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STATISTICAL ISSUES IN META-ANALYSIS FOR IDENTIFYING

SIGNATURE GENES IN THE INTEGRATION OF MULTIPLE GENOMIC

STUDIES

Jia Li, PhD

University of Pittsburgh, 2008

With the availability of tons of expression profiles, the need for meta-analyses to integrate

different types of microarray data are obvious. For detection of differentially expressed genes,

most of the current efforts are focused on comparing and evaluating gene lists obtained from

each individual dataset. Several statistical meta-analysis methods, including Fisher’s method

and the random effects model, have been proposed but the statistcal framework is not often

rigorously formulated for evaluation and comparison. In this dissertation, we attempt to

formulate meta-analysis in genomic studies and develop systematic integration methods for

two-class studies and multi-class studies.

First, we tackle two often-asked biological questions:“Which genes are significant in one

or more data sets?” and “Which genes are significant in all data sets?”. We illustrate two

statistical hypothesis settings and propose an optimally weighted statistic and compare to

classical Fisher’s equally weighted statistic and Tippett’s minimum p-value statistic. Gener-

ally there exists no uniformly most powerful test and we show that all of the three methods

are admissible under simplified Gaussian assumptions. Furthermore, the optimally weighted

statistic maintains advantages of the two classical methods and consistently performs well

when the two methods perform poorly in respective extreme alternative hypotheses. The

optimal weights provide natural categorization of the detected genes to facilitate further bi-

ological investigation. We demonstrate the comparison and advantages of optimally weighted
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statistic by power analysis, simulations and two real data analyses of combining multi-tissue

energy metabolism mouse data sets and prostate cancer data sets.

Second, we propose two methods for identifying biomarkers of concordant patterns across

studies, when there are more than two classes in each study. So far, published meta-analysis

methods for this purpose mostly consider two-class comparison. Methods for combining

multi-class studies and pattern concordance are rarely explored. We first consider a natural

extension of combining p-values from the traditional ANOVA model. Since p-values from

ANOVA do not reflect pattern information, we propose a multi-class correlation measure

(MCC) under equal-weight bivariate mixture model to specifically seek for biomarkers of

concordant patterns across a pair of studies. For both approaches, we focus to identify

biomarkers differentially expressed in all studies (ANOVA-maxP, min-MCC). Both ANOVA-

maxP and min-MCC are evaluated by simulation studies and by applications to a multi-tissue

mouse metabolism data set and a multi-platform mouse trauma data set.

Finally, we develop a “genomeMeta” R package. genomeMeta produces visualization

and summarization of biomarkers identified by methods that we describe and propose in this

dissertation.

This work could improve public health by providing more effective methodologies for

biomarker detection in the integration of multiple genomic studies.
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1.0 INTRODUCTION

In this introductory chapter we start in section 1.1 by describing the data structure of

microarray data particulary in the context of multiple microarray data sets. We further

describe an example to help you understand the data structure. In section 1.2, we use this

example to illustrate the idea of meta-analysis methods.

1.1 MICROARRAY DATA STRUCTURE AND AN EXAMPLE

Microarray technology allows researchers to examine the expression of thousands of genes

in parallel. With microarray experiments becoming more and more mature and prevalent,

the integration of experimental data sets from multiple laboratories and experimental tech-

niques has become one of the most challenging tasks in bioinformatic and genomic research.

In contrast to traditional epidemiological or psychological studies, microarrays monitor gene

expression for thousands of genes simultaneously - a process that brings challenges to inte-

grative analysis. The standard data structure for a set of microarray studies used in this

dissertation is provided here.

Let ygsk denote the gene expression for the gth gene in the sth sample of the kth study,

g = 1, . . . , G, s = 1, . . . , Sk, k = 1, . . . , K. Sample annotations are denoted as rsk, where in

any given study k, common microarray designs can include (1) rsk ∈ {0, 1} (two-class com-

parison); (2) rsk ∈ {1, 2, . . . , J} (multi-class comparison); (3) rsk = (tsk, csk) (tsk: survival

time; csk: censoring status); (4) rsk ∈ R (time series). Given study k, suppose an appropriate

test statistic Tk is chosen for the data structure {rsk; 1 ≤ s ≤ Sk} and the resulting p-values

for each gene g (denoted as pgk) can be derived from the observed expression intensities

1



Table 1: An example.
Tissue type (k) Brown fat Liver Heart Skeletal totalGenotype1 (rsk) 1 2 3 1 2 3 1 2 3 1 2 3

Number of arrays 4 4 4 4 4 4 3 4 4 3 3 3 44

a1: Wild type; 2: VLCAD -/-; 3: LCAD -/-.

{ygsk, 1 ≤ s ≤ Sk}.
Example: The below example of integrative analysis of microarray studies is the multi-

tissue analysis on variability in gene expression profiles across four tissues (heart, skeletal

muscle, liver, and brown fat) as a consequence of single enzyme deficiency in the mitochondrial-

oxidation pathway. Using VLCAD-deficient (VLCAD-/-), LCAD-deficient (LCAD-/-), and

wild type (VLCAD+/+, LCAD+/+) mouse models, we apply whole genome microarray

methods to investigate tissue dependent responses to single defects in these mitochondrial-

oxidation enzymes. Thus, in this example, each study represents a tissue (K = 4). Three to

four individuals are sampled per genotype and tissues, accounting for 45 samples in total.

One out of the 45 hybridizations (wild type heart sample) have to be excluded due to detected

significant degradation of RNA (Table 1), and 14495 genes are investigated (G = 14495).

VLCAD is involved in degradation of long- and very long-chain unsaturated substrates from

C14 to C20, with optimum for palmitoyl-CoA (C16:0-CoA). It is ubiquitously expressed in

human tissues with high levels in liver, heart, and skeletal muscle. To compare the variation

in gene expressions between wild type and VLCAD-/-, we can set rsk ∈ {1, 2} and analyze

a total of 29 samples. To investigate gene variation in wild type, VLCAD-/- and LCAD-/-,

we can set rsk ∈ {1, 2, 3} analyze the entire 44 samples.

1.2 META-ANALYSIS

As the global expression analysis by microarray technology becomes more and more preva-

lent, systematic information integration of multiple genomic studies brings new statistical

challenges. The challenge to statisticians is to develop effective methodologies for combining

information from related studies. This type of analysis is often called meta-analysis.

2



The main aim of meta-analysis is first, to provide a more powerful statistical test of a spe-

cific study hypothesis than a test provided by each study separately, and second, to provide

validation for findings from the individual study. Meta-analysis has a long history, which

have been widely used in epidemiology and evidence-based medicine ever since early twenties.

Meta-analysis methods can be categorized into two traditions. One is to combine statistical

significance from each individual study, and the other is to combine statistical estimates par-

ticularly effect sizes from each individual study. The representative methodologies for the

first tradition are Fisher’s method (Fisher, 1932), Tippett’s minimum p-value (Tippett,1931)

and Wilkinson’s maximum p-value (Wilkson, 1951). The representative methodologies for

the second tradition are fixed and random effects models. Details of traditional methodolo-

gies are described in section 1 of chapter 2. There are advantages and disadvantages for both

of the traditions. Briefly, methods based on combining significance are free of distributional

assumptions, but do not support inferences about magnitudes and directions. On the other

hand, methods based on combining estimates provide information about magnitudes and

directions, but are more stringent on assumptions. And they can not be easily extended to

more complicated studies such as studies with multiple classes.

With microarray experiments becoming more mature and more prevalent, the integration

of experimental data sets from multiple laboratories and experimental techniques has become

one of the most challenging tasks in bioinformatic and genomic research. Currently “meta-

analysis” in the biological literature contains a widespread use of naive “intersection” and/or

“union” operations on differentially expressed gene lists obtained from individual studies by

certain criteria (e.g. False Discovery Rate ≤ 0.05) (Segal et al., 2004, Borovecki et al., 2005,

Cardoso et al., 2007, Pirooznia et al., 2007, and many more). One can quickly note that

intersections are often too conservative and unions are anti-conservative, especially when the

number of studies increases. For instance, Table 2 lists two-sample moderated t statistics,

several often used meta-analysis methods and corresponding p-values for comparison between

wild type and VLCAD-/- in each tissue for several genes in the mouse energy metabolism

example in section 1.1. For the purpose of illustration, we do not worry about multiple

comparisons in this example. Using the intersection method, individual p-values ≤ 0.05 in

all tissues, is too conservative and all of the top three genes listed in table 2 are not identified.

3



Table 2: Several examples for meta analysis methods.
P-values of moderated t statistic statistics(p-values) for meta analysis methods

Brown fat Liver Heart Skeletal Fisher minP maxP REM
1417025 at 0.636 0.008 0.001 0.024 16.56(7E-06) 0.001(0.002) 0.636(0.181) -0.056(0.952)
1424039 at 0.006 0.005 0.005 0.526 16.56(7E-06) 0.005(0.018) 0.526(0.092) -1.953(0.051)
1415994 at 0.668 0.815 0.694 0.002 7.32(0.007) 0.002(0.007) 0.815(0.453) -0.431(0.666)
1416531 at 0.001 0.008 0.008 0.005 21.69(1E-05) 0.001(0.005) 0.008(1E-20) 4.978(6E-07)

Note: P-values are obtained by permutation analysis.
Fisher: Fisher’s method; minP: Tippett’s minimum p-value method; maxP: Wilkinson’s maximum

p-value; REM: random effects model.

Several research groups have developed statistical methodologies particularly for microar-

ray studies based on traditional meta-analysis methods. They are discussed in section 2 of

chapter 2. For example, Fisher’s method and the random effects model are widely used.

Multiple comparisons also need to be addressed in genomic studies. The statistical frame-

work, however, is often not rigorously formulated and a formal evaluation and comparison

could not be performed. According to the individual analysis in table 2, we note that genes

behave differently across tissues, because it is expected that tissue specific physiology will

result in tissue dependent responses. From table 2, gene 1416531 at which has small p-values

in four tissues is identified by all methods while the others genes which have small p-values

in some, but not all of the tissues are identified by Fisher’s method and Tippett’s minimum

p-value method. Thus, we can say that maxP and the random effects model tend to detect

genes differentially expressed between wild type and VLCAD-/- in all tissues, while minP

and Fisher’s methods detect genes differentially expressed between wild type and VLCAD-

/- in at least one of the tissues. A statistical framework should be rigorously defined for

different methodologies. In the first part of chapter 3, two complementary hypothesis set-

tings are outlined. And all meta-analysis methods targeted for their respective hypothesis

settings are clarified. If tissue specific genes are of greater interest and we would like to

know in which tissue the gene is differentially expressed, more powerful methodologies such

as the optimally-weighted statistic (OW) can be developed. The details are discussed in the

remaining part of chapter 3.

Returning to the example in section 1.1, if one would like to investigate the variation

in gene expression among wild type, VLCAD-/- and LCAD-/-, there are three classes to

4



be compared in each issue. As a natural extension, an ANOVA model can be used to

test the significance of variation in gene expressions across genotypes in each tissue. The

corresponding p-values from F-test are then combined using different methods. In addition,

genes demonstrating a consistent pattern across the four tissues might be of greater interest

to investigators. So far, however, most of the methods in the literature, including those

described above, focus on the two group comparison. Combining data sets with more than

two groups is rarely discussed. Here, we propose a minimum multi-class correlation statistic

(minMCC) to address this problem. The simulation studies and the application to the mouse

energy metabolism data and mouse trauma data indicate that minMCC is a powerful test for

identifying biologically relevant expression changes. The methods are described in chapter

4.

Chapter 5 describes an R package -genomeMeta that we developed for the visualization

and implication of all possible meta-analysis methods for microarray data. We discuss how

to use the package in several examples. This is followed by a conclusion and discussion in

Chapter 6.
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2.0 PREVIOUS META-ANALYSIS METHODS

2.1 META-ANALYSIS METHODS IN TRADITIONAL EPIDEMIOLOGIC

RESEARCHES

In this section we consider K independent experiments that have been performed to detect a

certain effect. Here θk is the parameter that characterizes the effect of study k, k = 1, . . . , K.

The kth experiment is designed to test the hypothesis H0k : θk = 0 against an alternative

H1k : θk 6= 0 using the test statistic Tk. Significance levels and effect sizes are two common

metrics utilized in meta-analysis. In the following, we introduce several methods for each

metric separately.

2.1.1 Methods for combining significance

The methods of combining significance of independent tests have been discussed by a number

of researchers, including Fisher (1932) and Pearson (1938). Assuming Tk follows a continuous

distribution, the significance of a test is often defined as pk = Pr(Tk > tk|H0k), that is, as

a p-value. Note that when H0k is true, pk is uniformly distributed. Thus, combining the

significance of independent tests is sometimes called omnibus or nonparametric.

2.1.1.1 Fisher’s Method The best known method in this category is Fisher’s (1932).

Fisher’s method uses the product of p-values from the test for each experiment and trans-

forms it to chi-square scores using a −2log transformation resulting in

V EW = −
K∑

k=1

2log(pk) (2.1)

6



For this reason it is also known as the Inverse Chi-square method. If all of the null hypotheses

of the K tests are true, then −
K∑

k=1

2log(pk) will have a χ2 distribution with 2K degrees of

freedom.

