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ABSTRACT 

 
BIOMECHANICAL SIMULATIONS OF HEART VALVE BIOMATERIALS  

 
 

Wei Sun, Ph.D. 
 

University of Pittsburgh, 2003 
 
 

For more than 40 years, replacement of diseased natural heart valves with 

prosthetic devices has dramatically extended the quality and length of the lives of 

millions of patients worldwide. However, as in many medical therapies today, 

replacement valves are never as good as natural, healthy valves. Bioprosthetic heart 

valves (BHV) continue to fail due to structural failure, a result of both poor tissue 

durability and faulty design. Clearly, an in-depth understanding of the biomechanical 

behavior of the BHV at both the tissue- and functional prosthesis levels is essential to 

improving BHV design and the mechanisms of failure.  

The goal of this research effort was to develop and evaluate a complete process 

for biomechanical simulations of heart valve biomaterials, with an emphasis on 

numerical stability and experimental validation.  This process started from the 

collection of appropriate experimental data, formulating and validating a constitutive 

model, obtaining and refining material parameters, finite element implementation and 

validation of a constitutive model, and finally finite element simulation of valve 

deformation.  

 iv



 

The results of this study indicated that explicit expression of shear behavior was 

required for proper computational implementation of the exponential Fung pseudo-

elastic model and thus, biaxial testing with extension only did not provide sufficient 

information to constitute a strain energy function for computational implementation. 

This study also demonstrated that a set of model constraints imposed by the convexity 

of strain energy function and condition number of elasticity tensor were necessary for 

numerical stability. When applied to an intact valve, the finite element model 

demonstrated an overall discrepancy of only 0.0187 strain when compared to 

experimental validation data, which was within the experimental error. This result 

underscored the need for rigorous experimentation and constitutive modeling to allow 

a close match between FE and experiment output. The present study is, to our 

knowledge, the most rigorously developed and validated model available to date for 

characterizing valve deformation.  It is hoped that the developed approaches will be a 

valuable tool for evaluating various valve design parameters and will greatly facilitate 

optimal BHV design.  
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1.0 INTRODUCTION 

 

“The heart, consequently, is the beginning of life; the sun of the microcosm, even as the 

sun in his turn might well be designated the heart of the world; for it is the heart by whose virtue 

and pulse the blood is moved, perfected, and made nutrient, and is preserved from corruption 

and coagulation” – William Harvey (1578-1657)  

 

Before 1900, most people made their living primarily through manual labor and 

had relatively short live spans, and thus very few people died of heart disease. After the 

Industrial Revolution, the age of technology has made life easier and the increased 

lifespan made people more prone to heart disease. The combination of a sedentary 

lifestyle and a rich diet led to an increase in clogged blood vessels, heart attacks, and 

strokes. Heart disease became commonplace. The rate of heart disease increased so 

sharply between 1940 and 1967 that the World Health Organization called it the world's 

most serious epidemic. Since then, heart disease has become the number one killer in 

the United States.  Today, many causes of heart disease are known. To a certain extent, 

so are the cures. Through the years, tools and techniques for treating heart disease have 

also evolved to meet the increased need1  (See Milestones in Cardiology at 

http://sln.fi.edu/biosci/history/firsts.html). However, much remains to be done. 
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Heart valve disease, a kind of heart disease caused by rheumatic fever, birth 

defects, aneurysms, and other ailments, is a significant cause of morbidity and 

mortality. Currently, the treatment of aortic valve disease is usually complete valve 

replacement. Worldwide, there are ~300,000 people each year who undergo heart valve 

replacement surgery. Approximately one-half of heart valve patients receive mechanical 

heart valves, which are composed of rigid, synthetic materials.  The other half receives 

bioprosthetic heart valve (BHV) replacements, which are composed of biologically 

derived tissues. In general, BHV have good hemodynamics and do not require the anti-

coagulation therapy necessary for mechanical heart valves. However, BHV continue to 

fail from calcification and mechanical damage 2. Recent work on explanted BHV 

suggested that mechanical damage to collagen could occur independent of calcification 3, 

indicating that mechanical damage alone can be a major clinical cause of failure. Clearly, an in-

depth understanding of the biomechanical behavior of the BHV at both the tissue- and 

functional prosthesis levels is essential to improving our understanding of BHV failure.  

Improving BHV durability is an ongoing and challenging research area. It is the 

goal of this dissertation to provide better understanding of BHV biomechanical 

behaviors and to aid in the design of novel heart valve biomaterials.  In this chapter, a 

brief overview of heart valve replacement, experiment techniques, constitutive models 

and numerical simulations will be presented. However, where appropriate, more 

detailed reviews on theories and previous studies may be presented in the introduction 

section of the associated chapters. Nonetheless, this chapter begins with a brief look at 

the heart and its four valves.  
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1.1 INTRODUCTION TO THE HEART AND ITS FOUR VALVES 

Heart is a pumping muscle that works nonstop to keep the body supplied with 

oxygen-rich blood. Four one-way heart valves keep blood moving in one direction 

through the heart. The heart is divided into four chambers. The upper chambers are 

called atria and the lower chambers are called ventricles. The heart muscle contracts 

blood from chamber to chamber. With each contraction, the one-way valves open to let 

blood through to the next chamber. The valves then close to stop blood from moving 

backward. In this way, the valves keep blood moving through the heart and out to the 

body. The valves and the parts of the heart are shown in Figure 1-1. 

 

 
Figure 1-1 Anatomical structure of the heart and the heart valves (Image courtesy of 

www.surgery.com)  
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The tricuspid valve is located between the right atrium and right ventricle. The 

pulmonary or pulmonic valve is between the right ventricle and the pulmonary artery.  

The mitral valve is between the left atrium and left ventricle. The aortic valve is 

between the left ventricle and the aorta.  

Each valve has a set of flaps (also called leaflets or cusps). When working 

properly, the heart valves open and close fully. But a heart valve can be damaged. A 

person can be born with an abnormal heart valve, a type of congenital heart defect. A 

valve can become damaged by 

o Infections such as infective endocarditis 

o Rheumatic fever 

o Changes in valve structure in the elderly 

Disease can affect these valves in two ways, stenosis and regurgitation. Stenosis 

is a narrowing of the valve so that blood cannot move through as freely as necessary. 

Regurgitation is a failure of the one-way valve so that blood flows back through the 

valve in the wrong direction. 

The valves most commonly affected by disease are the mitral valve, which 

controls flow of the blood from the left upper chamber (atrium) to the left lower 

chamber, and the aortic valve, which controls blood flow out of the left ventricle to the 

rest of the body. The study in this dissertation will focus on the aortic valve 

replacement. 
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1.2 BIOMECHANICS AND FUNCTION OF NATURAL AORTIC VALVE 

Development of tissue valve substitutes depends on an understanding of the 

fundamental mechanisms limiting the durability of previous and current tissue valves. 

This in turn necessitates an understanding of the structure-function of the natural aortic 

valve, in particular from the biomechanical prospective. 

The aortic valve cusps are mostly (90%) water, but contain other components that 

give it unique mechanical properties. The connective tissue proteins collagen and 

elastin are the main structural components, while the roles of glycosaminoglycans and a 

small population of cells are poorly understood. The cusp consists of three layers of 

morphologically distinct tissue in the Figure 1-2 below: the fibrosa, spongiosa and 

ventricularis.  

Fibrosa

Spongiosa

Ventricularis

           

F

S

V
 

Figure 1-2 Three layers of aortic cusp: fibrosa(F), spongiosa(S) and ventricularis(V). 

 

The fibrosa consists mainly of collagen, arranged in a circumferential direction to 

transmit the forces imposed on the leaflets to the aortic wall, in a corrugated manner 

that enables the leaflets to expand radially, typically to 50% strain. During valve 
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loading, the radial expansion enables the three leaflets to mate together and seal off the 

orifice. The stiffening induced by fully extended collagen crimp, flattened corrugations, 

and taut collagen cords prevents exaggerated sag of the cusp centers when the valve is 

shut, thereby preserving maximum coaptation (Figure 1-3). 

The ventricularis consists mainly of sheet elastin and provides the tensile recoil 

necessary to retain the folded shape of the fibrosa. This relationship between the fibrosa 

and the ventricularis requires the fibrosa to remain preloaded in compression (to retain 

its corrugated state) and the ventricularis to remain in tension (to hold the fibrosa in 

compression). The elastin of the ventricularis expands when the cusps stretch to enlarge 

the coaptation area, but recoils to make the cusp smaller in the open phase (Figure 1-3). 

The spongiosa consists mainly of collagen, elastin, proteoglycans and 

mucopolysaccharides, behaves as a buffer zone that enables the localized movement 

and shearing between the fibrosa and the ventricularis during loading and unloading. 

Shear stresses caused by the differential movement of the layers and the shock of valve 

closure are dissipated in the spongiosa, whose hydrophilic GAGs readily absorb water, 

swell to form a gel and resist compression forces4. 
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(a)       (b) 

Figure 1-3 (a) Schematic representation of cuspal configuration and architecture of collagen and 

elastin in systole and diastole. (b) Schematic representation of biomechanical cooperatively 

between elastin and collagen during valve motion. During opening, elastin extends at minimal 

load during extension of collagen crimp and corrugations. Near full closure, when the collagen 

has fully unfolded, the load-bearing element shifts from elastin to collagen, and stress rises 

steadily while coaptation is maintained. In systole, elastin restores the contracted configuration 

of the cusp. Adapted from Schoen and Levy 4. 

 

In addition to layer-to-layer differences, valve cusps also exhibit heterogeneity of 

tissue structure with region-to-region variation. Those regions include free edge, 

commissures, coaptation surface, nodulus, belly and annulus (Figure 1-4a). These 

functionally different regions not only have varied thickness 5 but also varied preferred 

fiber orientations (Figure 1-4b) 6. When mapped with stress-strain data, those regions 

exhibited a profound mechanical property difference, for example, between the nodulus 

and central belly region (Figure 1-5) 7. 
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(a)        (b)  

Figure 1-4  (a) cuspal from porcine aortic valve, b) corresponding SALS data. The white vectors 

represent the local preferred fiber orientations. The background color shading indicates the 

degree of orientation (warmer color = more highly aligned fiber population). 

 

 
Figure 1-5  (a) Tissue leaflet under biaxial testing. Letters denote the location of local stress-

strain curve. (b) Stress strain curve from three locations on the valve. Light circles are in 

circumferential direction. and dark circles are in radial direction. OI, orientation index; N, 

nodulus; M midregion; B, belly. Adapted from Billiar and Sacks 7, 8. 
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1.3 HEART VALVE REPLACEMENT 

First performed successfully in 1960, surgical replacement of diseased human 

heart valves by valve prostheses is now commonplace and enhances survival and 

quality of life for many patients. Currently it is estimated that about 82,000 valve 

replacements are performed in the United States and about 300,000 worldwide each 

year9. The state-of-the-art prosthetic valves clinically used include mechanical valves 

and tissue valves (xenografts and homografts) 9. Mechanical prostheses are fabricated 

from synthetic materials, mainly pyrolytic carbon leaflets mounted in a metal frame. 

Bioprosthetic valves (BHV) are fabricated from either porcine aortic valve or bovine 

pericardium, chemically treated with glutaraldehyde, and usually mounted onto a 

flexible metal frame (stent) that is covered with cloth to facilitate surgical 

implementation (Figure 1-6).  

 9



 

 

          

(a)       (b) 

Figure 1-6 (a) Starr-Edwards Silastic Ball valve prosthesis; (b) Edwards - Perimount® tissue 

valve. (Images courtesy of Edwards Lifesciences) 

 

In general, BHV has the advantage of low rates of thromboembolic complications 

without chronic anticoagulation therapy (and its associated morbidity and mortality 

risks) required for mechanical prostheses. However, they suffer high rates of late 

structural dysfunction owing to tissue degradation 4, 10. The principal processes that 

account for BHV tissue degradation in vivo are widely considered to be 1) cuspal 

mineralization, causing cuspal stiffening with or without tearing, and 2) non-calcific 

cuspal damage, including mechanical fatigue and possibly proteolytic degradation of 

the collagenous extracellular matrix, causing cuspal tears and perforations 4, 10. 

Of the two major BHV designs, BHV fabricated from chemically 

(glutaraldehyde) treated bovine pericardium (GLBP) has greater design flexibility, since 
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the anatomy of the porcine aortic valve and root limit the range of valve designs.  

Although early pericardial BHV were poorly designed, resulting in high failure rates, 

current designs have a level of durability comparable to or higher than their porcine 

aortic valve counterparts 11-15.  However, all BHV continue to suffer from limited 

durability due to structural failure 2, 16 and are generally restricted to patients ~60 years 

or older, limiting their clinical applicability. 

There have been many attempts to improve BHV durability through novel 

chemical treatments 17-21.  For example, dye-mediated photo-oxidation has been shown 

to be resistant to mineralization and in vitro chemical and enzymatic degradation, 

supportive to endothelial cell growth, and to be stabile in vivo 22-25.  However, BHV 

made utilizing this chemical treatment have met with poor clinical outcomes 

exclusively due to structural failures, a result of both faulty valve design and poor 

tissue durability 26. Recent work on explanted BHV indicated that mechanical damage 

to collagen could occur independent of calcification 3, indicating that mechanical damage 

alone can be a major clinical cause of failure. Clearly, an in-depth understanding of the 

mechanical behavior of the BHV at both the tissue- and functional prosthesis levels is 

essential to improving our understanding of BHV failure.  

 

1.4 MECHANICAL TESTING OF NATURAL AND BIOPROSTHETIC VALVE 

Experimental biomechanics is a challenging and important discipline unto itself; 

experiments provide information that is essential for formulating constitutive relations, 
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evaluating broader theoretical concepts as well as for solving many boundary value and 

initial value problems. The most commonly used experimental tests for characterizing 

mechanical properties of soft tissue include uniaxial test, biaxial test, bending test 

(three- or four-point bending), membrane inflation test, and accelerated durability 

fatigue test. 

 

1.4.1 Uniaxial Test 

Mechanical investigations of tissue valve biomaterials have usually been 

confined to uniaxial studies because of the difficulties in controlling two or even three-

dimensional boundary conditions. In simple elongation at a constant strain rate, 

collagenous tissue usually exhibits “strain-stiffening” J-shaped stress-strain curves. It is 

an important characteristic of soft tissue that an initial large extension is achieved with 

relatively low levels of stress and becomes subsequently stiffer at higher levels of 

extension. Biomechanically, it is widely accepted that this phenomenon is associated 

with the recruitment of collagen fibers as they become uncrimped and reach their 

natural lengths, whereupon their significant stiffness comes into play and overrides that 

of the underlying matrix material.  

Broom (1978) reported early uniaxial stress-strain data from porcine pulmonary 

valves, tested in both the circumferential and radial direction. 27 Morphology of 

collagen crimp was found to correlate with a nonlinear stress-strain response. 

Kunzelman et al. 28 conducted uniaxial tests on the mitral valve and found different 

stress-strain responses between the circumferential and radial directions. However, due 
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to anisotropy, uniaxial data cannot be used to extrapolate to the fully generalized three-

dimensional constitutive equations, even if multidimensional strain data from the 

uniaxial experiment is available.  

 

1.4.2 Inflation of Membrane Tissues 

There have been investigations using inflation of circular membranes, which is 

intended to test thin-walled tissues, such as pleura, dura mater, mesentery, urinary 

bladder, in a more natural way. However, experiments were performed under an 

assumption of isotropy can provide necessary experimental data 29, 30, which is usually 

not applicable 31. The experiment requires small markers to be affixed to the membrane 

surface and two CCD cameras are used to trace the marker motion to infer the 

associated inflation and membrane strain. The difficulty of performing such 

experiments lies in the accurate 3D reconstruction of the inflated surface, because the 

markers sometimes are out of focus during the inflation. If local strain within a 

particular small region delimited by 3 or 4 markers is required, meticulous care needs to 

be given in digitizing the marker locations from the images. Further, when attempting 

to determine material constants for complex material models, biaxial testing methods are 

required that include complex testing protocols that allow large variations in stress and 

strain states for full characterization 7, 32-34. 
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1.4.3 Biaxial Test 

Biaxial experiments on soft biological tissues, as illustrated on Figure 1-7, are 

generally difficult to perform and present challenges unique to biological tissues.  Just a 

few of the experimental problems include: small specimen sizes, structural and 

compositional heterogeneity, difficulty in gripping (without causing damage), dramatic 

effects of different gripping techniques, e.g. St. Venant–like effects (will be addressed in 

detail in Chapter 4), difficulty in precisely identifying material axes, difficulty in 

assuring constant forces along specimen edges, large specimen-to-specimen variability, 

time-dependent changes due to biological degradation, and unknown levels of pre-

stress in tissue layers.  In addition, determination of homogeneity of deformation within 

the specimen is paramount.  These issues can often frustrate the application of even the 

most straightforward attempts to develop a constitutive model 34.   
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(a)      (b) 

Figure 1-7 Actual (a) and schematic (b) biaxial testing setup. The specimen is submerged in an 

appropriate physiologic solution, marked with four black graphite particles (optical markers for 

strain measurement) and attached to the device via four hooks at each side.   

 

The first investigators to develop and utilize planar biaxial testing for soft 

biological tissues were Lanir and Fung in 1974 32, 35 who investigated the mechanical 

properties of rabbit skin. The techniques were quickly adapted for testing of other 

tissues, for example, lung parenchyma 36, pericardium 37-39, myocardium 40-42. 

Biaxial testing has recently been used to characterize valve tissues. May-

Newman et al. 43, 44 reported biaxial testing results of anterior and posterior leaflets from 

excised porcine mitral valves. They showed that both anterior and posterior leaflets 

were less extensible in the circumferential than in the radial direction under equibiaxial 

stretch, with aspect stress ratios of 5.7 and 4.3. The experimental data ware later 

modeled with a transversely isotropic model.  To induce shear, which is essential for a 
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finite element formulation, Sacks 38 introduced a method to induce a combined state of 

in-plane biaxial normal and shear strains. The method takes advantage of rotation of the 

test specimen’s material axis to the test axes and requires only modest modifications to 

the biaxial testing device 45 to allow the specimen to undergo unrestricted shear 

deformations 34. The experimental method was later adapted in Sun et al. 39 for stress-

controlled biaxial testing. High in-plane shear response of heart valve biomaterials was 

characterized (will be further elaborated in Chapter 2).  

 

1.4.4 Accelerated Durability Fatigue Test 

Another mode of mechanical testing, which will be addressed in detail in 

Chapter 6, is the fatigue testing of heart valve biomaterials. Only vague references are 

available for the possible processes of wear or tissue fatigue of valve biomaterials. Lee et 

al. have performed extensive physical studies on GLBP behaviors 46-51. Recently they 

detected that fatigue damage accelerates enzymatic degradation of GLBP 52. Hilbert et 

al. 53 used polarized light optics to characterize damage to the BHV collagen fiber 

architecture due to accelerated testing. For bovine pericardium, they measured an initial 

collagen fiber crimp period of 17.1±3.2 microns, which increased to 23.5±3.4 microns 

after 360x106 cycles. Purinya et al. 54 found ~50% reduction in strength in human 

implanted BHV after only 48 months of in-vivo operation.  

For candidate BHV biomaterials, current methods to assess their durability are 

mainly through costly and time-consuming accelerated durability testing, animal 

implantation studies, and clinical trials. Accelerated durability tests can cause some 
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forms of tissue damage that might or might not approximate the tissue stress fields for a 

intact valve.  Nonetheless, the mechanisms of such damage are difficult to analyze due 

to the complexity of the BHV leaflet deformations and the confounding influences of 

the specific valve design. Broom et al. 55 conducted the first efforts to characterize the 

tissue behavior under combined tensile and buckling fatigue studies.  However, to fully 

characterize the mechanisms of tissue degeneration, isolation of the individual 

mechanical loading states (e.g. tension, flexure) is a necessary first step in 

understanding the fatigue process as a whole. 

 

1.5 CONSTITUTIVE MODELING OF MECHANICAL PROPERTIES OF SOFT 

TISSUE 

For both natural biological tissues and tissue-derived soft biomaterials, there 

exist many physiological, surgical, and medical device applications where rigorous 

constitutive models are required. Examples include skin, myocardium, tendons, natural 

and prosthetic heart valves, and blood vessels. For these biological materials particular 

challenges in constitutive modeling are encountered due to their complex mechanical 

behavior. For example, because of their oriented fibrous structures they often exhibit 

pronounced mechanical anisotropy. In addition, they exhibit highly nonlinear stress-

strain relationships, large deformations, viscoelasticity, and strong axial coupling. 

Taken as whole, soft biomaterials defy simple material models 31.  
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Determination of a constitutive relation that describes well the behavior 

exhibited by a complex nonlinear, anisotropic soft tissue is very challenging, even 

under limited conditions. Fortunately, however, the search for the possible forms of 

such relations has been simplified considerably by the continuum “principles”, for 

which the materials can be reasonable assumed to behave. Those principles are 

included in the theory of finite elasticity, in particular, the principles of determinism, 

local action, equipresence, and material frame indifference – in addition to conservation 

of mass, balance of linear and angular momentum, balance of energy and the second 

law of thermodynamics – each restricts the possible forms of constitutive relations.   

The concept of pseudo-elasticity was introduced by Y. C. Fung 56 following the 

observation that most tissues exhibit repeatable (elastic) behavior under cyclic loading. 

This allowed the use of the theoretic framework of hyperelasticity, originally developed 

for isotropic rubber-like materials, to be used to describe the mechanical response of 

soft tissues. Hyperelasticity implies that material behavior can be described via a strain 

(stored) energy function.  Over the last few decades, various strain energy functions 

have been developed for soft tissues. Among them are the nonlinear isotropic model 57, 

58, transversely isotropic model 41, 42, 59, 60, and anisotropic exponential models 39, 56, 61-63. 

Among all these constitutive models, the exponential model proposed by Fung 56 is 

perhaps the most widely used constitutive model for characterizing biaxial responses of 

soft biological tissues, as well as other loading states.  More detailed discussion of the 

constitutive theory for cardiovascular biomechanics and soft tissue biomechanics in 

general can be found in the treaties of Fung 56, 64, 65. Some basic concepts will be restated 
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in Chapter 2 and finite element implementation of a general pseudo-elastic Fung model 

will be addressed in detail in Chapter 3. 

 

1.6 COMPUTATIONAL METHODS 

It is suggested that there were three major events in history necessary before the 

study of modern biomechanics of soft tissues could evolve 66; one of them is the 

development of the finite element method in the 1950s*. Because of the complex nature of 

soft tissues, such as heart valves, computational methods are necessary to model their 

biomechanical response. Computational methods therefore offer a powerful way to 

integrate structural properties quantitatively measured in vitro and predict 

physiological functions in vivo.  

Accurate computational modeling of the nonlinear, anisotropic mechanical 

properties of soft tissues remains an important and challenging area. Although various 

strain energy functions have been proposed in the literature for soft tissues, finite 

element implementation has been rather limited. Lack of finite element 

implementations of soft tissue constitutive models could be of many reasons. Among 

them are a lack of appropriate experimental data (for both formulating constitutive 

models and validation of numerical simulations) and computational difficulties in 

                                                 

* The other two major events are the development of the nonlinear field theory of mechanics during 

the 1950s and the rapid advances in computer technology. 
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incorporating these models into available finite element codes.  In particular, problems 

with solution convergence can result in a numerically unstable model that may lead to 

either inaccurate results or fail to converge.  

Among various constitutive models developed, the exponential model proposed 

by Fung 56 is perhaps the most widely used. Although it has been in the literature over 

several decades, the implementation of this model into finite element simulations has 

been very limited.  The main reason is due to the high nonlinearity of the model that 

leads to numerical unstable in finite element simulations. We will address this issue in 

Chapter 3 and illustrate our approaches of restricting the model necessary to achieve 

numerical stability.  

Finite element analysis has been the most popular method for the stress analysis 

of the valve leaflets with the blood pressure applied as the load.  Numerical analysis 

and simulation of BHV has made some headway into understanding true valve 

behavior.  Particular challenges encountered in numerical simulation of BHV include 

modeling of complex leaflets and stent geometry, modeling of the associated (nonlinear 

anisotropic) mechanical properties, contact of leaflets, and experiment validation of 

numerical results.  The importance of experimental validation of finite element results 

cannot be over-emphasized.  However, many finite element studies offered no 

experiment validation 67-70 or simple validations, such as comparison between images 

taken from pulse duplicator to that of a finite element output71, 72.  In Chapter 5 we will 

further elaborate the issue and present a rigorous experiment validation of our BHV 

simulation.  
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The most crucial factor affecting the accuracy of a BHV simulation is probably 

the material model of the valve leaflets. Some of the studies used the linear isotropic 

models 73, 74, others used nonlinear isotropic models 67-69, 72, 75, 76. However, utilizing a 

full nonlinear anisotropic model, such as the Fung model that will be described in 

Chapter 3, in a BHV simulation has not yet been seen in the literature. In Chapter 5, we 

will construct a more accurate finite element valve model and simulate its deformations 

under 120mmHg trans-valvular pressure. Once the results of such simulations are 

validated with experimental data, parametric studies with geometrical changes of the 

leaflets and material property changes of the leaflets as well as trans-valvular pressure 

conditions can be carried out inexpensively. 

 

1.7 MOTIVATION OF THE STUDY 

Replacement of diseased natural heart valves with prosthetic replacements has 

been life saving for millions of patients. However, as in so much of medicine today, the 

replacements valves are never as good as natural, healthy valves. Tissue engineering of 

heart valves is an evolving research field. Multidisciplinary approaches for designing 

and growing viable heart valves identical to the native heart valves have begun and 

offers a promising future. However, in the immediate future, BHV fabricated from 

heterograft biomaterials will continue to be extensively used 4. GLBP will still be one of 

the most favorite tissue candidates. Hence comprehensive studies of chemically treated 

tissue behaviors under both quasi-static and dynamic loading conditions will enhance 
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our understanding to the BHV failure. Incorporating those experimentally-derived 

material properties into finite element models and simulating valve deformations under 

various conditions will ultimately improve BHV design and consequently its durability.   

