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MOLECULAR MECHANISMS OF AGING IN THE PERIPHERAL NOCICEPTIVE SYSTEM 

 

Shuying Wang MD, PhD 

 

University of Pittsburgh, 2006 

 

 

Decreased pain sensitivity during aging is common in humans and animals and is thought to 

reflect changes in anatomical, functional and cellular properties of the peripheral nervous system 

(PNS). We hypothesized that a reduction in neurotrophic growth factor and ion channel 

expression led to some of these age-associated changes in the PNS. To test this, a detailed 

comparative study was made of 6~8 week-, 16 month- and 2 year-old Blk6 male mice obtained 

from the NIA mouse colony. Behavioral assays showed aged mice had decreased sensitivity to 

noxious heat and impaired inflammation-induced thermal hyperalgesia. To understand the basis 

for this change we examined expression of the growth factor artemin, its receptor GFRα3 and 

TRPV1, an ion channel expressed by 95~99% of GFRα3-positive sensory neurons. TRPV1 is of 

significance since it is required for transmission of thermal hyperalgesia following tissue 

inflammation. Assays showed a reduction in TRPV1 mRNA and protein in the PNS of aged mice 

that correlated with a decrease in expression of the artemin receptor GFRα3. CFA-induced 

inflammation also increased artemin expression in the skin but decreased expression of GFRα3 

mRNA in the dorsal root ganglia (DRG) of both young and old mice. The decrease in GFRα3 

was greater in aged mice, suggesting GFRα3 signaling following CFA is also reduced and that 

the response properties of GFRα3-positive sensory neurons that express TRPV1 are diminished. 

Calcium imaging of isolated primary neurons grown with NGF was therefore used to test the in 
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vitro effects of artemin on TRPV1 activation in young and old neurons. Artemin potentiated 

TRPV1 activation by capsaicin in young and old neurons, but the amplitude of capsaicin 

responses in young neurons was decreased with long-term exposure to artemin. In studies using 

microarrays and RT-PCR, inflammation-associated genes such as interleukin 6 (IL-6) were 

found elevated in sensory ganglia of aged mice. This ongoing inflammatory state may increase 

the inflammatory tone of the system and contribute to changes in response properties and 

sensitivity of sensory neurons in the aging PNS. Thus, the reduced sensitivity to inflammatory 

pain in aged animals reflects a combination of changes in anatomical, physiologic and immune 

response properties.  
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I. OVERVIEW 

PAIN SIGNALING IN THE PERIPHERAL NOCICEPTIVE SYSTEM 

 

 

 

Pain is “an unpleasant sensory and emotional experience associated with actual or potential 

tissue damage, or described in terms of such damage”, according to the International Association 

for the Study of Pain (IASP). Under normal conditions the experience of pain has an important 

protective role. In pathological conditions, the sensation of pain also has a protective response 

and functions to prevent further damage to the already injured tissue. However some 

pathological conditions, such as chronic joint inflammation or nerve injury, result in persistent 

and recurrent pain that can severely affect daily activities if left untreated. Persistent pain is more 

common in older people who are at a much higher risk for such pain-related morbidity. Although 

the relative risk and the nature of pain in elderly people is influenced by age-related painful 

diseases, co-morbid illness, and psychological changes associated with aging, accumulating 

evidence suggests that pain severity is also influenced by age-related changes in the structure and 

functional properties of the peripheral nociceptive system (PNS). To identify how changes in the 

PNS might relate to pain transmission and sensitivity with aging, we compared the cutaneous 

sensory system of young and old mice at the cellular and molecular level. The overall goal was 

to determine if age-related changes occurred in neurotrophic growth factor expression, ion 

channel expression or response properties of sensory neurons. 

 

       As a sensory organ, skin contains a dense network of highly specialized primary afferent 

nerve fibers whose cell bodies are found in the dorsal root ganglia (DRG) and trigeminal ganglia 

(TG) (Iggo and Andres, 1982). The terminals of the afferent nerve fibers form receptors that 

detect and transmit thermal, mechanical and chemical information to the central nervous system 

(CNS). Generally speaking, spinal afferent fibers from DRG neurons enter and form synapses 
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with neurons in the dorsal horn of the spinal cord, and their axons cross to the contralateral side 

and ascend to synapse on neurons in the thalamus. Thalamic neurons send fibers to the cortex 

where conscious sensation occurs (McHugh and McHugh, 2000). The first physiological step of 

complex pain processing, i.e., nociception, involves the transmission of a noxious signal by a 

subset of primary sensory neurons called nociceptors (Dubner and Bennett, 1983; Besson and 

Chaouch, 1987; Millan, 1999). Nociceptors are selectively activated by diverse noxious stimuli, 

and anatomically and functionally distinct from non-nociceptive neurons that detect innocuous 

stimuli (Caterina and Julius, 1999). Nociceptors set specific response thresholds to distinguish 

between noxious and innocuous events and reset these thresholds following injury to sensitize 

the system and prevent further injury (Julius and McCleskey, 2006).  

 

 

 

1.1 FUNCTIONAL PROPERTIES OF NOCICEPTORS 

 

Cutaneous nociceptors can be divided into two main groups based on anatomical and functional 

properties: unmyelinated C-fiber nociceptors with slower conduction velocity and myelinated A-

fiber nociceptors with faster conduction velocity (Dubner and Bennett, 1983; Djouhri and 

Lawson, 2004). There are two types of A-fiber nociceptors: type I and type II (Treede et al., 

1998). Type I fibers are present in both hairy and glabrous skin while type II are only in hairy 

skin. When a noxious stimulus is applied to the skin, activated cutaneous nociceptors generate 

and transmit an electrical signal (action potential, AP) along A-fibers and/or C-fibers to the 

dorsal horn of the spinal cord, and elicit fast sharp pain and/or slow dull pain (Julius and 

Basbaum, 2001). According to their responses to different modalities of noxious stimulation, 

nociceptors can be further classified into thermal, mechanical and chemical nociceptors. Most 

are polymodal nociceptors that respond to thermal, mechanical and chemical stimuli, whereas 

other nociceptors are activated only by a subset of these modalities (Caterina and Julius, 1999).  

 

 

 

 



 3 

1.1.1 Thermal nociception 

 

Responses of nociceptors to heat stimuli have been studied in detail and a wide range of heat 

thresholds from 38°C to 53°C has been reported (Spray, 1986). Thermal modeling studies have 

shown that the heat threshold of nociceptors depends on the temperature at the depth of the 

receptors. The transduction of heat stimuli (conversion of heat energy to action potentials) occurs 

at different skin depths for different nociceptors and the supra-threshold responses of nociceptors 

vary directly with the rate of temperature increase (Tillman et al., 1995b, 1995a). When the rate 

of temperature increases very slowly or when stimulus duration is very long, the heat threshold 

of most C-fiber nociceptors and type II A-fiber nociceptors is between 39°C and 41°C (Tillman 

et al., 1995a), and type I A-fiber nociceptors is between  40~50°C (Treede et al., 1998; Meyer et 

al., 2006). Further studies have found that human sensation of pain to stimuli over the range of 

41~49°C correlates very well with the activity of C-fiber nociceptors (Meyer et al., 2006) and the 

thermal threshold of type II A-fiber nociceptors in hairy skin is near the threshold temperature 

for initiation of pain sensation (Beitel et al., 1977; Treede et al., 1998). These observations 

indicate a role of nociceptors in heat-induced pain sensation.  

 

1.1.2 Mechanical nociception 

 

Mechanical responses of nociceptors depend on the features of a mechanical stimulus and the 

type of nociceptor activated. Peak response occurs at the onset of the stimulus followed by slow 

adaptation to stimuli. The response of A-fiber nociceptors is greater than C-fiber nociceptors 

(Slugg et al., 2000). In general the activity of nociceptors increases with pressure and force 

except that the response of C-fiber nociceptors saturates at higher force level (Slugg et al., 2000). 

A-fiber nociceptors are thought to be responsible for transmission of sharp pain induced by 

punctate mechanical stimuli since the reaction time to perceive sharp pain is short and the 

stimulus-response function of A-fiber nociceptors is comparable with the pain ratings of human 

subjects (Magerl et al., 2001). When long-duration mechanical stimuli are applied, the pain 

increases throughout the stimulus. Certain C-fiber nociceptors that are normally insensitive to 

mechanical stimuli develop a response to prolonged mechanical stimulation, and are thought to 
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signal pain associated with tonic pressure since selective block of A-fiber nociceptors rarely 

affects the tonic pain (Andrew and Greenspan, 1999; Schmidt et al., 2000).  

 

1.1.3 Chemical nociception 

 

 A variety of chemical agents, including endogenous inflammatory mediators (e.g. acid) and 

exogenous agents (e.g. capsaicin and formalin) can activate nociceptors and produce pain 

(Reichling and Levine, 1999). Intradermal injection of capsaicin induces a long-lasting vigorous 

response in certain A- and C-fiber nociceptors and intense pain that lasts for several minutes, 

suggesting these fibers are responsible for capsaicin-induced pain (Schmelz et al., 2000; 

Ringkamp et al., 2001). A channel protein expressed in nociceptors, TRPV1, has been found to 

mediate the noxious effects of capsaicin (Caterina et al., 1997). Heat and protons can also 

activate TRPV1, indicating that neurons expressing TRPV1 may be polymodal nociceptors.  It 

should be mentioned that most chemical agents probably cause tissue injury and hence induce 

pain, which is particularly true for inflammation-induced pain. 

 

       A common feature found in nociceptors that respond to thermal, mechanical and/or chemical 

(capsaicin) stimuli, is time-dependent desensitization by repeated stimuli, which is a reduction of 

the response to the second of two identical stimuli compared with the response to the first one, 

and in turn results in a reduction in pain intensity following repeated stimuli (Slugg et al., 2000; 

Witting et al., 2000; Peng et al., 2003). The mechanism for capsaicin-induced desensitization has 

been intensively studied. In addition, nociceptors not only encode the intensity and modality but 

also encode spatial localization of noxious cutaneous stimuli, and actual pain thresholds are 

higher in vivo than the thresholds for activation of individual nociceptors, indicating 

involvement of central mechanisms in regulation of nociception (Millan, 1999).  
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1.2 MOLECULAR PROPERTIES OF NOCICEPTORS 

 

Over the past two decades rapid progress has been made in defining the molecular and cellular 

mechanisms of cutaneous nociception. Physiological function of nociceptors depends on distinct 

expression of receptors and ion channels that can be activated by noxious stimuli. These 

nociceptive receptors and ion channels detect specific physical or chemical stimuli and induce 

membrane depolarization. Voltage-gated ion channels are in turn activated and produce APs, and 

result in neurotransmitter release at spinal synapses. Among these receptors and ion channels, 

transient receptor potential ion channel (TRP)-related TRPVs, acid-sensing ion channels (ASICs) 

and purinergic ionotropic receptors (P2X2 and P2X3) have been well studied and recognized as 

molecular detectors of noxious thermal, mechanical or chemical stimuli (Caterina and Julius, 

1999; Julius and Basbaum, 2001). 

 

1.2.1 Molecular detectors of noxious stimuli 

 

As mentioned before some nociceptors have a lower thermal threshold than others. In vitro 

studies also show that about 45% of DRG neurons respond to heat with a threshold of ~ 42°C 

while 5~10% respond with a higher threshold of ~ 51°C (Nagy and Rang, 1999). The difference 

of nociceptors in thermal threshold is determined by specific expression of heat-sensitive ion 

channels, especially TRPVs. TRPV1 is predominantly expressed in unmyelinated C-fiber 

nociceptors and has a thermal activation threshold of ~ 43°C, indicating involvement of TRPV1 

in thermal response of nociceptors with lower threshold (Caterina et al., 1997; Tominaga et al., 

1998; Michael and Priestley, 1999; Caterina et al., 2000). TRPV2, mainly present in myelinated 

A-fiber nociceptors, has a thermal threshold of ~ 52°C and is thought to mediate high threshold 

heat responses (Caterina et al., 1999). TRPV3 and TRPV4 have been found to respond to heat 

with thermal threshold between 31 and 39°C, but their expression and function in thermal 

nociceptors is controversial (Guler et al., 2002; Peier et al., 2002; Smith et al., 2002; Watanabe et 

al., 2002; Xu et al., 2002). TRPV4 can also be activated by changes in osmolarity suggesting that 

TRPV4 might be also involved in mechanosensation (Liedtke et al., 2000; Strotmann et al., 

2000; Suzuki et al., 2003b).  

 



 6 

       Despite the fact that mechanosensitive channels such as ASIC1, ASIC2 and TRPV4 are 

present in nociceptors (Alvarez de la Rosa et al., 2002), molecular detectors of mechanical stress 

remain elusive since deletion of ASICs or TRPV4 genes only produces subtle changes in 

mechanosensation, osmoregulation or nociception (Price et al., 2000; Price et al., 2001; Suzuki et 

al., 2003a). Though some chemical agents like capsaicin can directly produce pain via activation 

of TRPV1, most noxious chemical stimuli are endogenously released following tissue injury. 

Acidosis is a common consequence of injuries associated with inflammation and ischemia. 

TRPV1 and ASICs are thought to mediate acid-induced pain since both can be activated by 

protons as well as expressed in acid-responsive nociceptors (Caterina et al., 1997; Caterina et al., 

2000; Price et al., 2000; Price et al., 2001; Alvarez de la Rosa et al., 2002). Tissue injury also 

results in ATP release from damaged cells. ATP can directly activate the purinergic ionotropic 

receptors P2X2 and P2X3, which are preferentially expressed in nociceptors, and induce the 

sensation of pain (Chen et al., 1995; Lewis et al., 1995; Cook et al., 1997; North, 2004). 

 

1.2.2 Molecular signal transducers  

 

Once the molecular detectors in nociceptors are activated by noxious stimuli, voltage-gated ion 

channels are opened by membrane depolarization and action potentials are produced and 

propagated. Action potentials of nociceptors are remarkably long in duration and relatively slow 

at firing rate (Koltzenburg et al., 1997; Djouhri et al., 1998). To date many types of voltage-

gated sodium, potassium and calcium channels have been identified in primary sensory neurons, 

but only some are specifically or preferentially expressed in nociceptors, which might be the 

molecular basis for the distinct excitability of nociceptors. Two of them are tetrodotoxin (TTX)-

resistant voltage-gated sodium channels Nav1.8 and Nav1.9 (Akopian et al., 1999; Amaya et al., 

2000; Fang et al., 2002; Djouhri et al., 2003). Slow inactivation of these two channels leads to 

long duration of APs in nociceptors (Djouhri et al., 2003). Voltage-gated calcium channels 

(VGCC), such as N-type voltage-gated calcium channel Cav2.2, also shapes the prolonged 

shoulder of APs in nociceptors (Blair and Bean, 2002). Studies have shown that Cav2.2 carries 

the bulk of calcium current in sensory neurons and the fraction is relatively higher in nociceptors 

than in others, and neurotransmission at the first synapse in the nociceptive pathway mainly 

relies on Cav2.2 (Mintz et al., 1992; Gruner and Silva, 1994; Cardenas et al., 1995; Rusin and 
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Moises, 1995; Kim et al., 2001). A splicing variant of Cav2.2, e37a, has been reported to be 

preferentially expressed in capsaicin-responsive neurons (Bell et al., 2004). These findings 

indicate relative specificity of involvement of Cav2.2 in nociception. 

 

1.2.3 Molecular properties determine nociceptor function 

 

The molecular detectors of noxious stimuli plus voltage-gated ion channels for signal 

propagation determine sensitivity and activity of nociceptors. Changes in expression and/or 

function of these nociceptive channels and receptors may result in functional changes of 

nociceptors. It has been reported that increased expression or activity of Nav1.8 and Nav1.9 

results in increased sodium conductance, decreased AP threshold, and increased activation rate 

and firing rate, and in turn causes hyper-excitability of sensory neurons (Gold, 1999; Waxman et 

al., 1999). Other studies also have shown that in control DRG neurons, ATP or protons only 

induce sub-threshold membrane depolarization while in inflamed neurons with increased 

expression of ASIC3 or P2X2/3 the same pH drop or the same amount of ATP evokes supra-

threshold depolarization and triggers action potentials, indicating that up-regulation of detector 

proteins may contribute to hypersensitivity and hyper-excitability of sensory neurons (Mamet et 

al., 2002; Xu and Huang, 2002). In vivo inflammation not only causes persistent pain but also 

hyperalgesia, an increased response to a stimulus that is normally painful, and allodynia, a 

painful response due to a stimulus which does not normally provoke pain. The molecular basis 

for increased sensitivity and activity of nociceptors during inflammation is consistent with the 

molecular mechanism of nociception discussed above. In general, inflammation increases 

expression and/or function of nociceptive-related channels, thus decreasing activation thresholds 

and increasing AP production in nociceptors resulting in pain (Okuse et al., 1997; Gold, 1999; 

Waxman, 1999; Waxman et al., 1999; Voilley et al., 2001; Ji et al., 2002; Xu and Huang, 2002). 

This model is also consistent with the finding that deletion of these channels either decreases or 

slows occurrence of inflammatory pain (Barclay et al., 2002; Walker et al., 2003). During 

inflammation channel expression and/or function in nociceptors can be modulated by nerve 

growth factor (NGF). NGF binds to the TrkA receptor tyrosine kinase (RTK) receptor, and 

activates second message signaling pathways that are thought to regulate gene expression or 

modification, i.e. phosphorylation, of channel proteins (Julius and Basbaum, 2001).  
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1.3 REGULATION OF NOCICEPTOR FUNCTION 

 

Neurotrophic factors regulate the long-term survival, growth and differentiated function of 

distinct populations of sensory neurons. Multiple types of cells can produce neurotrophic factors, 

including those in target tissues such as the skin, supporting glial cells in sensory ganglia such as 

the satellite and Schwann cells and immune cells that are found in the skin and ganglia, e.g., 

macrophages (Batchelor et al., 1999). Two families of neurotrophic factors, the neurotrophin 

family, comprised of NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) 

and neurotrophin-4 (NT-4), and the glial cell line-derived neurotrophic factor (GDNF) family, 

have been found to be required for development, maintenance and function of sensory neurons. 

The action of neurotrophic factors depends on their binding to transmembrane receptors. NGF 

binds to the receptor p75 and the receptor tyrosine kinase TrkA (Barbacid, 1995; Chao and 

Hempstead, 1995). GDNF binds to the Ret receptor tyrosine kinase and to a glycosyl-

phosphatidyl inositol (GPI)-anchored receptor GFRα (Saarma and Sariola, 1999). Based on the 

requirement for trophic factors, nociceptors can be divided into two groups: NGF-dependent 

nociceptors, which express peptides such as calcitonin gene-related peptide (CGRP) and 

substance P (SP), and GDNF-dependent nociceptors, which are peptide poor and bind the plant 

isolectin B4 (IB4) (Snider and McMahon, 1998). In adult rodents about 40% of DRG neurons 

are NGF-dependent and 30% are GDNF-dependent (Molliver et al., 1997). Although the two 

groups of nociceptors may have distinct roles in pain sensation, neurons in each group respond to 

capsaicin and heat and in rat, many express TRPV1 (Tominaga et al., 1998; Michael and 

Priestley, 1999).  

 

1.3.1 NGF 

 

The important role of NGF in development and differentiation of nociceptors has been well 

established. NGF also regulates nociceptor function in the adult (Bennett, 2001). In vitro studies 

have shown that NGF regulates gene expression of SP and CGRP in cultured adult DRG neurons 

as well as chemical sensitivity of nociceptors to capsaicin and protons (Winter et al., 1988; 

Lindsay and Harmar, 1989; Bevan and Winter, 1995). In vivo studies have found that 

subcutaneous administration of NGF sensitizes nociceptors to thermal and chemical stimuli and 
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causes hyperalgesia (Lewin et al., 1993). Further studies indicate that local infusion of anti-TrkA 

IgG, an NGF signaling antagonist, decreases thermal and chemical sensitivity of nociceptors and 

leads to thermal hypoalgesia, suggesting TrkA is required for regulation of nociceptor function 

by NGF (McMahon et al., 1995). By binding and activating TrkA-mediated signaling pathways 

NGF regulates not only expression but also post-translational modification of receptors and ion 

channels involved in nociception such as TRPV1 and Nav1.8 (Gold et al., 1998; Kerr et al., 

2001; Bonnington and McNaughton, 2003; Zhang et al., 2005). Increased expression and specific 

phosphorylation of TRPV1 and Nav1.8 by NGF are thought to contribute to NGF-induced 

sensitization of nociceptors (Julius and Basbaum, 2001; Kerr et al., 2001; Ji et al., 2002).  

