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EXPERIMENTAL STUDY OF PRESSURE FLUCTUATION IN PNEUMATIC 

CONVEYING BY VARIOUS METHODS OF ANALYSIS 

Jae Bum Pahk, Ph.D 

University of Pittsburgh, 2006

 

Pneumatic transport of solids is widely used due to many of its advantages.   Many 

studies have been carried out to explore the details of the transport of solids with pneumatic 

conveying with the aim to develop enhanced operations.  The flow pattern seen in pneumatic 

conveying can vary widely depending on the gas velocity, the solid feed rate and the 

characteristics of the solid.  In this study a deeper understanding of the interactions of the 

parameters has been explored using classical signal analysis of pressure fluctuations. 

Experiments on dilute phase pneumatic transport were performed using polyester, 

polystyrene, and polyolefin pellets.  Material properties such as mean diameter of polymer 

pellets and density of each polymer have been determined.  The parameters of gas velocity and 

the solid loading ratio were varied producing the distinct pressure gradients which were 

measured at three different locations: vertical, lower and upper horizontal sections of the piping 

arrangement.  Using these data, a phase space analysis, a power spectral density (PSD) analysis, 

a fractal dimension analysis, and a rescaled range analysis with Hurst’s exponents were carried 

out to try to develop means to identify the flow conditions using simple pressure transducers.  By 

taking a high speed video of the flow process through the transparent section in the pipe, the flow 

pattern was visually observed and unique dynamics were seen for the polyolefin particles.  

Furthermore, by using a wavelet analysis to decompose the original signal, noting the 
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contributions due to the blower and feeder, the flow - pressure fluctuation yielded information 

about details of the particle-gas interaction. 
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1.0  INTRODUCTION 

Many experimental and analytical studies have been done to understand the flow 

characteristic of different particles in dilute phase pneumatic conveying system by applying 

different methods of analysis.  In this chapter, the basic concept of pneumatic conveying, and the 

previous work that has been done for these analyzing methods will be reviewed.  All theoretical 

descriptions of these methods will be discussed in chapter 3. 

1.1 PNEUMATIC CONVEYING, GENERAL 

The definition of pneumatic conveying is the transport of solid materials from one place to 

another using a transporting gas.  The materials can be moved through the pipe with air, mainly used to 

transport these materials, but sometimes nitrogen is used for materials that could cause a chemical 

reaction with the air. 

All powders and granular materials are conveyed(1) in this manner.  The pneumatic 

conveying is widely used in the different industries such as the coal industry (transport of coal 

from mine to transportation vehicles and from vehicles to factories that utilize the coal), the food 

industries (transport wheat, rice etc.), the chemical industries (transport of plastic pellets), etc. 
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The advantages of pneumatic conveying are as follows:  

1. Since materials are transported through the pipe, dust is not released in the atmosphere from 

the pneumatic conveying system. 

2. Typical conveying belts cannot move materials vertically, but by pneumatic conveying, it is 

possible to move materials vertically by simply installing a vertical section of pipe with 

sufficiently high velocity of the gas to transport the solids. 

3. By using pneumatic conveying, one can reduce the maintenance and manpower cost. 

4. Pneumatic conveying enables us to transport materials that are poisonous and hazardous. 

 On the other hand, high power consumption, wear and abrasion of materials and 

equipment, and the limited conveying distance (1km maximum due to the economical purpose) 

are the disadvantages of the pneumatic conveying.  Considerable research has been carried out to 

overcome these disadvantages. 

One of the most important issues in pneumatic conveying is how to transport the 

materials with the lowest pressure drop and thus least amount of energy.  The pressure drop 

behavior can be observed by preparing a state diagram.  A state diagram is a plot of pressure 

difference versus the transport gas velocity at a fixed solid flow rate.  Figure 1 is an example of a 

general state diagram. 

In Figure 1, each curve shows how the pressure drop changes with the gas velocity at a 

fixed solid flow rate.  Each curve shows a concave downward behavior.  One notes that there is a 

minimum pressure drop that occurs for each solid flow rate, if the velocity becomes too low, 

saltation may take place often near the minimum pressure difference range.  Care needs to be 

taken when operating in this minimum pressure range. 
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Figure 1  Example of general state diagram(2)

1.2 PHASE SPACE DIAGRAM ANALYSIS 

Cabrejos(3) utilized phase space diagram analysis in his Ph.D. dissertation.  He measured 

absolute and differential pressures for dilute phase pneumatic conveying in horizontal pipe with 

different loading.  The shape of the phase space diagram of gas flow only has low eccentricity, 

but it has higher eccentricity when solid particles are being transported.  Also, he found that the 

velocity of the air contributes to the area of the plots.  For higher air velocity, the range of the 

plot disperse more. 
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1.3 POWER SPECTRAL DENSITY (PSD) METHOD 

The power spectral density method is an attractive method to characterize the flow 

pattern.  Dhodapkar(4) applied the PSD method to classify flow pattern with different solid 

loadings.  He found that distinguishing PSD graph for the various flow regimes.  He used a 

compressed air supply to supply the air into the system.  The material used in his study was 

450µm and 55 µm glass beads, 400µm alumina, and PVC.   In the present study, an air blower 

was used as an air supply and three different kinds of polymer pellets were transported with 

different solid loading.  Dhodapkar also used a screw feeder while present study employed a 

rotary feeder.  On the PSD figure in the later chapter, one can see the power peaks due to the 

blower and feeder’s rotation.  These frequencies should not be considered when one analyzes the 

pure signals due to the gas – particle interaction. 

1.4 RESCALED RANGE ANALYSIS AND HURST’S COEFFICIENT 

Rescaled range analysis was developed by Hurst(5), an English hydrologist.  He 

developed this analysis method to investigate the overflow behavior of the Nile River using an 

ancient overflow record for 847 years.  By using this method with Hurst’s exponent, one can 

predict the future trend of the data from the past time series of data.   Nowadays, this method is 

widely used in various fields of studies such as economics, and medical sciences etc.  The Hurst 

exponent calculated from rescaled range analysis is related to fractal dimension.  It is the fractal 

dimension of the time series and formulated as follows. 

                                                           D = 2 – H                                                                (1) 
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Where D is the Fractal dimension calculated by the rescaled range and H is the Hurst’s 

exponent. Fractal dimension is commonly used to investigate random behavior data especially 

for medical science such as physiology.  For example, Vikram K Yeragani et. al.(6) quantified the 

heart rate time series using fractal dimension.  

The rescaled range analysis with Hurst exponent can be applied to pressure fluctuations 

in pneumatic conveying. Cabrejos et. al.(7) measured absolute and differential wall pressure 

fluctuating signals.  They applied rescaled range analysis to these signals and found that the 

difference between the maximum and minimum value of the Hurst’s exponent increases when 

the gas-solid flow approaches saltation conditions and then tails off.  They also found that for all 

the signals, there is a linear relationship between rescaled range (R/S) and time lag (τ).  This will 

be discussed in detail in chapter 3.  

 Cabrejos adapted 400 Hz as a sampling frequency and collected 4096 data points for each 

case, while this study used 1000 Hz as a sampling frequency and 65536  data points have been 

obtained to increase the accuracy of the experiment.  The sampling frequency of 1000 Hz is 

reasonable sampling frequency based on the Nyquist’s sampling frequency theorem. 

1.5 WAVELET ANALYSIS 

Recently, wavelet analysis is utilized to analyze the time series transient signal analysis.  

For the field related to this study, the wavelet analysis is used to analyze the dynamic behavior 

such as pressure fluctuation, cluster size variation, bubble frequencies in fluidized beds, etc.  

Ren et. al.(8) used wavelet analysis for studying dynamic behavior of a fluidized bed.  As 

a result of their research, wavelet analysis enables them to identify the transition moment from 
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dense phase to dilute phase by decomposing the signal into three scales of component: micro-

scale (particle size), meso-scale (cluster size) and macro-scale (unit-size).  

Lu et. al.(9) measured and decomposed the pressure fluctuation signals in a bubbling 

fluidized bed using discrete wavelet analysis.  After decomposing the signal, they found that at 

the scale 4 detailed signals could represent the behavior of bubbles in a fluidized bed such as the 

frequency of bubbling and the peak amplitude for the bubble size.  

 Many studies continue on fluidized bed analysis using wavelet analysis.  There are very 

few researches currently performing in pneumatic conveying.  This study applies wavelet 

analysis to the pneumatic conveying.  First, using wavelet analysis, the signal will be 

decomposed into the few different frequencies of the signal.  Then, the variance of each 

decomposed signal is determined and the relationship between the variance of decomposed 

signal and flow characteristic will be studied. 
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2.0  EXPERIMENTAL SETUP 

2.1 OVERALL SYSTEM DESCRIPTION 

The experimental system is located in a two story room.  On the first floor, the lower 

section of system, is the blower, the lower hopper, the feeder and initial horizontal pipe.  At the 

end of the horizontal pipe, a vertical pipe was connected to deliver the flow to the upper level.  A 

T-bend was used to connect the horizontal and vertical pipes.  