Fisher’s method was shown in the literature to have good power under a wide range of

alternative conditions and to be the most asymptotically Bahadur optimal (ABO) among

several commonly used combined tests (Little and Folks, 1971, 1973). Fisher’s method, how-

ever, is easily been dominated by small p-values because of its asymmetric transformation.

For example, for gene 1415994 at in table 2, one of these tissues rejects the null hypothesis

with p = 0.002, while the others do not. By Fisher’s method the p-value is 0.007, and we still

say the gene is differentially expressed. Another drawback of the Fisher’s method can be seen

from the examples, genes 1417025 at and 1424039 at clearly behave differently across tissues,

but the same results are obtained by Fisher’s method (V EW = 16.56, p− value = 7E − 06).

To distinguish between these two genes, an ad-hoc approach has to be added.

2.1.1.2 The Truncated Product Method Zaykin et al. (2002) of proposed a trun-

cated version of Fisher’s method, where they suggest using the product of p-values that do

not exceed a value τ :

V T = −
K∏

k=1

p
I(pk≤τ)
k , (2.2)

where I(·) is the indicator function. This test is less sensitive to small p-values, however,

the choice of τ is arbitrary (the authors suggest a conventional value such as 0.05).

2.1.1.3 Tippett’s Minimum p Method This method is proposed by Tippett (1931),

where

V minP = min
1≤k≤K

pk. (2.3)

Therefore, H0 is rejected if min1≤k≤K pk ≤ 1− (1−α)1/K , where α is the overall significance

level, because min1≤k≤K pk has a Beta(1, K) distribution under the null hypothesis.

NOTE: This method is also known as the union-intersection method. If the rejection

region for the test of H0k is {pk ≤ α}, then the rejection region for the union-intersection

7



test for H0 : θ ∈ ⋂K
k=1 Θk vs. H1 : θ ∈ ⋃K

k=1 Θk is
⋃K

k=1{pk ≤ α}, which is exactly the same

as {min1≤k≤K pk ≤ α}.
Like Fisher’s test, this method is sensitive to small p values, but it is less powerful than

Fisher’s approach especially when all studies are significant. Again in table 2, p-values from

the four tissues of gene 1415994 at are 0.668,0.815,0.694 and 0.002 respectively. By the

minimum p method, the p-value of V minP is 0.007. If the p-value of skeletal is changed to

0.02, the p-value of V minP becomes 0.08. The conclusion is to fail to reject H0.

2.1.1.4 Wilkinson’s Method Wilkinson (1951) generalized Tippett’s procedure to a

more robust rth smallest p-value giving

V W = p(r). (2.4)

The maximum p-value is a special case and the most frequently used. It is often referred to

as Wilkinson’s method.

V maxP = max
1≤k≤K

pk. (2.5)

It is worth noting that the maximum P-value statistic is a special case of the intersection-

union test (Berger, 1982). According to Berger’s theorem for intersection-union test (IUT),

the intersected region for H0 : θ ∈ ⋃K
k=1 Θk vs. H1 : θ ∈ ⋂K

k=1 Θk is Rg =
⋂K

k=1

leqα} = {max1≤k≤K pk ≤ α}.

2.1.1.5 Other Transformations As noted above, Fisher’s method utilizes an inverse

Chi-square transformation. Some other transformations have been considered in the litera-

ture as well. For example, the inverse Normal method proposed by Stouffer et al. (1949):

V Z =

∑K
k=1 Φ−1(pk)√

K
. (2.6)

This statistic is asymptotically standard normal distribution when the H0k are all true.

The inverse Normal transformation test takes advantage of the one-to-one mapping of the

symmetric standard normal curve to the p-values. Thus it treats large and small p-values

symmetrically.
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Another method worth noting is the Logit transformation suggested by George (1977).

It involves transforming the p-value into a logit:

V L =
K∑

k=1

log
pk

1− pk

. (2.7)

The distribution of V L can be easily derived. George and Mudholkar (1977) show that

it can be approximated by a t distribution with 5K + 4 degrees of freedom.

2.1.1.6 The Weighted Method One of the limitations of the above methods is that

they do not weight evidence from the studies according to their uncertainties or sample

sizes. Different weights and variants to existing methods have been considered. Good (1955)

investigated the distribution of the weighted version of Fisher’s method

V G =
K∏

k=1

pwk
k , (2.8)

if the weights are all unequal. The probability density function of −logV G is
∑K

k=1
Wk

wk
e−v/wk

where Wk = wK−1
k /((wk − w1)(wk − w2) . . . (wk − wk+1)(wk − wK)).

Zelen and Joel (1959) provide a detailed investigation of the weighted version when K is

2 and
∑

wk = 1, where the test is from an F test for variance ratios. They also discuss the

effect of the weight factor on the type II error of the combined test. However, it is clear that

the distribution is not easily calculated in general cases. In addition, in practice, it is hard

to determine the weights and it is unrealistic that all weights are unequal. So the method is

seldom used in practice.

Another weighted method seen in the literature is the weighted inverse Normal transfor-

mation method given by

V Zw =

∑K
k=1 wkΦ

−1(pk)√
K

. (2.9)

Whitlock (2005) suggests that the weights can be chosen to be the inverse of squared standard

error. He further shows that the weighted method is superior to the unweighted version.
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Table 3: Different indexes of effect magnitude have been

used in meta-analysis

Type of response Effect size Ti

Continuous

Cohen’s d ȳ1−ȳ2√
(s2

1+s2
2)/2

Pearson’ r
∑S

s=1(ys1−ȳ1)(ys2−ȳ2)

(n−1)s1s2

Hedges’s g ȳ1−ȳ2√
(n1−1)∗s21+(n2−1)s22

(n1+n2−2)

Glass’s ∆ ȳ1−ȳ2

s1

Discrete
Log risk ratio log(P1

P2
)

Log odds ratio log[P1(1−P2)
P2(1−P1)

]

y1 and y2 are the means for the group 1 and 2 respectively;
s1 and s2 are the standard deviations of group 1 and 2 respec-

tively;
P1 and P2 are the proportion of subjects in group 1 and 2

respectively.

2.1.2 Methods for combining estimates

When the studies have similar designs and measure the outcome in a similar manner, combin-

ing estimates is usually preferred to the omnibus methods in previous section as suggested

by some researchers. Suppose Tk, k = 1, . . . , K are the independent estimates of effect

magnitude from K studies. The corresponding population effect magnitude parameters are

θk, k = 1, . . . , K. There are many different metrics that can be used to measure effect size.

They are listed in table 3. Of these, Cohen’s d is used most often and it can be transformed

from Pearson’s r and Hedges’s g. Note that all of the measurements focus on two group com-

parisons, effect size for more than two groups may not be easily defined. The distribution of

effect estimates for more than two groups in large sample cases also presents difficulties.

The statistical analysis procedures of combining estimates all involve large-sample theory.

There are three major types of statistical analysis for combining estimates: fixed, random

and mixed effects models. In the following sections, we focus on two most commonly used

models: fixed and random effects models (Hedges and Vevea, 1998).
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2.1.2.1 Fixed effects model Fixed effects models consider only within-study variabil-

ity. The assumption is that studies use identical methods, samples, and measurements;

that they should produce identical results; and that differences are only due to within-study

variation. The general model is given by

Tk = θk + εk, εk ∼ N(0, σ2
k). (2.10)

In the fixed effects model, we assume there is a constant effect size µ for all studies, θ1 =

θ2 = . . . = θK = µ. Thus, Tk ∼ N(µ, σ2
k). The most efficient and unbiased estimator of µ

is the weighted average of the estimates where the weights are determined by the inverse of

their standard errors. The estimate is

µ̂ =

∑K
k=1 WkTk∑K

k=1 Wk

, (2.11)

where Wk = 1/S2
k(Tk) and S2

k(Tk) is the estimated variance of Tk. The variance of µ̂ is then

V ar[µ̂] =
1∑K

k=1 Wk

. (2.12)

A test statistic can be constructed to test the hypothesis that θ1 = . . . = θK = µ = 0 as

follows: Z = µ̂√
V ar(µ̂)

, which follows the standard normal distribution, when
∑K

k=1 nk →∞
where nk, k = 1, . . . , K are the sample sizes of K studies.
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2.1.2.2 Random effects model An alternative approach, the random effects model,

allows the study outcomes to vary accordingly to a normal distribution between studies.

Many investigators consider the random effects approach to be a more natural choice than

fixed effects models. The random effects model is defined as

Tk = θk + εk, εk ∼ N(0, σ2
k)

θk = µ + δk, δk ∼ N(0, τ 2). (2.13)

That is, the true study effect size θk is no longer a constant effect, it varies across studies

with mean µ and variance τ 2. Obviously, the fixed effects model is a special case of the

random effects model when one assumes τ 2 to be 0.

The estimation of underlying mean µ is similar to (2.10):

µ̂ =

∑K
k=1 WkTk∑K

k=1 Wk

, (2.14)

where Wk = 1/(S2
k(Tk) + τ̂ 2). That is the variation comes from two sources: within study

variation, S2
k(Tk), and between study variation, τ 2. There are several ways of estimating

τ 2. DerSimonian & Laird (1986)’s method is among the most commonly used approach to

estimate τ 2 by the method of moments. The estimate is given by

τ̂ 2 = max[0,
Q− (K − 1)∑K

k=1 Wk − (
∑K

k=1 W 2
k /

∑K
k=1 Wk)

], (2.15)

where Q =
∑K

k=1 Wk(Tk − µ̂).

Some more complex procedures for estimating τ 2 are given by Rubin (1980,1981), Rau-

denbush and Bryk (1985), and Hedges and Olkin (1985).
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2.1.2.3 Choosing between fixed and random effects models As noted above, the

random effects model may be more general, since both the random variation within the

studies and the variation between the different studies is incorporated. However, more data

are required for random effects models to achieve the same statistical power as fixed effects

models. Testing how much heterogeneity there is serves as a way to determine whether fixed

effects model is appropriate. Heterogeneity in meta-analysis refers to the variation in study

outcomes between studies.

There are three general ways to assess heterogeneity in meta-analysis, but each has

a liability for interpretation. First, one can assess the between-studies variance, τ 2, but

its values depend on the particular effect size metric used, along with other factors. The

second is Cochran’s Q, where Q =
∑K

k=1 Wk(Tk − µ̂), which is the weighted sum of squared

differences between individual study effects and the pooled effect across studies. Under the

null hypothesis of homogeneity, Q is distributed as a chi-square statistic with K − 1 degrees

of freedom. A large Q indicates possible heterogeneity in the studies and that the fixed

effects model may not be valid. However, the Q test only informs meta-analysts about

the presence versus the absence of heterogeneity, but it does not report on the extent of

such heterogeneity. The third approach is the I2 index (Higgins and Thompson, 2002). It

quantifies the degree of heterogeneity in a meta-analysis. I2 = 100%(Q − (K − 1))/Q, if

Q > K − 1, otherwise, I2 = 0. So unlike Q, it does not inherently depend upon the number

of studies considered. It is interpreted as a percentage of heterogeneity. A confidence interval

for I2 is also constructed by Higgins and Thompson (2002).

2.2 META-ANALYSIS METHODS FOR MICROARRAY STUDIES

Most meta-analytic methods for microarray studies are based on extensions of the established

methods used for traditional epidemiological research. For example, Rhode et al. (2002) is

among the first to apply Fisher’s method to microarray data. Choi et al. (2003) implement

random effects models and Gentleman et al. (2008) developed a R package GeneMeta for

the methods Choi et al. described. We demonstrate several methods in the following using

13



the same notation described in chapter 1; let ygsk denote the gene expression for the gth

gene in the sth sample of the kth study.

In addition to Fisher’s method, the same group of Rhode provided three algorithms for

the analysis of prostate cancer datasets (Ghosh et al., 2002). In the first algorithm, they use

the least absolute shrinkage and selection operator (LASSO; Tibshirani, 1996). LASSO is a

variable selection method for linear regression. It minimizes sum of squared errors subject

to a constraint. In the microarray data notation, the model is

K∑

k=1

nk∑
s=1

(Ygsk − µg)
2 (2.16)

subject to the constraint that
∑G

g=1 |µg| ≤ λ. A gene is considered a candidate gene if

the estimate of µg is not zero, where µg denotes the mean normalized difference in gene

expression between the two groups (e.g. Tumor and Normal). Estimating λ is challenge in

microarray analysis. The cross-validation technique is not appropriate here because of the

dependence structure of genes. One could generate different gene lists for a list of different

values of λ. In their second algorithm, they calculated a weighted sum of t statistics across

studies for each gene, with the weights being the ratio of sample size of the individual study

to the total sample size:

Tg. =
1∑K

k=1 nk

K∑

k=1

nkTgk. (2.17)

Weighting each study according to the sample size is intuitive yet arbitrary. And last, they

provide a more general model by taking into account the interaction between study and

tissue types through the following model:

E[Ygsk] = β0gk + β1gkXs + β2gkZk + β3gkXsZk, (2.18)

where Xs is an indicator variable for the tissue type of sth sample, and Zk is an indicator

variable for the study. The model could be fit using ordinary least squares. All of the three

methods provided by Ghosh et al. treat genes independently, so that genes are fitted using

the above models independently and the false discovery rate is controlled in the end.

