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Asthma is a chronic inflammatory condition characterized by acute bronchoconstriction 

and a protracted inflammatory response marked by elevated levels of T-helper (Th)-2 cytokine 

production.  Common precipitants of asthma exacerbation include allergens (e.g. pollen), viruses 

(e.g. URI); however, recent evidence has demonstrated that psychological stress can also be a 

trigger. While the pathophysiological mechanism linking stress and asthma exacerbation is 

unknown, modulation of the immune system has been proposed as one potential pathway.  The 

primary aim of this study was to examine impact of examination stress (i.e. Pennsylvania bar 

exam) on Th2 and Th1 cytokine production and other asthma-relevant immune parameters 

among asthmatics and healthy controls.  To this end, five mild asthmatics and 10 healthy 

controls completed a battery of psychosocial measures and underwent venipuncture for 

immunological assessment one week prior and one month following the Pennsylvania bar exam.  

Overall, participants reported greater levels of distress during the exam period when compared to 

the post-exam period.  With respect to immunological changes, a group (asthmatic vs non-

asthmatic) by period (exam vs. post-exam) interaction was observed on Th1 cytokine production, 

with non-asthmatic participants showing a stress-related decrease in Th1 cytokine production, 

i.e. IFN-gamma production.  In addition, basal differences in IFN-gamma production were 

observed with asthmatics producing lower levels of IFN-gamma relative to non-asthmatics, 

potentially rendering asthmatics more susceptible to viral infections.  Exploratory analyses of 
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health behaviors revealed an intriguing relationship between alcohol consumption and IFN-

gamma production that warrants further investigation.  Future studies employing larger sample 

sizes are needed to better interpret these findings.   
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1.0  INTRODUCTION 

Asthma is a common chronic disease marked by intermittent episodes of airflow 

obstruction and hypersensitivity to normally benign proteins. During an episode, asthmatics 

experience acute bronchoconstriction, mucus hypersecretion, and a protracted inflammatory 

response (Busse & Lemanske, 2001). Currently, approximately 16 million people within the 

United States are affected by this disease, which has a lifetime prevalence of approximately 25 

million individuals, 12% of the U.S. population (CDC, 2002).  Despite a concerted effort by 

national health institutions to design more effective asthma treatments, the prevalence of asthma 

has consistently risen over the past two decades (CDC, 2002).   

Primarily considered a disorder of immune function, asthmatics display stable 

immunological differences when compared with non-asthmatics, including elevated T helper 

(Th) 2 cytokine production and increased numbers of eosinophils in both the bronchial mucosa 

and in peripheral circulation  (Busse & Lemanske, 2001).  Within asthmatics, higher Th2 

cytokine production has been positively associated with asthma severity and may confer 

increased risk for asthma exacerbation (Humbert et al., 1997; Sandford et al., 2000).  In addition, 

Th2 cytokines have the capacity to down regulate Th1 cytokine activity, which may render 

asthmatics more vulnerable to upper respiratory infection (URI), a known trigger of asthma 

episodes (Jung et al., 1995; Marshall & Agarwal, 2000).   
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Known precipitants of asthma exacerbation include allergens, cold air, exercise and, in 

some cases, psychological stress.  In regard to the latter, a large body of evidence links 

psychological stress and emotional arousal to increased subjective report of asthma symptoms as 

well as objective declines in pulmonary functioning (Lehrer, Feldman, Giardino, Song & 

Schmaling, 2002; Schmaling, Lehrer, Feldman & Giardino, 2003).  Furthermore, recent 

prospective evidence reveals that stressful life events precipitate asthma exacerbations 

(Sandberg, Jarvenpaa, Penttinen, Paton & McCann, 2004).   

One possible mediator of stress-related exacerbation of asthma is modulation of immune 

function, influencing host responses to allergens and susceptibility to viral infections that often 

precipitate asthma episodes.  In this regard, it is well established that psychological stress is 

associated with modulation of immune function (Herbert & Cohen, 1993; Marsland, Bachen, 

Cohen & Manuck, 2001), including an elevation in Th2 cytokine production (Segerstrom & 

Miller, 2004) that may increase risk of asthma exacerbation.  To date, however, this literature has 

focused on the stress-related immune responses of healthy individuals, with only a handful of 

studies examining these relationships among asthmatics.  Thus, the primary purpose of the 

current investigation was to explore this possible pathway by examining stress-related changes in 

Th2 and Th1 cytokine production, circulating numbers of eosinophils, and serum IgE levels 

among asthmatics and non-asthmatics.  For this purpose, a quasi-experimental study examining 

immune responses to examination stress was conducted.    