Our long-term goal is to develop a comprehensive understanding of BHV 

biomechanics to provide insight into tissue mechanical damage and to aid in the design 

of novel heart valve biomaterials.  To achieve these aims, we believe that 1) rigorous 

experimentation is necessary to fully quantify biomaterial mechanical properties; 2) 

robust constitutive models are required for accurate modeling of tissue behaviors; 

3)numerical simulations need to be conducted to analyze BHV function and optimally 

design BHV. In this dissertation, our aim is to develop and evaluate a complete process for 

biomechanical simulations of heart valve biomaterials, with an emphasis on accurate material 

model, numerical stability and experimental validation. This process includes: 

o Formulating a constitutive model 

o Collection of appropriate experimental data  

o Obtaining and refining material parameters 

o Finite element implementation and validation of the constitutive model 

o Finite element simulations of BHV deformation 
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2.0 CHARACTERIZATION OF MECHANICAL PROPERTIES 

OF HEART VALVE BIOMATERIALS† 

 
“Physical theory must be based on experience, but experiment comes after, rather than 

before, theory. Without theoretical concepts one would neither know what experiments to 

perform nor be able to interpret their outcome” - Truesdell and Noll, 1965 

 
Utilization of novel biologically-derived biomaterials in bioprosthetic heart 

valves requires robust constitutive models to predict the mechanical behavior under 

generalized loading states.  Thus, it is necessary to perform rigorous experimentation 

involving the functional deformations to obtain both the form and material constants of 

a strain-energy density function.  In this chapter, we will apply a novel stress-control 

biaxial testing method to generate a comprehensive biaxial mechanical dataset that 

includes a high in-plane shear state for heart valve biomaterials (sections 2.2.1 - 2.2.3). 

To develop the appropriate model, we developed an interpolation technique for the 

                                                 

† Some of the results of this chapter are published in:   

M. S. Sacks and W. Sun, "Multiaxial mechanical behavior of biological materials", Annual Reviews of Biomedical 

Engineering, vol. 5, pp.251-284, 2003.  

W. Sun, M.S. Sacks, T.L. Sellaro, W.S. Slaughter, and M.J. Scott, “Biaxial mechanical response of bioprosthetic heart valve 

biomaterials to high in-plane shear”, Journal of Biomechanical Engineering, vol. 125, pp. 372-380, 2003. 
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pseudo-elastic response to guide the final model form (sections 2.3.3 and 2.3.4). Finally, 

some concerns during our experiment and modeling will be discussed in section 2.4, 

including the rationales of using stress-controlled protocol, effects of chemical fixation 

on the mechanical properties. We will begin the chapter with a brief review of the 

biaxial testing method, kinematics and the associated stress and strain energy functions. 

 

2.1 INTRODUCTION 

2.1.1 Basic Techniques for Biaxial Testing of Soft Biological Materials  

In general, biaxial testing of biological tissues are performed using thin 

specimens, which are either a membrane in its native form or a thin section prepared 

from a thick tissue slab.  The specimen is mounted to the biaxial device in trampoline-

like fashion using thin threads, which allows the edges to expand freely in the lateral 

direction.  Testing is generally performed with the specimen completely immersed in 

phosphate buffered normal saline (pH 7.4) at room or body (37 °C) temperature. The 

central target region must be sufficiently small and located away from the outer edges 

to avoid the tethering effects.  Thus, in the central target region the stress and strain 

field is generally considered homogeneous. 

 

2.1.2 Kinematics of a Biaxial Test 

The following is a brief summary of the most important aspects of the kinematics 

of a biaxial mechanical test.  For further details, the interested reader is referred to Sacks 
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200234.  We consider deformation of membrane tissues under a biaxial stress state, 

including non-zero in-plane shear stresses.  For this case, we let 0Ω  and Ω  be the (fixed) 

reference and deformed configurations of the continuous body, respectively.  We 

consider the general mapping , which transforms a material point 3
0:χ Ω → R 0∈ ΩX  to 

a position  in the deformed configuration. For planar homogeneous 

deformations that occur during a biaxial test, this mapping reduces to 

( )= χ ∈ Ωx X

=λ + κ = λ + κ =λ1 1 1 1 2 2 2 2 2 1 3 3x X X , x X X , x X3    (2.1) 

where λi are the axial stretch ratios and κi measures of in-plane shear. λi and κi are also 

components of the deformation gradient tensor F, which for deformation described in 

eqn. 2.1 is  F x or Grad( )=

1 1 1

1 2 3
1 1

2 2 2
2 2

1 2 3
3

3 3 3

1 2 3

x x x
X X X

0
x x x 0
X X X

0 0
x x x
X X X

 ∂ ∂ ∂
 ∂ ∂ ∂  λ κ 
 ∂ ∂ ∂  = = κ  λ ∂ ∂ ∂   λ  ∂ ∂ ∂
 ∂ ∂ ∂  

F     (2.2) 

where the out-of-plane stretch  is the ratio of deformed (h) to the undeformed  

thickness (H) of specimen. F is a critical mathematical quantity since it completely 

describes the deformation state.  Since soft tissues are composed primarily of water and 

have negligible permeability 

3 h /Hλ =

56, they can be considered incompressible so that 

J=detF=1.  From F the right Cauchy-Green deformation tensor is defined as C=FT⋅F, 

from which the components of the in-plane Green-Lagrange strain tensor E = ½ (C – I), 
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where I is the identity tensor.  E is the most common finite strain measure in the soft 

tissue literature due to the simplicity of the constitutive formulations. In practice the 

components of E are computed more directly using: 

2 2
1 2 1 1 2 2

T 2 2
1 1 2 2 2 1

2
3

k 1 k k 0
1 1( 1) k k k 1 0
2 2

0 0
E F F

 λ + − λ + λ
= − = λ + λ λ + −
 1




λ − 

    (2.3) 

The components of F are determined optically to avoid any mechanical 

interference with the specimen.  This is typically done by tracking the position of 

markers mounted on the upper specimen surface that delimit the central target region 

using optical tracking software 45, 77. In both our laboratory 45 and in others 78, 79, finite 

element shape functions are used to approximate the position vector field within the 

central target regions.  This can include linear and quadratic variations in strain 7. 

 

2.1.3 Forces and Stress   

As mentioned above, biaxial testing of biological tissues is performed using thin 

specimens (no more than ~3 mm, usually <1 mm) and acted on by only in-plane loads.  

A state of plane stress is thus assumed so that the components ti3 (i=1,2,3) of the Cauchy 

stress t (force/deformed area) are 0.  During actual experiments one can directly 

measure only the initial specimen dimensions, so that the Lagrangian stresses T 

(force/unit original cross-sectional area) are used for convenience.  The components of 

T are computed from the measured axial forces P using 
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1
11 22

2 1

PT , T
hL hL

= 2P
=

T

   (2.4) 

where h is the specimen thickness and Li are the specimen lengths. Since experimentally 

applied loads are normal to the edges, T12=T21=0.  The 2nd Piola-Kirchhoff stress tensor 

S is the most commonly utilized stress tensor for soft tissue constitutive theories, and is 

determined using S=T•F-1. The Cauchy stress tensor t is determined using t=F•T/J, 

which in component form is given by (with T12=T21=0): 

11 1 11 22 2 22 12 1 22 21 2 11t T , t T , t T , t=λ =λ = κ = κ    (2.5) 

In the case where there is negligible shear strain (i.e. E12~0), the normal 

components of the two stress tensors are related by: 

S11 = T11/λ1, S22 = T22/λ2    (2.6) 

 

2.1.4 Constitutive Modeling 

Perhaps the best way to introduce characterization and modeling for the multi-

axial behavior of soft tissues is to summarize the pioneering work on elastomers of 

Treloar 80 and Rivlin 81-83.  In addition to describing methods for multi-axial testing and 

modeling, the integrated mathematical-experimental approach of Rivlin is an excellent 

example on how to conduct material modeling in general.   For this class of materials, 

we assume they are hyperelastic, which is defined as the existence of a strain energy 

function W = W(F).  W completely describes the change in internal (mechanical) energy 

of the material due to the application of external forces. 
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Since elastomeric materials are assumed to be isotropic, W is assumed be a 

function of the following strain coordinate invariants I1 and I2, defined as: 

 ( ) ( )

= =

  = − = −  

= =

2

C B

C C B B

C F F B FF

1

2 2
2

T T

I tr tr
1 1r tr tr tr
2 2

,




2

0=

I t     (2.7) 

where C and B are known as the right and left Cauchy-Green deformation tensors, 

respectively 84.  In this formulation W is thus still a function of F, but is restricted to 

isotropic materials through the coordinate invariance of I1 and I2.  When there is no 

shear, κ1=κ2=0. 

Rivlin et al. 82 developed the following generalized strain energy formulation: 

( ) ( )i j
ij 1 2 00

i 0 j 0
W C I 3 I 3 , C

∞ ∞

= =

= − −∑ ∑     (2.8) 

where Cij are material constants to be determined by fitting the model to experimental 

data.  In most practical applications, the upper limits for the sums in eqn. 2.8 are i=j=3. 

For the homogenous deformation described by eqn. 2.1, the general constitutive model 

for isotropic elastomeric materials with W=W(I1,I2) is expressed as 83: 

2
(ii) i 2

1 i 2

W 1 Wt 2 p, i 1,2,
I I

 ∂ ∂
= λ − + = ∂ λ ∂ 

3     (2.9) 

where p is a Lagrange multiplier that physically represents an arbitrary hydrostatic 

pressure, and the (ii) subscript indicates no component summation.  

In addition to handling incompressibility explicitly using the Lagrange 

multiplier approach, one can also take advantage of the boundary conditions of a 

biaxial test to re-express the normal Cauchy stress components. Specifically, with t33=0 
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(upper and lower surfaces are traction free) and employing λ1λ2λ3=1 to impose 

incompressibility, the two remaining Cauchy components are: 

2 2
11 1 12 2 2

1 2 1 2 2

2 2
22 2 22 2 2

1 2 1 1 2

1 W 1t 2
I I

1 W 1t 2
I I

  ∂ ∂
= λ − λ − λ λ ∂ λ ∂ 

  ∂ ∂
= λ − λ − λ λ ∂ λ ∂ 

W

W








    (2.10) 

Where the partial derivatives 1
1

WW
I

∂
=

∂
 and 2

2

WW
I

∂
=

∂
 are the response functions.  

Rather than assume an a-priori form, Rivlin noted that response functions can be 

directly determined from the experimental measured variables using  

( ) ( )

2 2
1 11 2 22 11 22

2 2 2 2
1 2 1 22 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2
2 2 2 2

1 21 2 2 1

t t t t
1 1 1 1

W W
I I2 2

λ λ
− −

λ − λ − λ − λ −
λ λ λ λ λ λ λ λ∂ ∂

= =
∂ ∂λ − λ λ − λ

  (2.11) 

Note well that by conducting constant invariant biaxial tests, the functional form 

of W can be directly determined from the experimental data.  This approach can avoid 

much of the ambiguity inherent in constitutive modeling of elastomeric materials. 

 

2.1.5 Previous Biaxial Testing Experiments 

The first investigators to develop and utilize planar biaxial testing for soft 

biological tissues were Lanir and Fung in 1974 32, 35 who investigated the mechanical 

properties of rabbit skin.  Briefly, a 3 cm to 6 cm square skin specimen was mounted in 

a trampoline-like fashion with up to 68 individual attachments distributed equally over 

the four specimen sides (17/side).  Similar to Rivlin 82, the tension on each line could be 
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individually adjusted to ensure a reasonably uniform stress was applied to each 

specimen side.  Actuator motion was controlled utilizing a function generator. To avoid 

the effects of local stress concentrations of the suture attachments, bi-directional tissue 

strain was measured in a central region by monitoring the distance between pairs of 

lines separated by ~5 mm along each axis video dimensional analyzers (VDA) 85. 

Experimental results demonstrated that skin exhibited a nonlinear, orthotropic stress-

strain response, whose material axis depended on the specimen’s anatomic orientation.  

While differences between the loading and unloading curves were observed due to 

hysteresis, the loading and unloading stress-strain responses were essentially 

independent of strain rate.  It is important to note that these results underscore the 

major phenomenon found in all subsequent biaxial mechanical investigations of soft 

planar tissues 86. 

Another group active in the developing multi-axial constitutive relationships 

was Vito and co-workers.  Among the technical improvements of their device were the 

use of multi-particle tracking to allow computation of the complete in-plane strain 

tensor and the use of real-time computer control 87.  Perhaps their main contribution 

was the development of a technique to identify the specimen’s material axis 37.  

Generally, identification of a material axis is based on observations of the gross 

specimen shape (e.g. long axis of a blood vessel) or gross fiber architecture (e.g. 

myocardium).  However, in many tissues the fibers are too small to be visually 

observed and up to the time of the study there were no rapid, non-destructive 

techniques for quantification of fiber architecture 31. 
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To quantify planar tissue fibrous structure, Sacks et al. 88 have developed a small 

angle light scattering technique (SALS).  SALS allows for rapid quantification of the 

angular distribution of fibers at each point in the tissue, from which the preferred fiber 

direction and degree of orientation can be determined.  A SALS based tissue sorting 

procedure was used to guide the selection of bovine pericardial specimens to minimize 

structural variability 45.  Note that the designations preferred fiber (PD) and cross-

preferred fiber (XD) were used for the x1 and x2 axes, respectively.   An extensive biaxial 

test protocol was then used and the resulting stress-strain data fitted to an exponential 

strain energy function developed by Choi and Vito 37.  Results indicated that this 

equation was able to reproduce the mechanical response of chemically treated bovine 

pericardium over a wide range of biaxial test protocols.  Most importantly, the high 

structural uniformity resulted in both a consistent mechanical response and low 

variability in the material constants 31. 

 

2.1.6 Limitation of Previous Studies 

In order for novel biomaterials to be optimally utilized in BHV designs, robust 

constitutive models are required for accurate numerical simulations.  In the formulation 

and parameter estimation of any constitutive model, rigorous experimentation 

involving all multi-axial deformations within the functional range of the tissue is 

necessary 34.  In previous biaxial mechanical studies, specimen deformation was 

restricted to extensional strains only, i.e., no shear 45, 89.  This approach cannot be used 
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in in-depth material analyses or finite element simulations since it cannot predict the 

anisotropic tissue’s response to the presence of shear strains. 

 

2.1.7 Motivation of This Study 

We have developed a straightforward technique that produces a combined state 

of in-plane biaxial extensional and shear strains 38.  However, peak nominal stresses in 

that study were limited to ~250 kPa and peak shear stresses to ±40 kPa.  Novel heart 

valve biomaterials may be more compliant than traditional aldehyde-based approaches 

45, and are thus likely to be subjected to larger in-plane shear strains during valve 

operation. Clearly, a robust constitutive model for heart valve biomaterials requires a 

comprehensive experimental data set that spans the estimated normal operational stress 

range.  To allow for accurate simulation of abnormal valve function, such a constitutive 

model should also be accurate to stress levels two to three fold normal operational 

stress levels. 

The present study was undertaken to produce biaxial mechanical experimental 

data for heart valve biomaterials subjected to a wide range of normal and shear stresses.  

This was achieved by modifying our strain-based biaxial testing protocol to a stress-

based one using peak stresses of 1 MPa.  We utilized glutaraldehyde-treated bovine 

pericardium (GLBP) as the representative heart valve biomaterial.   
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2. 2 MATERIALS AND METHODS 

2.2.1 Specimen Preparation 

The methods used to prepare structurally consistent biaxial specimens from the 

bovine pericardial sac using SALS have been previously described 38, 45.  Briefly, large 

sections of fresh bovine pericardium were stored in phosphate buffered saline (pH 7.4) 

at 4 °C.  These sections were split into two groups, one kept in the native state and the 

other chemically treated with 0.625% glutaraldehyde for a minimum of 72 hours prior 

to SALS testing and designated as the GLBP group.  In order to make the bovine 

pericardium sheets transparent for SALS measurements, the sections were first 

processed through a graded series of dehydration in 25%, 50%, 75% and 100% sugar-

based hyper-osmotic solution for 1 hour each dehydration step. Due to the biological 

stabilization effects of the hyper-osmotic dehydration, no time limit was set between 

dehydration and SALS testing, but this period seldom exceeded one week. 

Next, each bovine pericardium section was mounted flat in a thin vertical glass 

well free floating in the hyper-osmotic solution, and SALS tests performed over the 

entire section using a 2.54mm rectilinear sampling grid.  From the resulting structural 

data, 25 x 25 mm test specimens exhibiting a high degree of structural uniformity 

suitable for biaxial testing were selected. Pilot biaxial mechanical studies of specimens 

before and after a dehydration/rehydration cycle indicated no detectable change in 

properties (Sacks, unpublished data).  As in our previous study 38, the collagen fiber 
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preferred cross-preferred directions were taken to be the material axes (X1-X2 in Figure 

2-1a), oriented at θ=45°±1° with respect to the specimen axes (X’1-X’2 in Figure 2-1a). A 

total of five specimens were prepared in the fresh state.  A second group of ten GLBP 

biaxial specimens were prepared as described above and tested only in the chemically 

treated state.  
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Figure 2-1 (a) A schematic of the biaxial specimen showing the specimen axes (X’1-X’2 axes) and 

material axes (i.e. X1-X2 axes), which were aligned at a 45˚ angle with respect to the specimen 

axes; (b) Experimental protocols of stress-control biaxial testing, where the labels indicate the 

ratios of the normal Lagrangian stress in the specimen axes coordinate system (T’11: T‘22). 

 

 35



 

2.2.2 Biaxial Mechanical Testing 

Biaxial mechanical testing methods for testing native and chemically treated 

pericardium have been previously described 38, 45. Briefly, testing was performed with 

the specimen immersed in phosphate buffered normal saline (pH 7.4) at room 

temperature.   As a modification to our previous studies a stress controlled test protocol 

was utilized, wherein the ratio of the normal Lagrangian stress components T’11:T’22 

was kept constant with T’12=T’21=0. To fully capture the response over the functional 

range a maximum stress level of 1 MPa was used, which is estimated to be four times 

the nominal stresses of 250 kPa in the BHV 67, 72.  For the first testing phase, an equi-

biaxial stress state (i.e. T’11:T’22 = 1:1) was used.  A total of 15 contiguous cycles were 

run with a stress rate of 5 MPa/sec. Next, seven successive protocols were performed 

using ratios T’11:T’22 = 1:0.1, 1:0.5, 1:0.75, 1:1, 0.75:1, 0.5:1, and 0.1:1 (Figure 2-1b).  This 

range was chosen for extensive coverage of the in-plane strain state. 

  

2.2.3 Effects of Chemical Treatment  

After initial biaxial testing, native specimens were allowed to mechanically re-

equilibrate by storing them in a stress-free state at 4 °C for 24 hours.  Next, these 

specimens were treated with glutaraldehyde as described above, then biaxially tested 

using same protocol.  This was done to characterize the effects of chemical fixation on 

the biaxial mechanical properties, and in particular the high in-plane shear properties. 
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2.2.4 Constitutive Modeling 

Following our previous in-plane shear study 38, we assumed that both native 

pericardium and GLBP behave as hyperelastic membranes following the concept of 

pseudo-elasticity 56.  Thus, S can be derived from a scalar strain energy function W 

through: 

∂
=

∂
WS
E

      (2.12) 

We utilized a function W previously used for GLBP 38: 

= −QcW [e
2

1]      (2.13) 

where Q = AijklEijEkl and A and c are constants.  In our previous study, we developed a 

five parameter version of eqn. 2.13 38.  However, due to the more complex in-plane 

shear response observed in initial pilot studies, we chose to directly utilize the full 

seven parameter form. Utilizing symmetry of E (i.e. E12=E21), Q can be expressed as: 

= + + + + +2 2 2
1 11 2 22 3 11 22 4 12 5 12 11 6 12 22Q A E A E 2A E E A E 2A E E 2A E E    (2.14) 

 

2.2.5 Parameter Estimation 

Values for the material constants were determined using SYSTAT (SPSS Inc) with 

the Marquardt-Levenberg algorithm, with the experimental data from all protocols 

fitted simultaneously to reduce the effects of multiple collinearities 90.  As the residual 

errors about the regression curve were generally not Gaussian distributed, a non-
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parametric bootstrapping technique was used to estimate the uniqueness of the 

parameter values. Thirty additional sets of simulated parameters were generated per 

specimen. In addition, a robust regression procedure was used to down-weight the 

influence of outliers in experiment data 91.  Finally, parameter constraints based on basic 

physical requirements of the strain energy function W were used to provide parameter 

bounds during nonlinear regression (see appendix A). 

 

2.3 RESULTS 

2.3.1 Biaxial Mechanical Response 

The stress-controlled biaxial protocol covered a wide range of strain-stress space 

(Figure 2-2).  Of particular note are the high in-plane shear stresses generated (peak 

~400 kPa) at a peak shear strain of ±0.10 (Figure 2-2b), which are comparable in 

magnitude to the corresponding normal stress and extensional strain components 

(Figure 2-2a,c).  A feature of the GLBP biaxial response we have not previously 

observed was that the responses to the T’11: T’22=1:0.1 and 0.1:1 “outer” protocols were 

different from the “inner” five protocols (T’11: T’22 = 1:0.5, 1:0.75, 1:1, 0.75:1, 0.5:1, Figure 

2-1b).  The outer two protocols exhibited not only large shear response, but also less 

extensibility for the normal components.  This behavior suggested a substantial change 

in mechanical behavior under the extreme T’11:T’22 ratios, where the shear stresses were 

greater by approximately two-fold or more compared to the other test protocols. 
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Figure 2-2 A representative biaxial mechanical response for each component, with peak shear 

stresses of 400 kPa and peak shear strains of ±0.10.  One novel feature observed was that the 

mechanical response to the T’11: T’22=1:0 and 0:1 were quite different from the other protocols. 

Labels indicate the ratios of the normal Lagrangian stress in the specimen axes coordinate 

system (T’11: T’22). 

 

2.3.2 Effects of Chemical Treatment 

Glutaraldehyde chemical treatment induced a tissue contraction of 9.6±1.3% 

from the native state in the cross-fiber direction, and 1.8±1.7% in the preferred fiber 

direction.  Generally, chemical fixation was observed to affect the low-stress region 
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(<200 kPa), whereas the remaining high stress region responses were comparable.  This 

was also true for the in-plane shear component, where the differences between native 

and chemically treated were small at the higher stress levels (Figure 2-3).   
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Figure 2-3 Representative biaxial response for the in-plane shear response before and after 

glutaraldehyde fixation, which affected the low-stress (<250 kPa), whereas the remaining higher 

stress region were comparable. 

 

 

2.3.3 Initial Constitutive Modeling Results   

Given the substantially more complex tissue response using the stress-controlled 

protocol, it was not surprising that eqn. 2.14, albeit containing two additional degrees of 
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freedom from our earlier model 38, was still not sufficiently improved.  In particular, 

eqn. 2.14 had difficulties with the shear response of the 1:0.1 and 0.1:1 protocols. 

Based on our current observations (Figure 2-2), we hypothesized that the high 

shear state occurring in the outer two protocols was a primary factor in our poor fit 

results.  We therefore subdivided the experimental data into two sets: Set I composed of 

the “inner” five protocols: T’11:T’22=1:0.5, 1:0.75, 1:1, 0.75:1, 0.5:1 protocols and Set II 

composed of the “outer” two protocols: T’11:T’22= 0.1:1 and 1:0.1.  Next, we applied this 

approach using eqn. 2.14, which was able to describe each individual data set well 

(Figure 2-4), with Set I r2= 0.980 and Set II r2= 0.963.  These results suggest that a Fung-

type model using eqn. 2.14 was adequate using two separate sets of material constants 

for the low/moderate and high shear states. 
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Figure 2-4 Results for the seven parameter Fung model (Q7) applied to a) the sub-divided data 

set I demonstrating a very good fit (r2= 0.980) and data set II demonstrating a very good fit (r2= 

0.963). 
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2.3.4 Further Modifications to the Standard Fung Model 

While able to fit the biaxial data, a single analytical expression was clearly 

preferable to this two parameter set result..  This was underscored by the limited 

predictive abilities of the subdivided model.  For example, we expected that eqn. 2.14 

could predict the Set I response using the Set II parameters reasonably well, since the 

Set I strain range lie within the Set II strain space.  However, the results for this 

interpolation were poor (Figures. 2-5).  Given the complexity of the strain space, 

improper subdivision could lead to highly erroneous stress predictions. 

 43



 

E11

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

S 11
0

500

1000

1500

2000

E12

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

S 12

-1000

-500

0

500

1000

E22

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

S 22

0

200

400

600

800

1000

1200

1400

 
Figure 2-5 Predictive capability results for the equal-biaxial protocol 1:1 by fitting the seven 

parameter model (Q7) to the T’11:T’22=1:0.1 and 0.1:1 protocols only.  Even though equal-biaxial 

protocol lies within the stress and strain ranges used for parameter determination, the 

interpolated result is poor. For illustration purposes the peak values of S11, S12 and S22, which 

were 1.4e+5, 0.4E+5, and 1.2E+5 kPa, respectively, were truncated.  
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To develop a single model for all protocols, we expanded the eqn. 2.14 as 

follows.  To minimize the number of parameters, we choose to modify Q only through 

the addition of terms greater than quadratic order E E .  Although cubic order terms of 

the general form E E  could have been added, from our experience quartic functions of 

the form E E would be able to capture the mechanical responses with fewer 

parameters.  Thus, the final generalized form for the expanded Q in eqn. 2.14 

(incorporating symmetry of E) is given by 

ij kl

2
ij kl

2 2
ij kl

= + + + + +

+ + + + + +

2 2 2
1 11 2 22 3 11 22 4 12 5 12 11 6 12 22

4 4 2 2 4 2 2 2 2
1 11 2 22 3 11 22 4 12 5 12 11 6 12 22

Q A E A E 2A E E A E 2A E E 2A E E
B E B E B E E B E B E E B E E

  (2.15) 

where Ai and Bi are the material constants. 