At the end of vertical pipe, an upper horizontal pipe was connected by T-bend.  The 

upper horizontal pipe was located on the second floor and the upper hopper was located on the 

end of second horizontal pipe. 

The entire length of pipe, from pipe entrance (right after blower exit) to pipe exit (right 

before the hopper entrance) is 27.4m.  The length of horizontal first floor (from the location of 

solid particle entrance to tee band), vertical, and horizontal second floor of the pipe are 10.2m, 

4.8m and 10.2m respectively. 

Transparent sections of pipes were inserted on the middle of the lower and upper 

horizontal pipes so the movements of particles could be visually observed.  Velocities of 

individual particles can be measured by using high speed camera on these sections, but this study 

it did not perform. 

 7 



Immediately after the blower, PVC pipe with a diameter of 0.1016m was connected and 

the diameter was be reduced to 0.0508m (2 inch) before reaching the feeder.  At the end of the 

upper horizontal pipe, an exit pipe with a diameter of  0.1016m (4 inch) was connected to 

decelerate the velocity of air and particles. 

 

 

 
Figure 2  Schematic of pneumatic conveying system 
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2.2 SYSTEM DEVICES 

Blower: A rotary lobe blower from Dresser Roots Blower and Vacuum Pump Division, 

Compressor Industries Inc. was used to transport the air into the pipe.  The motor used for this 

blower is US-Electronic Motor with maximum revolution per minute is 3470rpm. 

Hopper: Immediately above the feeder, the lower hopper was located.  The hopper 

contained pellets that were fed into the feeder by gravity.  After the pellets were transported to 

the end of the pipe on the second floor, the pellets flow into the upper hopper (Collecting bin) 

Valve: A slide gate valve was attached at the bottom of the upper hopper.  The valve was 

closed when the mass flow rate of solid was measured, and the valve was opened when 

transporting the pellets from upper hopper to lower hopper. 

Feeder: Rotary feeder from Young Industry Inc., 6 MODEL HC, was used to inject 

pellets into the pipe at a constant mass flow rate.  The maximum revolution per minute of feeder 

was approximately 15.5 rpm. 

Blower rotation frequency: Blower rotation frequency was measured and will be used in 

the power spectral density (PSD) analysis (This will be discussed later). A strobotac type 1531-A 

from General Radio Company was used to measure the blower’s rotational speed (RPM).  The 

blower rotational frequency is determined by dividing this rotational speed by 15 since there are 

four strokes of air pumped into the pipe for every single rotation of the blower motor. 
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Figure 3  Schematic of rotary feeder 

2.3 MEASURING DEVICES 

Air velocity: A hot wire anemometer with air velocity transducer, TSI 8455-12 from TSI 

Inc., was inserted 0.95m after the blower exit to measure the air velocity sending an electronic 

signal to the data acquisition card. 

Air temperature: A J-type(Iron-Constantan) thermocouple from Omega Inc. was inserted 

after 0.08m of hot wire anemometer.  With a digital thermometer, 2168A from Omega Inc., the 

air temperature was measured.  The air temperature will be used to calculate the actual air 

velocity. 
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Pressure transducer: There were two pressure taps each on vertical, lower and upper 

horizontal pipe and these pressure taps were connected to the pressure transducer to measure the 

pressure drop between two pressure taps.  Differential pressure transducers, 162PC01D from 

Omega Engineering Inc., were used and each transducer is connected to data acquisition card.  

Mass flow rate of solid: Three load cells, U35B from BLH electronics Ltd., with the 

capacity of 1000 lb each were attached on the upper hopper to determine the mass flow rate of 

pellets.  

Data acquisition card and software: A hot wire anemometer, pressure transducers, and 

load cells were connected to the data acquisition card, SCB-68 from National Instruments (NI). 

The SCB-68 collected the electrical signals from each measuring devices and using LABVIEW 

software from National Instruments (NI) and a Pentium III computer, these signals were 

transformed to data for the experiments. 

2.4 CALIBRATION 

Before each experiment was carried out, calibration for each device should be performed.  

The following section describes how individual devices were calibrated.  Calibration showed 

±5% reproducibility for each device. 

2.4.1 Air velocity 

The velocity of the air obtained from the hot wire anemometer is reported in standard 

meter per second (SMS) and standard air conditions are 15 oC, 101.3 kPa, 1.23 kg/m3 for 
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temperature, atmospheric pressure, and density of air respectively, but the actual experimental 

condition is different from standard condition.  Air temperature may be higher than 15 oC and 

also the atmospheric pressure and density of the air will be higher or lower than standard 

condition.  The velocity of the air in the actual condition is a function of these parameters.  So, 

after air velocity of stand atmospheric condition was obtained, the actual air velocity has to be 

determined.  One can determine the actual velocity(10) of the air using the formula 

                                           
stdsat

std

T
T

PP
PSCFMACFM 1

111 )(
×

×−
×

=
φ

                                          (2) 

where,   ACFM: Actual volumetric flow rate  

   SCFM: Standard volumetric flow rate  

   Pstd: Pressure at standard condition  

   P1: Actual pressure  

   Psat1: Saturation pressure at actual condition  

   T1: Actual temperature  

   Tstd: Standard temperature  

   Φ1: Relative humidity  

The velocity measured had a range of values from 3 to 20 m/s. At these conditions the 

flow can be considered as incompressible and for incompressible flow, the volumetric flow rate, 

Q, is given as:  

AVQ =                                                                  (3) 

where    V : Average velocity of fluid 

   A: Cross sectional area of pipe  

Since the area A is constant, this expression can be used to determine the actual air 

velocity as follows 
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stdsat

stdStd
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PV
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×
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×
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                                                   (4) 

Also, by neglecting the humidity term, this equation is simplified to 

                                                     
std

stdactual T
TVV 1×=                                                          (5) 

To calibrate the hot wire anemometer, a Pitot tube has been used.  The static pressure 

and stagnation pressure were measured from the Pitot tube with a pressure transducer and the air 

temperature is measured by thermocouple.  To determine the velocity of air from these data, first, 

define the relationship between static, stagnation and dynamic pressure as follows(11); 

DynamicStaticStagnation PPP +=                                                    (6) 

Also the dynamic pressure is defined as follow 

                              2

2
1 VPDynamic ρ=                                                         (7) 

Where  ρ : air density 

   V : air velocity 

Using the measured temperature, static pressure, stagnation pressure, and the density of 

the air, the actual velocity of the air from the hot wire anemometer with air velocity transducer, 

and Pitot tube can be determined by equation (5) and (7).  The following figure shows the 

relationship between air velocity and blower rotation. 

Both the Pitot tube and the hot wire anemometer have a linear relationship with the 

blower’s rotational frequency.  After linear fitting for these plots has been done, the value of the 

velocity from hotwire anemometer is reliable to within 5%. 
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Figure 4  Blower’s rotational frequency Vs air velocity with different measuring instruments 

 

2.4.2 Air temperature 

A J-type thermocouple (Iron-Constantan) with digital thermometer was employed in this 

study.  For calibration, ice water (with the temperature of 0 oC) and water with room temperature 

was used as a reference temperature.  Besides a thermocouple, a mercury thermometer was used 

to measure these temperatures and compare the values from the thermocouple for calibration. 
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2.4.3 Pressure transducer 

Three pressure transducers were used in this study.  Two of them were brand new and 

were calibrated from the manufacturer.  To calibrate the third transducer, the differential pressure 

was measured at the same velocity of the air for several times  and then averaged.  This 

transducer was then replaced with a factory calibrated pressure transducer which measured the 

differential pressure again with the same condition, and the output signal difference between 

transducers was reproducible to ±5%. 

Note that the distance between pressure taps are 0.99 m, 2.49 m, and 3.15 m for the 

vertical, the lower horizontal and upper horizontal respectively.  The distance between pressure 

taps were different, but according to Dhodapkar, et. al.(4) the spacing between pressure taps 

didn’t influence the spectra generated from pressure fluctuation signal. 

2.4.4 Mass flow rate of solid 

Three load cells attached on the upper hopper were used to measure the weight of the 

particles.  The load cells were located at a fixed radius from the center of the hopper with a 

spacing of 120o between them.  The method for measuring the mass flow rate of solids is as 

follows.  First, run the machine and wait for steady state.  After steady state is achieved, collect 

the weight data for more than one minute.  Then plot time versus weight, do linear fitting and 

find the linear relationship (equation) between weight and time.  The slope of this relationship 

will be the mass flow rate of solid. 

 For calibration purposes, the particles were collected in a container for 180 seconds the 

container’s weight was measured with a scale.  The mass flow rate for solid can then be 
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determined by dividing weight by 180 sec.  Also, 3 iron weights were placed on the upper 

hopper to measure their weight with the load cells and the result obtained gave less than 2% of 

error. 

 

2.5 MATERIALS 

2.5.1 Geldart’s classification of materials 

In pneumatic conveying, many different kinds of materials can be transported.  The properties 

of these materials are different from one to another but the materials can be classified in a few groups.  

Geldart(12) found that materials can be classified by four characterized groups (called Geldart A, B, C, 

and D) by the size and density difference between particle and gas.  Each material group has its own 

characteristic property(13) as follows: 

Group A : Powders, ideal for fluidization, the non-bubbling fluidization occurs at the minimum 

fluidization gas velocity and bubbling occurs as fluidization gas velocity increases. 

