transfer between two related biomarker discovery data sets. Based on the
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experiments performed on 13 pairs of real-world molecular profiling data sets, we make the

following claims.

General claims:

1. TRL provides a mechanism for transfer learning between two related data sets that in-

creases classification performance on the target data much more often than not, compared

to learning without transfer.

2. The change in performance after transfer and the amount of transfer are highly variable

and depend on the data sets used for transfer.

3. When the source and target data are drawn from the same distribution, for all transfer

methods, both the classification performance and the amount of transfer depend on the

accuracy of the source model and baseline target model:

a. The more accurate the source model compared to the model learned on the whole

data alone, the greater the improvement in accuracy and the greater the amount of

transfer.

b. When the target data is too inaccurate, there is very little or no transfer and very

little change in performance.

Specific claims:

4. With TRL under resource constraints, variable values are important information to trans-

fer.

5. With TRL under resource constraints, it is important during learning to take into ac-

count the interaction that will occur between prior rules with newly learned rules during

inference.

1.3 SIGNIFICANCE

To my knowledge, this work is the first study of transfer learning for biomarker discov-

ery. This is an important problem because of the difficulty and expense of collecting bi-

ological data sets, and because in some cases multiple related data sets for a discovery
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task are available but it is not clear how to best use them to discover accurate biomark-

ers. Previous studies suggest that transfer is possible because they find reproducibility

of information learned from spectra collected in different sessions using the same proto-

cols [Pelikan et al., 2007, Semmes et al., 2005].

Unfortunately many previous transfer learning frameworks produce models that are dif-

ficult to interpret and that use a large number of variables [Caruana, 1997, Blitzer, 2008],

making them less useful as a method for the discovery of biomarkers, as described

in Chapter 2. The methods we consider are based on the Rule Learner algo-

rithm [Clearwater and Provost, 1990], and they produce classification rule models. Rule

models have the advantage that variable selection is embedded in the learning algorithm,

and the resulting model uses only a few of the many measured variables to explain the

data, unlike artificial neural networks. Also, unlike artificial neural networks, they are un-

derstandable by domain experts and can be used to form biological hypotheses for further

experimentation.

This thesis develops a transfer rule learning framework, TRL, which includes four vari-

ations of transfer learning and measures for evaluation of the transfer.

Two learning tasks are considered related if there is a mapping from the variables in the

source task set to the variables of the target task. As currently implemented, TRL uses only

the trivial mapping of equivalence between source and target variable. However, by defining

other mappings, the framework allows more general transfer between different types of data.

TRL is evaluated on 26 real world clinical data sets (13 data set pairs), focusing mostly

on SELDI-TOF and MALDI-TOF data partly because those were the most available. We

also include experiments in pre-processing the data with the aim of improving the transfer.

In addition to introducing transfer learning for the domain of biomarker discovery and

a framework capable of performing transfer learning in this domain, we also investigate

what kinds of information it is important to preserve from the source data set in order to

best learn a model for the target data set. This contribution can guide future research on

transfer learning for biomarker discovery, even under different frameworks. Specifically, we

find in Chapter 5 that it is important to preserve the information about how biomarkers

relate to disease state in the source data set. When this information is suppressed, and all
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possible relationships are considered for the target data set, performance declines (Claim 4).

Secondly, it is important to consider how prior information interacts with new information

learned on the target domain. When we omit these interactions during learning, the effect

of transfer learning on performance decreases (claim 5).

This gives rise to many research questions that can be addressed in future work. See

Chapter 6 – Conclusion.

1.4 DISSERTATION OVERVIEW

The rest of this document is organized as follows. Chapter 2 provides background informa-

tion about the concepts and techniques used in this thesis and other relevant techniques;

this includes biomarkers, classification learning, variables and variable selection methods,

rule learning with RL, and a quick overview of the transfer learning literature and current

methods. Chapter 3 presents in detail the Transfer Rule Learning (TRL) framework, which

was implemented and evaluated in this thesis as a solution to the problem described in 1.1

above. Chapter 4 describes the experiments done to evaluate the TRL framework, including

the data sets used, the baseline used for comparison, and the evaluation measures. Chapter 5

presents the major results from the experiments with the real-world data sets. Chapter 6

presents conclusions and discusses further development of the methods presented here.
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2.0 BACKGROUND

This section introduces the techniques relevant to the thesis. This includes an introduction

to biomarkers and the particular importance of protein biomarkers.

Most of the data sets used to evaluate TRL are proteomic mass spectra. Therefore

this chapter gives an overview of the technique used for generating that type of data, mass

spectrometry, as well as the pre-processing of mass spectra that before statistical analysis.

Then this chapter gives an overview of variable selection, including EBD, which is the method

for discretization and selection of variables used in experiments presented in this thesis to

evaluate TRL.

After that, the chapter introduces Rule Learner, the machine learning method that was

used in the experiments. Finally, we overview the field of transfer learning, which is the

overall approach taken in the thesis.

2.1 BIOMARKERS

A biomarker is a measurable indicator of a specific biological state, particularly one relevant

to the risk of contraction, the presence or the stage of disease. Thus, biomarkers allow easy

or early detection of a disease or monitoring of disease progression, and provide a factor

measurable across populations.

Early search for biomarkers focused on genes, but more recently shifted to proteins. Pro-

tein biomarkers can be much more sensitive and specific to particular diseases than gene

marker, because there are many more proteins than genes. This is because proteins are

produced in complex processes that begin with genes but have intermediate steps that are
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affected by various factors such as differential splicing of the mRNAs representing the pro-

teins, posttranslational modifications of the proteins, and temporal and functional regulation

of gene expression [Anderson and Anderson, 2005]. Thus, a disease process that alters inter-

mediate steps cannot be detected as a gene biomarker. Disease processes change the protein

constitution of the diseased cells, through altered gene expression, differential protein modi-

fication, changes in specific activity and aberrant localization, all of which may affect cellular

function. Proteomic techniques allow such protein changes to be identified.

2.2 PROTEOMIC MASS SPECTROMETRY

One technique that has become very popular recently for discovery of proteomic biomarkers

has been whole-sample mass spectrometry. Mass spectrometry (MS) is a technique for ana-

lyzing substances by measuring the relative concentrations of their molecules and molecular

fragments. In the search for protein biomarkers, MS is used to analyze the proteins and pep-

tides in biological samples. High-throughput, whole-sample MS techniques measure a large

amount of data for each sample, and are used as a relatively cheap and fast way to search

for biomarkers by their approximate mass. Although this data is relatively inaccurate, it is

useful for finding potential biomarkers.

Such high-throughput techniques include matrix-assisted laser desorption and ioniza-

tion (MALDI) time-of-flight (TOF) and surface-enhanced laser desorption and ionization

(SELDI) TOF. The techniques are illustrated in Figure 2. In TOF MS, the molecules in

the samples are separated by mass and their abundance is recorded. Specifically, in MALDI

and SELDI, the molecules are converted to gaseous ions by the energy of a focused laser

beam. In MALDI, the energy indirectly reaches the analyte, after being converted to heat

by energy absorbing compounds called a matrix. Before ionization, the samples are mixed

with an energy-absorbing chemical called a matrix [Sem, 2007, p 103]. The ions fly into a

vacuum and are subjected to an electrical field, which exerts a force on them proportional

to their charge. Lighter ions accelerate faster than heavier ones, and so reach the end of the

vacuum tube sooner. There, a detector periodically records the accumulated charge caused
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Figure 2: The working of a time-of-flight mass spectrometer. (Adapted

from [Ranganathan, 2004].)

by the ions. The time-of-flight ranges are then converted to approximate mass-to-charge

ratio (m/z) of ions, and the accumulated charges are recorded as the intensity for the par-

ticular m/z range. The intensity then represents the their approximate relative abundance

of particles (proteins) whose mass is in that range.

The collection of the measured intensities for all the m/z’s is then a mass spectrum or

mass profile. It can be plotted with m/z on the x-axis and relative abundance on the y-

axis. The mass is measured in Daltons (Da), defined as 1/12 of the mass of an unbounded

carbon-12 nucleotide at rest and in its ground state, or approximately 1.6605 exp -27 kg.

The set of spectra generated in one batch can then be used to compare the intensities for a

given m/z across all the spectra. In the discovery process, we want to find m/z’s for which

one group of individuals (e.g. lung cancer patients) have consistently higher intensities

than other groups. This is the function of supervised feature selection and machine learning

methods. However, because the intensities represent relative abundances, we cannot compare

the absolute intensity of a spectrum from one batch with that of a spectrum from another

batch.
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SELDI is a modification of MALDI that aims to address the challenges of separation,

purification and detection of proteins by MS [Sem, 2007, 102]. In particular, it helps to

separate complex mixtures of analytes into simpler mixtures, which are easier to analyze.

This is done by coating the chip array surface with a chemical that binds to specific functional

groups. Thus, analytes that have those functional groups are adsorbed on the chip surface

and processed with MALDI, while the others are washed away during the sample preparation

process. Using different surface chemicals allows the selective analysis of different groups of

proteins and peptides. Also, this technique allows contaminants, such salts and detergents,

which interfere with the creation of ions, to be removed. Commercially, SELDI has been

realized in spectrometers and protein chips manufactured by Ciphergen Biosystems Inc.

2.3 BIOMARKER DISCOVERY

A study aiming to find biomarkers for particular biological states begins by defining the

population to be studied and subgroups in it, which are to be distinguished by the biomarkers.

For example, there may be two groups: women who suffer from breast cancer and healthy

women. Then, clinical samples, such as blood plasma, are obtained from individuals in

each group. One or more spectra are created from each sample and analyzed using machine

learning (ML) techniques to search for combinations of m/z’s that distinguish samples of

a given group. The spectra are usually first pre-processed in various ways to reduce the

measurement errors and ease the search for biomarkers. Candidate markers are considered

to be represented by variables. For example, for mass spectrometry data, variables are

either individual m/z’s or regions of m/z’s such as areas or intensities of peaks found after

peak selection. Sets of variables are selected using variable selection (described below), and

evaluated by training and testing classifiers to discriminate between the groups.

A major obstacle to the analysis is that MS data sets typically contains few instances

but many variables. Usually only on the order of 100 samples are available for study, due

to the scarcity of individuals of the groups of interest and the cost of obtaining samples. By

contrast, on the order of 10,000 m/z measurements are made because any one of them may
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provide biological information. This scarcity of instances makes the learning problem very

underspecified and therefore difficult.

This is made worse by measurement errors in creating the mass spectra. There are

both systematic errors (biases) and random variations, in both mass and abundance. For

example, having many peptides of very similar mass can cause errors in reading the mass

and abundance.

Dimensionality reduction, variable selection and variable construction are fundamentally

tied to learning, because using the correct variables makes learning easy, and finding the

correct variables requires learning. But variable selection is central to MS analysis, because

the goal is a small but discriminative set of biomarkers. Moreover, to be useful in this aim,

a predictive model and its variables must be interpretable in a biological context. Therefore,

a black-box predictive model is less useful, as are dimensionality reduction techniques such

as principal component analysis which map the original variables to new variables is difficult

to interpret. Of course an accurate predictive model that generalizes to other spectra is

desirable but usually too difficult to obtain, due to the difficulties with the data.

2.4 PRE-POSSESSING OF SPECTRA

Mass spectra are usually pre-processed before machine learning is applied, to reduce the

effects of random variation and bias in the measurements. Typical operations are intensity

normalization, baseline correction, smoothing, peak finding, and alignment.

Intensity normalization tries to correct an error in intensity (abundance) measurement

throughout the sample. One method is the use of an internal calibrant substance mixed

in the same concentration in all samples (Wong 2006). After the spectra are created, each

one is scaled linearly so that the intensity corresponding to the molecules in the calibrant

are equal. Another common approach to intensity normalization is total ion current (TIC)

normalization. This assumes that all the samples contain the same total concentration of

the molecules, and so the total charge that flows to the detector (the total current) should be

equal in all spectra. Thus the each spectrum is rescaled by multiplying its intensity values
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Figure 3: Two spectra before and after TIC normalization.

by the average signal for all spectra and dividing by the total signal for the spectrum.

Finding peaks in the spectra is used in some other pre-processing operations, and often as

an operation in itself because it achieves a dramatic reduction of the variable space. Ideally,

all peaks representing a molecule should be found, while peaks due to noise or random ions

ignored; but in practice this is not guaranteed. The peaks are assumed to be common among

all spectra. Morris et al. (2005) detect peaks in the average spectrum of the spectra in the

data set. The averaging reduces the noise, so detecting the true peaks is more reliable. Peaks

found in the mean spectrum are used to find peaks in individual spectra. The peaks in the

average spectrum are defined as those that form a local maximum in a window and satisfy

other criteria such as relative height and minimum intensity. For each sample spectrum,

peaks are assigned as the closest local maximum that is closest to a local maximum in the

average spectrum. If two peaks map to one maximum, the farther peak is mapped to another
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Figure 4: Two spectra before and after baseline correction.

maximum.

Baseline correction aims to correct intensity errors that occur in a portion of a spectrum

due to saturation of the spectrometer and background signal due to matrix. Because ma-

trix ions have low mass, the spectra typically have a high peak there, which tapers. This

baseline should be removed to leave intensity due to molecules of interest (illustrated in

Figure 4). There are many methods of detecting the baseline. A popular method is that

of [Coombes et al., 2003]. First, peaks are found and removed from each spectrum, then the

baseline is estimated from the modified spectrum using the moving average of local minima.

The size of the moving window determines the sensitivity of the baseline estimation.

Smoothing and de-noising aim to reduce small signals due to noise but preserve true

signals (Figure 5). There are many smoothing algorithms, including moving average, and

fitting a smooth function inside a moving window. Fitting a function tends to better pre-

serve relative maxima, minima and width in the spectrum [Wong et al., 2005]. A simple and

popular fitting algorithm for smoothing is the Svarsky-Golay algorithm, which fits a polyno-

mial using a least-squares regression. Similar to smoothing, de-noising aims to remove noise
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Figure 5: A spectrum before and after smoothing.

Figure 6: A part of two spectra, showing a possible mis-alignment

completely. De-noising is often done by wavelet transform, where the signal is expressed as

a series of coefficients representing different resolutions of the signal, then coefficients for low

resolutions (that is, high frequency) are reduced or removed [Coombes et al., 2005].

Alignment aims to correct errors in mass measurement (Figure 6). Errors can occur both

systematically for a whole spectrum, and only in part of a spectrum. In SELDI, the variance

may be +-0.2% of any m/z [Yutaka et al., 1900].
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2.5 VARIABLE SELECTION

Broadly speaking, biomarker discovery from mass spectral data is based on finding a small

set of variables, candidate biomarkers, whose measurement can discriminate the classes.

The problem of finding discriminative variables is called variable selection and has been

extensively studied in statistics and machine learning. The problem is framed as a prediction

task, namely to find a small set of variables that can be used to build a model that can

accurately classify unseen instances.

There are three general approaches to variable selection: wrapper, filter and embedded.

Wrapper algorithms use a search algorithm (such as best-first search) to iteratively select

promising candidate sets of variables, and evaluate them by learning and testing a classifier.

