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EFFECT OF AGING ON HUMAN POSTURAL CONTROL AND THE 

INTERACTION WITH ATTENTION 

Massimo Cenciarini, Ph.D. 

University of Pittsburgh, 2010

 

 

The ability to stand upright and walk is generally taken for granted, yet control of balance 

utilizes many processes involving the neuromuscular and sensory systems. As we age, balance 

function begins to decline and can become problematic for many older adults.  In particular, 

adults 65 years of age and older exhibit a higher incidence of falls than younger adults, and falls 

are a leading cause of injury in older adults, contributing to significant medical costs.  Without 

better understanding of the impact of aging on balance and means to ameliorate those effects, 

this problem is expected to grow as life expectancy continues to increase. 

In addition to sensori-motor declines with age that impact balance, another factor known 

to affect balance, particularly in older adults, is attention, meaning the amount of cognitive 

resources utilized for a particular task.  When two or more tasks vie for cognitive resources, 

performance in one or more tasks can be compromised (a common example today is driving 

while talking on a cell phone). Attention has been observed to be a critical factor in many falls 

reported by older adults.  However, it is still not fully understood how aging and attentional 

demand affect balance and how they interact with each other. 

In this dissertation, we conducted dual-task experiments and model-based analyses to 

study upright standing and the interaction of the effects of age and attention on postural control.  

The effect of age was investigated by testing two age groups (young and older adults) with no 
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evident balance and cognitive impairment and by comparing results of the two groups.  The 

effect of attention and its interaction with age was studied by comparing body sway in the two 

age groups in response to a moving platform, while either concurrently performing a cognitive 

task (dual-task) or not (single-task). Our findings highlight postural control differences between 

young and older adults, as quantified by experimental measures of body motion as well as by 

model parameter values, such as stiffness, damping and processing delay. 
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1.0  INTRODUCTION 

The present work represents the collection of various experiments that were performed to 

investigate the interaction between the role of attention and aging in control of human balance.  

Control of balance is known to be influenced by attention, or the amount of brain resources 

allocated for a particular task such as counting, listening to sounds, remembering and recalling 

word and number groups, etc. [1-5].  Aging is another factor that is known to influence control of 

balance.  In this work, balance-healthy subjects were studied, which included people without 

significant mobility, standing, and cognitive impairments; this is what is referred to as “healthy 

aging,” in this dissertation. The interaction of the effects of aging and attention on balance is of 

particular interest because the occurrence of balance related accidents increase as we age, and 

with an increasing elderly population, we can expect overall balance related accidents to also 

increase.   

Our goal is to study the interaction between aging and attention and their effect on 

balance control, through experiments and model-based analyses.  The model used in this 

dissertation has been previously developed and shown to be able to characterize human postural 

control in a variety of different conditions [1, 6-10]. 

The model includes parameters that quantify sensory, motor, and biomechanical aspects 

of postural control, including stiffness, damping, sensory weights, and a lumped time delay that 

models delays due to neural transmission, muscle activation, and sensory integration, and 
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cognitive processing.  By conducting dual-task balance experiments and then fitting the model to 

the data, we hypothesized that changes in the model parameters between the two age groups 

(young and older adults) would allow us to detect and interpret changes in the control system as 

a result of the aging process, as well as changes due to attentional demands.  We investigated 

both anterior-posterior and medial-lateral sway during perturbed standing (in separate 

experiments).  For simplicity, and to reduce the complexity of the model, all experiments were 

performed with the subject’s eyes closed.  

We present results from two main projects. The first project included experiments using 

support surface tilts that induced body sway in the frontal plane (medial-lateral direction).  This 

sway orientation was chosen because a component of this project involved stimulation of the 

vestibular system via galvanic vestibular stimulation (GVS). However, the results presented here 

are for support surface perturbations only (no GVS trials). Changes in the body sway response to 

the support surface perturbation were found with age.  Specifically, the group-mean experimental 

transfer function gain of the older adults was larger than that of the young adults in the mid-high 

frequency range, and the older adult group gain curve exhibited a slight peak around 0.7 Hz.  We 

were able to quantify these changes and offer a model-based explanation for the behavior 

observed.  In particular, normalized active stiffness and damping and passive stiffness 

parameters in the model were found to be significantly higher in the older adult group than in the 

young adults.  Simulations were carried out to further investigate our findings and give a more 

control-system based reason as to why we may be more prone to falling as we age.  

The second project addressed the issue of the influence of aging and attention on control 

of balance using support surface tilts that induced body sway in the sagittal plane (anterior-

posterior direction).  The project included a large sample size for both younger and older adults 
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based on a pilot study that was performed prior to the start of this project [1].  Two age groups 

(young and older adults) of healthy subjects were included in this project to study how age 

affects postural control and the interaction with attention. Dual task experiments involving 

support surface perturbations and attentional tasks were conducted. The older adults were 

characterized on average by a higher transfer function gain than that of the young adults in the 

mid-high frequency range (>0.3 Hz) and presented a slight peak just below 0.6 Hz.  The group-

average phase curve of the older adults indicated that this group had phase lag as compared to 

the young in the mid-frequency range (0.2-0.8 Hz).  These changes in the experimental 

frequency response characteristics of the postural control system were reflected by an increase in 

the mean value of controller parameters, the system time delay, and the passive damping 

parameter in the older adult group as compared to the young adults. 

The findings presented here have the potential to suggest new directions in the 

assessment of balance performance done in clinical settings as discussed in Chapter 4.5. 

However, further investigation is required to design and test possible physical exercises or 

activities that older adults could practice to improve their overall postural and balance control. 
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2.0  BACKGROUND 

2.1 MOTIVATION AND SIGNIFICANCE 

A large percentage (at least 30%) of adults age 65 and older is recorded to fall every year [11]. 

Falls are a leading cause of injury in older adults and it is estimated that 10% to 20% of falls are 

responsible for sever injuries and this contribute to significant medical costs [12].  Falls also 

constitute one of the major contributors to the causes of death in older adults [13].  Research 

studying the epidemiology of aging has pointed out that the population of older adults (age of 65 

and older) is increasing and it is projected to be over 20% of the US population by the year 2030 

[14]. Accordingly, without a better understanding of balance function and interventions to reduce 

the incidence of falls in older adults, injuries from falls, and the associated medical costs as well 

as lost mobility and independence, will increase.  

In addition to sensori-motor declines with aging that impact balance, attention has been 

shown to have a complex effect on balance [2, 15-18]. In a review on this topic, Wollacott and 

Shumway-Cook (2002) [18] reported that older adults exhibit an increased need of attention for 

control of posture, and that a mental task performed concurrently with a postural task has a more 

negative effect on balance control in older adults than in young adults.   However, the effect 

varies with the postural task and with the cognitive demand of the attentional task performed, 

and the interaction of attention and postural control is not well understood [18].  
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These findings demonstrate a complex interaction between aging, attentional demand, 

and control of balance, and point to the need for further study.  Improving our understanding of 

this problem has the potential to allow us to determine possible procedures to improve balance 

stability and reduce the likelihood of falls in older adults.  These are the motivations for the 

research undertaken in this dissertation. 

2.2 HUMAN STANCE, SENSORIMOTOR INTEGRATION, AND MODELING 

Human upright stance, the focus of this work, is characterized by a bipedal configuration that 

is unstable from a biomechanical perspective and requires continuous control by the 

neuromuscular system to maintain upright balance [10].  In particular, when the center-of-mass 

(COM) of the body deviates from earth-vertical (such as when we lean slightly forward or 

backward), gravity acts on the body COM to produce a torque about the ankles that tends to 

drive the body toward the ground. A fall would occur if counteracting torques were not produced 

by the muscles about the ankle joint.  

While simple in concept, it is not entirely clear how the postural control system operates and 

accomplishes the task of torque generation to maintain upright balance.  Several mechanisms 

have been proposed over the past three decades.  Some advocate open loop mechanisms [19] 

while others advocate sensory feedback mechanisms [6, 9, 10, 20] for the control of balance.  

The sensory feedback view of postural control is the prevailing, if not unanimous, point of view, 

and it has been shown that passive stiffness or open loop stiffness (with no delay) is not enough 

to control posture [6, 21] as also discussed in [22].   
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In the last three decades, the availability of new devices to study balance and analytical 

techniques to design experiments and process the data have led scientists to formulate and test 

different hypothetical models of the postural control system [6, 23-28].  The common goal is to 

develop an adequate control model that accounts for the observed human postural behavior(s) 

and is able to characterize the mechanisms involved in human control of posture. 

Generally, a control system includes two main parts: the controlled and the controlling 

systems. The controlled system can be modeled by equations characterizing its dynamic 

properties and the level of detail on the characterization is based on the assumptions made.  The 

controlling system, for a feedback design, comprises sensors to detect the state of the system 

(e.g. body kinematics), a controller (e.g. nervous system) to integrate all the sensory information 

and determine the required actions to perform, and actuators (e.g. muscles) to perform the action 

commanded by the controller. In this work, the human body is characterized as a single-link 

inverted pendulum, which is a widely accepted simplification of the biomechanics yet is 

adequate to characterize human body motion behavior during quiet stance [19, 23, 24, 27, 29] 

and also under small perturbations [6, 9, 10]. 

Two main types of control strategy have been used in postural control modeling: open-

loop control, and closed loop (feedback) control.  Researchers favoring the open-loop view  

suggest that upright stance is maintained by passive stiffness control, wherein the neural 

controller acts mainly to set the ankle joint stiffness without continuously regulating the 

generation of a control torque in response to sensed body sway [19, 30].  However, a more 

widely accepted view is that postural control is a reactive feedback system, utilizing sensory 

information about body position and motion to generate corrective torques [6, 8, 10, 21, 23, 24, 

31].  This latter view is adopted in the work presented in this dissertation. 
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A major difficulty in proposing a postural control model is the characterization of the 

underlying neuromuscular control processes involved to maintain upright posture.  The 

neuromuscular system is clearly non-linear [6, 27], time varying on a short scale [8] as well as on 

a long scale like the changes involved with aging [3, 15], and task dependent [3, 15, 26, 32].  

Despite this complexity associated with the postural control system, the model used in this 

project (Figure 1) and originally developed by Peterka has been able to explain experimental 

observation and findings under a variety of conditions [6, 8, 9, 16, 17].  

 

Figure 1. Feedback Model of Postural Control – ML Sway.  Independent channel model of sensory integration in 

postural control for M/L body sway. Sensory channels are limited to vestibular (graviceptive) and proprioceptive 

sensory channels.  The external perturbation provided by the GVS is also included in the schematic.  GVS profile set 

includes: 1) a pseudorandom waveform and 2) an alternating sequence of pulses.  The mechanical perturbation 

provided by the support surface is indicated in the schematic.  Two possible perturbations are indicated: 1) a 

pseudorandom stimulus and 2) sway referenced support surface in which body sway is fed back as input to the SS 

actuator and ideally canceling out BS input to proprioceptive sensory channel.  Eyes are closed, therefore the effect 

of vision is removed to simplify the overall model.  Note the “Aging” box effect that potentially can effect the 

overall Sensory and neuromuscular system.  While attention is thought to only have an effect of the Sensory 

Reweighting process and the postural control time delay. 
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This model is linear and the neural controller is assumed to mainly behave as a proportional, 

derivative, and integrative (PID) controller. 

However, more sophisticated control techniques like optimal control and state estimation 

[25, 26, 33] have shown to be able to characterize experimental data as well.  The question about 

which approach and therefore which model is the most correct one is still open.  However, in this 

proposed project we implement and apply the model proposed in [6] and used in subsequent 

studies [1, 9, 10], in order to parameterize postural control changes due to aging and due to 

concurrent execution of attentional tasks. 

2.3 INTERACTION BETWEEN AGING, ATTENTION AND POSTURE 

We know that postural control is influenced by the surrounding environment and specifically 

through the interaction of the sensory systems with their individual frame of reference.  