Group B : Start bubbling at minimum fluidization velocity. 

Group C    : Very fine and cohesive material, very hard to be fluidized. 

Group D    : Coarse solids 
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Figure 5  Geldart’s classification of materials(14)

 

2.5.2 Materials used in this research 

Polyester, polystyrene and polyolefin pellets from Dow Chemical LTD. were used for 

this experiment.  All materials are Geldart’s D type materials.  Polyester is a green, rectangular 

parallelepiped shaped particle.  Polystyrene is cylindroids shape and the color is white, and 

transparent.  Both polyester and polystyrene are hard materials and they are easy to break while 

transported.  Polyolefin is comparatively soft and it sticks together if it is not in motion for a 

while.  The shape of this particle is elliptical and it has white and semi transparent color.  
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The density of polyester and polystyrene was obtained from Luis Sanchez(15).  The 

density of Polyolefin was measured as follows.  Put pellets into the cylinder with the volume of 

500 ml and measure its mass.  Put water into the cylinder until water reaches 500 ml scale, so the 

gap between particles will be filled with water.  Collect the water in the cylinder with another 

cylinder and measure its mass.  The actual volume of pellets will be calculated by subtracting the 

volume of water from the total (Pellets and water) volume.  Then the density of the pellets can be 

determined from the mass of pellets divide by the volume of the pellets.  

The size of the particles was obtained as follows.  First, take a picture of particles using 

digital camera and saved a picture image on the personal computer.  Then by using Scion Image 

software the picture image was analyzed and the mean size of particles was determined.  The 

following table shows the material properties of polyester, polystyrene, and polyolefin. 

 

  

Table 1.  Material properties of pellets 

 
  Polyester Polystyrene Polyolefin 

Particle shape Cube Cylinder Elliptic 

Mean particle size (mm) 3.3 3.9 4.6 

Particle density (kg/m3) 1400 1045 870-940 

Bulk density (kg/m3) 892 735 N/A 
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Figure 6  Materials used for this study (polyester, polystyrene, and polyolefin from left) 

 

2.6 DATA ACQUISITION 

The hot wire anemometer, the pressure transducers, and the load cells were connected to 

the SCB-68 data acquisition card.  As mentioned before, this card was connected to the computer 

and by using LABVIEW software the electronic signals from each device were converted to the 

air velocity, differential pressures, and the weight of upper hopper respectively.  

When acquiring data, choose the “optimized” sampling frequency, the number of data 

points to be acquired is very important.  By increasing the number of data points, the time to 

collect and analyze the data and the amount of data storage space will also increase.  To decrease 

the sampling frequency and the number of data points, one will less accurately obtain the true 

signal. 

The optimized (minimum) sampling frequency required is given by Nyquist’s sampling 

frequency theorem(16), which states that the maximum frequency capable in the spectrum is equal 
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to half of the sampling frequency if aliasing is to be avoided.  In this study a 1000 Hz of 

sampling frequency is more than enough for the analysis based on the Nyquist’s sampling 

frequency theorem.  Figure 7 is an example of the power spectral density (PSD) graph to 

determine the sampling frequency.  The power spectral density method will be discussed in 

detail later.  

As one can see, after 300 Hz the signal was negligible except for a few sudden peaks.   

By neglecting these peaks, since they represent the blower components of the signal, the 

minimum sampling frequency in terms of the Nyquist’s criterion would be 300*2=600 Hz.  Thus 

a sampling frequency of 1000 Hz was sufficiently high for the experiments performed. 

The number of data points acquired in this experiment was 65536, which is 216.  There 

are 2 reasons to choose the number of data points as 2n.  The first reason was due to the PSD 

analysis.  The number of data as 2n converges faster than the other data sets.  The second reason 

was because there is a need for 2n data points for rescaled data analysis.  This will be discussed 

in a later chapter. 
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Figure 7  PSD graph for Blower’s frequency = 100 Hz, gas flow only 
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3.0  ANALYSIS METHOD 

3.1 PHASE SPACE DIAGRAM 

Phase space is defined as the space where all possible states of a system are represented, 

with each possible state of the system corresponding to one unique point in the phase space(17).  

In a mechanical system, phase space consists of position and momentum variables as a function 

of time and it is often called as a phase diagram.  Phase space diagrams represent the explanation 

of the differences with the other diagrams.  One can see the differences clearly for different 

system setups with these diagrams.  Example of a phase space diagram is shown in Figure 8. 

In this study, the phase space diagram is represented in two different ways.  The first way 

is plot the normalized value of pressure drop per unit length at a certain time t versus the 

normalized value of pressure drop per unit length at t+dt, where dt represents the time step 

between the collection of two data points. 

The normalized pressure drop per unit length was determined from the raw data as 

follows.  First, the pressure difference between two pressure taps was divided by the distance 

between the two pressure taps.  The distance between two pressure taps was 0.99 m, 2.49 m, and 

3.15 m for vertical pipe, the lower section of horizontal pipe, and the upper section of horizontal 

pipe respectively.  After that, the mean (average) value of pressure drop per unit length was 

determined (divide the sum of the pressure differences per unit length by number of data, 65536 
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in this study). Finally, the normalized pressure drop per unit length was determined by 

subtracting the mean value of pressure difference per unit length from each pressure difference 

per unit length.  Since the sampling frequency in this study was 1000 Hz, the value of dt is equal 

to 0.001 sec. 
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Figure 8  Example of a phase space diagram 

 
 
Another way to plot the phase space diagram is to plot the normalized pressure at time t 

and its time derivative (dp/dt) at the same time.  dp/dt is defined as follows.  

 
t

tPttP
dt
dp

Δ
−Δ+

=
)()(                                                            (8) 

Where P(t) is a normalized pressure at time t , P(t+Δt) is a normalized pressure at time t+Δt, and 

Δt is time to collect one datum to another (since our sampling frequency is 1 kHz, Δt will be 

0.001 sec). 
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3.2 POWER SPECTRAL DENSITY (PSD) ANALYSIS 

The PSD describes how the power (or variance) of a time series is distributed with 

frequency.(18)  This method was used to determine the dominant characteristic frequency (the 

frequency where the maximum power occurs) of flows with different velocity of the air and feed 

rate for the materials.  

The Fourier Transform of a continuous time dependent function(19) is defined as  

∫
∞

∞−

−≡ dtetxfX iftπ2)()(                                                           (9) 

where x(t) is a time dependent function, for this study, pressure fluctuation with time, f is an 

arbitrary frequency between two sided domain, (-∞,∞). 

The Discrete Fourier Transform (DFT) is defined as 

∑
−
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−=
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NnikekxnX π  for n=0, 1, …, N-1                                  (10) 

In this study, x(k) is pressure at time t.  The disadvantage of DFT is there are a lot of 

redundant calculations while X(n) is being calculated.  The Fast Fourier Transform allows 

reducing the number of calculations from 2N2 to 2NlogN and that is defined as follows 
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k
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∑=    for n=0, 1, …, N-1                                   (11) 

PSD function is the magnitude of the FFT square divided by the time period.  Also, in 

this study, one side PSD was used (its unit is Pa2/Hz) and defined as follows 
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The following figure is an example of a PSD plot. 

 
 

 
 
 

Figure 9  Typical plot of PSD 

 
 
 

From the figure above, the dominant frequency of a certain case can easily be 

determined.  
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3.3 RESCALED RANGE ANALYSIS 

Rescaled range analysis was developed by Hurst in 1965.  This method is a statistical 

method to analyze long term records of natural phenomena such as weather changes, in and out 

flow from a reservoir, price change of stocks, etc. 

 The value of R (Rescaled range) and S (Standard deviation) are defined as follows;  
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Where )(tξ is a sum of individual influx at a given time, and 
τ

ξ is an average of influx at a 

time period  
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),( τtX  is the sum of )(tξ -
τ

ξ  

                                             (16) 

Finally R/S is defined as,  

         H

S
R )(ατ=                                                          (17) 

The coefficient, α was chosen to  be 0.5 by Hurst(20) and H is called “Hurst exponent”.  

The Hurst exponent has a range of 0<H<1.  If H>0.5 then it is called “persistence” meaning that 
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the trend (increasing or decreasing for certain data) in the past will be the same in the future 

(keep increase or decrease respectively).  On the other hand, H∠0.5 is called “anti-persistence” 

meaning that trend in the past (increase or decrease) will be reversed (decrease or increase 

respectively) in the future.  For the case of H equal to 0.5, the trend or behavior for the past 

record is random, so prediction of the future trend can not be estimated.  Using MATLAB code 

(.m file) provided by Leontitsis,(21) the Hurst exponent was determined. 

