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Squamous cell carcinoma of the head and neck (SCCHN) cells can escape recognition and lysis 

by tumor antigen (TA)-specific cytotoxic T lymphocytes (CTL) by downregulation of antigen 

processing machinery (APM) components, such as the transporter associated with antigen 

processing (TAP)-1/2 heterodimer.  APM component upregulation by interferon gamma (IFN-) 

restores SCCHN cell susceptibility to lysis by CTL, but the mechanism underlying TAP1/2 

downregulation in SCCHN cells is not known.  

Because IFN- activates signal transducer and activator of transcription (STAT)-1, we 

investigated phosphorylated (p)-STAT1 as a mediator of low basal TAP1/2 expression in 

SCCHN cells.  SCCHN cells were found to express basal total STAT1 but low to undetectable 

levels of pSTAT1.  The association of increased pSTAT1 levels and APM components likely 

reflects a cause-effect relationship, since STAT1 knockdown significantly reduced both IFN--

mediated APM component expression and TA-specific CTL recognition of IFN- treated 

SCCHN cells.  On the other hand, since oncogenic pSTAT3 is overexpressed in SCCHN cells 

and was found to heterodimerize with pSTAT1, we also tested whether pSTAT3 and 

STAT1:STAT3 heterodimers inhibited IFN--induced APM component expression.  First, 

STAT3 activation or depletion did not affect basal or IFN- induced expression of pSTAT1 and 

APM components, or recognition of SCCHN cells by TA-specific CTL.  Second, 
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STAT1:STAT3 heterodimers did not interfere with IFN- induced STAT1 binding to the TAP1 

promoter or APM component protein expression.  These findings demonstrate that APM 

component downregulation is regulated primarily by an IFN--pSTAT1-mediated signaling 

pathway, independent of STAT3 in SCCHN cells.   

Interestingly, treatment of SCCHN cells with a broad phosphatase inhibitor, sodium 

orthovanadate, increased pSTAT1 levels, suggesting that a phosphatase might be responsible for 

maintaining low basal pSTAT1 and APM component levels, as a mechanism for CTL escape by 

tumor cells.  Indeed, immunohistochemical analyses of 14 SCCHN tumors and paired adjacent 

normal mucosa demonstrated that src homology-2 domain-containing phosphatase (SHP2) was 

significantly upregulated in the tumor tissue compared to surrounding mucosa.  Moreover, SHP2 

specific knockdown using siRNA resulted in significant upregulation of pSTAT1, APM 

components, and HLA class I in SCCHN cells.  Furthermore,  SHP2 depletion restored the 

recognition of SCCHN cells by TA-specific CTL, and induced secretion of Regulation upon 

Activation, Normal T cell Expressed, and presumably Secreted (RANTES) and IFN--inducible 

protein 10 (IP10).  These novel findings identify SHP2 as an important molecular regulator 

contributing to low basal pSTAT1 levels and APM-mediated immune escape in SCCHN cells, 

and provide a potential inhibitory strategy for enhancing the clinical activity of T cell-based 

immunotherapy.   
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1.0  INTRODUCTION 

1.1 SQUAMOUS CELL CARCINOMA OF THE HEAD AND NECK 

Squamous cell carcinoma of the head and neck (SCCHN) is a malignancy of epithelial origin 

that primarily affects the mucosa of the oropharynx, oral cavity, hypopharynx, and larynx.  

Tobacco and alcohol abuse are the two major risk factors for SCCHN development and recently, 

human papillomavirus (HPV) was identified as a significant risk factor for cancer of the 

oropharynx (2).   SCCHN is the fifth most common cancer worldwide, diagnosed in over half a 

million people each year.  In 2010, approximately 50,000 people in the United States (US) are 

estimated to develop SCCHN and about 12,000 people are expected to die from the disease (3, 

4).  The death rate for patients with SCCHN in the US has decreased over the past decade 

perhaps due to improvements in detection and treatment of this disease as well as increased 

frequency of HPV+ disease which confers a better prognosis (3).  The development of novel 

treatments such as cetuximab, a human monoclonal antibody (mAb) that targets epidermal 

growth factor receptor (EGFR), has demonstrated immunomodulatory properties and clinical 

efficacy (5, 6) providing a strong rationale for the continued development of immunotherapy for 

cancer.  Understanding the role of the immune cell recognition, and mechanisms of evasion from 

immune elimination of tumor cells, is an important effort to enhance the progress for future 

SCCHN immunotherapy.  
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1.2 CANCER IMMUNOSURVEILLANCE 

The notion that the immune system can recognize and eliminate primary tumors was first 

proposed by Paul Erhlich in 1909 (7).  At that time, the field of immunology was in its infancy 

and the methods to test this hypothesis experimentally were not yet available.  About 50 years 

later, Burnet and colleagues theorized that lymphocytes were responsible for eliminating 

continuously arising cancer cells in the body based on the increasing understanding of the role of 

lymphocytes in transplantation, and coined the term cancer immunosurveillance (8-10).  The 

development of athymic nude mice in the 1970s enabled researchers to investigate tumor 

formation in an immunocompromised host.  Interestingly, the number of chemically induced 

tumors in nude mice were not significantly greater than what was found in wild-type control 

mice (11).  Although not known at the time, athymic nude mice were not the ideal 

immunodeficiency model to test tumor development since components of the adaptive and innate 

immunity remained in those mice, principally T cells and natural killer cells.  Nevertheless, 

the concept of cancer immunosurveillance was largely discarded by many in the tumor 

immunology field.  

 About a decade later, several studies demonstrated that interferon gamma (IFN-) and 

perforin were important in preventing the growth of transplanted and chemically induced tumors 

in mice (12-14).  These findings provided clear evidence that aspects of the immune system 

could control tumor development in mice.  Since the publication of those papers, the notion that 

the immune system can identify and eliminate cancerous cells became widely accepted among 
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tumor immunologists, yet the perplexing question as to how tumors routinely develop in 

immunocompetent hosts remained a mystery.  A relatively new perspective on the well accepted 

interaction of tumor and immune cells, termed cancer immunoediting, attempts to explain this 

observation through dissecting the complex interactions between the immune system and cancer 

cells (15, 16). 

1.2.1 Cancer immunoediting 

Cancer immunoediting is divided into three phases, elimination, equilibrium, and escape (15, 16) 

(Fig 1).  The first phase of cancer immunoediting, the elimation phase, is the same process 

described in cancer immunosurveillance, which is innate and adaptive immunity can recognize 

transformed cells and destroy them.  The elimination phase results in two distinct outcomes, 

either complete destruction of the tumor cells thereby protecting the host from tumor formation, 

or incomplete destruction of tumor cells.  In the latter case, the remaining tumor cells are 

characterized by reduced immunogenicity which leads to the second phase of cancer 

immunoediting, termed equilibrium.       

The equilibrium phase is characterized by a subclinical malignancy where strong immune 

pressure causes tumor cell destruction and Darwinian selection of tumor cells that are 

progressively more resistant to immune attack called tumor cell variants.  In this way, the 

immune system facilitates the formation of a heterogeneous bed of tumor cells with genetic and 

epigenetic mutations that subsequently lead to tumor cell outgrowth. Evidence for the 

equilibrium phase exists in both humans and mouse models.  A recent case report described two 

individuals who died from a secondary melanoma originating from the kidney they received 

from the same donor who was treated for and felt to be “cured” of primary melanoma 16 years 
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prior to transplant (17).  This report suggested that the transplant donor’s intact immune system 

maintained the metastatic melanoma in an equilibrium state, but the pharmacologically 

immunosuppressed transplant recipients could not prevent the transplanted melanoma cells from 

progressing secondarily and ultimately succumbed to the malignancy.  Furthermore, Schreiber 

and colleagues used 3’-methylcholanthrene (MCA) to induce sarcomas in wild-type (WT) 

C57/BL/6 mice and selected mice with stable masses at the injection site.  Interestingly, T cell 

depletion and IFN-neutralization caused the stable sarcomas to begin growing in 60% of the 

mice, whereas the sarcomas in control treated mice did not (18).  These data, along with the 

clinical findings provide evidence that tumors can undergo an equilibrium phase that is mediated 

in part by the adaptive immune response.        

The last phase of cancer immunoediting, referred to as escape, describes any process 

employed by tumor cell variants to evade detection and destruction by the immune system which 

leads to tumor expansion and frank cancer.  The immune escape mechanisms that tumor cells 

utilize are both tumor cell intrinsic, such as downregulation of MHC class I molecules, or tumor 

cell extrinsic, such as secretion of cytokines to recruit regulatory T cells into the tumor 

microenvironment to dampen an antitumor immune response.   

Evidence that cancer immunoediting occurs comes from MCA induced sarcoma cell lines 

derived from WT-mice and Rag2-/- mice (lack T cells, NKT cells, and B cells). Interestingly, 

edited sarcoma cells derived from WT mice formed tumors in both WT and Rag2-/- mice, 

whereas unedited sarcoma cells from Rag2-/- mice only grew in 40% of the WT recipients, 

suggesting that edited sarcoma cells from the WT mice were less immunogenic than the 

uneditited sarcoma cells from the Rag2-/- mice (18).  The cancer immunoediting hypothesis 

provides insight as to why tumors occur in immunocompetent hosts.  The notion that the immune 
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system can both protect a host from neoplastic disease and create a more malignant tumor 

phenotype that is resistant to immune attack represents a major challenge for the development of 

cancer immunotherapies.      

 

 

Figure 1. Cancer immunoediting. 

The three phases of cancer immunoediting are elimination, equilibrium, and escape.  The 
elimination phase is the same process described by cancer immunesurveillance, whereby the 
immune system recognizes and kills transformed cells, eliciting protection from neoplastic 
disease.  The second phase, equilibrium, occurs when the elimination phase fails to completely 
destroy all of the tumor cells.  As a result, the remaining tumor cells persist subclinically but are 
prevented from expanding by immune pressure.  The last phase of cancer immunoediting, 
escape, is the outgrowth of tumor cells that can occur due to the emergence of tumor cell variants 
which demonstrate reduced immunogenicity and suppress antitumor immune responses.  
(Adapted by permission from Macmillan Publishers Ltd: Nature Reviews Immunology(16), 2006). 
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1.3 CANCER IMMUNOTHERAPY 

In the late 19th century, a New York surgeon named William B. Coley began treating patients 

with inoperable head and neck tumors by local injections of heat-killed Streptococcus pyogenes 

and Serratia marcescens cultures based on prior evidence that linked acute bacterial infections 

with the regression of certain malignancies.  This bacterial mixture named “Coley’s toxins” had 

variable clinical outcomes; in some cases complete regression of the tumor was observed, while 

in others patients, severe morbidity and mortality occurred.  Further trials by Dr. Coley revealed 

that injection of the toxins at remote anatomic locations could produce robust anti-tumor effects, 

and that the severity of infection correlated with tumor regression (19-21).  Dr. Coley’s work 

demonstrated that eliciting an immune response, albeit a non-cancer-specific response was 

sufficient to induce tumor regression in a fraction of his patients.  This work provided the 

foundation of modern day cancer immunotherapy.  

            

1.3.1 T cell-based immunotherapy  

CTL are felt to be critical mediators of tumor immunity, and several strategies have been 

developed to enhance therapeutic TA-specific CTL in patients with cancer.  One promising 

approach is adoptive T cell therapy, which is the transfusion of autologous or allogeneic T cells 

into tumor-bearing hosts.  In the 1960’s, Southam and colleagues subcutaneously injected a 

suspension containing autologous human cancer cells and autologous peripheral blood 

lymphocytes (PBL) into patients with nonresectable cancers and demonstrated that tumor growth 

was inhibited in about half of the patients (22).  This suggested that patients with advanced 
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cancer contained lymphocytes that could inhibit the growth of cancer cells.  About thirty years 

later, Schreiber and colleagues demonstrated that mice containing T cells that were unable to 

produce interferon gamma (IFN-) and secrete perforin had a greater incidence of primary tumor 

development (23).  Taken together, these findings suggested that T cells could be a viable 

effector population for adoptive immunotherapy for cancer.                   

Current approaches for adoptive T cell therapy (ACT) involve ex vivo polyclonal or 

antigen specific expansion of tumor infiltrating lymphocytes (TIL) or PBL followed by infusion 

into patients (24, 25) (Fig 2).  Significant barriers to the success of ACT involve generating a 

sufficient quantity and quality of T cells for infusion.  Dendritic cells (DC) would be an ideal 

candidate to expand T cells ex vivo, but the difficulty in obtaining large numbers of autologous 

DCs limits the utility of these cells.  June and colleagues have overcome these issues by 

developing an in vitro cell proliferation system using artificial antigen  presenting cells (aAPC) 

(26).  The aAPC is an erythromyeloid K562 cell that does not express major histocompatibility 

complex (MHC) class I or class II proteins, and therefore does not induce allogeneic T cell 

proliferation.  Furthermore, these cells have been lentivirally transduced to express several 

proteins important for T cell expansion such as human leukocyte antigen (HLA)-A2 and 4-

1BBL, which can present specific tumor antigens (TA) and engage the T cell receptor providing 

signal 1, and engage costimulatory molecules and provide signal 2, respectively.  This system 

has been able to achieve greater than 1 x 109 fold expansion of CTL (26).  
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Figure 2. Approaches for adoptive transfer of T lymphocytes. 

Lymphocytes are isolated from the peripheral blood (PB), draining lymph nodes (LN) or tumors, 
expanded in vitro, and infused into the patient’s PB or LN.  (Reproduced with permission from 
the American Society for Clinical Investigation(24)) 

 

Despite advances in T cell culture technology, ACT has been met with mixed clinical 

success.  A phase I study using autologous MART-1 and gp100-specific cytotoxic T 

lymphocytes (CTL) to treat patients with refractory metastatic melanoma resulted in 8 of 10 

patients having minor, mixed or stable responses (27).  Another phase I study used autologous 

Melan-A-specific CTL to treat patients with metastatic melanoma which showed antitumor 

responses in only 3 of 11 patients (28).  Interestingly in both studies, TA-specific CTL 

eliminated the tumor cells expressing the targeted TA, resulting in an outgrowth of tumor cells 

that lacked expression of the TA (27, 28), analogous to the immune pressure leading to the 

escape phase described in the cancer immunoediting hypothesis.  These findings highlight a 
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major limitation in ACT, which is the heterogeneous expression of TAs, resulting in the inability 

of CTL to recognize and destroy its tumor cell target.  To overcome this barrier, one could 

transfer CTL that target multiple TA, but it is unlikely that all of the tumor cells would be 

eliminated.  Alternatively, one could focus on strategies to increase the immunogenicity of the 

tumor.  Thus far, the tumor immunology field has chosen the former, with an emphasis on the 

identification of so called “universal tumor antigens”, which are antigens that are broadly 

expressed by a variety of cancers (29).  Although promising in name, this approach has been less 

successful in practice (30).  The latter approach would bypass the need to identify universal TA, 

and augment ACT and the endogenous antitumor immune responses in patients.   

1.4 CLASSICAL MHC CLASS I PROCESSING AND PRESENTATION 

CTL recognize antigenic peptides bound to major histocompatibility complex (MHC) class I 

molecules expressed on the surface of nucleated cells.  They consist of the glycoprotein heavy 

chain (human leukocyte antigen (HLA)-A,-B,-C) which is encoded by polymorphic and 

polygenic MHC genes, a non-covalently bound light chain, 2 microglobulin (2m), and a short 

8-10 amino acid long peptide derived from proteins degraded principally in the cytosol by the 

proteasome.   The peptide binding cleft is formed by the distal domains of the class I heavy chain 

which consists of two antiparallel helices above several strands of antiparallel  pleated sheets 

(31).  Only distinct amino acid residues of the MHC groove (called antigen-binding pockets) and 

the antigenic peptide (called anchor residues) are able to form stable high-affinity interactions.  

Thus, the highly polygenic and polymorphic nature of the MHC class I gene is able to create a 

variety of antigen-binding pockets to bind different peptides.  T cell receptor (TCR) contacts 
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both the antigen and the  helices flanking the peptide binding groove providing antigen 

specificity and MHC restriction.   

1.4.1 Antigen processing  

Rock and colleagues demonstrated that the ubiquitin-proteasome pathway mediates the majority 

of endogenous cytoplasmic protein degradation (32).  They used a peptide aldehyde protease 

inhibitor to block the proteolytic degradation of ovalbumin peptide which inhibited the formation 

of MHC-ova peptide complexes (32).  These peptide aldehyde inhibitors were not proteasome 

specific and also inhibited cysteine proteases, calpain and cathepsin B (32).  Later studies used a 

more specific proteasome inhibitor, lactacystin (33), which confirmed the critical role of the 

proteasome in cytoplasmic peptide degradation and subsequent loading onto MHC class I 

molecules.  

