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f the sources of inaccuracy in parameter estimates of multilevel models is omitted variable 

aused by the omission of an important predictor. The purpose of this study was to examine 

erformance of six estimation procedures in estimating the fixed effects when a level-2 

ction term was omitted from a two-level hierarchical linear model. Four alternative 

tors (FE, WLS1, WLS2, WLS3) based on the work of Frees (2001) and the Maximum 

hood (FML, ReML) estimation methods were examined. Findings of the Monte Carlo 

 revealed that the FML and ReML methods were the least biased methods when a level-2 

ction was omitted from the multilevel model. FML and ReML produced the lowest RMSD 

s of all six estimation methods regardless of level-2 sample size, ICC, or effect sizes of the 

2 variables. The difference in the performance of the alternative and Maximum Likelihood 

 procedures diminished as level-2 sample size and ICC increased. The bias in all six 

tion methods did not differ much when the effect sizes of the level-2 predictors varied.  

 the methods were examined using the ECLS data, the results of the Monte Carlo study 

confirmed. The ML methods were the least biased of all the methods when a level-2 

ction term was omitted from the model.  
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1.0  INTRODUCTION 

Proponents of hierarchical linear modeling have lauded its use for studying school effectiveness 

(Burstein, 1980; Raudenbush & Bryk, 1986; Bryk & Raudenbush, 1988). The reasons for using 

multilevel models are compelling, however a number of researchers have suggested that 

inconsistent findings in school effectiveness research could be due in part to the 

inappropriateness of the models used in the analyses (Goldhaber & Brewer, 1997; Ludwig & 

Bassi, 1999; Bonesronning, 2004; Marsh, 2004). Model misspecification can occur due to 

omitted variables, general misrepresentation of the relations in the data, and the invalidity of 

hypothesis tests (Snijders & Bosker, 1999). In addition, several researchers have studied the 

effects of ignoring a level of the hierarchical structure on parameter estimates (Opdenakker & 

Van Damme, 2000; Hutchison & Healy, 2001; Moerbeek, 2004). 

Analyses of data in the social sciences is often times plagued by a phenomenon known as 

omitted variable bias (Chamberlain & Griliches, 1975; Frees, 2001; Kim & Frees, 2005).  

Important covariates are oftentimes left out of a model due to oversight on the part of the 

researcher or just because the data on the measure was inaccessible. A study of the effect of 

teacher practices on achievement may lack information about teacher preparation or children’s 

time spent on-task due to the fact that these variables might be unfeasible to collect, especially in 

large-scale data sets. Not only will there be no information as to how time on-task affects 

achievement, the estimators of the other effects in the model may be biased. Rivkin, Hanushek, 
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and Kain (2005) reported that teacher characteristics have strong influences on math and reading 

achievement, but an analysis using semiparametric lower bound estimates of the teacher variance 

indicated that little variation in teacher quality is explained by observable characteristics. Other 

datasets may be comprehensive, but researchers can fail to see the need to include explanatory 

variables or interactions of variables in order to make relevant interpretations (Irwin & 

McClelland, 2001). Aiken and West (1991) describe interactions as associations between 

variables that moderate or amplify a causal relationship under specific conditions. A researcher’s 

complex hypothesis may not be adequately depicted if key interactions are overlooked, and the 

simple linear approximations may be misrepresentations of true estimations. 

1.1 MULTILEVEL ESTIMATION 

Parameter estimates in multilevel modeling can be obtained through several types of statistical 

procedures, including Maximum Likelihood (Longford, 1987), Iteratively Generalized Least 

Squares (Goldstein, 1986), or Bayesian Methods (Raudenbush & Bryk, 1985; Gelfand, 2000).  

Although these methods are typically used with nested data, they do not account for inaccuracies 

in estimation when important variables or relevant interactions are ignored. Alternative 

estimators that diminish the consequences of misspecification exist in a multilevel framework, 

since information is available to test the gravity of the error incurred due to omission of 

explanatory variables. Arellano (1993) created tests of correlated effects based on the work of 

Hausman (1978) and Mundlak (1978). Frees (2001) introduced two “Augmented Regression” 

(AR) coefficient estimators that can be easily calculated from standard statistical software. Kim 
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and Frees (2005) introduced “intermediate level tests” for testing omitted effects at a single level, 

regardless of the presence of omitted effects at a higher level. 

There has been extensive research into the effects of omitted predictors using panel data 

in economic literature (Arellano, 1993; Frees, 2001; Kim & Frees, 2005; Rivkin, Hanushek, & 

Kain, 2005) but one may be hard-pressed to find a publication on this topic in an educational or 

psychological journal. It is also a rarity to find research focusing on the exclusion of important 

covariates in general multilevel models, or to come across studies that investigate the inaccuracy 

of parameter estimates when important level-2 interactions are omitted from a multilevel model. 

This study will explore the effectiveness of tests that claim to reduce imprecision of multilevel 

parameter estimates when an important level-2 interaction is omitted from the model. 

1.2 STATEMENT OF THE PROBLEM 

The main purpose of this investigation is to alert educational and psychological researchers that 

the omission of an important level-2 interaction in a multilevel model could result in imprecise 

parameter approximations when common estimation methods are used; however, alternative 

estimation techniques do exist that may reduce omitted variable bias. While prior research has 

focused on the omission of predictors, this research will focus on the omission of an interaction 

term. The severity of the bias incurred on parameter estimates when an important level-2 

interaction is omitted from a saturated model will be measured, and six estimation methods will 

be inspected in order to conclude which technique minimizes this bias. This investigation is 

performed to explore the following question: Which of six estimation methods (FML, ReML, 

FE, WLS1, WLS2 or WLS3) yields the least biased parameter estimates for the fixed effects in a 
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two level hierarchical linear model when an important two-level interaction term is omitted from 

the equation and: 

a. the level-2 sample size varies from small to large? 

b. the Intraclass Correlation (ICC) is varied? 

c. the strength of correlation between the level-2 predictors ranges from small to large? 

Note that two forms of misspecification are examined: a saturated baseline model that 

includes a level-2 interaction term, and a misspecified model that excludes the interaction term. 

The method of choice will be the estimation procedure that formulates approximations for the 

fixed effects that are most closely related to the saturated model after misspecification is 

imposed. This method can then be recommended for use by researchers when conducting future 

research using educational or child development data. 

1.3 SUMMARY OF THE STUDY 

The primary aim of this project is to examine methods that claim to reduce the severity of the 

inaccuracy sustained by estimators when a variable is omitted from a two-level model. The 

important predictor that will be excluded from the saturated model is a level-2 interaction created 

from covariates that have varying levels of correlation with each other and with the dependent 

variable. Six different estimation techniques will be analyzed (full maximum likelihood, 

restricted maximum likelihood, a Fixed Effects estimator, and three Weighted Least Squares 

methods) in order to judge which method produces the most accurate parameter estimates for 

simulated and real data with a structure that is commonly found in educational and child 

development datasets.  
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The simulation design of the study will be a factorial design, where estimations of the 

fixed effects will be obtained under various manipulations: (a) modifying the size of the sample 

at level-2; (b) manipulating the ICC; and (c) altering the size of the correlations between the 

level-2 predictors. A full explanation of the factorial design is available in the Methods chapter. 

This research will engage two levels of misspecification, including a saturated baseline model 

and a model that contains specification error. The misspecified model will result in the omission 

of a level-2 interaction term. Level-1 will represent the individual echelon, while level-2 will 

represent the group category. Each model’s parameters will be approximated using each of the 

six estimation procedures. The fixed effects from the baseline and misspecified models will then 

be inspected and evaluated.  

Data obtained from the Early Childhood Longitudinal Study (ECLS) will also be 

analyzed as a part of this study. Baseline and misspecified multilevel models will be created 

using instructional data that was obtained through observations and survey methods. The 

baseline model will contain one level-1 predictor and two level-2 predictors that are centered and 

then multiplied to form a level-2 interaction. The misspecified model will not contain the level-2 

interaction term. The six estimation procedures will then be utilized to obtain fixed effects for a 

two-level model. The performance of each estimation method will then be judged by inspecting 

the differences in estimates from the saturated and mispecified models. 
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1.4 HYPOTHESES 

Some general hypotheses of this study can be made based on a previous study by Frees (2001). 

Note that the "performance" of the method indicates the amount of bias introduced into the 

estimates as a result of using that method; increased bias yields poor performance: 

1.  All methods are expected to perform better as the ICC and level-2 sample size increase.  

2. It is anticipated that WLS1 and WLS2 will outperform all other methods, regardless of 

level-2 sample size, ICC or level of correlation of the level-2 predictors.  

3. WLS3, which collapses to OLS, is expected to perform the worst; it's used as a measure 

in order to determine if results are suitable.  

4. ML methods may perform well when uncorrelated interactions are excluded from the 

model, however these methods are anticipated to perform poorly when a correlated 

interaction is removed from the model.  

5. The Fixed Effects (FE) method is expected to perform better than the ML methods when 

the correlated interaction is removed from the model. 

The method of choice, or method which will be recommended to use in research, is predicted to 

be WLS2. For a description of each of the estimation methods, see the methods section. 
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2.0  REVIEW OF THE LITERATURE 

2.1 THE MULTILEVEL MODEL 

The goal of a multilevel approach is to provide information about the influence of grouping on 

individual behavior. This strategy of data analysis allows for the evaluation of several units; 

since classrooms are nested within schools, both variables would be considered groups in the 

analysis. The consideration of grouping effects enhances estimation of individual effects and the 

partitioning of variance and covariance components. Models that are utilized to examine data 

with a hierarchical structure are identified by various nomenclatures in research: hierarchical 

linear models (Kreft, de Leeuw, & Aiken, 1995; Bryk & Raudenbush, 1987); multilevel linear 

models (Goldstein, 1986); random coefficient models (de Leeuw & Kreft, 1986); and mixed 

effects models (Stram & Lee, 1994).   

Multilevel analyses typically investigate the relations of variables with different domains. 

School effectiveness research considers the relationship between school characteristics and pupil 

achievements; teacher instruction style and classroom climate are examples of variables with 

different levels. Goldstein (1991) suggested that an important aim of hierarchical analyses is to 

uncover which factors are associated with the success or failure of schools. Multilevel studies 

provide researchers with a tool for separating and examining the parts of educational data in 

order to arrive at a deeper understanding of school processes and determinants of achievement. 
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This is accomplished by measuring how both students and school characteristics contribute to 

observable educational outcomes. Goldstein (1991) recommends the use of multilevel results as 

a diagnostic tool for exploring the nature of school effectiveness rather than using results to rank 

school from “good to bad”.  

There are a multitude of reasons to use multilevel models. An advantage of using 

hierarchical linear modeling versus a more traditional approach concerns the segregation of 

effects due to observed and unobserved group characteristics. In a fixed effects model, 

influences of the group-level predictors are confounded with the effect of the group variables; 

it’s not possible to separate effects due to observed or unobserved group characteristics. In a 

multilevel model, i.e. random effects model, effects of both types of variables can be estimated. 

Clusters in the sample are treated as a random sample from a population of groups, thus 

inferences can be made beyond the sample when using a hierarchical paradigm; however this is 

not possible when using a fixed effects model.  

Traditional regression techniques mandate the assumption of independent subjects, yet this 

assumption is often violated when subjects are nested within groups. Ordinary Least Squares 

(OLS) methods assume that a subject’s behavior is independent of other subjects and do not 

consider that a shared behavior could be present within a particular group, thus introducing the 

possibility of dependency among observations. The existence of an Intraclass Correlation (ICC), 

which is the proportion of variance due to groups, indicates that a multilevel approach is 

necessary for accurate results. The disregard of hierarchical structures results in underestimated 

standard errors of the regression coefficients, leading to an overstatement of statistical 

significance. Multilevel analyses do not require the assumption of independence of subjects in 

view of the fact that residual components exist for each level of the hierarchy. 
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2.1.1 Basic Data Structure 

Appropriate analytical models must be used to explore nested data. The three basic variable 

types in a hierarchical structure of educational data include: background, such as gender or 

ethnicity; educational process, such as instructional method; and outcome, such as academic 

performance (Burstein, 1980). In hierarchical models, separate predictors distinguish between 

the individual units, also known as level-1 units, and group units, also referred to as level-2 units. 

Each level-1 model is defined for each level-2 unit. The level-1 model includes individual-level 

predictors with an individual-level dependent variable. The level-2 model relates the parameters 

of the level-1 model to level-2 predictors. 

2.1.2 Notation 

The level-1 model can be expressed as: 

jjjj rXY += β  ,       ( )INrj
2,0~ σ                      (2.1) 

where  is a  vector of outcomes,  is a jY 1×jn jX qn j ×  matrix of level-1 predictors, jβ  is a 

 vector of level-1 coefficients, and  is a 1×q jr 1×jn  vector of residuals with a multivariate 

normal distribution with a mean of 0 and a variance-covariance matrix of , where I is the 

identity matrix. 

I2σ

 The level-2 model can then be explained as: 

jjj uZ += γβ    ,     ( )Τ,0~ Nju                           (2.2)  
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where is a  vector of level-2 predictors, jZ fq× γ  is a 1×f  vector of fixed effects, and  is 

a  vector of level-2 random effects with a multivariate normal distribution, a mean of 0 and 

a q  variance-covariance matrix 

ju

1×q

q× Τ , expressed in a two-level model as:  

=Τ
















−−

−

− )1)(1(

)1(0

0)1(

00

qq

q

q τ

τ

τ

τ
M

L

O

L

M    (2.3) 

Substitution of the level-2 model into the level-1 model yields the combined model: 

jjjjjj ruXZXY ++= γ  ,   (2.4) 

which is a special case of the mixed model 

jrjrjffjj rAAY ++= θθ      (2.5) 

where , jjfj ZXA = γθ =f , , and jrj XA = jrj u=θ . 

2.1.3 Assumptions 

Assumptions regarding the model of the data depend on the level of the predictors; coefficients 

of all but the highest-level factors may be treated as random, while the highest-level factors are 

fixed. Treating coefficients as random allows for a generalization from the sample to the 

population. Groups are interpreted as a sample of all possible clusters, and since level-1 

coefficients are free to vary across group units, inferences can then be made to the population.  

 The two-level hierarchical linear model is based on a number of assumptions, which 

include: (a) Each  is independent and normally distributed with a mean of zero and variance 

for every level-1 unit within each level-2 unit; (b) The level-1 predictors are independent of 

the individual-level residuals; (c) The vectors of random errors at level-2 are multivariate 

jr

2σ
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normal, independent among the level-2 units, each with a mean of zero and variance qqτ ; (d) 

The level-2 factors are unrelated to the level-2 residuals; (e) The level-1 and level-2 errors are 

independent of each other; and (f) The predictors at each level are not correlated with the 

random effects at the other levels. If these assumptions are not met, the procedures for 

estimating coefficients may lead to incorrect results.  

 The assumption of a model can be tested using a variety of statistical procedures. The 

researcher should ask the following questions when checking assumptions (Snijders & Bosker, 

1999):  

(a) Does the fixed part contain the right variables? Snijders and Bosker (1999) 

suggest a transformation of explanatory variables in order to enhance the 

specification of the fixed part of the multilevel model. Examples of possible 

transformations involve aggregation to group means or to group standard 

deviations, as well as non-linear transformations.  

(b) Does the random part contain the right variables? Snijders and Bosker (1999) 

advocate checking for the randomness of slopes of the variables of interest when 

examining the random part of the model. A random slope indicates a 

heteroscedastic specification of the variances of the observations and of the 

covariance between level-1 units in the same group. Heteroscedasticity of level-2 

variance indicates non-constant variance; this may result due to unobserved 

contextual factors that exhibit on level-2 data or from differences in the variation 

of different subgroups in the level-2 groups (Cook & Weisberg, 1982).  

(c) Are the level-1 residuals normally distributed? Hilden-Minton (1995) advises that 

inspecting level-1 and level-2 residuals separately is desirable for model checking 
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in multilevel analyses. Level-1 residuals can be estimated so that they are 

unconfounded by the level-2 residuals. This is accomplished by using a within-

group OLS procedure. 

(d) Do the level-1 residuals have constant variance? Once the estimated level-1 

residuals are obtained via an OLS within-group regression, plots of the residuals 

versus the level-1 predictors can be examined to determine if variance is constant. 

(e) Are the level-2 random coefficients normally distributed? It is not possible to 

estimate level-2 residuals unconfounded from the level-1 residuals. Longford and 

Lewis (1998) discuss checking the level-2 residuals using an empirical Bayes 

technique.  

(f) Do the level-2 random coefficients have a constant covariance matrix? Examining 

the influence of the level-2 residuals can determine how strongly parameter 

estimates are affected if a particular group is eliminated from the data. 

2.1.4 The Intraclass Correlation  

The ICC is the proportion of variance in the dependent variable that is due to grouping effects 

(Raudenbush & Bryk, 2002). A non-zero ICC indicates that the assumption of independent 

subjects is violated, and using a traditional regression model will lead to deceptive results. 

Acknowledgement of an ICC means acknowledgement of grouping effects, thus a hierarchical 

model is needed to represent the data. The ICC can be modeled as: 

 

               ( )2
00

00

στ
τ
+

=ICC .    (2.6) 
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Although testing for a non-zero ICC will provide researchers with information about the nesting 

structure of the data, misspecification in a hierarchical model can still occur.  

The manipulation of the ICC in simulation studies makes results more generalizable, as 

different statistical techniques may perform differently under various ranges of the ICC. 