Before turning to a presentation of the study methods, a brief overview of the 

pathophysiology of asthma is offered to orient the reader. This is followed by an overview of 

existing evidence for associations between stress, immune function, and the exacerbation of 

asthma.   
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2.0  WHAT IS ASTHMA? 

Asthma, as defined by National Heart, Lung and Blood Institute (NHLBI, 1997), is a 

chronic inflammatory disorder of the airways characterized by episodes of widespread and 

variable airflow obstruction that are reversible spontaneously or with treatment.  In susceptible 

individuals, inflammation of the airways causes recurrent episodes of wheezing, breathlessness 

and chest tightness.  This can be accompanied by autonomic bronchial hyperresponsiveness to 

various external stimuli, further contributing to reduced airflow.  Asthma symptoms tend to 

worsen during the night and in the early morning.  Treatment involves a prophylactic medication 

regimen that can include short and long acting beta-agonists, inhaled corticosteroids and 

leukotriene antagonists.    

Typically, the onset of asthma is in childhood, with a variable course resolving for many 

prior to adolescence, but continuing for others throughout adulthood  (Sears et al., 2003).  The 

majority of individuals predisposed to asthma have an atopic phenotype, which is the tendency to 

respond to normally benign proteins with inflammatory processes characterized by elevated Th2 

cell activity and the production of immunoglobin E (IgE) (Novak & Bieber, 2003).  IgE is the 

antibody responsible for classic allergic reaction.  While the specific factors that promote the 

development of an atopic phenotype are unclear, genetic and environmental factors (e.g. early 

exposure to allergens and viruses) are thought to play a role (Busse & Lemanske, 2001).   
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2.1 THE IMMUNOLOGY OF ASTHMA 

The elevated Th2 activity that is characteristic of asthma results in greater production of 

the Th-2 cytokines,  interleukin (IL)-4 and 5 (Bettiol et al., 2000; Rodriguez et al., 1998; Shiota 

et al., 2002).  These cytokines initiate allergic inflammation, contribute to asthma exacerbations 

(Busse & Lemanske, 2001), and are related to greater asthma severity (Humbert et al., 1997).  

Th1 and Th2 cytokines are mutually inhibitory (Jung et al., 1995; Maggi et al., 1992), which 

explains findings that asthmatics also produce lower levels of Th1 cytokines following 

stimulation by a nonspecific mitogen than non-asthmatics (Rodriguez et al., 1998).  Th1 cells 

secrete cytokines, including interferon (IFN)-gamma and IL-2, that are involved in  cellular 

immune responses to invading intracellular pathogens (e.g. viruses)(Liu, 2000).  Thus, it is 

proposed that patterns of Th1:Th2 activation that accompany asthma promote a down-regulation 

of cellular immune function and an up-regulation of inflammatory pathways (Marshall & 

Agarwal, 2000), rendering the individual more susceptible to  asthma exacerbation via a decrease 

in host resistance to viral infection and/or an increase in allergic response.   

Asthma is an inflammatory disorder of complex and integrated immune processes.  In 

addition to T-helper cells and their cytokines, immune components known to play a major role 

include B cells, eosinophils, mast cells, and chemical mediators, such as chemokines, which are 

known to be instrumental in promoting bronchial autonomic hyperresponsiveness, mucus 

hypersecretion and the influx of immune cells into the bronchial mucosa.  Accumulation of  

immune cells, particularly eosinophils, in the bronchial tract, and related inflammation contribute 

to the impediment of airflow that is a cardinal symptom of an asthma episode (Krishna, Salvi & 

Holgate, 2001).  Even between acute asthma episodes, asthmatics have higher numbers of 

eosinophils in peripheral circulation than non asthmatics (Lewis et al., 2001; Ulrik, 1998).   
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Studies examining the immunopathology of allergen-induced asthma exacerbation 

demonstrate a clear 2 phase process (Krishna et al., 2001), with an early phase that starts within 

15 minutes of  exposure to the allergen, followed by a late phase occurring 2-6 hours later.  

During the early phase, allergen proteins are taken up by dendritic cells and macrophages that 

line the airway. These antigen-presenting cells (APCs) travel to  lymph nodes where they present 

the processed antigen to  T and B cells, stimulating the activation of Th2 cells and the release of 

IL-4 and IL-5.  These cytokines activate the humoral immune system, resulting in isotype 

switching of B cells to produce IgE.  Once released from B cells, IgE cross-links with mast cells, 

resulting in the release of preformed mediators such as histamine and leukotrienes that cause 

constriction of the bronchial smooth muscle, and the onset of asthma symptoms (Krishna, Salvi 

& Holgate, 2001).     