The proteasome is a hollow cylindrical multicatalytic protease composed of four rings 

containing either 7 or 7 subunits for a total of 28 subunits. The 20S core particle is lined by 

the active sites of the proteolytic subunits and degrade proteins in an ATP-dependent fashion 

(34).  The 20S core is surrounded by additional complexes forming the 26S particle.    IFN- 

induces the replacement of several 20S subunits including MB1, , and Z with low molecular 

mass polypeptide (LMP)-2, LMP7 and LMP10 respectively forming the immunoproteasome (34, 

35).  The immunoproteasome increases the cleavage of peptides after hydrophobic and basic 

residues and inhibits cleavage after acidic residues (36), thereby creating peptides with carboxy-

terminal residues that form anchor residues which can interact with most antigenic binding sites 

in the MHC cleft.  As a result, the immunoproteasome creates more peptides capable of forming 
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stable MHC-peptide complexes.  IFN- also upregulates proteasome activator (PA)-28 and 

PA28 which consists of six subunits that form a ring that can bind to and open up both ends of 

20S proteasomes.  Consequently, the rate at which peptides are released from the proteasome 

increases significantly (34).  Taken together, IFN- increases the rate, repertoire and quality of 

peptides generated by the proteasome (Fig 3).   

1.4.2 Antigen presentation  

The majority of peptides generated by the proteasome are degraded by aminopeptidases and 

utilized by the cell to maintain homeostasis (37).  Those peptides destined for the endoplasmic 

reticulum (ER) must first bind to the transporters associated with antigen processing (TAP)-1/2 

heterodimer (Fig 3).  TAP1/2 is a member of the ATP-binding cassette (ABC) family of 

transporters and consists of two hydrophobic transmembrane domains and two hydrophilic 

nucleotide binding domains located in the cytoplasm and are involved in ATP hydrolysis (1).  

TAP1/2 functions to translocate peptides from the cytoplasm to the ER lumen in an ATP 

dependent fashion.  Expression of both TAP1 and TAP2 is required for efficient peptide binding 

(34).  Peptides between 8-12 amino-acids long with carboxy-terminal residues, which are 

produced by the immunoproteasome, bind best to TAP1/2 heterodimers (1).  Generated peptides 

are stabilized in the cytosol by chaperone proteins called heat shock proteins (HSP) (38).  

Furthermore, HSP70 and gp96 can bind to and stabilize exogenous proteins and facilitate cross-

presentation through engagement of HSP receptors such as CD91 (38, 39).  The exact 

mechanism of TAP1/2 peptide translocation is still unclear, but the purported mechanism is that 

peptide binding causes TAP1/2 to undergo a conformational change inducing ATP hydrolysis 

and peptide transport.   Within the ER, peptides may undergo further trimming to the appropriate 

 11 



length for binding to MHC class I molecules by the ER aminopeptidase associated with antigen 

presentation (ERAAP) enzyme (40).  Additionally, insulin-regulated aminopeptidase (IRAP) is a 

recently identified trimming enzyme localized within endocytic vesicles that assist in the cross-

presentation of peptides from endosomes (41).      

 MHC class I heavy chain is a glycoprotein that is translated into the ER and inserted into 

the membrane.  Several chaperone proteins such as calnexin and the immunoglobulin-binding 

protein (BiP) facilitate proper folding of the heavy chain after translation.  BiP recognizes 

misfolded heavy chains and calnexin targets those proteins for degradation.  When 2m binds to 

the heavy chain, calnexin is replaced by calreticulin.  Additional ER-resident chaperone proteins 

such as ERp57 and tapasin bind to the heavy chain.  ERp57 is recruited to heavy chain through 

interactions with calnexin and calreticulin and mediates disulfide bond formation in the folding 

glycoprotein.  Tapasin functions to link the MHC class I molecule in association with the 

TAP1/2 heterodimer complex and facilitates loading of peptide onto MHC class I molecules.  

Upon peptide binding, this trimeric complex, MHC class I heavy chain, 2m light chain, and 

peptide are translocated via the Golgi apparatus to the cell surface where it can interact with CTL 

(1) (Fig 3).      
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Figure 3. Classical MHC class I antigen processing and presentation.  

With kind permission from Springer Science+ Business Media: Current Oncology Reports, Head 
and Neck Cancer Immunotherapy: Clinical Evaluation 10(2), 2008, page 163, Michael S. 
Leibowitz, Jayakar V Nayak, and Robert L. Ferris, Figure 1(42).   

1.5 SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION (STAT)-1 

AND STAT3 

1.5.1 STAT1 signal transduction 

Signal transducer and activator of transcription (STAT)-1 can be phosphorylated and activated 

by several cytokines and growth factors (43) such as type I (IFN-) (44) and type II (IFN-) (45) 
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interferons.  IFN- is secreted at low levels by hematopoietic cells (46), and activates STAT1 

and STAT2.  IFN-activated STAT1 can form homodimers or heterodimers with STAT2.  

STAT1:STAT2 heterodimers can bind to interferon regulatory factor (IRF)-9 forming the 

interferon-stimulated gene factor (ISGF)-3 heterotrimer complex that binds to interferon- 

stimulated response elements (ISRE) (47).  IFN- is produced by activated T cells, NK cells, 

NKT cells, B cells and professional antigen presenting cells (46).  IFN- activates STAT1 

inducing homodimers that bind to gamma activated sequences (GAS) in the promoters of its 

target genes (48).  

Despite their shared ability to activate STAT1, IFN-and IFN-are structurally 

unrelated and they bind to different receptors.  There are few reports of IFN- upregulating 

APM components (49), which is consistent with the observation that IFN-and IFN--mediated 

STAT1 homodimers bind to some but not all of the same target gene promoters (47).  IFN--

mediated STAT1 signal transduction will be discussed further as a model system. 

The IFN- receptor (IFNGR) is composed of two ligand binding chains (IFNGR1) and 

two signal transducing chains (IFNGR2).  The intracellular domain of the IFNGR1 contains 

binding sites for the Janus activated kinase (Jak)-1 at residues 266-269 and STAT1 at residues 

440-441 (46, 50).  IFNGR2 contains binding sites for Jak2 at residues 263-267 and 270-274 

which participates in signal transduction (46).  Ligand binding to IFNGR1 induces Jak2 

autophosphorylation and transphosphorylation of Jak1 (46, 51).  Activated Jak1 phosphorylates 

tyrosine 440 on the cytoplasmic domain of both IFNGR1 chains, providing docking sites for the 

src homology 2 (SH2) domains of STAT1.  Upon STAT1 binding, it is phosphorylated in the C- 

terminus on tyrosine residue 701 likely by Jak2 (52, 53) and dissociates from the receptor.  

STAT1 is also serine phosphorylated at residue 727 by an unknown serine kinase in response to 
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IFN- which is thought to provide target specificity and induce maximal transcriptional activity 

(54-56).  Activated STAT1 forms homodimers or heterodimers by binding to the tyrosine 

phosphorylated SH2 domain of another STAT (57).  STAT1 homodimers translocate to the 

nucleus where it binds to GAS elements (TTCN(2-4)GAA) in the promoters of its target genes 

(48).  Interferon regulatory factor (IRF)-1 is an important IFN- responsive gene activated by 

STAT1 homodimers (51).  STAT1 and IRF1 act as transcriptional activators of several interferon 

responsive genes (54) (Fig 4).   
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Figure 4. Simplified STAT1 and STAT3 signal transduction. 

IFN-induces Jak aggregation and transphosphorylation.  Activated Jaks phosphorylate the 
cytoplasmic domain of the IFN-R where STAT1 binds.  STAT1 is tyrosine phosphorylated at 
residue 701 by Jak and homodimerizes or heterodimerizes with STAT3.  STAT1 homodimers 
bind to GAS sites in the promoters of target genes such as TAP1 and TAP2.  IL-6 induces both 
STAT1 and STAT3 phosphorylation in a similar manner to IFN- activation of STAT1.  TGF- 
induces reciprocal transphosphorylation of EGFR providing a docking site for STAT3.  STAT3 
binds to EGFR and is tyrosine phosphorylated at residue 705. Activated STAT3 can form a 
homodimer and bind to GAS sites or heterodimerize with activated STAT1.  The function of 
STAT1:STAT3 heterodimers is not known.   

1.5.2   STAT3 signal transduction 

STAT3 activation in SCCHN can occur through stimulation of cytokine receptors such as 

interleukin (IL)-6R (58) and IL-10R (59, 60), receptor tyrosine kinases such as epidermal growth 

 16 



factor receptor (EGFR) (61), and non-receptor tyrosine kinases such as Src (62, 63).  

Interestingly, there are numerous studies that have shown that SCCHN cells secrete IL-6 (58, 64-

66) and a recent report demonstrated that activation of STAT3 in these cells occurs by 

autocrine/paracrine stimulation of the IL-6R (58).  Moreover, serum IL-6 levels were found to be 

significantly increased in patients with SCCHN compared to healthy controls (67-72).  These 

findings prompted investigation of serum IL-6 as a prognostic marker for SCCHN.  Several large 

controlled studies determined that pretreatment serum IL-6 could serve as a biomarker for 

predicting recurrence and overall survival in patients with SCCHN (73-75).  Higher levels of IL-

6 were associated with increased recurrence and decreased survival (73-75).  From an 

immunologic and clinical perspective, IL-6 activation of STAT3 is the most relevant and will be 

discussed further. 

 IL-6 is a pleiotropic cytokine that has profound effects on multiple biological systems 

including bone and cartilage formation, immune regulation, inflammation and oncogenesis (76).  

IL-6 activates STAT proteins by binding to an 80 kDa receptor which exists in both a membrane 

bound form and a soluble form.  The receptor is composed of a non-signaling ligand binding -

chain, and the signal transducing 130 kDa polypeptide chain called gp130 (77).  gp130 is 

ubiquitously expressed and utilized by several other cytokine receptor systems, but the 

expression of the  receptor is more restricted and tightly regulated limiting the number of cells 

that respond to IL-6 (76, 78, 79).  Both the  and gp130 chains exist in a soluble form and are 

present in human serum.  It is believed that the soluble form of the receptor functions to 

antagonize and downmodulate systemic responses to IL-6 (80).      

IL-6 signal transduction occurs when one IL-6R complex interacts with a second 

complex forming two IL-6R- proteins, and two gp130 proteins.  Dimerized gp130 proteins 
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cause Jak1 proteins to bind to hydrophobic residues on its membrane-proximal region (81).  

gp130 activates Jak1 proteins by phosphorylation (81) inducing STAT activation in a similar 

process described in section 1.5.1, except that both STAT1 and STAT3 are tyrosine 

phosphorylated, and STAT3 tyrosine phosphorylation by Jak1 occurs on residue 705 (Fig 4).  

STAT3 is also serine phosphorylated on residue 727 to induce maximal transcriptional activity 

(54).  Phosphorylated STAT1 and STAT3 can form homodimers or heterodimers, and both bind 

to GAS sites in the promoters of target genes.  It is unclear how STAT1 and STAT3 

differentially activate their target genes.  It has been proposed that differential binding affinities, 

the recruitment of co-activators, the number of sequential GAS sites, and the spacing of 

palindromic half sites may be responsible for selective gene activation (57, 82-84).  Furthermore, 

the function of STAT1/3 heterodimers has not been elucidated.   

1.5.3 STAT1 as a tumor suppressor protein 

STAT1 is widely classified as a tumor suppressor protein due to the observation that STAT1-

knockout mice develop chemically induced tumors more rapidly and with greater frequency 

compared to wild-type mice (13).  The increased rate in tumor formation can be attributed in part 

to impaired innate immunesurveillance (85).  Subsequent in vitro analyses have elucidated the 

role of STAT1 in preventing tumorigenesis.  Human U3A fibroblast cells that lack STAT1 

protein expression were not growth inhibited by IFN-treatment, whereas the parental cells that 

express STAT1, 2fTGH cells, and U3A cells reconstituted with STAT1 displayed significant 

growth impairment after IFN- treatment (86).  The mechanisms for the observed growth arrest 

can be attributed to the ability of STAT1 to prevent cell cycle progression through inhibition of 

c-myc (87) and downregulation of anti-apoptotic genes such as Bcl-2 and Bcl-XL (88).  
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Furthermore, STAT1 can induce apoptosis by activation of caspases.  IFN- treatment of U3A 

cells expressing WT STAT1 induced cleavage of caspases 2, 3, and 7 and which was partially 

blocked by a caspase inhibitor (89).  U3A cells lacking STAT1 did not induce caspase cleavage 

after IFN- treatment (89).  Interestingly, a common chemotherapeutic agent, doxorubicin, 

enhances IFN--mediated STAT1 activation and apoptosis of breast cancer cells via caspases 

(90).  These data demonstrate that caspases are involved in STAT1 mediated apoptosis.   

STAT1 target genes have been shown to inhibit angiogenesis and metastasis of tumor 

cells.  Huang and colleagues demonstrated that syngeneic subcutaneous STAT1 knockout murine 

fibrosarcoma cells produced progressively growing tumors in vivo with numerous lung 

metastases (91).  In contrast, STAT1 reconstituted fibrosarcoma cells produced much smaller 

tumors with significantly fewer lung metastases (91).  Moreover, IHC analyses of the tumors 

from STAT1 knockout cells demonstrated increased expression of proangiogenic proteins such 

as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP)-2 and 

MMP9 which correlated with a significant increase in mean vessel diameter compared to the 

tumors from STAT1-expressing fibrosarcoma cells (91).   These data demonstrate that STAT1 

mediates numerous important antitumor effects, and its absence or lack of activation may 

facilitate tumorigenesis (Table 1).   

Interestingly, analysis of serum cytokines from patients with SCCHN revealed decreased 

levels of IFN- compared to age-matched controls (70, 71), likely reflecting the status in the 

tumor microenvironment.  As a result, IFN- dependent tumor immunesurveillance, antigen 

processing and presentation, and STAT1 tumor suppressor activity could be significantly 

impaired, thereby providing SCCHN cells with an escape mechanism from immune destruction.   
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1.5.4 STAT3 as an oncogene 

In normal cells, STAT activation is transient, lasting minutes to hours, however in tumor cells, 

STAT activation, particularly phosphorylated (p)-STAT3, is constitutive.  Constitutive pSTAT3 

has been detected in a variety of solid and hematologic tumors including but not limited to 

SCCHN, breast cancer, melanoma, lung cancer, ovarian cancer, pancreatic cancer, prostate 

cancer, and several leukemias and lymphomas (82).  One of the earliest insights into STAT3’s 

contribution to oncogenesis was the finding that STAT3 was activated in src transformed 

fibroblasts, and that expression of a dominant negative STAT3 protein (STAT3) blocked the 

transformation of these cells (92).  Subsequent studies demonstrated that a constitutively activate 

form of STAT3 (STAT3C) could transform fibroblasts and produce tumors in mice, providing 

direct evidence for the role of STAT3 in tumorigenesis (93).   

STAT3’s role in oncogenesis is multifaceted and highly complex.  STAT3 has been 

shown to inhibit apoptosis, induce cell cycle progression, and promote angiogenesis, invasion 

and metastases.  STAT3C transfection of murine fibroblasts induced protection from apoptosis 

induced by UV light or serum withdrawal (94).  Others have shown that human SCCHN 

xenografts treated with a STAT3 antisense oligonucleotide (ASO) expressed less of the anti-

apoptotic protein, Bcl-XL, compared to control treated mice (95).   STAT3 has also been shown 

to increase proliferation and cell cycle progression of SCCHN cells in vitro and in vivo.  

Transfection of SCCHN cells that express relatively low levels of pSTAT3 with STAT3C 

significantly increased the growth rate of tumor cells compared to cells transfected with a control 

vector (96).  In vivo studies demonstrated that STAT3C transfected SCCHN cells grew 

subcutaneous tumors more rapidly in nude mice compared to control cells (96).  The observed 
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increased in proliferation by STAT3C transfected cells correlated with an upregulation of Bcl-XL 

and cyclin D1, which inhibit apoptosis and induce cell cycle progression through the G1/S cell 

check point respectively (96).  STAT3 has also been shown to regulate other cell cycle proteins 

such as MYC (97) and pro-survival genes such as Bcl-2 (98) and survivin (99).  Several studies 

have implicated STAT3 in promoting tumor angiogenesis directly by activating the vascular 

endothelial growth factor (VEGF) gene and indirectly through activating hypoxia inducible 

factor-1 (100-103).  STAT3 also been shown to regulate tumor invasion and metastases 

through activation of  matrix metalloproteinase (MMP)-2 (104) (Table 1).    

STAT3 signaling activates several important oncogenes within tumor cells, but it also 

suppresses antitumor immunity thereby contributing to tumor immune escape.  B16 murine 

melanoma cells transiently transfected with STAT3or STAT3 ASO caused increase 

transcription of proinflammatory cytokines, TNF-, IL-6 and IFN- and chemokines, RANTES 

and IP10 (105).  A recent report found similar results in SCCHN cells (106).  STAT3 small 

interfering RNA (siRNA) transfection resulted in a significant increase in the secretion of IL-6, 

IL-8 and IP10 compared to control treated cells (106).  These data demonstrate that STAT3 can 

inhibit tumor cell expression of proinflammatory cytokines and chemokines.   

STAT3 signaling has also been shown to both directly and indirectly suppress innate and 

adaptive immunity.  Electroinjection of STAT3 into established B16 tumors in C57BL/6 mice 

increased infiltration of the tumors with macrophages and neutrophils (105) and suppressed the 

growth of the tumor (107).  The mechanism of growth arrest may be in part due to increased 

antitumor activity of the tumor infiltrating macrophages and neutrophils since supernatants 

derived from STAT3 treated B16 cells caused strong induction of nitric oxide and RANTES 
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expression in macrophages and TNF-production from neutrophils (105).  There are also 

numerous studies demonstrating the negative regulatory role of STAT3 signaling in DC 

maturation and function.  Supernatants derived from murine tumor cells induced phosphorylation 

of Jak2 and STAT3 in myeloid cells and prevented their differentiation into mature DC by LPS 

compared to conditioned medium from control fibroblast cells (108).  Interestingly, viral 

transduction of myeloid cells with a STAT3 dominant negative protein restored the ability of 

these cells to differentiate into DC by LPS in the presence of tumor cell condition medium (108).  