3.4 WAVELET ANALYSIS 

A wavelet is defined as follows,(22) a wavelet is a small wave which has its energy 

concentrated in time to give a tool for the analysis of transient state.  The continuous wavelet 

transform (CWT) of a function f(t) is defined as follows 

∫
∞

∞−

−
= dt

a
bttfbaC )()(),( ψ                                                  (18) 

where  C : wavelet transform at scale a and position shift b 

ψ : wavelet function 

a : scale of time 

b : position 

The wavelet transform, C(a,b) represents how closely correlated the original signal, f(t) is 

to the wavelet, 
a

bt )( −
=ψ .  The higher value of C means more similarity between the chosen 

wavelet and the original signal.  The time scale of the wavelet means expansion or compression 

of the mother wavelet (originally chosen).  A position constant means the amount of shifting of 
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the wavelet from its original position.  For a discrete time signal {f(k)}, the discrete wavelet 

transform (DWT) gives wavelet coefficient {d(m,n)} where a=2m, b=n2m. 

MATLAB software with the wavelet toolbox is used for wavelet analysis.  The following 

figure shows an example of continuous wavelet analysis with MATLAB.  The horizontal axis 

represents the time, and the vertical axis represents the time scale of a chosen wavelet.  A 

number of mother wavelets have been constructed.   Among them, Daubechies4 wavelet was 

chosen to analyze signals in this study.   The intensity of the graph represents the magnitude of 

wavelet coefficients.  The higher value of the wavelet coefficient, the brighter the plot is. 

 

 

 
 
 

Figure 10  Example of the continuous wavelet transform of a signal f(t), the horizontal 
axis denotes the position shift and the vertical axis denotes the scale 
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The wavelet transform can be used for de-noising of signals, identifying pure signals, and 

detecting self similarities, etc.  For this study, the discrete wavelet transform is used to 

decompose signals, and to determine the pure signals for different system setups without the 

effect of blower and feeder. 

 

Figure 11 shows the Daubechies4 wavelet ψ (t) and its corresponding scale function φ(t). 

 

 

     
 

Figure 11  Daubechies 4 wavelet (left) and its scaling function (right) 

 

 

To decompose the signal, a high pass filter and low pass filter are used.  The signal 

component that passed through the high pass filter is called “details”, and the signal component 

that passed through the low pass filter is called “approximations”.  Thus the “details” signal 

contains high frequency components while the “approximations” signal has low frequency 

components.  When the signal has been decomposed once, the “approximations” can be 

decomposed again and it breaks into another “details” and “approximations” set at a lower scale 
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level, and this can be repeated again to further lower scales as desired.  Figure 12 illustrate the 

principle of decomposing signals.  

From Figure 12, x[n] is the original input signal and this signal passes through the high 

and low pass filters and is then decomposed to details, “dn”, and approximations, “an”.  Then the 

signal is down sampled with a factor of two, so the number of samples in each signal component 

reduces to 1/2.  The approximation is decomposed again, generating a new (level two) 

approximation and details and so on.  In this study, signals were decomposed for five levels, so 

as a result, five levels of detailed wavelet coefficients and the approximation scaling coefficients 

at level five were obtained for each system configuration. 

 

 

 
Figure 12  Decomposing procedure of the signal(23)
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3.5 FLOW PATTERN 

This study deals only with the dilute phase, and four different flow patterns were defined 

by taking video through the transparent section of the pipe. 

Homogeneous flow : particles in the pipe are evenly distributed along the cross section of 

pipe 

 

 

 
Figure 13  Homogeneous flow 

 

 
Dilute Pulsating flow : appears to similar to pulsating flow in dense phase flow, but 

unlike pulsating flow, the gap between particles was observed in the pulse of the particle flow. 

 

 

 

Figure 14  Dilute pulsating flow 
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Pulsating-Homogeneous flow : pulses were observed dominantly, but flow remains 

homogeneous between pulses. 

 

 

 

Figure 15  Pulsating-Homogeneous flow 

 
 
 

 

Homogeneous-Pulsating flow : Homogeneous flow was observed dominantly, but small 

pulses were also observed in the flow. 

 

 

 

 
Figure 16  Homogeneous-Pulsating flow 

 

 

Two phase homogeneous flow : A heavier concentration of particles was seen moving in   

layers located on the bottom of the pipe, but above this layer, flow remains homogeneous. 
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Figure 17  Two phase homogeneous flow 

 

 

In the Homogeneous-Pulsating flow and Pulsating-Homogeneous flow, one can clearly 

see the differences by observing the flow pattern video file in the attached DVD-rom.  Also, 

these flow patterns occur when the flow pattern changes from pulsating to homogeneous in either 

direction except for two phase homogeneous flow. 

3.6 FRACTAL DIMENSION 

A dimension is defined as the number of degrees of freedom that describes the motion of 

an object.  So, a point has a zero dimension since it can not move.  A line has one dimension 

because an object can move on that line only in one direction.  A plane has two dimensions 

because an object that moves on the plane with two degrees of freedom.  These dimensions have 

integer number, but fractal dimension can have non - integral values.   

There are several different methods to determine the fractal dimension.  As mentioned 

before, the Hurst’s exponent is one way to determine fractal dimension (the Hurst exponent is 
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sometimes defined as the fractal dimension of a time series).  In this study, a box counting 

method has been adapted to determine the fractal dimension. For this case, the fractal dimension 

is defined as follows(25);

                                                  
)(

)log(
MLog
NFd =                                                               (19) 

where Fd is Fractal dimension, N is the number of self-similar boxes (component parts), and M 

is the magnification factor. 

 

 

 
 

 

 

 

 

 

Figure 18  An example of the component parts to determine the fractal dimension (M=2, N=4) 

 

 

To explain how to determine the fractal dimension clearly, consider the two geometries 

shown above.  The left rectangle is divided into four small rectangles and the right one is divided 

into sixteen small rectangles.  Starting with the biggest rectangle, when the length of each edge 

divided into two, one can make four small rectangles that can cover the entire geometry (biggest 

rectangle).  Again, when one of the four small rectangle’s edge is divide by a factor of two, one 
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produces another four small rectangles in that geometry (small rectangle of the upper left hand 

side geometry).  In this case, the magnitude factor, M, is equal to 2 since the edge of the small 

geometry is divided into two.   Also, the number of self similar components that cover one small 

geometry is four.  Thus the fractal dimension of this geometry would be  

2
2
4

)(
)(

===
Log
Log

MLog
NLogFd                                           (20) 
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4.0  RESULTS AND DISCUSSION 

The experimental results and analysis of these results by phase space diagram, power 

spectral density analysis, and rescaled range analysis will be discussed in this chapter. 

4.1 PHASE SPACE DIAGRAM 

The phase space diagrams of the normalized differential pressure fluctuations obtained 

are presented showing that the shape of these diagrams is affected by the air velocity, solid 

loading ratio, material property, and the location of the pressure measurement.  

The horizontal length of phase space diagram shows the difference between maximum 

and minimum differential pressure.  The longer the horizontal length of the phase space diagram 

is, the larger the difference of the differential pressure is expected to be.  Also, the vertical length 

of phase space diagram represents how fast the differential pressure changes from one time to 

next measuring time. 

4.1.1 Gas flow only 

The “gas flow only” means that gas is the only material that flows along the pipe. Since 

no pellets were transported, the solid loading ratio will be equal to zero.  For this case, the 
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velocity of the air and the location of the pressure measurements are the major factors that 

contribute to the shape of the phase space diagram.  Note that for gas flows only, the phase space 

has only one attractor point.  

The differential pressure data were obtained from lower horizontal section, upper 

horizontal section, and vertical section of piping system with five different blower frequencies 

(air velocities).  For each case, the number of data obtained was 65536. Figure 19, 20, and 21 

show the phase space diagrams at the lower horizontal section, upper horizontal section, and 

vertical section respectively with different velocity of the air.  

As seen on the figures, when the velocity of the gas increases, both horizontal and 

vertical length of the phase space diagrams also increases.  This means that the more differential 

pressure and is expected and the differential pressure changes faster as one increases the gas 

velocity.  This phenomenon was clearly seen in every section of pipe.  Note that on the 

horizontal section, the shape of diagram at the lower velocity of the air was triangular, and it 

becomes elliptical shape as velocity of the air is increased. 

The location of measuring differential pressure also affected the length along horizontal 

and vertical direction of the phase space diagram.  For the case of the same air velocity, it was 

clear that the length, along both horizontal and vertical directions of the phase space diagram, at 

the vertical section is the largest. Also note that the one at the lower horizontal section is next 

largest and the upper horizontal section has the smallest area.  Thus, in the vertical section, more 

signal fluctuation is present than the other two sections.  The differential pressure fluctuation at 

the lower horizontal section was higher than the one at the upper horizontal section since this 

section is located near the blower and feeder, so, the differential pressure fluctuation would be 

affected more by these devices. The shape of the phase space diagrams for the gas flow only was 
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generally elliptic except for a few cases.  The ellipticity of these ellipses increases when the solid 

loading ratio increases. 
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Vair = 20.2 m/s Vair = 38.9 m/s 

  

Vair = 25.2 m/s Vair = 50.0 m/s 

 

 

 

 

 

 

 
Vair = 28.9 m/s 

 

 

Figure 19  Phase space diagram at lower horizontal section (Gas Only), with different air velocity 
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Vair = 20.2 m/s 

 

Vair = 25.2 m/s 

Vair 

Vair= 28.9 m/s 

 

Vair = 38.9 m/s 

 

  Vair = 50.0 m/s 

 

 

 

 

 

Figure 20  Phase space diagram at upper horizontal section (Gas Only), with different air velocity
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Vair = 20.2 m/s 

 

Vair = 25.2 m/s 

 

Vair = 28.9 m/s 

 

 

  

Vair = 38.9 m/s 

 

Vair = 50.0 m/s 

Figure 21 Phase space diagram at vertical section (Gas Only), with different air velocity
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4.1.2 Effect of solid loading 

As mentioned before, when the solid loading ratio, μ, is not zero, the shape of the phase 

space diagram was changed.  The ellipticity of the ellipse was larger than for gas flow only.  The 

shape is cigar-like and two or more attractor points were observed. 

