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This dissertation presents a systematic development of a new thermal lattice Boltzmann 

multiphase model. Unlike conventional CFD methods, the lattice Boltzmann equation (LBE) 

method is based on microscopic models and mesoscopic kinetic equations in which the collective 

behavior of the particles in a system is used to simulate the continuum mechanics of the system. 

Due to this kinetic nature, the LBE method has been found to be particularly useful in 

applications involving interfacial dynamics and complex boundaries, e.g. multiphase or 

multicomponent flows.  

First, the methodology and general concepts of the LBE method are introduced. Following 

this introduction, an accurate mass conserving wall boundary condition for the LBE method is 

proposed together with benchmark test results. Next, the widely used Shan and Chen (SC) single 

component two-phase flow model is presented, as well as improvements to that model. In this 

model, by incorporating fluid-fluid interaction, phase separation and interfacial dynamics can be 

properly captured. Sharp interfaces between phases can be easily obtained without any additional 

numerical treatment. In order to achieve flexibility for the surface tension term, an additional 

force term which represents the contribution of surface tension is incorporated into the fluid-fluid 

interaction force term. The validity of this treatment is verified by our simulation results. 

Different equations of state are also incorporated into this model to compare their behavior. 



 v

Finally, based on the SC model, a new and generalized lattice Boltzmann model for simulating 

thermal two-phase flow is described. In this model, the SC model is used to simulate the fluid 

dynamics. The temperature field is simulated using the passive-scalar approach, i.e. through 

modeling the density field of an extra component, which evolves according to the advection-

diffusion equation. By coupling the fluid dynamics and temperature field through a suitably 

defined body force term, the thermal two-phase lattice Boltzmann model is obtained. Our 

simulation results show that different equations of state, variable wettability, gravity and 

buoyancy effects, and relatively high Rayleigh numbers can be readily simulated by this new 

model. Lastly, the accomplishments of this study are summarized and future perspectives are 

provided. 
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1.0 THE LATTICE BOLTZMANN EQUATION METHOD 
 
 
 
 

1.1 INTRODUCTION 
 
 
Recently, the lattice Boltzmann equation (LBE) method has been successfully applied to 

simulate fluid flow and transport phenomena [1]. Unlike conventional CFD methods, the LBE 

method is based on microscopic models and mesoscopic kinetic equations in which the collective 

behavior of the particles in a system is used to simulate the continuum mechanics of the system. 

Due to this kinetic nature, the LBE method has been found to be particularly useful in 

applications involving interfacial dynamics and complex boundaries, e.g. multiphase or 

multicomponent flows [2]. In this chapter, we will introduce the methodology and general 

concepts of LBE method without going into details. The details of LBE model and its application 

are presented in the following chapters. 

 
 
 

1.2 DIFFERENT APPROACHES FOR FLUID MODELING 
 
 
Macroscopic systems and transport phenomena have been systematically investigated since the 

19th century. Two basic approaches were used in the study. One is the macroscopic continuum 

theory, including fluid mechanics and thermodynamics. The other is the microscopic approach, 

namely kinetic theory, the non-equilibrium branch of statistical mechanics. Both views will give 

the same macroscopic governing equations for systems composed of many particles. 
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Classical fluid mechanics studies a fluid system from a macroscopic point of view. It means 

that although a fluid system consists of discrete particles, no consideration is given to the 

detailed behavior of each individual molecule. The usual interest is in obtaining macroscopic 

variables, such as density, pressure, temperature and velocity, which characterize the state of the 

fluid system. Based on the continuum assumption, Navier-Stokes (N-S) equations can be derived 

through conservation laws. How to solve the N-S equations with specific boundary conditions, 

initial conditions and physical constraints becomes one of main tasks of fluid mechanics research.  

Statistical mechanics and kinetic theory, on the other hand, study macroscopic systems, such as 

fluid and thermal systems, using a microscopic approach based on realistic molecular models. It 

is well known that a fluid is a discrete system with a large number of particles or molecules (the 

number of particles can be as large as 2.7×1019/cm3 for a gas at normal conditions). Meanwhile 

the initial conditions are usually not known. Thus, it can be a formidable task to solve such a 

system of many particles. Statistical mechanics bypasses these difficulties by considering all 

possible states of a system and finding the probability for each state. A macroscopic quantity is 

then obtained by evaluating a weighted average of a physical quantity over such states [3]. By 

doing this, three levels of equations can be obtained: the Liouville equation on the microscopic 

level, the kinetic equations (including Boltzmann equation) on the mesoscopic level, and the N-S 

equations on the macroscopic level.  

 

1.2.1 Traditional computational fluid dynamics methods 
 
 
It is usually convenient to solve a fluid problem by using the governing partial differential 

equations (PDEs), such as the N-S equations. Almost all traditional computational fluid 

dynamics (CFD) methods are based on solving either differential or integral forms of the PDEs. 



 3

These are the so-called “top-down” approaches, as illustrated in Figure 1.1. These approaches 

start from the governing PDEs and discretize them (usually on a regular-sized mesh) by finite 

difference, finite volume or finite element methods. The approximate solutions are then obtained 

on the discretized spatial and temporal scales [4, 5]. On the other hand, solutions based on the 

kinetic theory, the LBE method and its ancestor lattice gas automata (LGA) are “bottom-up” 

approaches. They solve mesoscopic equations (such as the Boltzmann equation) for an 

ensemble-averaged distribution of moving, interacting fluid particles on a discrete lattice. Then, 

by using a multi-scale analysis, the desired macroscopic PDEs can be recovered. Molecular 

dynamics is another “bottom-up” approach, which simulates the macroscopic behavior of a fluid 

system at the microscopic level.  

 

Figure 1.1: Two different types of numerical solutions: “top-down” and “bottom-up” (after [6]). 

 
 

Although a wide variety of flows can be addressed by traditional CFD methods with great 

accuracy, there still exist flows for which traditional CFD methods are not adapted. Two 

examples are presented. First, multiphase flow, especially when the interfaces undergo 

topological changes may not be accurately modeled with a macroscale approach. Using 



 4

traditional CFD methods, one might be able to track a few, but hardly many interfaces in a 

system. A second example is the flow of lava or mud. These fluids are typically non-Newtonian 

fluids. Therefore, the N-S equations are no longer suitable. However, these examples, as well as 

many other flows, can be more easily dealt with using the LBE method. 

 
1.2.2 Molecular dynamics (MD) method 
 
 
It is well known that fluid is made of the discrete atoms/molecules. Therefore, tracing the 

movements and collisions of all individual molecules becomes an obvious way of flow 

simulation. This is the so-called molecular dynamics approach and is often used in material 

science and biological research, particularly for investigating the structure, dynamics and 

thermodynamics of biological molecules and their complexes [7, 8, 9]. The MD method is 

deterministic: at every time step, the new position and velocity of all molecules are calculated 

from their previous position and velocity based on Newton’s second law.  

Obviously, MD simulations are time consuming and computationally expensive. As a result, 

the number of molecules that can be simulated is still very limited at this stage. Two possible 

ways have been proposed to reduce the computational demands for MD methods. First, instead 

of considering each individual molecule at the molecular (microscopic) scale, fluid particles at 

mesoscopic scale, which are made up of a group of molecules are considered in the simulation. 

Second, the degree of the freedom of the system can be reduced by forcing the fluid particles to 

move in specified directions. It is based on these concepts that the lattice Boltzmann method and 

its ancestor lattice gas method emerged and have been successfully applied to simulate fluid flow 

and transport phenomena. 
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1.2.3 Lattice gas and lattice Boltzmann equation methods 
 
 
Historically, the LBE method was derived from lattice gas automata, a discrete particle kinetics, 

utilizing a discrete lattice and discrete time. The first two-dimensional LGA model was proposed 

by Frisch, Hasslacher, and Pomeau (known as the FHP model) in 1986 [10]. The FHP model 

uses a triangular lattice, and, unlike the previous similar models, for the first time it recovers the 

two-dimensional N-S equations. The evidence that a simple LGA model could faithfully 

simulate hydrodynamics paved the way for its rapid development. Shortly after the FHP model 

was introduced, three-dimensional LGA models were proposed by d’Humières, Lallemand and 

Frisch [11]. 

The essential features of LGA are very different from those of traditional CFD methods. In 

order to construct the kinetic LGA model, a lattice with correct symmetry must first be designed, 

and then suitable evolution rules must be established. At each lattice node, a set of Boolean 

variables ),( tn xα  ( ;1,0 orn =α  N...,1=α ) is used to describe the particle occupation, where 

the subscript α  is an index for velocity and denotes a different velocity direction, x is a vector in 

the lattice space, t denotes discrete time and N is the number of particle velocities. There is either 

no particle 0=αn  or one particle 1=αn  in the α th-direction, as shown in Figure 1.2a. The 

evolution equation of LGA can be written as: 

)),((),()1,( tntntn xxex αααα Ω+=++                                                (1.1) 

where αe  are the local particle velocities and αΩ  is the collision operator. The evolution of LGA 

consists of two alternative steps: (1) Streaming: a particle moves to the nearest neighboring node 

along its velocity direction (see Figure 1.2b), and (2) Collision: particles collide with each other 

and change their velocities and directions according to collision rules after arriving at the 
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neighboring nodes, as shown in Figure 1.2c. It is very important to construct collision rules for 

LGA. The correct collision rules must guarantee that mass, momentum, and energy are 

conserved in the collision and meanwhile no spurious invariance is preserved.  

 

Figure 1.2: An example of one time step in the evolution of a two-dimensional lattice gas. (a) 
Initial condition: each arrow represents a particle of unit mass moving in the direction of the 
arrow (its lattice velocity); (b) Streaming step: each particle moves one lattice unit in the 
direction of its velocity; (c) Collision step. (after [12]). 
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The LGA has several advantages over traditional CFD methods, like simple evolution rules, 

which are easy to implement as parallel computations [13, 14]. However, it also has several 

undesirable features. The most serious one is the inherent statistical noise in the simulations due 

to the large fluctuation in αn . Also in LGA, the Galilean invariance is destroyed because of the 

existence of a density-dependent coefficient in the convection term of the N-S equations.  

To overcome the intrinsic drawbacks of LGA, its real variable counterparts, LBE models, 

were introduced. The most striking feature of the LBE method is the replacement of the particle 

occupation variables αn  (Boolean variables) in the evolution equation by the particle distribution 

functions (PDFs) 〉〈= αα nf , where 〈⋅〉  denotes the local ensemble average. Therefore, αf  are 

real variables, and 10 ≤≤ αf . This eliminates the statistical noise in LGA. The first LBE model 

was proposed by McNamara and Zanetti [15], in which the same form of the collision operator 

as in the LGA was adopted. Later on, Higuera, Jimenez and Succi introduced a linearized, matrix 

collision operator which can avoid the detailed collision rules. Although the statistical noise was 

eliminated in both models, other problems still remained, because the equilibrium distribution is 

still Fermi-Dirac. Chen et al. [16] and Qian et al. [17] proposed LBE models in which Fermi-

Dirac statistics were abandoned, and thus provided the freedom required for the equilibrium 

distribution to satisfy isotropy, Galilean invariance and to possess a velocity-independent 

pressure. In their models, the single relaxation time approximation known as the Bhatnagar, 

Gross and Krook (BGK) approximation was applied to greatly simplify the collision operator. 

The LBE model with the BGK approximation is called the lattice BGK (LBGK) model. There 

also exist other LBE models, like the Somers model [18]. However, the LBGK model is the most 

widely used model in lattice Boltzmann (LB) simulations. We will focus on this model in our 

later discussions. 
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Although the LBE method was developed only a decade ago, it has attracted significant 

attention and has been applied to a variety of flow fields, such as magnetohydrodynamics [19], 

flow in dynamic geometry (blood flow) [20], turbulence and large eddy simulation [21], wave 

propagation [22], and global ocean circulation [23, 24]. The LGA and LBE methods have been 

particularly successful in the area of complex fluids including multiphase fluids [25], 

suspensions in fluid [26, 27], viscoelastic flow [28, 29], and chemical reaction flows [30]. The 

applications of the LBE method are very diverse and interdisciplinary. More details about the 

various applications of the LBE method can be found in the review articles [1, 2] and 

monographs [1, 31].  

 
 
 

1.3 OVERVIEW OF THE LBE METHOD 
 
 
The continuum Boltzmann equation is an intergro-differential equation, which describes the 

evolution of the single-particle distribution function ),,( tf ξx  in the physical-momentum space 

(phase space): 

),( ffQff
t
f

=∇⋅+∇⋅+
∂
∂

ξx aξ                                            (1.2) 

The collision integral is: 

[ ])()()()()(),( 1111
3 ξξξξξξ ffffddffQ −′′−ΩΩ= ∫∫ σξ                                (1.3) 

with )(Ωσ  as the differential collision cross section for the two-particle collision which 

transforms the velocities from { }1,ξξ  (incoming) into { }1,ξξ ′′  (outgoing). The position in 

physical space is denoted by x and the velocity in the momentum (or velocity) space is denoted 

by ξ . ξ33),,( xddtf ξx  represents the probability of finding a particle in the volume xd 3  around 
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x and with velocity between ξ  and ξξ d+ . The a is the force per unit mass acting on the particle, 

which will be neglected in the later discussion in this chapter.  

The Boltzmann equation has its foundations in gas dynamics and is a well-accepted 

mathematical model of a fluid at the microscopic level. It provides detailed microscopic 

information, which is critical for the modeling of the underlying physics behind complex fluid 

behavior. It is more fundamental than the N-S equations. However, due to the high dimensions of 

the distribution and the complexity in the collision integral, direct solution of the full Boltzmann 

equation is a formidable task for both analytical and numerical techniques [32]. 

One of the major difficulties in dealing with the Boltzmann equation is the complicated 

nature of the collision integral. Therefore, as mentioned previously, an important simplification 

of collision term was proposed by Bhatnagar, Gross and Krook in 1954 [33] and is known as the 

BGK approximation. The Boltzmann-BGK equation then takes the form: 

[ ])0(1 fff
t
f

−−=∇⋅+
∂
∂

λ
ξ                                                     (1.4) 

where ξ  is the particle velocity, )0(f  is the equilibrium distribution function (the Maxwell-

Boltzmann distribution function), and λ  is the relaxation time. 

To solve for f  numerically, Eq. (1.4) is first discretized in the momentum space using a 

finite set of velocities { }αξ  without violating the conservation laws. 

[ ])(1 eqfff
t

f
αααα

α

λ
−−=∇⋅+

∂
∂

ξ                                             (1.5) 

in the above equation, ),,(),( tftf αα ξxx ≡  and ),,(),( )0()( tftf eq
αα ξxx ≡  are the distribution 

function and the equilibrium distribution function of the α th discrete velocity αξ , respectively. 

For 2-D flow, the 9-velocity LBE model on the 2-D square lattice, denoted as the D2Q9 model, 



 10

has been widely used.  For simulating 3-D flow, there are several cubic lattice models, such as 

the D3Q15, the D3Q19 and the D3Q27 model. Figure 1.2 presents the most common lattices. 

The equilibrium distributions for all of the D2Q9, D3Q15, D3Q19 and D3Q27 models can be 

expressed in the form: 

⎥⎦
⎤

⎢⎣
⎡ ⋅−⋅+⋅+= uuueue 2

2
42

)(

2
3)(

2
931

ccc
wf eq

αααα ρ                                 (1.6) 

where αw  is the weighting  factor, δtδxc /=  is the lattice speed, αe  denotes the discrete 

velocity set, δx  and δt  are the lattice constant and the time step, respectively, and u is the 

macroscopic velocity. 

 

Figure 1.3: Discrete velocity vectors for some commonly used 2-D and 3-D particle speed 
models. 
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In our simulations, the D2Q9 and D3Q19 models, which have been shown to have better 

performance than other models [34], are used for the 2-D and 3-D flow calculations. The 

weighting factor and discrete velocity set for these two models are given below. 

D2Q9: 

⎪
⎩

⎪
⎨

⎧

=±±
=±±
=

=
.8,7,6,5,)1,1(
;4,3,2,1,)1,0(,)0,1(

;0),0,0(

α
α
α

α

c
cce                                          (1.7a) 

⎪
⎩

⎪
⎨

⎧

=
=
=

=
.8,7,6,5,36/1

;4,3,2,1,9/1
;0,9/4

α
α
α

αw                                                           (1.7b) 

D3Q19: 

⎪
⎩

⎪
⎨

⎧

=±±±±±±
=±±±
=

=
.18,...,8,7,)1,1,0(,)1,0,1(,)0,1,1(

;6,...,2,1,)1,0,0(,)0,1,0(,)0,0,1(
;0),0,0,0(

α
α
α

α

ccc
ccce                (1.8a) 

⎪
⎩

⎪
⎨

⎧

=
=
=

=
.18,...,8,7,36/1

;6,...,2,1,18/1
;0,3/1

α
α
α

αw                                                            (1.8b) 

With the momentum space discretized, the local mass density ρ  and the local momentum 

density uρ  can be evaluated as: 

∑∑
==

==
N

eq
N

ff
0

)(

0 α
α

α
αρ                                                               (1.9a) 

α
α

αα
α

αρ eeu ∑∑
==

==
N

eq
N

ff
0

)(

0
                                                     (1.9b) 
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The speed of sound in both the D2Q9 and D3Q19 models is 3/ccs = , and the equation of state 

for both models is that of an ideal gas: 

2
sρcp =                                                                    (1.10) 

Equation (1.5) can be further discretized in physical space, x, and time, t. The completely 

discretized form of Eq. (1.5) is: 

[ ]),(),(1),(),( )( tftftfδttδtf eq xxxex ααααα τ
−−=++                                (1.11) 

where δt/λτ =  is the non-dimensional relaxation time. The above equation is the discrete lattice 

Boltzmann equation with the BGK approximation and is known as the LBGK model. Since only 

one relaxation time is used in the model, this model belongs to the single relaxation time (SRT) 

model. There are also multiple-relaxation-time (MRT) models used in literature [35]. Eq. (1.11) 

is often solved in the following two steps: 

Collision step: [ ]),(),(1),(),(~ )( tftftftf eq xxxx αααα τ
−−=                         (1.12a) 

Streaming step: ),(~),( tfδttδtf xex ααα =++                                             (1.12b) 

where αf  and αf
~  denote the pre- and post-collision state of the distribution function, 

respectively. From Eq. (1.12), we can see that the collision step is purely local, and the streaming 

step is a uniform data shifting and requires little computational effort. Eq. (1.12) is explicit, easy 

to implement, and straightforward for parallel computation. 

The viscosity in the macroscopic N-S equations can be derived from Eq. (1.11) as: 

δtcν s
2)

2
1( −= τ                                                         (1.13) 
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This choice of the viscosity makes the LBGK scheme a second order method in solving 

incompressible flows [31]. According to Eq. (1.13), the positivity of the viscosity requires that 

2/1>τ .  

The differences between the LBE method and the N-S equation solver are as follows: 

1. The N-S equations are second-order PDEs (macroscopic equations); the discrete velocity 

model from which the LBE model is derived consists of a set of first-order PDEs (kinetic 

equations). 

2. The N-S solver must deal with nonlinear convective terms; in the LBE model the convection 

terms are linear and handled by simple advection (uniform data shifting). 

3. For incompressible flow, the N-S solver needs to solve the Poisson equation for the pressure, 

which involves global data communication. In the LBE method, pressure is obtained through an 

equation of state and data communication is always local. 

4. Usually in the LBE method, the grid Courant-Friedrichs-Lewy (CFL) number is equal to 1, 

based on the lattice units of 1== δtxδ . Also, the coupling between the discretized momentum 

space and physical space leads to regular square grids. 

5. Due to the kinetic nature of the Boltzmann equation, the physics associated with the molecular 

level interaction can be incorporated more easily in the LBE model.  

6. For boundary conditions (BCs), in the LBE model there is no counterpart of the BCs found in 

a continuum framework, e.g. no-slip at the wall. Thus the BCs in LBE model need to be 

developed. 

7. The N-S solver usually employs iterative procedures to obtain a converged solution; the LBE 

models are usually explicit and don’t need iterative procedures.  
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1.4 FROM THE CONTINUUM BOLTZMANN EQUATION TO THE LBE MODEL 
 
 
Although historically the LBE method was derived from LGA, it was shown later by He and Luo 

[36, 37] that the LBE method could be derived rigorously from the kinetic theory of gases (i.e. 

the Boltzmann equation), which establishes LBE on a solid theoretical foundation. We will 

discuss their derivations in this section and in Appendix A. 

We start from the Boltzmann equation with the BGK approximation [Eq. (1.4)]. In Eq. (1.4), 

)0(f  satisfies the Maxwell-Boltzmann distribution function: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−≡

RTRT
f D 2

)(exp
)2(

2

2/
)0( uξ

π
ρ                                                    (1.14) 

where R is the gas constant, D is the dimension of the space, and T  is the macroscopic 

temperature.  The hydrodynamic variables are the moments of the distribution function f: 

∫∫ == ξξ dffd )0(ρ , ∫∫ == ξξξξu dffd )0(ρ , ( ) ( )∫∫ −=−= ξuξξuξ dffd )0(22

2
1ρε     (1.15) 

where RTD02
1

=ε  and 0D is the number of the degrees of freedom of a particle. 