Subsequent studies demonstrated that pharmacologic inhibition of the Jak2/STAT3 pathway with 

JSI-124 could induce differentiation of myeloid cells into DC in the presence of tumor cell 

conditioned medium (109).  Furthermore, DC isolated from JSI-124 treated mice had 

significantly greater allostimulatory activity of CD4+ T cells compared to DC from control 

treated mice (110).  Moreover, exposure of DCs to conditioned medium from B16 tumor cells 

expressing STAT3(105) or disruption STAT3 signaling in DCs (111) resulted in potent 

activation of naïve and tolerant T cells to proliferate and produce IL-2 and IFN-respectively.  In 

another study, STAT3 ablated splenic DC isolated from tumor bearing mice induced greater 

antigen specific T cell proliferation ex vivo compared to STAT3 expressing splenic DC isolated 

from tumor bearing mice (112).   

Inhibition of STAT3 in B16 tumor cells in vivo by STAT3electroinjection led to an 

increase in TILs and activation of TA-specific CTLs compared to control treated mice (105).  

The observed increase in TIL and TA-specific CTL is probably related to higher quality and 

quantity of DC generated in the tumor microenvironment from inhibiting STAT3 in the tumor 

cells.  Indeed, VEGF, which is regulated by STAT3, when neutralized by antibodies in B16 

supernatants could suppress the inhibitory effects on DC maturation, but not supernatants from 
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other tumor cells (105).  A recent report demonstrated that DCs from STAT3 knockout were 

resistant to IL-10 mediated inhibition of LPS induced MHC class II and CD86 upregulation and 

cytokine secretion (113).  These data demonstrate that multiple tumor derived factors 

downstream of STAT3, including VEGF and IL-10, inhibit DC maturation and function.   

A recent report evaluated the role of STAT3 in innate and adaptive antitumor immune 

responses, independent of STAT3 activity within tumor cells, by developing a mouse model 

where STAT3 was deleted from hematopoietic cells by an inducible Mxl-Cre recombinase 

system (112).  Interestingly, neutrophils and NK cells from STAT3 ablated mice demonstrated 

increased cytolytic activity compared to their WT counterparts with intact STAT3 signaling 

(112).  Furthermore, T cells from STAT3-/- mice challenged with B16 tumors showed increased 

tumor infiltration with a reduced regulatory T cell phenotype and stronger responses against 

tumor antigens ex vivo compared to T cells from STAT3+/+ mice (112).  Moreover, ablation of 

STAT3 in hematopoietic cells before and after established B16 tumors led to significant growth 

inhibition, and complete eradication of MB49 bladder carcinoma cells (112).  The observed 

antitumor responses were T cell dependent since injection of CD4+ and CD8+ depleting 

antibodies caused similar tumor growth kinetics in STAT3+/+ mice (112).        
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Table 1. Opposing roles of STAT1 and STAT3 in oncogenesis. 

 STAT1 STAT3 

 -STAT1 KO mice develop tumors 

faster with greater frequency than 

WT mice 

-Constitutive expression of STAT3 

transforms cells and forms tumors in 

mice 

Cell cycle -Inhibits c-myc -Upregulates myc and cyclin D1 

Apoptosis -Downregulates Bcl-2 and Bcl-XL 

-Induces cleavage of caspases 2,37 

-Upregulates Bcl-XL, Bcl-2, and 

survivin 

Angiogenesis -Downregulates VEGF -Upregulates VEGF and HIF-1 

Metastases -Downregulates MMP-2/9 -Upregulates MMP-2 

1.5.5 STAT1 in antigen processing and presentation 

There are conflicting reports in the literature as to the mechanism of STAT1 and other cofactors 

that induce APM component expression.  Min and colleagues found that STAT1, and not IRF-1, 

mediates TAP1 transcription by IFN-in Hela cells (114).  However, another study utilized a 

bidirectional reporter system to analyze the transcriptional activity of TAP1 and LMP2 genes 

(which share a 593 bp bidirectional promoter (115)) and found that mutation of the IRF-1 

binding site in the reporter construct completely inhibited IFN- induction of TAP1 and LMP2 in 

Hela cells (116).  A report in melanoma cells found that binding of IRF-1 or STAT1 was 

sufficient for TAP1 transcription, while binding of both factors were required for LMP2 

transcription (117).  Others have found that IRF-2 and not IRF-1 cooperates with STAT1 to 

induce TAP1 transcription (118).  Mouse embryonic fibroblasts from IRF-1/2 knockout mice and 

293T cells that lack IRF-1/2 binding activity were transfected with an IRF-2 expression vector 

and a TAP1 promoter reporter construct (118).  Both cells showed increased TAP1 promoter 
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activity demonstrating that IRF-2 was sufficient to induce TAP1 gene expression (118).  In 

contrast, IFN- mediated TAP1 and LMP2 expression in murine macrophages were found to be 

regulated by STAT1 and IRF-1 (119).  Furthermore, macrophages from STAT1 knockout mice 

failed to upregulate TAP1 and LMP2 protein after IFN- treatment, demonstrating that STAT1 is 

required for IFN- induced expression of these genes (119).  Despite the lack of consensus 

regarding which transcription factors regulate APM component expression, STAT1 has been 

consistently found to be necessary and important in regulating APM gene transcription.      

1.6 IMMUNE ESCAPE IN SCCHN 

A greater understanding of SCCHN immune escape is necessary to develop therapeutic strategies 

to increase the immunogenicity of this malignancy and augment the efficacy of ACT.  Two of 

the most studied immune evasion mechanisms in SCCHN include induction of T cell apoptosis 

and defective antigen processing machinery (APM) component expression. 

1.6.1 Apoptosis 

CTL derived from patients with SCCHN have been shown to be more sensitive to apoptosis 

(120).  Interestingly, expression of Fas ligand has been identified on SCCHN cells and tumor 

biopsies (121).  Fas-Fas ligand are part of the tumor necrosis factor (TNF) family and can induce 

apoptosis of activated T cells as a homeostatic mechanism to maintain appropriate T cell 

numbers (122).  The apoptotic activity of Fas ligand expression on SCCHN cells was confirmed 

by inhibiting the apoptosis of activated T cells co-cultured with SCCHN cells in the presence of 
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an anti-Fas ligand antibody (121).  Furthermore, analysis of Fas expression on CD3+ cells from 

37 patients with SCCHN was significantly higher compared to normal controls (123).  The 

expression of Fas on CD3+ cells and Fas ligand on SCCHN tumors may be responsible for the 

significant reduction in absolute numbers of CD3+, CD4+, and CD8+ T cells observed from the 

peripheral blood of 146 patients with SCCHN compared to normal controls (124).  These 

findings provide strong evidence that SCCHN cells evade T cell lysis by exploiting the Fas-

mediated apoptosis pathway to eliminate antitumor effector T cells.  

1.6.2 Antigen processing machinery component defects 

Abnormal expression of the MHC class I antigen processing machinery (APM) components, 

such as LMP2, LMP7, TAP1, TAP2 and tapasin represent a major mechanism of immune escape 

in SCCHN (125-131), and a variety of other cancers including but not limited to renal cell 

carcinoma (132), colorectal carcinoma (133), small cell lung carcinoma (134) and melanoma 

(135).  Of important clinical note, APM component downregulation in SCCHN lesions 

correlated with poor prognosis (125, 127, 129, 130), which likely reflect the inability of the 

tumor cell to efficiently process and presentation antigen to CTL.  Interestingly, it has been 

recently demonstrated that treatment of SCCHN tumor cells with IFN- upregulates several 

APM components including LMP2, LMP7, LMP10, TAP1, TAP2, and tapasin, resulting in TA-

specific CTL lysis (126).  SCCHN cells transected with TAP1 cDNA restored their recognition 

and lysis by TA-specific CTL, suggesting that TAP1 is a critical APM component that is 

defective in these cells (126). 

The molecular mechanisms responsible for APM component defects are not well 

understood. In a melanoma cell line, a single nucleotide deletion at position 1489 of the TAP1 
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gene resulted in unstable TAP1 mRNA and deficient protein expression (136).  In another study, 

a non-functional TAP1 allele was discovered in a human small cell lung cancer cell line causing 

a TAP1 deficiency phenotype because only the defective allele was transcribed (137).  Others 

have found an epigenetic mechanism for APM component downregulation in mouse melanoma 

cells (138, 139).  Treatment of the tumor cells with a histone deacetylase inhibitor (HDACi) 

upregulated TAP1, TAP2, LMP2 and tapasin (138, 139).  Furthermore, subcutaneous tumors in 

C57BL/6 syngeneic mice treated with intraperitoneal injections of an HDACi significantly 

decreased tumor growth which correlated with an increase in TAP1 promoter activity (139).  The 

current understanding of the molecular players underlying defective APM component expression 

in human tumors is insufficient.  Interestingly, inactivating mutations, defective alleles, and 

epigenetic repression appear to be quite rare (140), and probably do not represent the major 

mechanism responsible for defective APM component expression in cancer, rather pointing to 

regulatory mechanisms playing a crucial role.   

1.6.2.1  Impaired IFN- signaling   

IFN- “unresponsiveness”, measured by an inability to form STAT1 DNA-binding complexes by 

electrophoretic mobility shift assay, is frequently found in human cancer (13).  Approximately 

33% of 33 melanoma and 17 non-adenocarcinoma lung tumor cell lines exhibited a quantitative 

reduction in IFN- sensitivity, while 4 out of 17 lung adenocarcinoma cell lines were totally 

unresponsive to IFN-   (13).   The mechanism for the observed IFN- insensitivity was variable.  

Some cells lacked expression of IFN-R  chain and Jak1, while others produced abnormally 

phosphorylated or inactivated Jak2 proteins (13).  In another study, 2 out of 57 melanoma cell 

lines were unresponsive to the IFN- treatment determined by the inability to upregulate MHC 
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class I molecules (141).  The phenotype for the observed IFN- resistance included failure to 

induce tyrosine phosphorylation of STAT1 and silencing of IRF-1 by methylation (141).  Similar 

findings were reported in a human renal cell carcinoma cell line that failed to induce TAP1 and 

LMP2 expression after IFN- treatment (142).  In these cells, IFN- treatment did not induce 

STAT1 phosphorylation or IRF-1 expression (142).  The inability of IFN- to induce TAP1 and 

LMP2 in human uterine leiomyosarcoma cells was due to a point mutation in the ATP binding 

region of the Jak1 tyrosine kinase domain resulting in a lack of STAT1 phosphorylation and 

subsequent IRF1 expression (143).   

1.6.2.2 STAT3 directly inhibiting APM component expression 

The role of STAT3 in APM component expression is also controversial.  IL-10 activates Jak1 

inducing STAT3 phosphorylation (59, 60), which is essential for all known functions of IL-10 

(59).  IL-10 is an anti-inflammatory immunosuppressive cytokine secreted significantly by T 

regulatory cells (59) and has been found to be elevated in the serum of patients with SCCHN 

(144).  IL-10 has been implicated in the downregulation of MHC class I heavy chain and APM 

components in melanoma.  Treatment of human melanoma cells with IL-10 induced resistance to 

lysis by autologous TILs ex vivo and downregulated MHC class I in a dose-dependent fashion of 

up to 50% (145).  Subsequent studies revealed that a synthetic peptide homologous to the 

functional domain of IL-10 could downregulate IFN- induced TAP1/2 heterodimer expression 

in melanoma cells (146).  Murine tumor cells treated with IL-10 or transfected to express IL-10 

also demonstrated downregulation of TAP1 and TAP2 expression (147, 148).  In another study, 

B cells infected with EBV secrete IL-10 and mediate the downregulation of TAP1 and LMP2 
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transcription and protein (149).  Taken together, these studies suggest that activation of STAT3 

by IL-10 could mediate APM component downregulation in SCCHN cells.     

1.6.2.3 STAT1 and STAT3 cross regulation 

STAT1 and STAT3 have opposing roles in tumorigenesis yet are activated by the same 

Jak proteins and are simultaneously activated by IL-6.  Several studies have been performed to 

dissect the mechanisms by which STAT1 and STAT3 interact and cross regulate each other.  IL-

10 predominantly phosphorylates STAT3 and suppresses LPS-induced TNF- production in 

monocytes.  However monocytes pretreated with IFN- were no longer inhibited from secreting 

TNF- by IL-10 (150).  Interestingly, IFN- treated monocytes caused IL-10 to activate both 

STAT3 and STAT1 (150).  In STAT3 knock out MEFs, IL-6 mediated prolonged STAT1 

activation and induced the expression of numerous IFN-inducible genes such as LMP7 (151).  

Another report found similar results in T cell leukemia and lymphoma cells.  STAT3 knockdown 

in those cells caused IL-6 to induce prolonged STAT1 activation and switch to an IFN--like 

response by upregulating MHC class I and inducing apoptosis and growth arrest (152).  These 

data demonstrate that in normal cells, IL-6 predominantly activates STAT3 which functions to 

inhibit an IFN--STAT1-like response.  In SCCHN, it is unclear whether inhibition of STAT3 

modulates the antitumor effect of STAT1.  One report demonstrated that STAT1 siRNA did not 

alter the cytotoxicity of an oligonucleotide that binds to STAT3 and prevents its physical binding 

to DNA (153), however another report found that the growth inhibitory effect of a Jak-STAT3 

inhibitor required STAT1 expression (154).   

STAT1 and STAT3 target gene expression can be altered by activation of the opposing 

transcription factor, however the mechanisms for these observations are still unclear.  One 
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hypothesis is that activation of STAT3 suppresses phosphorylation of STAT1 and vice-versa.  

Human monocytes pretreated with IL-10 inhibited IFN-and IFN- mediated IP10 and ICAM-1 

transcription (155).  Interestingly, IL-10 inhibited both interferons from inducing tyrosine 

phosphorylation of STAT1 (155).  In a prostate cancer cell line, IFN- treatment decreased 

tyrosine phosphorylation of STAT3 (156).  This observation appeared to be dependent on intact 

mTOR signaling because treatment of the cells with rapamycin significantly inhibited IFN- 

mediated STAT3 dephosphorylation (156).  Surprisingly, STAT1 knockdown did not inhibit 

IFN- mediated STAT3 dephosphorylation in these cells (156).  A recent clinical report 

demonstrated that tumor cells from patients with melanoma treated with IFN2b upregulated 

pSTAT1 and TAP2, but downregulated pSTAT3 (157).   

Another hypothesis as to how STAT1 and STAT3 negatively regulate each other’s target 

gene expression is through formation of STAT1:STAT3 heterodimers, thereby decreasing 

STAT1 and STAT3 homodimers.  In human monocytic cells, STAT3 reduced IFN-mediated 

transcription of STAT1, IRF-1, and chemokines MIG and IP10, however not through inhibiting 

STAT1 tyrosine phosphorylation or nuclear translocation (158).  Interestingly, IFN- treated 

monocytes transduced to express high levels of STAT3 contained predominantly STAT1:STAT3 

heterodimers and significantly diminished STAT1 homodimers compared to control cells (158).  

These data suggest that cells with increased STAT3 expression may sequester STAT1 in 

STAT1:STAT3 heterodimers, and inhibit STAT1 homodimerization and target gene expression.  

Similar findings were reported in two myeloma cells in which IFN- treatment decreased 

STAT3 homodimerization and STAT3 mediated expression of Bcl-XL, MCL-1, and survivin, 

thereby inducing apoptosis (159).  IFN- caused a shift from predominantly STAT3 homodimers 

to STAT1 homodimers and STAT1:STAT3 heterodimer formation (159).  Interestingly, 
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transfection of the myeloma cells with STAT3C protected the cells from IFN- induced 

apoptosis by maintaining STAT3 homodimers and Bcl-XL, MCL-1, and survivin expression 

(159). 

1.6.2.4 Impaired STAT1 phosphorylation by src homology-2 domain-containing 

phosphatase (SHP)-2  

SHP2 is a non-receptor protein tyrosine phosphatase (PTP) that is ubiquitously expressed in 

humans (160).   SHP2 is composed of two tandem N-terminal SH2 domains, a PTP domain, and 

a C-terminal tail with two important tyrosine phosphorylation sites (Tyr542 and Tyr580) (161).  

The SH2 domain mediates binding of SHP2 to phosphorylated tyrosine residues on other 

molecules (162).  Under basal conditions, SHP2 is inactivated by the N-SH2 domain wedged 

into the PTP domain forming a “backside loop” thereby preventing substrate access (163) (Fig 

5).  Upon growth factor (EGF) or cytokine stimulation such as IL-6 or IFN-, SHP2 binds (via its 

SH2 domains) to phosphorylated tyrosine residues on various receptors causing a conformational 

change in N-SH2 domains and release of the PTP domain from its auto-inhibitory state (160, 

161, 163).  The phosphorylation of Tyr542 and Tyr580 may also contribute to the activation of 

SHP2 through intramolecular interactions with N-terminal SH2 domain and C-terminal PTP 

domain (164). 
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Figure 5. Basal auto-inhibition of SHP2. 