However, the internal state and the availability of processing resources affect postural 

performance.  This aspect was reported by an early work by [34] in which interaction of posture 

and execution of cognitive task was studied.  Subsequent studies have looked at the interaction 

between maintenance of posture and execution of different cognitive tasks and a variety of 

findings have been obtained, depending on the attentional task and postural control challenge 

performed [15, 34-36]. The emerging evidence from previous work is that postural control in 

healthy young adults seems to be little affected by performing a cognitive task while standing on 

a fixed surface.  However, as the postural task becomes more challenging, there is a greater 

effect and interaction between attention and postural control.  Additionally, as age increases, the 
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interaction between the execution of the two tasks becomes evident for postural tasks like quiet 

stance on a fixed surface.  Therefore, it can be concluded that maintenance of balance requires 

more information processing with normal aging [15].   

However, when interaction of attention and postural control is studied in older adults, 

there are other aspects that have to be considered for the changes in the behavioral observations.  

Specifically, age-related changes in the neuromuscular system can affect postural control 

performance even in the case of no dual-task conditions.  In fact, there is evidence that sensory 

function degrades over time.  For example, cells in the epithelia of vestibular organs decrease 

with age [37] and the function and sensitivity of the proprioceptive and visual sensory systems 

degrade with age [38-40].  Furthermore, natural aging has an effect on neural processes involved 

in integration of sensory information resulting in slower performance of motor activities, 

reflexive actions, and cognitive processing [41, 42].  Lastly, the musculoskeletal system changes 

over time by loosing mass, strength, and muscle fiber distribution, which affects dynamic 

properties of the muscle activation-force generation [43-45].  In summary, changes in any of 

these components of the postural control system can possibly have an effect on the overall 

system dynamics as a result of aging. 

Therefore, study of the interaction between maintenance of balance and execution of an 

attentional task considering the effect of age requires two aspects to be considered: first, healthy 

aging affects postural control due to changes of individual components and second, healthy aging 

might affect mechanisms that are used for information processing and specifically the ones 

shared by both postural control and attentional processes.  It is not clearly understood how this 

interaction occurs and what changes over time from young to older healthy adults are responsible 

for the observed changes. 
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3.0  STIFFNESS AND DAMPING IN POSTURAL CONTROL INCREASE WITH 

AGE1 

3.1 ABSTRACT 

Upright balance is believed to be maintained through active and passive mechanisms, both of 

which have been shown to be impacted by aging.  A compensatory balance response often 

observed in older adults is increased co-contraction, which is generally assumed to enhance 

stability by increasing joint stiffness. We investigated the effect of aging on standing balance by 

fitting body sway data to a previously-developed postural control model that includes active and 

passive stiffness and damping parameters. Ten young (24  3 y) and seven older (75  5 y) 

adults were exposed during eyes-closed stance to perturbations consisting of lateral 

pseudorandom floor tilts. A least-squares fit of the measured body sway data to the postural 

control model found significantly larger active stiffness and damping model parameters in the 

older adults. These differences remained significant even after normalizing to account for 

different body sizes between the young and older adult groups. An age effect was also found for 

the normalized passive stiffness, but not for the normalized passive damping parameter. This 

concurrent increase in active stiffness and damping was shown to be more stabilizing than an 

                                                 

1 The content of this chapter has been published in IEEE Transactions on Biomedical Engineering, vol. 57, pp. 267-
75, Feb 2010 and it is authored by M. Cenciarini, P. J. Loughlin, P. J. Sparto, and M. S. Redfern. 
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increase in stiffness alone, as assessed by oscillations in the postural control model impulse 

response. 

3.2 BACKGROUND AND INTRODUCTION 

From a biomechanical perspective, human stance represents an unstable system, in that gravity 

acting on the body generates a torque that drives the body away from vertical upright. A fall 

would occur in the absence of stabilizing torques generated by the postural control system to 

counter the effects of gravity. It is generally held that postural control for upright stance involves 

active and passive mechanisms[7, 46, 47]. The active mechanisms consist of neurally-mediated 

sensory-based feedback control that utilizes perceived body position and movement in space to 

generate corrective torques [7, 46]. There are three main sensory systems used to provide 

feedback for control of upright balance: the vestibular, visual, and proprioceptive systems [6, 

48].  The vestibular system detects head orientation and motion in space; proprioception detects 

orientation and motion of each body segment with respect to each other; and vision detects head 

orientation and motion in space. Information provided by each sensory system is neurally 

processed and combined to extract overall information of body orientation and movement in 

space. An important aspect of this sensory integration is the ability of the postural control system 

to adapt to external perturbations by adjusting the relative importance (weighting) placed on the 

information from the various sensory systems [6, 8, 9, 49]. 

The passive mechanisms involved in postural control arise from mechanical properties of 

muscles and tendons around the joints, such as the intrinsic visco-elasticity of muscles and 

stiffness of tendons, which provides some gravity-countering forces in much the same way a 
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spring generates a counter-force when it is displaced from its resting equilibrium [50-52]. 

Previous studies have shown that the contributions of passive mechanisms to maintenance of 

upright stance while being subject to postural perturbations such as floor tilts, moving scenes or 

galvanic stimulation, are relatively minor in comparison to active control mechanisms [6, 9]. 

3.2.1 Effects of Aging on Postural Control  

The ability to maintain a stable upright posture is known to decrease with age.  One potential 

mechanism of aging on postural control is reduced sensory function of one or more sensory 

systems that affect stance stability through ankle impedance characteristics [53]. Ho and 

Bendrups have shown that older adults have generally different stiffness than young adults, and 

moreover, when the older adults are separated into fallers vs. non-fallers, the fallers show 

increased ankle stiffness compared with the non-fallers [53].  Co-contraction has been shown to 

be one mechanism for older adults to increase stiffness when exposed to changes in the sensory 

information [54].  Others have suggested that passive properties of muscle fibers and tendons 

also impact stiffness and damping properties [55, 56]. Ishida et al. [56] showed that the spectral 

characteristics of ankle impedance (ratio of external torque to ankle angle) changed as the 

amplitude of the perturbation was varied (small vs large) and as the available sensory 

information (eyes open vs closed) was altered.  The frequency-dependent changes observed were 

interpreted by the authors as evidence that increased low frequency impedance (mainly stiffness) 

is effective for enhancing stability in response to slowly changing perturbations, but as the 

changes become more rapid, it is important to study ankle impedance over a broad frequency 

range and not only talk about stiffness alone when studying the overall stability of the posture 

system [56]. 
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In this paper, we provide new experimental results and model-based interpretations that 

complement and add to the findings of Ishida and others, regarding increased stiffness and 

damping. Specifically, we present new results showing that older adults employ increased active 

stiffness and damping as a means of improving their stability in response to platform 

perturbations, and that this is more effective than increasing active stiffness alone.  The data 

presented are part of a larger experiment investigating the impact of aging on postural control.  

In this paper, we only report the findings from the postural control stiffness and damping 

modeling efforts of body sway response to platform tilts alone.  These results were presented in 

part at the IEEE Engineering in Medicine and Biology Conference, 2009. 

3.3 METHODS 

3.3.1 Subjects 

The experimental protocol was approved by the Institutional Review Board at the University of 

Pittsburgh, and all subjects gave their informed consent to participate in this study. Data were 

obtained from seven older adults (three males and four females, ages 68 to 81 years (mean 75± 5 

years SD)) and ten young adults (four male and six females, ages 21 to 30 years (mean 24 ± 3 

years SD)). Prior to experimental tests, all subjects completed a set of screening examinations to 

ensure absence of any balance abnormality.  The screening procedures consisted of standard 

vestibular function, oculomotor, and balance testing, including caloric and rotational tests, 

vibration and cutaneous pressure sensation, and computerized dynamic posturography.  
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3.3.2 Experimental Apparatus and Design 

A dynamic posturography platform (NeuroTest, Neurocom International, Inc., Clackamas, OR) 

was used to induce rotational platform perturbations and acquire center of pressure data in 

response to those perturbations (Figure 2). A harness system was used to prevent injury from 

falling during testing. The harness did not impede sway, or give any positional feedback to the 

subject. Measures of body sway were obtained using a magnetic tracking device2 (Fastrak, 

Polhemus, Colchester, VT) with two sensors; one positioned on the lower back, at the height of 

the iliac crest, and one positioned at the top of the head. 

For the data used in modeling stiffness and damping that is reported here, subjects were only 

exposed to movements of the underfoot platform.  The platform (or support surface (SS)) 

condition consisted of a randomly moving platform whose velocity followed a pseudo-random 

ternary sequence (PRTS-SS). Subjects stood on the platform such that the platform rotated about 

an anterior-posterior axis in between the medial malleoli, thus inducing ML sway. Subjects were 

asked to stand comfortably with their feet close together. Foot placement was marked at the start 

of the first trial so that the same position was maintained from trial to trial and across visits for 

each subject. The average distance (± 1 SD) between the middle of the heels was 15.0 ± 1.6 cm 

and 19.9 ± 3.9 cm for the young and older adults, respectively. 

During the PRTS-SS condition, the platform rotated pseudo-randomly according to the 

integral of a PRTS, with peak-to-peak amplitude of 4 and a cycle duration of 48.4 s (see [6, 9] 

for details). 

                                                 

2 Because the Fastrak system is sensitive to surrounding metal and the NeuroTest platform is made of steel and 
aluminum, we calibrated the accuracy of the Fastrak measurements. We used a laser pointer to accurately position 
the sensor at various locations, at approximately the mean lower back height it would be above the platform during 
experiments. Our calibration measurements showed inaccuracies of less than 2.5% over a range of 10 cm. 
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Figure 2. Experimental Setup.  A NeuroTest posture platform was used to provide the support surface perturbation 

(Neurocom, Inc.).  A Polhemus Fastrak magnetic-based  motion tracking system was used to measure body sway. 

Subjects stood with eyes closed during experimental trials. 

 

Recorded postural sway in response to the perturbations were used to estimate dynamic 

properties of the postural control system over a range of frequencies (0.02 – 2.80 Hz) in response 

to surface tilts.  The PRTS-SS condition allows for an input-output analysis and estimation of 

model parameters. To ensure adequate steady-state conditions for this analysis, three consecutive 

cycles of the PRTS-SS were presented during a trial, for a total perturbation interval of 145.2 s. 
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3.3.3 Experimental Protocol 

Subjects were tested over three sessions. On the first testing visit, prior to the start of trials, 

anthropometric measurements were taken so that the body inertia (J), mass (m), and center-of-

mass height (hCOM) used in the model could be obtained [57]. During each visit, subjects were 

tested under a variety of conditions, with the PRTS-SS condition alone being one of the 

conditions.  This resulted in three PRTS-SS trials for each subject.  During experimental testing, 

subjects stood upright, with eyes closed, on the posturography platform while performing the 

trials for each visit, with a three minute seated rest in between each trial, and at least two days 

between visits. All subjects were given the following instructions: “Maintain a relaxed upright 

stance position with your eyes closed and arms folded across your chest.” The duration of each 

trial was 205.2 s, consisting of a 145.2 s perturbation interval (PRTS-SS motion) preceded and 

followed by a 30 s quiet stance period on a fixed SS.  

3.3.4 Data Measurement and Analysis 

Medial-lateral (ML) displacement of the lower back measured with the electromagnetic sensor 

was used to estimate body sway (BS) angle in the frontal plane by using the small angle 

approximation, 

HipML (t)  hCOM sinBS(t)  hCOM BS(t)    (1) 

 

The error made by implementing this approximation is about 1% for angles within 15.  