Integrating Eq. (1.4) over a time interval δt , we find: 

∫ ′′+′++=++ ′−− δt tδtδt tdtttfeetfeδttδtf
0

)0(/// ),,(1),,(),,( ξξxξxξξx λλλ

λ
            (1.16) 

Assuming that δt  is relatively small and g  is locally smooth, and further neglecting the terms of 

)( 2δtO  or higher on the right hand side (RHS) of Eq. (1.16), we obtain: 

[ ]),,(),,(1),,(),,( )0( tftftfδttδtf ξxξxξxξξx −−=−++
τ

                            (1.17) 
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Next, we expand the equilibrium distribution )0(f as a Taylor series in u: 

)(
2)(2

)()(1
2

exp
)2(

3
2

2

222

2/
)0( uuuξuξξ O

RTRTRTRTRT
f D +⎥

⎦

⎤
⎢
⎣

⎡
−

⋅
+

⋅
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

π
ρ                       (1.18) 

In order to derive the N-S equations, the second order expansion is enough, so we denote: 

⎥
⎦

⎤
⎢
⎣

⎡
−

⋅
+

⋅
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

RTRTRTRTRT
f D

eq

2)(2
)()(1

2
exp

)2(

2

2

222

2/
)( uuξuξξ

π
ρ                                (1.19) 

and we will use )(eqf instead of )0(f in the following calculations. 

To numerically evaluate the hydrodynamic variables in Eq. (1.15), we need to discretize the 

momentum space ξ  properly. With an appropriately discretized momentum space, integration in 

Eq. (1.15) can be approximated by quadrature up to a certain degree of accuracy, i.e.: 

∑∑ ==
α

α
α

αρ )(eqff , ∑∑ ==
α

αα
α

ααρ )(eqff ξξu , ∑∑ −=−=
α

αα
α

ααρε )(22 )(
2
1)(

2
1 eqff uξuξ  

(1.20) 

where  

),,(),( tfWtff αααα ξxx ≡≡ , ),,(),( )()()( tfWtff eqeqeq
αααα ξxx ≡≡              (1.21) 

αW  is the weight coefficient of the quadrature and αξ  is the discrete velocity set. 

The above approximation process can be written in the following general form:  

),,()(),,()( )()( tfWtf eqeq
αα

α
αψψ ξxξξxξ ∑∫ =                                  (1.22) 

where )(ξψ  is the polynomial of ξ . The above integral has the following common part, which 

can be evaluated by a Gaussian-type quadrature [38]: 

)(
2

exp)(
2

exp
22

α
α

α
α ψψ ξ

ξ
ξξξ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ∑∫ RT

Wd
RT

I                                   (1.23) 
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We next need to discretize the phase space so that the evolution equation, i.e. Eq. (1.17), can 

be numerically evaluated over a discretized physical phase space and time. In doing this, we 

need to consider two factors. First, the discretized momentum space is coupled to that of physical 

space such that a lattice structure is obtained. Second, a lattice with necessary symmetries is 

required to satisfy the conservation constraints in Eq. (1.20) and also to retain the N-S equations. 

We use the D2Q9 model to illustrate the derivation of the LBE models. 

A Cartesian coordinate system is used to recover the D2Q9 model. Therefore, we can set: 

n
y

m
x ξξψ =)(ξ , where xξ  and yξ  are the x and y components of ξ . The integral in Eq. (1.23) can 

then be written as: 

nm
nm IIRTI )2()2( ++=                                                       (1.24) 

where  

∫
+∞

∞−

−= ζζζ deI m
m

2

 , RTx 2/ξζ = or RTy 2/ξζ =                                (1.25) 

For the purpose of deriving the D2Q9 model, a third-order Hermite formula [25] is used to 

evaluate mI , i.e. ∑
=

=
3

1j

m
jjmI ζω . The three abscissas of the quadrature are: 

2/31 −=ξ , 02 =ξ , 2/33 =ξ                                              (1.26) 

and the corresponding weight coefficients are: 

6/1 πω = , 3/22 πω = , 6/3 πω =                                         (1.27) 

Then the integral in Eq. (1.24) becomes: 

)()()(2
8

5

2
1

4

1
21

2
2 α

αα
α ψωψωωψω ξξ0 ∑∑

==

++= RTI                                  (1.28) 
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where αξ  is the discrete velocity set with a zero-velocity vector for 0=α , vectors of 

)0,1(3 ±RT and )1,0(3 ±RT for 41−=α , and )1,1(3 ±±RT for 85 −=α . After the 

momentum space is discretized with these nine discrete velocities, the physical space needs to be 

discretized accordingly. This means that the physical space is discretized into a square lattice 

space with a lattice constant δtRTx 3=δ . If we only deal with the isothermal model, then the 

temperature T has no physical significance here. Thus we can pick xδ to be a fundamental 

quantity, i.e. 
δt
xcRT δ

≡=3 , or 22

3
1 ccRT s == , where sc  is called the sound speed of the 

model, and c is the lattice speed. Usually the lattice speed is fixed as 1, so for the D2Q9 model, 

3/12 =sc . 

Comparing Eq. (1.23) and Eq. (1.28), we can identify the weights in Eq. (1.23) as: 

α
α

α π w
RT

RTW ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2
exp2

2ξ
                                                       (1.29) 

where αw  is the same as given in Eq. (1.7b). 

Then the equilibrium distribution function of the D2Q9 model is: 

⎥
⎦

⎤
⎢
⎣

⎡
−

⋅
+

⋅
+== 2

2

4

2

2
)()(

2
3

2
)(9)(3

1),,(
ccc

wtfWf eqeq uueue
ξx αα

αααα ρ                            (1.30) 

where αe  is the same as given in Eq. (1.7a). The evolution equation [Eq. (1.17)] is then finally 

discretized to Eq. (1.11) and can be solved numerically. Models for the other lattice 

configurations (D2Q7, D3Q27) can be derived in a similar manner [37].  
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2.0 IMPROVEMENT OF BOUNDARY TREATMENT IN THE LBE METHOD 
 
 
 
 

2.1 INTRODUCTION 
 
 
In the previous chapter, the role of boundary conditions (BCs) was not discussed. However, to 

some extent, developing accurate and efficient BCs is as important as developing an accurate 

computation scheme itself, since they will influence the accuracy and stability of the 

computation [39, 40, 41]. We will discuss two classes of boundaries encountered in the LBE 

simulation: the open boundary and the solid wall boundary. In practice, the solid wall boundary 

conditions are usually more important than the open boundary conditions, and are also much 

harder to incorporate. Therefore, we will put more emphasis on them in the following sections. 

In this chapter, we will first briefly introduce several commonly used open boundary conditions. 

Next, we will discuss the development of solid wall boundary conditions and finally propose our 

improved mass conserving solid wall boundary condition together with benchmark test results.  

 
 
 

2.2 THE OPEN BOUNDARY CONDITION 
 
 
Open boundaries denote inlets/outlets, periodical boundaries, lines of symmetry and infinity. The 

commonly used open boundary conditions are introduced in this section. 
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2.2.1 Periodical boundary condition 
 
 
The periodical BC is the easiest BC. The periodical BC is applied directly to the PDFs, and not 

to the macroscopic flow variables, which means the PDFs coming out of one boundary will enter 

into the opposite boundary. In most early papers, the periodical BC was used together with the 

bounce-back wall boundary condition (discuss in section 2.3). 

The periodical BC can be used as an inflow/outflow BC in the streamwise direction. For 

example, with the periodical BCs at the inlet and outlet, the uniform body force or constant 

pressure gradient can be included in the simulation procedure after the collision step, which is 

expressed as follows: 

xe v⋅−= αααα dx
dp

c
wff outletinlet 2__

3~~                                                (2.1) 

where 
dx
dp  is the constant pressure gradient, xv is the unit vector in the x (streamwise) direction, 

α  denotes the direction of the unknown PDF, and ~ denotes the post-collision state here and 

hereafter. 

 
2.2.2 Extrapolation boundary condition 
 
 
Besides the periodical BC, we can use the zero derivative condition for an inflow/outflow 

boundary. Supposing 1=i  is the inlet boundary and nxi =  is the outlet boundary, in the 2-D 

case, the zero derivative condition can be expressed in the following form: 

),2(~),1(~ jifjif === αα                                                       (2.2a) 

),1(~),(~ jnxifjnxif −=== αα                                               (2.2b) 
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In some instances, we can use extrapolation to find PDFs at the inflow/outflow boundary; e.g, 

instead of using Eq. (2.1), the following simple extrapolation can be used: 

),3(~),2(~2),1(~ jifjifjif =−=== ααα                                       (2.3a) 

),2(~),1(~2),(~ jnxifjnxifjnxif −=−−=== ααα                           (2.3b) 

 
2.2.3 Bounce-back and other boundary conditions for the inlet 
 
 
Based on the bounce-back of the PDFs or non-equilibrium part of the PDFs, different approaches 

[42, 43] have been proposed to obtain the PDFs at the inlet, from which the specified velocity or 

pressure can be recovered. In these approaches, usually the inlet boundary is placed half way 

between the inlet boundary node and the first fluid node as shown in Figure 2.1. If the velocity 

profile is known at the inlet, the standard bounce-back scheme for unknown PDFs at the inlet 

yields: 

inletinternalinlet c
wff ue ⋅+= αααα ρ 2_

32~~                                     (2.4) 

where αw  is the weighting factor; and αe  and αe  denote directions opposite to each other: 

αα ee −= . We use this notation hereafter. 

 

Figure 2.1: Layout of the inlet boundary. 

 
 

Grunau [44] placed the inlet at the boundary node and assigned an equilibrium distribution 

function to be the desired )(~ tfα  at the inlet. For the D2Q9 model, this gives: 

Boundary node Inlet boundary Fluid node

)(~ tfα  )(~ tfα
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]
2
3)(

2
931[~ 2

2
2

42_ inletinletinletinlet
eq

inlet ccc
wff uueue −⋅+⋅+== ααααα ρ                   (2.5) 

However, this method was reported to have a bigger error than the standard bounce-back scheme 

[43]. 

 

 

Figure 2.2: Configuration of PDFs used to construct the inlet boundary condition: (a) 
Configuration of equilibrium PDFs at the inlet, (b) Configuration of non-equilibrium PDFs at the 
inlet (the gray color denotes a fluid node). 

 
 

Recently, Yu [45] proposed a new boundary treatment for the inlet boundary. In this 

approach, the unknown PDFs at the inlet were decomposed to an equilibrium part and non-

equilibrium part and then computed separately, i.e. )(
_

)(
__

~ neq
inlet

eq
inletinlet fff ααα += . To illustrate how 

to numerically construct the )(
_
eq

inletfα  and )(
_
neq

inletfα , an 1-D example is shown in Figure 2.2. In Yu’s 
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approach, by using linear interpolation and setting )(
,3

)(
,3

neq
B

neq
I ff =  the unknown PDF can be 

obtained: 
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)(
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)(
,1

)(
,1

)(
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eq
I

eq
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eq
I

eq
B ffff −

Δ+
Δ

+=                                            (2.6a) 
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)(
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neq
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neq
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neq
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neq
B ffff −

Δ+
Δ

+=                                        (2.6b) 

 
 
 

2.3 WALL BOUNDARY CONDITIONS 
 
 

The most common and simplest solid wall boundary condition is the bounce-back boundary 

condition. In this boundary condition, when a particle distribution streams to a wall node, it 

scatters back to the fluid node along its incoming link. However, the bounce-back boundary 

condition only gives first order numerical accuracy, which means the lowest-order term in the 

truncation error is first order. To improve it, many boundary conditions have been proposed in 

the past [46, 47]. Among them, the halfway bounce-back scheme [26, 27, 48] is easy to 

implement and gives second-order accuracy for straight walls. The boundary condition proposed 

by Mei et. al. [49, 50] has the ability to handle complex geometries, e.g. a curved boundary.  

 
2.3.1 Fullway and halfway bounce-back wall boundary conditions 
 
 
The no-slip wall BC is widely used in traditional CFD methods. However, there is no 

corresponding counterpart for kinetic equations. Historically, the LBE method directly adopted a 

wall BC from the LGA, which resulted in the so-called fullway bounce-back condition. In the 

fullway bounce-back scheme, when a fluid particle collides with a wall node, it will scatter back 

to the fluid nodes along its incoming direction, i.e. inout ff αα = , where inf  is the PDF entering 
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the boundary site, outf  is the PDF leaving the boundary site, and α and α denote directions 

opposite to each other. The Fullway bounce-back BC is very simple and leads to mass and 

momentum conservation. However, the fullway bounce-back BC only gives first order accuracy 

at the boundaries. The LBE method itself is a second-order scheme, therefore using the fullway 

bounce-back BC will deteriorate the simulation results. Notice that in practice the order of 

accuracy can also be obtained by measuring the slope of relative L2-norm error (see Eq. (2.21)). 

We will discuss this in section 2.3.4.3. 

 

Figure 2.3: Illustration of fullway and halfway bounce-back boundary conditions. tt denotes a 
time step after a propagation process and tt ′  denotes the time after the application of the 
boundary condition. The gray color represents the boundary nodes (after [51]). 
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In order to achieve second order accuracy, several BCs have been proposed, such as the 

extrapolation scheme [42], bounce-back of the non-equilibrium distribution [43], etc. It was also 

shown that second order accuracy in space could be obtained by using the halfway bounce-back 

scheme. In this scheme the wall is placed at halfway between a fluid node and a bounce-back 

node. Compared with other second order boundary treatments, halfway bounce-back doesn’t 

need any extrapolation and is easy to implement. Figure 2.3 shows the application procedure of 

both the fullway and halfway bounce-back BC. For the halfway bounce-back BC, in only one 

time step a fluid particle goes to the boundary site, reverses its velocity and comes back, while 

the fullway bounce-back condition needs two time steps to go forth and back. 

 
2.3.2 Solid wall boundary conditions for a curved boundary 
 
 
Although the halfway bounce-back BC gives second order accuracy and is very easy to 

implement, it encounters problems when dealing with a curved boundary where one can no 

longer keep the wall boundary halfway between the lattice nodes. In order to solve this difficulty, 

several curved boundary treatments have been proposed, among which the unified BC proposed 

by Mei, Luo and Shyy (MLS) [49, 50] is the simplest to implement and can also handle different 

BCs, e.g. moving boundary.  

MLS’s BC is a revised version of the boundary treatment proposed by Filippova and Hänel 

(FH) [52]. We will discuss both of them here. As shown in Figure 2.4, αe  and αe  denote 

directions opposite to each other, bx  is a boundary node, and fx  is a fluid node. The curved wall 

is located between a boundary node and fluid node, with 
bf

wf

xx

xx

−

−
=Δ  denoting the fraction of 
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an intersected link in the fluid region. Obviously, 10 ≤Δ≤ . In order to finish the streaming step, 

we need to know ),(~ tf bxα at boundary node bx .  

 

Figure 2.4: Layout of the lattice and curved wall boundary (after [49]). 

 

FH proposed the following treatment for ),(~ tf bxα  on curved boundaries: 

wbfb c
wtftftf uexxx ⋅++−= ∗

ααααα ρχχ 2
)( 32),(),(~)1(),(~                         (2.7) 

where ),( tww xuu ≡  is the velocity at the wall, χ  is the weighting factor that controls the linear 

interpolation between ),(~ tf fxα  and ),()( tf bx∗
α , and ),()( tf bx∗

α  is given by a fictitious 

equilibrium distribution:  

⎥⎦
⎤

⎢⎣
⎡ ⋅−⋅+⋅+=∗

fffbffb ccc
twtf uuueuexx 2

2
42

)(

2
3)(

2
931),(),( αααα ρ               (2.8) 
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In Eq. (2.8), ),( tff xuu ≡  is the fluid velocity near the wall, bfu  is to be chosen, and the 

weighting factor χ  depends on how bfu  is chosen. In FH’s original paper, the following 

combination of bfu  and χ  was given: 

Δ+Δ−Δ= //)1( wfbf uuu        and       τχ /)12( −Δ=                      for 2/1≥Δ       (2.9a) 

fbf uu =                                      and      )1/()12( −−Δ= τχ               for 2/1<Δ       (2.9b) 

In order to improve the stability of the scheme, MLS revised the expression for bfu  and χ  to 

the following form: 

wfbf uuu )2/(3)]2/(31[ Δ+Δ−=          and       )2/1/()12( +−Δ= τχ         for 2/1≥Δ  (2.10a) 

),( tδtffffbf αexuuu +==               and         )2/()12( −−Δ= τχ           for 2/1<Δ  (2.10b) 

We can see that these boundary treatments can handle curved boundaries as well as moving 

boundaries.  

 
2.3.3 Slip velocity for different wall boundary conditions 
 
 
Theoretically, the “non-slip” boundary condition should be maintained at the solid wall boundary, 

which means that fluid molecules immediately at the surface of a solid move with exactly the 

same velocity as that solid. However, in the LBE simulation, all the above mentioned BCs will 

generate slip velocities at the wall boundary. He [53, 54] et al. analyzed the slip velocity of 

simple flows for different BCs. They showed both theoretically and numerically that for 

Poiseuille flow, the fullway bounce-back scheme generates a slip velocity which is equal to:  

]3)34)(12[(
3
2

2 n
n
u

u c
s −−−= ττ                                                 (2.11a) 

The halfway bounce-back scheme generates a slip velocity which is equal to:  
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]3)54(4[
)1(3 2 +−

−
= ττ

n
u

u c
s                                                  (2.11b) 

where cu  is the centerline velocity, τ  is the relaxation time and n is lattice resolution in the 

width of the channel. The channel width is xnH δ= for the fullway bounce-back scheme and 

xnH δ)1( −=  for the halfway bounce-back scheme.  

From Eq. (2.11), we can see that for the fullway bounce-back scheme the slip velocity is first 

order in space because it has a term of )/1( nO  and for the halfway bounce-back scheme the slip 

velocity is second order since all the terms of the slip velocity are on at the order of 

))1/(1( 2−nO . He also showed in his paper that the above conclusion holds for other simple 

flows, like plane Couette flow.  

MLS didn’t analyze the slip velocity generated by their scheme. Following He’s method, we 

conducted simulations of Poiseuille flow to determine the slip velocity generated by MLS’s BC. 

In simulation, wall boundaries are placed at 2/Hy ±=  ( 1=Δ ) and the body force in the x 

direction is set to be iF Gρ= . Then the centerline velocity is 
ν
GHuc 8

2

= . Suppose the slip 

velocity is Gus α= . Figure 2.5(a) gives the relation between α  and τ . Figure 2.5(b) shows that 

ν6
)45( ττα −

∝ . We try to formulate the slip velocity in the form of Eq. (2.11). We found that 

ν6
)45(

12
)45( ττ

τ
ττα −

=
−

−
= . Therefore, )]54(4[

36
)45(8

86
)45(

22

2

−=
−

=
−

= ττττττ
H
u

Hν
GHG

ν
u c

s , 

or )]54(4[
3 2 −= ττ
n
u

u c
s , which is also second order in space and quite close to the slip velocity 

of the halfway bounce-back scheme.  
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Notice that for a fixed lattice size, the error (slip velocity) goes to infinite as ∞→τ . 

However, for practical purposes, there is no need to take a large value of τ  in a simulation. In 

fact, the factor )54(4 −ττ  in the error expression has a maximal absolute value of only -6.25 

(when 625.0=τ ) for 25.15.0 ≤< τ . Then, if the lattice size is 40, the slip velocity is about 

0.13% of the maximum velocity.  
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Figure 2.5: Relation between α  and τ . 

 
 
 



 29

2.3.4 Mass conserving solid wall boundary condition 
 
 
In this subsection, we will describe the drawbacks of FH & MLS’s BC and give our remedy, i.e. 

our new mass conserving solid wall BC. We will show the advantage of our new BC by several 

benchmark tests.  

2.3.4.1 Drawbacks of FH & MLS’s BC Usually in the LBE simulation, the mass of the 

system is not conserved exactly. There will be mass loss/gain at each time step during the 

beginning stage of the simulation, which is the so-called “mass leakage” in the literature. Since 

in most cases the leakage is very small and it eventually approaches zero with enough time steps, 

as shown in Figure 2.6, therefore its effect on the simulation results can be neglected. However, 

under some circumstances, this mass leakage becomes no longer small and will affect the 

simulation result.  

0 10000 20000 30000 40000 50000 60000
215.9950

215.9955

215.9960

215.9965

215.9970

215.9975

215.9980

215.9985

215.9990

215.9995
 

 

m
as

s

time step  

Figure 2.6: System mass changes with time in a typical LBE simulation. 
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Figure 2.7: Schematic of static flow under gravity. 