       

       It is clear now that NGF can act as an inflammatory mediator and is essential for 

inflammatory hyperalgesia (Mendell et al., 1999; Bennett, 2001). NGF has been found to 

increase in inflamed tissue, and this increase may be secondary to cytokine production, such as 

IL-1 and TNFα (Woolf et al., 1994; Safieh-Garabedian et al., 1995; Woolf et al., 1997). Anti-

NGF or anti-TrkA treatment diminishes the hyperalgesia (Woolf et al., 1994; McMahon et al., 

1995).  During inflammation nociceptors display increased thermal and mechanical sensitivity, 

which can also be prevented by anti-NGF treatment. As mentioned above, NGF can act directly 

on nociceptors by modifying channel proteins like TRPV1 to induce hyperalgesia. In addition 

NGF can also up-regulate channel protein expression, which may contribute to long-term 

hyperalgesia (Koltzenburg et al., 1999). Another possibility is that NGF causes cytokine release 

from mast cells, acts on sympathetic efferents, or activates other signaling pathways, which can 

also be involved in hyperalgesia (Bennett, 2001). 

 

1.3.2 GDNF family ligands  

 

The role of GDNF and GDNF family ligands (GFLs) in functional regulation of nociceptors in 

the adult is less understood and more controversial. The GDNF growth factor family consists of 

GDNF, neurturin (NTN), artemin (ART) and persephin (PSP), which preferentially bind to 

GFRα1, GFRα2, GFRα3 and GFRα4, respectively. The GFRs in conjunction with the Ret form 

a receptor complex (Saarma and Sariola, 1999). GDNF, NTN and ART support the survival and 

differentiation of subpopulations of cutaneous sensory neurons in vitro (Baudet et al., 2000). 
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Disruption of GDNF results in a 23% decrease of total neurons in DRG and selective loss of 

GFRα1-expressing neurons in TG at P0 (Moore et al., 1996). However, disruption of GFRα1 has 

no effect on the survival of sensory neurons in either DRG or TG (Cacalano et al., 1998). 

Deletion of NTN causes selective loss of GFRα2-expressing neurons in TG and knockout of 

GFRα2 decreases peripheral innervation without affecting the number of DRG neurons 

(Heuckeroth et al., 1999; Rossi et al., 1999; Stucky et al., 2002; Lindfors et al., 2006). No 

deficiency has been reported in sensory ganglia of ART or GFRα3-knockout mice though 

GFRα3 is predominantly expressed in peptidergic nociceptive sensory neurons (Nishino et al., 

1999; Orozco et al., 2001; Honma et al., 2002). The lack of sensory neuron abnormalities in 

these knockout studies may be due to crosstalk among GDNF, NTN and ART signaling 

pathways (Sariola and Saarma, 2003).  

 

       The influence of GDNF on nociception may vary between rats and mice due to distinct 

difference in the expression pattern of TRPV1 in GDNF-dependent nociceptors. In rats more 

than half of GDNF-dependent nociceptors express TRPV1 whereas in mice only 2~5% are 

TRPV1-positive (Guo et al., 1999; Michael and Priestley, 1999; Zwick et al., 2002). Not 

surprising, overexpression of GDNF in mouse skin does not affect either heat thresholds of 

GDNF-dependent nociceptors or the percentage of TRPV1-expressing neurons in sensory 

ganglia since few mouse GDNF-dependent nociceptors express TRPV1. But overexpression of 

GDNF increases the percentage of GDNF-dependent, IB4-positive neurons in DRG and 

decreases mechanical thresholds of these neurons (Albers et al., 2006). Moreover, GDNF 

overexpression results in increased P2X3-positive cutaneous nerve fibers, which are highly 

expressed in GDNF-dependent nociceptors (Zwick et al., 2002).  

 

       Neurturin is also thought to support a subpopulation of neurons that have nociceptor 

properties. Approximately 50% of GFRα2–expressing neurons respond to noxious heat and 

deletion of the GFRα2 gene decreases the percentage of neurons with large heat-evoked 

response and increases the percentage of neurons with small or no heat response. Loss in neurons 

with large heat responses may contribute to a deficit in heat transduction (Stucky et al., 2002). 

These studies support a role for GDNF family members in nociception. However, neither 

overexpression nor deletion of GDNF/GFRα changes behavioral responses to noxious heat and 
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mechanical stimulation (Zwick et al., 2002; Lindfors et al., 2006), suggesting that in vivo, other 

mechanisms must be involved in nociception. 

 

       Following inflammation in the rat, anti-GDNF IgG treatments down-regulate TRPV1 

expression in nociceptors and reduce thermal hyperalgesia (Fang et al., 2003; Amaya et al., 

2004). Deletion of GFRα2 in mice also reduces inflammatory pain (Lindfors et al., 2006). 

Recent studies have shown GDNF, NTN and ART can potentiate TRPV1 function as well as 

induce capsaicin responses in a subset of DRG neurons that are normally capsaicin-insensitive, 

and injection of GDNF, NTN or ART can all produce acute thermal hyperalgesia in mice (Malin 

et al., 2006). These studies suggest that GDNF family growth factors can modulate nociceptor 

responses. Indeed, TRPV1 is expressed in 99% of GFRα3-positive, artemin responsive neurons 

in mice. In addition, overexpression of ART in the skin of transgenic mice not only increased 

gene expression of TRPV1 in sensory ganglia but also increased the density of TRPV1-positive 

afferents in the skin (Orozco et al., 2001; Elitt et al., 2006). An increased response of DRG 

neurons to capsaicin, a decreased thermal threshold of cutaneous nociceptors and an increased 

behavioral response to thermal stimuli has also been measured in mice that chronically 

overexpress artemin (ART-OE) (Elitt et al., 2006). These findings suggest a critical role of ART 

in regulation of TRPV1-mediated nociception 

 

       GFLs have also been found to be effective in reversing some of the changes in afferent 

phenotype and hypersensitivity that accompany nerve injury. In these neuropathic pain models, 

constriction of a peripheral nerve produces a pathological condition that leads to a persistent pain 

state. Nerve constriction injury is known to increase expression of the GDNF receptor GFRα1 

and the ART receptor GFRα3 in the damaged DRG (Bennett et al., 2000). This increase is 

thought to be due to the interruption of the normal retrograde trophic signaling from the target 

that is blocked by the constricted nerve. Intrathecal injection of GDNF or subcutaneous injection 

of ART reduces injury-related expression of pain-associated sensory neuron markers and relieves 

much of the behavioral hypersensitivity associated with this injury. This relief is hypothesized to 

occur through activation of signaling pathways that act to reduce sodium channel activity in 

injured DRG neurons and through inhibition of neurotransmitter release in the dorsal horn 

(Boucher et al., 2000; Gardell et al., 2003). Thus, restoration of pre-ligation trophic signaling, 
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which is interrupted by the constriction, restores normal sensitivity and produces an analgesic 

effect. These studies provide evidence for functional down-regulation of nociceptor properties by 

GDNF family factors such as ART, whose role in pain signaling in the aging system is a major 

focus of this dissertation.    
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II. INTRODUCTION 

AGING IN THE PERIPHERAL NOCICEPTIVE SYSTEM 

 

 

 

With the population of elderly people rapidly increasing in society, studies of aging and 

associated changes in the nervous system have become more essential. Neurological diseases are 

common in the aging population and account for about 50% of the disability reported in the 

elderly (Verdu et al., 2000). Aging has been defined as a process of “accumulation of diverse 

deleterious changes in the cells and tissues with advancing age that increase the risk of disease 

and death”(Harman, 2001). Based on this definition aging affects all tissues and cells, and causes 

tissue damage, cell loss and function reduction. For the nervous system aging results in decline 

of sensory, motor and cognitive functions with time, indicating all regions, including the CNS 

and the PNS, are affected. However, cells in the nervous system are differentially affected during 

aging, and neurons in some regions are more vulnerable than others, a phenomenon called 

selective neuronal vulnerability (Mattson and Magnus, 2006).  

 

       Although the mechanisms for this selective neuronal vulnerability remain unknown, it 

suggests that aging mechanisms in different regions and/or different types of neurons may vary, 

and this may also be true in the PNS. Some studies have shown that age-related changes in the 

structure and function of the peripheral sensory system affect pain sensation. However, the effect 

of age on pain remains elusive and controversial. Moreover, the mechanisms that underlie aging 

in the PNS are much less understood since most aging studies focus on the CNS. To understand 

the molecular mechanisms underlying aging in the PNS, this dissertation examined age-related 

changes at the molecular and cellular level using a mouse model system. Results indicate that 

changes in artemin/GFRα3 expression and the baseline level of inflammatory protein expression 

may contribute to age-related deficits in the peripheral nociceptive system.  
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2.1 AGE-RELATED CHANGES IN THE PERIPHERAL SENSORY SYSTEM 

 

2.1.1 Behavioral changes  

 

Many studies have been done on cutaneous sensitivity for noxious thermal, mechanical and 

electrical stimuli with age in normal human and animal models. Although some have reported 

either no age-related differences in pain sensitivity or decreased pain thresholds and increased 

sensitivity with age (Kenshalo, 1986; Heft et al., 1996; Jourdan et al., 2000; Iwata et al., 2002; 

Kitagawa et al., 2005), most studies have shown that older subjects are less sensitive to noxious 

stimuli than younger subjects (Gibson and Farrell, 2004). Studies also have investigated the 

effects of age on pain sensation under pathological conditions such as inflammation and nerve 

injury (Gagliese and Melzack, 2000). In some studies, aged animals had greater thermal 

hyperalgesia and/or mechanical allodynia compared to younger ones (Crisp et al., 2003; Zhang et 

al., 2004) while other studies showed similar or decreased responses to tissue injury in aged 

animals compared with young animals (Kitagawa et al., 2005). The lack of consensus in the 

effect of aging on pain sensitivity may be due to methodological differences (Helme et al., 2004), 

including modality, duration and sites of stimulation, models of inflammation and nerve injury, 

and the time points of behavioral tests. However, clinical studies indicate that pain is more 

frequently absent in older patients with myocardial infarction, pneumothorax, and peptic ulcer 

diseases (Gibson and Helme, 2001; Moore and Clinch, 2004). Nonetheless the weight of all 

evidence supports the conclusion that pain thresholds increase and sensitivity to noxious stimuli 

decreases with age. Pain is a key pointer to disease diagnosis in the clinic, and decrease or even 

absence of pain in some diseases may have critical implications. Though multiple interacting 

neurobiological and behavioral factors contribute to the effects of aging on pain sensitivity, the 

age-related functional deficits in pain sensation may be a consequence of age-induced 

degeneration in the peripheral nociceptive system, since both human and animal studies have 

reported that the peripheral sensory system undergoes age-related degenerative changes in both 

structure and function.  
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2.1.2 Anatomical and structural changes  

 

Age-related anatomical and structural changes in the PNS include loss of neurons and axons. 

One study found about 34% loss of total lumbar DRG neurons and 57% loss of DRG neurons 

innervating the knee joints in 24-month old mice (Salo and Tatton, 1993). However, most studies 

demonstrated that there was no decrease or only a small non-significant decrease (~12%) of total 

primary sensory neurons in DRG of 22~30-month old rats (La Forte et al., 1991; Bergman and 

Ulfhake, 1998; Mohammed and Santer, 2001). Thus, age-related sensory deficits are not simply 

of a result of neuronal death. Morphologic studies of peripheral nerves show a reduction in the 

number and density of myelinated as well as unmyelinated fibers of several animal species with 

aging (Bergman and Ulfhake, 2002; Besne et al., 2002; Ulfhak et al., 2002; Vilches et al., 2002). 

In human, both myelinated and unmyelinated fibers have been reported to decrease, with loss of 

unmyelinated fibers greater (~50%) compared to myelinated afferents (~35%) in very old age 

(65-75 years) (Verdu et al., 2000). This decrease appears to be site specific, and the degree of 

loss is greatest in the distal regions of long nerves (Flanigan et al., 1998). In parallel with this 

loss of nerve fibers in peripheral nerves, a significantly lower density of epidermal nerve profiles 

has been reported in adult and aged healthy human subjects than in young humans (McArthur et 

al., 1998). A decrease of 50% of nerve profiles was also reported in plantar skin of 24-month old 

rats (Verdu et al., 2000). In contrast, only a moderate reduction of about 10~15% in the density 

of unmyelinated sensory fibers was found in the epidermis of 18-month old mice with respect to 

young mice (Verdu et al., 2000). This may be due to compensation for the loss of terminal 

innervations by sprouting and expansion of the target territory, a compensatory mechanism 

particularly effective for thin nerve fibers. Similarly, myelinated and unmyelinated input to the 

spinal cord also decreases in aged rats, and the loss of myelinated fibers is greater than 

unmyelinated (Bergman and Ulfhake, 2002).  

 

2.1.3 Electrophysiological changes 

 

Physiological changes have been reported in peripheral sensory nerves of aged human subjects. 

Electrophysiological measures show slower nerve conduction velocity and smaller nerve action 

potential amplitude in older subjects compared to young individuals, and this decrease begins in 
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early adulthood and progresses in a relatively stable pattern (Flanigan et al., 1998; Verdu et al., 

2000). Although it has been shown that both C-fiber and A-fiber function decrease with age, one 

study found that selective block of A-fiber conduction while leaving C-fiber function intact 

increased heat pain threshold in young adults without effects on older subjects, suggesting a 

selective age-related impairment of myelinated nociceptive A-fiber function (Chakour et al., 

1996). Studies of calcium currents in rat DRG neurons found reduction of calcium current and an 

increase in the percentage of high-threshold calcium currents in 30-month old rats (Kostyuk et 

al., 1993). Consistent with these findings, a depolarization–induced increase in intracellular 

calcium transients in old neurons was also lower compared with cells isolated from 7-month-old 

rats (Kirischuk et al., 1992). Effects of aging on electrical membrane properties (EMP) of 

cultured mouse DRG neurons have been well studied (Scott et al., 1988). Old neurons have a 

number of significant alterations in EMP compared with young ones, including decreased 

electrical excitability and increased action potential duration. The pattern of altered EMP is 

consistent with an age-induced shift from voltage-sensitive sodium channels to less excitable 

voltage-dependent calcium channels (Scott et al., 1988). These findings strongly suggest that 

age-induced changes in neuronal sensitivity and excitability may result from altered expression 

and/or function of ion channels with aging. 

 

2.1.4 Cellular and molecular changes 

 

Few studies have investigated age-related cellular and molecular changes in the PNS. In lumbar 

and cervical DRG of aged rats there were decreased cellular levels of CGRP and substance P, 

two major neurotransmitters of primary afferent nociceptive fibers (Bergman et al., 1996). The 

rate of CGRP axonal transport also decreased with aging (Fernandez and Hodges-Savola, 1994; 

Hukkanen et al., 2002). Neurotrophic support is important for maintaining functional properties  

of the adult nervous system, and changes of neurotrophic signaling in the aged PNS have been 

reported. A decrease in mRNA and protein level of TrkA, TrkB and TrkC was observed in DRG 

of aged rats, and this decrease was more remarkable in lumbar DRG (Bergman et al., 1996; 

Bergman et al., 1999a). Consistent with these findings, axotomy results in down-regulation of 

these neurotrophin receptors and the effect of axotomy is less pronounced in aged animals than 

in young adults (Bergman et al., 1999a). One study found up-regulation of the GDNF receptor 
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GFRα1 and RET in primary sensory neurons (Bergman et al., 1999b). These observations 

indicate that alterations of neurotrophic signaling may be involved in age-related neuronal 

changes.   

 

       In summary, there are significant age-related changes in the peripheral nociceptive system, 

indicated by decreased number and conduction velocity of sensory nerve fibers, decreased 

neuronal excitability and decreased neurotransmitter production. All these changes reflect a 

reduction in function and likely contribute to decreased pain sensitivity. Although some studies 

found loss of neurotrophic support, others have not. Thus, a lack of neurotrophic signaling may 

not totally account for the age-induced decrease in function of the PNS. 

 

 

 

2.2 POSTULATED MECHANISMS OF NEURONAL AGING 

 

Multiple factors, including developmental/genetic and environmental factors, can contribute to 

age-related changes in cellular function. The aging process is postulated to represent an inherent 

complex process manifested at genetic, molecular, cellular, organ and system levels within an 

organism. In the nervous system the aging is reflected by a decrease in neuronal sensitivity to 

stimulation. To date the fundamental mechanisms of the inherent aging process are still poorly 

understood. Many mechanisms have been proposed for neuronal aging, including changes in 

oxidative stress, calcium homeostasis, inflammation, and the neuroendocrine system, although 

none has been completely successful in explaining the aging process of neurons. 

 

2.2.1 Oxidative stress – mitochondria theory 

 

Harman first proposed in the 1950s that damage to cellular macromolecules by free radicals 

produced in aerobic organisms is a major determinant of lifespan. The discovery of the 

contribution of reactive oxygen species (ROS), some of which are not free radicals, to oxidative 

damage to cellular constituents including lipids, nucleic acids and proteins, led to a modern 
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version of this tenet – the oxidative stress theory (Kregel and Zhang, 2006). The primary 

intracellular sites for ROS production in vivo are mitochondria. The mitochondria theory 

proposes that mitochondria are the critical component in control of aging. It hypothesizes that 

ROS can damage mitochondrial DNA (mtDNA) and components, leading to further increase in 

intracellular ROS levels and a decline in mitochondrial function. This causes cellular energy 

deficits and impaired normal cellular activity and compromises the ability of the cell to adapt to 

various physiological stresses (Shigenaga et al., 1994). The mitochondria theory has been 

supported by many studies of age-related changes in mitochondria in multiple organs of different 

species (Shigenaga et al., 1994; Kregel and Zhang, 2006). The most common and consistent 

findings show increased mtDNA damage with aging (Shigenaga et al., 1994; Hamilton et al., 

2001). The mitochondrial genome contains 37 genes and 13 of them encode proteins involved in 

the electron transport chain (Chan, 2006). Thus, accumulation of mtDNA defects can account for 

the age-related deficits in mitochondrial bioenergetic capacity and function. 

 

       Neurons appear particularly vulnerable to mitochondrial dysfunction (Chan, 2006). Neurons 

are enriched in unsaturated lipids, which are prone to oxidative damage. Accumulation of lipid 

damage can decrease fluidity and increase rigidity of plasma membranes, and lead to a decline in 

membrane receptor-mediated signaling and in turn a decrease in function (Shigenaga et al., 

1994). Moreover, age-related mtDNA deletions have been found in both the CNS and the PNS 

(Blanchard et al., 1993; Nickander et al., 2002). Recently two studies reported high levels of 

mtDNA deletions in aged human substantia nigra neurons, suggesting that mtDNA damage can 

selectively contribute to neuronal aging (Bender et al., 2006; Kraytsberg et al., 2006). A study of 

the PNS also showed that the levels of a particular deletion in mtDNA in DRG was about 300-

fold higher in 24month-old rats compared to young rats, and the abundance of this deletion 

strongly correlated with age-related decline in sensory function (Nagley et al., 2001). Besides 

mtDNA, oxidative stress also affects nuclear DNA in the nervous system. Some genes, such as 

calmodulin 1 and sortilin, are selectively vulnerable to oxidative damage in human neurons, and 

expression of these genes was decreased in human frontal cortex after age 40. These genes play 

central roles in synaptic plasticity and vesicular transport, and reduced expression may be 

directly involved in functional deficits of the aged brain (Lu et al., 2004).  
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2.2.2 Inflammation theory 

 

The fact that the aging process is accompanied by an increased incidence of various chronic 

diseases leads to a supplemental theory to oxidative stress – the molecular inflammation theory 

of aging, which connects biological aging with age-related pathological conditions. Inflammation 

represents a complex defense of an organism to intrinsic and extrinsic insults and stress. 

Accumulation of oxidative damage appears to be a primary causal factor in producing a state of 

chronic inflammation during aging (Lavrovsky et al., 2000; Chung et al., 2006; Sarkar and 

Fisher, 2006). At the molecular level the primary markers for chronic inflammation are high 

levels of inflammatory mediators, such as, IL-1, IL-6 and TNFα. Activation of transcriptional 

factors like NF-κB by age-related oxidative stress causes up-regulation of inflammatory gene 

expression and inflammatory molecule production, results in inflammation processes and 

inflammation-induced cellular and tissue damage, and contributes to the pathogenesis of age-

related diseases (Chung et al., 2001; Chung et al., 2006). There is substantial evidence 

supporting the link between aging and chronic inflammation in a wide range of tissues, organs, 

systems and species including humans. It has been well documented that inflammatory 

molecules are increased with advancing aging, though the level of inflammatory markers in age-

related chronic inflammation is much lower than the levels generated during acute inflammatory 

conditions (Kregel and Zhang, 2006).  

