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Sample size calculations in clinical trials depend on good estimates of the standard deviation.

Due to the uncertainty in the planning phase, adaptive sample size designs have been used

to re-estimate the standard deviation based on interim data and adjust the sample size as

necessary. Our research concentrates on carrying out the sample size re-estimation without

obtaining the treatment identities.

Gould and Shih[15] treated the interim data as coming from a mixture of two normal

distributions with a common standard deviation. To adjust the sample size, they used the

EM algorithm to obtain the MLE of the standard deviation while preserving the blind.

However, their approach has been criticized in the literature and our simulation studies

show that Gould and Shih’s[15] EM algorithm sometimes obtains incorrect boundary modes

as estimates of the standard deviation. We establish a new procedure to re-estimate the

sample size without breaking the blind but using additional information concerning the

randomization structure at the interim. We enhance their EM procedure by utilizing the

conditional Bernoulli model to incorporate the available information that equal numbers of

subjects are observed at the interim stage. Properties of the enhanced EM estimator are

investigated in detail.

Furthermore, we use the full information of the blocked randomization schedule in the

enhanced EM algorithm that the numbers of subjects are equal across treatment groups

within each randomization block. With increased information that occurs with an increasing
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number of blocks, the accuracy of the standard deviation estimation improves and there is

small bias when the block size is small. Moreover, for the case of two treatment groups, the

preservation of the actual type I error rate when using the standard t-test at the end of the

trial is verified through a simulation study. The actual power and the expected sample size

are analytically computed and simulated. The enhanced procedure with large numbers of

blocks is shown to adaptively maintain the power at a minimal sample size cost. Results are

extended to handle multi-center trials.
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1.0 INTRODUCTION

1.1 BACKGROUND

1.1.1 Adaptive designs in clinical trials

Adaptive clinical trial designs allow modifying the design specifications or statistical proce-

dures of an on-going trial based on the analysis of the interim data. Possible adaptations

used in clinical trials include[9][6]: sample size re-estimation, dropping or adding treatment

arms, adaptive dose finding, and adaptive hypothesis design (e.g., switching from a superi-

ority hypothesis to a non-inferiority hypothesis, changing primary endpoints). Compared to

traditional clinical trials, in which data are not analyzed until the end of the study, adap-

tive designs based on interim data analysis can be more flexible and efficient for identifying

clinical benefits[9]. Adaptive designs can also increase the probability of success, and poten-

tially reduce costs and resources for drug development. These advantages come at a price.

Adaptive trials are challenging to implement, and methods used for adaptive trials must be

carefully chosen to protect type I error and also to maintain the trial validity and integrity.

In recent years, sample size recalculations based on interim data have become increasingly

popular. In designing a clinical trial, determination of the sample size is a key step. It is

important to have a sufficient number of subjects in order to achieve the desired power for

detecting a clinically meaningful difference if such a difference truly exists. On the other

hand, if fewer subjects than planned can detect this difference, it is desirable to reduce the

number of subjects in the trial, particularly for trials in which subjects might be exposed to

an inferior or possibly toxic treatment. To deal with these concerns, sample size adaptive

designs can be used to adjust the sample size at the interim stage to avoid an underpowered
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or overpowered trial.

There are basically two types of adaptive designs for sample size recalculations, unblinded

and blinded sample size recalculations. Unblinded sample size recalculation methods break

the blind of the treatment identities at the interim stage and use this information to adjust

the sample size of the ongoing trial. Blinded sample size recalculation methods adjust the

sample size without breaking the blind at the interim stage. In this dissertation, we focus

on sample size re-estimation in adaptive designs when the blinding is maintained.

1.1.2 Sample size re-estimation for normal data

Our specific focus is on sample size re-estimation when the primary trial outcome measure

can be viewed as following a normal distribution, or at least well approximated by a normal

distribution. However, our proposed method in this dissertation can be used under any expo-

nential family assumption. Suppose we plan a clinical trial aimed to compare an experimental

treatment with a control treatment where the primary endpoints are normally distributed.

For normal data, sample size is determined by type I error, the power at the treatment effect

to be detected, and the standard deviation of the primary outcome variable[11].

The value of the population standard deviation of the primary endpoint is generally un-

known in the planning stage. In the planning stage, an estimate of the standard deviation

is typically based on previous or similar trials. This estimate can be unreliable for a variety

of reasons. Study populations can differ, study conduct can vary, and primary endpoints

can be measured differently. Moreover, even in identical settings, studies can differ in their

variability for unknown reasons. Underestimating the standard deviation in the design phase

causes the trial to be underpowered. Overestimating the standard deviation in the design

phase is wasteful of time and money on the trial, as well as possibly being ethically problem-

atic. Therefore, It is desirable to get a more accurate estimate of standard deviation using

interim data.

Treatment effect is defined to be the difference in the mean of a primary endpoint between

the control and treatment groups. Typically in the planning stage the treatment effect is

chosen to be a clinically meaningful difference of interest. It can also represent a difference
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that would make further development of the experimental treatment cost feasible. Re-

estimation of the treatment effect based on interim data can be used to adjust the sample size,

but requires unblinding the data and thus is sometimes controversal[27, 25, 26]. Unblinding

can introduce potential bias and add more complexity to the studies. In our research, we

focus on sample size re-estimation based on the nuisance parameter, �, rather than on the

treatment effect, because as we indicated we want to maintain the blind at the interim stage.

Gould[14] proposed a procedure of sample size re-estimation for binomial trials which

does not break the blind. An initial sample size is calculated based on type I error and the

power for the assumed treatment effect and the anticipated overall event rate for the binary

primary endpoint. Gould’s method adjusts sample size based on the estimated overall event

rate at the interim stage, which is available without breaking the blind. The standard chi-

square test is used to test the null hypothesis of equal proportions at the end of the trial. His

simulation studies showed that there is not substantial type I error rate inflation by using

the chi-square test as if no adjustment to the sample size occurred.

1.2 UNBLINDED SAMPLE SIZE RE-ESTIMATION

In this subsection, we briefly review several methods that have been used to re-estimate �

using unblinded data at the interim stage.

1.2.1 Stein’s method

Stein proposed a two-stage procedure in 1945[33] that can be used in two sample clinical trials

as follows. First, calculate the planned sample size based on an initial guess of the standard

deviation and use a sub-sample of the assumed number of subjects as first stage sample. After

subjects in the first stage finish the trial, we calculate the within-group standard deviation

and use it determine the new final sample size. More subjects are recruited until the new

sample size is reached. At the end of the trial, compute a standard t-statistic using the first

stage’s within group standard deviation in the denominator.
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Since the estimate of standard deviation in the Stein’s t-statistic is only based on the first

stage’s data, it can be shown that this t-statistic follows a t-distribution. Also it is shown

that the desired power is guaranteed[24]. However, Stein’s procedure has not been frequently

used in clinical trials. Because Stein’s procedure only uses the standard deviation’s estimate

from the first stage in the final test statistic, it may be a bad estimator when first stage’s

sample size is small or the standard deviation of the primary endpoint changes over the

course of the trial[28].

1.2.2 The naive t-test

Wittes and Brittain modified the Stein procedure and presented the idea of an internal pilot

study[36]. In this approach, they treat the first fraction of the planned sample as an ’internal

pilot’ and recalculate sample size using an estimate of � from the internal pilot data. The

study then continues with the recalculated sample size as the target for the overall sample

size. The data are analyzed at the end of the trial as if they had been collected in a fixed

sample study.

Wittes and Brittain’s procedure is similar to Stein’s, in that the sample size adjustment

is based on the within-group standard deviation of the first stage’s sample. The difference

is that they use the within-group standard deviation of the entire sample data in the de-

nominator of the standard t-statistic at the end of the trial. This test statistic uses the

t-distribution as its reference distribution. In such a setting with no adjustment for sample

size re-estimation, this approach is called the naive method. Since the total sample size is

adaptive, the t-statistic under the null hypothesis does not actually follow a t-distribution.

Its advantage, however, is that it uses all the data to estimate the standard deviation.

Simulation studies showed that this naive method assures the desired power is reached,

but it may inflate the type I error rate, especially when the first stage sample size is

small[36][2][37]. Kieser and Friede[16] analytically computed the upper bound for the ac-

tual type I error rate and proposed an adjustment for the critical value for the naive t-test.

Miller[22] adjusted the variance estimator in the test statistic with an additive correction.

He showed through simulation that the actual type I error is very close to the nominal level

4



of �.

1.3 BLINDED SAMPLE SIZE RE-ESTIMATION

The aforementioned methods calculate the within-group standard deviation from the sepa-

rate standard deviations in the treatment and control groups which requires breaking the

blind. For the blinded design, the blind is not broken at the interim stage and only broken

at the end of the trial. Maintaining the blind in the sample size recalculation has clear

operational advantages. Unblinding the trial for the interim analysis usually requires an

independent external group, such as Independent Data Monitoring Committee, to conduct

the sample size re-estimation. This may introduce unnecessary complexity and prolong the

study of the trial. For a blinded design, it can be conducted by in-house personnel. Blinding

the treatment identity also helps preserve the integrity of the trial[12]. By unblinding the

treatment assignment, an investigator who infers the apparent treatment effect from the

interim data might have a tendency to treat remaining subjects with some bias. In facts, an

investigator would potentially be able to estimate the interim treatment effect if they can

infer the first stage’s within-group variance and obtain the pooled variance[24].

1.3.1 Pooled one sample standard deviation procedure

Gould and Shih[15] used a simple adjustment procedure to re-estimate sample size without

unblinding the data. First, the pooled variance is calculated from the blinded internal pilot

data, treating both treatments’ data as coming from a single population. Then the adjusted

variance is based on the one sample pooled variance and the hypothesized treatment effect.

The adjusted standard deviation is an unbiased estimator of � if the hypothesized treatment

effect holds. The potential problem is that the adjusted one-sample standard deviation

depends on the observed treatment effect. If the true treatment effect is bigger than the

assumed one, the calculated sample size could be unnecessarily large[22]. An alternative is

to use the one sample pooled standard deviation without adjustment. It has been argued
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that the overestimation of the one sample pooled standard deviation is not large in typical

clinical trials[24]. Kieser and Friede[17] showed through analytical computations that the

type I error rate in the usual t-test is not inflated if sample size is recalculated with the

adjusted or unadjusted one-sample standard deviation of the pooled data, and also that the

desired power is achieved.

1.3.2 EM algorithm

Gould and Shih[15] proposed another method, by using the EM algorithm, to estimate the

standard deviation assuming the data follow a mixture of normal distributions. This does not

require breaking the treatment blind. They showed that the EM algorithm reasonably esti-

mates the standard deviation no matter the assumed value of treatment difference. Details

concerning their EM procedure are provided in Chapter 2.

Gould and Shih[15]’s implementation of the EM algorithm for the mixture of normal

distributions has raised some issues in subsequent literature. Friede and Kieser[12] indicated

that Gound and Shih[15]’s procedure has critical deficiencies. First, they showed through

simulation study that the estimate of within-group standard deviation depends on the initial

value of standardized treatment effects when implementing the EM algorithm. They also

showed that the EM algorithm Gould and Shih[15] used converges very slowly. Thus, an

inadequate stopping criteria makes the algorithm stop at incorrect values before the estimator

stabilizes. Waksman[35] examined Gould and Shih[15]’s published computer program and

argued that Gould and Shih[15]’s EM algorithm is independent of the initial values as long as

the stopping criteria are strict enough. Waksman explained that Gould and Shih[15] altered

the estimate of standard deviation in the M-step by subtracting 1 from the total sample

size in the denominator. When the alteration is removed from the program, the results are

changed significantly. He used simulation to show that the EM estimate of the standard

deviation is independent of the initial values of the EM algorithm. Waksman also suggested

that using a sufficiently strict stopping criteria leads the EM algorithm to obtain the MLE.
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1.4 SETTINGS AND NOTATION

Consider a clinical trial where we want to compare two treatments, a control group and a

treatment group. For simplicity, we assume that equal numbers, N/2, of subjects are assigned

to each group. The primary endpoint is assumed normally distributed with mean �c in the

control group, mean �t in the treatment group and with a common standard deviation �.

Define the true treatment difference as � = �t−�c. The goal of the trial is to compare these

two groups, i.e., H0 : �c = �t versus H1 : �c ∕= �t at the end of the trial.

At the beginning of the trial, the planned sample size N can be obtained as

4�̃2(z�/2 + z�)2

Δ2
, (1.1)

where �̃ is an initial guess of the standard deviation, � is the type I error rate, 1 − � is

the desired power, z�/2 and z� are the upper �/2 and � quantiles of a standard normal

distribution, and Δ is the assumed treatment effect for which the power is desired. We

typically obtain �̃ based on experience or from a previous study with the same endpoint.

When the data of the first N1 subjects out of N are available, we re-estimate � from these N1

observations without knowing the treatment identities, that is, without breaking the blind.

For example N1 can be half the initially planned sample size, i.e., N1 = N/2. The new

estimator �̂ is obtained from the blinded data and used to determine a new sample size N ′

that is given by
4�̂2(z�/2 + z�)2

Δ2
. (1.2)

Here, N is the originally planned sample size and N ′ is the recalculated sample size

based on (1.2) using the first N1 observations. Taking into account that we already have

N1 subjects at the interim stage, the new recalculated sample size N ′ can be adjusted

following different sample size capping rules. For example, Birkett and Day [2] proposed the

unrestricted rule, where N ′ is at least N1, that is, the adjusted final sample size for the entire

study is Nadj = max(N1, N
′). Thus in the second stage, a further N2 = max(N1, N

′) − N1

subjects are recruited. Further rules for the adjusted final sample size are given in Chapter

4.

7



1.5 OVERVIEW

In our research, we aim to re-estimate the sample size by utilizing the blinded data at the

interim of the adaptive clinical trials. We estimate the standard deviation by extending the

ideas of Gould and Shih[15] and using further details motivated by the practical setting of

clinical trials.

We enhance Gould and Shih’s[15] EM procedure by utilizing the information of the

blocked randomization schedule observed in clinical trials. The computational details used to

modify the EM algorithm when having this additional information are discussed in Chapter

2.

In Chapter 3, we further explore the effects of initial values and the convergence properties

for our enhanced EM algorithm in comparison to Gould and Shih’s[15]’s EM algorithm.

Simulation studies are conducted to compare the estimates from both EM algorithms. In

addition, we compare the estimates from the enhanced EM algorithm with different block

sizes.

In Chapter 4, the actual type I error rates are simulated under different scenarios by using

the standard t-test at the end of the adaptive studies and compared across EM procedures.

The actual power and the expected sample size are simulated in a similar way and also

computed using an analytical method. We show the benefits of using our adaptive sample

size procedure with large numbers of blocks.

EM procedures for single center trials are extended to multi-center trials in Chapter 5.

A preliminary simulation study is conducted for a two-center trial setting.

Finally, Chapter 6 presents our conclusions and lays down the foundation for future work.
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2.0 ENHANCED EM ALGORITHM ESTIMATION

2.1 MOTIVATION

It is known that for the two-sample t-test, the standardized treatment difference in the two

means (i.e., effect size) affects power calculation. For a given sample size, the larger the

effect size, the larger the power. For fixed total sample size, the standard deviation of the

difference in sample means is minimized when the two treatments have equal sample sizes.

Thus most clinical trials generally allocate patients to equal-sized groups to get the best

power when comparing two treatments.

The simplest randomization for two treatment groups is complete randomization with

p = 0.5. Simple randomization, however, is not typically used in clinical trials because it can

lead a substantial imbalance in the number of subjects assigned to each treatment group.

The imbalance would reduce the test’s ability to detect the true difference between two

treatments. In clinical trials, we minimally want to keep equal numbers of subjects in the

two treatment groups at the end of the trial, where each subject has the same probability

to be assigned to either the control group or the treatment group.

To improve complete randomization, block randomization is often applied in clinical

trials[30]. Within each block, equal numbers of subjects are randomly allocated to the

control group and the treatment group. The block size must be an even number, and

usually is not given in the clinical trial protocol. In addition to keeping a group balance

at the end of the trial, block randomization also periodically keeps the balance of patients

between two treatments. This is very important because time confounding can be guarded

against especially for a clinical trial which takes a long time to complete. During the trial,

medical equipment, concomitant medications and staff can change. It is also possible that
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the disease severity of patients entering the trial earlier is significantly different from that

of patients entering the trial towards the end. The balancing of numbers of patients makes

the two treatments intermittently more comparable over time. In the case of multiple-center

trials, not only are centers blocked but within centers blocks are also used to avoid an

imbalance that would happen within a center. For instance, if the trial is ended before one

center completes enrollment, we can still guarantee that there are equal numbers of patients

assigned to each treatment within the center. In general to protect against possibly guessing

the next patient’s allocation when small block sizes are used, block sizes are usually chosen

randomly, that is, we may use a combination of different block sizes, e.g., 2, 4, 6 and 8 during

the randomization.

As noted, Gould and Shih[15] used the EM algorithm to estimate the within-group stan-

dard deviation without unblinding the data at the interim stage. They planned N patients

in total with N/2 patients assigned to the control group and N/2 patients assigned to the

treatment group. For the N1 patients at the interim stage, they keep the treatment identities

blinded, so that the treatment indicators zi’s follow independent Bernoulli distributions with

probability 0.5 for i = 1, ..., N1. Clearly this does not guarantee an equal number of patients

in each group. Gould and Shih[15] chose not to use any block information concerning the

randomization at the interim stage. At the end of the trial, they use the standard t-test as

if the total sample size is fixed. Under this basis, their simulation showed that the actual

type I error rate is not inflated.

We propose a new procedure using the EM algorithm which untilizes the additional

information that equal numbers of subjects are assigned to each treatment at the interim

stage. The new proposed procedure is called the enhanced EM algorithm. To avoid confusion,

we call the EM algorithm used by Gould and Shih the conventional EM algorithm in our

dissertation. In this new procedure, given the condition that the sum of zi’s for the N1

subjects at the interim stage equals to N1/2, zi does not follow an independent Bernoulli

distribution any longer. The distribution of z1, ..., zN1 given the sum,
∑N1

i=1 zi, follows the

so-called conditional Bernoulli distribution, which we discuss in detail in Section 2.3. We

show that we can enter the additional information of balanced treatment allocation into the

EM algorithm. The critical remaining issue which we discuss in our research is whether the
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type I error of the standard t-test used at the end of the trial is inflated or not.

Suppose that we additionally knew we had two equal sized blocks for the interim data

each with size N1/2. Thus, in addition to knowing equal numbers of subjects from the two

treatments at the interim stage, we can gain a little more information by knowing that within

each half of the interim data, the numbers of subjects from two treatments are also equal.

In this case, the treatment identities given their sum within each half of the interim data is

also conditional Bernoulli distributed. We can use the information about block sizes further

in the enhanced EM algorithm. Conceptually, as we continue obtaining more information

about blocks, we know more balancing points at the interim stage. In this case, we show

that we get better estimates of the within-group standard deviation by using more available

information about the block sizes.

Operationally, there may be a concern that as we reveal more information about block

sizes, the interim data may not be considered fully blinded. We do not address this potential

operational issue, other than to show type I error is preserved. Our ultimate goal is to assess

when using the full randomization block information whether or not the type I error rate is

inflated when we use the standard two-sample t-test at the end of the trial.

2.2 THE CONVENTIONAL EM ALGORITHM

2.2.1 The EM algorithm

In the usual approach to maximum likelihood estimation, we set the first derivatives of a

log-likelihood function equal to zero, and find the maximum likelihood estimates by solving

for the unknown parameters in the equation. In the case where the underlying density is

a mixture of two distributions, it is difficult to find such analytical solutions for maximum

likelihood estimates. The EM algorithm [10] is an iterative algorithm developed to find

maximum likelihood estimates (MLEs) from the perspective of incomplete data and can be

used to obtain MLEs for mixture distributions.

Incomplete data arise from data missing by error or data involving some latent variables
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that are conceptually missing. The notation Yobs denotes the incomplete data, i.e., the

observed data; Ymis denotes the missing data; and Ycom = (Yobs, Ymis) denotes the complete

data. The complete data are assumed to have a joint density function f(Ycom∣�), where � is

a vector of parameters. The EM algorithm greatly reduces the complexity of the maximum

likelihood estimation by taking advantage of the complete data[20].

The EM algorithm starts with an initial guess of the parameters, �(0), and then it iterates

between two steps, the expectation step (E-step) and the maximization step (M-step). The

E-step calculates the conditional expectation of the complete-data log-likelihood function

given the observed data Yobs and the current parameter estimates. Specifically, the E-step

computes

Q(�∣�(t)) = E
[
ℓ(�∣Ycom)∣Yobs,�

(t)
]
,

where �(t) denotes the estimate of � at the ttℎ iteration.

In the M-step, we maximize the expectation computed in the E-step with respect to �,

and update the estimate of �, i.e.,

�(t+1) = arg max
�

Q(�∣�(t)).

The E-step and M-step are alternated repeatedly until certain convergence criteria are

met. The purpose of the EM algorithm is to maximize the observed-data log-likelihood

function log ℓ(�∣Yobs). It can be shown from Jensen’s inequality that the observed-data log-

likelihood function evaluated at �(t) is monotonically increasing on every iteration of the EM

algorithm[10]. The monotone convergence property of the EM algorithm guarantees finding

a local maximum of the observed-data log-likelihood.

2.2.2 Gould-Shih’s EM procedure without unblinding

In the blinded design, treatment identities are unknown when the interim analysis is to be

done after the first N1 of the planned sample size are available. Each observed primary

endpoint yi, for i = 1, ..., N1, is either from one treatment group or the other, so that its

treatment identity is missing. Our goal is to recalculate the sample size based only on
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the blinded data estimators. We obtain the maximum likelihood estimate of the nuisance

parameter � at the interim stage, and use this estimate to adjust the second stage sample

size in a study comparing treatment and control. The observed data y = (y1, y2, ..., yN1) are

treated as a mixture of two normal distributions, with parameters �1, �2, and �, denoted

collectively by �. The density function of yi is given by

f(yi∣�) =
1

2
f(yi∣�1, �) +

1

2
f(yi∣�2, �) . (2.1)

The observed-data likelihood function is given by the product of the sums of two normal

distributions, i.e.,

L(�∣y) =

N1∏
i=1

{
1

2
f(yi∣�1, �) +

1

2
f(yi∣�2, �)

}
, (2.2)

where we use the fact that subjects are equally randomized to two treatments. Gould and

Shih[15] treated maximizing (2.2) as an incomplete-data problem and used the EM algorithm

for maximum likelihood estimation in a mixture of two normal distributions. The observed

data are the primary endpoints, i.e., Yobs = {yi}N1
i=1. The complete data refer to primary

endpoints and the missing group identities, i.e., Ycom = ({yi}N1
i=1, {zi}

N1
i=1), where zi denotes

the group identity indicator for subject i with i = 1, ..., N1 and zi = 1 or zi = 0 indicates a

subject i is drawn from N(�1, �) or N(�2, �), respectively. Because we assume that subjects

are randomly assigned equally to the two treatments, z1, ..., zN1 are modeled as independent

Bernoulli distributions with probability 0.5, i.e.,

zi =

⎧⎨⎩ 1 with probability 0.5

0 with probability 0.5.

Thus, yi is assumed to follow N(�1, �) when zi = 1 and N(�2, �) when zi = 0. The

conditional density function of yi given zi is

f(yi∣zi,�) = f(yi∣�1, �)zif(yi∣�2, �)1−zi

= (2�)−1/2

(
1

�

)zi
exp

{
−(yi − �1)2

2�2
zi

}(
1

�

)1−zi
exp

{
−(yi − �2)2

2�2

(
1− zi

)}
= (2�)−1/2

(
1

�

)
exp

[
− 1

2�2

{
zi(yi − �1)2 + (1− zi)(yi − �2)2

}]
.

(2.3)
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The joint density function of yi and zi is the product of the marginal distribution of

group identity and the conditional distribution of the primary endpoint yi given the group

identity,

f(yi, zi∣�) = f(yi∣zi, �1, �2, �)× p(zi∣�1, �2, �)

= f(yi∣�1, �)zif(yi∣�2, �)1−zi 1

2

zi
(

1− 1

2

)1−zi

=
1

2
(2�)−1/2

(
1

�

)
exp

[
− 1

2�2

{
zi(yi − �1)2 + (1− zi)(yi − �2)2

}]
,

(2.4)

which is the joint density function for a pair of complete data (yi, zi). Hence, the complete-

data log-likelihood function is given by

ℓ(�∣y, z) = −N1 log 2− N1

2
log �2 − 1

2�2

N1∑
i=1

{
zi(yi − �1)2 + (1− zi)(yi − �2)2

}
− N1

2
log 2�.

(2.5)

The E-step computes the conditional expectation of the complete-data log-likelihood

given the observed data and the current parameter estimates,

Q(�∣�(t)) = E
[
ℓ(�∣y, z)∣y,�(t)

]
= −N1

2
log �2 − 1

2�2

N1∑
i=1

[
(yi − �1)2E(zi∣y,�(t)) + (yi − �2)2{1− E(zi∣y,�(t))}

]
+ constant.

(2.6)

Because the conditional expectation of the complete data log likelihood is linear in zi, it

amounts to computing the conditional expectations of the missing treatment identity zi in

(2.6). Specifically, the conditional probability of zi is written as

p(zi∣yi,�) =
f(yi, zi∣�1, �2, �)

f(yi∣�1, �2, �)
, (2.7)

where f(yi, zi∣�1, �2, �) is given in (2.4) and f(yi∣�1, �2, �) from (2.1). Thus, we have

p(zi∣yi,�) =
f(yi∣�1, �)zi × f(yi∣�2, �)1−zi

f(yi∣�1, �) + f(yi∣�2, �)

=

{
f(yi∣�1, �)

f(yi∣�1, �) + f(yi∣�2, �)

}zi { f(yi∣�2, �)

f(yi∣�1, �) + f(yi∣�2, �)

}1−zi
,

(2.8)
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that is, conditional on the observed data and the parameter estimates, the missing treatment

identity follows a Bernoulli distribution with probability f(yi∣�(t)
1 , �(t))/{f(yi∣�(t)

1 , �(t)) +

f(yi∣�(t)
2 , �(t))}.

Then the E(zi∣y,�(t)) of (2.6) in the E-step is written as

E(zi∣y,�(t)) = p(zi = 1∣y,�(t)) =
f(yi∣�(t)

1 , �(t))

f(yi∣�(t)
1 , �(t)) + f(yi∣�(t)

2 , �(t))
. (2.9)

The M-step maximizes the conditional expectation of the complete-data log-likelihood

computed in the E-step. Thus we update �(t+1) with

�
(t+1)
1 =

∑N1

i=1 yiE(zi∣y,�(t))∑N1

i=1 E(zi∣y,�(t))

�
(t+1)
2 =

∑N1

i=1 yi
{

1− E(zi∣y,�(t))
}∑N1

i=1

{
1− E(zi∣y,�(t))

}
�2(t+1)

=
1

N1

N1∑
i=1

[
E(zi∣y,�(t))(yi − �(t)

1 )2 + {1− E(zi∣y,�(t))}(yi − �(t)
2 )2

]
.

(2.10)

We iterate between the E-step and the M-step until certain convergence criteria are

satisfied. When the EM algorithm converges, we obtain the local maximum for the observed

data likelihood.

2.3 CONDITIONAL BERNOULLI DISTRIBUTION

2.3.1 Conditional Bernoulli model

Suppose zi’s are independent Bernoulli random variables with probability pi’s respectively,

for i = 1, ..., N1. The conditional Bernoulli model is developed by Chen, Dempster and

Liu[7] as the conditional distribution of z = (z1, z2, ..., zN1) given that
∑N1

i=1 zi = n, where n

is the number of zi = 1 out of N1 observations. To motivate the derivation of the conditional

Bernoulli distribution, we first introduce the Poisson-Binomial distribution, which is the

distribution of
∑N1

i=1 zi when not all the pi’s are equal. If all the pi’s are equal, it would

become the binomial distribution. Under the Poisson-Binomial distribution, the probability
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that
∑N1

i=1 zi = n is the sum of the probabilities of (z1, ..., zN1), where n of them are equal to

1 and (N1 − n) of them are equal to 0, that is,

p

( N1∑
i=1

zi = n

)
=
∑
∀Z

{
N1∏
i=1

pzii (1− pi)1−zi × 1

( N1∑
i=1

zi = n

)}
= p1p2 ⋅ ⋅ ⋅ pn−1pn(1− pn+1)(1− pn+2) ⋅ ⋅ ⋅ (1− pN1)

+ p1p2 ⋅ ⋅ ⋅ pn−1pn+1(1− pn)(1− pn+2) ⋅ ⋅ ⋅ (1− pN1)

+ ⋅ ⋅ ⋅+ (1− p1)(1− p2) ⋅ ⋅ ⋅ (1− pn)pn+1pn+2 ⋅ ⋅ ⋅ pN1

= {(1− p1)(1− p2) ⋅ ⋅ ⋅ (1− pN1)}

×
{(

p1

1− p1

× p2

1− p2

×, ⋅ ⋅ ⋅ ,× pn
1− pn

)
+ ⋅ ⋅ ⋅

+

(
pn+1

1− pn+1

× pn+2

1− pn+2

× ⋅ ⋅ ⋅ × pN1

1− pN1

)}
,

(2.11)

where 1(⋅) denotes the indicator function. We let wi denote the odds, pi/(1 − pi), so that

the second term in (2.11) becomes the sum of the product of all possible
(
N1

n

)
combinations

of wi’s, and thus (2.11) can be rewritten (Chen and Liu[8]) as

p

( N1∑
i=1

zi = n

)
=

{ N1∏
i=1

(1− pi)
} ∑

1≤i1<⋅⋅⋅<in≤N1

(
wi1 ⋅ ⋅ ⋅win

)
, (2.12)

where i1 < ⋅ ⋅ ⋅ < in denotes an ordered set of n indices with values between 1 and N1.