Under normal conditions, SHP2 is maintained in an inhibited state in the absence of growth 
factor or cytokine stimulation (Reprinted from Current Opinion in Genetics & Development, 17, 
M Golam Mohi and Benjamin G Neel, The Role of SHP2 (PTPN11) in cancer, 23-30, 2007, with 
permission from Elsevier(161)).  

 

SHP2 has been implicated as a negative regulator of the IFN-Jak-STAT1 signal 

transduction pathway (165).  In SHP2-/- MEFs, IFN-and IFN-treatment resulted in increased 

cytotoxicity and enhanced STAT1 DNA binding activity compared to WT MEFs (165).   

Expression of WT SHP2 in SHP2-/- MEFs decreased the growth inhibitory effects of the 

inteferons (165).  Indeed, IFN-treatment of SHP2-/- MEFs enhanced STAT1 tyrosine and serine 

phosphorylation compared to control cells (166).  Furthermore, Her-2/neu and SHP2 

overexpressing bladder cancer cells exhibited resistance to IFN--mediated STAT1 

phosphorylation and growth inhibition (167).    Treatment with a HER2-neu-specific inhibitor 

decreased SHP2 levels, upregulated pSTAT1, and restored the ability of IFN- to induce growth 

arrest in these cells (167).  Others have shown glycogen synthase kinase-3(GSK-3) could 

inhibit SHP2 activity in murine macrophages and human epithelial lung cells (168).  Treatment 

of these cells with GSK-3 inhibitors or siRNA decreased STAT1 phosphorylation and increased 

SHP2 Tyr542 phosphorylation (168).  The observed effects from the GSK-3 inhibitors were 

reversed in the presence of a SHP2 inhibitor (168).  Moreover, human embryonic fibroblasts 
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infected with CMV upregulated SHP2 and exhibit reduced STAT1 tyrosine phosphorylation in 

response to IFN- treatment (169).  SHP2-specific siRNA transfection restored IFN- induced 

STAT1 tyrosine phosphorylation in these cells (169).  

SHP2 has been recently identified as an oncogene (161).  SHP2 activating  mutations 

account for approximately 35% of sporadic juvenile myelomonocytic leukemia, and various 

childhood leukemias including acute myeloid leukemia (4%), myelodysplastic syndromes (10%) 

and acute lymphoid leukemia (7%) (170).  In a recent study, 44 adult patients with leukemia 

were screened for SHP2 mutations (171).  Interestingly, no gain of function mutations were 

detected in the leukemic cells which was consistent with reports describing SHP2 mutations as 

uncommon in adult leukemia (172).  Instead, they found SHP2 expression to be elevated in 

primary leukemia cells compared to normal progenitors which correlated with the 

hyperproliferative phenotype in the patients (171).  Furthermore, SHP2 ASO induced apoptosis 

in K562 leukemia cells, which express high levels of SHP2 (171).  Although rare in solid 

cancers, SHP2 expression was significantly elevated in infiltrating ductal carcinoma of the breast 

tissue compared to normal breast tissue (173). 

1.7 SPECIFIC AIMS 

1.7.1 Specific Aim 1 (Chapter 2): To investigate the role of STAT3 and STAT1:STAT3 

heterodimers in APM-mediated immune escape in SCCHN cells 

APM component downregulation is a major mechanism of immune escape in SCCHN however 

the predominant mechanism responsible for this phenotype remains unknown.  In other 
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malignancies, STAT3 activation has been shown to downregulate APM component expression.   

Recent studies revealed that activated STAT3 could sequester and inhibit STAT1 target genes 

through formation of STAT1:STAT3 heterodimers.  Therefore, we hypothesized that 

overexpressed STAT3 sequesters STAT1 into STAT1:STAT3 heterodimers and inhibits STAT1 

homodimerization and APM component gene activation.  Indeed, STAT1 depletion in SCCHN 

cells significantly reduced APM expression and TA-specific CTL recognition, demonstrating the 

critical role for STAT1 in APM component expression.  However, STAT3 depletion did not 

enhance basal or IFN-induced APM component expression or TA-specific CTL recognition of 

SCCHN cells.  Furthermore, induction of STAT1:STAT3 heterodimers in SCCHN cells did not 

alter STAT1 binding to the TAP1 promoter, APM transcription, APM protein or TA-specific 

CTL recognition.  These data demonstrate that APM component downregulation is regulated 

primarily by an IFN--pSTAT1-mediated signaling pathway, independent of oncogenic STAT3 

in SCCHN cells.    

1.7.2 Specific Aim 2 (Chapter 3): To examine the role of SHP2 in APM-mediated immune 

escape in SCCHN cells 

SCCHN cells were found to express abundant levels of total unphosphorylated STAT1, but low 

to undetectable levels of pSTAT1.  Given the critical role of pSTAT1 in APM component 

expression demonstrated in specific aim 1, we investigated whether a dysregulated phosphatase 

might be responsible for low basal pSTAT1 and APM component downregulation in SCCHN 

cells.  Interestingly, treatment of SCCHN cells with a pan phosphatase inhibitor, sodium 

orthovanadate, upregulated pSTAT1.  Immunohistochemical analysis revealed that SHP2 was 

expressed significantly higher in tumor tissue compared to normal adjacent mucosa.   Moreover, 
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SHP2 depletion in SCCHN cells significantly upregulated pSTAT1, APM protein expression, 

TA-specific CTL recognition, and induced the secretion of RANTES and IP10.    These data 

demonstrate that SCCHN cells utilize SHP2 to suppress STAT1 phosphorylation and subsequent 

APM component expression as an antitumor immune evasion mechanism.           
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2.0  DEFICIENCY OF ACTIVATED STAT1 IN HEAD AND NECK CANCER CELLS 

MEDIATES TAP1-DEPENDENT ESCAPE FROM CTL RECOGNITION 

2.1 INTRODUCTION 

Cytotoxic T lymphocytes (CTL) recognize antigenic peptides bound to human leukocyte antigen 

(HLA) class I molecules on the membrane of target cells.  These peptides are mostly, but not 

exclusively derived from endogenous proteins that are degraded by the proteasome and by the 

immunoproteasome to 8-10 amino acid long peptides.  The generated peptides are then 

transported into the endoplasmic reticulum by the transporters associated with antigen 

processing, (TAP)1/2 complex.  In the ER, with the help of antigen processing machinery (APM) 

components, peptides are loaded on 2 microglobulin-associated HLA class I heavy chains; 

these trimolecular complexes are then transported to the cell surface for recognition by cognate 

CTL (174-177).   

APM components are frequently abnormal in their expression and/or function in malignant 

cells, causing impaired expression of HLA class I tumor antigen (TA)-derived peptide 

complexes on tumor cells (178, 179).  The resulting defective interactions with the host’s 

immune system provide tumor cells with a mechanism to escape recognition and lysis by CTL. 

Squamous cell carcinoma of the head and neck (SCCHN) cells can evade detection and lysis 

by CTL through downregulation of APM components such as TAP1 resulting in poor TA 
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processing and presentation (126-128, 130). These abnormalities have clinical significance since 

they correlate with poor prognosis in patients with SCCHN (125, 129, 180).  Furthermore 

abnormalities in APM component expression and/or function are likely to have a negative impact 

on the clinical response to T cell-based immunotherapy.  These findings highlight the need to 

characterize the molecular basis of APM component defects in SCCHN cells, since this 

information could improve the clinical course of the disease by developing targeted therapies to 

correct these defects and augment T cell-based immunotherapies. 

Incubation of SCCHN cells with interferon gamma (IFN-) upregulates APM components, 

such as TAP1/2, and restores recognition and lysis of SCCHN cells by HLA class I restricted, 

TA-specific CTL (126).  IFN-induces activation of signal transducer and activator of 

transcription (STAT1)-1, which forms homodimers and binds to gamma activated sequences 

(GAS) in the promoters of APM component genes, such as TAP1 (114, 117-119, 181, 182).  We 

have investigated the role of STAT1 and STAT3 because both of these transcription factors can 

modulate the signaling activity of interferons by forming STAT1:STAT3 heterodimers and 

inhibiting their respective gene activation functions (158, 159).  Furthermore, IL-10, a potent 

STAT3 agonist (59), has been shown to inhibit IFN--mediated STAT1 phosphorylation (155) 

and APM component expression in tumor cells (146-148, 183).  Thus, we investigated whether 

the low level of phosphorylated pSTAT1 is responsible for poor basal APM expression, and 

whether the beneficial effect of IFN- is mediated by the activation of STAT1 and/or by 

reduction of STAT3 levels and STAT1:STAT3 heterodimers. 
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2.2 MATERIALS AND METHODS 

2.2.1 Cell lines 

The HLA-A*0201+ SCCHN cell lines, PCI-13 and SCC90 were characterized and described 

previously (184).  Both tumor cell lines were cultured in DMEM (Sigma-Aldrich Inc, St. Louis, 

MO) supplemented with 10% FBS (Mediatech, Herndon, VA), 2% L-glutamine, and 1% 

penicillin/streptomycin (Invitrogen Corp, Carlsbad, CA).   

2.2.2 Cytokines 

Recombinant human IL-6 was purchased from R&D systems (Minneapolis, MN), and IFN- was 

purchased from InterMune (Brisbane, CA).   

2.2.3 Antibodies 

IFN-R chain monoclonal antibody (mAb) used in intracellular flow was purchased from BD 

Pharmingen (San Jose, CA) while the IFN-R polyclonal antibody (pAb) used in 

immunohistochemistry was purchased from Abcam (Cambridge, MA).  Anti-HLA-A,B,C mAb 

(w6/32) (Ebiosciences, San Diego, CA) and anti-HLA-DR (L243) mAb (Biolegend, San Diego, 

Ca) were used in ELISPOT assays.  LMP2-specific mAb SY-1 (185), TAP1-specific mAb NOB-

1, TAP2-specific mAb NOB-2, and calreticulin-specific mAb TO-11, were developed and 

characterized as described (185, 186).  FITC conjugated IgG anti-mouse mAb was used as a 

secondary antibody for APM and IFN-R chain staining for flow cytometry and purchased 
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from Invitrogen Corp.  The intracellular pSTAT staining was performed using PE conjugated 

irrelevant IgG2a mAb isotype control, PE conjugated phosphorylated tyrosine 701 STAT1 mAb 

(pSTAT1 Tyr701) and PE conjugated pSTAT3 Tyr705 mAb purchased from BD Biosciences 

(San Jose, CA).   Western blotting antibodies include anti-pSTAT1 Tyr701 mAb, anti-pSTAT3 

Tyr705 mAb (Cell Signaling Tech, Danvers, MA), anti-STAT1 (C-24) pAb (Santa Cruz Biotech, 

Santa Cruz, CA), anti-STAT3 (C-20) pAb (Santa Cruz Biotech), anti--actin mAb (Sigma-

Aldrich Inc), anti-rabbit IgG-HRP (Promega, Madison, WI), anti-mouse IgG-HRP (Biorad, 

Hercules, CA).  

2.2.4 Intracellular flow cytometry for APM component and pSTAT1 expression 

Intracellular flow cytometry was performed as described (187).  Briefly, the cells were fixed 

using 1.5% paraformaldehye for 10 minutes at room temperature (RT) and permeabilized with 

100% methanol for at least 24 hours at -20°C.  Cells were then washed in 2% FCS/PBS (FACs 

buffer), and stained with either a PE conjugated primary STAT-specific mAb or sequentially by 

incubation with an unconjugated primary APM component-specific mAb and then with a FITC 

conjugated anti-mouse secondary mAb.  Both incubations were for 30 minutes at RT.  FACS 

analysis was performed on the same day as staining.  Isotype control antibody staining was set at 

a mean fluorescence intensity (MFI) of 5 on an EPICS XL cytometer (Beckman Coulter, Brea, 

CA) for each condition and cell line tested.  A minimum of 10,000 cells were collected per test.  

Analyses were performed using EXPO32 ADC software (Beckman Coulter).  pSTAT1, pSTAT3 

and APM component expression was determined based on MFI and was expressed as a mean + 

SE of the results obtained in at least three independent experiments.   
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2.2.5 Immunoblot analysis 

Cells were lysed in 10 mM Tris HCl, 5 mM EDTA, 50 mM NaCl, 30 mM Na2P2O7, 50 mM NaF, 

1 mM NaVO4, 1% Triton X-100, 1 mM PMSF and vortexed for at least 1 hour at 4°C, sonicated 

for 6 seconds at 20% of the maximum potency (Cole Parmer Instrument, Verona Hills, IL) and 

centrifuged at 4°C, 16,100 g for 15 minutes.  The supernatant protein was normalized and 40-60 

μg of protein were size fractionated through a 4-12% SDS-PAGE gel (Lonza, Rockand, ME), 

transferred to a PVDF membrane (Millipore, Billerica, MA) and immunoblotted with the 

indicated antibodies.  Densitometry was performed on a Personal Densitometer SI (Molecular 

Dynamics, Sunnyvale, CA) according to the manufacturer’s instructions. 

2.2.6 Small interfering RNA (siRNA)  

SCCHN cell lines were transfected at 30-40% confluence with STAT1 targeting siRNA, STAT3 

targeting siRNA or a non-targeting siRNA control (Ambion, Austin, Tx), Lipofectamine RNAi 

max (Invitrogen Corp), and Optimem I (Invitrogen Corp) according to the Lipofectamine RNAi 

max instructions.  Eighteen to twenty four hours after the transfection, cells were washed with 

PBS and incubated with or without IFN-(40-100 U/ml) for 15 minutes or 48 hours at 37˚C.  

Then cells were collected and analyzed by flow cytometry, immunoblot, or ELISPOT analyses.   

STAT1:  5’-CCUACGAACAUGACCCUAUTT-3’ (s) and 

      5’-AUAGGGUCAUGUUCGUAGGTG-3’ (as)  

STAT3: 5’-GCCUCAAGAUUGACCUAGATT-3’ (s) and 

             5’-UCUAGGUCAAUCUUGAGGCCT-3’ (as)  

 

 40 



Non-targeting control: 5’-AGUACAGCAAACGAUACGGtt-3’ (s) and 

      5’-CCGUAUCGUUUGCUGUACUtt-3’ (as)  

2.2.7 Immunohistochemistry 

Paraffin embedded PCI-13 cells were first deparaffinized and hydrated by successive washes in 

xylene (15 min), 100% ethanol (3 min), 90% ethanol (3 min), 80% ethanol (3 min), 70% ethanol 

(3 min).  The slides were rinsed with water (5 min) and epitope retrieval was performed by 

heating the slides in citrate pH 6.0 for 20 min, then cooling for 20 min at room temperature.  The 

slides were incubated in 3% hydrogen peroxide (5 min, room temperature (RT)) to block 

endogenous peroxidases.  The slides were blocked for 1 h at RT with 1% bovine serum albumin 

(BSA)/5% normal horse serum/T-TBS, then incubated overnight at 4°C with a normal rabbit 

serum control (1:1000) or IFN-R pAb (1:25).  The next day, the slides were washed in T-TBS 

for 25 min and incubated with anti-rabbit-HRP secondary antibody (45 min, RT), washed for 25 

min in T-TBS, then DAB chromogen (Dako) was added per the manufacturer’s instructions.  The 

slides were then rinsed in water, counterstained in Lillie-Meyer’s Hematoxylin solution, and 

rinsed again in water for 10 min.  The slides were dehydrated as follows: 95% ethanol 2 min, 

absolute alcohol (2 min), absolute alcohol (2 min), absolute alcohol (2 min), xylene (1 min), 

xylene (1 min).   

2.2.8 ELISPOT assay 

ELISPOT assays were performed as described (188).  Briefly, multiscreenHTS-HA filter plates 

(Millipore) were coated with anti-human IFN- mAb 1-D1K (Mabtech, Mariemont, OH) (10 
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µg/mL in PBS) overnight at 4˚C.  Unbound mAb was removed by four successive washings with 

PBS.  Plates were then blocked for 1 h at 37°C with DMEM supplemented with 10% human 

serum.  p5365-73 (189) or HPV7-15 (190)-specific CTL were added to wells in triplicate (5×104) 

and then SCCHN cells (5×104).  Following an 18-24 hour incubation at 37˚C, plates were 

washed with PBS/0.05% Tween 20 (PBS-T), and incubated with biotinylated anti-IFN- mAb 

(Mabtech) (2 µg/ml) for 4 hours at 37˚C.  Plates were washed with PBS-T avidin-peroxidase 

complex (Vector laboratories, Burlingame, CA) (1 hr at RT).  Unbound complex was removed 

by 5 successive washings with PBS-T followed by PBS.  Peroxidase staining was performed 

with 3,3,5'-tetramethylbenzidine (Vector Laboratories) for 4 minutes and stopped by rinsing the 

plates under running tap water. Spots were enumerated in triplicate wells as a mean +/- standard 

error using computer-assisted video image analysis software (Cellular Technology Ltd., Shaker 

Heights, OH). The HLA class I restriction of the recognition of target cells by the tested CTL 

was assessed by performing the assay in the presence of an anti-HLA class I specific mAb 

W6/32 (10 g/ml); the specificity of the inhibition was assessed using an anti-HLA-DR specific 

mAb L243 (10 g/ml).    