Choi et al. (2003) implemented the same random effects models described in section

2.1.2 for each gene. They suggested a quantile-quantile plot of the observed versus expected
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Cochran’s Q values over all genes to explore the homogeneity in multiple studies. If the plot

approximates a straight line, especially near the center, the presumption of a Chi-square

distribution is appropriate suggesting that the datasets might be sampled from a common

population and that only the sampling error is present, so a simple fixed effect model is

enough. If this is not the case we have to fit a random effects model. They further discussed

the Bayesian interpretation for the REM model. Following the same notation from section

2.1.2, the model is written as

p(µ, θ1, . . . , θK , τ 2|T1, . . . , TK)

= p(θ1, . . . , θK |T1, . . . , TK , σ2
1, . . . , σ

2
K)p(µ, τ 2|θ1, . . . , θK) (2.19)

∝
K∏

k=1

p(θk|Tk, σ
2
k)p(θk|µ, τ 2)π(µ)π(τ 2)

where π(µ) and π(τ 2) are non-informative priors given as µ ∼ N(0, 106) and 1/τ 2 ∼
gamma(0.001, 0.001).

Similar Bayesian hierarchical models have been suggested by Tseng et al. (2001) and

Conlon and Liu (2005) for incorporating different levels of replicates information in cDNA

microarray experiments. Unlike the approach of Choi et al., which estimates the gene effects

first and then put the effect size into the model, Tseng et al. and Colon and Liu present

Bayesian hierarchical models based on gene expression levels across studies. Let ygesk denote

the normalized log-expression ratios of gene g, experiment e, and slide s in study k. For each

study ygesk is sampled from a normal distribution of the slide effect within experiment and

study. The hierarchical model is as follows:

ygesk|µgek ∼ N(µgek, τ
2
gk)

µgek|θgk ∼ N(θgk, σ
2
gk)

θgk|Ig = 0 ∼ N(0, η2
gk0) (2.20)

θgk|Ig = 1 ∼ N(0, ck × η2
gk0)

Ig ∼ Bernoulli(p)

p ∼ Uniform(0, 1).
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τ 2
gk explains the variation in the slide effect within study k. Further, µgek is sampled from

a normal distribution with mean θgk, and σ2
gk explains the variation within study k. Genes

are divided into two groups, non-expressed (Ig = 0) and expressed (Ig = 0), so that p =

Pr(Ig = 1). Genes are determined as differentially expressed if the posterior probability

Dg = Pr(Ig = 1|data) is greater than a threshold.

Owen (2007) re-introduced Pearson’s method and applies it to the AGEMAP project. In

the AGEMAP project 40 mice were studied with different ages. The samples were from 16

different tissues. To investigate the association between gene expression and age, an ordinary

regression can be fitted. Let βgk be the age slope for gth gene in study k. The null hypothesis

is H0,gk : βgk = 0. He define a test statistic as V EW∗
g = max(V EW ;L

g , V EW ;R
g ), where V EW ;L

g =

−∑K
k=1 log(p̃gk), V

EW ;R
g = −∑K

k=1 log(1− p̃gk) and p̃gk is the is the one-sided p-value pgk =

Pr(|β̂sk| ≤ |b̂sk||H0,gk) of gene g in study k. Clearly, this test statistic is a modification of

Fisher’s method by combining one-sided p-values. A similar modification could be done to

Stouffer et al.’s method: V Z∗
g = max(V Z;L

g , V Z;R
g ),where V Z;L

g = −∑K
k=1 Φ−1(p̃gk), V

Z;R
g =

−∑K
k=1 Φ−1(1− p̃gk). He claims that V EW∗

g and V Z∗
g are sensitive to either consistently left

or right sided departure. And he further investigates the relative effectiveness of Vg∗, V ·;R
g

and V ·:L
g in detecting alternate hypotheses that vary in a consistent direction from the null.

As expected, V ·;R
g is more sensitive to positive slopes and for negative slopes, V ·;L

g is the best

choice. The method, however, is still easily dominated by one or two extremely significant

p-values and does not tell which studies are significant for distinguishing concordant genes

and discordant genes (see Chapter 3).

Breitling et al. (2004) proposed the rank product method for detecting regulated genes

in replicated microarray experiments. Hong et al. (2006) modified and extended the rank

product method to accommodate the analysis of multiple microarray studies. For a study

k with two groups (rsk = {0, 1}), denote n0k and n1k as the number of replicates for group

0 and 1 respectively. They first calculate the pair-wise fold changes between two groups for

each gene within the study, that is, FCgkt = (ygki|rsk = 1)/(ygkj|rsk = 0), i ∈ (rsk = 0) and

j ∈ (rsk = 1). There are n0k × n1k pairs. For K studies, there are a total of
∑K

k=1 n0k × n1k

pairs. So t = 1, . . . ,
∑K

k=1 n0k × n1k. The rank product statistic for each gene is defined

as V RP = (
∏∑K

k=1 n0k×n1k

t=1 rgt)
1/K , where rgt is the rank of FC of the gth gene under the
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tth comparison. The null distribution of V RP is then determined from permutation. For

genes regulated in the opposite direction, they swap the the groups and perform the same

algorithm once more. Since this method combines ranks instead of real gene expression,

fewer assumptions are needed. They also claim that it overcomes the heterogeneity among

multiple datasets.
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3.0 OPTIMALLY WEIGHTED STATISTIC FOR COMBINING MULTIPLE

MICROARRAY STUDIES

3.1 BACKGROUND

Integrating results from different studies is commonplace in a wide variety of biological

applications. Significance levels and effect sizes are two common metrics utilized in meta

analysis. The random effects model is often used to incorporate random effects caused by,

for example, variations of sampling schemes in different studies. In many applications, data

structures and statistical hypotheses may differ, making a direct combination of effect sizes

impossible. It becomes more feasible to combine the transformed probability integrals of

test statistics (usually p-values) - a procedure that depends only on the significance values

of individual tests and not on the underlying data structure. The well-known method in this

category was proposed by Fisher (1932). The test statistic involves the log-transformation

of p-values to Chi-square scores and equally-weighted summation: V EW = −
K∑

k=1

log(pk),

where K studies are combined and pk is the p-value of study k, 1 ≤ k ≤ K. Assuming both

independence among studies and the p-values calculated from correct null distributions in

each study, 2V EW follows a Chi-square distribution with 2K degrees of freedom. A large

number of different transformations have been considered in the literature - for example,

inverse normal, logit and inverse Chi-square transformation with varying degrees of free-

dom (Stouffer et al., 1949; Lancaster, 1961; George, 1977). While Fisher’s method is not

a uniformly most powerful test, it has strong support in the literature for its good power

under a wide range of alternative conditions and for being the most asymptotically Bahadur

optimal (ABO) among several commonly used combined tests (Little and Folks, 1971, 1973).
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Different weights and variations of the test statistic have also been considered. Good (1955)

suggested using unequal weights for each individual study, and Olkin and Saner (2001) pro-

posed a trimmed version of the Fisher procedure to remove the effect of possibly aberrant

extremes. Another well known method in this category is Tippetts (1931) minimum p-value

statistic: V minP = min1≤k≤Kpk. Wilkinson (1951) generalized Tippetts procedure to a more

robust rth smallest p-value. It is worth noting that the minimum p-value (minP) and max-

imum p-value statistics (maxP) are special cases of the union-intersection test (UIT) (Roy,

1953) and the intersection-union test (IUT) (Berger, 1982) respectively. For a comprehensive

review and comparison of different approaches, see Hedges (1992) and Cousins (2007).

Microarray technology allows researchers to examine the expression of thousands of genes

in parallel. With microarray experiments becoming more mature and prevalent, the inte-

gration of homogeneous experimental data sets from multiple laboratories and experimental

techniques has become imperative. In contrast to traditional epidemiological or evidence

based medical studies, microarrays monitor gene expression for thousands of genes simulta-

neously - a process that brings challenges to integrative analysis. Currently “meta-analysis”

in the biological literature consists of a widespread use of naive “intersection” and/or “union”

operations on differentially expressed gene lists obtained from individual studies by certain

criteria (e.g. False Discovery Rate ≤ 0.05) (Segal et al., 2004, Borovecki et al., 2005, Cardoso

et al., 2007, Pirooznia et al., 2007, and many more). One can quickly note that intersections

are often too conservative and unions are anti-conservative, especially as K increases. Rhode

et al. (2002) was the first to apply Fisher’s method to microarray data for a real sense

of meta-analysis. They later introduced a weighted average of test statistics of individual

tests, with the weights determined in an ad hoc manner according to sample sizes in the

studies (Ghosh et al. 2003). Choi et al. (2003) pointed out that the approach in Rhode

et al. “ignored the interstudy variation” and they proposed a random effects model (REM)

under Gaussian assumptions and further discussed the details of a Bayesian formulation for

the REM model. Similar Bayesian hierarchical models have been suggested by Tseng et al.

(2001) and Conlon and Liu (2005) for incorporating different levels of replicates information

in cDNA microarray experiments.

In this chapter, we propose an optimally weighted (OW) statistic for the meta-analysis
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of multiple genomic studies. In contrast to the equally weighted (EW) statistic in Fishers

method, the OW statistic finds the optimal weight that provides the best statistical signif-

icance. In Section 3.2, two complementary hypothesis settings (HS1 and HS2) are outlined

and all meta-analysis methods targeted for their respective hypothesis settings are clarified.

The remaining part of the chapter (Section 3.3-3.6) is devoted to the HS1 framework to

discuss the comparison and properties of the OW statistic. In Section 3.3, we introduce

the idea of the OW statistic and a detailed algorithm implementing the OW statistic and

permutation test is outlined for integrating multiple genomic studies. In Section 3.4, we

demonstrate the admissibility of OW, EW and minP in the traditional two sample compari-

son under Gaussian assumption and the power of OW is compared to EW and minP. Section

3.5 presents a simulation study and applications to a set of multi-tissue energy metabolism

mouse data and a set of three prostate cancer expression profiles. Finally we summarize and

discuss the advantages and limitations of the OW statistic in Section 3.6.

3.2 TWO COMPLEMENTARY HYPOTHESIS SETTINGS

In the existing meta-analysis methods applied to genomic data discussed above, no compre-

hensive evaluation has been performed. A major reason is the lack of rigorous formulation of

hypothesis settings behind these methods. We consider meta-analysis of K gene expression

profile studies: D1, D2, . . . , DK . In each study Dk, xkgs is the gene expression intensity of

gene g and sample s, where samples s = 1, . . . , nk belong to a control group (e.g. normal

patients) and s = nk + 1, . . . , nk + mk belong to the target group (e.g. tumor patients). We

define the first hypothesis setting as:

HS1 : H0g : θg1 = θg2 = . . . = θgK = 0 versus HAg : at least one θgk 6= 0, 1 ≤ k ≤ K,

where θgk is the parameter that characterizes the effect of study k in gene g,1 ≤ g ≤ G. HS1

corresponds to the biological question Q1: “which genes are differentially expressed in one or

more data sets among the K studies?”. This question is often addressed when heterogenous

characteristics are expected across studies (e.g., differential sample population, experimental
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quality or tissues collected across studies). See the example in Section 5.2 where three

tissues are examined and tissue specific physiology is expected. Another commonly asked

biological question in the meta-analysis of microarray studies would be Q2: “which genes are

differentially expressed in all data sets among the K studies?”. The corresponding hypothesis

setting is:

HS2 : H0g : at least one θgk = 0 versus HAg : θgk 6= 0, 1 ≤ k ≤ K.

This question is often asked when studies have homogeneous characteristics. Significance

in all studies is demanded to generate highly confident biomarkers and combining multiple

studies increases the statistical power.

Among the methods discussed in Section 3.1, EW, minP and the proposed OW statistic

are designed to answer the HS1 problem, while REM and maxP are methods for HS2. In this

chapter, we will only focus on the HS1 problem and compare the three major methods EW,

minP and OW to demonstrate the properties and advantages of the proposed OW method.

3.3 OPTIMAL-WEIGHTED STATISTIC

When integrating multiple genomic studies, expression of some genes may be altered in a

study specific manner (consider HS1). To uncover the pattern of altered gene expression

across studies, we consider the following weighted statistic:

Ug(w) = −
K∑

k=1

wklog(pgk), (3.1)

where pgk is the p-value of gene g in study k, wk is the weight assigned to the kth study

and w = (w1, . . . , wk). Under the null hypothesis that θgk = 0∀k in HS1, the p-value of the

observed weighted statistic, p(ug(w)), can be obtained for a given gene g and weight w (see

below for detailed permutation algorithm to calculate the p-value). The optimally-weighted

statistic is defined as the minimal p-value among all possible weights:

V OW
g = min

w∈W
p(ug(w)), (3.2)
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where ug(w) is the observed statistic for Ug(w) and W is a pre-specified search space. Our

choice of search space in this chapter is W = {w|wi ∈ {0, 1}}, which results in an affordable

computation of O(2K − 1) based on the norm of K ≤ 10 in a microarray meta-analysis.

The resulting optimal weight reflects a natural biological interpretation of whether or not

a study contributes to the statistical significance of a gene. We note that the OW statistic is

not adequate for the traditional meta-analysis in epidemiological or evidence-based medicine

research. The selection procedure in OW will introduce selection bias towards studies with

concordant significant effects. The meta-analysis of genomic studies, however, is quite a

different situation. The major goal is usually to screen and identify the most probable gene

markers given data to facilitate future investigation. As we will show in section 3.5, the

vector of optimal-weight, w∗
g = arg minw∈W p(ug(w)), actually serves as a convenient basis

for gene categorization in follow-up biological interpretation and exploration.