At the end of the process the best-performing set of variables is selected. Since they evaluate

sets of variables together, they can find a set that performs well as a whole, even if no

single variable in the set performs very well. On the other hand, they are computationally

expensive, and intractable with a large number of variables. Furthermore, they can be prone

to over-fitting when the search space is very large. For example exhaustive search needs to

consider a space that is exponential in the number of variables, and hence requires too many

data points for reliable learning when the number of variables is large.

Filter approaches evaluate the variables or variable sets in a single pass, without training

a classifier on sets. This is typically much more computationally efficient, but may yield a

poorer set of variables. The simplest cases of filter approaches are univariate measures of

correlation with the class variable, such as Pearson correlation, Wilcoxon correlation and

Chi-squared (χ2) correlation [Liu et al., 2002, Liu and Setiono, 1995]. Univariate measures

do not consider the correlation of different variables with each other, and can select variables

that do not add any information. For example if the data can be explained well by just three

variables, but each of them is repeated many times, then univariate measures will select

many copies of the most discriminative variable, and would rank the third variable needed

for good performance very low on the list. Another form of filter approach, Correlation-based

Feature Selection [Hall, 1999], uses pairwise variable correlations to mitigate this problem.

In the embedded approach to variable selection, variables are selected during the process
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of learning a model. For example, when learning a linear model, L-1 regularization can be

used to directly encourage the model to be sparse i.e. use a small number of variables.

Another example is the use of an ensemble to learn a set of models with different input

variables. The importance of different variables can be assessed by the frequency of their

use in accurate models. Finally, sparsity can be a byproduct of the learning method as in

coordinate descent algorithms such as AdaBoost.

2.5.1 Efficient Bayesian Discretization

Discretization is the process of converting real values into intervals of values; the set of

intervals are called a discretization policy. This is important for learners such as RL which

only work with discrete-valued data, because many techniques for molecular profiling, such as

mass spectrometry and immunoassays produce real-valued measurements. Another benefit

of discretization is that it act as a variable selection for the input data: variables for which

discretization produces only a single interval (−∞,∞) are removed from the data set.

One discretization algorithm that has been found to work well with RL is Efficient

Bayesian Discretization (EBD) [Lustgarten, 2009]. EBD is a supervised algorithm, meaning

that it makes use of the class variable. Like most published discretization algorithms, EBD

is univariate: that is, it discretizes one variable at a time.

EBD takes as input a vector of n pairs (X, Z) of values for the continu-

ous input variable X and class variable Z. For example the input might be

<(1.2, T), (3.2, F), (2.3, T), (4.3, F)>. EBD sorts the input variable vector, splits it into k

intervals representing a discretization policy, and scores the policy using a Bayesian score.

EBD considers all policies that have up to K intervals and outputs the one with the highest

score. The scoring function used by EBD is:

scoreEBD = P (D|M)P (M), (2.1)

where P (D|M) is the posterior probability of the data D given the discretization policy M

and P (M) is the prior probability of the discretization policy. This quantity has a closed

form solution under the following assumptions:
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1. The values of the values of the target variable were sampled independently (iid)from the

distribution P (Z|X), which is modeled as a multinomial distribution;

2. Prior belief about the distribution P (Z|X = xi) is independent of prior belief about the

distribution P (Z|X = xj) for all values xi and xj of X, such that i 6= j; and

3. For all values xj of X, prior belief about the distribution P (Z|X = x) is a Dirichlet

distribution with hyperparameters αi and αi,j.

EBD avoids recomputing sub-problem solutions. For example, if EBD has found the

best policy for instances 1 to 4 is a single interval, then when considering instances 1 to 10,

it never considers policies that split instances 1 to 4 into separate intervals. EBD has a

computational complexity O(n2m) where n is the number of instances and m is the number

of variables in the data set.

2.5.2 ReliefF

ReliefF is a variable ranking and selection algorithm that takes account of variable interac-

tions, unlike most filter methods, most of which evaluate variables based on the impurity of

the class value distribution [Robnik-Šikonja and Kononenko, 2003]. Instead, ReliefF com-

putes a score for each variable, based on not only the difference in variable values, but also

the distance between instances. Distance is computed in the feature space. The variable

scores are iteratively refined by promoting variables that differentiate instances of different

classes, and demoted if they differentiate instances of the same class. Specifically, in each

iteration ReliefF randomly chooses a training instance and finds its nearest neighbor from

the same class and the nearest neighbor from the opposite class.

2.5.3 Correlation-based feature selection

Correlation-based Feature Selection (CFS) [Hall, 1999] is a filter-based variable selection

algorithm that takes account of weak variable interactions. It evaluates subsets of variables

based on the variables’ individual correlation with the target variable, as well as their mutual

correlation. Good variable sets are assumed to contain variables that are highly correlated

with the target but not correlated with each other. The space of variable subsets is searched
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using a heuristic search such as best-first search (BFS). BFS starts with an empty set of

variables and generates all possible single variable subsets. The subset with the highest

score is chosen and grown in the same way by adding a single variable. If expanding a set

does not improve the score, the search goes back to the next best unexpanded set. BFS

eventually explores the whole space of feature subsets, but CFS stops the search after five

consecutive fully unexpanded non-improving subsets.

2.6 COMPUTATIONAL VALIDATION OF CANDIDATE BIOMARKERS

Sets of variables can be evaluated by learning a classification model on a randomly chosen

subset of the data set, and evaluating the model on the rest of the data. There are vari-

ous measures of performance of classification models. These include accuracy (or error,

which equals 1 minus accuracy), sensitivity (true positive rate), specificity (true negative

rate), positive predictive value (PPV), negative predictive value (NPV), balanced

accuracy and relative classifier information (RCI). See Appendix (Glossary) for details.

When data is scarce, it is more likely that the randomly chosen test set has a different

distribution than the general population, and so the evaluation of the model can be an

over-estimate or an under-estimate. There are a number of approaches to reduce this effect.

Two popular approaches are resampling validation and cross-validation. In resampling

validation, the procedure of choosing a training set and learning and evaluating a model is

repeated a number of times.

In cross-validation, the whole data set is partitioned into a number n of subsets of

equal size, called “folds”. Each fold is in turn used for testing the model learned on union

of the other n − 1 folds. Finally, the classification performance of all n folds are averaged

to produce an estimate of the performance of a classifier learned on the whole data set. To

reduce the effect of a possible lucky or unlucky partition of folds, cross-validation can be

repeated a number of times, each time with a different partition into folds. The commonly

used scheme is 10-fold cross validation repeated 10 times. It is known that cross-validation

leads to a higher bias of the performance estimate, while resampling validation leads to a
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higher variance.

2.7 TRANSFER LEARNING

As explained in Section 1, this thesis uses transfer learning to improve biomarker discov-

ery from mass spectral data. Transfer learning is the use of knowledge about one task to

help in learning another task. For instances, learning the task of recognizing the edge of

the road can be used to learn to better learn the task of steering a vehicle [Caruana, 1997].

Inductive transfer appears to be fundamental to human learning [Ellis, 1965]. In machine

learning, variations of transfer learning have been studied under the names ”inductive trans-

fer”, ”knowledge transfer”, ”life-long learning”, ”learning to learn” [Thrun, 1996], ”meta-

learning” [Vilalta and Drissi, 2002] and ”cumulative learning”. The assumption in using

transfer learning is that the tasks are different but related, so that pooling their instances

does not make sense, but treating them as independent fails to use the information from

one to benefit the other [Xue et al., 2007]. Intuitively, learning models for the tasks using a

shared representation can allow them to provide domain information to one-another.

A survey of transfer learning is given by [Pan and Yang, 2010]. The authors define a

learning domain and a learning task as follows. A learning domain D consists of two

components: a variable space χ and a marginal probability distribution P (X), where X =

x1, ..., xn ∈ χ. For example, if the learning task is document classification, and each text

term is a binary variable representing whether the term is present in the document, then

χ is the space of all possible term vectors, xi is the ith term vector, and X is a subset of

vectors sampled from χ and used for learning. If two domains are different, then either the

feature spaces or the probability distributions are different.

Given a learning domain, a learning task in the domain consists of two components:

a space Y of classification labels and a conditional probability distribution P (y|x) that can

be used to predict the label y of an instance x. Thus if two tasks are different, then either

their label spaces are different or their conditional probability distributions are different.

In this thesis we consider the case where there is one source domain, Ds, and one target
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domain Dt, which is the most popular in the research literature. Let the source domain data

be denoted Zs = (xs1 , ys1), ..., (xsns
, ysns

), where xsi ∈ χs is a data instance (data vector),

and ysi ∈ Ys is its classification label. Similarly, let the target domain data be denoted

Zt = (xt1 , yt1), ..., (xtnt
, ytnt

)

Finally, adapting the definition from [Pan and Yang, 2010], we can define transfer

learning as follows. Given a source domain Ds, a source learning task Ts, a target do-

main Dt, a target learning task Tt, and a learning performance measure a, transfer learning

aims to improve the performance of the learned classifiers on target predictive function ft()

in Dt using knowledge in Ds and Ts, where Ds 6= Dt or Ts 6= Tt.

We can consider how these definitions apply to common scenarios of biomarker discovery

from data as described in Chapter 1, Introduction. The motivating scenario for attempting

transfer learning for biomarker discovery was the availability of multiple data sets of the same

population of subjects, same sample type and same measurement technique, but different

batches of measurement. This setting is most likely to result in positive transfer because the

source doman and target domain are similar in most aspects. In this scenario, the difference

between the source domain and target domain is the marginal distribution of samples due to

systematic measurement errors in both batches of measurement. This means that the source

and target domains are different. The difference in distribution are especially marked with

mass spectrometry data.

Learning domains can also differ in their respective sets variables. Some measurement

techniques, such as mass spectrometry, invariably measure slightly different variables when

measuring the same biological samples in different measurement batches. Thus, the original

source and target domains are composed of slightly different sets of variables. However, it

is common practice to eliminate such differences using alignment procedures, as descrived

above in Section 2.4, Pre-processing. The result is that the source and target data sets have

the same sets of variables, that represent approximately the physical quantities that were

measured (e.g. abundances of particles of a given mass-to-charge ratio). This thesis does

not attempt transfer learning between learning domains having sets of variables. The TRL

framework developed in the thesis allows transfer between domains that have some variables

in common. Intuitivey, it can be hypothesized that the greater is the proportion of variables
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in common, the grater the expected effect of transfer. However, in all of the experiments

done to evaluate the framework (Chapter 4) the source and target data sets always had the

same set of variables.

If the source and target data sets are generated from different populations of subjects, the

source and target domains will have different marginal probability distributions and so will

be different. For example, populations can be humans and rats; or human stage 1 lung cancer

patients and healthy individuals on the one hand, and human stage 3 lung cancer patients

and healthy individuals on the other hand. The marginal probability distributions would also

be different if the source and target domains represent different types of biological samples,

such as blood on the one hand and urine on the other hand. In this case, the marginal

probability distributions of the instance vectors would be different because the variables in

the data represent different mixtures of physical particles in the samples. In this thesis, we

do not attempt transfer learning across different populations of subjects or sample types.

The marginal probability distributions can also be different if the data sets are generated

using different measurement technologies. For example, mass spectrometry using different

type of “ProteinChip” will create different marginal distributions of mass spectra because the

chips are sensitive to different classes of proteins. In this thesis, we have attempted transfer

learning across MALDI and SELDI technoligies in one pair of data sets. See Chapter 4,

Experiments.

Based on their definitions, [Pan and Yang, 2010] show the relationships between tradi-

tional (base) learning and different types of transfer learning, as shown in Table 2. The

authors categorize transfer learning into inductive transfer learning, transductive transfer

learning, and unsupervised transfer learning based on the source and target domains and

tasks.

1. Inductive transfer learning is where the source and target tasks are different and related,

while the source and target domains may be the same or different. Therefore, some

labelled target data are needed to learn a predictive model (classifier) ft(x) for use on

the target domain. Inductive transfer can further be divided into two cases:

a. Labeled source data are available. This setting is similar to multi-task learning.

b. No labeled source data are available. This setting is similar to self-taught learning [?],
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Type of learning Source, target

domain

Source, target

task

Base learning The same The same

Transfer learning

Inductive transfer &
Unsupervised transfer
leraning

The same Different but re-

lated

Different but re-

lated

Different but re-

lated

Transductive learning Different but re-

lated

The same

Table 1: Relationship among traditional (base) learning and various types of transfer learn-

ing.

in which the set of labels in the source and target domains are very different from

each other.

2. Transductive transfer learning is where the source and target tasks are the same, while

the domains are different but related.

3. Unsupervised transfer learning is where the source and target tasks are different and

related, similar to inductive transfer (1), but the learning tasks are unsupervised, such

as clustering and dimensionality reduction.

Transfer learning can also be classified by what type information is being transferred:

1. Transfer of knowledge of instances or instance-based transfer learning assumes that

some parts of the source domain can be re-used. [Pan and Yang, 2010] consider only the case

where source instances are re-weighted. Howerver, TRL is an example where information

about the source domain is implicitly transferred in the prior rules seeding RL’s heuristic

beam search, without re-weighting.

2. Transfer of feature representations aims to find a good representation of features to

reduce divergence between the source and target domain. This involves variable construc-
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Transfer learning
setting

Related areas Source do-
main labels

Target do-
main labels

Tasks

Inductive transfer
Multi-task learning Available Available Regression,

Classification
Self-taight learning Unavailable Available Regression,

Classification

Transductive
transfer

Domain adaptation, Sample
selection bias, Co-variate shift

Available Unavailable Regression,
Classification

Unsupervised
transfer learning

- Unavailable Unavailable Regression,
Dimensional-
ity reduction

Table 2: Settings for transfer learning based on availability of source and target labels.

tion, and is similar to common-variavle learning. TRL does not do any variable construction,

unless the conjunction of variable-value pairs in rule antecendents are considered new feea-

tures. However, it is possible to extend TRL to perform supervised variable construction, as

discussed in Sectionr̃efsect:conclusion, Conclusion.

3. Transfer of shared parameters aims to discover common hyperparameters between

the distributions of the source and target tasks. The transferred knowledge are the shared

hyperparameters.

4. Relational knowldge transfer or relational transfer learning deals with transfer learnig

for relational domains, where the data is not “independent and identically distributed” (i.i.d.)

as is traditionally assumed in machine learning. The data can be represented by multple

relations, such as social networking data. Relational transfer learning tries to transfer the

relations between the data from the source domain to the target domain.

Transfer learning can improve generalization performance of the learned information, the

speed of learning and the intelligibility of learned models [Caruana, 1997]. If it improves the

desired aspect, it is called positive transfer, and if it degrades it, it is called negative

transfer. This thesis focuses on improving performance on one classification learning task.

In this thesis, we consider a learning task to be learning a classifier with discriminatory

markers from clinical data set collected one set of experimental conditions, e.g. a set of

SELDI proteomic mass spectra collected from samples in one session. A related task will be
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considered any other data set where we might expect to see the same information learned

from the two data sets. Operationally this will be, for example, a data set collected in a

different session, but from the same type of samples (e.g. blood serum), same spectrometer

platform (e.g. SELDI IMAC), and the same or very similar measurement conditions.