The late phase of an asthma exacerbation is marked by excessive inflammation as well as 

narrowing of the bronchial tract secondary to smooth muscle constriction.   During this phase, 

elevated levels of IL-5 secreted by Th2 cells into the circulatory system promote the 

differentiation and migration of eosinophils from the bone marrow to the airway (Shi et al., 

1998) contributing to airflow obstruction.  Peripheral blood levels of both eosinophils and IL-5 

have been shown to correlate highly with levels in the bronchial mucosa (Liu et al., 2002).  

Furthermore, in a recent study, mild asthmatics treated with monoclonal antibodies to IL-5 

displayed reduced levels of blood and sputum eosinophils following an inhaled allergen 

challenge (Leckie et al., 2000).   

Triggers of asthma episodes vary widely across individuals and include allergens (e.g. 

pollen, cockroaches, pet dander), smoking, cold air, exercise and URI.  In addition, evidence 
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suggests that psychological stress and/or emotional arousal may play a role (Lehrer, Isenberg & 

Hochron, 1993; Schmaling et al., 2003).  This is the primary focus of the current study.                  

2.2 INFLUENCE OF STRESS ON ASTHMA EXACERBATION 

There is no one single, widely accepted definition of stress. For the purposes of this study 

stress is conceptualized as a psychological process that elicits an adaptive physiological 

response.  Often associated with a negative emotional state, an individual experiences stress 

when he or she determines that the environmental demands exceed their ability to access coping 

resources (Lazarus & Folkman, 1984).  The ability to access adaptive coping resources in the 

presence of a stressor is thought to be a product of past experience, personality and presence or 

absence of social resources (e.g. social support) (Cohen, Doyle, Skoner, Rabin & Gwaltney, 

1997; Cohen & Herbert, 1996).   

A controversial issue in asthma research concerns the extent to which psychological 

stress contributes to asthma exacerbations.  Many asthmatics report that stress and emotional 

arousal play a significant role in precipitating their asthma attacks (Rees, 1980).  Moreover, 

documented case studies have shown increased susceptibility to asthma episodes following 

stressful life events (Levitan, 1985).  However, it is only recently that prospective studies have 

provided empirical support for this popular notion.   

Early studies were largely cross-sectional and while not all findings are consistent, they 

generally support a positive relationship between psychological stress and the exacerbation of 

asthma.  Indeed, in a review of this literature, Lehrer and colleagues (1993) concluded that 

negative emotion, thought to be elicited by stressful experience, was correlated consistently with 
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a higher frequency of subjective asthma symptoms (e.g. feelings of breathlessness) and often 

with a decline in pulmonary function. More recent cross-sectional studies provide further 

evidence for an association between stress and asthma.  Numerous stressors including family 

conflict, financial burden and the presence of depressive symptoms have been associated with 

more frequent asthma exacerbations (Sturdy et al., 2002), increased hospitalization (Chen, 

Bloomberg, Fisher & Strunk, 2003), and increased asthma mortality (Strunk, Mrazek, Fuhrmann 

& LeBrecque, 1985). Naturalistic field studies have found proximal relationships between daily 

stress and negative emotional states and poorer lung functioning among asthmatics (Apter et al., 

1997; Ritz & Steptoe, 2000; Steptoe & Holmes, 1985). In these studies, daily diaries are used to 

determine levels of perceived stress, current mood and the occurrence of stressful life events.  

Each diary entry generally corresponds with an objective measure of lung function (e.g. peak 

expiratory flow rate (PEFR) or forced expiratory volume in one second (FEV1). For example, 

Ritz and Steptoe (2000) followed 20 asthmatics and 20 non-asthmatics over 21 days and found 

that an average decrease in lung function of 7.9% accompanied negative emotions relative to 

neutral experiences among only the asthmatics; in fact, five asthmatics showed decreases in 

FEV1 of greater than 15%.  