Below we illustrate the detailed procedure for OW when applied for combining genomic

studies. A permutation test is performed to assess the statistical significance and false

discovery rate (FDR) is controlled at 5%. For the applications in Section 3.5, the minP and

EW methods are performed using a similar permutation test.

I. Study-wise p-value calculation before meta-analysis:

1. Compute the moderated t-statistics, {tgk for gene g and study k. (Efron et al., 2001;

Tusher et al., 2001)

2. Permute group labels in each study for B times, and similarly calculate the permuted

statistics {t(b)gk ; 1 ≤ g ≤ G, 1 ≤ k ≤ K, 1 ≤ b ≤ B}.
3. Estimate p-value of tgk as pgk =

∑B
b=1

∑G
g=1

I{t(b)gk ∈R(tgk)}
BG

, where R(tgk) is the rejection

region given the threshold tgk and I{·} is the indicator function. Similarly given t
(b)
gk ,

compute p
(b)
gk =

∑B
b′=1

∑G
g′=1

I{t(b′)
g′k ∈R(t

(b)
gk )}

BG

II. Calculate OW statistic:

1. Given a weight w = (w1, . . . , wk), calculate the weighted statistic ug(w) = −∑K
k=1 wklog(pgk)

for gene g. Define u
(b)
g (w) = −∑K

k=1 wklog(p
(b)
gk ).

2. Estimate the p-value of the observed ug(w) as p(ug(w)) =
∑B

b=1

∑G
g′=1 I{u(b)

g′ (w)≥ug(w)

B·G . Sim-

ilarly compute p(u
(b)
g (w)) =

∑B
b=1

∑G
g′=1 I{u(b′)

g′ (w)≥u
(b)
g (w)

B·G .
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3. Based on II.A. (1) and II.A.(2), calculate the optimal weight as w∗
g = arg minw∈W p(ug(w))

and similarly w
(b)∗
g = arg minw∈W p(u

(b)
g (w)). Define the OW statistic Vg as the p-value

of the optimally weighted statistic: Vg = p(Ug(w∗)). Similarly V
(b)
g = p(U

(b)
g (w∗)).

III. Assess p-values and q-values:

1. The p-value of Vg is calculated as p(Vg) =
∑B

b=1

∑G
g′=1 I{V (b)

g′ ≤Vg}
B·G .

2. Estimate π0 , the proportion of null genes, as π̂0 =
∑G

g=1 I{p(Vg)∈A}
G·`(A)

(Storey 2002). Normally

we choose A = [0.5, 1] and `(A) = 0.5.

3. Estimate the FDR for each gene as q(Vg) =
π̂0

∑B
b=1

∑G
g′=1 I{V (b)

g′ ≤Vg}
B

∑G
g′=1 I{Vg′≤Vg} . The detected gene

list is GOW = {g : q(Vg) ≤ 0.05}.

IV. Distinguish concordant and discordant genes (optional): Split the detected gene

list GOW into concordant and discordant gene lists. Detected genes with concordant reg-

ulation direction across significant studies are denoted as GOW
concord = {g : q(Vg) ≤ 0.05 |

|∑K
k=1 sgn(tgk) · w∗

gk| =
∑K

k=1 w∗
gk},where sgn(·) is the sign function that takes the value of

1 when positive and -1 when negative. The discordant gene list is GOW
discord = GOW \GOW

concord.

Remarks:

1. For the application of the EW and minP method, step II.(1)-II.(3) can be skipped. Alter-

natively the test statistic are modified as Vg = −∑K
k=1 log(pgk) and V

(b)
g = −∑K

k=1 log(p
(b)
gk )

for EW or Vg = min1≤k≤Kpgk and V
(b)
g = min1≤k≤Kp

(b)
gk for minP.

2. The sequence I., II. and III. provides an algorithm for a general framework. The statistics

tgk and the rejection region R(tgk) can be replaced depending on the experimental design

and hypothesis. For example, the F-statistic can be used when multiple groups of samples

are available in each study.

3. When conducting two group comparisons and applying moderated t-statistics, genes de-

tected under the general framework (sequence I., II. and III.) may contain discordant

genes (i.e. a gene up-regulated in one study and down-regulated in another). The ad-

dition of step IV. provides further filtering to solve the problem. In some applications,

it may be of interest to scrutinize the discordant gene list to verify whether the discor-

dance reflects real biological discrepancy across studies (e.g. different tissues or patient

populations) or is caused by artificial errors (e.g. mistakes in gene annotation). For
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EW and minP, there is no direct criterion for a clear split of concordant and discordant

genes. Pearson (1938) and Owen (2007) proposed a modification for EW that is sensitive

to either consistent left or right sided departures: V EW∗
g = max(V EW ;L

g , V EW ;R
g ), where

V EW ;L
g = −∑K

k=1 log(p̃gk), V
EW ;R
g = −∑K

k=1 log(1− p̃gk) and p̃gk is the is the one sided

p-value of gene g in study k. The method, however, is still easily dominated by one

or two extremely significant p-values and does not tell which studies are significant in

distinguishing concordant versus discordant (see examples in Section 3.5.2).

4. Several forms of penalized or moderated t-statistics have been proposed and shown to

outperform traditional t-statistics (Efron et al., 2001; Tusher et al., 2001; Smyth et al.,

2004; ). In our algorithm, we choose the penalized t-statistics used in Efron et al. (2001)

and Tusher et al. (2001). The fudge parameter s0 is chosen to be the median variability

estimator in the genome.

5. In III.(2), many reports have indicated the intrinsic difficulty in estimating π0 and a poor

estimator π0 can greatly deteriorate the FDR estimation. A conservative suggestion is

to set π0 = 1 all the time and is applied in this chapter.

3.4 ADMISSIBILITY AND POWER

In this section, we drop the subscript g for genes and compare three test statistics (EW, OW

and minP) for HS1 at the univariate level assuming independence between studies. To date,

no best method for combining multiples studies has been identified, therefore choosing a

combined statistic must reflect specific biological purposes. Birnbaum (1954) provided gen-

eral conditions for evaluating combined methods, including monotonicity and admissibility.

He (Birnbaum, 1955) further compared several combined test procedures by considering a

one-sample test on the mean of a Gaussian distribution with known variance. Here we will

use a similar two-sample test of the means of a Gaussian distribution with known variances:

Zk =
X2k −X1k

σk

√
1/nk1 + 1/nk2

.k = 1, 2, . . . , K. (3.3)
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and the two-sided p-value Pk = Pr(|Z| ≥ |zk||θ = 0) for each study to examine the accep-

tance region of the different combined test procedures. We will discuss the admissibility and

compare the power of the three test statistics under this simplified framework.

3.4.1 Admissibility

A test is considered admissible if it cannot be uniformly improved by any other test. It is

well-known that no uniformly most powerful test exists even in the simplified scenario (3.3).

Birnbaum stated a necessary and sufficient condition for a test to be admissible under this

situation.

Theorem 3.4.1. (Birnbaum 1954, 1955) Under HS1 and assumption (3.3), a necessary and

sufficient condition for a combined test procedure to be admissible is that the corresponding

acceptance region is convex.

It has been noted that the acceptance regions of EW and minP are both convex and

thus both methods are admissible. Figure 1 shows the acceptance regions of EW, minP

and OW in the plane of a pair of Z statistic at level 0.05. When illustrating the rejection

regions of several common combined tests (including EW and minP), Birnbaum showed a

preference for the EW method in most cases because it appeared to be fairly sensitive in all

directions. From Figure 1, we observe that OW actually shares merits from both EW and

minP. It is more sensitive than the minP method when parameters from both studies depart

from 0 and more sensitive than EW when only one of the parameters departs from 0. The

following corollary shows that the acceptance region of OW is also convex and thus OW is

also admissible.

Corollary 3.4.2. The acceptance region of OW is convex and thus OW is admissible under

HS1 and assumption (3).

Proof: Denote by pk = 1 − Φ(|zk|) the two-sided p-value,where Φ(t) =
∫ t

−∞ φ(t)dt, φ(t)

is the density of the standard normal distribution. First we prove that f(zk) = −log(pk) =

−log(1 − Φ(|zk|)) is convex. f ′′(z) = φ(|z|)
[1−Φ(|z|)]2{φ(|z|) − |z|[1 − Φ(|z|)]}. It is well known

that the elementary upper bound for 1 − Φ(x) is φ(x)/x, for x > 0. Thus, f ′′(z) > 0.

So f(z) is convex in z. Hence f(z1, z2, . . . , zK) = −∑n
k=1 log(pk) for ∀n ≥ 1 is convex,
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Figure 1: Acceptance regions of Equal-Weighted, Optimal-Weighted, minimum p-value and

maximum p-value methods of combining p-values from two independent studies.
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because the sum of convex functions is convex. For the OW statistic, the acceptance region

is {z1, z2, . . . , zK : min0≤k≤K p(u(w)) > c}, where p(u(w)) is the right-sided p-value of u(w).

{z1, z2, . . . , zK : min
0≤k≤K

p(U(w)) > c}

=
⋂

Ik∈{0,1},1≤k≤K

{z1, z2, . . . , zK : p(−
K∑

k=1

log[pIk
k ]) > c}

=
⋂

Ik∈{0,1},1≤k≤K

{z1, z2, . . . , zK : −
K∑

k=1

log[pIk
k ] < γj}, j = 1, 2, . . . , 2K − 1

(3.4)

Thus the acceptance region of OW is convex since the intersection of convex sets is also

convex.

Note that when K = 2, {z1, z2 : minw∈W p(u(w)) > c} = {z1, z2 : min(p1, p2) >

c}⋂{z1, z2 : −log(p1p2) ≤ γ}, the acceptance region of the OW method is an intersection of

minP and EW.

3.4.2 Power comparison of EW,OW and minP under HS1

Denote by θ = (θ1, . . . , θK) the vector of parameters characterizing the studies and by

βOW (θ; α) the power of a test controlled at level α, for the OW statistic, we have

βOW (θ; α) = Pr(V OW ≤ COW
α |θ) = 1−

∫
. . .

∫

Ω

K∏

k=1

p(Pk|θ)dP1 . . . dPK , (3.5)

where Ω : {⋂2K−1
i=1 p(u(wi)) > COW

α } = {⋂2K−1
i=1 U(wi) < F−1

Gamma(
∑K

k=1 wki,1)
(1 − COW

α )} and

F−1
Gamma(α,β) is the inverse CDF of Gamma distribution with parameters α and β, wi =

(w1i, . . . , wKi), wki ∈ {0, 1}, k = 1, . . . , K. COW
α is the solution of v to the equation P (V OW ≤

v|H0) = α. If the null hypothesis of HS1 was true, it is generally accepted that the individual

Pk value is a uniform random variable on [0,1]. The density of the P value under the

alternative law is given by

p(P |θ) =
p(x|θ)
p(x|0)

|x=g(P ) (0 ≤ P ≤ 1), (3.6)
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where x = g(P ) means the solution of P =
∫ 1

x
f(x|0)dx (Pearson 1938).

For example, the Z test in (3.3) is used for power calculations, hence the density of Pk

is

p(Pk|θk) =
1

2
exp{ck

2
[2Φ−1(1−Pk/2)−ck]}+

1

2
exp{−ck

2
[2Φ−1(1−Pk/2)+ck]}, k = 1, . . . , K,

(3.7)

where ck = θk

σk

√
1/nk1+1/nk2

. We consider K = 2 and 8 , nk1 = nk2 = 5, σk = 1, so that the

effect size is represented by θk. Power is evaluated with varying effect sizes.

Figure 2 illustrates the power curves under different alternative hypotheses when com-

bining eight studies. As expected, when only one of the eight studies are significant, minP is

much more powerful than EW (Figure 2.(a)) and when all of the eight studies are significant,

EW is much more powerful than minP (Figure 2.(d)). On the other hand, OW performs

stably near the best in the two extreme situations and is the top performer when two or

three out of eight studies are significant (Figure 2.(b) and (c)).

3.5 APPLICATIONS

3.5.1 Simulation study

We conducted a simulation study for combining four datasets to assess the performance of

our proposed optimally-weighted statistic (OW), Fisher’s equally-weighted statistic (EW)

and Tippett’s minimum p-value method (minP); and naive union (union of DE gene lists

from each individual study controlled at FDR=5%) was also included for comparison. For

each dataset, we simulated five normal samples from a standard normal distribution and five

case samples from a N(θ, 1). A total of g1 genes (category I) were differentially expressed

across all four data sets. In contrast, g2 = 400− g1 genes were differentially expressed only

in the fourth data set (category II), and 1600 genes were considered null. The FDR was

controlled at 5% for each method, and each simulation was repeated 1000 times.

Summaries of the resulting FDR and average number of genes identified in each category

under three different scenarios are presented as follows: in Table 4, 0 category I and 400
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Figure 2: Power analysis of EW, OW, minP under HS1. We compare power curves of the

three methods combining eight studies under different alternative hypotheses: (a) One of

the eight hypotheses is false; (b) Two of the eight hypotheses are false; (c) Three of the eight

hypotheses are false; (d) All of the eight hypotheses are false.
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Table 4: Average number of genes detected in each category (I. 0 common DE genes; II.