There are
(
N1

n

)
possible combinations of distinct i1 < ⋅ ⋅ ⋅ < in from {1, ..., N1}. The joint
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distribution of z = (z1, ..., zN1) and the sum of zi is given by

p

(
z,

N1∑
i=1

zi = n

)
= p(z)× p

( N1∑
i=1

zi = n∣z
)

=

{ N1∏
i=1

pzii (1− pi)1−zi
}
× 1

( N1∑
i=1

zi = n

)
=

{
(1− p1)(1− p2) ⋅ ⋅ ⋅ (1− pN1)

}
×
{(

p1

1− p1

)z1( p2

1− p2

)z2
⋅ ⋅ ⋅
(

pN1

1− pN1

)zN1
}
× 1

( N1∑
i=1

zi = n

)

=

{
N1∏
i=1

(1− pi)

}
N1∏
i=1

wzii × 1

( N1∑
i=1

zi = n

)
.

(2.13)

By using (2.12) and (2.13), we obtain that the conditional Bernoulli distribution has the

form

p

(
z∣

N1∑
i=1

zi = n

)
=
p(z,

∑N1

i=1 zi = n)

p(
∑N1

i=1 zi = n)

=

{∏N1

i=1(1− pi)
}∏N1

i=1w
zi
i × 1

(∑N1

i=1 zi = n
){∏N1

i=1(1− pi)
}∑

1≤i1<⋅⋅⋅<in≤N1

(
wi1 ⋅ ⋅ ⋅win

)
=

∏N1

i=1w
zi
i × 1

(∑N1

i=1 zi = n
)∑

1≤i1<⋅⋅⋅<in≤N1

(
wi1 ⋅ ⋅ ⋅win

) ,
(2.14)

which is Chen and Liu[8]’s equation (3). If pi = 1
2

for all i’s, then (2.14) can be simplified as

1/
(
N1

n

)
.
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2.3.2 Recursive generation of R function

The computation of the conditional Bernoulli distribution in (2.14) requires the summation

over the product of all
(
N1

n

)
combinations of wi’s in the denominator. Even with moderate

N1 and n, the computation would not be practical. This is because the summation of
(
N1

n

)
terms is computationally prohibitive when n and N1 are large. In the context of retrospective

case control studies, Gail, Lubin and Rubinstein[13] earlier developed an efficient recursive

method to calculate the summation in (2.14).

Let C denote any set contained in S and let ∣C∣ denote the cardinality of a set. The

recursive method is based on the function R(k, C),

R(k, C) =
∑

B⊂C,∣B∣=k

(∏
i∈B

wi

)
, (2.15)

for any non-empty set, C ⊂ S and 1 ≤ k ≤ ∣C∣. We define R(0, C) = 1, and R(k, C) = 0 for

any k > ∣C∣.

In the R function, when k = n and the set C includes all N1 units in {1, ..., N1}, the

denominator of the conditional Bernoulli distribution in (2.14) is denoted by R(n, S). Then

Chen and Liu observed that (2.12) can be rewritten as

p

( N1∑
i=1

zi = n

)
=

{ N1∏
i=1

(1− pi)
}
R(n, S),

and also (2.14) can be rewritten as

p

(
z∣

N1∑
i=1

zi = n

)
=

∏N1

i=1w
zi
i × 1

(∑N1

i=1 zi = n
)

R(n, S)
i = 0, 1, ..., N1.

The recursive relationship for computingR(k, C) proposed by Gail, Lubin and Rubinstein

is as follows. For any C ⊂ S, 1 ≤ k ≤ ∣C∣ and C ∖ {k} denoting the complement of k in C,

we have

R(k, C) = R(k, C ∖ {k}) + wkR(k − 1, C ∖ {k}), (2.16)

which implies that for S = {1, 2, ..., N1} and
∑N1

i=1 zi = n for i = 1, ..., N1, R(n, S) is written

as follows

R(n, S) = R(n, S ∖ {i}) + wiR(n− 1, S ∖ {i}). (2.17)
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We illustrate the recursive computation ofR(n, S) when n = 2 andN1 = 4, i.e., R(n, S) =

R(2, {1, 2, 3, 4}). There exist
(

4
2

)
= 6 combinations of a pair of wi’s from four distinct wi’s.

Thus, R(2, {1, 2, 3, 4}) is equal to w1w2 +w1w3 +w1w4 +w2w3 +w2w4 +w3w4. To compute

R(2, {1, 2, 3, 4}), the recursive formula in (2.17) can be used by first removing the largest

index in {1, 2, 3, 4}. That is, we have

R(2, {1, 2, 3, 4}) = R(2, S ∖ {4}) + w4R(1, S ∖ {4})

= R(2, {1, 2, 3}) + w4R(1, {1, 2, 3}) .
(2.18)

Then we use the recursive formula again to get R(2, {1, 2, 3}) and R(1, {1, 2, 3}), i.e.,

R(2, {1, 2, 3}) = R(2, {1, 2}) + w3R(1, {1, 2})

R(1, {1, 2, 3}) = R(1, {1, 2}) + w3R(0, {1, 2}),
(2.19)

where

R(2, {1, 2}) = R(2, {1}) + w2R(1, {1}) = w2R(1, {1}) = w2w1

R(1, {1, 2}) = R(1, {1}) + w2R(0, {1}) = w1 + w2

R(0, {1, 2}) = 1,

(2.20)

since R(1, {0}) = 0, R(0, {0}) = 1, R(0, {1}) = 1 and R(1, {1}) = R(1, {0}) +w1R(0, {0}) =

w1. With (2.19) and (2.20), R(2, {1, 2, 3, 4}) in (2.18) can be re-written as the product of

every two w’s, i.e, w1w2 + w1w3 + w1w4 + w2w3 + w2w4 + w3w4.

Figure 1 illustrates how the recursive procedure is used to calculate R(2, {1, 2, 3, 4})

graphically, referring to Table 1 in Chen and Liu[8]. The entry in the cell corresponding to

row 2 and column 4, denoted by cell(2, 4), corresponds to R(2, {1, 2, 3, 4}). It can be also

seen from Figure 1 that the recursive procedure requires nn1−n2 additions and nn1−n2 +n

multiplications to get cell(n,N1) because N1−n additions and N1−n+1 multiplications are

required for each row. This is O(nn1) operations in total[8]. As compared to
(
N1

n

)
operations

required without using the recursive formula in (2.17), it significantly reduces the cost of

computation.
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2.4 ENHANCED EM ALGORITHM

2.4.1 Applying conditional Bernoulli model into EM algorithm

In this section, we propose the enhanced EM algorithm for a mixture of normal distributions,

which is constructed to take advantage of the observed information of a known number of ob-

servations from each group. We use this new algorithm to improve blinded adaptive designs

in comparison to Gould and Shih’s conventional algorithm. The enhanced EM algorithm is

also used to estimate � = (�1, �2, �) based on the firstN1 available observations from the mix-

ture of normal distributions without knowing subjects’ treatment assignments. Additionally,

the enhanced EM algorithm takes into account the fact that there are exactly N1/2 subjects

in each treatment group at the interim (i.e., n = N1/2). Gould and Shih[15] ignored this

information by treating the group identities zi’s as independent Bernoulli variables. Given

the condition
∑N1

i=1 zi = N1/2, however, zi’s are no longer independently distributed and,

in fact, z follow a conditional Bernoulli distribution. When we construct the enhanced EM

algorithm, we incorporate this observed information.

We also treat the unobserved treatment identities as missing data. However, our observed

data include the fact that
∑N1

i=1 zi = N1/2 in addition to primary endpoints y1, ..., yN1 , i.e.,

Yobs = ({yi}n1
i=1,

∑N1

i=1 zi). The complete data likelihood function is given by

L

(
�∣y, z,

N1∑
i=1

zi

)
= f

(
y∣z,

N1∑
i=1

zi,�

)
× p
(
z∣

N1∑
i=1

zi,�

)
, (2.21)

where we know
∑N1

i=1 zi = N1/2 and p(zi = 1) = 0.5. Therefore, the joint probability of

the zi is 1/
(
N1

N1/2

)
, which is a uniform distribution on the subsets of

N1

×
1
{0, 1} where there are

N1/2 values of 1 in the set. Once we know the zi’s, the summation of zi’s is immediately

known. We have

f

(
y∣z,

N1∑
i=1

zi,�

)
= f(y∣z,�) . (2.22)

We assume yi is normally distributed given zi. When zi = 1, yi is distributed with N(�1, �)

and when zi = 0, yi is distributed with N(�2, �). Thus yi has the conditional density function

given by

f(yi∣zi,�) = f(yi∣�1, �)zi × f(yi∣�2, �)1−zi . (2.23)
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Therefore, the complete data likelihood function can be calculated as

L

(
�∣y, z,

N1∑
i=1

zi

)
=

N1∏
i=1

{
f(yi∣�1, �)zif(yi∣�2, �)1−zi

}
1(
N1

N1/2

) . (2.24)

Then the complete data log-likelihood function has the following form

ℓ

(
�∣y, z,

N1∑
1

zi

)
= −N1

2
log �2 − 1

2�2

N1∑
i=1

{
zi(yi − �1)2 + (1− zi)(yi − �2)2

}
− log

{(
N1

N1/2

)}
− N1

2
log 2�,

(2.25)

which is linear in zi with respect to �.

In the E-step, the conditional expectation of the complete data log-likelihood in (2.25),

ℓ(�∣y, z,
∑N1

i=1 zi) given the observed data, y and
∑N1

i=1 zi, is defined by

Q(�∣�(t)) = E

[
ℓ

(
�∣y, z,

N1∑
i=1

zi

)∣∣∣∣y, N1∑
i=1

zi,�
(t)

]
. (2.26)

Since the complete data log-likelihood function is linear in zi with respect to �, Q(�∣�(t)) in

(2.26) is reduced to a function of the conditional expectation of zi. Hence, (2.26) is rewritten

as

Q(�∣�(t)) = −N1

2
log �2 − 1

2�2

N1∑
i=1

[
(yi − �1)2E

(
zi
∣∣y, N1∑

i=1

zi =
N1

2
,�(t)

)
+ (yi − �2)2

{
1− E

(
zi
∣∣y, N1∑

i=1

zi =
N1

2
,�(t)

)}]
+ constant.

(2.27)
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To calculate the conditional expectation of the missing data zi’s, we first find the density

function of z given the observed data and the summation of zi’s, which is written as

p

(
z∣y,

N1∑
i=1

zi =
N1

2
,�

)
=

f(y∣z,
∑N1

i=1 zi = N1

2
,�)× p(z∣

∑N1

i=1 zi = N1

2
)∑

∀z f(y∣z,
∑N1

i=1 zi = N1

2
,�)× p(z∣

∑N1

i=1 zi = N1

2
)

=

∏N1

i=1 (f(yi∣�1, �)zif(yi∣�2, �)1−zi) 1

( N1
N1/2

)∑
∀z

{∏N1

i=1 (f(yi∣�1, �)zif(yi∣�2, �)1−zi) 1

( N1
N1/2

)

}

=

∏N1

i=1

(
f(yi∣�1,�)

f(yi∣�1,�)+f(yi∣�2,�)

)zi (
1− f(yi∣�1,�)

f(yi∣�1,�)+f(yi∣�2,�)

)1−zi

∑
∀z

{∏N1

i=1

(
f(yi∣�1,�)

f(yi∣�1,�)+f(yi∣�2,�)

)zi (
1− f(yi∣�1,�)

f(yi∣�1,�)+f(yi∣�2,�)

)1−zi
}

=

∏N1

i=1 p
zi
i (1− pi)1−zi∑

∀z

{∏N1

i=1 p
zi
i (1− pi)1−zi

}
=

∏N1

i=1 (1− pi)×
∏N1

i=1wi
zi∑

∀z

{∏N1

i=1 (1− pi)×
∏N1

i=1wi
zi

} .
(2.28)

where pi = f(yi∣�1, �)/(f(yi∣�1, �)+f(yi∣�2, �)) and wi = pi/(1−pi). The product of (1−pi)

can be canceled out in the numerator and denominator. Corresponding to the definition in

(2.14), z given y,
∑N1

i=1 zi = N1/2 and � in (2.28) is conditional Bernoulli distribution with

p = (p1, .., pN1).

Therefore, the E-step is computed by using the conditional Bernoulli distribution

E

(
zi∣y,

N1∑
i=1

zi =
N1

2
,�(t)

)
= p

(
zi = 1∣y,

N1∑
i=1

zi =
N1

2
,�(t)

)
=
p(zi = 1,

∑N1

i=1 zi = N1/2∣y,�(t))

p(
∑N1

i=1 zi = N1/2∣y,�(t))

=
p(zi = 1∣y,�(t))p(

∑
j ∕=i zj = N1/2− 1∣y,�(t))

p(
∑N1

i=1 zi = N1/2∣y,�(t))

=
wiR(N1/2− 1, S ∖ {i})

R(N1/2, S)
,

(2.29)

where p(zi = 1∣y,�(t)) = pi,

p(
∑

j ∕=i zj = N1

2
− 1∣y,�(t)) =

{∏
j ∕=i (1− pj)

}
R(N1/2− 1, S ∖ {i}), and
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p(
∑N1

i=1 zi = N1

2
∣y,�(t)) =

{∏N1

i=1 (1− pi)
}
R(N1/2, S).

In the M-step, we maximize Q(�∣�(t)) with respect to �. We update the parameter

estimates for the (t+ 1)tℎ iteration as follows:

�
(t+1)
1 =

∑N1

i=1 yi × E(zi∣y,
∑N1

i=1 zi,�
(t))∑N1

i=1E(zi∣y,
∑N1

i=1 zi,�
(t))

�
(t+1)
2 =

∑N1

i=1 yi ×
{

1− E(zi∣y,
∑N1

i=1 zi,�
(t))
}∑N1

i=1

{
1− E(zi∣y,

∑N1

i=1 zi,�
(t))
}

�2(t+1)
=

1

N1

N1∑
i=1

[
E

(
zi∣y,

N1∑
i=1

zi,�
(t)

)
(yi − �(t)

1 )2 +

{
1− E

(
zi∣y,

N1∑
i=1

zi,�
(t)

)}
(yi − �(t)

2 )2

]
.

(2.30)

The conventional EM algorithm uses the primary endpoints yi’s as the only observed

data, i.e., Yobs = {yi}N1
i=1. By contrast, our enhanced EM algorithm uses the summation of

zi as additional observed data. That is, we additionally know the number of subjects in

the treatment and control groups are both N1/2, i.e., Yobs = ({yi}N1
i=1,

∑N1

i=1 zi). For both

EM algorithms, the complete data log-likelihood function is linear in zi. Thus the Q(�∣�(t))

becomes a function of E(zi∣Yobs, �
(t)). The difference in observed information results in the

two EM algorithms maximizing slightly different observed data likelihood functions.

2.4.2 Enhancement of R function

Although (2.29) shows that the conditional expectation of the missing data can be calculated

from the recursive relationship of the R function defined in (2.17), this computation can be

numerically unstable even for a moderate sample size of N1. Numerical errors can occur

when pi in (2.29) is close to 1 and thus the corresponding wi becomes large, where pi =

f(yi∣�1, �)/(f(yi∣�1, �) + f(yi∣�2, �)) and wi = pi/(1− pi).

In the E-step of the EM algorithm used to fit the mixture of two normal distributions

with �1 < �2, observations from the first treatment group tend to have big pi’s close to 1,

and the observations from the second treatment group tend to have small pi’s close to 0. As

shown in (2.15), the R function consists of a sum of a product of wi’s. Thus, the computation

of the R function becomes numerically unstable because of divergence when some pi’s tend
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to one and the corresponding wi’s tend to infinity. This numerical problem is illustrated in

the following cases.

First, when there is a big treatment effect and thus two treatment groups are well sep-

arated, the probability that observation i belongs to the first group, i.e., pi will tend to be

one. For example, suppose that two treatment groups follow N(0, 1) and N(3, 1), respec-

tively. In this case, we may observe -2 from the first group because it is likely under N(0, 1).

The resulting pi is then 0.9999725 and the corresponding wi equals 36315. Because the R

function is a sum of a product of wi’s, such a large wi causes inflation of the R function

and its computation can be numerically unstable. Second, in the large sample case, we may

obtain some extreme observations with pi close to one. For example, suppose two treatment

groups follow N(0, 1) and N(�, 1), respectively, for � > 0. When the sample size is large, it is

likely that we observe some extreme observations from the first group, say, -3. If there is at

least an appreciable treatment effect, say, � = 2, such an observation has pi close to one and

the corresponding wi is large, i.e., wi = 2981. Third, as the sample size becomes larger, it is

also likely that the R function grows quickly. Even when there are no extreme observations,

a product of relatively large wi’s can still cause inflation of the R function, thereby making

its computation numerically unstable.

This numerical problem motivates us to modify the R function and the E-step in (2.29)

accordingly. We note that the E-step is computed as the ratio of two R functions, so that

canceling out a big common factor between the numerator and denominator of the E-step can

make its computation numerically stable. Specifically, we consider factoring out a product

of some largest wi’s and model the remaining expression of the R function, denoted by R∗.

We thus develop a new recursive relationship for the R∗ function and express the E-step in

(2.29) in terms of the R∗ function. Because of canceling out a product of some largest wi’s

between the numerator and denominator, the computation of the E-step in (2.29) becomes

numerically stable. The modified R function, i.e., R∗(k, C) is defined as

R∗(k, C) =
R(k, C)

w[∣C∣−k+1]w[∣C∣−k+2]...w[∣C∣]
, (2.31)

where we denote w[1], w[2], ..., w[∣C∣] as the ordered wi’s from the smallest to the largest. That

is, R∗(k, C) is the original R function divided by a product of the k largest wi’s.
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Figure 2 displays the arithmetic operations ofR∗(n, S) with S = {1, ..., N1} and
∑N1

i=1 zi =

n for the simple case when n = 2 and S = {1, 2, 3, 4}, where w = (w1, w2, w3, w4) and

w4 < w3 < w2 < w1, i.e., w[1] = w4, w[2] = w3, w[3] = w2, and w[4] = w1. Starting from the

upper-left corner of the table, i.e., cell(0, 0), R∗(n, S) is generated at the lower-right corner

cell(n,N1). For i = 1, ..., n and j = 1, ..., N1,

cell(i, j) = cell(i, j − 1) + cell(i− 1, j − 1)× wj
w[N1−i+1]

.

In the example, R∗(2, {1, 2, 3, 4}) is given in cell(2, 4). It is calculated by cell(2, 3) +

cell(1, 3) × w4

w[3]
, where w[3] is the second largest w, which is w2 here. We can see from

Figure 2 that the new recursive requires the same number of operations, i.e., O(nn1), as

using the original recursive procedure as shown in Figure 1. Thus, the cost of computation

remains the same.

Using our new R∗ function, the conditional expectation E(zi∣y,�(t),
∑N1

i=1 zi = n) is

modified as follows.

E

(
zi∣y,�(t),

N1∑
i=1

zi = n

)
=
wiR(n− 1, S ∖ {i})

R(n, S)

=
R(n− 1, S ∖ {i})

/∏n−1
i=1 w[N1−i+1]

R(n, S)
/∏n

i=1w[N1−i+1]

×
∏n−1

i=1 w[N1−i+1]∏n
i=1w[N1−i+1]

× wi

=
R∗(n− 1, S ∖ {i})

R∗(n, S)
×
∏n−1

i=1 w[N1−i+1]∏n
i=1 w[N1−i+1]

× wi .

(2.32)

There are two cases for computing the ratio of
∏n−1

i=1 w[N1−i+1] and
∏n

i=1 w[N1−i+1], de-

pending on the relative size of wi.

∏n−1
i=1 w[N1−i+1]∏n
i=1 w[N1−i+1]

=

⎧⎨⎩
1

w[N1−n+1]
, if wi < w[N1−n+1]

1
wi
, if wi ≥ w[N1−n+1] .

(2.33)

Then (2.32) can be rewritten as

E

(
zi∣y,�(t),

N1∑
i=1

zi = n

)
=

⎧⎨⎩
R∗(n−1,S∖{i})

R∗(n,S)
× wi

w[N1−n+1]
, if wi < w[N1−n+1]

R∗(n−1,S∖{i})
R∗(n,S)

, if wi ≥ w[N1−n+1] ,
(2.34)
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where

R∗(n, S) =
R(n, S)

w[N1−n+1]w[N1−n+2]...w[N1]

(2.35)

and

R∗(n− 1, S ∖ {i}) =
R(n− 1, S ∖ {i})

product of the n− 1 largest w’s after excluding wi
. (2.36)

The conditional expectation in (2.29) is calculated by using (2.34) after setting n = N1/2.

Our enhanced R function computed in this way is numerically stable for any given vector

p = (p1, p2, ..., pN1).

2.4.3 Idea of using randomized block design

Now suppose block randomization is used in a clinical trial and that we have the information

of block sizes at the interim stage. We can use this additional information in the enhanced

EM algorithm. We denote by m1,m2, ...,mB the different block sizes for a total of B blocks

among the N1 patients at the interim stage, i.e., m1 + m2 + ... + mB = N1. Within each

block, an equal number of subjects is randomly allocated to either the control group or the

treatment group.

For notation simplicity, we use equal block sizes to illustrate the procedure of parameter

estimation using the enhanced EM algorithm. This procedure can be easily modified for

varying block sizes. When the block sizes are fixed, the observations at the interim stage

are divided into N1/m blocks with each block of size m. The extreme case in a clinical trial

would be m = 2, that is, for every two patients we assign one subject to the control group

and the other to the treatment group.

We begin with the simplest case to demonstrate the enhanced EM algorithm. Assume

we know that there were two blocks used for the N1 subjects at the interim stage, that is,

the first half of subjects and the second half of subjects are both balanced blocks of size

N1/2. Within each of these two blocks, there are N1/4 subjects in the control group and

N1/4 in the experimental group. Thus for the enhanced EM algorithm, we are observing
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the summation of zi for each block, which equals to N1/4. The observed data are now

Yobs = ({yi}N1
i=1,

∑N1/2
i=1 zi,

∑N1

i=(N1/2)+1 zi), and the complete data likelihood function is

L

(
�∣y,

N1/2∑
i=1

zi,

N1∑
i=(N1/2)+1

zi

)
=
∑
∀z

[N1/2∏
i=1

{
f(yi∣�1, �)zif(yi∣�2, �)1−zi

}
⋅ 1(

N1/2
N1/4

)
×

N1∏
i=(N1/2)+1

{
f(yi∣�1, �)zif(yi∣�2, �)1−zi

}
⋅ 1(

N1/2
N1/4

)]. (2.37)

The complete data log-likelihood over the entire trial is just the summation of the complete

data log-likelihood in each block, i.e.,

ℓ

(
�∣y, z,

N1/2∑
i=1

zi,

N1∑
i=(N1/2)+1

zi

)
=

− N1

4
log �2 − 1

2�2

N1/2∑
i=1

{
zi(yi − �1)2 + (1− zi)(yi − �2)2

}
− log

(
N1/2

N1/4

)
− 1

4
log 2�

− N1

4
log �2 − 1

2�2

N1∑
i=(N1/2)+1

{
zi(yi − �1)2 + (1− zi)(yi − �2)2

}
− log

(
N1/2

N1/4

)
− 1

4
log 2� .

(2.38)

In the E-step, the conditional expectation of the complete data log-likelihood function

given the observed data and the current iterate of parameters is

Q(�∣�(t)) = E

[
ℓ

(
�∣y, z,

N1/2∑
i=1

zi,

N1∑
i=(N1/2)+1

zi

)∣∣∣∣y,N1/2∑
i=1

zi =
N1

4
,

N1∑
i=(N1/2)+1

zi =
N1

4
,�(t)

]

= −N1

2
log �2 − 1

2�2

N1∑
i=1

[
(yi − �1)2E

(
zi∣y,

N1/2∑
i=1

zi =
N1

4
,

N1∑
i=(N1/2)+1

zi =
N1

4
,�(t)

)

+ (yi − �2)2

{
1− E

(
zi∣y,

N1/2∑
i=1

zi =
N1

4
,

N1∑
i=(N1/2)+1

zi =
N1

4
,�(t)

)}]
+ constant .

(2.39)
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Because the complete data likelihood function is linear in zi with respect to �, the E-step is

equivalent to computing

E

(
zi∣y,

N1/2∑
i=1

zi =
N1

4
,

N1∑
i=(N1/2)+1

zi =
N1

4
,�(t)

)
= E

(
zi∣y,

N1/2∑
i=1

zi =
N1

4
,�(t)

)
, (2.40)

when i = 1, ..., N1/2; and

E

(
zi∣y,

N1/2∑
i=1

zi =
N1

4
,

N1∑
i=(N1/2)+1

zi =
N1

4
,�(t)

)
= E

(
zi∣y,

N1∑
i=(N1/2)+1

zi =
N1

4
,�(t)

)
, (2.41)

when i = (N1/2 + 1), ..., N1. We can obtain E
(
zi∣y,

∑N1/2
i=1 zi = N1/4,�

(t)
)

from (2.34) for

n = N1/4 and S = {1, 2, ..., N1/2}. Similarly, we can get E(zi∣y,
∑N1

(N1/2)+1 zi = N1/4,�
(t))

for n = N1/4 and S = {(N1/2 + 1), ..., N1}. The M-step does not change, where we use

(2.30) to update parameter estimates.

In the more general cases, we have block size equal to m for the N1 patients at the

interim. We let Eb denote the conditional expectation of zi given the current iterate of

parameters and the observed data in each block. That is,

E

(
zi∣y,

m∑
i=1

zi =
N1

m
,

2m∑
i=m+1

zi =
N1

m
, ...,

N1∑
i=N1−m+1

zi =
N1

m
,�(t)

)
.

So

Eb =

⎧⎨⎩

E(zi∣y,
∑m

i=1 zi,�
(t)), if 1 ≤ i ≤ m

E(zi∣y,
∑2m

m+1 zi,�
(t)), if m+ 1 < i ≤ 2m

...

E(zi∣y,
∑N1

N1−m+1 zi,�
(t)), if N1 −m+ 1 < i ≤ N1 ,

(2.42)

where 1 + m × (b − 1) ≤ i ≤ m × b for b = 1, 2, ..., N1/(m). The conditional expectation

E(zi∣y,
∑N1

i=1 zi,�
(t)) in the Q function is computed based on (2.42).

In the case of the conventional EM algorithm and knowing the block sizes, it is clear that

there is no gain in the observed information. Specifically we are still assuming that within
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each block, the probability of a subject assigned to the control or the experimental group is

0.5. The complete data likelihood function in each block is given by

L(�∣y, z) =
mb∏

i=1+m(b−1)

{
f(yi∣�1, �)zif(yi∣�2, �)1−zi

}(
1

2

)m
, (2.43)

and hence by independence, the complete data likelihood function of the entire data at the

interim stage is the product of the complete data likelihood function of each block. Clearly

this product is the same as the complete data likelihood function used for the conventional

EM algorithm, assuming no information of block sizes, that is the complete data likelihood

function is still given by

L(�∣y, z) =

N1/m∏
b=1

[ mb∏
i=1+m(b−1)

{
f(yi∣�1, �)zif(yi∣�2, �)1−zi

}(
1

2

)m]

=

N1∏
i=1

{
f(yi∣�1, �)zif(yi∣�2, �)1−zi

}(
1

2

)N1

.

(2.44)

The observed data used by the conventional EM algorithm are the primary endpoints yi’s

regardless of whether we have information of block sizes or not. Thus breaking the data into

blocks does not increase the observed information in the conventional EM algorithm.

2.5 IDENTIFIABILITY AND LABEL SWITCHING

A family of distributions is identifiable with respect to a parameter if distinct values of this

parameter correspond to distinct cumulative distribution functions[5]. In our mixture model

where the control group is from N(�c, �), and the experimental group is from N(�t, �),

without any restrictions on the means, the means of two treatments are not identifiable.

However the mixture distribution is identifiable in � for fixed �c and �t.