In sum, a large literature supports a positive relationship between stress and asthma; 

however, the cross-sectional nature of the studies makes it impossible to determine the direction 

of these effects. Indeed, asthma is characterized by unpredictable and uncontrollable 

exacerbations, making it likely that more severe disease results in heightened stress and negative 

emotional reactions and influences retrospective recall of precipitating events.  To better 

examine causal relationships, experimental studies have been conducted. In these studies, 

asthmatics are presented with an acute emotional stimulus and their pulmonary functioning is 
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measured in response to a bronchoconstricting chemical or saline challenge.  In a review of this 

literature, Isenberg, Lehrer, and Hochron (1992) reported that approximately 20% of asthmatics 

responded with a significant decline in pulmonary functioning in response to emotional arousal.  

However, small samples sizes, difficulties with replication, and a lack of standard demographic 

and background controls (e.g. measures of asthma severity, medication usage) make it difficult to 

draw firm conclusions about the role of stress and emotional arousal in precipitating asthma 

exacerbation (Isenberg et al., 1992).  

More recently a prospective study has provided further support for the role of stress as a 

trigger of asthma exacerbation.  In this study, Sandberg and colleagues (2004) examined whether 

negative stressful life events precipitated asthma exacerbations among asthmatic children.  For 

this purpose, 60 children with chronic asthma were followed for 18 months and completed daily 

diaries monitoring asthma symptoms and negative life events. Acute exacerbations were defined 

as a documented fall in PEFR below 70% of the child’s normal value combined with an increase 

in reported symptoms.  Children who reported the presence of a severely negative life event (e.g. 

moving, traumatic events, family problems) were significantly more likely (OR= 4.69) to have 

an asthma attack within the next 2 days.  This finding provides persuasive initial evidence that 

stress may play a clinically relevant role in promoting asthma exacerbations.  

In conclusion, it is well established that psychological stress is associated with increased 

subjective report of asthma symptoms as well as objective declines in pulmonary functioning, 

with recent prospective evidence showing that stressful life events precipitate asthma 

exacerbations in children (Sandberg et al., 2004). These empirical findings support anecdotal 

evidence from asthma sufferers who report that stress increases their susceptibility to 

exacerbation. Although evidence is mounting that stress can exacerbate asthma, at least for a 
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subgroup of asthmatics, the mechanism of this effect remains to be determined (Wright, 

Rodriguez and Cohen, 1998).  The purpose of this investigation was to begin to examine a 

potential pathway of this relationship by examining whether life event stress was associated with 

inflammatory mechanisms known to play a role in the pathophysiology of asthma.  
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3.0  PATHWAYS LINKING STRESS AND IMMUNE FUNCTION 

Stress sets in motion a cascade of biological processes including activation of the 

hypothalamic-pituitary adrenal (HPA) axis and the autonomic nervous system (ANS).  In 

addition, stress is associated with changes in health behaviors.  In the following sections, the 

possibility that stress-related changes in these biological and behavioral processes act as potential 

pathways by which stress influences immune parameters relevant to asthma is considered.  

Asthma 
Exacerbation 

Allergen Virus

↑ susceptibility to 
airway inflammation 

↑ susceptibility to URI 

Immune dysregulation 

Autonomic dysregulation HPA axis dysregulation Health behaviors 

Negative Emotional 
Response 

Psychological Stress 

Figure 1: Proposed model linking stress and asthma exacerbation 
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3.1 NEUROENDOCRINE AND AUTONOMIC PATHWAYS 

Stress-induced activation of the HPA axis and the ANS leads to the systemic release of a 

number of neurochemicals, including corticosteroids and catecholamines, which can bind to 

receptors on immune cells that migrate between lymphoid organs and the peripheral blood 

stream.  It is known that these neurochemicals have the capacity to modulate immune function, 

including immune parameters relevant to asthma pathophysiology (Rabin, 1999). With respect to 

the HPA axis, it is widely accepted that elevated levels of the corticosteroids accompany 

psychological stress (Dickerson & Kemeny, 2004; Wolkowitz, Epel & Reus, 2001).  In general, 

cortisol has anti-inflammatory properties. Indeed, corticosteroids are widely prescribed in the 

treatment of asthma-related inflammation. Paradoxically, however, a number of pathways have 

been proposed that also link cortisol to the promotion of asthma-related inflammatory processes 

(Wright, Cohen & Cohen, 2005) 

Cortisol plays an important role in the modulation of the production and release of 

cytokines. In general, cortisol acts to “shut off” the release of proinflammatory cytokines. 