Afshartous and de Leeuw (2005) performed a study of prediction in multilevel models. They 

examined three different prediction methods: multilevel, prior, and OLS. The manipulated 

factors in the study included the ICC, which ranged from low, .2 to high, .8, and level-2 sample 

size, which ranged from 10 to 300. Findings indicated that the multilevel prediction method 

performed the best; however, the differential between the multilevel prediction method and the 

OLS prediction method decreased as level-2 sample size increased and the ICC increased.  

According to Raudenbush and Bryk (2002), a typical ICC value in educational research ranges 

from .05 to .20. A study by Reise, Ventura, Nuechterlein, and Kim (2005) studied data from 73 

patients with a recent onset of schizophrenia using four-step multilevel factor analysis. The ICC 

for eight appraisal items ranged from .09 to .32. Weisner (2004) varied the ICC in his study at 

.10, .20 and a high value for educational data, .30. Darandari (2004) utilized data collected from 

the Florida Comprehensive Achievement Test (FCAT) in a study of parameter estimates under 

violations of homoscedasticity and independence. The ICC value calculated from the FCAT data 

was .16. 
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2.2 MODEL MISSPECIFICATION 

Researchers such as Bryk and Raudenbush (1988) and Burstein (1980) maintain that the use of 

hierarchical linear modeling illuminates relevant questions concerning school effectiveness 

research. The key interest in educational research is how individual growth is influenced by 

background characteristics and educational experiences. Although there are several advantages 

to using a multilevel approach versus a more traditional method, circumstances still arise that 

are of concern to the researcher. One of these problems is model misspecification, which can 

occur for several reasons. According to Snijders and Bosker  (1999), model misspecification 

can occur due to omitted variables, general misrepresentation of the relations in the data, and 

the invalidity of hypothesis tests. Several researchers have concluded that inconsistency of 

findings in school effectiveness research is due to the unsuitability of the models used in the 

statistical approach (Goldhaber & Brewer, 1997; Ludwig & Bassi, 1999; Bonesronning, 2004; 

Marsh, 2004). A consequence of incorrectly stipulating a hierarchical model is inaccurate 

parameter approximations that can result in misleading conclusions by the researcher.  

The use of a multilevel framework does lend an advantage to the social science researcher. 

Accounting for effects of omitted variables in single level data requires the use of complex 

statistical techniques to overcome the resulting bias in parameter estimates. The inaccuracy of 

approximations results when the covariates already in the model serve as partial predictors for 

correlated variables not included in the analysis. In a hierarchical linear modeling analysis, 

estimators that account for and reduce this bias have been created. These estimators have been 

examined in panel data, but little research on the value of these estimators has been done in the 

educational field. 
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2.2.1 Effects on Estimates when a Nesting Level is Ignored 

Several researchers have addressed the statistical issues that arise when a level of the 

hierarchical data structure is disregarded. Moerbeek (2004) utilized a three level data structure 

to examine the consequences of ignoring a level of nesting in multilevel analysis. Pupils (i), 

classes (j), and school (k) constituted the three levels of nesting. The model was represented as: 

ijkjkkijkijk rvXY ++++= µγγ 10           (2.7) 

where jkkv µ,  and  represent the random effects at the school, class, and pupil level, 

respectively, and  The variances of the random 

terms are known as the variance components, since they contribute to the total variance of the 

outcome variable given the fixed part 

ijkr

~k ).,0(~),,0(~),,0( 222
rijkjks NrNNv σσµσ µ

ijkX10 γγ + , so that 

222)( rvijkYVar σσσ µ ++=   .                   (2.8) 

The pupil level outcome variable was continuous, and it was related to a continuous or 

binary fixed predictor variable. The balanced design contained a number of schools, denoted by 

 a number of classes which were sampled from each school, , and a number of pupils 

sampled from each class, . Predictor variables were measured at the pupil, class, or school 

level. If a predictor was measured at the pupil level, it was assumed to vary at the pupil level 

only and was centered to have a zero mean within each class. A variable measured at the class 

level was assumed to vary only at the class level and was centered to have a zero mean within 

each school. The school level predictors were centered to have a grand mean zero.   

,3n 2n

1n

Moerbeek (2004) discovered that when the top level of a hierarchical linear model was 

ignored, the variance component at the top level was added to the intermediate level while the 
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variance at the bottom level was unchanged. The variance component at the intermediate level 

was distributed among the remaining levels if the intermediate level was ignored; distribution 

depended on sample sizes of the levels. Ignoring a level also affected the power of the statistical 

test of the effect of a predictor on an outcome. When the top level was ignored, power for the 

lower level predictors was not affected; however, when the intermediate level was ignored, 

power decreased. These findings only held for balanced designs. 

 Opdenakker and Van Damme (2000) used data from the Longitudinal Research in 

Secondary Education Project of Van Damme, De Troy, Meyer, Minnaert, Lorent, Opdenakker 

and Verdyckt (1996) to study the effects of ignoring top and intermediate levels in a model with 

four hierarchical levels: (a) the individual pupil; (b) the class group; (c) the teacher; and (d) the 

school. Models that were explored ignored various levels of the hierarchy; one model ignored 

the highest level (school), another ignored the highest two levels (school and teacher), and 

others ignored one or two intermediate levels. The combination of ignoring a top and 

intermediate level was also explored; which led to six other models. 

 In order to address the implications of ignoring levels on the variance structure, the null 

model with four levels was compared to the solutions obtained from the various two and three 

level models. Explanatory variables were entered into the various models in order to determine 

the effects of ignoring levels on fixed effects coefficients. The difference between the relevant 

parameter of the fourth level model and the parameter of the misspecified model was obtained; 

this difference was then divided by the standard error of the parameter of the fourth level model. 

 Results indicated that ignoring a top level yielded an overestimated variance associated 

with that level; however the variance of the other levels was unaffected. Ignoring an 

intermediate level caused an overestimation of the variance belonging to the level just above 
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and the level just under the level which was ignored. The parameter estimates of independent 

variables were not affected by ignoring the top level of the hierarchy; however, when the school 

and teacher levels were ignored, several parameter estimates displayed either small or medium 

sized differences. The case of omitting intermediate levels yielded parameter estimates that 

were strongly different from approximations obtained in the four level models. Opdenakker and 

Van Damme (2000) suggest that all nestings should be accounted for in a multilevel model, 

even if no explanatory variables are available. 

 Hutchison and Healy (2001) manipulated unpublished data obtained from schools in 

England to calculate variance component approximations for mathematics attainment scores 

using two (pupils within schools) and three level models (pupils within classes within schools) 

for 2718 pupils. A scan of the estimates showed that the between pupils component was greater 

for the three level model than the two level model; this was expected since the three level model 

accounted for between class differences. The between schools component was elevated for the 

three level model versus the two level model. This was surprising since there had been no change 

in the mean performance of each school. Hutchison and Healy (2001) decided that the estimated 

error variance of higher-level means tended to be diminutive when the presence of a hierarchy at 

a lower level was ignored. The accuracy of the estimated school means was inflated using the 

incorrect model, so the estimate of the true variability was also inflated. The observed school 

level variance was a combination of true variance and error variance; thus an underestimate of 

the error variance led to a corresponding overestimate of the true variance. 
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2.2.2 Adjusting for Omitted Variables in Multilevel Models 

2.2.2.a  A Bootstrap Method 

Chamberlain and Griliches (1975) described the circumstances of excluding an important effect 

in a study of income and family data as omitted variable bias, a common specification problem 

in social and behavioral science research due to imperfections in data collection. Although 

several family background variables can be entered into a statistical model for the purpose of 

examining within-family effects, unobservable correlated family variables that are not estimated 

will still bias parameter estimates of covariates in the model. In the event that a missing variable 

affects more than one dependent variable, Chamberlain and Griliches (1975) suggested the use 

of a bootstrap approach to controlling bias. The model was expressed as: 

 

  kkskkk aYXY µγβα +++=  

  
ijttf

sss

gfa
waXY

+=
++= γα

,                                            (2.9) 

where there were an unspecified number of X independent variables, depending on restrictions 

placed on α , and a left-out random unobservable variable which affected both Y  and Y . 

The unobservable variable  had a peculiar variance component structure with observations 

being available for members in each of  families. In Equation (2.9), assume no correlation 

between the and 

tfa s k

tfa

.' sk

jp

s

iq

wsa ',' µ  If 0=sγ , the system of equations was approximated using least 

squares estimation, but in the case of 0≠sγ , a complicated process was needed.  
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The bootstrap procedure designed by Chamberlain and Griliches (1975) involved the use 

of a multivariate regression model with several restrictions on the variance-covariance structure 

in order to partition the between and within group variance.  Data from 156 brothers in Indiana 

was used to form an income-occupation-schooling model.  The new method was compared to 

existing maximum likelihood procedures by evaluating the likelihood ratio of the obtained 

estimates. Their elaborate procedure was designed to detect possible sources of bias but yielded 

results that were not much different than simpler maximum likelihood methods. The authors 

recommended that further studies should be done to examine computational and interpretational 

differences between fixed and random effects, and more information is needed regarding studies 

using unbalanced data. 

2.2.2.b  Semi-Parametric Lower Bound Approximations 

Rivkin, Hanushek, and Kain (2005) considered the impact of schools and teachers in 

influencing achievement while directing special attention to the potential problem of omitted or 

mismeasured variables. Unique matched panel data was obtained from the UTD Texas Schools 

Project, which consisted of three cohorts that each contained more than 200,000 students. The 

primary objective of the analysis was to obtain approximations of differences in teacher 

contributions to student learning that eliminate possible sources of contamination from student 

selection or teacher assignment practices. The model described a decomposition of education 

production during grade g into a set of fixed and varying time factors: 

 

                                   (2.10) .c
ijgssji

c
ijgs vA +++=∆ δθγ
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In Equation (2.10), test score gain is modeled as an additive function of student ( )γ , teacher 

( )θ , and school ( )δ fixed effects with a random error (v) that is a composite of time-varying 

components.  

 In the semi-parametric approach of Equation (2.10), the variance of θ  measured the 

variation in teacher quality in terms of student achievement gains. Rivkin, Hanushek, and Kain 

(2005) adopted a strategy that made use of information on teacher turnover and grade average 

achievement gains to generate a lower bound estimate of within-school estimate of teacher 

quality. The average gains made in the same grade were compared using two cohorts of 

students; the focus was limited to students who remained in the same school for grades g-1 and 

g. There were two potential sources of upward bias: (a) omitted variables and (b) teachers who 

exited the study were not drawn randomly from the teacher quality distribution.   

In order to adjust for possible causes of bias, a comprehensive control for other time-

varying factors in the schools was implemented by examining the turnover of teachers not 

involved in the specific subject of interest. Regressions on the squared between-cohort 

differences in gains on the proportion of teachers who were different (not involved in the subject 

of interest) and other covariates were performed to calculate parameter estimates. The 

semiparametric lower bound approximations of variance in teacher quality revealed that teachers 

have strong influence on reading and math achievement; however, only a minuscule portion of 

variance in teacher quality was explicated by the available characteristics such as education or 

experience. 
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2.2.2.c  Alternative Estimators 

Although the experiment conducted by Rivkin, Hanushek, and Kain (2005) provided insight 

into possible influence of unobservable characteristics, their complicated approach to 

controlling for omitted variable bias may not be attractive to many educational researchers.  

Alternative estimators that help control for the effects of missing variables exist in a multilevel 

framework. The estimation procedures that reduce bias in parameter approximations have roots 

in regression and panel data analyses.  Arellano (1993) created Hausman-type-tests (Hausman, 

1978) of correlated effects based on a comparison of the within-groups (WG) estimators and 

Generalized Least Squares (GLS) estimators. The model used was expressed as: 

 

 ( )iiit XyE η,| = iitX ηβ +′ ,               NiTt ,...1,,...,1 ==                             (2.11) 

 

where iη  was an unobservable individual effect, and T represented the number of time periods. 

Additionally, the  , , and Tiii IXy 2),|var( ση = 2)|var( ηση =ii X 22

2
2

ησσ
σψ

T+
= . The null 

hypothesis under consideration was )|(:0 ii XEH η =0 with an alternative ‘Hausman’ 

hypothesis of λη iii XXEH =)|(:1

)1(

.  A decomposition between the within-groups and 

between-groups variation was performed using techniques described by Arellano and Bover 

(1990) to produce a transformed 1×−T

)|( ** βiii XXyE =

 vector , and the transformed system under the 

alternative hypothesis,  In other words, the T equations of a linear regression 

with individual effects was split into two different regressions with uncorrelated errors: (a) a 

within-groups regression comprising the first T-1 equations and (b) a between groups regression 

*
ity

.
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consisting of the last equation. The WG estimator was  and the GLS 

estimator was expressed as

**
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 ( ) ( )WGGLSGLS ββ ˆˆ1
−

−
.                            (2.12) 

 

The Hausman test of the between-groups (BG) regression was also performed: 

( ) ( ) (WGBGBGBG bhXXTVyXXXb βψσ ˆˆ,,ˆ 1221 ′
−=′=′′=

−− .  The purpose 

of the test was to examine the ‘stability’ of the two regressions; the Hausman test was also 

obtained as a Wald test based on a particular specification of the alternative hypothesis. 

 Frees (2001) extended the work of Arellano (1993) by creating estimators that reduce the 

bias in parameter approximations for longitudinal data models due to omitted variables. The 

matrix form of his model was expressed as: 

 

  iiiiii XZY εβα ++=    ,                                          (2.13) 

 

where  Y  was the T  (maximum number of time periods) vector of observations for the ii i
th 

subject and iε  was the corresponding mean vector of disturbances. The term iiZ α  allowed the 
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model to account for slope effects that may vary from subject to subject. Z  was a T matrix 

of explanatory variables and  was a T

i qi ×

iX Ki ×  matrix of explanatory variables. Frees (2001) 

approximated the parameter estimates for Equation (2.13) using a fixed effects estimator based 

on the work of Mundlak (1978) and Hausman (1978), two augmented regression estimators that 

were extensions of Arellano’s (1993) work, and maximum likelihood. The fixed effects 

estimator was expressed as: 
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where )var( iiR ε= and 2
11

12
1

−−− ′

= jjjjj RZZZRQ . The two augmented regression 

estimators were formulated as: 
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In Equation (2.15), ′−

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
 ′= 1XXC ii , , and . 

The first augmented regression estimator was formed using =

iii GWXD ∑ −′= 1
1

iG

−= ii GD 1
2

ii X ′1 . The second augmented 

regression estimator split the explanatory variables X into two parts, ( )1( ,itXX , where 

1)2( −= iit TX  and )2(1 ii X=iG . The weighting matrix,W , was based on estimates of the variance 

formed with known parameters using maximum likelihood estimation. 

i
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The performances of the fixed effects, augmented regression, and maximum likelihood 

estimation procedures were compared by calculating the bias and Root Mean Square Error 

(RMSE) associated with each method for 1,000 replications in a Monte Carlo study. The model 

used by Frees (2001) incorporated a variable that accounted for omitted effects. The correlation 

level of this variable was manipulated to be set at either zero or greater than zero. Maximum 

likelihood estimation performed poorly as compared to the other estimators in terms of bias and 

RMSE when correlated effects were omitted from the model. When uncorrelated effects were 

excluded from the model, ML procedures were shown to be the most efficient.  

The recommendations that resulted from the study by Frees (2001) included the use of the fixed 

effects estimator for large and moderate samples in order to detect that correlated effects are 

omitted from the longitudinal model, while the augmented regression procedures surpassed the 

performance of the fixed effects and maximum likelihood methods. Frees (2001) suggested the 

use of augmented regression estimators for several reasons: (a) no specialization software is 

required if they are used as an application of ordinary regression calculations; (b) they are easy to 

generalize to unbalanced models; and (c) they can be modified to provide estimators that are 

consistent to heteroscedasticity and serial correlation misspecification. 

2.2.2.d  Single-level Versus Multilevel Tests 

Kim and Frees (2005) expanded the work of Frees (2001) by presenting a statistical 

methodology for handling omitted variables in a hierarchical modeling framework. Their 

simulation study revealed that the omission of variables yielded bias in regression coefficients 

and variance components. When variables were omitted from lower levels of the multilevel 

model, the parameter estimates were more biased than when variables were omitted from the 

 24 



higher levels. New options for handling omitted variables were proposed using multiple-level as 

well as single-level tests, which test for omitted effects at a single level.  

 The multiple-level test statistic for the test of no omitted effects used a concept based on 

the work of Arellano (1993). A GLS estimator was compared to an OLS or GLS estimate of 

parameters using a transformed system. The multiple-level test used all estimates, regardless of 

level, and was expressed as: 

 

  ( ) ( ) ( )reevreeovreeovov bbVarbVarbbb ,10,1
1

,1,1,1,1
2 −−′−= −χ                 (2.16) 

 

where ))()(())()(( 1
,1 YYXXXXXXb ov −′−−′−= −

ovb ,1 reeb ,1

 and b  was an estimator produced from 

GLS routines. The test statistic formed in Equation (2.16) measured the distance between the 

vectors  and , and was distributed as a chi-square with degrees of freedom equal to the 

number of parameters in 

ree,1

β .   

The single-level test statistic developed by Kim and Frees (2005) was expressed as: 

 

 ( ) ( ) ( ))2(,1)1(,1
1

)2(,1)1(,1)2(,1)1(,1
2

)1( ovovovovovovov bbVarbVarbbb −−′−= −χ .      (2.17) 

 

In Equation (2.17), b  was a Weighted Least Squares (WLS) estimator of the equation )1(,1 ov

 

    εβ QQXQY += 1                                                (2.18) 

where Q was a transformation matrix orthogonal to Z so that QZ=0. Thus the WLS estimator 

became: 
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                                                         (2.19) ( ) ( YQQWXXQQWXb ov ′′′′′=)1(,1 )

 

where W was a corresponding matrix of weights: W . The robust estimator obtained 

from GLS was compared to an OLS estimator of an estimate of the level’s parameters. The test 

statistic had an asymptotic chi square distribution with the degrees of freedom equal to the 

number of parameters in that level. The basic principle of the test was to measure the effects of 

omitted variables in one level of a multilevel framework.  