For polyester and polystyrene, data of thirty seven different cases (combinations of 

blower’s rotational frequency in the range of 72 Hz to 160 Hz and feeder’s rotational frequency 

in the range of 0.37 Hz to 2.06 Hz) were acquired from three different locations. 

On the other hand, for polyolefin, only 11 cases of data could be obtained because of its 

material properties.  The density of polyolefin is lower (see Table 1) than the other materials.  In 

other words, polyolefin is a light material, so, at the high velocity of the air, the air prevents this 

material dropping down into the pipe and the material is getting fluidized at the feeding pipe 

(pipe between the main pipe and feeder).  Also, this material sometimes sticks to each other and 

high surface friction causes a feeding problem.  It was very hard to achieve the constant solid 

loading ratio.  By using a rotary airlock feeder, one may obtain constant solid loading ratio, but 

this study was only able to analyze 11 cases.  

When the solid loading ratio is not zero, it was clear to see that the phase space diagram 

was expanded in the horizontal direction but they do not change much for the vertical direction 

when the blower frequency increased with a fixed mass flow rate of solid.   This phenomenon 

was observed at all measurement locations.  Thus, when solid loading exists, increasing air 

velocity will increase the difference between the maximum and minimum differential pressure, 

but it does not affect much for variation of differential pressure from one time to next time step.  
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Figure 22 is phase space diagrams for different blower frequencies (different air velocities) with 

a fixed solid loading ratio measured at the lower horizontal section. 

The effect of measurement location (Figure 23) was similar to the one without solid 

loading (gas flow only).  The expansion in the horizontal and vertical direction of the phase 

space diagram for the vertical section was the biggest, and lower horizontal section was next, and 

upper horizontal section has the smallest expansion. 

The effect of increasing the solid loading ratio is a bit complicated to analyze.   As seen 

on Figure 24, the area of the phase space diagram is increasing when the solid loading ratio is 

increased at the lower range of the loading ratio, then a sudden decrease and increase at the 

middle range and a decrease again at the higher range.  These phenomena (increasing or 

decreasing of area as the solid loading ratio changes) does not seem to have a pattern, but in 

general, the area was decreased when the solid loading ratio increases.  The particles being 

transported worked as a damper for pressure fluctuation, so increasing the solid loading ratio 

decreases the pressure fluctuation. 
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   Blower = 72 Hz, loading = 1.5 

 

   Blower = 88 Hz, loading = 1.4 

 

   Blower = 100 Hz, loading = 1.4 

 

     Blower = 128 Hz, loading = 1.5 

 

     Blower = 160 Hz, loading = 1.5 

 

 

 

 

 

 

 

 

Figure 22   Phase space diagram for polyester with fixed mass flow rate of solid (0.14 
kg/sec) and different blower frequency measured at lower horizontal section
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    Lower horizontal 

 

   Upper horizontal 

 

   Vertical 

      

     Lower horizontal 

 

     Upper horizontal 

                 

Vertical 

 

Figure 23  Phase space diagram for polyester with different measuring locations, Blower 
frequency = 88 Hz (left) and 128 Hz(right), mass flow rate of solid = 0.14 kg/s
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μ = 1.4 

 

μ = 2.1 

 

μ = 2.6 

 

μ = 3.0 

 

μ = 3.6 

 

μ = 4.2 

 

Figure 24  Phase space diagram for polyester with different solid loading ratios. 
Blower frequency = 100 Hz, measured at vertical section  
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4.2 POWER SPECTRAL DENSITY ANALYSIS 

The power spectral density (PSD) graphs for different system setups will be presented in 

this chapter.  It was found that the power spectral density of the differential pressure signals was 

complex of blower, feeder, gas-particle interaction and turbulent fluctuation.  By plotting the 

power spectral density graph, the effect of those components will be clearly seen and the flow 

characteristics for different system set up and materials will be determined. 

4.2.1 Gas flow only 

For the case of gas flow only, since the feeder did not operate, the power due to the 

feeder was not shown in the PSD figure.  Only the power due to the blower frequency and the 

turbulent fluctuation will be shown in the PSD graph.  Figure 25, 26, and 27 are the PSD graphs 

with different blower frequencies at the lower horizontal, upper horizontal, and vertical section 

respectively.  

As seen on Figure 25, 26, and 27, there are several sudden jumps (peaks) for the 

magnitude of power.  And the relevant frequencies of these peaks coincided to the frequency of 

the blower.  For example, on blower = 128 Hz, Vair = 38.9 m/s of Figure 25 (The top right graph 

of Figure 25) there is a power peak at the frequency of 128 Hz.  It is clear that this power peak 

occurs due to the blower.  And another power peak was occurs near 256 Hz, and 384 Hz.  These 

frequencies are the multiple of the blower frequency, 128 Hz, and it might be a resonance 

frequency of the blower.  It was shown that the magnitude of the power due to the resonance 

frequencies was smaller than the original blower frequency, but generally higher than the power 

due to the gas – particle interaction.  The original and resonance frequencies due to the blower do 
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not help to understand the flow characteristics.  The pure gas – particle interactions are the only 

interesting things to analyze.  So the signal due to the blower and feeder should be disregarded 

when the signal is being analyzed. 

Note that another power peak occasionally occurred at the half of the blower frequency 

(36 Hz – upper left graph of Figure 25, 36 Hz, 44 Hz, and 50 Hz – left hand graphs of Figure 26, 

and 36 Hz – upper left graph of Figure 27).  This peak was not shown at the blower frequency of 

128 Hz and 160 Hz.  This power is ambiguous.  It might be due to the blower (power due to 

another resonance frequency) or power due to the gas – particle interactions.  Further study is 

needed to find out the characteristic of this power. 

For the lower and upper horizontal pipe section, the power concentrations due to the gas 

– particle interaction occur at a frequency lower than 250 Hz (See Figure 25 and 26).  In each 

case, there were four significant power concentrations and their magnitudes increase when 

frequency of blower increases.  For the lower horizontal section, these concentrations occur at 

the frequencies of 20 Hz - 45 Hz, 55 Hz - 65 Hz, 90 Hz - 110 Hz, and 170 - 190 Hz.  The largest 

magnitude of power occurs at 30 Hz - 40 Hz.  In the case of the upper horizontal section, the 

power concentration occurs at slightly lower frequencies (about 5 Hz - 10 Hz lower) than the one 

for lower horizontal pipe section.  The magnitude of power due to the gas – particle interaction at 

the lower horizontal section was higher than the one at the upper horizontal section for the entire 

frequency domain. 

 For the vertical section, the magnitude of power was much higher than the other two 

sections and more than five power concentrated regions were found.  Also those power 

concentrations were dispersed in the lower frequency domain (0 to 300Hz). 
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Blower = 72 Hz, Vair = 20.2 m/s   

 

   Blower = 88 Hz, Vair = 25.2 m/s 

  

Blower = 100 Hz, Vair = 28.9 m/s 

 

 Blower = 128 Hz, Vair = 38.9 m/s 

 

          Blower = 160 Hz, Vair = 50.0 m/s 

 

 

 

 

 

 
Figure 25  Power spectral density graph at lower horizontal section (Gas Only), with different air 

velocity

 48 



 

 Blower = 72 Hz, Vair = 20.2 m/s 

 

Blower = 88 Hz, Vair = 25.2 m/s 

 

Blower = 100 Hz, Vair = 28.9 m/s 

 

       Blower = 128 Hz, Vair = 38.9 m/s 

 

      Blower = 160 Hz, Vair = 50.0 m/s 

 

 

 

 

 

 

 

Figure 26  Power spectral density graph at upper horizontal section (Gas Only), with different air 
velocity
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   Blower = 72 Hz, Vair = 20.2 m/s 

 

   Blower = 88 Hz, Vair = 25.2 m/s 

                 
Blower = 100 Hz, Vair = 28.9 m/s 

 

    Blower = 128 Hz, Vair = 38.9 m/s 

 

       Blower = 160 Hz, Vair = 50.0 m/s 

 

 

 

 

 

 

 

 

Figure 27  Power spectral density graph at vertical section (Gas Only), with different air velocity 
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Another interesting phenomenon was found at the higher frequency of blower 

operation(at the blower frequency of 128 Hz and 160 Hz, see right hand side of pictures in 

Figure 27).  The power is increasing again after a frequency of 400 Hz. 