This angular range corresponds to a lower back displacement of 25 cm, assuming hCOM = 100 

cm, which is about 5 times larger than the excursions we observed. 
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Body sway and platform rotation measurements during the 145.2 s of pseudo-random 

platform motion were divided into the 3 PRTS-SS cycles of 48.4 s duration.  For each cycle, the 

power and cross power spectrum were estimated via the discrete Fourier transform (DFT) of 

each time series; in general, for discrete-time series x(t) and y(t), t=0,1,…,N-1, the DFT 

[X(kY(k, power spectra [SXX(kSYY(kand cross-spectrum [SXY(kwere computed 

as: 

X (k ) 
1

N
x(t)e j( 2 / N )tk

t0

n1

   (2a) 

Y (k ) 
1

N
y(t)e j( 2 / N )tk

t0

n1

   (2b) 

SXX (k )  X(k )
2
  (3a) 

SYY (k )  Y (k )
2
  (3b) 

SXY (k )  X (k )Y (k )   (4) 

 

These functions were computed for each cycle of the respective time series measurements, and 

then averaged across the three cycles. Further spectral smoothing was also applied to reduce 

variability in the spectral estimates, especially at higher frequencies, as described in [6, 9]. The 

resulting smoothed power and cross-power estimates had 17 data points ranging from 0.021 to 

2.79 Hz, evenly spaced in a log scaled frequency axis. From these smoothed ensemble averages, 

the experimental frequency response (transfer function) to PRTS-SS was estimated by 

computing: 

HXY (k ) 
S XY (k )

S XX (k )
,  (5) 

 

 17 



 

 

Figure 3. Sample Experimental Transfer Function.  An example of the experimental Transfer Function (TF) gain 

and phase curves computed from smoothed (orange) and unsmoothed (blue) spectral estimates from a representative 

young subject. Smoothing was applied as described in Methods to reduce variability in the transfer function 

estimates. 

 

where the overbar denotes the smoothed ensemble power and cross-power spectra, and 

subscripts X and Y denote the SS and BS time series, respectively. (See Figure 3 for a 

representative example of the effect of smoothing on the spectral estimates.) 
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3.3.5 Postural Control Model Fits and Statistical Analyses 

3.3.5.1 Modeling of postural control 

A least-squares fit of a previously developed and validated postural control model was made to 

the smoothed experimental frequency response functions.  The model has been shown to produce  

 

 

Figure 4. Feedback Model of Postural Control.  Sensory channels are limited to vestibular (graviceptive) and 

proprioceptive sensory channels. The mechanical perturbation provided by the support surface (SS) is indicated in 

the schematic as a pseudorandom stimulus.  Body sway with respect to the feet (i.e. with respect to a sagittal plane 

perpendicular to the SS) is indicated by BF. Eyes are closed, hence visual sensory feedback is not included in the 

model.  The “Aging” box is hypothesized to have an effect on the “Sensory and neuromuscular system.” (Model 

schematic adapted from [1, 9].) 

simulations in good agreement with postural data under a variety of experimental paradigms, 

including ones similar to our experiments [1, 6, 8, 9, 16, 17]. 

The postural control system is modeled by a linear feedback controller (Figure 4). Body 

dynamics are represented by a single-link inverted pendulum, as in other studies  [6, 8, 23, 24]. 
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For the experimental conditions as used here, the single-link dynamics model has been shown to 

be accurate; in particular, Cenciarini and Peterka showed that the experimental transfer function 

during free-standing trials was indistinguishable from that of trials in which subjects wore a 

back-board to insure single-link mechanics [9]. Similar results have also been reported for AP 

conditions [6].  

For eyes-closed stance, body motion is sensed by the vestibular and proprioceptive 

systems, which are modeled by scalar constants to represent the relative contribution of each 

sensory system to balance control. This sensory information is combined and used to generate a 

controlling torque about the ankles, via a “neural controller” modeled by a proportional, integral, 

and derivative (PID) controller [6, 8]. The sensory feedback loop includes a lumped time-delay 

that accounts for neural transmission, sensory processing, and muscle activation delays in the 

postural control system. The neural controller, the time delay, and the sensory weights represent 

the active mechanisms used by the CNS to control posture.  

The model also includes a passive pathway that contributes to torque generation, based 

on the position and velocity of the ankle joint angle, as obtained via the passive stiffness (K) and 

damping (B) parameters in the model (Figure 4). By “passive” we mean as used in previous 

studies [6, 7, 9], namely the generation of a stabilizing torque without any processing delay, in 

contrast to the “active” pathways of the model, which are neurally-mediated and include time 

delay.  

The mathematical expression for the frequency characteristics of the model is given in 

Eq. (6). This equation expresses the model transfer function for body sway in response to a 

PRTS-SS perturbation, with eyes-closed and under steady-state conditions, for which the sum of 

the proprioceptive (wp) and graviceptive (wg) sensory channel weights is unity, W  wp  wg 1 
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[6, 9], such that the sensory weights represent the relative contribution of the respective sensory 

channel to the total sensed body sway.  Least-squares curve fits of the model transfer function to 

the experimental transfer functions were made as in [1, 16] to obtain the parameters of the 

model, namely proprioceptive sensory channel weight (wp), active stiffness (KP), active damping 

(KD), integral factor (KI), time delay (TD), passive stiffness (K) and passive damping (B). (Note 

that because , wg is given by 1- wp.). wp  wg 1

M SS (s) 
BS(

SS(

s)

s)


wP  (KD s2  KP s KI ) eTDs  Bs2  K s

J s3 W  (KD s2  KP s KI ) eTDs  Bs2  (K  mghCOM )s
  (6) 

 

3.3.5.2 Statistical Analyses 

A mixed-factor repeated-measures ANCOVA was performed on all model parameters, using a 

significance level of =0.05.  The independent factors were Age (Young and Older Adults) and 

Visit (1, 2, and 3). In addition, we included the moment of inertia, J, as a covariate factor in our 

statistical analysis, because the estimated moment of inertia was larger in the older adults than in 

the young adults (Table 1). Furthermore, body size differences (mass, height) are known to be 

correlated with stiffness and damping [6], and thus any observed differences in these parameters 

may be explained by differences in body size.  

Table 1. Summary of anthropometric data from the subjects included in the study. – ML sway 

Age Group 
Height 

[m] 

Mass 

[kg] 

Moment of Inertia (J) 

[kgm2] 

Young Adult 1.72 ± 0.07 67.0 ± 7.4 66.7 ± 12.2 

Older Adult 1.72 ± 0.10 75.5 ± 11.4 75.5 ± 19.8 
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This statistical approach allows us to determine if the postural control model parameters change 

significantly with age, while accounting for differences in body size (i.e., moment of inertia, J, 

which depends on mass and height). 

3.4 RESULTS 

3.4.1 Experimental transfer functions and modeling results 

There was no effect of visit nor interaction between visit and age on the model parameters; 

therefore we focus on the effect of Age. In Figure 5, the mean group (young vs old) experimental 

transfer function gain and phase curves of BS to PRTS-SS are plotted. Below about 0.3 Hz, there 

is little difference between the two groups. Above 0.3 Hz, the gain was higher for the older 

adults compared to the young and exhibited a slight peak around 0.7 Hz.  No apparent systematic 

differences between young and old were observed for the phase.  

Model fits to the subjects’ experimental transfer functions yielded parameters that 

quantify differences between the young and older adult groups (Figure 6 and Table 2). In 

particular, the active stiffness KP was significantly larger in the older adult group compared to 

the young adults. 

Table 2. Estimated model parameters (mean SD) for young and older adult groups - ML 

 
KP 

[Nmrad-1] 

KD 

[Nmsrad-1] 

KI 

[Nmrad-1s-1] 

K 

[Nmrad-1] 

B 

[Nmsrad-1] 

TD 

[ms] 
wp 

Young 898  215 288  71 182  110 157  165 34  40 172  27 0.44  0.13 

Older 1225  299 370  86 359  163 99  166 44  49 173  24 0.64  0.17 

p-value 0.005 0.042 0.032 0.195 0.943 0.818 0.011 
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Similarly, the active damping KD was significantly larger in the older adults than in the young 

adults. The integral gain parameter KI also increased significantly with age. 

 

  

Figure 5. Group Average Experimental Transfer Function.  Experimental Transfer Function (TF) estimated from 

body sway response to SS rotations for young adult (YA) and older adult (OA) age groups. Averages were taken 

across the three sessions for PRTS-SS trials alone. YA and OA gain curves were similar in the low-frequency range 

(below 0.3 Hz), while the gain of the older adults was larger in the mid- and high-frequency ranges (above 0.3 Hz) 

and exhibited a slight peak around 0.7 Hz. 

 

Passive control parameters (K and B) tended to be much smaller in value than the 

corresponding active parameters (Table 2). Moreover, no significant age effect was found in the 

passive parameters. 
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No significant age effect on the time delay (TD) parameter was found, which was on 

average the same for both age groups. The proprioceptive sensory weight parameter (wp) was 

significantly larger in the older adults than in the young adults; consequently, since wp + wg = 1, 

the graviceptive (vestibular) sensory weight was smaller in the older adults than in the young 

adults. 

 

 

 

Figure 6. Summary of Model Parameter Estimates.  A. Model parameter values estimated by fitting the postural 

control model to the experimental transfer functions (also see Table 2).  Bar plots show average results (mean ± SD) 

for young adults (YA) and old adults (OA). Significant age differences (p<0.05) are indicated by *. B. Normalized 

stiffness and damping (also see Table 3). 
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3.4.1.1 Accounting for body size differences 

Another way to account for the influence of body size (i.e. body mass and height) on the 

parameter values is to normalize the parameters by the moment of inertia (which is a function of 

body mass and height; for example, it is proportional to mh2 for the inverted pendulum). This 

normalization is suggested by the form of the transfer function in Eq. (6): namely, divide the 

numerator and denominator by J to obtained the normalized parameters KP/J, KI/J, KD/J, B/J and 

(K-mghCOM)/J.  In a study of young adults, Peterka showed that stiffness and damping 

normalized in this way were uncorrelated with and insensitive to differences in body mass and 

height [6]. Accordingly, we repeated our statistical analyses on KP/J, KI/J, KD/J, B/J and (K-

mghCOM)/J, without the effect of the covariate.  This analysis revealed that, with the exception of 

passive damping, the normalized parameters showed similar significant changes between the 

young and older adults (Table 3 and Figure 6).  

 

Table 3. Normalized model parameters (mean SD) for young and older adult groups. 

 KP/J [s-2] KD/J [s-1] KI/J[s-3] (K – mghCOM)/J[s-2] B/J[s-1] 

Young 13.5  2. 8 4.3  0.7 2.6  1.3 -7.0  2.5 0.5  0.6 

Old 16.4  2.6 4.9  0.6 4.8  2.1 -8.2  2.4 0.6  0.5 

p-value 0.002 0.013 0.019 0.010 0.115 

 

Thus, the differences observed are not attributable solely to differences in body size between the 

two populations. 
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3.5 DISCUSSION 

Aging is known to affect human balance, with increasing degradation in motor and sensory 

function [58-60]. As muscle and sensory properties change, the strategies employed by older 

adults to maintain balance may change to compensate for degraded function.  For example, a 

common view is that elderly adults are “stiffer,” exhibiting increased co-contraction of muscles 

during more challenging balance tasks, or in response to balance perturbations [61]. However, 

from a control systems standpoint, increased stiffness alone is not necessarily a good 

compensatory response. In particular, it is well known that increasing the stiffness in a 

mechanical mass-spring-dashpot system can result in resonant (oscillatory) behavior. A similar 

result occurs in the linearized, second order, stable inverted pendulum model with stiffness K, 

damping B, mass m, center-of-mass height hCOM and moment of inertia J, which has poles given 

by 

2

1,2 2 2
COMK mghB B

s
J J J

     
 

   (7) 

 

Note that, if the damping B is held fixed, increasing K will eventually cause the term 

under the square root to become negative, resulting in complex poles and hence an oscillatory 

(i.e., underdamped) response to a perturbation. In the frequency response gain, this effect is 

manifest as a peak in the neighborhood of the damped natural frequency, indicating that the 

system is more susceptible (i.e. will respond more) to perturbations near this frequency.  From a 

stability standpoint, this response is not necessarily desirable. A concurrent increase in the 
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damping would reduce the frequency response gain and hence the magnitude of the oscillations, 

and moreover would result in a faster settling time to steady state after a perturbation.  