Note that problems with identifiability can be resolved by redefining the model[5]. We

use �1 to denote the treatment with a smaller mean, i.e., �1 = min(�c, �t) and use �2 to

denote the treatment with a bigger mean, i.e., �2 = max(�c, �t). With this parametrization,

our mixture distribution is identifiable with respect to �1 and �2. To use the estimation of �1

31



and �2, in practice, it requires us making an assumption of the real relationship between �t

and �c. On the other hand, � is identifiable since two treatments share the common standard

deviation. Also, the absolute difference between two treatments is identifiable because it has

the same value even if we do not know the order of the estimates of �t and �c.

Because �1 < �2, we use as initial values �
(0)
1 < �

(0)
2 in the first iteration of EM estimates.

We show theoretically with this initial value that �
(t)
1 < �

(t)
2 is guaranteed at every iteration

of the EM algorithm, that is, once we begin with �
(0)
1 < �

(0)
2 the inequality is preserved as

an iteration goes on. Thus there are no label switching problems in using the EM algorithm

when we parameterize with �1 and �2. Details are described in the Appendix A.
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3.0 ASSESSMENT OF THE ENHANCED EM ALGORITHM ESTIMATES

3.1 A SIMPLE EXAMPLE

Consider a motivating example of a hypothetical clinical trial, where four patients’ primary

endpoints are observed at the interim stage of the trial. We assume the first and third

patients are in a control group, and the second and forth patients in a treatment group.

Let (y1, y2, y3, y4) denote the observed primary endpoints and (z1, z2, z3, z4) denote their

treatment identities. Suppose treatment identities are blinded, i.e., we do not know which

of the four observations are from the treatment group or are from the control group. By

having the four observations from two populations without knowing their identities, we can

use both the conventional EM algorithm and the enhanced EM algorithm to estimate two

populations’ parameters.

We assume zi are Bernoulli distributed with P (zi = 1) = 0.5 for i = 1, 2, 3, 4. The

enhanced EM algorithm uses the additional observed information
∑4

i=1 zi = 2 which is not

used in the conventional EM algorithm. The difference between the two EM algorithms lies

in the conditional probability of zi given the observed data Yobs and the parameters. In

the conventional EM algorithm the observed information is Yobs = {yi}4
i=1, the conditional

probability zi given y and � is independently Bernoulli distributed. In the enhanced EM al-

gorithm the observed information is Yobs = ({yi}4
i=1,

∑4
i=1 zi = 2), the conditional probability

z given the observed data and � is conditional Bernoulli distributed.

If we just know each patient has an equal probability 0.5 of being in either a control group

or a treatment group, there are 24 combinations of assigning (z1, z2, z3, z4) to (y1, y2, y3, y4).

When we know
∑4

i=1 zi = 2, however, there are
(

4
2

)
= 6 combinations of assigning 2 patients

in the control group and 2 patients in the treatment group. The reduction in the number of
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Table 1: All possible combinations of the group indicators z1, z2, z3 and z4

Conventional EM Enhanced EM Enhanced EM

with 2 blocks

z1 z2 z3 z4 z1 z2 z3 z4 z1 z2 z3 z4

all in control 0 0 0 0

all in treatment 1 1 1 1

1 0 0 0

3 in control 0 1 0 0

1 in treatment 0 0 1 0

0 0 0 1

0 1 1 1

1 in control 1 0 1 1

3 in treatment 1 1 0 1

1 1 1 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0 1 0 1 0

2 in control 1 0 0 1 1 0 0 1 1 0 0 1

2 in treatment 0 1 1 0 0 1 1 0 0 1 1 0

0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1
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possible combinations is illustrated in Table 1. If we were further to know that the first two

and the last two patients are blocked and balanced to have one patient in the control group

and the other in the treatment group, we have
(

2
1

)
×
(

2
1

)
= 4 combinations. For example,

one of these 4 possibilities is the case that the first and third patients are in a control group,

and the second and forth patients in a treatment group. Thus, we have higher probabilities

in the EM algorithm of statistically guessing the true treatment assignment when we know

more information on blocks.

It is clear that the enhanced EM algorithm has a relative advantage with a blocked design

as compared to the conventional EM algorithm. With blocking we get more information

because we narrow down the possible number of treatment identifications. Therefore, we

expect to obtain increasingly better estimates when we use more observed information.

3.2 INITIAL VALUES FOR THE ENHANCED EM ALGORITHM VERSUS

THE CONVENTIONAL EM ALGORITHM

3.2.1 Review on choosing the initial values for the EM algorithm

In literature, a number of people address the issue of initial values. When there are multiple

modes in the likelihood function, different initial values of the EM algorithm may converge

to different modes. In the case of the five parameter setting (�1, �2, �1, �2, p) for a two

component mixture normal model with unequal variances and unknown mixing proportion, it

is known that the surface for the likelihood function tends to be multimodal[21][29]. Bohning,

Schlattmann and Lindsay[3] illustrated the multimodal likelihood with a particular example,

where the mixture probability is fixed at p = 0.5 and the mean of one population is fixed

at 0. They showed that the EM algorithm converged to multiple local maxima for the MLE

when the two initial values for the means are not well separated. Lindsay[19] suggested

using a different number of starting values, let the algorithm run a long time, and select

as the maximum likelihood estimator that local maximum in the interior of the parameter

space with the largest likelihood. As for distributions other than the normal distribution,
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Seidel, Mosler and Alker[31] showed that the EM algorithm for the mixture of exponential

distributions produces different local modes, depending on the initial values of parameters.

In our three parameter setting (�1, �2, �) space, where the common standard deviation

is unknown and p is known, the MLEs exist and are consistent[1][21]. But the EM estimates

may converge to the boundary of parameter space instead of the meaningful interior of

the parameter space[23]. We use a single set of simulated data as an illustration to better

understand why and whether the conventional or the enhanced EM algorithm gets stuck at

the boundary modes.

3.2.2 Illustrative examples concerning initial values for the two EM algorithms

Suppose we have a mixture of two normal samples with total sample size of 20, where ten

observations are sampled from N(0, 1) and the other ten are from N(1, 1). We investigate

whether the EM estimates depend on the initial values of the EM algorithm. We use a dotplot

to display this 20 observations. As seen in Figure 3, our simulated dataset is representative

and the two sample means are well separately.

Figure 3: Dot plots of the 10 observations from each of normal distribution N(0,1) and N(1,1)

For this simulated dataset, we calculate the EM estimates according to the conventional

EM algorithm and the enhanced EM algorithm by using different initial values by varying

the initial standardized treatment effect d(0) = (�
(0)
2 − �

(0)
1 )/�(0). The separate choices of

�
(0)
1 , �

(0)
2 and �(0) do not affect the estimation of EM algorithm, as long as they provide the

same value of d(0). Both EM procedures were initialized using values of d(0) running from

0.00625 to 2 by increments of 0.0625. The stopping criterion used in the EM algorithms is
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whether the estimates for all three parameters from successive iterations, say iterations t−1

and t, satisfy

√
(�

(t)
1 − �

(t−1)
1 )2 + (�

(t)
2 − �

(t−1)
2 )2 + (�(t) − �(t−1))2 < 10−5.

Figures 4 and 5 show respectively the dependence of the conventional and enhanced EM

algorithms on the initializing values of the standardized treatment effect, d(0). In Figure 4,

we find that the estimates of the conventional EM algorithm result in identical estimates

when d(0) is large enough. For small values of d(0), the conventional EM estimates �̂1 and

�̂2 are fairly close. As shown in this particular example, �̂1 and �̂2 are both roughly equal

to 0.63 when d(0) is less than 0.375. That is, the conventional EM estimates occur near

�1 = �2, which is on the boundary of the parameter space. We call such an estimate the

”boundary mode” of the likelihood surface. The boundary mode implies that there exists

only one component which is incorrect since there exist two groups with different means.

Figure 5 shows that the estimates of �1, �2 and � from the enhanced EM algorithm do not

vary no matter what initial values are used.

In general, the convergence of the conventional EM algorithm to the meaningful interior

modes depends on the initial value of d, the true parameters, data sample size, and even the

specific dataset. For the specific simulated data we used, we get stable interior modes of �1

and �2 when values of d(0) are big enough. However, for some datasets which we examined

in detail in our setting, we have not been able to obtain interior estimates no matter how we

adjust the initial values. In those cases, �̂1 and �̂2 are always stuck at the boundary modes,

and estimate of � is not the value that maximizes the observed log-likelihood function.

The actual likelihood surface for the three-parameter setting in the two component mix-

ture normal model is complicated to illustrate because it involves a three dimensional plot.

For both EM algorithms, the means (�1 and �2) and the standard deviation (�) are condi-

tionally marginally maximized, i.e., we iterate between the maximization of �1 and �2 given

� and the maximization of � given �1 and �2. To illustrate the reason why the conventional

EM algorithm gets stuck at the boundary mode but the enhanced EM algorithm does not, we

use the profile likelihood function between iterations. We continue to use the same dataset
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Figure 4: Conventional EM algorithm estimates for a representative dataset, with varying

initial values of standardized treatment effect. Initial values of (�2−�1)/� are set as 0.006255

to 2 by 0.0625. (Simulated sample has sample size 20 with ten from N(0, 1) and the other

ten from N(1, 1)).
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Figure 5: Enhanced EM algorithm estimates for a representative dataset, with varying initial

values of standardized treatment effect. Initial values of (�2 − �1)/� are set as 0.006255 to

2 by 0.0625. (Simulated sample has sample size 20 with ten from N(0, 1) and the other ten

from N(1, 1)).
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we simulated as shown in Figure 4 and 5, i.e., a mixture of 20 observations, ten from N(0, 1)

and the other ten from N(1, 1), to illustrate the empirical evidence.

First, we plot the profile log-likelihood function of the conventional EM algorithm for �

when means are started at �
(0)
1 = �

(0)
2 , i.e, d(0) = 0. In the illustrated example, �

(0)
1 = �

(0)
2 =

0.5. Figure 6 (a) shows that the profile log-likelihood function is maximized at �(0) = 1.33

given �
(0)
1 = �

(0)
2 . In Figure 6 (b), we draw a contour (heatmap) graph of �

(1)
1 and �

(1)
2

given �(0) at 1.33 which is found from the previous step. When �(0) is fixed at the value

which maximizes the profile log-likelihood function given �
(0)
1 = �

(0)
2 , the profile log-likelihood

function of (�
(1)
1 , �

(1)
2 ) becomes unimodal with mode at �1 = �2. So the values of �

(1)
1 and

�
(1)
2 that maximize the profile likelihood would be necessarily �

(1)
1 = �

(1)
2 . Then, the values

of �(1) that maximizes the resulting profile log-likelihood function remains at �(0), and thus

the profile log-likelihood function for (�1, �2) is still unimodal. Because of being trapped by

the boundary mode, the conventional EM algorithm does not find the interior mode when

it begins with �
(0)
1 = �

(0)
2 .

For comparison, we use the enhanced EM algorithm for the same dataset. Figure 7 (a)

shows the profile log-likelihood functions of the enhanced EM algorithm when means are

started at �
(0)
1 = �

(0)
2 . The profile log-likelihood function for � is maximized at �(0) = 1.33

given �
(0)
1 = �

(0)
2 = 0.5. Similarly, we a draw contour plot of �

(1)
1 and �

(1)
2 given �(0)=1.33

in Figure 7 (b). The profile log-likelihood surface for (�1, �2) becomes slightly bimodal.

The values of �1 and �2 that maximize the resulting profile likelihood are �
(1)
1 = 0.35 and

�
(1)
2 = 0.9 as shown in Figure 7 (b). Next, we fix the means at �

(1)
1 = 0.35, �

(1)
2 = 0.9

and plot the profile log-likelihood function for � as in Figure 7 (c), where we can find that

�(1) = 1.29 maximizes the log-likelihood. Given �(1) = 1.29, the profile log-likelihood surface

for �1 and �2 has two modes which are further apart as shown in Figure 7 (d). By iterating

the conditional maximization, we were away from the boundary modes near �1 = �2. So

the enhanced EM algorithm has the nice property that it always obtains the interior modes.

This occurs because the � that maximizes the profile log-likelihood function of the enhanced

EM algorithm makes �1 and �2 separate further on the next iteration in comparison to the

previous iteration.

We also simulated other datasets and tried different parameter settings which reflect
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(a) � versus profile log-likelihood function when �1 = �2 = 0.5

(b) contour plot of �1 and �2 given � = 1.33

Figure 6: Profile log-likelihood function of the conventional EM algorithm
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(a) � versus profile log-likelihood function when �1 =
�2 = 0.5

(b) contour plot of �1 and �2 given � = 1.33

(c) � versus profile log-likelihood function when �1 =
0.35 and �2 = 0.9

(d) contour plot of �1 and �2 given � = 1.29

Figure 7: Profile log-likelihood function of the enhanced EM algorithm
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common situations in clinical trials. The graphs show the same features as in our illustrated

example. In the simulated data we used the identical initial values of the two means, which is

the most extreme case. When the initial values are not identical, however, the conventional

EM estimates still can be stuck around the boundary mode at a certain iteration t if the

estimates from the pervious iteration �
(t−1)
1 and �

(t−1)
2 are very close to each other. Generally

speaking, when the initial standardized treatment effect d(0) is large, it is more likely for the

conventional EM algorithm to obtain meaningful interior modes than when d(0) is small.

But sometimes, even when d(0) is quite large, after a certain iteration, the conventional EM

estimates of �1 and �2 become very close and they remain stuck around the boundary mode

for the rest of the iterations.

3.3 SIMULATION STUDY FOR COMPARING TWO EM ALGORITHMS

For the conventional EM algorithm, though we only make use of the fact that each subject

has 0.5 probability to be assigned to each treatment, we design the stimulation study with

equal subjects in each treatment at the interim stage. (Gould and Shih[15] did the same

in their simulation study[15].) While Gould and Shih[15]’s EM algorithm does not use the

assumption of equal number of subjects in each group, the enhanced EM algorithm uses this

additional information.

We conduct a simulation study to compare the performance of the two EM algorithms for

a reasonable range of parameters values. For simplicity, the true value of � is set to 1 and �1

is set to 0. Let � = �2−�1 denote the true treatment effect, so that �2 has the same value as

�. The values of � are set to 0.1, 0.2, 0.35, 0.5, 0.75, 1, 1.5 and 2. We consider the sample sizes

N1 = 20 and N1 = 80 at which we would obtain our interim data. In our simulation study,

we generate an equal number of observations from two normal distributions with means �1

(control group) and �2 (experimental group) and with common standard deviation �. The

two EM algorithms are used to estimate �1, �2, � and (�2−�1)/� for each set of observations.

The value of (�2−�1)/� was chosen for the inherent interest in this parameter in clinical trial.

Gould and Shih[15] noted that the conventional EM algorithm ”does not estimate reliably
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the true difference between the treatment means”. Thus we also compare the estimates of

(�2 − �1)/� between two EM algorithms to assess if the enhanced EM algorithm improve

this estimate.

For each combination of true parameters, we generate 1000 datasets for each of which we

run both EM algorithms. The identical initial values are chosen for both the conventional

and enhanced EM procedures on the same dataset as starting values for �1, �2 and �.

Specifically we use the overall sample mean minus and plus 1.5 as the initial values of �1

and �2, and the overall sample standard deviation as the initial value of �. We also apply

the same stopping rule for both EM algorithms, that is, the EM algorithm stops when√
(�̂

(t)
1 − �̂

(t−1)
1 )2 + (�̂

(t)
2 − �̂

(t−1)
2 )2 + (�̂(t) − �̂(t−1))2 < 10−5 is satisfied, where �̂

(t)
1 − �̂

(t−1)
1

denotes the difference between the estimates of �1 at the ttℎ iteration and at the (t − 1)tℎ

iteration, etc, or stop if we hit 20,000 EM iterations. We use 20,000 for the purpose of

making simulations manageable. For a given dataset, if the stopping rule is not satisfied at

the 20,000th iteration, we could continuously run more iterations and use a trace plot to

check the convergence behavior of the estimation.

Results of the simulation study are presented in Tables 2 and 3, which show the bias,

variance and mean square errors of estimators based on the 1000 simulated data for each set

of parameters.

In Table 2 where the interim sample size is N1 = 20, when � is 0.1, the conventional

EM algorithm gets smaller MSEs for the estimators of �1 and �2 than the enhanced EM

algorithm, but the enhanced EM algorithm gets smaller MSEs for estimating � and (�2 −

�1)/�. As � increases, the differences between the MSEs from the two algorithms decrease.

When � reaches 0.5, the enhanced EM algorithm has smaller MSEs than the conventional

EM algorithm for all estimators. We see that both EM algorithms obtain better estimates

as � increases, while the enhanced EM algorithm obtains better estimates more quickly

as � increases. For the largest � that we used (� = 2), the MSEs for the enhanced EM

estimates are much smaller than the conventional EM estimates. For all values of �’s when

N1 = 20, the enhanced EM estimate of � has smaller MSE than the conventional EM

estimate. Importantly, even when � is small, the enhanced EM algorithm obtains a better

estimate of �, which is an important feature for our ultimate goal of adjusting the sample
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size.

Table 3 shows that when N1 = 80, as we would expect, we obtain less biased estimates

and smaller MSEs than N1 = 20. As with N1 = 20, the two EM procedures produce better

estimates as � increases. When � is small, the conventional EM algorithm still obtains better

estimates. As we shall see later, this comparison can be misleading because the conventional

EM estimates include quite a few boundary modes which are favored in the case of small �.

When � reaches 0.75, the enhanced EM algorithm has smaller MSEs for �1, �2, (�2 − �1)/�

and very close MSEs for �. After � reaching 1, all enhanced EM estimators have smaller MSEs

then the conventional EM estimators. The improvement in the enhanced EM algorithm is

slower for N1 = 80 than for N1 = 20. The one possible interpretation is that the enhanced

EM algorithm takes more advantage of the information of equal numbers of subjects than

the conventional EM algorithm does when the sample size is small. When the sample size

is large, the impact of using the equal allocation of treatment identities decreases. When

we have a large sample size, there is not lot of information gained if we exactly assign half

of all subjects into one treatment group or assign subjects with the probability 50% to that

treatment group. But if we have a small sample, for example, the sample size is 6, knowing 3

subjects in each treatment provides significantly more information than just knowing there

is 0.5 probability of a subject assigning to each treatment.

On the other hand, Tables 2 and 3 both show when decomposing the MSE that the

enhanced EM estimates always have a smaller variance but a bigger bias. When we examined

the histograms of the 1000 simulated estimates, we find that the distribution of the estimators

from the enhanced EM algorithm is bell-shaped while the histogram of the conventional EM

estimators is more skewed and outliers exist.

Figures 8 and 9 show the relationship between the 1000 simulated EM estimates of �1 and

�2 when N1 = 20 and N1 = 80, �1 = 0, �2 = 1 and � = 1. From Figures 8 and 9, we notice

that the conventional EM estimates of (�1, �2) compose two apparent clusters, whereas the

enhanced EM algorithm has a single cluster. Comparing the enhanced EM estimates with

the interior conventional EM estimates, two clouds are roughly centering around the true

value of �1 and �2 while the conventional EM estimators have bigger variations. For the

conventional EM algorithm, most of the estimates are in a cloud around the true value (0, 1),
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Table 2: Comparisons of two EM estimates when N1 = 20. True parameters used to generate
sample are set as � = 1, �1 = 0 and � = 0.1, 0.2, 0.35, 0.5, 0.75, 1, 1.5, 2. 1000 sample are generated
from each parameters configuration.

Enhanced EM estimates Conventional EM estimates

� �1 �2 � �2−�1
� �1 �2 � �2−�1

�

0.1 Bias -0.5724 0.5807 -0.2912 1.8087 -0.4677 0.4778 -0.2629 1.6188

Variance 0.0877 0.0957 0.0296 0.6403 0.1697 0.1759 0.0467 1.5990

MSE 0.4152 0.4328 0.1144 3.9109 0.3882 0.4040 0.1157 4.2177

0.2 Bias -0.5032 0.5264 -0.2884 1.6918 -0.3982 0.4179 -0.2630 1.5092

Variance 0.0846 0.0943 0.0330 0.7466 0.1691 0.1810 0.0505 1.7408

MSE 0.3377 0.3712 0.1161 3.6079 0.3275 0.3554 0.1196 4.0166

0.35 Bias -0.4516 0.4416 -0.2780 1.5197 -0.3399 0.3298 -0.2473 1.3038

Variance 0.0940 0.0864 0.0318 0.6500 0.1751 0.1702 0.0489 1.5391

MSE 0.2979 0.2813 0.1091 2.9587 0.2905 0.2788 0.1100 3.2375

0.5 Bias -0.3859 0.3989 -0.2772 1.4197 -0.2794 0.2939 -0.2496 1.2264

Variance 0.0827 0.0905 0.0308 0.6474 0.1695 0.1794 0.0476 1.5778

MSE 0.2315 0.2495 0.1076 2.6623 0.2474 0.2656 0.1099 3.0803

0.75 Bias -0.2868 0.2775 -0.2491 1.1632 -0.1583 0.1642 -0.2146 0.9429

Variance 0.0885 0.0884 0.0372 0.6935 0.1704 0.1839 0.0577 1.6645

MSE 0.1707 0.1653 0.0992 2.0458 0.1953 0.2107 0.1037 2.5518

1 Bias -0.2066 0.1966 -0.2096 0.9239 -0.1050 0.0890 -0.1869 0.7898

Variance 0.0950 0.0987 0.0367 0.6681 0.2081 0.2064 0.0579 1.7101

MSE 0.1376 0.1373 0.0806 1.5210 0.2190 0.2141 0.0927 2.3322

1.5 Bias -0.0857 0.0984 -0.1535 0.6391 0.0080 0.0112 -0.1324 0.5386

Variance 0.1134 0.1069 0.0377 0.7317 0.2267 0.2285 0.0607 1.6308

MSE 0.1206 0.1165 0.0613 1.1395 0.2265 0.2284 0.0781 1.9193

2 Bias -0.0032 0.0144 -0.1052 0.4005 0.0674 -0.0624 -0.0838 0.3251

Variance 0.1099 0.1193 0.0410 0.7165 0.2218 0.2343 0.0652 1.4569

MSE 0.1098 0.1194 0.0520 0.8762 0.2261 0.2380 0.0721 1.5612
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Table 3: Comparisons of two EM estimates when N1 = 80. True parameters used to generate
sample are set as � = 1, �1 = 0 and � = 0.1, 0.2, 0.35, 0.5, 0.75, 1, 1.5, 2. 1000 sample are generated
from each parameters configuration.

Enhanced EM estimates Conventional EM estimates

� �1 �2 � �2−�1
� �1 �2 � �2−�1

�

0.1 Bias -0.4591 0.4619 -0.1802 1.2246 -0.3382 0.3402 -0.1470 0.9376

Variance 0.0484 0.0461 0.0152 0.3827 0.0984 0.0944 0.0206 0.7185

MSE 0.2592 0.2594 0.0476 1.8820 0.2127 0.2100 0.0421 1.5969

0.2 Bias -0.4231 0.4240 -0.1794 1.1605 -0.2944 0.2933 -0.1432 0.8558

Variance 0.0430 0.0447 0.0168 0.3773 0.0962 0.0978 0.0231 0.7377

MSE 0.2219 0.2244 0.0490 1.7236 0.1828 0.1837 0.0436 1.4693

0.35 Bias -0.3623 0.3468 -0.1706 1.0121 -0.2327 0.2200 -0.1347 0.7126

Variance 0.0445 0.0457 0.0172 0.3931 0.0981 0.0991 0.0233 0.7504

MSE 0.1757 0.1660 0.0463 1.4172 0.1522 0.1474 0.0414 1.2575

0.5 Bias -0.2973 0.2936 -0.1553 0.8704 -0.1740 0.1714 -0.1217 0.5918

Variance 0.0485 0.0491 0.0165 0.3744 0.1068 0.1068 0.0227 0.7315

MSE 0.1368 0.1353 0.0406 1.1317 0.1334 0.1361 0.0374 1.0810

0.75 Bias -0.1933 0.1886 -0.1310 0.6324 -0.0662 0.0621 -0.0948 0.3471

Variance 0.0504 0.0486 0.0175 0.3765 0.1098 0.1051 0.0237 0.7185

MSE 0.0877 0.0842 0.0346 0.7760 0.1141 0.1089 0.0327 0.8382

1 Bias -0.1113 0.0981 -0.1020 0.4273 0.0081 -0.0239 -0.0671 0.1674

Variance 0.0539 0.0557 0.0187 0.3862 0.1151 0.1183 0.0259 0.7333

MSE 0.0662 0.0653 0.0291 0.5684 0.1150 0.1188 0.0304 0.7606

1.5 Bias 0.0013 0.0007 -0.0428 0.1442 0.1015 -0.0962 -0.0109 -0.0538

Variance 0.0567 0.0575 0.0203 0.3684 0.1237 0.1276 0.0293 0.6911

MSE 0.0567 0.0575 0.0221 0.3889 0.1339 0.1368 0.0294 0.6933

2 Bias 0.0158 -0.0147 -0.0230 0.0889 0.0627 -0.0605 -0.0055 0.0047

Variance 0.0450 0.0441 0.0199 0.3242 0.0954 0.0965 0.0290 0.5557

MSE 0.0452 0.0443 0.0204 0.3318 0.0993 0.1001 0.0290 0.5558
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but quite a few estimates fall on a diagonal line as shown in Figure 8 (a) and 9 (a). The

estimates that fall on the diagonal line are the boundary modes we mentioned in Section

3.2.2. We can roughly separate the two clusters of estimates by drawing a straight line

on the scatter plot of the conventional EM estimates. For the enhanced EM algorithm all

estimators are nicely spread around the true value (0,1) as shown in Figure 8 (b) and 9 (b).

The conventional EM estimates get trapped in the boundary of the parameter space.

These boundary estimates would be favorable when the true difference between �1 and �2

is small since the true difference is close to the boundary at �1 = �2. This results in the

conventional EM algorithm that produces estimates with smaller bias than the enhanced

EM when the true values of �1 and �2 are near the boundary. However, we emphasize that

the small bias results from the fact that the conventional EM algorithm fails to find interior

estimates. Even with the case where the true difference between �1 and �2 is large, the

conventional EM estimates get trapped in the boundary of the parameter space, which can

greatly mislead inference about parameters. In Appendix B, we illustrate more empirical

evidence about this behavior when � = 0.1 and � = 2.

We randomly picked out two datasets whose conventional EM estimates fall under the

straight line in Figure 9(a), and then created box plots of these two datasets in Figure 10.

As seen from the box plots, the sample means of two treatment groups are well separated.

Therefore, it is obvious the conventional EM estimates for these two datasets are the non-

meaningful boundary modes.

The arbitrary straight line only roughly separates the correct conventional EM estimates

around the true values and the incorrect estimates stuck at the boundary modes. It is not

necessary that all the EM estimates below the straight line are boundary estimates. Partic-

ularly when � is small, it is hard to tell the estimates below the straight line are boundary

estimates or meaningful estimates falling in the boundary area. But through this illustra-

tive example as shown in Figure 8(b) and 9(b), we see that the conventional EM algorithm

produces inferior estimates around the diagonal line �1 = �2 while the enhanced EM algo-

rithm does not. We just roughly separate the incorrect conventional EM estimates with the

intention to find out how the conventional EM algorithm estimate the true parameters if we

only consider the meaningful estimates.
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(a) Scatterplot of the Conventional EM estimate of �1 versus �2

(b) Scatterplot of the Enhanced EM estimate of �1 versus �2

Figure 8: Comparison of two EM estimates of �1 and �2 when N1 = 20 (�1 = 0, �2 = 1 and

� = 1, stimulater 1000). The red point denotes the true value of (�1, �2) on the scatterplot.
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(a) Scatterplot of the Conventional EM estimate of �1 versus �2

(b) Scatterplot of the Enhanced EM estimate of �1 versus �2

Figure 9: Comparison of two EM estimates of �1 and �2 when N1 = 80 (�1 = 0, �2 = 1 and

� = 1, stimulater 1000). The red point denotes the true value of (�1, �2) on the scatterplot.
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Figure 10: Side-by-side box plots for two randomly chosen datasets which have boundary

conventional EM estimates.
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For the same dataset, the proportion of the conventional EM estimates that get stuck

at the boundary modes depend on the initial values, as we mentioned in Section 3.2.2.

Consider the case � = 1 as shown in Figure 8(a). As an example, we use the straight line

�̂2 = �̂1 + 0.21 to separate the boundary modes and meaningful estimates and calculate the

proportion below the line. With the starting values we used (�
(0)
2 − �

(0)
1 = 3 and �(0) is

the overall sample standard deviation), there are roughly 240 out of 1000 (24.0%) estimates

below the straight line on the scatter plot. For the same 1000 datasets using different initial

values such as �
(0)
2 −�

(0)
1 = 0.1, �

(0)
2 −�

(0)
1 = 1 and �

(0)
2 −�

(0)
1 = 10 and the same straight line

to separate the conventional EM estimates, we find the proportions of the conventional EM

estimates stuck around the boundary of the parameter space are 36.3%, 24.8% and 23.5%,

respectively. Note that the proportion decreases as the distance between the starting values

of �1 and �2 gets further apart.