1)(var −= ε

 Kim and Frees (2005) also investigated the performance of the multiple and single level 

tests using a simulation study that compared the following models: no omitted effects; omitted 

effects at level-1 only; omitted effects at level-2 only; and omitted effects at both level-1 and 

level-2. Findings revealed that the single-level test provided substantially higher power than the 

multiple-level test in most conditions. The results of the simulation study suggested that lower 

level omitted variables yield more serious bias in regression coefficients than excluded variables 

in higher levels with the same degree of correlations with other predictors and the dependent 

variable. 

2.3 ESTIMATING MULTILEVEL EFFECTS 

This study will extend the work of Frees (2001) in order to examine six estimation methods: Full 

Maximum Likelihood (FML); Restricted Maximum Likelihood (ReML); a Fixed Effects 

Estimator (FE); Weighted Lest Squares 1 (WLS1); Weighted Least Squares 2 (WLS2); Weighted 
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Least Squares 3 (WLS3). WLS1, WLS2, and WLS3 are modifications of Equation (2.14) ; where 

WLS1 uses variances of excluded variables as weights, WLS2 uses estimates of the variances of 

variables in the model as weights, and WLS3 uses the identity matrix, making it equivalent to 

OLS estimation. 

2.3.1 Maximum Likelihood Estimation 

A two-level hierarchical analysis requires the estimation of three parameters: fixed effects; 

random coefficients; and variance-covariance components. Numerous methods of estimation are 

available; typical choices are Maximum Likelihood (ML), Iteratively Generalized Least Squares 

(IGLS) and various Bayesian methods. Bayesian methods are superior to ML methods when 

small samples are used. The two types of ML estimation, full maximum likelihood (FML) and 

restricted maximum likelihood (ReML) are the focus of this study.  

 The main purpose of ML estimation is to choose estimates of parameters ( and ,, 2σγ Τ ) 

for which the likelihood of observing the outcome Y is a maximum. With large samples, 

maximum likelihood estimates will be near the true parameter with high probability; they will 

also be unbiased with minimum variance. Designating Y as a vector of level-1 outcomes, and u 

as the vector of random coefficients at level-2, let ω  denote a vector of all variance 

components, covariance components and fixed coefficients to be estimated. The probability 

distribution of the outcome at level-1 given the random effects and parameters is: 

),|( ωuYf     (2.20) 

The level-2 distribution of random effects given the parameters is: 

).|( ωup     (2.21) 
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The likelihood of the data given the parameters would then be: 

∫= .)|(),|()|( duupuYfYL ωωω       (2.22) 

Maximum likelihood estimation creates estimates based on maximizing the probability that the 

observed covariances are drawn from a population assumed to be the same as that reflected in the 

coefficient estimates. The main assumptions associated with ML estimation are: (a) large sample 

sizes are needed for accurate estimates; (b) variables are continuous with a multivariate normal 

distribution; and (c) a valid model specification. 

 

2.3.1.a  A Fisher Scoring Algorithm 

Longford (1987) proposed a Fisher scoring algorithm for ML estimation, which converges 

rapidly and does not require the inversion of large matrices. Consider the model for the level-2 

unit j to be 

jffjj eAY += θ ,       ,             (2.23) ),0(~ jVNe

where  was the  outcome vector,  was the jY 1×jn fjA qn j ×  matrix of predictors, fθ  was the 

 vector of fixed effects, and 1×f jrjj rAe rj += θ , and ),,0(~~ 2 INr σθ ),,0(N Τ

.                                       (2.24) 2 IAAV rjrjj σ+′Τ=

In Equation (2.24),  was a matrix of predictors, andrjA qn j × rjθ  was a q  matrix of random 

effects. 

1×

The log likelihood of the Fisher scoring algorithm was represented as: 
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where C= N log (2π ).  The derivatives with respect to the random-effect parameters were 

obtained by setting the expectation of the log likelihood to zero: 

         { } { } ( ),/)/(/)det(log 11 τττ ddVVtrddVVtrdV −− =−=d      (2.26) 

where τ  was an element of the variance-covariance matrix Τ . The first-order derivative of 

fixed effects was: 

λd / d   ,                                    (2.27) jfjf eVA 1−′−=θ

and the second order derivative was: 

fjfjff AVAddd 12 )//( −′−=′θθλ .                        (2.28) 

The Fisher scoring algorithm required initial estimates for the parameters: θ  estimates 

were obtained from a fixed-effects-only regression;  the covariance 

elements of  were initialized as 0; and for , a noniterative algorithm: 

;)()0(ˆ 1 YAAA fjfjfjf ′′= −θ

Τ 2σ

).0(ˆ
ffjrjrj AAYA θ′−′                                           (2.29) 

Iterations were then begun which required the within-group cross products of Y and  

which contain all the cross products of . These cross products and the cross products of 

 produced all the cross products that affect the vector of residuals; therefore no 

calculations were performed at the individual level. The iterations were terminated when a 

convergence criterion was satisfied. Longford (1987) did caution that the constraint of 

nonnegativity of variance-covariance matrices might be difficult to deal with; therefore the use 

of centered variables was recommended to yield covariances closer to zero. 

rjA′ rjAX ′

rjrj AA′

YYYAAA fjfjfj ′′′ ,,
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2.3.1.b  Two Types of ML Estimation 

Maximum likelihood estimation can be accomplished in two ways, full maximum likelihood 

(FML) and restricted maximum likelihood (ReML). FML chooses estimates of and 2,σγ Τ  that 

maximize the joint likelihood of these parameters for a fixed value of the sample data. Under 

FML theory, the large sample distribution of γ̂ , given the true ,γ  is normal with a mean of γ  

and a standard error that is computed from the Fisher information matrix. The large sample 

distribution of the estimate , given the true Τ̂ Τ , is normal with a mean of Τ  and a standard 

error that is computed from the Fisher information matrix.  ReML begins with defining a 

likelihood for  and for any possible value of Τ 2σ γ , say mγ , which is expressed as 

. Averaging over all possible values of yields a likelihood of 

 and given Y alone. This is the restricted likelihood,  since 

),|,( 2 YL mm γσΤ

Τ 2σ

),,( YΤ

)(L Τ

| mγ

| Y

2σ

, 2σ

Lm

γ is not included. 

Under ReML estimation, the large sample distribution of the estimate MLRτ , is normal with a 

mean of qqτ  and a standard error computed from the Fisher information matrix. 

The distinction between the FML approach and the ReML approach is that estimates of 

variance-covariance components using ReML adjust for uncertainty about fixed effects, while 

FML estimates do not. FML and ReML will produce similar results for the two-level HLM, yet 

there may be differences in Τ  When the number of level-2 units, J, is small, the FML variance 

estimates will be smaller then ReML by a factor of approximately (J-F)/J, where F is the total 

number of elements in the fixed effects vector (i.e., elements of 

.

γ ) (Raudenbush & Bryk, 

2002). 
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Snijders and Bosker (1999) point out that ReML approximates the variance components 

while taking into account the loss of degrees of freedom resulting from the estimation of the 

regression parameters, while FML does not take this into account. FML calculations of variance 

components then have a downward bias, while ReML computations do not. Thus ReML 

estimation is preferable to FML with respect to the approximation of the variance parameters; 

however FML is more convenient if the researcher is interested in deviance tests. 

2.3.1.c  Comparing ML Methods 

Raudenbush and Bryk (2002) advise using FML or ReML, for two level models, while FML is 

recommended for three level models. FML and ReML supply convergent results in large 

samples; but small sample results may be quite different for the three procedures. ML 

estimation requires the researcher to “maximize the likelihood”, that is, to choose estimates of 

and  for which the likelihood of observing Y is a maximum. In most cases, there is no 

closed-form expression for the maximizer of the likelihood, and an iterative scheme is required. 

A popular choice is IGLS (Goldstein, 1986).  

,, 2σγ Τ

 The choice of the estimation methods depends on the researcher’s data and design. Large 

sample sizes are needed to obtain accurate estimates when using ML estimation. The researcher 

also has a choice between FML and ReML. FML estimation is more convenient when 

performing deviance tests; however ReML produces unbiased estimates of the variance 

parameters and is preferred when this is an area of concern (Snijders & Bosker, 1999). FML and 

ReML estimates can also be obtained by IGLS (Goldstein, 1986) and RIGLS (Goldstein, 1989) 

procedures, respectively. Carroll and Ruppert (1982) discovered that GLS estimates are less 

sensitive than ML estimates to small misspecification in the functional relationship between the 
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error variances and regression parameters. Researchers dealing with small sample sizes should 

use Bayesian estimates in order to obtain accurate estimates. 

 

2.3.2 The Fixed Effects Estimator 

The Fixed Effects (FE) estimator proposed by Frees (2001) is expressed in Equation (2.13). 

Fixed effects estimation is often used by economists but rarely by educational researchers, who 

prefer a random effects approach (Raudenbush & Bryk, 2002; Ballou, Sanders, & Wright, 2004). 

A random effects approach treats individual heterogeniety as part of the model's error term; thus 

the correlation between the unobserved individual effects and other variables in the model can 

lead to biased and inconsistent estimates of the effects of those variables. Frees (2001) justifies 

the use of a fixed effects estimator as it does not suffer the same shortcomings as a random effect 

estimator; that is, it can produce estimates that adjust for omitted effects. Since this study's focus 

is to examine the performance of estimation techniques when a level-2 interaction is omitted 

from a multilevel model, the fixed effects estimator is included as one of the methods of interest. 

2.3.3 The WLS Estimators 

Three Weighted Least Squares (WLS) estimators will be utilized in this study. Each of the three 

WLS estimators is based on the AR estimator proposed by Frees (2001), which can be found in 

Equation (2.15). The WLS estimator is expressed as: 
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where the modification from Equation (2.15) is represented by a change in  

. is varied to form the three different estimators: (a) 

estimators of the variance that include omitted terms (WLS1); (b) estimators of the variance that 

do not include the omitted terms (WLS2); and (c) the identity matrix (WLS3). Since WLS1 uses 

estimates of the variance that includes the terms that have been left out of the model, researchers 

may not often use it; however it is included in the simulation portion, where the variance of the 

omitted interactions can be estimated. WLS2 would probably be an estimator that would be 

utilized in research, since the variance of the predictors in the model could be calculated.  The 

use of the identity matrix as a weight function in WLS3 causes it to be identical to OLS 

estimation. Although it has been shown in previous studies (Lockwood & McCaffrey, 2007) that 

OLS methods produce biased results, WLS3 is examined in this study in order to clarify the 

results. That is, estimates using the WLS3 estimator should be more biased than the results using 

other approximation techniques. 

:jG
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2.3.4 The Use of Statistical Packages 

SAS is a statistical software package that offers several procedures (PROCs) that are designed 

to implement various mixed models (Littell, Milliken, Stroup, Wolfinger, & Schabenberger, 

2006). Various techniques can be chosen based on errors (correlated vs. independent), random 

effects and nonlinearity for normally distributed or non-normally distributed responses. SAS is 

also flexible in the sense that the researcher can choose covariance structure, estimation 
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methods, and degrees of freedom methods as the model is analyzed. SAS can also be 

programmed to perform simulation studies (Fan, Felsovalyi, Sivo & Keenan, 2002) that 

integrate PROC statements with Interactive Matrix Language (SAS Institute, 1999) routines. 

 Singer (1998) provided a description of using SAS PROC MIXED using school effects 

models and individual growth models. SAS PROC MIXED was developed as a “mixed” model 

with both fixed and random effects; it was introduced in 1992. SAS PROC MIXED can be used 

to fit two-level, three-level (Bryk & Raudenbush, 1988) and higher level models; many options 

are available to fit complex models. The ReML estimation method is the default for this 

programming package; FML is optional through syntax.. Singer presented a step-by-step 

tutorial for researchers who may be unfamiliar with SAS syntax and programming logic; the 

purpose is to show how PROC MIXED can be used to fit many common types of multilevel 

models.  

 Another commonly used statistical package used to evaluate multilevel models is HLM. 

Zhou, Perkins, and Hui (1999) compared the performance of SAS and HLM as well as three 

other statistical packages (MLn, Mlwin, and VARCL) using datasets with a three-level data 

structure. One covariate (predictor) was used at each level. Estimation results using FML and 

ReML were reported. Estimates for all fixed effects and standard errors were almost exactly the 

same across all packages. HLM was reported to have the most “portability”; it allows the user to 

use other statistical packages to input data and generate desired outcomes. The SAS PROC 

MIXED procedure had the most error distributions and link functions available, which is 

attractive to users who are familiar with SAS programming. Error distributions include binomial, 

Poisson, gamma and inverse Gausian; while link functions available are logit, probit, log, 
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cloglog (complementary log-log), loglog, power, exponential, reciprocal and nlin. The flexibility 

of SAS makes it the program of choice for this study. 

2.4 MODERATING RELATIONSHIPS 

A moderated relationship, also known as an interaction, allows the association of the dependent 

variable and a predictor to depend on the level of another predictor. Aiken and West (1991) 

explained that many hypotheses require analyses of interactions in order to obtain relevant 

findings, and that oftentimes these interactions are missing from the researcher’s model 

2.4.1 Appropriate Use of Moderators 

Irwin and McClelland (2001) argued that in a marketing research context, many researchers 

have developed simple types of multiple regression models that do not account for moderated 

relationships in the data. Generalizing results from the simpler models to moderated multiple 

regression can result in faulty interpretations of coefficients and incorrect statistical analyses. 

The inclusion of an interaction term in a model changes the analysis and its interpretation; 

therefore the authors recommend the testing of moderated relationships for more complete 

understanding of results. Irwin and McClelland also offered three “good practice” tips to 

researchers using moderated models: (a) Change the origin of each continuous independent 

variable (i.e., use centering) and select the coding of categorical independent variables so as to 

focus the tests of the interaction components on practical questions; (b) Include all the 

components of the product term in the model, even if the components are not significant; and 
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(c) Do not reduce independent variables to a smaller number of categories as is done in median 

splits. 

Interaction terms can also be examined in a multilevel framework; however it seems 

logical that not all moderated relationships are explored in every analysis. The omission of an 

important interaction term may lead to biased parameter estimates, which in turn may lead the 

researcher to inaccurate conclusions. The use of the statistical estimation methods that reduce the 

bias of omitted variables should also decrease the bias encountered when a within-level product 

of explanatory variables is not included in the model. 

2.4.2 Examples of Important Interactions in Educational Research 

This study focuses on the effects of omitting an important interaction term from a multilevel 

model. Several studies in educational and psychological research focus on interactions entered 

into the hierarchical model at various levels. Many of these studies resulted in significant 

findings when interactions were explored. Some of these findings can be important to policy 

research in education. 

 For example, Connor, Morrison, and Katch (2004) studied the influence of interactions 

between first graders’ fall language-literacy skills and classroom instructional practices on their 

spring decoding skills. Classroom practices were defined as either teacher-managed explicit 

decoding, where teachers directly taught a code-based skill, or child-managed implicit, where 

skills are indirectly picked up through meaning-based activities. Classrooms were observed 

three times during the school year in order to record the amounts of time spent on instruction 

type, and how much the instruction style changed over the course of the year. A two-level 

model was used to control for the nesting of children in classrooms. Six interactions were 
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entered into the model at level-2: fall decoding by teacher-managed explicit amount; decoding 

by child-managed amount; decoding by child-managed slope; vocabulary by teacher-managed 

explicit amount; vocabulary by child-managed amount; and vocabulary by child-managed 

slope. Although there were no significant main effects for amounts or change of instruction 

type, there were significant interactions between the type of instruction and fall vocabulary, as 

well as type of instruction and fall decoding scores on spring decoding scores. The results of the 

study would have been much different if the researchers had overlooked the important 

interactions in their study. 

Chatterjee (2006) explored moderators of early reading achievement using data from the 

Early Childhood Longitudinal Study (ECLS). Reading achievement gaps in different ethnic, 

gender, and socioeconomic groups were studied using a sub sample of students in the 

kindergarten to first grade cohort. There were four main research concerns: (a) the magnitude of 

early reading achievement gaps; (b) effects of kindergarten entry reading preparation on first 

grade achievement; (c) direct and moderating effects of practice and policy factors at the school 

level; and (d) cross-level interactions and explanatory factors. A series of two level hierarchical 

linear models was employed in order to investigate several questions associated with the 

research concerns.  

Separate factors were selected at the child and school level. At the child level, the factors 

included the age of the child (in months), gender, ethnicity, family socioeconomic status (SES), 

and reading measures from standardized tests taken prior to first grade. At the school level, 

appropriately aggregated context factors included mean poverty levels, mean prior reading 

levels, mean class size, mean school size, teacher certification rate, class time dedicated to 

reading and math instruction, student attendance, incidence of Individualized Education Plans 
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(IEP), and two parental involvement factors. The class size variable was formed by adding the 

number of females and number of males per class, with means at the school level used for the 

models. The class time variable was formed by adding the number of minutes of reading 

instruction to the number of minutes of math instruction; means at the school level were used 

for analysis. The dependent variable was an IRT scaled-score obtained from a standardized 

reading test administered at the end of first grade. 