4.2.2 Effect of solid loading 

When the solid loading ratio, μ, is not zero, the magnitude of power on the PSD graph 

was much smaller than the case of gas flow only (μ = 0).  These were observed with all three 

different materials and at different measuring locations (Figure 28).  Also, when μ is not zero, 

one can see the power peaks near the zero frequency regions.   These peaks are due to the 

rotational frequency of the feeder.  For example, the case of Figure 28, the rotational speed of the 

feeder was 4.6 rpm.  The corresponding rotational frequency of the feeder is 4.6 / 60 ≈ 0.077.  

But the rotor has eight pockets, so for each revolution, eight strokes of solid feeding occurred.  

So, the frequency of the feeder would be 0.077 * 8 = 0.62 Hz.  Similar to the case of gas flow 

only, the magnitude of power was increased as the velocity of the air increases for the fixed mass 

flow rate of solid.  

 For the lower horizontal and the vertical section, a few power concentrations were 

observed.  Among them, the magnitudes of the two power concentrations were much higher than 

the others.  Those concentrations occurred around 5 Hz - 10 Hz and around 25 Hz.  As the mass 

flow rate of solid increases, the smaller power concentrations diminish, while the major two 

concentrations behave randomly (sometimes the power increases and sometimes it decreases).  

On the upper horizontal section, when the blower frequency is fixed, the magnitude of power 

peaks decreased as the solid loading ratio increases.  Also, compared to the other sections, the 

power peak due to the blower is dramatically reduced.  On this section, since this section is far -  
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 Lower horizontal section (Gas only) 

 

        Upper horizontal section (Gas only) 

 

     Vertical section (Gas only) 

 

 

   Lower horizontal section (μ = 1.4) 

 

   Upper horizontal section (μ = 1.4) 

 

   Vertical section (μ = 1.4) 

 

Figure 28  PSD graphs for different sections along the pipe with blower frequency = 100 Hz, air 
only (left graphs) and solid loading ratio, μ = 1.4 (right graphs), polyester
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from the entrance of the air and solid, the effect of the blower and feeder is smaller than the other 

sections.  Furthermore, the particles in the pipe hitting each other and hitting the air would also 

decrease the effect of the blower and feeder. 

When the solid loading ratio increases, another power peak was observed right before or 

after the power peak due to the blower.  This shows that the blower frequency was affected by 

feeder behavior.  The type of feeder used for this research is a drop through rotary feeder, so the 

pellets are not dropped continuously.  The feed rate was pulsatile.   

The Figure 29 shows the PSD graph for polyester and polystyrene with the similar 

loading conditions.  As seen on Figure 29, the general behavior of the power spectrum is 

probably due to the gas – particle interaction look similar.  For the range of frequency, 

magnitude of power for polyester was slightly higher than the one for polystyrene.  

 The PSD graph for polyolefin was illustrated on Figure 30.  As mentioned before, this 

material has very low density, it is a lighter material compared to the other two polymers.  

Feeding problems prevented a wide range of feed rates to be studied.  Also, the operational 

velocity of the air to transport this material was lower than the other two materials.  One notes 

from Figure 30 that the PSD signal for the polyolefin was less than the polyester and polystyrene 

, and this is most likely due to the particle behavior. 
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Blower = 72 Hz, μ = 4.3 

 

   Blower = 100 Hz, μ = 3.6 

 

            Blower = 128 Hz, μ = 2.7 

    

 

    Blower = 72 Hz, μ = 4.2 

 

     Blower = 100 Hz, μ = 3.6 

 

      Blower = 128 Hz, μ = 2.6 

 

Figure 29  Comparison of PSD graph of polyester (left) to polystyrene (right) for  the differential 
pressure measured on the lower horizontal section
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Lower horizontal 

 

Upper Horizontal 

 

Vertical 

 

 

           Lower horizontal  

 

           Upper Horizontal 

 

          Vertical 

 

Figure 30  PSD graph of polyolefin for Blower = 56.7 Hz, μ = 2.3 (Left), 
Blower = 74.3 Hz, μ = 1.0 (Right) 
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4.3 RESCALED RANGE ANALYSIS AND HURST’S EXPONENT 

The relationship between R/S and Hurst exponent was shown in the equation (17).  The 

Hurst’s exponent can be determined from this equation 

)log(
)/log(

τa
SRH =                                                        (21) 

where, a is equal to 0.5 (taken by Hurst).  The values of R/S are logarithmically plotted as a 

function of τ in Figure 31.  A linear fit of these terms provides the value of H from the slope of 

the plot.  

 

 

 

Figure 31  Relationship between R/S, τ, and Hurst’s exponent 

 56 



4.3.1 Gas flow only 

For the case of gas flow only, the Hurst exponent was less than 0.5 which indicates anti-

persistence in the analysis.  The behavior for this case is shown in  Figure 32.  One can show that 

the value of Hurst’s exponents for all three sections of piping should not be affected by the 

blower’s frequency.  Cabrejos(3) showed that the Hurst’s exponent indicates the flow regime in 

horizontal pneumatic conveying.  The value of the exponent for upper horizontal section is 

higher than the other two sections and it is closest to 0.5 but does not change much as the gas 

velocity increases indicating a uniform, steady flow. 
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Figure 32  Hurst’s exponents for different measurement locations and different blower 
frequencies, gas flow only 

 57 



4.3.2 Effect of solid loading 

When the solid loading ratio is not zero, the Hurst’s exponent was higher than 0.5, this 

means that it has a persistence behavior, indicating that the same trend of data recorded from the 

past times will be expected to the future times.  

Figure 33 and 34 illustrates the Hurst’s exponents for polyester, polystyrene and 

polyolefin with different system configuration (different air velocity and solid loading ratio).  

When these figures are compared to flow patterns observed, one can understand that the Hurst’s 

exponent is closely related to the flow pattern.  

As a result, when the flow was homogeneous or homogeneous-pulsating flow, the 

Hurst’s exponent increased as the solid loading ratio was increased.  On the other hand, when the 

dominant flow pattern was pulsating flow, such as pulsating and pulsating-homogeneous flow, 

the Hurst’s exponent decreased as the solid loading ratio was increased.  For the case of two 

phase homogeneous flow, the Hurst’s exponent increased when the solid loading ratio was 

increased.  Also, it was found that the transition between one flow pattern and another occurs at 

the lower solid loading ratio, as the air velocity increased. 

For polyester, the Hurst’s exponent for the lower horizontal section (Figure 33 top left 

graph) decreased as the solid loading ratio increased.  A pulsating flow was observed at the 

lower solid loading ratio (μ = 1.5 – 5.5 for blower frequency = 72Hz, μ = 1.4 – 5.0 for blower 

frequency = 88 Hz, and μ = 0.8 – 4.6 for blower frequency = 100 Hz).  When the solid loading 

was high (μ = 6.3 – 7.6 for blower frequency = 72 Hz, and μ =5.6 – 6.0 for blower frequency = 

88 Hz), a pulsating- homogeneous flow was observed. 

At the upper horizontal section of the pipe (Figure 33 middle left graph), the flow pattern 

was pulsating flow.  As the solid loading ratio increased the flow becomes homogeneous-
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pulsating, pulsating-homogeneous flow, homogeneous flow, and finally, two phase 

homogeneous flow was observed at the highest solid loading ratio.  Note that at the blower 

frequency of 100 Hz, the two phase homogeneous flow pattern was not observed since the 

maximum solid loading ratio at this air velocity was too low to compare to the other blower 

frequency, but one may expect two phase homogeneous flow pattern when the solid loading ratio 

increased. 

For polystyrene, in the lower horizontal section, pulsating flow was observed at the 

beginning and it becomes homogeneous-pulsating flow, homogeneous flow and two phase 

homogeneous flow at the blower frequency of 72 Hz, but for 88 Hz and 100 Hz, this pattern was 

not observed since the maximum solid loading ratio was low. 

At the upper horizontal section, the flow pattern changed from pulsating flow, 

homogeneous pulsating flow, pulsating-homogeneous flow and homogeneous flow as the solid 

loading ratio increases.  Also, two phase homogeneous flow was observed at the blower 

frequency of 72 Hz.  

Since the number of data collected was limited due to the material properties of 

polyolefin, it is more difficult to explain the tendency of its Hurst’s exponent values, but in 

general, the Hurst’s exponent decreased when the solid loading ratio increased at the lower 

horizontal section and vertical section while it decreased and increased again at the upper 

horizontal section. 

 59 



Hurst exponents for polyester, lower horizontal

0.55

0.65

0.75

0.85

0.95

0 2 4 6 8

Solid loading ratio

H
u

rs
t'

s
 e

x
p

o
n

e
n

ts

72Hz

88Hz

100Hz

 

Lower horizontal section 

Polyester, upper horizontal section

0.6

0.7

0.8

0.9

0 2 4 6 8

Solid loading ratio

H
u

rs
t'

s
 e

x
p

o
n

e
n

ts

72Hz

88Hz

100Hz

 

Upper horizontal section 

Hurst exponents for polyester, vertical section
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Figure 33  Hurst Exponents for polyester (left) and polystyrene (right) with different solid loading 
ratio
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Figure 34  Hurst Exponents for polyolefin with different solid loading ratio 
and different measurement locations 
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4.4 FRACTAL DIMENSION ANALYSIS 

The fractal dimensions for a phase space diagram have been determined by the box 

counting method.  Since the phase space diagrams were expressed in two dimensional space, the 

relationship between Hurst’s exponent and fractal dimension (D = 2 – H) does not exactly match.  