As in any nonlinear constitutive model, the number of term additions needs to be 

minimized to avoid numerical instability issues in computational implementations.  To 

provide a rationale for adding the additional quartic terms in eqn. 2.15, we developed 

the following interpolation method to estimate the strain energy response functions 

with respect to each strain component directly from our stress-controlled biaxial test 

data.  Each S component from the loading data was expressed as a function of two 

strain components, while the third component was kept at a constant value.  This 

allowed us to simulate the pseudo-elastic loading response of each S component 

against various combinations of E and guide the choice of the functional form of Q.  

Interpolations were restricted over the strain space of the actual experimental data.  
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Details of the approach are presented in Appendix B. All together, nine response 

functions were generated; three for each stress component.    
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Figure 2-6 Representative response functions for (a) S12 vs. E11 and E12, with E22=0.2, indicating 

that S12 had a relatively weak dependence on E11.  In contrast, the S12 vs. E12 and E22 with 

E11=0.18 responses shown in (b) indicated that S12 had a strong dependence on both E12 and 

E22. 
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Representative response functions are shown in Figure 2-6a for S12, where E11 

and E12 were varied and E22 was held at 0.2.  In this case, the response function 

indicated that S12 had a relatively weak dependence on E11.  This indicated that 

additional terms did not require E11, so that B1, B3 and B5 =0.  Also shown in Figure 

2-6b for S12 where E11 and E22 were varied and E11 was held at 0.18.  The response 

function indicated that S12 had a strong dependence on E12 and E22.  Based on the more 

gradual increase in stress of the stress-strain curves, we determined that inclusion of 

quartic powers for individual strain component (i.e. ) was unnecessary, thus B4
ijE 2 = B4 

=0, leaving only the term B E . Replacing B2 2
6 12 22E 6 with B, we derived the following eight 

parameter form for the expanded Fung-type model: 

  (2.16) = + + + + + +2 2 2 2
1 11 2 22 3 11 22 4 12 5 12 11 6 12 22 12 22Q A E A E 2A E E A E 2A E E 2A E E BE E2

Eqn. 2.16 was found to describe the biaxial mechanical response for all seven 

protocols well, with a mean r2=0.94 (Table 2-1).  Bootstrapping results indicated that the 

parameters were highly clustered for the simulated datasets, giving further confidence 

in the uniqueness of the model parameter values and model robustness. The predictive 

capability of eqn. 2.16 was evaluated by fitting the Set I data only (Table 2-2) and then 

extrapolating Set II (Figure 2-7a).  As expected, eqn. 2.16 demonstrated a better fit to Set 

I alone (Figure 2-7a) then when Sets I and II were fit simultaneously (Figure 2-7b), 

especially the in-plane shear response.  Interestingly, this approach also demonstrated 

good predictive capabilities (Figure 2-7a). Overall, eqn. 2.16 was able to faithfully 
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reproduce the complete high in-plane response, and predict the tissue response outside 

the range used for parameter determination. 

 

Table 2-1 The parameters for eqn. 2.16 fit to all biaxial protocols (sets I and II). 

Specimen c (kPa) A1 A2 A3 A4 A5 A6 B r2 

sb111 5.52 60.00 46.99 41.12 85.01 3.58 59.37 3961.66 0.95 

sb131 4.16 48.00 43.00 42.66 28.58 0.10 0.62 8146.80 0.93 

sb51 3.46 62.11 30.85 -20.59 29.40 4.70 9.42 442.40 0.94 

sb52 9.84 13.62 9.90 5.84 9.25 0.13 0.04 241.00 0.95 

sb53 3.02 26.10 21.16 1.12 34.11 1.12 1.52 654.64 0.92 

sb61 4.10 41.42 33.51 28.22 66.81 1.50 3.16 4803.09 0.93 

sb62 3.94 66.07 33.00 20.65 78.62 24.96 15.44 2424.58 0.95 

sb71 4.51 28.00 18.41 10.88 37.77 8.43 26.09 527.83 0.95 

sb31 8.73 25.00 17.80 15.51 14.75 0.20 8.76 1778.22 0.94 

sb132 2.25 70.49 27.00 17.20 52.86 21.95 20.88 1609.34 0.94 

Mean 4.95 44.08 28.16 16.26 43.72 6.67 14.53 2458.96 0.94 

Std. Err 0.78 6.37 3.68 5.97 8.25 2.92 5.72 797.65 0.003 
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Figure 2-7 In-plane shear fit results for the eight parameter model (eqn. 2.16) fit to (a) data set I 

only and predicting the set II response, and (b) all protocols simultaneously. As expected, the fit 

to set I only demonstrated a better fit to both the inner test protocols (set I), but also 

demonstrated reasonable predictive capabilities.   
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Table 2-2 The parameters for eqn. 2.16 for Set I biaxial protocols only. 

Specimen c (kPa) A1 A2 A3 A4 A5 A6 B r2 

sb111 6.01 56.00 43.36 33.87 74.93 1.00 38.67 1826.93 0.96 

sb131 8.41 96.69 47.02 6.21 34.94 2.07 1.00 4154.36 0.95 

sb51 4.36 51.56 26.90 -15.53 30.38 1.98 6.74 181.94 0.97 

sb52 5.34 29.42 17.39 -2.66 7.96 2.00 0.40 124.00 0.94 

sb53 5.95 13.04 11.91 8.61 10.00 1.00 2.00 284.39 0.96 

sb61 5.81 63.59 39.37 7.78 30.41 2.00 1.00 4106.12 0.96 

sb62 4.89 41.00 29.60 25.08 73.75 2.12 17.65 1169.28 0.98 

sb71 3.41 28.91 20.00 10.09 53.36 9.24 19.61 194.13 0.98 

sb31 7.16 28.93 19.00 14.65 1.00 2.00 5.29 1460.87 0.98 

sb132 2.43 50.44 23.80 23.72 152.08 41.15 8.78 0.71 0.97 

Mean 5.38 45.96 27.84 11.18 46.88 6.46 10.11 1350.27 0.97 

Std. Err 0.55 7.45 3.75 4.50 14.25 3.93 3.84 504.34 0.004 

 

2.4 DISCUSSION 

 
2.4.1 Strain Vs. Stress Control   

In our original technique to apply in-plane shear in a biaxial test 38, control of the 

normal Green’s strain components alone was used while the shear strain component E12 

was allowed to vary freely.  While this approach allowed for the application of in-plane 

shear, the range of stresses and strains was limited.  This limitation restricts the ability 

to accurately simulate heart valve stresses, since they can exhibit strains outside those 

used in Sacks (1999)38 during normal valve function.  Use of Lagrangian stress-control 

 51



 

biaxial tests allowed for a wider range of stress and strain, especially in generating a 

negative strain state that is difficult to reproduce in a strain-controlled test.  Also, 

physiologically native and bioprosthetic heart valve tissues are loaded by transvalvular 

pressure, which is more accurately simulated in a stress-control test. 

 

2.4.2 Effects of Chemical Treatment   

Overall, it was observed that chemical fixation induced directionally dependent 

tissue shrinkage, with greater tissue contraction found along the cross-preferred fiber 

direction.  This result suggested that cross-linking compacted the collagen fiber 

network, whereas the fiber lengths were not appreciably reduced.  More interestingly, 

the presence of exogenous cross-links resulting from glutaraldehyde treatment did not 

appreciably affect the biaxial mechanical response at high stress levels (>250 kPa), 

including the shear (Figure 2-3).  Thus, chemical fixation appears to affect the planar 

biaxial mechanical stress-strain response at stress values below ~250 kPa. 

While definitive evidence is still outstanding, our biaxial mechanical data 

suggest that chemical fixation primarily produces strong inter-fiber bonding, yet does 

not affect intrinsic collagen fiber stiffness at high stresses.  This is supported by tensile 

failure properties for native and chemically treated bovine pericardium, which 

demonstrated little or no differences in ultimate failure strength between the chemically 

treated and native groups 92.  If chemical fixation only affected inter-fiber bonding, this 

would suggest that at stresses >250 kPa most of the collagen fibers are uncrimped and 

bearing stress.  This is also in agreement with our hypothesis that the unusual high in-
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plane shear for GLBP is due to large rotations of the collagen fibers under high shear 

strain, as opposed to the effects of chemical fixation.  Chemical fixation is utilized 

extensively in biologically-derived biomaterials, and future studies are required to 

further explore this important area. 

 

2.4.3 Use of Response Functions to Guide Functional Forms   

The response function method developed in the current study is derived from 

approaches developed for isotropic rubber-like materials 82 and transversely-isotropic 

and orthotropic soft biological tissues 42, 93.  For soft tissues, the basic concept is to probe 

the pseudo-elastic response in a controlled manner to deduce the functional form of the 

strain energy function.  Ideally, experimental protocols are designed in accordance with 

an assumed form of the strain energy function, so that a single strain component can be 

varied independent of the other two components. 

Experimentally, these conditions are sometimes difficult to realize. In addition, 

one cannot take full advantage of stress-controlled tests without a complementary strain 

energy density function, which would have the additional restriction to be of an 

invertible form.  The approach presented herein avoids some of these complications by 

allowing for interpolation of the pseudo-elastic response without a-priori assumptions 

of the functional form of the strain-energy function.  In our experience with the biaxial 

mechanical properties of biological tissues 34, we have found that stress-controlled tests 

were easier to both generate data over the functional range of the tissue and to perform.  

Thus, the current approach, although theoretically equivalent to the previous 
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approaches cited above, allows for more straightforward implementation for soft tissue 

constitutive modeling. 

 

2.4.4 Additional Constitutive Modeling Considerations   

In the current study, several novel modeling problems were encountered, mainly 

due the presence of high shear stresses. First, we were not able to able to fit our current 

dataset to the general Fung-type model used previously 38, even though we utilized 

identical biomaterials. This result underscores the need to obtain mechanical testing 

data over the entire physiological range (and operational ranges in the case of 

bioprosthetic biomaterials).  Our initial solution to sub-divide the strain region is not 

uncommon in solid mechanics, and is analogous to bi-modular material approaches 94.  

However, for completeness, a single analytical expression is always preferable. More 

critically, the inability to accurately predict responses substantially outside the data 

range used for parameter determination (Figure 2-5) makes this approach clearly 

untenable for soft tissue analyses.   

Even after a final model is obtained, the fitted parameter set must also produce 

physically reasonable solutions in addition to an accurate fit to the data. Otherwise, it is 

possible that under certain conditions the predicted response could be physically 

unreasonable.  This problem may be especially acute in cases of nonlinear constitutive 

laws under heterogeneous multidimensional deformations where such errors may be 

difficult to detect95, 96. 
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In the current work, we applied several parameter restrictions based on 

physically consistency to simple deformation states (Appendix A).  However, these 

should not be construed as exhaustive. Many constitutive model restrictions for 

physical plausibility have been previously proposed, including the Baker-Ericksen 

inequalities, generalized Coleman-Noll condition 97, and polyconvexity 98.  In spite of its 

apparent fundamental importance, only limited attention has been given to the issue of 

plausibility in constitutive equations for biological and biologically-derived materials 42, 

95, 96.  Generalized applicability to soft anisotropic biological materials is largely 

unexplored, and more theoretical work in this area is clearly warranted. 

 

2.4.5 3D Stress Space 

The current approach of describing tissue response at 45-degree material axes is 

an improvement to the traditional way of describing tissue response at specimen axes. 

However, by examining the entire possible stress space, it can be seen that the approach 

still covers limited stress space. We will illustrate the reason of why we make such a 

statement as below: 

The components of Lagrangian stress tensor T in material axes can be obtained 

by transforming the components of Lagrangian stress tensor T’ in specimen axes to the 

material axes using the T=QT’QT, where Q=
cos sin
sin cos

θ θ
θ θ

 
 − 

84. It can be explicitly 

expressed as: 
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' 2 ' 2
11 11 22T =T cos θ+T sin θ     (2.17) 

' 2 ' 2
22 11 22T =T sin θ+T cos θ     (2.18) 

' '
12 22 11T =(T -T )sinθcosθ     (2.19) 

In our stress-control biaxial tests, we can see that T’11≥0 and T’22≥0 (Figure 2-1). It 

leads to that T11≥0 and T22≥0 by eqn. 2.17 and eqn. 2.18. We will prove 12 11 22| T T≤|T  is 

also satisfied. 

From the difference of eqn. 2.17 and eqn. 2.18, we have 

' 2 2 ' 2 2
11 22 11 22T -T =T (cos θ-sin θ)+T (sin θ-cos θ)    (2.20) 

similarly from the sum of eqn. 2.17 and eqn. 2.18, we have 

'
11 22 11 22T +T =T +T'      (2.21) 

Eqns 2.20 and 2.19 can be re-expressed as 

' '
11 22 11 22T -T =(T -T )cos2θ     (2.22) 

' '
12 22 11

sin2θT =(T -T )
2

    (2.23) 

Square eqn. 2.22 and eqn. 2.23, and add them together, we find that 

2 2 ' '
11 22 12 11 22(T -T ) +4T =(T -T )2

' '

    (2.24) 

and re-express it as 

2 2 ' ' 2
11 22 11 22 12 11 11 11 22(T +T ) -4T T +4T =(T +T ) -4T T     (2.25) 
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Due to eqn. 2.21, it is reduced to 

2 '
11 22 12 11 22-4T T +4T =-4T T'     (2.26) 

Because , we have -40' '
11 22-T T ≤ 2

11 22 12T T +4T 0≤ , hence, 12 11 22| T T≤|T . Therefore 

the inequalities are: 

T11≥0, T22≥0 and 12 11 22| T T≤|T     (2.27) 

Eqn 2.27 is the bounds restricting the possible stress domain that the stresses 

could fall into (Figure 2-8). However, due to our material axes are at 45-degree angle, 

from eqn. 2.17 and eqn. 2.18, it can be easily deduced that T11 is always equal to T 22.‡ 

Consequently, our stress space is limited by  

T11=T22      (2.28) 

within the domain restricted by eqn 2.27 (Figure 2-8). 

                                                 

‡ Note here the stresses are the Lagrangian stresses. For Cauchy stresses, t11 may not be equal to t22 

because the deformation gradient F is taken into the calculation of the Cauchy stresses. 

 57



 

-1500

-1000

-500

0

500

1000

1500

0
200

400
600

800
1000

200
400

600
800

1000

T 1
2

T11

T22

3D stress space 
restricted by eqn 2.27

45-degree material 
axes stress space 
restricted by eqn 2.28

Our experimental data 
stress space

 
Figure 2-8 The 3D stress space. The color surface embraces the 3D stress space restricted by eqn 

2.27.  The 45-degree material axes stress space is a plane intersecting the color surface by eqn 

2.28. Our experimental data are shown in white dots within the domain restricted by eqn 2.28. 

 

 

2.5 SUMMARY  

A comprehensive experimental biaxial mechanical dataset that included a high 

in-plane shear state for heart valve biomaterials was presented.    We found that our 

original five parameter Fung model developed for GLBP was unable to fit the new 
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extended dataset.  To develop the appropriate model, we developed an interpolation 

technique for the pseudo-elastic response to guide the final model form.  An eight 

parameter model utilizing a single additional quartic term was found to fit the complete 

dataset well, with the model parameters satisfying physical plausibility. 
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3.0 FINITE ELEMENT IMPLEMENTATION OF A FUNG 

ELASTIC MODEL FOR PLANAR ANISOTROPIC 

BIOLOGICAL MATERIALS 

 

From this chapter and onwards, we will study a fascinating area of 

biomechanics, the finite element simulations of soft tissue behaviors.  We will in this 

chapter focus on the finite element implementation of material models, in particularly 

the Fung pseudo-elastic model, whereas the applications of simulating tissue and 

bioprosthesis behaviors will be presented in Chapters 4 and 5. In this chapter, we will 

go through finite element issues particular to soft tissue, i.e., the method of nonlinear 

finite element solution (section 3.1.1) and the procedure of defining a user-defined 

material model in a finite element code (section 3.1.2).  An in depth study on the Fung 

model implementation will be given in sections 3.2.1 to 3.3.2 with emphasis on the 

method of forming the model with numerical stability. Also numerical accuracy is 

rigorously validated against experimental data. Throughout the study, ABAQUS 

(Pawtucket, RI) is used as the finite element implementation platform due to its wide 

availability and thus, the methods developed here can be adapted easily for other 

applications.  
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3.1 INTRODUCTION 

Given the complex geometries and material properties inherent to the 

cardiovascular system, sophisticated numerical methods often become essential for 

accurate stress-strain analysis and prosthesis design. One of the most powerful 

numerical tools available today is the finite element method, which quickly proved 

indispensable in biomechanics 59, 99-101. 

 

3.1.1 Nonlinear Finite Element Solution Procedure 

As a brief introduction of the basic concepts, in the finite element method one 

seeks to divide the domain of interest into a finite number of non-overlapping but 

contiguous sub domains, called elements and thus, a boundary value problem or initial 

value problem is reduced to a system of equations of the form: 

[K]{u}={F}     (3.1) 

where [K] is the (structural) stiffness matrix, {u} the vector of unknowns (such as 

displacements) and {F} the boundary loads.  When [K] depends on {u}, the system of 

equations is nonlinear and thereby requires special consideration for solution (e.g. 

Newton-Raphson method).  

Finite element simulations of soft tissues are in general nonlinear and a finite 

element model can involve from a few to many variables. In terms of these variables the 

equilibrium equations obtained by discretizing the virtual work equation can be written 

symbolically as 
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N MF ( ) 0µ =    (3.2) 

where F  is the force component conjugate to the N  variable in the problem andN th Mµ   is 

the value of the M  variable. The basic problem is to solve eqn. 3.2 for the th Mµ  

throughout the history of interest. 

Many of the problems are time or history-dependent, so the solution must be 

developed by a series of "small" increments. Two issues arise: how the discrete 

equilibrium statement eqn. 3.2 is to be solved at each increment, and how the increment 

size is chosen. Generally Newton's method is used as a numerical technique for solving 

the nonlinear equilibrium equations. The motivation for this choice is primarily the 

quadratic convergence rate obtained by using Newton's method compared to the 

convergence rates exhibited by alternate methods (usually modified Newton or quasi-

Newton methods) for the nonlinear problems. The basic formalism of Newton's method 

is as follows 102. Assume that, after iteration i, an approximation M
iµ , to the solution has 

been obtained. Let M
i 1c +  be the difference between this solution and the exact solution to 

the discrete equilibrium equation eqn. 3.2. This means that 

N M M
i i 1F ( c ) 0+µ + =    (3.3) 

Expanding the left-hand side of this equation in a Taylor series about the 

approximate solution  then gives M
iµ

N 2 N
N M M P M P Q

i i i 1 i i 1 i 1P P Q
F FF ( ) ( )c ( )c c ... 0+ + +

∂ ∂
µ + µ + µ + =

∂µ ∂µ ∂µ
    (3.4) 
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If µ  is a close approximation to the solution, the magnitude of each  will be 

small, and so all but the first two terms above can be neglected giving a linear system of 

equations: 

M
i

M
i 1c +

N
M P N M
i i 1 iP

F ( )c F (+
∂ )µ = − µ
∂µ

   (3.5) 

The next approximation to the solution is then 

M M
i 1 i i 1cM
+ +µ = µ +    (3.6) 

and the iteration continues. 

Convergence of Newton's method is best measured by ensuring that all entries in 

and all entries in c  are sufficiently small. Both these criteria are checked by default 

in a finite element code, for example, ABAQUS. 

N
iF M

i 1+

Even though many finite element codes are commercially available, frequently 

they are misused in biomechanics, and one is cautioned to understand, or at least 

appreciate, the underlying mechanics prior to implementation. Therefore, most 

significant contributions continue to be realized via custom codes 101.  

 

3.1.2 Finite Element Implementation of a User-defined Strain Energy Function 

To incorporate a user-defined material mode into a commercial available code, 

one generally needs to follow the procedure in Figure 3-1. ABAQUS will be used as a 

platform for numerical implementation, user-defined constitutive laws will be 

incorporated into ABAQUS through its user subroutine UMAT. 
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Figure 3-1 A flow chart for finite element implementation of a user-defined material model 

 

o Fitting the experimental data to the constitutive model through a nonlinear 

regression software package, such as SYSTAT10 or SigmaStat (SPSS Inc), to obtain 

the parameter estimates for the constitutive model. 

o Code the constitutive model into ABAQUS/UMAT by Fortran software. 

o Conduct a single element test to test the correctness of UMAT coding. That is to 

build a simple single element ABAQUS input file, calling the parameters and the 

UMAT (the constitutive model), with a simple loading condition. Compare the 

ABAQUS output with the prediction from the constitutive model. If it matches, then 

it indicates that the UMAT programming is correct. If it does not match then 

examine the UMAT coding. 
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o With correct UMAT coding, one can continue to use the material model into his 

application, i.e., complex multi-element simulation.  

o If multi-element simulation does not converge, one can:  

o Examine the ABAQUS solver, which is based on Newton’s methods for 

nonlinear solution, to find possible, user specific causes of non-convergence, and 

modify the convergence criteria. The corresponding techniques provided by 

ABAQUS include: allow large residuals; reduce increment step, and Line search, 

RIKS methods. 

o Reforming the model by either using another form of constitutive model, or 

controlling parameters of the model. 

 

3.1.3 Previous Studies, Limitations and Purpose of This Study 

Various nonlinear strain energy functions have been developed for soft tissues, 

including isotropic 57, 58, transversely isotropic 41, 42, 59, 60, anisotropic models 39, 56, 61-63, 103, 

104, and structural models 8, 96, 105. Among all these constitutive models, the exponential 

model proposed by Fung 56 is perhaps the most widely used.  

Although these strain energy functions have been in the literature for several 

years, finite element implementation has been rather limited. Lack of finite element 

implementations of soft tissue constitutive models are a result of a lack of appropriate 

experimental data (for both formulating constitutive models and validation of 

numerical simulations), and computational difficulties in incorporating these models 

into available finite element codes.  In particular, problems with solution convergence 
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can result in a numerically unstable model that may lead to either inaccurate results or 

failure to converge.  

Holzapfel et al. 100 presented a theoretical framework for biological membranes 

and finite element implementation of a four parameter unconstrained Fung model.  The 

simulation was conducted with single element and shear response was ignored. Later 

Holzapfel et al.106 addressed imposing physical constrains in constructing an 

experimentally-driven hyperelastic model for arteries. Similar physical plausibility 

considerations for soft tissue models had also been addressed by Lanir et al. 95, 96 and 

Humphrey 107. However, their importance related to computational requirements has 

largely been unexplored.  

In the present study, we developed a generalized approach for finite element 

implementation of a nonlinear anisotropic Fung pseudo-elastic constitutive model that 

incorporated the effects of in-plane shear.  Experimental data was obtained from a 

previous study 39 of biaxial mechanical evaluation of pericardium. Moreover, we 

present restrictions of the model parameters necessary to achieve numerical solution 

convergence. Finite element results were validated with both theoretical solutions and 

experimental data.  
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3.2 METHODS 

3.2.1 Constitutive Models 

It is assumed that biological tissues behave as hyperelastic materials following 

the concept of pesudoelasticity 56. Thus S can be derived from a two-dimensional strain 

energy function W through: 

W∂
=

∂
S

E
   (3.7) 

We utilize a Fung elastic model with full expansion of quadric terms of Q and 

with the ability to characterize in-plane shear response 38:  

Qc
W e

2
1= −         

2 2 2
1 11 2 22 3 11 22 4 12 5 12 11 6 12 22Q A E A E 2A E E A E 2A E E 2A E E= + + + + +   (3.8) 

where c and Ai are material constants.   

Note that we chose eqn. 3.8 instead of eqn. 2.16 for our simulations based on the 

following considerations:  For finite element simulation, if using eqn. 2.16, for each 

finite element increment, the deformation gradient F’ from global coordinate system 

needs to be transformed first to local material axes coordinate system as F and stress 

tensor S is calculated by eqn. 2.16, then the stress S needs to be transformed back to the 

global coordinate system as S’ for consequently equilibrium calculations. This process 

increases the numerical complexity. In finite element simulations, we could use material 
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models described either on material axes or specimen axes. For numerical convenience, 

in this study we use eqn. 3.8 to describe experimental data obtained on the specimen 

axes (X1’-X2’ axes of Figure 2-1a).  Thus we do not need to rotate the stress-strain tensor 

to material axes. Note all finite element formulations in this dissertation are based on 

specimen axes description. 

To evaluate the effects of mechanical anisotropy, we also implemented the 

following Ogden constitutive model for elastomeric materials 108. The Ogden strain 

energy function W can be expressed as: 

i i ia a aN
i

1 2 32
i 1 i

2W (
a

∧ ∧ ∧

=

µ 3)= λ + λ + λ −∑    (3.9) 

where µi and ai are material constants and i

∧

λ  are the principle stretches.  For N=3 the 

Lagrangian stress components are TB for an equibiaxial stress experiment can be 

expressed as 

i ia 1 2a 13
i

B BB 2
i 1 i

2T (
a

)
− − −∧ ∧

=

µ
= λ − λ∑    (3.10) 

where λ = , representing the stretch under equibiaxial stress condition.  B 1

∧ ∧ ∧

λ = λ2

 

3.2.2 Experiment Data  

For this study, the constitutive model parameters for eqn. 3.8 were obtained 

utilizing biaxial mechanical data of GLBP described on specimen axes with tissue 

material axes at 45-degree. To obtain model parameters for the Ogden model, we 
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created an isotropic response of GLBP by averaging the stress and strain response of 

equibiaxial test (T11:T22 =1:1) of GLBP and fit the synthetic data set to the eqn. 3.10. 

T 11

T 22

x1

x2

X’1

11

22

X1

X2

X’2

 
Figure 3-2 Specimen loading approach for biaxial testing. T11 and T22 of 1 MPa Lagrangian stress 

are imposed on each side of the sample, by the four evenly spaced suture attachments on two 

stretching axes X1 and X2. Specimens were tested with material axes (X’1-X’2), determined by 

small angle light scattering (SALS), inclined to a 45-degree angle with respect to the biaxial 

device stretching axes (X1-X2 ). 