 

       Association of inflammation to neuronal aging in the CNS has been well studied. Increased 

expression of inflammatory genes with aging has been detected in various regions of the brain 

(Lee et al., 2000; Erraji-Benchekroun et al., 2005; Frank et al., 2006).  In the CNS glial cells 

including astrocytes and microglia play an important role in inflammation processes. Activated 

glial cells produce multiple inflammatory cytokines like IL-6, IL-1 and TNFα, which are 

deleterious to neurons (Krabbe et al., 2004). Epidemiological studies also have shown 

association between high levels of inflammatory cytokines such as IL-6 and poor cognitive 

functions in aged subjects (Yaffe et al., 2003). Long-term use of anti-inflammatory drugs 

decreases age-related increases in inflammatory markers and prevents cognitive decline (Casolini 

et al., 2002; Etminan et al., 2003; Yaffe et al., 2003).  Caloric restriction or diets enriched in 
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antioxidants not only reduce oxidative damage but also dramatically decrease inflammatory 

responses and reverse age-induced decline in neuronal function, supporting the roles of 

inflammation in the aging process of neurons (Lee et al., 2000; Gemma et al., 2002).  

 

2.2.3 Calcium theory  

 

Besides energy production, mitochondria also control intracellular calcium levels. Age-induced 

mitochondrial dysfunction can cause intracellular calcium dysregulation, which may be involved 

in neuronal aging. The calcium hypothesis of neuronal aging arose from awareness of the 

neurotoxic effects of elevated calcium (Schanne et al., 1979). Now it is well known that the free 

intracellular Ca2+ concentration plays a major role in neuronal signal transduction. Elevation of 

intracellular Ca2+ activates presynaptic neurotransmitter release, regulates membrane excitability, 

and modulates the activity of various second messenger systems and gene expression (Hartmann 

et al., 1996). The calcium theory postulates that age-dependent dysregulation of calcium 

homeostasis that result in changes in the free intracellular Ca2+ concentration account for the age-

related changes in neuronal functions (Biessels and Gispen, 1996). Regulation of intracellular 

calcium involves a complex and integrated set of systems including plasma membrane (calcium 

channels and transporters), intracellular calcium buffering (calcium binding proteins) and 

intracellular storage sites (mitochondria and endoplasmic reticulum ER). It is well recognized 

that multiple factors, such as increased calcium influx and impaired mitochondrial and ER 

function, contribute to age-related calcium dysregulation in neurons (Thibault et al., 1998).  

 

       The relationship between calcium influx via membrane calcium channels and neuronal 

function in aging has been well studied in the CNS. Most studies support the idea that age-

dependent alterations of calcium channels result in changes in intracellular Ca2+ concentration 

and account for the age-related changes in neuronal function like memory and learning (Griffith 

et al., 2000; Toescu and Verkhratsky, 2003, 2004; Toescu et al., 2004). The consistent and 

predominant findings in aged neurons include delayed recovery of intracellular Ca2+ and 

increased amplitude/duration of afterhyperpolarization (AHP) following stimulation (Disterhoft 

et al., 1996; Kirischuk and Verkhratsky, 1996). AHP is mediated by activation of Ca-dependent 
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K currents and has an inhibitory effect on neuronal excitability. The delayed recovery and 

increased intracellular Ca2+ at the end of stimulation extend the period of Ca-dependent K 

channels activation and result in a large and prolonged AHP, decreasing excitability of aged 

neurons. Further studies provided strong evidence that the changes in AHP with aging were due 

to increased high threshold VGCCs rather than K channels (Campbell et al., 1996; Landfield, 

1996; Thibault and Landfield, 1996). Similar changes with slow recovery of intracellular Ca2+, 

increased AHP and decreased electrical excitability also have been found in DRG with aging 

(Scott et al., 1988; Kirischuk and Verkhratsky, 1996). Interestingly, VGCC-mediated calcium 

influx is increased in aged neurons of mammals (Murchison and Griffith, 1995; Thibault and 

Landfield, 1996), and some anticonvulsants, which act on certain neuronal calcium channels, 

have been discovered to extend worm life span and retard the aging process, implicating that 

VGCC-mediated neural activity may be involved in aging (Evason et al., 2005).  

 

2.2.4 Neurotrophic theory 

 

Thus far none of the three theories discussed above can explain very well a common observation 

in the aging process of the nervous system - the selective neuronal vulnerability. In the CNS 

subcortical regions exhibit greater vulnerability to aging than cortical regions (Smith et al., 

1999). In the PNS loss of unmyelinated fibers during aging is greater than loss of myelinated 

fibers (Verdu et al., 2000). In the autonomic nervous system even relatively homogenous 

populations of neurons show diverse changes in old age (Cowen, 2002). The neurotrophic theory 

proposes that age-induced changes in neurotrophic factor signaling pathways may contribute to 

age-related selective neuronal vulnerability (Cowen, 1993; Gavazzi and Cowen, 1996).  As 

mentioned before, neurotrophic factors are essential for the development and maintenance of 

discrete population of neurons in the PNS and CNS.  Both peripheral targets and cells in the 

nervous system produce neurotrophic factors and promote neuronal survival and synaptic 

plasticity. Either decreased neurotrophic factor production or altered signal transduction may 

have a role in neuronal aging. Although this theory explains the selective neuronal aging to some 

degree, it remains controversial despite some supporting evidence.  

 



 22 

       Age-related decreases in the expression of brain-derived neurotrophic factor (BDNF) in the 

hippocampus have been reported (Gooney et al., 2004; Hattiangady et al., 2005).  However, 

other studies did not find any age-related changes in gene expression of either BDNF and NGF 

or their receptors in the hippocampus (Lapchak et al., 1993; Rylett and Williams, 1994). The 

more consistent finding is the reduced responses of aged brain to neurotrophic factors (Smith, 

1996; Mattson and Magnus, 2006). For example, up-regulation of neurotrophic signaling in 

response to injury is impaired in aged animals (Scott et al., 1994; Smith and Cizza, 1996; Yurek 

and Fletcher-Turner, 2000).  Age-related changes in neurotrophic factor receptors also have been 

reported in the PNS (see section 2.1.4). Further studies showed decreased levels of neurotrophin 

including NGF and BDNF mRNAs in target tissues of aged rats, consistent with previous 

findings of age-related impairment in neurotrophic signaling, but GDNF was found strongly up-

regulated in target tissues (Ming et al., 1999b, 1999a). Moreover, in vitro studies indicated that 

responses of aged DRG neurons to NGF treatment were similar to young neurons, suggesting 

that NGF-mediated neurotrophic signaling was not damaged in aged sensory neurons (Jiang and 

Smith, 1995; Jiang et al., 1995; Hall et al., 2001). Therefore whether there is loss of neurotrophic 

support in the aged nervous system remains unclear. 

 

 

 

2.3 HYPOTHESES 

 

The postulated mechanisms for neuronal aging provide clues to understand the aging process of 

the peripheral nociceptive system. These theories (mitochondrial, calcium, neurotrophic support) 

interrelate with each other and likely have overlapping mechanisms that contribute to the aging 

process (Macdonald et al., 2000). In the PNS, prior studies have suggested that loss of 

neurotrophic support has a major role in aging of the PNS. Although we began this study with 

this hypothesis in mind, evidence from studies done in recent years indicates that neurotrophic 

factors in the adult system have roles other than ones of survival, i.e., they may also affect 

neuron responsiveness. Thus, although GDNF-family ligands (GFLs) support the survival and 

differentiation of specific subtypes of developing sensory neurons, in the adult PNS, the role of 

GFLs may change to one in which they modulate sensory neuron response properties, 
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particularly following inflammatory or neuropathic injury to the system (see section 1.3.2). As 

mentioned, increased GFRα1 has been reported in lumbar DRG neurons of naïve aged rats, 

supporting a role whereby elevated GFRα1 signaling down-regulates nociceptor function and 

decreases afferent sensitivity, in line with its putative role in reducing neuropathic pain in the 

young PNS. Similarly, the effects of ART/GFRα3 signaling on nociceptor function during aging 

might also influence the loss of behavioral sensitivity in aged mice. With this in mind, we 

investigated the role of GFLs in the aging sensory system to determine whether they may 

contribute to the reduced behavioral responses exhibited by older animals. 

 

The physiological function of nociceptors depends on their distinct expression of channel 

proteins such as TRPV1 and Nav1.8. In mouse DRG TRPV1 is mainly expressed in NGF-

dependent nociceptors and 67% of TRPV1-postive neurons also coexpress the ART receptor 

GFRα3, whose expression is restricted to the PNS (Yang et al., 2006). Thus, NGF and ART 

likely have major roles in the regulation of TRPV1 expression and function in the PNS of mice.  

Since no major loss of NGF-dependent neurotrophic expression occurs in the aged PNS and 

GDNF signaling does not affect nociceptors expressing TRPV1 in mice (Zwick et al., 2002), we 

hypothesized and tested whether altered ART/GFRα3 expression in the PNS during aging 

correlated with the level of expression and/or function of ion channels associated with 

nociception, such as TRPV1, in cutaneous nociceptors.  

 

Results to be presented in this study also indicate that age predominantly up-regulates 

inflammation and immune-related mRNAs in the trigeminal sensory ganglia, suggesting that 

inflammation has a major role in aging of primary sensory neurons. In the nervous system, 

infiltrating immune cells and glial cells produce inflammatory cytokines and contribute to 

inflammation. These cells also produce growth factors such as NGF, which is a known 

inflammatory mediator, suggesting that neurotrophic factors derived from immune or immune-

like cells in the sensory ganglia may be involved in age-related inflammatory changes. We 

therefore investigated whether expression of immune-related genes was altered in the aged 

sensory system.  
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       To test these hypotheses, we first investigated whether expression of ion channel and 

receptor proteins associated with nociception and neurotrophic signaling were modified in 

normal aged animals (Chapter IV). We then examined whether age-related modification of 

neurotrophic signaling and channels and receptors affected inflammation-induced pathological 

pain (Chapter V). These studies were followed by an investigation into whether the 

neurotrophic factors ART and NGF affected the functional properties of nociceptive channels 

such as TRPV1 in sensory neurons of aging animals (Chapter VI). Our results indicate that 

altered ART/GFRα3 signaling in the PNS leads to down-regulation of TRPV1 expression and 

function in nociceptors, which in turn leads to a reduction in thermal sensitivity and 

inflammation-induced thermal hyperalgesia. These findings suggest a critical role of 

ART/GFRα3 signaling in modulation of TRPV1-dependent thermal sensation in the aging PNS.  
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III. MATERIALS AND METHODS 

 

 

 

3.1 ANIMALS AND BEHAVIORAL TESTING 

 

3.1.1 Animals 

 

Young (6~8week), middle-aged (15~18month) and aged (2year) male and female C57BL/6NIA 

(B6) mice were obtained from the aging rodent colony supported by the National Institute on 

Aging at Harlan (Indianapolis, IN, USA). Upon arrival at the University of Pittsburgh animal 

facility, mice were group housed in microisolator caging and maintained on a 12-h light/dark 

cycle in a temperature-controlled environment (20.5 °C) with access to food and water ad 

libitum. These studies were carried out in accordance with the guidelines of the Institutional 

Animal Care and Use Committee at the University of Pittsburgh and the NIH Guide for the Care 

and Use of Laboratory Animals. 

 

3.1.2 Complete Freund's adjuvant-induced inflammation 

 

Detailed methods for this procedure have been reported previously (Zwick et al., 2003). Briefly 

an emulsion of complete Freund's adjuvant (CFA) was prepared by thoroughly mixing equal 

volumes of CFA (heat killed and dried Mycobacterium tuberculosis in paraffin oil and mannide 

monooleate (Sigma, St Louis, MO) with sterile saline. Twelve 6 week-old and twelve 16 month-

old mice lightly anesthetized with isoflurane received a subcutaneous injection of the CFA 

emulsion (~20 µl) in the plantar surface of the hind-paw. To determine the extent of edema, the 

diameter of the hind-paw was measured using a caliper square prior to injection and each day 

after behavioral testing. All mice showed substantial edema after CFA injection.  
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3.1.3 Hargreaves' test of thermal sensitivity 

 

Mice were placed in individual chambers (10.0 cm long × 10.0 cm wide × 13.0 cm high) of a 16-

chamber plexiglas container that was placed on top of a 6.0 mm thick glass surface (Model 390; 

IITC Inc., Woodland Hills, CA) maintained at 30°C and allowed to acclimate for 1–2 h before 

testing. Response latencies to noxious thermal stimulation were measured by applying a radiant 

heat stimulus (setting at 20% intensity for normal behavior test; for CFA study setting was at 

12% for young animals and 15% for old animals) to each hind-paw. Different heat settings were 

used in the CFA study to insure responses after CFA injection could be measured in an accurate 

manner, i.e., they were greater than 3 s. The heat source was activated with an electric trigger 

coupled to a timer, and the latency to stimulus response (flinching or lifting the paw) was 

recorded to the nearest 0.1 s. Mice were tested twice, and the responses for each paw were 

averaged. The left and right hind paw was tested on each mouse once a day for three consecutive 

days. CFA-injected animals were tested once a day, 3 days prior to CFA injection, then every 

other day for 1 week (days 1, 2, 3, 5, 7). After behavioral testing animals were given an overdose 

of Avertin (2-2-2 tribromoethanol in tert-amyl alcohol) anesthetic and perfused transcardially 

with 75 ml of ice-cold 0.9% saline. Hind-paw skin, nerves (tibial, sciatic or saphenous), DRG 

(either pooled from all levels or pooled from lumbar levels L3/L4/L5) and/or TG were collected 

on dry ice for RNA/protein analysis. 

 

 

3.2 GENE EXPRESSION ANALYSIS 

 

3.2.1 RNA isolation 

 

RNA was isolated by homogenizing frozen tissue in 1 ml of Trizol reagent (Invitrogen, Carlsbad, 

CA) followed by isopropanol precipitation. Pellets were washed with 70% ethanol, suspended in 

RNase-free water and in some cases run on an RNeasy column (Qiagen). The concentration was 

determined using a GeneQuant RNA/DNA calculator (Amersham Biosciences, Piscataway, NJ). 

RNA (5 µg) was treated with DNase (Invitrogen) to remove genomic DNA, and then 1 µg was 

reverse-transcribed using Superscript II reverse transcriptase (RT) (Invitrogen). 
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3.2.2 Microarray Assay 

 

Detailed methods for this procedure have been reported previously (Lee et al., 1999). Briefly ten 

micrograms of RNA were synthesized into cDNA and then in vitro transcribed into biotin-

labeled cRNA.  Twenty micrograms of cRNA were collected and brought to the University of 

Pittsburgh Macromolecular Analysis Faculty, and hybridized to Affymetrix mouse gene chips 

using protocols suggested by the manufacture. Affymetrix mouse genome U74Av2 

oligonucleotide microarrays representing 12,423 known transcripts and expressed sequences 

(ESTs) were used. Data were analyzed using dChip software (Harvard University). Fold 

differences between the mean signals were calculated as max/min with down regulation relative 

to young groups expressed as negative. Significance was set at P < 0.05 

 

3.2.3 Radioactive RT-PCR analysis 

 

RT-PCR reactions were done in the presence of 32P-dCTP and aliquots of the reaction run on 8% 

polyacrylamide gels in Tris borate EDTA buffer. Gels were dried and placed against a 

PhosphorImager screen, and the relative level of incorporated label was determined using a Bio-

Rad PhosphorImager (Hercules, CA). The cycle number was optimized for each set of primers 

by first running PCR reactions at different cycle numbers to establish the midphase of the 

reaction. Values were normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). 

Primer sets were generated using Macvector software (Accelrys, San Diego, CA). Routine 

control reactions included PCR reactions on DNased RNA (without RT) and reactions run 

without templates to test for contamination. Primer sequences included the following (5' and 3', 

respectively): NGF, tccaatcctgttgagagtgg and caggctgtgtctatgcggat; ART, ctcagtctcctcagcccg and 

tccacggtcctccaggtg; GDNF, aaggtcaccagataaacaagcgg and tcacaggagccgctgcaatatc; and GAPDH, 

atgtgtccgtcgtggatctga and gctgttgaagtcgcaggagaca. 

 

3.2.4 Real-time PCR 

 

SYBR Green labeled PCR amplification was performed using a real-time thermal cycler 

(Applied Biosystems, Foster City, CA) controlled by a Dell Latitude laptop computer running
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Table 3.1 Primer sequences used for real-time PCR assays 

 

Gene      Forward primer (5'→3')   Reverse primer (5'→3') 

GFRα1   GCCACTCCTGGATTTGCTGATG  AAGTTGGTTTCCTTGCCCGC 

GFRα2  GGAAAGCCCATTGTATGACTGCC  TGAAGCGAGCCTGAAGATGTCC 

GFRα3   CTTGGTGACTACGAGTTGGATGTC  AGATTCATTTTCCAGGGTTTGC 

RET   ACTCGGCTCTCTGAGATAGACA  AGACCTTGGTCCAGGTCAACAA 

TrkA   AGAGTGGCCTCCGCTTTGT   CGCATTGGAGGACAGATTCA 

TRPV1  TTCCTGCAGAAGAGCAAGAAGC  CCCATTGTGCAGATTGAGCAT 

TRPV2  CCAGCCATTCCCTCATCAAAA  AAGTACCACAGCTGGCCCAGTA 

TRPV3  TGAAAGAAGGCATTGCCATTT  GAAACCAGGCATCTGACAGGAT  

TRPV4  TGGATTCCTTGTTCGACTACGG  CACAATGTCAAAGAGGATGGGC 

Nav1.8  GCCACCCAGTTCATTGCCTTTTC  TCCCCAGATTCTCCCAAGACATTC  

Nav1.9   TCTTCCTGGGCTCTTTCTACCTGC  CATCTTCTCCTTGGCTTCTGTCTCG 

Cav2.2  ATCCGCATCCTATTGTGGACC  GTCATCATCAAGGGCACTGTTTC 

Cav2.2-e37a  TACCTCACTCGGGACTCTTCCATC  CGCAATACAACGCAACAAACTG 

P2X3   TCCTACTTTGTGGGGTGGGTTTTC   TCTGTTGGCATAGCGTCCGAAG 

ASIC3   TTCGCTACTATGGGGAGTTCCAC  GCAGGGGATTGATGTTACACAAAG 

IL-6   TCAATTCCAGAAACCGCTATGA   CACCAGCATCAGTCCCAAGA 

LIF       AGAATCAACTGGCACAGCTCAATGG  ACATAGCTTTTCCACGTTGTTGGG 

ETRB   ACCCTGATGACCTGCGAAATGC  ACAGAGAGCAAACACGAGGACCAG 

Myelin  CTTCAATACCTGGACCACCTGTCAG GTCATTTGGAACTCGGCTGTTTTG 

GAPDH  ATGTGTCCGTCGTGGATCTGA  ATGCCTGCTTCACCACCTTCTT 

 

 

ABI Prism 7000 SDS software. Twenty nanograms of cDNA template were added to 50µl 

reaction mixtures provided in the SYBR Green reagent kit (Applied Biosystems). The 

amplification protocol included 2 min at 50 °C to activate the AmpErase UNG to prevent the 

reamplification of any carryover PCR products, 12 min at 95 °C to activate the Amplitaq 

polymerase, 40 cycles of 15 s at 95 °C for denaturation and 1 min at 60 °C for annealing and 

extension. After amplification, a dissociation curve was plotted against melting temperature to 

ensure amplification of a single product and to test for primer dimers. All samples were run in 

duplicate. Controls were run with water replacing the template (to further test for primer dimers). 

The CT values for each reaction were obtained and the ΔCT was calculated by subtraction of 
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control (GAPDH) CT from the experimental value. ΔΔCT = Mean ΔCT young − Mean ΔCT old 

and fold change = 2−ΔΔCT. An unpaired t-test (P ≤ 0.05) was used to determine significance of 

expression. PCR primers were generated using Primer Express software (Applied Biosystems, 

Foster City, CA) using parameters optimized by the manufacturer. 

 

 

 

3.3 PROTEIN ANALYSIS 

 

3.3.1 Western immunoblotting 

 

Isolated nerves and DRG (either pooled from all levels or pooled from lumbar levels L3/L4/L5) 

were analyzed. Tissues from young and aged animals were homogenized in lysis buffer 

containing 1% sodium dodecyl sulfate (SDS), 10 mM Tris–HCl (pH 7.4), 1 µg/ml pepstatin, 

1 µg/ml leupeptin, 1 µg/ml aprotinin, 1 mM sodium orthovanadate and 100 µg/ml 

phenylmethylsulfonyl fluoride (Sigma Biochemicals). Homogenates were spun 10 min at 

10,000 rpm at 4 °C, the supernatant recovered and protein concentration determined using a Bio-

Rad protein assay. Samples (10–20 µg of protein) were boiled 10 min in denaturing buffer 

containing β-mercaptoethanol and SDS, separated on either 7.5 or 10% polyacrylamide SDS-

page gels and transferred to Hybond-P PVDF membrane (Amersham Life Sciences) that was 

blocked for 1 h in TBS solution containing 5% powdered milk, 0.01% Tween-20, pH 7.6. 