To fully illustrate the effectiveness of the enhanced EM algorithm, we calculate the mean

of the Euclidean distance between the true value (�1, �2) and their EM estimates. We

obtain the enhanced EM estimates, the conventional EM estimates, and the conventional

EM estimates around the true values for different parameter configurations when N1 = 20

and N1 = 80, and compare the mean of Euclidean distance in Table 4 and Table 5. We find

that the mean Euclidean distance of enhanced EM estimates is always smaller than that of

the interior conventional EM estimates for different values of �.

Figure 11 and 12 show the probability density function of � by using the Gaussian kernel

smoother for the simulated 1000 EM estimates for � = 1 when N1 = 20 and N1 = 80, respec-

tively. The conventional EM estimates of � have a bimodal distribution. This is because

some estimates of (�1, �2) are stuck at the boundary modes and thus the corresponding

conventional EM estimates are incorrect. It is obvious that the enhanced EM algorithm can

obtain estimates of � with smaller bias through comparing the enhanced EM estimates of �

with the meaningful interior conventional EM estimates of �.

Therefore, if we do not consider the incorrect estimates from the conventional EM al-

gorithm, i.e., the estimates below the straight line as shown in Figure 8 and 9, then the

enhanced EM algorithm obtains estimates with smaller bias than the conventional EM al-

gorithm. This is shown in the comparison of these two EM algorithms in Appendix B.
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Table 4: Comparisons of the mean of Euclidean distance between (�1, �2) and their EM estimates
when N1 = 20. True parameters used to generate sample are set as � = 1, �1 = 0 and � =
0.1, 0.2, 0.35, 0.5, 0.75, 1, 1.5, 2. 1000 samples are generated from each parameter’s configuration.

� Enhanced EM Conventional EM Conventional EM
around (�1, �2)

0.1 0.8809 0.7909 0.9597

0.2 0.7961 0.7309 0.9087

0.35 0.7154 0.6800 0.8042

0.5 0.6416 0.6507 0.7393

0.75 0.5270 0.5920 0.6065

1 0.4721 0.6013 0.5622

1.5 0.4334 0.5943 0.4955

2 0.4210 0.5660 0.4637

Table 5: Comparisons of the mean of Euclidean distance between (�1, �2) and their EM estimates
when N1 = 80. True parameters used to generate sample are set as � = 1, �1 = 0 and � =
0.1, 0.2, 0.35, 0.5, 0.75, 1, 1.5, 2. 1000 samples are generated from each parameter’s configuration.

� Enhanced EM Conventional EM Conventional EM
around (�1, �2)

0.1 0.6749 0.5440 0.7718

0.2 0.6230 0.5121 0.7320

0.35 0.5329 0.4831 0.6240

0.5 0.4689 0.4791 0.5601

0.75 0.3702 0.4486 0.4303

1 0.3326 0.4439 0.3524

1.5 0.2959 0.4173 0.2832

2 0.2515 0.3277 0.2618
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Figure 11: Gaussian kernel smoother of EM estimates of � when �1 = 0, �2 = 1 and � = 1

for N1 = 20
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Figure 12: Gaussian kernel smoother of EM estimates of � when �1 = 0, �2 = 1 and � = 1

for N1 = 80
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3.4 SIMULATION STUDY OF THE ENHANCED EM ALGORITHM

WITH BLOCK DESIGN

This simulation study is carried out to evaluate the two EM procedures when we have

information concerning the block sizes of the randomization at the interim stage. We still

maintain the treatment identities blinded at the interim stage, but now assume that the

block size used for the block randomization is known. In practice, various block sizes are

usually used. For simplicity, we use fixed block sizes to illustrate the performance of the EM

procedures as the block size changes. In an actual trial, if we knew the various random block

sizes, we could easily apply the EM procedures as described in Section 2.4.3.

We assume the parameter configuration � = 0.5 (�1 = 0, �2 = 0.5, and � = 1) and

interim stage sample size N1 = 80 for our simulation study. We use all the possible block

sizes 2, 4, 8, 10, 16, 20, and 40 in the simulation study. For example, when we have the

information that the block size is 10, there are 8 blocks and within each block 5 patients are

randomly assigned to the control group and the other 5 are assigned to the treatment group.

When the block size is 80, the situation corresponds to the study design without blocking as

we discussed in Section 3.3. Throughout this simulation study we use 1000 as our simulation

size.

The simulation results are given in Table 6. We compare the simulated biases, variances

and the mean squared errors of the enhanced EM estimates by taking into account the

various block sizes. As noted in Section 2.4.3, there is no difference in the results for the

conventional EM estimation no matter how many block sizes we have. The conventional EM

algorithm estimates are given in the last row of Table 6. In addition, the MSE’s for both

EM estimates are plotted in Figure 13.

As was apparent from comparing Tables 2 and 3, Table 6 confirms that the bias and

the variance of enhanced EM estimates both become smaller as the block sizes decreases.

We can see from Figure 13 that the enhanced EM algorithm begins to have smaller MSEs

than the conventional EM algorithm when the block size decreases to 40. As the block size

reduces to 2, which is the minimum block size that could be used in a clinical trial, the

enhanced estimates are much better than the conventional EM estimates.
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Figure 13: MSEs for the EM estimates �̂1, �̂2 and �̂ with block size 2, 4, 8, 10, 16, 20, 40 and

80 with N1 = 80 and � = 0.5.
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Table 6: Estimates of the conventional EM algorithm and the enhanced EM algorithm with block
design when N1 = 80 and � = 0.5. Block sizes are 2, 4, 8, 10, 16, 20, 40 and 80.

Enhanced EM algorithm

block size number of blocks statistics �1 �2 � �1−�2
�

80 1 Bias -0.2973 0.2936 -0.1553 0.8704

Variance 0.0485 0.0491 0.0165 0.3744

MSE 0.1368 0.1353 0.0406 1.1317

40 2 Bias -0.2472 0.2436 -0.1393 0.7446

Variance 0.0700 0.0744 0.0180 0.4937

MSE 0.1310 0.1337 0.0374 1.0476

20 4 Bias -0.1862 0.1825 -0.1170 0.5809

Variance 0.0892 0.0905 0.0182 0.5707

MSE 0.1237 0.1237 0.0319 0.9075

16 5 Bias -0.1694 0.1658 -0.1084 0.5301

Variance 0.0895 0.0890 0.0179 0.5509

MSE 0.1181 0.1164 0.0297 0.8314

10 8 Bias -0.1276 0.1240 -0.0902 0.4113

Variance 0.0907 0.0906 0.0169 0.5271

MSE 0.1069 0.1058 0.0250 0.6958

8 10 Bias -0.1042 0.1006 -0.0793 0.3423

Variance 0.0892 0.0882 0.0159 0.4892

MSE 0.1000 0.0983 0.0221 0.6058

4 20 Bias -0.0474 0.0438 -0.0506 0.1725

Variance 0.0768 0.0740 0.0123 0.3599

MSE 0.0789 0.0759 0.0148 0.3893

2 40 Bias -0.0032 -0.0004 -0.0284 0.0467

Variance 0.0590 0.0607 0.0094 0.2386

MSE 0.0590 0.0607 0.0102 0.2405

Conventional EM algorithm Bias -0.1740 0.1714 -0.1217 0.5918

Variance 0.1068 0.1068 0.0227 0.7315

MSE 0.1334 0.1361 0.0374 1.0810
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We choose � = 0.5, which is a moderate size of �, to compare the conventional EM

estimates with the enhanced EM estimates for various block sizes. The results shown in

Table 6 are representative. We also examined the enhanced EM algorithm for other values

of �. The mean bias and variance always get smaller as the block size decreases for different

�. As we saw in Table 3, when � is bigger than 0.75 for N1 = 80, the enhanced EM algorithm

without blocking has better MSEs than that of the conventional EM algorithm. So as the

block size decreases for the cases with � bigger than 0.75, the enhanced EM algorithm shows

more advantages than the conventional EM algorithm. When � is small, e.g., � = 0.1, the

enhanced EM algorithm starts to beat the conventional EM algorithm when the block size

decreases to 20. When � = 0.1 and the block size is equal to 20, the MSEs of �1, �2, � and

(�1 − �2)/� are 0.2052, 0.2070, 0.0364 and 1.4030 respectively, which are all smaller than

the corresponding values of the conventional EM algorithm as shown in Table 3. In clinical

trials, the block sizes used are usually 2, 4, 6, 8 and 10[4]. For two-treatment trials block

sizes of 2 and 4 are commonly used[38]. Thus, if we use this additional information with the

enhanced EM algorithm, we can always obtain better estimates than using the conventional

EM algorithm.
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4.0 TYPE I ERROR AND POWER RESULTS: SINGLE-CENTER TRIAL

4.1 EVALUATING THE EFFECT ON TYPE I ERROR RATE

4.1.1 Illustrating actual type I errors in adaptive sample size design

One concern of sample size re-estimation procedures is that using the standard t-test at the

end of the trial may inflate the type I error. The type I error rate could be inflated because

the final adjusted sample size is a random variable containing information from the interim

study but the adaption is not taken into account for the test statistic and the critical value.

The t-statistic is not precisely t distributed any more since the components of the t-statistic

are both from the first and second stage of the adaptive design. Nonetheless, in our blinded

adaptive setting the standard t-test has traditionally been viewed as a good approximation

to the actual test statistic.

It is known the type I error rate may be inflated when the adjusted sample size is based

on the unblinded pooled variance estimate[2] [36]. We aim to evaluate if the actual type I

error is controlled at the nominal level for our blinded design. One would intuitively expect

that under the blinded sample size re-estimation case, the type I error rate should not be

affected since the adjusted sample size provides no information about the true treatment

effects.

Kieser and Friede[17] used analytical methods to compute the actual type I error rate

when the standard t-test statistic is applied in evaluating their blinded sample size re-

estimation procedure. Their sample size adjustment is based on the pooled one sample

variance from the internal pilot. Due to the simple form of their variance estimator, they

were able to split the test statistics into components which are independent random variables
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and obtained the joint density of these components. Therefore, the density function of the

test statistic can be derived as a product of the densities of its components which they show

separately follow chi-square and normal distributions. The actual type I error probability for

their procedure can be obtained by integrating the density function of the test-statistic over

the rejection region of the t-test. Kieser and Friede showed through numerical integration

that actual type I error is controlled at the nominal level. However, their procedure relies on

the simple form of the estimates they use and the special features of the t-test. Unfortunately

a general method for other forms of blinded estimates of the variance are not available to

obtain analytical computation of the actual type I error rate for any given test. Clearly we

cannot obtain an explicit form for the re-estimated sample size that is calculated from the

EM estimator of variance. Hence, simulation is necessary to evaluate the type I error rate

of the adaptive procedure.

In Gould and Shih[15]’s paper, they showed through simulation that the conventional

EM procedure preserves the type I error rate of their blinded adaptive design. Under the null

hypothesis, observations for the two treatment groups are from one population. Therefore,

intuitively knowledge that subjects have equal probabilities to be assigned to each treatment

should not be different from knowledge that equal numbers of subjects are assigned to each

treatment. Hence, we argue that under the null hypothesis, the enhanced EM procedure

intuitively does not use any additional information comparing to the conventional EM pro-

cedure. Since the conventional EM procedure has been shown to control the type I error, we

would expect the enhanced EM procedure should not inflate the type I error.

4.1.2 Simulation study for actual type I error

4.1.2.1 Purpose of the Simulation Study As we have noted, Gould and Shihm used

simulation to show that using the conventional EM algorithm to estimate the variance from

the blinded data at the interim stage and to re-calculate the sample size based on this EM

estimator does not affect the type I error rate of the standard t-statistic. We introduce the

enhanced EM algorithm in this dissertation, which requires more information at the interim

stage of the trial than Gould and Shih[15]’s approach required. In our settings, by revealing
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the information that there is an equal number of subjects from each treatment at the interim,

the individual treatment identities remain blinded, but collectively the blind could be viewed

as compromised to some extent. Our goal then is to evaluate the effects of revealing more

information on the type I error. In our simulation study, we explore and compare the actual

type I error rates by using different EM algorithms under various sample size capping rules

over a range of true parameter values of �.

Keeping the initial estimate of standard deviation fixed, we consider using different true

� because we want to look at the effect on type I error for different adjusted sample sizes.

When � is bigger than the initial estimate, the re-calculated sample size tends to be bigger

than the planned sample size, and the chance of rejecting the null hypothesis may increase

as the adjusted sample size increases. On the other hand, when � is smaller than the

initial estimate, the re-estimated sample size decreases which also can increase the chance

of rejecting the null hypothesis.

Furthermore, we are interested in the effects on type I error rate when using the enhanced

EM algorithm with block design. We explained the details of block designs in Section 2.4.3,

where block size means the minimum known balance point in numbers of patients on each

treatment throughout the trial. For example, block size is 4 means within every four patients,

there are two in experimental group and the other two in the control group. In most actual

studies, random block sizes are used, that is instead of choosing a constant number as block

size, we commonly use varying block sizes. For example, the random block size can result

in sizes like 4, 2, 6, 8, 4, 2, 6... throughout the trial. The particular block sizes we choose

are only illustrative for the enhanced EM algorithm. In a specific study we can utilize the

information of any possible block sizes in the enhanced EM algorithm. We also know the

enhanced EM estimators substantially improve as block size decreases; however, this full

block information may also makes the design ’less unblinded’. Under the block design, we

simulate two representative block sizes 2 and 4. If the actual type I error rate is preserved

under the nominal level when block size is 2, one expects that the enhanced EM procedure

with larger block sizes will continue to control the type I error rate since block size 2 used

the most available information to estimate �.
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4.1.2.2 Description of the Simulation Study Without the loss of generality, we as-

sume the initial estimate of the common standard deviation is 1. For simplicity, we assume

the clinical meaningful treatment difference, Δ, is 0.443 to make the initial sample size 160,

for a nominal type I error of 0.05 and 80% power. The initial sample size is obtained by

using (1.1), i.e.,

N = 4 ⋅ 12 ⋅ (z0.025 + z0.2)2/0.4432 ≈ 160 .

where N is the total initial planned sample size for two treatment groups. We use N1 to

denote the sample size for the first stage study and N ′ as the total recalculated sample size.

As noted in Chapter 1.4, Nadj is the adjusted final sample size based on applying different

sample size rules to N ′.

Since our sample size adjustment procedure is not based on the observed treatment

difference, the assumed treatment difference, Δ, remains the same throughout the simulation.

We choose to use 25% (N1 = 40) and 50% (N1 = 80) of the initial sample size to conduct the

interim analysis. Wittes et al[37] show the choice of internal pilot between 25% to 75% of the

expected sample size is practical in clinical trials to keep a balance between the requirement

for adjusting the sample size reasonably early in the study and the requirement for including

sufficient first stage data to achieve a stable estimate of the variance.

To evaluate the effect on type I error rate, obviously the true treatment difference, �, is

set to 0. A range of true � values (0.5, 1/
√

2, 1,
√

2 and 2) are selected. Because the actual

value of �1 = �2 is not relevant to the t-test under H0, we set �1 = �2 = 0. We generate

3000 samples from N(0, �) where each sample has sample size N1.

We apply four EM procedures (conventional EM, enhanced EM, enhanced EM with block

size 4 and enhanced EM with block size 2) for obtaining the estimate of �. Three sample

size capping rules are used to obtain the final adjusted sample size: unrestricted design

rule[2], restricted design rule[36] and the rule Gould and Shih[15] used in their paper. For

the unrestricted design, we increase the sample size when the recalculated sample size N ′

is bigger than the first stage sample size N1. If N ′ is smaller, then N1 is the final adjusted

sample size and the trial is stopped at the interim. For the restricted design, we increase

the sample size when the recalculated sample size N ′ is bigger than the initially planned

sample size N , otherwise N is used as the final sample size. In Gould and Shih[15]’s paper,
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they increased the sample size to the recalculated sample size N ′ when N ′/N > 1.33 and

N ′/N < 2. If N ′ is smaller than 1.33N , there will be no sample size adjustment and initial

sample size N is used for the study. Also Gould and Shih[15] capped the maximum sample

size as 2N when N ′ > 2N as a practical limitation. Specifically, we obtain the recalculated

sample size N ′ by using the estimate of � from different EM procedures using (1.2). The

adjusted sample sizes, denoted as Nadj, are obtained by applying the three capping rules to

each recalculated sample size.

In our simulation study, for each true value of the standard deviation, we generate 3000

random samples from N(0, �2), where each random sample has size (N1 + 1500), 1500 being

an arbitrary large number. N1 is the sample size for the first stage of the study. We conduct

the interim analysis at N1 and calculate the adjusted total sample size Nadj. Then we take

(Nadj − N1) observations out of the remaining 1500 simulated values and run the t-test.

This is repeated for each of the 3000 samples. By doing so, we guarantee there is a high

proportion of the data that are common for each scenario, so that different EM algorithms

and different capping rules for the same � are more comparable.

After all Nadj subjects are generated, we compute the standard t-statistic as if the sample

size were fixed:

t =
ȳ1 − ȳ2

Spool
√

4/Nadj

, (4.1)

where ȳ1 and ȳ2 are the sample means of two treatments, and Spool is the pooled sample

standard deviation for the entire dataset. We use Nadj−2 as degrees of freedom for the t-test,

where the rejection region is two-sided (� = 0.05). After computing the test statistic, we

count the number of rejections under the null hypothesis in the 3000 tests for each scenario.

4.1.2.3 Simulation Results For the cases N1 = 40 and N1 = 80, Tables 7 and 8

display the proportions and numbers of rejections under the null hypothesis among the

3000 samples for each scenario of �. A two-sided exact binomial confidence interval for the

rejection proportion is also calculated in each cell of these two tables. In both cases, N1 = 40

and N1 = 80, the 95% confidence interval for the proportion of rejections always includes the

nominal type I error of 0.05. It is clear the blinded sample size adjustment through the EM

algorithm if it has any effect on the significance level, it is negligible. In addition, we note

64



Table 7: Simulated type I error rate and confidence interval when N1 = 80. True parameters used
to generate the sample are set as � = 0 and � = 0.5, 1/

√
2, 1,

√
2 and 2. 3000 sample are generated

from each value of �.

Conventional EM Enhanced EM Enhanced EM Enhanced EM

with block size 4 with block size 2

True � capping rule

1
2 Unrestricted 0.0527 (158) 0.0527 (158) 0.0527 (158) 0.0527 (158)

(0.0449, 0.0613) (0.0449, 0.0613) (0.0449, 0.0613) (0.0449, 0.0613)

Restricted 0.0507 (152) 0.0507 (152) 0.0507 (152) 0.0507 (152)

(0.0431, 0.0591) (0.0431, 0.0591) (0.0431, 0.0591) (0.0431, 0.0591)

Gould-Shih’s 0.0507 (152) 0.0507 (152) 0.0507 (152) 0.0507 (152)

(0.0431, 0.0591) (0.0431, 0.0591) (0.0431, 0.0591) (0.0431, 0.0591)

1√
2

Unrestricted 0.0523 (157) 0.0520 (156) 0.0530 (159) 0.0530 (159)

(0.0446, 0.0609) (0.0443, 0.0606) (0.0453, 0.0616) (0.0453, 0.0616)

Restricted 0.0493 (148) 0.0493 (148) 0.0493 (148) 0.0493 (148)

(0.0417, 0.0577) (0.0417, 0.0577) (0.0417, 0.0577) (0.0417, 0.0577)

Gould-Shih’s 0.0493 (148) 0.0493(148) 0.0493 (148) 0.0493 (148)

(0.0417, 0.0577) (0.0417, 0.0577) (0.0417, 0.0577) (0.0417, 0.0577)

1 Unrestricted 0.0467 (140) 0.0453 (136) 0.0490 (147) 0.0530 (159)

(0.0394, 0.0548) (0.0382, 0.0534) (0.0416, 0.0573) (0.0453, 0.0616)

Restricted 0.0510 (153) 0.0497 (149) 0.0507 (152) 0.0513 (154)

(0.0434, 0.0595) (0.0442, 0.0581) (0.0431, 0.0591) (0.0437, 0.0598)

Gould-Shih’s 0.0507 (152) 0.0503 (151) 0.0507 (152) 0.0510 (153)

(0.0431, 0.0591) (0.0428, 0.0588) (0.0431, 0.0591) (0.0434, 0.0595)

√
2 Unrestricted 0.0490 (147) 0.0493 (148) 0.0527 (158) 0.0530 (159)

(0.0416, 0.0573) (0.0419, 0.0577) (0.0449, 0.0613) (0.0453, 0.0616)

Restricted 0.0490 (147) 0.0507 (152) 0.0527 (158) 0.0530 (159)

(0.0416, 0.0573) (0.0431, 0.0591) (0.0449, 0.0613) (0.0453, 0.0616)

Gould-Shih’s 0.0493 (148) 0.0510 (153) 0.0553 (166) 0.0520 (156)

(0.0419, 0.0577) (0.0434, 0.0595) (0.0474, 0.0641) (0.0443, 0.0606)

2 Unrestricted 0.0490 (147) 0.0503 (151) 0.0477 (143) 0.0470 (141)

(0.0416, 0.0573) (0.0428, 0.0588) (0.0403, 0.0559) (0.0397, 0.0552)

Restricted 0.0490 (147) 0.0503 (151) 0.0477 (143) 0.0470 (141)

(0.0416, 0.0573) (0.0428, 0.0588) (0.0403, 0.0559) (0.0397, 0.0552)

Gould-Shih’s 0.0493 (148) 0.0473 (142) 0.0470 (141) 0.0477 (143)

(0.0419, 0.0577) (0.0400, 0.0556) (0.0397, 0.0552) (0.0403, 0.0559)
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Table 8: Simulated type I error rate and confidence interval when N1 = 40. True parameters used
to generate the sample are set as � = 0 and � = 0.5, 1/

√
2, 1,

√
2 and 2. 3000 sample are generated

from each value of �.

Conventional EM Enhanced EM Enhanced EM Enhanced EM

with block size 4 with block size 2

True � capping rule

1
2 Unrestricted 0.0530 (159) 0.0527 (158) 0.0540 (162) 0.0553 (166)

(0.0453, 0.0616) (0.0449, 0.0613) (0.0462, 0.0627) (0.0474, 0.0641)

Restricted 0.0487 (146) 0.0487 (146) 0.0487 (146) 0.0487 (146)

(0.0412, 0.0570) (0.0412, 0.0570) (0.0412, 0.0570) (0.0412, 0.0570)

Gould-Shih’s 0.0487(146) 0.0487(146) 0.0487(146) 0.0487(146)

(0.0412, 0.0570) (0.0412, 0.0570) (0.0412, 0.0570) (0.0412, 0.0570)

1√
2

Unrestricted 0.0470 (141) 0.0437 (131) 0.0507 (152) 0.0493 (148)

(0.0397, 0.0552) (0.0366, 0.0516) (0.0431, 0.0591) (0.0419, 0.0577)

Restricted 0.0507 (152) 0.0507 (152) 0.0507 (152) 0.0507 (152)

(0.0431, 0.0591) (0.0431, 0.0591) (0.0431, 0.0591) (0.0431, 0.0591)

Gould-Shih’s 0.0507 (152) 0.0507 (152) 0.0507 (152) 0.0507 (152)

(0.0431, 0.0591) (0.0431, 0.0591) (0.0431, 0.0591) (0.0431, 0.0591)

1 Unrestricted 0.0460 (138) 0.0457 (137) 0.0457 (137) 0.0497 (149)

(0.0388, 0.0541) (0.0385, 0.0538) (0.0385, 0.0538) (0.0422, 0.0581)

Restricted 0.0423 (127) 0.0430 (129) 0.0437 (131) 0.0430 (129)

(0.0354, 0.0502) (0.0360, 0.0509) (0.0366, 0.0516) (0.0360, 0.0509)

Gould-Shih’s 0.0433 (130) 0.0430 (129) 0.0447 (134) 0.0440 (132)

(0.0363, 0.0512) (0.0360, 0.0509) (0.0376, 0.0527) (0.369, 0.0520)

√
2 Unrestricted 0.0467 (140) 0.0507 (152) 0.0450 (135) 0.0477 (143)

(0.0394, 0.0548) (0.0431, 0.0591) (0.0379, 0.0530) (0.0403, 0.0559)

Restricted 0.0497 (149) 0.0533 (160) 0.0447 (134) 0.0477 (143)

(0.0422, 0.0581) (0.0456, 0.0620) (0.0376, 0.0527) (0.0403, 0.0559)

Gould-Shih’s 0.0497 (149) 0.0510 (153) 0.0440 (132) 0.0483 (145)

(0.0422, 0.0581) (0.0434, 0.0595) (0.0369, 0.0520) (0.0409, 0.0566)

2 Unrestricted 0.0500 (150) 0.0533 (160) 0.0490 (147) 0.0523 (157)

(0.0425, 0.0584) (0.0456, 0.0620) (0.0416, 0.0573) (0.0446, 0.0609)

Restricted 0.0513 (154) 0.0530 (159) 0.0490 (147) 0.0523 (157)

(0.0437, 0.0598) (0.0453, 0.0616) (0.0416, 0.0573) (0.0446, 0.0609)

Gould-Shih’s 0.0533 (160) 0.0530 (159) 0.0520 (156) 0.0520 (156)

(0.0456, 0.0620) (0.0453, 0.0616) (0.0443, 0.0606) (0.0443, 0.0606)

66



that the actual type I error from different EM procedures are all quite similar to each other,

which will allow us to later compare power among procedures directly without adjusting the

critical value of the test.

When the null hypothesis of H0 : �1 − �2 = 0 holds true (� = 0), the number of

simulations rejecting H0 should be binomially distributed according to B(3000, 0.05)[15]. In

Figure 14, we produce a figure analogous to Gould and Shih[15]’s Figure 2 and plot the

observed cumulative density functions (CDFs) of the numbers of rejections of H0 in 3000

runs by using different EM procedures, and compare them with the theoretical CDF of

the binomial distribution with probability 0.05. We use the number of rejections shown in

Tables 7 and 8 (30 cases for each procedure) as the empirical distributions of the rejection

frequencies for three EM algorithms.

Figure 14 shows the distributions of the rejection frequencies for the different EM algo-

rithms fall closely together. We see in our figure that the four blinded sample size adjustment

procedures have a very similar type I error rates. We also notice from Figure 14 that none

of the EM procedures inflate the type I error materially. However, Figure 14 does display

the probabilities of obtaining large numbers or small numbers of rejections are both smaller

than expected. From the observed CDF, it seems the distribution of the number of rejections

in 3000 samples is under dispersed, i.e., the variance of the actual number of rejections is

less than the variance of Binomial (3000, 0.05). To gain some understanding of why this

happens, we consider some simple calculations. Let � denote the true type I error rate over

different scenarios in our simulation study. Further, consider � to be a random variable and

following a distribution with E(�) = p. Let T denote the number of rejections among 3000

samples for a scenario with type I error �, that is, T∣� ∼ Binomial(3000, �). It follows that

V ar(T) = E{var(T∣�)}+ V arE(T∣�)

= E(3000� − 3000�2) + V ar(3000�)

= 3000p− 3000E(�2) + 30002V ar(�)

= 3000p(1− 3000p) + 3000E(�2)(3000− 1) .

(4.2)

We are interested if p, which is E(�), can possibly be equal to the nominal type I error

rate of 0.05 as desired. We observed in Figure 14 that under dispersed true distribution
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Figure 14: Observed and expected CDF of rejections of H0 in 3000 simulations for each true

value of � under three sample size capping rules and four difference EM procedures.
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of the number of rejections, suggesting that V ar(T) < 3000 ⋅ 0.05(1 − 0.05). Suppose that

E(�) = p = 0.05, so that substituting (4.2) into the previous inequality with p = 0.05, we

obtain

−30002(0.05)2 + 3000(0.05)2 + 3000E(�2)(3000− 1) < 0 , (4.3)

which reduces to

E(�2) < (0.05)2 = {E(�)}2. (4.4)

The later inequality cannot hold due to Jenson’s inequality. Therefore, E(�) < 0.05. The

question remains as to whether var(�) > 0 or var(�) = 0. The latter corresponds to

T ∼ B(n, p) where p < 0.05, i.e., the true type I error rate is consistent across various

scenarios with a value less than 0.05. To explore this possibility, we fit various binomial

c.d.f’s with p < 0.05 and none of them provided an adequate fit to the observed c.d.f. Our

conclusion is that, in fact, var(�) > 0, and the different scenarios have different true type I

error rates which on average are < 0.05.