This is because the Hurst’s exponents were determined from one dimensional time series 

differential pressure data.  Figures 35, 36, and illustrate the fractal dimension of the different 

polymers measured at the vertical, lower and upper horizontal pipe arrangements respectively. 

As the solid loading ratio increases, the fractal dimension seems to decrease slightly or 

remain the same in the vertical section of the pipe, but in horizontal sections it increases.  

Specifically in the upper horizontal section of the pipe, the fractal dimension increases more than 

in the other sections.  This means that the shape of the phase space diagram is smoother as the 

solid loading ratio increases for the upper horizontal section.  As mentioned before, this section 

has the most stable flow, thus increasing the solid loading ratio decreases the signal fluctuation.  

In the vertical section, however, increasing the solid ratio causes a more fluidized like behavior 

of flow, thus more signal fluctuations are expected.  In the lower horizontal section, one may 

intuitively think that even though the pressure fluctuation was damped by increasing the solid 

loading ratio, the gas and particles interact more than the upper horizontal section (in other words 

this section has a flow developmental process occurring) thus the signal fluctuates more than in 

upper horizontal section. 
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Fractal dimension for Polyester, Vertical

1.58

1.6

1.62

1.64

1.66

1.68

1.7

1.72

1.74

1.76

1.78

0 2 4 6 8

Solid loading ratio

F
ra

c
ta

l 
d
im

e
n
s
io

72 Hz

88 Hz

100 Hz

 

Fractal dimension for Polystyrene, Vertical
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Fractal dimension for Polyolefin, Vertical
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Figure 35  Fractal Dimension for different materials and solid loading ratio measured in the 
vertical section 
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Fractal dimension for Polyester, Lower horizontal
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Fractal dimension for Polystyrene, Lower horizontal
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Fractal dimension for Polyolefin, Lower Horizontal
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Figure 36  Fractal Dimension for different materials, and solid loading ratio measured in the lower 
horizontal section 
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Fractal dimension for Polyester, Upper horizontal
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Fractal dimension for Polystyrene, Upper horizontal
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Fractal dimension for Polyolefin, upper Horizontal
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Figure 37  Fractal Dimension for different materials, and solid loading ratio measured in the upper 
horizontal section 
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4.5 WAVELET ANALYSIS 

By using the wavelet toolbox in MATLAB, the original differential pressure signal has 

been decomposed into various components.  As mentioned before, the Daubechies4 (db4) 

wavelet was used as the mother wavelet and the signal was decomposed to five scale levels.  

Other mother wavelets such as Haar (or db1) was evaluated as a mother wavelet for the initial 

exploration, and similar results were obtained.  Figure 38 illustrates the signal decomposition 

signal.   

The horizontal axis in Figure 38 shows the measuring time, which was 65.5 sec since the 

number of data points collected was 65536 with the sampling frequency of 1 kHz.  The vertical 

axis represents the differential pressure.  Graph show the original signal and the various 

decomposed components to a level of five.  

The frequency range of each detailed signal was determined in the following manner.  

The sampling frequency for collecting data was 1 kHz, as mentioned before.  This sampling 

frequency was more than enough to satisfy the Shannon sampling theorem.  The maximum 

frequency of the data is below 500 Hz.  If the maximum frequency of data is up to 500 Hz, then 

the detail component of the initially decomposed signal has frequency range from 250 Hz to 500 

Hz, and the down sampling by a factor of two produces the frequency range of the detail 

component at level two with a range from 125 Hz to 250 Hz and so on.  

The blower frequency for Figure 38 was 88 Hz, and the feeder frequency was 

approximately 2.1 Hz.  In the decomposed signals, the approximation component scale at five 

(a5) has similar frequency to the feeder frequency.  This means that the a5 signal contains the 

component due to the feeder which is dominant.  More over, if the signal is further decomposed 

to more levels, the frequency range of the detail component at level nine (d9) would be the same 
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as that of the feeder.  This phenomenon can be seen if the  signal in the graph is enlarged.  Also, 

the frequency range of the detail component level three (d3) coincides with that of the blower, 

which is 88 Hz. 

 

 

 

Figure 38  Decomposed signals, Polyester, blower = 88 Hz, μ = 6.0, measured in the upper 
horizontal section 
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The detail component at scale level one (d1), corresponding frequency range of 250 Hz – 

500 Hz, seems to represent some of the turbulence signal.  It should be noted that the magnitude 

of the power spectrum for this frequency range is small.  The detail components at level two (d2), 

four (d4) and five (d5) appear to be related to particle movement, and interaction of particles with 

the turbulence fluctuations.  Further study may lead to identify the meaning of each individual 

detailed signal.  One must note that the wavelet analysis is useful but will not produces miracles 

in understanding the signal components generated. 

Figures 39 to 47 show the standard deviations of decomposed signals with different 

system configurations for different materials.  The detailed signal varies when the solid loading 

ratio increases.  When the plots are compared to the PSD figure, it was clearly seen that the 

magnitude of standard deviation of wavelet coefficients have a direct relationship with the 

magnitude of power peaks in the PSD graph.  In other words, the magnitudes of power in the 

PSD graph increase or decrease (as the solid loading ratio varies), the standard deviations of the 

wavelet coefficient vary in the same manner.  The wavelet coefficient represents how well the 

scaled and shifted wavelet matches with the original signal of a particular duration.  For a higher 

standard deviation of the wavelet coefficients, one notes the larger fluctuations of the original 

signal. 

From Figures 39, 40 and 41 one sees that the magnitude of the standard deviation of 

wavelet coefficients was the highest at the vertical section and the smallest at the upper 

horizontal section of the pipe.  This indicates that the upper horizontal section of the pipe has the 

most stable flow and the vertical section has the most unstable flow.  These results coincide with 

the results of the other methods of analysis.  The signals decreased gradually at the upper 

horizontal section as the solid loading ratio was increased, but it increased at the lower horizontal 
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section and in the vertical section showed a mixed behavior.  Thus it is conjectured that in the 

upper horizontal section, the air and particles are well mixed and have a stable flow pattern 

showing a damping of the variance as particle concentration, loading, increases.  In the lower and 

vertical section, flow development and mixing is still going on with distance from the feeder, so 

one would expect more gas-particle interactions.  The behavior of the standard deviation graph 

for polystyrene (see Figures 42, 43 and 44) was similar to that of the polyester. 

 

 

Table 2  Characteristic of decomposed signal for polyester and polystyrene 

 
Signal Frequency range (Hz) Represents for 

d1 250 – 500 Gas turbulence 

d2 125 - 250 Particle–gas interaction 

d3 62.5 – 125 Blower 

d4 31.3 - 62.5 Particle–gas interaction 

d5 15.7 – 31.3 Particle–gas interaction 

a5 0 – 15.7 Feeder 

 

 

Note that in the vertical section, one can see clearly that as the solid loading ratio 

increases the detailed component at level two signal (d2), with corresponding frequency range 

between 125 Hz to 250 Hz, decreases while the detailed component at level five (d5), with 

corresponding frequency range of 15 Hz - 30 Hz increases.  When the solid loading ratio is 

increased while the gas velocity is fixed, the individual gas particle interact more with the solid 
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particles causing momentum transferred from gas to solid.  In other words, the gas will be 

damped while the solid particle movement will become more active (e.g. increased the rotational 

and translational velocities).  Thus, this study conjectures that the detail component at level two 

(d2) in the vertical section for polyester and polystyrene may represent the signal due to the air 

while the detail signal at level five (d5) may be the one due to the particle movement.  

The behavior of polyolefin was different from the other polymer particles studied.   See 

the fast video section.  In the lower horizontal section, detail signal at level four (d4) increases 

slightly as the solid loading ratio increases while detailed signal at level five (d5) slightly 

decreases.  In the upper horizontal section, all detailed signals have a slightly decreasing 

behavior as the solid loading ratio increased.  Compared to the other polymers, for both lower 

and upper horizontal section it is hard to tell if the detail signals are related to the gas particle 

interaction due to the small increasing solid concentration.  It should be noted the range of 

loading for this polymer is narrow due to the limited feed rates because of operational 

difficulties.  One can see that the detailed signals did not disperse as much in comparison to that 

of the other polymers.  Thus in the lower and upper horizontal section for this polymer, the 

signal has small fluctuations.  

Even though the fast video showed that the polyolefin particles have more random 

motion, the overall effect appears to be one of providing a more well mixed condition with 

pressure fluctuation damping. 