 

3.2.3 Finite Element Formulation 

In nonlinear finite element analysis, the equilibrium equations are obtained by 

discretizing the virtual work equation. In the following, we largely follow Holzapfel et 

al. 100, 109 for formulation for hyperelastic membranes. Let the virtual work contribution 

from the internal forces in an element in Lagrangian form be  
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0

IW ( ) ( : )HdS
∂Ω

δ = δ∫E E S    (3.11) 

where WI denotes the internal work and S denotes the undeformed membrane surface 

encompassed by the boundary . The material linearization operator (Gateaux 

operator) is defined by the following 

0∂Ω {}∆ ⋅

98 

0
d{ }( , ) : { }( ) |
d ε=∆ ⋅ ∆ = ⋅ + ε∆

ε
u u u u    (3.12) 

where u is the displacement field. Linearization of internal energy variation is given by, 

0

IW ( : : )Hd
∂Ω

∆ = ∆ + ∆∫ S E E Sδ δ δ S    (3.13) 

Linearization of the second Piola-Kirchhoff stress tensor is obtained by using 

chain rule: 

: :∂
∆ = ∆ = ∆

∂
SS E
E

C E    (3.14) 

where  is the elasticity tensor in material description. Hence, the eqn. 3.13 may be re-

expressed in index notation as

C

109 

0

a
I ab BD aA bC ABCD

B D

uW ( ( S F F C ) Hd
X X∂Ω

bu S∂δ
∆δ = δ +

∂ ∂∫
∂∆    (3.15) 

where δ denotes the Kronecker delta. ab

Eqn. 3.15 describes the fully nonlinear finite deformation case. The term 

 represents the effective tangential elasticity tensor, the first term 

S

ab BD aA bC ABCDS F F Cδ +

BD is the geometrical stress contribution and the second term is the so-called material 
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contribution to the linearization.  Note here that linearization of the principle of virtual 

work in spatial description can be obtained by the push-forward operation 109 of the 

linearized terms in eqn. 3.15 and may be written as 

a b
I ab bd abcd

b d

u uW ( ( c ) hds
x x∂Ω

∂δ ∂∆
∆δ = δ σ +

∂ ∂∫      (3.16) 

where cabcd = FaAFbBFcCFdDCABCD and s denotes the deformed membrane surface 

encompassed by the boundary ∂Ω .  Incremental/iterative solution technique of 

Newton-Raphson’s method is used by ABAQUS for solving the nonlinear equilibrium 

equations.   

The 4th order elasticity tensorC  usually has 81 components, however, due to our 

two-dimensional application, it reduces to 16 components, furthermore, to respect 

symmetry of C  and S12=S21(because E12=E21), it reduces to 9 components, from which 

only 6 components need to be determined. It may be written in matrix form as 

 


  

2
1 1 3 1 2 5 1 3

Q 2
2 2 6 2 3

2
4 3

2A +ζ 2A +ζ ζ 2A +ζ ζ
c

= e 2A +ζ 2A +ζ ζ
2

sym 2A +ζ
C 

     (3.17) 

where: 

1 1 11 3 22 5 12ζ =2A E +2A E +2A E , ζ , ζ . 2 2 22 3 11 6 12=2A E +2A E +2A E 3 4 12 5 11 6 22=2A E +2A E +2A E
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3.2.4 Biaxial Testing Simulations 

The biaxial testing simulation model consisted of 400 plane stress elements 

(ABAQUS element type CPS8R) describing a specimen geometry of 25 mm x 25 mm x 

0.4 mm (Figure 3-2). Four evenly spaced node forces, with 5 mm between two adjacent 

nodes and 2.5mm inside the specimen edge, were imposed on each side (Figure 3-2). 

Each node force was 2.5 N, imposing 1 MPa Lagrangian stress on each edge.  Similar to 

the actual biaxial testing setup, only the central region was used for stress-strain 

measurements.  This was accomplished by averaging the stress and strain tensor 

components for sixteen elements located in the center of the finite element model, 

delimiting a 5 mm x 5 mm region.  

 

3.2.5 Enforcement of Convexity Condition 

Conventionally, biaxial experimentally measured stresses are fit to the predicted 

stress by the constitutive model, with parameter estimates obtained using nonlinear 

regression techniques to obtain model parameter values 34.  However, the resulting 

model may be numerically unstable for computational implementation, and thus will 

not lead to convergent solutions. Moreover, physical plausibility of the resultant 

constitutive model must be enforced 39, 101, 109. However, mathematical techniques 

enforcing these constraints from computational perspective have largely been 

unexplored. 
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In most commercial finite element codes, the Newton-Raphson method is used to 

evaluate the material stiffness matrix, which is a function of C .  If C  is positive definite 

(as well as full rank and well-conditioned), then the numerical solution of the 

equilibrium equations (eqn. 3.16) will be stable and accurate. From eqns. 3.7 and 3.14, it 

can be seen that elasticity tensor  is the second partial derivative, or Hessian, of W.  

We know that whenever the Hessian of a function is positive definite, the 

corresponding function will be convex.  Thus, by requiring the elasticity tensor C  be 

positive definite, the convexity of the generalized Fung pseudo-elastic constitutive 

model is enforced. 

C

For planar biaxial loading of biomembranes, strict convexity physically implies 

that the projections of the contours of W on the E11-E22, E11-E12, and E22-E12 planes form 

convex surfaces 106.  To impose convexity on the current strain energy function (eqn. 

3.8), we examined elasticity tensor  in the reference configuration (where EC 11 = E22 = 

E12=0):  

1 3

3 2

5 6

2A 2A 2A
c= 2A 2A 2A
2

2A 2A 2A

5

6

4

 
 
 
  

C    (3.18) 

From eqn. 3.18 we obtained the following parameter constraints by satisfying 

be positive definite in the reference configuration EC 11=E22=E12=0: 

c>0, A1>|A3|, A2>|A3| and    (3.19) 2 2 2
1 2 4 3 6 5 5 2 6 1 3 4A A A +2A A A -A A -A A -A A >0

 73



 

However, the above constraints for eqn. 3.19 are not sufficient to guarantee  is 

positive definite over the entire strain range.  Rather, we consider these to be a 

necessary condition that if parameter constraints fail to satisfy these constraints, 

convexity will be violated. It is therefore necessary that C  be evaluated at every point in 

the anticipated strain range to verify that positive definiteness is always satisfied. 

C

 

3.2.6 Requirement for the Condition Number of C  

 The condition number of C  is defined as 

1|| || || ||−ℜ = ⋅C C    (3.20) 

where the norm of  is defined as || .  We evaluated the condition 

number of elasticity tensor C  over the experimental strain ranges.  Theoretically, the 

lower the condition number, the better the numerical stability. In our experience, for the 

Fung pseudo-elastic constitutive model we found that a condition number ≤200 was 

acceptable for numerical convergence.  Note that we do not have analytic bounds 

similar to the eqn. 3.19 for the condition number inequality. This is due to the fact that 

solving the condition number inequality through matrix manipulation leads to a very 

complex formulation and further simplification for nonlinear regression bounds is 

difficult to obtain.  Thus we only examined if a condition number ≤200 is satisfied once 

the model parameters were obtained. 

C
n

ij1 j n i 1
|| max | C |

≤ ≤
=

= ∑C
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3.2.7 Finite Element Implementation  

Eqn. 3.15 was incorporated into finite element software package ABAQUS 

through its user subroutine UMAT. An 8-node biquadratic, reduced integration plane 

stress element (ABAQUS element type CPS8R) was used for all simulations, using the 

updated Lagrangian formulation. Static simulations allowing for nonlinearity arising 

from both the constitutive law and the large geometric deformation were performed. 

 

3.2.8 Finite Element Model Validation 

To ensure that the stress update and tangent stiffness were properly 

implemented into the ABAQUS, displacement-controlled single-element tests were 

performed. Briefly, node displacements of the single-element were prescribed as 

boundary condition to control the element deformation. The resulting FE updated 

strains were used as input to the constitutive model of Eqn (5) to calculate the 

theoretical updated stresses. This was done in a spreadsheet. The theoretical updated 

stresses were compared with the FE updated stresses to validate the correctness of the 

model implementation. Note that for anisotropic materials the resulting asymmetry of 

the model requires that full element simulations be used, precluding the use of partial 

models (i.e. quarter models) that require material and geometric symmetry. 
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3.3 RESULTS 

3.3.1 Parameter Values 

Nonlinear regression results for the Fung model, with and without enforcing 

eqn. 3.19, are illustrated in Figure 3-3 and parameter values listed in Table 3-I.  Further, 

with the bounds imposed the elasticity tensor  satisfied the positive definiteness 

requirement over the experimental ranges, and W satisfied the convexity condition 

(Figure 3-4d-f, Table 3-2). As a comparison (Figure 3-4), without the bounds, the 

elasticity tensor  failed to be positive definite (Table 3-2) and the strain energy 

function was not convex (Figure 3-4a, b, c). For illustration purposes, another set of 

parameters that meet the requirement of a positive definite elasticity tensor  is listed 

Table 3-2.  However, in this case C  had a high condition number. It is interesting to 

note that with the same finite element configuration, one parameter set (with positive 

definite  and low condition number) achieved numerical convergence while the other 

two sets failed. For the Ogden model (eqn. 3.16), the parameters estimates are 

illustrated in Figure 3-3 and listed in Table 3-1, respectively. 

C

C

C

C
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Table 3-1 Constitutive model (eqn. 3.8) parameter results for the Fung pseudo-elastic model 

with and without the bounds of eqn. 3.19, and with low or high condition numbers (CN). 

Fung model & 

constraints C A1 A2 A3 A4 A5 A6 r2 

without bounds 4.25 56.55 86.27 -16.76 -76.08 -9.07 -22.29 0.97 

with bounds and low 

CN 5.12 60.12 86.34 2 203.16 43.05 42.14 0.96 

with bounds and high 

CN 4.16 60.09 90.58 -13.76 2.1 6.57 -5.97 0.97 

           

Ogden model  µ1  α1 µ2 α2 µ3 α2 - r2  

Parameters 3.87 56.11 3.87 56.11 3.87 56.11 - 0.99 
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Table 3-2 The positive definiteness and condition numbers (CN) for the elasticity tensor  for 

the Fung pseudo-elastic model (eqn. 3.8) with and without the bounds of eqn. 3.19, and with 

low or high condition numbers (CN). The condition numbers values are between the maximum 

and minimum numbers in the table. 

C

Fung w/ bounds Fung w/o bounds Max Min Max Min
E11-E22, E12=0.0 yes yes 18.31 2.3 682.2 49.7
E11-E12, E22=0.1 yes no 31.5 2.71 246.03 106.24
E22-E12, E11=0.1 yes no 35.85 2.3 478.77 69.17

Projection plane
Condition number

Fung w/ bounds, low CN Fung w/ bounds, high CN
Positive definite
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Figure 3-3 Nonlinear regression fitting results for the Fung elastic model of eqn. 3.8 with and 

without the bounds of eqn. 3.19 and for the isotropic Ogden model of eqn. 3.9. 
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Figure 3-4 The projections of the strain energy function potential contour plots in the a) E11-E22, 

b) E11-E12 and c) E22-E12 planes without convexity condition imposed; the projections of the strain 

energy function potential contour plots in the d) E11-E22, e) E11-E12 and f) E22-E12 planes with 

convexity condition imposed. 
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3.3.2 Single Element and Biaxial Test Specimen Simulations  

The results of single-element test for equibiaxial protocol are shown in Figure 

3-5, where exact agreements between the theoretical and finite element solutions were 

obtained. It indicated that the material model was successfully incorporated into finite 

element analysis.   
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Figure 3-5 Deformations from equibiaxial protocol were input into finite element model and its 

outputs were compared with experimental data. Exact agreements were obtained. 

 

Results of biaxial test finite element simulations are illustrated in Figure 3-6 for 

both isotropic (eqn. 3.9) and anisotropic (eqn. 3.8) cases.  As in the actual experiment, 

the simulations exhibited symmetric deformation for isotropic model and prominent 

shear deformation for anisotropic model, and also different internal stress distribution. 
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Figure 3-6 Deformation and von Mises stress distribution of biaxial testing simulations utilizing 

the isotropic Ogden model (a) and the anisotropic Fung model (b). The white frames in the 

figures indicate the original shape of the sample before deformation. 
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With the Fung model, stress results indicated a nearly homogenous stress 

distribution within the central 5 x 5 mm2 region (a 16 element region corresponding to 

approximately 4% of total specimen area) could be obtained (Figure 3-6). The mean von 

Mises stress was 1,323.93 ± 4.31 kPa. The stress-strain output for the central region was 

compared with the experimental data that indicated a close match, for both normal and 

shear components (Figure 3-7).  Also visible in Figure 3-6 are the boundary effects 

caused by the point loads, which propagated inside to about 7.5 – 8.75 mm from the 

specimen edges. This left about 10 x 10 mm2 inner region with a relatively uniform 

stress distribution (comprised of sixty-four elements). For this region the mean von 

Mises stress was 1,332.68 ± 11.21 kPa.  
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Figure 3-7 An average of sixteen elements located in the center of finite element model, 

delimiting ~ 25mm2 region, was used to compare with the experimental biaxial data. A close 

match was obtained for both normal (a) and shear components for equibiaxial stress simulation. 
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For the Ogden model, the mean von Mises stress of the central sixteen elements 

was 1251.25±0.45 kPa. Also visible in Figure 3-6 are the boundary effects caused by the 

point loads, which propagated inside to about 5 mm from the specimen edges. This left 

about 15 x 15 mm2 inner region with a relatively uniform stress distribution (compassed 

of one hundred forty-four elements). For this region the mean von Mises stress was 

1,266.39 ± 26.66 kPa.  

 

3.4 DISCUSSION 

The pseudo-elastic Fung model has been shown to accurately describe the 

nonlinear, anisotropic behaviors of many soft tissues, and thus has many applications in 

biomedical research and medical device design.  Taken as a whole, our previous 38, 39, 45 

and current work addressed the complete process of computational implementation.  

This process starts from the collection of appropriate experimental data, formulating 

and validating the appropriate constitutive model, obtaining and refining material 

parameters, and finally finite element implementation and validation. Additionally, our 

approach is formulated within a general finite element code, and can thus be 

straightforwardly adopted.  
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3.4.1 Incompressibility  

Most native and biologically-derived tissues exhibit incompressibility because of 

their high water content and low permeability. Incompressibility can be enforced by a 

Lagrange multiplier p, as second variable in addition to displacement, forming the so-

called “mixed” or ”hybrid” finite element approaches. However, in our application we 

did not explicitly enforce the incompressibility condition because our simulation is in a 

two-dimensional plane stress state. 

For plane stress, shell and membrane elements the material is free to expand in 

the thickness direction, thus, special treatment of the volumetric behavior through 

Lagrange multiplier p is not necessary and the use of regular stress-displacement 

elements is satisfactory.  Further, enforcing Lagrange multiplier p as second variable 

will render the stiffness matrix semi-definite, which is a common problem in finite 

elements and it leads to several numerical difficulties 101. Nonetheless, if the tissue is 

modeled with three-dimensional solid element, a three-dimensional constitutive model 

needs to be defined and the volumetric constrains where det|F|=1 needs to be 

explicitly imposed. 

 

3.4.2 Convergence Issues  

For hyperelastic materials, the finite element convergence is always a critical 

issue irrespective of material anisotropy.  Several techniques such as switching the finite 

element simulation from load-control to displacement-control, and using Line-search 
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and RIKS methods, may be of help. The default convergence criteria defined in 

ABAQUS are designed to provide reasonably optimal solutions to complex problems 

involving combinations of nonlinearities as well as efficient solutions of simpler 

nonlinear cases. If less strict convergence criteria are selected, there is a danger that 

results may be accepted as converged when they are not sufficiently close to the exact 

solution of the system. Usually this is manifested by a discrepancy between the 

theoretic solution and finite element output. Another alternative is to modify the model, 

either changing the form of the model or adjusting model parameters.  While changing 

the form of the model is not preferable, adjusting model parameters requires that 1) the 

parameter estimates are not unique; 2) the accuracy of the model describing the 

experimental data is not compromised.  

Previous work has attempted to determine proper material constants for pseudo 

elastic soft tissue models 39, 41, 103, 104, 110. The general goal in finding material constants is 

to obtain the minimum number of parameters while adequately fitting the data 34. 

However, for a highly nonlinear model it is usually difficult to determine the global 

minimum. If the regression started from different initial values, it is highly likely that 

the regression falls into a local minimum valley, thus it was found that multiple sets of 

constants could provide essentially equally good fits. In our case, the r2 is changed from 

0.97 to 0.96 after convexity constraints imposed on the nonlinear regression, with no 

perceptible impact to the quality of the fit. Non-uniqueness of parameter estimates of 

the Fung elastic model is probably due to the inherent co-variance of its strain 

components 111, 112. 
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A few constitutive inequalities, which have been proposed in the past, include 

the Baker-Ericksen inequalities, convexity, the generalized Coleman-Noll condition 97 

and polyconvexity 98. Those thermodynamic permissibility criteria are enforced on a 

constitutive law to ensure any response predicted by the constitutive law is physically 

reasonable. For nonlinear, anisotropic tissue material undergoing finite deformation, 

the plausibility of constitutive law may be especially acute as such unreasonable 

deformation may be difficulty to detect 96. In spite of its apparent fundamental 

importance, it seems that little attention has been given to this issue 95, 96. Furthermore, 

those constitutive inequalities are mainly been addressed from the perspective of 

physical considerations, rather than computational considerations. For finite element 

implementation of an experimentally driven hyperelastic model, as illustrated in the 

current work, certain constraints on the model are required for numerical convergence 

(eqn. 3.19). While requesting strain energy function to be convex may be too restrictive 

for hyperelastic materials 98, the less restrictive Legendre-Hadamard inequality has 

been proposed. However, its applicability to finite element analyses is unclear. 

 

3.4.3 Fung Model and Other Models 

For proper computational implementation, the Fung model requires explicitly 

expression of shear behavior and thus, the E12 term has to be included in the model. In 

literature, a four parameter Fung (e.g., Q A ) is often seen. This 

four-parameter Fung model is adequate for describing and quantifying tissue 

2 2
1 11 2 22 3 11 22E A E 2A E E= + +
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mechanical properties, however, not adequate for any realistic numerical simulation in 

which element shearing is inevitable.  This also suggests that biaxial testing with 

extension only does not provide sufficient information to constitute a strain energy 

function for computational implementation. Note here the argument is for anisotropic 

materials.  

Construction of a constitutive model with physical plausibility property a priori 

is ideal. There are several attempts 106, 113, 114 towards this direction. For example, 

recently Holzapfel et al. 106 proposed a constitutive model for artery layers. The model is 

a fiber-reinforced composite model with two families of fibers. The model is discrete 

structural (because of the fixed fiber direction) and based on strain invariants, for which 

explicit expression of shear may not be needed. The model demonstrated physical 

plausibility (convex). The continuous structural model (has a continuous fiber  

distribution) proposed by Lanir 115 and used by Sacks 116 has been shown to be physical 

plausible 95, 96. 

 

3.4.4 Validation with Experimental Data  

Overall, we found excellent agreement between the predicted and measured 

stress responses.  In general, the discrepancies between finite element output and 

experimental data could be attributed to idealization of the finite element model. 

Specifically, the finite element model assumed idealized conditions exist such as tissues 

are homogeneous, loads are evenly spaced and have exactly equal values.  While it is 
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certainly possible to achieve this, the current simulation results suggest it is not 

necessary for accurate simulations. 

It should be noted that our finite element analysis was conducted using tissue 

material axes oriented at 45° with respect to biaxial stretching axes and four-suture 

attachment loading boundary condition. Our findings should be interpreted in the light 

of these restrictions. When varying degrees of tissue anisotropy and tissue clamping 

methods, the region of uniform stress and strain would certainly be changed. Those 

effects have been addressed in Sun et al. 117.  

 

3.5 SUMMARY  

This study presented a finite element implementation of a general anisotropic 

Fung model, including in-plane shear effects. We enforced the restrictions on the model 

necessary to achieve numerical stability.  The finite element model was validated 

comprehensively by both theoretical solutions and experimental data. These results 

suggest that accurate design and functional simulations of medical devices using 

realistic nonlinear anisotropic material models is both feasible and practical. The 

successful finite element implementation of the anisotropic Fung elastic model will 

eventually facilitate the medical design process.  
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4.0 FINITE ELEMENT SIMULATIONS – BOUNDARY 

EFFECTS DURING BIAXIAL TESTING OF SOFT TISSUE 

 

“If the forces acting on an elastic body are confined to several distinct portions of its 

surface, each lying within a sphere of radius ε, then the stresses and strains at a fixed interior 

point of the body are of a smaller order of magnitude in ε as ε → 0 when the forces on each of the 

portions are self-equilibrated than when they are not.” – von Mises’ interpretation (1945) of 

Saint-Venant’s principal. 

 

In the previous chapter, we addressed the issue of finite element implementation 

of the Fung pseudo-elastic model; in this chapter we will utilize the model and simulate 

tissue behavior under different biaxial loading conditions. To our knowledge, such 

simulation has not been conducted and comprehensively studied before. A previous 

well-referenced study of biaxial test was by Nielsen et al. 58, however, the material 

model they used is isotropic rubber type mode, which does not represent actual 

nonlinear, anisotropic tissue behavior. With the fact that biaxial test method is 

becoming an increasingly utilized technique in characterizing mechanical properties of 

soft tissues, more and more concerns of the reliability and repeatability of biaxial test 

are raised. For example, the strong influence of boundary conditions in biaxial tests 
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were recently underscored by Waldman et al. 118, wherein substantially different 

experimental results were obtained using different sample gripping methods on the 

same specimens. As it is not possible to directly evaluate the effects of different 

boundary conditions on specimen internal stress distributions, numerical simulations 

need to be conducted to explore these effects. We will begin this chapter by reviewing 

the famous Saint-Venant’s principal and its applicability to soft tissue experiment 

(section 4.1.1). Then we will discuss how we set up our simulations to investigate the 

effects of different clamping methods, different tissue anisotropy and different sample 

shapes (sections 4.2.1 to 4.2.4). We will show the simulation results in section 4.3. The 

stress decay studies in sections 4.3.1 and 4.3.2 will provide the experimenters valuable 

information on interpreting experimental results. Finally, in section 4.4 we will give 

explanation of the phenomena observed in the study by Waldman et al. 118. 

 

4.1 INTRODUCTION 

Planar biaxial testing for soft biological tissues was first introduced by Lanir and 

Fung in 1974 32, 35 who utilized it to investigate the mechanical properties of rabbit skin. 

Today, biaxial testing of soft tissue is becoming an increasingly utilized technique to 

characterize the mechanical properties of various planar biological materials, including 

skin, pericardium, epicardium, visceral pleura, myocardium, as well as various 

engineered tissues and scaffolds.  Recent reviews of the biaxial testing techniques and 

related constitutive theories can be found in Sacks 2000 34 and Humphrey 2002 101. In 
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spite of its growing use, biaxial testing methods have not been standardized and 

methodologies vary widely. Due to the complex mechanical behavior of soft tissues and 

the general difficulty in performing biaxial tests 34, experimental artifacts can easily be 

introduced. A critical factor affecting biaxial mechanical behavior are the boundary 

conditions used in testing, such as the uniformity of the loading along the specimen 

edge and the method of attachment (e.g. grip, sutures). The strong influence of 

boundary conditions in biaxial tests were recently underscored by Waldman et al. 118, 

wherein substantially different experimental results were obtained using different 

sample gripping methods on the same specimens.  

 
Figure 4-1 Substantially different experimental results were obtained using different sample 

gripping methods on the same specimens in a study by Waldman et al. 118 . Reproduced with 

permission.  
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4.1.1  Saint-Venant’s Principal 

Essentially all mechanical testing methods used to determine material properties 

are based on the assumption that Saint-Venant’s principle is valid. However, the 

justification of the principle is largely empirical. Saint-Venant himself limited his 

principle to the problem of extension, torsion and flexure of prismatic and cylindrical 

bodies. There have been various attempts to generalized the principles, for example, 

Love’s Statement: The strains that are produced in a body by the application, to a 

small part of its surface, of a system of forces statically equivalent to zero force and zero 

couple, are of negligible magnitude at distances which are large compared with the 

linear dimensions of the part. 

Sokolnikoff’s Statement: If some distribution of forces acting on a portion of the 

surface of a body is replaced by a different distribution of forces acting on the same 

portion of the body, then the effects of the two different distributions on the parts of the 

body sufficiently far removed from the region of application of the forces are essentially 

the same, provided that the two distributions of forces are statically equivalent. 

von Mises’ Statement: If the forces acting on an elastic body are confined to 

several distinct portions of its surface, each lying within a sphere of radius ε, then the 

stresses and strains at a fixed interior point of the body are of a smaller order of 

magnitude in ε as ε → 0 when the forces on each of the portions are self-equilibrated 

than when they are not. 

The above statement by v. Mises was proved nine years later by E. Sternberg in 

1954 for linearized elasticity. For mechanical testing of materials, Saint-Venant’s 
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principle basically implies that the grip imposes local stresses at the grip-specimen 

interface and that the influence of these local stresses becomes negligible at some 

distance away from the grip 118.  However, the routine invocation of Saint-Venant’s 

principle in mechanical testing of highly anisotropic or composite materials is not 

justified in general 119. The validation of Saint-Venant’s principle for anisotropic 

materials has been investigated theoretically for elastic solids subjected to self-

equilibrated loads 120-122. Utilizing a relatively simple material model and boundary 

conditions, the studies demonstrated a four-fold slower decay of boundary effects for a 

highly anisotropic transversely isotropic material compared to that of an isotropic 

material. 119 In light of the complex anisotropic behavior of soft tissues, we hypothesize 

that the stress decay pattern may be more complex. Moreover, for biaxial testing of soft 

tissues, such as heart valve leaflets, the boundary effects may be especially relevant due 

to the necessarily small sample size and strong axial coupling.  Thus there is a pressing 

need to investigate the effects of boundary conditions in biaxial testing of biological soft 

tissues.  