The plot Gould and Shih[15] used in their paper (Figure 2) shows apparent close agree-

ment in their simulations to the expected CDF curve. There could be multiple reasons why

we did not get a graph similar to Gould and Shih[15]’s. First, we conduct a different sim-

ulation study from theirs. Gould and Shih used a selection of 6 different values of � and

3 true mean difference values � to generate the samples, as well 6 initially assumed values

of � to calculate the planning sample size, 2 sample size capping rules and 2 values for the

interim analysis timings. Hence, their simulations were conducted under 432 cases. In our

simulation study, under the condition � = 0, Δ = 0.443 and �̃ = 1, we fixed the first stage

sample size at 80 or 40, and we use 5 different values of � to generate the samples. In order

to make different EM procedures and different sample size capping rules comparable, we

simulate a large proportion of the same data across the different EM procedures. Hence, for

each value of �, the number of rejections for different capping rules are correlated. Therefore,

our simulation in essence was conducted under 10 independent cases for each EM algorithm.

Second, as Waksman[35] pointed out, in each iteration of estimation Gould and Shih[15]

altered their estimate of �2 in the M-step by subtracting 1 from the total interim sample size

in the denominator. We, however, removed this alteration in our simulation study. Third,

besides the sample size capping rules Gould and Shih[15] used, we also applied the restricted
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and the unrestricted capping rule in the simulation study. All these reasons may explain

why Gould and Shih[15]’s figure looks somewhat different than our Figure 14.

We used block sizes 2 and 4 as representative to illustrate the enhanced EM procedure

with block design. The simulation results show the actual type I error rate is preserved

at the nominal level 0.05 when the block sizes are 2 and 4. The enhanced EM procedure

with bigger block sizes should improve the control of the type I error rate since it uses less

available information to estimate �. As a result we need not run more detailed simulations

for larger block sizes.

4.2 EVALUATING THE EFFECT ON POWER

The EM procedure we use does not use any information of the treatment difference at the

interim and does not estimate the absolute true treatment difference reliably. In other words,

the pre-specified treatment difference used in the sample size calculation reflects the clinical

benefits and does not necessarily need to be a good estimate of the true value. On the other

hand, we try to estimate the nuisance parameter � accurately from the interim data and use

it to determine the appropriate adjusted sample size. The main purpose of our procedure is

to compensate for the effects of �’s misidentification on the actual power and sample size.

In this section, we want to evaluate the effect on power when � is misspecified. We also look

at how our procedure handles the power when the true treatment difference is misspecified,

even this is not what our procedure designed for.

We briefly review the approaches to power and sample size evaluation that other re-

searchers performed for blinded sample size re-estimation based on the nuisance parameter.

Gould and Shih[15] used simulation studies to explore the effects of a range of parameter val-

ues on the likelihood of rejecting H0 under the alternative hypothesis. Kieser and Friede[17]

obtained the power by integrating the joint density of the test statistic components over the

rejection region of the t-test under the alternative hypothesis.
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4.2.1 Analytical calculation of the actual power and the expected sample size

Let us first consider an analytical approach to attempt to derive the power function. For

large samples when we can assume � is known, the unconditional power can be written as

follows,

power = P

(
∣ȳ1 − ȳ2∣ > z�/2 ⋅

2�√
Nadj

)
= P

(
ȳ1 − ȳ2 > z�/2 ⋅

2�√
Nadj

)
+ P

(
ȳ1 − ȳ2 < −z�/2 ⋅

2�√
Nadj

)
=

∫ ∫
{(ȳ1−ȳ2,Nadj):ȳ1−ȳ2>z�/2⋅ 2�√

Nadj

}
f(ȳ1 − ȳ2, Nadj) d(ȳ1 − ȳ2) d(Nadj)

+

∫ ∫
{(ȳ1−ȳ2,Nadj):ȳ1−ȳ2<−z�/2⋅ 2�√

Nadj

}
f(ȳ1 − ȳ2, Nadj) d(ȳ1 − ȳ2) d(Nadj)

=

∫
ℜ{Nadj}

Pȳ1−ȳ2∣Nadj(ȳ1 − ȳ2 > z�/2 ⋅
2�√
Nadj

)f(Nadj) d(Nadj)

+

∫
ℜ{Nadj}

Pȳ1−ȳ2∣Nadj
(ȳ1 − ȳ2 < −z�/2 ⋅

2�√
Nadj

)f(Nadj) d(Nadj) ,

(4.5)

where f(ȳ1− ȳ2, Nadj) is the joint density function of random variables ȳ1− ȳ2 and Nadj, and

f(Nadj) is the marginal distribution of Nadj, where Nadj is the total final adjusted sample size

for two treatment groups which is used in the test statistic. Note that, Nadj is a function of

the estimate of the standard deviation at the interim, �̂, and it also depends on the sample

size rules applied. Hence, the integration region for Nadj, ℜ{Nadj}, changes when using

different sample size rules. Thus, the sample size rules provide the corresponding integration

region for �̂. To calculate the power, we need the conditional density function of ȳ1 − ȳ2

given Nadj. Since Nadj is just a function of �̂, it is easier to calculate (4.5) using f(ȳ1− ȳ2∣�̂).

Using this conditional distribution, we have that (4.5)∫ ∞
0

Pȳ1−ȳ2∣�̂(ȳ1 − ȳ2 > z�/2 ⋅
2�√
Nadj(�̂)

)f(�̂) d(�̂)

+

∫ ∞
0

Pȳ1−ȳ2∣�̂(ȳ1 − ȳ2 < −z�/2 ⋅
2�√
Nadj(�̂)

)f(�̂) d(�̂) ,

(4.6)

where f(�̂) is the marginal density function of �̂
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We know the sample mean difference can be broken into components as

ȳ1 − ȳ2 =
N1(ȳ11 − ȳ12) +N2(�̂)(ȳ21 − ȳ22)

N1 +N2(�̂)
, (4.7)

where the second stage sample size N2 is a function of �̂. It is obvious that the observations

from the second stage are independent of �̂, because �̂ is estimated from the first stage.

Hence, given �̂, ȳ21 − ȳ22 follows a normal distribution with mean �1 − �2 and variance

2�2/N2( ˆ(�)).

Clearly, if we want to focus on the first stage data and the treatment assignments were

known, then we would get the estimator of the standard deviation as the pooled sample

standard deviation, which is known to be independent of ȳ11 − ȳ12. However, little theory

appears to be known for the independence between the sample mean difference and the stan-

dard deviation estimate from an EM procedure. Our approach is to explore this dependence

by simulation and compute sample correlations between the sample mean difference from

the first stage study and the EM estimate of � at the interim based on our simulations. We

simulated 3000 samples with each having sample size of 80. Forty observations are from a

population following N(0, 1) and the other forty are from N(1, 1). The scatterplots between

the EM estimate of � and the treatment mean difference for these 80 observations are plot-

ted in Figure 15. As seen in Figure 15, the treatment difference appears uncorrelated with

the enhanced EM estimator with block size 2 and 4. The two variables appear not quite

independent when using the conventional EM procedure or enhanced EM procedure without

block design. But ever then, the correlations between these two variables is quite small.

Hence, when using the enhanced EM algorithm with block size 2 or 4 for the estimate of �

in a blinded adaptive design, we feel comfortable for the analytic calculations in assuming

that �̂ and ȳ11 − ȳ12 are independent random variables. Therefore, given �̂, ȳ11 − ȳ12 can be

assumed to be normally distributed with mean �1 − �2 and variance 2�2/N1.

Based on the proceeding, given �̂, the summation of the two components of the entire

sample mean difference given in (4.7), ȳ1 − ȳ2 = N1 ⋅ (ȳ11 − ȳ12)/Nadj(�̂) + N2(�̂) ⋅ (ȳ21 −

ȳ22)/Nadj(�̂), follows a normal distribution with mean �1−�2 and variance 2�2/Nadj(�̂). If we
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Figure 15: Scatterplots of the observed treatment difference at the interim versus the EM

estimates at the interim (N1 = 80). EM estimators are calculated based on 3000 simulated

samples which are generated from N(0,1) and N(1,1).
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standardize the distribution of ȳ1− ȳ2, we have P

(
ȳ1−ȳ2−�√
4�2/Nadj(�̂)

<
−z�/2(2�)/

√
Nadj(�̂)−�√

4�2/Nadj(�̂)

∣∣∣∣ �̂) ∼
N(0, 1). Hence, we can rewrite (4.6) as follows:

power = 1−
∫ ∞

0

Φ

(
z�/2−

�√
4�2/Nadj(�̂)

)
f(�̂) d(�̂)+

∫ ∞
0

Φ

(
−z�/2−

�√
4�2/Nadj(�̂)

)
f(�̂) d(�̂) ,

(4.8)

where Φ is the CDF of the standard normal distribution. Since Φ
(
− z�/2− �√

4�2/Nadj(�̂)

)
will

be a very small number, we ignore it in the calculation of the power, so that

power ≈ 1−
∫ ∞

0

Φ

(
z�/2 −

�√
4�2/Nadj(�̂)

)
f(�̂) d(�̂) . (4.9)

First, we evaluate the power for the case N1 = 80 under the unrestricted sample size

rule, i.e. Nadj = max(N1, N
′). We still assume the desired treatment mean difference to

achieve 80% power is set to 0.443 as stated in Section 4.1 and the initial sample size N is

160. By implementing the EM estimate �̂ in the sample size calculation formula (1.2), we

obtain N ′(�̂) = 4�̂2 ⋅ (z0.025 +z0.2)2/0.4432 = 160 ⋅ �̂2. The second part of (4.9) can be written

as ∫ ∞
0

Φ

(
z�/2 −

�√
4�2
⋅
√

max(N1, N ′(�̂))

)
f(�̂)d(�̂) . (4.10)

The final sample size Nadj(�̂) is a different function depends on two regions of �̂. So that if

�̂2 ≤ 1/2 then max(N1, N
′(�̂)) = N1, i.e., Nadj(�̂) = 80. If �̂2 > 1/2, then max(N1, N

′(�̂)) =

N ′(�̂), i.e., Nadj(�̂) = 160 ⋅ �̂2.

Since there does not exist a simple close form for the EM estimator, �̂, one cannot

explicitly obtain the distribution of the EM estimator. However, as seen in Figure 16,

the distributions of the �̂’s from different enhanced EM procedures are all approximately

normal distributed, especially for the case of small block size 2 or 4. On the other hand,

the distribution of the conventional EM estimator seems to be a mixture of two normal

distributions because it has boundary modes that we mentioned in Chapter 3. Nonetheless,

since the two components of the conventional EM estimates are close to each other and it

is difficult to approximate the mixture distribution, we approximate the distribution of the

conventional EM estimates by a normal distribution. Thus, for different EM procedures, we

simply approximate the distribution of �̂ by a normal distribution, denoted by �̂ ∼ N(�∗, �∗2)
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where �∗ and �∗2 are the mean and variance calculated from 3000 simulated samples. To

analytically do the numerical integration, it’s reasonable to use �∗+ 4 ⋅�∗ as the upper limit

of �̂ under the assumed normal distribution. When doing the numerical integration for the

standard normal we use -4 as a reasonable lower limit for the standard normal variable.

Therefore, we re-write (4.10) as follows:

∫ √1/2

0

Φ

(
z�/2 −

� ⋅
√

80√
4�2

)
f(�̂)d(�̂) +

∫ �∗+4⋅�∗

√
1/2

Φ

(
z�/2 −

� ⋅
√

160√
4�2

⋅ �̂
)
f(�̂)d(�̂)

=

∫ √1/2

0

(∫ z�/2− �⋅
√
80√

4�2

−4

�(z)d(z)

)
f(�̂)d(�̂) +

∫ �∗+4⋅�∗

√
1/2

(∫ z�/2− �⋅
√
160√

4�2
⋅�̂

−4

�(z)d(z)

)
f(�̂)d(�̂) ,

(4.11)

where �(z) is the pdf of the standard normal distribution.

As an example to illustrate the numerical calculation steps, considering the setting when

the true treatment difference is � = 0.443, the true standard deviation is � = 1 and we use

the enhanced EM procedure. Specifically, we apply the enhanced EM algorithm to estimate

the common standard deviation, �, for each of 3000 simulated random samples. We found

that the mean of these 3000 enhanced estimators is 0.8443 and the sample variance is 0.0161

(We do not use the simulation results from Chapter 3 because for these calculations we want

more accurate simulation results.), so that we can assume �̂ ∼ N(0.8443, 0.0161). Then the

reasonable upper limit of �̂ in the integration is 0.8443 + 4 ⋅
√

0.0161 ≈ 1.35. Thus, (4.11)

becomes to:

∫ √1/2

0

(∫ 1.96− 0.443
2

√
80

−4

�(z)d(z)

)
f(�̂)d(�̂) +

∫ 1.35

√
1/2

(∫ 1.96− 0.443
2

√
160⋅�̂

−4

�(z)d(z)

)
f(�̂)d(�̂) ,

(4.12)

where f(�̂) = 1√
2�⋅(0.0161)

exp
(
− (�̂−0.8443)2

2⋅(0.0161)

)
. MATLAB is used to compute the numerical

integration.

The analytical computation varies based on the different sample size capping rules used.

The restricted sample size rule, Nadj = max(N,N ′), has two different forms on two different

regions of �̂2. Specifically, if �̂2 ≤ 1 then max(N1, N
′(�̂)) = N , i.e., Nadj(�̂) = 160. If �̂2 > 1,
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Figure 16: Gaussian kernel smoother of various types of EM estimates of � when �1 = 0,

�2 = 0.443 and � = 1 for N1 = 80 in 3000 simulation runs.
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then max(N1, N
′(�̂)) = N ′(�̂), i.e., Nadj(�̂) = 160 ⋅ �̂2. So that on two different regions of �̂

we obtain

power ≈ 1−
∫ +∞

0

Φ

(
z�/2 −

�√
4�2
⋅
√

max(N,N ′(�̂))

)
f(�̂)d(�̂)

= 1−
∫ 1

0

Φ

(
z�/2 −

� ⋅
√

160√
4�2

)
f(�̂)d(�̂)−

∫ �∗+4⋅�∗

1

Φ

(
z�/2 −

� ⋅
√

160√
4�2

⋅ �̂
)
f(�̂)d(�̂)

= 1−
∫ 1

0

(∫ z�/2− �√
4�2
⋅
√

160

−4

�(z)d(z)

)
f(�̂)d(�̂)−

∫ �∗+4⋅�∗

1

(∫ z�/2− �√
4�2

√
160⋅�̂

−4

�(z)d(z)

)
f(�̂)d(�̂) .

(4.13)

For the Gould and Shih[15]’s sample rule, Nadj is a function on three different regions.

Specifically, if �̂2 ≤ 1.33 then Nadj(�̂) = 160, that is, no sample size adjustment and the

initially planned sample size, N , is used for the study. If 1 < �̂2 ≤ 2 then Nadj(�̂) = N ′(�̂) =

160 ⋅ �̂2. If �̂2 > 2 then Nadj(�̂) = 320, that is, twice of the initially planned sample size,

2N , is used for the study. Hence,

power ≈ 1−
∫ √1.33

0

Φ

(
z�/2 −

� ⋅
√

160√
4�2

)
f(�̂)d(�̂)−

∫ √2

√
1.33

Φ

(
z�/2 −

� ⋅
√

160√
4�2

⋅ �̂
)
f(�̂)d(�̂)

−
∫ �∗+4⋅�∗

√
2

Φ

(
z�/2 −

� ⋅
√

320√
4�2

)
f(�̂)d(�̂)

= 1−
∫ √1.33

0

(∫ z�/2− �√
4�2
⋅
√

160

−4

�(z)d(z)

)
f(�̂)d(�̂)−

∫ √2

√
1.33

(∫ z�/2− �√
4�2

√
160⋅�̂

−4

�(z)d(z)

)
f(�̂)d(�̂)

−
∫ �∗+4⋅�∗

√
2

(∫ z�/2− �√
4�2

√
320

−4

�(z)d(z)

)
f(�̂)d(�̂) .

(4.14)

Therefore, for a specific design with various � and �, we can compute the unconditional

power approximately by integration. When N1 = 40, we use the same procedures to evaluate

the actual unconditional power with a slight adjustment on the integration regions for the

unrestricted design since the interim sample size changes from 80 to 40. Specifically, under

the unrestricted rule, if �̂2 ≤ 1/4 then Nadj(�̂) = max(N1, N
′(�̂)) = 40 and if �̂2 > 1/4, then

Nadj(�̂) = max(N1, N
′(�̂)) = 160 ⋅ �̂2. For the restricted and Gould and Shih[15]’s sample

size rule, the integration on �̂ keep the same format when N1 = 40 as when N1 = 80.
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We can also obtain the expectation of the adjusted sample size in a similar way. Still

taking N1 = 80 as an example, in the unrestricted design, we have

E(Nadj) = E{max(N1, N
′(�̂))}

=

∫ +∞

0

max(N1, 160�̂2)f(�̂)d(�̂)

=

∫ √1/2

0

80 ⋅ f(�̂)d(�̂) +

∫ �∗+4⋅�∗

√
1/2

160�̂2 ⋅ f(�̂)d(�̂) .

(4.15)

For the restricted sample size rule, the expected sample size for the same example can

be expressed as:

E(Nadj) =

∫ +∞

0

max(N,N ′(�̂))f(�̂)d(�̂)

=

∫ 1

0

160 ⋅ f(�̂)d(�̂) +

∫ �∗+4⋅�∗

1

160�̂2 ⋅ f(�̂)d(�̂) .

(4.16)

For Gould and Shih[15]’s sample size rule, the expected sample size can be calculated as

follows:

E(Nadj) =

∫ √1.33

0

160 ⋅ f(�̂)d(�̂)+

∫ √2

√
1.33

160�̂2 ⋅ f(�̂)d(�̂)+

∫ �∗+4⋅�∗

√
2

320 ⋅ f(�̂)d(�̂) . (4.17)

The analytical computation of the actual power and the expected sample size are shown

in Table 9 and 10. We note again that these are only approximate results. First, we do

not have independence between the sample treatment mean difference and the final adjusted

sample size, especially when using the conventional and enhanced EM estimator without the

block design. Also we assume that �̂ estimated from the interim follows a normal distribution.

Moreover, as shown in Figure 16, the distributions of EM estimates of � are slightly skewed,

but we would expect to have a better approximation when the sample sizes are larger.
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Table 9: Numerical integration results for the actual power and the expected sample size when
N1 = 80 true treatment difference, �, are set to 0.35, 0.443, and 0.5; standard deviation � are set
to 1/

√
2, 1, and

√
2 for each �.

Conventional Enhanced Enhanced EM Enhanced EM

EM EM with block size 4 with block size 2

� � SS Capping rule

0.35 1√
2

Unrestricted 0.6137 (84) 0.6056 (82) 0.6166 (84) 0.6183 (84)

Restricted 0.8791 (160) 0.8791 (160) 0.8791 (160) 0.8791 (160)

Gould-Shih’s 0.8791 (160) 0.8791 (160) 0.8791 (160) 0.8791 (160)

1 Unrestricted 0.4946 (128) 0.4648 (118) 0.5421 (142) 0.5630 (150)

Restricted 0.6126 (166) 0.6049 (162) 0.6149 (168) 0.6166 (168)

Gould-Shih’s 0.6046 (164) 0.6011 (162) 0.6034 (162) 0.6028 (162)
√

2 Unrestricted 0.4787 (244) 0.4490 (224) 0.5388 (282) 0.5614 (296)

Restricted 0.4876 (250) 0.4585 (230) 0.5393 (282) 0.5615 (296)

Gould-Shih’s 0.4650 (234) 0.4401 (218) 0.5188 (266) 0.5426 (282)

0.443 1√
2

Unrestricted 0.8141 (84) 0.8063 (82) 0.8159 (84) 0.8177 (86)

Restricted 0.9774 (160) 0.9774 (160) 0.9774 (160) 0.9774 (160)

Gould-Shih’s 0.9774 (160) 0.9774 (160) 0.9774 (160) 0.9774 (160)

1 Unrestricted 0.6898 (130) 0.6588 (120) 0.7415 (144) 0.7638 (152)

Restricted 0.8115 (166) 0.8047 (164) 0.8134 (168) 0.8153 (168)

Gould-Shih’s 0.8041 (164) 0.8009 (162) 0.8029 (162) 0.8025 (162)
√
2 Unrestricted 0.6658 (248) 0.6343 (226) 0.7340 (284) 0.7585 (298)

Restricted 0.6774 (252) 0.6463 (230) 0.7349 (284) 0.7586 (298)

Gould-Shih’s 0.6532 (236) 0.6241 (220) 0.7137 (268) 0.7398 (282)

0.5 1√
2

Unrestricted 0.8968 (86) 0.8907 (82) 0.8979 (86) 0.8988 (86)

Restricted 0.9940 (160) 0.9940 (160) 0.9940 (160) 0.9940 (160)

Gould-Shih’s 0.9940 (160) 0.9940 (160) 0.9940 (160) 0.9940 (160)

1 Unrestricted 0.7869 (132) 0.7603 (122) 0.8331 (146) 0.8514 (152)

Restricted 0.8947 (168) 0.8895 (164) 0.8960 (168) 0.8970 (168)

Gould-Shih’s 0.8888 (164) 0.8863 (162) 0.8878 (164) 0.8874 (162)
√

2 Unrestricted 0.7623 (250) 0.7344 (228) 0.8262 (284) 0.8494 (298)

Restricted 0.7751 (254) 0.7479 (234) 0.8270 (284) 0.8495 (300)

Gould-Shih’s 0.7527 (238) 0.7258 (222) 0.8090 (268) 0.8343 (284)
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Table 10: Numerical integration results for the actual power and the expected sample size when
N1 = 40 true treatment difference, �, are set to 0.35, 0.443, and 0.5; standard deviation � are set
to 1/

√
2, 1, and

√
2 for each �.

Conventional Enhanced Enhanced EM Enhanced EM

EM EM with block size 4 with block size 2

� � SS Capping rule

0.35 1√
2

Unrestricted 0.4775 (62) 0.4445 (56) 0.5205 (68) 0.5469 (74)

Restricted 0.8791 (160) 0.8791 (160) 0.8791 (160) 0.8791 (160)

Gould-Shih’s 0.8791 (160) 0.8791 (160) 0.8791 (160) 0.8791 (160)

1 Unrestricted 0.4540 (116) 0.4196 (104) 0.5136 (134) 0.5421 (144)

Restricted 0.6142 (168) 0.6048 (162) 0.6169 (168) 0.6205 (170)

Gould-Shih’s 0.6070 (164) 0.6015 (162) 0.6065 (164) 0.6073 (164)
√

2 Unrestricted 0.4369 (220) 0.4058 (198) 0.5079 (264) 0.5401 (284)

Restricted 0.4604 (232) 0.4297 (212) 0.5128 (266) 0.5417 (286)

Gould-Shih’s 0.4392 (218) 0.4134 (202) 0.4873 (248) 0.5140 (264)

0.443 1√
2

Unrestricted 0.6689 (64) 0.6361 (58) 0.7156 (70) 0.7394 (74)

Restricted 0.9774 (160) 0.9774 (160) 0.9774 (160) 0.9774 (160)

Gould-Shih’s 0.9774 (160) 0.9774 (160) 0.9774 (160) 0.9774 (160)

1 Unrestricted 0.6285 (116) 0.5951 (106) 0.6997 (134) 0.7358 (144)

Restricted 0.8108 (166) 0.8039 (162) 0.8141 (168) 0.8179 (170)

Gould-Shih’s 0.8048 (164) 0.8011 (162) 0.8052 (164) 0.8062 (164)
√
2 Unrestricted 0.6128 (224) 0.5805 (202) 0.6966 (266) 0.7309 (286)

Restricted 0.6464 (236) 0.6148 (216) 0.7039 (268) 0.7333 (286)

Gould-Shih’s 0.6232 (220) 0.5947 (204) 0.6775 (248) 0.7066 (264)

0.5 1√
2

Unrestricted 0.7670 (64) 0.7374 (58) 0.8084 (70) 0.8324 (74)

Restricted 0.9940 (160) 0.9940 (160) 0.9940 (160) 0.9940 (160)

Gould-Shih’s 0.9940 (160) 0.9940 (160) 0.9940 (160) 0.9940 (160)

1 Unrestricted 0.7224 (118) 0.6920 (106) 0.7950 (136) 0.8234 (144)

Restricted 0.8935 (168) 0.8885 (164) 0.8962 (170) 0.8985 (170)

Gould-Shih’s 0.8889 (164) 0.8862 (162) 0.8893 (164) 0.8899 (166)
√

2 Unrestricted 0.7064 (226) 0.6763 (204) 0.7842 (262) 0.8174 (282)

Restricted 0.7437 (238) 0.7145 (216) 0.7926 (266) 0.8202 (284)

Gould-Shih’s 0.7224 (222) 0.6943 (204) 0.7698 (246) 0.7983 (262)
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4.2.2 Simulation study for actual power and expected sample size

4.2.2.1 Purpose of the Simulation Study While the approach of Section 4.1.1 pro-

vides an interesting approximation to power and expected sample sizes, simulation appears

to be the only approach to accurately assess these quantities. In our simulation study, we aim

to compare the actual power and the expected sample size among different EM procedures

under various sample size capping rules over a range of �’s and treatment difference �’s. We

would like to show through simulation, that our proposed blinded sample size adjustment

procedure can maintain the desired power when � is misspecified in the planning phase in a

range of scenarios.

Another interest is the effects of the block sizes on the enhanced EM procedure. Recall

that block size decreases, the enhanced EM estimates of � improve and the value of �̂

increases since in general the EM procedures tend to underestimate �. We show in our

simulations that the enhanced EM algorithm with block design appears to better preserve

the power.

4.2.2.2 Description of Simulation Study Our simulation results in Section 4.1.2.3

indicate that the actual type I errors are controlled at 0.05 when using the t-statistic in

(4.1). Therefore, it is meaningful to compare the actual powers of our procedures with the

planned power of 0.8. For the 0.05 level test, given a clinical meaningful treatment difference

for Δ of 0.443, the initial sample size is calculated as 160. Two interim points are chosen

at N1 = 40 and N1 = 80 to examine the effects of timing on the adaptive design. The true

values of the common standard deviations are examined at 1/
√

2, 1 and
√

2.

Under the alternative hypothesis, 3000 samples with sample size N1 are generated from

N(0, �) and N(�, �). Since we need to handle the randomization by blocks for the enhanced

EM procedure, all data are generated in pairs, that is, for every two patients, one is from the

experimental group and the other is from the control group. Equal number of patients in

each treatment group are kept at both the interim and the end of the trial. For the enhanced

EM procedure, we can use the full block information that block size is 2, or we can assume

a larger block size in the design for the algorithm. For the conventional EM procedure, we
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estimate � from the same blocked data but without using this block information. Actually

in Gould and Shih[15]’s simulation study, they keep the number of patients balanced at the

interim, but obviously do not use this information in their algorithm.

Furthermore, the true treatment differences, �, examined in our simulation study are set

to 0.35, 0.443 (which is equal to the assumed value for calculating initial sample size N), and

0.5. By generating data from distributions with smaller or bigger than assumed treatment

difference, we can obtain the values of the actual power and the expected sample size under

the underpowered or overpowered situations through simulation studies. Note that when

� = 0.35, the design assumptions are incorrect and the study necessarily is under powered,

and when � = 0.5, overpowered. The results for � = 0.443 are the ones which provide the

most insight about the value of blinded sample size re-estimation.

For each scenario, we use four EM algorithms (conventional EM, enhanced EM, enhanced

EM with block size 2, and enhanced with block size 4) to re-estimate � and three sample size

capping rules for the final adjusted sample size. Similar to the previous simulation studies for

the actual type I error, we add more observations to each sample as necessary and conduct

the t-test and count the number of rejections. Power is estimated by the proportion of

samples which reject. And the mean number of final adjusted sample size Nadj estimates the

expected sample size.

Also viewing each scenario as a fixed sample size design with planned sample size 160, for

each combination of true � and true �, we calculate the actual power achieved as a reference

guide. As designed when � = 0.443 and � = 1, the power is the designed value of 0.8.

Also, we calculate the sample size under fixed design when the treatment difference and the

common standard deviation are both correctly presumed as a reference against which do

compare to the expected sample size. Assign when � = 0.443 and � = 1, the fixed sample

size is 160.

4.2.2.3 Comparing analytical calculation with simulation results Tables 11 and

13 show the simulation results of actual power from the 3000 simulated samples for the

conventional EM procedure, the enhanced EM procedure and the enhanced EM procedures

with block sizes 2 and 4. The last column in the tables gives the power for the fixed sample
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Table 11: Simulation results for the actual power when N1 = 80. True parameters are used to
generate the sample are set as � = 0.35, 0.443, and 0.5; and � = 1/

√
2, 1 and

√
2. 3000 samples

are generated from each parameter configuration.