However, in vitro studies show that cortisol can also stimulate the production of the Th2 

cytokines, IL-4 and IL-5 (Agarwal & Marshall, 1998; Chrousos, 1995), possibly increasing 

allergic response. Moreover, cortisol can downregulate Th1 cytokine production (e.g. IFN-

gamma) potentially increasing URI susceptibility (Agarwal & Marshall, 2001).  Other studies 

suggest that prolonged elevation of cortisol levels, possibly as a result of chronic stress or 

corticosteroid treatment, can result in adaptation of the HPA axis and the development of 
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glucocorticoid resistance (Miller, Cohen, and Ritchey, 2002). In this case, the glucocorticoid 

receptors become less sensitive to cortisol, allowing the production of pro-inflammatory 

cytokines to go unchecked.  Indeed, approximately 5% of asthmatics develop glucocorticoid 

resistance in response to corticosteroid treatment (Leung, 1995). 

Stress is also associated with activation of the sympathetic branch of the ANS and the 

associated release of catecholamines into peripheral circulation.  Catecholamines, such as 

epinephrine and norepinephrine, released during times of stress have the capacity to modulate 

immune function.  For instance, in vitro and in vivo studies have demonstrated that epinephrine 

and norepinephrine can act on peripheral blood cells to produce elevated levels of Th2 cytokines 

(Agarwal & Marshall, 2000) as well as increase the circulating numbers of T cells (Bachen et al., 

1995).  

Another pathway by which stress-induced ANS activation may influence asthma 

exacerbation is through direct innervation of the smooth muscle of the airways.  Although direct 

sympathetic innervation of the bronchus is sparse, the parasympathetic arm of the ANS 

innervates airway smooth muscle via efferent fibers of the vagus nerve and directly influences 

contraction of the airways through cholinergic activation.  It has been suggested that vagal nerve 

activity may contribute to bronchoconstriction, bronchial reactivity and mucus hypersecretion 

(Jartti, 2001). To date, studies examining whether stress results in exacerbation of asthma via 

autonomic regulation of airways are inconclusive (Isenberg et al., 1992; Lehrer et al., 1996; 

Lehrer et al., 1993). However, eosinophils have been shown to interact with cholinergic nerves to 

promote increased release of acetylcholine in the airway (Sawatzky, Kingham, Durcan, McLean 

& Costello, 2003), providing a potential immunologic pathway to bronchoconstriction. 
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Taken together, findings suggest that stress-induced activation of the HPA axis and ANS 

may promote asthma exacerbation via modulation of immune function salient to asthma 

pathophysiology. While a large literature supports the role of neurochemicals, such as 

catecholamines and cortisol, in modulating immune function, limited research has examined 

these changes in the context of asthma. 

3.2 BEHAVIORAL PATHWAYS 

In addition to direct activation of biological pathways stress may influence immunity via 

the indirect influence of health behaviors.  For example, poor nutritional status, smoking, lack of 

physical activity, alcohol use, poor sleep quality and poor social connectedness are more likely at 

times of high stress and have been related to modulation of immune function (e.g., Kiecolt-

Glaser & Glaser, 1988). In the current study, the potential roles of alcohol consumption, physical 

activity and sleep are considered. Alcohol consumption is often used as a method of coping with 

elevated levels of stress (Johnson & Pandina, 2000).  Although alcohol use is not commonly 

considered a trigger of asthma exacerbation, recent evidence suggests that moderate alcohol 

consumption may influence inflammatory processes of relevance to asthma.  For instance, 

moderate alcohol consumption has been associated with a down-regulation of host resistance to 

viral and bacterial infection (Szabo, 1999); however, not all findings are consistent and other 

studies suggest that alcohol use may increase resistance to URI (Cohen et al., 1997; Cohen, 

Tyrrell, Russell, Jarvis & Smith, 1993).  Alcohol use has also been associated with increased 

activation of Th2-related immune pathways, including the promotion of IgE hypersensitivity to 

various allergens (Gonzalez-Quintela, Vidal & Gude, 2004), as well as a shift towards IL-4 
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production (Szabo, 1999). Thus, it is possible that alcohol consumption at times of stress could 

impact immune processes that are involved in inflammatory diseases, such as asthma.    

Sleep is another health behavior that is subject to change at times of stress.  Decrements 

in sleep quality and quantity have been associated with elevated levels of inflammation and pro-

inflammatory cytokine production (Motivala, Sarfatti, Olmos & Irwin, 2005; Pollmacher et al., 

2000).  Moreover, poor sleep efficiency has also been associated with decreased host resistance 

to URI (Cohen et al., 1997).  Interestingly, recent evidence suggests that there is  a diurnal 

pattern of cytokine release across a typical night’s sleep, with a shift towards Th2 cytokine 

production during late night sleep (Dimitrov, Lange, Tieken, Fehm & Born, 2004), a time when 

asthma symptoms are more prevalent. It is possible that stress-related changes in sleep may 

disrupt this pattern and modulate risk of asthma exacerbation.   