 
 

One simple yet very useful case to consider is static flow under gravity jG gρ−= . Figure 2.7 

shows the set up of the simulation system. We set 1=Δ , 0=wu , 1=τ , 001.0=g  and set the 

lattice resolution to be 50100×=× nynx . Using FH’s BC, the system mass will keep decreasing 

at a constant rate as shown in Figure 2.8. Shown in Figure 2.9 is the mass changing rate (defined 

as: 
tt

massmass −
+100

) varying with time, which fluctuates at the beginning stage then instead of 

approaching to zero as in a typical LBE simulation, approaches a constant negative value. 
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Figure 2.8: System mass changes with time using FH’s BC. 
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Figure 2.9: Mass changing rate varying with time. 

 
 

We notice that by setting 1=Δ  and 1=τ , the weight coefficient 1=χ , and then by setting 

0=wu , Eq. (2.7) becomes: ),(),(~ )( tftf bb xx ∗= αα . Now, we consider another extreme case, i.e. 

setting 2/1=Δ , where therefore, 0=χ , which means ),(~),(~ tftf fb xx αα = . This time, the mass 

is exactly conserved. From this comparison, we can see the mass leakage is due to the 

),()( tf bx∗
α  term itself.  

Since the mass leakage results from the interchange of mass between fluid nodes and 

boundary nodes, to analyze it we now consider two fluid nodes next to the boundary, located at 

1=y  and 1−= nyy , respectively, and only study their outgoing and incoming PDFs. There are 

several methods of incorporating body force into the scheme [55]. In order to simplify our 

analysis, we use a simple and commonly used approach -- direct body forcing. In this approach, 

the body force is included in the scheme after the collision step by: 

jexxx ˆ),(3),(~),(~
2 ⋅−= αααα ρ gt

c
wtftf iii                                   (2.12) 
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For the upper fluid node at 1−= nyy , the outgoing PDFs are 2f , 5f  and 6f  which are given 

by: 

2
)(

22 3
),1(),1(~),1(~

c
gtnytnyftnyf eq −

−−≈−
ρ                                 (2.13a) 

2
)(

55 12
),1(),1(~),1(~

c
gtnytnyftnyf eq −

−−≈−
ρ                                 (2.13b) 

2
)(

66 12
),1(),1(~),1(~

c
gtnytnyftnyf eq −

−−≈−
ρ                                 (2.13c) 

In the above equations, use the “=” sign when 1=τ . Similarly, for the lower fluid node at 1=y , 

the outgoing PDFs are 4f , 7f  and 8f  which are given by: 

2
)(

44 3
),1(),1(~),1(~

c
gttftf eq ρ

+≈                                               (2.13d) 

2
)(

77 12
),1(),1(~),1(~

c
gttftf eq ρ

+≈                                                (2.13e) 

2
)(

88 12
),1(),1(~),1(~

c
gttftf eq ρ

+≈                                                (2.13f) 

For 1=τ , the incoming PDFs are:  

),1(~),(),1(~ )(
2

)(
24 tnyftnyftnyf eq −≈=− ∗                                               (2.14a) 

),1(~),(),1(~ )(
5

)(
57 tnyftnyftnyf eq −≈=− ∗                                               (2.14b) 

),1(~),(),1(~ )(
6

)(
68 tnyftnyftnyf eq −≈=− ∗                                               (2.14c) 

),1(~),0(),1(~ )(
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42 tftftf eq≈= ∗                                                       (2.14d) 

),1(~),0(),1(~ )(
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)(
75 tftftf eq≈= ∗                                                       (2.14e) 

),1(~),0(),1(~ )(
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)(
86 tftftf eq≈= ∗                                                       (2.14f) 
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The “ ≈ ” is obtained because ),()( tf bx∗
α  is given by a fictitious equilibrium distribution, Eq. (2.8), 

which is in the same form of )(eqfα  in Eq. (1.6). The only difference is that in the second term bfu  

is used instead of fu . Since fbf uu ≈  (for FH’s BC, when 2/1<Δ , fbf uu = ), therefore 

),(~),( )()( tftf f
eq

b xx αα ≈∗ .  

Then the mass leakage of one pair of fluid nodes, i.e. the upper and the lower fluid node will 

be:  

gtnyt

gtnyt
c

tftftftnyftnyftnyf

tftftftnyftnyftnyfff
incomingoutgoing

)],1(),1([
2
1

)],1(),1([
2
1

)],1(~),1(~),1(~),1(~),1(~),1(~[

),1(~),1(~),1(~),1(~),1(~),1(~~~

2

652874

874652

−−=

−−≈

−−+−+−+−−

+++−+−+−=− ∑∑

ρρ

ρρ
    (2.15) 

Since lattice Boltzmann fluids are intrinsically compressible, introducing gravity into the LB 

scheme will result to density variation in the system. The density difference between the upper 

and lower fluid nodes therefore produces the mass leakage. Suppose there is no density variation 

along the x direction, which is verified by the simulation, and also assume that the density 

change is small during a short time interval, say 100 time steps. Then the mass leakage of the 

system in this time interval can be calculated by:  

gnyervaltimenxleakagemass )]1()1([**)1(*5.0 ρρ −−+= int .                   (2.16) 

Figure 2.10 shows the density at 2/nxx =  as a function of height when 32600=t . Using Eq. 

(2.16), we can estimate the mass leakage during 100 time steps: 

6938.0001.0*)024421.1887033.0(*100*101*5.0 −=−=leakagemass  

The actual mass leakage during this time interval is 6867.0− (see Figure 2.8), which is very 

close to our estimate, an error of %03.0 . 
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Figure 2.10: Density as a function of height at selected time. 

 
 

The above discussion clearly shows that the mass leakage is due to the density variation in 

the system, or more precisely, due to the fact that the ),()( tf bx∗
α  term doesn’t correctly reflect 

the density variation. Since ),(~ tf bxα  is the linear combination of ),(~ tf fxα  and ),()( tf bx∗
α , to 

improve the stability of the scheme, MLS tried to change the weighting coefficients of these two 

terms. In the commonly used range of τ , MLS’s revision produces a smaller weighting 

coefficient χ  and therefore a better stability (as discussed later). However, under some 

circumstances, like the one we discussed in this subsection, MLS’s BC cannot eliminate the 

constant mass leakage. In most cases, it can only decrease the mass changing rate, unless 0=χ . 

It should be emphasized here that the intensity of gravity 001.0=g  used in the example is 

quite big. Usually, in the LBE simulations, the intensity of the body force is restricted to satisfy 

the incompressible limit, sc<<u . In this example, the common practice is to set 2* scnyg << , 

which results in a smaller density variation and a smaller mass leakage too. Meanwhile, in many 
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system configurations, the density variation will not produce the constant mass leakage as shown 

in the example, so FH & MLS’s BCs are still widely used in the literature.   

In order to eliminate the abovementioned constant mass leakage and therefore make the LBE 

method suitable for the flow system with small compressibility, in the next subsection we will 

propose a new mass conserving BC by revising MLS’s BC. We will show that by using our new 

BC we can not only eliminate the constant mass leakage but also greatly improve the stability of 

the scheme.  

 

2.3.4.2 Implementation of mass conserving solid wall BC From the above discussions we 

can see that a boundary condition that can preserve the total mass in a given system is very 

important for LBE simulations. Based on MLS’s BC, we defined a new boundary condition, 

called the mass conserving solid wall boundary condition. The basic idea is that we still use 

linear interpolation between ),(~ tf fxα  and ),()( tf bx∗
α  (Eq. (2.12)) to find ),(~ tf bxα . However, 

we will change the density term in the expression of ),()( tf bx∗
α , (Eq. (2.13)) to guarantee the 

mass conservation, since the ),()( tf bx∗
α  term is responsible for the mass leakage. Therefore, we 

define that: 

⎥⎦
⎤

⎢⎣
⎡ ⋅−⋅+⋅+=∗

fffbfwb ccc
twtf uuueuexx 2

2
42

)(

2
3)(

2
931),(),( αααα ρ               (2.17) 

where ),( twxρ  is called the wall density.  

It must be determined what ),( twxρ  term guarantees the mass conservation. We discuss this 

in the context of D2Q9 model. Shown in Figure 2.11 are the known and unknown PDFs of a flat 

boundary site at the lower wall boundary after the streaming step.  
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Figure 2.11: PDFs of a flat boundary site at the lower wall boundary after the streaming step. 

 
 

The outgoing PDFs are 874 ,, fff , which are known and the incoming PDFs are 652 ,, fff , 

which are unknown. The mass conservation requires that 874652 ffffff ++=++ . Assume 

that all the outgoing PDFs also satisfy Eq. (2.17), with an unknown ),( twxρ  term. Then 

summing these together, we find: 

)331)(,(
6
1

874
y
f

y
bfw uutfff +−=++ xρ                                          (2.18) 

where y
bfu  is the y-component of bfu  and y

fu  is the y-component of fu . Therefore ),( twxρ  will 

be: 

y
f

y
bf

w uu
fff

t
331

6),( 874

+−
++

=xρ                                                         (2.19) 

Then by substituting the expression of ),( twxρ  into Eq. (2.17), the unknown PDFs 

652 ,, fff  can be obtained. It is straightforward to show that this boundary treatment indeed 

satisfies the condition: ∑∑ =
incomingoutgoing

ff , so therefore the total mass is conserved.  

8 7 

6

3 

2

1 
0

4 

Unknown (Incoming) PDFs: 

Known (Outgoing) PDFs:

5

??,? 652 === ff，f  

874 ,, fff

Solid side 

Fluid side 



 37

0 5000 10000 15000 20000

4999.6

4999.8

5000.0

5000.2

5000.4

5000.6

 

 

m
as

s

time step  

Figure 2.12: System mass changes with time using new BC. 

 
 

In order to verify our new BC, simulations of the same problem specified in the previous 

subsection were conducted. Figure 2.12 shows the system mass change with time using the new 

BC. The mass of the system fluctuates at the beginning then goes to a constant value. Even at the 

smaller time steps, the fluctuation is very small.  

The mass distribution at 2/nxx =  when 60000=t  is plotted in Figure 2.13 together with 

simulation results obtained by using the halfway bounce-back BC and FH’s BC. All three BCs 

give linear density distributions. Results of new BC match well with that of the halfway bounce-

back scheme. However, the results of FH’s BC differ considerably from the other two because of 

mass leakage.  
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Figure 2.13: The mass distribution at 2/nxx =  when 60000=t  obtained from different schemes. 
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Figure 2.14: y-component of velocity at 2/nxx =  when 60000=t  obtained from different 
schemes. 
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Theoretically, all of the x- and y-components of velocity should be zero. However, due to the 

compressibility of the scheme, one will get non-zero y velocities in the simulation. Comparison 

of y velocities between our new BC and FH’s BC is given in Figure 2.14, where y velocities at 

2/nxx =  when 60000=t  are plotted. The y velocities generated by our new scheme are much 

smaller (about 1/50) than those of FH’s BC. 

We have shown that our new BC not only can guarantee mass conservation but also produces 

more accurate results than FH’s BC. Meanwhile, since the ),()( tf bx∗
α  term now correctly reflects 

the compressible effect, therefore the weighting coefficients of ),(~ tf fxα  and ),()( tf bx∗
α  term to 

find ),(~ tf bxα  become more flexible. In practice, both FH’s approach (Eq. (2.9)) and MLS’s 

approach (Eq. (2.10)) can give satisfactory if not entirely accurate results. We will discuss this in 

detail in the next subsection.   

Using the same idea, i.e. setting ∑∑ =
incomingoutgoing

ff , the new BC can be easily extended to other 

types of flat wall boundaries as well as curved wall boundaries. Figure 2.15 shows three types of 

flat wall boundaries in a 2-D configuration.  

 

Figure 2.15: Three flat wall boundary configurations. Blue dashed arrows, red plain arrows and 
black plain arrows represent the incoming distribution, outgoing distribution and fluid-fluid 
(buried) distribution. Gray areas represent the solid part.  
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Both for the flat wall and convex corner boundaries, there is one pair of distributions that 

point into the flow ( 1f  and 3f  for a flat wall; 6f  and 8f  for a convex corner), as illustrated by 

the black plain arrows. These we call fluid-fluid distributions. Since their values are known after 

streaming and they will not bring net mass change into the flow, we do not need to calculate their 

value nor need to include them in the procedure of finding the unknown distributions. In the 

concave corner case, there is one pair of distributions ( 6f  and 8f ), neither of which point to the 

flow. We call these buried distributions. Differing from fluid-fluid distributions, the buried 

distributions are not known after the streaming step. However, since they stream no mass into the 

flow, in the simulation we can simply switch their values as if they were bounce-back to the 

opposite direction or give the average value to each of them. Therefore, we do not need to 

include them in the procedure of finding the unknown distributions. 

We use blue and red colors to denote incoming (unknown) and outgoing (known) 

distributions in the figure. After defining these distributions, it is clear that these three cases are 

essentially the same. Therefore, for determining the incoming distributions, we can follow the 

same procedure as described in the flat wall case, i.e. use outgoing distributions to find the 

),( twxρ  term, then substitute it into Eq. (2.17) to calculate the incoming distributions.  

The new mass conserving boundary treatment can be easily extended to the 3-D case as well 

as for a curved wall boundary. In doing so, one needs to distinguish the incoming, outgoing, and 

fluid-fluid (buried) distributions as discussed above. Also for the curved wall boundary, the 

fraction of the intersected link Δ  is not a constant over the entire wall, so one need to decide its 

value for each boundary node.  
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2.3.4.3 Benchmark tests for the new boundary condition We have introduced our new 

mass conserving wall boundary condition in the previous section. The new boundary condition is 

as simple as FH and MLS’s BC yet demonstrates a better performance in the testing example. In 

this subsection, we will use several benchmark problems to test this new BC further. 

A. Fully developed 2-D channel flow 

For the fully developed 2-D channel flow driven by the pressure gradient, the analytic solution is: 

)(
2
1)( 2

2

ηη
ρ

−−=
ν

H
dx
dpyuexact                                              (2.20) 

where 
dx
dp is the pressure gradient, Δ+−= 22nyH  is the height of the channel and 

Hj /)1( Δ+−=η . In order to evaluate the computational error of the scheme, the following 

relative L2-norm error is defined:  
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where )(yuLBE  is the LBE solution of the velocity.  

First, we examine the accuracy of the new BC. Figure 2.16 shows the dependence of the 

relative L2-norm error on the lattice resolution for different Δ . Also shown in the figure are the 

magnitude of the slopes, k, obtained by linear fitting the error data for different Δ . By examining 

these k values, one can see that second order accuracy was indeed maintained. It has been proved 

that the LBE method gives second order accuracy for the interior points. Hence the overall 

second order accuracy obtained here means that the accuracy of boundary condition is at least of 

the second order.  
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Figure 2.16: Dependence of relative L2-norm error on the lattice resolution for 2-D channel flow. 

 
 

Figure 2.17 shows the relative L2-norm error as a function of Δ  for 2-D channel flow, which 

gets its minimum value when 35.0≈Δ . For other Δ  values, the error increases approximately 

linearly, which is similar to MLS’s result.  
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Figure 2.17: Relative L2-norm error as a function of Δ  for 2-D channel flow. 
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Table 2.1 gives the L2-norm error obtained by different boundary conditions for 75.0=Δ , 

6.0=τ . For the new boundary condition, both FH and MLS’s approach of determining bfu  were 

used, denoted by “New + FH” and “New + MLS” in the table. From the table, it is clear that 

using the same bfu , the new BC produces the same errors as MLS’s BC and smaller errors than 

FH’s BC at higher grid resolutions.  

Table 2.1: The L2-norm error obtained by different boundary conditions. 

               ny 
BC    10 20 30 40 50 

FH 2.7256083E-02 6.5637481E-03 2.8808801E-03 1.6132460E-03 1.3193971E-03 
New + FH 2.7256083E-02 6.5637481E-03 2.8808800E-03 1.6103690E-03 1.0267685E-03 
MLS 3.0453999E-02 7.3338629E-03 3.2188895E-03 1.8021873E-03 1.4392486E-03 
New + MLS 3.0453999E-02 7.3338629E-03 3.2188895E-03 1.8021873E-03 1.4392486E-03 

 
 
A main advantage of the new BC over FH and MLS’s BC is its excellent stability. Figure 

2.18 shows the stable and unstable regions in the LBE computation for fully developed 2-D 

channel flow using FH’s BC and MLS’s BC. For 2/1<Δ , there exist a certain region of τ , 

under which the computation is not stable. For FH and MLS’s BC, this region is around 1=τ  

and 2=τ , respectively.  

 
(a) 
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(b) 

Figure 2.18: Regions of stability and instability in the LBE computation for fully developed 2-D 
channel flow (after [56]) (a) Using FH’s BC, (b) Using MLS’s BC . 

 
 

We think this instability is due to the mass leakage. For FH’s BC, when τ  is close to 1.0, 

then the absolute value of weighting factor before the ),()( tf bx∗
α  term becomes very big, since 

)1/()12( −−Δ= τχ . We know that the mass leakage in FH’s scheme is related to the ),()( tf bx∗
α  

term, therefore large χ  will result in large mass leakages of the system and finally make the 

simulation unstable. MLS noticed this problem and changed the definition of the weighting 

factor to )2/()12( −−Δ= τχ . This will make the simulation stable for τ  values around 1.0; 

however, for τ  values around 2.0, the simulation becomes unstable due to the same reason. To 

verify this, we performed simulations for a point inside the unstable region ( ,2.0=Δ  

8181.155.0/1 ==τ ) using MLS’s BC. Figure 2.19 gives the system mass as a function of time, 

which increases exponentially and finally makes the simulation blow up.  
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Figure 2.19: System mass as a function of time using MLS’s BC. 

 
 

Furthermore, we think for the MLS’s BC there should exist an upper limit for the unstable 

region similar to that of FH’s BC in Figure 2.18 (a), since essentially MLS’s BC can be viewed 

as an revision of FH’s BC by linearly shifting the weighting factor. This also has been verified in 

our simulation. For example, for 2.0=Δ , the MLS treatment is unstable for: 873.15
063.0
1

=≤τ . 

When 129.16
062.0
1

=≥τ , the system becomes stable again. MLS did not give this upper limit 

in their paper, probably because the large τ  value will produce a large slip velocity (as we 

discussed before) and the simulation results therefore deviate from the analytical solution at this 

stage.  

Figure 2.20 gives regions of stability and instability on the ( τ,Δ ) plane in the LBE 

computation for fully developed 2-D channel flow using the new BC. Note that the scale for the 

y-axis is much finer than in Figure 2.18. Because mass leakage is much smaller in the new BC, 

the unstable region is much smaller as well. That means in simulation one can use a τ  value 
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which is very close to 2.0. Meanwhile, since mass conservation is guaranteed, different 

weighting factor will not greatly effect the simulation result. If we need to use 0.2=τ , we can 

simply switch to FH’s weighting factor to avoid the singular point.  
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Figure 2.20: Regions of stability and instability in the LBE computation for fully developed 2-D 
channel flow using new BC. 

 
 

 

Figure 2.21: Stability boundary of the FH’s scheme in a square duct flow for Δ  near 1.0 (after 
[50]). 
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For 5.0≥Δ , FH’s treatment encounters numerical instability too, as shown in Figure 2.21. 

By modifying χ  and bfu , MLS’s treatment encounters no numerical instability for 5.0≥Δ . In 

our new BC, due to mass conservation, there is no numerical instability encountered for 5.0≥Δ , 

no matter whether FH’s or MLS’s χ  and bfu  are being used.  

We also compared minτ , the minimum value of τ  at which the computation is stable for a 

given Δ , for the different schemes. It is reported in Guo et.al.’s paper [57] that for 1.0=Δ , 

509.0min =τ  for the MLS treatment and 0.506 for his treatment. For 2.0=Δ , 505.0min =τ  for 

the MLS treatment and 0.50003 for his treatment. For 3.0≥Δ , the simulations are still stable for 

both treatments even as 7105.0 −=−τ . For our boundary treatment, under the same conditions, 

we found that even for 1.0=Δ , the computations are still stable for 1110*5.25.0 −=−τ . 

Therefore, our BC has much better numerical stability than the other two methods. Furthermore, 

this very small achievable minτ  is very useful in simulating flows with high Reynolds numbers. 

B. 2-D channel flow with oscillating pressure gradient 

The system set up is the same as before, but the pressure gradient is no longer constant, and 

oscillates with time: tiep
dx
dp ω* −= , where *p  is the amplitude and ω  is the frequency. The exact 

solution is given by [58]:  
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where a is half of the channel width 2/Ha =  and α  is the Womersley number defined by: 

ν
ωa=α . “Re” denotes the real part of the solution. For a small Womersley number, Eq. (2.22) 
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reduced to )cos()(
2
1),( *2

2

ωtp
ν

Htyuexact ηη
ρ

−−≅ , which is simply a quasi-steady flow and the 

velocity profile at any time is the same as that of Poiseuille flow with the corresponding forcing 

term. At large α , the velocity profile is no longer parabolic.  
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Figure 2.22: Obtained velocity profiles (black dots) over a complete period compared to the 
exact solution (red lines). The measurements are taken at the middle of the channel, at each 

nTt 04.0=  when 25,...,1,0=n . 