Conventional Enhanced Enhanced Enhanced Fixed

EM EM EM with EM with sample size

block size 4 block size 2 N = 160

� � SS Capping rule

0.35 1√
2

Unrestricted 0.5980 0.5893 0.5997 0.6000 0.88

Restricted 0.8653 0.8653 0.8653 0.8653

Gould-Shih’s 0.8653 0.8653 0.8653 0.8653

1 Unrestricted 0.4960 0.4647 0.5403 0.5637 0.60

Restricted 0.6173 0.6147 0.6127 0.6207

Gould-Shih’s 0.6093 0.6083 0.6087 0.6090
√

2 Unrestricted 0.4950 0.4593 0.5453 0.5640 0.35

Restricted 0.5003 0.4663 0.5453 0.5637

Gould-Shih’s 0.4793 0.4500 0.5253 0.5480

0.443 1√
2

Unrestricted 0.8003 0.7917 0.8030 0.8080 0.98

Restricted 0.9783 0.9783 0.9783 0.9783

Gould-Shih’s 0.9783 0.9783 0.9783 0.9783

1 Unrestricted 0.6827 0.6587 0.7467 0.7713 0.80

Restricted 0.7993 0.7947 0.8077 0.8087

Gould-Shih’s 0.7993 0.7903 0.7930 0.7930
√
2 Unrestricted 0.6557 0.6307 0.7303 0.7577 0.51

Restricted 0.6707 0.6410 0.7313 0.7577

Gould-Shih’s 0.6507 0.6193 0.7110 0.7393

0.5 1√
2

Unrestricted 0.8863 0.8793 0.8903 0.8953 0.99

Restricted 0.9933 0.9933 0.9933 0.9933

Gould-Shih’s 0.9933 0.9933 0.9933 0.9933

1 Unrestricted 0.7803 0.7570 0.8270 0.8490 0.89

Restricted 0.8900 0.8833 0.8937 0.8953

Gould-Shih’s 0.8817 0.8810 0.8817 0.8813
√

2 Unrestricted 0.7497 0.7277 0.8140 0.8453 0.61

Restricted 0.7617 0.7393 0.8143 0.8453

Gould-Shih’s 0.7420 0.7193 0.7983 0.8330
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Table 12: Simulation results for the means of the adjusted sample size when N1 = 80. True
parameters used to generate samples are set at � = 0.35, 0.443, and 0.5; and � = 1/

√
2, 1 and

√
2.

3000 samples are generated from each parameter configuration.

Conventional Enhanced Enhanced Enhanced Fixed sample size

EM EM EM with EM with to achieve

block size 4 block size 2 80% power

� � SS Capping rule

0.35 1√
2

Unrestricted 84 82 84 86 130

Restricted 160 160 160 160

Gould-Shih’s 160 160 160 160

1 Unrestricted 128 118 144 150 258

Restricted 166 162 168 168

Gould-Shih’s 162 160 162 162
√

2 Unrestricted 246 226 282 298 514

Restricted 250 230 282 298

Gould-Shih’s 236 220 268 282

0.443 1√
2

Unrestricted 84 82 86 86 80

Restricted 160 160 160 160

Gould-Shih’s 160 160 160 160

1 Unrestricted 132 120 146 152 160

Restricted 166 164 168 168

Gould-Shih’s 166 162 162 162
√
2 Unrestricted 248 228 284 298 320

Restricted 252 232 284 298

Gould-Shih’s 238 222 268 282

0.5 1√
2

Unrestricted 86 84 86 86 64

Restricted 160 160 160 160

Gould-Shih’s 160 160 160 160

1 Unrestricted 134 122 146 152 126

Restricted 168 164 168 170

Gould-Shih’s 162 162 162 162
√

2 Unrestricted 250 230 284 300 252

Restricted 256 234 284 300

Gould-Shih’s 240 224 268 284
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Table 13: Simulation results for the actual power when N1 = 40. True parameters are used to
generate the sample are set at � = 0.35, 0.443, and 0.5; and � = 1/

√
2, 1,

√
2. 3000 samples are

generated from each parameter configuration.

Conventional Enhanced Enhanced Enhanced Fixed

EM EM EM with EM with sample size

block size 4 block size 2 N = 160

� � SS Capping rule

0.35 1√
2

Unrestricted 0.4663 0.4360 0.5203 0.5483 0.88

Restricted 0.8793 0.8793 0.8793 0.8793

Gould-Shih’s 0.8793 0.8793 0.8793 0.8793

1 Unrestricted 0.4563 0.4233 0.5260 0.5560 0.60

Restricted 0.6087 0.6000 0.6203 0.6217

Gould-Shih’s 0.6007 0.5963 0.6053 0.6043
√

2 Unrestricted 0.4360 0.4027 0.5200 0.5540 0.35

Restricted 0.4620 0.4263 0.5217 0.5547

Gould-Shih’s 0.4417 0.4097 0.4933 0.5170

0.443 1√
2

Unrestricted 0.6590 0.6213 0.7117 0.7433 0.98

Restricted 0.9750 0.9750 0.9750 0.9750

Gould-Shih’s 0.9750 0.9750 0.9750 0.9750

1 Unrestricted 0.6060 0.5843 0.6897 0.7277 0.80

Restricted 0.7963 0.7933 0.8050 0.8050

Gould-Shih’s 0.7853 0.7943 0.7990 0.7997
√
2 Unrestricted 0.6240 0.5900 0.7043 0.7440 0.51

Restricted 0.6507 0.6153 0.7117 0.7460

Gould-Shih’s 0.6337 0.5973 0.6897 0.7250

0.5 1√
2

Unrestricted 0.7520 0.7190 0.8060 0.8400 0.99

Restricted 0.9937 0.9937 0.9937 0.9937

Gould-Shih’s 0.9937 0.9937 0.9937 0.9937

1 Unrestricted 0.7097 0.6800 0.7910 0.8240 0.89

Restricted 0.8867 0.8830 0.8927 0.8947

Gould-Shih’s 0.8823 0.8793 0.8830 0.8837
√

2 Unrestricted 0.7017 0.6767 0.7913 0.8240 0.61

Restricted 0.7423 0.7157 0.8007 0.8223

Gould-Shih’s 0.7240 0.6937 0.7747 0.8000
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Table 14: Simulation results for the means of the adjusted sample size when N1 = 40. True
parameters are used to generate the sample are set at � = 0.35, 0.443, and 0.5; and � = 1/

√
2, 1,

and
√

2. 3000 samples are generated from each parameter configuration.

Conventional Enhanced Enhanced Enhanced Fixed sample size

EM EM EM with EM with to achieve

block size 4 block size 2 80% power

� � SS Capping rule

0.35 1√
2

Unrestricted 62 56 70 74 130

Restricted 160 160 160 160

Gould-Shih’s 160 160 160 160

1 Unrestricted 118 106 136 144 258

Restricted 168 164 168 170

Gould-Shih’s 164 162 164 164
√

2 Unrestricted 222 200 264 286 514

Restricted 234 212 268 286

Gould-Shih’s 218 202 248 264

0.443 1√
2

Unrestricted 64 58 70 74 80

Restricted 160 160 160 160

Gould-Shih’s 160 160 160 160

1 Unrestricted 118 106 136 146 160

Restricted 166 164 168 170

Gould-Shih’s 164 162 164 166
√
2 Unrestricted 224 204 266 286 320

Restricted 238 216 270 288

Gould-Shih’s 222 206 250 264

0.5 1√
2

Unrestricted 66 60 72 76 64

Restricted 160 160 160 160

Gould-Shih’s 160 160 160 160

1 Unrestricted 118 106 138 146 126

Restricted 168 164 170 172

Gould-Shih’s 164 162 164 166
√

2 Unrestricted 226 204 264 284 252

Restricted 240 216 266 284

Gould-Shih’s 224 206 248 262
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size design (N = 160) under different scenarios of � and �’s. Similarly, Tables 12 and 14

show the mean adjusted sample sizes among 3000 simulations for each value of � and �.

When we compare the simulation results of this section with analytical calculations of

Section 4.2.1, we find the actual powers and the expected sample sizes from both methods

are very similar. This means our analytical method did a good job of approximating the

power. In the simulation study, we calculated the adjusted sample size based on �̂ for each

of the 3000 simulated samples, and we randomly generated additional Nadj−N1 observations

for each sample. Thus, even through there are two samples which have the same �̂ and we

added the same number of patients to each of the two samples, it is not necessary that the

actual power are the same for these two studies, i.e., both reject or accept the null hypothesis.

In effect, given �̂, the simulation study estimates the conditional power instead of using the

formula of the analytic study. In the analytical calculations, the distribution of �̂ is still

based on the 3000 estimators, but given the estimate of � from the interim, the conditional

power is analytically calculated. Also, we believe the sample mean and standard deviation

obtained from estimating � for 3000 times will not change too much from estimating � 10000

times. Therefore, the integration approach to power should always show similar results even

with large simulation studies to estimate the distribution of �̂. Since the simulated actual

power from 3000 samples are close to the analytical calculation of the actual power, we did

not think it necessary to use a larger number of samples than 3000 to conduct the simulation

study.

In the analytical calculation, we integrated the conditional power given �̂ while in the

simulation studies we simulated the probability of rejecting the alternative hypothesis under

each specific value of �̂. We note that for the case of using the enhanced EM algorithm

with small block sizes, we can provide very good approximations to the simulated power and

the estimated expected sample size. One might speculate that instead of using a normal

approximation to the distribution of �̂, we might obtain more precise results by integrating

over the kernel smoother (as shown in Figure 16).

4.2.2.4 Interpretation of the simulation results The chief purpose of the blinded

sample size re-estimation is to mitigate the effect of false assumptions about � on the power
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of a trial. As we can see from Table 11 and 13 that, for both interim points N1 = 40 and

N1 = 80, the enhanced EM procedures with appropriate small block sizes ensure that the

study has better power properties than using the conventional EM procedure.

When the true mean difference is correctly assumed (� = 0.443) is the situation that we

view as the most interesting. For both the interim points N1 = 40 and N1 = 80, when the

true standard deviation � = 1 and � =
√

2, the enhanced EM procedures with small blocks

sizes approach the planned power most closely among different EM procedures. Specifically,

even the variance is underestimated as half of the true value in the planning phase of the

study, the power can reach around 75% for both interim analysis sample sizes by using the

enhanced EM procedure with block size 2. When � = 1/
√

2, the advantage on power for

the enhanced EM procedure with small block size is still obvious in the unrestricted capping

rule. Specifically, even through when the variance is overestimated as twice the true value

in the planning phase of the study, after the sample size adjustment using the enhanced

EM procedure with block size 2, the power is adequate when N1 = 80 and is 74.3% when

N1 = 40. In the restricted and Gould and Shih[15]’s capping rules for � = 1/
√

2, all EM

procedures overpower the study because these two capping rules require the adjusted sample

size be bigger than the already abundant planned initial sample size.

We can also compare the expected sample sizes from different EM procedures as shown

in Tables 12 and 14. Our enhanced EM procedure with small block sizes did what it is

designed to do: it increases the sample size when the true standard deviation was greater

than anticipated, and decreases the sample size when the opposite was true (This is most

reflected in the restricted design). In Table 15, we use N1 = 80 and � = 0.443 as an example

(from Table 12) to compare the number of patients needed in the fixed design to achieve

the same power as in the adaptive design. The expected sample size needed for the EM

procedures is only slightly larger than that of the fixed design. For example, when � = 1

and using the unrestricted capping rule for the enhanced EM procedure with block size 2, the

mean adjusted sample size from 3000 simulations is 152. The corresponding actual power

is 0.7713. In the fixed design without sample size adaption at the interim, assuming the

true parameters � = 0.443 and � = 1 are used in the fixed sample size calculation, then 150

patients are needed to achieve the same power of 0.7712. The two more patients, difference
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Table 15: Adjusted versus fixed sample size for achieving the same power when N1 = 80. � = 0.443
and � = 1/

√
2, 1 and

√
2.

Conventional Enhanced Enhanced Enhanced

EM EM EM with EM with

block size 4 block size 2

� � SS Capping rule Adjusted Sample Size (Fixed)

0.443 1√
2

Unrestricted 84 (82) 82 (80) 86 (82) 86 (82)

Restricted 160 (162) 160 (162) 160 (162) 160 (162)

Gould-Shih’s 160 (162) 160 (162) 160 (162) 160 (162)

1 Unrestricted 132 (122) 120 (116) 146 (142) 152 (150)

Restricted 166 (160) 164 (158) 168 (164) 168 (164)

Gould-Shih’s 166 (160) 162 (158) 162(158) 162(158)
√

2 Unrestricted 248 (230) 228 (216) 284 (272) 298 (290)

Restricted 252 (236) 232 (220) 284 (272) 298 (290)

Gould-Shih’s 238 (226) 222 (210) 268 (260) 282 (276)

between 152 and 150, that the enhanced EM procedure needed are the cost of using our

enhanced adaptive design. Therefore, the adaptive design does not have too much of an

expected penalty cost in comparison to using the fixed design, and has the obvious benefits.

If we look at simulation results from Gould and Shih[15]’s conventional EM procedure, they

need 132 patients on average to achieve power at 0.6827. With correct assumptions on � and

�, 122 patients would be needed to achieve the same power in the fixed design. Therefore,

not only do we get better power than Gould and Shih[15]’s, when our assumptions are wrong

about �, the cost of our design appropriately compared to the fixed design is less than Gould

and Shih’s.

Figure 17 shows the histograms of the adjusted sample size for different EM procedures

when the treatment difference is correctly assumed, N1 = 80 and the initial standard devi-

ation is underestimated (� =
√

2) and using the restricted adjusted sample size rule. Both

adjusted sample sizes from the conventional EM and the enhanced EM procedures are skewed

to the right, and there is a high frequency of sample sizes adjusted at 160 due to the capping

rule. Therefore, without the restricted capping rule to force the adjusted sample size be at

least 160, the conventional and the enhanced EM procedure would be even worse, i.e., more
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underpowered, than the enhanced EM procedure with small block sizes. The distribution of

the adjusted sample size under the enhanced EM produce with block size 2 is close to the

true sample size 320 and very little skewed. This is because the adjusted sample size is a

function of �̂, and �̂ from enhanced EM with 2 block procedure fits tightly around the true

�. Similarly, Figure 18 shows the histograms of the adjusted sample size by different EM

procedures when N1 = 80 and the treatment difference and the initial standard deviation

are both assumed correctly and using the unrestricted sample size rule. For this scenario,

we get the similar conclusion that a proportion of the estimates from the conventional and

enhanced EM algorithm without block design make the study largely underpowered. The

enhanced EM procedure with small block size can obtain a good estimate of the standard

deviation which leads to a more accurate adjusted sample size. For other EM procedures, a

big proportion of the estimates are underestimates. Even with the aid of the capping rules,

the power of the study is still much lower than using the enhanced EM procedure with small

blocks.

In this subsection’s simulation study, we inspected the scenarios when there is a difference

�, i.e., there exists a meaningful difference between the experimental group and the control

group. On the other hand, when � = 0 (or there is a neglectable small difference between

treatments), the expected sample size, that is the cost of conducting the clinical trial when

null hypothesis is true, from Gould and Shih’s[15] procedure will be smaller than that of the

enhanced EM procedure with small block sizes. The reason for this is because the Gould

and Shih’s[15] EM algorithm tends to underestimate the standard deviation. Hence, their

procedure is less accurate for estimating � which leads the adjusted sample size to be smaller.

But our enhanced EM procedure still treats the treatment difference as the initially specified

value and tries to improve the estimate of � as close as possible to the true value, thereby

increases the sample size.

We also inspect the case when the treatment difference is misspecified in our simulation

study. The simulation results in Table 11-14 show that the quality of our enhanced EM

procedure does not change based on the misspecification of �. The enhanced EM procedure

with small block sizes still tends to give relatively better power than other EM procedures

especially for the case when � is over estimated in the planning phase of the trial. The
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enhanced EM procedure with block size 2 can attain the largest power among four EM

procedures even though all EM procedures lead to an underpowered study due to the over-

estimation of the treatment difference. Only when � is underestimated (such as � = 0.5) and

� is underestimated (such as � = 1/
√

2) in the planning phase, and the use of the restricted

or Gould and Shih’s[15]’s rule will inflate the actual power. This is because of the impact

from the capping rules which do not down adjust the overpowered initial sample size. In

this scenario, different EM procedures overpower to a comparable extent.

4.3 DISCUSSION

Due to the unknown distribution and the complicated form of the EM estimates of �, we

used simulation studies to investigate the properties of the actual type I error rate and the

power and compared them among different EM estimates. From the simulation studies, we

can conclude that after adjusting the sample size for the ongoing trial based on blinded

sample size re-estimation, we can still use the standard t-test and that the type I error rate

is preserved. Even if we used the enhanced EM algorithm with block size 2 where there

is more information about the randomization schedule, the type I error rate will still be

controlled at the nominal level. The type I error rates when using different EM procedures

and different sample size capping rules are all quite similar.

When using the enhanced EM procedures, we need to pay particular attention to a couple

of issues. One consideration is the information revealed on block size, i.e., the minimum unit

for the treatment balance. Pharmaceutical companies should have well defined operational

strategies to conduct these designs. To avoid revealing the randomized block sizes, the

implementation of the enhanced EM procedure could be pre-programmed taking the results

of the randomization code directly. Hence, the sample size adjustment procedure could be

implemented while the block size is not revealed. Our simulation in this chapter showed

this level of information about blocks does not comprise the type I error rate even with the

block size equal to 2. Furthermore, we recommend re-estimating sample size only once and

the implementation plan should be stated clearly in the protocol before the trial started. In
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Figure 17: Histogram of adjusted sample sizes among 3000 simulations of different EM

procedures in the restricted rule with � = 0.443 and � =
√

2 when N1 = 80.
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Figure 18: Histogram of adjusted sample sizes among 3000 simulations of different EM

procedures in the unrestricted rule with � = 0.443 and � = 1 when N1 = 80.

93



our simulation study, we consider both a quarter and a half of the planned sample size as

the interim point. The effect on the type I error rate is negligible but since the estimates

from the halfway interim point are more precise than using the one quarter interim point,

the former interim point produces a slightly improved power for the study.
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5.0 EXTENSIONS TO MULTI-CENTER TRIALS

5.1 BACKGROUND

One concern in the single-center trial is the supply of patients. A single-center trial sometimes

cannot recruit a sufficient number of patients within a required time period. In a multi-center

research trial, a study is conducted simultaneously at more than one medical center or clinic

following an agreed protocol. In other words, patients within each of the many centers are

randomly assigned to one of the two treatments and the recruitment is accelerated. Clearly

it is easier to recruit a large sample in a short-period of time for a multi-center trial than

for a single-center trial. Another benefit for a multi-center trial is that patients from a

variety of institutions can be studied so the study results can be generalized to a more broad

population.

Like the single-center trial, the assumptions made about the standard deviation in the

planning stage of the multi-center trial are usually uncertain, so that again there is doubt

about the planned power. We want to estimate the standard deviation at the interim taking

into account the sample size at the centers. Based on this estimate we want to adjust the

sample size accordingly, so that the study design will be more efficient to detect the treatment

differences. In this chapter, we will go through the details on re-estimating the sample size

in multi-center trials using the EM procedures we developed in earlier sections. We again

only consider blinded sample size re-estimation in multi-center trials.
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5.1.1 Statistical model

For simplicity, our notation is for randomized two-arm multi-center trials with 2 centers. We

discuss how to extend our technique to more centers in a later subsection. Here, we consider

treating the participating centers as a fixed effect in the linear model. The following is the

fixed effects model containing treatment group, center, and treatment-by-center interaction:

yijk = �j + ck + (�c)jk + "ijk, "ijk ∼ N(0, �)i.i.d, (5.1)

where yijk denotes the primary endpoint from the ith patient, receiving the jth treatment

in the kth center (j, k = 1, 2, and i = 1, ..., njk). We assume balanced randomization

between two treatment arms within each center, n1k = n2k. The treatment effects �j and

the center effects ck are both fixed. The measurement errors for the ith patient in treatment

j and center k, "ijk, are assumed to be independent, normally distributed with mean 0 and

common standard deviation �. Note that we have not included a ’ground mean’ effect in

our model.

5.1.2 Sample size re-estimation procedure

The power of the F-test for treatment effects involves the calculation of the non-central

parameter of the F distribution. With a specified type I error, power, number of centers,

and clinical assumptions of treatment means, the total sample size can be determined at

the planning phase of the trial[18]. In the fixed sample size design, there is an alternative

simple way to calculate the required total sample size for comparing two treatment groups.

By assuming an additive model and equal numbers of patients at each center and within a

center equal numbers of each treatment, we can use the large-sample approximation formula,

N = 4�2(z�/2 + z�)/Δ2 , (5.2)

where Δ = �2 − �1 is the treatment difference meant to detect and N is the total sample

size for the whole multi-center trial. We lose an extra 2 degrees of freedom when comparing

to the two sample t-test in the single-center trial. But when the total sample size is large
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relative to the number of centers, the effects of the loss of degrees of freedom is negligible.

When treatment-by-center interaction exists, this sample size formula does not hold since

the treatment sums of square divided by �2 and the error sums of square divided by �2 are

no longer independent �2 distributions. But it has been shown that the adverse effect on

the power of the clinical trials by incorrectly assuming treatment-by-center effect does not

exist is very small [32]. So in the planning phase of the trial, it is plausible to calculate the

initial sample size using (5.2) by assuming no interaction before the trial starts.

Suppose we use the normal approximation formula (5.2) to calculate the total sample

size when n1k = n2k,∀ k. The approximate initial sample size N is calculated based on the

the magnitude of the standard deviation assumed in advance as �̃. We recruit a proportion

of the initial sample size, e.g., N/2 for the internal pilot study, then estimate the standard

deviation, �̂, based on the data we have from the patients who have already finished the

trial. The treatment identities are kept blinded at the interim. The re-calculated sample

size N ′ is based on �̂ by using the sample size formula (5.2) again.

5.1.3 Analytical method

Like in single-center trial, we apply different sample size capping rules within each center

and recruit additional patients as Nadj suggested to complete the trial. At the end of the

study, we analyze the trial as for randomized block designs. To test the equality of the two

treatment effects, the statistical hypotheses are:

H0 : �1 = �2 = 0 versus H1 : �1 ∕= �2 . (5.3)

The test statistic to be used is:

F =
SST/1

SSE/(Nadj − q − 1)
, (5.4)

where SST and SSE are the sums of squares associated with the treatment effect and the

residual error, respectively, and q is the appropriate degrees of freedom for either an additive

model or one with interaction. When H0 holds, F in (5.4) is assumed to be distributed as

F [1− �; 1, (Nadj − q − 1)], where we again ignore the adaption.
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5.2 BLINDED SAMPLE SIZE RE-ESTIMATION PROCEDURES IN

MULTI-CENTER TRIALS

5.2.1 Blinded variance estimation methods in two center designs when treatment-

by-center interaction does not exist

We assume there is no interaction at the interim, so an additive linear model is used when

re-estimating �. We start with the situation when information of block sizes is not consid-

ered in the sample size re-estimation procedures. In Gould-Shih[15]’s paper introducing the

conventional EM procedure, they did not extend their work to multi-center trials. We show

here how to implement both conventional and enhanced EM algorithm in estimating � in a

two center clinical trial.

Suppose at the end of the first stage study, there are total N1 patients at the interim.

For simplicity, we assume there are N1/2 patients randomized to each center. Since the

treatment identity j is blinded when we estimate the standard deviation at the interim, we

use the notation yi.k to denote a primary endpoint from patient i in center k. That is, in

center 1, primary endpoints are y1.1, y2.1, ..., yN1
2
.1

; and in center 2, primary endpoints are

y1.2, y2.2, ..., yN1
2
.2

. If center 1 and center 2 have different sample sizes, this simple notation

still applies. Let zi.k denote the treatment identities for ith patient in treatment j and

center k. In center 1, when a patient is randomized to the control group, then zi.1 = 1 and

yi.1 ∼ N(�1 + c1, �); when a patient is randomized to the experimental group, then zi.1 = 0

and yi.1 ∼ N(�2 + c1, �), where i = 1, ..., N1/2. Similarly in center 2, when a patient is

randomized to the control group, then zi.2 = 1 and yi.2 ∼ N(�1 + c2, �); when a patient is

randomized to the experimental group, then zi.2 = 0 and yi.2 ∼ N(�2 + c2, �).

For the conventional EM algorithm, it is assumed the probability of each patients being

assigned to each treatment group is 0.5 within both centers, i.e., P (zi.k = 1) = P (zi.k = 0) =
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0.5 for k = 1, 2. Here the complete data likelihood function is given by

L(�;y..., z..1, z..2) =

N1
2∏
i=1

{
f(yi.1∣zi.1, �1 + c1, �2 + c1, �)× p(zi.1∣�1 + c1, �2 + c1, �)

}
⋅

N1
2∏
i=1

{
f(yi.2∣zi.2, �1 + c2, �2 + c2, �)× p(zi.2∣�1 + c2, �2 + c2, �)

}
=

N1
2∏
i=1

{
f(yi.1∣�1 + c1, �)zi.1 ⋅ f(yi.1∣�2 + c1, �)1−zi.1 ⋅ 1

2

zi.1

(1− 1

2
)1−zi.1

⋅ f(yi.2∣�1 + c2, �)zi.2 ⋅ f(yi.2∣�2 + c2, �)1−zi.2 ⋅ 1

2

zi.2

(1− 1

2
)1−zi.2

}
.

(5.5)

To make the model identifiable, we assume without loss of generality that c1 = 0. Then (5.5)

is proportional to

∝
N
2∏
i=1

[(
1

�

)zi.1
exp

{
− (yi.1 − �1)2

2�2
zi.1

}
⋅
(

1

�

)zi.1
exp

{
− (yi.1 − �2)2

2�2
(1− zi.1)

}
⋅
(

1

�

)zi.2
exp

{
− (yi.2 − �1 − c2)2

2�2
zi.2

}
⋅
(

1

�

)zi.2
exp

{
− (yi.2 − �2 − c2)2

2�2
(1− zi.2)

}]
.

(5.6)

The complete data log likelihood function can then be written as

ℓ(�∣y..., z...) = −N
2

log � − 1

2�2

N
2∑
i=1

zi.1(yi.1 − �1)2 − 1

2�2

N
2∑
i=1

(1− zi.1)(yi.1 − �2)2

− N

2
log � − 1

2�2

N
2∑
i=1

zi.2(yi.2 − �1 − c2)2 − 1

2�2

N
2∑
i=1

(1− zi.2)(yi.2 − �2 − c2)2 .

(5.7)

The E-step computes the conditional expectation of the complete-data log-likelihood

given the observed data, and the current parameter estimates, � = (�1, �2, c2, �), that is,

Q(�∣�(t)) = E

[
ℓ(�∣y..., z...)∣y...,�(t)

]

= −N log � − 1

2�2

N
2∑
i=1

[
(yi.1 − �1)2E(zi.1∣y..1,�

(t)
1 ) + (yi.1 − �2)2

{
1− E(zi.1∣y..1,�

(t)
1 )
}

+ (yi.2 − �1 − c2)2E(zi.2∣y..2,�
(t)
2 ) + (yi.2 − �2 − c2)2

{
1− E(zi.2∣y..2,�

(t)
2 )
}]
.

(5.8)
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Because the conditional expectation of the complete data log likelihood is linear in zij,

the E-step in (5.8) is reduced to computing the conditional expectations of the missing

treatment identity zi.k, i.e., E(zi.k∣y..k, �(t)). Specifically, the conditional expectation of zi.k

can be written as:

E(zi.1∣y..1, �(t)
1 ) = P (zi.1 = 1∣y..1, �(t)

1 ) =
f(yi.1∣� (t)

1 , �(t))

f(yi.1∣� (t)
1 , �(t)) + f(yi.1∣� (t)

2 , �(t))

E(zi.2∣y..2, �(t)
2 ) = P (zi.2 = 1∣y..2, �(t)

2 ) =
f(yi.2∣� (t)

1 + c
(t)
2 , �(t))

f(yi.2∣� (t)
1 + c

(t)
2 , �(t)) + f(yi.2∣� (t)

2 + c
(t)
2 , �(t))

.

(5.9)

The M-step maximizes the conditional expectation of the complete-data log-likelihood

computed in the E-step. Thus, we update the parameters with

�
(t)
1 =

N1

2

∑N1/2
i=1 E(zi.1)yi.1 + N1

2

∑N1/2
i=1 E(zi.2)yi.2 −

∑N1/2
i=1 E(zi.2)

∑N1/2
i=1 yi.2 +

∑N1/2
i=1 E(zi.2)

∑N1/2
i=1 yi.1

N1

2

∑N1/2
i=1 E(zi.1) + N1

2

∑N1/2
i=1 E(zi.2)−

{∑N1/2
i=1 E(zi.2)

}2
+
∑N1/2

i=1 E(zi.1)
∑N1/2

i=1 E(zi.2)

�
(t)
2 =

∑N1/2
i=1 yi.1 − �1

∑N1/2
i=1 E(zi.1∣y..1,�

(t)
1 )∑N1/2

i=1

{
1− E(zi.1∣y..1,�

(t)
1 )
}

c
(t)
2 =

∑N1/2
i=1 yi.2 − �1

∑N1/2
i=1 E(zi.2∣y..2,�

(t)
2 )− �2

∑N/2
i=1

{
1− E(zi.2∣y..2,�

(t)
2 )
}

N1/2

�2(t+1) =
1

N1

N1/2∑
i=1

[
E(zi.1∣y..1,�

(t)
1 )(yi.1 − � (t)1 )2 +

{
1− E(zi.1∣y..1,�

(t)
1 )
}

(yi.1 − � (t)2 )2

+ E(zi.2∣y..2,�
(t)
2 )(yi.2 − � (t)1 − c

(t)
2 )2 +

{
1− E(zi.2∣y..2,�

(t)
2 )
}

(yi.2 − � (t)2 − c
(t)
2 )2

]
.