Membranes were incubated with primary antibodies overnight at 4 °C. Antibodies used were: 

rabbit anti-TRPV1 (Oncogene Research Products; 1:500), goat anti-GFRα3 (R&D system, 

1:500), rabbit anti-β actin (Abcam, 1:16000), rat anti-tubulin (sera-lab, 1:100) and rabbit anti-

Nav1.8 (1:1000, a gift from Dr. S. Waxman, Yale University). Antibody binding was visualized 

using a horseradish peroxidase-conjugated goat anti-rabbit secondary antibody (1:10,000) and 

ECL plus detection (Amersham Life Sciences). Immunoreactive bands were analyzed by 

densitometry and their intensity quantified using NIH Image J software. Immunoblot band 

intensity was normalized to either tubulin or actin or protein bands from each sample visualized 

on Coomassie blue stained gels. Bands at the approximate molecular weight of the protein of 

interest were chosen for comparative measure. 
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3.3.2 Immunocytochemistry 

 

Tissues (DRG, TG, nerve and skin) were removed from young, aged and TRPV1 knockout 

animals that were perfused with saline. Samples were placed in 25% sucrose made in 0.1 M 

phosphate buffer (PB) overnight at 4 °C and then embedded in Optimal Cutting Temperature 

(OCT; Tissue Tek) compound on dry ice. Twenty-micron cryostat sections were mounted on 

Superfrost/Plus slides (Fisher), fixed in 4% paraformaldehyde for 10 min, blocked in 5% NGS, 

2% BSA and 0.25% Triton X-100 for 1 h and then incubated in primary antibody (rabbit anti-

TRPV1, 1:250, Oncogene Research; goat anti-artemin, 1:60, R&D system; goat anti-GFRα3, 

1:200, R&D system, rabbit anti-ETRB, 1:500, Abcam) overnight at room temperature. Antibody 

binding was visualized by avidin–biotin–peroxidase complex formation or using Cy2- or Cy3-

conjugated secondary antibodies (Vector Laboratories, Burlingame, CA). The percentage of 

TRPV1-positive or GFRα3-positive neurons was determined by first capturing entire, 

nonconsecutive labeled sections of the L4/L5 ganglia using a camera mounted on a microscope 

and Photoshop software. NIH Image software was then used to circle both labeled and unlabeled 

neurons to determine size and density of immunolabeled cells. 

 

 

 

3.4 CALCIUM IMAGING 

 

3.4.1 Cell culture 

 

Detailed methods for this procedure have been described in previous studies (Malin et al., 2006).  

2~3-month old (young) and 16~18-month old (middle-aged) male Blk6 mice from the NIA 

colony were used. All levels of DRG were dissected and placed in cold Ca2+/Mg2+-free HBSS. 

After consecutive incubation in 20U/ml papain solution and 4mg/ml collagenase solution for 10 

min at 37°C, DRG were triturated and dissociated in serum-containing media with fire-polished 

glass pipettes, and then plated onto laminin/poly-lysine coated glass coverslips. Dissociated cells 

on the coverslips were incubated at 37°C for 2 h to allow cells to attach to the coated surface. 

Cells were fed with growth media containing either 50ng/ml NGF (Harlan BioProducts) or 
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50ng/ml NGF plus 250ng/ml artemin (Biogen IDEC). DRG cultures were incubated for less than 

24 h in a CO2 incubator at 37°C before used in the calcium imaging experiments. 

 

3.4.2 Calcium imaging 

 

Isolated sensory neurons were loaded with 2 µM fura-2 in HBSS containing 5 mg/ml BSA for 30 

min at 37°C and then mounted on an Olympus Optical (Thornwood, NY) upright microscope 

stage with constantly flowing buffer at 5 ml/min. Perfusion rate was controlled with a gravity 

flow system (VC66; Warner Instruments, Hamden, CT), and perfusate temperature was 

maintained at 30°C using a heated stage and an in-line heating system (PH1, SHM-6, TC344B; 

Warner Instruments). Drugs were delivered with a rapid-switching local perfusion system. 

Firmly attached, refractile cells were identified as regions of interest in the software (Simple PCI, 

C-Imaging; Compix Imaging Systems, Sewickley, PA). All fields were first tested with brief 

application of 50 mM KCl, and Ca2+ transients were imaged to standardize pipette placement and 

to ensure that cells were healthy and responsive. Responses were measured as the ratio of 

absorbance at 340 nm to that obtained at 380 nm ( F340/380) [DG4 (Sutter Instruments, Novato, 

CA); Retiga 1300 (Burnaby, British Columbia, Canada)]; peak responses were >0.2 F340/380 and 

were easily distinguished from optical noise (< 0.02 F340/380).  

 

3.4.3 Protocols 

 

Application of 50mM KCl causes an increase in intracellular Ca2+ and was used to distinguish 

neurons from non-neuronal cells and to insure neuron viability. 50mM KCl was applied for 5s at 

the beginning of all experiments and only cells responsive to KCl application were analyzed. To 

test if CAP has direct effects on internal Ca2+ release, 1uM CAP was applied for 5s to cells in 

Ca2+-free HBSS (Figure 3.1A). For most experiments CAP was applied for 5s three times every 

10 min.  To test potentiation by ATP, 100uM ATP was applied for 30s at 7 min after the 2nd 

CAP application (Figure 3.1B). To test potentiation by ART, a 7-min perfusion of 100ng/ml 

ART was applied before the 2nd application of CAP (Figure 3.1C). 
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Figure 3.1 Protocols used in Ca2+ imaging experiments. A. Extracellular Ca2+-dependent CAP response: 

1uM CAP cannot induce Ca2+ transients in sensory neurons in the absence of extracellular Ca2+. B. 

TRPV1 potentiation by ATP: the second CAP response is diminished compared to the first one 

(desensitization) and the third CAP response following ATP application is increased compared to the 

second one (potentiation). C. TRPV1 potentiation by ART: the second CAP response following 7-minute 

perfusion of ART-containing buffer is increased compared to the first one.   
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3.4.4 Data analysis 

 

Amplitudes (ΔF) of Ca2+ increases caused by stimulation of neurons with KCl or CAP were 

measured by subtracting the baseline ratio of F340/F380 from the peak F340/F380 achieved on 

exposure to KCl or CAP. Latencies to maximal response (Tmax) were measured between the time 

point of treatment and the one to reach the peak. Half-decay time (T1/2) represented the time 

interval in the declining phase between the peak and the half of peak ratio (Figure 6.2A). The 

first CAP responses were compared between young and old neurons. Tachyphylaxis was 

measured by comparing the amplitudes of the first two CAP responses. Potentiation was 

analyzed by comparing the amplitudes of CAP responses before and after ATP or ART 

application. All values were represented as mean ± SE. Student’s t test and ANOVA were used 

for most comparisons except that specific tests were indicated. 
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IV. RESULTS (1) 

EFFECT OF AGING ON NORMAL PAIN SENSATION 

 

 

 

In this chapter we investigated whether an age-related decline in afferent sensitivity was 

correlated with altered expression of membrane channel proteins. It is clear that afferent 

sensitivity is highly dependent on the expression of several classes of membrane channel 

proteins that regulate ion flow in response to a given stimulus. However, whether age-related 

changes in expression and/or function of ion channels contribute to altered neuronal sensitivity 

and excitability with aging is not known. To test whether changes occur in channel expression 

and distribution in the aging sensory system, we compared expression of receptors and channels, 

including the thermosensitive TRPV ion channels and the TTX-resistant sodium channels, in 

ganglia and nerves of young, middle-aged and old mice. These channels are involved in the 

generation and transmission of impulse trains in response to noxious stimuli. The relative 

expression level of receptor proteins particularly in GDNF family was also assayed to examine 

the relationship between trophic factor signaling and measured neuronal properties. We found 

reduced expression of TRPV1, Nav1.8 and other channels/receptors in the aging PNS, which 

correlated very well with a decrease in heat sensitivity in aged mice.  

 

 

 

4.1 DECREASED THERMAL SENSITIVITY IN AGED MICE 

 

We began our analysis of age-related changes in sensory neurons by comparing the behavioral 

response properties of young and old male and female C57Blk6 mice (Figure 4.1). Measures of 

response latency to an applied noxious thermal stimulus showed that, for both males and females  
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Figure 4.1 Thermal and mechanical sensitivity in young and old mice. A. Thermal sensitivity was 

decreased in both male and female 2-year old mice compared to 6-week old mice of the same sex. B. 

Mechanical sensitivity was decreased in 2-year old female mice but was not affected in aged male mice 

compared to young mice of the same sex.  * - P < 0.05, ** - P < 0.01.  
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(n = 11–12 animals/group), a longer latency occurred in 2-year old animals (Figure 4.1A). 

Comparison of all females (young and old) to all males (young and old) showed that as a group, 

females had a shorter latency than males, i.e., they were more sensitive to thermal stimuli 

(P < 0.05). In later CFA studies middle-aged (16-month old) male mice also showed a longer 

latency compared with 2-month old male mice (10.4 ± 1.3s vs. 6.0 ± 0.7s, P < 0.01, n = 12). To 

determine if differences in mechanical sensitivity are present in aged animals, von Frey filaments 

with varying thickness were applied to the hind-paw and the amount of force that evoked a 

response (lifting or licking) recorded. Although no significant difference was measured between 

young and old male mice, repeated tests indicated that aged female mice tended to have a higher 

mechanical threshold (Komolgorov–Smirnov test, P < 0.05, n = 5–6 per group) (Figure 4.1B).  

Thus, using the described assays, 24-month old female mice seemed less sensitive to both 

thermal and mechanical stimuli whereas aged males were only less sensitive to heat stimulation.   

 

 

 

4.2 REDUCED VOLTAGE-GATED CHANNELS IN DRG OF AGED MICE 

 

Voltage-gated sodium channels are responsible for the rising phase of the action potential (AP) 

and play a key role, with potassium channels, in determining the excitability of sensory neurons. 

The neuron-specific sodium channels Nav1.8 and Nav1.9 are predominantly expressed in 

nociceptors, many of which are heat sensitive. To determine whether Nav1.8 and Nav1.9 

expression are altered in aging sensory neurons, we first examined the abundance of the mRNA 

encoding each gene using reverse transcriptase-PCR assays. In pooled RNA from cervical, 

thoracic and lumbar ganglia, a slight reduction (18%; P < 0.05) in Nav1.9 mRNA was measured 

in DRG from 2-year old animals (n = 5 / age group) (Table 4.1). However, the level of Nav1.8 

transcript was reduced 43% in ganglia from 2-year old mice (Figure 4.2A and C). To examine 

expression on the protein level, proteins extracted from pooled and lumbar ganglia were 

analyzed using western immunoblotting with an antibody made to the rat Nav1.8 channel. A 

significant 37% decrease in Nav1.8 abundance was detected in pooled DRG (Figure 4.2B and 

C). Reduced Nav1.8 protein was also found in pooled lumbar DRG of both aged and middle-

aged mice (Figure 4.2B), though Nav1.8 mRNA did not change in old lumbar DRG (Table 4.1). 
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Gene expression of voltage-gated calcium channel Cav2.2, which is involved in 

neurotransmission in the nociceptive pathway, was also decreased 32% in lumbar DRG from 

middle-aged animals (n = 4 / group) (Table 4.1). These findings are consistent with decreased 

electro-excitability in aged DRG neurons reported in other studies (Scott et al., 1988). 

Interestingly, a 22% increase in expression of substance P, a neuropeptide involved in signaling 

processing of nociception (DeVane, 2001),  was measured in DRG from old mice (n = 5/group) 

(Table 4.1). This expression may compensate in part for the putative decrease in 

neurotransmission during aging.  

 

 

  

Table 4.1 Gene expression in DRG and skin of aged mice compared to young animals. The 

relative expression of mRNAs was measured using Reverse transcriptase-PCR assays. 

Class/function           Gene assayed         L2~5DRG          Pooled DRG            Footpad skin 

Channel  Nav1.8   n.c.  ↓43% * 

Nav1.9   n.d.  ↓18% *    

Cav2.2   ↓32%*  n.d.   

Neurotransmitter Substance P  n.d.  ↑22% ** 

GFL receptor  GFRα2   ↓13% * n.c. 

   GFRα3   ↓32% * ↓29% * 

   RET   ↑35% ** n.c. 

Neurotrophic factor Artemin  n.d.  ↑122% *  n.c. 

   NGF   n.d.  ↑85% **  n.c. 

   GDNF   n.d.  n.c.   ↑55% **  

Glial cell expression ETRB   ↓53% * ↓37% **   

   Myelin   n.d.  ↓27% ** 

Inflammation  IL-6   ↑162%** n.d.   n.c.  

   LIF   n.d.  n.d.   ↓33%*  

 
n.d. - not done, n.c.- no change, * - P < 0.05, ** - P < 0.01  
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Figure 4.2 Decreased expression of Nav1.8 in DRG of old male mice. A. Abundance of Nav1.8 mRNA 

determined using 32P-dCTP spiked RT-PCR assasys was found to be decreased in pooled DRG from 2-

year old mice compared to 6-week old mice (n = 5). Actin was used as a control for the reaction and gel 

loading. B. Relative amount of Nav1.8 protein measured using western blotting was also decreased in 

pooled DRG (n = 3) and pooled lumbar 3-5 DRG (from 3 animals each age group) of aged mice. 

Coomassie stained gel of DRG samples is shown beneath blot to show sample loading. C. Relative 

intensity of Nav1.8 mRNA and protein bands in pooled DRG was measured. The mean intensity level of 

mRNA and protein was decreased in aged DRG by 43% and 37% compared to samples from young 

DRG, respectively. * - P < 0.05 
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4.3 REDUCED TRPV1 PROTEIN IN THE AGED PNS 

 

The reduced behavioral sensitivity exhibited by middle-aged and aged Blk6 mice indicated that 

aged animals are less sensitive to thermal stimuli applied to the foot. To begin to identify the 

cellular level changes that could underlie this reduction in thermal sensitivity, we analyzed the 

expression of genes in the thermosensitive TRP channel family in young and aged DRG. We 

focused on the TRPV (TRPV1, TRPV2, TRPV3 and TRPV4) channels that are known to be heat 

responsive. Expression in pooled ganglia from the L3/L4/L5 lumbar ganglia was first analyzed 

using RT-PCR. Only lumbar ganglia were analyzed in order to enrich for neurons that innervate 

the hind-foot, which is the site of behavioral testing. Both pooled and lumbar DRG samples 

showed no difference in TRP expression on the transcriptional level (data not shown). To 

determine whether an age-related reduction occurred for TRP channels on the translational level, 

we analyzed TRPV1 expression in protein extracts obtained from pooled DRG and lumbar DRG 

using western immunoblotting. Analysis of pooled DRG showed no statistically significant 

change in TRPV1 (P = 0.06), whereas in lumbar DRG, a reduction in TRPV1 in aging ganglia 

was present at 15 months of age that was further reduced in 2 yr-old ganglia (Figure 4.3A). 

These results suggest that the amount of TRPV1 protein steadily declines in aged neurons despite 

the lack of change on the RNA level. In addition, this decline may be greater in neurons that 

project to distal targets in the leg and foot. To examine TRPV1 expression on a per cell level, 

L4/L5 DRG were immunolabeled with TRPV1 antibody to determine the percentage of neurons 

that express TRPV1 in young and aged ganglia (Figure 4.3B). The percentage of TRPV1-

positive neurons in DRG from 2–3-month old mice was not different from the percent of 

TRPV1-positive neurons in 2-year old ganglia (young, 51.4 ± 5% versus old, 50.3 ± 5.8%). 

Coupled with the reduction of TRPV1 protein detected by immunoblotting, these data suggest 

that on a per cell level, the decrease in TRPV1 protein may be related to translational processing. 

 

       The reduced level of TRPV1 protein in DRG of aged mice led us to ask whether the 

terminals of these sensory neurons would also exhibit deficiency in TRPV1 level. Tibial nerves 

from young and old animals were immunolabeled using the anti-TRPV1 antibody to test this 

possibility. Immunolabeling showed an apparent reduction in the number of TRPV1 positive 

fibers in nerves from aged animals (Figure 4.4C). To verify this decrease we isolated protein 
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Figure 4.3 Expression of TRPV1 in DRG of young and aged mice. A. Relative amount of TRPV1 protein 

in pooled DRG (n = 3/group) and lumbar (L3~5) DRG of young and old animals was determined using 

western blotting. No significant decrease in TRPV1 level in pooled DRG was found. A decrease in 

lumbar DRG pooled from 3 animals (9 animals total) was detected in 15month-old (9%) and 2year-old 

animals (27%) when compared to 6 week-old mice. Coomassie stained gel of DRG samples is shown 

beneath blot to show loading. B. TRPV1 immunolabeling of L4/5 DRG of young and old mice shows 

prominent expression in smaller neurons. Lighter labeling was also found in some neurons. Both types of 

labeled cells were counted as TRPV1-positive. The percentage of TRPV1-labeled neurons was 51% ± 5% 

in young L4/5 DRG and 50% ± 6% in old DRG, and does not change with age.  Bar in B = 50µM  
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Figure 4.4 Decreased TRPV1 in peripheral nerves of aged mice. A. Western blot of TRPV1 protein in 

tibial nerves of young and old animals (n = 3/group) show TRPV1 reduction in aged samples. B. Plot of 

band intensity measured from immunoblot shown in A. C. Immunolabeling of sections of tibial nerve 

from young and aged animals. A reduction of TRPV1 fibers appears in nerve from old animals. D. 

Western blot also shows decreased TRPV1 in aged cutaneous saphenous nerves. Each lane represents a 

sample pooled from 3 young and 3 aged mice. E. TRPV1 fibers in epidermis (left arrow) and nerve 

bundles in deep dermis (right arrow) of plantar skin. F. TRPV1 fibers in dermal nerve bundles were 

compared in young and aged mice. Note reduction in TRPV1 labeling in aged mice and no labeling in 

nerves of TRPV1 knockout mice. 
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from the tibial and saphenous nerve. Whereas the tibial nerve primarily contains nerve fibers 

innervating muscle and skin, the saphenous nerve is a purely cutaneous nerve that innervates the 

skin of the leg and foot. A significant reduction in the level of TRPV1 protein in tibial (52%, 

P < 0.05) and saphenous nerve samples (25%,) was measured (Figure 4.4A, B and D). To 

determine if TRPV1 was reduced in sensory afferents in the skin of aged animals, we compared 

the density of TRPV1-positive fibers in the footpad of young and aged animals. Although the 

anatomical variation in the footpad hindered the quantitative measure of TRPV1-positive fibers, 

a general decrease in TRPV1-positive fibers was apparent when comparing the overall number 

of TRPV1-positive fibers coursing through the nerve bundles in the deep dermal tissue of the 

foot (Figure 4.4E and F). TRPV1 afferents appeared fewer in the aged animals, which is 

consistent with the reduction in TRPV1-labeled fibers in the tibial and saphenous nerves. 

 

 

 

4.4 REDUCED GFRα3 RECEPTOR IN AGED SENSORY GANGLIA 

 

Accumulating evidence suggests that the maintenance and sensitivity of sensory neurons is 

modulated by the level of trophic support provided by cells in peripheral and ganglionic tissues. 

This support appears to decline in aging systems, as evidenced by the reduction in mRNAs 

encoding the Trk neurotrophin receptors in sensory neurons of the aging rat (Bergman et al., 

1996; Bergman et al., 1999a). A decline in growth factor support and signaling may impede 

synthesis and transport of neuron specific proteins (e.g., TRPV1 channels) and thereby reduce 

neuronal sensitivity, leading to higher response thresholds to thermal stimuli. With this 

possibility in mind, we examined expression of receptors for artemin, a neurotrophic factor that 

supports a nociceptor neuron population that expresses high levels of TRPV1. We examined the 

relative expression of the artemin specific GPI-linked binding component GFRα3 and its 

associated signaling component, the tyrosine kinase receptor RET in lumbar DRG using RT-

PCR and immunoblot assays (Table 4.1). Relative to young animals, GFRα3 mRNA was 

reduced 32% in lumbar DRG in 15-month old animals. Protein level expression of GFRα3 was 

also reduced as shown by immunoblot assay of lumbar DRG pooled from three animals of each
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Figure 4.5 Expression of GFRα3 receptor in lumbar DRG of young and old mice. A. Western blot of 

protein extracted from lumbar DRG indicates reduction of GRFα3 in aging animals. Each lane represents 

protein pooled from three animals at each age analyzed. B. Plot of band intensity measured from 

immunoblot shown in A.  The amount of GFRα3 decreased 24% and 23% in 15-month and 2-year age 

group, respectively.  C. GFRα3 immunolabeling of L4/5 DRG of young and old mice shows prominent 

expression in smaller neurons. Lighter labeling was also found in some neurons. Both types of labeled 

cells were counted as GFRα3-positive. The percentage of GFRα3-labeled neurons was 31% ± 2.6% in 

young L4/5 DRG and 28% ± 0.7% in old DRG, and does not change with age.  Bar in B = 50µM   
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age group (total of nine animals) (Figure 4.5A and B). A 24% reduction was measured in the 

level of GFRα3 protein in the lumbar ganglia of 15-month old animals relative to 6-week old 

animals. Thus both transcriptional and translational down-regulation of GFRα3 occurred in aged 

ganglia. However, the percentage of GFRα3-positive neurons in lumbar DRG from 2–3-month 

old mice was not different from the percentage in 16-month old ganglia (young, 31% ± 2.6%; 

old, 28% ± 0.7%) (Figure 4.5C), indicating that there was no loss in GFRα3-positive neurons in 

DRG of aged mice. We also examined the relative expression level of other GDNF-ligand 

binding molecules. Measure of GFRα1, which binds GDNF, showed no significant change in 

expression in aging DRG (contrary to the increase found in aging rats), whereas GFRα2, which 

binds neurturin, was slightly decreased (13%, P < 0.05). Interestingly, the RET tyrosine kinase 

receptor, which is the signaling component for all GDNF-family ligands, was increased 35% in 

the aged DRG (P < 0.01) (Table 4.1). 