An unconditional multilevel model was used to determine that 21% of the total variability 

in reading achievement was due to schools and schooling factors. When level-1 factors were 

entered into the model, it was found that children in the lowest range of the SES variable 

possessed the largest reading achievement gap. An examination of gender differences revealed 

that males were slightly behind female students at the end of first grade. The child-level 

interaction models indicated that there were significant effects on reading in first grade for 

poverty crossed with ethnicity or gender.  

Studies of school factors resulted in the findings that different school factors influence first 

grade reading depending on how variable children were in their prior reading preparation. Class 

size and incidence of IEPs were significant when kindergarten-entry reading was controlled. 

When end-of -kindergarten reading was controlled, teacher certification, class time and school 

size were all significant contributors. One significant level-2 interaction was produced: the 

length of class time that teachers spent on reading and math showed an effect on reading 

depending on the average poverty levels of the students within schools.  

One of the major strategies for the No Child Left Behind (NCLB) Act is to promote 

efficient allocation of resources in order to reduce class sizes and devote longer blocks of time 

dedicated to subject-specific instruction. The finding of a significant two level interaction in 
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Chatterjee’s (2006) study is important to educational policy in the sense that these results show 

that children from economically disadvantaged backgrounds respond positively to additional 

class time and classroom attention. The results indicated that the strategy of the NCLB is 

justified. 

2.5 SUMMARY 

Multilevel modeling has been proven to be a valuable statistical instrument in the analysis of 

data in the social and behavioral sciences (Burstein, 1980;Bryk & Raudenbush, 1987;Goldstein, 

1991; Kreft, de Leeuw, & Aiken, 1995). Several estimation procedures have been created for the 

purpose of accurate approximations for hierarchically structured models (Raudenbush & Bryk, 

1985; Goldstein, 1986,1989; Longford, 1987). These estimation procedures can be utilized using 

statistical programming packages such as SAS, which offers a plethora of techniques in which to 

obtain accurate multilevel parameter estimates (Singer, 1998; Zhou, Perkins, and Hui, 1999).  

While hierarchical linear modeling has many advantages, omitted variable bias is a 

problem that often occurs in the behavioral and social science research (Chamberlain & 

Griliches, 1975; Frees, 2001; Kim and Frees, 2005). Researches often do not have enough 

information to include variables in their analyses, thus inaccurate parameter estimates are 

obtained. Luckily, alternative estimators that reduce bias introduced by model misspecification 

due to the exclusion of important predictors have been created (Hausman, 1978; Mundlak, 1978; 

Arellano, 1993; Frees, 2001; Kim & Frees, 2005). The omission of single covariates is not the 

only cause for concern; moderated relationships between variables are often excluded from 

statistical models (Irwin & McClelland, 2001). The use of these alternative estimators could 
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diminish the approximation inaccuracies, thereby lessening the occurrence of faulty 

interpretations and eliminating some of the inconsistencies found in school effectiveness 

research, which will be valuable for future studies. 

 Several factors could affect the performance of these alternative estimators, and a few of 

these factors will be manipulated in this study. The level-2 sample size, the strength of the 

correlation between the interaction term and the dependent variable, and the ICC value can all 

contribute to the effectiveness of parameter estimation. Although previous studies have focused 

on the performance of estimation methods when omitting predictors from the multilevel model, 

this study focuses on omission of a level-2 interaction term. Level-2 sample size, correlation, and 

the ICC are all manipulated in order to determine which of six estimation methods most 

accurately approximates parameter values in a multilevel model when a level-2 interaction is 

excluded. 
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3.0  METHODS 

3.1 MONTE CARLO STUDY 

3.1.1 Design and Procedure 

A  mixed Monte Carlo study was conducted. The following six variables were 

manipulated: 

244436 ×××××

Within-Subjects Independent Variable: 

1. Six estimation procedures: FML; ReML; FE; WLS1; WLS2; and WLS3 (see section 

3.1.4 for descriptions). 

Between-Subjects Independent Variables: 

2. Three level-2 sample sizes: 20, 50, and 100. 

3. Four levels of standardized :03γ 0, .1, .3, and .5. 

4. Four levels of standardized :13γ 0, .1, .3, and .5. 

5. Four levels of correlation between and 1Z 5.;3.;1.;0:2 ==== rrrrZ . 

6. Two levels of the ICC: .10 and .20. 

 

The simulated data sets were constructed by repeating the design conditions 1,000 times per cell, 

resulting in 384,000 cases for each of the six methods. The simulated datasets were created using 
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an appropriate multilevel data generation SAS routine. Once the data sets for each sample size 

were created, they were saved and used as an external file. The data was analyzed using the 

appropriate method, i.e. SAS PROC MIXED or an IML routine 

3.1.2 The Model 

The two-level hierarchal linear model was used in the Monte Carlo study. The level-1 baseline 

model was represented as: 

 

       ijijjjij rXY ++= 110 ββ                                          (3.1) 

 

 with a level-2 baseline model of: 
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where . In Equations (3.1) and (3.2),  and jjj ZZZ 213 ×= ),0(~ 2σNrij ).,0(~ ΤNjµ  The 

values of  were normally distributed with a variance of one, and the values of Y were 

generated as a function of the parameters expressed in Equation (3.1). The two continuous 

( )Z  level-2 predictors were grand-mean centered, (e.g., 

ijX

2 j

ij

,1 j Z 11 ZZ j − ). Multiplying the two 

centered predictors formed the interaction terms. This reduces the lack of invariance of the 

coefficients in the equations containing interactions; see Aiken and West (1991) for more 
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information. Centering variables before creating an interaction term will theoretically create a 

zero correlation between the covariates; however this is not the case with empirical data. To 

illustrate this, two random normal covariates were generated using SAS, A1 and A2, which have 

a mean of 0 and variance of 1 and a correlation of zero. There were 100 observations generated 

for each variable. Each covariate was then centered around its mean, and the resulting centered 

variables were multiplied to form A3. An examination of the correlation matrix revealed that the 

correlation between A1 and A3 was not zero (r= .064), and that the correlation between A2 and 

A3 was also not zero (r= .120). In addition, the centered variables A1 and A2 had a negative 

correlation (r= -.068). 

The combined model, which was used to compute parameter approximations with various 

estimation techniques, was expressed as: 

 

.)( 1313212111101

030320210100

ijjjjjij

jjjjij

rZZZX
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+++++

+++++=

µγγγγ

µγγγγ
                                 (3.3) 

 

The level-2 predictors  and  were generated to have a prespecified variance of 1, while the 

variance of the interaction term was a function of the two level-2 predictors. Bohrnstedt and 

Goldberger (1969) explained that variances and covariances of interaction terms involve the 

expectations as well as the central moments of the underlying variables. The values of 

1Z 2Z

Z3

,, 0100 ττ  

and  were manipulated so that the variances of 11τ 0β  and 1β  equaled 1, while the covariance of 

0β and 1β  was prespecified at a medium effect size of .3 (see Cohen, 1988). The level-1 variance 

component was manipulated so that the amount of explained variance,2σ 2R , will equal .10. The 

choice of 2R  was based on the typical value encountered in regression studies. As the value of 
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the correlations between the level-2 predictors increases, it is expected that the overall explained 

variance should increase. The formula for the explained variance is given as: 
)var(

1
2
00

2
2

ijy
R

τσ +
−=  

(Snijders and Bosker, p.102). Misspecification was introduced by failure to include the 

interaction terms at level-2: 
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3.1.3 Generating Multilevel Data 

The multilevel data was created using an approach that requires the generation of the level-2 data 

first. Busing (1993), Weisner (2004), and Afshartous and de Leeuw (2005) used this type of 

design to generate multilevel data. The following steps were applied: 

1. Specify level-2 sample size (20, 50, 100) and ICC (.10, .20).  

2. Generate level 2 predictors, and as random normal with a mean of zero and 

variance of 1 with a specified moderate correlation of 

1Z 2Z

.3.
21
=ZZr  

3. Center the level-2 predictors by subtracting the mean of each, 

( 11 ZZ j − , )22 ZZ j − .Create the level-2 interaction term by multiplying  and . 1Z 2Z

4. The standardized values of 03γ and 13γ were specified as 0, .1, .3 and .5. 

Standardized 03γ  represents the direct relationship between the interaction term and 

the dependent variable, while Standardized 13γ  represents the relationship between 
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the dependent variable and the level-1 predictor as moderated by Z3. Thus the strength 

of the relationship between the interaction term and the dependent variable was 

manipulated by varying the value of the standardized coefficient ( 03γ , 13γ ). Darandari 

(2004) described the effects of the manipulation of the correlations on the 

coefficients. The standardized ,,,,, 1110020100 γγγγγ  and 12γ were controlled at 

medium,  See section 3.1.6 for a description of correlation sizes. .3.=r

γ

2 01γ) +1(2
03γ(1 2
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5. The level-2 variances were created as a combination of the standardized s' and 

using the following formula:  and 

. These formulas were adopted from 

Bohrnstedt and Goldberger (1969). Create the level-2 coefficients, 
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6. Specify the level-1 sample size, and then generated the level-1 predictor, , as 

random normal with a mean of zero and a standard deviation of the ICC value. Level-

1 errors ( r  were then generated as random normal with a mean of zero and a 

variance .  

ijX

2
1β−

7. The dependent variable was then formed as a combination of the generated 

parameters: 

.)131220200 ijjjjij rZZY ++++++= µγγγγγ
 

Comparing the population values to the estimated parameters approximated by ReML validated 

the data. Population parameters were compared to the parameters estimated with ReML using 
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SAS PROC MIXED when all of the variables were included in the model. The ICC values were 

also checked using this method. 

3.1.4 The Six Estimation Methods 

The performance of six estimation methods was examined: (a) full maximum likelihood (FML); 

(b) restricted maximum likelihood (ReML) (c) a Fixed Effects estimator (FE); and (d) WLS1, (e) 

WLS2, and (f) WLS3.  For information on Maximum Likelihood estimation, see Longford 

(1987) or Raudenbush and Bryk (2002). The Fixed Effects (FE) estimator is an extension of the 

Hausman technique (Frees, 2001). Arellano (1993), Frees (2001) and Kim and Frees (2005) 

described the WLS procedures.  

The first step of the estimation procedure required a generation of population parameters 

to be used as a comparison measure. In order to obtain population estimates, parameters from the 

baseline model were estimated using ReML estimation. Frees (2001) used a GLS procedure to 

estimate population values; however, ReML was chosen in this study due to its accessibility in 

SAS. The fact that ReML is the default method in SAS ensures accurate estimates that can be 

generated. Next, the reduced model parameters were estimated using each of the six estimation 

methods that are of interest. The estimates obtained from the reduced model were compared to 

the estimates obtained from the baseline model to determine if bias was introduced when a level-

2 interaction term was omitted from the model. 

The first two approximation methods that were tested are full maximum likelihood and 

restricted maximum likelihood, which were computed using SAS PROC MIXED. As previously 

stated, the default ML method in SAS is ReML, however FML was produced through changing 

the default setting. The Root Mean Square Deviations (RMSD) of fixed estimators using FML 
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and ReML were calculated to examine the performance of each method in the presence of 

misspecification. A detailed formula for RMSD calculation is provided in Equation (3.8).  

The next estimation method of concern was the fixed effects estimator (FE), which was 

developed by Frees (2001) and is based on the work of Hausman (1978). This estimator is not 

attainable using SAS procedure methods; therefore it must be programmed using Interactive 

Matrix Language (IML). The matrix form of the two-level hierarchical model was needed to 

perform the calculations: 

 

   jjjj XY εβ +=                                                  (3.5) 

 

where  is a  vector of outcomes,  is a jY 1×jn jX qn j ×  matrix of eight explanatory variables, 

, }3,,,,,, 1211131 ZXZXZXZXX j = , 21 ZZ{ 0X },,,,,, 13121103020110,{ 00 γγγγγγγγβ =j and jε  is a 

 vector of disturbances. Let the variance of the error terms be expressed as: 1×jn .) jjvar( R=ε  

The FE estimator was obtained using: 
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It should be noted that Equation (3.6) differs from the fixed effects estimator proposed by 

Frees (2001). The Moore-Penrose generalized inverse (Magnus & Nendecker, 1988) was used, 

rather than the inverse, due to the fact that a singular matrix was obtained when estimating the 
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first half of Equation (3.6). The generalized inverse produces the same results as the inverse 

when the matrix of interest is symmetric, and most statistical packages including SAS utilize the 

generalized inverse instead of the inverses in the computational process. 

The final estimation procedures under scrutiny were the Weighted Least Squares (WLS) 

methods. These methods, developed by Frees (2001), are based on the work of Mundlak (1978), 

and are programmable using SAS IML. Weighting matrices,W , were incorporated into the 

estimators of 

i

β  and γ .  Frees (2001) suggested using one of the following as a choice for W : 

(a) estimators of the variance that include omitted terms (WLS1 in this study); (b) estimators of 

the variance that do not include the omitted terms (WLS2 in this study); and (c) the identity 

matrix (WLS3 in this study). When the identity matrix is used as the weighting matrix, the 

resulting estimators are equivalent to those produced by Ordinary Least Squares. The WLS 

estimator was: 

i
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for singular matrices. 
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3.1.5 Sample Size 

Snijders and Bosker (1999) presented researchers with methods to choose sample sizes that will 

yield a high power for testing, which produce smaller standard errors in estimating. They noted 

that the sample size at the highest level is the most restrictive element in the design (p. 140). To 

compute the total sample size for a multilevel design, the researcher multiplies the number of 

individual units, j, by the number of groups, J. To illustrate the restrictiveness of the level-2 

sample size on a design, consider a study with 10 groups, which would be comparable to a 

single-level study with 10 observations. In studies of educational data, level-2 sample size may 

vary. Bryk and Raudenbush (1988) used a sample of 83 Catholic high schools and 94 public high 

schools from the High School and Beyond survey of American High Schools. Connor, Morrison, 

and Klatch (2004) observed students in 43 classrooms in their study. This study explored a wide 

range of level-2 sample sizes (20, 50, 100) in order to determine the effects on estimation in 

multilevel analyses. 

The level-1 sample size varied; level-1 units were generated using a binomial 

distribution. In order to determine a justifiable size for level-1, several studies in educational and 

psychological areas were examined. Connor, Morrison and Katch (2004) reported their average 

level-1 sample size as 2 children per class, with as few as 1 student in some classrooms and as 

many as six in others. The level-1 sample size in Bryk and Raudenbush’s (1988) study ranged 

from 10 to 70; however samples of less than 45 were rare. It should be noted that the level-1 

sample size in the Conner, Morrison and Klatch study (2004) represented participants per class, 

while Bryk and Raudenbush’s (1988) level-1 sample corresponded to students per school. 

The simulated data segment required the generation of unbalanced data commonly found 

in educational research. The structure of the data contained observations (level-1) nested within 
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groups (level-2). The number of observations found in each group varied, while the number of 

groups was controlled. In order to generate unbalanced data typically found in educational 

research, the level-1 sample size was created using a binomial distribution where n=20 and p=.7. 

This produced a slightly negatively skewed distribution of the level-1 sample, with a mean of 14 

observations per group. The sample size at level-2 was controlled; however, due to the variability 

of the level-1 sample size, the total sample size in this experiment fluctuates with each repetition. 

Appropriate sample sizes were chosen based on the results from a power study using Optimal 

Design (OD) Software (http://sitemaker.umich.edu/group-based/optimal_design_software) 

created by Raudenbush and Liu (2000, 2001). The OD program provides a pictorial example of 

the range of power that is attained when level-2 sample size fluctuates. In order to examine 

estimators in the presence of differing power, the range of sample size is varied. The number of 

groups represented a wide range: 20, 50, and 100. When standardized 03γ  and standardized 

13γ were set at 0, the power was around .05, the type-I error rate; however, when standardized 

03γ  and standardized 13γ  increase to .5, the power increased to near 1. Thus the spectrum of the 

power range is covered. 

3.1.6 Correlations 

One of the goals was to determine the change in estimates when predictors with varying levels of 

correlation were omitted from the multilevel model. Cohen (1988) defined a small effect size to 

be r=.1, while a medium effect size is r=.3, and a large effect size is r=.5, where effect size is 

represented by the population correlation coefficient, r. Donoghue and Jenkins (1992) reported 

that the omission of an uncorrelated predictor will decrease the amount of explained variance 
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proportional to the correlation between the parameter estimates and the predictor. If an 

uncorrelated predictor is omitted, the explained variance will not decrease as much. Raudenbush 

and Bryk (2002) claimed that excluding a level-2 explanatory variable that is correlated with 

other predictors would bias the estimates of the fixed effects coefficients, which in turn will 

affect the estimations of the intercepts and slopes. Additionally, Frees (2001) noticed that the ML 

estimation methods performed differently when correlated predictors were omitted from the 

model than when uncorrelated predictors were excluded. 

The standardized values of 03γ , 13γ and  were manipulated to be equal to none 

( ) , small , medium ( , and large (

21ZZr

0=r )1.( =r )3.=r )5.=r in this study. The particular parameter 

correlations that were varied were related to the level-2 predictors, which form the interaction 

term. The standardized ,11,10,, 02, 0100 γγγγγ  and 12γ were set at medium,  The values of 

the correlations are based on the work of Cohen (1988). The idea to alter the correlations comes 

from the work of Frees (2001), who found that the performance of ML, FE and Augmented 

Regression estimators changed as correlated and uncorrelated predictors were removed from the 

model 

.3.=r

3.1.7 ICC 

The values of  were normally distributed with a variance of one, this variance can be split 

into two parts: (a) between-subject variance and (b) within-subject variance. The intraclass 

correlation coefficient (ICC) for  was varied to be .10 and .20.  The values of Y were 

generated as a function of the parameters expressed in Equation (3.1), and the ICC for Y was 

varied to be .10 or .20. These values were chosen based on the studies of Weisner (2004) and 

ijX

ijX ij

ij

 51 



Darandari (2004) and upon the recommendation of Raudenbush and Bryk (2002) as to "typical" 

values of the ICC in educational data. 