400 4th-dataset-specific DE genes; Null. 1600 random noise genes), and average FDR,

according to different θ.
Methods θ = 2.0 θ = 2.5 θ = 3.0

I II Null FDR I II Null FDR I II Null FDR
OW 0.0 7.5 0.5 7.0%a 0.0 35.5 1.6 4.7%a 0.0 142.4 7.6 5.0%a

EW 0.0 3.4 0.3 7.1%a 0.0 13.2 0.7 5.4%a 0.0 65.8 3.7 5.4%a

minP 0.0 9.3 0.6 6.5%a 0.0 66.6 3.8 5.8%a 0.0 173.5 9.1 5.5%a

Union 0.0 117.2 6.2 4.8%a 0.0 265.0 13.2 4.6%a 0.0 352.2 17.7 4.7%a

aestimated FDR (mean of Null/(I+II+Null)) for HS1.

Table 5: Average number of genes detected in each category (I. 200 common DE genes;

II. 200 4th-dataset-specific DE genes; Null. 1600 random noise genes), and average FDR,

according to different θ.
Methods θ = 1.5 θ = 2.0 θ = 2.5

I II Null FDR I II Null FDR I II Null FDR
OW 109.7 10.7 6.2 4.8%a 189.2 37.4 11.2 4.8%a 199.7 72.2 13.2 4.6%a

EW 154.0 11.6 8.6 4.9%a 197.4 28.2 11.5 4.8%a 200.0 49.6 12.5 4.7%a

minP 3.6 0.9 0.4 6.1%a 76.1 22.6 4.8 4.5%a 168.0 72.5 11.6 4.5%a

Union 8.9 4.7 1.1 7.3%a 91.9 58.0 9.6 6.3%a 185.8 132.9 24.1 7.0%a

aestimated FDR (mean of Null/(I+II+Null)) for HS1.

Table 6: Average number of genes detected in each category (I. 400 common DE genes;

II. 0 4th-dataset-specific DE genes; Null. 1600 random noise genes), and average FDR,

according to different θ.
Methods θ = 1.5 θ = 2.0 θ = 2.5

I II Null FDR I II Null FDR I II Null FDR
OW 268.5 0.0 13.9 4.9%a 386.6 0.0 19.4 4.8%a 399.6 0.0 18.8 4.5%a

EW 339.6 0.0 17.9 5.0%a 397.3 0.0 20.6 4.9%a 400.0 0.0 19.8 4.7%a

minP 22.1 0.0 1.3 4.8%a 230.6 0.0 11.4 4.6%a 359.9 0.0 16.7 4.4%a

Union 36.9 0.0 2.6 6.1%a 298.9 0.0 24.1 7.4%a 394.8 0.0 51.9 11.6%a

aestimated FDR (mean of Null/(I+II+Null)) for HS1.
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category II genes; Table 5, 200 category I and 200 category II genes; Table 6, 400 category I

and 0 category II genes. The result is consistent with the power calculation in Section 4.2.

In Table 4, minP is much more powerful than EW. When θ = 3, minP detects an average

of 173.5 genes and EW detects only 65.8 genes. OW, on the other hand, finds 142.4 genes,

which is quite close to minP. Similarly in Table 6, EW (397.3 genes detected when θ = 2) is

more powerful than minP (230.6 detected genes) and OW (386.6 detected genes) is close to

EW in performance. Overall OW performed stably well in the two extreme situations. We

note that the naive union method generally loses control of FDR as expected.

3.5.2 Energy metabolism in mouse model

The deficiencies of very long-chain acyl-coenzyme A dehydrogenase (VLCAD) are associated

with an energy metabolism disorder in children. Two genotypes of mouse model (wild

type (VLCAD +/+) and VLCAD-deficient (VLCAD -/-)) are studied with four mice in

each genotype group. For each of the 8 mice, three types of tissues (brown fat, liver and

heart) were applied separately in microarray experiments to study the expression changes

across genotypes. In this study, one of the hypotheses is that tissue-specific physiology

triggers tissue-dependent responses, with precise pools of differentially expressed genes being

confounded to the tissue in question. This hypothesis is aimed at understanding signature

genes that are significant for tissue subsets, an analysis that corresponds to HS1.

In Figure 3, OW, EW, Pearsons method (described in Remark 3 of Section 3.3) and minP

are implemented. The modified algorithm of OW for filtering out discordant genes (step IV in

Section 3.3) is also implemented. It discards all genes that contain discordance among studies

contributing to the optimal weight. We note that the modified algorithm is not applicable

to EW, Pearson’s method and minP since these methods do not provide indication of which

studies to consider for concordance/discordance evaluation. Overall the general OW detects

203 genes in Figure 3(a) and among them, 28 genes have conflict up or down regulations (i.e.

Figure 3(b) detects 175 genes). The optimal weights provide natural grouping of identified

genes. For example, 55 genes with (1,1,1) optimal weight are differentially expressed in all

three tissues in Figure 3(b) and 27 genes with (0,1,1) weight are statistically significant only
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in liver and heart tissues, but not in brown fat. Results of the EW method are presented in

Figure 3(c). It detects more genes than OW (329 genes). The identified gene list is, however,

difficult to interpret and investigate even after gene reordering by hierarchical clustering. We

note that minP seems to be much less powerful in this application. We note that EW, minP

and OW are based on summarization of p-values across studies. The methods alone do not

distinguish discordant genes that have differential expression across studies. The method

presented by Owen (2007), previously proposed by Pearson (1934), was developed to modify

EW for this purpose. Table 7 shows five example genes. The first two genes (1419182 at and

1423407 a at) contain clear discordant regulation across studies. All of the four methods

except for minP identify them as differentially expressed genes. Pearson’s method, designed

for detecting only concordant genes, failed to achieve the goal to exclude such discordant

genes. In the OW method, the optimal weight enables a post-hoc approach (Step IV in

Section 3.3) to filter out these discordant genes. For EW, minP and Pearson’s method, such

a post-hoc procedure is not feasible without indication of which studies are differentially

expressed. For example, in the last two examples of Table 7 (1449015 at and 1416415 a at),

the OW method with concordance filtering will still call it a concordant DE gene although

the regulation of the non-significant study (brown fat) contradicts the other two significant

studies.

3.5.3 The Prostate cancer studies

We applied the algorithm to three publicly available prostate cancer gene expression datasets

(Dhanasekaran et al., 2001; Luo et al., 2001; Welsh et al., 2001) independently collected in

separate medical centers: two representing cDNA technology and one oligo-based technology.

Probes of the three datasets were matched by UniGene ID. Gene expression comparisons were

made between clinically localized prostate cancer and benign prostate tissue. The results

presented in Figure 4 reflect the methods similar characteristics as seen from the mouse

data. With an exception, minP does not perform as poorly as in Section 3.5.2 and a larger

number of genes are detected. The OW method shows much clearer patterns than the other

methods. Of the 722 genes in Figure 4(a), 618 genes show consistent regulation across studies
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Figure 3: Heatmap of gene expressions for differentially expressed genes identified according

to different methods in analyzing mouse data. Each row represents a single gene, each

column represents a sample. The data were normalized within each tissue. In OW, genes

are ordered by hierarchical clustering in each category formed by gene specific best weight.

Genes identified from the other methods are ordered by hierarchical clustering.
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Table 7: Five example genes from the mouse energy metabolism data
Gene moderated-t statistic (p-value) p-value(q-value) for meta analysis methods

Brown fat Liver Heart OW EW minP Pearson
1419182 at -3.3(0.0004) 1.6(0.0190) -1.9(0.0109) 0.0005 0.00001 0.0011 0.0004

w∗ 1 1 1 (0.030) (0.001) (0.088) (0.012)
1423407 a at 2.2(0.0027) 1.7(0.0121) -3.7(0.0014) 0.0004 0.0001 0.0041 0.0018

w∗ 1 1 1 (0.031) (0.001) (0.112) (0.034)
1418429 at 3.6(0.0003) 1.1(0.0672) -3.2(0.0020) 0.0001 0.0001 0.0008 0.0010

w∗ 1 0 1 (0.028) (0.001) (0.088) (0.023)
1449015 at 0.4(0.4558) -3.3(0.0009) -1.8(0.0110) 0.0008 0.0007 0.0017 0.0005

w∗ 0 1 1 (0.020) (0.016) (0.056) (0.012)
1416415 a at -0.80(0.1496) 2.24(0.0026) 2.58(0.0023) 0.0012 0.0003 0.007 0.0005

w∗ 0 1 1 (0.035) (0.011) (0.089) (0.012)

and are shown in Figure 4(b). About 14% discordant genes are observed. Causes of such

discordant genes may include mistaken gene annotation in old array platforms (Dai et al.,

2005), differential probe efficiencies, heterogeneous sample populations across studies and

non-specific cross hybridizations. The findings suggest that results obtained from individual

microarray studies require careful interpretation, and that synthesized analyses provide more

powerful tests and appropriate validation.

3.6 DISCUSSION

In this chapter, we propose an optimally weighted statistic for combining multiple studies

and applied it for combining microarray studies. The evaluation of meta-analysis methods

heavily depends on the biological question being investigated and the corresponding statis-

tical hypothesis settings. We formulated two hypothesis settings, HS1 and HS2, to identify

differentially expressed genes considered significant in either partial data sets or in all data

sets. The classical EW, minP and proposed OW methods were targeted on HS1 and are

discussed in this chapter. We showed that OW, as well as EW and minP, were all admis-

sible under a simplified scenario considered. In the power analysis, EW was more powerful

when all data sets were significant and minP was more powerful when only one or few data

sets were significant. The OW method, which can be viewed as a compromise between EW

and minP, performed close to the better performing method in either extreme alternative
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Figure 4: Heatmap of gene expressions for differentially expressed genes identified according

to different methods in analyzing prostate cancer data. Each row represents a single gene,

each column represents a prostate sample. The data were normalized within each study. In

OW, the genes are ordered by hierarchical clustering in each category formed by gene specific

best weight. Genes identified from the other methods are ordered by hierarchical clustering.
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hypothesis settings (Figure 2). Simulation results also confirmed this robust property of

OW (Table 4-6). In the applications, OW expressed an additional advantage of categoriz-

ing differentially expressed genes by their optimal weights, thus providing a practical basis

for further biological exploration. The modified algorithm in Section 3.3 procedure II.B.

avoided detection of genes with discordant regulation direction and was appealing for the

specific biological purpose.

There are a few limitations and possible future extensions for this work. Firstly we

assumed all studies contain identical matched gene list and no missing values. In practice,

studies to be combined usually come from different microarray platforms. Requiring an iden-

tical matched gene list and no missing values will exclude many important genes appearing

in one study but not in another. An extension allowing missing values will be necessary. Sec-

ondly we focused on the two-group comparison in this chapter and provided a modification

for detecting only genes with concordant expression changes. For comparison of more than

two groups, the F-statistic and its variations can be applied and the resulting p-values can

be combined similarly. Small p-values across studies, however, do not guarantee concordant

expression patterns. We are currently developing a pair-wise correlation approach to replace

p-values for this problem.

While this chapter only considered combining multiple microarray studies, the methods

can easily be extended for combination of multiple genomic, epigenomic and/or proteomic

studies for instance, data sets from SNP arrays, genome arrays, methylation arrays, pro-

teomic experiments and ChIP-on-chip experiments.
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4.0 MINIMUM MULTI-CLASS CORRELATION STATISTIC WHEN

COMBINING MULTIPLE MULTI-CLASS MICROARRAY STUDIES

4.1 BACKGROUND

Microarray technology provides an opportunity for global monitoring of gene expression ac-

tivities. As the technology matures and becomes prevalent in biomedical research, many

data sets have been accumulated in the public internet domain; for example, the NCBI Gene

Expression Omnibus (Edgar et al., 2002), the EBI ArrayExpress (Parkinson et al., 2005) and

the Stanford Microarray Database (Sherlock et al., 2001). The development of effective in-

formation integration of multiple microarray studies has gained increasing attention. Among

the various types of microarray statistical analysis, detection of differentially expressed (DE)

genes is one of the most important goals. Samples under two different conditions (e.g. normal

versus diseased patients) are examined. Many statistical methods have been proposed for

detecting biomarkers differentially expressed across the two classes (Breitling et al., 2005;

Efron et al., 2001; Newton et al., 2004; Tusher et al., 2001). When multiple microarray

studies are available, meta-analysis is expected to increase statistical power for DE gene

detection. Rhode et al. (2002) was among the first to apply the traditional Fisher’s method

(Fisher, 1948) for combining multiple microarray studies. Many other approaches have been

proposed later, including a lasso-based method (Ghosh et al., 2003), random effects models

(Choi et al., 2003; Stevens and Doerge, 2005), Bayesian methods (Tseng et al., 2001; Jung

et al., 2006; Conlon et al., 2007), rank-based approaches (Breitling et al., 2005; Hong et

al., 2006) and others. Recently Li and Tseng (2008) elucidated two statistical hypothesis

settings behind two separate biological goals in combining multiple array studies: (1) HS1:

detecting biomarkers statistically significant in one or more studies, and (2) HS2: detecting
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highly confident biomarkers differentially expressed in all studies. An optimally-weighted

statistic was modified from the Fisher’s score and was proposed for the former hypothesis

setting. The optimal weights provided natural categorization of the detected biomarkers

for further biological investigation. So far, most of the methods in the literature, including

those described above, focus on the two-class “disease-versus-normal” setting. Combining

data sets with more than two classes is rarely discussed.