 

 

 

4.5 AGE-REGULATED GENES IN SENSORY GANGLIA AND SKIN 

 

To determine whether the age-induced decrease in TRPV1 and GFRα3 expression in the 

cutaneous sensory system correlates with a change in neurotrophic factor expression, we 

measured mRNAs encoding NGF, GDNF and ART in DRG and hind-paw skin using RT-PCR. 

In aged skin an increase in GDNF was detected but no change was found in ART or NGF 

mRNAs. In DRG of aging animals, expression of the ART and NGF growth factors increased 

while the level of GDNF mRNA was unchanged (Table 4.1). The NGF receptor TrkA and 

GDNF receptor GFRα1 were also unchanged (data not shown), although RET increased in the 

aged DRG. In contrast, expression of the GFRα3 receptor decreased in aged ganglia. To identify 

the source of the increased level of ART expression in the aging ganglia, we carried out 

immunolabeling of artemin in young and old TG and lumbar DRG. This analysis showed ART 

reactivity localized primarily in small support cells that encircle the sensory neurons (Figure 

4.6A). Interestingly, ganglia of old mice exhibited a significantly greater level of artemin 

reactivity in these peri-neuronal support cells compared to ganglia from young animals (Figure 

4.6B and C). This increase correlates with the increase in ART mRNA measured using RT-PCR. 
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Figure 4.6 Expression of ART in sensory ganglia of young and old mice. A. Immunolabeling of ART in 

sensory ganglia shows that ART reactivity localizes primarily in small support cells (arrow) that encircle 

the sensory neurons (asterisk). B. In TG, old mice exhibite a significantly greater level of artemin 

reactivity in these peri-neuronal support cells compared to cells from young animals. C. Similar to TG, 

the level of ART immunoreactivity in these peri-neuronal support cells of lumbar DRG of old mice is also 

significantly higher compared to ganglia of young mice.   
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       We further analyze gene expression in trigeminal sensory ganglia of 6wk-old and 2yr-old 

mice (n = 3/group) using Affymetrix microarrays. For this analysis, a regulated gene was defined 

as one with a fold difference significantly greater than 1.5 (P < 0.05) (Costigan et al., 2002).  

Seven of the total 16 changed genes in female (Table 4.2) and 6 of 21 regulated genes in male 

(Table 4.3) were immune/inflammation related, e.g., complement and lysozyme. Although the 

source of the elevated immune/inflammation-related transcripts in the aged ganglia is not yet 

defined, they may be from infiltrating macrophages and leukocytes. These cells are known to 

enter sensory ganglia, particularly following viral infection (Kodukula et al., 1999). Satellite 

cells and Schwann cells are also a possible source since they have been reported to synthesize 

inflammatory cytokines as well (Watkins and Maier, 2002). Microarray analysis also showed 

decreased expression of other genes such as endothelin receptor B (ETRB) and myelin (Table 

4.2), which are expressed in satellite support cells and Schwann cells, respectively. The decrease 

in these transcripts was also found in the DRG (Table 4.1). The reduced expression of ETRB in 

support cells coupled with the increased expression of ART in these cells suggest that the 

functional properties of satellite cells changes in the aging system. 

 

 

 

4.6 CONCLUSIONS  

 
These studies examined changes in genes and/or proteins associated with nociception, 

neurotrophic support and inflammation in trigeminal ganglia and DRG of young and aged mice. 

We found a decrease in expression of channel proteins (TRPV1, Nav1.8 and Nav1.9, and 

Cav2.2) involved in detection and transmission of noxious stimuli in the aging PNS. This 

decrease correlated with impaired sensation of noxious heat measured in aged animals. 

Reduction of these channels in the PNS may be a consequence of decreased signaling through 

GFRα3 pathways, which may result from aging-induced degeneration of primary sensory 

neurons and/or neuronal-support cells. Increased expression of immune/inflammation genes in 

the PNS with aging suggests that age-related immune/inflammation responses may also have a 

critical role in age-induced neuronal degeneration in the peripheral nociceptive system. 
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Table 4.2 Regulated genes in trigeminal ganglia of 2 yr-old female mice compared with 6 wk-

old female mice using microarray assay. 

 

Class/function             Gene                 Accession#     Fold change 

Immune/   S100 calcium binding protein A8   M83218  3.6↑ 

Inflammation  Lysozyme      M21050  2.7↑ 

   S100 calcium binding protein A11  U41341  1.6↑ 

S100 calcium binding protein A9   M83219  1.6↑ 

   Complement component 4    X06454  1.6↑ 

Macrophage expressed gene 1  L20315  1.5↑ 

Lymphocyte antigen 6 complex  U47737  1.5↓ 

 

ECM protein/   Procollagen, type I, alpha 1   U03419   1.9↓ 

Cytoskeleton  Procollagen, type III, alpha 1   X52046  1.8↓  

 

Hormone/   Prolactin      X04418  8.5↑ 

Neuropeptide  Glycoprotein hormones    AV173687  3.1↑ 

Tachykinin 1      D17584  1.5↑ 

 

Enzyme  UDP-glucuronosyltransferase 8   U48896  2.3↓ 

ATPase aminophospholipid transporter U75321  1.8↓ 

    

Glial expression Proteolipid protein (myelin)    M16472  2.4↓ 

    

Unknown  H19 fetal liver mRNA    X58196  1.7↓ 
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Table 4.3 Regulated genes in trigeminal ganglia of 2 yr-old male mice compared with 6 wk-old 

male mice using microarray assay. 

 

Class/function             Gene                 Accession#     Fold change 

Immune/   Immunoglobulin kappa chain   M18237  3.4↑           

Inflammation  Lysozyme      M21050  2.1↑ 

   P lysozyme structural    X51547  2.0↑ 

   S100 calcium binding protein A8   M83218  2.0↑ 

   Mus castaneus IgK chain gene  M80423  1.8↑ 

   Complement component 4    X06454  1.5↑ 

 

ECM protein/   Follistatin-related protein (TSC-36)   M91380  1.7↑ 

Cytoskeleton   Scgn10 like-protein    AF069708  1.5↑ 

   Reelin      U24703  1.5↑ 

   Microtubule-associated protein 4  M72414  1.5↑ 

   Procollagen, type I, alpha 1   U03419   2.5↓ 

   Procollagen, type I, alpha 2   X58251  2.1↓  

   Procollagen, type III, alpha 1   X52046  2.1↓ 

   Procollagen, type IV, alpha 1   M15832  2.0↓  

   Procollagen, type XV    AF011450  1.7↓ 

 

Protein/  Proteasome (prosome, macropain) subunit AB003304  1.6↑ 

Lipid turnover  Apolipoprotein D    X82648  1.6↑ 

 

Glial expression Proteolipid protein (myelin)    M16472  1.6↓ 

   Endothelin receptor type B    U32329  2.1↓ 

 

Unknown  H19 fetal liver mRNA    X58196  1.7↓ 

   Integral membrane protein 2A  L38971  1.6↓ 
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V. RESULTS (2) 

EFFECT OF AGING ON INFLAMMATION-INDUCED HYPERALGESIA 

 

 

 

5.1 INTRODUCTION 
 

Injury, infection or irritation of the skin, muscle or internal organs is often accompanied by 

inflammation related pain. An inflammatory state is recognized on the histological level by a 

large infiltration of the damaged tissue with various types of inflammatory cells that include 

neutrophils, macrophages and mast cells. These cells and cells at the site of injury release 

substances such as ATP, NGF and cytokines that can excite nociceptor neurons through 

activation of receptors on nerve terminals and in so doing, cause pain. Chronic, long-term release 

of inflammatory mediators can lead to changes in nociceptive pathways that may underlie 

persistent pain states. These changes may include abnormal expression of channel proteins and 

neuropeptide receptors on primary and secondary afferents. The most consistent reports about 

age differences in pain are the experience of acute pain related to specific pathological insults or 

infectious process. Clinical studies indicate that pain is more frequently absent in older patients 

with myocardial infarction, pneumothorax, and peptic ulcer diseases (Gibson and Helme, 2001; 

Moore and Clinch, 2004). Animal studies also have shown that inflammatory or neuropathic pain 

is modulated with aging in rat (Gagliese and Melzack, 1999, 2000). However, whether aging 

increases or decreases inflammatory pain responses is still controversial. Also undetermined is 

whether age-related differences in ion channel proteins contribute to different behavioral 

responses with age (Zhang et al., 2004; Kitagawa et al., 2005).        

 

       In this chapter we investigated whether aging modulated the response to noxious stimuli 

following CFA-induced peripheral inflammation, and whether this modulation was associated 

with age-related changes in channel proteins and neurotrophic signaling. Our results indicate that 
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inflammation-induced hyperalgesia was decreased in aged animals. This finding is consistent 

with a decrease in gene expression of the pain-related channels Nav1.8, TRPV1 and ASIC3 in 

aged animals during inflammation. In these studies we also measured the relative level of 

inflammation-associated transcripts. Age-related changes in gene expression of inflammatory 

cytokines IL-6 and leukemia inhibitory factor (LIF) correlated with changes in ART-GFRα3 

expression. We postulate that under conditions of inflammation, expression of ART-GFRα3 

regulates TRPV1 channel expression. These findings support the role of ART-GFRα3 signaling 

in age-induced functional deficits of the PNS.  

 

 

 

5.2 AGED MICE EXHIBIT REDUCED THERMAL HYPERALGESIA 

 

Prior to induction of inflammatory pain, mice were exposed to several days of pre-testing to 

determine an accurate baseline for each age group. Similar to our prior assay of behavior 

sensitivity, we found old mice less sensitive to noxious heat compared to young mice.  Therefore 

a higher intensity of thermal stimulation (15%) was applied to aged animals compared with 

young animals (12%) to get an optimal baseline (young, 7.0 ± 0.6s; old, 7.8 ± 0.5s). At day 0, 12 

young (8-week) and 12 old (16-month) mice were injected in the hind-paw with ~20ul of CFA. 

An expected peripheral edema in the hind-paw occurred following CFA injection that lasted for 

the 7 days of testing. In previous studies (Malin et al, unpublished) using young Blk6 male mice 

from Jackson Labs, CFA injection into the footpad caused thermal hyperalgesia that began 

within 1 day following injection and lasted for at least 3 days (Figure 5.1A). However, using 

young Blk6 mice from the NIA colony obtained from Harlan, thermal hyperalgesia was detected 

only on day 1 (4.3 ± 0.5s, P = 0.002) with full recovery by day 2 (Figure 5.1B). Also of interest 

was that no significant behavioral change was found in the aged mice from Harlan, although 

there was a trend toward a decrease in withdrawal latency on the first two days following CFA 

injection (day 1, 5.7 ± 1.1s; day 2, 6.1 ± 0.8s; P = 0.086) (Figure 5.1B). The short duration of 

hyperalgesia between the young (and lack of change in old mice) was surprising given that both 

sets of mice are of the Blk6 strain. These results suggested that environmental factors, e.g.,

colony conditions, baseline inflammation level, influenced the response to inflammatory stimuli.   
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                                                        CFA Injection (d) 

 
                      B 

 

                       
                                                         CFA Injection (d) 
 

 

Figure 5.1 Thermal hyperalgesia induced by CFA injection. A. Thermal hyperalgesia, manifested by a 

shorter withdrawal latency post-CFA compared to pre-CFA, was compared between Harlan NIA (green) 

and Jackson lab (red) young Blk6 mice (n = 12/group). Thermal hyperalgesia lasted two days longer in 

Jackson mice compared to Harlan mice. B. Plots of thermal sensitivity in Harlan young (green) and old 

(red) Blk6 mice (n = 12/group). Thermal hyperalgesia was detected in young mice on day 1 post-CFA, 

but absent in old mice though withdrawal latency appears shorter on the first two days post-CFA. * - P < 

0.05, ** - P < 0.01 
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       In all three groups peak hyperalgesia occurred on 1 day post-injection. The greatest 

responses were detected in young mice from the Harlan colony, which showed a 39% decrease in 

withdrawal latency relative to baseline measure. Old mice from the Harlan colony and Jackson 

lab young mice only showed 27% and 22% decrease, respectively. Thus, CFA-induced 

inflammatory pain is of greater intensity and but shorter duration in young Harlan mice, but 

smaller and longer in old Harlan mice. These results suggest that aging results in decreased pain 

resulting from inflammation, which is consistent with clinical observations made in human.   

 

 

 

5.3 CHANNEL/RECEPTOR EXPRESSION IN THE PNS POST-CFA 

 

To identify whether abnormal expression of channels and receptors in the PNS associated with 

heat hyperalgesia induced by inflammation, we assayed relative levels of mRNAs encoding 

TRPV1, TRPV2, ASIC1, 2 and 3, and Nav1.8 in lumbar DRG after CFA injection. These 

channels are predicted to be involved in thermal, mechanical or chemical nociception and our 

previous screening showed some were decreased in the aged PNS. No change was measured in 

ASIC1, ASIC2 and TRPV2 mRNAs within 7 days post-CFA in either of the two age groups 

(data not shown). Nav1.8 expression decreased after 1d in old DRG though no significant change 

occurred in young DRG until 5 days post-CFA (Figure 5.2A). ASIC3, which is predominantly 

expressed in sensory neurons and is thought to mediate normal touch and pain sensation 

(Waldmann et al., 1997; Price et al., 2001), was decreased for 5 days after CFA in young animals 

while old animals did not show a change (Figure 5.2B). Although no difference was detected in 

the dynamic changes between young and old DRG after CFA, both Nav1.8 and ASIC3 mRNA 

levels in young DRG were significantly higher than in old DRG on day 1 post-CFA (Figure 

5.2A and B). Similarly, TRPV1 expression did not change in both young and old animals, but 

the overall abundance of TRPV1 mRNA was significantly lower in old DRG than in young DRG 

following CFA injection (Figure 5.2C). GFRα3 expression was also lower in old DRG although 

it was decreased in both young and old DRG after inflammation (Figure 5.2D). We further 

examined the levels of GFRα3 and TRPV1 protein in the sciatic nerve of CFA-injected mice. 

Both GFRα3 and TRPV1 were decreased in young and old animals compared with
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                        CFA Injection (d)            CFA Injection (d) 
 
 
 C                                                                          D                     
         TRPV1                  GFRα3  
 

        
                        CFA Injection (d)           CFA Injection (d) 

 

 

Figure 5.2 Relative mRNA expression in L2~5 DRG pre- and post-CFA injection (n = 4/group). A. 

Nav1.8 mRNA was increased from baseline level in young mice on day 5 (green asterisk) but decreased 

in old mice on day 1 (red asterisk) post-CFA, respectively. Note expression of Nav1.8 in DRG was higher 

than in old mice after CFA injection (black asterisks).  B. ASIC3 was decreased in young mice (green 

asterisks) and not changed in old after CFA injection. C. No changes in TRPV1 expression were found in 

either young or old DRG before and after CFA injection. But the expression level was consistently  

higher in young DRG compared to DRG from old animals after CFA injection (black asterisks). D. 

GFRα3 expression was decreased in both young (green asterisks) and old (red asterisks) mice after CFA 

injection. A higher level was measured in DRG from young animals than in old (black asterisks) after 

CFA. * - P < 0.05, ** - P < 0.01  
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C           TRPV1   D       TRPV1  
 

                           
                                                                                          CFA Injection (d) 

 

 

Figure 5.3 GFRα3 and TRPV1 protein in sciatic nerve pre- and post-CFA injection. A. Western blot of 

GFRα3 protein in sciatic nerve. GFRα3 was decreased in both young (Y) and old (O) mice on day 1, 3 

and 5 (1d, 3d, 5d) after CFA injection when compared to pre-injection level (Con). Each lane represents a 

nerve sample pooled from 4 young or 4 aged mice. B. Plot of band intensity measured from immunoblot 

shown in A. C. Western blot of TRPV1 protein in sciatic nerve shows a reduction of TRPV1 in both 

young (Y) and old (O) mice after CFA injection (1d, 3d, 5d) compared to pre-injection (Con). Each lane 

represents a sample pooled from 4 young or aged mice. D. Plot of band intensity measured from 

immunoblot shown in C.      
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baseline levels. Consistent with the findings at the mRNA level, TRPV1 and GFRα3 protein was 

also lower in pooled sciatic nerve of old animals than in young mice (Figure 5.3). The finding 

that Nav1.8, ASIC3 and TRPV1 channel expression was generally lower in the PNS of old mice 

compared with young animals following CFA-induced inflammation supports the hypothesis that 

they are involved with the decreased inflammatory pain behavior exhibited by old animals.  

 

 

 

5.4 GENE EXPRESSION OF ART AND NGF IN INFLAMED SKIN 

 

Previous studies have shown that ART and NGF increase following CFA-induced inflammation 

in skin (Malin et al., 2006). ART and NGF are postulated to be important in signaling pathways 

that mediate inflammation-induced thermal hyperalgesia through their regulation of TRPV1 

expression and activity. Given the linkage of these growth factors to pain signaling, we measured 

ART and NGF mRNA levels in hind-paw skin of young and old mice before and after CFA 

injection. We compared these measures to those made on the Blk6 mice obtained from the 

Jackson Laboratory. No significant difference was found in the baseline level of ART and NGF 

mRNA between young and old mice. However, ART mRNA level increased 2.5 fold in young 

mice (P < 0.01) and increased 3.9 fold in old mice (P < 0.05) on day 1 post-CFA injection, the 

day showing the peak behavioral response (Figure 5.4B). A decrease back to baseline in both 

young and old mice 3 days after CFA injection was then observed. In contrast to these changes, 

ART expression increased 10-fold (P < 0.01) in young mice from the Jackson lab on day 1 post-

CFA and remained elevated to 4-fold higher (P < 0.01) on day 4 (Figure 5.4A). NGF mRNA 

level decreased 2-fold in both young and old Harlan animals only on day 1 (P < 0.01) (Figure 

5.4D). In Jackson lab mice there was no change in NGF level in the CFA-injected hind-paw skin 

until day 7 after CFA (Figure 5.4C). These observations indicate that a dynamic change in ART 

and NGF mRNA level occurs in inflamed skin. The change in ART correlates with behavioral 

outcomes that follow CFA injection, suggesting that ART level in inflamed tissue may be more 

critical for inflammation-induced thermal hyperalgesia compared with NGF.  
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Figure 5.4 Relative expression of ART and NGF in inflamed footpad skin. A. ART expression was 

compared between young Harlan NIA (green) and Jackson (red) young Blk6 mice (n = 4/ group) before 

and after CFA injection. In Jackson mice ART increased 10-fold on day 1 and remained elevated at day 4 

(red asterisks), only a 2.5-fold change was measured in Harlan NIA mice post-CFA. B. ART level was 

similar between Harlan young (green) and Harlan old (red) mice (n = 4/group) prior to CFA injection. A 

2.5-fold increase in young skin (green asterisks) and a 3.9- fold increased in old skin (red asterisk), was 

found only on day 1 post-CFA. C. NGF expression in skin from Harlan NIA and Jackson young mice 

pre- and post-CFA injection (n = 4/ group). Note NGF was decreased on day 1 in Harlan mice (green 

asterisks) while increased on day 7 in Jackson mice (red asterisk). D. NGF expression in skin of Harlan 

young and old mice. A two-fold decrease was detected in both groups on day 1 post-CFA compared to 

pre-CFA (n = 4/ group) * - P < 0.05, ** - P < 0.01 
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5.5 GENE EXPRESSION OF LIF AND IL-6 IN INFLAMED SKIN 

 

Inflammation is a complex set of responses to injury and infection. Cytokines are critical 

mediators in regulating a variety of cellular and molecular events during inflammation. 

Cytokines are a group of proteins with similar structure and share subunits in their receptor 

complexes, such as gp130, and have overlapping functions. Considering that CFA-induced 

changes in behavioral responses and expression of genes associated with nociception were 

different between young and old mice, and much more different between Jackson and Harlan 

NIA Blk6 mice, we hypothesized that differences in the immune system could underlie these 

outcomes. We therefore compared gene expression of two inflammatory cytokines, leukemia 

inhibitory factor (LIF) and interleukin 6 (IL-6), in hind-paw skin of the three groups of mice 

before and after CFA injection. IL-6 and LIF can act in both pro-inflammatory and anti-

inflammatory ways, depending on inflammatory conditions (Gadient and Patterson, 1999). For 

example, during the acute phase reaction of inflammation, IL-6 can down-regulate the 

inflammatory response by suppressing pro-inflammatory IL-1 and TNF (Schindler et al., 1990). 