(5.10)

For the enhanced EM algorithm, we also treat the unobserved treatment identities as

missing data. However, we assume that we conduct interim analysis at a balance point of

numbers of patients between the two treatment groups. We utilize the additional observed

information at the interim that equal numbers of patients, N1/4, are randomized to either

experimental or control treatment group within each center. Our complete data now include

100



the fact that
∑N1/2

i=1 zi.1 = N1/4 and
∑N1/2

i=1 zi.2 = N1/4, in addition to the primary endpoints

y1.1, ..., yN1
2
.1
, y1.2, ..., yN1

2
.2

. The complete data likelihood function becomes

L(�;y..., z..1, z..2,

N1/2∑
i=1

zi.1,

N1/2∑
i=1

zi.2) =

N
2∏
i=1

{
f(yi.1∣�1 + c1, �)zi.1 ⋅ f(yi.1∣�2 + c1, �)1−zi.1

⋅ f(yi.2∣�1 + c2, �)zi.2 ⋅ f(yi.2∣�2 + c2, �)1−zi.2 ⋅ 1(
N1/2
N1/4

) ⋅ 1(
N1/2
N1/4

)} .
(5.11)

We also set the restriction that c1 = 0 in the enhanced EM algorithm. The M-step stays

the same as (5.10), but the E-step is computed differently since we condition the treatment

identity zi.k on more observed information. The E-step is computed by using the conditional

Bernoulli distribution.

in center 1 : E(zi.1∣y..1,
N1/2∑
i=1

zi.1,�1
(t)) =

wi.1R(N1

4
− 1, S ∖ {i})

R(N1/4, S)
,

and,

in center 2 : E(zi.2∣y..2,
N1/2∑
i=1

zi.2,�2
(t)) =

wi.2R(N1

4
− 1, S ∖ {i})

R(N1/4, S)
,

(5.12)

where wi.1 = f(yi.1∣�1, �)/f(yi.1∣�2, �), wi.2 = f(yi.2∣�1 + c2, �)/f(yi.2∣�2 + c2, �) and S =

{1, 2, ..., N1/2} for i = 1, ..., N1/2. To guarantee the numerical stability of the R function,

we use the R∗ introduced in Section 2.4.2 in the computation.

We also note that the condition
∑N1/2

i=1 zi.1 =
∑N1/2

i=1 zi.2 = N1/4 holds true in the

enhanced EM algorithm. So taking the treatment identities in center 1 as an example,

z1.1, z2.1, ..., zN1
2
.1

given
∑N1/2

i=1 zi.1 follows conditional Bernoulli distribution. And we have:

N1/2∑
i=1

E(zi.1∣
N1/2∑
i=1

zi.1) = E(z1.1∣
N1/2∑
i=1

zi.1) + ...+ E(zN1
2
.1
∣
N1/2∑
i=1

zi.1)

= E(z1.1 + ...+ zN1
2
.1
∣
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i=1

zi.1) =
N1

4
.

(5.13)
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Therefore, the enhanced EM estimates in the M-step can be simplified as:
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Observe that c
(t)
2 remain the same for iteration to iteration, i.e., ĉ2 = 2/N1 ⋅ (

∑N1/2
i=1 yi.2−∑N1/2

i=1 yi.1). If we have more block information at the interim, we can conduct the enhanced

EM algorithm with block design as well as in the single center trial. We assume for simplest

case that the block size is N1/4 within each center, i.e., in both center 1 and 2, the numbers

of patients are balanced in the first block and also balanced in the second block. Therefore,

our observed information includes the summation of treatment identities for both the first

and second N1/4 observations in each center. The M-step keeps the same as in the enhanced

EM algorithm. We use center 1 as an example to illustrate the changes in the E-step. We

have

E

(
zi.1∣y..1,

N1/4∑
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zi.1 =
N1

8
,
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N1

8

)
, (5.15)

when i = 1, ..., N1/4; and

E

(
zi.1∣y..1,

N1/4∑
i=1

zi.1 =
N1

8
,

N1/2∑
i=(N1/4)+1
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8
,�

(t)
1

)
= E

(
zi.1∣y..1,

N1/2∑
i=(N1/4)+1

zi.1 =
N1

8

)
,

(5.16)

when i = N1/4 + 1, ..., N1/2.
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5.2.2 When assuming treatment-by-center interaction exists

When a clinical trial is conducted at more than one center, it is possible there exists a

difference in treatment effects among different centers. If we assume the treatment-by-center

interaction exists in the complete block randomization model, this interaction ideally would

need to be considered when re-estimating � at the interim.

Because we are working with blinded data, all that we can estimate at each center is the

absolute values of the difference in treatment means. Therefore, it is impossible to separate

a quantitative interaction from a qualitative interaction without further strong assumptions.

In the case of a single center, the identifiability of the absolute values of the difference does

not impact the estimate of �2. However, this is not true for center-by-treatment introduction.

In Appendix C, we provide an algorithm which under certain assumptions does estimate

the parameters assuming a treatment-by-interaction, but further research is required to

examine the effects of starting values on the EM algorithm. Our initial simulations suggest

that, for example, if we suspect a quantitative interaction and choose starting values to

reflect this, the estimation will be appropriate.

5.2.3 Enhanced EM procedure trials with more than two center: treatment-

by-center interaction does not exist

When there are just two centers, we noted when assuming no interaction in the randomized

block design model that the enhanced EM estimator of the center effect ĉ2 given in (5.14) is a

constant over iterations. Thus we can always estimate the center effect from the interim data

without using the algorithm. This leads to our being able to estimate the other parameters

using a simpler way. We illustrate this for a moment when there are just two centers.

Specifically, we subtract ĉ2 from all the observations in center 2, then pool these observations

with the observations in center 1. Then the observed data can be treated as arising from one

center. Hence, it is now clear that we can use the same enhanced EM algorithm to estimate

the common standard deviation as we used for a single trial study. The only difference is

that we need to use the enhanced EM algorithm with block size N1/2 since each center is

considered as a block and patients are balanced within each center.
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We show in detail the calculation steps have no difference between the two-center esti-

mates and the single-center ”shortcut” estimates. Suppose the observations in center 1 are

y1.1, ..., yN1
2
.1

and the observations in center 2 are y1.2, ..., yN1
2
.2

. We take out the estimate

of the center effect ĉ2, which is a constant, from the observations in center 2. That is, the

observations now in center 2 are y′i.2 = (y(1.2 − ĉ2, ..., yN1
2
.2
− ĉ2). Since center effect is taken

out from center 2, we treat all the observations coming from one single center, and the first

and second half of subjects are both balanced blocks of size N1/2. We can use the enhanced

EM algorithm with block size N1/2 as introduced in Section 2.4.3.

Taking the estimation of � as an example, at iteration t, we get the estimate of � for the

next iteration as
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1
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In the second block, where the observations are from center 2, the conditional expectation

of the missing identity, E(zi.2∣y′...,�(t),
∑N1/2

i=1 zi.2), is a function of w′i.2’s, and

w
′(t)
i.2 =

p
′(t)
i.2

1− p
′(t)
i.2

=
f(y′i.2∣�

(t)
1 , �(t))

f(y′i.2∣�
(t)
2 , �(t))

. (5.18)

We compare (5.17) with the enhanced EM estimates of � in two-center trial as shown in

(5.14), i.e.,
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(5.19)

In center 2, the conditional expectation is also a function of wi.2’s, and it is denoted as:

wi.2 =
pi.2

1− pi.2
=
f(yi.2∣� (t)

1 + c
(t)
2 , �(t))

f(yi.2∣� (t)
2 + c

(t)
2 , �(t))

, (5.20)
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which is equivalent to (5.18) since c
(t)
2 is a constant through iterations. Let c

(t)
2 = ĉ2, and

y′i.2 = yi.2 − ĉ2. Hence, wi.2 and w′i.2 are equivalent. Therefore, in (5.19) the estimate of � in

tth iteration in the same as in (5.17). We can use similar steps show that the estimation of �1

and �2 remain the same too. In this two center study, the estimates of treatment means and

the standard deviation by assuming no interaction is equivalent to the estimates from using

the single center enhanced EM estimation with block size N1/2 for adjusted observations.

If we want to use the full block size information in the two-center trial, i.e., more balance

points within each center, we can adjust the block size of the single center’s enhanced EM

algorithm correspondingly.

Since we can simplify the estimation of � in the enhanced EM algorithm, we can easily

extend our estimation results if we have multiple centers (center size > 2). For example,

when there are three centers involved in the study, we can estimate the center effects in

center 2 and 3 as ĉ2 = 2/N1(
∑N1/2

i=1 yi.2 −
∑N1/2

i=1 yi.1) and ĉ3 = 2/N1(
∑N1/2

i=1 yi.3 −
∑N1/2

i=1 yi.1)

separately. Then, obtain the new observations in center 2 as y′i.2 = (yi.2 − ĉ2 and in center 3

as y′i.2 = yi.3 − ĉ3). We can still use the enhanced EM procedure for the single center study

to solve the estimates. The only difference is this time we will use enhanced EM algorithm

with three blocks.

5.3 SIMULATION STUDIES FOR A TWO CENTER TRIAL ASSUMING

NO CENTER-TREATMENT INTERACTION

We conducted a very limited simulation study to investigate the estimates from our EM

procedures in multi-center trials. In the simulation study, we compared two treatment

groups in a two-center trial. For simplicity, we only consider the situation that the center

sizes are equal in the two centers. Suppose we planned to test 160 patients before the trial

starts and conduct the interim analysis when there are 40 patients in each center that have

already completed the study.

In Table 16, we demonstrate the comparison between different EM estimators for two

chosen center effects, c2 = 0.1 and c2 = 0.5. We are interested to know if smaller or bigger
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center effects will have an impact on the re-estimation of the standard deviation. Meantime,

the true treatment differences in the two centers are both set to 0.5 since we want to assume

no center-treatment interaction. In center 1, 1000 samples with each having sample size 40

are generated from N(0, 1) and N(0.5, 1); in center 2 another 1000 samples with each having

sample size 40 are generated from N(c2, 1) and N(0.5 + c2, 1). Thus there are totally 1000

datasets consisting of observations from both centers.

We observe from the simulation results in Table 16 that the estimators from the enhanced

EM algorithm have a larger bias and smaller variance than the estimates from the conven-

tional EM algorithm. However, the enhanced EM estimators with block sizes are greatly

improved with a much smaller bias when the block size is small (block size is 4 in our sim-

ulation). These are similar conclusions as in the single center trial case. Hence, everything

we learned in earlier chapters from single trials can apply to multi-center trial as well.

As we can see from Table 16, the EM estimates do not seem to vary much depending

on whether or not the center effect is equal to 0.1 or 0.5. Therefore, we believe that the

properties of our estimates from EM procedures do not depend on the value of center effects.

We do note that the results for the enhanced EM estimates of Table 16 do not coincide

exactly with those from Table 6 when block size is 40. The reason for this is because we need

to estimate the center effect c2. The shortcut single-center enhanced EM procedure described

in Section 5.2.3 uses observations in center 1 as one block and observations in center 2 after

subtracting the estimate of c2 as the other block. The estimate of c2 is estimated as the

the sample mean difference of the observations between two centers, so that it varies from

sample to sample. Hence, after subtracting the estimate of c2 from observations in center 2,

the observations in center 2 are not exactly distributed as a mixture normal of N(�1, �) and

N(�2, �). So the estimation results are different from when we use enhanced EM procedure

in single center trial with data generated from N(�1, �) and N(�2, �). To be clear, if there

is no center effects in the data, i.e., c2 = 0, and we set c2 = 0 at every iteration of the

multi-center enhanced EM algorithm, the estimation results from the two-center trial would

be identical to those from the enhanced EM algorithm in the single-center trial with two

blocks.
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Table 16: Comparisons of EM estimates when N1 = 80 in a two-center trial. True parameters
used to generate samples are set as � = 1, �1 = 0, � = 0.5, and c2 = 0.1 and 0.5. 1000 sample are
generated from each parameters configuration.

Enhanced EM estimates Conventional EM estimates

c2 �1 �2 c2 � �1 �2 c2 �

0.1 Bias -0.3158 0.3168 -0.0073 -0.1804 -0.1445 0.1643 -0.0239 -0.1279

Variance 0.0500 0.0499 0.0504 0.0154 0.1108 0.1379 0.0577 0.0249

MSE 0.1497 0.1502 0.0504 0.0479 0.1316 0.1648 0.0583 0.0413

Enhanced EM with block size 4

Bias -0.0839 0.0850 -0.0073 -0.0770

Variance 0.0827 0.0806 0.0504 0.0124

MSE 0.0896 0.0877 0.0504 0.0183

0.5 Bias -0.3391 0.3249 0.0019 -0.1876 -0.1804 0.1883 -0.0182 -0.1384

Variance 0.0507 0.0478 0.0497 0.0147 0.1149 0.1370 0.0601 0.0246

MSE 0.1656 0.1533 0.0496 0.0499 0.1474 0.1723 0.0604 0.0437

Enhanced EM with block size 4

Bias -0.0881 0.0740 0.0019 -0.0760

Variance 0.0847 0.0868 0.0497 0.0137

MSE 0.0924 0.0922 0.0496 0.0195
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6.0 CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

In this dissertation, our research concentrates on sample size re-estimation without breaking

the blind in adaptive clinical trials. With normally distributed primary endpoints, we adjust

the sample size for the ongoing trial based on the re-estimation of the standard deviation.

Gould and Shih[15] used the information that the probability of each subject assigned to

treatment or control group is 0.5, so that based on a mixture distribution for the N1 subjects,

the EM algorithm can be used to obtain the MLE of the standard deviation. With this

assumption, Gould and Shih[15] obviously treated the treatment identities as independent

Bernoulli random variables, so there is no assumption that the numbers of subjects within

each treatment group are equal at the interim stage. In practice, however, clinicians often

use block randomization designs in clinical trial and as a result the numbers of subjects

within each treatment group are equal at certain interim points in the study. We use this

additional information to obtain more accurate MLE’s of the standard deviation. This use of

additional information requires us to change the EM algorithm used by Gould and Shih[15].

For similar adaptive designs, the typical approach at study end is to use the standard

t-statistic to compare the two treatments ignoring the sample size re-estimation. Hence, this

ignores the fact that the final t-statistic does not truly follow the t-distribution under the

null hypothesis. However, we are able to show that with our new adaptive design which

makes use of the block-randomization details, there is no inflation in the type I error using

the usual t approach.

In Chapter 2.0, we give details of Gould and Shih[15]’s EM algorithm. Then we propose

how to modify this EM algorithm when the information of equal numbers of subjects at
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the interim is available. Since this means we also observe the summation of the missing

treatment identities at the interim, the joint density function of missing treatment identities

are not independent, and this joint density follows a conditional Bernoulli distribution. We

obtain the conditional marginal density function of the treatment identities in the E-step of

the EM algorithm. One of the challenges of the computation in this enhanced EM algorithm

is the numerical instability in the mixture distributions setting. We develop a new recursive

function in order to solve this problem. From a clinical trials perspective, the enhanced

EM algorithm with block design is a practical application since small blocks are frequently

used. Therefore, we further modify the E-step in our enhanced EM algorithm when we have

the information of block sizes and show how this additional block information enters the

enhanced EM algorithm.

In Chapter 3.0, a simple example is presented to illustrate the properties of the two

EM algorithms. Then we refine Waksman[35]’s result and show that for certain settings the

conventional EM estimates depend on the starting values for the conventional EM algorithm.

On the other hand our enhanced EM algorithm shows little impact due to the starting

values chosen and also shows a nice property of converging to interior estimates. We also

investigate, using simulation, the reason why the conventional EM estimates depend on the

starting values, and why this is not the case for the enhanced EM estimates. Through more

general simulation studies with different parameter combinations, we compare the estimates

of the two EM algorithms. We also simulate and compare the enhanced EM estimates

when using different block sizes. As the block size decreases, the accuracy of enhanced

EM estimation improves, while the conventional EM algorithm cannot utilize the block

information. Especially when the block size is small, which is the common case in clinical

trials, the bias and variance of the enhanced EM estimator is much smaller than that of the

conventional EM estimator.

In Chapter 4.0, we first evaluate the actual type I error rate when using the standard

t-test at the end of the trial through a simulation study. Different scenarios are considered

including data generated from various values of the true standard deviation and different

sample size capping rules. The simulation results show that the type I error rates from

the different EM procedures are all controlled at the nominal level. Then, we analytically
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compute and simulate the actual power and the expected sample size. The analytical results

for power and expected sample size are quite similar to the simulation results and both show

that the enhanced EM procedure with block design has a nice power property and adjusts

the final sample size to a more appropriate size with a smaller penalty cost.

In Chapter 5.0, we extend the EM procedures to the setting of multi-center trials. In

addition to the treatment effect, we also consider the study center as a blocking effect in

the sample size re-estimation procedure. We develop the detailed steps for estimating the

standard deviation at the interim when assuming for the primary endpoints the treatment-

by-center interaction does not exist. We also perform a simulation study and show similar

comparative performances of the various EM estimators to the single-center trial case.

6.2 FUTURE WORK

6.2.1 Kieser and Friede’s simple procedure for blinded sample size re-estimation

As we mentioned in Chapter 1.0, Kieser and Friede[17] proposed using simple blinded vari-

ance estimators for normally distributed data’s sample size recalculation. They presented

two methods, one using an adjusted and the other using an unadjusted one sample variance

based on the pooled interim data and ignoring the fact that observations at the interim are

from two treatment groups.

The unadjusted one sample variance S2
unadj is defined as follows:

S2
unadj =

1

N1 − 1

N1∑
i=1

(yi − ȳ)2 , (6.1)

where ȳ is the grand mean of the interim data. We know S2
unadj is a biased estimator of �2

when �1 ∕= �2. Decomposition of the sum of squares in (6.1) becomes:

N1∑
i=1

(yi − ȳ)2 = N1(ȳ1 − ȳ2)2/4 +
∑

i∈group1

(yi − ȳ1)2 +
∑

i∈group2

(yi − ȳ2)2

= N1�̂/4 + (N1 − 2)s2

(6.2)
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where �̂ is the unobserved interim treatment effect estimate and s2 is the unobserved two

sample variance. Based on the blinded data, the one sample variance estimator can be

adjusted by the bias under the alternative hypothesis that the assumed treatment difference

is Δ:

S2
adj =

(N1 − 1)S2
unadj −N1Δ2/4

N1 − 2
. (6.3)

Kieser and Friede[17] applied both the restricted and unrestricted sample size rules to cal-

culate the final sample size.

Waksman[35] compared Gould and Shih[15]’s EM estimator of the standard deviation

with the unadjusted one-sample pooled standard deviation on the same simulated data for

different configurations. He showed through the comparisons that the unadjusted one-sample

estimator generally has a smaller mean square error than the conventional EM estimator

when the true treatment difference is less than 0.5 but a larger mean square error when the

true treatment difference is bigger than 1. In the future research, we plan to compare our

enhanced EM estimator when utilizing full block information with Kieser and Friede[17]’s

simple estimator.

Kieser and Friede[17] also showed through numerical integration that the nominal type

I error rate of the t-test is controlled for multiple parameter combinations they selected

and the desired power is ensured by using the simple procedure. Since we showed that our

enhanced EM procedure for sample size adjustment also preserve the type I error and obtain

the desired power, it will be meaningful to compare the actual power and expected sample

size between our procedures and Kieser and Friede[17]’s procedure.

6.2.2 Dealing with dropouts

It is common in clinical trials that missing data occurs when subjects do not complete the

study and drop out of the trial without the primary endpoints being measured. When using

the enhanced EM algorithm to estimate the standard deviation, we assume, at the interim,

there are equal numbers of subjects in each of the two treatment groups. However, we

recognize that in reality dropouts could happen. Intention-to-treat analysis is typically used

to cover the issue of missing data and many imputation methods have been suggested to
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forecast what the missing measurement might have been. But we would still be interested

in the effects of dropouts on the enhanced EM algorithm, if no ITT data is available from

the dropouts.

We assume that dropout rates are not treatment related. For the conventional EM algo-

rithm, the probability of a subject assigned to each treatment is still 0.5 even if some subjects

drop out of the trial. Because in the conventional EM algorithm, each observation is inde-

pendently Bernoulli distributed with probability 0.5, even if dropouts occur, the distribution

of the mixture likelihood does not change. When using the enhanced EM algorithm, our

assumption is based on the exact numbers of subjects in each treatment. Knowing the total

number of dropouts at the interim, we could deal with this by modifying the assumptions

of the enhanced EM algorithm and consider all possible scenarios of the distribution of the

number of dropouts between the two treatment groups.

If the number of subjects at the interim is less than the planned number, since the

blind is maintained, we cannot figure out how many missing observations there are for each

treatment group. The enhanced EM algorithm requires knowing how many subjects there

are in each treatment group at the interim. One approach to handle dropouts at the interim

is to compute the enhanced EM estimates assuming the true numbers of subjects remaining

are equal. This will help us investigate the robustness of the enhanced EM procedure to the

mistakes.

For example, suppose we plan to do the interim analysis after 80 subjects’ observations

are available and there are 2 subjects who drop out of the trial at the interim. Further,

suppose these two subjects are actually both from the first treatment group. When we look

at the blinded interim data, we do not know exactly the number of missing data in each

treatment group besides knowing there are totally 78 observations. In practice, we suggest

using the enhanced EM algorithm to estimate the common standard deviation by assuming

balanced dropouts, that is, there are 39 subjects who finish the trial for both treatment

groups.

In the future, in a simulation study, we plan to generate 3000 datasets for each parameter

combination with � is equal to 0.1, 0.2, 0.5, 0.75, 1 and 2. For each dataset, 38 observa-

tions are generated from N(0, 1) and 40 observations are generated from N(�, 1). We plan
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to compare the enhanced EM estimates of � by both assuming the sums of the treatment

indicators in two treatments are 38 versus 40 (the correct assumption), and 39 versus 39

(the approximating assumption). If there is a noticeable difference between correctly and

incorrectly assuming the dropout distribution, we plan to compare the enhanced EM esti-

mates while assuming 39 subjects within each treatment group with the conventional EM

estimates while assuming each subject having 0.5 probability in each treatment group when

the sample size is 78.

If the simulation results generally show the lack of robustness by using the enhanced EM

algorithm to estimate the common standard deviation, we may further explore the dropout

problem by using the weighted average of the enhanced EM estimates. For the above exam-

ple, there are three possibilities when there are 2 missing data in 80 observations: 2 dropouts

in the first treatment group with probability 0.25; 2 dropouts in the second treatment group

with probability 0.25; and 1 dropout from each treatment group with probability 0.5. We

can obtain the enhanced EM estimates by assuming the different scenarios and then take

the probability weighted average of the EM estimators.

Although it is beyond the scope of this dissertation, there is perhaps an even more

mathematically elegant approach to handling dropouts that unfortunately is algorithmically

complex. The idea is to treat the dropout problem as an exact estimation problem involving

mixture distributions. We use L38,40(�∣y) to denote the likelihood function for the interim

data assuming there are 38 observations in the first treatment group and 40 observations

in the second treatment group; L40,38(�∣y) as the likelihood function assuming there are 40

observations in the first treatment group and 38 observations in the second treatment group;

and L39,39(�∣y) assuming that there are 39 observations in both treatment group. Each

likelihood function above is based on the mixture model in which we know the sum of the

treatment identities, i.e, the likelihood function assumed for the enhanced EM algorithm.

Overall, the likelihood function for the interim data with dropouts can be explained as a

mixture of likelihood functions as follows,

L(�∣y) = 0.25× L38,40(�∣y) + 0.25× L40,38(�∣y) + 0.5× L39,39(�∣y) . (6.4)
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In theory, one can possibly use the standard EM algorithm in concert with the enhanced

EM algorithm to obtain estimators for this mixture distribution.

Therefore, when there are dropouts at the interim in clinical trials, we can consider

the strategy ’Intention to treat’, where we assume the patients are analyzed according to

the groups as they were originally randomly assigned. So that there are no missing data.

Alternatively, we propose how the enhanced EM algorithm can possibly handle the missing

data in this subsection. One assumption we can make for the interim data is the equal

allocation of subjects. Or we can assume all possible scenarios of missingness and weight

each enhanced EM estimate by its probability. Further simulation studies are needed to

verify the robustness of our suggested methods.

6.3 SUMMARY

From a regulatory point of view, blinded re-estimation is preferred for adaptive clinical trials.

The current Gould-Shih[15]’s EM procedure does not take into account the commonly used

block randomization schemes. In our research, we enhanced the EM procedure through

using the available additional information about the randomization block sizes and show

this improves the estimates of the standard deviation significantly and leads to a more

appropriate power for the study without inflating the type I error rate. Furthermore, our

enhanced EM procedure can be applied in multi-center trials with the same properties for

estimates. Our enhanced EM procedure is highly attractive due to its pragmatism in making

sample size adjustment for on-going clinical trials.
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APPENDIX A

INVESTIGATION ON LABEL SWITCHING IN THE EM ALGORITHM

A.1 LABEL SWITCHING OF THE CONVENTIONAL EM ALGORITHM

Suppose we fit a mixture of two normal components with a mixing proportion equal to 0.5 and

a common standard deviation �. When the mixing proportion is 0.5, the mixture distribution

is symmetric in the components and the likelihood is invariant under the permutation of the

component labels. Thus it is hard to identify the estimates of two component means when the

labels switch during iterations of the EM algorithm. In this appendix we examine whether the

means of two components can be pushed apart[21] by imposing the identifiability constraint

on the model parameters[34]; i.e. �1 < �2. We show that �
(t)
1 < �

(t)
2 at any iteration t in

computation of EM estimates with the condition that the starting values satisfies �
(0)
1 < �

(0)
2 .

Without loss of generality, we assume � is set to 1. The conditional expectation in (2.9)

given the initial values �
(0)
1 and �

(0)
2 becomes

E(zi∣y, �(0)
1 , �

(0)
2 ) =

1

1 + exp
{

1
2
(�

(0)
1 )2 − 1

2
(�

(0)
2 )2 + yi(�

(0)
2 − �

(0)
1 )
} . (A.1)

For notation convenience, in the following proof we denote

c(yi) = exp

{
1

2
(�

(0)
1 )2 − 1

2
(�

(0)
2 )2 + yi(�

(0)
2 − �

(0)
1 )

}
,

where yi is the ith subject at the interim for i = 1, ..., N1. Since it is known that �
(0)
1 < �

(0)
2 ,

c(yi) is a monotonically increasing function of yi.
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At the first iteration of EM algorithm, we update �
(1)
1 by substituting c(yi) for the

conditional expectation in (A.1), as shown in (2.20)

�
(1)
1 =

y1E(z1∣y, �(0)
1 , �

(0)
2 ) + y2E(z2∣y, �(0)

1 , �
(0)
2 ) + ⋅ ⋅ ⋅+ yN1E(zN1∣y, �

(0)
1 , �

(0)
2 )

E(z1∣y, �(0)
1 , �

(0)
2 ) + E(z2∣y, �(0)

1 , �
(0)
2 ) + ⋅ ⋅ ⋅+ E(zN1∣y, �

(0)
1 , �

(0)
2 )

=
y1

1
1+c(y1)

+ y2
1

1+c(y2)
+ ⋅ ⋅ ⋅+ yN1

1
1+c(yN1

)

1
1+c(y1)

+ 1
1+c(y2)

+ ⋅ ⋅ ⋅+ 1
1+c(yN1

)

.

(A.2)

We then compare it with the sample mean of observations at the interim stage ȳ,

�
(1)
1 −

y1 + y2 + ⋅ ⋅ ⋅+ yN1

N1

.

The denominator of the difference is bigger than 0 and the numerator of �
(1)
1 − ȳ is as follows

N1

{
y1

1 + c(y1)
+ ⋅ ⋅ ⋅+ yN1

1 + c(yN1)

}
− (y1 + ⋅ ⋅ ⋅+ yN1)

{
1

1 + c(y1)
+ ⋅ ⋅ ⋅+ 1

1 + c(yN1)

}
(A.3)

We expand (A.3) in the following form

(y1 − y2)

{
1

1 + c(y1)
− 1

1 + c(y2)

}
+ (y1 − y3)

{
1

1 + c(y1)
− 1

1 + c(y3)

}
+ ⋅ ⋅ ⋅

+ (yi − yj)
{

1

1 + c(yi)
− 1

1 + c(yj)

}
+ ⋅ ⋅ ⋅+ (yN1−1 − yN1)

{
1

1 + c(yN1−1)
− 1

1 + c(yN1)

}
,

(A.4)

where i = 1, ..., N1 and i ∕= j. Thus, (A.3) is the sum of the product of every pairwise

difference between two observations and the difference of the two corresponding functions of

c(yi), i.e, 1/(1 + c(yi)). Because c(yi) is positive and monotonically increasing on yi, when

yi < yj we have 1/{1 + c(yi)} > 1/{1 + c(yj)} and when yi > yj we have 1/{1 + c(yi)} <

1/{1 + c(yj)}. So each component of the summation is negative. That is �
(1)
1 < ȳ.