Inductive transfer may not be beneficial to learning if the transfer mechanism is not

appropriate for the tasks at hand; it may even degrade learning performance. See for example

[Caruana, 1997]. Indeed, finding an appropriate mechanism is a difficult research problem

for any source and target domains.

The benefits of transfer learning have been demonstrated in a number of theoret-

ical and experimental studies. Theoretical results include [Baxter, 1995, Baxter, 1998,

Ben-David et al., 2002, Ben-David et al., 2003]. Those studies prove that, given a number of

data sets from different tasks, it is possible in theory to more effectively learn a classification

function for those tasks or one of the tasks than using data from just one task. The proofs are

based on the idea that the additional data sets can be used to reduce the hypothesis space of

the learning tasks. [Baxter, 2000] casts inductive transfer as the search for a learning bias, in

particular, a set of variables, that is appropriate for all learning tasks in an environment; he

proves that the sample complexity (the bound for number of instances) per task for learning

new instances is smaller than when using one task, and the sample complexity for learning

a new task is smaller after learning the bias of the environment. The number of instances

required to accurately estimate the error of a hypothesis depends inversely on the number

of tasks. [Baxter, 2000] shows that variable sets can be learned using a single-hidden-layer

ANN.

[Baxter, 1998] presents a hierarchical Bayes model [Gelman et al., 2004] of learning to

learn, where Q is an “objective prior” for sampling the task distributions Pθ. The learner’s

bias is represented by the set of candidate distributions, R = {Pθ|θ ∈ Θ}, and a “subjective

prior” Pπ parametrized by π ∈ Π. The learner’s goal is to find the task-sampling distribution

Q among the set of candidate prior distributions, {Pπ|π ∈ Π}, given a hyper-prior PΠ on

Π, and assuming Q is among the candidates. This model is used to derive bounds for the

sample complexity of the ANN learning of [Baxter, 2000].

Most of the existing experimental results in transfer learning involve artificial neural
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networks (ANNs). However, ANNs are not well-suited for biomarker discovery because:

1. It is difficult to extract the discriminative variables (potential biomarkers) among all

input variables of the learned ANN.

2. Training an ANN requires many training instances

3. Training an ANN is computationally intensive

There are several studies that have explored transfer with other learning methods.

[Caruana, 1997] proposed a method for transfer with decision tree learning. However, this

method is based on multi-task learning, which does not apply to the problem of transfer

among mass spectrometry sessions. [Thrun and O’Sullivan, 1996] use a nearest neighbor

approach to selectively transfer from the most similar tasks when there are many source

tasks.

The study that is most similar to this thesis is [Reid, 2007], which developed the DEFT

system. DEFT is a system for transfer learning of first-order logic rules, transferring evidence

among similar rules. Two rules are considered similar if they use the same variables. The

evidence transferred is the conditional probability table (CPT), namely the number of true

positives, false positives and negatives of the rule on the source data. This prior CPT is

then combined with CPT from the target data to arrive at the posterior estimate of the

rule’s quality. This is equivalent to our “union baseline” as explained in Section 4. Unlike

DEFT, which transfers the evidence for the prior rules, TRL transfers the rules and fills in

the prior evidence from the target data only. DEFT does nothing to modify the learner’s

learning bias or search space. By contrast, TRL directly affects the learning bias by seeding

the search with the prior rules. This means TRL starts the search from a point in the search

space that is assumed to be close to a good solution because the learning tasks (the data

sets) are assumed to be similar. One effect of this seeding is that it makes it more likely that

the prior rules will be used in the new model, if they are accurate on the target data. This

acts as a confirmation of the prior knowledge.

Also, unlike DEFT, TRL uses propositional learning, which makes it more suitable for

biomarker discovery from highly multi-dimensional data and scarce training instances.

Much of the existing experimental work in transfer learning deals with scenarios where
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the data is partially shared between learning tasks. For example, [Caruana, 1997] and

[Silver and Mercer, 2002] use ANNs that share inputs and hidden representations, but have

different output; for example in [Caruana, 1997], (see Appendix ), every data vector con-

tains values for the input variables that represent an image of a driver’s view of a road, and

values for the output variables that specify (a) which way the car should be steered and

(b) the location of the edge of the road. Similarly, in Abu Mostafa’s ”learning from hints”

[Abu-Mostafa, 1990], the input patterns are the same for all tasks. However, this scenario

does not apply to the current thesis because we have tasks whose input variables represent

roughly the same inputs that have a real-world meaning (the approximate m/z of various

peptides in the clinical sample), but have the same output variable (the clinical group of the

individual; e.g., healthy or diseased with lung cancer). In particular, finding discriminative

variables from data obtained from each experimental session will be considered one learning

task. The goal will be to find a small set of variables that are discriminative for all tasks.

2.8 CLASSIFICATION RULE LEARNING WITH RL

As seen in Section 1, the TRL transfer learning framework is based on the classification rule

learner RL [Clearwater and Provost, 1990]. Rule learning has a number of advantages for

biomarker discovery, specifically understandability, and RL was chosen because it has been

successfully used in biomarker discovery from gene-expression and proteomic mass spectrom-

etry data [Gopalakrishnan et al., 2006, Ranganathan et al., 2005, Ryberg et al., 2010].

This section provides an overview of RL, which will be useful in understanding transfer

learning described in Sections 3.1–3.2.
RL [Clearwater and Provost, 1990] is a classification learning algorithm that outputs a

rule model classifier. RL’s input is a set of training instances, where each instance is a vector
of values for the input variables, and a class value. The classifier comprises a set of rules of
the form:

IF <condition> THEN <consequent>

where the condition is a conjunction of one or more variable-value pairs, and consequent is
a prediction of the class variable. For example, a rule learned from proteomic mass spectra
might be:

IF ((MZ_2.05 = 1.30..inf) AND (MZ_9.65 = 0.15..0.23)) THEN Class=Control
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Parameters: C, constraints on rules
Input : X, a data set of training instances
β0 ← MakeBeam(∅⇒class1, ∅⇒class2 . . .) ;
model ← [] ;
for iteration i = 0, 1, . . . do

if βi is empty then return model βi+1 ← MakeBeam() ;
for each rule ρ ∈ βi do

if satisfies(ρ, C,X) then
model ← model + [ρ];

end
if not isincorrigible(ρ, C,X) then

βi+1 ← βi + specialize(ρ);
end

end

end
return model;

Algorithm 1: RL. Function MakeBeam creates a beam sorted by certainty factor. The

initial rules have no conditions, so they apply to all data. Function satisfies checks if

the rule satisfies the constraints. Function incorrigible checks if a specialization of the

rule might satisfy the constraints.

A classification rule is an assertion that a data instance matching the variable-value pairs

in the condition has the class specified in the consequent. The rule in the example above can

interpreted as “the label should be Control if the variable for m/z 2.05 kDa was measured

at above 1.30 units and the m/z 9.65 was measured between 0.15 and 0.23.” RL uses these

intervals of real values as discrete values which the input variables can take on. If some

input variable has values in the data that are real numbers, such as MZ 2.05 = 1.30, then

the variable values must be converted to intervals before RL can start learning. This process

of conversion is called discretization. If the variable is categorical, the value is a discrete

category, such as the value “female’. The class variable is also discrete.

RL rules have an associated score, called a certainty factor. The term comes from

rule-based expert systems, where rules were created to represent expert knowledge and the

score corresponds to the expert’s certainty in each rule [Shortliffe Bruce and Edward, 1975,

Buchanan and Feigenbaum, 1978]. By contrast, in rule induction algorithms such as Rule

Learner [Clearwater and Provost, 1990], the certainty factors are calculated from the training
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instances. Various functions can be used as a certainty factor, such as positive predictive

value (PPV), signal-to-noise ratio (S/N) and likelihood ratio (LR). The certainty factor

functions used by Rule Learner are defined in Appendix .

A rule matches an data instance if the instance’s values logically satisfy the rule con-

dition. The coverage of a rule is the number of instances that match the condition. A

true positive (TP) is an instance that matches both the condition and the consequent; a

false positive (FP) is an instance that matches the antecedent but not the consequent; a

true negative (TN) is one that matches neither the condition not the consequent; a false

negative (FN) is one that does not match the condition but matches the consequent.

A classification rule model is a set of rules with an associated way of applying them, called

an evidence gathering method, for breaking ties when several rules match but predict

different class values. The experiments in this thesis used the default evidence gathering

method, “weighted voting”: each rule that fires votes for the class it predicts and the votes

are weighted by the rules’ certainty factors. Another evidence gathering method is to always

apply the rule with the highest certainty factor among matching rules.

The RL algorithm pseudo code is shown in Algorithm 1. It defines constraints on ac-

ceptable rules in terms of a number of quantities defined with respect to a rule and a data

set. The constraints are minimum coverage, min. certainty factor, maximum false positive

rate, and inductive strengthening. Coverage is the fraction of training instances for which

the rule condition is satisfied. Certainty factor (CF) is a measure of the rule’s accuracy;

we used the true positive rate: the ratio of number of instances the rule predicts correctly

divided by the number of instances it matches. False positive rate is the ratio of number

of instances the rule predicts incorrectly divided by the number of instances it matches.

Inductive strengthening is the minimum number of previously uncovered instances that

a proposed rule must cover.

The algorithm proceeds as a heuristic beam search through the space of rules from general

to specific [Provost et al., 1999]. Starting with all rules containing no variable-value pairs,

it iteratively specializes the rules by adding conjuncts to the condition. It evaluates the

rules and inserts promising rules onto the beam, sorted by decreasing certainty factor. Beam

search is used to limit the running time and space of the algorithm.
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If specializing rule R1 produces rule R2, then R2 is called the child of R1 and R1 is

called the parent of R2. A child rule matches a subset of the instances that its parent

matches, and that subset may have more homogeneous class values. Thus the child may

have a higher certainty factor value. On the other hand, when the rule matches too few

instances, it is unlikely to generalize well, and should not be included in the classification

model. Thus when a rule’s coverage drops below the coverage threshold, it is not specialized

any more. To reduce the chance of over fitting, the instances are not sampled with complete

replacement. Instead new rules must cover at least σ previously uncovered training instances;

σ is a user-specified parameter called “inductive strengthening”.

After the search terminates, the set of found rules that specify user-specified constraints,

together with a predefined evidence gathering method, is the induced classifier (the model)

and can be used to classify unobserved instances. The evidence gathering method defines

which rule should apply in case the instance matches two or more rules with different con-

sequents. A simple method is to apply the rule with the highest certainty factor value.

Another, commonly used, method is weighted voting, where each matching rule is weighted

by its CF.

RL has several advantages over other rule learners and decision tree learners. First,

its simplicity and flexibility allow the user to use domain knowledge to explicitly set an

appropriate learning bias. Second, RL’s rules can represent nonlinear relationships such as

XOR. This is not possible in decision tree-based learners such as RIPPER [Cohen, 1995],

where each attribute is considered only once for classification. Third, RL covers data with

replacement, unlike most rule and decision tree learners, such as C4.5 [Quinlan, 1993], CART

and RIPPER, which cover data without replacement. Covering with replacement is an

advantage if data are scarce, because it leaves more instances to provide statistical support

for newly discovered rules. We have observed this in some experiments where RL was more

accurate than C4.5 Fourth, RL can handle hierarchical attributes and hierarchical values for

attributes. Fifth, RL’s model may abstain from making a prediction if it is not confident in

the prediction. This is an implicit way of avoiding costly errors. RL also has an explicit way

to handle classification errors, allowing the user to specify their relative costs.

Any learner needs a bias: a set of assumptions that allow it to generalize from
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observed data instances in order to be able to make predictions on unobserved in-

stances [Mitchell, 1980]. The bias includes the choice of hypothesis space, which must be

large enough to contain the target concept, but small enough to ensure good generalization.

RL has 12 parameters that modify its bias and can be set by the user to reflect her prior

knowledge about the learning problem. (See Sections and .) The main four parameters are:

1. Certainty factor function: a function (described above)

2. Minimum certainty factor value: the minimum CF which any rule must have in order to

stay on the beam

3. Beam width: the number of rules kept on the beam after each iteration of evaluating all

rules.

4. Maximum number of conjuncts: the maximum number of variable-value pairs in any

rule’s condition.

RL can perform a search over the space of parameter values for an appropriate learning

bias. It iterates with several values for each parameter; for each set of values for all the

parameters, it learns a rule-based classifier on part of the training data, then evaluates

the model by making predictions on the remainder of the training data and scoring the

accuracy of those predictions. Finaly, it chooses the parameters that gave the most accurate

model. This iterative evaluation is called bias space search or learning parameter

optimization. The learning is done over ver cross validaion of the training data.
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3.0 TRANSFER RULE LEARNING FRAMEWORK

The transfer scheme we propose is to load the prior rules into the beam along with the initial

rules, before the first evaluate-specialize iteration. Figure 7 illustrates the algorithm.

IF mz13.4=high THEN class=Normal
IF mz4.8=high AND mz6.7=low THEN class=Cancer
IF () THEN class=Cancer
IF () THEN class=Normal

Specialize each 
rule & sort by CF

(empty)

IF mz2.1=high THEN class=Cancer
IF mz13.4=high AND mz2.1=low THEN class=Normal 
IF mz2.1=high THEN class=Normal
...

cf=0.85

...

IF mz13.4=high THEN class=Normal
IF mz4.8=high AND mz6.7=low THEN class=Cancer
IF () THEN class=Cancer
IF () THEN class=Normal
...

Evaluate each rule 
against constraints

IF mz13.4=high THEN 
class=Cancer

IF mz4.8=high AND mz6.7=low 
THEN class=Normal

...

Final model

cf=0.2

cf=0.3

B
eam

B
eam

B
eam

B
eam

cf=0.9

Save to 
partial model

Prior 
rules

Low coverage; 
discard

cf=0.9

cf=.7

cf=0.6

Figure 7: Illustration of the TRL algorithm.
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Attributes mz4.8 mz13.4

Values High (none)

Middle

Low

Attributes mz4.8 mz13.
4

Values High High

Low Low

Target data setSource data set

Figure 8: Illustration of a mismatch between the discretization of the source data set and

the discretization of the target data set.

RL’s input data must be discrete, that is, each variable has a small number of values

in the data. Many molecular profiling methods create real-valued data, so these data must

be discretized for use with RL; that is, each real-valued measurement must be assigned to a

range. A challenge in rule transfer is to make sure that the ranges have the same meaning

across the two data sets. To transfer prior rules, we can discretize one data set and apply

the same discretization to the other one (simple rule transfer), or transform the prior rules

to use the new discretization (rule structure transfer). A further consideration is how prior

rules will affect RL’s search process. This is discussed in Section 3.3. Algorithm 2 shows the

transfer learning algorithm. The difference from Algorithm 1 is that we initialize the beam

with a list or prior rules π as described in the next sections. The set of constraints C is also

sometimes modified, as described in the sequel.

3.1 SIMPLE RULE TRANSFER

The simplest way to avoid possible differences in the discretization between source and target

is to ensure that they are discretized identically. Specifically, we discretized the target data

and impose the same discretization on the source before running RL to compute prior rules.
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Attributes mz4.8 mz13.4

Values High (none)

Middle

Low

Target data setSource data set

Impose 
discretization

Attributes mz4.8 mz13.4

Values High (none)

Middle

Low

Figure 9: Simple rule transfer: imposing the target data discretization onto the undiscretized

source data set.