 
 

Figure 2.22 shows obtained velocity profiles (dots) over a complete period, ωπT /2= , 

compared to the exact solution (lines) with 25.1=τ , 1=α  and 060.1* −−= Ep . The 

measurements are taken at the middle of the channel, at each nTt 04.0=  when 25,...,1,0=n . 

Good agreement was achieved. Since the error will vary with time, a time averaged error over 

one period is used and defined by: 
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Figure 2.23 shows the dependence of the relative L2-norm error on the lattice resolution for 

oscillating 2-D channel flow. The slope of the line obtained by linear fitting is -2.17508, which 

indicates second order accuracy was maintained. Table 2.2 gives the L2-norm error obtained by 

the MLS and new boundary conditions for 6.0=τ , 5.0=α , and 060.1* −−= Ep . The new BC 

generally gives a slightly smaller error than the MLS’s BC, since τ  is not very small nor close to 

a singular point. Again, in terms of stability, our new BC performs much better, as discussed 

before.  
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Figure 2.23: Dependence of relative L2-norm error on the lattice resolution for oscillating 2-D 
channel flow. 

 

Table 2.2: L2-norm error obtained by different boundary conditions 

      ny             L2 error New BC MLS’s BC 

10 1.1870700E-02 1.1870700E-02 
20 2.4790973E-03 2.4791020E-03 
30 1.0415668E-03 1.0415659E-03 
40 5.6822888E-04 5.6999016E-04 
50 3.5878056E-04 3.5878056E-04 
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C. Stokes first problem: flow due to an impulsively started wall 

For Stokes first problem, the wall is placed at 0=y  and is impulsively started. The exact 

solution is given by:  

⎥
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−= )

2
(1),(

νt
yerfutyu wallexact                                        (2.24) 

where wallu  is the velocity of the wall and will be substituted into BC as wu  term. As time 

increases, an unsteady Stokes layer with thickness )( νtO  develops near the wall. The LBE 

method is a fix-grid computation, with 1=== δtyx δδ , so therefore the error at small times is 

expected to be large due to insufficient spatial resolution. Figure 2.24 shows the velocity profiles 

at 100=t  (in lattice units) with different values of Δ . The error is smaller for 25.0=Δ  than for 

0.5 and 0.75 due to a better spatial resolution near the wall. 
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Figure 2.24: Velocity profiles at 100=t  (in lattice units) for Stokes first problem with different 
values of Δ .  
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We define the L2-norm error as:  
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Figure 2.25 gives the relative L2-norm error as function of time for different values of Δ . 

Also shown in the figure is the error obtained by using halfway bounce-back scheme (denote as 

BBL in the figure). We can clearly see that 25.0=Δ  gives a smaller error than 5.0=Δ  and 0.75, 

especially at small time. The error decreases with time, which is because the spatial resolution 

becomes adequate after the Stokes layer grows to a certain thickness. The error of 5.0=Δ  is 

very close to the error obtained by using halfway bounce-back scheme, which indicates the 

second order accuracy of the scheme. 
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Figure 2.25: Relative L2-norm error as function of time for the Stokes first problem with 
different values of Δ .  
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D. 2-D lid-driven cavity flow 

For 2-D lid-driven cavity flow, the right and left corner at the upper wall are singular points and 

will be treated as concave corners, as discussed in a previous subsection. We first compare the 

simulation results of 5.0=Δ  with the halfway bounce-back scheme, which is known to give a 

result with second-order accuracy.  
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Figure 2.26: Velocity profiles at 4/nx  and 2/nx  in lid-driven cavity flow for 5.0=Δ  and 
halfway bounce-back (denote as BBL: bounce-back at link in the figures) scheme. (a) x 
component of velocity, (b) y component of velocity.  
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Figure 2.26 shows the velocity profiles at 4/nx  and 2/nx  for 5.0=Δ  and a halfway 

bounce-back scheme with 100Re = . Excellent agreement was obtained. Furthermore, the 

halfway bounce-back scheme becomes unstable when 53.0≤τ , while our new BC encounters 

no instability even at 5001.0≤τ . Figure 2.27 shows velocity profiles at 4/nx  and 2/nx  for 

different values of Δ . 
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Figure 2.27: Velocity profiles at 4/nx  and 2/nx  for different values of Δ . (a) x component of 
velocity, (b) y component of velocity. 
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2.3.4.4 Conclusion In summary, we propose a second-order accurate mass conserving 

boundary condition for the LBE method. Several benchmark test problems involving steady and 

unsteady flows were used to validate the accuracy and examine the robustness of the proposed 

BC. Compared with the FH and MLS’s BCs, our new BC has the following advantages: (1) The 

mass leakage is smaller than in other schemes and will not result in a constant mass leakage (as 

for other BCs) in some special cases. (2) It has much better stability than any other BC used in 

the simulations. Both the unstable region and the achievable minimum τ  value are much smaller 

than those of other schemes. (3) In the normal region of Δ  and τ , i.e. the stable region for all 

BCs, it gives second order accuracy and comparable or better results than other schemes. (4) It is 

not sensitive to the interpolation (weighting) factor and choice of bfu . 

 
 
 

2.4 DISCUSSION 
 
 
In this chapter, we demonstrated the different open boundary treatments and wall boundary 

treatments. For the wall BCs, FH and MLS BC are widely used in the LB simulations, due to 

their robustness, capability of handling curved wall boundary, and easy implementation. 

However, we found that these BCs will result to constant mass leakage in certain circumstance. 

We analyzed the source of the leakage. Based on this analysis, we proposed a second-order 

accurate mass conserving wall boundary condition for the LBE method. We have showed 

through several benchmark test problems involving steady and unsteady flows that our new BC 

not only solved the problem of constant mass leakage but also have many other advantages, like 

much wider stable region, over the FH and MLS BC. Furthermore, we think the idea of mass 
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conserving treatment can be extended to the open boundaries to develop corresponding boundary 

treatment, where further research is needed. 
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3.0 MULTIPHASE LBE MODEL 
 
 
 
 

3.1 INTRODUCTION 
 
 
The importance of understanding fluid flow and heat transfer with a change in phase arises from 

the fact that many industrial processes rely on these phenomena for materials processing or for 

energy transfer, e.g. petroleum processing, paper-pulping, power plants. There are many 

common examples of multiphase flow and heat transfer not only in industrial processes but also 

everyday life. Thus the understanding of multiphase flow is essential for both fundamental 

research and engineering applications. However, due to the complex nature of multiphase flow, 

theoretical solutions are generally limited to relatively simple cases. Meanwhile, the 

experimental approaches for multiphase flow are very expensive if not impossible, depending on 

the scale and/or fluid composition. Therefore, it is reasonable to say that numerical simulations 

are primarily useful in studying the underlying physics of multiphase flow and providing 

information about the details of processes that are difficult to obtain by theoretical analysis or by 

experiments. 
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3.2 COMPUTATIONAL APPROACHES USED IN TWO-PHASE FLOW 
SIMULATION 

 
 
In simulating multiphase flow, there are several traditional CFD methods, most of which can be 

fitted in two categories: the front-capturing method and front-tracking method. We will briefly 

review these methods in this section and also introduce LB two-phase flow models. 

 
3.2.1 Front capturing methods 
 
 
Front-capturing methods track the movement of fluid and ‘capture’ the interface afterwards. In 

these methods, the two fluids are modeled as a single continuum with discontinuous properties at 

the interface. The fluid flow equations for both fluids are solved in the same Eulerian mesh. 

There are three types of front capturing methods: the Marker-and-Cell (MAC) method [59, 60], 

Volume-of-Fluid (VOF) method [61], and level set method [62], based on how the interface 

propagation is obtained thereafter.  

In the Marker-and-Cell (MAC) method, the Lagrangian markers are used to represent the 

location of the liquid (one phase). The interface is then constructed based on the location of the 

markers. Physical properties, i.e. viscosity and density, for the fluid at each grid point are 

determined by the phase present. Figure 3.1 illustrates this concept. The MAC method is 

computationally very expensive, since in order to accurately determine the interface one needs to 

track a very large number of markers.  
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Figure 3.1: Schematic for the Marker-and-Cell method (after [63]). 

 
 

The Volume-of-Fluid (VOF) method was introduced to reduce the heavy computational load 

of the MAC method. In the VOF method, instead of tracking a large number of markers, the 

volume fraction of fluid in each cell is used to track the movement of the liquid. Therefore, the 

computational cost is greatly reduced. However, the VOF method still has difficulties in 

determining the exact location of the interface.   

The level set method uses two sets of equations to model the two-phase flow system. The 

first set, like the other two methods, is comprised of the single fluid N-S equations, which are 

employed to determine the momentum. The second set is a transient scalar advection equation 

which tracks a level set function. The level set function equals zero at the interface, a negative 

value for locations inside one phase, and a positive value for locations inside another phase. The 

location of the interface is determined by interpolating between the level set function values. In 

the level set method, the interface is much easier to determine compared to the MAC and VOF 

methods. However, it has some problems with mass conservation, because the advection of the 

level set function is not based on a strictly conservative equation.  
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Furthermore, the solution of front-capturing method is prone to numerical diffusion and 

dispersion problems, which are inherent in the numerical solution of hyperbolic equations by any 

discretization scheme when there are discontinuities in the solution. 

 
3.2.2 Front-tracking methods 
 
 
Front-tracking methods directly ‘track’ the location of the two-phase interface. Therefore they 

allow more accurate calculation of the curvature of the interface [64]. Most commonly used 

front-tracking methods are: the boundary-fitted grid method [65], Tryggvassions’s hybrid 

method [66], and Boundary Element Method (BEM) [67].  

 

Figure 3.2: Schematic for boundary-fitted method (after [63]). 

 
 

In the boundary-fitted grid method, two sets of N-S equations are solved-one for each fluid. 

The grid of the computational domain is constructed in such a fashion that the interface between 

two phases is located along a grid line, as shown in Figure 3.2, and the movement of the 

interface is determined by a force balance. In the hybrid method proposed by Tryggvason, two 

sets of grids are used, i.e.: a stationary grid used to determine the fluid flow and a lower 
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dimension grid used to track the interface. In the Boundary Element Method (BEM), a multitude 

of boundary nodes are employed to represent the two-phase interface. The movement of these 

boundary nodes is based on the potential function equations.  

 
3.2.3 Lattice Boltzmann two-phase models 
 
 
Although conceptually simple, it is more difficult to implement these traditional CFD methods in 

a two-phase flow simulation. The difficulties arise from the interface deformation and interaction. 

Computationally, one might be able to track a few, but hardly very many, interfaces in a system.  

Recently, simulating multiphase flow with the LBE method has attracted much attention. 

Microscopically, the phase segregation and surface tension in multiphase flow are because of the 

interparticle forces/interactions. Due to its kinetic nature, the LBE method is capable of 

incorporating these interparticle interactions, which are difficult to implement in traditional 

methods. Therefore, the key step in developing the LBE multiphase model is to correctly 

incorporate the particle interactions into the evolution of PDFs so that macroscopically correct 

multiphase flow behavior can be obtained. 

There have been a number of LB multiphase flow models presented in the literature. The first 

immiscible multiphase LB model proposed by Gunstensen et al. uses red- and blue- colored 

particles to represent two kinds of fluids [68]. The phase separation is then produced by the 

repulsive interaction based on the color gradient and color momentum. The model proposed by 

Shan and Chen (SC) imposes a non-local interaction between fluid particles at neighboring 

lattice sites [69-72]. The interaction potentials control the form of the equation of state (EOS) of 

the fluid. Phase separation occurs automatically when the interaction potentials are properly 

chosen. There is also the so-called free-energy-based approach proposed by Swift et al. [73, 74]. 



 61

In this model, the description of non-equilibrium dynamics, such as Cahn-Hilliard’s approach, is 

incorporated into the LB model by using the concepts of the free energy function. The free 

energy model has a sound physical basis, and, unlike the SC model, the local momentum 

conservation is satisfied. However, this model does not satisfy Galilean invariance and some 

unphysical effects will be produced [75] in the simulation. In the multiphase model proposed by 

He, Chen and Zhang (HCZ) [76, 77], two sets of PDFs are employed. The first PDF set is used to 

simulate pressure and velocity fields and another PDF set is used to capture the interface only, 

which makes this approach essentially close to the interface capturing methods in spirit. Their 

approach is more flexible in implementing the thermodynamics of the flow. A severe problem 

with their approach is its numerical instability. 

 
 
 

3.3 SINGLE COMPONENT MULTIPHASE LATTICE BOLTZMANN MODEL 
 
 
Among all of the LBE two-phase flow models, the SC model is widely used due to its simplicity 

and remarkable versatility: it can handle fluid phases with different densities, viscosities and 

wettabilities, and handle different equations of state as well. Originally, the SC model was 

proposed for the flow system with multiple phases and components. Later on, the model was also 

used in single component multiphase flow systems. In this study, we will employ the single 

component multiphase (two-phase) version of SC model. 

Microscopically, the segregation of a fluid system into different phases is due to the 

interparticle forces [78]. In the single component multiphase LBE model proposed by Shan and 

Chen, a simple long-range interaction force between the particles at site x  and the particles at 

site x′  is introduced: 
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where ),( xx ′G  is Green’s function and satisfies ),(),( xxxx ′=′ GG . It reflects the intensity of 

the interparticle interaction, with 0),( <′xxG  representing attractive forces between particles. 

)(xψ  is called the “effective mass” and is defined as a function of x  through its dependency on 

the local density, ))(()( xx ρψψ = . In the SC model, the function of )(xψ  can be varied, and 

different choices will give a different EOS. 

In order to perform the numerical simulation, SC introduced the concept of the nearest 

neighbor interparticle force, which means that only the interactions between the nearest 

neighbors are considered: 
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where c is the lattice spacing, and g represents the strength of interparticle interactions. It needs 

to be pointed out that, with the inclusion of the interparticle force, the collision operator does not 

conserve the momentum locally (i.e. at each site). However, the momentum of the whole fluid 

system is indeed conserved, since ),( xx ′G  is defined in Eq. (3.2) as a symmetric matrix. This 

non-conserved local momentum in the collision step distinguishes the SC model from other 

multiphase LBE models, e.g. the free energy model. With Eq. (3.2),  

∑
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+−=
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f g
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)()()(
α

ψψ αα eexxxF                                                   (3.3) 

In SC’s original model, each lattice site has b nearest neighboring sites with equal distance c and 

resides on a D dimensional space. fF  can be approximated by: 

)()()(
2

xxxF ψψ ∇−≅ g
D

bc
f                                                      (3.4) 
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It should be noted here that although Eq. (3.4) is derived by only using the interparticle forces of 

nearest neighbor sites in SC’s original paper, it can be extended to include other neighboring 

sites as long as the gradient term )(xψ∇  is properly specified. Therefore, for different lattice 

structures, Eq. (3.4) becomes: 

)()()( 0 xxxF ψψ ∇−≅ gcf                                                      (3.5) 

where 0c  is the constant depending on the lattice structure. For the D2Q9 and D3Q19 lattices, 

0.60 =c , and for the D3Q15 lattice, 0.100 =c . 

An example will be presented for the way to numerically evaluate the gradient term )(xψ∇  

in a D2Q9 lattice. Suppose we use both nearest and next-nearest sites to evaluate this gradient 

term, which gives a six-point scheme for 2-D: 

)]1,1()1,1()1,1()1,1([)],1(),1([),(
21 −−−−+++−−+++−−+=

∂
∂ jijijijicjijic

x
ji ψψψψψψψ

)]1,1()1,1()1,1()1,1([)]1,()1,([),(
21 −−−+−+−+−+++−−+=

∂
∂ jijijijicjijic

y
ji ψψψψψψψ

(3.6) 

where 1c  and 2c  are weighting coefficients for nearest and next nearest sites, respectively. For 

the second order central difference scheme: 
x

jiji
x

ji
Δ

−−+
=

∂
∂

2
),1(),1(),( ψψψ , since in the LBE 

method, 1=Δ=Δ yx . By averaging terms of next nearest sites to nearest sites, we find that a 

correct representation of the gradient term will require 
2
12 21 =+ cc . Meanwhile, for the purpose 

of maintaining the isotropy of the scheme, the sites used in the calculation of the gradient term 

should be symmetric about the axes x = i and y = j. Finally, we require that 21 cc > , since 

physically the closer sites will have more influence on the interaction. 
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Now we examine several schemes used in the literature. If we set 21 4cc = , we find that this 

is essentially the “nearest and next-nearest scheme” used in Kang’s paper [79], where Eq. (3.1) is 

used and ),( xx ′G  is given by: 
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The only difference is that g ′  needs to be rescaled. Comparing Eqs. (3.1), (3.5) and (3.6), we 

find that: 

gggccg f 2
3
1*610 ===                                                       (3.8) 

If we set 21 2cc = , we can recover another scheme used by Sukop [80]. Again, one only needs to 

rescale g ′  accordingly. Using Eq. (3.1), different forms of ),( xx ′G  were proposed in the 

literature [81], which result in different critical values of g. However, by comparing them with 

Eq. (3.5), we can link all of these critical values together.  

In calculating the gradient term, one can include more sites, but by doing so more weighting 

coefficients need to be added in Eq. (3.6). Determining these additional weighting coefficients is 

not straightforward. The “correct” scheme not only needs to satisfy the abovementioned criteria 

but also should generate the same density profiles for the flat interface case. The spurious 

currents (the unphysical velocities generated in the simulation), isotropy and stability of the 

scheme can differ considerably for different schemes, especially for the circular interface. We 

found that the 20-point scheme used in Qian’s paper [82] gives the smallest spurious currents 

and better isotropy for the circular interface. However, this scheme is computationally more 

expensive than the six-point scheme (for the 3-D case, it needs 44 neighboring sites) and is 
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further complicated when dealing with the wall boundary. Therefore, in this work we use the six-

point scheme with 
3
14 21 == cc  for the D2Q9 model, which can provide more isotropy 

simulation results for a circular interface than any of the other six-point schemes. For 3-D 

simulations, we notice that the D2Q9 model can be viewed as a 2-D projection of the D3Q19 

model, if we proceed with the same projection for the gradient term, we will find the 

corresponding scheme in the D3Q19 model requires 
6
12 21 == cc . The spurious currents 

produced by these two schemes are at the same level and are only slightly higher than that of the 

20-point scheme. In most simulations, we will use these two schemes which include nearest and 

next-nearest neighbors and denote their strength of interparticle interactions as fg  hereafter. 

If the interaction force is given by Eq. (3.5), using the Chapman-Enskog expansion, one can 

show that the EOS is given by: 

[ ]202 )(
2

ρψρ gccp s +=                                                    (3.9) 

where sc  is the speed of sound for the LB scheme. For the D2Q9 and D3Q19 models, 

3
1

=sc . The above equation represents a non-ideal gas law, with non-ideality at the second 

term depending explicitly on the fluid-fluid interaction. In this study, following the SC approach, 

the )(xψ  is first taken to be: [ ])/exp(1)( 00 ρρρψ −−=x , which gives a non-monotonic 

pressure-density relationship. Hence for a certain range of fg values, at a single pressure, two 

densities of the same material can coexist. We will discuss other choices of )(xψ in next chapter. 

At the fluid-solid interface, similarly, an interaction force between fluid particles and solid 

surfaces can be introduced into the SC model as follows [25, 83]: 
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where ),( xx ′wG  reflects the intensity of the fluid-solid interaction and has the same form as 

),( xx ′G . For the D3Q19 lattice model,  
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and for the D2Q9 model: 
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wg  controls the strength between fluid and the wall. wg  is positive for a nonwetting fluid, and 

negative for a wetting fluid. Adjusting the value of wg  can give a different wettability. )(x′wρ  is 

the wall density, which equals one at the wall and zero in the fluid. Since the fluid-solid 

interaction force )(xFw  only exists on the fluid-solid interface, therefore it does not change the 

macroscopic fluid equations [79], e.g. the EOS is still given by Eq. (3.9).  

Finally, constant body forces such as gravity can be expressed as:  

axF )(ρ=b                                                                  (3.12) 

where a is the acceleration due to the body force. 

All of these forces can be incorporated into the model by shifting the velocity in the 

equilibrium distribution. That means we replace velocity u in Eq. (1.6) with [84]: 

)(x
F

uu
ρ

τ totaleq +=                                                             (3.13) 
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where bwftotal FFFF ++= . Then, by averaging the moment before and after the collision, the 

whole fluid velocity U is: 

totalFuxUx
2
1)()( += ρρ                                                      (3.14) 

There are also other approaches for incorporating fluid-fluid interactions such as the direct body 

forcing approach, where the interaction is incorporated into the body force term of the 

Boltzmann equation by adding an additional term after the collision process [55, 85]. 