Our experimental results showed that, indeed, older adults are stiffer than young adults, 

but that they also have increased damping.  This concurrent increase in damping has the 

beneficial effect of reducing oscillations in response to external perturbations. To see this effect, 

let us first consider the impulse response from our postural control model, Eq. (6), using the 

mean parameter values for the young and older adults, respectively.  

 

 

Figure 7. Simulated Model Impulse Response for YA and OA.  Plots of the impulse response of the postural control 

model for nominal values of active and passive stiffness and damping in the young adult (YA) group (solid curve) 

versus the older adult (OA) group (dash-dot curve).  The first peak is similar in terms of timing and amplitude, but 

the response of the OA group is characterized by larger subsequent peaks, and slightly higher frequency of 

oscillation, as compared to the YA.  Older adults are mainly characterized by larger active stiffness and damping as 

compared to young adults. 
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These impulse responses are plotted in Figure 7, from which it is clear that the older adults 

exhibit larger, more sustained, and slightly higher frequency body sway in response to a 

perturbation. 

Now consider the effect of increasing the stiffness alone, versus increasing the stiffness 

and damping, which is shown in Figure 8. In particular, Figure 8 shows three plots, 

corresponding to the ``nominal’’ impulse response of the young adults, using their mean 

parameter values, repeated from Figure 7, along with a plot of the response obtained by 

increasing stiffness (normalized to body size) to that seen in the older adults, and a plot of the 

 

 

Figure 8. Effects of Stiffness and Damping on Impulse Response Dynamics.  Plots of the impulse response of the 

postural control model for nominal values of stiffness and damping in the young adult population (solid curve), 

versus increased stiffness only (dashed curve), versus increased stiffness and damping (dash-dot curve), and versus 

increased stiffness, damping, and integral gain (dotted curve).  Note that peak-to-peak oscillations are greatest for 

increased stiffness alone, and that increasing damping concurrent with an increase in stiffness diminishes these 

oscillations. Increasing the integral gain has little effect compared to increased stiffness and damping. 
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impulse response obtained by increasing stiffness and damping (normalized to body size) to that 

seen in the older adults. These plots show that increased stiffness alone results in larger 

overshoots and longer settling times in the impulse response than does a concurrent increase in 

stiffness and damping. 

We also observed that increasing stiffness alone did not seem to affect the timing of the 

peaks as compared to a concurrent increase of stiffness and damping. The differences in 

overshoot and settling time can be quantified by measuring the first three peaks in the impulse 

response (max, min, max), and the area under the curves, as reported in Table 4.  Lower peaks 

and smaller area are indicators of greater stability, in the sense that the system is better able to 

resist external perturbations. Note, however, that while the concurrent increase in damping with 

stiffness does yield a more stable impulse response than that arising from increased stiffness 

only, it does not yield an impulse response as stable as that of the young adults, who have lower 

damping and lower stiffness. 

Substantial increases in the integral gain, KI, were also observed in the older adults, and it 

is therefore worthwhile to investigate this effect as well.  From a control systems perspective, the 

integral term is not needed to stabilize the inverted pendulum; a proportional-derivative (PD) 

controller (i.e., a controller with gains KP and KD) is sufficient to yield a stable response. The 

effect of introducing an integral correction term in a PD controller has the potential benefit of 

improving tracking ability and reducing steady-state error.  In our simulations, increasing KI in 

the simulated response of young adults to the value seen in older adults (dotted curve, Figure 8, 

and 4th col., Table 4) had some effect, most notably in a slight reduction in the amplitude of the 

third peak, consistent with the notion that integral control helps to reduce steady state error. 
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However, from a stability perspective, the increases in KP and KD seem to have more of an effect 

on the impulse response than does the (comparatively larger) increase in KI. 

 

Table 4. Peak amplitudes and area under the curve of the simulated impulse responses. 

 Young adults 
Increased 

stiffness 

Increased 

stiffness and 

damping 

Increased stiffness, 

damping, and 

integral factor  

Older 

adults 

1st peak [deg] 3.70 3.68 3.85 3.86 3.86 

2nd peak [deg] -1.30 -2.06 -1.81 -1.94 -1.93 

3rd peak [deg] 0.00 0.73 0.51 0.39 0.39 

Area [deg*s] 2.76 3.41 2.83 2.77 2.76 

 

Our experimental results and model-based analyses are consistent with and complement 

recent work by others on active stiffness and damping (i.e., active impedance) in balance and 

motion.  While co-contraction, resulting in increased active stiffness, has been cited as a 

compensatory response to balance perturbations in the elderly [61], it is important to consider 

active impedance (which is characterized by active stiffness and damping), and not only active 

stiffness [50, 55, 56]. In a recent study [56], the authors concluded that if elderly subjects use co-

contraction to compensate for loss of sensory and motor function due to aging, then this could 

explain why older adults are more prone to falls than are young adults, especially in response to 

rapid perturbations. They speculated that older adults are able to respond adequately to very slow 

perturbations or changes in the environment, but are unable to adequately counteract rapid 

perturbations. Considering changes in the relative stiffness and damping may explain why in 

particular situations the postural control system responds adequately but in others may fail and a 

fall occurs. 
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Our results provide some corroborating evidence for Ishida’s hypothesized explanation 

for increased risk of falls with aging, especially due to rapid perturbations [56]. In our model 

based analysis, we were able to estimate stiffness and damping and furthermore to distinguish 

between active and passive factors. We found that active stiffness and damping dominated the 

response to external perturbations in both young and older adults, compared to the corresponding 

passive properties, consistent with previous findings in young adults [6, 9]. Moreover, we found 

that active stiffness and damping, relative to body size, increased in older adults compared to 

young adults, and that the normalized passive stiffness of older adults was also more negative 

(destabilizing, thus requiring more active stiffness in order to achieve enough total stiffness to 

counter the destabilizing effects of gravity. Perhaps because of this more negative normalized 

passive stiffness, the increase in active stiffness was larger than the increase in active damping 

(21% increase in active stiffness compared to young, vs. 14% increase in active damping 

compared to young -- Table 3).  As shown in our impulse response plots, while the increase in 

stiffness and damping was more stabilizing than an increase in stiffness alone, the impulse 

response of the older adults was still not as stable as that of the young adults. These 

experimentally derived model-based results provide further insight about the characteristics of 

the postural control system in older adults that makes them more sensitive to external balance 

perturbations, compared to young adults. 

Of course, extrapolating controlled laboratory findings to real-life situations should be 

done judiciously. It would be of interest to perform similar analysis under additional conditions, 

such as eyes-open sway, which is a more real-life scenario than the eyes-closed laboratory 

condition explored here. Also, it would be of interest to examine multi-link dynamics and model 
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fits particularly if larger perturbations are used.  Stiffness and damping may be different at the 

hips and the ankles across subject groups, which may be uncovered by a multi-link approach. 

3.6 CONCLUSION 

In this paper, we addressed the question of what postural control changes occur with age by 

examining the frequency response of body sway in response to platform perturbations, and also 

fitting a control model to the data to obtain stiffness and damping parameters. We observed 

larger frequency response gain characteristics above 0.3 Hz and a more pronounced peak around 

0.7 Hz in older adults compared to young adults. These findings suggest that older adults would 

experience a more oscillatory response to fast occurring perturbations than they would for slow 

ones, compared to young adults.  Accordingly, older adults may have to be more cautious in 

situations where they could experience rapid floor movements such as on a bus, train, or 

escalator. 

In addition, the model-fit results showed that older adults had significantly higher active 

stiffness and damping parameter values as compared to the young adults. Thus, older adults do 

not just increase stiffness in response to external balance perturbations, but damping as well. 

This concurrent increase in active stiffness and damping was shown to be more stabilizing than 

an increase in stiffness alone, as assessed by oscillations in the postural control model impulse 

response, and the area under the curve. However, the older adults were still less stable than the 

younger results, as quantified by larger oscillations in the model-fit impulse response.  

Further research is needed to understand the possible sources of these changes in the 

control system and to determine if improved compensation can be achieved with appropriate 
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physical therapy or exercise. Investigations into multi-link behavior, as well as in response to 

other perturbations and sensory conditions, is also warranted. 
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4.0  INTERACTION BETWEEN AGE AND ATTENTION IN THE CONTROL OF 

POSTURE 

4.1 INTRODUCTION 

In this chapter, we report findings from model-based analysis of dual-task experiments 

involving balance and information processing (IP) tasks performed on young and older adults.  

The aim was to investigate the interactions among aging, attention and sensorimotor integration 

for balance control. Studies have suggested that dynamic sensory regulation (also called “sensory 

re-weighting”) of the postural sensory systems (vision, vestibular and proprioception) is a 

fundamental aspect of balance control, and is a mechanism underlying adaptation to external 

sensory perturbations [6, 8, 25, 48, 62-65].  Numerous studies have also found that older adults 

require increased cognitive resources (i.e. attention) for balance [2, 3, 15, 34, 66-72].  However, 

an understanding of the mechanisms behind this aspect of aging has not been developed.  

We investigated the effects of aging and attention on standing balance by fitting body 

sway data from balance-healthy young and older adults to a previously-developed and validated 

postural control model [6, 8, 9] that incorporated these two aspects into the model components.  

In particular, aging and attention are believed to have an effect on the lumped time-delay 

parameter of the model, and on the dynamic regulation of sensory weights responsible for stance 

control.  
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The postural control model incorporating sensory re-weighting sets forth a quantitative 

framework for exploring this process. This model has been shown to fit experimental data in a 

variety of conditions [6, 8]. We have explicitly added “attention” to the model and its influence 

on sensory integration via the sensory weight and time delay parameters of the model (see Figure 

9 on p.46). The model suggests that the processing of sensory inputs for balance regulation 

requires time, and that attention influences this processing time. We use the dual-task paradigm 

to experimentally examine these attentional effects in the model. An information processing (IP) 

task that is performed concurrently with a balance task should increase the delay time in the 

model if the two processes are competing for attentional resources (given that capacity for this 

processing is limited, i.e. subject to attention).  If the IP task does not engage balance-relevant 

processes, then the time factor in the model will be unaffected.  A first test of the applicability of 

the model is to show that one or more IP tasks do induce increased estimates of the delay in the 

model.  Varying the IP task presented concurrently with the balance task then provides further 

information on processes shared between balance and information processing.  Examining both 

young and older adults further tests the utility of the model. Older individuals are known to have 

decrements both in their attention capacity, i.e. capability to perform multiple tasks concurrently 

[73-75], and in their capability to adjust to balance challenges [34, 66]. The delays in the model 

should be differentially manipulated by tasks that vary in their processing requirements. 

Another aspect of the interaction of attention and postural control that lends itself to study 

via our proposed model-based approach is sensory selection. In particular, based on experimental 

findings involving dual-task conditions, Redfern et al. [15] proposed that attention can modulate 

sensory channels to facilitate specific sensory modalities. The present study further examines this 

idea and the hypothesis that limited cognitive resources in older adults compared to young adults 
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will result in a larger effect of attention on sensory selection, as manifest in the sensory re-

weighting component of the model. 

The approach in this study was to: 1) conduct dual-task experiments using specific 

balance perturbations and concurrent cognitive information processing (IP) tasks; 2) fit the 

postural response sway data with the proposed model (Figure 9); and 3) use these model fits to 

test the following hypotheses regarding attention and postural control: 

H1) Age will not have an effect on the time delay of the postural control system during 

postural conditions when there is no concurrent IP task. 