 

4.1.2 Our Approaches 

As it is not possible to directly evaluate the effects of different boundary 

conditions on specimen internal stress distributions 56, and currently, there is no 

theoretical study to explore such effects, computational tools are required to simulate 

biaxial testing and to examine the stress distribution under different boundary 

conditions. Nielson et al. 58 performed a finite element simulation of sutured biaxial 
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experiments using an isotropic Ogden model and reported a uniform stress distribution 

within the central 25% of the specimen area. In Chapter 3 we successfully implemented 

an anisotropic Fung model, including the effects of in-plane shear, into finite element 

analysis. The finite element model predicted a uniform stress distribution within only 

the central 16% of the specimen area. While those simulations were not aimed to 

comprehensively study the boundary effects, in the current study we utilized the same 

material model implementation to simulate biaxial testing. Effects of boundary 

conditions under different numbers of suture attachments, different gripping methods 

and specimen shapes, and different degree of tissue anisotropy were examined. 

 

4.2 METHODS 

4.2.1 Biaxial Experimental Data  

A detailed description of biaxial tests has been presented in Chapter 2. Note that 

we utilized two sets of experimental data obtained on specimen axes: I) GLBP with 

material axes orientation at 45 degree with respect to the biaxial stretching axes (x1-x2 in 

Figure 4-2a). II) GLBP with material axes orientation at 0 degree with respect to the 

biaxial stretching axes (x’1-x’2 in Figure 4-2a). Due to the material axes choice, 

experiment I contains in plane shear data, whereas experiment II has negligible shear 

response.  
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4.2.2 Constitutive Models  

For data set I we applied a general Fung elastic model of eqn 3.8 , with the ability 

to characterize in-plane shear response. For data set II, due to negligible shear, we 

applied it with a simpler five parameter Fung model, where:  

= + + +2 2
5 1 11 2 22 3 11 22 4 12Q A E A E 2A E E A E2     (4.1) 

The methods for obtaining the parameters c and A through Marquardt-

Levenberg nonlinear regression and corresponding constraints have been previously 

presented in Chapter 3. The parameters for the two data sets are listed in Table 4-1.  

 

Table 4-1 Parameters for eqns 3.8 and 4.1 for the two set of experimental data. 

Parameters c A1 A2 A3 A4 A5 A6 Rsqr 

GLBP with shear 5.12 60.12 86.34 2.0 203.16 43.05 42.14 0.96 

GLBP without shear 9.70 104.44 35.12 3.50 32.10 - - 0.95 

 

 

4.2.3 Biaxial Testing Simulation Setups  

Finite element models were developed for 25 mm x 25 mm x 0.4 mm test 

specimens using 400 CPS8R elements. It should be noted that the 25 mm x 25 mm x 0.4 

mm dimensions reflect those typically encountered in biaxial testing of heart valve 

biomaterials. Equibiaxial loading was simulated to examine and compare the effects of 

different boundary conditions. Two groups of simulations were conducted for each 

material axes orientation: one group explored the effects of different numbers of suture 
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attachments. The specimen was attached with 4, 6 or 8 points of sutures on each edge. 

Point loads were applied at the boundary nodes (Figure 4-2a) to exert a net total 1 MPa 

Lagrangian stress along each side. The other group explored the effects of different 

gripping methods. The gripping methods are: a) suture attachment (SA) (Figure 4-2a); 

b) clamps on a square specimen (CSS) (Figure 4-2b); c) clamps on a cruciform specimen 

(CCS) (Figure 4-2c). Two leg lengths of CCS were chosen, one with 0.5-length of 25mm 

(CCS05) and the other with 1.5-length of 25 mm (CCS15). As cross thickness stress is of 

no interest in this study, we did not model two grips in contact with the tissue enforcing 

a clamping force. Instead, we simplified the setup by replacing the tissue under the 

clamps with a linear elastic metallic material, with a Young’s modulus of 2.06E+10 kPa 

and Poisson’s ratio of 0.3. Due to the much higher stiffness of the metallic material 

compared to that of the tissue, a uniform distribution of in-plane tensile boundary 

forces could be obtained to mimic the in-plane clamp force. A 0.5 MPa Lagrangian 

stress was enforced on each side of specimen. Exact dimensions of the clamps and 

loading nodes positions were listed in Tables 4-2 and 4-3.   Validation of simulations 

with both sets of experimental data, i.e., the 0-and 45-degress material axes data, was 

conducted with the four-suture attachments setup. 
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Figure 4-2 Biaxial testing setups with a) four suture attachments; b) clamp on each side of a 

square sample; c) clamp on each side of a cruciform sample. Dimensions of a, b and c are listed 

in Table 4-3. For each setup, two material axes orientations were simulated, one with material 

axes aligned at 45 degree with respect to the specimen axes (loading direction), the other with 0 

degree. Region A is used for measuring the axial couple effects. The BB line is used for 

measuring the stress decay.  
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Table 4-2 Geometry and loadings of different number of suture attachments methods 

# of sutures Load/node Distance between nodes Distance from edge 

4 sutures 2.50N 6.25mm 2.50mm 

6 sutures 1.67N 4.17mm 1.78mm 

8 sutures 1.25N 3.13mm 1.39mm 

 

Table 4-3 Geometry and loadings of different gripping methods and the highest von Mises 

stress in A region. 

B.C Geometry 

Axial coupling stress in A 

region 

  a b c Data set I Data set II 

Suture (SA) - - - 8.38E+03 7.72E+03 

Clamp (CSS) 15.0mm 2.5mm - 2.65E+04 1.62E+04 

Cruciform05 (CCS05) 25.0mm 2.5mm 12.5mm 1.37E+04 5.74E+03 

Cruciform15 (CCS15) 25.0mm 2.5mm 25.0mm 9.93E+03 5.30E+03 

 

 

4.2.4 Quantification of Saint-Venant Boundary Effects 

Saint-Venant boundary effects were quantified in terms of the stress decay along 

the centerline of the specimen (the BB lines in Figure 4-2), axial coupling effects in A 

region (Figure 4-2), and the stress-strain response in the inner region of the specimen 

which is of experimental interest. The magnitude of the stress decay was quantified by 

von Mises stress along the BB line (Figure 4-2).  As the specimen size varied with 

different gripping methods, the normalized distance from the center point of the 
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specimen to the grip along the BB line was used for comparison. Axial coupling effects 

were compared for different gripping methods in terms of the highest von Mises stress 

in the A region (Figure 4-2).  Note that the highest von Mises stress is element size 

dependent, therefore we chose the same element size for different grips methods, the 

highest von Mises stress was used for a relative comparison of the magnitude of stress 

concentration in the A region. Also in the region of experimental interest, (i.e., the 

central ~5x5mm2 uniform stress region) the components of the second Piola-Kirchhoff 

stress tensor of different finite element setups were examined.  

 

4.3 RESULTS 

4.3.1 Effects of Number of Suture Attachments  

The stress-strain data from the central sixteen elements from the simulation with 

four suture attachments were averaged and compared with the experimental data. 

Excellent matches were obtained (Figure 4-3) for both 45-degree and 0-degree material 

axes configurations, which confirmed the correctness of our simulation method. When 

we increased the number of sutures to six and eight, there was no difference between 

the suture loading conditions (Figure 4-3).  As illustrated in Figure 4-4, stress decays of 

four, six, and eight suture attachment setups follow a similar pattern. The observation 

that the stress fluctuates around the ±0.4 normalized distance could be attributed to the 

point loading effect. The stress is relatively low between two point loads, however, it 

increases as the effects of the two point loads are synergistized around the ±0.4 
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normalized distance; Beyond  ±0.4, it starts to decay and flatten. Homogenous stress 

distributions were observed within the central region 20% of the specimen area for all 

suture setups. However, it was noticed that six and eight suture attachment setups 

correspond with a slightly larger homogenous region than that of a four suture 

attachment setup for 45-degree material axes setup.  For 0-degree material axes setup, 

no difference was observed. These results indicated that four suture attachments are 

sufficient for stress field uniformity in biaxial testing.  
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Figure 4-3 Stress-strain output of the finite element simulations with different numbers of 

suture attachments. a) 45-degree material axis, normal stresses, b) shear stress; c) stresses for 0-

degree material axis. 
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Figure 4-4 Stress decay along the BB lines of the finite element simulations with different 

numbers of suture attachments, a) for 45-degree material axis and b) for 0-degree material axis. 
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Figure 4-5 a-d) finite element simulation of effects of different gripping methods at 45-degree 

material axes, e-g) at 0-degree material axes. Plotted in same color scale in each group for easy 

comparison. 
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4.3.2 Effects of Different Gripping Methods 

The deformation and von Mises stresses of finite element models with different 

gripping methods for 45-degree material axes are illustrated in Figure 4-5a-d. The SA 

configuration exhibited the most prominent anisotropic deformation, which is indicated 

by the material axis x1 showing lesser extensibility than that of the orthogonal material 

axis x2. This phenomenon corresponds with the observations from actual biaxial 

experiments.   Similar shear deformation could be observed for CCS05 and CCS15. 

However, for CSS, the specimen shape remained almost square. High von Mises 

stresses always occurred in region A (Figure 4-2) due to the proximity of the corner and 

clamps (Figure 4-5b).  The SA configuration exhibited the lowest stress in region A with 

von Mises stress of 8,382 kPa, while the CCS configuration had the highest stress of 

26,510 kPa. Further investigation of the inner stress distribution of the central sixteen 

elements indicated that for CSS the stress and strain were only about 30 kPa and 0.045, 

respectively. For CCS05, CCS15 and SA, the stresses were about 220 kPa, 260 kPa and 

490 kPa, respectively (Figure 4-6a).  
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Figure 4-6 Peak stress of inner central regions for a) 45-degree and b) 0-degree material axes for 

different gripping methods. 
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For 0-degree material axes orientation (Figure 4-5, e-h), the deformations are 

orthogonal due to negligible shear effect when the loading axes were aligned with the 

material axes. High von Mises stresses also occurred in region A (Table 4-3), with lower 

magnitudes compared to 45-degree material axes setups. For the center region, there 

was a stress increase for the three clamp methods. The stress for CSS was 200 kPa, and 

for CCS05 and CCS15 the stresses were about 320 kPa and 340 kPa, respectively (Figure 

4-6b). 

Stress decay plots of different gripping methods (Figure 4-7) showed a 

substantial variation of the magnitude of stress decay along the BB line. For both 45- 

and 0-degree material axes setups, the SA configuration exhibited the least stress decay 

while the CSS configuration showed the most. For CCS05 and CCS15 configurations, 

the stress decays mainly happened in the leg region and were almost flattened in the 

square region of the specimen. A homogenous stress region could be obtained for the 

square regions of CCS05 and CCS15, which represent ~30% and ~14% of total sample 

areas, respectively, and the inner region of CSS configuration representing ~20% of the 

total specimen area. Compared to the 45-degree material axes setup (Figure 4-7a), the 

difference between CCS05 and CCS15 was reduced and CSS values were increased for 

0-degree material axes setup. 
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Figure 4-7 Stress decay along the BB lines of the finite element simulations for different gripping 

methods, a) for 45-degree material axis and b)  for 0-degree material axis. 
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4.4 DISCUSSION  

The effects of boundary conditions on biaxial tests of biological tissue were 

examined in this study by means of finite element simulations of biaxial tests with 

varied boundary conditions. Effects of different number of suture attachments, different 

gripping methods and specimen shapes, and different degree of tissue anisotropy were 

explored and compared. Numerical simulations results indicated that clamp methods 

had substantially lower stress in the central region of biaxial specimen compared to that 

of the suture attachment method, indicating that clamp methods had strong boundary 

condition effects. When material axes were aligned to the biaxial loading axes the 

clamped boundary artifacts were less severe, indicating that even under the same 

gripping method, material axes could play another important role affecting specimen 

inner stresses. These simulations, which have not been reported in the literature before, 

would provide experimentalists with more insight for designing experiments and 

interpreting experimental results 

 

4.4.1 Experimentally, Why Do Clamped Tissues Appear to Be Stiffer Than with 

Suture Attachment? 

In the experiments conducted by Waldman et al. 118, it was observed that the 

clamped tissue appears to be stiffer than with suture attachment. An explanation of this 

phenomenon has been developed by examining the local fiber orientation under 

different gripping methods 123. The mechanism of load transfer to the underlying 
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fibrous architecture was explored qualitatively, however, not quantitatively. Our 

explanation is that without knowing that the Saint-Venant’s principle was violated, 

experimentalists generally collect stress data by dividing the forces imposed on the 

grips by the sample undeformed cross-sectional area to obtain the Lagrangian stress. 

Strain data are usually collected via a non-invasive optical imaging system which tracks 

the deformation of a square region delimited by optical markers. If the actual loads 

transferred to the inner region of the tissues were affected by boundary conditions, as 

illustrated in Figure 4-6 and Figure 4-7, then the material would not deform as much as 

it supposed to be. This would result in a smaller strain.  When plotting the Lagrangian 

stress vs. the strain, the tissue will appear to be stiffer and less extensible, which is the 

scenario observed by Waldman et al. 118.  

 

4.4.2 Axial Coupling Effects 

The substantial difference in the stress-strain response in the inner region 

observed with different griping methods may be attributed to the axial coupling stress 

in region A. The high axial coupling stress in region A will counteract boundary forces 

propagating into the inner region of the sample. The loads were actually “consumed” 

by the tissues in region A, instead of being transferred to the inner regions. The 

correlation between the axial coupling and the stress in the inner region can be 

observed by comparing the two material axes orientations for different gripping 

methods (Table 4-3). The 0-degree material axes setup has lower peak stresses in region 

A (Table 4-3) and higher stress in the inner region of the specimen. It was also observed 
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that, as listed in Table 4-3, SA setup has the lowest stress in region A compared to other 

setups and has the least boundary effects. The reason for it, we believe, is that the SA 

setup allows the tissue to expand lateral freely.  In the SA setup, as point loads are 

imposed on the boundary of sample, the mobility of the collagen fiber are preserved; 

the tissue can expand not only along the loading direction, but also along the cross 

loading direction in response to the load from the other axis. This lateral expansion 

essentially reduces the high axial coupling stress in region A.  

 

4.4.3 Degree of Tissue Anisotropy  

Explicit comparison of the stress decay between isotropy material and anisotropy 

material was conducted in Chapter 3. By varying tissue material axes orientations, 

different stress decay behaviors were observed (Figure 4-7). The results suggest that 

when collagen fibers are more aligned with the loading directions, higher loads are 

transferred into the inner region of the specimen, probably through the collagen fibers. 

However, as the dominant boundary effects in our simulations are from the axial 

coupling, even though at 0-degree material axes orientation, we only observed the 

improved inner stress level for the clamp methods which were not totally free of 

boundary effects.  
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4.4.4 Concerns on Load Transfer through Local Fiber Architecture 

Ever since Lanir and Fung first utilized the suture attachment method for biaxial 

testing of biological tissues in 1974 32, the technique has been widely adopted by many 

experimentalists. However, it is not only time-consuming to put sutures on the edges of 

a small compliant tissue sample and but also meticulous care is required to make the 

sutures evenly spaced along specimen edges. Additionally, suspicions that sutures may 

not faithfully mimic the loading condition in vivo lead to other gripping methods such 

as clamping of a square sample and cruciform sample. These latter methods are much 

easier to accomplish and have been widely used in industry for mechanical testing of 

metallic and polymer materials.  Langdon et al. 89 pointed out that in vivo fiber 

rearrangement under load is restricted by the attachments of the fibers at the tissue 

margins, for example, at the sternal or diaphragmatic attachments in the pericardium. 

For the SA setup, fiber mobility may be enhanced and mechanical properties may be 

artifactually altered. Thus cruciate geometry may offer a more realistic model of in vivo 

function since at least the fibers that run from clamp-to-clamp are restricted in their 

mobility. However, in theory, mechanical properties of material should be independent 

of testing methods, i.e., regardless of whether it is a suture attachment setup or a 

clamped setup. The intentionally introduced boundary effects should be treated as an 

application of special loading/boundary conditions to the tissue, regardless whether 

the Sanit-Venant’s principle is justified, instead of testing the tissue in a general loading 

state to deduce its mechanical properties, with certainty that the Sanit-Venant’s 

principle is not violated.  In general, a careful experiment design should first avoid the 
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violation of the Saint-Venant’s principle, and then consider more physiological 

conditions.  

It should be noted that our finite element simulations of biaxial testing applied to 

a chemical treated tissue (GLBP), with specimen size of 25x25x0.4mm3, and the 

dimensions of clamp and positioning of sutures as listed in Table 4-2 and 4-3, and the 

findings should be interpreted in the light of these restrictions.  

 

4.5 SUMMARY  

Overall the three clamp methods had substantially lower stress in the central 

region compared to the suture attachment method. These results indicated that the 

clamp methods had strong boundary condition effects. Moreover, for the clamped 

methods the material in the inner region of the specimen was not fully loaded and 

therefore would not be fully stretched. The high stress concentrations for these methods 

makes the tissue appear to be stiffer, which is the scenario observed by Waldman et al. 

118. Apparently in biaxial testing of GLBP, suture attachment method is recommended. 

This study presented the first finite element simulations of biaxial tests under different 

gripping setups and different material axes orientations. These comprehensive, even 

though not exhaustive, biaxial test simulations would provide experimentalists more 

insights into interpreting experimental results. 
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5.0 FINITE ELEMENT SIMULATIONS – 3D TRI-LEAFLET 

BIOPROSTHETIC VALVE SIMULATIONS 

 

In the previous chapters, we have successfully implemented the Fung model into 

finite element and conducted biaxial test simulations under different boundary 

conditions. These studies act as stepping-stones that lead us to our ultimate goal, the 

simulation of bioprosthetic valve behaviors of this chapter.  The contributions of this 

chapter can be divided in two parts; one is a rigorous experiment, characterizing quasi-

static valve deformation under 120mmHg trans-valvular pressure. The other part is the 

finite element simulations of heart valve behavior, particularly the parametric study of 

valve stress distribution under various conditions.  

The importance of experimental validation of finite element results cannot be 

over-emphasized.  However, the experimental studies of valve deformation are 

relatively expensive and difficult to perform because of practical limitations in 

measurements very close to the leaflets and valve housing. Moreover, most finite 

element models used linear, isotropic material models that lead to inaccurate simulation 

results; consequently, a match between finite element result and experiment data is 

hard to achieve.   Many finite element studies offered no experimental validation 67-70 or 

simple validations, such as comparison between images taken from pulse duplicator to 
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that of a finite element output71, 72.  A rigorous validation should be the comparison of 

strain fields of experimental and finite element output. In this chapter we will address 

such an experiment in section 5.2.   We will report the surface reconstruction from 3D 

digitized marker affixed on the surface of the leaflets and the method of how we 

compute in-plane membrane strain in sections 5.2.3 and 5.2.4, respectively.  The finite 

element model was constructed based on the design geometry of leaflets and stent§ 

provided by Edwards Lifesciences Inc. (Irvine, CA). Mechanical properties were 

obtained by biaxial testing of the leaflets dissected from the valve (section 5.3.2). After 

validation by the experiment, the finite element model can be used to evaluate various 

valve design parameters, such as with varying leaflets properties and fiber orientation 

(sections 5.2.7 and 5.3.5) in this study. Those finite element simulations will provide 

otherwise unobtainable, valuable information for optimal valve design.  

 

5.1 INTRODUCTION 

There have been many studies showing that the regions of tearing of BHV 

correlate with the regions of high tensile and bending stresses acting on the leaflets 

during opening and closing 124. Stress concentrations within the cusp can either directly 

accelerate tissue structural fatigue damage, or initiate calcification by causing structural 

                                                 

§ We also call it wireframe, because in finite element model the stent is simplified with only 

wireframe present. 
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disintegration, enabling multiple pathways of calcification 125 that lead to valve failure. 

Although details of the process are unclear, it is widely accepted that the design of the 

valve, which gives a stress-reduced state of the leaflets, is likely to give improved 

performance in long-term applications.  

Finite element analysis has been the most effective method for the stress analysis 

and evaluation of a valve design 67, 69, 76. Moreover, numerical analysis and simulation of 

BHV enable us to have better understanding of true valve behaviors. A brief summary 

of the previous studies on quasi-static heart valve simulations is listed in Table 5-1. The 

leaflet material model and experimental validation of numerical results are of particular 

interests to us and are therefore tabulated. Some of the interesting findings of those 

studies will be presented in section 5.1.2. 
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Table 5-1 Previous studies on quasi-static heart valve simulations. 

Authors Year Element Valve Leaflet material model 
Experimental 
validation 

Cataloglu et al 126 1977 Unknown 
Human aortic 
valve Linear isotropic elastic model No 

Hamid et al. 68 1986 Membrane 
Porcine tri-
leaflets valve  Multi-step linear elastic model No 

Rousseau et al. 
127 1988 Membrane 

Hancock 
porcine tri-
leaflet valve, 
1/6 valve 
simulated 

Visco-elastic model for leaflet, 
leaflet is defined by linear 
elastic matrix embedded with 
linear elastic truss element as 
fiber reinforcement 

Yes, commissure 
displacement was 
measured based on 
a voltage and 
distance relationship 
between the two 
attached electrical 
coils; leaflet center 
displacement was 
measured 
cinematographically.

Huang et al. 69 1990 2d element  

Sheffield 
pericardial 
bicuspid valve 

Nonlinear isotropic 
hyperelastic model based on 
W=c1*exp(c2*I1^2+c3*I2+c
4*I3) No 

Black et al. 67 1991 Shell 

Sheffield 
pericardial  
bicuspid valve 

Nonlinear isotropic 
hyperelastic model based on 
W=c*exp(c1*I1^2+c2*I2) No 

Krucinski et al. 72 1993 
20-node brick 
element 

Tri-leaflet 
bovine 
pericardial 
valve 

Nonlinear isotropic 
hyperelastic model 

Comparison between 
images taken from 
pulse duplicator and 
FEM 

Patterson et al  1996 Shell 

Sheffield 
pericardial 
bicuspid valve 

Nonlinear isotropic 
hyperelastic model No 

Thornton et al. 128 1997 Shell 

Sheffield 
pericardial 
valve bicuspid 
valve 

Nonlinear isotropic 
hyperelastic model No 

Grande et al. 129, 

130 
1998
/9 

6-node 
triangle shell 

Human aortic 
valve and root 

Linear anisotropic elastic 
model No 

Burriesci et al 71. 1999 Shell 

Sheffield 
pericardial 
bicuspid valve 

Orthotropic model defined by 
a finite number of points of 
the stress-strain curve 

Comparison between 
images from pulse 
duplicator and FEM 

Cacciola et al. 131 2000 Shell 

Synthetic fiber-
reinforced tri-
leaflet aortic 
valve 

Fiber-reinforced model, with 
linear elastic properties for 
both matrix and fiber 

Comparison between 
images from pulse 
duplicator and FEM 

Li et al. 70 2001 Shell 

Porcine aortic 
valve, 1/2 
leaflet 
simulated 

Use strain depend E, use five 
elastic moduli, transversely 
isotropic model No 
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5.1.1 Finite Element Simulations at Valve Level 

Particular challenges encountered in numerical simulation of BHV include 

modeling of complex leaflets and stent geometry, modeling of the associated (nonlinear 

anisotropic) mechanical properties, contact of leaflets, and experimental validation of 

numerical result. Among them, the most crucial one probably is the modeling of leaflet 

mechanical properties. From Table 5-1, it is obvious that most of the previous studies 

used either linear elastic models or nonlinear isotropic material models. Using strain (or 

time) depend elastic moduli or fiber-reinforced material model can approximate the 

nonlinear anisotropic material properties of the leaflets, however, they are not accurate. 

We know that the material models based on a nonlinear anisotropic strain energy 

function can accurately capture the material responses, such as the Fung model 

described in Chapter 3. Nonetheless, such model has not been used for a BHV 

simulation in the literature. 

 

5.1.2 Findings in the Previous Studies 

Although conducted with simplified material models, studies have shown that 

by changing valve design, such as using difference manufacturing techniques 126, 

changing leaflets shapes 73, 127 and frame mounting methods 72, 126, 128, 129, the stress 

distribution pattern acting on the leaflets could be altered.  
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Numerical studies on synthetic polyurethane valves have shown that a stentless 

synthetic valve, which has flexible aorta base, can be a good alternative for stented 

valves. The results in Cacciola et al. 129 indicated that the stentless design reduces the 

stress peaks by up to 80% for a sinusoidal fiber reinforcement layout with respect to a 

stented valve with the same reinforcement. Moreover, a fiber-reinforcement 

configuration is assumed to lead to a decrease of tears and perforation as a result of 

reduced stresses in the weaker parts of the leaflets in their closed configuration 128.  

Effects of different material models have also been investigated. Patterson et al. 76 

compared the effects of using linear and nonlinear isotropic elastic model of the leaflets, 

they found that the nonlinear model was more responsive to time-varying pressure 

wave, and induces lower compressive but higher tensile stresses in the leaflets. 

Burriesci et al. (1999) studied the effects of orthotropy of a pericardium heart valve and 

found that even a small amount of orthotropy can significantly affect the mechanical 

behavior of the valve.  Those studies, however, have overlooked or simplified the 

nonlinear anisotropic property of the valve material 70. From the experimental procedure 

and constitutive modeling techniques we developed in Chapters 2 and 3, we have the 

ability to build more accurate valve models and conduct more accurate simulations. In 

this chapter, quasi-static valve deformation under 120 mmHg trans-valvular pressure 

will be investigated both experimentally and numerically. Once the numerical model is 

validated by the experimental data, various valve design parameters can be evaluated 

relatively inexpensively. In this study, we will illustrate the methodology by conducting 
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some readily available parametric studies, such as varying leaflets properties and fiber 

orientation changes. 