Similarly, we update �
(1)
2 in the first iteration by substituting c(yi) for the conditional

expectation in (A.1)

�
(1)
2 =

y1{1− E(z1∣y, �(0)
1 , �

(0)
2 )}+ y2{1− E(z2∣y, �(0)

1 , �
(0)
2 )}+ ⋅ ⋅ ⋅+ yN1{1− E(zN1 ∣y, �

(0)
1 , �

(0)
2 )}

{1− E(z1∣y, �(0)
1 , �

(0)
2 )}+ {1− E(z2∣y, �(0)

1 , �
(0)
2 )}+ ⋅ ⋅ ⋅+ {1− E(zN1 ∣y, �

(0)
1 , �

(0)
2 )}

=
y1

c(y1)
1+c(y1) + y2

c(y2)
1+c(y2) + ⋅ ⋅ ⋅+ yN1

c(yN1
)

1+c(yN1
)

c(y1)
1+c(y1) + c(y2)

1+c(y2) + ⋅ ⋅ ⋅+ c(yN1
)

1+c(yN1
)

.

(A.5)
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We also compare it with the sample mean of observations at the interim stage ȳ,

�
(1)
2 −

y1 + y2 + ⋅ ⋅ ⋅+ yN1

N1

.

The denominator of the difference is positive and the numerator is as follows

N1

{
y1c(y1)

1 + c(y1)
+ ⋅ ⋅ ⋅+ yN1c(yN1)

1 + c(yN1)

}
− (y1 + ⋅ ⋅ ⋅+ yN1)

{
c(y1)

1 + c(y1)
+ ⋅ ⋅ ⋅+ c(yN1)

1 + c(yN1)

}
. (A.6)

We expand (A.6) in the following form

(y1 − y2)

{
c(y1)

1 + c(y1)
− c(y2)

1 + c(y2)

}
+ (y1 − y3)

{
c(y1)

1 + c(y1)
− c(y3)

1 + c(y3)

}
+ ⋅ ⋅ ⋅

+ (yi − yj)
{

c(yi)

1 + c(yi)
− c(yj)

1 + c(yj)

}
+ ⋅ ⋅ ⋅+ (yN1−1 − yN1)

{
c(yN1−1)

1 + c(yN1−1)
− c(yN1)

1 + c(yN1)

}
.

(A.7)

Similar as in our explanation of (A.4), when yi < yj we have c(yi)/{1 + c(yi)} < c(yj)/{1 +

c(yj)} and when yi > yj we have c(yi)/{1 + c(yi)} > c(yj)/{1 + c(yj)}. Since each part of

the summation is positive, we get (A.7)− ȳ > 0, i.e., �
(1)
2 > ȳ.

Therefore, by using ȳ as a mediator we show that �
(1)
1 < �

(1)
2 under the constraint

�
(0)
1 < �

(0)
2 . If we simply replace the iteration number to t and repeat the same proof steps

we can show �
(t)
1 < �

(t)
2 by knowing �

(t−1)
1 < �

(t−1)
2 at any iteration t. So we conclude the

label switching problem is solved while imposing the constraint �1 < �2 in the conventional

EM algorithm.
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A.2 LABEL SWITCHING OF THE ENHANCED EM ALGORITHM

In the enhanced EM algorithm, we assume equal subjects from each treatment are observed

at the interim stage. The observed data likelihood is invariant under the relabeling of two

mixture components. After putting the constraint �1 < �2 on the parameter space, we can

also show the estimates of the means retain their order at each iteration.

Without the loss of generality, the common standard deviation � is set to 1. Start with

�
(0)
1 < �

(0)
2 , the conditional expectation of zi (for i = 1, ..., N1) given the observed data at

the interim stage and the sum of zi’s in (2.29) is written as

E

(
zi∣y,

N1∑
i=1

zi =
N1

2
, �

(0)
1 , �

(0)
2

)
=
wiR(n− 1, S ∖ {i})

R(n, S)
, (A.8)

where n = N1/2 and S = {1, 2, ..., N1}. wi is a monotonically decreasing function of yi since

�
(0)
1 < �

(0)
2 and w

(0)
i can be re-written as follows

w
(0)
i =

p
(0)
i

1− p(0)
i

=
f1i/(f1i + f2i)

f2i/(f1i + f2i)

= exp

{
− 1

2
(�

(0)
1 )2 +

1

2
(�

(0)
2 )2 + yi�

(0)
1 − yi�

(0)
2

}
.

In the first iteration of the enhanced EM algorithm, we update the estimate of �1 in

(2.30) as follows

�
(1)
1 =

y1
w1R(n−1,S∖{1})

R(n,S)
+ y2

w2R(n−1,S∖{2})
R(n,S)

+ ⋅ ⋅ ⋅+ yN1

wN1
R(n−1,S∖{N1})
R(n,S)

w1R(n−1,S∖{1})
R(n,S)

+ w2R(n−1,S∖{2})
R(n,S)

+ ⋅ ⋅ ⋅+ wN1
R(n−1,S∖{N1})
R(n,S)

=
y1w1R(n− 1, S ∖ {1}) + y2w2R(n− 1, S ∖ {2}) + ⋅ ⋅ ⋅+ yN1wN1R(n− 1, S ∖ {N1})

w1R(n− 1, S ∖ {1}) + w2R(n− 1, S ∖ {2}) + ⋅ ⋅ ⋅+ wN1R(n− 1, S ∖ {N1})
.

(A.9)

We then compare �
(1)
1 with the sample mean of observations at the interim stage ȳ,

�
(1)
1 −

y1 + y2 + ⋅ ⋅ ⋅+ yN1

N1

.

118



The denominator of the difference is bigger than 0 because wi and R(n− 1, S ∖ {i}) are both

positive numbers for any i. We calculate the numerator of �
(1)
1 − ȳ in the following form

N1

{
y1w1R(n− 1, S ∖ {1}) + y2w2R(n− 1, S ∖ {2}) + ⋅ ⋅ ⋅+ yN1wN1R(n− 1, S ∖ {N1})

}
− (y1 + ⋅ ⋅ ⋅+ yN1)

{
w1R(n− 1, S ∖ {1}) + w2R(n− 1, S ∖ {2}) + ⋅ ⋅ ⋅+ wN1R(n− 1, S ∖ {N1})

}
= (y1 − y2)

{
w1R(n− 1, S ∖ {1})− w2R(n− 1, S ∖ {2})

}
+ (y1 − y3)

{
w1R(n− 1, S ∖ {1})− w3R(n− 1, S ∖ {3})

}
+ ⋅ ⋅ ⋅

+ (yi − yj)
{
wiR(n− 1, S ∖ {i})− wjR(n− 1, S ∖ {j})

}
+ ⋅ ⋅ ⋅

+ (yN1−1 − yN1)

{
wN1−1R(n− 1, S ∖ {N1 − 1})− wN1R(n− 1, S ∖ {N1})

}
.

(A.10)

Let us look at the R function, it has the following relation as shown in (2.17)

wiR(n− 1, S ∖ {i}) = R(n, S)−R(n, S ∖ {i}) , (A.11)

where R(n, S ∖ {i}) means the summation over all possible n combinations of w’s excluding

wi. So if wi > wj then R(n, S ∖ {i}) < R(n, S ∖ {j}) for i, j = 1, ..., N1. The proof is

straightforward. When wi > wj, the product of n distinct w’s only excluding wi is smaller

than the product of n distinct w’s only excluding wj and the product of n distinct w’s

excluding wi and wj are the same. It is also obvious that when wi > wj, wiR(n−1, S∖{i}) >

wjR(n−1, S∖{j}). Because wi is decreasing on yi, when yi < yj we have wiR(n−1, S∖{i}) >

wjR(n − 1, S ∖ {j}) and when yi > yj we have wiR(n − 1, S ∖ {i}) < wjR(n − 1, S ∖ {j}).

Therefore each component of the summation in (A.10) is smaller than 0. That is, �
(1)
1 −ȳ < 0.

Now we show �
(1)
2 bigger than ȳ. In the first iteration of the enhanced EM algorithm,

�
(1)
2 can be expanded as follows by using the relation in (A.11)

�
(1)
2 =

y1R(n, S ∖ {1}) + y2R(n, S ∖ {2}) + ⋅ ⋅ ⋅+ yN1R(n, S ∖ {N1})
R(n, S ∖ {i}) +R(n, S ∖ {2}) + ⋅ ⋅ ⋅+R(n, S ∖ {N1})

. (A.12)
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Similarly, the denominator of �
(1)
2 − ȳ is positive since R function is always positive. The

numerator of the difference can be written as follows

(y1 − y2)

{
R(n, S ∖ {1})−R(n, S ∖ {2})

}
+ (y1 − y3)

{
R(n, S ∖ {1})−R(n, S ∖ {3})

}
+ ⋅ ⋅ ⋅

+ (yi − yj)
{
R(n, S ∖ {i})−R(n, S ∖ {j})

}
+ ⋅ ⋅ ⋅+ (yN1−1 − yN1)

{
R(n, S ∖ {N1 − 1})−R(n, S ∖ {N1})

}
.

(A.13)

We know when yi > yj, it makes wi < wj, so R(n, S ∖ {i}) > R(n, S ∖ {j}) and yi < yj,

R(n, S ∖ {i}) < R(n, S ∖ {j}). Therefore each component of (A.13) is positive, which make

the sum positive. That is, �
(1)
2 − ȳ > 0.. By repeating the same proof steps, we can show

at any iteration t, �
(t)
1 < �

(t)
2 . Our conclusion is that with knowing �1 < �2, label switching

does not happen at any iteration of the enhanced EM algorithm.
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APPENDIX B

COMPARISON OF THE ENHANCED EM ESTIMATES WITH THE

INTERIOR CONVENTIONAL EM ESTIMATES

The empirical evidence showed in Section 3.3 indicates that the conventional EM algorithm

obtains non-meaningful boundary estimates. So we make an arbitrary straight line which is

parallel to the line �̂1 = �̂2 to separate the EM estimates around the true parameter values

and the boundary modes. Notice that the arbitrary line we make only can roughly but

not accurately pick up all the correct conventional EM estimates. It is difficult to decide if

estimates around the line �̂1 = �̂2 are incorrect boundary estimates or they are meaningful

estimates due to the bias especially for the case when � is small. Fortunately, our illustrated

method used to separate the conventional EM estimates is good enough to show how the

conventional EM algorithm performs when the estimates are not stuck at the boundary

modes compared to the enhanced EM algorithm.

In Tables 17 and 18, we used the same 1000 datasets for each parameter configuration

as in Tables 2 and 3, so the enhanced EM estimates are the same as in Tables 2 and 3

for each �. For the conventional EM algorithm, we plot a scatter plot of �̂1 versus �̂2 for

each � then use an arbitrary line to separate the two clusters of estimates as we did for

Figures 8 and 9. We consider estimates above the straight line as meaningful conventional

EM estimates and compare the mean bias, variance and the MSE of the 1000 estimates

with those of the enhanced EM estimates. The arbitrary lines we used for each scenario

slightly vary for different � and datasets. When N1 = 20, it is obvious the enhanced EM

algorithm outperforms the conventional EM algorithm. The enhanced EM estimates have
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smaller mean bias and variance even when � is as small as 0.1. When N1 = 80, the enhanced

EM algorithm obtains smaller mean bias and similar or slightly bigger variance than the

conventional EM algorithm. Overall for different values of �, the enhanced EM estimates

have smaller MSEs than that of the conventional EM estimates.

Figures 19 to 22 visually display how we separate the conventional EM estimates and

the performance of the enhanced EM estimates on �1 and �2 for the case when � is small

(0.1) and when � is big (2).
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Table 17: Comparisons of then enhanced EM estimates with the meaningful conventional EM
estimates when N1 = 20. True parameters used to generate sample are set as � = 1, �1 = 0 and � =
0, 0.1, 0.2, 0.35, 0.5, 0.75, 1, 1.5, 2. 1000 sample are generated from each parameters configuration.

Enhanced EM estimates Interior Conventional EM
estimates

� �1 �2 � �2−�1
� �1 �2 � �2−�1

�

0.1 Bias -0.5724 0.5807 -0.2912 1.8087 -0.6096 0.6233 -0.3270 2.1038

Variance 0.0877 0.0957 0.0296 0.6403 0.1147 0.1179 0.0357 1.0384

MSE 0.4152 0.4328 0.1144 3.9109 0.4861 0.5062 0.1426 5.4630

0.2 Bias -0.5032 0.5264 -0.2884 1.6918 -0.5699 0.5990 -0.3461 2.1195

Variance 0.0846 0.0943 0.0330 0.7466 0.1048 0.1085 0.0345 1.0202

MSE 0.3377 0.3712 0.1161 3.6079 0.4294 0.4672 0.1542 5.511

0.35 Bias -0.4516 0.4416 -0.2780 1.5197 -0.5037 0.4911 -0.3241 1.8462

Variance 0.0940 0.0864 0.0318 0.6500 0.1104 0.1074 0.0344 0.9185

MSE 0.2979 0.2813 0.1091 2.9587 0.3640 0.3485 0.1394 4.3256

0.5 Bias -0.3859 0.3989 -0.2772 1.4197 -0.4445 0.4564 -0.3257 1.7686

Variance 0.0827 0.0905 0.0308 0.6474 0.1021 0.1181 0.0309 0.9115

MSE 0.2315 0.2495 0.1076 2.6623 0.2995 0.3263 0.1369 4.0382

0.75 Bias -0.2868 0.2775 -0.2491 1.1632 -0.3183 0.3352 -0.2944 1.4807

Variance 0.0885 0.0884 0.0372 0.6935 0.1094 0.1130 0.0426 1.0611

MSE 0.1707 0.1653 0.0992 2.0458 0.2106 0.2252 0.1293 3.2521

1 Bias -0.2066 0.1966 -0.2096 0.9239 -0.2773 0.2680 -0.2679 1.3306

Variance 0.0950 0.0987 0.0367 0.6681 0.1328 0.1208 0.0405 1.0302

MSE 0.1376 0.1373 0.0806 1.5210 0.2095 0.1925 0.1122 2.7994

1.5 Bias -0.0857 0.0984 -0.1535 0.6391 -0.1364 0.1566 -0.1961 0.9408

Variance 0.1134 0.1069 0.0377 0.7317 0.1391 0.1393 0.0435 1.0125

MSE 0.1206 0.1165 0.0613 1.1395 0.1576 0.1637 0.0819 1.8963

2 Bias -0.0032 0.0144 -0.1052 0.4005 -0.0354 0.0470 -0.1331 0.5948

Variance 0.1099 0.1193 0.0410 0.7165 0.1431 0.1441 0.0453 0.9510

MSE 0.1098 0.1194 0.0520 0.8762 0.1442 0.1462 0.0629 1.3038
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Table 18: Comparisons of then enhanced EM estimates with the meaningful conventional EM
estimates when N1 = 80. True parameters used to generate sample are set as � = 1, �1 = 0 and � =
0, 0.1, 0.2, 0.35, 0.5, 0.75, 1, 1.5, 2. 1000 sample are generated from each parameters configuration.

Enhanced EM estimates Interior Conventional EM
estimates

� �1 �2 � �2−�1
� �1 �2 � �2−�1

�

0.1 Bias -0.4591 0.4619 -0.1802 1.2246 -0.5257 0.5226 -0.2150 1.4447

Variance 0.0484 0.0461 0.0152 0.3827 0.0426 0.0418 0.0154 0.3621

MSE 0.2592 0.2594 0.0476 1.8820 0.3189 0.3149 0.0616 2.4486

0.2 Bias -0.4231 0.4240 -0.1794 1.1605 -0.4769 0.4808 -0.2203 1.3681

Variance 0.0430 0.0447 0.0168 0.3773 0.0447 0.0414 0.0151 0.3721

MSE 0.2219 0.2244 0.0490 1.7236 0.2720 0.2726 0.0636 2.2432

0.35 Bias -0.3623 0.3468 -0.1706 1.0121 -0.4220 0.4094 -0.2090 1.2295

Variance 0.0445 0.0457 0.0172 0.3931 0.0408 0.04418 0.0162 0.3781

MSE 0.1757 0.1660 0.0463 1.4172 0.2188 0.2093 0.0598 1.8893

0.5 Bias -0.2973 0.2936 -0.1553 0.8704 -0.3650 0.3642 -0.1974 1.1019

Variance 0.0485 0.0491 0.0165 0.3744 0.0403 0.0440 0.0136 0.3300

MSE 0.1368 0.1353 0.0406 1.1317 0.1735 0.1766 0.0526 1.5437

0.75 Bias -0.1933 0.1886 -0.1310 0.6324 -0.2576 0.2485 -0.1666 0.8324

Variance 0.0504 0.0486 0.0175 0.3765 0.0439 0.04256 0.0158 0.3386

MSE 0.0877 0.0842 0.0346 0.7760 0.1102 0.1043 0.0435 1.0310

1 Bias -0.1113 0.0981 -0.1020 0.4273 -0.172 0.1592 -0.1349 0.6168

Variance 0.0539 0.0557 0.0187 0.3862 0.0471 0.0477 0.0178 0.3508

MSE 0.0662 0.0653 0.0291 0.5684 0.0766 0.0730 0.0359 0.7307

1.5 Bias 0.0013 0.0007 -0.0428 0.1442 -0.0307 0.0376 -0.0639 0.2487

Variance 0.0567 0.0575 0.0203 0.3684 0.0523 0.0547 0.0185 0.3414

MSE 0.0567 0.0575 0.0211 0.3889 0.0532 0.0561 0.0226 0.4029

2 Bias 0.0158 -0.0147 -0.0230 0.0889 0.083 -0.0038 -0.0301 0.1264

Variance 0.0450 0.0441 0.0199 0.3242 0.0514 0.0482 0.0203 0.3440

MSE 0.0452 0.0443 0.0204 0.3318 0.0514 0.0482 0.0212 0.3597
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(a) Scatterplot of the Conventional EM estimate of �1 versus �2

(b) Scatterplot of the Enhanced EM estimate of �1 versus �2

Figure 19: Comparison of two EM estimates of �1 and �2 when N1 = 20 (�1 = 0, �2 = 0.1

and � = 1, stimulater 1000). The red point denotes the true value of (�1, �2) on the

scatterplot. 125



(a) Scatterplot of the Conventional EM estimate of �1 versus �2

(b) Scatterplot of the Enhanced EM estimate of �1 versus �2

Figure 20: Comparison of two EM estimates of �1 and �2 when N1 = 20 (�1 = 0, �2 = 2 and

� = 1, stimulater 1000). The red point denotes the true value of (�1, �2) on the scatterplot.
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(a) Scatterplot of the Conventional EM estimate of �1 versus �2

(b) Scatterplot of the Enhanced EM estimate of �1 versus �2

Figure 21: Comparison of two EM estimates of �1 and �2 when N1 = 80 (�1 = 0, �2 = 0.1

and � = 1, stimulater 1000). The red point denotes the true value of (�1, �2) on the

scatterplot. 127



(a) Scatterplot of the Conventional EM estimate of �1 versus �2

(b) Scatterplot of the Enhanced EM estimate of �1 versus �2

Figure 22: Comparison of two EM estimates of �1 and �2 when N1 = 80 (�1 = 0, �2 = 2 and

� = 1, stimulater 1000). The red point denotes the true value of (�1, �2) on the scatterplot.
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APPENDIX C

BLINDED RE-ESTIMATION OF STANDARD DEVIATION WHEN

TREATMENT-BY-CENTER INTERACTION EXISTS IN TWO CENTER

DESIGNS

C.1 WHEN TREATMENT-BY-CENTER INTERACTION EXISTS

As noted in Section 5.2.2, the difficulties is that the distribution is not identifiable, and only

with assumptions about the nature of the interactions will the following lead to coherent

answers. Since the center effect is not consistent between the two treatment groups, we

assume different parameters for treatment means within each center. In center 1, if a patient

is in the control group, i.e., zi.1 = 1, then yi.1 ∼ N(�11, �); if he/she is in the experimental

group, i.e., zi.1 = 0, then yi.1 ∼ N(�21, �) where i = 1, ..., N1/2. Similarly in center 2, if

a patient is in the control group, i.e., zi.2 = 1, then yi.2 ∼ N(�12, �); if he/she is in the

experimental group, i.e., zi.2 = 0, then yi.2 ∼ N(�22, �). This setup is very similar to having

two independent blocked studies with sparate parameters for each, except in our case there

is �2 in common.

For the conventional EM algorithm, it is assumed that the probability of each patient

assigning to each treatment group is 0.5 within both centers. Therefore, the complete data
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likelihood function is given by

L(�;y..., z..1, z..2) =

N1
2∏
i=1

{
f(yi.1∣�11, �)zi.1 ⋅ f(yi.1∣�21, �)1−zi.1 ⋅ 1

2

zi.1

(1− 1

2
)1−zi.1

⋅ f(yi.2∣�12, �)zi.2 ⋅ f(yi.2∣�22, �)1−zi.2 ⋅ 1

2

zi.2

(1− 1

2
)1−zi.2

}
.

(C.1)

Similarly as in the case when interaction does not exist, the Q(�∣�(t)) function is linear in

zi.k. In the E-step, the conditional expectations of zi.k is calculated as:

E(zi.1∣y..1, �(t)
1 ) = P (zi.1 = 1∣y..1,�(t)

1 ) =
f(yi.1∣� (t)

11 , �
(t))

f(yi.1∣� (t)
11 , �

(t)) + f(yi.1∣� (t)
21 , �

(t))

E(zi.2∣y..2, �(t)
2 ) = P (zi.2 = 1∣y..2,�(t)

1 ) =
f(yi.2∣� (t)

12 , �
(t))

f(yi.2∣� (t)
12 , �

(t)) + f(yi.2∣� (t)
22 , �

(t))
.

(C.2)

In the M-step, we treat the missing information as known and substitute the conditional

expectation computed in the E-step in the Q-function. The M-step maximizes the conditional

expectation of the complete-data log-likelihood. Thus we update �1
(t+1) with

�
(t)
11 =

∑N1/2
i=1 yi.1E(zi.1∣y..1,�

(t)
1 )∑N1/2

i=1 E(zi.1∣y..1,�
(t)
1 )

�
(t)
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∑N1/2
i=1 yi.1

{
1− E(zi.1∣y..1,�

(t)
1 )
}∑N1/2

i=1

{
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(t)
1 )
}

�
(t)
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(t)
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1
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(C.3)

For the enhanced EM algorithm, the complete data likelihood function becomes

L(�;y..., z..1, z..2,

N1/2∑
i=1

zi.1,

N1/2∑
i=1

zi.2) =

N
2∏
i=1

{
f(yi.1∣�11, �)zi.1 ⋅ f(yi.1∣�21, �)1−zi.1

⋅ f(yi.2∣�12, �)zi.2 ⋅ f(yi.2∣�22, �)1−zi.2 ⋅ 1(
N1/2
N1/4

) ⋅ 1(
N1/2
N1/4

)} .
(C.4)
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The E-step stays the same as in (5.12), with different wi.., where wi.1 = f(yi.1∣�11, �)/f(yi.1∣�21, �)

for center 1 and wi.2 = f(yi.2∣�21, �)/f(yi.2∣�22, �) for center 2. For the enhanced EM algo-

rithm with block design, the E-step also does not change as in (5.15) and (5.16). The M-step

stays the same as in (C.3).

C.2 COMPARISON AMONG EM PROCEDURES UNDER THE

ASSUMPTION OF INTERACTION OR NO INTERACTION

In Appendix C1, we suggest an EM procedures in detail when treatment-by-center interaction

exists in the two-center trial. Due to the lack of information in the design stage, possible

treatment-by-center interactions are usually neglected when planning the sample size. We

also may not want to consider the interaction in the sample size re-calculation procedure.

In a simulation study of our suggested algorithm, we considered a couple of scenarios

where two centers have the same or different treatment effects, then we conducted the EM

procedures by both assuming whether interactions exist or not. For each scenario, we gen-

erated 1000 samples with a sample size of 80 across two centers at the interim. We are

interested in the influence the mis-specification on interactions in the EM algorithm has

on the estimation of the standard deviation. The specific scenarios we are considering as

follows:

Scenario 1: in Center 1, yi.1 ∼ N(0, 1) and N(0.5, 1); in Center 2, yi.2 ∼ N(0.1, 1) and

N(0.6, 1) (no interaction; small difference between centers).

Scenario 2: in Center 1, yi.1 ∼ N(0, 1) and N(0.5, 1); in Center 2, yi.2 ∼ N(0.5, 1) and N(1, 1)

(no interaction; moderate difference between centers).

Scenario 3: in Center 1, yi.1 ∼ N(0, 1) and N(0.5, 1); in Center 2, yi.2 ∼ N(0.1, 1) and

N(0.3, 1) (small quantitative interaction; small difference between centers).

Scenario 4: in Center 1, yi.1 ∼ N(0, 1) and N(0.5, 1); in Center 2, yi.2 ∼ N(0.5, 1) and N(0, 1)

(moderate qualitative interaction; no difference between centers).

In each of the scenarios, when using the EM algorithm assuming non-interaction, we make

the starting values of �2 bigger than the starting values of �1, specifically we set �1 and �2 as
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the mean of the primary endpoints plus and minus a constant respectively; when using the

EM algorithm assuming interaction, we make the starting values of difference between �11

and �21 and the difference between �12 and �22 in the same direction, that is, within each

center, the mean of the treatment group is always set to be bigger than the mean of the

control group.

Table 19 shows that estimates of � vary little when using the EM algorithm with or with-

out assuming interactions regardless of whether interaction truly exists or not. In Scenario

1 and 2, two centers have the same treatment effect for both center effect small or moderate.

The EM procedure assuming no interaction as introduced in Section 5.2.1 has smaller bias

and MSE on estimating � than assuming interaction exists as introduced in Appendix C1.

Also take Scenario 3 and 4 as examples, either quantitative or qualitative interaction exists

in two center’s observations. If we use the EM procedure without assuming interaction, it

shows in Table 19 that the bias and the MSE of � is slightly smaller than we use the EM

procedure assuming interactions. It is surprising that even interaction does exist in the data

the estimate of � by assuming no interaction in the EM algorithm is close to the estimate

assuming interaction. If the data are unblinded, using additive model when interaction exists

supposes to inflate the estimate. The inflation does not happen here could be caused by the

non-identifiability of the parameters as we stated in Section 5.2.2.

Besides the simulation results we have shown in Table 19, we also consider the scenarios

with more exaggerating interactions between the center and the treatment in two centers.

In those cases, we still can use the EM algorithm assuming no interaction, the simulation

shows similar results as in Table 19 that the estimation does not differ much from the EM

algorithm assuming interaction. At this point, the results of this simulation need further

explanation in the context. We include Appendix C as a indication of how one might proceed

to handle interaction using blinded data.
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Table 19: Comparing EM estimates of � with and without assuming interaction in a two-center
trial for four different scenarios. 1000 samples with sample size N1 = 80 are generated for each
scenario.

EM algorithm Scenario without interaction with interaction

Conventional S1: no interaction c2 = 0.1 Bias -0.1279 -0.1595

Variance 0.0249 0.0190

MSE 0.0413 0.0445

S2: no interaction c2 = 0.5 Bias -0.1384 -0.1645

Variance 0.0246 0.0194

MSE 0.0437 0.0465

S3: quantitative interaction Bias -0.1496 -0.1783

Variance 0.0234 0.0184

MSE 0.0458 0.0502

S4: qualitative interaction Bias -0.1374 -0.1666

Variance 0.0228 0.0180

MSE 0.0417 0.0457

Enhanced S1: no interaction c2 = 0.1 Bias -0.1804 -0.1891

Variance 0.0154 0.0147

MSE 0.0479 0.0505

S2: no interaction c2 = 0.5 Bias -0.1876 -0.1955

Variance 0.0147 0.0143

MSE 0.0499 0.0525

S3: quantitative interaction Bias -0.1981 -0.2061

Variance 0.0145 0.0139

MSE 0.0538 0.0563

S4: qualitative interaction Bias -0.1890 -0.1984

Variance 0.0133 0.0128

MSE 0.0490 0.0521

Enhanced S1: no interaction c2 = 0.1 Bias -0.0770 -0.0925

block size 4 Variance 0.0124 0.0111

MSE 0.0183 0.0197

S2: no interaction c2 = 0.5 Bias -0.0760 -0.0906

Variance 0.0137 0.0123

MSE 0.0195 0.0205

S3: quantitative interaction Bias -0.0795 -0.0943

Variance 0.0120 0.0108

MSE 0.0183 0.0197

S4: qualitative interaction Bias -0.0763 -0.0903

Variance 0.0113 0.0103

MSE 0.0171 0.0185
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