H2) Performing an auditory choice reaction-time task (CRT) concurrent with a balance 

perturbation will have no effect on the time delay in young adults. The same task in older 

adults will increase the time delay of the postural control system.  

H3) Performing more demanding IP tasks (an auditory “vigilance” task (VT) and an 

auditory “memory” task (MT)) concurrent with a balance perturbation will compete for 

cognitive resources and manifest as an increase in time delay in the postural control 

system in both young and older adults. The increase in time delay will be greatest for the 

MT task and this effect will be greater in older subjects compared to young subjects. 

H4) No changes in sensory re-weighting will be observed in young subjects during 

postural challenges with concurrent IP tasks, compared to baseline (no IP task) 

conditions, but older adults will exhibit changes in sensory re-weighting during IP tasks. 

Specifically, older adults will decrease proprioceptive gain, Wp, during concurrent IP 

tasks. 
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4.2 BACKGROUND 

Upright balance is believed to be maintained through control mechanisms of an ``active’’ and 

``passive’’ nature, which have been shown to be impacted by aging.  By ``active control’’ we 

mean neurally-mediated corrective action, generated from sensory information about body 

position and motion, in response to external disturbances that perturb balance; as such, this 

action includes significant time delay (on the order of 100-200 ms).  In contrast, ``passive 

control’’ arises from reflexive responses, with no higher cognitive function and hence minimal 

time delay. The passive mechanisms involved in postural control include the intrinsic visco-

elasticity of muscles and stiffness of tendons, providing some gravity-countering forces in much 

the same way a spring generates a counter-force when it is displaced from its resting equilibrium 

[50-52].  The contributions of passive mechanisms to maintenance of upright stance are 

relatively minor in comparison to active control mechanisms, during perturbed conditions such 

as floor tilts, moving scenes or galvanic stimulation  [6, 9]. 

As we age, balance function starts to decline and control of stance can become difficult 

for many older adults [2].  Decline of balance function is considered one of the factors likely to 

be responsible for falls in a large percentage of older adults [2, 11].  Results from previous 

studies have suggested that diminished balance function can induce increased use of attention to 

maintain upright stance [2].  However, the exact underlying mechanisms that are involved in the 

control of posture and the interactions between aging, attention and sensory integration for 

postural control are not fully understood yet.  

A model-based approach using a variety of different sensory perturbations [1, 6, 8-10], 

has been shown to be effective for studying the postural control problem and unveiling some of 

the mechanisms involved in stance control.  Very recently, this approach has been used to 
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investigate the effect of aging and attention on control of balance and their interaction [1].  This 

original study found that attention towards a concurrent IP task has an impact on the time delay 

associated with processing speed of the sensorimotor integration process for control of stance.  In 

particular, it was found that older adults have a comparable processing speed to that of the young 

adults in mildly challenging balance conditions, but when attentional requirements increase due 

to dual-task conditions, the time delay associated with the sensory integration process changes 

depending on the cognitive demand of the attentional task and depending on age [1]. 

Based on the results of this original work [1], the present study was proposed with the 

intent to further expand the current knowledge about the interactions among attention, aging and 

sensorimotor integration for posture control.  This study uses a dual-task approach consisting of 

moving platform perturbations presenting with concurrent cognitive (information processing 

(IP)) tasks that included: 1) a choice reaction time (CRT), in which subjects need to press a 

button as fast as possible in response to a high or low frequency tone; 2) a vigilance task (VT) in 

which subjects are asked to count silently the number of occurrences of either the high or low 

frequency tones, which requires a sensory focus and use of memory to store and count, but not a 

motor action like the CRT; and 3) a memory task (MT) in which subjects must memorize a 

sequence of number-word pairs presented prior to the start of the trial, and report these pairs 

back at the end of the trial. The protocol also included balance (moving platform) conditions 

alone, without IP tasks, as well as seated IP tasks, as control conditions.  

Estimation of the experimental frequency response of the postural control system are 

presented and key results on the effect of age, attentional condition and visit number (time effect) 

are described.  Model fits to the data were performed following the methodology proposed in [6] 

and model estimates are reported and discussed in the following sections of this chapter. 
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4.3 METHODS 

4.3.1 Subjects 

Thirty five young adults (18 males and 17 females, 23 ± 3 years, range: 18 – 30) and 25 older 

adults (11 males and 14 females, 74 ± 5 years, range: 66 – 88) participated in this study.  

Subjects gave informed and written consent before participating in this study.  The experimental 

protocol was approved by the Institutional Review Board at the University of Pittsburgh. All 

subjects were required to complete and pass a set of screening examinations prior to any 

experimental tests, to ensure absence of any balance abnormality.  The screening procedures 

consisted of standard clinical testing for vestibular, oculomotor, and balance function, including 

caloric and rotational vestibular tests, vibration and cutaneous pressure sensation, and 

computerized dynamic posturography.  

4.3.2 Experimental Setup and Protocol 

4.3.2.1 Experimental Setup 

The experimental procedures took place in the balance testing laboratory of the Medical Virtual 

Reality Center at the University of Pittsburgh.  The laboratory is equipped with a dynamic 

posturography platform (NeuroTest, Neurocom International, Inc., Clackamas, OR).  The 

platform was used to induce rotational platform perturbations during standing and acquire center 

of pressure data in response to those perturbations (Figure 2). A harness system was used to 

ensure subject safety and injury prevention from falling during testing. The harness did not 

impede sway, or give any positional feedback to the subject. Body sway was measured using a 

 39 



magnetic tracking device (Fastrak, Polhemus, Colchester, VT) that tracked the position of two 

sensors on the subject’s body: one positioned on the lower back, at the height of the iliac crest, 

and one positioned at the top of the head. 

To induce balance perturbations, subjects were exposed to rotational movements of the 

underfoot platform.  The platform, or support surface (SS), rotated about the ankles with a 

random-like motion; the velocity profile of this motion followed a pseudo-random ternary 

sequence (PRTS). The PRTS has been shown to have a wide spectral bandwidth over the range 

of frequency of interest for standing.  In particular, the velocity profile of the PRTS-SS has 

spectral and statistical properties similar to a white noise signal [6, 9].  Another type of SS 

rotation tilt was also used to induce body sway, in which the platform followed the subject’s 

body sway angle with a 1:1 ratio. This condition, known as sway-referencing SS (SR-SS), is 

known to induce increased reliance on sensory orientation cues mainly that are of vestibular 

origin [6, 8, 9], particularly in an eyes close condition.  Data from the SR-SS condition are not 

presented here; processing was only performed on data from the PRTS-SS condition. 

During the PRTS-SS condition, the platform rotated pseudo-randomly according to the 

integral of a PRTS, with peak-to-peak amplitude of 2 and a cycle duration of 60.5 s (see [1, 6] 

for details).  This amplitude was chosen to prevent any saturation in the response of the postural 

control system as reported in [6, 9]. Recorded body sway in response to the SS perturbations 

were used to estimate dynamic properties of the postural control system over a range of 

frequencies (0.016 – 2.230 Hz).  The PRTS-SS condition allows for an input-output analysis and 

estimation of model parameters [1, 6, 9]. To ensure adequate steady-state conditions for 

estimating postural control characteristics, while avoiding long trial durations in order to guard 

against fatigue effects, particularly in older adults, two consecutive cycles of the PRTS-SS were 
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presented during a trial, for a total perturbation interval of 121 s.  The same trial condition was 

presented to the subjects three times within a session in a randomized order. 

Subjects stood on the platform with the axis of rotation of the SS aligned about a medial-

lateral axis passing through the malleoli, thereby inducing body sway in the sagittal plane 

(anterior-posterior (AP) direction) in response to SS rotations. Subjects were asked to stand with 

a comfortable stance width for their feet. Foot placement was marked at the start of the first trial 

to maintain the same position from trial to trial and across visits for each subject. 

The posturography system was also equipped to allow concurrent information processing 

tasks (IP) during the postural conditions described above (SS tilt). Three IP tasks were 

performed, consisting of 1) a choice reaction time task (CRT) that involved auditory tonal 

stimuli presented via a headphone system using ear inserts (Etymotic, Inc.); 2) a vigilance task 

(VT), that involved the same tone stimuli as in the CRT task, however, in the VT subjects were 

asked to silently count either the total number of high or low frequency tones they would hear 

during a trial and report the number at completion of the trial; and 3) a memory task (MT), 

involving number-word pair memorization and recall.  The IP tasks were selected based on past 

research and to explore specific cognitive processing that might interfere with posture control 

and that is known to be associated with each of these three tasks. The CRT task requires auditory 

stimulus detection, making a choice, and a quick reaction. The emphasis is on simple, but fast, 

processing that involves a motor component (pressing hand-held buttons). Slowing of processing 

speed is a common finding with age [42]. In contrast, the VT emphasizes accuracy of detecting 

the high/low frequency tone and provides a sensory focus, with a memory requirement and no 

musculo-skeletal action (unlike the CRT task). The VT has shown a different interaction effect 

with age and postural control performance than the CRT task [1].  In addition to the CRT and VT 
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studied previously [1], the MT was added in this study to test whether memory may be involved 

in control of posture. A more detailed description of IP tasks 1) and 2) (CRT and VT, 

respectively) is reported in [1], while that of IP task 3) (MT) is presented below. 

4.3.2.2 Experimental Protocol 

To participate in the testing experiments, subjects were required to pass a battery of 

screening procedures to ensure absence of any neurological and cognitive impairment that would 

affect their control of balance and performance of the attentional (IP) tasks.  After screening and 

prior to experiments, a training visit was first conducted to familiarize subjects with the IP tasks 

and also to determine baseline performance values. Baseline values were used to ensure subjects 

were at similar performance levels at the start of actual testing. Three experimental sessions on 

three separate days were performed after the training sessions, with at least two days between 

each visit. One IP task, selected randomly, was conducted per testing visit.  Prior to the start of 

experimental tests, subjects rehearsed the IP task for that visit, to re-familiarize them with the 

task.   

As indicated earlier, description of the CRT and VT tasks is reported in [1]. The Memory 

Task (MT) used in this study was adapted from a test proposed by Brooks [76] and then later 

applied to postural research by Maylor et al. [5]. They found that memorization had a negative 

effect on stability and that ability to recall a given set of words decreased with age. In our 

protocol, for each MT trial, subjects were verbally given a pre-recorded sequence of number-

color pairs (e.g. “One – blue, two – green, …”) to be memorized before the start of the trial, and 

instructed to keep this sequence in mind for recall at the end of the balance trial. The rationale 

for this task was to induce a focus on cognitive activity that involved memory while the subject 

also performed a balance task.  As shown in [5], subjects’ ability to recall decreased with age.  
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Accordingly, we chose to normalize the cognitive load across subjects, by determining during 

training the number of pairs that subjects could memorize and recall with no more than two 

mistakes.  This error rate was achieved during training as follows. Initially, five number-color 

pairs were presented to the young adults, and three were presented to the older adults. If no error 

was made during the recall phase, then the number of pairs was increased by two for the next 

trial.  If one or two errors were made during recall, then the number of pairs was kept the same 

for the next trial. If the number of errors was three or higher, then the number of pairs was 

decreased by one for the next trial. This training protocol continued until the subject converged 

to the number of pairs for which the subject made 1-2 mistakes during three consecutive trials.  

In general, subjects performed about 8-10 trials before completing training.  The maximum 

number of colors available for pairing was 12, allowing for a maximum of 12 different pairs 

during a trial.  Only a few subjects in the young adult group were able to reach this limit. (The 12 

colors used were White, Black, Blue, Red, Green, Orange, Brown, Yellow, Purple, Pink, Silver, 

and Gold).  

At the completion of the balance trials involving the MT task, subjects were asked to 

recall the MT sequence by verbally stating the color corresponding to the numbers of the 

sequence, which were played back using custom made software in a random order (e.g., “Three - 

_____, one - ____, four - ____, …”). Subjects were allowed up to 5 seconds to recall the color, 

and the number of correct responses was tallied. 