3.1.8 Analyzing RMSD Values 

Once the fixed effects parameter estimates were obtained from the baseline and reduced 

models for each of the six estimation methods, the data was imported to SPSS for analysis. The 

means and standard deviations of the RMSD values for each of the 384 cells were computed. 

Parameter estimates that were extremely high or low produced RMSD values that were outliers. 

RMSD cases that exceeded three standard deviations above the mean were deemed non-

convergent solutions, and were deleted from the analysis.  

Each estimation technique was examined to determine the mean, minimum, and 

maximum RMSD values as well as number of non-convergent solutions for each cell. This was 

accomplished by using the “Aggregate” option in SPSS, which created separate data sets for 

each method. The percent of non-convergent solutions out of 1000 replications was computed 

per factor (level-2 sample size, ICC, standardized ,03γ  standardized ,13γ  and for each of the 

six estimation methods.  

)
21ZZr

Exclusion of the interaction terms at level-2 may cause the estimates of the parameters at 

that level to be biased. The extent of the bias in the fixed components is measured by computing 

the Root Mean Square Deviations (RMSD): 

 

                                            RMSD=    ∑
=










 −p

i i

ii

p 1

2ˆ1
θ
θθ

   ,              (3.8)        
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where p is the number of parameters being estimated,  is the estimated parameter, iθ̂ iθ  is 

the baseline, or “true” parameter, and { }1110020100 ,,,, 12,γγγγγγθ = . 

After the RMSD values were computed, the data set was examined in order to study the 

distribution of the RMSDs. The distribution of the RMSDs was skewed, with extreme outliers 

within each method. Table 1 reports the descriptives for the RMSD values of each method. Due 

to the non-normality of the data, the mean RMSDs for each method were biased, thus the median 

and Huber M-Estimator are reported in Table 1. The Huber M-Estimator is a robust measure of 

central tendency that is formed by weighting down extreme cases, i.e. a weighted mean. The 

Huber M-Estimators in Table 1 ranged from .20 for the ML estimators to 7.47 for the FE 

method. It should also be noted that 29 out of the 384,000 cases for the WLS2 method did not 

compute due to numerical calculation issues. WLS2 was also affected the most by outlying 

values, with a RMSD mean of 209.03 and standard deviation of 87,468.00. 

 

Table 1. RMSD Descriptives 

 

 

 FE WLS1 WLS2 WLS3 FML ReML

Mean 141.80 58.56 209.03 83.35 1.14 1.12

SD. 19595.02 3010.88 87468.00 7052.28 49.44 48.71

Min .18 .10 .12 .09 0.00 0.00

Max 1022118.00 1210160.00 5405347.00 2698049.00 24946.14 24402.97

Med 6.47 3.52 3.48 3.76 .18 .18

Huber  7.47 4.08 4.03 4.39 .20 .20
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Any analyses performed on the data set that included the outliers would yield biased 

results, thus the extreme RMSDs were removed from the data set. Based on an inspection of the 

range of the RMSD values for each method, it was decided that all RMSD values higher than 50 

should be removed from the data. Removing these cases deleted most of the outliers but did not 

deplete the data; approximately 90% of the RMSD values still remained for analyses. 

Once the outlying RMSD values were removed, an aggregated data set was formed in 

order to determine how many outliers were removed from each method over all factors. The 

numbers of outliers in each cell were deemed “non-convergent solutions”. The percentage of 

non-convergent solutions was calculated out of 1,000 cases per cell. 

Next, a six-way mixed ANOVA was performed using the RMSD values as the dependent 

variable. The within-subject factor was the method, while the between-subject factors were the 

level-2 sample size, ICC, and the three manipulated correlations (standardized 03γ , 

standardized 13γ , and ). The main effect for method and the two-way interaction effects 

involving method and the five between-subjects factors were examined. Due to the large sample 

size, the effects were expected to be significant, thus the effect sizes (partial were studied. 

The effect sizes provided information as to how much variability in the RMSDs was attributable 

to the six estimation methods and the two-way interactions of: (a) method by level-2 sample size; 

(b) method by ICC; (c) method by Standardized 

21 ,ZZr

)2η

03γ ; (d) method by Standardized 13γ ; and (e) 

method by  .21ZZr

The magnitude of the bias in the estimates was examined by computing the median 

RMSD values for all levels of each factor. The medians were studied due to the fact that the data 

set was skewed and the mean would be a biased measure. The methods that produced high 

median RMSD values were not performing as well as methods that yielded low median RMSD 
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values. Thus low median RMSD values provided evidence that the method was effectively 

controlling for omitted variable bias when a level-2 interaction term was excluded from the 

model. 

While the RMSD is helpful in determining the amount of bias in the estimates, it does not 

determine the direction of the bias. In order to distinguish whether the methods were 

overestimating or underestimating the coefficients, the direction of the bias was calculated by 

subtracting the baseline parameter estimate from the estimate obtained from the reduced model: 

 

Bias =                              (3.9) ii θθ −ˆ

 

 For example, when level-2 sample size was equal to 20; the intercept from the baseline model 

was subtracted from the intercept of the reduced model to obtain an estimate of bias. A negative 

solution indicated that the method was underestimating the parameter estimate, while a positive 

solution indicated the method was overestimating the parameter estimate. This was repeated for 

all coefficients over each level of every factor using the data obtained from the multilevel 

analyses. 

3.2 ECLS DATA 

3.2.1 Data Description 

The next segment of this investigation involved studying the performance of the six estimation 

procedures using an existing educational data set. The Early Childhood Longitudinal Study 
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(ECLS) is an ongoing study that centers on children’s early learning experiences starting in 

kindergarten and continues to follow the subjects through middle school. The National Center of 

Educational Statistics (NCES) makes the ECLS data available for public use at the following 

web address: http://nces.ed.gov/ecls/. The ECLS includes two overlapping cohorts; one cohort 

follows a group of children from birth to kindergarten, while a second cohort follows a sample of 

children from kindergarten through eighth grade. The ECLS program provides data in order to 

study relationships among a variety of family, school, community and individual variables. 

3.2.2 Study Variables and Methods 

Data was examined from the group of children in the second cohort; specifically, data from the 

kindergarten and first grade school years. The study of Chatterjee (2006) was used as a basis for 

the variable and model selection. The level-1 and level-2 variables were chosen based on 

Chatterjee’s findings of a significant level-2 interaction, and coding procedures were similar in 

nature. A difference was the selection of a sample. Chatterjee (2006) used a subset of 2,296 

students. An examination of the ECLS data set with the variables of interest for this analysis 

divulged that the data was missing completely at random; this test was performed within each 

group (Little, 1988). The total data set consisted of 17,565 subjects; however, this analysis 

focused on Caucasian and African American students. There were 9,891 Caucasian students and 

2,494 African American students in the entire data set. Since the main concern of this study was 

to make generalizations about statistical methods and not to make inferences regarding 

educational practices, a list wise deletion method was employed. The sample in this study was 

limited to Caucasian (n=6,107) and African American (n=1,344) students that had complete data 
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for all relevant variables, for a total of 7,451 subjects. Note that thirteen cases with outlying 

values were deleted from the analysis. 

The two level-1 predictors of the analysis included a kindergarten measure of reading and 

child’s race (Caucasian, African American). The ECLS reading assessment is a multilevel, 

computer-assisted interview that was administered in two stages using an adaptive design. The 

reading scores were estimated using Item Response Theory (IRT) procedures. The race variable 

was dummy coded as Caucasian=0 and African American=1 (i.e., Caucasian served as the 

reference group). The dependent variable was a spring first grade IRT scale score. 

The two level-2 variables included a measure of time spent on reading and mathematics 

instruction, and a measure of SES. The variable representing instructional time was based on 

data collected from a teacher survey (Teacher Questionnaire, Part A). Two items on the teacher 

questionnaire dealt with how much time in minutes that first grade teachers dedicated to reading 

and mathematics activities per day. This categorical variable ranged from 0 to 4, with 4 

indicating that the teacher spent 60 minutes or more per day on reading or mathematics activities. 

The instruction time variable was computed by averaging the responses for the two items 

(Chaterjee, 2006). The reported SES in the ECLS data set was based on a categorical measure 

provided by NCES that broke down a continuous measure of SES into five categories by 

quintiles, with the lowest quintile indicating high poverty. The SES variable was obtained from 

the kindergarten child-file of the ECLS data files. School level means of both variables were 

used in the analysis. The level-2 interaction predictors were also grand mean centered before 

they were entered into the model. 

 Table 2 reports the correlations for the variables used in the study for each level of race. 

The strongest correlation occurs for the first grade and kindergarten IRT scores, r=.66 for both 
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races. SES is moderately correlated with the dependent variable ( r=.25), but negatively 

correlated with the measure of kindergarten reading (r=-.01 and r=-.11). Time, which is the 

variable that represents the time spent teaching math and reading, is positively correlated with 

the first grade and kindergarten reading scores, but negatively correlated with SES.   

 

Table 2. ECLS Correlations 

 

  Caucasian    African American  

 First Kdg  SES Time First Kdg. SES Time 

First  1 .66 .25 .03 1 .66 .25 .03 

Kdg  1 -.01 .01  1 -.11 .04 

SES   1 -.08   1 -.15 

Time   1    1 

 

 

3.2.3 The Models 

The level-1, level-2 and baseline models were expressed as: 

 

ijijjijjjij rRaceKdgScoreScoreFirstGrade +++= )()()( 210 βββ           (3.9) 
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In Equation (3.9),  is the spring IRT scaled score in reading for student i in 

school j, is the group mean centered spring kindergarten IRT scaled score in 

reading for the i

ijScoreFirstGrade )(

ij)Kdgscore(

j0

th student in the jth school, and is the student level error term. The student level 

error term represents the departure of student i in school j from the school predicted line. The 

intercept 

ijr

β  is the average achievement score for students in the jth school for Caucasians with a 

mean Kdgscore. j2β  is the difference in first grade reading scores between Caucasians and 

African Americans who have the mean kindergarten IRT score. 

In Equation (3.10),  represents the school-level means for time spent on reading 

and mathematics activities (grand mean centered), while (  is the socioeconomic status at 

the school level (grand mean centered), and (  is the level-2 interaction of these 

terms. The term 

jtime 1)(

jSES 2)

j3)SEStime *

00γ  is the average first grade school achievement for Caucasians with respect to 

SES and instructional time, 01γ is the effect of instructional time on the first grade school 

achievement of Caucasians, 02γ  is the effect of SES on first grade school achievement of 

Caucasians, and 03γ  represents the effect of the moderated relationship between time and SES on 

Caucasian’s first grade school achievement. The slope j1β  is described as: 10γ  is the within-
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school average of first grade achievement with respect to instructional time and SES. j2β  is 

formed from the following: 20γ  is the average difference in first grade reading scores between 

Caucasians and African Americans with the mean kindergarten IRT score, 21γ  is the effect of 

instructional time on the difference in first grade IRT scores between Caucasians and African 

Americans who have the mean kindergarten IRT score, 22γ  is the effect of SES on the difference 

in first grade scores between Caucasians and African Americans with the mean kindergarten IRT 

score, and 23γ  is the effect of the moderated relationship between time and SES on the difference 

in first grade scores between Caucasians and African Americans with the mean kindergarten IRT 

score. Equation (3.11) is the combined form of Equations (3.9) and (3.10). The reduced model 

was created by the omission of the level-2 interaction term time by SES, thus the three-way 

interaction of .race by time by SES was also excluded from the model. 

 

3.2.4 Analyzing the ECLS Data 

The ECLS data was analyzed using the same procedures utilized in the Monte Carlo Study. The 

parameters of the baseline model were estimated using the ReML approximation method. Next, 

the parameters of the reduced model were obtained using each of the six estimation methods: 

ReML, FML, WLS1, WLS2, and WLS3. The fixed effects estimates were saved in order to 

compare the performance of the estimation procedures. 
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3.3 REPORTING RESULTS 

The estimates produced by the baseline and reduced models were used to calculate the RMSD 

for each condition. The non-convergent solutions, that is, RMSD values that exceeded 50, were 

deleted from the data set. The percentage of non-convergent solutions was recorded for each 

factor over all methods. A six-way mixed ANOVA was performed using the RMSD values of 

the simulation study as the dependent variable. The main effects and two-way interactions that 

concerned estimation methods were examined. The p-values were expected to be significant due 

to the large number of replications; therefore the effect sizes were examined. The extent of the 

bias in the estimates was determined by studying the median RMSDs for the levels of each 

factor. In order to determine if the methods were overestimating or underestimating the 

coefficients, bias was computed by subtracting the baseline estimates from the estimates 

obtained from the reduced model. 

 The following results will be discussed: (a) the percentage of non-convergent solutions 

for each of the six estimation methods;  (b) main effect and two-way interactions from the mixed 

ANOVA performed on the simulated data, including method, method by sample size, method by 

ICC, method by standardized 03γ , method by standardized 13γ , and method by r ; (c) effect 

sizes from the main effects and two-way interactions from the mixed ANOVA; (d) median 

RMSD values for all levels of each factor; (e) the direction of the bias for the parameter 

estimates; and (f) the results of the ECLS analysis as compared to the results of the simulation 

study. 

21 ,ZZ
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3.4 SUMMARY 

SAS PROC MIXED and IML programming was utilized to produce parameter estimations for a 

saturated baseline model as well as a restricted model, which excluded a level-2 interaction term. 

The approximations from each model were compared to calculate the RMSD of the parameter 

estimates. Generated data as well as data from the ECLS was analyzed in order to provide 

researchers with knowledge of the performance of estimation methods that reduce the bias of 

approximations when a level-2 interaction was omitted from a multilevel model. 
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4.0  RESULTS 

4.1 MONTE CARLO STUDY RESULTS 

4.1.1 Non-Convergent Solutions 

Table 3 shows the percent of non-convergent solutions over 1,000 cases for all levels of 

each factor. RMSD values higher than 50 were labeled non-convergent solutions and deleted 

from the original data. Methods that produced a high percentage of non-convergence, or 

improper solutions, are not as stable as methods that did not produce as many improper 

solutions. Each level of the five between-subjects factors was inspected over all methods. 

When the level-2 sample size was equal to 20, FE produced the highest percentage of 

non-convergent solutions, 13.6%. This was not expected since FE was recommended as Frees 

(2001) as an effective method for controlling omitted variable bias in fixed effects estimates. The 

ML methods were the most effective of all the procedures, with a .42% rate of non-convergence 

when level-2 sample size was 20. Of the alternative estimators (FE, WLS1, WLS2, and WLS3), 

WLS2 had the lowest percentage of non-convergent solutions. WLS2 uses estimates of the 

variance that do not include omitted terms in the model as its weighting matrix, while WLS1 

uses estimates of the variance that include the omitted terms. As level-2 sample size increased, 

the percentage of non-convergent solutions decreased for all methods. The difference between 
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WLS1 and WLS2 was very small when level-2 sample size reached 100, with non-convergence 

rates of 3.4%.  

 

Table 3. Percentage of Non-Convergent Solutions 

 

     Method 

Factor Levels FE WLS1 WLS2 WLS3 FML ReML 

SS 20 13.6 9.6 9.4 9.5 .43 .42 

 50 10.2 6.0 5.9 7.5 .13 .12 

 100 6.6 3.4 3.4 5.4 .01 .01 

ICC .1 11.2 7.2 7.1 8.3 .21 .21 

 .2 9.0 5.4 5.4 6.6 .16 .16 

03γ  0 10.2 6.3 6.2 7.4 .13 .13 

 .1 10.2 6.4 6.4 7.6 .19 .19 

 .3 10.3 6.4 6.3 7.4 .20 .20 

 .5 9.88 6.3 6.1 7.4 .22 .22 

13γ  0 10.3 6.4 6.2 7.5 .15 .14 

 .1 10.1 6.4 6.3 7.4 .15 .15 

 .3 10.2 6.3 6.3 7.5 .21 .20 

 .5 10.0 6.3 6.2 7.4 .25 .24 

21zzr  0 9.7 5.8 5.7 6.5 .18 .17 

 .1 9.6 5.9 5.7 7.0 .17 .17 

 .3 10.1 6.3 6.3 7.7 .20 .20 

 .5 11.2 7.4 7.2 8.3 .20 .20 

 

As the ICC increased from .1 to .2, the non-convergence rate decreased for all methods. 

The ML estimates produced the lowest percentage of improper solutions, while  FE turned out 
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the most, with 90.8 non-convergent solutions out of 1000 replications when the ICC was equal to 

.2. WLS2 again outperformed all alternative estimators, with 7.10% (ICC=.1) and 5.46% 

(ICC=.2) of solutions that did not converge. 

 The rate of non-convergence did not differ much when standardized 03γ , standardized 13γ , 

and  increased from 0 to .5 for all methods. All methods produced more improper solutions 

as  increased from 0 to .5. The ML estimates outperformed all other methods, and WLS2 

produced the least amount of non-convergent solutions out of all the alternative methods when 

the correlations were manipulated. 

21zzr

21zzr

4.1.2 The Mixed ANOVA 

Table 4 displays the ANOVA table from the six-way mixed ANOVA. The RMSD values served 

as the dependent variable. The main effect for method was significant (p<.001) with an effect 

size of .232. This indicated that 23.2% of the variability in the RMSD values was due to method. 