This guarantees that the discretization makes sense on the target data, even if it means that

the prior rules will be less accurate on the target data.

3.2 RULE STRUCTURE TRANSFER

Because of systematic differences between source and target data, it might not be optimal

to use the same discretization for them. For example, two sets of proteomic mass spectra

might have different baselines caused by the state of the measurement equipment. Even

with post-processing such as baseline subtraction, numerical values in one data set might

not correspond to numerical values in the other. To overcome such differences, we explore

transferring only the structure of rules. Specifically, we remove feature values from the prior

rules and re-instantiate them for the target task.

For example, a prior rule:

IF (MZ_7.23 = High) THEN (Group = Cancer)

is converted to a prior rule structure:
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IF (MZ_7.23 = ?) THEN (Group = ?)

The rule is then instantiated from the target data discretization as:

IF (MZ_7.23 = High) THEN (Group = Cancer)

IF (MZ_7.23 = Low) THEN (Group = Cancer)

IF (MZ_7.23 = High) THEN (Group = Healthy)

IF (MZ_7.23 = Low) THEN (Group = Healthy)

We consider all classes in addition to all discrete feature values because the relationship in

the data might be stronger in the dual rule:

IF (MZ_7.23 = Low) THEN (Group = Healthy)

and we want to count that as a retained prior rule because it represents the same relationship

between variable values.

This approach has the additional advantage that the source data set is not needed during

the transfer learning. The prior rules can be used when the source data set is not available,

for example by extracting them from literature.

3.3 EFFECT ON THE SEARCH

To avoid over fitting, RL checks that any new rules added to the model cover at least σ

previously uncovered training instances, where σ is the inductive strengthening. When prior

rules are added to the beam, they may cover some training instances from the new training

data (the target data) that are otherwise covered by other rules. Thus some rules that

would otherwise be included in the final model might be excluded if prior rules are used.

This may reduce the classification performance of the final model on the new data. To reduce

this effect, we created a variation of the algorithm that we called NC (for “non-covering”).

In this variation, the training instances covered by prior rules are ignored for purposes of

inductive strengthening. However, prior rules still affect the search through the beam: they

and their specializations may displace rules from the beam that would have otherwise stayed

on the beam. Also, prior rules can still produce different predictions, because the classifier

includes prior rules in addition to the newly learned rules.
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Covered by prior rules

Covered by rule R2

Training examples

Prior rules can displace other rules

Variation: 
no coverage (NC)

Figure 10: Illustration of displacement of a rule by prior rules. The examples covered by

rule R2 have already been covered by prior rules, so R2 is not admissible. The nc transfer

algorithms are intended to reduce that effect.

3.4 SCALING OF THE DATA SETS

When taking a batch of measurements like those typically found in a biomarker discovery

data set, there is often systematic measurement artifacts that affect all the data points

measured, but are specific to that batch of measurements. A classic example of this is a

set of mass spectra generated in one batch (one “session”). As explained in Section 2.2,

the intensities represent only the relative abundances, relative to the MS session. These

systematic measurement artefact’s can interfere with transfer learning, and in particular

with the discretization. For example, suppose in the source data set the intensities measured

for some mass to charge ratios are offset by background radiation, but in the target data set

there is no such offset. When we perform discretization using the target training data, the

source data might all end up in the “low” bin for the offset mass to charge ratios. Even if

these are discriminative features for the source data set, we would not be able to learn any
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rules that are applicable to the target data. However, if we have a sufficiently large sample,

we can normalize the source and target data to have the same mean and variance. If they

are drawn from the same distribution of biological samples, and the data set sizes are large

enough, this should counteract the systematic measurement errors.
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Parameters: C, constraints on rules

Input : X, a data set of training instances

* Input : π, a list of prior rules

* β0 ← import(π) + MakeBeam(∅⇒class1, ∅⇒class2 . . .) ;

model ← [] ;

for iteration i = 0, 1, . . . do

if βi is empty then
return model

end

βi+1 ← MakeBeam() ;

for each rule ρ ∈ βi do

if satisfies(ρ, C,X) then

model ← model + [ρ];

end

if not isincorrigible(ρ, C,X) then

βi+1 ← βi + specialize(ρ);

end

end

end

return model;

Algorithm 2: Rule Learning with Rule Transfer. The lines that differ from base RL

(Algorithm 1) are prepended with an asterisk (*). Function MakeBeam creates a beam

sorted by certainty factor, but now the prior rules in π are considered first. Function

satisfies checks if the rule satisfies the constraints. Function is incorrigible checks if

a specialization of the rule might satisfy the constraints. Function import takes each prior

rule and removes any variable that cannot be mapped to a variable in the target data (i.e.,

it generalizes the rule).
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4.0 EXPERIMENTS AND EVALUATION

This section describes the experiments done to evaluate the transfer methods implemented

in the TRL framework. Section 4.1 describes the data sets used. Section 4.2 describes the

evaluation measures

4.1 DATA SETS

In order to evaluate transfer learning performance, we need to consider classification perfor-

mance for pairs of compatible data sets. We obtained 30 data sets as summarized in Table 3:

13 MALDI sets, 11 SELDI, 5 luminex and 1 gene expression. Within each pair, each data set

was produced from the same overall clinical population and the same type of clinical samples,

and using the same protocols and measurement platform (e.g. “ProteinChip” type). The

only exception is the experiment of transferring between the ALS MALDI data set and the

ALS 2004 data set. Within each pair, data set was used once as the target when the other

one was the source. Most of the spectra were generated with replicates, that is multiple

spectra for the same biological sample. In the experiments for evaluating TRL, all replicate

spectra were averaged before learning.

The gene expression data from [Golub et al., 1999] is a well- known data set with a good

classification performance, and we used it to evaluate behavior of the transfer framework on

a pair of data sets that are known to be be drawn from the same distribution. Because of its

good performance, it allowed us to evaluate the behavior of the methods with different sizes

of source and target data sets (and thus a range of performances of the learned classifiers).

The three ALS IMAC SELDI data sets were collected by the lab of Dr. Robert Bowser
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T Disease Name Size #R #Vars Vrange Reference

G leukemia train 27+11 - 7,131 - [Golub et al., 1999]
G leukemia test 20+14 - 7,131 - [Golub et al., 1999]

P ALS MALDI 22 23+29 - 73,539 1-70k Unpublished
P ALS IMAC Zn 2004 13+9 - 73,539 2-100k [Ryberg et al., 2010]
P ALS IMAC Zn 2005 44+22 - 0-200k [Ryberg et al., 2010]
P ALS IMAC Zn 2007 53+33 - 0-200k [Ryberg et al., 2010]

P lung cancer WCX UPCI 95+90 2 51,745 2-100k [Pelikan et al., 2007]
P lung cancer WCX Vand 114+88 2 51,745 2-100k [Pelikan et al., 2007]

P lung cancer IMAC UPCI 95+90 2 51,749 2-100k [Pelikan et al., 2007]
P lung cancer IMAC Vand 114+89 2 51,749 2-100k [Pelikan et al., 2007]

P lung cancer luminex train 13 56+56 - 13+1 * [Bigbee et al., 2011]
P lung cancer luminex test 13 10+82 - 13+1 * [Bigbee et al., 2011]
P lung cancer luminex blind 13 30+30 - 13+1 * [Bigbee et al., 2011]

P lung cancer luminex train 70 56+56 - 70 ** [Bigbee et al., 2011]
P lung cancer luminex test 70 10+82 - 80 ** [Bigbee et al., 2011]

P lung cancer MALDI hic8L 1a 14+8 2 87,952 0-17k Unpublished
P lung cancer MALDI hic8L 1b 14+8 2 87,952 0-17k Unpublished

P lung cancer MALDI hic8L 2a 14+8 2 87,952 0-17k Unpublished
P lung cancer MALDI hic8L 2b 14+8 2 87,952 0-17k Unpublished

P lung cancer MALDI hic8L 3a 14+8 2 87,952 0-17k Unpublished
P lung cancer MALDI hic8L 3b 14+8 2 87,952 0-17k Unpublished

P lung cancer MALDI hic8L 4a 14+8 2 87,952 0-17k Unpublished
P lung cancer MALDI hic8L 4b 14+8 2 87,952 0-17k Unpublished

P lung cancer MALDI hic8L 5a 14+8 2 87,952 0-17k Unpublished
P lung cancer MALDI hic8L 5b 14+8 2 87,952 0-17k Unpublished

P breast cancer HICL 2008 14+8 3 87,952 0-17k [Kolli et al., 2009]
P breast cancer HICL 2009 14+8 3 87,952 0-17k [Kolli et al., 2009]

P breast cancer WCXL 2008 14+8 3 87,952 0-17k [Kolli et al., 2009]
P breast cancer WCXL 2009 14+8 3 87,952 0-17k [Kolli et al., 2009]

Table 3: Data sets used in the experiments. Horizontal lines delimit groups of data sets

containing pairs used for transfer. Column “T” shows whether the data set is proteomic

of genomic. “Size” is the number of positive clinical samples (cases) and negative clinical

samples (controls); for the [Golub et al., 1999] data set, these are ALL and AML respectively.

“#R” is the number of technical replicate spectra measured for each sample in the data set.

“#Vars” is the number of variables in the data set, such as number of m/z’s measured for

SELDI and MALDI data sets, number of proteins selected for luminex data, and number

of genes expressed for gene expression data. “Vrange” is the range of m/z’s measured for

SELDI and MALDI data sets.
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at the Department of Pathology, University of Pittsburgh. The samples were collected over

a number of years, and were used to create the sets of spectra in 2004, 2005 and 2007

respectively, with small overlaps of the samples among the data sets. The ALS MALDI data

set was generated by Dr. Jonathan Lustgarten at the University of Pittsburgh from a small

subset of the ALS SELDI 2004 samples, using a Ciphergen ProteinChip spectrometer with

a gold place ProteinChip. The exact protocol is not available.

For the lung cancer SELDI (IMAC and WCX) data, separate samples were accrued at the

University of Pittsburgh Cancer Institute (UPCI) and Vanderbilt University, as described in

[Pelikan et al., 2007] and [Yildiz et al., 2007] respectively. SELDI analysis was done concur-

rently and with the same conditions as described in [Pelikan et al., 2007], using two types of

ProteinChip: WCX and IMAC.

The “lung cancer luminex” data were generated from blood sera of patients with with

adeno lung carcinoma, patients with squamous carcinoma, clinical controls and PLuSS con-

trols. The variables are the concentrations of 70 cancer-related proteins measured by Lu-

minex xMAP multiplexed immunoassays. The training set was from samples from 56 patients

with biopsy-proven primary adenocarcinoma or squamous cell carcinoma of the lung diag-

nosed in a clinical setting, and sera from 56 age-, sex- and smoking-matched CT- screened

controls who were known to be cancer-free after a minimum 3 year follow-up. The “lung

cancer luminex 70” data sets (marked with a ** in Table 3) have 70 markers: G-CSF,

HGF, TNF-RI, IL-6, EOTAXIN, MCP-1, TNF-a T, IP-10, IL-2R, IL-8, Cytokera, ErbB2,

Fas sFa, EGFR, CA72-4, AFP, Kallikre, Mesothel, IGFBP-1, sE-Selec, sV-CAM, sI-CAM,

MPO, tPAI1, MIF, FSH, LH, TSH, PROLACTI, GH, ACTH, HE4 XXX, MMP-1, MMP-7,

MMP-8, MMP-12, Leptin, NGF, sFasL, Thrombos, Angiosta, CD40L(T, ULBP-1, ULBP-2,

MICA, SCC, SAA, TTR, Resistin, MMP-9, Adiponec, TNF-RII, EGF, IL-6R, DR5, IL-1Ra,

RANTES, GROa, MCP-3, HSP70, CEA(Fuj, VEGF, LIF, bFGF, PDGF-BB, SCF, TRAIL,

M-CSF, SCGF-B, SDF-1a. The “lung cancer luminex 13” data sets (marked with a * in

Table 3) include 13 of the previous 70 markers: Cytokeratin19, ErbB2, CEA, sE-Selectin,

tPAI1, MIF, PROLACTIN, GH, Thrombospondin, SAA, TTR, RANTES, PDGF-BB. In

addition, experiments included the demographic variable, age. Those 13 markers are ones

that were found to be discriminative, on the training data set with the 70. Therefore, train-
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ing a classifier and testing it on the examples from the original train data set will produce

an over-estimate of classification performance. However, this is not important for our pur-

poses of comparing the amount of transfer and classification performance with and without

transfer.

The lung cancer MALDI data were collected for the Lung SPORE project, by Dr. David

Malehorn at the University of Pittsburgh Cancer Institute (UPCI) Clinical Proteomics Fa-

cility. They were created from 15 pools of samples from lung cancer patients, 8 from clinical

controls and 8 from controls from the Pittsburgh Lung Screening Study (PLuSS). PLuSS is

a community-based study of lung cancer screening with low-dose multi-detector helical com-

puted tomography (CT), funded by the NCI SPORE in Lung Cancer at the University of

Pittsburgh and approved by the IRB. Only the cancer and PLuSS control spectra were used

for our experiments. The protocol was as follows. Samples were normalized to 5.7 mg for

processing (except for 3 pools). Each pooled sample was immunodepleted. Then they were

fractionated using anion exchange into 11 fractions: Frx0, Frx1A/1B, Frx2A/2B, Frx3A/3B,

Frx4A/4B, Frx5A/5B. Each of the 11 fractions for each sample was purified on HIC8 mag-

netic beads. Each magnetic prep was then spotted with CHCA matrix. Each spotting was

done in duplicate. Spotted samples were read on a Bruker MALDI spectrometer in linear

mode, with different mass ranges.

Those 30 data sets were grouped into 17 pairs (13 groups) of compatible data sets for

transfer among the sets within each pair. Within each pair, each data set was produced

from the same overall clinical population and the same type of clinical samples, and using

the same protocols and measurement platform (e.g. “ProteinChip” type). The protocols are

described in the published papers.

The 17 pairs of data sets included 14 pairs of mass spectrometry data sets that were

pre-processed using baseline subtraction, total-ion-current (TIC) normalization, alignment

and, in some cases, other procedures. The procedures are described in Table 4, Legend of

Operations, below, and are represented in the names of the resulting data sets in Table 6,

Section 5.1. The preprocessing without peak selection resulted in a total of 8 data set pairs

(Table 5), an peak selection resulted in a further 17 pairs (Table 6).

After alignment, the two data sets in each pair had the same sets of variables. Thus the
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experiments evaluated transfer learning for the case when the source and the target domain

share all their variables.

For discretization, we used EBD with λ=1, which has been shown to perform well on

biomedical data [Lustgarten, 2009]. RL parameter settings were: min. CF: 85%; min.

coverage: 4 instances; max. FP: 10%; inductive strengthening: 1 example.