On the first testing visit, prior to the start of trials, anthropometric measurements were 

taken so that the body inertia (J), mass (m), and height (h) used in the model could be obtained 

[57]. During each visit, subjects underwent a setup phase and a short IP task refresher to bring 

the subject performance close to that shown during training (approx. 30 minutes).  The testing 
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phase followed and lasted for about 1.5 hours.  Each trial was characterized by a combination of 

a balance condition (seated or standing on the SS) and an IP condition (NoIP (control; balance 

only), CRT, VT, MT) for the task chosen for that day.  For each visit, there were a total of 15 

trials resulting from two platform conditions (PRTS-SS and SR-SS) x two IP conditions (NoIP 

and visit-specific IP (CRT, VT or MT) x three repetitions per condition, plus three seated trials in 

which subjects performed only the IP task. Trial conditions were pseudo-randomly presented to 

each subject, in that IP conditions were randomized across visits, and platform and IP/NoIP 

conditions were randomized across trials, with the caveat that subjects could not experience 

consecutive identical platform-IP trials.  

During each experimental trial, subjects stood upright, with eyes closed, on the 

posturography platform for the duration of each trial; a three minute seated rest followed each 

trial. All subjects were given the following instructions: “Maintain a relaxed upright stance 

position with your eyes closed and arms folded across your chest.” The duration of each trial was 

181 s, consisting of a 121 s perturbation interval (PRTS-SS motion) preceded and followed by a 

30 s quiet stance period on a fixed SS. 

4.3.3 Data Measurement and Analysis 

In this work we present analyses and results only from the PRTS-SS trials for each 

subject, consisting of three moving platform trials without any IP task (NoIP condition), and 

three moving platform trials per IP task per visit.  Data from these trials were used to estimate 

body sway characteristics in response to platform perturbation with and without a cognitive dual 

task: IP vs NoIP condition. 
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Body sway (BS) angle and velocity in the anterior-posterior (AP) direction (sway in the 

sagittal plane) from COP data were processed based upon methods in [1].  Angular displacement 

of the COM in the sagittal plane was estimated from the COP signal, using a small angle 

approximation [1, 6, 10], 

Hip AP (t)  hCOM sin BS (t)  hCOM BS (t)     (8) 

 

Body sway and platform rotation measurements for the 121 s of pseudo-random platform 

motion were divided into two segments of 60.5 s duration (PRTS-SS cycle length).  For each 

cycle, the power and cross power spectrum were estimated via the discrete Fourier transform 

(DFT) of each time series; for further details see Chapter 3.0  or [10].  These power spectra 

estimates were then averaged across the two cycles.  Further spectral smoothing was also applied 

to reduce variability in the spectral estimates at each frequency, especially at higher frequencies, 

as described in [6, 9, 10]. The resulting smoothed power and cross-power estimates contained 17 

data points over a range of frequency from 0.016 to 2.23 Hz that were evenly spaced in a log-

scale. 

4.3.4 Model Fits to Experimental Transfer Function 

A least-squares fit of the model (Figure 9) to the smoothed frequency response data was 

made to estimate model parameters for each trial condition and subject. (See Chapter 3.0  and 

[10] for details.) 
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Figure 9. Feedback Model of Postural Control – AP Sway.  Sensory channels are limited to vestibular (graviceptive) 

and proprioceptive sensory channels. The mechanical perturbation provided by the support surface (SS) is indicated 

in the schematic as a pseudorandom stimulus.  Body sway with respect to the feet (i.e. with respect to a sagittal 

plane perpendicular to the SS) is indicated by BF. Eyes are closed, hence visual sensory feedback is not included in 

the model.  The “Aging” box is hypothesized to have an effect on the “Sensory and neuromuscular system.” While 

attention is thought to only have an effect on the “Sensory Reweighting” process and the overall postural control 

time delay. (Model schematic adapted from [1, 10].) 

4.3.5 Statistical Analysis 

An independent sample t-test was used to test for significant age differences at each of 

the 17 frequencies of the experimental transfer function estimates.  A method suggested by 

Benjamini and Hochberg [77] was applied to the resulting p-values for both the gain and phase 

functions of the TF estimates, to control for false discovery rate, as similarly used in [78, 79]. 

A mixed-factor repeated-measures ANOVA was performed on all model parameters.  

The independent factors were Age (Young and Older Adults) and Visit (1, 2, and 3).  Data were 

separated by IP condition (NoIP and IP).  Data for the NoIP (control) condition were analyzed to 

test the hypothesis of a significant difference in the postural control characteristics from visit to 
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visit (effect of time).  If a difference were to be found then NoIP and IP data would be analyzed 

separately.  Another repeated-measures ANOVA analysis was performed on all model 

parameters in which the independent factors were Age (Young and Older Adults) and attentional 

task (CRT, VT, and MT).  Data were again separated by IP condition (NoIP and IP) as when we 

tested for the effect of time.  Data for the NoIP condition were analyzed to test whether there was 

a difference across visits due to some unknown and indirect interaction with the task performed 

in each visit.  If a difference were to be found, then NoIP and IP data would be analyzed 

separately. 

To account for any possible body size differences that might need to be included as 

covariates in the ANOVA, an independent sample t-test was performed on subject’s body 

parameters, namely the moment of inertia (J), subject mass (M), subject height of the COM 

(hCOM), and the composite variable mgh.  Only hCOM was found to be significantly different 

(p<0.04), with young adults being taller on average than older adults.  However, because hCOM 

doesn’t appear directly in the expression of the model TF, but only via the composite variable 

mgh, which was not significantly different between the two age populations, there was no need 

to include any of the anthropometric body parameters (J, M, mgh) as covariates to account for 

body size differences in the ANOVA. 

Table 5. Summary of anthropometric data from the subjects included in the study – AP sway. 

The * indicates a significant difference across age group with =0.05. 

Age Group 
Height of COM* 

[m] 

Mass 

[kg] 

Moment of Inertia (J) 

[kgm2] 

Young Adult 0.95 ± 0.05 74.8 ± 17.3 75.6 ± 20.9 

Older Adult 0.92 ± 0.04 75.7 ± 13.5 72.0 ± 16.7 
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One sample t-test on the difference in model parameter estimates between IP and NoIP 

conditions was used to test whether there was a significant difference between NoIP and IP trials, 

for each attentional visit (CRT, VT, and MT).  This statistical test was run first over all subjects 

to test the effect of performing a cognitive task, and also individually for each age group. 

All statistical analyses were performed using SPSS 11.0 for Mac OS-X with an -value 

of 0.05 for determining significance in each test. 

4.4 RESULTS 

Data from one older subject was excluded because his anthropometric parameters (M and J) were 

larger than what the motor that drives the floor rotations could handle, as determined by 

substantial differences in the measured platform motion compared to the desired input PRTS 

platform profile.  The resulting experimental transfer function gain and phase curves deviated 

from the norm seen in other subjects, and the fitting procedure was not able to provide good fits 

to the data. 

4.4.1 Experimental Transfer Functions 

Mean experimental transfer function gain over all PRTS-SS trials for the NoIP condition was 

higher for the young adult group in the lower frequency range (below 0.3 Hz), while that of the 

older adults was higher above this frequency and peaked just below 0.6 Hz (Figure 10).  

Analogous differences were found for the PRTS-SS IP condition trials as well.  These results are 

similar to those found in the ML direction of sway [10] but at a slightly higher frequency (0.7 
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Hz).  Statistical tests on the gain function data resulted in significant differences (=0.05) 

between the young and older groups at various frequencies.  At 0.05 Hz, the gain of the YA was 

higher than the gain of the OA.  At frequencies of 0.58, 1.90 and 2.23 Hz the gain of the OA was 

higher than that of the YA (Figure 10).  The gain curve of the OA presented a slight peak at a 

frequency of 0.58 Hz. 

 

 

Figure 10. Spectral Estimates of Body Sway Characteristics.  Experimental Transfer Function (TF) estimated from 

body sway response to SS rotations for young adult (Young) and older adult (Older) age groups. Averages were 

taken across the three sessions for PRTS-SS trials alone. Young gain curve was higher in the low-frequency range 

(below 0.3 Hz) as compared to the Older curve, while the gain of the older adults was larger in the mid- and high-

frequency ranges (above 0.3 Hz) and exhibited a slight peak around 0.6 Hz. Phase curves were similar in the very 

low frequency range (below 0.15 Hz), while above this range till 0.8 Hz the Older phase curve was characterized by 

less lag than that of the Young. At frequencies above 0.8 Hz, the Older phase lag was greater than that of the Young. 
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The phase curves of the YA and OA were similar in the very low frequency range (below 

0.15 Hz).  The phase lag of the OA was less than the YA in the mid-high frequency range (until 

0.8 Hz) and then became higher than that of the YA above frequencies of 0.8 Hz.  The phase 

curves were significantly different from one another in the range of 0.15-0.46 Hz, in which the 

phase of the OA presented less lag than the YA (Figure 10). 

The coherence function estimates were relatively high until the frequency of 0.9 Hz 

indicating a good linear interaction between body sway response and platform perturbation [6, 

80]. 

4.4.2 Model Fits and Parameter Estimates 

Experimental transfer function fits were inspected for accuracy of the fits.  Mean-square-error 

(MSE) between model and experimental transfer functions was calculated over the 15 

frequencies used for fitting the data (freq. 2 to 16).  MSE was on average 0.101 and 0.282 for the 

YA and OA age groups, respectively, corresponding to 3% and 7% relative errors with respect to 

the magnitude of the experimental TF, respectively. 

4.4.2.1 Visit number and Aging Effects 

Repeated measures ANOVA was performed on all the estimated model parameters (Wp, KP, KD, 

KI, Td, K, and B) from the PRTS-SS platform condition for the No-IP (i.e. control) task 

condition. Independent factors “age group” (YA and OA; between-subjects effect) and “visit 

number” (1, 2, or 3; within-subjects effect) were included in the model. No significant effect of 

the visit number (p>0.09) was found for any of the parameters (p>0.09).  A significant 

interaction between age group and visit number was found on the PID parameters (KP, KD, KI) 
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and on the passive damping parameter (B) (p<0.04), for the NoIP condition data. The OA PID 

parameters progressively increased visit after visit while B was lowest during the first visit and 

increased and leveled off at the second visit.  Td had a similar trend but no significant interaction 

effect was found for this parameter (p>0.27).  

 

Table 6. Estimated model parameters (mean SD) for young and older adult groups for the NoIP 

condition - AP 

  
KP 

[Nmrad-1] 

KD 

[Nmsrad-1] 

KI 

[Nmrad-1s-1] 

K 

[Nmrad-1] 

B 

[Nmsrad-1] 

TD 

[ms] 
wp 

YA 1098  288 337  98 152  104 12  40 59  27 196  19 0.62  0.08 

V1
 

OA 1105  249 331  73 193  133 2  8 63  45 203  19 0.63  0.07 

YA 1087  289 338  99 145  88 8  35 58  52 197  21 0.61  0.08 

V2
 

OA 1172  289 342  79 263  192 0  0 104  115 212  37 0.63  0.13 

YA 1063  280 335  97 155  116 10  44 50  30 194  16 0.60  0.07 

V3
 

OA 1172  284 346  82 296  248 0  0 98  120 211  41 0.63  0.14 

 

A significant age effect was found on the active controller parameters (PID parameters 

and Td) and the passive damping (B) (p<0.05) for the NoIP condition.  The values of those 

parameters were on average higher for the OA than for the YA group (Table 6). 