The interactions of Method by Sample Size (p<.001) and Method by ICC (p=.001) were also 

significant, with effect sizes of .003 and .001 respectively. The Method by interaction 

produced a Partial of .001. Due to the large number of replications, (i.e., larger power), the 

effects were expected to be significant even if there were small differences in RMSD values. 

Effect sizes are less sensitive to sample size; therefore partial  values are reported below. The 

effect sizes measure the true effect of each of the factors on the RMSDs. 

21zzr

2η
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Table 4. Mixed ANOVA Table 

 

 

Effect                                                SS           df              MS                 F                p     Partial  2η

 

Method 18473359 5 3694671 90119.51 .000 .232

Method*SS 191315 10 19131 467.06 .000 .003

Method*ICC 70294 5 14058 343.22 .000 .001

Method* 03γ  1884 15 126 3.06 .000 .000

Method* 13γ  2266 15 151 3.68 .000 .000

Method*  
21zzr 44270 15 2818 68.79 .000 .001

 

4.1.3  RMSD Medians 

Information about the magnitude of the bias in the parameter estimates can be determined 

by reviewing the RMSD medians. Table 5 shows the medians for the various levels of each 

factor.  The interpretation of Table 5 is as follows: the higher the median RMSD, the more bias 

incurred by the estimates of that method. Overall, the ML estimates produced the least biased 

estimates. Differences in the means over the various methods for each factor were examined. 
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Table 5. RMSD Medians 

 

 

      Method 

Factor Levels FE  WLS1 WLS2 WLS3 FML ReML

SS 20 6.01 3.93 3.85 3.74 .31 .31

 50 5.42 2.94 2.91 3.13 .16 .16

 100 4.84 2.40 2.38 2.63 .11 .11

ICC .1 5.74 3.30 3.25 3.44 .16 .16

 .2 5.01 2.80 2.70 2.67 .16 .16

03γ  0 5.30 2.89 2.91 3.04 .12 .12

 .1 5.32 2.94 2.92 3.10 .13 .13

 .3 5.42 3.04 2.97 3.16 .17 .17

 .5 5.40 3.07 2.99 3.14 .23 .23

13γ  0 5.39 2.96 2.93 3.12 .12 .12

 .1 5.32 2.95 2.97 3.13 .13 .13

 .3 5.37 3.01 2.94 3.11 .17 .17

 .5 5.35 3.01 2.94 3.09 .23 .23

21zzr  0 5.15 2.70 2.65 2.90 .14 .14

 .1 5.20 2.81 2.78 2.98 .15 .15

 .3 5.36 3.05 3.03 3.18 .16 .16

 .5 5.73 3.43 3.37 3.40 .19 .19

 

  

An inspection of the median RMSD values for the various level-2 sample sizes reveals 

that as sample size increased, the amount of bias decreased in the parameter estimates for all 

methods. Figure 1 depicts the rates of decrease in bias. The FE method produced the most biased 

estimates, while WLS3 was the most biased of the three WLS estimators when level-2 sample 
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size was 50 or 100. WLS2 created the least biased estimates out of the alternative methods when 

sample size was 50 and 100, but that difference lessened as sample size increased. This indicates 

that the WLS1, which used estimates of the variance that included the omitted terms, was not 

performing as well as WLS2, which does not use the omitted terms in to calculate the variances. 

The ML methods were consistently the least biased over the range of level-2 sample sizes. 

 

 

 

Figure 1. RMSD Medians for Level-2 Sample Size 
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Figure 2 displays the median RMSD values as they varied over the methods when the 

ICC changed from .1 to .2. Once again, the ML techniques were the least biased of all 

procedures. Of the four alternative estimation methods, FE produced the most biased estimates 

regardless of the size of the ICC. WLS1 generated more biased parameter approximations than 

WLS2. Overall, the methods produced less biased estimates when the ICC was increased to .2. 

 

Figure 2. RMSD Medians for ICC 
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level-2 sample size was 20, the lowest RMSD value for the alternative methods was 3.74 versus 

.31 for the ML estimators, for a difference of 3.43. Compare this to the difference between the 

approaches when sample size was 100: The lowest RMSD median for the alternative methods 

when level-2 sample size equals 100 was 2.38 (WLS2) while the RMSD median for the 

maximum likelihood methods was .11, yielding a difference of 2.27. When the ICC was .1, the 

difference between the lowest RMSD values for each approach was 3.09. The lowest median for 

the alternative methods when ICC equaled .2 was 2.67 versus .11 for the ML methods, for a 

difference of 2.56. 

Figure 3 represents RMSD medians as Standardized 03γ  ranged from 0 to .5. All six 

procedures were more biased when 03γ  was .5. FE was once again the most biased of all 

methods, while the ML methods were least biased. Note that the performance of all the methods 

was influenced by the omission of correlated effects; that is, the methods performed less 

efficiently when correlated effects were removed from the model. 

When Standardized 03γ  was .1, .3, or.5, WLS2 produced estimates with the smallest 

amount of bias in comparison to the other alternative techniques. This also held true when 

Standardized 13γ  was .5, as depicted in Figure 4 and according to Table 4. The magnitude of the 

bias in WLS2 estimates decreased as Standardized 13γ  increased. Overall, the FE estimators 

acquired the most bias for the entire range of Standardized 13γ , while the ML approximations had 

the lowest RMSD values out of the six estimation procedures. The WLS methods performed best 

when Standardized 03γ  and Standardized 13γ  were equal to 0, with bias increasing when the effect 

sizes increased to .3 and .5. WLS3 produced its most biased estimates when Standardized 13γ  was 
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.3; and when Standardized 03γ  equaled .1, thus it didn’t follow a typical pattern of a steady 

increase in bias as the effect sizes increased.  

 

Figure 3. RMSD Medians for Standardized 03γ  
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Figure 4. RMSD Medians for Standardized 13γ  
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generated the least biased approximations out of all the alternative estimation approaches, while 

the ML procedures once again outperformed all methods. As correlation size increased, the 

RMSD values increased for all six methods. 

 

 

 

Figure 5. RMSD Medians for  
21ZZr

 

 

 

0

1

3

4

5

6

FE S1 WLS2 WLS3 FML ReML

0 0.1 0.3 0.5

2
R

M
S

D
 

WL 

                               Methods 

 73 



4.1.3 The Direction of Bias 

The previous analyses involved the RMSD calculations for the parameter estimates, 

which supplied the amounts of bias that was attained in approximations when the level-2 

interaction was omitted from the multilevel model. The next step was to determine the direction 

of the bias, that is, to determine if the methods are overestimating or underestimating the 

parameter coefficients.  

Table 6 reports the median bias in each of the six fixed effects for all estimation 

approaches for the ranges of level-2 sample size. The alternative estimators, FE and WLS 

methods, underestimated the level-1 predictor and overestimated the level-2 interaction of XZ2. 

The bias in the other parameters produced by the alternative estimators was very close to zero.  

The ML methods were the least biased of all methods. 
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Table 6. Direction of Bias for Levl-2 Sample Size 

 

 

      Method 

SS Parameter FE WLS1 WLS2 WLS3 FML ReML
20 Intercept .015 -.012 -.011 -.016 .006 .006
 X -.183 -.188 -.189 -.192 .006 .006
 Z1 .000 -.007 -.008 -.008 .000 .000
 Z2 -.001 -.007 -.009 -.016 .001 .001
 XZ1 -.001 -.008 -.010 -.013 .001 .001
 XZ2 .201 .177 .177 .182 .001 .001
50 Intercept .024 -.005 -.004 -.005 .008 .008
 X -.183 -.191 -.189 -.195 .007 .007
 Z1 -.001 -.005 -.007 -.008 .000 .000
 Z2 -.001 -.008 -.007 -.013 .000 .000
 XZ1 -.001 -.007 -.009 -.012 .000 .000
 XZ2 .210 .184 .184 .209 .000 .000
100 Intercept .021 -.001 -.001 -.003 .007 .007
 X -.187 -.191 -.189 -.195 .007 .007
 Z1 -.003 -.004 -.004 -.007 .000 .000
 Z2 .001 -.006 -.005 -.012 .000 .000
 XZ1 .001 -.005 -.006 -.011 .000 .000
 XZ2 .207 .188 .189 .213 .000 .000

 

  

The bias in estimates for the change in the ICC value is exhibited in Table 7. An 

examination of the median bias in Table 7 reveals that FE and the three WLS estimation 

techniques underestimated the level-1 predictor parameter coefficient and overestimated the 

level-2 interaction regardless of the ICC level. The ML estimators were not biased based on the 

values in Table 7. These findings are consistent with those obtained when the level-2 sample size 

was manipulated. 
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Table 7. Direction of the Bias for ICC 

 

 

                            Method 

ICC Parameter FE WLS1 WLS2 WLS3 FML ReML
.1 Intercept .017 -.007 -.006 -.010 .006 .006
 X -.203 -.207 -.206 -.212 .006 .006
 Z1 -.001 -.004 -.005 -.008 .000 .000
 Z2 -.001 -.006 -.005 -.011 .000 .000
 XZ1 .000 -.006 -.006 -.010 .000 .000
 XZ2 .220 .200 .201 .219 .000 .000
.2 Intercept .024 -.003 -.003 -.004 .008 .008

X -.162 -.171 -.170 -.174 .008 .008
Z1 -.002 -.006 -.007 -.008 .000 .000
Z2 .001 -.008 -.008 -.016 .000 .000
XZ1 -.001 -.008 -.010 -.013 .000 .000
XZ2 .190 .166 .166 .186 .000 .000
 

  

Tables 8, 9, and 10 represent the bias in the estimates when the values of 

Standardized 03γ , Standardized 13γ , and the correlation of  and were manipulated to 

increase from 0 to .5. Once again, the FE method underestimated the coefficient of the level-1 

predictor and overestimated the level-2 interaction for all effect sizes. This was the only 

consistent pattern for the FE method. WLS1, WLS2, and WLS3 underestimated all parameters 

with the exception of the XZ2 interaction, which was overestimated regardless of effect size. The 

WLS methods tended to underestimate the intercept when the effect size was small, but 

overestimated the intercept for some larger effect sizes. Once again, bias in the ML estimators 

was very close to zero for all parameter coefficients. 

1Z 2Z
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Table 8. Direction of the Bias for Standardized 03γ  

 

 

                     Method 

03γ  Parameter FE WLS1 WLS2 WLS3 FML ReML
0 Intercept .018 -.005 -.002 -.006 .000 .000
 X -.186 -.190 -.188 -.193 .007 .007
 Z1 -.004 -.003 -.005 -.007 .000 .000
 Z2 -.001 -.007 -.005 -.014 .000 .000
 XZ1 -.002 -.007 -.009 -.011 .000 .000
 XZ2 .182 .168 .168 .187 .000 .000
.1 Intercept .019 -.006 -.004 -.007 .003 .003
 X -.183 -.192 -.189 -.194 .007 .007
 Z1 .002 -.006 -.007 -.006 .000 .000
 Z2 -.001 -.009 -.008 -.008 .000 .000
 XZ1 .000 -.006 -.009 -.012 .000 .000
 XZ2 .194 .175 .177 .194 .000 .000
.3 Intercept .021 -.004 -.006 -.009 .016 .016
 X -.185 -.190 -.189 -.194 .007 .007
 Z1 -.001 -.005 -.006 -.009 .000 .000
 Z2 -.002 -.005 -.006 -.013 .000 .000
 XZ1 -.001 -.008 -.006 -.013 .000 .000
 XZ2 .215 .190 .191 .210 .000 .000
.5 Intercept .022 -.005 -.005 -.006 .031 .031
 X -.182 -.189 -.189 -.195 .007 .007
 Z1 -.003 -.005 -.007 -.008 .000 .000
 Z2 -.001 -.008 -.006 -.013 .000 .000
 XZ1 .001 -.006 -.008 -.010 .000 .000
 XZ2 .236 .204 .205 .224 .000 .000
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Table 9. Direction of the Bias for Standardized 13γ   

 

 

                            Method 

13γ  Parameter FE WLS1 WLS2 WLS3 FML ReML
0 Intercept -.001 -.020 -.018 -.021 .007 .007
 X -.182 -.191 -.188 -.193 .000 .000
 Z1 -.001 -.008 -.005 -.008 .000 .000
 Z2 -.001 -.006 -.006 -.011 .000 .000
 XZ1 -.001 -.006 -.007 -.011 .000 .000
 XZ2 .205 .183 .184 .204 .000 .000
.1 Intercept .009 -.014 -.012 -.015 .007 .007
 X -.185 -.191 -.189 -.192 .003 .003
 Z1 -.003 -.005 -.006 -.008 .000 .000
 Z2 -.001 -.007 -.007 -.016 .000 .000
 XZ1 .001 -.006 -.008 -.011 .000 .000
 XZ2 .206 .184 .187 .204 .000 .000
.3 Intercept .026 -.001 -.001 -.001 .007 .007
 X -.186 -.191 -.189 -.195 .015 .015
 Z1 -.001 -.003 -.007 -.008 .000 .000
 Z2 -.001 -.007 -.006 -.013 .000 .000
 XZ1 .137 -.007 -.007 -.012 .000 .000
 XZ2 .206 .184 .184 .202 .000 .000
.5 Intercept .050 .015 .014 .010 .007 .007
 X -.184 -.189 -.190 -.195 .031 .031
 Z1 -.001 -.004 -.006 -.007 .000 .000
 Z2 -.001 -.007 -.007 -.014 .000 .000
 XZ1 -.002 -.007 -.009 -.013 .000 .000
 XZ2 .207 .184 .183 .203 .000 .000
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Table 10. Direction of the Bias for  
21ZZr

 

 

 

                         Method 

21zzr  Parameter FE WLS1 WLS2 WLS3 FML ReML
0 Intercept -.001 -.021 -.021 -.021 .000 .000
 X -.184 -.189 -.189 -.194 .000 .000
 Z1 -.002 -.008 -.008 -.009 .000 .000
 Z2 -.002 -.007 -.005 -.015 .000 .000
 XZ1 .002 -.008 -.010 -.013 .000 .000
 XZ2 .179 .167 .167 .186 .000 .000
.1 Intercept .010 -.013 -.011 -.016 .003 .003
 X -.182 -.189 -.189 -.194 .003 .003
 Z1 -.001 -.006 -.006 -.008 .000 .000
 Z2 .003 -.008 -.009 -.015 .000 .000
 XZ1 -.001 -.006 -.009 -.012 .000 .000
 XZ2 .192 .174 .177 .195 .000 .000
.3 Intercept .028 .002 .002 -.001 .017 .017
 X -.187 -.190 -.189 -.195 .017 .017
 Z1 -.001 -.006 -.006 -.008 .000 .000
 Z2 -.001 -.005 -.006 -.013 .000 .000
 XZ1 -.005 -.007 -.006 -.010 .000 .000
 XZ2 .216 .193 .193 .212 .000 .000
.5 Intercept .047 .014 .014 .012 .031 .031
 X -.183 -.193 -.189 -.194 .031 .031
 Z1 -.001 .-.003 -.003 -.007 .000 .000
 Z2 .001 -.007 -.004 -.013 .000 .000
 XZ1 .001 -.006 -.006 -.011 .000 .000
 XZ2 .237 .204 .206 .223 .000 .000
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4.2 ECLS DATA RESULTS 

In order to examine the performance of the six estimation methods with data obtained in an 

educational setting, an analysis was performed using ECLS data. The fixed effects estimators 

were approximated using all six estimation methods. The level-1 predictors in the analysis were 

the reading achievement score from kindergarten (Kread) and race, while the level-2 predictors 

were a measure of instructional time spent on reading and math (Time) and SES. The omitted 

variable was the interaction of Time by SES. The dependent variable in the analysis was a 

reading achievement score from first grade (First). The number of level-2 groups was 755, with a 

mean of 11.72 students nested within each school.  

The ICC for the ECLS data was .21, indicating that the proportion of variance that exists 

between students’ first grade reading scores due to grouping within schools was 21%. This 

suggests that there was quite a bit of nesting within schools, and therefore a regular OLS analysis 

would most likely yield misleading results. Since WLS3 produced estimates that are equivalent 

to OLS estimates, the approximations of WLS3 were probably disingenuous. 

Table 11 displays the estimators obtained for reduced models and the baseline estimates 

(base). The baseline fixed effect estimate for time by SES was significant (p=.07), indicating that 

it was an important variable in the model. The three-way interaction of race by time by SES, 

which was also omitted from the reduced model, was significant (p=.04). Thus two significant 

interactions were excluded from the two-level model when analyzing the ECLS data. Other 
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significant fixed effects included the kindergarten reading score (p<.001), race (p=.004), SES 

(p<.001) and time (p=.002).  

An inspection of Table 11 reveals that the ML methods most closely approximated the 

estimates. FE, WLS1, and WLS3 underestimated the level-1 predictor for kindergarten reading, 

while FE, WLS1, and WLS2 underestimated the predictor for race. WLS2 underestimated five of 

the seven parameters, only overestimating the intercept and the kindergarten reading variable. 

The alternative methods did not perform as well as the ML methods in the ECLS analysis, even 

with a substantial increase in level-2 sample size to 755.   