4.2 EVALUATION MEASURES

The purpose of the transfer rule learning framework is to (1) evaluate the agreement of

new data with the prior information, and simultaneously (2) learn new information that

incorporates as much of the prior knowledge as useful. High agreement would mean much

prior information is retained and is accurate on the new data set. To evaluate the agreement,

we measured several variables:

1. The performance of the learned classifier, namely:

a. accuracy

b. sensitivity

c. specificity

2. The amount of information transferred, defined by three measures of the amount of

transfer:

a. rr/pr: number of rules retained as a proportion of prior rules

b. rr/lr: number of rules retained as a proportion of the total number of rules in the

new rule model

c. ra/la: number of variables (attributes) in the retained rules, as a proportion of

number the variables in the new rule model.

The number of rules and variables have to to normalized in this way in order to make it

possible to compare them across data sets of different sizes. We recorded those measures for

cross-validation folds, and for the final model learned on all the target data.
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All experiments are performed in m× n-fold cross-validation, usually 10×10-fold cross-

validation. (See Chapter 2.6.)

As a baseline condition, we used learning on the target data alone.
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Vand+UPCI Create a data set as the union of the instances (clinical samples or spec-

tra) in data set “Vand” and the data set “UPCI”, first making sure that

they have the same list of m/z’s

1.5k+, 1.5k- Select m/z’s greater than 1kDa, up till the highest m/z’ in the raw data

set

2k57k, 2k-67k m/z’s between 1kDa and 67kDa

WCX Ciphergen SELDI Weak cation exchange

WCXL Bruker MALDI weak cation exchange, linear mode

IMAC+WCX Create the union of the m/z’s in the data set from the IMAC platform and

the WCX platform. The data sets must have the same set of instances

(clinical samples)

bs10 Subtract baseline signal with window of 10 m/z’s (SpecAlign default)

rn Remove negative intensities. This is useful after because baseline sub-

traction.

ri Relative intensities: scale the intensities for each m/z to the range [0, 1]

tc Normalize by total ion current

pi Select peaks using the default Spec Align parameters, and create vari-

ables from the peak intensities

pi0.2,10,1.1 Select peaks with parameters 0.2, 10, 1.1, then create variables from the

peak intensities

sc Scale each variable to mean 0, standard deviation 1

cv10 Perform 10-fold cross validation

bss10 Perform bias space search with 10-fold internal cross validation

bss5cv10 Perform bias space search with 5-fold internal cross-validation, repeated

over 10-fold external cross-validation

d71 Discretize variables using EBD [Lustgarten, 2009] (RL default)

d03, gaus Discretize variables using Gaussian discretization with 3 intervals

d62, fi Discretize variables using Fayyad and Irani Minimum Description Length

(MDL) discretization [Fayyad and Irani, 1993]

Table 4: Legend of operations performed on the data sets.
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5.0 RESULTS

This chapter presents and discusses the results of the experiments performed to evaluate the

proposed methods of transfer. Section 5.1 presents the baseline performance results which

are to be compared with the proposed methods, and the rationale for including some of the

available data sets and excluding others from the comparison. Section 5.2.1 describes the

results of transfer between two subsets of the same data set that was collected in one batch.

5.1 BASELINE PERFORMANCES

This section discusses the classification performance of RL, without transfer, on the available

data sets. These baseline performances are then used to calculate a relative improvement

in performance when using transfer; these changes in performance are presented in later

sections. However, the baseline classification performances are presented as absolute perfor-

mances.

Unfortunately many of the performances are very low, and especially many data sets

result in very low specificity. This is partly because RL made many abstentions when asked

to predict the negative data instances (the controls), and our metric considers abstentions

as an incorrect prediction. For this reason, we additionally consider the results if RL had

predicted control instead of abstaining. That is, we treated abstentions as predictions for

control. This altered inference method can be considered a different evaluation measure, and

we present it alongside the usual performance measures (accuracy, sensitivity, specificity).

We do not examine transfer across data sets for which RL performs very poorly because

the comparison would be meaningless, and such classifiers would not be very useful. Indeed,
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Data set Acc SN SP Ab Acc SN SP CVF

Golub train 0.92 0.82 0.96 0 0.92 0.96 0.82 20
Golub test 0.85 0.90 0.79 0 0.85 0.90 0.79 20

ALS MALDI22 0.55 0.77 0.22 5 0.73 0.77 0.67 10
ALS IMAC Zn 2004 0.56 0.39 0.69 3 0.58 0.39 0.72 10

Lung WCX UPCI bss10 0.59 0.63 0.54 5 0.61 0.63 0.59 bss10
Lung WCX Vand bss10 0.77 0.70 0.82 7 0.80 0.82 0.76 bss10

Lung WCX UPCI 2k-67k 0.53 0.64 0.41 8 0.56 0.64 0.48 10
Lung WCX Vand 2k-67k 0.73 0.81 0.64 15 0.78 0.81 0.75 10

Lung IMAC UPCI bss10 0.59 0.60 0.59 13 0.64 0.60 0.68 bss10
Lung IMAC Vand bss10 0.71 0.84 0.54 6 0.73 0.84 0.60 bss10

Lung Luminex train 13 0.85 0.86 0.84 0 0.85 0.86 0.84 20
Lung Luminex test 13 0.86 0.02 0.94 0 0.87 0.20 0.95 20

Lung Luminex train+test 13 0.75 0.61 0.81 18 0.92 0.92 0.92 20
Lung Luminex blind 13 0.77 0.77 0.77 0 1 1 1 20

Lung Luminex train 70 0.77 0.68 0.86 0 0.77 0.68 0.86 20
Lung Luminex test 70 0.87 0.1 0.96 4 0.87 0.1 0.96 20

Table 5: Performance on baseline experiments without peak selection (rule learning without

transfer). The data sets are named for the initial data set in Table 3, see the legend of data

processing operations. “*” indicates the results is for the data set before it is imported with

another data set for equalizing the sets of features (m/z’s). The data sets achieving a greater

than 55% accuracy are in bold.

as we anticipated, and as we will see later, transfer to or from a data set with a very low

performance can rarely improve performance, and in that case it might be better to use

the classifier learned from the better-performing data set. Instead, to make a meaningful

comparison, we use only data sets that have a baseline accuracy of 0.55 or greater. The

baseline results are shown in Tables 5 and 6. Thirteen data set pairs (26 data sets) meet

the accuracy ≥ 0.55 threshold. These include: the gene expression data (1 data set pair);

the ALS SELDI 2004 data and MALDI data (1 data set pair); the lung cancer SELDI WCX

data sets with two types of pre-processing (peak-selected and non-peak selected; 2 data set

pairs); the lung cancer SELDI IMAC data sets with three types of pre-processing (3 data

set pairs); the lung cancer Luminex data sets with 13, 14 and 70 variables (4 data set pairs);

and two of the lung cancer MALDI data set pairs, namely 1 and 3 (2 data set pairs).

49



Data set Acc SN SP Ab Acc SN SP CV
ALS MALDI 22 pi * 0.73 0.77 0.67 1 0.73 0.77 0.67 10
ALS IMAC Zn 2004 rn pi * 0.75 0.83 0.69 3 0.73 0.61 0.83 10

ALS MALDI22 pi 0.55 0.77 0.22 2 0.73 0.77 0.67 10
ALS IMAC Zn 2004 pi 0.31 0.34 0.26 16 0.54 0.26 0.76 10
ALS MALDI22 rafft pi 0.45 0.62 0.22 3 0.59 0.62 0.56 10
ALS IMAC Zn 2004 rafft pi 0.29 0.22 0.34 18 0.54 0.22 0.79 10
ALS 2004 rn ri rafft pi cv10 0.27 0.39 0.17 18 0.52 0.39 0.62 10
ALS 2005 2k-19k bs rn ri rafft pi cv10 0.43 0.59 0.00 9 0.59 0.57 0.64 10
ALS IMAC Zn 2004 pi 0.77 0.90 0.61 3 0.79 0.61 0.93 10
ALS IMAC Zn 2007 pi 0.15 0.00 0.23 64 0.42 0.23 0.73 10

ALS 2004 IMAC Zn ac pi cv20 0.71 0.83 0.56 2 0.73 0.57 0.86 20
ALS 2007 IMAC Zn ac pi cv20 0.11 0.03 0.16 69 0.39 0.16 0.79 20
ALS 2004 IMAC Zn pi cv10 0.69 0.93 0.39 2 0.69 0.39 0.93 10
ALS 2007 IMAC Zn pi cv10 0.12 0.06 0.16 72 0.43 0.16 0.88 10

Lung WCX Vand+UPCI 2k pi sc 0.55 0.77 0.28 75 0.68 0.77 0.58 10
Lung WCX Vand+UPCI 2k pi 0.63 0.79 0.44 56 0.73 0.79 0.65 10

Lung IMAC UPCI pi bss10 0.75 0.89 0.59 2 0.76 0.89 0.61 bss10
Lung IMAC Vand pi bss10 0.68 0.95 0.35 15 0.74 0.95 0.48 bss10
Lung IMAC UPCI pi 0.63 0.85 0.40 23 0.74 0.85 0.62 10
Lung IMAC Vand pi 0.61 0.94 0.19 19 0.69 0.94 0.38 10
Lung IMAC Vand+UPCI 2k pi 0.53 0.84 0.17 82 0.68 0.84 0.50 10
Lung IMAC Vand+UPCI 2k pi sc 0.45 0.79 0.05 108 0.65 0.79 0.49 10

Lung MALDI hic8L 1a 900+ tc rafft pi 0.68 0.71 0.62 1 0.73 0.71 0.75 22
Lung MALDI hic8L 1b 900+ tc rafft pi 0.73 0.86 0.50 1 0.77 0.86 0.63 22
Lung MALDI hic8L 2a 900+ bs10 rn rafft pi 0.50 0.64 0.25 1 0.55 0.64 0.38 22
Lung MALDI hic8L 2b 900+ bs10 rn rafft pi 0.55 0.79 0.12 3 0.64 0.79 0.38 22
Lung MALDI hic8L 3a 900+ bs10 rn rafft pi 0.59 0.86 0.12 3 0.68 0.86 0.38 22
Lung MALDI hic8L 3b 900+ bs10 rn rafft pi 0.73 0.79 0.62 0 0.73 0.79 0.63 22
Lung MALDI hic8L 4a 900+ bs10 rn rafft pi capl 0.00 0.00 0.00 19 0.36 0 1 22
Lung MALDI hic8L 4b 900+ bs10 rn rafft pi capl 0.59 0.57 0.62 4 0.59 0.57 0.63 22
Lung MALDI hic8L 5a 900+ bs20 rn rafft pi capl 0.36 0.57 0.00 0 0.36 0.57 0 22
Lung MALDI hic8L 5b 900+ bs20 rn rafft pi capl 0.68 0.79 0.50 0 0.68 0.79 0.5 22

Breast HICL 2008 1600+ bs10 ri rafft pi d03 loo 0.42 0.22 0.62 9 0.53 0.44 0.63 64
Breast HICL 2009 1600+ bs10 ri rafft pi d03 loo 0.35 0.35 0.35 20 0.44 0.48 0.40 64
Breast WCXL 2008 1700+ bs10 tc rafft pi d03 ppv 0.47 0.59 0.34 7 0.53 0.72 0.34 30
Breast WCXL 2009 1700+ bs10 tc rafft pi d03 ppv 0.59 0.73 0.45 5 0.64 0.55 0.73 30

Table 6: Performance on baseline experiments with peak selection (rule learning without

transfer). The data sets are named for the initial data set in Table 3, see the legend of data

processing operations. “*” indicates the results is for the data set before it is imported with

another data set for equalizing the sets of features (m/z’s). The data sets achieving a greater

than 55% accuracy are in bold.
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Figure 11: Baseline performances with RL and 10-fold cross validation. For the meaning of

the operations, see Table 4.
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5.2 SIMPLE RULE TRANSFER

This section presents the results of experiments with transfer of whole rules, including per-

formance compared to the baselines, and amount of transfer. We begin with transfer exper-

iments between subsets sampled from the same data (intra-set transfer), and then present

results across data sets.

5.2.1 Varying the relative Sizes of the Source and Target Data

To check that transfer improves performance when the source and target data are known to

be from the same distribution, we performed transfer between subsets of the same data set.

We call this intra-set transfer. We used the genomic data from [Golub et al., 1999] because

it is a well-known data set with a good classification performance. Moreover, we wanted to

explore how the performance after transfer and the amount of transfer are affected by the

relative sizes of the source and target data sets. For this purpose, successive target sets of

different sizes were sampled at random from the whole data set, and the remainder of the

data was used as source data. The sizes of the source and target data sets represent a more

general issue of the generalization performance of the classifiers learned from the data sets.

Indeed, in a practical application of transfer, the source and target classifiers might have

different generalization performance due to size or different amounts of noise in the data

sets. As an illustration, the absolute performance with different subset sizes sampled from

all the data, is shown in Figure 12. The data sizes range ranging from 10% to 90% of all

the data, and the performance is the average of 10 x 5-fold cross-validation. (Using 10-fold

cross-validation was not possible with 10% of the data because there are only 72 instances.)

We see a progressive increase in accuracy from 50% (with 10% of the data) to 90% (70%

of the data), and a dramatic increase in specificity from 10% to 80%. Thus, when doing

transfer from a 80% subset to a 20% subset, this represents transfer from a model with 90%

accuracy to a model with 50% accuracy.

Figure 13 shows the change in performance after the simple rule transfer compared to

using only the target data. As expected, this works well because the source and target
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Figure 12: Performance on subsets of different sizes, sampled from the gene expression

data [Golub et al., 1999]. Horizontal axis: percentage of data set used as target. Averages

of 10 random source/target splits, with 5-fold cross-validation. Vertical axis: performance.

data are from the same distribution. Transfer never decreases performance, and significantly

increases performance when the source data set is large compared to the target data, that

is when the source classifier generalizes better than the classifier learned on the target data.

The improvement decreases as the size of the target data increases. An exception to that

trend occurs with 10% of the target data; in this case there is no benefit from transfer

because the target data is too small to accurately evaluate the goodness of a classifier, and

all the transferred rules are discarded. In fact, no rules are learned at all on the target data

set of 7 examples, regardless whether transfer is used. This should not be very surprising

because we have a minimum coverage requirement of 4 examples for new rules to be added

to the rule set. When we have only 7 examples, a feature would have to predict more than

half of them exactly correctly in order to be retained. However, trying to learn such a high
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Figure 13: Performance change and amount of transfer in gene expression

data [Golub et al., 1999] with simple rule transfer compared to target data only. Left panel:

change in performance. Right panel: amount of transfer. Target data was sampled ran-

domly, and remaining data was used as source. All numbers are averages of 10 random

source/target splits, with 5-fold cross-validation for the target data.

dimensional problem with only 7 training examples is unlikely to ever be very effective, since

the learning procedure would be swamped by noise.

A similar trend is seen with the number of rules and variables transferred in the right

panel of Figure 13. Recall that rr/rp represents number of rules retained as a proportion

of all prior rules; rr/rl: the number of rules retained as a proportion of all rules learned;

and ar/al: the number of attributes in the retained rules as a proportion of all attributes

in the learned rules. When the target data are small, the proportion of all learned rules

that were retained from the source classifier (rr/rl) is large, and decreases as the source

data decreases relative to the target data. With 80% of the data used as source, as much as

90% of the rules learned after transfer are prior rules learned from the source data. This is

because the source data allows the learner to learn many good rules, and most of the rules

we learn from the target data come from prior rules. The same trend is seen for the fraction
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of attributes in the target classifier that were in the source classifier (ar/al), for the same

reason. By contrast, the proportion of prior rules that are retained (rr/rp) is greatest when

the source and target data sets are about equal. This is because the large source data sets

give rise to large prior models, and so the fraction of those prior rules retained is small. As

the size of the source data decreases and the number of prior rules decreases, increasing the

ratio rr/rp. As the size of the source data decreases further, the quality of the rules learned

also decreases and even though some rules are learned, many of them are rejected when the

target data are considered again leading to a small rr/rp ratio.