In general, two metrics are commonly combined in the meta-analysis. The first is to

combine the effect sizes of each study to generate a conclusion of overall effect size and

its confidence interval, which is commonly seen in the research of evidence-based medicine.

Random effects model, for example, is a popular method in this category. The second metric

combines significance levels or their transformation scores. The famous Fisher’s method

belongs to the category that sums up the log-transformed p-values. Many other statistics

including trimmed version of Fisher’s method (Olkin and Saner, 2001), minimum p-value

(Tippett, 1931) and Wilkinsons rth smallest p-value (1951) have also been considered. It

is worth noting that the former metric is only valid in the two-class comparison. When

more than two classes are considered, no single effect size can be computed and, instead, the

patterns (between-group fluctuation of the group means) become the concern. The latter

category is, however, extensible to data sets with more than two classes. The F-statistic (or

equivalently ANOVA model) and its variants can be applied and p-values can be assessed

and combined across studies.

In this chapter, we explore the method of ANOVA-maxP, which detects biomarkers with

a significant pattern (large between-group variation versus small within-group variations) in

all studies. We also note that small p-values (equivalently large F-statistics) in all studies

do not guarantee a consistent pattern across studies. Figure 5 shows two example genes

detected by ANOVA-maxP where the patterns across studies are not consistent.

To overcome this issue, we develop a pairwise multi-class correlation (MCC) measure.

The correlation measure is defined through an equal-weight bivariate mixture model from

the multi-class observations. A min-MCC algorithm is extended for combining multiple

studies and the method guarantees the detection of only concordant pattern biomarkers. The

performance of ANOVA-maxP and min-MCC is assessed through simulation and applications
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Figure 5: Two genes from the mouse metabolism data and detected by ANOVA-maxP. The

patterns across tissues are lowly or negatively correlated. Box-plots of each genotype in each

tissue are plotted and the mean expression levels are connected. Upper: expression pattern

of Acsl5 (involved in fatty acid degradation pathway). Lower: expression pattern of gene

Scd1 (involved in fatty acid synthesis pathway).
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Table 8: Sample information of the mouse metabolism

data set.
Tissue type Brown fat Liver Heart Skeletal totalGenotypea 1 2 3 1 2 3 1 2 3 1 2 3

Number of arrays 4 4 4 4 4 4 3 4 4 3 3 3 44

a1: Wild type; 2: VLCAD -/-; 3: LCAD -/-.

to a multi-platform mouse trauma data set and a multi-tissue mouse energy metabolism data

set. The result shows that ANOVA-maxP detects both concordant and discordant genes and

min-MCC detects only concordant genes. The two methods are complementary and serve

different biological purposes.

4.2 METHODS

4.2.1 Data description and notation

Two real data sets are used to evaluate proposed methods. The first data set involves

samples from three genotype mice: wild-type (WT), LCAD knock-out (LCAD -/-) and

VLCAD knock-out (VLCAD -/-). Deficiency of very long chain acyl-CoA dehydrogenase

(VLCAD) is known to be related to a common energy metabolism disorder in children.

On the other hand, LCAD (long-chain acyl-CoA dehydrogenase) deficient mice are known

to have impaired fatty acid oxidation and develop a disease similar to other disorders of

mitochondrial fatty acid oxidation. For each of the 12 mice (four mice in each genotype), four

types of tissues (brown fat, skeletal, liver and heart) were applied to microarray experiment

separately to study the expression changes across genotypes. For duplicate spots, the mean

of the duplicates was used. Data from the four tissues were combined and log2 transformed.

Genes with little information content (average log2-scaled means ≤ 7 or average log2-scaled

standard deviations ≤ 0.4) are filtered out. A total of 4,288 genes are left for meta-analysis.

Among the 48 arrays performed, four arrays were identified with a quality defect and were

deleted from further analysis. The detailed sample information is described in Table 8.
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Table 9: Sample information of the mouse trauma data

set.
Array platform Codelink Affymetrix totalExperimental conditionsa I II III IV V I II III IV V

Number of arrays 4 3 4 4 4 4 3 4 4 4 38

aI:no manipulation; II: 1.5h HS; III: 1.5h HS+BF+1h R; IV:
1.5h HS+BF+4.5h R; V: 1.5h HS+BF+6h R.

The second data set applied is about mouse trauma experiments. Victims of trauma-

hemorrhagic shock (T-HS) (for example those due to car accident etc) often die due to severe,

complex and uncontrollable physiological disturbances that occur in many organs, especially

the liver. The progress of T-HS and resuscitation (R) is examined by well controlled murine

systems to identify gene expression profiles that are characteristic of this stress. Specifically

five groups of mice experiments were performed: (I) non-manipulated mice to serve as the

negative control group; (II) 1.5h of Hemorrhagic Shock without resuscitation (1.5hHS) served

as the positive control group; (III) 1.5h of hemorrhagic shock + bone fracture, followed by

one hour of fluid resuscitation (1.5hHS+BF+1hR); (IV) Similar to group III except for 4.5h

of fluid resuscitation (1.5hHS+BF+4.5hR); (V) Similar to group III except for 6h of fluid

resuscitation (1.5hHS+BF+6hR). Four mice are in each group with the liver samples applied

to microarray experiments (a total of 20 mice). The array experiments are done twice by

both Codelink and Affymetrix platforms. One array of group II in Codelink and one array

of group II in Affymetrix was of problematic quality and was removed from further analysis.

Table 9 describes the experimental details of the multi-platform data. After some standard

preprocessing procedures, 19,132 genes from Affymetrix platform and 26,063 genes from

Codelink platform were matched by GeneCruiser, resulting in 6,338 common genes for the

meta-analysis in this chapter.

The first data set contains a multi-tissue design. The application of HS1 helps to detect

tissue-specific biomarkers and HS2 identifies consistent tissue-invariant biomarkers. Both

hypothesis settings are of biological interest. On the other hand, the second data set contains

a multi-platform design. HS2 is of interest to generate highly confident biomarkers confirmed

by both platforms while HS1 becomes of less biological interest. The detected platform-
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specific biomarkers from HS1 may help to identify technical issues across the two platforms.

In general, we consider S studies to be combined (S = 4 in mouse metabolism data

and S = 2 in mouse trauma data). Among each study, K groups of samples are measured

with nsk replicates for study s and group k. Denote by xsgki the expression intensity of

gene g(1 ≤ g ≤ G), study s(1 ≤ s ≤ S), group k(1 ≤ k ≤ K) and replicated sample

i(1 ≤ i ≤ nsk). In this chapter, we particularly consider the situation when K > 2.

4.2.2 ANOVA-maxP for multiple studies

ANOVA-maxP is a natural extension of the traditional p-value based meta-analysis method.

The method is to take, for each gene, the maximum p- value observed over the S studies as

the test statistic. As a result, a biomarker is conservatively detected only if the p-values for

all studies are small. In the multi-class data structure considered in this chapter, the ANOVA

model is first used to test the significance of variation in gene expressions across phenotype

groups in each study. The corresponding p-values from the F-test are then combined by

taking the maximum (Box 1).

Box 1. Procedures for ANOVA-maxP

1. Compute the F-statistic, Fgs, for gene g in the sth study.

2. Permute group labels in each study for B times, and similarly calculated the permuted

statistics, F
(b)
gs , where 1 ≤ g ≤ G, 1 ≤ s ≤ S and 1 ≤ b ≤ B.

3. Estimate the p-value of Fgs as pgs =

∑B
b=1

∑G
g′=1 I(F

(b)
g′s ≥ Fgs)

(B ·G)
, where I(·) is the

indicator function that takes value one when the statement is true and zero otherwise.

Similarly given F
(b)
gs , compute pb

gs =

∑B
b′=1

∑G
g′=1 I(F

(b′)
g′s ≥ F

(b)
gs

(B ·G)
.

4. The maximum p-value statistic is defined as Vg = max1≤s≤Spgs. Similarly define

V
(b)
g = max1≤s≤Sp

(b)
gs .

5. Estimate the p-value of Vg by p(Vg) =

∑B
b=1

∑G
g′=1 I(V B

g′ ≤ Vg)

(B ·G)
.

6. Estimate the q-value for each gene as q(Vg) = π̂0

∑B
b=1

∑G
g′=1 I(V B

g′ ≤ Vg)

(B
∑G

g′=1 I(Vg′ ≤ Vg))
.
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4.2.3 Multi-class correlation (MCC) for a pair of studies

Below we describe our proposed pairwise multi-class correlation measure (MCC), given a

gene, in two studies. For simplicity, we drop the subscript of gene g and studies s. Consider

xkj(1 ≤ k ≤ K, 1 ≤ j ≤ nk) to represent the expression intensity of class k, sample j for

the first study and xkj(1 ≤ k ≤ K, 1 ≤ j ≤ mk) for the second study. A naive measure

to quantify the correlation of the expression patterns across two studies may be the direct

sample correlation of (x11, . . . , x1n1 , . . . , xK1, . . . , xKnk
) and (y11, . . . , y1m1 , . . . , yK1, . . . , yKmk

)

if nk = mk, ∀k. However, since nk 6= mk in general and this naive definition ignores the

exchangeability within (x11, . . . , x1nk
) and (y11, . . . , y1mk

) for a given 1 ≤ k ≤ K, we need to

develop a better-defined correlation measure.

Assume we know the underlying distribution Xk and Yk, where xkj are i.i.d. from Xk,

ykj are i.i.d. from Yk, E(Xk) = µXk
, E(Yk) = µYk

, V ar(Xk) = σ2
Xk

and V ar(Yk) = σ2
Yk

.

Also assume Xk’s and Yk’s are independent. Define a bivariate distribution (X, Y ) to be the

equal mixture of bivariate distributions (Xk, Yk) such that

F(X,Y )(s, t) =
1

K

K∑

k=1

F(Xk,Yk)(s, t) =
1

K

K∑

k=1

F(Xk)(s)F(Yk)(t), (4.1)

where FX(·) represent the cumulative distribution function of X. We define the multi-class

correlation measure of (X1, . . . , XK) and (Y1, . . . , YK) to be cor(X, Y ). It can be easily shown

that

ρ((X1, . . . , XK), (Y1, . . . , YK))

=
E(XY )− EX · EY√

V ar(X) · V ar(Y )

=
1
K

∑K
k=1 µXk

µYk
− ( 1

K

∑K
k=1 µXk

)( 1
K

∑K
k=1 µYk

)√
[ 1
K

∑K
k=1 σ2

Xk
+ 1

K

∑K
k=1(µXk

− µ̄X)2][ 1
K

∑K
k=1 σ2

Yk
+ 1

K

∑K
k=1(µYk

− µ̄Y )2]
(4.2)

where µ̄X = 1
K

∑K
k=1 µXk

and µ̄Y = 1
K

∑K
k=1 µYk

. This correlation measure takes values

between -1 and 1. A large positive correlation indicates a similar pattern between two

studies for a given gene.
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In practice, distributions of (Xk, Yk) are unknown. Instead we are given a set of observa-

tions (x̃, ỹ), where x̃ = {xkj, 1 ≤ k ≤ K, 1 ≤ j ≤ nk},ỹ = {ykj, 1 ≤ k ≤ K, 1 ≤ j ≤ mk}. De-

note by X ′
k the empirical distribution of {xkj, 1 ≤ j ≤ nk} such that FX′

k
=

∑nk

j=1 I(xkj ≤ t)

and similarly FY ′k =
∑nk

j=1 I(ykj ≤ t). Define (X ′, Y ′) to be an equal mixture of bivariate

distribution (X ′
k, Y

′
k) such that

F(X′,Y ′)(s, t) =
1

K

K∑

k=1

F(X′
k,Y ′k)(s, t) =

1

K

K∑

k=1

F(X′
k)(s)F(Y ′k)(t). (4.3)

The multi-class correlation (MCC) based on the observed (x̃, ỹ) becomes

ρ(x̃, ỹ)

=
E(X ′Y ′)− EX ′ · EY ′
√

V ar(X ′) · V ar(Y ′)

=
1
K

∑K
k=1 µX′

k
µY ′k − ( 1

K

∑K
k=1 µX′

k
)( 1

K

∑K
k=1 µY ′k)√

[ 1
K

∑K
k=1 σ2

X′
k
+ 1

K

∑K
k=1(µX′

k
− µ̄′X)2][ 1

K

∑K
k=1 σ2

Y ′k
+ 1

K

∑K
k=1(µY ′k − µ̄′Y )2]

, (4.4)

where µX′
k

=
∑nk

j=1 xkj/nk, µY ′k =
∑nk

j=1 ykj/mk, σ2
X′

k
=

∑nk

j=1(xkj − µX′
k
)2/nk and σ2

Y ′k
=

∑nk

j=1(ykj − µY ′k)
2/mk.

Detailed procedures for the application of MCC for finding biomarkers with consistent

patterns in two studies are listed in Box 2.

Box 2. Procedures of MCC for combining two studies

1. Compute MCC statistic, MCCg for given gene g.

2. Permute group labels in each study for B times, and similarly calculated the permuted

statistics, MCC
(b)
g , where 1 ≤ g ≤ G, 1 ≤ s ≤ S and 1 ≤ b ≤ B.