2.2.9 Co-immunoprecipitation 

Cell lysates were prepared as described in the immunoblot analysis section and pre-cleared with 

protein A agarose beads (Millipore, Temecula, CA) at 4˚C for 1 hour.  Cell lysates (750 g of 

protein/ml) were incubated on a rotator overnight at 4˚C with 5 g of anti-STAT1 mAb, anti-

STAT3 mAb or control IgG mAb.  Protein A agarose beads were then added to the lysates and 

the incubation was continued for 1 additional hour at 4˚C on a rotator.  Beads were then washed 
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with lysis buffer three times, size fractionated through a 4-12% SDS-PAGE gel, transferred to a 

PVDF membrane, and immunoblotted with the indicated antibodies. 

2.2.10 Chromatin immunoprecipitation (ChIP) assay  

Cells were serum-starved for 48 hours at 37˚C in AIM V (Invitrogen Corp, Carlsbad, CA) prior 

to incubation with IL-6 (50 ng/ml) for 60 minutes at 37˚C,  IFN- (1000 U/ml) for 30 minutes at 

37˚C, or sequentially with IL-6 (50 ng/ml) for 30 minutes at 37˚C and with IFN- (1000 U/ml) 

for 30 minutes at 37˚C in the presence of IL-6.   At the end of the incubation, cells were fixed 

with formaldehyde (1% final concentration) (Sigma-Aldrich Inc.) for 10 minutes at RT.  Cells 

were then quenched with glycine (0.125M final concentration) (Sigma-Aldrich Inc.) for 5 min, 

washed twice with ice-cold PBS and harvested. After centrifugation at 16,100 g for 12 minutes at 

4oC, cells were lysed in SDS lysis buffer (Millipore) containing protease inhibitors. Chromatin 

was sheared by sonication for 12 seconds at 20% of the maximum potency (Cole Parmer 

Instrument) to generate fragmented DNA with an average length between 200 and 1000 base 

pairs.  STAT1, STAT3, and IgG control mAbs were used to immunoprecipitate STAT1 and 

STAT3-bound chromatin (5 g of antibody) rotating overnight at 4oC.  Protein A agarose beads 

were added to each IP (60 ul) and incubated for 1 hr rotating at 4oC.  The subsequent washes and 

elution steps were performed using the Ez-ChIPTM kit (Millipore) and according to the 

manufacturer’s instructions.  Protein-DNA crosslinks were reversed at 65˚C overnight.  After 

RNase (10μg, 30 minutes at 37˚C) (Sigma-Aldrich Inc.) and sequential proteinase K (10μg, 2 hr 

at 45˚C) (Sigma-Aldrich Inc.) digestion, DNA was purified using the QIAquick PCR purification 

kit (Qiagen).  Purified DNA was used in each PCR (at 94˚C for 5 minutes, and 35 cycles at 94˚C 

for 30 seconds, at 55˚C for 30 seconds, at 68˚C for 1 minute) using the following primers:  
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TAP1: 5’-AAGTAGGCGTTATCTAGTGAGCAGGC 3’ (s) and 

5’- ACACCTAGAGCTAGCCATTGGCAC’ (as).  

2.2.11 Quantitative RT-PCR 

RNA was extracted from cell lines using Trizol (Invitrogen Corp, Carlsbad, CA) and purified 

using an RNeasy Midi Kit (Qiagen, Valencia, CA) as described by the manufacturer.  DNA was 

removed from RNA using a Turbo DNA-free kit (Ambion, Austin, TX) and resuspended in RNA 

secure solution and quantified.  Reverse transcription was performed at 25˚C for 10 minutes, 

48˚C for 30 minutes, and 95˚C for 5 minutes using random hexamer primers and MultiScribe 

(Applied Biosystems, Foster City, CA) reverse transcriptase.  Quantitative RT-PCR (qRT-PCR) 

using validated human taqman gene expression assays (Applied Biosystems, Foster City, CA) for 

LMP2, LMP7, TAP1, TAP2 and calreticulin was performed on the Applied Biosystems 7700 

Sequence Detection Instrument and carried out at 95˚C for 10 minutes, and 40 cycles of 95˚C for 

15 seconds and 60˚C for 1 minute.  Expression of the target genes (LMP2, LMP7, TAP1, TAP2 

and calreticulin) were calculated relative to β-glucuronidase (GUS; and endogenous control 

gene) using the ΔCT (cycle time) method described previously: relative expression = 2-ΔCT, where 

ΔCT =  CT(APM gene) - CT(GUS) (191).   

2.2.12 Statistical analysis 

Data are expressed as a mean + standard error of the results obtained in at least three independent 

experiments.  A two-tailed t-test was used to calculate whether observed differences were 

statistically significant.  P < 0.05 was considered significant. 
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2.3 RESULTS 

2.3.1 SCCHN cells express low basal pSTAT1 and high basal pSTAT3    

At basal untreated conditions in SCCHN cells, PCI-13 and SCC90, high pSTAT3 (Tyrosine 705) 

was associated with low to undetectable levels of pSTAT1 (Tyrosine 701) (Fig 6) and APM 

component expression (125).  This low level of pSTAT1 does not reflect a deficiency of STAT1, 

since these cells express significant levels of total STAT1 (Fig 6b).  Treatment of SCCHN cells, 

with IFN-(100 U/ml, 15 min) upregulated pSTAT1 but not pSTAT3 (Fig 6).  In contrast, IL-6 

(50 ng/ml, 15 min) treatment, which is secreted by SCCHN cells in an autocrine/paracrine 

fashion (58, 105), strongly upregulated pSTAT3 (Fig 6).   
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Figure 6. SCCHN cells express low basal pSTAT1 and high basal pSTAT3 that are inducible by 

treatment with IFN- and IL-6. 

Cells were treated with IFN- (100 U/ml, 15 min) or IL-6 (50 ng/ml, 15 min) and assayed for 
pSTAT1 (Tyr 701) or pSTAT3 (Tyr 705) by (a) intracellular flow cytometry or (b) immunoblot 
analyses.  Data represent at least three independent experiments.    

2.3.2 Induction of IFN--mediated pSTAT1, APM expression, and CTL recognition in 

STAT3 depleted SCCHN cells 

Others have shown that IL-10, a potent STAT3 agonist, can inhibit IFN--mediated STAT1 

phosphorylation (155) and TAP1/2 expression in tumor cells (146-148, 183). These studies 

suggest that pSTAT3 might suppress STAT1 phosphorylation and inhibit APM expression in 
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SCCHN cells.  Since pSTAT3 is expressed at very high levels in SCCHN cells (Fig 6), we 

investigated whether depleting STAT3 altered the IFN--pSTAT1-APM pathway.  Using STAT3 

siRNA, target specific reduction of greater than 90% was achieved in PCI-13 and SCC90 cells 

(Figs 7a-b).  Additionally, STAT3 knockdown decreased pSTAT3 in SCCHN cells (Supp Fig 

16).  

 

Figure 7. STAT3 siRNA. 

(a) PCI-13 cells and (b) SCC90 cells were transfected with various doses of siRNA and probed 
for total STAT3 protein and -actin 48 h later.  Densitometry was performed. 

 

Interestingly, pSTAT1 and APM component expression levels were equivalent between 

STAT3 and non-targeting siRNA transfections alone or in combination with IFN- treatment 
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(Figs 8a-d, p= not significant (NS), two-tailed t-test).  Calreticulin, a non-IFN-inducible APM 

component was used as a negative control.   

 

Figure 8. IFN--mediated pSTAT1 and APM expression in STAT3 depleted SCCHN cells. 

(a) PCI-13 cells and (b) SCC90 cells were transfected with (200 nM or 100 nM respectively) 
with non-targeting or STAT3 siRNA alone or in combination with IFN- (100U/ml, 15 min), 
added 48 hours after transfection.  Intracellular flow cytometry for pSTAT1 was performed.  
Data represent the mean fluorescence intensity MFI of at least three independent experiments. 
(p=NS, two-tailed t-test).  Error bars indicate standard error.  PCI-13 (c) and SCC90 (d) cells 
were transfected as described above, except IFN- (100U/ml, 48hr) was added 24 hours after 
transfection.  Intracellular flow cytometry for TAP1, TAP2, LMP2 and calreticulin was 
performed.  Data represent the (MFI) of at least three independent experiments. (p=NS, two-
tailed t-test).  Error bars indicate standard error.  
 

To document the functional impact of the above findings on TA-specific CTL recognition 

of SCC90 cells, IFN-ELISPOT was performed.  The beneficial effect of IFN- in activating 
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STAT1 and restoring SCCHN cell recognition by p5365-73 (189) or HPV7-15-specific (190) CTL 

was unaffected by STAT3 depletion (Figs 9a-b, p=NS, two-tailed t-test).  CTL recognition was 

abrogated using an anti HLA-A,B,C specific mAb demonstrating that CTL were HLA class I 

restricted.  Similar results were obtained with PCI-13 cells.  These data illustrate that the APM 

expression in SCCHN cells is strongly dependent on IFN- induced pSTAT1, and STAT3 does 

not functionally alter the activity of this pathway.     

 

Figure 9. IFN--mediated CTL recognition in STAT3 depleted SCCHN cells. 

IFN- ELISPOT assay were performed using (a) p5365-73 or (b) HPV7-15 specific cytotoxic T 
lymphocytes as effector cells and SCC90 cells as targets that have been transfected and treated 
with IFN- as described in Figures 8c-d. An anti-HLA-A,B,C mAb (w6/32) was used to 
demonstrate that CTL was HLA class I restricted.  Error bars indicate standard error (p=NS, two-
tailed t-test). 

2.3.3 Low pSTAT1 levels contribute to basal APM downregulation and CTL evasion in 

SCCHN cells 

To identify the mechanism of IFN--mediated TAP1 expression and restoration of SCCHN cell 

lysis by CTL(126), we also investigated the role of pSTAT1.  Interestingly, SCCHN cells 
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express IFN-R (Figs 10a-c) and treatment of the cells with IFN-(100 U/ml, 15 min or 48h) 

significantly upregulated pSTAT1 and APM component expression compared to basal, untreated 

conditions (Figs 10d-e; p<0.005 and p<0.001, respectively, two-tailed t-test), demonstrating that 

the IFN--pSTAT1-APM signaling pathway is intact.  Calreticulin, a non-IFN-inducible APM 

component was used as a negative control.   
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Figure 10. STAT1 signaling is intact in SCCHN cells. 

PCI-13 cells were evaluated for basal expression of IFN-R by (a) flow cytometry and 
immunohistochemistry (b) isotype control (40x) (c) IFN-R staining (40x).  The cells were also 
treated with IFN-(100 U/ml) for either 15 min or 48 h, then analyzed by intracellular flow 
cytometry for either (d) pSTAT1 (e) or APM component expression respectively.  Calreticulin, a 
non-IFN- inducible APM component was included to control for global changes in protein 
expression following treatment.  Data represent at least three independent experiments.  Mean 
fluorescence intensity (MFI) was plotted and error bars indicate standard error (*p<0.005, 
*p<0.001, two-tailed t-test).   
 

Moreover, STAT1 siRNA (200 nM, 48h), which specifically decreased STAT1 protein 

by greater than 75% (Fig 11a), significantly reduced IFN--mediated pSTAT1 and APM 

component expression (Figs 11b-c; p<0.0005 and p<0.002, respectively, two-tailed t-test).  To 

assess the functional impact of STAT1 expression in SCCHN cells, IFN- ELISPOT was 
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performed.  STAT1 depletion significantly impaired TA-specific CTL recognition of IFN- 

treated SCCHN cells (Fig 11d; p<0.01, two-tailed t-test).  Similar results were obtained in 

SCC90 cells.  Taken together, these data suggest that activated STAT1 is a crucial mediator of 

APM component expression, and that low basal pSTAT1 activation contributes to APM-

mediated downregulation in SCCHN cells and escape from CTL recognition.  
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Figure 11. Activated STAT1 is a critical mediator of APM component expression and TA-specific 

CTL recognition of SCCHN cells.  

(a) PCI-13 cells were transfected with the indicated doses of siRNA and knockdown of STAT1 
protein was assessed by immunoblot and densitometry analyses.  PCI-13 cells were transfected 
with 200 nM of   the indicated siRNA and 24 h after transfection, IFN- (40 U/ml) was added for 
either 15 min or 48 h, then analyzed by intracellular flow cytometry for either (b) pSTAT1 or (c) 
APM component expression by MFI respectively.  Data represent at least three independent 
experiments.  Error bars indicate standard error (*p<0.0005, *p<0.002, two-tailed t-test). (d) 
PCI-13 cells were transfected with 200nM of the indicated siRNA and 24 h after transfection 
treated with IFN-(40 U/ml) for an additional 24 h.  The cells were collected as used as targets 
and p5365-73 specific cytotoxic T lymphocyte (CTL) were used as effector cells in IFN- 
ELISPOT assays. An anti-HLA-A,B,C mAb (w6/32) was used to demonstrate that CTL was 
HLA class I restricted.  Error bars indicate standard error (*p<0.01, two-tailed t-test).   
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2.3.4 IFN- and IL-6 induce pSTAT1/3 heterodimerization 

Since it has been shown that STAT1:STAT3 heterodimers inhibit STAT1 gene activation (158, 

159), this raised the question as to whether these complexes contributed to low APM gene 

expression.  To investigate the potential suppressive role of STAT1:STAT3 heterodimers on 

basal APM expression, we stimulated SCCHN cells with IFN-(100 U/ml, 15 min) or IL-6 (50 

ng/ml, 15 min), and co-immunoprecipitated STAT1 and STAT3 from whole cell lysates.  These 

proteins were immunoprecipitated, size fractionated on a SDS gel, and then probed using anti-

pSTAT1 (Tyrosine 701), anti-pSTAT3 (Tyrosine 705), anti-total STAT1 and total anti-total 

STAT3 mAbs.  Interestingly, STAT1:STAT3 heterodimers were detected at low levels in the 

SCCHN cells under basal conditions, and both IL-6 or IFN- treatments increased 

pSTAT1:pSTAT3 heterodimer formation (Fig 12).  These data suggest that overexpressed 

pSTAT3 in SCCHN cells could be interfering with pSTAT1 homodimerization and APM gene 

activation.   

 

Figure 12. IL-6 and IFN- increase pSTAT1:pSTAT3 heterodimerization. 

Cells were treated with either IL-6 (50 ng/ml, 15 min) or IFN-(100 U/ml, 15min).  Whole cell 
lysates were prepared and immunoprecipitated with anti-STAT1, or anti-STAT3, or an irrelevant 
control mAb.  The immunoprecipitates were size fractionated by SDS/PAGE and transferred to a 
PVDF membrane.  The blots were probed for anti-pSTAT1, STAT1, pSTAT3, and total STAT3 
from (a) PCI-13 and (b) SCC90 cells.     
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2.3.5 IFN--mediated-STAT1 binding to the TAP1 promoter, STAT1 phosphorylation, 

APM transcription, APM protein, HLA class I and TA-specific CTL recognition is 

independent of STAT1:STAT3 heterodimerization 

Given the presence of pSTAT1:pSTAT3 heterodimers under basal conditions, we investigated 

whether these complexes could inhibit IFN- induced STAT1 binding to the TAP1 promoter, 

using chromatin immunoprecipitation (ChIP) assays.  Pretreatment of SCCHN cells with IL-6 

(50 ng/ml, 30 min) to increase the formation of pSTAT1:pSTAT3 heterodimers did not inhibit 

IFN-(1000 U/ml, 30 min) mediated STAT1 binding to the TAP1 promoter compared to IFN- 

treatment alone (Figs 13a-b).  Furthermore, the levels of STAT3 bound to the TAP1 promoter 

remained unchanged with either cytokine treatment, demonstrating that STAT1:STAT3 

heterodimers do not bind to the TAP1 promoter (Fig 13).  These data illustrate that 

STAT1:STAT3 heterodimers do not interfere with the IFN--pSTAT1 signaling pathway and 

that pSTAT1 is a crucial transcription factor in regulating TAP1 gene transcription.    
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Figure 13. IFN--mediated-STAT1 binding to the TAP1 promoter is independent of STAT1:STAT3 

heterodimerization. 

(a) PCI-13 and (b) SCC90 cells were untreated, treated with IL-6 (50 ng/ml, 60 min), IFN-
(1000 U/ml, 30 min), or pre-treated with IL-6 (50 ng/ml, 30 min) then treated with IFN- (1000 
U/ml, 30 additional min) in the presence of IL-6.  The cells were fixed with formaldehyde, 
quenched with glycine and lysed in SDS lysis buffer.  Chromatin was sheared by sonication and 
probed with anti-STAT1, anti-STAT3, and anti-IgG mAbs.  Protein-DNA crosslinks were 
reversed, and both RNA and protein were removed by enzymatic digestion.  DNA was purified 
and PCR was performed amplifying a canonical GAS sequence in the TAP1 promoter localized 
to STAT1 binding.  
 