5.2.2 Simple Rule Transfer Across All Data Sets

Next we consider the results of simple rule transfer across data sets where the source and

target data that are generated from independent measurements. The data sets to be used

were selected in Section 5.1 and described in Section 4.1. The mean changes in performance

with different transfer methods are shown in Figures 14 and 15. Figure 14 considers ab-

stentions as errors, while Figure 15 considers abstentions as predictions for control. Because

Figures 14 and 15 contain a lot of numbers, the trends might not be entirely clear. If we

compute the average change in performance for each of the performance measures: accuracy,

sensitivity and specificity we see that on average, transfer learning improved all measures of

performance. However, the improvement was very small, about 0.5% increase in accuracy.

The increase is greater for sensitivity than for specificity. Additionally, the standard devi-

ation of the change is several times larger than the increase, and is greatest for specificity

where the standard deviation is 5%. In several cases, transfer substantially increases the

number of abstentions.

Notably, whenever transfer decreases performance, transfer in the opposite direction

never decreases performance. Moreover, the average is lowered by two significant drops in

performance, namely ALS MALDI (22 examples, -0.09) transferred from IMAC (2004 data,

52 examples, -0.12) and Lung Cancer IMAC UPCI peak-selected transfer from Vanderbilt.

In both cases, there was a large increase in performance when transferring in the other

direction. To remove the effect of these outliers, we can consider the ratio of the number of
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Figure 14: Mean change in performance when abstentions are considered errors. Change for

each of the 26 data sets, compared to training on the target data set alone, for each data

set. Means are for cross-validation as listed in Table 5, but usually 10-fold.
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Figure 15: Mean change in performance when abstentions are considered predictions for

Control. Change for each of the 26 data sets, compared to training on the target data set

alone, for each data set. Means are for cross-validation as listed in Table 5, but usually

10-fold.
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Figure 16: The number of experiments, of 26, for which the performance increased, did

not change, or decreased after transfer. (a) Abstentions treated as errors. (b) Abstentions

treated as predictions for control

times performance increased, was not changed, or decreased after transfer, or the “win-tie-

lose” ratio. The ratio is 0.50 : 0.23 : 0.27, which shows that transfer increased performance

in most cases, but by a small amount. The ratios are shown visually in Figure 16.

When considering abstentions as negative data instances (controls), the improvement

in accuracy and specificity were greater, 1% and 2% respectively, and the improvement in

sensitivity was the same. The win-tie-lose ratio (Figure 16 (b)) is very similar to when

considering abstentions as incorrect predictions. It is interesting that whenever transfer in

one direction decreased performance, transfer in the other direction never decreased it and

usually increased it. It is not always the case that transferring from the higher-performing

data set to the lower-performing one improves performance. In fact in most cases, the

baseline performance of the two data sets is comparable – for example, the lung cancer

IMAC data from UPCI and Vanderbilt with peak selection have accuracies 63% and 61%

respectively, while transferring from Vanderbilt to UPCI hurts accuracy the most among all
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Figure 17: Mean change in performance compared to training on the target data set alone,

for each transfer method, mean over all 26 data sets. (a) Abstentions are considered errors.

(b) Abstentions are considered predictions for control.

data sets, and transferring from UPCI to Vanderbilt improves accuracy the most among all

data sets.

5.3 COMPARISON OF THE TRANSFER METHODS

This section examines the results with the four methods of transfer across the 26 data sets.

The data sets to be used were selected in Section 5.1 and described in Section 4.1.

5.3.1 Effect on Performance

The changes in performance and standard deviations for each transfer method averaged over

cross-validations of the data sets are shown in Figure 17. The mean performance changes

were small relative to their standard deviations shown in Figure 18.
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Figure 17 (a) counts abstentions as errors. In this case, there was an improvement in ac-

curacy and sensitivity on average with simple rule transfer (the “tr” and “tr nc” conditions).

On the other hand, structure transfer (“ts” and “ts nc” conditions) decreased performance.

Specificity either decreased or was virtually unchanged. When we treat abstentions as pre-

dictions for control as shown in Figure 17 (b), we see some of the same trends. Specifically,

rule transfer (the “tr” and “tr nc” conditions in Figure 17 (b)) improves performance, while

the structure transfer approaches (the “ts” and “ts nc” conditions in Figure 17 (b)) have

mixed results. However, evaluating in this way, we always see improvements in specificity

from all transfer methods and smaller improvements in sensitivity for the rule transfer meth-

ods. Comparing the two panels in Figure 17, we see that the structure transfer models tend

to abstain more than the baselines. Consequently they lead to lower accuracy compared to

the baselines, when we score abstentions as errors. By contrast, when we count abstentions

as predictions for control cases, they tend to have similar accuracy to the baseline models.
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Figure 18: Standard deviation of the changes in performance for each method over the 26

data sets, compared to training on the target data set alone. Abstentions are considered

predictions for Control; the standard deviation is taken over the cross-validation mean for

each data set.
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Figure 19: Number of improvements, ties and decreases in accuracy after each method of

transfer, compared to training on the target data set alone. (a) Considering abstentions as

errors. (b) Considering abstentions as predictions for control. Counts are over the 26 data

sets, and performance was on cross-validation of each data set. (See Section 4.1.)

We can also examine for each transfer method, how often it increased, decreased or had

no effect on performance compared to using the target data alone. Figure 19 (a) shows this

ratio for accuracy when considering abstentions as errors. We see that simple rule transfer

methods (“tr” and “tr-nc”) improved accuracy about 50% of the time and decreased it

about 25% of the time. Structure transfer had a much smaller proportion of improvements

in accuracy and much larger proportion in no-changes. The trend also held when considering

abstentions as predictions for control, as we can see in Figure 19 (b); simple rule transfer

increased accuracy almost 50% of the time and decreased it about 25% of the time; while

structure transfer had a much smaller proportion of increases which was similar to the

proportion of decreases. This is consistent with the results we observed for the means in

Figure 17.

Thus, overall simple rule transfer (the “tr” and “tr-nc” conditions) increased performance
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(accuracy, sensitivity, specificity) significantly more often than decreased it, and on average

made a small increase in performance. That simple rule transfer performed better than

structure transfer is surprising because structure transfer was intended as a way to overcome

the difference in discretization between the source data and target data, and thus make

prior rules more generalizable on the target data. Recall that to overcome the differences in

discretization, structure transfer instantiates every possible rule of the prior structure with

the target variable-values, and adds all those rules to the beam for processing. This includes

negation of the original prior rule. All the instantiated rules are then specialized during

search, so the final model may also include those instantiations. Thus this result suggests

that the benefit gained from more accurate discretization of the prior rules comes at the cost

of adding less accurate rules to the final classifier, which more often than not mis-classify

target examples.

Another general trend in the results is that the no-coverage (“nc”) transfer conditions

show a less pronounced change than transfer where prior rules affect the coverage of examples.

This is interesting because the no-coverage condition allows interaction of prior rules with

new rules during learning only via the beam. However, rules do interact during inference.

Thus the result suggests that it is beneficial to take account of these interactions between

all rules via coverage of examples training rather than ignore them.

We note that for the rr/rl measure of amount of transfer, the highest amount of transfer

is achieved with the whole-rule transfer method.

5.3.2 Amount of Transfer

In addition to performance, we are interested in the number or rules that are retained from

the source to the target models. This measures to some extent the amount of knowledge that

has been transferred from one model to the other. We will consider the number of retained

rules as a fraction of the total prior rules and also as a fraction of the total learned rules.

First we consider the amount of transfer when we sub-sample the [Golub et al., 1999] gene

expression data and transfer from one part of the data set to the other. The performance for

these experiments were discussed in Section 5.2.1. In Figure 20 (a), we see the rules retained
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Figure 20: Transfer amount (intra-set) with varying sizes of source data for the gene ex-

pression data [Golub et al., 1999], as we vary the fraction of data used as a target set. (a)

Rules retained as a fraction of prior rules. (b) Rules retained as a fraction of learned rules.

Vertical axis: ratio of rules retained to prior rules. Horizontal axis: percentage of data set

used as target. Averages of 10 random source/target splits, with 5-fold cross-validation.

as a fraction of the prior rules. Note that in the case of structure transfer with the no coverage

condition, this ratio can be more than 1, since the model can include both a rule and its

inverse. For example, if the prior rule was IF MZ12.34 = High THEN Class=Control, then we

could include in the transferred model both IF MZ12.34 = High THEN Class=Control and

also IF MZ12.34 = Low THEN Class=Disease. Focusing first on the simple rule transfer, we

see that we are not able to transfer a lot of rules from the source model when there is almost

no target data. This is because even though the source rules are good, we do not have

enough target data to verify this, and we are only able to use a few of them. As we increase

the amount of target data, we see an increase in the fraction of prior rules that we are able

to retain, peaking at retaining around 70% of the prior rules. As we increase the proportion

of data used as target further, we start to decrease the amount of source data, and now the
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prior rules are not retained because they are of poorer quality and the target data reject

them. Note, however that the performance improvements also decrease as the amount of

target data decreases, as we saw in Figure 13. This is because the baseline performance is

improving, so even though we are able to retain a larger fraction of the rules when the source

and target data are balanced, the performance increase is smaller than when we retain just

a few rules, but the baseline is lower. The ratio of retained to learned rules, by contrast,

is monotonically decreasing, since the quality of the prior rules is monotonically decreasing.

When there is very little target data the model cannot verify all of the prior rules, but most

of the rules it learns are retained rules. As the amount of target data increases, it is able to

find new good rules, and reject bad prior rules.

We see in Figure 20 that for basic transfer with the no coverage condition, overall a larger

fraction of prior rules are retained than under basic transfer. Recall that in order for rules to

exist in the source model and be available for transfer, they need to be supported by different

training examples. However, by allowing them to be supported by the same examples in the

target data, we are able to retain a larger fraction of them than if we required them to be

supported by different examples in the target data also. However, when we look at retained

rules as a fraction of learned rules there is no such pattern, and in fact adding the no-coverage

condition decreases the fraction of learned rules that are retained from the prior model. This

is because the no coverage condition allows the model to learn more rules. Specifically it

allows the model to learn more new rules, since prior rules are added to the beam in front

of new rules.

Considering next the structure transfer setting, without a no coverage condition, we see

the same pattern as with tr nc. Overall, we retain more rules as a fraction of prior rules.

However, the reasons are different than for the result with tr nc. In the case of structure

transfer, this is because we can consider both rules and variations of those rules, and search

for support in the target data. This allows us to consider a larger set of rules to transfer,

and it is more likely that the target data will have support for a larger number of them.

Finally, the ts nc line in Figure 20, represents both rule structure transfer and the no coverage

condition. This has an even larger ratio of retained rules to prior rules, since we can not

only consider multiple variations of a rule – such as its negation and contra-positive, but we
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Figure 21: Amount of transfer with the four methods, means over the 26 data sets in their

respective cross-validations. (The cross-validations are listed in Table 5). rr/rp: proportion

of rules retained after transfer out of all the prior rules; rr/rl: proportion of prior rules

retained out of all rules in the final model; ar/al: proportion of attributes in the retained

prior rules out of of all the attributes in the final model.

can also use the same examples to validate different prior rules. In fact, we sometimes see

a ratio greater than 1. Since more rules are learned under this setting, the ratio of retained

rules to learned rules is similar to the structure transfer setting.

The transfer amounts for transfer between data sets are shown in Figure 21. The numbers

for the mean amounts of transfer over cross-validation folds are very similar. We see that

the number of rules retained as a proportion of rules in the final model (rr/rl) was smaller

with the no coverage condition , for both simple rule transfer and structure transfer (tr nc

and ts nc, respectively in Figure 21). When we have a no-coverage condition, we can learn

more rules overall since the prior rules that are retained cannot interfere with the new rules

that we consider. Consequently the number of learned rules will be greater and the ratio of

retained rules to learned rules will be smaller.

A similar trend can be seen with the ratio of attributes in the retained rules to attributes
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in the learned rules (ar/al). This proportion was greater than rr/rl for every transfer

method, which means that on average the retained prior rules were larger than the rest of

the learned rules. This might be because we consider specializations of prior rules to be

“retained” rules, and since prior rules are placed first on the beam, we would expect them

to be specialized more frequently.

Finally, we can see in Figure 21 that the proportion of retained rules to prior rules was

higher with the no coverage condition. The reason is that with the no coverage condition

the prior rules do not conflict with each other, and the model can include a larger fraction

of them.

5.4 SCALING OF THE DATA SETS

As explained in Section 4, it is beneficial to try to remove systematic measurement errors

in the data before transfer learning. TRL provides a way to do that by scaling the data to

equalize the means and variances of the source data to those of the target data.

We saw in Section 3.4, TRL is able to scale the source and target data in order to

equalize their mean and standard deviation. If they are drawn from the same distribution

of biological samples, and the data set sizes are large enough, this should counteract the

systematic measurement errors.

We tested this hypothesis by normalizing the source and target data sets to have the

same mean and standard deviation for each feature. Because Efficient Bayesian discretization

(EBD, [Lustgarten, 2009]) only considers the order of feature values and not their absolute

values, this does not change baseline results. The mean performance changes over all the

data sets when we perform scaling are shown in Figure 22 (a). For comparison, Figure 22

(b) has the mean performance changes without scaling. We see that all the qualitative

conclusions hold for the scaled data as for the unscaled data, except that the mean changes

are smaller in magnitude. This is confirmed by a comparison of the number of data sets for

which performance increases, does not change, or decreases in Figure 23. We see that the

general trends are preserved, but that the fraction of data sets for which performance did
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Figure 22: Comparison of mean performance change as compared to using only the target

data set with and without scaling. For each evaluation metric, the mean is taken over all 26

data sets. Left: With scaling. Right: Without scaling. Abstentions are treated as errors.

not change is greater in Figure 23 (a) with scaling than in Figure 23 (b) without scaling.

One possible explanation for this is that because most of the data sets are small, performing

scaling actually distorts the source data, making it less useful for transfer learning. The

rules learned on the source data are not as useful on the target data, and fewer of them are

retained. This results in more data sets with no change in performance as compared with

transfer without scaling.

5.5 SUMMARY OF RESULTS

To summarize the results, we can make the following observations:

1. Simple transfer increases accuracy 50% of the time and does not decrease performance

75% of the time.
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Figure 23: Comparison of the number of experiments, of 26, for which the performance

increased, did not change, or decreased after transfer. Left: with scaling. Right: without

scaling. Abstentions treated as errors.

2. Simple transfer increases accuracy by a small amount on average (0.5% with about 5%

standard deviation).

3. Structure transfer decreases accuracy by about 1.5% on average.

4. The no-coverage transfer variations produce smaller changes in performance on average

than the with-coverage variations.