Both IL-6 and LIF have been found to play critical roles in inflammation-induced hyperalgesia 

(Banner et al., 1998; Opree and Kress, 2000).  

     

     In our studies no differences were found in the baseline level of IL-6 and ART mRNA in 

footpad skin of the three groups of mice (Figure 5.5A and C). However, the baseline level of 

LIF expression was 58% lower in Jackson mice and 33% lower in Harlan old mice when 

compared to it’s level in young mice from the Harlan NIA colony (P < 0.05) (Figure 5.5B). In 

addition, there was no remarkable change in LIF mRNA in either group until day 4 after CFA 

injection (Figure 5.6C and D). In contrast to LIF mRNA, IL-6 expression dramatically increased 

53-fold in Harlan young mice (P < 0.01), 44-fold in Harlan old mice (P < 0.05), and only 13-fold 

in Jackson mice (P = 0.06) on day 1 post-CFA (Figure 5.6A and B). Further regression analysis 

was done to identify whether these differences in cytokine level in footpad skin correlated with 

differences in ART expression and behavioral responses before and after CFA injection. This 

analysis showed that there was a linear relationship between baseline level of LIF mRNA in 

footpad skin and days of thermal hyperalgesia (P = 0.05) and a lower level of LIF correlated with 

longer hyperalgesia (Figure 5.7B). A linear relationship between fold-change of IL-6 and ART
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A           IL-6                                        

        
 
   B           LIF 

      
    

C         ART 

        
 

 

Figure 5.5 IL-6, LIF and ART mRNAs in footpad skin of naïve animals. A. No difference was detected 

in IL-6 expression in footpad skin among Jackson, young Harlan and old Harlan mice (n = 4 / group).  B. 

LIF expression was decreased 58% in Jackson and 33% in Harlan old mice compared to Harlan young 

mice. C. No difference was found in ART expression among these three groups. * - P < 0.05  
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A                                                                           B 
          IL-6          IL-6   
 

      
                      CFA Injection (d)                                                          CFA Injection (d) 
 
 
C                                                                           D 
           LIF         LIF 
 

       
                        CFA Injection (d)                                                         CFA Injection (d) 
 

 

Figure 5.6 Relative mRNA levels of IL-6 and LIF in inflamed footpad skin. A. IL-6 expression in young 

Harlan NIA and Jackson mice (n = 4/ group) before and after CFA injection. IL-6 mRNA in skin was 

increased 13-fold in Jackson and a 53-fold increase in Harlan mice on day 1 post-CFA. B.  IL-6 

expression was similar between Harlan young and old mice (n = 4/ group), and a 53-fold increase in 

young (green asterisks) and a 44-fold increase in old mice (red asterisk) were found on day 1 post-CFA 

compared to pre-CFA. C.  LIF expression in Harlan and Jackson young mice pre- and post-CFA injection 

(n = 4/ group). Note LIF was increased on day 4 in Jackson mice (red asterisk) but no change was found 

in Harlan mice. D. LIF expression in Harlan young and old mice. An increase in LIF was only detected in 

old mice  (red asterisks) post-CFA compared to pre-CFA (n = 4/ group) * - P < 0.05, ** - P < 0.01 
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A 
ART vs. IL-6 at CFA 1d 

 
 Fold Change of Skin IL-6 mRNA 

 
   

B 
Days of thermal hyperalgesia vs. baseline LIF 

  
Baseline Level of Skin LIF 

 
 
 

Figure 5.7 Correlation of IL-6 with ART and LIF with days of hyperalgesia A. On day 1 post-CFA the 

fold change of IL- 6 expression in inflamed skin linearly correlated with the change of ART expression 

(ART = 12.429 – 0.19 * IL-6, P < 0.05). B. The low baseline level of skin LIF expression was closely 

correlated with the 3-day thermal hyperalgesia induced by CFA in Jackson Blk6 mice (Days = 4.387 – 

3.427 * LIF, P = 0.05). 
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expression on day 1 after CFA with higher IL-6 increase related to lower ART increase (Figure 

5.7A), was also determined (P < 0.05). These findings suggest that LIF and IL-6 may have anti-

inflammatory effects manifested by shorter thermal hyperalgesia. Reduced hyperalgesia is 

related to higher baseline level of LIF and by lower ART expression and correlated with a higher 

level of IL-6 mRNA during CFA-induced inflammation.  

 

 

 

5.6 CONCLUSIONS 

 

To address the question of whether age modulates the degree of pathological pain and whether 

modulation of normal pain sensitivity by aging is involved in age differences in pathological 

pain, we studied thermal hyperalgesia in mice with CFA-induced peripheral inflammation.  We 

found that age not only decreased normal pain sensitivity but also inflammation-induced thermal 

hyperalgesia. Reduced behavioral responses to noxious heat are consistent with the molecular 

findings of decreased TRPV1 mRNA and protein in the PNS of aged animals following 

inflammation, which may result from decreased ART-GFRα3 signaling. These results also 

suggest that ART-GFRα3 signaling has a critical role in inflammatory pain. Preliminary studies 

also indicate that LIF and IL-6 act as anti-inflammatory factors that can regulate sensitivity to 

inflammatory pain, perhaps in conjunction with ART-GFRα3 signaling. Differences in 

behavioral sensitivity to inflammatory pain in Blk6 mouse line was also revealed and may be 

related to the “inflammatory tone” of the animals that is present prior to CFA injection. These 

findings strongly suggest that inflammation may be involved in the aging process of the PNS via 

effects on GFRα3-dependent neurotrophic signaling.  
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VI. RESULTS (3) 

EFFECTS OF ARTEMIN ON TRPV1-DEPENDENT RESPONSES IN DRG NEURONS 

 

 

 

Findings from our in vivo studies indicate involvement of ART-GFRα3 signaling in the aging 

process of the PNS. Previous studies have shown that ART/GFRα3 signaling modulates TRPV1 

expression and function. Therefore we investigated whether ART regulated TRPV1 function in 

aging neurons using calcium imaging. Resting DRG neurons typically have very low membrane 

permeability to Ca2+ in spite of a huge electrochemical driving force in favor of Ca2+ influx. The 

TRPV1 channel has much higher permeability to Ca2+ than other ions like Na+ and K+. Thus 

activation of TRPV1 induces large Ca2+ influx, and in turn results in rapid changes in 

intracellular Ca2+ concentration that can be detected using fluorescent Ca2+-binding indicators. 

These indicators are excited at slightly longer wavelengths in a Ca2+-free form than in a Ca2+- 

bound form. By measuring the ratio of fluorescence intensity at two excitation wavelengths, the 

concentration ratio of the Ca2+-bound indicator to the Ca2+-free can be determined, and then an 

accurate free Ca2+ concentration can be measured. Entering cells by diffusion, these indicators 

make it possible to monitor Ca2+ flux in a large number of individual cells simultaneously using 

a fluorescence microscope (Alberts et al., 1994). Though this approach lacks specificity, Ca2+ 

imaging is a helpful technique to assess activities of membrane Ca2+-permeable channels.  

 

 

 

      6.1 INTRODUCTION 

 

Activation of membrane voltage-gated calcium channels (VGCCs) or TRPV1 channels results in 

changes of intracellular free Ca2+ concentration and shape the intracellular Ca2+ transients. 
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Calcium movement reflects three major processes (Dedov and Roufogalis, 2000):  entry of 

extracellular Ca2+ through plasma membrane Ca2+ channels and release of Ca2+ from the internal 

Ca2+ stores of ER, intracellular Ca2+uptake by ER and mitochondria, and extrusion of Ca2+ by 

plasma membrane ATP-dependent Ca2+pumps and the Na+/Ca2+ exchangers. When the rate of 

Ca2+ influx and release is greater than the rate of Ca2+ uptake and efflux, the intracellular free 

Ca2+ concentration increases and shapes the rising phase of the Ca2+ transients; when the rate of 

Ca2+ influx and release is slower than the rate of Ca2+ uptake and efflux, the intracellular free 

Ca2+ concentration decreases and is represented by the declining phase of the Ca2+ transients; and 

the amplitude represents the maximal intracellular Ca2+ load. Analysis of the Ca2+ transients 

initiated by activation of plasma membrane Ca2+ channels alone provides indirect evidence about 

functional properties of these channels.  

 

       An age-related difference in Ca2+ signaling in the nervous system is a decreased capacity of 

aged neurons to maintain a steady resting state following a stimulation-evoked Ca2+ response. 

The calcium hypothesis of neuronal aging postulates that age-dependent dysregulation of 

calcium homeostasis that result in changes in the free intracellular Ca2+ concentration account for 

changes in neuronal function (Biessels and Gispen, 1996). The mechanisms underlying age-

dependent dysregulations of Ca2+ homeostasis have been explored in detail in both the PNS and 

CNS (Pottorf et al., 2002; Toescu and Verkhratsky, 2003, 2004; Toescu et al., 2004). Several 

mechanisms contribute to this age-related decrease in Ca2+ homeostasis, such as increased Ca2+ 

entry due to increased VGCC expression, decreased Ca2+ uptake by ER and mitochondria, and/or 

decreased activity of plasma membrane ATP-dependent Ca2+ pumps (Kirischuk et al., 1992; 

Hartmann et al., 1996; Kirischuk and Verkhratsky, 1996; Xiong et al., 2002; Murchison et al., 

2004; Vanterpool et al., 2005). The most common and constant observation is decreased 

mitochondrial Ca2+ uptake due to alteration of mitochondria function with aging. Ca2+ uptake by 

mitochondria not only determines Ca2+ signals but also regulates neuronal excitability (Nowicky 

and Duchen, 1998; Vanden Berghe et al., 2002). Studies have shown a critical role of 

mitochondria in intracellular Ca2+ signaling in DRG neurons (Dedov and Roufogalis, 2000; 

Dedov et al., 2001; Shishkin et al., 2002), suggesting that age-induced functional damages to 

mitochondria might have a significant effect on sensory function.  
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       Although the mechanisms underlying age-related changes in intracellular Ca2+ signaling 

have been well investigated, less is known about membrane Ca2+-permeable channels that trigger 

the Ca2+ signals (Griffith et al., 2000; Toescu and Verkhratsky, 2000). In this study we were 

particularly interested in the Ca2+-permeable TRPV1 channel. To investigate whether functional 

properties of TRPV1 in primary sensory neurons change with aging, we compared the Ca2+ 

transients induced by application of 1uM capsaicin (CAP), a highly specific TRPV1 agonist, to 

DRG neurons from 2~4 month old and 15~18 month old male mice. We found that CAP-induced 

Ca2+ transients were slower and longer in aged DRG neurons. We also tested whether addition of 

ART to growth media altered TRPV1 activation in neurons of aged mice. Our findings show that 

ART has less of an effect on TRPV1 activity in aged neurons compared to young neurons, 

suggesting that aging does fundamentally alter the physiological activity of TRPV1.  

 

 

 

6.2 CAP-INDUCED RESPONSES DEPEND ON MEMBRANE TRPV1 

 

Capsaicin is a specific agonist of TRPV1 and increases intracellular Ca2+ by binding and opening 

plasma membrane TRPV1, which results in extracellular Ca2+ influx through this receptor. It may 

also act directly on ER and mitochondria and thereby induce Ca2+ release from internal stores. 

We first tested if application of 1uM CAP for 5s to DRG neurons had a specific effect on plasma 

membrane receptors but no other side effects. We found that brief application of a small amount 

of CAP to both young and old neurons induced very small responses in the absence of 

extracellular Ca2+ but robust responses in the presence of Ca2+ (Figure 3.1A), indicating that  

activation of plasma membrane TRPV1 by CAP triggered Ca2+ transients that were followed by a 

cascade of Ca2+-buffering mechanisms.  We then went on to compare amplitude (ΔF), latency 

(Tmax) and half-decay time (T1/2) of CAP-induced Ca2+ transients between young and old neurons 

to determine if functional properties of TRPV1 significantly change with aging. These data will 

be used in design of future detailed electrophysiological studies of aging neurons. 
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6.3 EFFECTS OF ARTEMIN ON CAP RESPONSES IN DRG NEURONS  

 

To determine how ART regulates TRPV1 function in DRG neurons of Harlan NIA Blk6 mice, 

we first compared CAP responses in young neurons pooled from all levels of DRG cultured 

overnight (18~24h) in media containing 250ng/ml ART to neurons in media containing no 

growth factor or 50ng/ml NGF. CAP responsive neurons [CAP(+)]  are defined as cells with one 

change in amplitude (ΔF) of Ca2+ transients greater than 0.2 following three separate CAP 

applications (Figure 3.1B). Compared with control neurons (CON) grown without any growth 

factors, neither ART nor NGF increased the percentage of CAP(+) neurons (CON, 32%; ART, 

29%; NGF, 33%) among the total neurons (CON, n = 164; ART, n = 166; NGF, n = 167) 

investigated and responsive to 50mM KCl (Table 6.1). However, among all the CAP(+) cells 

(CON, n = 52; ART, n = 48; NGF, n = 55), ~20% in CON and NGF (CON, n = 11; NGF, n = 11)  

did not respond to the first CAP exposure (CAP1), whereas only ~10% in ART (n = 5) were not 

responsive to CAP1, i.e., ~90% of ART-treated CAP(+) cells (n = 43) were CAP1 responsive 

[CAP1(+)] (Table 6.1). The high percentage of CAP1 responders in ART media indicates that 

ART may enhance TRPV1 activation by the first CAP application.  

 

       

 

Table 6.1 Effect of ART and NGF on percentage of CAP (+) neurons in young mice. DRG 

neurons isolated from young animals were incubated in media containing ART (ART) or NGF 

(NGF) or in media without growth factors (CON) overnight. The following day neurons were 

briefly exposed to 1uM CAP every ten minutes for three times (Figure 3.1B). CAP (+) (CAP-

responsive) neurons are neurons responsive to either one of the three CAP applications. CAP1 

(+) neurons are neurons that can respond to the first CAP exposure. 

                  Total                   CAP(+)             % of CAP(+)             CAP1(+)              % of CAP1(+) in 
                neurons (n)         neurons (n)          in total neurons         neurons (n)            CAP(+) neurons  
CON  164   52   32%   41   79%  

ART  166   48   29%   43   90% 

NGF  167   55        33%   44   80% 
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A      B 
         ΔF 

                                                                                                          
       CON       ART       NGF 
 

      
C      D 

       Tmax       T1/2 

     
        CON        ART        NGF      CON      ART       NGF 

 
 

Figure 6.1 Effect of ART and NGF on CAP1 responses in young neurons. A. Parameters of Ca2+ 

transients induced by CAP (see section 3.4.4 for detailed explanation). B. NGF in media increased the 

mean amplitude (ΔF) of Ca2+ transients but ART did not. C. The presence of ART or NGF in media did 

not affect the mean latency to maximal responses (Tmax). D. NGF in media decreased the mean half-decay 

time (T1/2) of Ca2+ transients but ART did not relative to control value. CON, n = 32; ART, n = 24; NGF, 

n = 32; * - P < 0.05, ** - P < 0.01  
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Next we looked at whether ART or NGF affected CAP1-induced Ca2+ transients in young 

neurons (Figure 6.1). Surprisingly ART (n = 24) had no effect on ΔF (0.9 ± 0.07) or T1/2 (71 ± 

18s) while NGF (n = 32) significantly increased ΔF (1.51± 0.16, P < 0.01) and decreased T1/2 (25 

± 4s, P < 0.05) of CAP1-induced Ca2+ transients compared with control neurons (ΔF, 0.84± 0.05; 

T1/2, 87 ± 20s; n = 32) (Figure 6.1B and D). Neither ART nor NGF affected Tmax (CON, 17 ± 

1.3s; ART, 14.2± 1.1s; NGF, 15±1.5s) (Figure 6.1C). These findings indicate that long-term 

(18~24h) treatment with ART does not change physiological properties of TRPV1-dependent 

Ca2+ signals in CAP1-responsive DRG neurons, but NGF alone can enhance CAP1 responses.   

 

 

 

6.4 EFFECTS OF ART ON CAP RESPONSES IN AGED NEURONS 

 

To determine if ART or NGF modulate TRPV1 responses differentially in DRG neurons from 

young and old mice, we compared CAP responses in young and old neurons incubated in growth 

media containing both 250ng/ml ART and 50ng/ml NGF with those in neurons cultured in media 

containing 50ng/ml NGF alone. For studies of old neurons, cultures grown without growth 

factors could not be used for controls since old neurons do not survive in media without NGF. 

Thus for these studies, all neurons (young and old) were plated with 50ng/ml NGF. ART plus 

NGF (A+N) significantly increased the percentage of CAP-responsive cells in both young (45%, 

P < 0.01) and old animals (42%, P < 0.01) compared with NGF alone (young, 33%; old, 30%) 

(Table 6.2). But no difference in the percentage of CAP (+) neurons was detected between 

young and old animals, which is consistent with the immunolabeling study showing no 

difference in the percent of TRPV1 neurons in young and old ganglia (Figure 4.3B).  

 

       As shown in Table 6.1, ART alone may increase the percentage of CAP1-responsive cells in 

cultures of young neurons. In addition, exposure of young neurons to ART plus NGF 

significantly increased the percentage of CAP1 (+) neurons (94%, P < 0.05) compared with NGF 

alone (80%). In contrast to these findings, no significant increase in CAP1 responsive neurons 

was found in cultures from aged mice (A+N, 87%; NGF, 81%) (Table 6.2). Taken together,
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Table 6.2 Effect of ART on CAP (+) neurons in young and old mice. The protocol used is 

similar to the one described in Table 6.1 except that DRG neurons from young and old animals 

were incubated in media containing NGF or NGF plus ART overnight. 

                  Total                   CAP(+)             % of CAP(+)             CAP1(+)              % of CAP1(+) in 
                neurons (n)         neurons (n)          in total neurons         neurons (n)            CAP(+) neurons  
Y(N)  167   55   33%   44   80%  

Y(NA) 117   53   45% **  50   94% * 

O(N)  210   62        30%   50   80% 

O(NA) 197   83   42% **  72   87% 

 
Note: Y(N) or Y(NA) - young neurons grown in media containing NGF or NGF plus ART 

          O(N) or O(NA) – old neurons grown in media containing NGF  or NGF plus ART 

          * - P < 0.05,  ** - P < 0.01, χ2 test, compared NGF plus ART to NGF group of the same age. 

 

 

 

these studies indicate that ART has less effect on TRPV1 activation in old neurons, and this 

reduction may be related to the decreased level of GFRα3 in ganglia of aged animals.  

 

       To determine whether aging affects TRPV1 responsiveness, we compared CAP1-induced 

Ca2+ transients in young (n = 32) and old (n = 34) neurons cultured in media with NGF alone. 

Though there was no difference in the amplitude between young and old cells (young, 1.51 ± 

0.16; old, 1.31 ± 0.1) (Figure 6.2B), it took old neurons about twice as long to reach the peak 

responsiveness (Tmax, young, 14.7 ± 1.5s; old, 26.1 ± 3.2s; P < 0.01) (Figure 6.2A and C) as well 

as to recover (T1/2, young, 25 ± 4s; old, 58 ± 12s; P < 0.05) (Figure 6.2A and D). This suggests 

that CAP-induced activity of plasma membrane TRPV1 is functionally changed with aging. To 

investigate ART effects on age-related changes in CAP-induced Ca2+ transients, we further 

analyzed young (n = 30) and old CAP1 (+) neurons (n = 38) cultured in media containing both 

ART and NGF. Similar to NGF alone, young neurons reached the maximal response in half the 

time taken by old neurons (Tmax, young, 15 ± 1.1s; old, 31 ± 3.9s; P < 0.01) (Figure 6.2C). 

However, in the presence of ART and NGF the mean ΔF was significantly lower in young 
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A      B  

           
                         Y(N)    Y(NA)   O(N)   O(NA) 
 

 
C      D 

           Tmax      T1/2 

     
                   Y(N)   Y(NA)   O(N)   O(NA)                                         Y(N)    Y(NA)   O(N)   O(NA) 

 

 

Figure 6.2 Effect of ART on CAP1 responses in young and old neurons. The same protocol was used as 

the one described in Figure 6.3. A. Comparison of a typical CAP1-induced Ca2+ transient in young and 

old neurons. B. ART and NGF in media decreased the mean ΔF of Ca2+ transients in young neurons 

compared to young in NGF (green asterisks) or old neurons (black asterisks). C. The mean latency to 

maximal responses (Tmax) in young neurons was shorter than in old neurons (black asterisks), which was 

not affected by ART. D. The mean half-decay time (T1/2) of Ca2+ transients in young neurons in NGF 

alone was shorter than in old neurons (black asterisk). ART in media increased T1/2 in young neurons 

(green asterisk) but not in old neurons. Y(N) (n = 32) or Y(NA) (n = 30) - young neurons grown in media 

containing NGF or NGF plus ART,  O(N) (n = 34) or O(NA) (n = 38) – old neurons grown in media 

containing NGF or NGF plus ART,* - P < 0.05, ** - P < 0.01  
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neurons (young, 1.0 ± 0.06; old, 1.38 ± 0.1; P < 0.01) (Figure 6.2B) while no difference was 

found in recovery between the two age groups (Figure 6.2D). ART plus NGF treatment also 

decreased the amplitude and increased the recovery time in young neurons compared with NGF 

treatment alone, but no changes were found in old neurons with or without ART (Figure 6.2B 

and D). These results suggest that ART has less of an effect on TRPV1 activation by CAP in 

DRG neurons isolated from aged mice.  