  

5.2 METHODS 

5.2.1 Overall Description of Valve Deformation Experiment 

Valve leaflets were prepared with approximately 90 tiny graphite markers 

affixed over the surface. We then placed the valve in a custom-made rigid valve 

housing (Figure 5-1) and slowly applied an increasing trans-valvular pressure to 120 

mmHg. The valve surface was imaged at 0 mmHg and 120 mmHg by two cameras 

simultaneously.  The resulting images were digitized and the 3D marker positions 

reconstructed using Direct Linear Transformation (DLT) technique.  Local deformation 

and strains were computed.  After testing, the valve was disassembled. SALS and 

biaxial tests of dissected leaflets were conducted to quantify the leaflet mechanical 

properties and local collagen structure. These two important pieces of information were 

incorporated into finite element model. The strain space of leaflets was used to compare 

with the strain space from finite element output for the validation of finite element 

model. All three leaflets of one valve were tested in the experiment. 

 

5.2.2 Experiment Procedure 

o Valves were ordered from Edwards Lifesciences Inc. 
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o About 90-100 tiny graphite markers with size of about 0.2 ~0.4 mm in diameter 

were carefully glued on the aortic side surfaces of the leaflets. 

o The valve was sutured in the mounting post such that the base of the valve was 

fixed. 

o Two cameras were positioned angled and orthogonal to the leaflet surfaces and 

images were taken simultaneously.  This was to record the leaflets position at 0 

and 120 mmHg. 

o A calibration unit was guided using a wire and gently positioned on the top 

surface of leaflets. Images from two cameras were recorded. These images were 

used as calibration images. 

o The valve housing was filled with saline and trans-valvular pressures of 120 

mmHg were gradually applied; the pressure level was monitored by a pressure 

sensor. 

o At 120 mmHg, images were recorded again. 

o Images were post-processed using SigmaScan (SPSS Inc., Chicago, Illinois), in 

which pixel locations of markers and calibration points were generated from  the 

images to calculate the 3D coordinates of markers, by using DLT technique. 

o A triangle mesh was generated based on marker locations to form a 3D surface. 

o SALS testing 130 was conducted on the three leaflets to quantify the leaflet fiber 

architecture. 
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o Biaxial mechanical testing was conducted on the three leaflets, following the 

procedure described in Section 2.2.3, to quantify the leaflet mechanical 

properties. 
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Figure 5-1 A custom-made valve housing, in which a BHV valve will be sutured in the 

mounting post and hydraulic pressure of 120 mmHg will be applied on the valve. 

 

 

 
Figure 5-2 a BHV mounted in the valve deformation chamber with leaflets showing the 

locations of the markers. The valve size is 23mm. 
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5.2.3 Direct Linear Transformation (DLT)  

To calculate the 3D location of objects from two different views, a process termed 

Direct linear transformation (DLT) was used 131. DLT takes a calibration phantom with 

both the pixel coordinate from the two views and 3D coordinate of eight locations of the 

object (Figure 5-3). A mathematical formula calculates 11 parameters using the 

calibration phantom, parameters which describes the location of camera, the angle with 

respect to each other, focal distance, etc. These parameters when placed in the original 

formula form a set of 4 equations wherein pixel coordinates can translate to X, Y, Z 

coordinates. To solve for X, Y, Z, only 3 equations are necessary but the 4th equation 

can be used for error checking. After the 3D coordinates of all points were calculated, 

triangulation was conducted to generate a 3D mesh. 

)1/()(1 ++++++= kZjYiXdcZbYaXu      (5.1) 

)1/()(1 ++++++= kZjYiXhgZfYeXv      (5.2) 

)1/()(2 ++++++= kZjYiXdCZbYaXu      (5.3) 

)1/()(2 ++++++= kZjYiXhgZfYeXv     (5.4) 

where u, v denote camera coordinates, 1, 2 denote camera number; a, b, c, d, e, f, g, h, i, 

j, k denote camera constants; X, Y, Z denotes 3D global coordinates. 
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Figure 5-3  Schematic of how 3D marker position is calculated. To acquire object O’s XYZ 

coordinates, two views, view 1 and view 2, are needed. The horizontal and vertical pixel 

coordinate, u, v are recorded and inserted into eqns 5.1 – 5.4 131, reproduced from Sugimoto et 

al.131 with permission. 

 

5.2.4 Local Deformation and Strain Calculation 

To calculate the local deformation gradient and consequently the local strain, the 

marker position before and after deformation and the triangulation information were 

input into a custom made Matlab program. From this the local coordinate system was 

created for each triangle and in-plane strain was calculated. 

Creation of local coordinate system. For each triangle, for example the undeformed 

triangle ABC in Figure 5-4, a local coordinate system o’x’y’z’ was created following the 

steps described below: 

o The origin of the o’x’y’z’ will be one of vertices, vertex A, of the triangle ABC.  
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o The o’x’ axis will be the vector of one edge, edge AB, of the triangle 

o The o’z’ axis will be created as the cross product of the two vectors of the two 

edges, AB and AC. 

o The o’y’ axis will be cross product of o’x axis and o’z’ axis. 

o The angle between the o’z’ axis and global oz axis will be calculated. If within 

90 degree, the o’z’ is in the normal direction pointing towards the aortic side 

(this is due to the way the data collected). Otherwise, the reverse of the o’z’ 

will be calculated and o’x’ and o’y’ axes will be switched. 
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Figure 5-4 Deformation and strain calculation based on the motion of a triangle (ABC) in the 

reference state and (A’B’C’) in the current state. The triangle has its own local coordinate 

system, with the oz axis aligned with its surface normal direction during the motion. 

 

Another local coordinate system will be created in the same way for the 

deformed triangle A’B’C’.  Note that the construction of such a local coordination 
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system will facilitate the calculation of in-plane membrane strain, which can be used 

directly to compare with finite element output, because our finite element simulation is 

based on the shell element.  

Transformation from global to local coordinate system. 3D coordinates of the markers 

in the global coordinate system oxyz need to be transformed to the local system o’x’y’z’ 

to facilitate the strain calculation. 

Let the angles between o’x’ and ox, oy, oz axes are a1, b1, r1, respectively; the 

angles between o’y’ and ox, oy, oz axes are a2, b2, r3, respectively; the angles between o’z’ 

and ox, oy, oz axes are a3, b3, r3, respectively. The transformation of a point (x, y, z) in 

the global to the corresponding point (x’, y’, z’) in the local coordinate system is 

obtained by: 

x’=x*cos(a1)+y*cos(b1)+z*cos(r1)    (5.5) 

y’=x*cos(a2)+y*cos(b2)+z*cos(r2)    (5.6) 

z’=x*cos(a3)+y*cos(b3)+z*cos(r3)    (5.7) 

Note that after the transformation, the triangle lies in the o’-x’-y’ plane and z’ 

coordinate is vanished. 

2D deformation gradient. Assuming the markers are closely placed and such, the 

deformation is homogenous within a triangle, the 2D deformation gradient F can be 

calculated: 
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−
   

=    
   

   (5.8) 

where ABx represents the x component of the vector AB, and ABy represents the y 

component of the vector AB. Similar calculations are used for the other vectors. Note 

that due to the local coordinate system configuration, the deformation obtained has 

already “removed” the rigid body rotation, which is represented by the linear transform 

of AA’ and the rotation from the AB direction to the A’B’ direction. 

 

5.2.5 FEM Model Assumptions 

The finite element model must be simple enough to permit a solution for the 

displacements and stresses to be found using the computational resources that are 

available, and yet still have sufficient details for it to be an acceptable representation of 

the real problem. In this study, a quasi-static approach was used to analyze the 

deformation of the model from a stress-free position to a fully closed configuration by 

applying a uniform pressure, rather than a time-varying, spatially non-uniform 

distribution. The valve ring is fixed spatially such that no interaction with the aortic 

wall is taken into consideration. It is assumed that there is no heterogeneousness within 

a single leaflet such that one whole leaflet can be modeled with one set of material 

parameters.  Uniform thickness of the leaflets is also assumed, as the pericardium valve 

usually has uniform leaflet thickness. 
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5.2.6 Finite Element Model Components 

Geometry of the finite element model was obtained from Edwards Lifesciences 

Inc. based on a prototype valve developed in Edwards R&D department. The valve 

used in the experiment is manufactured based on the prototype. Therefore it can be 

reasonably assumed that the valve used in the experiment has the same geometry as the 

finite element model. This prototype has symmetric trileaflets and wireframe. The finite 

element model includes: 

Wireform Wireform was modeled using beam element (ABAQUS element type 

B31 (2-node linear beam element)) with Young’s modulus of 23.3x106 psi and Poisson 

ratio of 0.3, the wireform was “stitched” to the trileaflets (Figure 5-5). 

Leaflet Tri-leaflets were modeled using mixed quadrilateral and triangular large 

strain shell elements (ABAQUS element type S4R (4-node, quadrilateral, finite strain 

with reduced integration) and S3R (3-node, triangular, finite strain with reduced 

integration)). Uniform thickness will be applied. Each leaflet had its own local 

coordinate system. Collagen fiber orientation is controlled via the constitutive law built 

in user subroutine UMAT.  
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Figure 5-5  FEM model with (top) wireform, (bottom) trileaflets.  

 

5.2.7  Finite element model variables  

We have conducted a preliminary study to examine effects of various finite 

element variables. In that study, 120 mmHg of trans-valvular pressure was imposed on 
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the leaflet. A Fung-type tissue model, obtained from the biaxial testing of GLBP of the 

Chapter 2, was used in the simulations. The results showed that with random, 

uncontrolled fiber orientations, the stress-strain distribution pattern in each leaflet is 

different (Figure 5-6). It is suspected that the unbalanced stress-strain distribution may 

accelerate the damage of one leaflet. This observation motivated us to conduct a more 

detail study on the effects of leaflet properties, such as varying fiber orientation and 

degree of tissue anisotropy (will be addressed in detail in the following sections), 

which, to our knowledge, has not been studied before in the literature. 

  

 
Figure 5-6  von Mises stress distribution for each of the trileaflets, even though the leaflets are 

modeled symmetrically, however, due to the random material properties of each leaflet, the 

high stress occurred in different locations.  
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5.2.8 Effects of Engineered Tissue Anisotropy 

Engineering tissue anisotropy is not a well-known concept. We briefly recap its 

underlying mechanism as follows: it is widely accepted that glutaraldehyde fixation 

introduces a large number of stable crosslinks between the amino acid groups of the 

polypetide chains of collagen 132.  It has been observed that the collagen fiber 

architecture – and the corresponding mechanical behavior- are changed with different 

pressure of chemical fixation. SALS data for a bovine pericardial sample (Figure 5-7a) 

before and (Figure 5-7b) after undergoing biaxial stretch also indicated collagen fiber re-

orientation and alignment. If the pericardial sample was chemically fixed at a pre-

loaded state, the collagen fiber structure at that state will be locked; the corresponding 

mechanical behavior will be consequently changed. Therefore we can manipulate GLBP 

tissue properties and “make” a tissue with desired properties. For example, one has one 

direction stiffer and the other direction more compliant (Figure 5-8). Of particular 

interest will be the ability to simulate valve stress-strain distribution by varying the 

degree of anisotropy with engineered GLBP tissue and evaluate how much we can 

benefit by using those engineered tissues. 
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Figure 5-7  SALS data for a bovine pericardial sample (a) before and (b) after undergoing biaxial 

stretch (λ1=1.1, λ2=1.3, shear=0).  The vectors represent the local preferred fiber orientations; 

only every third data point is displayed for clarity.  The background shading indicates the 

degree of orientation (lighter = more highly aligned fiber population).  The white areas occur 

due to suture attachment points or markers.  Note the substantial reorientation of the fibers and 

decrease in variability of tissue structure with stretch, and the local reorientation around the 

attachment points (inlay).   
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Figure 5-8 Effects of engineered tissue anisotropy. (a) before changing tissue properties, 

corresponding to the state in Figure 5-7a; (a) after changing tissue properties, corresponding to 

the state in Figure 5-7b.   

 

5.3 RESULTS 

5.3.1 3D Mesh of the Valve Deformation 

Representative 3D triangle mesh was shown in Figure 5-9. Two meshes, one for 

the valve under 0 mmHg and the other for 120 mmHg, with same marker sequence 

were generated for each leaflet. The principal strain was calculated based on 

corresponding triangles of these two meshes. Out of the three leaflets, we were able to 

obtain strain fields for two leaflets, i.e., leaflet0 and leaflet1. 
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Figure 5-9 The 3D reconstruction/triangulation of the makers obtained from the two images 

when the valve is deformed under 120 mmHg pressure. 

 

5.3.2 SALS Results 

SALS scanning data showed a relatively homogenous fiber distribution with the 

preferred fiber orientation along the 45-degree angle for leaflet2 and 135-degree for 

leaflet0 and leaflet1. This indicated that the pericardium tissue used in Edwards 

Lifesciences Inc. underwent pre-sorted and controlled selection procedure. This 

homogenous fiber distribution enabled us to easily manipulate the material axes of 

leaflets in the finite element model.   
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leaflet0

leaflet1

leaflet2
 

Figure 5-10 SALS scans of the three leaflets. The green vectors represent the local preferred fiber 

orientations. The background color shading indicates the degree of orientation (OI) (warmer 

color = more highly aligned fiber population). Black dots were caused by markers or air bubbles 

that the laser cannot penetrate. Note that the preferred fiber orientation is along the 45-degree 

angle for leaflet2 and 135-degree for leaflet0 and leaflet1. 
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5.3.3 Biaxial Mechanical Properties 

Biaxial testing was conducted following the procedure previously described 

(Section 2.2.1). Biaxial experiment data with tissue material axes oriented at 45-degree 

or 135-degree angle with respect to specimen axes were shown in Figure 5-11. Results 

indicated that one leaflet (leaflet0) was nearly isotropic, and the other two leaflets 

(leaflet1 and leaflet2) were very anisotropic.   

If let us define the degree of anisotropy (DA) as:  under 1MPa equibiaxial stress 

loading condition, degree of anisotropy of the tissue equals the ratio of two peak strains 

of two axes, 

DA=E11:E22   (5.9) 

then for leaflet 0, 1, and 2, the DAs of them are 1.03, 2.69 and 5.61, respectively. Note 

that the shearing behavior of leaflet2 is different to that of the other two leaflets. This is 

due to the fiber orientation of leaflets is at 45 degree while the other two are at 135 

degree (Figure 5-10). They sheared at an opposite direction causing one to give a 

positive value while the others demonstrated negative shearing.  
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Figure 5-11 The biaxial test stress-strain data for (a) leaflet0, (b) leaflet1 and (c) leaflet2 under the 

equibiaxial testing protocol with the material axes of the specimen oriented at 45-degree or 135-

degree with respect to the specimen axes. 
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The biaxial testing data were fitted with the Fung model of eqn. 3.8, followed the 

procedure described in the section 3.2.1 with convexity condition imposed and 

condition number checked.  The parameters such obtained for the three leaflets were 

listed in Table 5-2. 

 

Table 5-2 Parameter estimates for the three leaflets, fitted with eqn. 3.8. 

  c (kPa) A1 A2 A3 A4 A5 A6 

Leaflet0 14.42 61.27 70.37 5.11 14.20 3.10 2.01 

Leaflet1 9.95 56.85 192.18 1.00 34.00 2.00 4.00 

Leaflet2 25.32 21.82 274.77 15.66 50.41 2.00 41.86 

 

 

5.3.4 Comparison of Experiment Strain Fields to That of Finite Element Output 

Material properties from the biaxial testing of the three leaflets (Figure 5-11) were 

input into the finite element model such that each finite element leaflet had its 

corresponding actual leaflet properties.  The strain field from the aortic side surfaces of 

the finite element output was compared with the strain field of the experimental result. 

For the two leaflets that we were able to obtain strain fields, we presented experimental 

data and finite element results in the same color scale and next to each other for easy 

comparison (e.g., from Figure 5-12 to Figure 5-15).  The max. in-plane principal strain 

was plotted as index for the comparison because its objectivity, invariant to the local 

coordinate system. From Figure 5-12 to Figure 5-15, it could be observed that the 

experimental strain fields did not show a smooth strain distribution exhibited by finite 
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element results. This is due to experimental error that will be elaborated in the section 

5.4.1. Nonetheless, there were major obvious agreements between experimental and 

finite element results. One example is the belly region, where the magnitude of 

experimental strain was comparable to that of the finite element output. Also the high 

strain regions were similar in both of them.  The same six regions in the experimental 

strain field for leaflet0 and leaflet1 are compared to the corresponding regions of the 

finite element output (Table 5-2 and 5-3). The peak strains of the two leaflets were 

different, underscoring the importance of using accurate material properties for each 

leaflet to faithfully replicate an experimental setup and enable an accurate validation. 
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Table 5-3 comparison of finite element strain output to that of experimental strain for leaflet0. 

Value illustrated is Max. in-plane principal strain. 

1 2 3 4 5 6
FE 0.1058 0.1509 0.0990 0.0687 0.0876 0.1014
Experiment 0.1427 0.1888 0.1017 0.0644 0.1466 0.1056
Difference 0.0369 0.0379 0.0027 -0.0043 0.0590 0.0042

Leaflet0 Locations

 

Table 5-4 comparison of finite element strain output to that of experiment strain for leaflet1. 

Value illustrated is Max. in-plane principal strain 

1 2 3 4 5 6
FE 0.0861 0.1069 0.0810 0.0571 0.0793 0.0623
Experiment 0.1187 0.1474 0.0783 0.0592 0.0804 0.0629
Difference 0.0326 0.0405 -0.0027 0.0021 0.0011 0.0006

Leaflet1 Locations

 
 

The averaged differences between finite element and experimental output were 

0.0242 and 0.0133 for leaflet0 and leaflet1, respectively, thus we would estimate the 

overall discrepancy is about 0.0187. Based on our error estimates (in section 5.4.1) the 

above differences are within the experimental error range (within 1 pixel off the 

targeted marker centroid). We therefore concluded that our finite element model is 

accurate and represents the actual valve behavior. Consequently, parametric study of 

finite element simulations can be conducted. 
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Figure 5-12 Experiment strain field for leaflet0, plotted in max. in-plane principal strain. Circles 

indicate the regions where strains are computed to compare with finite element output. 
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Figure 5-13 Finite element strain field for leaflet0, plotted in max. in-plane principal strain. 

Circles indicate the regions where strains are computed to compare with corresponding 

experiment data. 
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Figure 5-14 Experiment strain field for leaflet1, plotted in max. in-plane principal strain. Strains 

of the regions similar to Figure 5-12 are computed to compare with finite element output. 

 

 
Figure 5-15 Finite element strain field for leaflet1, plotted in max. in-plane principal strain. 

Strains of the regions similar to Figure 5-13 are computed to compare with corresponding 

experiment data 
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5.3.5 FEM Simulations with Different Degree of Tissue Anisotropy 

Since from our biaxial testing of the three leaflets (Figure 5-11), we already found 

that the three leaflets had substantial different degree of anisotropy, varying from 1.03 

(nearly isotropic), 2.69 to 5.61 (very anisotropic). Without bothering to obtain such data 

from other sources, such as manipulating the tissues (refer to section 5.2.8 for details), 

we directly utilized the mechanical properties of these three leaflets to examine effects 

of degree of tissue anisotropy. Therefore, three simulations were conducted, (a) with 

leaflet0 material properties for all three leaflets, degree of anisotropy is 1.03; (b) with 

leaflet1 material properties for all three leaflets, degree of anisotropy is 2.69; (c) with 

leaflet2 material properties for all three leaflets, degree of anisotropy is 5.61.  

The simulations results of both the aortic and ventricular sides of the leaflet 

surface were illustrated in Figure 5-16 and Figure 5-17, respectively. Max. in-plane 

principal stress of different regions for both the aortic side and ventricular side of the 

leaflet surface were tabulated in Table 5-5 and Table 5-6, respectively.  It is interesting to 

note that on the aortic side the peak stress always occurred in the vicinity of 

commissure and the lowest stress always occurred around the free edge. When the 

degree of anisotropy was 5.61, the peak stress also appeared in the vicinity of the 

nodulus of Arantii. In general, for aortic side of the surface the peak stress increased 

with the increase of degree of anisotropy. However, for the ventricular side of the leaflet 

surface, when the degree anisotropy increased from 1.03 to 1.69, the peak stress was 

reduced by over 10%, however, when it went to extreme anisotropy, the peak stress 

increased by about 10%.  The peak stress was also shifted from the commissure region 
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to the belly region when anisotropy increased.  The lowest stress always happened at 

the free edge, which was same as the aortic side. It was most likely due to the contact of 

the leaflets that leaded to the compression stress at the free edge. Above observations 

indicated that the degree of anisotropy had a confounding impact to the stress 

distribution of the leaflet.  

 

Table 5-5 Max in-plane principal stress (psi) of different degree of tissue anisotropy (DAs) on 

the aortic side of the leaflet surface. 

in psi location in psi location Belly Commissure
1.03 90.2 Vicinity of Commissure -0.6 Free edge 61.6 87.6
1.69 110.0 Vicinity of Commissure -0.6 Free edge 68.6 67.5
5.61 131.8 Vicinity of Commissure -0.1 Free edge 83.6 103.9

DAs Highest Stress Lowest Stress Stress of other regions

 
 

Table 5-6 Max in-plane principal stress (psi) of different degree of tissue anisotropy (DAs) on 

the ventricular side of the leaflet surface. 

in psi location in psi location Belly Commissure
1.03 91.20 Commissure 0.04 Free edge 67.28 -
1.69 80.21 Belly -0.75 Free edge - 69.80
5.61 100.65 Belly -5.98 Free edge - 100.38

Highest Stress Lowest Stress Stress of other regionsDAs
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(a)

(b)

(c)
 

Figure 5-16 Finite element simulation results on the aortic side of the leaflet surface.  (a) with 

leaflet0 material properties for all three leaflets, degree of anisotropy is 1.03; (b) with leaflet1 

material properties for all three leaflets, degree of anisotropy is 2.69; (c)  with leaflet2 material 

properties for all three leaflets, degree of anisotropy is 5.61. Stress illustrated is max. in-plane 

principal stress in psi. 
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(b)
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Figure 5-17 Finite element simulation results on the ventricular side of the leaflet surface. (a) 

with leaflet0 material properties for all three leaflets, degree of anisotropy is 1.03; (b) with 

leaflet1 material properties for all three leaflets, degree of anisotropy is 2.69; (c) with leaflet2 

material properties for all three leaflets, degree of anisotropy is 5.61. Stress illustrated is max. in-

plane principal stress in psi. 
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5.3.6 FEM Simulations with Different Angle of Fiber Orientations 

Fiber orientation changes were realized by changing the local coordinate system 

of each leaflet. Because the default fiber orientation of leaflet1, for example, is at 135-

degree with respect to the leaflet circumferential direction, if we rotate the local 

coordinate system by positive 45-degree, then the fiber orientation will be parallel to the 

circumferential direction. Likewise, if we rotate the local coordinate system by negative 

45-degree, then the fiber orientation will be vertical to the circumferential direction, or 

that is the radial direction. 

We used leaflet1 properties for all three leaflets of the finite element model, and 

varied the local orientation system to simulate 1) fiber in the radial direction, 2) fiber in 

the circumferential direction. The simulation results for the aortic side and ventricular 

side are shown in Figure 5-18 and Figure 5-18, respectively and listed in Table 5-7 and 

Table 5-8. The results indicated that when fiber orientation is at 45-degree the valve has 

significant lower peak stress than that of circumferential and radial fiber orientations 

for both aortic and ventricular sides of the surface. The influence of leaflet anisotropy 

was conducted by Burriesci et al. 71 on the Sheffield biocuspid valve. They used a 

nonlinear orthotropic material model defined on a finite number of points on the 

material stress-strain curves. They found that the axial model, when the fiber (stiffer) 

direction was aligned along with the axial (radial) direction, achieved a peak value of 

max. principal stress some 15% smaller than the circumferential model.  Cacciola et al. 

129 studied the influence of fiber orientation based on a fiber-reinforced valve model. 
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Two type of fiber reinforcement for the leaflets were considered. One was the 

unidirectional layout mimicked the circumferential distribution of the collagen fibers. 

The other was the sinusoidal layout reinforcing the leaflets in both radial and 

circumferential directions. They found that the peak stress values for the sinusoidal 

layout were significantly lower than that of the unidirectional circumferential layout. 

We know that the native aortic valve has collagen fibers predominately in the 

circumferential direction, however, those abovementioned studies and our simulations 

indicated that the leaflet with predominate circumferential fiber orientation might not 

have the lowest stress state.  It appeared that the interaction between the fiber and its 

surrounding matrix was complex and the stress distribution change due to the fiber 

structure variation is significant and not intuitive. 