 
 
 

3.4 BENCHMARK TESTS 
 
 
3.4.1 Single-phase flow tests for LBE model 
 
 
Before performing the simulations for a two-phase LBE model, two simple tests were conducted 

to verify the accuracy and validity of the LBE method. First, numerical simulations were carried 

out for a 2-D lid-driven cavity flow for Re = 400 and 1000 on a 167 167 lattice. The driving lid 

is placed at the top with a uniform velocity of 1.0=wu  in lattice units (denoted as Lu). The no-

slip boundary condition proposed in Chapter 2 was used at both the stationary wall and the 

moving wall.  

Figure 3.3 shows the streamlines for Re = 1000. The flow structure is in good agreement 

with previous work. Figure 3.4 shows the x component of velocity at the vertical centerline 

( 2/1/ =Hx ) of the cavity. To quantify the results, the maximum and minimum values of the 

stream functions and x  and y  coordinates of the primary and secondary vortex centers are listed 

in Table 3.1. The results predicted by the LBM agree well with other previous work [86].  
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Figure 3.3:  Streamlines of 2-D lid-driven cavity flow at Re = 103 

 
 

 

Figure 3.4: Velocity profiles for u along the vertical geometric centerline of the cavity 

 

Table 3.1: Vortex centers: Stream function and location 

primary vortex lower left vortex lower right vortex  
Re 

 
mesh=167*167 ϕmax x y ϕmin x y ϕmin x y 

U.Ghia 0.1139 0.5547 0.6055 -1.42E-05 0.0508 0.0469 -6.42E-04 0.8906 0.1250
S. Hou 0.1121 0.5608 0.6078 -1.30E-05 0.0549 0.0510 -6.19E-04 0.8902 0.1255

 
400 

present work 0.1120 0.5551 0.6054 -1.28E-05 0.0505 0.0463 -6.15E-04 0.8858 0.1222
U.Ghia 0.1179 0.5313 0.5625 -2.31E-04 0.0859 0.0781 -1.75E-03 0.8594 0.1094
S. Hou 0.1178 0.5333 0.5647 -2.22E-04 0.0902 0.0784 -1.69E-03 0.8667 0.1137

 
1000 

present work 0.1161 0.5319 0.5652 -2.13E-04 0.0821 0.0769 -1.66E-03 0.8652 0.1125



 69

The other simple test was fully developed 2-D channel flow, driven by the pressure gradient. 

The analytic solution for this problem is given by Eq. (2.25) in Chapter 2. In our LBE simulation, 

we set 6100.1 −×−=
dx
dp , 0.1=τ and 0.1=Δ .  
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Figure 3.5: Comparison of axial velocity profile 
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Figure 3.6: Dependence of relative L2-norm on lattice resolution 
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Figure 3.5 compares the exact axial velocity profile and the LBE solution using 

5050×=× nynx  grid points. Excellent agreement was obtained. Defining the L2-norm error as 

before, Eq. (2.26), Figure 3.6 shows the dependence of the relative L2-norm on the lattice 

resolution. The second order accuracy was indeed maintained. 

 
3.4.2 Two-phase flow tests for LBE model 
 
 
For the two-phase flow tests, we first look at the dynamics of the coalescence of two identical 

circular droplets. The second example is the relaxation of a deformed droplet driven by surface 

tension.  

For the first example, initially two identical droplets with radius 2.18=iR  were placed very 

close to each other with their centers at the centerline of computation domain 2/nxx = . The 

higher density/liquid phase is inside the droplet and lower density/vapor phase is outside. The 

computational resolution is 100×100 with periodical boundary conditions employed in all 

directions. When the simulation starts, the droplets will coalesce immediately. Figure 3.7 shows 

a snapshot of the droplet shapes at four different times. The symmetries about 2/nxx =  and 

2/nyy =  are preserved. The droplet shape oscillation captured in Figure 3.7 is well known and 

is in agreement with other researchers’ results [87].  
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t = 0 

 

t = 1200 

 

t = 300 

 

t = 15000 

Figure 3.7: Snapshots of the droplet shape at different times ( 16667.0=ν , 261.2=lρ , 
122.0=vρ ). Red color represents liquid phase (high density) and blue color represents vapor 

phase (low density). 

 
 

Figure 3.8 shows the droplet’s radius at 2/nyy = , i.e. the distance from the interface node at 

2/nyy =  (saddle node) to the center, as a function of time. The oscillation of the droplet shape 

is clearly observed, which is due to the surface tension. The relation if RR 2= , where fR  is 

the final radius of droplet, and iR  is the initial radius (18.2) of two droplets, is maintained.  
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Figure 3.8: The radius at 2/nyy =  as a function of time. 

 
 

In the second test, a deformed droplet with an elliptical shape was placed initially at the 

center of the computational domain. The lengths of the major axis and minor axis are 20 and 10, 

located along the x and y axes, respectively. The computational domain used is 50×50 lattice 

units. Periodical boundary conditions are employed in all directions.  

Due to the effect of surface tension, the deformed droplet will relax to a circular equilibrium 

shape with oscillation. Figure 3.9 illustrates the oscillations of the droplet. The separate frames 

show the shape of the droplet at different times, which oscillates by changing the length of the 

major axis and minor axis. 
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t = 0 

 

t = 730 

 

t = 390 

 

t = 2000 

Figure 3.9: The oscillations of a deformed droplet with the initial shape of an ellipse at several 
times ( 16667.0=ν , 307.2=lρ , 118.0=vρ ). Red color represents liquid phase (high density) 
and blue color represents vapor phase (low density). 

 
 

The frequency of oscillation can be predicted by Lamb’s equation [88]: 

3
2 )1(

a
nnω

lρ
σ

−=                                                  (3.15) 

where ω  is the oscillation frequency, a in the equilibrium radius of the droplet, n represents the 

mode of the instability, and σ  denotes surface tension. In his solution, Lamb didn’t consider the 



 

74 

effects of the surrounding medium. Figure 3.10 shows the length of the major and minor axes 

changing with time and the oscillation can be clearly observed. However, we will not compare 

the quantitative results with Lamb’s equation, because the surface tension is unknown. We will 

discuss the surface tension later in this chapter. 
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Figure 3.10: The evolutions of length of the major and minor axis with time. 

 
 
 
 

3.5 PHASE EQUILIBRIUM AND WETTABILITY 
 
 
To validate and illustrate the outcomes of the single component two-phase flow model, we now 

present some simulation results of a 3-D single component system. First, we observe the 

transitions from a single-phase fluid to a two-phase fluid. As mentioned before, the )(xψ  is 

taken to be: [ ])/exp(1)( 00 ρρρψ −−=x , with 0.10 =ρ . Initially, the density is evenly 

distributed on a 50 50 50 lattice with a small random perturbation. Periodical boundary 

conditions are applied in all three coordinate directions. Figure 3.11 shows the maximum and 
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minimum densities as functions of fg , with 0<fg  for the attraction between particles. When 

the fluid-fluid interaction strength fg  decreases under some critical value c
fg , the system 

separates from a single phase into a heavier/liquid phase and a lighter/vapor phase. Figure 3.12 is 

the plot of the density ratio changing with fg . 

 

Figure 3.11: Maximum and minimum density values as a function of fg . 

 
 

 

Figure 3.12: Density ratio as a function of fg . 
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After finding the relation between the density ratio and the interaction strength fg , we 

conducted some static bubble tests. Again, the 50 50 50 lattice and periodical BCs are used in 

all of the tests. Initially, a droplet is placed at the center of the domain with a radius of 10=initr . 

To ensure that the droplet’s size will not expand or shrink too much, we specify that the initial 

density inside/outside the droplet is close to the maximum/minimum density obtained in the 

bifurcation test under the same fg  value. Otherwise, the droplet’s radius is not controllable and 

the droplet may sometimes even expand to the boundaries. The droplet’s radius oscillates for the 

first 800 time steps and then goes to a constant value. Each test was run for 10,000 time steps. At 

that point, the relative differences of the maximum magnitudes of the velocities at time step t and 

1000−t are on the order of 10-6, which means that steady state is reached. For 35.0−=fg , the 

density and velocity fields in the xy-plane at 25=z (the symmetry plane) are plotted in Figures 

3.13(a) and 3.13(b), respectively. Other fg  values will give similar results. 

 

 

(a) Density contours 

 

(b) Velocity vectors 

Figure 3.13: Density contours and velocity vectors in the xy-plane at 25=z . 
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The nonzero velocity vectors in Figure 3.13(b) indicate deviation from the real physical 

situation. These unphysical velocities are called spurious currents and reach their maximum 

value at the interface region [89]. The maximum magnitude of the spurious currents (hereafter 

denoted as 
max

su ) as a function of fg  is shown in Figure 3.14 (the dotted line is used to guide 

the eye). 
max

su increases slowly before fg  reaches 0.32 (the corresponding density ratio is 

around 30), and after that it grows rapidly. For 3125.0=fg , its value is 0.01529, while for 

35.0=fg , the value is 0.05141. We know that the LBM is valid only in the incompressible 

limit 0/ →scu , which requires that u  is smaller than 0.13. In our later simulations, we restrict 

35.0≤fg , with a highest density ratio of 42, which is adequate for many liquid-vapor systems. 

Some systems of interest, however, require a density ratio higher than 100. By changing the EOS, 

we can greatly reduce the spurious currents at these higher ratios. We will discuss this issue in 

chapter 4.  

We also conducted some static bubble tests with a solid wall interaction by replacing the 

periodical BCs in the y and z directions with wall BCs. Similar density and velocity fields were 

obtained and the spurious currents did not increase. 
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Figure 3.14: The maximum magnitude of spurious currents changing with fg  

 
 

A contact angle θ  ( °≤≤ 1800 θ ) is defined as the angle made at the point that the fluid-fluid 

and the fluid-solid interface meet (see Figure 3.15). The contact angle determines the degree of 

wettability of a fluid phase with respect to the solid phase. Usually, a fluid is regarded as wetting 

(the fluid tends to wet the surface) for a contact angle less than 90°, and nonwetting (the fluid has 

less affinity to the solid surface) if the contact angle is greater than 90° [90].  

 

Figure 3.15: Contact angle between a fluid-fluid interface and a solid wall. γ  denotes the 
interfacial tension between fluids, and θ  denotes the contact angle. 

 
 

θ
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12γ

Solid wall
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In LB simulations, the static contact angle can be adjusted by changing the value of wg  

(negative for a wetting fluid and positive for a nonwetting fluid) or even by changing the form of 

Eq. (3.10); say, e.g., changing the local density term in Eq. (3.10) to some function of local 

density. In this way, we can easily control the wettability.  

We conducted several tests on the wettability of the fluid. In our simulations, initially a half-

drop of liquid with radius 10.0 is placed at the bottom of solid wall with its center at the 

geometric center of the bottom wall. The lattice size is 50 50 50 with periodical BCs in the x  

direction and solid wall BCs in the y and z directions. Figure 3.16 shows two contact angles 

obtained by adjusting wg . Figure 3.17 gives the corresponding velocity fields. The maximum 

magnitude of the spurious current 
max

su stays at the same level as in the static bubble test. 

 

(a) 06.0=wg , °= 6.120θ  

 

(b) 03.0−=wg , °= 3.71θ  

Figure 3.16: Density contours for different values of wg  (different wettabilities) 
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(a) 06.0=wg  

 

(b) 03.0−=wg  

Figure 3.17: Velocity fields for different values of wg  

 
 

Figure 3.18 plots the contact angle varying with wg , which is almost a linear relation. This is 

in agreement with the work of other researchers [91]. For large wg  values ( 08.0>wg ), after the 

half liquid drop is placed on the bottom, because of the large interaction between the fluid and 

solid, the liquid phase in contact with the solid will shrink very fast and will generate some 

unphysical phenomena. In this case, wg  must be increased step by step until a stable contact 

angle is obtained.  

We also conducted simulations for a different form of equation (3.10). For example, instead 

of using )(xρ , we used the “effective mass” i.e., [ ])/exp(1)( 00 ρρρψ −−=x . For this case, the 

linear relation between the contact angle θ  and the fluid-solid interaction strength wg  is still 

obtained. However, the slope will change. For the effective mass case, the slope is smaller than 

using the local density directly. Also, different values of wg  for the liquid and vapor phase can 

be used. If these values are properly specified, the linear relation between the contact angle θ  
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and the liquid-solid interaction strength l
wg  will again be obtained (in this case, the vapor-solid 

interaction strength v
wg  is fixed). 

 

Figure 3.18: The relation between the contact angle θ  of the drop and the fluid-solid interaction 
strength wg . 

 
 

One necessary point with respect to these results is that although any static contact angle can 

be obtained, there is no guarantee that the fluid dynamics near the contact line are correctly 

simulated [25]. The details of this fluid-solid interaction are not fully understood and require 

further research. 

 
 
 

3.6 SURFACE TENSION IN THE LBE MODEL 
 
 
Interfacial and surface tensions are important characteristics of two-phase flow systems since 

they influence many physico-chemical processes. In physical terms, the surface tension is an 

effect within the surface layer of a fluid that causes the layer to behave as an elastic sheet. 

Surface tension is caused by the attraction between the molecules of the fluid, due to the various 
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intermolecular forces. In this section, we will show the limitation of the SC LBE model in 

dealing with surface tension and then give our remedy. 

 
3.6.1 Surface tension in original SC LBE model 
 
 
It is argued that one limitation of the SC LBE model is related to the way it represents capillary 

effects, which can be quantified by the surface tension coefficient σ . Shan and Chen have 

shown that in the case of the flat interface, the surface tension coefficient can be calculated from 

the following equation [70]: 

dn
dn

pd
p

D
c

2

22 *
*

2 ∫
∞+

∞−+
=σ                                            (3.16) 

where c is the lattice constant, D is the dimension of space, n is the direction normal to the 

interface, and *p  is the non-ideal part of the EOS, defined as: ρ2*
scpp −= . This means the 

surface tension coefficient is coupled to the EOS through *p . For a chosen “effective of mass” 

)(xψ  and “strength of interparticle interactions” fg , the σ  is fixed and there is no freedom to 

vary it. In order to determine the surface tension numerically, we introduce the Laplace law [92], 

which states:  

R
pp oi

σ
=−                                                           (3.17)  

where ip  and op  are the pressure inside and outside the bubble/droplet, respectively, and R is 

the radius of the bubble/droplet. Therefore, in practice, the surface tension of the SC model is 

“empirically” determined by generating circular bubbles/droplets of different radii in a periodic 

domain, and evaluating the slope of the “pressure difference vs. inverse of radius” relation.  
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Figure 3.19: Test of the Laplace law. The slope (i.e. the surface tension) is 0.09728 and the 
coefficient of determination is 0.99943. 

 
 

Figure 3.19 shows the verification of the Laplace law for 3.0−=fg , and the linear relation 

is well satisfied. By measuring the slope, the surface tension was found to be 0.09728 in lattice 

units and the coefficient of determination is 0.99943. However, since σ  is related to fg , one 

needs to change fg  in order to change surface tension, which is inconvenient, if not 

inappropriate. We therefore propose another way of changing surface tension. 

 
3.6.2 Changing surface tension in the SC LBE model 
 
 
Microscopically, surface tension is caused by the various intermolecular forces. Therefore, in 

order to obtain flexibility in modeling surface tension, one might choose to introduce an 

additional force term in the fluid-fluid interaction to mimic the contribution made by surface 

tension. We define  

)()( 2 ρψρψ ∇∇= κsF                                                    (3.18) 
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as an additional force associated with the surface tension, where )(ρψ  is the effective mass, and 

κ  determines the strength of the surface tension. It can be shown that by introducing sF  into the 

fluid-fluid interaction term, the macroscopic equations recovered from the LBE using Chapman-

Enskog expansion procedure are [72]: 
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∂
∂ uρρ

t
                                                       (3.19a) 
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The above equations only differ from the N-S equations by the additional term, )()( 2 ρψρψ ∇∇κ , 

which contributes exclusively to the surface tension. Also the EOS remains the same. 

For numerically evaluating the sF  term, one can use the five-point scheme for the Laplace 

term )(2 ρψ∇  and the six-point scheme discussed before for the gradient term )(ρψ∇  (both for 

2-D case): 

),(4)1,()1,(),1(),1()(2 jijijijiji ψψψψψρψ −−+++−++=∇                      (3.20) 

Figure 3.20 shows the estimation of surface tension from the curvature (1/radius) and 

pressure difference between the inside and outside of simulated bubbles/droplets. By changing 

the strength of the surface tension κ , linear relations with different slopes were obtained, which 

means the surface tension coefficients are different for different κ values. For example, by 

measuring the slope, we found that for 3.0−=κ , 08214.0=σ , and for 3.0=κ , 11096.0=σ . 
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Figure 3.20: Estimation of surface tension from curvature (1/radius) and pressure difference 
between the inside and outside of simulated bubbles/droplets. 
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Figure 3.21: Surface tension coefficient σ  as a function of the strength of the surface tension κ . 
The inset diagram shows the small κ  values: 4.04.0 ≤≤− κ . 

 
Figure 3.21 gives the surface tension coefficient σ  as a function of the strength of the 

surface tension κ . The surface tension will increase when κ  increases. In the small κ  range 

( 4.04.0 ≤≤− κ ), a linear relation exists between σ  and κ , as shown in the inset diagram. For 



 

86 

small surface tension, a bubble/droplet can no longer hold a circular shape due to insufficient 

surface tension.  

Figure 3.22 shows the density contours at 9.0−=κ , and the non-circular shape can be clear 

observed. The curvature is then different from that of the circular case, which results in an 

increase in surface tension as κ  decreases, as shown in Figure 3.21 at small κ  values. 
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Figure 3.22: Density contours at 9.0−=κ . 

 
 

When the bubble/droplet shape is no longer circular, continuing to decrease κ  will cause the 

code to become unstable and fail. We think the reason for this is that as surface tension decreases, 

the spurious current will increase, and finally the large spurious current will make the simulation 

unstable. Figure 3.23 gives 
max

su  as a function of κ , which verifies our speculation. For 

3.0−=fg , the maximum and minimum achievable surface tensions are 0.17382 and 0.0525, 

respectively. Compared with the base case of 0=κ , we can increase σ  by about 78.68% and 

decrease it by about 46.03%.  



 

87 

-1 0 1 2 3

0.00

0.02

0.04

0.06

0.08

0.10

0.12

 

 

M
ax

im
um

 m
ag

ni
tu

de
 o

f
sp

ur
io

us
 c

ur
re

nt

κ  

Figure 3.23: Maximum magnitude of spurious current as a function of κ . 

 
 

The abovementioned tests were only conducted for the static bubbles/droplets. In order to test 

the dynamic behavior of surface tension, we conducted simulations of capillary wave dispersion. 

The 2-D system with length L and height H is periodical in both the x and y directions. Initially, a 

liquid phase was put in the center of the domain with a height equal to 4/H . After the system 

reaches steady state, the position of the interface was measured. Then a wave was initialized as a 

sinusoidal curve around 2/Hy =  of one wavelength L and amplitude a, as seen in Figure 3.24. 

The system was then allowed to relax to equilibrium under the influence of capillary and viscous 

forces only (no gravity applied). At each time step, the position of the interface was measured 

and the result was a damped standing wave (see Figure 3.25). This curve was used to find the 

oscillation frequency and damping rate of the wave. In the simulation, the positions of the upper 

interface and lower interface are added together to filter out small fluctuations.  
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Figure 3.24: Simulation set up and wave initialization. 
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Figure 3.25: The y position of the capillary wave interface as a function of time. The red line is 
the exponential curve fitted to the peak points (dots).  
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For 1/ <<La , the analytical solution of such a wave is obtained by potential flow theory 

[93]: 

32

21
kω

ρρ
σ
+

=                                                    (3.21a) 

22νk=γ                                                         (3.21b) 

where ω  is the wave frequency, γ  is the damping rate, 1ρ  and 2ρ are the densities of two 

phases, and k is the wave number given by Lk /2π= , where L is the wavelength. This relation 

therefore provides a dynamic measurement of surface tension. The oscillation of the wave can be 

expressed in the form of: CωtAe γt ++− )cos( ψ . 

In Figure 3.25, the system resolution is 256×256. The initial amplitude of the wave is 

6.252561.0 =×  and viscosity is 1/12. We first fit the peak points to the exponential decay curve 

in the form of: )(
0

0ttAeyy −−+= γ . The parameters we obtained are: 85033.2560 =y , 

14003.51=A , 74925.50 −−= Et , and 402583.1 −= Eγ . The γ  predicated by the potential 

flow theory is: 4003988.1)
256
2(

12
12 2 −=×× Eπ . Comparing γ  with the theoretical value, the 

relative error of simulation result is about 2.17%.  

We then conducted simulations using different wavelengths. The simulation results of ω−k  

relation are given in Figure 3.26 together with the theoretical predictions obtained by Eq. (3.21a), 

with σ  obtained from static bubble/droplet tests. 
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Figure 3.26: The dispersion relation (angular frequency ω  vs. wave number k). Simulation 
results using 0=κ  are compared with the corresponding analytical solution from potential 
theory, Eq. (3.21a).  