5. When the source and target data are drawn from the same distribution, for all transfer

methods improvement in model performance depends on the accuracy of the source model

and baseline target model:

a. The more accurate the source model compared to the model learned on the target

data alone, the greater the improvement in performance after transfer.

b. When the target data is too inaccurate (about 50% accuracy), there is very little or

no improvement in performance after transfer.

6. When the source and target data are drawn from the same distribution, for all transfer
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methods the amount of transfer depends on the accuracy of the source model and baseline

target model:

a. The more accurate the source model compared to the model learned on the whole

data alone, the greater the amount of transfer.

b. When the target data is too inaccurate (about 50% accuracy), there is very little or

no transfer.

7. Scaling the source and target data to equalize their means and standard deviations before

transfer results in smaller changes in performance than without scaling.
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6.0 CONCLUSION

This thesis developed TRL, a novel framework for transfer learning with interpretable rule

classifiers, using four transfer algorithm variations. It demonstrated how TRL can be applied

to biomarker discovery and evaluated the methods on 26 real-world clinical data sets from

biomarker discovery studies. Of the four methods, simple rule transfer was the most beneficial

and result in the highest amount of transfer. Simple rule transfer increases performance

much more often than decreases it. Unfortunately, with all the TRL methods, the effect on

performance varies a lot from problem to problem.

One direction for future work is to confirm our observations about transfer learning

in biomarker discovery in other data sets and with other transfer learning methods. For

example, it might be the case that for some data, the most important information is the

identity of the relevant variables, and the variable values change between domains and only

serve to confuse the transfer learner.

This thesis concentrated on applying TRL to biomarker discovery in the setting where

the source data and target data have some variables that are the same between the two data

sets. However, TRL can be applied whenever a mapping exists between variables of one

domain and variables of the other.

Our experiments with TRL on biomarker discovery data sets also allowed us to explore

what kinds of information it is necessary to preserve when transferring rules from one study

to another, as well as how tightly coupled learning needs to be to inference. This information

will be important for designing future transfer learning algorithms.s
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6.0.1 Future work

The work in this thesis opens new avenues for research into transfer rule learning. One

direction of research is to define some more general mappings between different types of

source and target domains, allowing transfer between different types of data, such as between

proteomic and genomic data. For example, such a mapping could make use of the known

mass of a protein when it is expressed from a gene studied in the source gene expression

data set.

Another direction for research is to allow TRL to correct errors in variable naming, such

as m/z shift and smearing in mass spectrometry. Recall that an m/z shift occurs when the

m/z recorded for a protein in a mass spectrum is not the true m/z of the protein, and different

mass spectra can have different shifts. Similarly, smearing of the peaks occurs because the

spectrum records a tapered peak of m/z’s instead of a single m/z. These phenomena could

be addressed by constructing compound variables while specializing rules during the search.

For example, a compound variable could be a disjunction of input variables in the data and

would be used as usual variables, representing that when any of the m/z’s in a particular

range are above threshold, the protein is up-regulated in the sample. The same mechanism

can be used to search for multiply-charged peaks from the same protein. Which input

variables to consider for as candidates for constructing compound variables can be defined

by by appropriate heuristics.

In Section 5, we observed that the variable values of prior rules are important information

during transfer. This is reflected in the result that simple rule transfer performed better than

rule structure transfer. Therefore, TRL can be refined to make it use simple rule transfer

when possible and only use structure transfer to resolve a mismatch in discretization between

source and target data. In particular, if a prior rule has a variable that has a different number

of discrete values in the target data than the source data where the rule was learned, then

TRL would use structure transfer for that variable, i.e., instantiate rules with all values of

that variable.

A current limitation of TRL is that prior rules are never generalized. This is a problem

because it is possible that a rule scores higher than its parent in the source data, but fails
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a coverage threshold and is so is not retained on transfer into the target data, where the

parent rule would have transferred some of the prior information. This can be addressed by

importing all ancestors of prior rules during transfer.

Another extension of TRL is to use the conditional probability distributions of prior rules

on the source data and update those on the target data. This would be a combination of

the approach of DEFT and current TRL. The purpose of this is to achieve more accurate

estimates of rule goodness.

Using the TRL framework, it would be interesting to know how transfer and performance

are affected if prior rules do not at all affect the search of prior rules - neither by covering the

training data nor by displacing rules from the beam. This can be accomplished by simply

evaluating the prior rules without specializing them, and using them to make predictions

alongside newly learned rules. Another way to accomplish this is to use two beams for search

instead of just one: one beam for specializing prior rules and another beam for searching with

new rules. This would mean that the same rules are learned on the target data regardless of

whether prior rules are provided for transfer. This might result in more accurate posterior

classifiers.
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APPENDIX A

GLOSSARY

This section defines some concepts and terminology used in the rest of the document.

Given a set of input vectors (also called data vectors, data points, instances and learning

examples) x in a vector space X and their corresponding classes f(x) in a set of classes Y ,

the goal of classification learning is to find a classifier, that is a function

h : F → X → f(X) (A.1)

that maps an object x to its class f(x).

The dimensions of the data vectors X × Y are also called variables or features. The

variables in X are called input variables, while Y is called the output variable or class

variable. In more general learning settings, Y may contain more than one output variable.

A learning bias (also called inductive bias) of a learner is the set of assumptions

that the learner uses to predict outputs given inputs it has not encountered [Utgoff, 1984,

Mitchell, 1980].

The confusion matrix of a classifier evaluated on a test data set is a table where each

row represents the examples of a predicted class, and each column represents the examples

of an actual class. Thus, cell (i, j) in the matrix represents the number of examples of class

j that the classifier predicted to be class i. Table 7 is an example of a confusion matrix for a

binary classification problem. The matrix in Table 7 shows that of the predicted examples,

10 were correctly classified as cancer (true positives for cancer), 13 were correctly classified
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Actual

Cancer Control

Predicted cancer 10 2

Predicted control 4 13

Actual

Cancer Control

Predicted cancer TP FP

Predicted control FN TN

Table 7: Left:An example confusion matrix. Right: abbreviations T for true, F for false, P

for positives and N for negatives.

as controls (true negatives), 2 controls were classified as cancer (false positives), and 4 cancer

examples were classified as controls (false negatives).

The accuracy of a classifier is the probability that the classifier will correctly predict an

instance from the population

P (correct prediction) = P (h(x) = f(x)) (A.2)

and is estimated from the classifier’s predictions on an unseen test data set as:

Number of correct predictions

Number of predictions
(A.3)

The sensitivity of a classifier for class y is the probability of correctly predicting an

instance of class y,

P (h(x) = y|f(x) = y) (A.4)

and is estimated as:
Number of correct predictions of class y

Number of test instances of class y
(A.5)

The specificity of a classifier for a class y is the probability of correctly predicting an

instance of class other than y:

P (h(x) 6= y|f(x) 6= y) (A.6)

and is estimated as:

Number of predictions of classes other than y

Number of test instances of classes other than y
(A.7)
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The balanced accuracy of a classifier for class y is the mean of the sensitivity and speci-

ficity:
sensitivity + specificity

2
(A.8)

Positive predictive value (PPV):

PPV =
TruePositives

TruePositives + FalsePositives
(A.9)

Signal-to-noise ratio (S/N):

S/N =
TruePositives(TrueNegatives + FalsePositives)

FalsePositives(TruePositives + False Negatives)
(A.10)

Likelihood ratio (LR):

LR =
TruePositives

FalsePositives
(A.11)

Chi-squared (χ2) statistic for a variable with respect to the class variable:

χ2 =
m∑
i=1

k∑
j=1

(Aij − Eij)2

Eij
, (A.12)

where: m is the number of discrete values (intervals) in the variable, k is the number of

classes, Aij is the number of examples in the ith interval of the variable and the jth class,

Eij = E(Aij) = Ri ∗ Cj/N , the expected frequency of Aij, Ri is the number of examples in

the ith interval of the variable, Cj is the number of examples in the jth class, N is the total

number of examples.
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APPENDIX B

RL PARAMETERS

1. Min. coverage: the minimum overall coverage any rule may have if it is to be kept on

the beam

2. Min. pos.: the minimum positive coverage any rule may have

3. Max. neg.: the maximum negative coverage any rule may have

4. Max. conjuncts : the maximum number of conjuncts any rule may have

5. Min. conjuncts : the minimum number of conjuncts any rule may have

6. Min. CF : the minimum certainty factor any rule may have

7. Inductive strengthening : number of examples any rule must cover that are not covered

by previous rules

8. CF function: certainty factor function; one of: Frequency, Frequency normalized, Fre-

quency with Yates correction, Likelihood ratio, P-value, P-value right, Signal-to- noise,

Laplace estimate, Laplace depth, Laplace extended, F-measure, Jaccard

9. CF value: certainty factor the minimum certainty factor value that any rule may have

10. Prune specialized : whether to stop specializing rules that satisfy the constraints

11. Beam width: the number of rules stored during evaluation

12. Evidence gathering : the method for combining learned rules to classify a new example

when the example matches more than one rule.

• Best, Most specific, Best specific, Best p-value, Weighted voting, Minimum weighted

voting, Maximum likelihood ratio, Nearest neighbor, Most specific single best.
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APPENDIX C

RL MANUAL

NAME

BRL - Program for rule learning, variable selection and

discretization, and data pre-processing

SYNOPSYS

java [JAVA_PARAMETERS] -jar BRL.jar

-lp LEARNING_PARAMETERS

[-ppp PREPROCESSING_PARAMETERS]

-dp DATA_PARAMETERS

java [JAVA_PARAMETERS] bayesianrl.BRL

-ppp PREPROCESSING_PARAMETES]

-dp DATA_PARAMETERS

java [JAVA_PARAMETERS] -jar BRL.jar

CONVERSION_PARAMETERS

JAVA_PARAMETERS

For Java parameters, see the Java manual. The Java classpath must

include the Weka classes (jar file). The classpath can be set in

the CLASSPATH environment variable, or using the "-classpath" Java

parameter.

LEARNING_PARAMETERS:

BRL parameters are not case sensitive; for example, "-rgm" means

the same as

"-Rgm", "-RGm", etc.

-rgm

Rule generation method

0 Simple rule learning

1 Bayesian global rule learning:
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1 0 Greedy search (GS)

1 1 Beam search (BS)

2 Bayesian local rule learning:

2 0 Decision Tree (DT) GS

2 1 DT BS

2 2 DT parallel greedy search (PGS)

2 3 Decision Graph (DG) GS

2 4 DG BS

2 5 DG PGS

-cftype INDEX_VAL

Function to compute the certainty factor value for each rule.

0 Likelihood ratio (default)

1 Positive predictive value:

TP / (TP + FP)

2 Positive predictive value with Yates correction:

(TP + 0.05) / (TP + FP) if TP > FP,

(TP - 0.05) / (TP + FP) if TP < FP,

TP / (TP + FP) otherwise.

3 Positive predictive value, normalized for asymmetric

class distributions:

1 if FP = 0

0 if TP + FP = 0

TP / (TP + FP * Pos / Neg)

4 Laplace estimate:

(TP + 1) / (TP + FP + number_of_target_values + 1)

5 Laplace extended:

(TP + k*m) / (TP + FP + k),

where

k = 1 + number of target values

m = Pos / (Pos + Neg)

6 Laplace extended with bias for short rules:

(TP + c * q) / (TP + FP + k),

where

c = 1 + number of conjuncts in the rule

q = TP / (TP + TN)

(Six other functions are implemented but not compiled for use by

default.)

-inftype INDEX_VAL

0 Weighted voting (default). Predict the highest-weighted

class, where the weight of each class is the sum of

certainty factors of rules predicting that class. If there

is a tie, predicts class 0.

1 Maximum likelihood ratio

2 "Combine CF"
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3 Lowest p-value: use the rule with the lowest p-value

4 Single best: use the rule with the highest certainty factor

5 Minimum weighted voting. Like weighted voting, but use only

the highest k rules to calculate the weight of each class,

where k is the minimum number of rules voting for any class.

6 Single best specific: use the rule with the highest worth

(certainty divided by cost) and the highest number of

cojuncts.

7 Most specific single best: use the rule with the most

conjuncts among rules with the highest certainty factor.

-mincf NUMBER

The minimum certainty factor value that any rule in the model

will have. The default is 0.85.

-minconj NUMBER

The minimum number of conjuncts in any rule in the model. The

default is 1.

-maxconj NUMBER

The maximum number of conjuncts in any rule in the model. The

default is 5.

-specialize

If this option is specified, when a rule is added to the model,

RL will also check if some specializations of this rule should

also be added to the model. If the option is omitted, RL stops

specialization of a rule once it is found to satisfy the search

constraints.

-cover NUMBER

The minimum number of training examples that any rule in the

model will cover. The default is 4.

-minTP DECIMAL

The minimum true positive rate that any rule in the model will

have. The default is 0.05. Valid values are in the range [0, 1].

-maxFP DECIMAL

The maximum false positive rate that any rule in the model will

have. This option is not set by default. Valid values are in the

range [0, 1].

-indStr NUMBER

The minimum number of previously uncovered examples that each

new rule must cover. The default is 1.

-beam WIDTH
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The number of rules kept at any time to be specialized in the

next iteration iteration. The default is 1000.

-bss [--d DEPTH] [--f NUM_FOLDS]

Do bias space search

--d 0 Shallow search (default)

--d 1 Medium depth search

--d 2 Most exhaustive search; consumes a lot of time and memory

--f NUM_FOLDDS

Use internal cross-validation with NUM_FOLDS for

validation

-cv NUM_FOLDS

Cross-fold validation with NUM_FOLDS folds. A negative NUM_FOLDS

denotes leave-1-out.

-rrv NUM_SETS PERCENT_SIZE

Random resample validation

-d Discretize. The parameters are as described in

PREPROCESSING_PARAMETERS, but the discrete intervals for each

variable are computed based on the training data only, then

applied to the test data. If cross-validation is specified, the

discretization is computed on the training subset separately for

each fold.

-r Remove trivial variables, as in PREPROCESSING PARAMETERS

-rrv NUM_SETS PERCENT_SIZE

Random resample validation, as in PREPROCESSING PARAMETERS

-svCVR Save rules learned in each cross-validation fold

-svCvD Save the fold data sets

PREPROCESSING_PARAMETERS:

These parameters specify operations to be performed on the whole

training data set at once, before any rule learning.

-d DISC_METHOD PARAMETER

Discretize using DISC_METHOD with specified parameter

DISC_METHOD Meaning Type PARAMETER

0 Gaussian Unsupervised Number of bins

1 EqualWidth Unsupervised Number of bins

2 EqualFreq Unsupervised Number of bins

3 OneR Supervised Number of instances

4 ErrorBased Supervised Max number of bins
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5 D2S Supervised (none - max number of bins is 8.)

6 FayyadIraniMDL Supervised Number of bins

7 EBD Supervised c structure prior (use value "1")

8 MODL Supervised none?

Example: EBD (2008) discretization with default parameter 1:

-d 7 1

-r Remove trivial variables after discretization

-chi NUM_OF_VARS_TO_SELECT

Chi-squared variable selection: select the top

NUM_VARS_TO_SELECT variables.

-s SCALING_METHOD ...