3. Estimate the p-value of MCCg as

p(MCCg) =

∑B
b=1

∑G
g′=1 I(MCC

(b)
g′ ≥ MCCg)

(B ·G)
.

4. Estimate the q-value for each gene of MCCg as

q(MCCg) = π̂0

∑B
b=1

∑G
g′=1 I(MCC

(b)
g′ ≤ MCCg)

(B
∑G

g′=1 I(MCCg′ ≤ MCCg))
.
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4.2.4 Min-MCC for multiple studies

The MCC measure described above measures correlation between two given studies. It can

be extended for identifying genes with a consistent pattern across more than two studies. The

minimum MCC is defined as min −MCCg = min1≤u≤v≤S(MCCg(u)(v)), where MCCg(u)(v)

is the MCC measure for gene g and between study u and study v. With slight modification

of the algorithm in Box 2, the algorithm for min-MCC is provided in Box 3.

Box 3. Procedures of min-MCC for combining multiple studies

1. Compute the MCC statistic, MCCg(u)(v) for given gene g and for a pair of studies u

and v.

2. Permute group labels in each study for B times, and similarly calculated the permuted

statistics, MCC
(b)
g(u)(v) for study u and v, where 1 ≤ g ≤ G, 1 ≤ s ≤ S and 1 ≤ b ≤ B.

3. Calculate min − MCCg = min1≤u≤v≤S(MCCg(u)(v)) and min − MCC
(b)
g =

min1≤u≤v≤S(MCC
(b)
g(u)(v)).

4. Estimate the p-value of min−MCCg as

p(min−MCCg) =

∑B
b=1

∑G
g′=1 I(min−MCC

(b)
g′ ≥ min−MCCg)

(B ·G)
.

5. Estimate the q-value for each gene of min−MCCg as

q(min−MCCg) = π̂0

∑B
b=1

∑G
g′=1 I(min−MCC

(b)
g′ ≤ min−MCCg)

(B
∑G

g′=1 I(min−MCCg′ ≤ min−MCCg))
.

4.3 RESULTS

4.3.1 Simulation studies

We conducted two simulation scenarios for combining two and three genomic studies to

assess the performance of our proposed min-MCC method and ANOVA-maxP, where the

MCC method for combining two studies is a special case of min-MCC. Denote by xsgki the

expression intensity of study s(1 ≤ s ≤ S), gene g(1 ≤ g ≤ G), sample class k(1 ≤ k ≤ K)

and replicated sample i(1 ≤ i ≤ nsk). In the first simulation scenario, we simulated two

studies (S = 2) and the performance of MCC and ANOVA-maxP was compared. In the
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Table 10: Settings of the first simulation scenario.
Scenario 1

Effect size N Study 1 Study2
(n11, n12, n13) = (10, 5, 8) (n21, n22, n23) = (5, 8, 10)

(µ11, µ12, µ13), σ1 (µ21, µ22, µ23), σ2

0.5
I (1,3,5),3.5 (2,4,6),3.1

II (1,3,5),3.5 (6,4,2),3.1
NULL (0,0,0),3.5 (0,0,0),3.1

0.6
I (1,3,5),2.9 (2,4,6),2.6

II (1,3,5),2.9 (6,4,2),2.6
Null (0,0,0)2.9 (0,0,0),2.6

0.7
I (1,3,5),2.5 (2,4,6),2.2

II (1,3,5),2.5 (6,4,2),2.2
Null (0,0,0),2.5 (0,0,0),2.2

0.8
I (1,3,5),2.2 (2,4,6),1.9

II (1,3,5),2.2 (6,4,2),1.9
Null (0,0,0),2.2 (0,0,0),1.9

I: genes with concordant patterns across studies. II: genes with discordant
patterns across studies. Null: null genes.

second scenario, three studies were simulated (S = 3) and we compared ANOVA-maxP

with min-MCC. Each study had three subclasses (K = 3). The numbers of replicates, nsk

(1 ≤ s ≤ S and 1 ≤ k ≤ K), were different among each subclass of each study. A total of

G=2000 genes in each study were simulated. Among these 2000 genes, 300 genes displayed

concordant patterns across all studies (category I) and 100 genes were discordant(category

II). The expression intensities were simulated from xsgki ∼ N(µsk, σ
2
s). For genes with

concordant pattern, mean vectors µs = (µs1, . . . , µsk) across studies had pair-wise correlation

one. For discordant genes, the pair-wise correlation of mean vectors was low or negative. For

the rest of the 1600 null genes, (µs1, . . . , µsk) = (0, . . . , 0). The effect size was defined as the

ratio of the standard deviation of the mean vectors to the within group standard deviation,

σs. We chose effect sizes to be 0.5, 0.6, 0.7 and 0.8. The false discovery rate (FDR) was

controlled at 0.05 for each method, and each simulation was repeated 200 times. The details

of the simulation settings are described in Tables 10 and 11.

The average number of genes identified in each category under the two different scenarios

are presented in Tables 12 and 13 respectively. As expected, the ANOVA-maxP detects both

category I and category II genes because the p-values in ANOVA do not reflect the pattern

information for each individual study. On the other hand, min-MCC method detects almost
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Table 11: Settings of the second simulation scenario.
Scenario 2

Effect size N Study 1 Study 2 Study 3
(n11, n12, n13) = (10, 5, 8) (n21, n22, n23) = (5, 8, 10) (n31, n32, n33) = (8, 10, 5)

(µ11, µ12, µ13), σ1 (µ21, µ22, µ23), σ2 (µ31, µ32, µ33), σ3

0.5
I (1,3,5),3.5 (2,4,6),3.1 (1,4,7),4.4

II (1,3,5,3.5 (6,4,2),3.1 (1,7,4),5.3
III (0,0,0),3.5 (0,0,0),3.1 (0,0,0),4.4

0.6
I (1,3,5),2.9 (2,4,6),2.6 (1,4,7),3.7

II (1,3,5),2.9 (6,4,2),2.6 (1,7,4),4.4
Null (0,0,0),2.9 (0,0,0),2.6 (0,0,0),3.7

0.7
I (1,3,5),2.5 (2,4,6),2.2 (1,4,7),3.2

II (1,3,5),2.5 (6,4,2),2.2 (1,7,4),3.8
Null (0,0,0),2.5 (0,0,0),2.2 (0,0,0),3.2

0.8
I (1,3,5),2.2 (2,4,6),1.9 (1,4,7),2.8

II (1,3,5),2.2 (6,4,2),1.9 (1,7,4),3.3
Null (0,0,0),2.2 (0,0,0),1.9 (0,0,0),2.8

I: genes with concordant patterns across studies. II: genes with discordant patterns across studies.
Null: null genes.

only concordant genes (category I) and is much more powerful than the ANOVA-maxP if

the goal is to identify only concordant genes. For instance, when the effect size equals

0.6 and three studies are combined, min-MCC detects an average of 265.2 (out of 300)

genes of true concordant pattern genes, while ANOVA-maxP only identifies 206.1 together

with 67.7 discordant genes. If the biological goal is to identify only genes with concordant

patterns, min-MCC provides a better performance (false discovery rate should be calculated

as FDR1=(II+null)/(I+II+null) in this case). On the other hand, if genes with discordant

genes are also of biological interests, the ANOVA-maxP should be the method of choice (false

discovery rate calculated as FDR2 = (null)/(I + II + null)). We note that the simulation

results are all slightly conservative (true FDR ∼= 0.04 when nominal FDR is controlled

at 0.05). This is because the parameter π0, the proportion of null genes, is set to equal 1

throughout all of the methods (Boxes 1-3). The estimation of π0 has been a difficult issue

and it has been shown that improper estimation can lead to poor inference. To always set

π0 = 1 can be conservative (i.e. few biomarkers are claimed as it should be). But in the

situation that most genes in the genome are non-differentially expressed, which is true in

many applications, the effect will be minimal.
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Table 12: Evaluation of ANOVA-maxP and MCC methods by simulation in the first

scenario.
Effect size Methods I II Null FDR1 = II+Null

I+II+Null FDR2 = Null
I+II+Null

0.5 ANOVA-maxP 41.9 13.6 2.4 0.28 0.04 a

min-MCC 113.1 0.0 4.7 0.04 b 0.04
0.6 ANOVA-maxP 113.5 37.4 6.5 0.28 0.04 a

min-MCC 205.6 0.0 8.1 0.04 b 0.04
0.7 ANOVA-maxP 174.2 57.4 9.8 0.28 0.04 a

min-MCC 260.5 0.1 10.5 0.04 b 0.04
0.8 ANOVA-maxP 228.8 76.1 13.2 0.28 0.04 a

min-MCC 286.7 0.1 11.4 0.04 b 0.04

I: genes with concordant patterns across studies. II: genes with discordant patterns across
studies. Null: null genes.

aANOVA-maxP detects both concordant and discordant genes. FDR2 is a better measure for
false discoveries.

bMCC detects only concordant genes. FDR1 is a better measure for false discoveries.

Table 13: Evaluation of ANOVA-maxP and min-MCC methods by simulation in the

second scenario.
Effect size Methods I II Null FDR1 = II+Null

I+II+Null FDR2 = Null
I+II+Null

0.5 ANOVA-maxP 126.6 42.0 7.2 0.28 0.04 a

min-MCC 210.2 0.2 9.2 0.04 b 0.04
0.6 ANOVA-maxP 206.1 67.7 11.6 0.28 0.04 a

min-MCC 265.2 0.05 11.5 0.04 b 0.04
0.7 ANOVA-maxP 258.5 85.9 15.2 0.28 0.04 a

min-MCC 289.2 0.02 12. 0.04 b 0.04
0.8 ANOVA-maxP 286.0 95.0 15.9 0.28 0.04 a

min-MCC 297.6 0.0 12.8 0.04 b 0.04

I: genes with concordant patterns across studies. II: genes with discordant patterns across studies.
Null: null genes.

aANOVA-maxP detects both concordant and discordant genes. FDR2 is a better measure for false
discoveries.

bmin-MCC detects only concordant genes. FDR1 is a better measure for false discoveries.
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4.3.2 Application to mouse metabolism data

We applied both the ANOVA-maxP and the min-MCC methods to the mouse metabolism

data. The first biological goal was to identify biomarkers that have a consistent pattern across

all four tissues (i.e. reliable tissue-invariant biomarkers). To achieve this goal, the min-MCC

was better. A total of 394 genes were identified and are displayed in Figure 6A. It is clearly

seen that these genes have a clear concordant pattern across all four tissues. A simple cluster

analysis can further group them into six major patterns for further biological investigations.

For the second biological goal, we were also interested in genes with clear but discordant

patterns across tissues. These tissue-dependent biomarkers reflected tissue-specific biological

changes under VLCAD and LCAD mutations. The ANOVA-maxP identified 676 genes and

the heatmap of detected biomarkers is shown in Figure 6B. Figure 6C shows a histogram

of min-MCC (minimum of pair-wise multi-class correlation measure) of the 676 detected

biomarkers. Also 431 of the 676 genes (63.76%) had negative min-MCC (i.e. with discordant

pattern in at least a pair of tissues). Figure 6D shows a heatmap of these 431 discordant

genes and they are potential targets to identify tissue-specific regulators in the mutations. For

instance, Figure 5 shows the box-plots and patterns of two genes, Acsl5 and Scd1, among the

722 genes. Acsl5 is known to be involved in fatty acid degradation pathway. When VLCAD

or LCAD is knocked out, this gene is down-regulated in brown fat tissue, suggesting the loss

of degradation and metabolism activity of fatty acid. On the other hand, Scd1 is known

to help synthesize fatty acid. Its up-regulation in the liver tissue when VLCAD or LCAD

is deleted seems to suggest that the defect of metabolism in these mice has increased the

activity of fatty acid synthesis in liver.

4.3.3 Application to mouse trauma data

We similarly applied the ANOVA-maxP and the min-MCC to the mouse trauma data. We

note that the two studies to be combined were from two commercial platforms, Affymetrix

and Codelink. Ideally both array platforms measure identical samples and there should

not exist any discordant pattern biomarker. Combining the two data sets should increase

statistical power and detect more concordant pattern genes. Indeed, by controlling the FDR
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Figure 6: Application to mouse metabolism data. A: heatmap of 394 min-MCC genes, B:

heatmap of 676 ANOVA-maxP genes, C: histogram of min-MCC of the 676 ANOVA-maxP

genes, D: heatmap of 431 discordant ANOVA-maxP genes. (B: Brown fat; L: Liver; H:

Heart; S: Skeletal muscle. 1: Wild type; 2: VLCAD -/-; 3: LCAD -/-.).
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at 0.05, 4,004 genes were identified using the min-MCC (figure 7A). These highly-reliable

biomarkers confirmed by both platforms were used for further cluster analysis and pathway

analysis to understand the biological changes under different levels of severity of trauma

(manuscript in preparation). On the other hand, the ANOVA-maxP detected 3,587 genes

(heatmap shown in Figure 7B) and 208(5.8%) genes showed discordant patterns of negative

MCCs across the two platforms (Figure 7C). The higher proportion of genes with concordant

patterns confirmed that the two array platforms are highly reproducible. The 208 discordant

genes, however, need further investigation (heatmap in Figure 7D). The discordances are

possibly due to mistaken gene annotation, differential hybridization efficiencies caused by

different probe selection criteria or non-specific cross-hybridization.