 
 

On the other hand, using Eq. (3.21a), we can find the surface tension coefficient by 

measuring the angular frequency of the wave. We found that for 0=κ , the error between 

surface tension measured statically and dynamically is 6.19% and for 3.0−=κ  the error is 

14.24%, both calculated using the static surface tension as base. Although the error is large for 

the 3.0−=κ  case, it is comparable with other researchers’ results [94]. Furthermore, this does 

reflect the trend of surface tension variation when changing the κ  value. We think the statically 

measured surface tension is more accurate because there are more sources of error encountered 

in the dynamic case, which includes the error induced by the measurement of interface position, 

measurement of angular frequency, and error of initializing the wave. Furthermore, even the 

potential flow theory itself is an approximation and needs several assumptions, like a small wave 

amplitude, etc. Therefore, the static bubble/droplet test is preferred in an effort to determine the 

exact surface tension of the system.  
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3.7 DISCUSSION 
 
 
In this chapter, we have demonstrated the applicability of the LBE method in simulating both 

single phase flow and two-phase flow systems. Second order accuracy was obtained for the 

single phase flow benchmark tests. Two-phase flow benchmark tests showed the relaxation 

process of the bubble/droplet, which is in agreement with other researchers. It is demonstrated 

that the SC single component two-phase LBE model has the ability to simulate phase separation, 

variable wettability, and different EOS as well as complex BCs. It is argued that one limitation of 

SC LBE model is that surface tension coefficient of this model is coupled to the EOS and there is 

no freedom to vary it. In order to achieve flexible surface tension, we proposed an additional 

force term )()( 2 ρψρψ ∇∇= κsF , which accounts for the contribution of surface tension, to be 

incorporated into the fluid-fluid interaction. We then measured the surface tension both statically 

and dynamically. It has been shown that by adopting this additional force term, we can increase 

surface tension by about 78.68% and decrease it by about 46.03% for the simulated case. 
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4.0 EQUATIONS OF STATE IN THE LBE MODEL 
 
 
 
 

4.1 INTRODUCTION 
 
 
Equations of state attempt to describe the relationship between temperature, pressure, and 

volume (or density) for a given substance or mixture of substances. Shown in Eq. (4.1) is the 

simplest EOS -- the ideal gas law, which is a linear relationship between pressure p  and density 

ρ  when temperature T  is held constant and R  is gas constant.  

RTp ρ=                                                                (4.1) 

Although reasonably accurate for gases at low pressures and high temperatures, the ideal gas law 

becomes increasingly inaccurate at higher pressures and lower temperatures. This is due to the 

non-idealities coming from the non-negligible volume of gas molecules and from the attractive 

interactions between those molecules. In 1873, van der Waals considered these non-idealities and 

proposed the famous van der Waals (vdW) EOS [95]: 

2

1
ρ

ρ
ρ a

b
RTp −

−
=                                                       (4.2) 

where a is the attraction parameter and b is the repulsion parameter (or effective molecular 

volume). Accordingly, the first term of the RHS is called the attraction term and the second term 

of the RHS is called the hard sphere term. Although this equation is superior to the ideal gas law 

and does predict the formation of a liquid phase, the agreement with experimental data is limited. 

Following the van der Waals equation, subsequent researchers proposed several other modern 

EOS, which have only slightly greater complexity but are much more accurate. Some well-
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known ones include the Virial equation, Redlich-Kwong EOS, Peng-Robinson EOS, and 

Carnahan-Starling EOS. 

To describe the implementation of an adaptable EOS, we will first return to our one-

component two-phase LBE model. As discussed in Chapter 3, if the interaction force is given by 

Eq. (3.5), then the EOS of the system is given by:  

[ ]202 )(
2

ρψρ gccp s += .                                                 (4.3) 

If there is no interaction force, then the fluid will behave like an ideal gas. Theoretically, by 

changing the form of )(ρψ , different EOS can be obtained.  
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Figure 4.1: Pressure-density relationship of the SC EOS under different fg  values. 

 
 

In the original paper of SC, the “effective mass” was taken to be: 

[ ])/exp(1)( 00 ρρρψ −−=x . Therefore, the corresponding EOS (hereafter denoted as the SC 

EOS) is:  
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0 )exp(1
23 ⎥

⎦

⎤
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⎣

⎡
−−+=

ρ
ρρρ g

c
p                                            (4.4) 

which gives a non-monotonic pressure-density relationship, as seen in Figure 4.1. From Figure 

4.1, we can note that the SC EOS gives a high compressibility for the liquid phase, even higher 

than the vapor phase, which is unrealistic. It is argued that this is due to the lack of a repulsive 

potential between particles as the density increases in the SC model [96]. We also tested a 

different form of the “effective mass” mentioned in other papers, i.e. )/exp()( 00 ρρψψ −=x  

[82]. Although this gives us flexibility in choosing 0ψ  and 0ρ , this effective mass generates an 

EOS with a similar form and characteristics as the SC EOS, i.e. the unwanted high 

compressibility for the liquid phase.  

Furthermore, after a thorough review of the literature, it appears that all of the papers using 

the SC model adopted only the SC EOS and no other EOS have been utilized [79, 80, 81]. There 

is also a lack of thorough investigations of different EOS for other multi-phase LB models [73, 

97]. Therefore, it is worthwhile to study the performance of the SC model under different EOS. 

We will compare the performance of different EOS in this chapter by analyzing the simulation 

results and by comparing the results with real fluid properties.  

 
 
 

4.2 CRITERIA USED IN EVALUATING EQUATIONS OF STATE 
 
 
In this section, we will use the SC EOS to demonstrate the criteria related to the evaluation of an 

EOS. We know that at the critical point, both the first and second order pressure derivatives with 

respect to the density are zero, i.e.: 
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For the SC EOS, one can obtain the critical properties as follow: 2ln0ρρ =c  and 

)9/(2 0ρ−=c
fg . In the SC EOS, the role of temperature is dictated by the fluid-fluid interaction 

strength fg . We can define temperature in the SC EOS as 
fg

T 1
−= , and the critical 

temperature becomes 05.41 ρ=−= c
f

c g
T . Hence for c

ff gg < , at a single pressure, two densities 

of the same material can coexist. However, to make phase separation occur, another condition 

must be satisfied also, i.e. lρρρ <<v , where vρ  and lρ  are the vapor density and liquid 

density at the specified temperature, and ρ  is the average density of the whole system. This 

condition guarantees that the system is in the two-phase region. Otherwise the system is in the 

single phase region and no phase separation will occur.  

 
4.2.1 Spurious currents 
 
 
We have shown in Chapter 3 that there exist nonphysical velocities in the SC LBE model with a 

maximum value near the interface region, which are the so called spurious currents. Reducing 

the spurious currents is very important for LB two-phase simulations for the following reasons. 

First, as discussed before, the LBE method is valid only in the incompressible limit 0/ →scu . 

If 
max

su is too large, since we cannot separate spurious currents from real flow velocities, we 

therefore cannot get meaningful results. Second, large spurious currents will make the simulation 

unstable. Finally, we will propose a thermal two-phase flow model based on the SC model in 

Chapter 5, where the flow velocity is taken as the advection velocity of the temperature field [98]. 
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Therefore, a more accurate velocity field is required in order to calculate an accurate temperature 

field. By lowering the spurious currents, we can lower the temperature fluctuations near the 

interface region caused by the spurious currents and obtain better local temperature distributions. 

In this work we will investigate the spurious current levels for circular interfaces under 

different EOS, because the circular interface is more often encountered in real applications. 

Furthermore, even if the interface is undergoing some deformation and becomes no longer 

circular, the 
max

su  stays at the same level, as has been verified in the simulations. However, for 

comparison, we also conducted simulations for a two-phase system with a flat interface. We 

found that in this case the 
max

su  is much smaller – on the order of 10-14. 

 
4.2.2 Stable temperature range 
 
 
Ideally, one wants a two-phase model that can handle the entire two-phase region, which is from 

the triple point to the critical point. However, as the temperature decreases in the two-phase 

region, the density ratio increases and the surface tension also increases. The overall effect 

results in higher spurious currents. Therefore, at a certain temperature, the spurious currents 

become so large as to make the scheme unstable. Figure 4.2 shows the 
max

su  as a function of 

reduced temperature ( cTT / ) for the SC EOS. We define the lowest temperature which maintains 

the stability of the scheme as minT  and compare these temperatures under different EOS.  



 

97 

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.00

0.02

0.04

0.06

0.08

 

 

|u
s | m

ax

T / Tc  

Figure 4.2: The maximum magnitude of spurious current changes with reduced temperature. 

 
 
4.2.3 Coexistence curve 
 
 
It has been argued that a serious limitation of the SC LBE model is that one cannot introduce a 

well-defined temperature, which is consistent with thermodynamics, into the model [75]. This is 

because the Maxwell equal-area construction [99] is not satisfied except for one special form of 

the effective mass, )/exp()( 00 ρρψρψ −= , where 0ψ  and 0ρ  are arbitrary constants [70]. 

Therefore, to address the applicability of the SC model, it is important to check the deviation of 

the coexistence curve obtained from the simulation from the theoretical one that is predicted by 

the Maxwell equal-area construction. 

 
4.2.4 Density ratio 
 
 
In reality, for a vapor-liquid two-phase flow system, the density ratio between the liquid and 

vapor phase can easily be over 100:1. However, it is difficult for most LB schemes to deal with 

two phases with a high density ratio. For example, as reported in Swift’s paper [74], the density 
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ratio obtained using the free-energy-based approach is less than 10:1, and the largest density 

ratio tested in the HCZ approach is 40:1 [97]. We found that by changing the EOS, one can reach 

density ratios higher than 1000:1. We will compare the achievable density ratios for different 

EOS accordingly.  

 
 
 

4.3 INCORPORATING EQUATIONS OF STATE 
 
 
In this work, we will compare the following EOS: 

(i) SC EOS 

(ii) vdW EOS 

(iii) Redlich-Kwong (R-K) EOS 

(iv) Redlich-Kwong Soave (RKS) EOS 

(v) Peng-Robinson (P-R) EOS 

(vi) Carnahan-Starling (C-S) EOS  

Except for the SC EOS and C-S EOS, all of the other EOS are cubic in form. Furthermore, the 

vdW EOS and R-K EOS are two-parameter EOS, while the RKS EOS and P-R EOS are three-

parameter EOS.  

The vdW EOS, Eq (4.2), is the simplest and yet most famous cubic EOS. Although other 

modern EOS of only slightly greater complexity are much more accurate than the vdW EOS, we 

include it here to demonstrate some important concepts. From Eq. (4.3), we find that for any 

given EOS, the corresponding effective mass can be written as: 

gc
p

gc
cp s

00

2 *2)(2
)( =

−
=

ρ
ρψ                                              (4.6) 
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where ρ2*
scpp −=  is the non-ideal part of the EOS. Substituting Eq. (4.2) into Eq. (4.6), we 

get: 

f

s

gc

ca
b

RT
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2
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)(
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⎝

⎛
−−

−
=

ρ
ρ

ρ
ρψ                                                (4.7) 

The fg  value becomes unimportant in this case, because unlike in the SC EOS, we have a 

defined temperature in the vdW EOS. When calculating the interaction force and pressure using 

Eqs. (3.5) and (4.3), fg  is canceled out. The only requirement for fg  is to ensure that the whole 

term inside the square root is positive. This argument holds for other EOS also if the temperature 

is not a function only of fg . For the vdW EOS, the critical properties are given by: 

bc 3
1

=ρ , 227b
apc = , 

Rb
aTc 27

8
=                                               (4.8) 

In our simulations, we set 
49
9

=a , 
21
2

=b  and 1=R . Then the critical density is 
2
7

=cρ  and 

the critical temperature is 
7
4

=cT , both of which are in lattice units.  

In an effort to relate these values to real physical properties, we use the concept of reduced 

properties [100]:  

c
R ρ

ρρ = , 
c

R p
pp = , 

c
R T

TT =                                                (4.9) 

where the subscripts “ R ” and “c” denote the reduced property and critical property, respectively. 

According to the law of corresponding states, the reduced properties should be the same no 

matter what kind of units are used, therefore: real
c

real

Lu
c

Lu

R ρ
ρ

ρ
ρρ == , which gives Lu

c

real
cLureal

ρ
ρ

ρρ = . 
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Similarly, Lu
c

real
cLureal

p
p

pp =  and Lu
c

real
cLureal

T
T

TT = , where the superscripts “real” and “Lu” denote 

real units and lattice units, respectively. In this way, one can easily convert a lattice property to a 

real property.  

The other EOSs used in this paper are given below [101]:  

R-K EOS: 

)1(1

2

ρ
ρ

ρ
ρ

bT
a

b
RTp

+
−

−
=                                                  (4.10) 

with 
c

c

p
TR

a
5.2242748.0

= , 
c

c

p
RT

b
08664.0

= . 

RKS EOS: 

ρ
ρα

ρ
ρ

b
Ta

b
RTp

+
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−
=

1
)(
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2

                                                    (4.11) 

[ ]22 )/1)(176.0574.1480.0(1)( cTTωωT −−++=α                 (4.12) 

with 
c

c

p
TR

a
2242748.0

= , 
c

c

p
RT

b
08664.0

= . 

P-R EOS: 

22
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21
)(

1 ρρ
ρα

ρ
ρ

bb
Ta

b
RTp

−+
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−
=                                              (4.13) 

[ ]22 )/1)(26992.054226.137464.0(1)( cTTωωT −−++=α               (4.14) 
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C-S EOS [102]: 

2
3

32

)4/1(
)4/()4/(4/1 ρ

ρ
ρρρρ a

b
bbbRTp −

−
−++

=                           (4.15) 

with 
c

c

p
TR

a
224963.0

= , 
c

c

p
RT

b
18727.0

= . 

In the above EOS, the R-K EOS, RKS EOS and P-R EOS are classified as cubic EOS, in 

which the R-K EOS is a two-parameter EOS, using two parameters ),( cc pT ; the RKS EOS and 

P-R EOS are three-parameter EOS, with an additional parameter ω , which is the acentric factor. 

This additional parameter gives us more flexibility in modeling different fluids. For all of these 

cubic EOS, we set 
49
2

=a , 
21
2

=b  and 1=R  in our simulations. The C-S EOS is different from 

the above cubic EOS in that it modifies the hard sphere term of the vdW EOS, while all of the 

other cubic EOS modify the attraction term of the vdW EOS. For the C-S EOS, we set 12=a , 

4=b , and 1=R  in our simulations.  

 
 
 

4.4 SIMULATION RESULTS 
 
 
In this section, we first compare the simulation results of three types of EOS, i.e. the SC EOS, 

vdW EOS and C-S EOS. Next, we compare the simulation results of all of the cubic EOS. 

Finally, we will compare our simulation results with some real fluid data. 
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4.4.1 Comparison of different types of equations of state 
 
 
Figure 4.3 shows the variation of 

max

su with the density ratio for the vdW EOS, which is close 

to a linear relation. The lowest temperature we can reach is cTT 77875.0445.0min == , since the 

scheme becomes unstable at temperatures lower than that value.  
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Figure 4.3: The maximum magnitude of the spurious current varying with the density ratio for 
the vdW EOS. 

 
 

Figure 4.4 shows 
max

su changing with the density ratio for the SC EOS and C-S EOS. The 

inset diagram shows the 
max

su  variation for density ratios smaller than 50. As can be seen from 

the inset, for a given density ratio, the C-S EOS generates much smaller spurious currents than 

the SC EOS. Furthermore, the C-S EOS provides a larger range of density ratios; e.g., when the 

density ratio equals 103.74, 
max

su for the C-S EOS is only 1.74E-02, while for the SC EOS, 

when the density ratio equals 58.497, 
max

su  already reaches 8.11E-02. The critical temperature 
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for the C-S EOS is bRaTc /3773.0= . Therefore, the lowest temperature we can achieve for the 

C-S EOS is cTbRaT 53.0/2.0min == , which is much lower than that of the vdW EOS. 
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Figure 4.4: Maximum magnitude of the spurious current varying with the density ratio for the SC 
EOS and C-S EOS. 

 
 

Table 4.1: Properties at minT  for different EOS 

EOS 
Critical 

Temperature ( cT ) cTT /min max

su  
minmax / ρρ  

SC EOS 4.5 0.59259 0.0811 58.49753 
vdW EOS 4/7 0.77875 0.019599 7.202862 
C-S EOS 0.3773a/bR 0.5301 0.092571 1359.497 

 
 

In Table 4.1, we compare the properties at minT  for different EOS. We can see that at minT , 

the 
max

su  for the vdW EOS is much smaller than that of the SC EOS and C-S EOS. We believe 

that unlike the other two EOS, where instability results from large spurious currents, for the vdW 

EOS, the instability comes from the EOS itself. Therefore, the vdW EOS is not suitable for a 

vapor-liquid system with temperatures much lower than the critical one. However, by replacing 
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the vdW EOS with a more realistic modified form such as the C-S EOS, we will get a much 

better performance with a wider temperature range, higher density ratio and much smaller 

spurious currents. Furthermore, the C-S EOS is capable of handling a density ratio as high as 

1000, which is large enough for most real applications.  

 
4.4.2 Comparison of different cubic equations of state 
 
 
Since the C-S EOS, which is a modification of the vdW EOS, has a much better performance in 

simulating two-phase flow than the original vdW EOS, we now consider another way of 

modifying the vdW EOS, i.e. modifying the attraction term of the vdW EOS, which results in 

several cubic EOS.  

0 5 10 15 20 25 30 35 40

0.000

0.005

0.010

0.015

0.020

 

 
 R-K EOS
 vdW EOS

|u
s | m

ax

ρmax /  ρmin  

(a) Comparison between the vdW EOS and the R-K EOS 



 

105 

0 20 40 60 80 100 120
-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

 

 
 R-K EOS
 RKS EOS (ω=0.344)

|u
s | m

ax

ρmax / ρmin  

(b) Comparison between the R-K EOS and the RKS EOS 

0 500 1000 1500 2000 2500 3000
-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

 

 
 C-S EOS
 P-R EOS (ω=0.344)

|u
s | m

ax

ρmax /  ρmin  

(c) Comparison between the P-R EOS and the C-S EOS 

Figure 4.5: The maximum magnitude of the spurious current variation with density ratio for 
different EOS. 

 
 

Figure 4.5 gives the 
max

su  variation with the density ratio for different cubic EOS. For the 

RKS EOS and P-R EOS, we set 0.344=ω , which is the acentric factor of water. From Figure 
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4.5, we can see that at the same density ratio, all of the modified EOS have smaller 
max

su  

values than the vdW EOS. The 
max

su  of the P-R EOS is even smaller than that of the C-S EOS. 

The P-R EOS can also handle a density ratio as high as 1000, with 06902.0
max

=su  when the 

density ratio equals 905.9411. The 
max

su  values for the R-K EOS and RKS EOS are close to 

each other at lower density ratios. When density ratio is higher than 50, the R-K EOS gives a 

smaller 
max

su . 
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Figure 4.6: Coexistence curves for three EOS. 

 
 

Figure 4.6 gives the coexistence curves obtained from the simulations for the various EOS. 

The coexistence curves of the RKS EOS and P-R EOS are quite close, which is to be expected, 

since we use the same acentric factor for these two EOSs. However, the P-R EOS can utilize a 

wider temperature range than the RKS EOS, because the P-R EOS has a much smaller 
max

su  
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under the same density ratio. The smallest reduced temperature ( cTT /min ) is 0.64920, 0.78252 

and 0.58771 for the R-K EOS, RKS EOS, and P-R EOS, respectively. 

As discussed previously, it is very useful to evaluate these EOS by comparing the 

coexistence curves obtained from the simulations with the theoretical curves predicted by the 

Maxwell equal-area construction [103]. This comparison is given in Figure 4.7. From Figure 

4.7(a), we can see that the simulated coexistence curve for the vdW EOS deviated remarkably 

from the theoretical values, especially at low temperatures. At minT , the relative error of the 

density, i.e. 
exact

exactLB

ρ
ρρ −

, is 2.813% for the liquid branch and 33.83% for the vapor branch. As 

can be seen from Figures 4.7(b) and 4.7(c), for the R-K EOS and P-R EOS, the simulated 

coexistence curves fit well with the theoretical values. At minT , the relative error of density for 

the liquid branch is less than 2%. However, for the vapor branch, the relative error of the density 

can be quite large, although the absolute difference is very small. This is due to the nature of the 

EOS, since when the temperature is much lower than the critical temperature, the density ratio 

becomes quite high. For the P-R EOS, the density ratio can be higher than 1000, where even very 

small changes in the liquid density can cause large fluctuations of the vapor density. For this 

reason, we plot the coexistence curve of the vapor branch separately for the R-K EOS and P-R 

EOS in Figures 4.8(a) and 4.8(b). We can see although the coexistence curves deviated from the 

theoretical values, the trends of density changing with temperature are the same. Figure 4.9 

shows the coexistence curve of the C-S EOS from simulation and the theoretical one obtained by 

equating the chemical potentials. Again, good agreement is obtained. For P-R EOS, the acentric 

factor can also be specified to fit the real fluid properties. Figure 4.10 gives the coexistence curve 

of the P-R EOS for 011.0ω = , which is the acentric factor of methane.  
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(c) Coexistence curve of the P-R EOS 

Figure 4.7: Comparison of coexistence curves obtained from simulations with theoretical values 
for different EOS. 
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(b) Vapor branch of the coexistence curve of the P-R EOS 

Figure 4.8: Comparison of the vapor branch of the coexistence curves obtained from simulations 
for R-K EOS and P-R EOS. 
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Figure 4.9: Comparison of coexistence curves obtained from simulations with theoretical values 
obtained by equating the chemical potentials for C-S EOS. 