  

Table 11. ECLS Estimates 

 

Method        FE          WLS1               WLS2         WLS3       FML      ReML Base 

 

Intercept 66.69 38.04 115.93 73.33 73.76 73.77 73.86
Kread .99 -.22 8.53 -5.31 1.36 1.36 1.36
race -26.33 -20.37 -116.49 .76 -2.18 -2.06 -1.95
ses 2.97 -4.91 -113.51 18.36 1.10 1.41 1.39
time 24.32 7.70 -131.16 -2.51 7.20 7.21 7.20
ses*race -11.24 -8.30 -75.07 9.33 .02 -.67 .15
time*race -14.15 21.79 -127.34 50.35 -.18 -.26 -1.22
ses*time    .89
race*ses*time    -1.64
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4.3 SUMMARY 

The parameter estimates of a baseline and reduced two-level model were used to compute the 

magnitude of bias in the reduced model estimates in order to determine if six estimation methods 

(FE, WLS1, WLS2, WLS3, FML, and ReML) were effectively reducing omitted bias in a 

multilevel model when the excluded term was a level-2 interaction. The percentage of non-

convergent solutions (i.e., number of RMSD values that exceeded three standard deviations 

above their cell means) was recorded. A six-way mixed ANOVA was performed using the 

RMSD values as the dependent variable; main effects and two-way interactions were examined. 

The medians of the RMSD values were inspected to determine which of the six methods 

produced estimates with the lowest bias. The direction of the bias was determined by computing 

the difference of the baseline and reduced model parameter estimates. 

The ML procedures (FML, ReML) produced the lowest percentage of non-convergent 

solutions out of all six techniques, while FE generated the most non-convergent solutions. WLS2 

produced the least amount of non-convergent solutions of all the alternative estimation methods. 

This indicated that estimating the variances using the omitted terms in the model, as with WLS1, 

was not beneficial. 

An inspection of the RMSD medians revealed that the ML methods produced the least 

biased parameter estimates when a level-2 higher order term was omitted from a two-level 

hierarchical linear model. The bias in all of the six estimation procedures decreased as level-2 

sample size increased. The difference in the performance of the alternative estimation methods 

and the ML procedures lessened considerably as level-2 sample size increased to 100. This 

indicated that increasing the level-2 sample size was an important factor in the ability of the 

methods to reduce omitted variable bias. Of the alternative methods, WLS2 produced the least 
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biased estimates, while the FE approach estimated the parameters with the most amount of bias 

regardless of sample size. 

When ICC was .1, the estimates of all the methods were more biased than when ICC was 

.2. FE produced the most biased estimates regardless the ICC level. WLS2 outperformed the 

other alternative estimators. The ML estimates were once again the least biased over both levels 

of ICC. Increasing level-2 sample size and increasing ICC showed to improve the performance 

of all the estimators. 

The bias in the estimates did not differ much within the methods as Standardized 03γ ,  

Standardized 13γ  and r ranged from 0 to .5. The bias in the ML estimates consistently 

increased as the effect sizes increased, which indicated that they did not perform as well when 

correlated predictors were omitted from the model. This was consistent with the findings of 

Frees (2001). The performance of the alternative estimators varied. The WLS methods 

performed worse when correlated effects were omitted from the model; however a steady 

increase in bias was not apparent for WLS3. 

21ZZ

An examination of the direction of the bias revealed that the ML methods tended to 

slightly overestimate the parameters. The amount of bias in the ML estimates increased when 

correlated predictors were omitted from the model. The alternative estimators either 

underestimated or overestimated the parameters depending on the condition; FE tended to 

consistently underestimate the level-1 predictor and the WLS methods were prone to 

overestimating the XZ2 interaction. 

The ECLS analysis results reaffirmed the findings of the Monte Carlo study. The ML 

estimation methods performed the best when the level-2 interaction effect was omitted from the 

model. The alternative estimators under estimated or over estimated each of the seven variables 
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in the analysis. Although the level-2 sample size was increased to 755, the alternative techniques 

did not perform as well as the ML methods. 
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5.0  DISCUSSION 

5.1 THE MONTE CARLO STUDY 

Based on the findings of the Monte Carlo study, the ML estimation procedures outperformed the 

other four methods when a level-2 interaction term was left out of the multilevel model; that is, 

the ML methods were the best techniques to use in order to reduce omitted variable bias when 

the omitted variable was a level-2 interaction term. The four alternative estimation techniques 

did not perform as well as the ML techniques for the following reasons: (a) they produced more 

non-convergent solutions; (b) the magnitude of the bias in the parameters produced by the 

alternative estimators was higher than the magnitude of the bias in the ML estimates; and (c) the 

alternative estimators tended to overestimate or underestimate the parameter coefficients.  

Frees (2001) recommended that the alternative estimation procedure FE be used to 

compensate for omitted variable bias when estimating the fixed effects of a model that omits a 

study variable. Frees (2001) did not study the behavior of FE when a level-2 interaction term was 

omitted from the multilevel model. FE produced estimates with a higher amount of bias than all 

the other techniques, and consistently underestimated the level-1 coefficient. Thus, FE is not 

recommended to use for the purpose of controlling for omitted variable bias when a level-2 

interaction term is omitted from the multilevel model. The issues surrounding the FE method 
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could be due to the use of unbalanced data, whereas Frees (2001) used balanced data in his 

study. Therefore FE may not be optimal for use with unbalanced data. 

The WLS methods did not fare as well as the ML estimates in the presence of omitted 

variable bias due to the omission of a level-2 interaction. WLS3 did not account for the nesting 

in the data; it produced more non-convergent solutions and higher RMSD medians than the other 

WLS methods. WLS2 outperformed the other alternative techniques in the Monte Carlo study; 

this method was computed using variance estimates that were obtained when the omitted terms 

were not in the model. WLS3 is not a likely choice for researchers since it does not account for 

nesting, and WLS1 uses variances estimates obtained when omitted covariates are in the model. 

Thus WLS2 would be a more likely choice of the WLS methods in multilevel research.  

WLS1 and WLS2 were expected to perform better than the ML estimators; however, this 

was not the case. These procedures were based on the Augmented Regression (AR) estimators of 

Frees (2001). Since Frees recommended the use of AR estimates for reducing omitted variable 

bias in longitudinal models, the WLS methods were expected to reduce bias in a two-level model 

when an interaction term is omitted from the equation. There could be many reasons why the 

WLS methods did not work as well: (a) the choice of ; or (b) the choice of the weighting 

matrices. The formulas for the AR methods can be found in Equations (2.14) and (2.15) (p.24). 

Frees (2001) formed the two augmented regression estimators using choices of G  that worked 

well with longitudinal data. The G  used in this study was recommended for unbalanced data. 

Additionally, the Frees (2001) used the weighting matrix that is used in WLS2 for this study. The 

combination of choices for the WLS formulas may have decreased the efficiency of their 

performance. 

iG

i

i
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The poor performance of the alternative estimators could also be possibly due to the 

choice of the omitted covariate in this study. Aiken and West (1991) point out that estimates of 

lower order effects derived from a reduced model will often be quite similar to the estimates 

obtained when the higher-order term is included in the model when the predictors have been 

centered. This is especially true when the correlation between the predictors have low 

correlations. Since the alternative estimators were designed to correct for bias that occurs from 

an omitted term, they are over correcting or under correcting since omitting an interaction 

formed from two centered predictors should not produce biased results. 

5.1.1 Non-Convergent Solutions 

The numbers of RMSD values that were deleted due to extreme values were labeled as non-

convergent solutions. Of the six estimation methods that were studied, FE produced the highest 

percentage of non-convergent solutions over 1,000 replications. This was surprising since Frees 

(2001) recommended this method for estimating fixed effects in the presence of omitted variable 

bias; however, FE could have been correcting for bias that was not there since the omitted 

variable was a level-2 interaction term created from two centered variables. 

The number of non-convergent solutions for all the estimation methods decreased as 

level-2 sample size increased. WLS2 yielded the lowest percentage of improper solutions out of 

the four alternative estimation (FE, WLS1, WLS2, and WLS3) procedures. The decrease in non-

convergent solutions was consistent as sample size increased for all four alternative estimators.  

This indicates that the alternative approaches are more successful in estimating parameters when 

the level-2 sample size is increased to 100. It is possible that the performance of the WLS 

methods would be enhanced further if the level-2 sample size was more than 100. 
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As ICC increased, the number of non-convergent solutions decreased for the four 

alternative methods. An increase in ICC means a decrease in the variability of the dependent 

variable due to nesting. As the amount of nesting within groups increased, the alternative 

methods were less likely to produce improper solutions. Since WLS1 and WLS2 produced the 

lowest percentage of non-convergent solutions for the alternative methods, they may be more 

sensitive to the increase in the amount of nesting within groups.  

 The percentage of non-convergent solutions did not vary much over the range of 

Standardized 03γ , Standardized 13γ , and r  values (0, .1, .3, and .5) for all methods. This result 

signifies that changing the level of correlation does not affect the rate of convergence for the six 

estimation methods. The manipulation of sample size and ICC affected the percentage of 

improper solutions much more than the variation in effect size. 

21ZZ

5.1.2 The Mixed ANOVA 

The mixed ANOVA was used as a guide rather than a tool to make inferences due to the skewed 

data set. The main effect for method and all two-way interactions were all significant, which was 

expected due to the large sample size. The partial value of .223 for the main effect indicated 

that method accounted for 22.3% of the variability in the RMSD values. The Method by Sample 

Size interaction accounted for .03% of the variability in the RMSDs, while Method by ICC and 

Method by  each explained .01% of the variability. Thus the choice of estimation method 

did affect the magnitude of the bias in the parameter estimates. The noticeable differences 

between the ML and alternative methods confirm this; that is, ML methods produced less biased 

estimates. The marginal means of the ANOVA were not examined because of the nature of the 

2η

21ZZr

 88 



data set (skewed data). The medians of the RMSD values were studied to get a clearer picture of 

the differences in the methods. 

5.1.3 RMSD Medians 

The median RMSDs provided insight into the performance of the methods in the presence of the 

omitted level-2 interaction term. Higher RMSD values indicated that the method was producing 

biased estimates in the presence of omitted variable bias caused by the omission of a level-2 

interaction term. The medians depicted the magnitude of bias in the estimates for all levels of the 

five factors. 

ML methods once again outperformed all other methods over all five factors. The RMSD 

values of the ML methods were considerably smaller than those produced by the alternative 

estimates. The highest RMSD medians for the ML estimates occurred when level-2 sample size 

was 20, indicating that as sample size increased ML procedures were less biased in the presence 

of omitted variable bias due to an excluded level-2 interaction. This is consistent with the 

recommendation of Raudenbush and Bryk (2002), who suggest the use of large samples for 

accurate estimation with ML techniques.  

The ML methods also had lower RMSD values then the other methods when ICC was 

manipulated. The magnitude in the bias of the estimates decreased as ICC increased for all 

methods. A notable result was that the difference between the alternative estimators and the ML 

procedures was reduced when level-2 sample size and ICC were increased. Thus increasing 

level-2 sample size and ICC enhanced the performance of the six estimation procedures. A 

possible explanation for the better performance of the estimators is that as ICC increased, the 
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level-2 variability increased, which would lessen issues of restricted range; thus the RMSD 

values decreased. 

The magnitude of the bias in the estimates decreased as sample size increased for all six 

estimation methods. The difference between the size of the RMSDs for WLS1 and WLS2 

decreased as sample size increased. WLS2 used variance estimates from the reduced model for 

its weighting matrix, therefore it would be more likely to be used in research since researchers do 

not have access to omitted terms. The use of variance estimates that were calculated based on a 

model that included the omitted terms (WLS1) had no advantage for detecting bias when a level-

2 interaction was omitted from the multilevel model. This was especially true for small sample 

sizes. 

FE and WLS3 both produced estimates that had large amounts of bias in small samples. 

Although this bias lessened as sample size increased, these two methods were not as effective in 

reducing bias when compared to the other four. Both of these methods also produced the highest 

RMSD values across the levels of ICC. This result was expected for WLS3, but FE was 

recommended by Frees (2001) for use when estimating fixed effects. The study by Frees (2001) 

used the FE method to reduce omitted variable bias in estimates when an important covariate 

was omitted from the model, not an interaction term, as the case in this study. Therefore FE 

cannot be suggested for use when the omitted term is a level-2 interaction. 

 The RMSD values did not differ dramatically within the methods due to the changes in 

Standardized 03γ , Standardized ,13γ  and . Findings indicated that ML estimates were more 

biased as Standardized 

21ZZr

03γ  and Standardized 13γ  increased from 0 to .5. These results parallel 

those in the study of Frees (2001), which revealed that the ML estimates did not perform as well 

when correlated predictors were removed from the model. 
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5.1.4 The Direction of Bias 

The parameter estimates of the full model were subtracted from the reduced model in order to 

determine whether the methods were overestimating or underestimating the multilevel 

coefficients. The ML methods consistently overestimated the parameter estimates of the intercept 

and the level-1 predictor, although only by a slight margin. The fact that the direction of the bias 

was always positive reveals that ML methods are prone to overestimating the coefficients in the 

multilevel model, especially in small samples and when correlated effects are omitted from the 

model. 

 The results for the alternative estimators were not as consistent. FE tended to 

underestimate the level-1 predictor, which was the only consistent pattern. The WLS methods 

underestimated most of the parameter estimates for all effect sizes, the exceptions being the XZ2 

interaction, which was consistently overestimated, and the intercept, which was overestimated 

with larger effect sizes and underestimated with smaller effect sizes. Due to the inconsistencies 

with these findings, a clear conclusion cannot be made about the manipulation of effect sizes on 

the performance of the alternative approaches. 

5.2 ECLS DATA 

The ECLS data was used to reaffirm the findings of the Monte Carlo study. When a level-2 

interaction created from instructional time and SES was omitted from the model, the ML 

estimators produced estimates most like those of the baseline model. The alternative methods of 

FE, WLS2, and WLS3 all overestimated the level-1 predictor, which was an opposite finding of 

 91 



the Monte Carlo study. FE and WLS1 perfectly matched the baseline estimate for SES, while 

WLS2 came close. The alternative methods did not match the baseline estimates for any of the 

other variables. There was not a clear choice for a best performing alternative method based on 

the results of the ECLS analysis.  

5.3 CONCLUSIONS 

The purpose of this study was to identify the estimation technique that reduces omitted 

variable bias when a level-2 interaction is omitted from a two-level model. The alternative 

methods that were studied did not perform well, which could be due to a variety of reasons. 

The most logical reason for the poor performance of the alternative techniques is that they 

were not designed to work with unbalanced data and the formulas used in this study did not 

calculate unbiased estimates that would be useful in analyses. More research is needed in 

order to make a recommendation for an estimation method of choice; investigation into 

approximating random effects and other models may provide a clearer picture. 

Two different sets of conclusions can be made from the different sections of the 

investigation. The conclusions from the Monte Carlo study are as follows: 

1. When the omitted variable in a multilevel analysis is a level-2 interaction term, maximum 

likelihood techniques produce the least biased estimates. Maximum likelihood estimates 

are also easily attainable in statistical software, which makes them a logical choice over 

the alternative estimators of FE, WLS1, WLS2, and WLS3. Keep in mind that this 

conclusion is based on results obtained from unbalanced data using a two-level model. 
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2. The alternative estimators were less biased when level-2 sample size was 100, and the 

difference between the performance of WLS1 and WLS2 decreased when level-2 sample 

size increased.  

3. WLS3 is not recommended at all since it does not account for the nesting in data, and it 

produced high numbers of non-convergent solutions as well as biased estimates. The 

results of an analysis using WLS3 would be misleading under any conditions. 

4. Increasing level-2 sample size and increasing the ICC helps to reduce omitted variable 

bias in estimates of the multilevel model when a level-2 interaction term is not included 

in the analysis. 

The conclusions of the ECLS portion of the study can be described as follows: 

5. The ML methods most closely approximated the baseline estimates when a level-2 

interaction was omitted from the two-level model. 

6. The alternative methods did not produce approximations resembling the baseline 

estimates. Therefore a clear choice for the best performing alternative estimator could not 

be made. 

 

5.4 LIMITATIONS OF THE STUDY 

The limitations in this study were associated with the restrictions placed on the number of factors 

in the Monte Carlo design and the choice of model. As with any Monte Carlo Study, the 

generalizability of the study was limited due to the design. Only a few factors were manipulated 

in this study: the level-2 sample size, the ICC, Standardized 03γ , Standardized 03γ , and  .21ZZr
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There were two levels of ICC, .1 and .2; however, the range of the ICC could have been broader. 

Another issue was the fact that the ICC for the dependent variable, Y, and the level-1 predictor, 

X, was set to be the same. That is, when the ICC for Y was .1, the ICC for X was .1. The ICC 

could have been varied for these two predictors. Other factors such as assumption violations 

could lend more insight into the performance of the estimation methods.  

Another limitation was that only the fixed effects estimates were inspected. The 

equations provided by Frees (2001) did not provide the correct variance estimates for the 

alternative methods; thus the random effects could not be studied. Frees (2001) made his 

suggestions based on the performance of the methods for the fixed and random effects, but the 

recommendations from this study are only established from studying the fixed effects. 

The model used in this study is a two-level model with only one level-1 predictor and two level-

2 predictors that are centered and multiplied to form a level-2 interaction term. This study does 

not explore other relationships that can occur between variables, such as quadratic trends. Other 

models could have provided more information, such as models that contain: more than one level-

1 predictor; a level-1 interaction; no level-2 predictors or more than two level-2 predictors; more 

than one within-level interaction. 