 

 

 

6.5 EFFECTS OF AGING ON KCL-INDUCED RESPONSES 

  

The relationship between calcium influx via membrane VGCCs and neuronal function in aging 

has been well studied in the nervous system. Consistent findings in cultured aged neurons 

include increased calcium influx via high threshold VGCCs, delayed recovery of intracellular 

Ca2+ and decreased neuronal excitability. To determine whether ART has effects on age-related 

changes in VGCC-dependent Ca2+ signals, we first analyzed KCl-induced Ca2+ transients in 

CAP1-sensitive young (n = 18) and old (n = 20) neurons incubated in NGF-containing media. 

Longer recovery was found in KCl-induced Ca2+ transients in old neurons (T1/2, young, 10.1 ± 

3.7s; old, 52.1 ± 15.5s; P < 0.05) (Figure 6.3B), indicating that functional properties of VGCCs 

may be altered with aging, which is consistent with previous studies. There was no change in 

amplitude between young and old cells (young, 1.36 ± 0.12; old, 1.36 ± 0.11) (Figure 6.3A). 

However, in the presence of both ART and NGF in the growth media, the mean amplitude of 

KCl-induced Ca2+ transients in 21 young neurons analyzed was significantly lower than in 23 old 

neurons (ΔF, young, 1.03 ± 0.05; old, 1.37 ± 0.12; P < 0.05). No difference was found in T1/2 

between young and old neurons (young, 19 ± 4s; old, 21 ± 5s) (Figure 6.3A and B), indicating 

that ART also has an effect on VGCC-dependent Ca2+ transients. Further analysis showed that in 

young neurons ART plus NGF treatment also decreased the amplitude of Ca2+ transients 

compared to NGF treatment alone (P < 0.05) whereas no difference was found in old neurons 

(Figure 6.3A). More interestingly, ART plus NGF significantly decreased T1/2 in old neurons (P 

< 0.05) but had no effect on young neurons (Figure 6.3B). These findings show that age-related 

changes in DRG neurons alter the effect of ART on VGCC activation and/or expression.  



 71 

 
 
 

A  
     ΔF 

 
                                                            Y(N)   Y(NA)    O(N)    O(NA) 

 
 

   B 
     T1/2 
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Figure 6.3 KCl-induced Ca2+ transients in CAP1 (+) young and old neurons. A. ART decreased the mean 

ΔF of Ca2+ transients in young neurons relative to those found in young neurons grown in NGF (green 

asterisks) or old neurons (black asterisks). B. The mean half-decay time (T1/2) of Ca2+ transients in old 

neurons was longer than in young neurons (black asterisk). ART decreased T1/2 in old neurons (red 

asterisk) but not in young neurons. Y(N) (n = 18) or Y(NA) (n = 21) - young neurons grown in media 

with NGF or NGF plus ART,  O(N) (n = 20) or O(NA) (n = 23) - old neurons grown in media with NGF 

or NGF plus ART, * - P < 0.05 
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6.6 EFFECTS OF ARTEMIN ON TRPV1 FUNCTIONAL PROPERTIES 

 

TRPV1 can be desensitized by repetitive application of capsaicin.  ART, NGF as well as the 

nucleotide ATP can reverse repetitive CAP-induced desensitization and increase TRPV1 

activation (Bonnington and McNaughton, 2003; Moriyama et al., 2003; Malin et al., 2006). 

Desensitization of TRPV1 following its activation and potentiation by ATP is critical in blocking 

or promoting pain transmission, especially during inflammation. To test if ART alone can 

modulate these functional properties of TRPV1, we measured TRPV1 desensitization by 

repetitive application of CAP and potentiation by ATP in young neurons grown overnight in 

media either containing no growth factor or ART alone (Figure 6.4). Without growth factors the 

CAP2 responses in young DRG neurons (n = 37) showed typical desensitization with 39% 

decrease in the mean response amplitude compared to CAP1 responses (P < 0.01) (Figure 6.4A 

and B). Potentiation of the CAP3 responses by ATP compared to CAP2 responses also occurred 

(P < 0.05) with 30% increase in response amplitude in cultures without growth factors (Figure 

6.4C and D). In the presence of ART (n = 40) reduced desensitization occurred to only 19%, 

whereas potentiation by ATP occurred to only 12%, and neither desensitization nor potentiation 

was significant (Figure 6.4B and D). These changes indicate that ART alone in the media can 

inhibit TRPV1 desensitization as well as its potentiation by ATP.    

 

       To determine if age modulates desensitization and potentiation of CAP responses by ATP, 

young (n = 39) and old neurons (n = 50) cultured in NGF-containing media were compared 

(Figure 6.5). TRPV1 was desensitized following CAP activation by 19% in young neurons and 

20% in old neurons. In NGF-only cultures ATP potentiation was increased 25% in young 

neurons and 32% in old neurons. Thus, young and old neurons showed comparable TRPV1 

desensitization and potentiation in the presence of NGF. To test if ART induces age-related 

differences in these properties of TRPV1, young (n = 39) and old neurons (n = 43) cultured in 

media containing both ART and NGF were compared (Figure 6.5). ART plus NGF treatment did 

not significantly affect the desensitization shown by NGF alone, since a 17% decrease in young 

neurons and a 26% decrease in old neurons occurred. It did, however, dramatically decrease 

TRPV1 potentiation by ATP, where only a 4% and a 9% increase were measured in young and 

old neurons, respectively (Figure 6.5B). Similar to NGF alone, NGF and ART affected TRPV1
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Figure 6.4 Effect of ART on TRPV1 desensitization and potentiation. Young DRG neurons were 

incubated in media containing ART (ART, n = 40) or in media without growth factors (CON, n = 37) 

overnight. A. Repetitive application of CAP decreases CAP response indicating TRPV1 is desensitized. 

B. In CON the CAP2 response is significantly reduced compared to CAP1, whereas with ART in media 

no significant difference is measured between CAP1 and CAP2 responses . C. Following ATP application 

(red arrow), CAP3 response is increased indicating TRPV1 is potentiated. D. In CON the CAP3 response 

is significantly increased compared to CAP2, while with ART in media no significant increase in CAP3 

response is detected compared to CAP2. * - P < 0.05, ** - P < 0.01, paired t-test.  
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Figure 6.5 TRPV1 desensitization and potentiation in young and old neurons incubated in media 

containing NGF or NGF plus ART overnight. A. TRPV1 desensitization. With ART in media both young 

and old neurons show TRPV1 desensitization manifested by significantly reduced CAP2 responses 

compared to CAP1. B. TRPV1 potentiation by ATP. Age did not affect CAP3 potentiation by ATP 

though ART inhibited CAP3 potentiation in both young and old neurons. Y(N) (n = 39) or Y(NA) (n = 

39) – young neurons grown in media containing NGF or NGF plus ART,  O(N) (n = 50) or O(NA) (n = 

43) – old neurons grown in media containing NGF  or NGF plus ART,  * - P < 0.05, paired t -test 
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response in young and old neurons to equal degree. Thus, age does not modulate TRPV1 

desensitization and potentiation. It should be mentioned that not all of the analyzed neurons 

showed potentiation or desensitization of TRPV1 and no difference in the percentage of these 

neurons was found with aging. We also found that acute exposure to ART potentiated CAP 

responses in both young and old neurons growing in NGF-containing media. More studies are 

required to determine if there are age differences in the extent of potentiation and the percentage 

of potentiated neurons under these acute conditions.  

 

 

 

6.7 CONCLUSIONS 

 

To determine whether ART regulated TRPV1 function, CAP responses in young neurons grown 

overnight in media containing no growth factor, ART or NGF alone were compared. We found 

that NGF alone did increase CAP1 responses in young neurons compared to neurons grown 

without NGF, suggesting NGF enhances TRPV1 function in vitro. In contrast to the effect of 

NGF, ART alone rarely increased CAP1 responses and also decreased TRPV1 potentiation by 

ATP, indicating that overnight culture in ART may inhibit TRPV1 function in vitro. To 

determine whether age modulates the effect of ART on TRPV1 function, young and old neurons 

grown in media containing ART plus NGF or NGF alone were compared. We found that ART 

plus NGF, compared with NGF alone, decreased CAP1 responses in young neurons and 

inhibited TRPV1 potentiation by ATP in both young and old neurons, further supporting the 

inhibitory effects of ART on TRPV1 activity. These findings indicate that chronic exposure to 

ART may have an analgesic effect on TRPV1-mediated sensation. Decreased GFRα3 protein 

found in aged DRG may contribute to the age-modulated effects of ART on TRPV1 function and 

expression. 
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VII. DISCUSSION AND CONCLUSIONS 

 

 

 

Somatosensory function has been shown to generally decrease with aging. Experiments of this 

dissertation investigated possible mechanisms that may underlie this age-related decline in 

sensory perception. Our studies reveal a complex interaction between growth factor and receptor 

expression, the level of ion channel expression and activity and expression of inflammatory 

proteins. The data suggest that a decline in expression of the artemin receptor GFRα3 in sensory 

ganglia occurs with aging and may underlie at least some aspects of the changes in sensory 

function. Similar to what has been shown for NGF, we propose that the growth factor artemin 

has two roles: it functions as a survival and differentiation factor during embryonic and postnatal 

development and as a modulator of afferent sensitivity in the adult. It is postulated that artemin 

signaling through the GFRα3 receptor declines in aging neurons, and this decline leads to down-

regulation of TRPV1 translation and functional deficits in TRPV1 activation, which leads to 

impaired nociceptive signaling. Our findings also suggest that the “inflammatory tone” of an 

animal may contribute to pain threshold. Thus, the reduced pain sensitivity exhibited by the 

Harlan Blk6 mice relative to Blk6 mice from Jackson labs following CFA injection, may relate 

to the difference in expression of inflammatory mediators such as IL-6 and LIF. In addition, the 

increased expression of inflammation and immune related genes in ganglia of aged mice, 

determined using Affymetrix analysis, may contribute to the reduced sensitivity of older mice.  
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7.1 MOLECULAR BASIS FOR THERMAL SENSITIVITY IN AGING 

 

7.1.1 TRPV1 expression and thermal sensitivity in aging   

 

In our behavioral studies we show that a decrease in thermosensation occurs in naïve mice that 

are either 16 mo or 2 yr-old. Prior studies of age-associated thermal insensitivity in rodents have 

focused on the rat (Gagliese and Melzack, 2000). Outcomes of these studies are quite varied, 

with some reporting reduced thresholds in aged rats and others showing no change. These 

different outcomes could reflect the rat strain tested or variability in the test used (tail flick and 

hot plate) to measure thermal responsiveness. In this study we took great care to minimize 

possible environmental variables, i.e., animals were acclimated to the testing environment, they 

were tested at the same time of day by the same investigators and we used a radiant heat source 

applied to a discrete area of the foot with responses timed within 0.1 s (i.e., the Hargreaves' test). 

As in all behavioral studies of aged animals, a potential caveat is whether motor abilities are 

impaired in older animals that could slow an avoidance reflex. Although this remains a 

possibility, the 16-month and 2-year old animals used in this study showed no discernable 

impairment in mobility or motor control. 

 

       To determine whether the reduced detection of noxious heat in aging mice correlates with 

changes in ion channel expression in DRG and axons that project to the skin, we measured the 

relative level of TRPV1 in young and old mice. TRPV1, a heat-sensitive channel, is required for 

detection of heat at high temperatures (≥ 52°C) in vivo and essential for thermal hyperalgesia 

induced by inflammation (Caterina et al., 2000; Davis et al., 2000; Ji et al., 2002). Our findings 

support a mechanism whereby a reduced level of TRPV1 contributes to a decrease in thermal 

sensitivity observed in both naïve and inflamed aging mice. This reduction in TRPV1 appeared 

to be more prominent in neurons at lumbar levels that project to the limbs, supporting the notion 

that long axonal length is a hindrance to transport of substances important for normal neuron 

function in aged animals (Caterina et al., 1997).  

 

       Under normal condition both 16-month and 2-year old mice exhibited reduced levels of 

TRPV1 protein in DRG neurons, though no change in the overall number of TRPV1-positive 
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neurons occurred. This suggests that changes in protein expression that contribute to sensory 

perception begin at midlife. This decrease in TRPV1 was greater in the 2-year old group 

indicating a progressive decline. Reduced levels of TRPV1 were also found in peripheral nerves 

of aged animals suggesting TRPV1 transport is also less efficient. Coincident with these 

processes, it is also possible that some TRPV1-positive fibers are lost with age due to neuronal 

death or degeneration of afferents in the periphery. Indeed, the lower density of immunolabeled 

TRPV1-positive fibers in tibial and cutaneous nerves would support this possibility. However, 

anatomical studies have indicated that loss of afferents in the skin becomes most prominent only 

in very old animals (Ceballos et al., 1999). Only a modest afferent loss would therefore be 

expected at 15 months of age, the time at which a reduction in TRPV1 protein was measured in 

this study. Consistent with the findings under normal conditions, impaired thermal hyperalgesia 

and lower level of TRPV1 proteins in peripheral nerves were also detected in aged mice 

following CFA-induced inflammation, supporting the requirement of TRPV1 for thermal 

sensitivity following inflammation. Further analysis indicates that the decreased TRPV1 protein 

might be related to an increased level of inflammation. This possibility is supported by the CFA-

induced reduction of TRPV1 in the PNS of both young and aged mice. Interestingly, our results 

show that the reduction in TRPV1 in the DRG occurs only at the translational level. This mode 

of TRPV1 regulation is not unique since translational regulation of TRPV1 expression has also 

been reported in rat following inflammation of the footpad (Ji et al., 2002).  

 

7.1.2 Functional properties of TRPV1 in DRG neurons in aging   

 

Based on our behavioral and molecular findings in the PNS of aged mice, we hypothesized that 

age-related functional changes in TRPV1 might also occur. To test this hypothesis we examined 

TRPV1 activity in dissociated DRG neurons. We used Ca2+ imaging in order to monitor a large 

number of individual cells simultaneously. Physiological properties of TRPV1, a Ca2+-permeable 

channel, were determined by analyzing TRPV1-dependent Ca2+ transients induced by application 

of capsaicin, a specific agonist of TRPV1. A study of rat DRG neurons has shown that about 

97% of CAP-responsive neurons are also sensitive to heat although only 86% of heat-sensitive 

neurons respond to CAP (Savidge et al., 2001). So activation of TRPV1 by CAP reflects heat-

activated TRPV1 function to a large degree although the molecular mechanisms of CAP 
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activation may be different from heat activation. Consistent with the finding that age does not 

affect the percent of TRPV1 neurons in DRG, we did not find a difference in the percentage of 

CAP–responsive cells between young and old animals in vitro. However, the percentage of CAP 

(+) cells (~30%) detected in vitro, which is similar to the percent of CAP-responsive neurons 

found in mouse trigeminal ganglia (Simonetti et al., 2006), is less than the percent of 

immunolabeled TRPV1-positive neurons (~50%) found in our in vivo studies and other in vitro 

studies (Simonetti et al., 2006), suggesting that some TRPV1 positive neurons may be 

functionally insensitive to CAP application.  

 

       Despite the fact that the percent of capsaicin-responsive neurons did not change with aging, 

analysis of Ca2+ transients did reveal changes in that the rising and recovery of CAP- induced 

Ca2+ transients in old neurons were significantly slower than in young neurons. The longer 

latency in reaching maximal response in old neurons was correlated with, and might also account 

for, the behavioral outcome where old animals took longer to withdraw from noxious heat. 

Because CAP is lipophilic and membrane permeable, and can pass through the cell membrane 

and act on binding sites in the cytosolic domain of TRPV1 (Tominaga and Tominaga, 2005), 

such an apparent time lag between CAP uptake and peak response in aging neurons might be 

explained in part by changes in membrane properties of old neurons. As mentioned before, 

neurons are enriched in unsaturated lipids, which are prone to oxidative damage, and 

accumulation of lipid damage can decrease fluidity and increase rigidity of the plasma 

membrane. These changes may lead to a decline in membrane receptor-mediated signaling and in 

turn a decrease in function (Shigenaga et al., 1994). The extended recovery of Ca2+ transients 

exhibited by old neurons may also reflect well-established age-related changes in cellular 

properties. In this case, slow recovery of Ca2+ level may be due to age-induced mitochondrial 

dysfunction, which causes intracellular Ca2+ dysregulation (Toescu, 2000; Toescu et al., 2000).  

 

       Although it is possible that age-related membrane and mitochondrial damage contribute to 

the slow and long Ca2+ transients induced by CAP in old neurons, we cannot rule out the 

possibility that the properties of TRPV1 receptor activation and inactivation also change with 

aging. Two types of CAP-induced inward currents: one with rapid activation (RA) and rapid 

inactivation (RI) and one with slow activation (SA) and slow inactivation (SI), have been 
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described in rat trigeminal ganglia. Both currents are about the same magnitude and CAP-

responsive neurons have been shown to contain either one or both of the two types of currents 

(Marsh et al., 1987; Liu and Simon, 1994). Our results suggest that SA-SI currents may be more 

predominant in old neurons while RA-RI currents predominate in young neurons. 

        

       Phosphorylation of TRPV1 on certain amino acid residues is required for CAP binding, 

providing a way in which to control activation of ligand-gated channels (Jung et al., 2004). 

Selective phosphorylation of TRPV1 might explain why only some immuno-labeled TRPV1-

positive neurons were activated by CAP. Slow activation of TRPV1 by CAP binding in old 

neurons might arise from reduced kinase phosphorylation or increased phosphatase action on 

TRPV1. Mechanisms underlying inactivation of TRPV1 vary with different kinetic components. 

Rapid inactivation depends on Ca2+ influx through TRPV1 while slow inactivation does not 

(Tominaga and Tominaga, 2005). Some studies have found that Ca2+-dependent phosphorylation 

of TRPV1 regulates rapid inactivation while PKA-dependent phosphorylation of TRPV1 

mediates slow inactivation (Docherty et al., 1996; Bhave et al., 2002). Thus, phosphorylation of 

TRPV1 by different mechanism seems to control TRPV1 activity through the dynamic balance 

between phosphorylation and dephosphorylation (Mohapatra and Nau, 2005; Jeske et al., 2006), 

which might be significantly altered during age. Further electrophysiological and 

phosphorylation assay studies are required to test this possibility.  

 

7.1.3 Contribution of other factors to reduced thermal sensitivity in aging  

 

7.1.3.1 Contribution of ion channels other than TRPV1. Although our studies suggest that down-

regulation of TRPV1 expression and function in the PNS with age may contribute to decreased 

thermal sensitivity, especially decreased inflammatory thermal hyperalgesia, it should be 

mentioned that TRPV1 knockout mice and isolated nociceptors from them have normal heat 

responses (Caterina et al., 2000; Davis et al., 2000; Woodbury et al., 2004). Therefore TRPV1 is 

not the only channel involved in thermal nociception and a decrease in TRPV1 alone may not be 

enough to cause impaired thermal sensitivity in aged mice.  However, in addition to decreased 

TRPV1 expression, the relative levels of mRNAs encoding the Nav1.8 and Nav1.9 sodium 

channels and Cav2.2 calcium channel were also reduced in DRG of old mice. These channels are 
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preferentially expressed by nociceptors, many of which are TRPV1 positive and responsive to 

heat. In rat DRG about 66% of TRPV1 neurons express Nav1.8 and 55% of TRPV1 cells co-

express Nav1.9 (Amaya et al., 2000). In vitro studies show that 80% of CAP-responsive neurons 

express Nav1.8 mRNA, and a splicing variant of Cav2.2, e37a mRNA, is present in 55% of CAP-

responsive neurons while only 17% of non-responsive cells are positive (Bell et al., 2004). 

Although the Nav1.8, Nav1.9 and Cav2.2 channels are not directly activated by heat, they are 

essential for generation and propagation of the action potential and neurotransmission in the 

nociceptive pathway that follows a heat stimulus. Nav1.8 channels, in particular, contribute more 

than 50% of the inward current underlying the depolarizing phase of the action potential in cells 

in which they are present, and endow cells with the capability to generate sustained trains of 

action potentials in response to long-lasting stimuli (Renganathan et al., 2001). Thus, the 

reduction in Nav1.8, Nav1.9 and Cav2.2 levels in the DRG, though modest, could impair nerve 

function. Likewise, modest reduction of TRPV channel proteins in the DRG cell bodies and 

afferents could alter the heat threshold of firing.  