4.4 DISCUSSION

Systematic information integration helps to increase the statistical power of biomarker detec-

tion. The evaluation of performance and choice of method depend on the ultimate biological

goal. Many meta-analysis methods have been proposed for combining two-class genomic

studies. In this chapter, we consider the issue of combining multi-class microarray studies.

Two methods are proposed and evaluated. The statistic ANOVA-maxP takes the maximum

of the ANOVA p-values in all studies. The method detects genes with clear class-wise pat-

terns (i.e. large between-class variation and small within-class variation). It is easily seen

that p-values of the ANOVA method cannot provide pattern information and genes detected

may have discordant patterns across studies. To identify concordant pattern biomarkers

across studies, we develop a novel multi-class correlation measure (MCC) via a bivariate

equal-weight mixture distribution from the observations of a pair of studies. The method is

extended to taking the minimum of the MCC of all pairwise studies (min-MCC) when more

than two studies are considered. We showed that the ANOVA-maxP and min-MCC are com-

plementary methods for combining multiple multi-class microarray studies depending on the

ultimate biological purposes. When study variations are expected and both study-invariant

(concordant pattern) and study-specific (discordant pattern) genes are of biological inter-
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Figure 7: Application to mouse trauma data. A: heatmap of 4,004 min-MCC genes, B:

heatmap of 3,587 ANOVA-maxP genes, C: histogram of min-MCC of the 3,587 ANOVA-

maxP genes, D: heatmap of 208 discordant ANOVA-maxP genes.

52



ests, the ANOVA-maxP performs well. When detecting highly reliable biomarkers (i.e. only

study-invariant or concordant pattern genes) is the goal, the min-MCC is a better choice

and provides better statistical power.

There are a few possible extensions and future directions. The two proposed methods

utilize the most conservative and extreme statistic (maximum of ANOVA p-values and min-

imum of pairwise MCC). This may be too stringent and sensitive to outliers especially when

K is large. A quick modification may be to use the rth ranked statistic instead.

Currently we consider all studies to have identical K classes. Both ANOVA-maxP and

min-MCC can be extended for studies containing mismatched and different number of classes.

For min-MCC, the pairwise MCC can be defined using only the overlapping classes across a

pair of studies.
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5.0 GENOMEMETA PACKAGE

5.1 INTRODUCTION

With microarray technology becoming more prevalent in recent years, it is now common

for several laboratories to employ the same microarray technology to identify differentially

expressed genes that are related to the same phenomenon in the same species. Summarizing

information from multiple studies is becoming increasingly popular in this field. Meta-

analysis is an important component and often uses statistical methods to combine results

from a series of related studies. Increasing statistical power in detecting differentially ex-

pressed genes and confidence in inferences from individual studies are two major goals of

meta-analysis. The need of meta-analysis tools for combining microarray studies is obvious.

We develop a R package, genomeMeta, partly done in C which contains classes and

methods useful for analyzing and visualizing multiple microarray data sets. In genomeMeta,

we implement many of the tools described in previous chapters including the two statistics we

propose in chapter 3 and 4. Inputs are a list of microarray datasets with class information for

each dataset. genomeMeta produces meta-analysis results according to the different methods

and visualization of genes identified by the different methods.

This chapter provides an overview of how genomeMeta organizes data and describes the

methods utilized. And finally an example shows how the package is used.
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5.2 DESCRIPTION

5.2.1 Data structure

We assume that as a first step all studies have been appropriately pre-processed and genes in

each study have been matched and merged by a common key (e.g. Unigene ID). We require

that the data object contains two lists. The first is a list of datasets from multiple studies.

Each dataset is a matrix with rows representing genes or variables, and columns representing

arrays or samples. The second is also a list which contains labels for each dataset. Each

label is an object of class “factor”.

5.2.2 genomeMeta methods

In genomeMeta, we implement many of the tools described in Chapters 2, 3 and 4. We

provide methods for the combination of datasets based on both two sample comparisons

and multiple-class comparisons. The available methods are shown in Figure 8. If each

study contains two classes, the traditional two-sample t statistic with unequal variance or

the moderated t statistic described in chapter 3 can be performed. The p-values are then

computed by permutation. For combining p-values, four methods are available to choose

from minP, maxP, Fisher and OW. As discussed and compared in previous chapters, maxP

aims to identify genes differentially expressed in all studies. The others methods aim to

identify genes differentially expressed in at least one of the studies. OW further divides

genes into several categories showing those in which study the gene is significant. minP is

not recommended for its poor power and unstable performance in general as shown in chapter

3. If a study has more than two classes, the F statistic with either equal or unequal variances

in analysis of variance is performed. Similarly, the p-values of the observed F statistics are

calculated from permutation. The p-values are then combined in the same manner.

Finally, genes with consistent patterns in all studies might be of more interest to re-

searchers. We provide a powerful method min-MCC which is derived based on an equal

mixture of bivariate normal distributions.
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Figure 8: The methods implemented in genomeMeta package.

5.3 EXAMPLE

Following the example for the GeneMeta package, we split the breast tumor study reported

by West et al. (2001) into two artificial studies and combine results from the two studies

using different methods. As expected, according to the quantile-quantile plot of the observed

vs. expected Cochran’s Q values (Gentleman et al. (2008)), the two datasets are homoge-

neous. We fit the moderated-t+OW and moderated-t+Fisher methods to the artificial split.

A plot of genes whose intensity levels are standardized within study is provided by the func-

tion plot.Metagene. If we are more interested in the number of genes that are below a given

threshold for the FDR we can use plot.fdr.

> dt < −list(data = list(d1, d2), label = list(l1, l2))

> library(genomeMeta)

> modt.ow < −genomeMeta(dt, nperm = 100, test =′ modt′,meta.method =′ OW ′)

> plot.fdr(modt.ow)

> plot.Metagene(modt.ow, fdr.cut = 0.05)

> modt.maxp < −genomeMeta(dt, nperm = 100, test =′ modt′,meta.method =′ Fisher′)

> plot.fdr(modt.maxp)

> plot.Metagene(modt.maxp, fdr.cut = 0.05)
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The second example is the mouse energy metabolism data. We apply both the ANOVA-

maxP and the min-MCC methods to the data. Plots are shown in Figure 10.

> dt < −list(data = list(brown, liver, heart, skeletal),

label = list(colnames(brown), colnames(liver), colnames(heart), colnames(skeletal)))

> library(genomeMeta)

> F.maxp < −genomeMeta(dt, nperm = 100, test =′ F ′, meta.method =′ maxP ′)

> plot.fdr(F.maxp)

> plot.Metagene(F.maxp, fdr.cut = 0.05)

> minmcc < −genomeMeta(dt, nperm = 100,meta.method =′ minMCC ′)

> plot.fdr(minmcc)

> plot.Metagene(minmcc, fdr.cut = 0.05)

With 200 permutations and 2000 genes, the analysis takes approximately within one

minute.

5.4 DISCUSSION

genomeMeta provides methods for analysis of multiple microarray studies. We organize the

data and output in an object that can be queried for individual analysis results, combined

analysis results and visualization of significant genes. More extensions are under way which

include the min-MCC methods dealing with studies containing mismatched and different

numbers of classes and other meta analysis methods as described in section 3 of chapter 2.
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Figure 9: Genes identified using Meta-analysis for breast tumor studies. A. moderated t +

OW method. Genes identified by OW with FDR ≤ 0.05. OW classifies genes into several

categories. B. moderated t + OW method. The number of genes that are below the threshold

for FDR. C. moderated t + Fisher method. Genes identified by OW with FDR ≤ 0.05. D.

moderated t + Fisher method. The number of genes that are below the threshold for FDR.
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Figure 10: The heatmaps of genes identified using Meta-analysis for mouse energy

metabolism studies. A. F + maxP method. F+maxP identifies genes (FDR ≤ 0.05) whose

expressions significantly vary across genotypes in all tissues. B. F + maxP method. The

number of genes that are below the threshold for FDR. C. min-MCC method. Only genes

with consistent variation across genotypes in all tissues are detected (FDR ≤ 0.05). D.

min-MCC method. The number of genes that are below the threshold for FDR.
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6.0 CONCLUSION

Large-scale meta-analysis of genomic studies is becoming increasingly common, because it is

now more feasible and there are a greater volume of data sets available. In this dissertation,

I have addressed these issues as follows:

In Chapter 3, I clarified that some existing meta-analytic methods are for different bi-

ological purposes. The need to distinguish them is more obvious in genomic studies. Two

complementary hypothesis settings are outlined. And all meta-analytic methods targeted

for their respective hypothesis settings are clarified. Focusing on one of the hypotheses, we

proposed a new meta-analytic method to facilitate combination of similar microarray studies.

This method is named as the optimally-weighted statistic, which is based on the weighting

scheme of the famous Fisher’s method. The statistic is constructed as the minimum of the

p-values of the weighted Fisher’s statistic for all possible weights. We have shown that this

method is admissible under Birnbaum’s theorem. By comparing it with other popular meth-

ods, we showed that it had better power for detecting genes differentially expressed in part

of the data sets with a tradeoff of slightly lesser power than Fisher’s method in detected

genes differentially expressed in all data sets. In general our method is powerful and supe-

rior to the others. Moreover, the optimal weights of each study for each gene produced by

the method can lead to further categorization of differentially expressed genes, showing in

which studies the identified genes are differentially expressed. The application to the multi-

tissue mouse energy metabolism study and multiple prostate cancer studies have shown that

the optimally-weighted statistic is very well suited to the setting where we expect tests to

vary across data sets. We conducted extensive simulations to assess the performance of our

proposed method and some existing methods with regard to the number of genes detected

in different settings and the estimate of the false discovery rate under different scenarios.
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Optimally-weighted method is more robust to varying scenarios.

In contrast to the combining estimates approach, the optimally-weighted method com-

bines p-values. The principal objection to the combining p-value approaches is failure in

producing direction and magnitude. However, data structures and statistical hypotheses

in multiple microarray studies may differ, making a direct combination of estimates inap-

propriate. Moreover, there are two ways to incorporate direction information for a p-value

based method. One is to incorporate signs according to the effect estimates, the other is to

consider a one-sided p-value. We utilized the first way to further filter out identified genes

with inconsistent regulations across data sets. However, this strategy is not feasible where

there are multiple classes in each study.

To deal with studies with more than two classes, we proposed two methods in chapter 4.

The first is a natural extension of Wilkinson’s maximum p-value method. The ANOVA model

is first used to test the significance of variation in gene expressions across multiple classes

in each study. The corresponding p-values from the F-test are then combined by taking the

maximum. This approach is denoted as the ANOVA-maxP. Obviously, the ANOVA-maxP

identifies genes significantly vary across classes in all studies. It is unable to filter genes that

differ in any pattern between classes across studies. Here, we proposed a second test statistic,

the multi-class correlation statistic (MCC), based on an equal mixture of bivariate normal

distributions. We assume that the gene expressions from the same class of two studies follow

a bivariate distribution. We further assume that there is an equal probability of sampling

each class. This assumption allows us to conveniently construct a statistic to assess the

correlation between two studies. Moreover, a large positive MCC indicates a similar pat-

tern between two studies. It also overcomes the infeasibility of Pearson’s correlation when

the studies have unequal sample sizes. The MCC measure is further extended to identify

genes with a consistent pattern across more than two studies. We considered minimizing

all pairwise multi-class correlations of all studies (min-MCC). The min-MCC was compared

with the ANOVA-maxP in a simulation study and in applications to multi-tissue mouse en-

ergy metabolism and mouse trauma data sets. In the simulation, the min-MCC shows much

higher power in identifying genes with consistent patterns across studies than ANOVA-maxP.

It is not surprising that the ANOVA-maxP also identifies plenty of genes with inconsistent
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patterns across studies. Both methods have been shown to be indispensable in the appli-

cations, and the min-MCC helps to detect genes have same pattern across studies. On the

other hand, genes that are differentially expressed with different patterns across studies are

also of interest to researchers. In this case, the combination of the ANOVA-maxP and the

min-MCC can be implemented.

There are a few possible extensions and future directions. The two proposed methods

utilize the most conservative and extreme statistic (maximum of ANOVA p-values and min-

imum of pairwise MCC). This may be too stringent and sensitive to outliers especially when

K is large. A quick modification may be to use the rth ranked statistic instead. Currently we

consider all studies to have identical K classes. Both the ANOVA-maxP and the min-MCC

can be extended for studies containing mismatched and different number of classes. For the

min-MCC, the pairwise MCC can be defined using only the overlapping classes across a pair

of studies.

In applications, we only consider matched genes from all studies. In practice, studies to be

combined usually come from different microarray platforms. Genes that are missing in part

of the studies are not considered. As the number of studies increases, much fewer genes can

be matched. An extension allowing non-matched genes is necessary. This dissertation only

considered integrative analysis of microarray data sets, the statistical methods we proposed

are flexible and can be easily applied to other similar data sets such as SNP arrays, genome

arrays, methylation arrays, proteomic experiments and ChIP-on-chip experiments.

In the end, we developed a R package - genomeMeta which implemented the statistical

tools we described in this dissertation. More extensions as we described above are under

process.

This work attempts to improve the identification of biologically meaningful genes and

could improve significant findings by providing more accurate answers and providing a brand

new direction to a rarely discussed statistical issue yet important in practice.
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