Scale each variable by the specified SCALING_METHOD in turn

0 0-1 scaling

1 Subtract local minimum

2 Subtract global minimum

3 Log2

4 Square root

5 Exponent 2

6 Square

7 Normalize to mean 0 and standard deviation 1

-ctr

Combine technical replicates. The samples must have the same

name, with ’#’ next to it

-itst PERCENT_SIZE

Create an independent test data set, by randomly sampling

PERCENT_SIZE of the data

-rrv NUM_SETS PERCENT_SIZE

Random resample validation, selecting PERCENT_SIZE of the data

without replacement as a test data set, repeated NUM_SETS times.

DATA_PARAMETERS:

-itrncsv

Training file is a csv

-itstcsv

Test file is a csv

-t

Files are transposed: rows are variables, columns are instances

-dtr TRAINING_DIRECTORY

Directory containing training files, one for each test case.
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Each file contains two columns: variable and value. Within

the directory files grouped by class folder; e.g. inside the

training directory, there are two folders: "disease" and

"control". There should be no trailing "/" in

TRAINING_DIRECTORY name.

-tst TEST_FILE

Specify a test data file

-dtst TEST_DIRECTORY

Similar to -dtr.

-odri OUTPUT_DIRECTORY

[Does not work]

The output directory where to write the result files

-o OUTPUT_DATA_FORMAT

(arff - not implemented)

WEKA’s attribute relation file format

csv

Comma-separated file format

The default is tab-delimited format.

-rand SEED

Specifies a seed for creating random folds when running multiple

runs of cross-validation. SEED is an integer. On Unix-like

systems and on Windows, a random integer is provided by the

RANDOM environment variable.

-tpf FILE

Transpose the input file

-cmbf DIRECTORY

Combine the files in DIRECTORY. Each file represents one

training example (such as a mass spectrum), and contains two

comma-separated columns. The first column contains the names of

the attributes (such as m/z values), and the second column

contains the values (intensity values).

-cmbAtts DIRECTORY

-src

Source data file for learning prior rules for transfer.

These rules are put on the beam when learning on the target

training data. See the "-transfer" option.
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-transferType INDEX_VAL

-transferMethod INDEX_VAL

-transfer INDEX_VAL

The type of transfer for prior rules. Prior rules are handled

before any learning of new rules on the training data. The

argument NUMBER can be:

1 whole rules

Each prior rule is evaluated on the training data and put on

the beam. To make sure that the source and training data

have the same values for each variable, the source data is

first discretized using the training data discretization

before learning prior rules on the source data.

2 rule structure

Each prior rule is converted to a generalized structure

where the variable values are removed, leaving only the

variables in the LHS and the RHS. Then this structure is

instantiated to create a set of rules with with all

possible combinations values for the variables.

-priorRulesSearch

Specifies that the prior rules should be used in the search. If

this option is omitted, the rules do not cover any of the data

for purposes of inductive strengthening.

-priorRulesSpecialize

-specializePrior

Specifies that the prior rules should be specialized. If this

option is omitted, the prior rules are not specialized on the

beam.

TRAINING_FILE The training file is specified as the last argument.

CONVERSION_PARAMETERS

-c CSV_DATA_FILE

Convert the csv-delimited file to tab-delimited or vice versa.

-tpf DATA_FILE

Transpose the file data file; that is, make the first row be the

first column, the first column be the first row, second row be

the second column, etc.

OUTPUT

The program prints to standard output a log of its working that includes

the the program parameters (and learning parameters), rule model

learned, its performance, starting time, total running time.
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For each rule, the log includes the following statistics: CF, CF/cost,

p-value, true positive (TP) count, false positive (FP) count, and test

TP and test FP. The last two statistics represent the number of test

examples for which the rule was applied correctly (TP) or incorrectly

(FP) when using the whole model. When applying the model, a rule may not

fire even if it matches a test example, because of interaction with

other rules.

FILE FORMATS

Input files can be comma-separated (CSV), tab-separated. (WEKA’s ARFF

format is not yet supported.) With comma-separated and tab-separated

formats, the class variable is indicated by placing an "@" in front of

the name. Example: "@Group".

EXAMPLES

10-fold cross-validation, EBD (2008), and Simple RL with shallow

(default) bias space search with 5-fold internal cross validation with a

random seed (on Unix):

java -Xmx1300m -jar BRL.jar -lp -rgm 0 -bss --d 0 --f 5 \

-cfv 10 -d 7 1 -r -dp -rand $RANDOM data.txt

Discretize the data using EBD, without learning:

java -jar BRL.jar -ppp -dr 7 1 -dp data.txt

Discretize the data using EBD without learning; the data are in CSV

files in directory "datadir" (no trailing "/") that has two

sub-directories:

java bayesianrl.BRL -ppp -dr 7 1 -dp -itrncsv -dtr datadir

Bias space search, and using a test file for testing

(not cross-validation):

java -Xmx1300m -jar BRL.jar -lp -rgm 0 -bss --d 0 --f 5 -ppp \

-d 7 1 -r -dp -tst test.txt train.txt

AUTHORS

Jonathan Lustgarten

Philip Ganchev, March 2009 -- November 2010
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APPENDIX D

TRANSFER LEARNING LITERATURE

An early use of transfer learning in machine learning was demonstrated by [Caruana, 1997],

where he improved the performance of an artificial neural network (ANN) in the task of

steering a vehicle, by training it on an additional task: recognizing the edge of the road.

Much of the existing experimental work in inductive transfer deals with scenarios

where the data is partially shared between learning tasks. For example, [Caruana, 1997]

and [Silver and Mercer, 2002] use ANNs that share inputs and hidden representations, but

have different output; for example in [Caruana, 1997] (see Figure 11), every data vector

contains inputs representing an image of a driver’s view of a road, and outputs specify (a)

which way the car should be steered and (b) the location of the edge of the road. Similarly,

in Abu Mostafa’s ”learning from hints” [Abu-Mostafa, 1990] the input patterns are the same

for all tasks.

Alternatively, tasks may share the same output value but have different input values

[Baxter, 2000, Ben-David et al., 2003]. [Baxter, 1995] assumes that training examples are

generated independently for each task, and in [De Sa, 1994] the output representations are

shared but the inputs come from different modalities. The examples may all belong to both

tasks (for example if all input vectors are labeled with both steering direction and location of

the edge of the road), or some examples may belong to just one task [Silver and Poirier, 2005].

If all data belong to one task each, this amounts to learning a classifier for one class using a

related class, and is called inter-class transfer [Fink and Ullman, 2008].

[Pratt and Jennings, 1996] describe an example of a transfer setting. In training an ANN
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to recognize images under a particular set of lighting conditions, it may be possible to use

images taken under different conditions to improve the speed of learning or the generalization

performance: representational transfer: an ANN trained on the auxiliary images is used as

a starting point for learning. functional transfer: the two networks share information during

learning. This constraint can provide an important bias. See [Silver and Mercer, 2002].

One approach to inductive transfer is multi-task learning (MTL) – the learn-

ing of tasks simultaneously (also called parallel transfer) [Caruana, 1997]. MTL has

been demonstrated using various kinds of learners: artificial neural networks (ANNs)

trained using back-propagation, nearest neighbor [Caruana, 1997], support vector machine

(SVM) [Evgeniou and Pontil, 2004] and logistic regression [Raina et al., 2006].

Figure 11 illustrates the design of MTL ANNs of [Caruana, 1997]. Caruana explores

MTL with ANNs trained using back propagation, and also suggests how to do MTL with

decision trees. He demonstrates MTL on two image recognition domains and a Pneumonia

domain. The pneumonia data contained 14199 positive cases from 78 hospitals and, for most

cases, 65 measurements including 35 lab test results which are usually available only after

hospitalization. The main learning task was to identify a given fraction of the population

least at risk of dying. In all these domains, MTL significantly improved classification accu-

racy, and [Caruana, 1997] shows that this is due to positive inductive transfer, by ruling out

other explanations.

[Caruana and De Sa, 1997] use input variables discarded by variable selection as extra

outputs in a ANN, on data from the DNA Splice Junction domain. The best 30 of 180

binary variables are used as inputs and the next 30 as outputs. This produced a statistically

significant but marginal improvement in accuracy and cross-entropy, compared to using

selected variables as inputs only. [Caruana and De Sa, 1997] showed an improvement with

synthetic data.

How to select appropriate auxiliary tasks is largely an open problem, but in some scenar-

ios there are clear candidates, based on domain knowledge. For example, variables available

during learning but not when the learned model is applied for prediction, such as measure-

ments done in the future [Caruana, 1997] may be useful auxiliary tasks. In some studies,

alternative representations of the main output variable, such as different calibrations, were
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useful. [Thrun and O’Sullivan, 1996] use a nearest neighbor (NN) approach selectively trans-

fer learned knowledge from a large number of learning tasks, only a few of which are relevant.

Their Task Clustering algorithm groups tasks into similarity clusters. When facing a new

task, it uses the the most related task cluster to inform the distance metric for the target

task.

Mechanisms of positive transfer in back-propagation ANN MTL include the following: (a)

the extra information in the training signals effectively amplifies the data; (b) this improves

variable selection in the ANN; (c) difficult tasks eavesdrop on hidden variables learned by

easy tasks; and (d) tasks prefer the same representation bias [Caruana, 1997].

Context-sensitive MTL, csMTL [Silver et al., 2008], improves on the multi-output model

using additional inputs to represent the task of the examples, as shown in Figure 12. For

example, one additional input can take one value for each task. This allows representing task

relatedness when two tasks share some but not all of the same examples. It also removes the

redundant outputs and representations of the same task, from the original MTL NN model,

allowing examples to be added to a task and prior knowledge to be indexed. csMTL was

compared by accuracy to MTL and ηMTL (an MTL variant), on data from three domains

Band, Logic and fMRI. ηMTL is an MTL variant that selects the most related task knowledge

by correlation of the main outputs. csMTL outperformed MTL on the Band and fMRI

domains, and equaled ηMTL on all domains. Single-task learning ANNs perform poorly on

the main task for each domain due to limited training data, while on the auxiliary tasks,

they achieve reasonable accuracies (> .75).

MTL can provide some advantages over sequential transfer [Caruana, 1997]: (a) In se-

quential transfer, the sequence must often be defined manually; (b) If tasks are difficult to

learn in isolation, sequential transfer will lack the combined inductive bias; (c) In sequen-

tial transfer, earlier tasks cannot benefit from later ones, and therefore cannot help them as

much; (d) Sequential transfer needs to balance the retention of learned bias with the learning

of new bias; and (e) Sequential transfer is difficult to scale to many tasks.

[Baxter, 2000] casts inductive transfer as the search for a learning bias that is appropriate

for all learning tasks in an environment. Each task is represented by a distribution Pθ on the

same space of inputs and outputs, X × Y , and a set of m examples is sampled from X × Y
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according to Pθ. Tasks are sampled from a set R of distributions according to a distribution

Q which controls which tasks a learner is likely to encounter. Given the observed data sets,

a bias learner searches for a learning bias appropriate for all the tasks; that is a hypothesis

space H in a given family H of hypothesis spaces, which contains hypotheses with maximum

average performance on the data sets. H is then likely to contain hypotheses to other tasks

drawn from the same environment. Baxter bounds the number of tasks and examples per

task required so that, for any H in H, the loss erQ(H) is likely to be close to the empirical

loss on the data, erz(H). Then the sample complexity per task for learning new examples

is smaller than when using one task, and the sample complexity for learning a new task is

smaller after learning the bias of the environment. In particular, the number m of examples

required to accurately estimate the error of a hypothesis depends inversely on the number

of tasks. The learning bias being sought is a set of variables that are appropriate for all

learning tasks in an environment. The variable set is a mapping from the input space Rd to

a lower dimensional space Rk. [Baxter, 2000] shows that variable sets can be learned using

single hidden layer ANN architecture with a sigmoidal squashing function and a variation of

gradient descent.

[Baxter, 1998] presents a hierarchical Bayes model [Gelman et al., 2004] of learning to

learn, where Q is an “objective prior” for sampling the task distributions Pθ. The learner’s

bias is represented by the set of candidate distributions, R = {Pθ|θ ∈ Θ}, and a “subjective

prior” Pπ parametrized by π ∈ Π. The learner’s goal is to find the task-sampling distribution

Q among the set of candidate prior distributions, {Pπ|π ∈ Π}, given a hyper-prior PΠ on

Π, and assuming Q is among the candidates. This model is used to derive bounds for the

sample complexity of the ANN learning of Baxter (2000).

[Niculescu-Mizil and Caruana, 2005] consider learning the structure of a set of Bayesian

belief networks for related problems. The learner is given a set of learning problems that have

the same variables, but potentially different conditional independences among the variables.

Hence these problems need to be encoded using similar but different belief networks. The

paper presents an iterative greedy algorithm to optimize a combined objective of having (a)

similar networks for all the problems and (b) high observed data likelihood, given a prior

preference over network structures. The algorithm starts with the networks for all problems
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having the same configuration, and changes an edge between the same two variables for all

networks. The change that results in the greatest improvement in the combined objective is

taken, and the procedure is repeated. The paper provides results on two synthetic data sets

(Alarm and Insurance) and shows that this MTL approach improves on single task learning.

[Ben-David et al., 2002] bound the sample complexity for a number of data sets, each of

which represents the same set of examples transformed in an unknown way. In other words,

the data for different tasks are sampled from different probability distributions related by the

transformations among examples. The learner searches for a hypothesis that minimizes the

average error among the data sets. Using a generalized definition of VC dimension, the sam-

ple complexity is bounded by the size of hypothesis space used for each data set, and the size

of the set of potential transformations among data sets. An important factor is the equiva-

lence class induced on the hypothesis set by the transformation set. [Ben-David et al., 2003]

prove a stronger bound for learning focused on one of the tasks, rather than maximizing the

average performance.

[Fink et al., 2006] learn a representation for a multi-class problem, where predictive char-

acteristics are shared among different classes. Their framework is essentially an alternative

regularization for a multi-class linear classifier. They decompose the linear classifier into a

linear change of representation and a linear classifier for the new representation. By regular-

izing the transformation and classifier separately, they encourage different classes to share

input characteristics. For example, they apply their method to identifying the animal in a

photograph. For some of the animals, they have a very small number of training examples,

but these animals share characteristics such as the presence or absence of horns, length of

legs, presence or absence of spots with other animals. By encouraging the new representation

to have characteristics shared among problems, they allow the characteristics to be learned

by pooling the training data of different classes, while the distinction between classes is

based on the intermediate shared representation. They find that for the recognition of writ-

ten characters and the identification of animals in photographs, their method significantly

outperforms standard multi-class classification methods.

These are examples where inductive transfer was beneficial to learning. But inductive

transfer may also be detrimental to learning. This may occur if the tasks are not appropri-
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ately related, or the transfer mechanism is not appropriate. For example, [Caruana, 1997]

cites experiments where MTL degraded performance. In addition, there may be practical

problems preventing its use. For example, if tasks are averaged using a weighted average

in ANN MTL or decision tree MTL, the base algorithm must be fast enough to run many

times to learn appropriate task weights, so it may not be appropriate for large data sets or

many variables. Also, if the optimization set is too small, it may be over-fitted.
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