One of the potential problems in our simulations is that the fiber orientation 

detected by SALS (Figure 5-7) is in a stress-free state, and that during biaxial testing of 

the leaflet the fiber orientation may rotate as the loading is applied. The actual biaxial 

testing data used in simulation, especially at high stress state, may represent a fiber 

orientation other than the 45-degree fiber orientation.  To verify it and more accurately 

define fiber orientation, a SALS device coupled with a biaxial loading device is 

required.  
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Table 5-7 Max in-plane principal stress (psi) of different fiber orientations on the aortic side of 

the leaflet surface 

Fiber orientation peak stress region lowest stress region
45 degree to circumferential direction 110.0 Vicinity of commissure -0.6 free edge

circumferential direction 286.4 commissure -3.3 free edge
radial direction 318.5 commissure -3.2 free edge  

 

Table 5-8 Max in-plane principal stress (psi) of different fiber orientations on the ventricular 

side of the leaflet surface 

Fiber orientation peak stress region lowest stress region
45 degree to circumferential direction 80.2 belly -0.8 free edge

circumferential direction 282.3 commissure -2.3 free edge
radial direction 316.2 commissure -3.6 free edge  
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(a)

(b)
 

Figure 5-18 Finite element simulation results on the aortic side of the leaflet surface, with 

different angle of fiber orientations, (a) fiber vertical to leaflet circumferential direction; (b) fiber 

parallel to leaflet circumferential direction. Stress illustrated is max. in-plane principal stress in 

psi. 
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(a)

(b)
 

Figure 5-19 Finite element simulation results on the ventricular side of the leaflet surface, with 

different angle of fiber orientations, (a) fiber vertical to leaflet circumferential direction; (b) fiber 

parallel to leaflet circumferential direction. Stress illustrated is max. in-plane principal stress in 

psi. 
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5.4 DISCUSSION 

5.4.1 Source of Experiment Errors 

Experimental studies, either in vitro or in vivo, can provide valuable information 

on the opening and closing dynamics of artificial heart valves.  But the studies are 

relatively expensive and difficult to perform. For the experiment we conducted, we put 

about 90 tiny markers in a leaflet area similar to the size of an adult thumbnail. Imaging 

of the markers in such a small area requires high-resolution cameras and meticulous 

care needs to be given for the digitization of those images. In other words, the 

experiment is prone to human error.  After careful examination of the experiment 

procedure, the sources of experiment errors are identified as: 

Digitization process (manual). The size of one leaflet is at about 23x 12 mm in 

circumferential and radial directions, respectively. From the image taken for 

digitization (Figure 5-20), the length of the free edge, marked by x1 and x2, corresponds 

to the total pixel length of about 542. From the Figure 5-9, there are about 12 line 

segments on the free edge. The averaged pixel length of those line segments is 

524/12=43.6 pixels. The averaged actual length of those segments is 23mm/12=1.9mm. 

The marker size on the image is about 4 ~ 10 pixels in diameter (corresponding to 0.18 

to 0.44mm). Please note that the ratio of the size of marker to the length of the line 

segment is high. Due to the manual digitization process, one may not pick the actual 

centroid of a marker. If the centroid is by 1 or 2 pixels, the imposed error accounts for 
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0.023 to 0.045 strain errors. This is the reason why we concluded that the differences 

listed in Table 5-3 and Table 5-4  are within the experiment error range. 

X1=52 X2=576
524 pixels

4 pixels in 
diameter

10 pixels in 
diameter

X1=52 X2=576
524 pixels

4 pixels in 
diameter

10 pixels in 
diameter

 
Figure 5-20 Image from one camera showing one leaflet and markers on it, x1 represents the 

free edge starting location in pixel at x axis; x2 represents the free edge ending location in pixel 

at x axis. Two representative marker sizes are also indicated in diameter.  

 

For better understanding the source of errors, we summarize the calculation as below: 

Measurements: 

� Pixels between x2 and x1 are 524. 

� 12 line segments in between. 

� Marker has about 4 - 10 pixels in diameter. 

Error Estimate: 

� One line segment has: 524/12 = 43.6 pixels. 
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� If 1 pixel off,  

� then 1/43.6 = 0.023 strain error 

� If 2 pixels off, t 

� then 2/43.6= 0.046 strain error. 

Image quality. Due to practical limitations in the measurement of markers very 

close to the leaflets and valve housing, the quality of images cannot be guaranteed. For 

example, the images of Figure 5-21 taken from two cameras showed that some markers 

can only be seen by one camera. Therefore at some boundary areas no marker can be 

selected, possibly resulting in loss of information of that region. Also during valve 

deformation motion, markers may be out of focus and thus images may be blurred 

which creates difficulty during digitization. Those limitations need to be improved in 

future experiments. 

 
Figure 5-21 Images from two cameras showing that some markers can only be seen by one 

camera and at some boundary area no marker can be selected that could result in loss of 

information of that region. The green lines are grids used to aid in digitization. 
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5.4.2 Considerations for Element Type Selection 

Valve leaflets are thin-walled structures that have sometimes been modeled as 

membranes 75, 133-135. However, many studies 136 have shown that bending damage is 

one of the main causes of valve mechanical damages. Modeling leaflets as tension-only 

membrane structure essentially eliminates the bending effects. Whilst the analysis 67, 69 

using shell elements did show that the leaflets were subjected to bending. This 

observation motivates us to use shell elements in our simulations. Another alternative is 

to use three dimensional brick elements. Complex systems of stress are often best 

modeled using three dimensional brick elements, and this approach has been taken in 

the study of tissue heart valves by Krucinski et al. 72. However, it was noticed 137 that 

there are severe problems of modeling thin structures with brick elements, such as “a 

balance required between the very large number (of elements) needed to keep the 

bricks well-shaped, and the numeric problem that results from bricks with highly 

disparate dimensions”. Also using brick element requires a 3D constitutive modeling 

and a 3D Fung model could be an ill-posed, non-convex model (personal 

communications with Dr. Criscione of the Texas A&M University). Another concern is 

the enforcement of incompressibility. Imposing incompressibility constraint via 

Lagrange multiplier p is rather complex for 3D element; however, it is relatively easy 

for a shell element and can be realized by kinetic constraints.   Based on those 

considerations, we built our model by using shell elements. 
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5.4.3 Material Model for Leaflet  

To our knowledge, the Fung material model used in this study is, up to now, the 

most accurate model that has ever been implemented for BHV simulations. However, 

this is not meant to imply that the Fung model is the best model for BHV simulation. 

The limitation of the model is revealed in the simulations conducted in section 5.3.6. 

The Fung model has the disadvantages inherited in phenomenological models, it can 

only describe a pre-defined state and cannot describe the underlying mechanism of 

fiber structure changes. Therefore, it is not surprising to see that the fiber reorientation 

scenarios cannot be captured by the Fung model either in experiment or in the 

simulations of section 5.3.6. Alternative models that have better prediction ability 

should be either based on individual fiber strain energy law, such as the structural 

model by Lanir 115 and Sacks 116, or has the ability to incorporate the specimen material 

axes changes, such as fiber-reinforced composite models with two families of fibers 

proposed by Holzapfel et al. 106. However, those models have not been utilized in BHV 

simulations yet. 

 

5.4.4 Correlation Between the Calculated Stress Distribution and Common Regions 

of Failure in Tissue Valves 

The simulations we conducted in sections 5.3.4, 5.3.5 and 5.3.6, could be used to 

investigate correlations between the calculated stress distribution and common regions 
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of failure in tissue valves. The failure phenomena of leaflets in valve prostheses 

basically may be divided into the following three types:  

1) Cusp calcification, tear and laceration 138  

2) Tears in the leaflets in the vicinity of the commissure 139  

3) Cusp tears associated with the holding suture attached to stents 139, 140  

From the simulation results (Figure 5-16 and Table 5-5) it can be observed that 

the highest tensile stress happened at the central portion of leaflets and the vicinity of 

commissure region. It is possible that the tears and perforations occurred at those 

regions are due to the high tensile stress. Valves during closed states also experience 

bending stress especially at the coaptation area. Negative values for the minimum 

principal stress are found in the coaptation area and edges where leaflets are attached to 

the stent (Figure 5-22). Those compression stresses, even small, may cause fiber 

wrinkling, and lead to the flexure damage of collagen fibers and consequently, damage 

of leaflets 136, 141. 
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Figure 5-22 Min. in-plane principal stress of the aortic side of the leaflet, plotted with only 

negative values to show the compression stress occurred at the coaptation area and edges 

where  the leaflets are attached to the stent. 

 

5.4.5 Limitations 

BHV finite element model. In this study, the simulations were conducted with 

quasi-static deformation only. The dynamic loading conditions, such as “water 

hammer” effects during valve closure, would cause higher stresses than that of a quasi-

static state. The study conducted by Sacks 2000 34 also demonstrated that GLBP 

responded differently under varied strain rates (Figure 5-23). To account for the 

dynamic loading conditions, the finite element model may need to incorporate fluid-

structural interaction and a viscoelastic model may be needed to accommodate the 

strain rate effect. In addition in this finite element model we did not consider the effects 
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of cyclic loading that ultimately resulted in BHV failure. However, we will present 

some of our preliminary work in this direction in the Chapter 6.   

Time (sec)
0 1 2 3 4 5 6 7 8 9

La
gr

an
gi

an
 s

tre
ss

 (k
Pa

)

0

100

200

300

400

500

600

700

800

900

1000

PD normal loading time 
XD normal loading time

Time (msec)
0 10 20 30 40 50 60 70 80 90 100

PD 100 msec loading time
XD 100 msec loading time

 
Figure 5-23. Effects of strain rate on the equibiaxial (E11 = E22) mechanical properties of GLBP. A 

change in loading time from 1 sec to 100 msec resulted a near doubling of stress levels. Adapted 

from Sacks 2000 34. 

 

Note that the constitutive model used in this study is a continuum model at 

tissue level. Even though we simulated different fiber orientation effects, the continuum 

scale that our stress-strain measurement based on is still at tissue level.  To quantify 

individual fiber stress, a structural model 105 needs to be employed, which is capable to 

describe the interaction between the fiber and its surrounding matrix. The stress in a 

fiber-reinforced material should be synergic effect of both the fiber and the matrix, i.e., 
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S=Pf/Af+Pm/Am, where P is the load, A is the cross section area and the subscript f and m 

stand for the fiber and the matrix, respectively.  If matrix is not considered to be a load-

bearing constitute, then S=Pf/Af , where Af should be the total cross section area of all 

fibers instead of the macro specimen cross section area.  Note here that specimen cross 

section area can only be used if the tissue is fully packed with fibers, otherwise the 

stress such calculated is not the fiber stress and but the stress of both the fiber and 

matrix components.  

Experiment methods As indicated in the section 5.4.1, the image resolution needs 

to be improved as well as the digitization process. Currently we estimated an 

experimental error of about 1-2 pixels. An automatic marker centroid detection program 

needs to be employed to eliminate such error, and thus high quality images are 

required to ensure consistent centroid detection. Furthermore, since the measuring 

resolution of a system using a CCD (charge-coupled device) camera is in principle 

limited to the pixel size, to obtain better resolution such as sub-pixel resolution, the 

output data from the CCD must be interpolated in some way. Typical interpolating 

methods use digital data processing methods, which first convert the output data of the 

CCD into digital data using an A/D (analogue-to-digital) converter and subsequently 

perform mathematical calculations using a computational algorithm.  The images with 

sub-pixel resolution are desirable in the valve deformation experiment for the accurate 

strain measurement. It is hoped that in the future some studies could be conducted in 

this area. 
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Only one valve (three leaflets) was used in the study, more experiments are 

needed to examine effects of different valve, geometry and material properties. The 

sensitivity analysis (SA) for the model has not been conducted. ABQUS provides a 

design sensitivity analysis function that enables one to perturb various design 

parameters to obtain the different response of the model. This information will be 

valuable for a designer to evaluate the reliability, the robustness, and the efficiency of 

the model.  Apparently, more studies need to be conducted in this direction. 

Effects of the tissue pre-sorting procedure on the applicability of the techniques developed 

here. The material properties of GLBP in the chapters 2, 3 and 4 were obtained from pre-

sorted GLBP tissues. The pre-sorting procedure is aimed to prepare structurally 

consistent biaxial specimens from the bovine pericardial sac and the areas with high 

degree of fiber alignment were chosen. This high degree of fiber alignment represented 

an upper bound of degree of anisotropy. For the other areas with low degree of fiber 

alignment, the specimens would behave more towards isotropic. Our constitutive 

models (eqn 2.16 and eqn 3.8) were therefore developed to be able to capture a high 

degree of tissue anisotropy. It was not surprised that the models could also capture the 

non-sorted more isotropic tissue properties. This is demonstrated in chapter 5 that the 

non-sorted leaflet properties could be modeled accurately. 
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5.5 SUMMARY 

In this chapter, we investigated quasi-static valve deformation under 120 mmHg 

trans-valvular pressure experimentally and numerically. The novelty of this study lies 

in two parts, 1) rigorous experimental validation of numerical results; 2) accurate 

material model in describing the leaflets’ material properties. These two key elements 

are essential for a finite element model to give a reliable prediction. The BHV finite 

element model integrated the techniques developed in the previous chapters, e.g., 

rigorous biaxial experiment including inducing tissue in-plane shear response for 

characterizing leaflet properties, and finite element implementation of user-defined 

material model with convexity and condition number constraints imposed.  We have 

not only illustrated the processes of how to build and validate the finite element model, 

but also demonstrated needs for such rigorous experimentation and constitutive 

modeling that make a close match between FE and experiment output possible. The 

BHV model, to our knowledge, is the most rigorously validated model to date in the 

literature (Table 5-1).  The model can be used to evaluate various valve design 

parameters and is hoped to be able to greatly facilitate optimal BHV design.  
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6.0 SUMMARY AND FUTURE STUDIES 

 

In this chapter, we will summarize main findings of the previous chapters (2 to 

5). Then we will propose some of the areas for the future studies and present some of 

preliminary works that have been done in those directions. 

 

6.1 SUMMARY 

Chapter 1 presented an up-to-date overview from the biomechanics perspective 

of what is currently known about heart valve replacement. This review includes the 

experimental data collection, constitutive modeling, numerical implementation of the 

associated model and numerical simulations of BHV behavior. Some of the limitations 

of those components were identified and improvements were given in the later 

chapters.   

In Chapter 2, we generated a comprehensive experimental biaxial mechanical 

dataset that included high in-plane shear stresses.  Compared to our previous study 38, 

GLBP demonstrated a substantially different response under high shear strains.  This 

finding was underscored by the inability of the standard Fung model, applied 

successfully in our previous GLBP study, to fit the high-shear data. To develop an 
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appropriate constitutive model, we utilized an interpolation technique for the pseudo-

elastic response to guide modification of the final model form.  An eight parameter 

modified Fung model utilizing additional quartic terms was developed, which fitted the 

complete dataset well.  Model parameters were also constrained to satisfy physical 

plausibility of the strain energy function. The results underscore the limited predictive 

ability of current soft tissue models, and the need to collect experimental data for soft 

tissue simulations over the complete functional range. 

Chapter 3 focused on the numerical implementation of a generalized Fung 

pseduo-elastic model.  finite element simulations of soft tissue behavior, including 

simulating shear behaviors, using accurate material models have been limited.  In 

addition to difficulties in development, the high nonlinearity of soft tissue models leads 

to numerical instability and related convergence problems. To address these issues, in 

Chapter 3, we developed model restrictions necessary to achieve numerical stability. 

Two restrictions were imposed: 1) convexity of the strain energy function W; 2) the 

condition number of material stiffness matrix is restricted to be less than a set value. 

These restrictions lead to a set of bounds that can be enforced in nonlinear regression 

for material model parameter estimates.  In the current approach, we utilized ABAQUS 

as a computational platform to implement a generalized Fung pseudo-elastic 

constitutive model.  Planar biaxial mechanical tests were simulated and validated using 

theoretical solutions and experimental data. Results indicated that in addition to 

parameter constraints required for physical plausibility 39, the numerical constraints 

presented in this study are required for numerical convergence. The successful 
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implementation of the Fung pseudo-elastic constitutive model presented in Chapter 3 

suggests that accurate simulations using realistic nonlinear anisotropic material models 

of soft native and biologically-derived tissues are both feasible and practical.  

Chapters 4 and 5 focused on the numerical simulations of heart valve 

biomaterials at tissue and valve levels, respectively. At tissue level, numerical 

simulations of planar biaxial testing were conducted and accessed. Effects of boundary 

conditions under different numbers of suture attachments, different gripping methods 

and specimen shapes, and different tissue anisotropy were examined. Simulation 

results clearly indicated that there are strong boundary effects with the clamped 

methods, while suture attachment methods had minimal boundary effects. Moreover, 

the simulations demonstrated that the stress decay behavior depends on the material 

axes orientation, even with the same gripping method. While not exhaustive, these 

comprehensive simulations provide experimentalists with more insight into the stress-

strain fields associated with different biaxial testing boundary conditions, and may be 

used as a rational basis for the design of biaxial testing experiments. 

At valve level, 3D tri-leaflets bioprosthetic valve deformation under 120 mmHg 

trans-valvular pressure was simulated and validated against experimental data. We 

reported our approaches to obtain the 3D surface reconstruction from markers affixed 

on the surface of the leaflets and the method of how we compute in-plane membrane 

strain. We also constructed tri-leaflets BHV finite element model with the same 

geometry of the actual valve and mechanical properties obtained by biaxial testing of 

the actual leaflets to ensure accuracy of the finite element model. After validating with 
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the experiment, the finite element model can be used to evaluate various valve design 

parameters, such as varying leaflets properties and fiber orientation. Those finite 

element simulations will provide, otherwise unobtainable, valuable information for 

optimal BHV design.  

Major contributions of this dissertation are:  

1. Developed a novel stress-control biaxial experimental method to generate an 

extensive experimental database that included tissue response under high in-

plane shear and the techniques for constitutive modeling of the dataset. 

2. Formulated a set of model constraints necessary for numerical stability and 

successfully implemented generalized Fung elastic model into finite element. 

3. Simulated complex boundary effects during biaxial testing of soft tissue using 

accurate nonlinear, anisotropic material model. 

4. Constructed an accurate BHV finite element model that integrated the 

techniques of abovementioned 1 and 2. And developed a rigorous 

experimentation for the validation of the BHV finite element model. The 

model offers great potential for optimal BHV design. 

 

6.2 FUTURE STUDIES 

Native valves can withstand 80-120 mmHg of trans-valvular pressure and will 

operate in excess of 3 billion cycles during an individual’s lifetime.  However, all BHV 

continue to suffer from limited durability due to structural failure 2, 16. Moreover, tissue 
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engineered heart valve scaffolds require decellurized scaffolds to withstand 

physiological mechanical loading until enough new tissue has been laid down. This 

clearly poses a need for understanding the mechanisms of collagenous tissue 

degradation under long-term cyclic loading.  This demanding application also 

necessitates some potential research areas: 

i. Characterize the mechanisms of tissue fatigue damage under tensile 

and flexural deformation;  

ii. Develop structural constitutive models to predict fatigue behavior 

iii. Implement fatigue damage model into computational framework for 

utilization in device design 142.   

 

6.2.1 Response of Heterograft BHV Biomaterials to Moderate Cyclic Loading  

While not the focus of this dissertation, we have conducted an experimental 

study to quantify the response of heart valve biomaterials subjected to moderate levels 

of cyclic loading. This study was intended to illustrate the challenges and form 

groundwork for future finite element simulations of BHV fatigue. In this study, changes 

in specimen dimensions, anisotropic mechanical properties, and molecular- and fiber 

level structural changes to collagen were quantified. Mechanisms of mechanical 

property changes were postulated. Please see Appendix C for details.  

Application of the structure model on fatigued tissues. Our preliminary experimental 

fatigue study indicated that at moderate cyclic loading stage tissue undergoes 

conformation changes at fiber level. If our hypothesis that the change of mechanical 
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properties was due to permanent increase in collage crimp period and fiber kinematical 

re-orientation induced by cyclic loading is correct, the structural finite element model 

could be theoretically very easy to catch the phenomena by just changing the fiber 

distribution function (see section 6.2.2 for details about structural model). The approach 

is to use experimental data at 0 cycle state to fit the structural model. Parameters of fiber 

distribution function, i.e., the mean and standard derivation, can be adjusted to mimic 

the fiber structure re-orientation and individual fiber strain energy law can be changed 

to mimic the fiber crimp change. If they are matched with 30, 65x106 cycles data, then a 

BHV finite element model using the structural model could simulate and predict a 

valve behavior at a fatigued stage. If such model is available, it will be a major step 

towards the ultimate understanding of BHV failure. 

 

6.2.2 Incorporation of Structural Model into Finite Element 

With the limitation of the Fung model (eqn. 3.8), for the fatigue study and future 

applications, structural modeling approaches developed in our lab 8, 105 offer an 

alternative approach to accurately describe the tissue response with fewer parameters. 

More importantly, this approach can clarify the underlying physical basis for complex 

mechanical behavior of BHV biomaterials. For example, collagen fiber structural 

changes for a fatigued tissue can be explicitly described in a structural model, which 

gives the model the potential to predict a fatigue state. 

Structural model essentials. A structural approach towards constitutive modeling 

for planar tissues is summarized 45, 115. Briefly, it is assumed that the tissue can be 
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modeled as a hyperelastic solid, so that Sij=∂W/∂Eij, where Sij and Eij are the second 

Piola-Kirchhoff stress and Green strain tensors, respectively, and W is the tissue strain 

energy density per unit volume. W is expressed as  

( ) ( )
π
2

f f
π-
2

W = R θ w E dθ∫      (6.1) 

where wf is the fiber strain energy function, and Ef is the fiber strain computed from the 

global tissue strains (E),  which can be expresses as E =  , in which 

 is the fiber direction in the tissue space and R(θ) is the fiber orientation 

distribution function.  The expressions for the S
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        (6.2) 

where is the fiber stress-strain law with material constants A and B, for which the 

following exponential form is used: 

f
11S (ε)

f
11 fS (ε) = A [exp( B E ) - 1]             (6.3) 

where A and B are positive constants.  As in our previous study 8, we will assume that 

R(θ) follows a Gaussian distribution given by:  

2

2
1

22
( )R( ) exp

 − θ − µ
θ =  σσ π  


         (6.4) 

where σ is the standard deviation and µ is the mean of the distribution. 
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Structural model implementation. Following the procedure in section 3.1.2, biaxial 

testing data of fresh bovine pericardium was fitted with the structural model. The 

structural model was also coded into ABAQUS/UMAT. The correctness of the coding 

was validated by single element finite element testing. Illustrated here in Figure 6-1 is 

the experimental data and the single element finite element simulation results for the 

equibiaxial protocol (protocol 4), which the ratio of the applied tension in the 

circumferential and radial directions is Tcc:Trr = 60:60,. 

Protocol 4, TCC: TRR = 60: 60
A = 1.39, B = 13.39, s = 19.22, m = 0

Stretch

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

C
au

ch
y 

S
tre

ss
 (K

P
a)

0

20

40

60

80

100

120

Circumferential (EXP) 
Radial (EXP) 
Circumferential (FEM)
Radial (FEM)

 
Figure 6-1 Experimental data of fresh bovine pericardium and single element finite element 

simulation, whereas protocol 4 indicates an equibiaxial tension protocol. Tcc and Trr stand for the 

tensions applied in circumferential and radial directions, respectively. 
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However, when we tried to incorporate the model into multi-element 

simulations, a numerical convergence problem was encountered. Careful evaluation of 

the convergence problem has been conducted by looking at the ABAQUS nonlinear 

solution method – Newton’s methods (section 3.1.2) and related convergence criteria. 

However, with limited methods to interact with ABAQUS solver, we could not get the 

problem solved. We estimated that possible solutions might include shifting the project 

into another finite element software package that has a more transparent finite element 

solver that a user have more controls, or reforming the constitutive model, such as 

adding a matrix term.  

 

6.3 CONCLUSION 

In the long term, chemically treated BHV will be supplanted by tissue 

engineered valve prostheses. Regardless of the specifics of chemically treated BHV 

design and biomaterial design for tissue engineered valve prosthesis, all BHV will have 

to duplicate natural tissue mechanics to some extent in order to properly simulate their 

in vivo function. Biomechanical simulations can contribute significantly to this process 

by integrating the disparate findings of structural properties measured experimentally 

in vitro and theoretical studies of biomechanics and forming a unifying tool to predict 

BHV functions in vivo. This is the goal of biomechanical simulations and the research 

effort in this study is one step towards it. With the rapid development of biotechnology, 
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we have no doubt that a numerical simulation that includes functional coupling 

between many physiological processes, such as cell growth and signaling, tissue 

damage, growth and remodeling, metabolism, transport and electrophysiology could be 

available in a foreseeable future and benefit millions of lives. 
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APPENDIX A: PHYSICAL CONSTRAINTS 

 

In the following we present material parameter restrictions for eqn. 2.16.  While 

the following is not an exhaustive analysis, the derived constraints are sufficient for 

physically realistic strain energy functions, and extend similar relationships derived by 

Humphrey 93 to include the presence of shear strains.  The derived restrictions were 

applied to simpler forms used in the current study by the eliminating the additional 

terms. 

Following eqns. 2.13 and 2.16, we have 

QcW= (e -1)
2

   (A1) 

and from eqn. 2.12 

Q
11 1 11 3 22 5 12

cS = (2A E +2A E +2A E )e
2

   (A2) 

2
12 4 12 5 11 6 22 12 22

cS = (2A E +2A E +2A E +2BE E )e
2

Q    (A3) 

2
22 2 22 3 11 6 12 12 22

cS = (2A E +2A E +2A E +2BE E )e
2

Q    (A4) 
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We first require that W vanish in the reference configuration and increase with 

deformation, i.e. W≥0 so that c ≥ 0.  Next, the parameters used in the current model 

must also satisfy the following simple deformations: 

Case 1: S11>0, when E11>0, E12=E22=0, leading to 1 11 3 22 5 12A E +A E +A E >0 , or A1>0. 

Case 2: S22>0, when E22>0, E12=E11=0, leading to 2
2 22 3 11 6 12 12 22A E +A E +A E +BE E >0 , 

or A2>0. 

Case 3: S12>0, which is sub-divided into the following two sub-cases: 

(a) E11=0, E12>0 and E22≠0 (i.e. simple shear in X1 direction), so that 

2
4 12 6 22 12 22A E +A E +BE E >0 . 

 

(b) E22=0, E12>0 and E11≠0 (i.e. simple shear in X2 direction), so 

that 4 12 5 11A E +A E >0 . 

These conditions were validated during the regression procedure. Please note 

that based on above constraints the material constant A3 is not restricted, so that A3 will 

occasionally have negative values (Tables 2-1 and 2-2).  
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APPENDIX B: RESPONSE FUNCTION 

 

In the following the formulae used for interpolation of the complete pseudo-

elastic response is described. First, each stress component was individually fit to the 

following functions: 

P

P

P

= + + + 3
11 1 11 3 22 5 12 7 11S c(2D E 2D E 2D E 4D E )e    (B1) 

3
22 2 22 3 11 6 12 9 22S =c(2D E +2D E +2D E +4D E )e     (B2) 

3
12 4 12 5 11 6 22 8 12S =c(2D E +2D E +2D E +4D E )e     (B3) 

where 

2 2 2
1 11 2 22 3 11 22 4 12 5 11 12

4 4 4
6 22 12 7 11 8 12 9 22

P=D E +D E +2D E E +D E +2D E E +
2D E E +D E +D E +D E

   (B4) 

and c and Di are material constants. Thus, each stress component had its unique 

parameter set, and resulted in very accurate fits (r2≥0.99). 