 

To determine whether increasing pSTAT1:pSTAT3 heterodimerization affected IFN--

mediated STAT1 phosphorylation, APM transcription, and APM protein expression, SCCHN 

cells were pretreated with IL-6 (50 ng/ml, 30 min), then treated with IFN- (100 U/ml, 30 min to 

48 h) in the presence of IL-6.  Under these conditions, IFN--mediated STAT1 phosphorylation, 

APM component transcription, APM component protein levels and HLA class I were equivalent 

to cells pretreated with IL-6 prior to incubation with IFN- (Figs 14a-h ; p=NS, two-tailed t-test), 

further supporting the independence of the IFN--pSTAT1 pathway from STAT3.   
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Figure 14. IFN--mediated STAT1 phosphorylation, APM component transcription and protein 

expression and HLA class I expression is independent of STAT1:STAT3 heterodimerization. 
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(a) PCI-13 and (b) SCC90 cells were untreated, treated with IL-6 (50 ng/ml, 30 min), IFN-(100 
U/ml, 15 min), or pretreated with IL-6 (50 ng/ml, 15 min), then treated with IFN- (100 U/ml, 
15min) in the presence of IL-6.  Intracellular flow cytometry was performed measuring pSTAT1.  
MFI was plotted representing at least three independent experiments (p=NS, two-tailed t-test).  
Error bars indicate standard error.  (c) PCI-13 and (d) SCC90  cells were untreated, treated with 
IL-6 (50 ng/ml, 5.5 h), IFN-(100 U/ml, 5h), or pre-treated with IL-6 (50 ng/ml, 30 min) then 
treated with IFN- (100 U/ml, 5 additional h) in the presence of IL-6.  TAP1, TAP2, LMP2 and 
LMP7 transcription was measured by qRT-PCR as described in the Materials and Methods. Data 
represent three replicates of at least three independent experiments (p=NS, two-tailed t-test).  
Error bars indicate standard error.  (e) PCI-13 and (f) SCC90 were untreated, treated with IL-6 
(50 ng/ml, 48 h), IFN-(100 U/ml, 48 h), or pretreated with IL-6 (50 ng/ml, 30 min), then treated 
with IFN- (100 U/ml, 48 h) in the presence of IL-6.  Intracellular flow cytometry was performed 
measuring Calreticulin, TAP1, TAP2, and LMP2 protein.  MFI was plotted representing at least 
three independent experiments (p=NS, two-tailed t-test).  Error bars indicate standard error.  (e) 
PCI-13 and (f) SCC90 were treated as described in (e) and (f).   Flow cytometry was performed 
measuring HLA class I.  MFI was plotted representing at least three independent experiments 
(p=NS, two-tailed t-test).  Error bars indicate standard error.   
 

Lastly, IFN-ELISPOT demonstrated that the beneficial effect of IFN- in activating 

STAT1 and restoring SCCHN cell recognition by TA-specific CTL was unaffected by 

STAT1:STAT3 heterodimerization (Figs 15a-b; p=NS, two-tailed t-test).  These data 

demonstrated that STAT1:STAT3 heterodimers do not interfere with IFN--pSTAT1 signaling, 

which is critical for TAP1 gene activation, APM protein expression and TA-specific CTL 

recognition of SCCHN cells.  Thus, a deficiency in STAT1 activation and not overexpressed 

pSTAT3 is responsible for poor basal APM component expression in SCCHN cells.   
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Figure 15. IFN--mediated HLA class I expression and TA-specific CTL recognition of SCCHN cells 

is independent of STAT1:STAT3 heterodimerization. 

IFN- ELISPOT assay were performed using (a) p5365-73 or (b) HPV7-15 specific cytotoxic T 
lymphocytes as effector cells and SCC90 cells as target cells that have been treated as described 
in Figure 14 (e-f). An anti-HLA-A,B,C mAb (w6/32) was used to demonstrate that CTL was 
HLA class I restricted.  Error bars indicate standard error (p=NS, two-tailed t-test). 

2.4 DISCUSSION 

Abnormal APM component expression and/or dysfunction frequently occur in human 

malignancies (179), but this mechanism of immune escape has not been thoroughly investigated.  

In this study, we document that SCCHN cells express low basal levels of pSTAT1 (Fig 6) as a 

mechanism of APM component downregulation despite intact IFN-R expression and signaling 

(Fig 10), and that exogenous IFN--mediated STAT1 activation is required to facilitate STAT1 

binding to the TAP1 promoter (Fig 13), APM component protein expression (Fig 11c), and TA-

specific CTL recognition (Fig 11d).  These data support that low basal pSTAT1 levels and not 
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defects in the endogenous IFN--pSTAT1-APM signal transduction pathway are responsible for 

the low basal APM component expression observed in SCCHN cells.   

Complete inhibition of IFN- mediated APM component expression was not observed 

after significant knockdown of total STAT1 protein.  Interestingly, treatment of SCCHN cells 

with a ten fold lower dose of IFN-(10 U/ml) upregulated APM components (Supp Fig 17) 

suggesting that a threshold level of pSTAT1 is required to induce APM protein expression.  

Thus, despite the significant reduction of total STAT1 by siRNA, residual STAT1 was 

sufficiently activated by IFN- to mediate APM component expression and CTL recognition, 

albeit at significantly reduced levels (Figs 11c-d).  Interestingly, others have shown reduced IFN-

 levels in the plasma of patients with SCCHN compared to age-matched controls (70, 71), 

providing a potential clinical explanation for low basal STAT1 activation and APM-mediated 

immune escape in SCCHN cells. 

Others have shown that STAT3 activation by type I IFNs can inhibit STAT1 target gene 

expression through formation of STAT1:STAT3 heterodimers (158, 159), therefore, we also 

investigated whether overexpressed pSTAT3, and these heterodimer complexes were responsible 

for low basal APM component expression in SCCHN cells.  Our exclusion for a role of STAT3 

in basal APM-mediated immune escape differs from previous reports that provide evidence that 

STAT3 activation by IL-10 inhibits IFN--mediated STAT1 phosphorylation (155) and 

downregulates TAP expression in tumor cells (146-148, 183).  However, IL-10 did not activate 

pSTAT3 in SCCHN cells (unpublished data).  The biological basis for pSTAT1:pSTAT3 

heterodimers in SCCHN is unknown (153).  We investigated whether pSTAT1:pSTAT3 

heterodimers were responsible for low basal APM component expression and SCCHN escape 

from CTL recognition.  STAT1:STAT3 heterodimers were detected in PCI-13 and SCC90 cells 
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at basal, untreated conditions, and these complexes were increased after treatment with IFN- 

and IL-6 (Fig 12).  Interestingly, IFN--mediated pSTAT1 upregulation also induced 

heterodimer formation with pSTAT3 (Fig 12), but APM component transcription and protein 

were still expressed (Figs 14c-f).  This finding might be due to the abundant activation of STAT1 

by IFN- inducing pSTAT1 homodimerization and APM gene activation, and excess pSTAT1 

dimerizing with pSTAT3, which is overexpressed in SCCHN cells.  Also, STAT3 was found 

bound to the TAP1 promoter (Figs 13a-b) and this observation is consistent with the fact that 

STAT1 and STAT3 can bind to the same canonical GAS domain, yet regulate different target 

genes (192).    

IL-6 induced pSTAT1:pSTAT3 heterodimerization did not alter IFN--mediated APM 

component transcription or protein (Fig 14c-f).  To investigate whether the dose of IFN-(100 

U/ml) used in our studies might be masking a potential negative regulatory effect of IL-6-

mediated STAT1:STAT3 heterodimers, we used a 10 fold lower dose of IFN- (10 U/ml).  Even 

at this lower dose, IL-6 treatment did not inhibit IFN--mediated APM component expression 

(Supp Fig 17).  Importantly, at baseline, STAT3 depletion by siRNA could not reproduce the 

beneficial effects of stimulating the IFN--STAT1-APM pathway.  Treatment of SCCHN cells 

with IFN-after STAT3 depletion did not augment APM component expression or TA-specific 

CTL recognition (Fig 9).  These data demonstrate that APM component expression and CTL 

recognition of SCCHN cells primarily require activation of STAT1 with exogenous IFN- 

independent of STAT3.  

The mechanism of how SCCHN cells maintain low basal pSTAT1 and APM component 

expression is still not known.  Deficiencies in TAP expression have been documented to occur 

through a lack of STAT1 and IRF1 phosphorylation (142), mutations in the JAK1 kinase that 
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prevent its activation and subsequent STAT1 phosphorylation (143), and impaired RNA 

polymerase II recruitment to the TAP1 promoter (193).  Several investigators have identified that 

members of a small sub-family of non-receptor protein tyrosine phosphatases (PTPs), Src 

homology-2 domain-containing phosphatases (SHP), which can dephosphorylate Jak1 (194) and 

STAT1 (168, 169).  Providing a stimulus for STAT1 activation such as IFN-can correct APM 

downregulation and enhance CTL lysis in vitro, but perhaps a more efficacious therapeutic 

approach would be a targeted therapy against the negative regulators of STAT1 phosphorylation 

in SCCHN.  A greater understanding of the mechanisms responsible for low basal pSTAT1 and 

APM expression could augment current T cell based immunotherapies by enhancing the 

immunogenicity of its tumor cell target.         

In summary, these studies identified low pSTAT1 in SCCHN cells as a critical mediator 

of APM component downregulation and CTL escape.  We also investigated a potential role for 

pSTAT1:pSTAT3 heterodimers in APM component downregulation of SCCHN cells.  Our data 

demonstrate that pSTAT1:pSTAT3 heterodimers do not alter the IFN--pSTAT1-APM signaling 

axis.  The function of the pSTAT1:pSTAT3 heterodimer remains unknown, but these findings 

indicate a need to directly stimulate the STAT1 pathway to enhance APM expression and reverse 

CTL evasion by tumor cells.  Future studies might include investigating the negative regulators 

of STAT1 activation whose dysregulated activity might be responsible for low basal pSTAT1 

and APM component levels in SCCHN.    
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2.5 SUPPLEMENTAL DATA 

 

Figure 16. Supplemental Data.  STAT3 siRNA decreases pSTAT3 in SCCHN cells. 

PCI-13 cells were transfected with the indicated siRNA (30 nM, 48 h) and intracellular flow 
cytometry was performed measuring pSTAT3.   
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Figure 17. Supplemental Data.  IFN- (10 U/ml)-mediated APM component expression is 

independent of STAT1:STAT3 heterodimerization. 

PCI-13 cells were untreated, treated with IL-6 (50 ng/ml, 48 h), IFN-(10 U/ml, 48 h), or 
pretreated with IL-6 (50 ng/ml, 30 min), then treated with IFN- (10 U/ml, 48 h) in the presence 
of IL-6.  Intracellular flow cytometry was performed measuring Calreticulin, TAP1, TAP2, and 
LMP2.  MFI was plotted representing at least three independent experiments (p=NS, two-tailed 
t-test).   
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3.0  SHP2 REGULATES PSTAT1-MEDIATED APM COMPONENT EXPRESSION 

AND CTL RECOGNITION OF HEAD AND NECK CANCER CELLS 

3.1 INTRODUCTION 

Tumor immune escape remains a critical obstacle to successful T cell-based cancer 

immunotherapy (24, 195).  Schreiber and colleagues demonstrated that tumor cells undergo a 

rigorous immune selection process resulting in neoplastic disease that has lost significant 

immunogenicity (18).  In squamous cell carcinoma of the head and neck (SCCHN) and other 

malignancies, this immune pressure commonly selects for tumor cells that downregulate antigen 

processing machinery (APM) components, such as the transporter associated with antigen 

processing (TAP)-1 protein.  As a result, tumor antigen (TA) processing and presentation is 

reduced, leading to escape from TA-specific cytotoxic T lymphocyte (CTL) recognition (126, 

128, 132, 133, 135, 196).  Interestingly, APM component downregulation correlates with poor 

prognosis in patients with SCCHN (125), demonstrating that this escape mechanism is clinically 

significant.  Thus, addressing the molecular mechanisms responsible for APM component 

downregulation is important to promote the success of SCCHN immunotherapy.   

Previous studies identified that treatment of SCCHN cells with interferon gamma (IFN-

upregulated APM components and restored TA-specific CTL lysis in vitro (126).  IFN- 

signals transduction occurs by inducing phosphorylation of janus activated kinase (JAK)-1 and 
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JAK2 and signal transducer and activator of transcription (pSTAT1)-1 (46).  pSTAT1 forms 

homodimers and translocates to the nucleus to induce APM gene activation (114).  Given the 

important role of activated STAT1 on APM protein expression (Chapter 2), we hypothesize that 

low basal levels of pSTAT1 might be responsible for APM component downregulation in 

SCCHN cells.    

Protein tyrosine phosphatases (PTPs) have been implicated in the inactivation and 

dephosphoryation of STAT1 (197, 198).  In particular, src homology-2 domain-containing 

phosphatase (SHP)-2 has been suggested as a negative regulator of the JAK-STAT signal 

transduction pathway (165, 166, 169, 199-202).  Furthermore, SHP2 overexpression and/or 

hyperactivity have been demonstrated in leukemia, breast, cervical, and bladder cancers (167, 

173, 203, 204).   We posited that dysregulated SHP2 activity may be responsible for maintaining 

low pSTAT1 levels in SCCHN, thereby reducing APM component expression and mediating 

escape from CTL recognition.    

We investigated the role of SHP2 in mediating APM component downregulation in 

SCCHN cells.  Immunohistochemical analysis was performed on SCCHN tissue to investigate 

whether SHPs were aberrantly expressed.  SHP2 depletion studies were performed on SCCHN 

cells to evaluate the effect on STAT1 phosphorylation, APM component expression, HLA class I 

expression, TA-specific CTL recognition, and cytokine/chemokine secretion.      
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3.2 MATERIALS AND METHODS 

3.2.1 Cell lines 

The HLA-A*0201+ SCCHN cell lines, PCI-13 and SCC90 (205) and HLA-A*0201- cell lines, 

SCC4 and PCI-15B were characterized and described previously (184).  All tumor cell lines 

were cultured in DMEM (Sigma-Aldrich Inc, St. Louis, MO) supplemented with 10% FBS 

(Mediatech, Herndon, VA), 2% L-glutamine, and 1% penicillin/streptomycin (Invitrogen Corp, 

Carlsbad, CA).  

3.2.2 Cytokines and reagents  

IFN- was purchased from InterMune (Brisbane, CA) and sodium orthovanadate was purchased 

from (Sigma-Aldrich).   

3.2.3 Antibodies  

Anti-HLA-A,B,C mAb (w6/32) (Ebiosciences, San Diego, CA) and anti-HLA-DR (L243) mAb 

(Biolegend, San Diego, Ca) were used in ELISPOT assays.  LMP2-specific mAb SY-1 (185), 

TAP1-specific mAb NOB-1, TAP2-specific mAb NOB-2, and calreticulin-specific mAb TO-11, 

were developed and characterized as described (185, 186).  FITC conjugated IgG anti-mouse 

mAb was used as a secondary antibody for APM staining and purchased from Invitrogen Corp.  

The intracellular pSTAT staining was performed using PE conjugated irrelevant IgG2a mAb 

isotype control, PE conjugated phosphorylated tyrosine 701 STAT1 mAb (pSTAT1 Tyr701) and 
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PE conjugated pSTAT3 Tyr705 mAb purchased from BD Biosciences (San Jose, CA).   Western 

blotting antibodies include anti-pSTAT1 Tyr701 mAb, anti-pSTAT3 Tyr705 mAb (Cell 

Signaling Tech, Danvers, MA), anti-STAT1 (C-24) polyclonal (pAb) (Santa Cruz Biotech, Santa 

Cruz, CA), anti-STAT3 (C-20) pAb (Santa Cruz Biotech), anti--actin mAb (Sigma-Aldrich 

Inc), anti-rabbit IgG-HRP (Promega, Madison, WI), anti-mouse IgG-HRP (Biorad, Hercules, CA 

3.2.4 Intracellular flow cytometry for APM component and pSTAT1 expression 

See section 2.2.4 

3.2.5 Immunoblot analysis 

See section 2.2.5 

3.2.6 Quantitative RT-PCR 

See section 2.2.11

3.2.7 Small interfering RNA (siRNA)  

SCCHN cell lines were transfected at 30-40% confluence with SHP2 targeting siRNA or a non-

targeting siRNA control (Ambion, Austin, Tx), Lipofectamine RNAi max (Invitrogen Corp), and 

Optimem I (Invitrogen Corp) according to the Lipofectamine RNAi max instructions.  Eighteen 

to twenty four hours after the transfection, cells were washed with PBS and incubated with or 
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without IFN-(100 U/ml) for 15 minutes or 48 hours at 37˚C.  Then cells were collected and 

analyzed by flow cytometry, immunoblot, or ELISPOT analyses.   

SHP1:  5’-GGUGACCCAUAUUCGGAUCTT’ (s) and 

      5’-GAUCCGAAUAUGGGUCACCTG-3’ (as)  

SHP2: 5’-GGAGAACGGUUUGAUUCUUTT-3’ (s) and 

             5’-AAGAAUCAAACCGUUCUCCTC-3’ (as)  

Non-targeting control: 5’-AGUACAGCAAACGAUACGGtt-3’ (s) and 

      5’-CCGUAUCGUUUGCUGUACUtt-3’ (as)  

3.2.8 ELISPOT assay 

ELISPOT assays were performed as described (188).  Briefly, multiscreenHTS-HA filter plates 

(Millipore) were coated with anti-human IFN- mAb 1-D1K (Mabtech, Mariemont, OH) (10 

µg/mL in PBS) overnight at 4˚C.  Unbound mAb was removed by four successive washings with 

PBS.  Plates were then blocked for 1 h at 37°C with DMEM supplemented with 10% human 

serum.  EGFR853-861 (188) and p5365-73 (189, 206) specific CTL were added to wells in triplicate 

(5×104) and then SCCHN cells (5×104).  Following an 18-24 hour incubation at 37˚C, plates 

were washed with PBS/0.05% Tween 20 (PBS-T), and incubated with biotinylated anti-IFN- 

mAb (Mabtech) (2 µg/ml) for 4 hours at 37˚C.  Plates were washed with PBS-T avidin-

peroxidase complex (Vector laboratories, Burlingame, CA) (1 hr at RT).  Unbound complex was 

removed by 5 successive washings with PBS-T followed by PBS.  Peroxidase staining was 

performed with 3,3,5'-tetramethylbenzidine (Vector Laboratories) for 4 minutes and stopped by 

rinsing the plates under running tap water. Spots were enumerated in triplicate wells as a mean 

+/- standard error using computer-assisted video image analysis software (Cellular Technology 
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Ltd., Shaker Heights, OH). The HLA class I restriction of the recognition of target cells by the 

tested CTL was assessed by performing the assay in the presence of an anti-HLA class I specific 

mAb W6/32 (10 g/ml); the specificity of the inhibition was assessed using an anti-HLA-DR 

specific mAb L243 (10 g/ml).    