 

7.1.3.2 Contribution of glial and supporting cells. Supporting glial cells such as satellite cells 

and Schwann cells are also important for maintenance of normal neuronal function. For example, 

selective disruption of the ErbB4 receptor in adult non-myelinating Schwann cells causes loss of 

unmyelinated nerve fibers and impaired heat sensitivity (Chen et al., 2003). ETRB, an endothelin 

receptor, is specifically expressed in DRG satellite cells and nonmyelinating ensheathing 

Schwann cells and is also involved in signaling nociceptive events in peripheral tissues (Pomonis 

et al., 2001). A decreased level of ETRB and myelin mRNAs were expressed in DRG from aging 

mice, indicating that aging also compromises glial function which may modify pain sensitivity. 

 

 

 

7.2 ARTEMIN-GFRα3 SIGNALING IN AGING AND INFLAMMATION 

 

Trophic factor reduction in aging has been hypothesized to influence neuronal phenotype, e.g., 

by altering channel and peptide expression and thereby causing loss of functional sensitivity. 

Trophic signaling may decline due to structural changes in axons that impair retrograde (and 
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anterograde) transport of growth factors and their receptors. In the ganglia, paracrine and 

autocrine trophic signaling may also be affected. Indeed, decreases in Trk tyrosine kinase 

receptors (which bind the neurotrophins NGF, NT3, NT4 and BDNF) have been reported in 

sensory neurons of the 30-month old rat, supporting the notion that trophic signaling declines 

with age (Bergman et al., 1999a). Although an age-related reduction may not be sufficient to 

cause neuronal death, it may compromise regulation of gene expression. To understand the 

molecular mechanisms underlying down-regulation of TRPV1 expression and function in the 

PNS by aging, we investigated whether age modulated NGF, ART and receptor expression in the 

PNS. In mouse DRG about 67% of TRPV1 neurons express the ART receptor GFRα3, 80% of 

which are also NGF receptor TrkA-positive, suggesting that NGF and ART play a major role in 

regulation of TRPV1 expression and function. With this in mind, we examined trophic support in 

the aged ganglia by measuring the relative expression of TrkA and GFRα3 receptors. Results 

show the relative abundance of GFRα3 is decreased in aged ganglia on both transcriptional and 

translational levels in lumbar DRG while no change was detected in TrkA mRNA, suggesting 

GFRα3-dependent signaling but not TrkA, is selectively affected in aging systems. Though a 

decrease was found in GFRα3, our RT-PCR measures showed an increase in RET receptor 

expression. This increase could reflect an attempt to compensate for the decrease in GFRα3, 

which may occur in response to decreased production of trophic factors or decreased retrograde 

transport due to degenerative changes in peripheral afferents. However, both NGF and ART 

mRNA expression increased in the aging ganglia while no significant loss of target-derived 

neurotrophic factors was detected. Immunocytochemistry showed that the increase in ART 

expression occurred in satellite cells of the ganglia. Whether this increase is related to the 

reduction in GFRa3 is unclear (see below).  

 

 NGF and ART are involved in thermal hyperalgesia induced by inflammation, and NGF 

and ART expression has been reported to increase in inflamed tissue. Surprisingly, in our studies 

CFA injection resulted in a decrease in NGF and an increase in ART mRNA in inflamed skin on 

day 1. This increase in ART was substantially less (2.5-fold vs. 10-fold) compared to other 

studies using young male mice from Jackson labs on the same genetic background, which may 

explain shorter duration of hypersensitivity exhibited by the Harlan mice. We also found that 

increased ART in inflamed skin correlated with a decrease in GFRα3 expression in both ganglia 
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and peripheral nerves, and that as ART increased, GFRα3 level decreased. This suggests that 

increasing the concentration of ART in peripheral tissues can down-regulate GFRα3 expression. 

Although the mechanisms underlying regulation of GFRα3 expression by ART are unknown, 

production of ART in satellite cells of the ganglia may have a role. Results show an increase in 

ART protein in satellite cells of the aging ganglia. Ganglia and nerves of aging mice were found 

to have less GFRα3 protein. This reduction in GFRα3 may therefore result from feedback caused 

by the increase in ART found in supporting satellite cells. 

 

 Sensory ganglia from aging animals were also found to have an up-regulation of genes 

associated with immune/inflammation responses. In DRG and peripheral nerves multiple types 

of cells have immune-like function, including Schwann cells, satellite cells, endothelial cells, 

dendritic cells and macrophages etc., and therefore could be producing these transcripts. Immune 

activation of these cells could potentially release inflammatory cytokines as well as growth 

factors like NGF and thereby induce an inflammatory response (Watkins and Maier, 2002). 

Inflammatory cytokines can interact with growth factors as well as regulate expression of growth 

factors, which is especially true for NGF during inflammation. LIF has been shown to inhibit 

NGF expression in skin and diminish thermal hyperalgesia induced by CFA (Banner et al., 

1998). In our CFA study we found that IL-6 had a linear inhibitory effect on ART expression in 

skin following inflammation, suggesting that ART might also contribute to inflammation, which 

can be regulated by other inflammatory cytokines. It has been reported that CFA-induced up-

regulation of IL-6 in inflamed tissue is dramatically inhibited in LIF knockout mice compare to 

wild-type animals (Zhu et al., 2001). In the comparative study of Harlan and Jackson mice, the 

different fold changes of IL-6 in inflamed skin might be due therefore, to the difference in 

baseline level of LIF in the Harlan and Jackson mouse skin. Similarly, the lower baseline level of 

LIF in skin of aged animals could explain, in part, their reduced sensitivity following CFA 

injection. In conjunction with the findings of increased ART and decreased GFRα3 in aged 

ganglia and following inflammation, we think it possible that ART may act as an inflammatory 

mediator involved in chronic inflammation and as such, contribute to age-induced changes in the 

peripheral nociceptive system.  
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7.3 REGULATION OF NOCICEPTOR FUNCTION BY ART IN AGING 

 

7.3.1 Regulation of TRPV1 expression by ART 

 

Regulation of TRPV1 expression and function by NGF has been well studied using in vivo and in 

vitro model systems. These studies have shown that NGF not only up-regulates TRPV1 

expression but also sensitizes TRPV1 activity via TrkA-mediated signaling pathways in 

nociceptors, and contributes to inflammation-induced thermal hyperalgesia (Ji et al., 2002; 

Bonnington and McNaughton, 2003; Zhang et al., 2005). Our results using calcium imaging are 

consistent with these findings. We found that NGF up-regulates TRPV1 expression as reflected 

by greater CAP responses in young DRG neurons cultured in NGF-containing media compared 

to neurons in media without growth factor (Ji et al., 2002; Zhang et al., 2005). Moreover, in the 

presence of NGF alone in the growth media, no difference in either the percentage of CAP (+) 

neurons or the magnitude of CAP responses between young and old neurons was found, 

consistent with our assays showing TrkA mRNA level in aged ganglia was similar to that in 

young ganglia. Our findings also support the idea that TrkA-mediated neurotrophic signaling is 

not changed in DRG with age, which has been demonstrated in other studies (Jiang and Smith, 

1995; Jiang et al., 1995; Hall et al., 2001). More recent studies have shown that ART also 

regulates TRPV1 expression and function and when injected causes acute thermal 

hypersensitivity. Indeed the regulatory effects of ART on TRPV1 are even greater than NGF 

(Elitt et al., 2006; Malin et al., 2006). However, comparison of young DRG neurons grown 

overnight in ART-containing media with those cultured in media without growth factor showed 

no significant difference in the percent of CAP (+) neurons or the magnitude of CAP responses. 

This suggests that ART alone may not be sufficient to regulate TRPV1 expression in sensory 

neurons. Another possibility however, is that overnight exposure of cultured neurons to high 

levels of ART desensitized TRPV1, reducing the CAP response.  

 

       As mentioned above, previous studies have shown that NGF alone can increase TRPV1 

expression via TrkA signaling and this effect is not affected by aging. Interestingly, we found 

that adding ART into NGF-containing media caused a reduction in the magnitude of CAP 

responses in young DRG neurons but no change in old neurons, indicating that ART may down-
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regulate TRPV1 protein when added with NGF. If so, this effect of ART may depend entirely on 

GFRα3 signaling, which is decreased in aged ganglia. This could explain why old neurons are 

less sensitive to ART treatment. Although the detailed mechanisms of TRPV1 regulation by 

ART are not clear, GFRα3 is the only known receptor to date that can specifically bind to ART 

and is thought to be required for ART effects on TRPV1. This is supported by the finding that 

up-regulation of GFRα3 in DRG of mice with ART overexpression and during inflammation is 

correlated with increased expression of TRPV1 in the PNS and thermal hypersensitivity (Elitt et 

al., 2006; Malin et al., 2006). We also found that aging and inflammation-induced down-

regulation of GFRα3 was correlated with reduced TRPV1 expression in the PNS and impaired 

thermal sensitivity in aged mice, and further confirmed involvement of GFRα3 in regulation of 

TRPV1-dependent nociception. However, in our studies we did not find a positive correlation 

between ART and GFRα3 in the PNS as reported in other studies (Ceyhan et al., 2006; Elitt et 

al., 2006). Thus, how ART regulates GFRα3-dependent signaling remains unclear.  

 

7.3.2 Regulation of TRPV1 function by ART 

 

Although addition of ART decreased the magnitude of CAP responses in young neurons grown 

in media with NGF, the percentage of CAP (+) neurons cultured in NGF and ART-containing 

media was increased from ~30% to ~40% in both young and old animals. Since the amplitude of 

CAP responses was decreased in young neurons, the greater percentage of CAP (+) neurons 

could not be due to increased expression of TRPV1. It is very possible that TRPV1 function or 

activity is upregulated by ART in the presence of NGF. ART alone can potentiate CAP 

responses and reverse TRPV1 desensitization by repetitive application of CAP in vitro, which 

has been confirmed by our own studies. Phosphorylation is one important mechanism underlying 

sensitization of TRPV1 by NGF, ATP and other inflammatory mediators (Tominaga and 

Tominaga, 2005), and maybe also by ART via GFRα3-RET signaling. As discussed earlier, 

phosphorylation is required for activation of TRPV1 by CAP binding, and CAP cannot activate 

less phosphorylated or dephosphorylated TRPV1. ART alone in the media increased the 

percentage of CAP1 (+) neurons that can be activated by the first exposure to CAP, indicating 

that TRPV1 is more easily activated by CAP in the presence of ART in spite of no significant 

effect on TRPV1 expression or function found in young neurons, and this effect may be due to 
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increased phosphorylation by ART. In the presence of ART with NGF in media more TRPV1 

might be phosphorylated and then easily activated by CAP, though the magnitude of CAP 

responses decrease. The overall result may be what we observed; that more neurons respond to 

CAP and among them more neurons are activated by the first CAP application. Since TRPV1 

phosphorylation via ART may also require GFRα3, less GFRα3 found in aged ganglia may 

account for less increase in the percentage of CAP1 (+) neurons dissociated from aged ganglia 

following addition of ART into NGF-containing media. More interestingly, potentiation of 

TRPV1 by ATP was inhibited in young neurons cultured in media containing ART alone, and 

addition of ART into media containing NGF inhibited ATP potentiation in both young and old 

neurons. PKC-dependent phosphorylation of TRPV1 is involved in sensitization of TRPV1 by 

ATP, which can bind and activate GPCRs such as P2Y2 which in turn activate downstream PKC 

(Tominaga et al., 2001). Inhibition of ATP potentiation by ART suggest that ART and ATP may 

share the same downstream PKC-dependent pathways and/or the same phosphorylation sites in 

TRPV1 such as Ser 502 and Ser 800 (Numazaki et al., 2002).   

 

7.3.3 Regulation of VGCC expression by ART 

  

Previous studies have shown age-dependent alterations in VGCCs in both CNS and PNS, which 

can affect neuronal excitability and function (Kostyuk et al., 1993; Murchison and Griffith, 1995; 

Landfield, 1996). We also detected decreased gene expression of Cav2.2 in aged DRG. Since 

one splicing variant of Cav2.2, e37a, has been found preferentially expressed in CAP responsive 

DRG neurons, 67% of which also express GFRα3, it is possible that overexpression of ART may 

cause up-regulation of Cav2.2-e37a expression in sensory ganglia. Unexpectedly a 1.6-fold 

decrease of Cav2.2-e37a mRNAs was measured in lumbar DRG of ART-overexpressing mice 

(data not shown). Consistent with this finding, addition of ART into NGF-containing media 

decreased the amplitude of KCl-induced and VGCC-dependent Ca2+ transients in young CAP 

responsive neurons but not in old neurons which have less GFRα3 on the average, indicating that 

regulation of Cav2.2-e37a by ART can occur through GFRα3 signaling. Systemic treatment with 

ART has been found to relieve experimental neuropathic pain in rats by decreasing CAP-induced 

neurotransmitter release in the dorsal horn of the spinal cord (Gardell et al., 2003). A more recent 

study also found that ART could attenuate herpes-related pain responses in mice infected with 
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herpes simplex (Asano et al., 2006). Our results suggest that the analgesic effect of ART might 

rely on down-regulation of TRPV1 and Cav2.2 expression, and that this effect is absent in old 

neurons and therefore age-dependent. In contrast, the inhibitory effect of ART on TRPV1 

potentiation by ATP is not affected by age. It should be noted that we used Ca2+ imaging to study 

TRPV1 expression and function in vitro by analyzing CAP induced TRPV1-dependent Ca2+ 

transients, which can reflect molecular and physiological properties of TRPV1 to some degree. It 

is not clear how well CAP induced Ca2+ transients correlate with TRPV1 expression and activity. 

However, most studies indicate that upregulation of TRPV1 increases CAP responses 

(Bonnington and McNaughton, 2003; Elitt et al., 2006; Malin et al., 2006).   

 

7.3.4 Specificity of ART effect on nociceptors in aging  

 

In mouse DRG the majority of TRPV1-positive neurons are NGF- responsive nociceptors, ~67% 

of which express GFRα3. Nearly all GFRα3-positive sensory neurons express TRPV1, 

suggesting that ART may differentially regulate NGF-dependent but not GDNF-dependent 

nociceptors in mice. This specificity has been supported by development studies. During 

development ART selectively supports a subpopulation of nociceptors expressing GFRα3 and 

the majority of them are NGF-responsive nociceptors. Our findings suggest that ART may also 

be specifically involved in aging of NGF-dependent nociceptors by regulation of GFRα3 

signaling in mouse. ART and NGF are two major factors that regulate TRPV1-expressing NGF- 

responsive nociceptors whereas GDNF has less effect on TRPV1-mediated nociception. During 

aging GDNF-GFRα1 neurotrophic signaling does not change in DRG, therefore GDNF-

dependent nociceptors should be less affected by age. Indeed, no age-related changes in gene 

expression or protein level of P2X3, a Ca2+-permeable channel that can be activated by ATP and 

also predominantly expressed in GDNF-dependent nociceptors, were found in sensory ganglia, 

peripheral nerves and hind paw skin (data not shown). In vitro Ca2+ imaging studies, though 

lacking in specificity, also consistently showed that ATP induced Ca2+ transients in sensory 

neurons did not change with aging (data not shown). In contrast, GFRα3 signaling is decreased 

in aged DRG, which is correlated with increased ART and decreased TRPV1 expression and 

function despite no change in TrkA signaling in aged DRG. These findings indicate a specific 

effect of ART on TRPV1-expressing NGF-responsive nociceptors in mice during aging.  
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7.4 SUMMARY AND CONCLUSIONS 

 

To understand the molecular mechanisms in aging of the peripheral nociceptive system, we 

compared gene expression associated with nociception, neurotrophic signaling, and immune 

/inflammation in the cutaneous sensory system between young and old mice under normal 

conditions and following inflammation. We found that gene expression of channels and receptors 

involved in nociception, such as Nav1.8, Nav1.9, Cav2.2 and ETRB, decreased in aged DRG. 

The levels of TRPV1 and Nav1.8 protein were also reduced in DRG or peripheral nerves with 

aging. Following inflammation TRPV1 protein was decreased in peripheral nerves in both young 

and old mice and this reduction correlated with reduced thermal hyperalgesia. These findings 

support a mechanism whereby these molecular changes contribute to impaired thermal sensation 

during aging. To determine whether altered neurotrophic signaling is involved in age-modulated 

expression of these channels and receptors, particularly TRPV1 in this study, we measured 

NGF/TrkA, GDNF/GFRα1 and ART/GFRα3 transcripts in DRG and found a reduction in 

GFRα3 and no change in TrkA or GFRα1, though the ligands NGF and ART increased in aged 

DRG. Inflammation further increased ART expression in inflamed skin and decreased GFRα3 

expression in DRG or peripheral nerves in both young and old mice. Increased ART expression 

during inflammation is linearly correlated with expression of the inflammatory cytokine IL-6 in 

inflamed skin, suggesting that ART might also act as an inflammatory factor and interact with 

other inflammatory cytokines. The decrease in GFRα3 may result from an inflammation-induced 

increase in ART.  

 

Aged animals exhibited an increase in genes associated with immune/inflammation, such as IL-

6, and decreased expression of genes associated with glial support function, like ETRB and 

myelin, in the DRG. These findings suggest that age compromises the normal support function of 

glial cells and activates immune cells and/or immune-like glial cells in sensory ganglia. These 

activated immune or immune-like cells may contribute to increased expression of inflammatory 

genes and growth factors including ART and NGF in aged ganglia. Increased production of ART 

may selectively decrease GFRα3 signaling in nociceptors, and in turn down-regulate TRPV1 

expression and function and reduce thermal sensitivity during aging (Figure 7.1). Consistent 

with the in vivo findings, in vitro studies of isolated DRG neurons using calcium imaging
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Figure 7.1 Paradoxical effects of ART on thermal nociception. During development and following acute 

inflammation, an increase in ART expression in glial, target and/or immune cells has a hyperalgesic effect 

on thermal sensation perhaps via up-regulation of GFRα3 and TRPV1 activity in NGF-dependent 

nociceptors. During aging and chronic inflammation, supporting function of glial, target and/or immune 

cells may be decreased while immune function is increased, and an increase in ART expression in these 

cells has an analgesic effect on thermal sensation probably via down-regulation of GFRα3 and TRPV1 

activity in those nociceptors.  
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indicate that long-term exposure to ART decreases the amplitude of CAP-induced TRPV1-

dependent Ca2+ transients. This effect is absent in aged neurons that have less GFRα3 found in 

vivo, suggesting that TRPV1 down-regulation by ART depends on GFRα3 signaling.  

 

       Together with other studies of ART in development and acute inflammation, two different 

and paradoxical effects of ART on thermal nociception have been found (Figure 7.1). During 

development and acute inflammation, an increase in ART expression has a hyperalgesic effect on 

nociceptors by upregulation of TRPV1 through GFRα3-RET signaling and induction of thermal 

hypersensitivity. During aging and chronic inflammation, increased ART expression has an 

analgesic effect on nociceptors by down-regulation of TRPV1 through the same GFRα3-RET 

signaling and reduce thermal sensitivity. In fact, the analgesic effect has already been shown by 

previous studies that ART treatment can relieve experimental pathological pain. Our studies also 

suggest that inflammation may be a major mechanism in aging of the peripheral nociceptive 

system, and an increase in ART expression and inflammatory related molecules by glial and 

immune-like cells in sensory ganglia may be a key factor in aging of NGF-dependent nociceptors 

in mice. Certainly, more evidence, such as aging of ART knockout mice, is required to support 

this theory. 
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Table 7.1 List of abbreviations 

 
Abbreviation  Full name      Note  

AP   Action potential 

AHP   Afterhyperpolarization 

ART   Artemin      Neurotrophic factor  

ASIC   Acid-sensing ion channel 

BDNF   Brain-derived neurotrophic factor  

CAP   Capsaicin      TRPV1 agonist  

Cav2.2   Voltage-gated calcium channel 2.2 

CFA   Complete Freund’s adjuvant    Inflammatory reagent 

CGRP   Calcitonin gene-related peptide   Neurotransmitter 

CNS   Central nervous system  

DRG   Dorsal root ganglia 

ETRB   Endothelin receptor type B 

ER   Endoplasmic reticulum 

GDNF   Glial cell line-derived neurotrophic factor  

GFRα   GDNF family receptor alpha 

IL-6   Interleukin-6                Inflammatory cytokine 

LIF   Leukemia inhibitory factor              Inflammatory cytokine 

Nav1.8   Voltage-gated sodium channel 1.8 

NGF   Nerve growth factor     Neurotrophic factor 

NTN   Neurturin      Neurotrophic factor 

PNS   Peripheral nervous/nociceptive system 

TG   Trigeminal ganglia  

TRPV   Transient receptor potential vanilloid receptor 

VGCC   Voltage-gated calcium channel 
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