5.5 SUGGESTIONS FOR FUTURE RESEARCH 

The suggestions for future research are based on the findings of this study. The finding that the 

bias in the estimates decreased as level-2 sample size increased revealed that that factor was a 

strong indicator of the performance of the estimation methods. A future study could increase the 

level-2 sample size to determine if the difference in the alternative estimators disappears; that is, 

 94 



would the alternative estimation methods produce parameter estimates more comparable to the 

ML estimation methods when level-2 sample size is larger than 100? The findings were based on 

the examination of the fixed effects estimates. A future research project could examine the 

performance of the methods based the random effects; which estimation method reduces the 

effect of omitted variable bias in the random effects of a multilevel model? This study used a two 

level model; however, future studies could use three or four level models. Other relationships 

between variables could be examined, or the number of level-1 and level-2 predictors could be 

differed. The performance of the estimation methods could also be examined when a level of the 

model is excluded. The ICC for Y and X was either .1 or .2 in this analysis. Future research could 

examine the performance of the methods when the ICC is smaller or larger. Ashfartous and de 

Leeuw (2005) used a range of .2 to .8 for the ICC values in their study. Another suggestion 

would be to vary the ICC for Y and X; for example, if the ICC for Y is .1, let the ICC for X equal 

.2. In other words, one of the two variables has a stronger group nature than the other. Does this 

change the impact of the ICC factor on the performance of the six estimation methods? 
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APPENDIX A 

SAS PROGRAM 

/*This program generates multilevel data to be used with six different estimation methods 
to determine their effectiveness when the level-2 interaction term is omitted from the model*/ 

%macro hlm(startseed=1,n2=20,yicc=.1,rg03=0,rg13=0,rz1z2=0,replicate=1000); 
fileout=('c:\temp\lauren\results.dat'); 
%do nreps= 1 %to &replicate; 
proc printto log=out print=out new; 
run; 
proc iml; 
seed = &startseed + &nreps; 
call randseed (seed); 
yicc = &yicc; 
yicc = yicc*2; 
n2 = &n2; 
n1 = j(n2,1,.); 
call randgen(n1,'binom',20,.7); 
*********** y ***********; 
********* standardized gamma *********; 
********* g00 and g10 are same standardized and unstandarized **********; 
g00 = .3; 
rg01 = .3; 
rg02 = .3; 
rg03 = &rg03; 
g10 = .3; 
rg11 = .3; 
rg12 = .3; 
rg13 = &rg13; 
******** r-square at level-1 is a function of gamma10 *********; 
rsq = g10**2; 
******** standardized tau01 *******; 
rtau01 = .3; 
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rz1z2 = &rz1z2;  
vz1 = 1; 
vz2 = 1; 
vz3 = vz1*vz2 + rz1z2**2; 
covz1z2 = rz1z2*sqrt(vz1*vz2); 
z1 = j(n2,1,.); 
z2 = j(n2,1,.); 
call randgen(z1, 'normal', 0, 1); 
call randgen(z2, 'normal', 0, 1); 
z  = z1||z2; 
zcovrow1 = vz1||covz1z2; 
zcovrow2 = covz1z2||vz2; 
zcov = zcovrow1//zcovrow2; 
call eigen(zeigenvalue, zeigenvector, zcov); 
sqrtzcov = zeigenvector * diag(sqrt(zeigenvalue)) * t(zeigenvector); 
z = z*sqrtzcov; 
z1 = z[,1]; 
z2 = z[,2]; 
z1mean = sum(z1)/n2; 
z2mean = sum(z2)/n2; 
z1 = z1 - z1mean; 
z2 = z2 - z2mean; 
z3 = z1 # z2; 
********** tau - null model **********; 
tau00 = yicc/2; 
tau11 = yicc/2; 
tau01 = rtau01*sqrt(tau00*tau11); 
******** unstandardized gammas *******; 
g01 = rg01*(sqrt(tau00)); 
g02 = rg02*(sqrt(tau00)); 
g03 = rg03*(sqrt(tau00)/sqrt(vz3)); 
g11 = rg11*(sqrt(tau11));  
g12 = rg12*(sqrt(tau11)); 
g13 = rg13*(sqrt(tau11)/sqrt(vz3)); 
******** tau with zs *****************; 
 
tau00 = tau00 - (g01**2*vz1 + g02**2*vz2 + g03**2*vz3 + 2*g01*g02*covz1z2); 
tau11 = tau11 - (g11**2*vz1 + g12**2*vz2 + g13**2*vz3 + 2*g11*g12*covz1z2); 
tau01 = tau01 - (g01*g11*vz1 + g01*g12*covz1z2 + g02*g11*covz1z2 + g02*g12*vz2 

+ g03*g13*vz3); 
taurow1 = tau00||tau01; 
taurow2 = tau01||tau11; 
tau = taurow1//taurow2; 
call eigen(taueigenvalue, taueigenvector, tau); 
sqrttau = taueigenvector * diag(sqrt(taueigenvalue)) * t(taueigenvector); 
u0 = j(n2,1,.); 
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u1 = j(n2,1,.); 
call randgen(u0, 'normal', 0, 1); 
call randgen(u1, 'normal', 0, 1); 
u = u0||u1; 
u = u * sqrttau; 
u0 = u[,1]; 
u1 = u[,2]; 
b0 = g00 + g01*z1 + g02*z2 + g03*z3 + u0; 
b1 = g10 + g11*z1 + g12*z2 + g13*z3 + u1; 
sigma2 = 1 - yicc - rsq; 
do i = 1 to n2; 
id = j(n1[i],1,i); 
z1ij = j(n1[i],1,z1[i]); 
z2ij = j(n1[i],1,z2[i]); 
********** x **********; 
xij = j(n1[i],1,.); 
call randgen(xij, 'normal', 0, 1); 
xijmean = sum(xij)/n1[i]; 
xij = xij - xijmean; 
********** y **********; 
e = j(n1[i],1,.); 
call randgen(e, 'normal', 0, sqrt(sigma2)); 
yij = b0[i] + b1[i]*xij + e; 
dataij = id||xij||yij||z1ij||z2ij; 
if (i = 1) then dataidxy = dataij; 
else dataidxy = dataidxy//dataij; 
end; 
create multixyz from dataidxy [colname={'id' 'x' 'y' 'z1' 'z2'}]; 
append from dataidxy; 
close multixyz; 
conditions= seed||n2||yicc||rg03||rg13||rz1z2; 
create cond from conditions [colname={'seed' 'n2' 'yicc' 'rg03' 'rg13' 'rz1z2'}]; 
append from conditions; 
close cond; 
quit; 
 
data newdata; 
set multixyz; 
z3 = z1*z2; 
xz1 = x*z1; 
xz2 = x*z2; 
x0=1; 
xz3 = x*z3; 
run; 
quit; 
/**population model**/ 
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proc mixed data=newdata method=reml cl covtest; 
class id; 
model y= x z1 z2 z3 x*z1 x*z2 x*z3/ solution ddfm=bw; 
random intercept x/ type=un subject=id g gcorr solution; 
ods output solutionf=popfixed solutionr=poprandom; 
run; 
data population; 
set popfixed; 
run; 
/**variance estimates when level-2 interaction is in the model*/ 
proc mixed data=newdata method=reml cl covtest; 
class id; 
model y= x z1 z2 z3 x*z1 x*z2 x*z3 /solution ddfm=bw; 
random intercept x /type=un subject=id g gcorr solution; 
repeated/ group=id; 
ods output covparms=cov1; 
run; 
data new2; 
set cov1; 
if _n_>3 then output; 
run; 
data new3; 
set cov1; 
if _n_<4 then output; 
run; 
/*variance estimates when level-2 interaction is not in the model*/ 
proc mixed data=newdata method=reml cl covtest; 
class id; 
model y= x z1 z2 x*z1 x*z2/ solution ddfm=bw; 
random intercept x /type=un subject=id g gcorr solution; 
repeated/ group=id; 
ods output covparms=cov2; 
run; 
data new4; 
set cov2;  
if _n_>3 then output; 
run; 
data new5; 
set cov2; 
if _n_<4 then output; 
run; 
proc iml;  
sum=j(6,6,0); 
sum1=j(6,1,0); 
sumvarbfe=j(6,6,0); 
xfe1=j(6,6,0); 
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xfe2=j(6,1,0); 
b22=j(6,6,0); 
b12=j(6,6,0); 
b11=j(6,6,0); 
ar11=j(6,1,0); 
ar22=j(6,1,0); 
wls3var=j(6,6,0); 
bwls22=j(6,6,0); 
bwls12=j(6,6,0); 
bwls11=j(6,6,0); 
ar11wls=j(6,1,0); 
ar22wls=j(6,1,0); 
wls1var=j(6,6,0); 
b22wls=j(6,6,0); 
b12wls=j(6,6,0); 
b11wls=j(6,6,0); 
ar2wls2=j(6,1,0); 
ar22wls2=j(6,1,0); 
wls2var=j(6,6,0); 
xvx=j(6,6,0); 
xvy=j(6,1,0); 
use newdata; 
read all var _all_ into datall [colname = {id, x, x0, y, z1, z2, z3, xz1, xz2, xz3}]; 
close newdata; 
use new2; 
read all var {estimate} into emat; 
close new2; 
use new3; 
read all var {estimate} into vmat; 
close new3; 
use new4; 
read all var {estimate} into emat1; 
close new4; 
use new5; 
read all var {estimate} into vmat1; 
close new5; 
n = nrow(datall); 
p = ncol(datall); 
tempvi1 = vmat[1]||vmat[2]; 
tempvi2 = vmat[2]||vmat[3]; 
tempvi = tempvi1//tempvi2; 
tempv1=vmat1[1]||vmat1[2]; 
tempv2=vmat1[2]||vmat1[3]; 
tempv=tempv1//tempv2; 
do k = 1 to &n2; 
temp = j(1,p,0); 
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do j = 1 to n; 
 if (datall[j,1] = k) then temp = temp//datall[j,]; 
end; 
ntemp = nrow(temp); 
temp = temp[2:ntemp,]; 
nlevel1 = ntemp - 1; 
freex = temp[,2:3]||temp[,5:6]||temp[,8:9]; 
freez = temp[,2:3]; 
/*variance with z3*/ 
ri = emat[k] * i(nlevel1); 
v=ri+freez*tempvi*t(freez); 
/*variance without z3**/ 
ri2= emat1[k]*i(nlevel1); 
v2=ri2+freez*tempv*t(freez); 
y = temp[,4]; 
/**beta-hat**/ 
freexvfreex=freex`*inv(v)*freex; 
xvx=xvx+freexvfreex; 
freexvy=freex`*inv(v)*y; 
xvy=xvy+freexvy; 
/**fixed effects**/ 
risqrt = sqrt(ri); 
risqrtinv = inv(risqrt); 
qi = i(nlevel1) - risqrtinv * freez * inv(t(freez) * inv(ri) * freez) * t(freez) * risqrtinv; 
x1fe =(t(freex) * risqrtinv * qi * risqrtinv * freex);  
xfe1=x1fe+xfe1; 
x2fe=(t(freex) * risqrtinv * qi * risqrtinv * y); 
xfe2=x2fe+xfe2; 
/****WLS3****/ 
zrz=freez`*inv(ri)*freez; 
invzrz=inv(zrz); 
g=(freez*invzrz*t(freez))*inv(ri)*freex; 
w=i(nlevel1); 
b2=t(g)*inv(w)*g; 
b22=b22+b2; 
b1=t(freex)*inv(w)*g; 
b12=b12+b1; 
b3=t(freex)*inv(w)*freex; 
b11=b11+b3; 
ar1=t(freex)*inv(w)*y; 
ar11=ar11+ar1; 
ar2=t(g)*inv(w)*y; 
ar22=ar22+ar2; 
/**WLS1**/ 
zrz1=freez`*inv(ri)*freez; 
invzrz1=inv(zrz1); 
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g1=(freez*invzrz1*t(freez))*inv(ri)*freex; 
w1=v; 
bwls1=t(g1)*inv(w1)*g1; 
bwls22=bwls22+bwls1; 
b1wls=t(freex)*inv(w1)*g1; 
bwls12=bwls12+b1wls; 
bwls3=t(freex)*inv(w1)*freex; 
bwls11=bwls11+bwls3; 
arwls1=t(freex)*inv(w1)*y; 
ar11wls=ar11wls+arwls1; 
arwls2=t(g1)*inv(w1)*y; 
ar22wls=ar22wls+arwls2; 
/*WLS2*/ 
zrz2=freez`*inv(ri2)*freez; 
invzrz2=inv(zrz2); 
g2=freez*invzrz2*t(freez)*inv(ri2)*freex; 
w2=v2; 
bwls2=t(g2)*inv(w2)*g2; 
b22wls=b22wls+bwls2; 
b2wls=t(freex)*inv(w2)*g2; 
b12wls=b12wls+b2wls; 
b3wls=t(freex)*inv(w2)*freex; 
b11wls=b11wls+b3wls; 
arwls2=t(freex)*inv(w2)*y; 
ar2wls2=ar2wls2+arwls2; 
ar2wls2a=t(g2)*inv(w2)*y; 
ar22wls2=ar22wls2+ar2wls2a; 
end; 
bfe=ginv(xfe1)*xfe2; 
ar3=b12*ginv(b22)*ar22; 
c11=b11-b12*ginv(b22)*t(b12); 
c11inv=inv(c11); 
diagc11=vecdiag(c11inv); 
WLS3=c11inv*(ar11-ar3); 
arwls3=bwls12*ginv(bwls22)*ar22wls; 
c11wls1=bwls11-bwls12*ginv(bwls22)*t(bwls12); 
c11wlsinv=inv(c11wls1); 
WLS1=c11wlsinv*(ar11wls-arwls3); 
ar3wls2=b12wls*ginv(b22wls)*ar22wls2; 
c11wls2=b11wls-b12wls*ginv(b22wls)*t(b12wls); 
c11wls2inv=inv(c11wls2); 
WLS2=c11wls2inv*(ar2wls2-ar3wls2); 
results=bfe||wls3||wls1||wls2; 
create resultdata from results; 
append from results; 
close resultdata; 
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quit; 
proc mixed data=newdata method=ml cl covtest; 
class id; 
model y= x z1 z2 x*z1 x*z2/ solution ddfm=bw; 
random intercept x/ type=un subject=id solution g gcorr; 
ods output solutionf=mlfixed solutionr=mlrandom; 
run; 
proc mixed data=newdata method=reml cl covtest; 
class id; 
model y= x z1 z2 x*z1 x*z2/ solution ddfm=bw; 
random intercept x/ type=un subject=id solution g gcorr; 
ods output solutionf=remlfixed solutionr=remlrandom; 
run; 
data r1; 
array bfe [*] bfe1-bfe6; 
array wls3 [*] wls31-wls36; 
array wls1 [*] wls11-wls16; 
array wls2[*] wls21-wls26; 
do i = 1 to 6; 
set resultdata; 
bfe[i] = col1; 
wls3[i] = col2; 
wls1[i] = col3; 
wls2[i] = col4; 
end; 
drop col1-col4 i; 
run; 
data r2; 
array estm [*] estimate1-estimate6; 
array pm [*] p1-p6; 
array tm [*] t1-t6; 
array sem [*] se1-se6; 
array dgfm [*] df1-df6; 
do i = 1 to 6; 
set mlfixed; 
estm[i] = estimate; 
sem[i] = stderr; 
dgfm[i] = df; 
tm[i] = tvalue; 
pm[i] = probt; 
end; 
drop i estimate stderr df tvalue probt effect; 
run; 
data r3; 
array estr [*] estimater1-estimater6; 
array pr [*] pr1-pr6; 
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array tr [*] tr1-tr6; 
array ser [*] ser1-ser6; 
array dgfr [*] dfr1-dfr6; 
do i = 1 to 6;  
set remlfixed; 
estr[i] = estimate; 
ser[i] = stderr; 
dgfr[i] = df; 
tr[i] = tvalue; 
pr[i] = probt; 
end; 
drop i estimate stderr df tvalue probt effect; 
run; 
data r4; 
array estp [*] estimatep1-estimatep8; 
array pval [*] pval1-pval8; 
array tp [*] tp1-tp8; 
array sep [*] sep1-sep8; 
array dgfp [*] dfp1-dfp8; 
do i = 1 to 8;  
set population; 
estp[i] = estimate; 
sep[i] = stderr; 
dgfp[i] = df; 
tp[i] = tvalue; 
pval[i] = probt; 
end; 
drop i estimate stderr df tvalue probt effect; 
run; 
data r5; 
merge cond r1 r2 r3 r4; 
run; 
data _null_; 
set r5; 
file &fileout mod; 
put  
seed n2 yicc rg03 rg13 rz1z2 bfe1 bfe2 bfe3 bfe4  
bfe5 bfe6 wls31 wls32 wls33 wls34 wls35 wls36 wls11 wls12  
wls13 wls14 wls15 wls16 wls21 wls22 wls23 wls24 wls25 wls26  
estimate1 estimate2 estimate3 estimate4 estimate5 estimate6 p1 p2 p3 p4  
p5 p6 t1 t2 t3 t4 t5 t6 se1 se2  
se3 se4 se5 se6 df1 df2 df3 df4 df5 df6  
estimater1 estimater2 estimater3 estimater4 estimater5 estimater6 pr1 pr2 pr3 pr4  
pr5 pr6 tr1 tr2 tr3 tr4 tr5 tr6 ser1 ser2  
ser3 ser4 ser5 ser6 dfr1 dfr2 dfr3 dfr4 dfr5 dfr6  
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estimatep1 estimatep2 estimatep3 estimatep4 estimatep5 estimatep6 estimatep7 
estimatep8 pval1 pval2  

pval3 pval4 pval5 pval6 pval7 pval8 tp1 tp2 tp3 tp4  
tp5 tp6 tp7 tp8 Sep1 Sep2 Sep3 Sep4 Sep5 Sep6  
Sep7 Sep8 dfp1 dfp2 dfp3 dfp4 dfp5 dfp6 dfp7 dfp8   ; 
run; 
/*seed conditions from other program*/ 
data _null_; 
set r5; 
file 'c:\temp\lauren\seed.dat'; 
put seed; 
run; 
%end; 
%mend hlm; 
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