3.2.9 Immunohistochemistry 

Protein levels were evaluated by immunohistochemical (IHC) staining of tumor and adjacent 

mucosal specimens arrayed in a previously described tissue microarray (TMA) (207).  For the 

studies presented here, the maximum number of evaluable tumor specimens was 46, 16 of these 

tumors had arrayed adjacent mucosal tissues available for analysis. Tissue microarray quality 

assessment and morphologic confirmation of tumor or normal histology was performed using 

one H&E-stained slide for every ten tissue sections. 

Arrayed tissues were IHC stained for SHP1 and SHP2 and tissue levels were evaluated 

semi-quantitatively. Prior to incubation with anti-SHP1 or anti-SHP2 antibodies for 60 minutes 

at room temperature, antigen retrieval was performed using citrate pH 6 buffer (Dako) followed 

by incubation with a 3% hydrogen peroxide solution for 5 min at room temperature.  The tissue 

specimens were then blocked with calf serum block (Invitrogen) for 10 minutes at room 

temperature. SHP1 staining was developed using Dako Dual Envision+ for 30 minutes at room 

temperature followed by incubation with Substrate Chromagen for 5 minutes at room 

temperature. Slides were counterstained with Harris Hematoxylin, and cytoplasmic and nuclear 

staining intensity (0 – 3) and percent of tumor to the nearest 5% were determined separately by a 

head and neck cancer pathologists (LW and RS). An IHC score was derived from the product of 
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the intensity and percentage of tumor stained, and IHC scores for each core of a specimen were 

averaged.  

3.2.10 Luminex assay 

SCCHN cells were assayed for expression of various cytokines and chemokines using a human 

cytokine 30-plex panel (Invitrogen) as previously described (208). 

3.2.11 Statistical analysis 

Data are expressed as a mean + standard error of the results obtained in at least three independent 

experiments.  A two-tailed t-test was used to calculate whether observed differences were 

statistically significant.  P<0.05 was considered significant.  For IHC studies, differences 

between paired tumor and adjacent mucosa levels of each protein were evaluated using the 

signed-rank test. Correlations between proteins were assessed using Spearman’s nonparametric 

correlation coefficient. Threshold for significance was P<0.05. 

3.3 RESULTS 

3.3.1 Sodium orthovanadate upregulates pSTAT1 in SCCHN cells 

Previous work from chapter 2.0 identified pSTAT1 as an important mediator of APM component 

expression in SCCHN cells.  Interestingly, basal levels of pSTAT1 are undetectable in SCCHN 

cells, but total STAT1 protein is abundantly expressed (Fig 18).   To test whether a PTP might be 
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responsible for this observation, a panel of SCCHN cells, PCI-13, SCC90, SCC4, and PCI-15B, 

were treated with a broad phosphatase inhibitor, sodium orthovandate (SOV). After 24 h of 

treatment with SOV (100uM), pSTAT1 levels were significantly upregulated in these cells by 

immunoblot analysis (Fig 18).  As a positive control, IFN-(100 U/ml, 10 min), upregulated 

pSTAT1 to a similar degree as the SOV treatments (Fig 18).  In addition, pretreatment of 

SCCHN cells with SOV (100uM, 24 h), then incubating with IFN-(100 U/ml, 10 min), 

augmented pSTAT1 expression in all of the SCCHN cells (Fig 18).  These data demonstrate that 

PTPs contribute to the dephosphorylation of STAT1 in SCCHN cells at baseline.

 

Figure 18. Sodium orthovanadate (SOV) upregulates pSTAT1 in SCCHN cells. 

PCI-13, SCC90, SCC4, and PCI-15b cells were treated with SOV (100uM, 24 h),  IFN-(100 
U/ml, 10 min), or pretreated with SOV (100uM, 24 h) then with IFN- (100 U/ml, 10 min) and 
analyzed by immunoblot with the indicated antibodies.  -actin served as a loading control.   
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3.3.2 SHP2 is overexpressed in SCCHN tissue but not normal mucosa 

Both SHP1 (209, 210) and SHP2 (165, 166, 169, 199-202) have been identified as negative 

regulators of STAT1 phosphorylation.  IHC analysis of tumor tissue from patients with SCCHN 

revealed that SHP2 was significantly overexpressed compared to normal mucosa (Figs 19a-c) but 

no difference in SHP1 expression was observed (Figs 19d-f).  Preliminary investigation as to 

whether SHP1 inhibition could upregulate STAT1 phosphorylation and APM expression was 

performed in PCI-13 cells.  SHP1 siRNA (100 nM, 48 h) achieved greater than 70% knockdown 

of SHP1 protein compared to siRNA control (Fig 20b), but did not upregulate pSTAT1 or APM 

components (Figs 20c-d).  These data prompted us to investigate whether SHP2 was responsible 

for negatively regulating STAT1 phosphorylation and APM expression in SCCHN cells.     
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Figure 19. SHP2 but not SHP1 is overexpressed in SCCHN tissue but not in normal mucosa. 
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SCCHN tumors and normal adjacent mucosa were stained with either an anti-SHP2 (a) or anti-
SHP1 (b) mAb and scored.  The IHC score was derived by multiplying the cytoplasmic and 
nuclear staining intensity (0 – 3) by the percent of tumor stained to the nearest 5%.  IHC scores 
for each core of a specimen were averaged.  Representative examples of SHP2 staining (b-c) and 
SHP1 (e-f) from SCCHN tissue (200x) and normal mucosa (200x) are provided.   
 

 

Figure 20. SHP1 siRNA did not upregulate pSTAT1 or APM components. 

PCI-13 cells were transfected with the indicated siRNAs (100 nM, 48 h), and greater than 70% 
knockdown of SHP1 protein was achieved compared to control non-targeting siRNA.    
Intracellular flow cytometry was performed measuring (b) pSTAT1 and (c) APM components, 
TAP1, TAP2, and LMP2.  Calreticulin, a non-IFN- inducible APM component was included to 
control for global changes in protein expression following transfection.  Mean fluorescence 
intensity (MFI) was measured and error bars indicate standard error.  Data represent three 
independent experiments. 
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3.3.3 SHP2 knockdown upregulates pSTAT1 in SCCHN cells 

PCI-13 and SCC90 cell lines were studied because they express HLA-A*0201 and permit TA-

specific CTL recognition using established p53 (189) and EGFR-specific (188) CTL cell lines.  

Using siRNA (100nM, 48h), selective knockdown of SHP2 protein was achieved in PCI-13 and 

SCC90 cells by 76% and 66%, respectively, compared to transfection with non-targeting control 

siRNA (Figs 21a-b).  SHP2 knockdown significantly upregulated pSTAT1 expression compared 

to SCHN cells transfected with control siRNA (Figs 21c-d; p<0.002, two-tailed t-test).  IFN- 

(100 U/ml, 10 min) was used as a positive control and induced similar levels of STAT1 

phosphorylation as SHP2 siRNA treated cells (Figs 21c-d).    
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Figure 21. SHP2 siRNA significantly upregulates pSTAT1. 

SHP2 siRNA (100nM) achieved 76% and 66% knockdown compared to control siRNA in (a) 
PCI-13 and (b) SCC90 cells respectively 48 h after transfection.  SHP2 siRNA (100 nM, 48 h) 
significantly upregulated pSTAT1 by flow cytometry in (c) PCI-13 and (d) SCC90 cells 
compared to siRNA control.  The cells were treated with IFN- (100 U/ml, 15 min) as a positive 
control.  Data represent three independent experiments (p<0.02, two-tailed t-test).  
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3.3.4 SHP2 knockdown upregulates APM component mRNA, APM component protein, 

and HLA class I in SCCHN cells 

Next we investigated whether SHP2 depletion and subsequent enhancement of pSTAT1 lead to 

upregulation of APM component transcription, translation and HLA class I expression in 

SCCHN cells.  SHP2 siRNA (100nM, 48h) transfection induced significant upregulation of APM 

transcription (Fig 22; p<0.05, two-tailed t-test) and APM component protein in both PCI-13 and 

SCC90 cells compared to control siRNA (Figs 23a-b; p<0.003, two-tailed t-test).  STAT1 

phosphorylation induced by SHP2 depletion did not upregulate APM proteins in a non-specific 

manner since calreticulin expression, a non-IFN--pSTAT1inducible APM component, was not 

effected (Figs 23a-b).  IFN-(100 U/ml, 48h) treatment was used as a positive control for 

induction of APM component expression.  In addition to upregulating APM components, SHP2 

siRNA (100nM, 48h) also significantly upregulated HLA-class I molecules compared to control 

siRNA in SCCHN cells (Figure 23c-d; p<0.02, two-tailed t test).   
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Figure 22.  SHP2 siRNA upregulates APM component mRNA. 

PCI-13 cells were transfected with the indicated siRNA (100 nM, 48 h) or treated with IFN- 
(100 U/ml, 48 h) as a positive control.  TAP1, TAP2, LMP2 and LMP7 transcription was 
measured by qRT-PCR as described in the Materials and Methods. Data represent three 
replicates of a single experiment (p<0.05, two-tailed t-test).  Error bars indicate standard error.  
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Figure 23. SHP2 siRNA upregulates APM components and HLA class I. 

PCI-13 and SCC90 cells were untreated, treated with IFN- (100 U/ml, 48hrs), transfected with 
non-targeting siRNA (100 nM, 48 h) or SHP2 siRNA (100 nM, 48 h).  Intracellular flow 
cytometry was performed measuring TAP1, TAP2, and LMP2 APM components in (a) PCI-13 
and (b) SCC90 cells.  Calreticulin, a non-IFN- inducible APM component was included to 
control for global changes in protein expression following transfection.  Mean fluorescence 
intensity (MFI) was measured and error bars indicate standard error.  Data represent three 
independent experiments (p<0.003, two-tailed t-test).  (c) PCI-13 and (d) SCC90 cells were 
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treated as described above, and HLA class I expression was measured by MFI.  Data represent 
three independent experiments (p<0.02, two-tailed t-test).  Error bars indicate standard error. 

3.3.5 SHP2 siRNA reverses APM-mediated immune escape and restores CTL recognition 

of SCCHN cells. 

The observation that SHP2 siRNA significantly upregulated pSTAT1, APM components, and 

HLA class I, prompted investigation as to whether SHP2 depletion could also restore CTL 

recognition of SCCHN cells.  Indeed, SHP2 knockdown significantly increased EGFR853-861 and 

p5365-73 specific CTL recognition of (a) PCI-13 and (b) SCC90 cells, respectively, compared to 

control siRNA (Figs 24a-b; p<0.006, two-tailed t-test).  Blockade of CTL recognition using HLA 

class I (w6/32) but not HLA class II (L243) mAbs, demonstrated that the CTL were HLA class I 

restricted. 
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Figure 24. SHP2 siRNA restores CTL recognition of SCCHN cells. 

IFN- ELISPOT assays were performed to detect TA-specific CTL recognition of (a) PCI-13 and 
(b) SCC90 cells and SHP2 knockdown.  Cells were untreated, treated with IFN- (100 U/ml, 48 
h), non-targeting siRNA (100 nM, 48 h) or SHP2 siRNA (100 nM, 48 h).  EGFR853-861 and p5365-

73 specific cytotoxic T lymphocytes (CTL) were used as effector cells.  An anti-HLA class I mAb 
and an anti-HLA-DR mAb were used to demonstrate that CTL were HLA class I restricted.  Data 
represent a single experiment performed in triplicate (p<0.006, two-tailed t-test).  Error bars 
indicate standard error. 
 
 

3.3.6 SHP2 knockdown upregulates secretion of chemokines by SCCHN cells. 

To investigate other immunologic consequences of SHP2 depletion on SCCHN cells, we 

performed a multiplex bead immunoassay to evaluate the secretion of several cytokines and 

chemokines.  Interestingly, elevated levels of Regulation upon Activation, Normal T-
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Expressed, and presumably Secreted (RANTES) and IFN--inducible protein 10 (IP10) 

were detected in the supernatants of SCCHN cells transfected with SHP2 siRNA (100 nM, 

48 h) (Fig 25).  Other chemokines such as monokine induced by IFN-(MIG) was not 

secreted by SCCHN cells after SHP2 knockdown.  IFN- (100 U/ml, 48h) served as a 

positive control to induce SCCHN cells to secrete MIG and IP10 (Fig 25).  Additionally, 

cytokines that induce STAT1 phosphorylation such as IFN-(Fig 25) and IFN- (data not 

shown) were not detected in the supernatants of SCCHN cells after SHP2 knockdown.  To 

the best of our knowledge, SHP2 has not been associated to regulate the secretion of 

chemokines.  Recent studies demonstrated that blocking STAT3 in SCCHN cells (106) and 

other tumor cells (105) caused secretion of IP10 and RANTES.  These data suggest that 

SHP2 depletion might induce SCCHN cells to secrete chemokines by downregulating 

STAT3 activity.  However, PCI-13 cells transfected with SHP2 siRNA (100 nM, 48 h) 

showed no significant change in STAT3 phosphorylation, while SHP2 depleted SCC90 

cells showed a significant decrease in pSTAT3 (Figs 26a-b; p<0.0.001; two-tailed t-test).         
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Figure 25. SHP2 siRNA increases secretion of chemokines from SCCHN cells. 

Luminex assays were performed on supernatants from (a) PCI-13 and (b) SCC90 cells following 
transfection with the indicated siRNA (100 nM, 72h) or treatment with IFN- (100 U/ml, 48h).  
Data represent three independent experiments. 
 

 

Figure 26. Effect of SHP2 siRNA on pSTAT3 expression in SCCHN cells. 

SHP2 siRNA (100 nM, 48 h) was transfected into (a) PCI-13 and (b) SCC90 cells, and pSTAT3 
was measured by flow cytometry.  Data represent three independent experiments (p<0.001, two-
tailed t-test).  
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3.4 DISCUSSION 

We have described a novel mechanism responsible for the observed low levels of STAT1 

activation and APM component expression in SCCHN cells.  These defects appear to be 

dependent on SHP2, a SH2 domain-containing tyrosine phosphatase, which was found to be 

overexpressed in SCCHN tissue (Fig 19).  Our results demonstrate that SHP2 dephosphorylates 

STAT1 (tyrosine 701) in SCCHN cells because knockdown of this protein by siRNA upregulates 

basal levels of pSTAT1 (Fig 21).  Since phosphorylated STAT1 homodimers are important 

regulators of APM component genes (117), we asked the question if phosphorylated STAT1 in 

response to SHP2 depletion in SCCHN cells was sufficient to induce APM component 

expression.  Indeed, SHP2 knockdown upregulated APM component transcription (Fig 22), 

APM protein (Figs 23a-b), HLA class I (Figs 23c-d) and restored CTL recognition of SCCHN 

cells (Figs 24a-b).  Interestingly, knockdown of SHP2 also induced SCCHN cell secretion of 

RANTES and IP-10 (Figs 25a-b).  These finding have important clinical significance because 

SHP2 targeted therapies could potentially increase the immunogenicity of tumor cells and 

improve T cell-based cancer immunotherapies.   

Mechanisms of immune escape utilized by tumor cells are complex and not mutually 

exclusive.  In SCCHN, APM component downregulation is an important escape (125, 128) 

mechanism from CTL recognition and correlates with poor prognosis (125, 127, 129, 130).  

Defects in APM component expression have been identified in several other human tumors such 

as renal cell carcinoma (132), colorectal carcinoma (133), small cell lung carcinoma (134) and 

melanoma (135).  Thus, investigation of the molecular regulators responsible for APM 

component defects is clinically important in SCCHN and is applicable to a variety of other 

tumors.     
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Previously, we demonstrated that IFN- treatment could restore CTL recognition and 

lysis of SCCHN cells (126), indicating that a regulatory, as opposed to a genetic mechanism was 

responsible for this escape phenotype.  Furthermore, SCCHN cells were found to express 

abundant levels of total STAT1, but lack phosphorylated STAT1 (Fig 18).  These finding 

suggested that a negative regulator of STAT1 phosphorylation might be responsible for the low 

pSTAT1 phenotype observed.  Others have shown that PTPs can dephosphorylate and inactivate 

STAT1 (197), therefore we investigated whether PTPs might be responsible for low basal 

STAT1 phosphorylation in SCCHN cells.  Indeed, treatment of a panel of SCCHN cells with a 

broad phosphatase inhibitor, sodium orthovandate (SOV), induced STAT1 phosphorylation to 

levels comparable or greater than IFN-treatment (Fig 18).  These data suggested that a 

phosphatase could contribute to the lack of pSTAT1 expression in SCCHN cells, maintaining a 

basal defect in the pro-apoptotic IFN-signal transduction pathway, and promoting immune 

escape.   