When the blower rotational frequency was 57 Hz, it was found that the detail signal at 

level four (d4) was due to the blower frequency, while for the case of blower rotational frequency 

of 74 Hz, the detail at level three signal (d3) was related to the signal due to the blower.   
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In the vertical section, the detail signals at levels two (d2) and level three (d3) or level four (d4) 

have different values, but the trend of the plots look similar showing gradually decreasing 

signals, when the solid loading ratio increases.  This phenomenon was observed for both blower 

rotational frequencies, 57 Hz and 74 Hz.  Also, the detail signal at level five (d5) increases when 

the solid loading ratio increases.  Similar to the other materials, it is conjectured that detail level 

two (d2) and three (d3) for polyolefin at the vertical section is related to gas behavior while detail 

level five signal (d5) is related to the particle-gas interaction.  Overall, one notes that the vertical 

section showed larger standard deviations than the horizontal section results. 

 

 

Table 3.  Characteristic of decomposed signal for polyolefin 

 

Signal Frequency range (Hz) Represents for 

d1 250 – 500 Gas turbulence 

d2 125 - 250 Particle–gas interaction 

d3 62.5 – 125 Particle–gas interaction (for blower = 57 Hz) 
Blower (for blower = 74Hz) 

d4 31.3 - 62.5 Blower (for blower = 57Hz) 
Particle–gas interaction (for blower = 74Hz) 

d5 15.7 – 31.3 Particle–gas interaction 

a5 7.8 – 15.7 Feeder 
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Std. of decomposed signal, blower = 72Hz polyester, lower horizontal
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Std. of decomposed signal, blower = 88Hz polyester, lower horizontal
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Figure 39  Standard deviation of wavelet coefficient of each decomposed signals,  
polyester, lower horizontal section, blower = 72 Hz (top), 88 Hz (bottom) 
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Std. of decomposed signal, polyester, blower = 72Hz, upper horizontal
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Std. of decomposed signal, blower = 88Hz, polyester, upper horizontal
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Figure 40  Standard deviation of wavelet coefficient of each decomposed signals,  polyester, upper 
horizontal section, blower = 72 Hz (top), 88 Hz (bottom) 

 73 



Std. of decomposed signal,Blower=72Hz, Polyester Vertical 
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Std. of decomposed signal, Blower=88Hz, Polyester Vertical
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Figure 41  Standard deviation of wavelet coefficient of each decomposed signals, 
polyester, vertical section, blower = 72 Hz (top), 88 Hz (bottom) 
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Std. of decomposed signal, Polystyrene, Blower = 88Hz Lower 
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Figure 42  Standard deviation of wavelet coefficient of each decomposed signals, 
polystyrene, lower horizontal section, blower = 77 Hz (top), 88 Hz (bottom) 
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Std. of decomposed signal, Polystyrene, Blower=88Hz, Upper 
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Figure 43  Standard deviation of wavelet coefficient of each decomposed signals, 
polystyrene, upper horizontal section, blower = 77 Hz (top), 88 Hz (bottom) 
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Std. of decomposed signal, Polystyrene, Blower=72Hz, Vertical
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Std. of decomposed signal, Polystyrene, Blower=88Hz, Vertical
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Figure 44  Standard deviation of wavelet coefficient of each decomposed signals, 
polystyrene, vertical section, blower = 77 Hz (top), 88 Hz (bottom) 
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Std. of decomposed signal for polyolefin, blower = 74Hz, lower 
horizontal
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Figure 45  Standard deviation of wavelet coefficient of each decomposed signals, 
polyolefin, lower horizontal section, blower = 57 Hz (top), 74 Hz (bottom) 
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Std. of decomposed signal for polyolefin, blower = 74Hz, 
upper horizontal
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Figure 46  Standard deviation of wavelet coefficient of each decomposed signals, 
polyolefin, upper horizontal section, blower = 57 Hz (top), 74 Hz (bottom) 
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Std. of decomposed signal for polyolefin, blower = 74Hz, 
Vertical
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Figure 47  Standard deviation of wavelet coefficient of each decomposed signals, polyolefin, 
vertical section, Blower = 57 Hz (top), 74 Hz (bottom) 
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4.6 HIGH SPEED VIDEO OBSERVATION 

High speed videos of the flow of polyester and polyolefin transported by air have been 

taken at the lower horizontal section of the pipe using the Phantom V3.0 High Speed Camera 

manufactured by Vision Research. Inc.  The video has been taken with the speed of 1500 picture 

per second (PPS) for about 10 second.  Larger time intervals were not possible because of 

storage capacity.  The DVD-rom attached to this dissertation contains the video files for both 

polymer.  Figure 48, and 49 illustrate the particle movement for polyester and polyolefin 

respectively. 

 

 

 
Gas flow direction 
 

Figure 48  Particle movement behavior, polyester 

 

 

The polyester, which has higher density, hard surface, and cubical shape moves in a 

straight manner forward along the flow direction.  Rotation and spin were difficult to ascertain 

from the video.  For the case of the polyolefin a different picture was observed. 
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Gas flow direction  

Figure 49  Particle movement behavior, polyolefin 

 

 

The polyolefin has a low density, is soft (sticky) in nature and is ellipsoid shaped. The 

polyolefin particles move with considerable rotation and spin.  Sometimes,   particles was 

bouncing counter to the gas flow direction.  In Figure 49, the straight arrow represents the 

particle’s translational direction and curved arrow represents the particle’s rotational direction.  

As noted, some of the particles even bounce in the adverse direction to the main flow direction.  

The soft surface appears to be the cause of this unique behavior. 
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5.0  CONCLUSION 

The flow characteristics for different system configurations, materials, and measuring 

locations have been investigated by different methods of signal analysis.   Each of the methods 

of signal analysis was aimed to help understand the flow characteristics and conditions. 

 The phase space diagram for the gas flow can exhibit one or two attractor points   

with a low degree of eccentricity, two attractor points are seen with a high degree of eccentricity.  

The area of this phase space increases as the velocity of the air increases.  The area was generally 

seen to decrease when the solid loading ratio increases.  No clear pattern for this rule could be 

established other than the high degree of eccentricity when solids are flowing.  The fractal 

dimension analysis with the box counting method has been applied to find a fractal pattern.  This 

pattern appears do not follow the Hurst’s exponents but seems to provide a measure of the flow 

stability.   

The result of the power spectrum analysis enables one to find true signal which is the 

signal due to the flow noise as well as the signal due to the blower and feeder.  The magnitude of 

the power is seen to increase when the velocity of the air increases.  In addition, the power 

decreases when the solid loading ratio increases since the air flow fluctuations appear to be 

damped by presence of particles.  For the same system configuration, the largest power was 

observed in the vertical section followed by the lower horizontal section.  The smallest power 

peaks were observed for the upper horizontal pipe.  This behavior can be attributed to the flow 
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stability in these configurations.  For similar conditions (air velocity and solid loading ratio), the 

result of power spectral density was similar for the polyester and polystyrene pellets. 

The Hurst’s exponents from the rescaled range analysis were closely related to flow 

patterns present.  The Hurst exponent has an anti-persistence behavior (H < 0.5) for gas flow 

only, while when the solids are being transported, the exponent became more persistent in 

behavior (H > 0.5).  When the flow pattern was homogeneous dominant, the Hurst’s exponents 

increased as the solid loading ratio increased.  For pulsating dominant flow pattern, the Hurst’s 

exponents decreased as the solid loading ratio increased. 

 By applying wavelet analysis, the original differential pressure signal has been 

decomposed and the signal due to the blower, feeder and the noise signal can be easily detected.  

Some of decomposed signal contains important information due to the gas, the particles, and the 

interaction between the gas and particles.  It is conjectured that  the standard deviation of wavelet 

coefficient decreases as the solid loading ratio increases.   This behavior may indicate that the 

signal is related to the gas fluctuations while the increasing standard deviation of wavelet 

coefficient graph may represent the solid particle interactions. The polyester and polystyrene 

polymer particles behaved in like this manner while the polyolefin showed considerable random 

particle behavior after viewing the details of the high speed video recording.  The wavelet 

analysis of the polyolefin showed a more well mixed particle-gas interaction behavior. 
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6.0  FUTURE WORK 

So far, the differential pressure for the dilute phase pneumatic conveying has been 

analyzed and there are many unknown factors that one would like to know in this field of study.  

Some of these factors for future work are suggested as follows: 

One may obtain interesting results by plotting non-dimensional numbers such as the 

Reynolds number and Froude number for the various conditions studied.  The Reynolds number 

represents that the ratio of inertial force to the viscous force while the Froude number represents 

that the ratio of inertial force to the gravitational force.  Thus when analyzing the differential 

pressure data by different methods, instead of using the velocity of the air or solid loading ratio 

as a changing parameter using these non-dimensionless numbers for the flow conditions may 

give further insight to the process..   

To develop the fractal dimension analysis, it would be useful to de-noise signal before 

plotting the phase space diagram since it is difficult to determine the correct fractal dimension 

when noise exists.   

For the wavelet transform analysis, among the decomposed signal, only a few signals 

due to the blower and feeder were identified clearly.  Each of the rest of detailed signal is related 

to gas, gas – particle, and particle - particle interaction, but could not be identified directly.  By 

taking high speed video camera clips one may determine these other interactions. 
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 The number of particles that have been transported were large, thus it was difficult to 

analyze the individual particle’s behavior by numerical method, because the calculation time 

would be too long.  It would be worthwhile to try to simulate this pneumatic conveying system 

with a small number of particles and compare the result with the experimental findings. 
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