4.4.2.2 Attention and Aging Effects 

Two repeated measures ANOVA were performed on all the model parameters; one for the NoIP 

(i.e. control) condition and one for the IP (i.e. dual-task) conditions. Independent factors “age 

group” (YA and OA; between-subjects effect) and “attention task” (CRT, VT, or MT; within-

subjects effect) were included in the model. A significant attention task effect was found for the 
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Td and B parameters (p<0.03) for the IP trials. In addition, the Td, B and Wp estimates obtained 

during the NoIP trials were significantly affected by the visit on which the CRT, VT, and MT IP 

task conditions were performed (p<0.03). No significant attention or visit effect was found on the 

other model parameters (p>0.1). 

The average values of Wp and Td did not present any evident and consistent trend across 

attention conditions and the changes were different between IP and NoIP data (see Figure 11, top 

plots).  For both IP and NoIP data sets no significant interaction was found between age and 

attention condition for both these two model parameters (p>0.05).  Td was lower during the VT 

visit for both YA and OA (see Figure 11, top plot, opaque bars); this behavior was more 

pronounced for the OA group.  For the IP condition data (Figure 11, top plot, brighter bars), Td 

was highest for the CRT and it went down for the VT and it was the lowest for the MT visit.  

Again, this trend was more pronounced in the OA group.  Because of the significant effect of the 

attention condition on Td for both IP and NoIP conditions, in order to test how performing the IP 

task interacted with the control system, we subtracted each value calculated for the No-IP  
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Figure 11. Group Averages of Wp and Td.  Top plots show average (across subjects) of Wp and Td ( 1SD) for each 

attention task visit (CRT, VT, and MT) and the plots are separated in NoIP task data (left of the dashed line) and IP 

task data (right of the dashed line).  YA data is reported in blue color while OA in orange.  Bottom plots are the 

difference between estimates of Wp and Td during IP task minus corresponding estimates during NoIP task 

conditions.   

 

condition from its corresponding value for the IP condition.  By doing this, each subject acted as 

its own control as well.  The repeated measures ANOVA performed on the difference in Td 

showed that both age (YA vs OA) and attention task condition (CRT, VT, and MT) did not have 

a significant effect (p>0.1).  However, pooling together all the subjects (YA and OA) showed 

that Td was on average significantly lower (by 6 [ms]) during the MT task as compared to just 

standing on the platform (p<0.05).  The difference was not significant for the CRT and VT visits 

(p>0.5) and the difference was on average 1 and 2 [ms], respectively.  When separating the data 
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by age group (YA and OA separately), Td was on average lower by 4 and 9 [ms], respectively for 

YA and OA during the MT visit, but these differences were not significant (p>0.09) (see Figure 

11, bottom plot).  The difference in Td for CRT and VT was close to 0 [ms] and also not 

significant (p>0.4). 

Repeated measures ANOVA performed on the difference in Wp estimates between the IP 

and NoIP conditions was not significant (p>0.1).  The difference in Wp was also not significant 

for both of the cases in which data was pooled together from both age groups or when the two 

age groups were considered separately (p>0.1).  The results related to Td and Wp are in contrast 

with the earlier work by our group that had a similar protocol [1].  Figure 11 (bottom plots) 

shows that even though the difference in both Wp and Td was not zero, the variability in those 

measures was too high to support a consistent change. 

4.5 DISCUSSION 

The main aim of this study was to investigate the interactions among aging, attention and 

sensorimotor integration for balance control.  To do so, we adopted a model-based approach in 

which we fit body sway data from healthy young and older adults to a previously-developed and 

validated postural control model [6, 8, 9].  This approach enabled us to test our hypotheses that 

aging and attention would have an effect on the lumped time-delay parameter and on the 

dynamic regulation of sensory weights in the model.  The data presented here showed that the 

delay time and the reliance on proprioceptive information from the ankle joint included in the 

model increase with age for body sway in the AP direction.  The influence of performing an 

attentional task was less clear.  In particular, while there was an effect of IP task on the time 
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delay Td and passive damping parameters B, this was confounded by the presence of a visit 

effect as well on these same model parameters (as well as Wp) for the No-IP control conditions 

performed on each visit. (Recall that each visit was characterized by one IP condition for that 

day, and included No-IP control conditions.) Analysis of the difference in parameter values for 

IP vs. No-IP trials per task/visit was not significant. 

Previous work by others has shown that attention has an effect on postural control [2, 15-

17], and results from an earlier study with a similar protocol to the one used here demonstrated 

the applicability of the model by showing that some IP tasks did induce increased estimates of 

the delay in the model [1].  Building on this study by incorporating another IP task and 

conducting experiments on a larger population, we expected that varying the IP task presented 

concurrently with the balance task would provide further information on processes shared 

between balance and information processing, as well as shed insights on these interactions with 

aging. Older individuals are known to have decrements both in their capability to perform 

multiple tasks concurrently [73-75], and in their capability to adjust to balance challenges [34, 

66].  Lastly, with our proposed model-based approach we could test the idea that attention can 

influence sensory selection by facilitating specific sensory modalities [15]. The present study 

examined the hypothesis that limited cognitive resources in older adults compared to young 

adults would result in a larger effect of attention on the sensory re-weighting component of the 

model. 

Results from this study show that the characteristics of postural control change with age.  

This result was first evident in the changes seen in the experimental TF gain and phase curves 

between the two age groups (Figure 10).   The average TF gain curve in the OA group was lower 

than that of the YA in the lower frequencies  (below 0.3 Hz) and it presented a slight peak just 
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below 0.6 Hz.  In particular, the TF gain curve in the OA was significantly different from that of 

the YA at 0.58 Hz.  The average phase curves were significantly different between the two age 

groups in the mid-frequency range of 0.15-0.46 Hz in which the phase in the OA group was 

lagging less than the YA.  This result changed above 0.8 Hz, in which the OA group phase lag 

was larger than that of the YA, but the difference was not significant. Similar changes to the ones 

seen in the mid-high frequency range were also observed in a study done in the medial-lateral 

sway direction [10], however, in the present study differences between the two age groups were 

found also in the lower frequencies for gain and phase curves.   

The changes found in the experimental transfer functions curves were analyzed and 

interpreted via the estimated values of the model parameters. In the present study, the changes 

observed in model parameters were similar (but not identical) to those found for the ML 

direction of sway [10].  In particular, KP, KD, and KI for the AP case were significantly different 

between the two age groups (p<0.01) and these parameters were on average higher in the OA 

than the YA group; however, unlike the ML case, in the AP direction no significant difference 

was found in the passive stiffness K, and a significant difference was found in the passive 

damping B between the two age groups (p<0.04); on average B was larger in the OA than the 

YA group.   

The time delay, Td was significantly different in the OA group in both NoIP and IP 

condition and for all attentional conditions or visit number (p<0.05) and this parameter was 

found to be on average larger in the OA than in the YA group.  As we know the main effect of 

the Td in a second order system with feedback is seen in an increase of the lag at higher 

frequencies.  We also know that there exists some correlation between Td and the stiffness and 

damping parameters in this model [6].  Specifically, in the study reported in [6], stiffness KP 
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increased and time delay Td decreased as the amplitude of the perturbation increased, while 

damping KD remained relatively unchanged.  From a control perspective, increased stiffness 

alone is undesirable as it can lead to resonance (sustained oscillations), which can be mitigated 

by a concurrent increase in damping KD, as discussed in Chapter 3.  Although KD did not change 

in the study of [6], the effective damping was increased by a reduction in the Td, which 

effectively reduced the phase lag at higher frequency as would be seen by increasing KD [6]. 

In the present study, we found a concurrent increase in KD with KP, along with an 

increase in Td.  However, as a concurrent increase in KD with KP is desirable from a control 

systems perspective, the increase in Td is not because it is potentially destabilizing: for fixed KD 

and KP, the model body sway exhibits increased oscillations as Td increases.  Similarly, for fixed 

Td and KP, the model body sway also exhibits increases oscillations as the damping KD 

decreases. Thus, body sway becomes increasingly oscillatory as Td increases, and/or KD 

decreases. Therefore, the increase found in KD for the OA group is desirable, in that it helps to 

somewhat counter the decreased stability associated with increased time delay Td.  However, it is 

unknown if there is a causal association between the changes in KD and Td, or if from an 

evolutionary stand point the physiological changes that happen with age in the muscles, sensory 

systems and the nervous system causes those parameters of the posture control system to change 

accordingly in a coordinated fashion to prevent instability.  We could speculate that Td could 

increase with age for a number of reasons.   In this model, Td represents a lumped time delay that 

includes the time it takes from the information from each sensory systems to reach the CNS, to 

then process (or integrate) the information to detect body motion and position in space, and to 

make the necessary adjustment to keep the body upright. Therefore, any reduction in the 

functionality in any of these components would cause an increase in Td. 
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As a final remark about the significant change observed in Td with age (p<0.5) in AP 

sway is of interest, particularly in regard to a known and not yet solved question about whether 

control of posture in AP and ML directions can be assumed to be identical. Recall that for ML 

sway, no difference in Td was found with age (Chapter 3.0 ). This could possibly suggest that 

changes due to age have a more prevalent effect for control of posture in the AP direction than in 

the ML direction from the time delay involved in the generation of the active component of the 

control torque.  This may be related to the complexity of a multi-segmental structure of the body 

frame in the frontal plane than in the sagittal plane, as discussed in [61, 81]. Specifically, for the 

ML direction of sway, a trunk (upper body) roll relative to the lower body is observed [61], and a 

more complex model is required to characterize trunk stabilization as compared to whole body 

motion [81].  This additional level of complexity may restrict the allowed change in Td that we 

would expect occurring with age resulting from a reduced of functionality in any of the sources 

responsible for Td.  If increased complexity in the control of posture in ML is assumed to be true, 

then the control system may not have a luxury to increase the delay without jeopardizing the 

overall stability of the postural control system in the ML direction.  Further investigation is 

required to properly answer such a question. 

A possible explanation for the differences seen between AP and ML direction of sway 

could be associated to possible differences in the control of balance between ML and AP sway 

directions.  First, body sway mechanics are different in the ML and AP directions.  The legs form 

a parallelogram in the frontal plane (ML sway) and this is not the case for AP sway (malleoli 

aligned on the same axis of rotation).  This difference may affect the dynamics of the response to 

platform rotations causing differences in control parameters, and how the muscles controlling 

upright posture are activated.  The generation of the control torque at the ankle joints is the result 
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of muscle activation in both legs; however, because of the different structure of the legs in the 

ML vs. AP direction, changes that may occur in the postural control system with age may not 

have a large effect in the lower frequencies as found in this study for body-say in the AP 

direction.   

A recent article by Goodworth and Peterka investigated how control of the upper body 

with respect to the lower body can be represented with a more complex feedback model [81] 

than the one previously used for whole-body control in the frontal plane [9].  However, in 

Goodworth and Peterka’s study, motion of the lower body was restrained in such a way that 

support surface tilt was transferred directly to pelvis tilts via a system of carriages as described in 

detail in [81].  This system allowed one to consider the problem of upper body sway control in a 

more controlled way without worrying about multi-joint sway involving both lower and upper 

body as it occurs in free-standing body sway.  Even though body sway was constrained to occur 

only in the upper body, Goodworth and Peterka’s findings are important because they were able 

to show the increased complexity in the control of body sway in the ML direction.  In particular, 

other mechanisms are responsible for spinal stabilization, such as medium- and short-latency 

control loops.  These are in addition to the more central control processes [81] which are the only 

ones accounted for in the modeling of whole body-sway by using a single lumped time delay that 

has been shown to be adequate for the AP direction [1, 6].  

Another potential reason for differences in the changes seen in TF curves with age 

between AP and ML body sway could be the fact that the stimulus amplitude was different 

between the two studies.  In [10] (see Chapter 3.0 ) the peak-to-peak amplitude of the SS tilt was 

4 as opposed to 2 used in the present study.  Previous work by Peterka and colleagues [6, 9] 
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showed that the amplitude of the stimulus induces sensory reweighting and this may be partly 

associated to the changes seen between the results from the ML and AP direction of sway.  