SHP2 can dephosphorylate and inactivate STAT1 (165, 166, 169, 199-202) and SHP2 is 

overexpressed and/or hyperactive in multiple malignancies (161, 167, 173, 203, 204).  However, 

there have been few studies investigating PTPs in head and neck cancer (211-214) and none in 

terms of regulating STAT1 phosphorylation.  To the best of our knowledge, this is the first report 

to demonstrate that SHP2 is significantly overexpressed in SCCHN tissue (Fig 19) with an 

important biological effect of its activity.  Interestingly, IL-6 is secreted by SCCHN cells in an 

autocrine/paracrine fashion (58), and it has been reported that IL-6 can activate SHP2 (215, 216), 

providing a potential mechanism by which SHP2 activity is dysregulated in SCCHN.   

SHP2 depletion not only reversed APM component downregulation and restored TA-

specific CTL recognition (Figs 23 and 24) of SCCHN cells, it also unexpectedly induced the 
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secretion of RANTES and IP10 by the tumor cells (Figs 25a-b).  Since blockade of STAT3 with 

siRNA in SCCHN cells (106) or ASO in other tumor cells (105) was able to induce secretion of 

RANTES and IP10, we postulated that SHP2 depletion might downregulate STAT3 and induce 

these chemokines to be secreted by SCCHN cells.  However several reports demonstrated that 

SHP2 negatively regulates STAT3 activation (217-219), therefore, SHP2 depletion might 

increase STAT3 phosphorylation rather than decrease it.  Our preliminary findings demonstrate 

that SHP2 siRNA significantly downregulated pSTAT3 in one of the two cell lines tested (Figs 

23a-b).  Future studies will investigate whether chemokine secretion in response to SHP2 

depletion is STAT3 dependent.  Interestingly, neither IFN-(Figs 25a-b) nor IFN- (data not 

shown) was secreted by SCCHN cells after SHP2 depletion.  These data suggest that the 

observed STAT1 phosphorylation following SHP2 knockdown (Figs 21c-d) is mediated by 

reducing the sum phosphatase activity of SHP2 in these cells, rather than inducing the secretion 

of STAT1 agonistic cytokines. 

In summary, SHP2 was investigated as a negative regulator of STAT1 phosphorylation 

and APM components in SCCHN cells.  Our data are the first to demonstrate that SHP2 is 

overexpressed in SCCHN tissue and contributes to APM downregulation in SCCHN cells.  We 

show that SHP2 siRNA can upregulate pSTAT1, APM transcription, translation, HLA class I, 

and restore recognition of SCCHN cells by TA-specific CTL.  We also demonstrate that SCCHN 

cells secrete RANTES and IP10 in response to SHP2 depletion.  Thus, SHP2 depletion both 

increases the immunogenicity of SCCHN tumor cells, but may also induce recruitment of 

immune cells to the tumor microenvironment.  Future studies ought to investigate the efficacy of 

a combinatorial immunotherapy approach that utilizes both T cell immunotherapy and SHP2 

small molecule inhibitors (220).        
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4.0  SUMMARY 

The inherent heterogeneity of tumor cells, in terms of antigen expression and immune 

evasion mechanisms, are perhaps the most difficult obstacles to successful cancer 

immunotherapy.  Herein, we investigated molecular mechanisms responsible for SCCHN tumor 

immune evasion in an effort to create tumor cell targets that can be recognized and destroyed by 

immune cells and augment T cell-based immunotherapies for cancer.     

APM component downregulation represents a major mechanism of immune escape from 

CTL recognition in SCCHN (125-131), and correlates with poor clinical prognosis (125).  APM 

downregulation has been demonstrated in several other malignancies such as renal cell 

carcinoma (132), colorectal carcinoma (133), small cell lung carcinoma (134) and melanoma 

(135), therefore therapeutic interventions that restore APM component expression would have 

important clinical implications in SCCHN and potentially other cancers.   

A recent report demonstrated that treatment of SCCHN cells with IFN- restored tumor 

cell recognition by CTL in vitro (126).   However data regarding the safety and efficacy of 

systemic IFN- administration to patients with SCCHN is limited (221).  At the University of 

Pittsburgh, a phase I trial is in development where intratumoral administration of recombinant 

human IFN- will be given to patients with SCCHN (42).  Although loco-regional administration 

of IFN- will likely reduce toxicity, the risk of initiating potentially fatal cytokine storms in 
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patients (222) is not trivial, and warrants investigation of alternate measures to increase APM 

component expression in vivo. 

The finding that IFN-upregulates APM components in SCCHN cells (126), and the 

knowledge that IFN- activates the transcription factor, STAT1, led us to hypothesize that 

STAT1 activity might be suppressed in SCCHN cells leading to APM component 

downregulation.  Interestingly, SCCHN cells overexpress pSTAT3 (223) but not pSTAT1 (Fig 

6).  Given the opposing roles of STAT1 and STAT3 in tumorigenesis (Table 1), and several 

reports that demonstrated that IL-10 mediated STAT3 activation could inhibit basal and IFN- 

induced pSTAT1 and APM component expression (145-149), we investigated the role of STAT3 

in STAT1-mediated APM downregulation in SCCHN.  Others have shown a cross-regulatory 

role of STAT1 and STAT3.  In the absence of STAT3, IL-6 activated STAT1 for an extended 

period of time and induced STAT1 target gene expression (151, 152), which normally does not 

occur.  There have also been reports of inteferons decreasing STAT3 phosphorylation directly 

(156, 157) an indirectly through STAT1:STAT3 heterodimer formation, resulting in a reduction 

of STAT1 and STAT3 target gene expression (158, 159).  It is known that these heterodimers 

can translocate to the nucleus, but what genes they may activate have not been elucidated.  We 

posited that STAT3 directly or indirectly through heterodimer formation, might function to 

inhibit STAT1 activation and induce APM downregulation in SCCHN cells. 

Despite what the literature may suggest and the significant number of high impact papers 

demonstrating that STAT3 regulates the expression of several important oncogenes in SCCHN 

and other malignancies, STAT3 was not found to inhibit APM component downregulation in 

SCCHN cells either by directly inhibiting STAT1 phosphorylation or through formation of 

STAT1:STAT3 heterodimers (Chapter 2).  This hypothesis driven research is important and 
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contributes to the growing body of literature regarding the role of STAT3 in cellular 

transformation.  Although previously published work found that STAT1:STAT3 heterodimers 

could inhibit STAT1 and STAT3 target gene expression, this work was performed in monocytes 

that were forced to overexpress STAT3 (158).  Furthermore, our data were obtained from tumor 

cells which are intrinsically different from untransformed cells and better represent what is found 

in cancer.   

Additionally, we discovered that IL-10 induced STAT1 dephosphorylation and APM 

downregulation in melanoma and murine cells were not reproducible in SCCHN cells.  Too 

often, data that disproves a hypothesis or even one’s own work is either unpublished or ignored.  

These findings are important, and ought to be published and disseminated to the greater scientific 

community to avoid years of costly research.  The stigma of negative findings ought to be phased 

out, and in the long run, they will help advance the field rather than hinder it.                  

Throughout my graduate training, I have encountered instances where published findings 

were not reproducible.  These experiences highlight a major shortcoming in cancer research, 

which is the strong reliance on tumor cell lines to inform the biology of cancer.  Although tumor 

cell lines are critically important to cancer research, it is reasonable to suspect that older 

established tumor cell lines likely exhibit properties quite different from their primary source.  

After several hundred passages, it is possible that a small subset of tumor cells are 

unintentionally selected that are characterized by a high proliferation rate and sensitivity to 

trypsin.  Are the data derived from those cells consistent with primary tumors in vivo?  Are those 

data applicable only to the cell lines studied?  Is it fair to generalize data from two or three cell 

lines to an entire class of tumors?  For example, in SCCHN, do HPV+ cells behave biologically 

similar to HPV- cells?  These questions have yet to be fully addressed by the cancer research 
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field.  From personal experience, I can relate to the difficulty of trying to work with primary 

cells.  In terms of SCCHN and other epithelial cancers, the tumors are often exposed to bacteria 

and require high dose antibiotics or implantation in mice to sterilize the cells.  These approaches 

have a high failure rate and are costly and inefficient.  In an effort to avoid confusion and 

provide quality control, perhaps tumor cell lines ought to be regulated by the NIH and distributed 

to researchers.  In this way, the cell lines could be validated and researchers would have access 

to the same cells.  Nevertheless, inconsistencies in the literature are a part of science, and 

perhaps a byproduct of real biological differences between cells, or maybe other less 

scientifically sound reasons.  

After extensive experimentation, neither STAT3 nor its heterodimerization with STAT1 

altered APM expression in SCCHN cells.  However, we identified pSTAT1 is an important 

mediator of APM component expression (Fig 11) and that SCCHN cells express high levels of 

total STAT1 and undetectable levels of pSTAT1 (Fig 6).  Furthermore, we showed that the IFN-

-pSTAT1-APM signaling transduction pathway is intact in SCCHN cells (Fig 10).  These data 

suggested that APM downregulation in SCCHN cells might be due to basal dephosphorylation of 

STAT1 rather than genomic alterations.  Since phosphatases have been implicated in negatively 

regulating STAT1 phosphorylation, we screened several SCCHN cell lines with a broad 

phosphatase inhibitor, SOV, to determine whether a phosphatase might be responsible for 

STAT1 dephosphorylation in these cells.  Indeed, SOV treatment upregulated pSTAT1 

demonstrating that phosphatases contribute to maintaining low basal pSTAT1 levels in SCCHN 

cells (Fig 18).  

Several reports in the literature demonstrate SHP2 negatively regulates STAT1 

phosphorylation (165-169).  IHC analysis demonstrated significant SHP2 overexpression in 
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SCCHN tissues compared to adjacent normal mucosa (Fig 19).  Selective knockdown of SHP2 

protein by siRNA in SCCHN cells significantly upregulated pSTAT1, APM transcription and 

APM protein (Figs 21, 22, 23).  Importantly, HLA class I upregulation was also observed 

demonstrating that STAT1 regulated proteins other than APM components are upregulated after 

SHP2 knockdown (Fig 23).  Furthermore, preliminary data suggests that SHP2 siRNA induces 

growth arrest in SCCHN cells (unpublished data), perhaps mediated by STAT1 activation, 

similar to what is observed after IFN-treatment.  Ongoing studies are being performed to 

determine whether SHP2-mediated APM component expression is dependent on STAT1 

phosphorylation.  We plan to co-transfect SHP2 siRNA and STAT1 siRNA or a STAT1 

dominant negative plasmid in SCCHN cells to investigate whether depleting or inactivating 

STAT1 alters SHP2-mediated APM component expression and cellular proliferation.      

Furthermore, ChIP analysis will elucidate whether SHP2 depletion increases STAT1 binding to 

the TAP1 promoter which would suggest that APM component expression is STAT1 dependent.  

We also recently developed SCCHN cell lines that are stably transfected with either wild-type 

SHP2, or dominant negative forms of SHP2 (224).  The cell lines will be phenotyped for basal 

and IFN-induced pSTAT1 and APM component expression.  We expect that the dominant 

negative SHP2 expressing cells to be sensitized to IFN- and upregulate pSTAT1 and APM 

components greater than WT SHP2 expressing cells.  Taken together, these studies would 

confirm that SHP2 knockdown in SCCHN cells upregulates APM components in a STAT1-

dependent fashion. 

Perhaps, the most important finding was that SHP2 depletion restored TA-specific CTL 

recognition of SCCHN cells (Fig 24).  Since SHP2 siRNA upregulated both APM component 

expression and HLA class I expression it is unclear as to whether the increase in recognition is 
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due to an upregulation in antigen processing or HLA class I expression or both.  One way to test 

this  would be to treat SCCHN cells with a proteasome inhibitor, such as MG132 or bortezomib, 

then deplete SHP2, and perform an IFN- ELISPOT assay.  If the CTL no longer recognize the 

SCCHN cells, it would suggest that antigen processing and presentation is important in restoring 

CTL recognition of SCCHN cells.   

Interestingly, Luminex multiplex ELISA analysis suggested that SHP2 depletion induced 

the secretion of RANTES and IP10 chemokines from SCCHN cells (Fig 25).  Importantly, other 

chemokines such as MIG were not upregulated after SHP2 siRNA transfection, demonstrating 

that specific chemokines were secreted by the tumor cells after SHP2 depletion (Fig 25).  

RANTES strongly chemoattracts several immune cells, including eosinophils, basophils, mast 

cells, monocytes, NK cells, CTLs, naive CD4+ T cells, and memory T cells (225).  Several 

studies found that expression of RANTES intratumorally induces infiltration of DCs, CD4+ T 

cells, CTL, and NK cells (226-228) and inhibits tumor growth in vivo (229).  IP10 has also been 

found to have antitumor activity by attracting CD4+ T cells, CTL, and NK cells to the tumor 

microenvironment (230).  Future studies will include transwell assays to determine if SHP2 

depleted SCCHN cells can chemoattract immune cells. 

After SHP2 knockdown, we observe STAT1 phosphorylation in SCCHN cells.  However, 

STAT1 phosphorylation is not constitutive in untransformed cells, and it would be unlikely that 

tumor cells would activate a tumor suppressor protein.  Thus, what could account for the 

observed STAT1 phosphorylation after SHP2 knockdown in SCCHN cells?  If our model is 

correct, that SHP2 is functioning to dephosphorylate STAT1 and inhibit APM expression, it 

could be that depletion of SHP2 might sensitize SCCHN cells to STAT1 agonists.  Perhaps, 

SCCHN cells secrete STAT1 agonist cytokines at low levels, and after SHP2 knockdown, 
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sufficient activation of STAT1 occurs to induce APM expression.  Moreover, depletion of 

greater than 75% of STAT1 protein by siRNA did not completely inhibit IFN- mediated APM 

expression in SCCHN cells (Fig 11c) and very low doses of IFN- (10 U/ml, 48 h) were 

sufficient to induce APM expression (Supp Fig 17).  These data suggest that APM expression 

requires very little STAT1 phosphorylation, and we hypothesize that SCCHN cells secrete low 

basal STAT1 agonists whose activity are amplified when SHP2 is depleted.  However, multiplex 

cytokine analysis did not detect known STAT1 agonists (IFN-, IFN-, IL-6) in the supernatants 

of SHP2 siRNA transfected SCCHN cells (Fig 25 and data not shown).  However these 

cytokines may be secreted levels below the detection level of the assay.  To test our hypothesis, 

we plan to neutralize known STAT1 agonists after SHP2 depletion in our SCCHN cells and 

measure the effects on STAT1 phosphorylation and APM expression.    

 Overall, these promising data warrant future investigation of whether SHP2 inhibition 

can enhance cancer immunotherapies by increasing the immunogenicity of tumors and inducing 

the secretion of chemokines to attract tumor infiltrating immune cells.  These findings provide 

the rationale for studies to determine if SHP2 inhibitors can induce tumor regression in vivo.   

Given that SHP2 is ubiquitously expressed and that SHP2 knockout mice are embryonic lethal, 

toxicity will likely be an issue for future targeted SHP2 immunotherapies for cancer.  Thus, 

administration and delivery of SHP2 inhibitors will need to be carefully considered.  Our in vitro 

studies used siRNA technology to deplete SHP2 in SCCHN cells, however there are significant 

issues regarding siRNA delivery in vivo, such as the stability of siRNA and target specificity 

(231, 232).  An alternative approach to siRNA would be loco-regional administration of small 

molecule SHP2 inhibitors.  There have been several reports of small molecule SHP2 inhibitors 

(220, 233-237) and we are currently testing whether a modified SHP2 inhibitor that is cell 
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permeable, SPI-112Me (220), inhibits SHP2 activity and upregulates IFN--mediated pSTAT1 in 

SCCHN cells.  Following validation of an effective inhibitor, future in vivo studies will be 

performed to determine the toxicity and off target effects of systemic and intratumoral 

administration of the drug. 

 In summary, we report novel findings that SHP2 overexpression in SCCHN mediates 

APM downregulation, perhaps through STAT1 dephosphorylation, and that SHP2 depletion 

restores SCCHN cell recognition by TA-specific CTL and induces secretion of RANTES and 

IP10 (Fig 27).  Future in vivo studies will test whether SHP2 inhibitors might be a viable 

therapeutic modality to enhance immunotherapies for cancer.    
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Figure 27. Targeting SHP2 for cancer immunotherapy. 

Targeting src homology-2 domain-containing phosphatase (SHP)-2 using siRNA induces STAT1 
phosphorylation, upregulation of antigen processing machinery (APM) components and human 
leukocyte antigen (HLA) class I molecules thereby increasing the immunogenicity of SCCHN 
cells.  SHP2 knockdown also induces tumor cell secretion of IFN--inducible protein (IP10) and 
Regulated on Activation, Normal T cell Expressed and Secreted (RANTES), which function as 
chemoattractants for various immune cells including T cells, natural killer (NK) cells, and 
dendritic cells (DC).        
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