Next, the value of each stress component was expressed as a function of two 

strain components while the other was kept at a prescribed constant value. This allowed 

us to simulate the response of each S component against various combinations of E and 
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guide the choice of the functional form of Q.  All together nine response functions were 

generated, using strain ranges of experimental data.  
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APPENDIX C: RESPONSE OF BHV BIOMATERIALS TO 

MODERATE CYCLIC LOADING** 

 

Currently, the durability of candidate BHV biomaterials is assessed through 

costly, time-consuming accelerated durability tests and animal implantation studies. 

Accelerated durability tests may approximate the tissue stress fields for intact valve and 

induce some forms of tissue damages.  However, damage mechanisms are difficult to 

analyze from these tests due to the complexity of the BHV leaflet deformations and the 

confounding influences of specific valve designs.  There is clearly a need for a 

comprehensive understanding of the intrinsic response of BHV biomaterials subjected 

to cyclic loading.  Moreover, heterograft biomaterials are composed of fibrous collagen 

and other extra-cellular proteins with additional exogenous cross-links that exhibit 

complex anisotropic mechanical behaviors 34.  Thus, traditional approaches to material 

                                                 

** Some of the results are from the manuscript: 

W. Sun, M.S. Sacks, G. Fulchiero, J. Lovecamp, N. Vyavahare, and M. J Scott, “response of heterograft 

heart valve biomaterials to moderate cyclic loading”, Journal of Biomedical Materials Research. (in 

review) 
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fatigue, originally developed for metallic materials, may not be applicable to BHV 

biomaterials.  This suggests the need for a more fundamental understanding of the 

response of heterograft biomaterials to long-term cyclic loading. 

As a starting point, we choose to study the early responses of BHV biomaterials 

to cyclic loading.  This based on our previous work on porcine BHV 143 which indicated 

large changes in mechanical behavior occur relatively early in valve operation (between 

1x106 and 50x106 cycles, corresponding to ~1.4 patient years at 70 bpm).  Moreover, it is 

likely that once the BHV biomaterial is at or near material failure (occurring after 

several hundred million cycles), there is little that can be done (with regard to the 

material) to mitigate the failure process.  Minimizing the early degeneration processes 

of heterograft biomaterials would presumably lead to improved long-term heart valve 

durability. 

Based on these considerations, we have elected to focus our studies on the 

mechanisms of structural and mechanical changes BHV biomaterials subjected to 

moderate levels of cyclic loading.  We hypothesize that an improved understanding of 

these initial responses can guide the development of novel chemical modifications to 

minimized these processes and ultimately produce more durable heart valve 

biomaterials. For the current study, we utilized GLBP as the representative BHV 

heterograft biomaterial and quantified its response to moderate levels of cyclic loading. 

Changes in specimen dimensions, anisotropic mechanical properties, and molecular- 

and fiber level structural changes to collagen were quantified. In addition, we present a 
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generalized framework for 2 dimensional kinematic analyses to account for the effects 

of permanent set on strain calculations.  

Specimen preparation. For this study, we used GLBP as the representative heart 

valve biomaterial.  Specimens were presorted by SALS 38, 45. Twelve 25 mm x 25 mm 

GLBP specimens exhibiting a high degree of structural uniformity were selected; six 

used for fatigue testing and six for uncycled control.  

Cyclic testing apparatus. The cyclic testing apparatus used in the study was a 

custom-made tensile fatigue tester capable of testing six specimens simultaneously 

(Figure C-1).  Displacement and frequency was adjustable within a stroke range of 0-

6mm and frequency range of 0-40Hz. A specially designed tissue grips were used for 

mounting the specimens with the edges of the grips rounded to avoid abrasion of the 

edges to the specimens during fatigue. In addition, the grips had four pins on both 

upper and lower grips for each specimen; the pins went through the suture holes used 

for biaxial testing of the specimen. 
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 Figure C-1 The custom-made tensile fatigue testing apparatus 

 

Six fatigue specimens were mounted on the tester with the direction of strain 

aligned to tissue preferred fiber direction (PD), while the cross-preferred fiber direction 

(XD) left load-free. Cyclic tests were conducted under strain control at room 

temperature with the specimens completely submerged in phosphate buffered saline 

(PBS) plus 0.5% sodium azide to prevent bacteria growth. Specimens were then cycled 

at 30 Hz to a maximum strain level of 16% (peak stress level about 1 MPa). Six control 

specimens were put into the same testing bath, without any loading imposed on, for 

characterizing the time and solution effects. Specimens were cycled to 0, 30x106 (low) 

and 65x106 (moderate) cycle levels.  After each cycle level, each specimen was removed 

from the fatigue tester and biaxial tested to quantify changes in anisotropic biaxial 

mechanical properties.   
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Kinematic analysis methods. To quantify mechanical property changes during 

cyclic loading, the biaxial mechanical testing data was analyzed with respect to both (i) 

the current reference marker positions, and (ii) the original un-cycled reference marker 

positions (See Appendix D). This approach allows examinations of current tissue 

mechanical properties with respect to both the permanent deformation caused by the 

cyclic loading and the loading deformation due to the application of 1 MPa in biaxial 

testing. The stretch ratios along the preferred (λPD) and cross-preferred (λXD) directions 

under 1 MPa equibiaxial stress was used to qualify the tissue extensibility. The net 

tissue compliance was represented by the areal stretch that was computed (=λPDλXD) 

under 1 MPa equibiaxial stress. Comparisons between cyclic loading levels were 

performed using t-tests, with statistically significant difference level set to p<0.05. All 

data are represented as the mean ± standard error.   

Methods of quantifying fiber and molecular-level changes to collagen. Mechanical 

properties of collagenous tissues are a function of the structural organization collagen, 

from the molecular– to fiber-level structural levels. In this study, we examined changes 

in collagen molecular conformation and fiber uncrimping as measures at these two 

structural levels. To examine the collagen fiber structure changes with cyclic loading, 

histological sections were prepared parallel to the preferred collagen fiber direction and 

stained with picro-sirius red. Polarized light microscopy (Nikon Eclipse Microscope) 

was performed on each specimen and 3-6 digitized images were recorded, at each 

magnification (e.g. 10x, 20x, and 40x). Collagen crimp analysis, based on the previous 

work by Hilbert 53, was performed on the digital polarized photomicrographs 144. 
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Briefly, the images were imported as N (rows) by M (columns) matrices of grayscale 

pixel intensities into MATLAB® (MathWorks, Inc., Ver. 7.0). The images were then 

averaged along the columns, creating a vector of averaged intensities having the 

dimension of 1 (row) by M (columns).  This vector was next entered as a discrete 

intensity versus distance signal into the MATLAB Signal Processing Toolbox®, where a 

fast Fourier transform (FFT) and power spectral density (PSD) were subsequently 

performed.  Spectral decomposition of a signal using PSD is able to reveal a distinct 

peak of the dominant frequency of collagen crimp in the digital image. 

We have previously used FTIR spectra to examine the collagen structure changes 

at molecular level for fatigued glutaraldehyde crosslinked porcine aortic cusps 145. In 

this study, we applied the same technique for the first time to cyclically loaded GLBP. 

These specimens were equilibrated in sterile water prior to obtaining FT-IR spectra. The 

IR spectra (64 scans at 2 cm-1 resolution) of specimens in the hydrated state were 

obtained using Fourier transform IR spectroscopy (FTIR, Jasco 480 Plus) with a fixed 45o 

angle attenuated total reflectance (ATR, ZnSe) cell attachment. Water was used as a 

background reference and water spectrum was subtracted from the specimen spectra by 

the computer program. For both the FTIR and collagen crimp studies, two control and 

three cycled specimens were analyzed. 

Key results. A summary of the key results of the study are is listed in Table C-1. 

As anticipated, permanent deformations were induced with cyclic loading. On average, 

specimen geometry was changed by 7.1% in the PD direction and 7.7% in the XD 
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direction at 30x106 cycles (Figure C-2). There were no statistically significant changes 

between 30x106, 65x106 cycles, as well as no statistically significant changes for the 

control specimens for all cycles.  

 

Table C-1 Summary of the key results 

Methods Results Level 

FT-IR Collagen conformational change Molecular 

Collagen crimp period Increase collagen crimp period with cycling Fiber 

Specimen dimension change 

 +7.1% strain in PD direction, -7.7% in XD 

direction Tissue 

Biaxial mechanical testing:  

      Strain referenced to 

current state 

Decreased extensibility in PD direction; 

increased extensibility in XD direction. 

Tissue 

Biaxial mechanical testing:  

      Strain referenced to un-

cycled state 

Stabile areal strain, overall tissue compliance 

unchanged 

Tissue 
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Figure C-2 Fatigue-induced permanent tissue deformation. The fatigued specimen geometry 

was changed by about +7.1% in the PD direction and about –7.7% in the XD direction for both 

measurements at 30x106, 65x106 cycles.  

 

Mechanical property changes referred to the current state. When the biaxial 

mechanical data were analyzed with respect to the current cycle level, decreasing 

extensibility along the PD direction with cycling was observed (Figure C-3a). For the 

XD direction, there was a corresponding increase in extensibility with cycle numbers 

(Figure C-3b). When examining peak stretch ratios, the PD direction decreased 

significantly (p<0.05) by 0.05 (=5% strain) from 0 cycle to 30x106 cycles (Figure C-4a). 

There were no statistically significant differences between 30x106 cycles and 65x106 
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cycles. In the XD direction, there was a statistically significant increase of stretch ratio 

from 0 cycle to 65x106 cycles (Figure C-4a). However, no significant changes occurred 

from 0 cycles to 30x106 cycles and from 30x106 cycles to 65x106 cycles. For control group 

there is no statistically significant difference among all cycle levels (Figure C-4b). 
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Figure C-3 Biaxial testing data at 0, 30x106 and 65x106 cycles levels, analyzed with each 

individual current fatigue state, showed a decreasing extensibility in PD direction and 

increasing extensibility in XD direction. 
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Figure C-4 (a) The peak stretch ratios at 1MPa equibiaxial stress, analyzed at each individual 

current fatigue reference state, for fatigued tissue. Stretch ratios were decreased in the PD 

direction and increased in XD direction with fatigue cycles. (b) The peak stretch ratios at 1MPa 

equibiaxial stress, analyzed at each individual current fatigue reference state, for control tissue, 

showing no statistically significant changes. 

 

 191



 

Biaxial mechanical properties referred to the uncycled state. When the biaxial 

experimental data were re-analyzed with respect to the un-cycled reference marker 

state (see Appendix D), there were no statistically significant changes in the peak stretch 

ratios for both PD and XD directions (Figure C-5a). Areal stretch values indicated a 

trend toward decreasing extensibility with cycling.  However, the peak values were not 

statistically different nor were the slopes were statistically different from zero (Figure 

C-5b). For the control group, there were no statistically significant changes with time. 
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Figure C-5  (a) The peak stretch ratios at 1MPa equibiaxial stress, analyzed at 0 cycle PP 

reference state, for fatigued tissue. There is no statistically significant change at all cycle stops; 

(b) The areal strain at 1Mpa equibiaxial stress, analyzed at initial, un-cycled reference state, for 

both control and fatigued tissue. There is no statistically significant change at all cycle stops. 

However, there is a “declining” trend for fatigued tissue. 
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Fiber and molecular-level changes to collagen. Representative digital polarized 

photomicrographs for both control specimen and fatigue specimens at 65x106 are 

illustrated in Figure C-6. Collagen crimp period increased from 40.55 µm for un-cycled 

control specimens to 45.22 µm for 65x106 cycles fatigued specimens (p=0.05) (Figure C-

6c).  Conformational changes accessed by ATR-FTIR spectroscopy showed typical 

spectrum for Type I collagen, the major protein in the pericardium, for control 

specimens (Figure C-7). Two major peaks were found, one at 1660-1630 (Amide I peak 

from C=O stretching vibrations) and other at 1553 cm-1 (Amide II peak for amide N-H 

bending vibrations coupled with C-N stretching).  Amide I peak at 1660-1630 cm-1 was 

separated into three peaks, viz. 1653, 1643, and 1632 cm-1 showing carbonyls in different 

environments. After 65x106 cycles, fatigued specimens showed significant changes in 

the amide I region. The peaks at 1655 and 1643 cm-1 were reduced in intensity and the 

peak at 1631 cm-1 was increased in the intensity. There was also a new peak found at 

1728 cm-1 (for esters probably from phospholipids), which was absent in the control 

specimens.  All other peaks in cycled specimens were similar to that of control 

specimens (Figure C-7).  
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Figure C-6 a) digital polarized photomicrographs for control tissue; b) for fatigued tissue at 65 x 

106 cycles; c) The crimp analysis from digital polarized photomicrographs for both control and 

fatigued specimens showed that the collagen crimp period increased from 40.55 µm for un-

cycled control specimens to 45.22 µm for 65x106 cycles fatigued specimens. 
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 Figure C-7 FT-IR spectra for both control and fatigued specimens. 

 

Discussion. This study was aimed at improving our knowledge of the 

mechanisms of fatigue of biologically derived collagenous BHV biomaterials. There 

have been relatively few related studies, with most dependent on a particular valve 

design 55, 143, 146-148.  However, the profound influence of complex leaflet deformations 

during valve operation makes it difficult to elucidate fundamental fatigue damage 

mechanisms.  Broom et al. 55 conducted the first efforts to characterize the isolated tissue 
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behavior under a combined tensile and buckling fatigue studies. However, to fully elicit 

the mechanisms of tissue degeneration, isolation of the contributions of individual 

loading states (e.g. tension, flexure) is a necessary first step in understanding the fatigue 

process as a whole. 

Our previous work on porcine BHV 143 indicated large changes in mechanical 

behavior occur relatively early in valve operation (between 1x106 and 50x106 cycles, 

corresponding to ~1.4 patient years at 70 bpm). Thus, in the present study we 

investigated the response of GLBP to medium-term tensile-only cyclic loading, and 

have examined the tissue degeneration through the methods of FT-IR analysis (for 

molecular level collagen conformational change), collagen crimp analysis (for fiber level 

collagen fiber un-crimping) and biaxial mechanical testing (for tissue mechanical 

properties changes.).   

Fatigue induced collagen conformational changes.  Infrared spectroscopy has been 

used extensively to study protein conformation. In particular, infrared spectrum of 

Type I collagen has been thoroughly investigated 149-154. The amide I carbonyl stretching 

region (1700-1600 cm-1) has been shown to be very sensitive to the changes in collagen’s 

triple helical tertiary structure during fibrillogenesis and denaturation 152-154. The amide 

I peak is made up of three distinct bands; a band at 1655 cm-1 is assigned to the 

carbonyls that are within the triple helix, which are associated intra-molecularly with 

weaker hydrogen bonds. A band at 1643 cm-1 was assigned to the solvent hydrogen 

bonded glycine residues in the triple helix and a band at 1630 cm-1 was assigned to 

amide carbonyls protruding out from the triple helix and are associated inter-
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molecularly with water molecules 153, 154. Thus, increase in the intensity of 1630 cm-1 

band as compared to the 1655 cm-1 as observed after 65x106 cyclic loading of GLBP 

suggest that cyclic loading leads to collagen conformational changes and denaturation 

probably due to change in helicity caused by mechanically induced molecular fatigue. 

Similar increase in the intensity of peak at 1630 cm-1 for collagen to gelatin transitions 

has been reported for pure Type I collagen 154. We have also shown similar collagen 

denaturation occurring after cyclic fatigue of glutaraldehyde treated porcine aortic 

cusps 145.   

GLBP also showed a new prominent peak at 1728 cm-1 that was not present in the 

control non-fatigued specimens (Figure C-7). This peak could be assigned to the ester 

bonds of phospholipids 155. At this time we do not know how the phospholipids appear 

at the surface of the tissues after in vitro cyclic fatigue. However, it is possible that 

because of the subsurface damage caused by mechanical fatigue, the remnants of 

devitalized cellular debris may leach out to the surface. We have also seen increase in 

this peak after cyclic fatigue of glutaraldehyde crosslinked porcine aortic valve cusps 

145. Overall FT-IR studies suggested that cyclic fatigue of GLBP caused collagen 

denaturation and beginnings of progressive deterioration as early as 65x106 cycles.  

Possible mechanisms for mechanical behavior with fatigue. Glutaraldehyde fixation 

introduces a large number of stable crosslinks between the amino acid groups of the 

polypeptide chains of collagen 132. It has been assumed that the collagen fiber 

architecture and the corresponding mechanical behavior are locked in place with 

chemical fixation and remain unchanged during valve operation. However, if 
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mechanical properties are altered, there are two possible reasons: 1) collagen fiber 

architecture is changed, i.e. there is a spatial rearrangement of collagen fiber 

architecture (fiber un-crimping and reorientation) and/or 2) intrinsic properties of 

collagen fibrils are changed, possibly due to collagen molecule conformation change 

and denaturation. In the case of collagen un-crimping, when stretched tissue will 

exhibit lesser extensibility compared to its original crimp state. In the case of collagen 

reorientation, it has been shown 8 that tissue will exhibit more anisotropic and PD 

direction will be stiffer and XD direction more compliance. 

Based on those considerations, our mechanical testing results (Figure C-2) can be 

explained in terms of collagen fiber un-crimping and fiber reorientation in the direction 

of loading.  When the specimens were cycled in PD direction, the undulated collagen 

fibers were straightened along the loading direction, which was manifested by the 

permanent changes in tissue dimensions at tissue level (Figure C-2) and the increase of 

collagen fiber crimp period at fiber level (Figure C-6). It was therefore not surprising 

that the specimens would appear to be less extensible (Figure C-3a) when biaxial strains 

were referenced to the marker position of current cycle level. What is more interesting is 

in the XD direction the specimens appeared more extensible as the cycles increased 

(Figure C-3a).  We speculated that since collagen fibers re-orient direction towards the 

loading direction 130, 156, under cyclic loading some of collagen fibers originally at an 

angle to the PD direction would be forced to rotate towards the loading direction and 

thus result in even less amount of fibers oriented in the XD direction.  As a result the 

XD direction became more extensible (Figure C-3a). In this study, we are not able to 
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explicitly separate the effects of collagen fiber un-crimping and reorientation.  However, 

we hypothesize that the fiber reorientation in the loading direction was the major 

contributor to the changes of tissue anisotropy. Similar fiber kinematics have been 

demonstrated in the mitral valve leaflet 5, 156, coronary artery 157 and bovine pericardium 

130 as transient fiber configuration change (Note that in these case when stretch is 

removed, the fibers relax to their original configuration). However, in this study these 

fiber configuration changes were permanent changes induced by cyclic loading. 

When the biaxial test data were referenced to the un-cycled marker position, no 

statistical significant difference was found for all cycle levels (Figure C-5). This result 

indicated that there was no overall tissue compliance change with respect to 0 cycle 

state (see Appendix D).  In theory, a single cleavage in a protein chain can result in a 

decrease in mechanical integrity that can be detected by mechanical testing 148. We 

speculated that even though there were conformational changes of type I collagen, 

those changes were not significant to alter overall tissue compliance and the overall 

tissue mechanical integrity was still intact after 65x106 cycles. These observations 

suggest that deterioration of collagen begin immediately, but the fiber straightening and 

reorientation dominate changes in mechanical behavior in the early (up to 65 x 106 

cycles) phase of fatigue. However, as showed in Figure C-5b, the areal strain had the 

trend of declining for the fatigued tissue. The declining trend was not statistically 

significant and could be caused by the artifacts during the repetitive biaxial and fatigue 

testing, or intrinsic tissue properties changes similar to “strain hardening” effect that is 

unclear now. Even though different BHV biomaterials were used, our finding here is 
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consistent with our previous finding that the mechanical properties of zero-pressure-

fixed porcine BHV cusps were not stabile with long-term cyclic loading 143 and large 

changes in mechanical behavior occur relatively early in valve operation (between 1x106 

and 50x106 cycles).  

Limitations. As an initial study, establishing proper and feasible experimental 

methods and protocols was also part of our goal. The accuracy of repetitive tissue 

deformation measurements at each cycle level is dependent on the integrity of the 

optical markers glued on the central region of the specimens. After 65 x 106 cycles, 

optical markers stayed on all cycled specimens and five control specimens, suggesting 

the feasibility of using optical marker for strain measurement in tissue fatigue study. 

Specimen griping may need to be slightly modified to allow for sandpaper sandwich 

clamping so that lesser force born by suture hole. Reliance on suture holes tore a few 

suture holes of the specimens. No significant mechanical property change for control 

specimens indicated that the effects of time and solution contamination over the fatigue 

period were not significant. Fatigue testing was conducted under strain control, which 

might be one of the drawbacks of the experiment. As physiologically BHV is deformed 

under hydraulic pressure that is equivalent to stress-driven deformation. Current 

fatigue tester however does not allow us to conduct stress control experiments. At 30 

million cycles, fatigue may already consume the possible crimp effects and that might 

be the reason that we did not see the alteration of tissue mechanical properties after 

30x106 cycles. In addition, in current study we only examined the effects of cyclic 

loading with the loading direction parallel to the PD direction, a more rigorous study 
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with the loading direction perpendicular to the PD direction and with constitutive 

modeling of fatigue effects is current ongoing in our lab. 

Summary. The response of GLBP to medium-term cyclic tensile loading was 

quantified in this study to elucidate the mechanisms of tissue degeneration in BHV 

biomaterials. After 65x106 cycles, we found permanent changes in tissue dimensions as 

well as collagen crimp period increase, which indicated cyclic loading induced 

permanent configuration changes in fiber level and manifested in tissue level. Biaxial 

mechanical testing indicated that tissue became less extensible in the PD direction and 

more extensible in the XD direction. We hypothesized that this change was due to 

permanent increase in collage crimp period and fiber kinematical re-orientation 

induced by cyclic loading.  Moreover, no significant areal strain change indicated that 

there is no significant fiber fracture and tissue change to alter overall tissue compliance. 

Taken as a whole, these results indicate that while molecular level damage to collagen 

occurs very early, these changes are secondary to fiber straightening and reorientation 

effects resulting from geometric changes to the specimen as a resulting from permanent 

set.  
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APPENDIX D: KINEMATICAL ANALYSIS OF FATIGUE 

 

To rigorously quantify multi-dimensional tissue deformation during fatigue, we 

rely on the kinematic framework of finite strain theory with multi-configurations. These 

relations can be explained as follows. Consider the relations between the three 

configurations of interest: the initial, stress-free uncycled configuration β , the stress-

free but fatigued configuration β , and the loaded configuration β  for the state when 

the tissue is stressed to 1 MPa (Figure D-1).  The deformation gradient tensor F 

associated with the any finite deformation is given by 

o

1 2

λ κ 
=  κ λ 2 2

F , where λ1 1
i are the 

stretch ratios and κi measures of in-plane shear.  When deforming from β  to β , to 

,β  to β  (Figure D-1), the associated deformation gradient tensors are F

o 1 1β

2β o 2 0-1, F1-2, and 

F0-2, respectively.  Extending this approach to the current study, we adopt the notation 

F0, F30, and F65 for the deformations at 0, 30 and 65x106 cycles, respectively. Thus, −1
30F 2  

and  represent the deformations due the application of 1 MPa equibiaxial loading 

analyzed with respect to the current reference marker position.  In contrast, 

 and F =  represent the data analyzed by referenced to the initial, 

un-cycled reference marker position. As an illustration of the kinematic approach, the 

−1 2
65

0-1
30F

F

F = i 1-2
30F0-2

30 i0-2 0-1 1-2
65 65 65F F
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stretches (λ1, λ2) of one specimen during the cyclic loading process are shown here. 

Please be noted that for demonstration propose we ignore the shear components, which 

is usually very small, however, shear components should be included during the actual 

calculation to ensure accuracy.   

cycled state

Initial, un-cycled 
state

F0-1

F1-2

F0-2 = F0-1 F1-2
1MPa biaxial 
testing state

1β

oβ

2β

 

Figure D-1 Schema of deformations from uncycled reference configuration β0 to a cycled 

configuration β1, and then to configuration β2 following 1 MPa stress.  In finite strain theory, 

successive deformations are accounted by multiplication of F for each state, rather than 

summing the strains as done in infinitesimal strain theory. 

 

The stretches (λ1, λ2) of two axes due to the application of 1 MPa equibiaxial 

loading analyzed with respect to the current 0, 30 and 65x106 cycles reference marker 

position are (1.14, 1.21), (1.05, 1.15), and (1.08, 1.17), respectively. The stretches (λ1, λ2) of 

two axes induced by the cyclic loading at 0, 30 and 65x106 cycles are (1.0, 1.0), (1.09, 
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1.06), and (1.06, 1.03), respectively. The data analyzed by referenced to the initial, un-

cycled reference marker position are calculated by: 

0 2 0 1 1 2
0 0 0

1.0 0.0 1.14 0.0 1.14 0.0
F F F

0.0 1.0 0.0 1.21 0.0 1.21
− − −     

= = =    
     

i i 










  (D1) 

0 2 0 1 1 2
30 30 30

1.09 0.0 1.05 0.0 1.14 0.0
F F F

0.0 1.06 0.0 1.15 0.0 1.22
− − −     

= = =    
    

i i   (D2) 

0 2 0 1 1 2
65 65 65

1.06 0.0 1.08 0.0 1.14 0.0
F F F

0.0 1.03 0.0 1.17 0.0 1.21
− − −     

= = =    
    

i i   (D3) 

It can be observed that F , F0 2
0

− 0 2
30

−  and F0 2
65

− are very close to each other.  

In the present study, when mechanical testing data are referred to the initial, 

stress-free uncycled configuration β  and statistically no changes are observed, it can be 

concluded that there are no intrinsic changes in the mechanical properties of the tissue, 

and that the observed changes in the current state represent “permanent set” effects 

only. 

o
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