This study was designed partly based on a previous study [1].  Based on the finding of 

that study, we stated some hypotheses that ultimately were not supported by the findings of the 

current study.  In particular, Mahboobin et al. [1] found a significant change in sensory cues 

responsible for balance control depending on the dual task performed, and also depending on 

age.  They also found that the overall lumped time-delay Td changed depending on the task and 

age, relative to the NoIP condition.  While our current study was based on this past work, there 

were some differences in the set-up and protocol. In the study of [1], the control condition 

(NoIP) was performed on a separate visit.  In the present study, every testing visit included the 

NoIP condition, to control for possible variation in subjects response from visit to visit.  While 

we found that visit number did not have a significant effect on model parameter estimates, there 

was an interaction effect between age and visit number that was particularly pronounced in the 

OA group.  This could explain why in [1] a significant change was found in the Wp and Td 

across visit and indeed between the control condition and task condition, while this result was 

not found in the present study.  The difference could be due to a change in Td seen in the OA 

that is not seen in the YA and that the change is also correlated with time for the OA group. 

The results from this study showed that the phase lag in the low to mid frequencies was 

lower in the OA but it then increased in the higher frequency ranges, as compared to the YA 

group.  This can be explained by the combined changes of KP, KD and Td.  In fact, stiffness and 

damping were found to be higher in the OA than in the YA and we know that these two 

parameters contribute to the system dynamics in the low and mid frequency ranges; this could be 

why phase lag was less as compared to that of the young in that frequency range.  However, as 
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we go to higher frequency the effect of Td on the phase becomes more pronounced and this could 

explain the increase in the phase lag seen in OA in the higher frequency range when compared to 

YA. 

One aspect that is always important to keep in mind when using a model-based approach 

to study real-life systems is to make sure the assumptions made are satisfied.  One of our 

measures of goodness for our fits was the normalized MSE between the experimental and the 

model TFs that was found to be larger in the OA (7%) as compared to the YA group (3%).  This 

difference could make someone raise the question regarding whether or not the assumptions 

made or the fitting procedure adopted were adequate for our study.  We are confident about the 

fitting procedure as we have used it and tested in previous studies [1, 9, 10].  However, this study 

represent one of the first attempt to model the postural control system in older adults; therefore, 

someone could argue whether the model assumptions made are adequate to study posture in 

older adults.  For instance is the single link assumption valid for older adults as well as it is 

shown for younger adults [6]?  Unfortunately we are not able to answer this question with the 

data presented here as we have not analyzed the hip and head motion data from the Fastrak 

system (by Polhemus).  However, a paper by Allum and colleagues [61] have studied postural 

responses to platform perturbation finding similar results to ours.  Their work only discussed 

increase in the stiffness and nothing about damping as in our case.  In particular, they showed 

that older adults tended to exhibit increased trunk stiffness and that in response to a platform tilt 

they behaved more like an inverted pendulum rather than a two-link system.  If the finding from 

that paper holds true in our case, then we could speculate that the inverted pendulum assumption 

is satisfied in our OA group.  However, only analysis of the hip and head motion data can answer 

this question.  The increase in MSE seen for the OA group could be due to changes that occur 
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with age and that are not included or thought of in our model yet. Perhaps the structure of the 

controller or the lumped delay may need to be modified to account for some decay that people 

have found in muscle activation, conduction velocity in the nerves or changes in the CNS that 

are observed with age.  Alternative model structure may be needed to be developed in the future 

to address other more specific questions and to improve goodness of the fits over the full range 

of ages of interest in which this model-based approach is adopted to answer some research 

questions about the postural control system. 

In conclusion, this study has shown that aging has a strong impact in the processing delay 

and overall control parameters important for control of posture.  Those changes, as also 

discussed in [10], suggest that older adults need to be more careful than young adults in 

situations where the support surface can move rapidly as the changes in the model parameters 

would suggest a more pronounced body sway response to occur in such a situations.  Attention 

seemed to have had a lesser effect overall, but its effects were generally more pronounced in the 

older adults. 
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5.0  CONCLUSIONS AND FUTURE WORK 

The work presented here applied model-based analysis to dual-task balance experiments 

to quantitatively investigate changes occurring in the postural control system due to age and 

cognitive demand (or “attention”).  Findings resulting from this study may be used to develop an 

intervention approach to reduce the incidence of falls in older adults.  Specifically, control 

parameters estimated from model fits to subject data could be used as metrics to be monitored in 

assessing the efficacy of a prescribed therapy or exercise regimen, to reduce the changes 

incurring with age or even induce a change in model parameters in older adults towards values 

that are more typical of young adults.  Also, age-related changes of cognitive processing 

mechanisms can affect the adaptation required to compensate for changes in the environment and 

also the interaction with concurrent execution of multiple tasks.  Understanding how postural 

control and attention interact in both young and older adults can potentially help to identify what 

changes occur with age in their interaction process and what could possibly be responsible to 

induce a fall-prone situation in older adults.   

Both studies presented here, one in the frontal plane (chapter 3.0 ) and the other in the 

sagittal plane (chapter 4.0 ), presented results of frequency response measurements to balance 

perturbations during dual-task experiments, parameterized by model fits to the data.  In both 

studies, larger gain curves, on average, were observed above 0.3 Hz with a slight peak around 

0.5/0.7 Hz (AP/ML) seen in the older adults, which was not present in young adults.  From a 
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control systems standpoint, this peak constitutes a resonant oscillatory behavior of the system at 

that frequency.  Accordingly, one could expect that older adults would sway more in response to 

“fast” perturbations (frequency content >= 0.5 Hz) than they would for “slow” perturbations 

(frequency < 0.5 Hz), compared to younger adults, and this sway would be characterized by 

larger initial oscillations and longer decay times.   

Model fits to the frequency response data in both studies revealed a significant increase 

of active stiffness and damping values in older adults compared to young adults.  This concurrent 

increase in active stiffness and damping is more stabilizing than an increase in stiffness alone 

(Chapter 3.0 ).  However, older adults were still less stable than the younger results, based on 

model-based analysis of their mean response to an impulsive balance perturbation.  Therefore, 

from the findings of the work presented in this dissertation, it is certainly advisable that older 

adults be more cautious where rapid floor movements can occur such as on a bus, train, or 

escalator. 

An aspect that emerged from the work presented in this dissertation is that Td was 

significantly larger in the older adults in the AP direction of sway (Chapter 4.0 ) while no 

significant difference was seen in the ML direction (Chapter 3.0 ).  A possible difference may 

exist in the control of balance between ML and AP directions, as discussed by Goodworh and 

Peterka [81] and as shown in [61]. These studies showed that control of balance in the ML 

direction may be more complex and may limit the effective Td with age, making the Td of the 

YA and OA similar.  However, as discussed in Chapter 4.0 , the amplitude of the perturbation 

differed from the two studies and as shown in [6, 9] Td was found to be lower as the amplitude of 

the perturbation increased, which is also what we found.  Td was indeed lower for the ML for 

which PRTS-SS amplitude was 4-deg peak-to-peak than for the AP direction in which the PRTS-
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SS amplitude was 2-deg peak-to-peak.  If indeed the increase in the amplitude of the perturbation 

induced a reduction in the Td for both age groups, it could be possible the Td of the OA had to be 

close to that of the YA for the posture control system to be stable at such a higher amplitude of 

the perturbation.  However, further experiments are needed to fully test this possibility and to 

better understand the mechanisms involved in the changes of the model parameters and the 

interaction with age.  

This last point of discussion raises the question of whether the interaction between age, 

attention, and control of posture would change with the amplitude of the perturbation.  Peterka 

and others [6, 9] have shown and quantified sensory re-weighting in response to scaling of the 

sensory perturbation.  However, other model parameters were found to change, too, although to a 

lesser degree than the sensory weights.  Would changes in the amplitude of the sensory 

perturbation induce different changes in the model parameters as function of age?  We don’t 

have an answer to this question at this point and future work is required to address such a 

question. 

Another aspect that was evident from results presented in Chapter 4.0  is that older adult 

postural control characteristics changed with time, i.e. from one visit to the next.  In particular, 

the PID parameters and passive damping B progressively increased with the visit number, and 

also Td increased after the first visit and then stabilized. We don’t exactly know the mechanisms 

involved in these changes but this finding could be used to further our understanding of learning 

or habituation mechanisms in older adults. It could be that older adults, being perhaps generally 

less active than younger adults, are not challenged enough in their daily activity, such that 

exposure to platform perturbations may have provided more pronounced challenges to balance 

that elicited greater changes in their postural control function with consecutive visits.  
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As discussed in Chapter 3.0  or [10], older adults are “stiffer” than young adults, but we 

also found that they had a concurrent increase in damping as well, which is desirable from a 

control perspective; however, they were still not as stable as young adults.  Furthermore, the 

increase observed with age in the time delay of the postural control system is not desirable either 

as it has similar effect to reducing damping, which increases the detrimental effect of increased 

stiffness and therefore would make the system more unstable (as discussed in Chapter 4.0 ).  We 

don’t have a definite explanation of why those parameters changed in the way seen in the data 

presented in Chapter 4.0 ; this may be worthy of further investigation to advance our 

understanding about whether older adults are more adaptable to sensory perturbations than young 

adults and if this is the case, would the answer to that question help us understand better how age 

affects control of balance and adaptation to repeated exposure to sensory inputs.  This could help 

in the design of preventive activities or programs to reduce the effect of age that have a negative 

impact on balance.  Poor balance is also associated with fear of falling and slowing the impact of 

aging on balance function could reduce the occurrence of fear of falling.  Characterization of fear 

of falling might be interesting to include in the model to understand how this aspect affects 

control of posture in older adults. 

The fact that some model parameters changed from visit 1 to visit 3 for the No-IP trials in 

the older adult group and not for the young adults might raise a question about whether the 

estimates of the model parameters are stable over time or there is an estimation problem in our 

methodology.  Without running some more in depth analysis we can not answer this question 

with certainty.  However, if there was an estimation problem, why would we find a consistent 

trend in the model parameters with visit number and only in the older adults?  Also, if there was 

a model fitting or estimation problem, why wasn’t this trend seen in the IP conditions for the 
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OA? We don’t have definitive answers to these questions but it is worth addressing them with 

further analysis of the data.   

If we assume that the estimation procedure worked well as assumed and tested in 

previous similar studies [1, 10], then, are the estimates obtained with the frequency-based 

approach used in this study (i.e. experimental TF and model parameters) stable and robust to 

exogenous changes in the environment?  In other words, if nothing in the postural behavior of a 

subject changes over time, would we obtain different measures from trial to trial as long as the 

experimental conditions are the same?  We could answer yes to this question as that is what we 

found in the YA group.  However, for the OA we don’t know yet as the question is based on an 

assumption and if the assumption doesn’t hold true for the OA then we can’t positively answer to 

this question.  This is an important question to be able to answer, as we could foresee this 

methodology as a great addition to the current clinical tests performed on a posturography 

platform. The work presented in this dissertation clearly show the potential benefits of this 

methodology as a way to characterize the aspect of control of posture that relates to control, 

stability and processing.  It allowed us to make inference on the interaction of age, attention and 

control of posture. This methodology could be used to evaluate changes over time that relate to 

balance; model parameters can be quantified and potentially checked against norm values.  To 

reach such a clinical application a clinical study should be performed on a larger scale of 

subjects, collecting data from more people and a broader age range so that norms could be 

tabulated.   

In conclusion, this research has provided some new insights about the aging and attention 

in the control of balance, while at the same time raising new questions. Clearly, more work has 

to be done to further our understanding about the mechanisms involved in control of balance and 
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the influence of aging and attention on balance function.  A control systems model based 

approach coupled with well designed human experiments, as undertaken here and in other 

studies, has helped to improve the progress of knowledge in this field. 
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