 
 



 

111 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00          P-R EOS 
ω = 0.011 (methane)

 

 

 Maxwell construction
 LB simulation

T 
/ T

c

ρ / ρc  

Figure 4.10: Comparison of coexistence curve obtained from simulations with theoretical values 
for P-R EOS with 011.0=ω . 

 
 
4.4.3 Comparison of equations of state and actual fluid properties 
 
 
Finally, we compare our simulation results with some real fluid data. We chose the most 

commonly used fluid: water. The acentric factor for water is 0.344. Figure 4.11 gives the 

comparison of the saturated density obtained from simulations for the R-K EOS and P-R EOS 

with experimental data from the steam table. From this comparison with experimental data, we 

can see that for the liquid density, the R-K EOS gives better results, while for the vapor density, 

the P-R EOS gives better results. At minT , the relative error of the liquid density is 11.815% for 

the P-R EOS. However, we still generally consider the P-R EOS to be superior to the R-K EOS 

because the P-R EOS allows for a wider temperature range and can handle higher density ratios. 

Furthermore, unlike the P-R EOS, the R-K EOS is a two-parameter EOS. Therefore, no matter 

what fluid is being simulated, the R-K EOS gives the same coexistence curve for the reduced 

properties. The P-R EOS is a three-parameter EOS, and the third parameter (the acentric factor) 
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gives us more flexibility in simulating different fluids. For example, by setting 011.0ω = , we are 

essentially using the properties of methane. The simulated coexistence curve for this value of the 

acentric factor is given in Figure 4.10, and fits well with the theoretical values.  
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(a) Vapor and liquid branch 
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Figure 4.11: Comparison of the saturated density of water obtained from simulations with 
experimental data from the steam table for different EOS. 
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4.5 DISCUSSION 
 
 
It has been argued that a serious problem of the SC LBE model is that one cannot introduce a 

thermodynamically well-defined temperature. However, from our simulations, we can see that by 

properly choosing the EOS, one can introduce temperature explicitly (in the SC EOS, there is 

indeed no explicitly defined temperature), and also have a coexistence curve very close to the 

theoretical prediction, which is thermodynamically well defined.  

We have demonstrated the applicability of the LBE method in simulating two-phase flow 

using a variety of EOS. While suitable for some applications, the vdW EOS generally does not 

give satisfactory results. However, the C-S EOS and P-R EOS, which are revisions of the vdW 

EOS for the hard sphere term and attraction term respectively, demonstrate much better 

performance in terms of spurious currents, temperature ranges and density ratios. Other revisions, 

like the R-K EOS and RKS EOS also give better simulation results. Therefore, we can say that as 

the selected EOS becomes more realistic, a better performance will be obtained from the LBE 

simulation.  

For the coexistence curves, the simulation results of the vdW EOS significantly deviate from 

the theoretical values. The simulation results of the R-K EOS, P-R EOS and C-S EOS fit quite 

well with the theoretical values, however. Therefore, by properly choosing an EOS, we can both 

introduce temperature explicitly and develop a coexistence curve that is very close to the 

theoretical prediction.  

Furthermore, by comparing the simulation results with experimental data for saturated 

water/steam, the R-K EOS gives better results for the water density and the P-R EOS gives better 

results for the steam density. There is a noticeable difference, particularly for the liquid leg, but 

this is due to the EOS itself, since the coexistence curve obtained from the simulation fits well 
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with theoretical values. Therefore, a translation from the simulation results might be needed in 

this case. For future research, an investigation of other more realistic EOS, such as those with 

corrections for both the attraction and hard sphere terms of the vdW EOS [104] is very promising 

(as well as computationally challenging), and can greatly enlarge the applicability of the LBE 

method in two-phase flow simulation. 
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5.0 THERMAL LBE MODEL 
 
 
 
 

5.1 INTRODUCTION 
 
 
Despite the progress made by LBE models in simulating multiphase and multicomponent flows, 

there is a crucial missing part: the lack of a satisfactory thermal model for multiphase flows. The 

entire multiphase LBE models mentioned in Chapter 3 are limited to regimes where the 

temperature dynamics are either negligible or their effects on the flow are unimportant. However, 

the thermal effects are ubiquitous and sometimes dominant in multiphase flow systems. For 

example, when phase transition occurs in the flow system, like in boiling and condensation 

processes, the evolution of the temperature field and flow field will be directly coupled with each 

other. One cannot solve one field without knowing the other. Therefore, it is very important to 

develop the thermal LBE (TLBE) multiphase model, which is capable of simulating the thermal 

effects simultaneously with the fluid dynamics. We will discuss this issue in this chapter.  

For single-phase flow, there are several LB thermal models, which generally fall in two 

categories, namely: the multispeed approach [105, 106] and the passive-scalar approach [107]. 

The multispeed approach is a straightforward extension of LBE isothermal models. It 

implements energy conservation by adding additional speeds and by including the higher-

velocity terms in the equilibrium distribution. Although theoretically possible, the multispeed 

approach suffers from severe numerical instability [108, 109, 110]. Meanwhile, the temperature 
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range it can handle is rather limited and usually the computation is more expensive because more 

PDFs need to be tracked.  

In the passive scalar approach, the temperature field is passively advected by the fluid flow 

and can be simulated as an additional component of the fluid system. This means that in order to 

solve for the temperature field in the multiphase isothermal LBE framework, one only needs to 

solve an auxiliary LBE. Thus, the overall complexity of the scheme does not significantly 

increase. Additionally, unlike for the multispeed approach, the thermal diffusivity is independent 

of the viscosity in the passive scalar approach, which results in a changeable Prandtl number in 

simulations. Most importantly, the passive scalar approach does not explicitly implement energy 

conservation, and therefore has the same stability as the isothermal LBE models. We will derive 

our multiphase TLBE model based on the passive scalar approach.  

 
 
 

5.2 SINGLE-PHASE TLBE MODEL 
 
 
5.2.1 Numerical method 
 
 
First we begin with the single-phase TLBE model using the passive scalar approach. In a thermal 

fluid system, if the viscous and compressive heating effects are negligible, the temperature field 

satisfies a much simpler passive-scalar equation: 

Ψ+∇⋅∇=∇⋅+
∂
∂ )( TT

t
T αu                                                 (5.1) 

where u is the whole fluid velocity; α  is the thermal diffusivity; and Ψ  is the source term. After 

solving the fluid dynamics part by using Eqs. (1.11) and (1.6), Eq. (5.1) can be solved in the LB 

framework by again using those equations, except that τ  will be replaced by Tτ  (the 
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dimensionless single relaxation time for temperature). The summation of the PDFs of 

temperature will therefore give the temperature value. Similarly, δtcsT
2)

2
1( −= τα , and, thus, the 

Prandtl number will be 

12
12Pr

−
−

==
T

ν
τ
τ

α
                                                          (5.2) 

By changing τ  and/or Tτ , we can generate a different Prandtl number.  

 
5.2.2 Boundary conditions 
 
 
Two different thermal BCs were tested in our simulations. Here we explain them in the context 

of a D2Q9 model.  

i) Isothermal wall: Suppose the temperature is fixed as BT  at the bottom wall. After 

streaming, 2f , 5f , and 6f  are unknowns. Assume these unknown PDFs equal their equilibrium 

distribution given by Eq. (1.6) with ρ  replaced by some unknown temperature T ′ . Summing 

these three PDFs together, we have [111]: 

)331(
6
1 2

652 yy uuTfff ++′=++                                          (5.3) 

where yu  is the velocity normal to the wall. If we know T ′ , we will be able to solve for 2f , 5f , 

and 6f . Meanwhile, we notice that for the isothermal wall, ∑
=

=
8

0α
BTf . Substituting Eq. (5.3) into 

this, T ′  then can be calculated as follows:  

)(
331

6
8743102 ffffffT

uu
T B

yy

−−−−−−
++

=′                      (5.4) 
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Finally, 2f , 5f , and 6f  can be obtained by substituting T ′  into Eq. (1.6). This method can be 

easily extended to the 3-D case. 

ii) Heat flux BC: After streaming, the temperature of the inner domain can be obtained. A 

second-order finite difference scheme is used to get the temperature on the wall [112], i.e., for 

the bottom wall at 0=y , 
y

TTT
y
T iii

i Δ

−−
=

∂
∂

2
34 1,3,2,

1,

. After finding the wall temperature, the 

same procedure as described in the isothermal wall case is used to calculate the unknown PDFs. 

 
5.2.3 Benchmark tests 
 
 
Two simulation studies were conducted to validate our single phase TLBE model: Rayleigh-

Bénard convection (RBC) and heat generation inside a square domain.  

A good benchmark test for a thermal fluid system is (RBC), where a horizontal layer of 

viscous fluid is heated from the bottom and the top boundary is maintained at a lower 

temperature [113]. When the temperature difference between the bottom and top boundary 

exceeds some threshold, the static conduction becomes unstable. Any small perturbation will 

make the system become convective.  

We simulate 2-D and 3-D RBC by using the D2Q9 and D3Q19 models, respectively. In the 

2-D simulation, the temperatures at the bottom wall ( 0=y ) and top wall ( 1=y ) are kept at 

1=BT  and 0=TT , respectively. So, 0.1=−=Δ TB TTT . A lattice size of 101 50 is used in the 

simulation. The two non-dimensional terms used to describe the system are the Prandtl number 

and the Rayleigh number. The Prandtl number is defined in equation (5.2). The Rayleigh number 

is defined as 

α
β

v
nyTg 3)(Ra Δ

=                                                          (5.5) 
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where g is the acceleration due to gravity, β  is the thermal expansion coefficient, and ny is the 

lattice size in the y  direction. The Boussinesq approximation is used, which assumes that the 

material properties are independent of temperature except in the body force term. For the 

gravitational term, the density is assumed to be a linear function of the temperature. Also, part of 

the gravity force is absorbed in the pressure term to eliminate the buoyancy force in the 

conduction state, which leads to the following expression of the external force 

jG )( 0TTg −= ρβρ                                                 (5.6) 

where TyTT B Δ−=0 . We calculated the RBC at different Ra and Pr  numbers. Figure 5.1 plots 

the typical velocity vectors and isotherms at 5000Ra =  and 0.1Pr = . 

 

(a) Velocity vectors 

 

(b) Isotherms 

Figure 5.1: Velocity vectors and isotherms at Ra = 5000, Pr = 1.0 
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Figure 5.2: Growth rate of instability vs. Ra number 

 
 

In order to evaluate the accuracy of the method, the onset of RBC is also tested. To 

determine this, the simulation is conducted at different Ra numbers around the critical Ra 

number cRa . After that, the growth rate (rate of increase of the maximum velocity in the y 

direction) is measured. The results are shown in Figure 5.2, in which the growth rates are plotted 

against the Ra number. The zero growth rate corresponds to the critical Ra number. Using a 

least-squares fit, the critical Ra number is found to be 1702.436, which agrees well with the 

theoretical value of 1707.762 obtained by linear stability theory. The relative error is 0.3119%. 

Another useful test for code validation is a 2-D heat conduction problem with heat generation 

inside the domain. A square domain (length 0.1=L , height 0.1=H ) with an adiabatic BC at the 

top and right walls, a uniform temperature 0.2=LT  at the left wall, and a uniform temperature 

0.1=BT  at the bottom wall is calculated in a 50 50 mesh. Additionally, there is heat generation 

q ′′′  inside the domain. The domain initially has a uniform temperature of 2.0.  

To represent heat generation properly in the LB context, we compare the non-dimensional 

heat generation in a real problem and in the LBE method. These two values should, of course, be 

equal. This means that: 
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where the subscript “Lu” denotes a lattice unit, 0T  is some reference temperature, and k is the 

thermal conductivity. In the LBM, we only specify the thermal diffusivity α . Hence Luρ  and 

LuVc ,  are set to be unity. Then  

2
,0*

Lu

LuLu
Lu L

Tq
q

α
=′′′                                                        (5.8) 

Similarly, the time step in the LBM can be related to the physical time through: 

22*
Lu

LuLu

L
t

L
tt

αα
==                                                        (5.9) 

Figure 5.3 shows the isotherms at steady state obtained by the LBE method. Figure 5.4 shows 

the Nusselt number at the top wall (adiabatic wall) with respect to the time step in the LBE 

simulation, which is a very small value. This test shows that the heat flux BC and heat source 

term are properly incorporated in the LBE method. Furthermore, the heat source term can be 

related to the viscous and compressive heating terms, which will greatly extend the scope of the 

method.  

For comparison, the finite difference (FD) method is also used to evaluate the same problem. 

Using the same grid resolution, the average relative error is 4104.8 −×≈E , where E is defined by: 
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Figure 5.3: Isotherms at steady state obtained by the LBE method. 

 
 

 

Figure 5.4: Nusselt number at the top wall with respect to the time step obtained by the LBE 
method. 
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5.3 MULTIPHASE TLBE MODEL 
 
 
Combining the previous single component multi-phase LBE model and passive scalar TLBE 

model, the single component two-phase TLBE model is proposed. In this model, the fluid 

dynamics are simulated by an isothermal LBE with the interparticle potential incorporated. The 

temperature field is determined by an additional passive scalar equation and the coupling of these 

two parts is through a suitably defined body force term in the isothermal LBE.  

Eqs. (1.6), (1.9) and (1.11) with Eqs. (3.3), (3.7) and (3.10) – (3.14) are used to simulate the 

flow field. Equation (5.1) is used to simulate the temperature field. The buoyancy term induced 

by the gravity and temperature difference can be expressed as: 

kk
x

xGx *)(
)(

1)()( TTgg −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ><
−= βρ

ρ
ρρρ                            (5.11) 

where >< ρ  is the average density of the mixture in the entire domain; g is the acceleration due 

to gravity; *T  is the reference temperature, which is usually equal to the temperature at the pure 

conduction state; and β  is the thermal expansion coefficient, which we assume is equal for the 

two phases. However, β  can also easily be specified to be different values for different phases. 

In Eq. (5.11), the first term on the RHS represents the buoyancy force due to the density 

difference. The second term on the RHS represents the buoyancy force due to the temperature 

difference.  

Although conceptually very simple, this model can produce a non-ideal gas EOS and capture 

the temperature field at the same time. In comparison to other multi-phase TLBE models, it is 

easy to realize and more stable, because it doesn’t require adding more particle speeds or 

tracking the energy evolution. The stability is determined by the fluid dynamics, and the 
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temperature field has no influence on it. Also, the energy source term Ψ  reserves the space for 

adding viscous and compressive heating terms in the future. 

An important point to note is that we have not considered phase transition and latent heat in 

the current model. In general, the phase transition phenomena are strongly related to the 

thermodynamics and their mechanics are very complicate. The phase transition rate is a function 

of thermodynamic properties such as temperature and pressure. In order to consider phase 

transition in the LB context, one needs to consider how to link the phase transition rate with 

these thermodynamic properties and how to incorporate latent heat into the scheme. Some 

pioneering work has been done by using simple approximations. For example, Kono and 

Ishizuka [114] specify a constant phase change rate in their model and relate it to the latent heat. 

Miller and Succi [115] studied anisotropic crystal growth from melt. They use a phase-field 

equation to simulate the phase transition and consider latent heat as an extra force term. It may 

be possible to adapt these treatments to our methodology. 

 
 
 

5.4 SIMULATION RESULTS 
 
 
5.4.1 Initial flow field and temperature setting 
 
 
We simulated a thermal two-phase system in a rectangular channel under different conditions 

(different Reynolds number, different Rayleigh number, and different boundary conditions). 

Most of the simulations were conducted on a 50 50 50 lattice size with a periodical boundary 

condition (BC) in the x direction, and wall boundary conditions (BCs) in the y and z directions 

for the fluid dynamics. Grid independency was checked for all of the different resolutions used in 

the paper by varying the lattice sizes. 
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A body force in the x direction is also included in the simulation: 

ixF ax )(ρ=                                                       (5.12) 

where a  is the acceleration due to the body force. Defining the characteristic velocity U ′  (in 

lattice units) as 
v
nzanzaU

22 )()()(
==′

μ
ρ x , the Reynolds number will hence be:  

2

3)(Re
v
nza

v
nzU

=
′

=                                                    (5.13) 

In the simulation, the bottom wall and top wall are kept at fixed temperatures of 1.0 and 0.0, 

respectively. The vertical walls are adiabatic. Therefore, the Rayleigh number has the same form 

as equation (5.5) except that in 3-D, ny  should be replaced by nz . 

Initially, a droplet is placed at the center of the domain with no force on it. After several 

hundred time steps, the droplet reaches equilibrium. This equilibrium process is needed; 

otherwise, the code fails to converge. Next the buoyancy force in the z direction and the body 

force in the x direction will be turned on, and the droplet will fall until it reaches the bottom wall. 

Due to different wettabilities at the wall, it can form different contact angles. If the relative 

difference of the maximum magnitude of the velocities at time step t and at t-100 is smaller than 

a given tolerance, steady state is considered to be reached (in this case, all other variables also 

have a small relative change). If steady state cannot be reached (in this case, usually the system 

will exhibit some periodical feature), the duration of the simulation (more than 20,000 time steps 

in lattice units) will produce statistical results.  

 
5.4.2 Multiphase thermal flow base case 
 
 
First, we present our simulation results for two-phase flow at given Rayleigh numbers. Since the 

SC EOS produces the greatest unphysical variation of all the EOS presented in the previous 
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chapter, we will use this for all of our simulations (with 35.0−=fg ) to show the extrema of the 

possible errors from spurious currents in this method. The initial droplet radius is 7.0. The 

Reynolds number is held at 100. 

 

(a) Isotherms and density contours 

 

(b) Velocity vectors 

Figure 5.5: Isotherms, density contours and velocity vectors at 10000Ra = , 100Re = . 



 

127 

Figure 5.5 shows the isothermal contours, density contours and velocity vectors in the xz-

plane at 25=y  (the symmetric plane) for 10,000Ra =  and 100Re = . The isotherms form 

ascending and descending fluid sheets in the vapor phase. In the liquid phase, the isotherms are 

flattened. This is mainly because the buoyancy force due to the temperature difference is 

balanced by the buoyancy force due to the density difference in the liquid phase. In this example, 

the liquid and vapor phases in our model have the same properties except for densities. As 

discussed in Chapter 4, however, the code has the potential for specifying different properties for 

different phases and also specifying different EOS. 

In our static bubble test, we observed the existence of spurious currents. The spurious 

currents have an influence on the temperature field and will affect local heat transfer results. This 

is verified because we are using the velocity of the flow as the advection velocity of the 

temperature. The fluctuation of the isotherms near the top interface of the droplet shows this 

influence. However, as for the large scale or overall heat transfer results, we can ignore this 

influence for two reasons. First, these spurious currents are mostly constrained to be in the 

interface region and will not extend to a distance far away from the interface. Second, for 

35.0≤fg , compared with the main flow velocity, the magnitude of the spurious currents is 

relatively small and can be neglected. Also, as shown in Chapter 4, by changing the EOS, we can 

greatly reduce the spurious currents. The incorporation of these more realistic EOS into TLBE 

model will therefore produce more accurate temperate distributions, especially in the region near 

the interface.  
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5.4.3 Effect of varying Rayleigh number 
 
 
Figure 5.6 shows the isotherms and density contours in the xz-plane at 25=y  for 5,000Ra =  

and 15,000. As the Rayleigh number increases, the temperature gradient near the wall becomes 

sharper: in the 5,000Ra =  case, the isotherms are almost straight lines and evenly distributed, 

while in the 5,0001Ra =  case the isotherms are highly curved and much thicker near the wall. 

Also, as the Rayleigh number increases, the ascending and descending fluid sheets become 

narrower. 

 

(a) 5000Ra =  
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(b) 15000Ra =  

Figure 5.6: Isotherms and density contours at different Rayleigh numbers 

 
 
5.4.4 Nusselt number variation 
 
 
The Nusselt number of the bulk flow is defined as: 

T
NTTu

Nu zz

Δ

−
+=

α
*)(

1                                                 (5.14) 

where zu  is the velocity in the z direction; *T  is the reference temperature, here using the 

temperature at the pure conduction state; zN  is the lattice size in the z direction; and 〈⋅〉  

represents the average over the whole flow domain.  

The Nusselt numbers of the bulk flow, at the top wall, and at the bottom wall as functions of 

the time step are shown in Figure 5.7, with 10,000Ra =  and 100Re = . Instead of approaching a 

constant value, all three values have small fluctuations throughout the simulation. The 
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fluctuation exhibits periodical features. The characteristic Nusselt number can be obtained by 

averaging the instantaneous values over time. 

 

Figure 5.7: Nusselt numbers of the bulk flow, at the top wall, and at the bottom wall as functions 
of the time step ( 10000Ra = , 100Re = ). 

 
 

Figure 5.8 shows the bulk Nusselt number changing with the time step at different Rayleigh 

numbers. The bulk Nusselt number increases as the Rayleigh number increases. The magnitude 

of the fluctuations also increases with increasing Rayleigh number.  

 

Figure 5.8: The bulk Nusselt number changing with the time step at different Rayleigh numbers. 
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The two-phase flow system under different Reynolds numbers is also simulated. The 

Rayleigh number is fixed at 10,000 and the Reynolds number takes the values 20, 100 and 500, 

respectively. Figure 5.9 shows the bulk Nusselt number changing with the time step at different 

Reynolds numbers. For 20Re = , the bulk Nusselt number is 1.808, which is slightly higher than 

that of 100Re =  (1.771), and the fluctuation is much smaller (almost a constant value). For 

500Re = , the bulk Nusselt number (1.493) as well as the Nusselt number at the top and bottom 

walls is smaller than the 100Re =  case.  

 

Figure 5.9: The bulk Nusselt number changing with time step at different Reynolds numbers. 

 
 

These results seem counterintuitive. We believe the main reason is that the larger velocity in 

the x-direction suppresses the convection in the z-direction. In this problem, the temperature 

difference between the upper wall and lower wall is the main driving force for the heat transfer. 

Therefore, better convection in the z-direction will result in a higher Nusselt number. However, 

as the Reynolds number increases, the convection in the z-direction decreases, which can be seen 

from the isotherms of the xz-plane ( 25=y ) in Figure 5.10 ( 500Re =  case), where the isotherms 

are almost straight lines in the x-direction. Also shown in Figure 5.10 are the isotherms in the yz-
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plane ( 25=x ), which form some ascending and descending fluid sheets. Compared with Figure 

5.5 (a) ( 100Re =  case), these fluid sheets are wider and flatter. 

 

(a) xz-plane ( 25=y ) 

 

(b) yz-plane ( 25=x ) 

Figure 5.10: Isotherms and density contours at 10000Ra = , 500Re = . 
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5.4.5 Effect of fluid-solid interaction strength 
 
 
The influence of the fluid-solid interaction on the system is also investigated. Different wg  

values (0.06 and –0.03) are used, which represent a typical non-wetting and wetting fluid. The 

contact angles for these two cases are 120.6° and 71.3°, respectively. The Reynolds number and 

Rayleigh number are fixed at 100 and 10,000. Table 5.1 lists the Nusselt numbers of the bulk 

flow, at the top wall, and at the bottom wall under different wg  values. Because of the 

fluctuation, the Nusselt number is averaged over the time steps. Compared to the no fluid-solid 

interaction case, the wetting case ( 03.0−=wg ) has a higher Nusselt number at the top wall, a 

lower Nusselt number at the bottom wall, and the bulk Nusselt number is increased. On the other 

hand, the non-wetting case ( 06.0=wg ) has a lower Nusselt number at the top wall, a higher 

Nusselt number at the bottom wall, and the bulk Nusselt number is decreased. 

An explanation for this phenomenon is that as the wg  value increases, the contact area 

between the droplet and the wall decreases, and the height of the droplet increases. This will 

increase the convection at the bottom wall since more area is exposed to the convection of the 

vapor phase. However, the bulk Nusselt number is decreased because the droplet extends deeper 

to the center and hampers the convection in that region. 

Table 5.1: Nusselt numbers at different wg  values 

        Nu  
gw    Bulk Top wall Bottom wall 

-0.03 1.852 1.918 1.698 
0 1.771 1.797 1.741 
0.06 1.733 1.722 1.954 
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5.5 DISCUSSION 
 
 
In this chapter, we have proposed a thermal two-phase LBE model. In this model, the fluid 

dynamics is simulated by an isothermal single component multiphase LBE, and the temperature 

field is determined by an additional passive-scalar equation. The coupling of these two parts is 

through a suitably defined body force term in the isothermal LBE. The applicability of our model 

is demonstrated through numerical simulations. This new model can simulate a thermal two-

phase flow system with a non-ideal gas EOS. Because the coupling is external, the new model 

has the same stability as the isothermal LBE model. Furthermore, it is simple and easy to code. 

Our studies show that different EOS, variable wettability, gravity and buoyancy effects, and 

relatively high Rayleigh numbers can be readily simulated by the new model. Also, the new 

model has the ability to handle complex BCs. For the future, further research is needed in 

properly incorporating a means to describe phase transition. 
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6.0 CONCLUSIONS AND FUTURE WORK 
 
 
 
 

6.1 MAJOR ACCOMPLISHMENTS 
 
 
In this dissertation, we have made several contributions to the study of two-phase flow using the 

LBE method. The following is a summary of our major accomplishments. 

 
1. Development of a new TLBE two-phase model 
 
 
We have successfully developed a new TLBE two-phase model for a single component system. 

In our new model, the fluid dynamics is simulated by an isothermal single component two-phase 

LBE (the SC model), and the temperature field is determined by an additional passive-scalar 

equation. The coupling of these two parts is through a suitably defined body force term in the 

isothermal LBE. Because the coupling is external, the new model has the same stability as the 

isothermal LBE model. Given a proper fluid-fluid interaction, this new model can simulate a 

thermal two-phase flow system with a non-ideal gas EOS. Furthermore, since the passive-scalar 

equation can also be solved in the framework of the LB method, the new model is simple and 

easy to code. The applicability of our model is demonstrated through numerical simulations. Our 

studies show that different EOS, variable wettability, gravity and buoyancy effects, as well as 

relatively high Rayleigh numbers can be readily simulated by the new model.  
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2. Incorporation of different EOS into the two-phase LBE model 
 
 
We have demonstrated the applicability of using different EOS to simulate two-phase flow by 

the LBE method. We have showed that while suitable for some applications, the vdW EOS 

generally does not give satisfactory results, e.g. the coexistence curves obtained from the 

simulation using the vdW EOS significantly deviate from the theoretical values. However, the C-

S EOS and P-R EOS, which are revisions of the vdW EOS for the hard sphere term and 

attraction term respectively, demonstrate much better performance in terms of spurious currents, 

temperature ranges and density ratios. Other revisions, like the R-K EOS and RKS EOS also 

give better simulation results. Furthermore, the simulation results of the R-K EOS, P-R EOS and 

C-S EOS fit quite well with the theoretical values, which means by properly choosing an EOS, 

we can both introduce temperature explicitly and develop a coexistence curve very close to the 

theoretical prediction. Therefore, we can say that as the selected EOS becomes more realistic, a 

better performance will be obtained from the LBE simulation. By comparing the simulation 

results with experimental data for saturated water/steam, the R-K EOS gives better results for the 

water density and the P-R EOS gives better results for the steam density. There are discrepancies, 

particularly for the liquid leg, but this is due to the EOS itself, since the coexistence curve 

obtained from the simulation fits well with theoretical values. Therefore, a translation from the 

simulation results might be needed in this case. 

 
3. Addition of a flexible surface tension 
 
 
It is argued that one limitation of the SC LBE model is that the surface tension coefficient of this 

model is coupled to the EOS and there is no freedom to vary it. In order to achieve a flexible 

surface tension, we proposed an additional force term )()( 2 ρψρψ ∇∇= κsF , which accounts for 
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the contribution of the surface tension, to be incorporated into the fluid-fluid interaction force. 

We then measured the surface tension both statically and dynamically. It has been shown that by 

adopting this additional force term, we can increase the surface tension about 78.68% and 

decrease it about 46.03% from the SC LBE base case for the simulated case. 

 

4. Development of a new mass conserving boundary condition for the LBE method 
 
 
We proposed a second-order accurate mass conserving boundary condition for the LBE method. 

Several benchmark test problems involving steady and unsteady flows were used to validate the 

accuracy and examine the robustness of the proposed BC. Compared with the FH and MLS BCs, 

our new BC has the following advantages: (1) The mass leakage is smaller than other schemes, 

and it will not result in the constant mass leakage seen in other BCs in some special cases. (2) It 

has much better stability than any other BC used in the simulations. Both the unstable region and 

the achievable minimum τ  value are much smaller compared with other schemes. (3) In the 

normal region of Δ  and τ , i.e. the stable region for all BCs, it gives second order accuracy and 

comparable or better results than other schemes. (4) It is not sensitive to the interpolation 

(weighting) factor and choice of bfu  . 

 
 
 

6.2 FUTURE WORK 
 
 
Several possible future tasks are listed below. We have conducted preliminary research in some 

of these areas. 
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1. Multicomponent multiphase LBE model 
 
 
Originally, the SC model was proposed for multiphase and multicomponent systems. In their 

multicomponent approach, the different components were included in the model by introducing 

different sets of PDFs, with each set of PDFs corresponding to one component. Accordingly, the 

fluid-fluid interaction force was also expanded to include interactions between different 

components. For the immiscible components, the attractive forces between particles of the same 

component ( 11
fg  and 22

fg ) and repulsive forces between different components ( 12
fg ) were 

introduced. Using this approach, we have conducted some research on a two-phase two-

component flow system. We found that the biggest problem for this approach is that the density 

ratio cannot be high [116]. The highest density ratio we can achieve is only about 2.0. If the 

density ratio is higher than that, the simulation will fail. Before reaching the blowup point, the 

densities approach infinity, which is called a mass collapse. However, in common gas-liquid 

bubbly flows, like an air-water system, the density ratio can be higher than 1000. In order to 

simulate such systems, we think one possible way of achieving a high density ratio is to specify a 

more realistic EOS for at least one component (particularly in the liquid phase) instead of using 

the SC EOS, as discussed in Chapter 4. The EOS of the other component (or the gas phase) can 

be described by the ideal gas law, SC EOS or other more realistic EOS, depending on the 

situation. Then the high density ratio is mainly guaranteed by the EOS of the liquid phase. The 

fluid-fluid interaction force 12
fg  between the liquid and gas phases will therefore be used to 

separate the two phases and not to achieve a high density ratio, which will benefit the stability of 

the scheme, since a large 12
fg  always results in instability in the simulation.  
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2. Mesh refinement 
 
 
In order to increase efficiency while maintaining accuracy in numerical simulations, high 

resolution is always preferred in the high gradient regions, like the near wall region, and coarse 

resolution can be used in other regions. In N-S solvers, this can be realized by using grid-

stretching techniques. However, as discussed before, the standard LBE uses a uniform lattice, 

1== δyxδ , which poses difficulty in fulfilling the resolution requirement. To overcome this 

difficulty, different approaches have been proposed, e.g. the LBE method using a non-uniform 

grid [117, 118], the interpolation scheme, etc. In order to preserve the inherent advantage of LBE, 

however, it is preferable to use the uniform grid. For single-phase flow, Filippova and Hänel [52] 

proposed a local refinement method using a uniform grid with a higher resolution in the refined 

region. Patches of fine grids are used in certain regions, for example, near the solid boundary. At 

the interface, the post-collision PDFs of the coarse grid were rescaled to satisfy the conservation 

of mass and momentum and continuity of stresses across the interface and then sent to the fine 

grid. After proceeding n “streaming-collision” steps on the fine grid, where n is the refinement 

ratio, the post-collision PDFs of the fine grid were sent back to the coarse grid. Interpolations in 

space and time were needed during these processes. Yu [45] later revised this method by using 

interlaced coarse and fine grid. We have introduced Yu’s method to both our TLBE model and 

multiphase LBE model. The expansion to the single component TLBE model was 

straightforward and produced some promising results. However, the extension to the multiphase 

LBE model was unsuccessful, due to the difficulty in correctly incorporating the fluid-fluid 

interaction force in the refined region. It seems that the scheme is very sensitive to the interaction 

force, and even higher order interpolation of this force will result in mass leakage and eventually 

make the scheme unstable. Therefore, further research is needed in this area.  
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3. Viscous and compressive heating and phase transition phenomena 
 
 
As discussed before, in the passive scalar approach, viscous and compressive heating effects 

were neglected. Efforts should be made to develop a more accurate thermal model, which can 

take viscous and compressive heating effects into account. One possibility is using the energy 

source term Ψ  to represent viscous and compressive heating terms, as mentioned in Chapter 5. 

Generally, phase transition phenomena are strongly related to the thermodynamics and are very 

complicated with respect to the flow mechanics. The phase transition rate is a function of 

properties such as temperature and pressure. As a simplified means of incorporating these 

phenomena, one can specify a constant phase transition rate and include it in the energy source 

term. For a higher-accuracy model of transition regimes, however, the mechanics of the phase 

transition must be better quantified, both through experimental and computational means. 

 

4. Parallel computation of the multi-phase TLBE model 
 
 
One of advantage of the LBE method is that it is very suitable for parallel computation. The 

collision step is exactly local and the streaming step is almost local, and only needs information 

from the neighboring sites. In the SC multi-phase model, although the fluid-fluid interaction 

force theoretically requires information from all other sites, by restraining this force inside the 

next-nearest neighbors, as we discussed in Chapter 3, the overall operation is still suitable for 

parallel computation. Parallel computation has been applied to the SC two-phase flow model by 

several researchers [81, 82]. In our two-phase TLBE model, the addition of the temperature field 

will also not affect the applicability of parallel computation, since the temperature field itself is 

obtained from local variables. Therefore, parallel computation is also suitable for our two-phase 
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TLBE model and a great reduction in computational time is expected by implementing 

parallelization.  

 

5. Surface tension and its effects. 
 
 
Although we have proposed a method of varying surface tension in the SC LBE model, the 

influence of surface tension on the flow dynamics has not been thoroughly investigated yet. In 

order to incorporate even greater flexibility in varying and modeling surface tension, other 

computational techniques should also be explored. 

 
 
 

6.3 APPLICATIONS OF THE MODEL 
 
 
In this work, we proposed a new TLBE two-phase model for a single component system. Given a 

proper fluid-fluid interaction, the new model can be used to calculate fluid dynamics as well as 

heat transfer effects for a single component two-phase (vapor/liquid) flow system. Since 

previously the LBE method was used only for isothermal simulations, our new model therefore 

greatly enhances the applicability of the LBE method. Also demonstrated in this work is that by 

using proper EOS, a density ratio between the two phases as high as 1000 can be readily 

modeled, which is enough for most engineering applications. Furthermore, much smaller 

spurious currents and a more accurate coexistence curve were also obtained as a result of using a 

proper EOS, which guarantees more accurate simulation results.  

In an effort to cure the formerly “fixed” surface tension in the SC LBE model, we proposed a 

method of varying surface tension in the SC LBE model. In our method the contribution of the 

surface tension was incorporated into the fluid-fluid interaction as an additional force term and 
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variable surface tension was obtained by varying this force term. The variable surface tension is 

very useful and sometimes essential for many applications, such as capillary flow [94], effects of 

a surfactant [119], and flow under microgravity [120].  

We proposed a new mass conserving boundary treatment, which will not result in constant 

mass leakage when compressibility was encountered in the simulation and more importantly it 

has a much better stability than other boundary treatments and easy to implement at the same 

time. Therefore, it can be used in simulations with complex boundaries, such as flow in porous 

media, particle suspension flow, and flow in vascular structures [121]. 

Since dispersed two-phase gas-liquid flows, like air-water flow, are ubiquitous in the 

engineering processes, such as flow in chemical reactors, therefore, in the future, a multiphase, 

multicomponent model capable of simulating density ratio reaching 1000 is needed, which will 

greatly enrich the capability of the LBE method. Meanwhile, our new TLBE two-phase model is 

need to be modified to satisfy the simulation requirement of more complex systems, such as flow 

with phase change (boiling, condensation, etc), flow with compressive heating, and flow with a 

chemical reaction [122, 123]. All these modifications put challenges on the model not only 

theoretically but also computationally, since these kinds of simulations are highly demanding in 

computational resources. In an effort to lower computation cost, further research in the parallel 

computation of LBE method is needed [124]. Development of parallel computation will also 

pave the way for the LBE method’s applicability in other areas, where traditional CFD methods 

are computationally very expensive, such as flow in porous media [81], turbulent flow [125], and 

particle suspension flow [126].  
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APPENDIX A 
 
 
 

FROM THE LBE TO THE N-S EQUATIONS 
 
 
 
 
In the section 1.4, we showed how to derive the LBE model from the continuum Boltzmann 

equation with the BGK approximation. In this Appendix, we will show how to recover the N-S 

equations from the LBE. Our starting point is Eq. (1.11)--the LBGK model with SRT. 

Performing a Taylor series expansion in time and space with small parameters δtx =δ  to the 

second order, we obtain: 
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In order to derive the N-S equations from LBE, the Chapman-Enskog expansion [6], which 

in essence is a standard multi-scale expansion, is used as follows: 

2
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1xx ∂
∂

=
∂
∂ ε                                                            (A.2b) 

where ε  is a small parameter, 1<<ε . Eq. (A.2a) means that the convection time scale 1t  is 

much smaller than the diffusion time scale 2t  (low-frequencies assumption).  And the PDF αf  

can be expanded similarly as: 

)( 3)2(2)1()0( εεε αααα Offff +++=                                        (A.3) 
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Inserting Eqs. (A.2) and (A.3) into Eq. (A.1), we obtain: 
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Collecting the terms in the ascending order of ε : 
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Using Eq. (A.6) and performing some algebra, Eq. (A.7) can be simplified to be: 
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Eq. (A.5) means that the PDF αf  is not far from the equilibrium state. We can re-write Eq. (A.3) 

as follows:  

)( 3)2(2)1()( εεε αααα Offff eq +++=                                        (A.9) 

The equilibrium distribution function satisfies the following constraints: 
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Summing over all α  for both Eq. (A.6) and Eq. (A.8), multiplying by neα and summing over all 

α  for both Eq. (A.6) and Eq. (A.8), and using the constraints given by Eq. (A.10-11), we can 

obtain the following macroscopic equations: 
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Combining Eq. (A.12) and (A.14), the continuity equation is recovered to the second order of ε : 
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Combining Eq. (A.13) and (A.15), the momentum equation is recovered to the second order of ε : 
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Substituting Eq. (A.16) into Eq. (A.17), the momentum equations becomes: 
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From Eq. (A.17), we can identify that the momentum flux tensor is: 
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with the zero order momentum tensor and first order momentum tensor given by the following 

equations: 
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To specify the detailed form of αβΠ , the lattice structure and corresponding equilibrium 

distributions have to be specified. The D2Q9 lattice is considered here. Derivation for other 

lattice structures can be obtained using similar fashion. For the D2Q9 model, the following 

identities are observed: 
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Substituting Eq. (1.6) into Eq. (A.18) and using identity (A.22), we find: 
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Substituting Eq. (A.23) back into Eq. (A.18), the momentum equation becomes: 
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where the pressure p  and kinematic viscosity ν are given by: 

3
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Therefore, the LBE recovers the N-S equations [Eq. (A.27-28)] in the incompressible flow limit: 
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This dissertation presents a systematic development of a new thermal lattice Boltzmann 


multiphase model. Unlike conventional CFD methods, the lattice Boltzmann equation (LBE) 


method is based on microscopic models and mesoscopic kinetic equations in which the collective 


behavior of the particles in a system is used to simulate the continuum mechanics of the system. 


Due to this kinetic nature, the LBE method has been found to be particularly useful in 


applications involving interfacial dynamics and complex boundaries, e.g. multiphase or 


multicomponent flows.  


First, the methodology and general concepts of the LBE method are introduced. Following 


this introduction, an accurate mass conserving wall boundary condition for the LBE method is 


proposed together with benchmark test results. Next, the widely used Shan and Chen (SC) single 


component two-phase flow model is presented, as well as improvements to that model. In this 


model, by incorporating fluid-fluid interaction, phase separation and interfacial dynamics can be 


properly captured. Sharp interfaces between phases can be easily obtained without any additional 


numerical treatment. In order to achieve flexibility for the surface tension term, an additional 


force term which represents the contribution of surface tension is incorporated into the fluid-fluid 


interaction force term. The validity of this treatment is verified by our simulation results. 


Different equations of state are also incorporated into this model to compare their behavior. 







 v


Finally, based on the SC model, a new and generalized lattice Boltzmann model for simulating 


thermal two-phase flow is described. In this model, the SC model is used to simulate the fluid 


dynamics. The temperature field is simulated using the passive-scalar approach, i.e. through 


modeling the density field of an extra component, which evolves according to the advection-


diffusion equation. By coupling the fluid dynamics and temperature field through a suitably 


defined body force term, the thermal two-phase lattice Boltzmann model is obtained. Our 


simulation results show that different equations of state, variable wettability, gravity and 


buoyancy effects, and relatively high Rayleigh numbers can be readily simulated by this new 


model. Lastly, the accomplishments of this study are summarized and future perspectives are 


provided. 
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