A final health practice of interest in the current study is physical activity.   Higher levels 

of perceived stress and negative affect have been associated with decreased energy and physical 

activity (Allgower, Wardle & Steptoe, 2001; Baum & Posluszny, 1999).  As lack of physical 

activity has also been associated with higher levels of pro-inflammatory cytokines (Nicklas, You 

& Pahor, 2005), this provides another potential pathway linking stress to the exacerbation of 

inflammatory disease.   

In sum, there is extensive evidence for direct anatomical and functional links as well as 

indirect behavioral links between the central nervous and immune system, providing potential 

pathways for the influence of stress on immune function.  In turn, this raises the possibility that 

stress-related changes in immune function link stress to asthma exacerbation.   
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3.3 UPPER RESPIRATORY INFECTION AND ASTHMA 

Another pathway by which stress could exacerbate asthma is via its association with 

increased susceptibility to URI.  Experimental viral challenge studies, inoculating healthy 

individuals with common cold virus or placebo, have clearly shown that stressful life events 

predict the probability of developing a biologically-verified cold, with greater stress related 

linearly to increased susceptibility (Cohen, Tyrrell & Smith, 1991; Cohen et al., 1998).  To date, 

however, the biological mechanisms of stress-related susceptibility to viral infection remain 

unknown.  It has been speculated that the production of  cytokines may play a significant role 

(Cohen & Rodriguez, 2000).   In this regard, stress is associated with the decreased production of 

Th1 cytokines that are involved in mounting a cellular immune response to viral challenge and 

this may increase susceptibility to URI.  

The capacity for URI to promote asthma exacerbation is well documented. As many as 

50% of asthma exacerbations experienced among adults are precipitated by respiratory infections 

(Busse, 1990; Busse & Gern, 1997; Nicholson, Kent & Ireland, 1993). Furthermore, viral 

respiratory infections have been shown to promote allergic inflammation and increase airway 

autonomic reactivity (Folkerts, Busse, Nijkamp, Sorkness & Gern, 1998). For example, 

Lemanske and colleagues (1989) showed that inoculation with a common cold rhinovirus 

resulted in heightened bronchoconstriction to inhaled allergens among allergic rhinitis patients.  

Furthermore, these individuals continued to show increased frequency of late allergic reactions 

for as long as 4 weeks following inoculation.   
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4.0  STRESS, IMMUNE FUNCTION AND ASTHMA 

Several review articles (Glaser & Kiecolt-Glaser, 2005; Marsland et al., 2001) and meta-

analyses (Herbert & Cohen, 1993; Segerstrom & Miller, 2004) of the literature on stress and 

immunity in humans conclude that naturalistic stress (as measured by both self-report and 

chronic or brief life events) is reliably associated with modulation of functional and enumerative 

immune measures.  Examples of naturally occurring stressors associated with 

immunomodulation include loss of a loved one (Kemeny et al., 1995), marital conflict (Robles & 

Kiecolt-Glaser, 2003), caring for a relative with Alzheimer’s disease (Kiecolt-Glaser, Glaser, 

Gravenstein, Malarkey & Sheridan, 1996), and living near a damaged nuclear power plant 

(McKinnon, Weisse, Reynolds, Bowles & Baum, 1989). These stressors are consistently 

associated with functional alterations in immunity, including lower natural killer (NK) cell 

function, decreased T cell proliferation, and increased antibody production to latent viruses when 

compared with levels among non-stressed control groups.  In terms of enumerative parameters, 

stress is associated with reliable decreases in circulating numbers of B cells, T helper cells, T 

cytotoxic cells and NK cells.  Additionally, there is evidence that immune changes may persist 

with protracted stressor exposure (Baum, 1990). 

Further evidence for an association between stress and immune function comes from 

studies that employ a quasi-experimental design, examining immune function within individuals 

at times of high and low naturalistic stress. Probably best known in this literature are the series of 
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studies by Kiecolt-Glaser, Glaser and colleagues (Glaser et al., 1987; Glaser, Pearl, Kiecolt-

Glaser & Malarkey, 1994; Glaser et al., 1991; Glaser, Rice, Speicher, Stout & Kiecolt-Glaser, 

1986; Kiecolt-Glaser et al., 1986) examining immune responses of medical students to 

examination stress.  Of particular relevance to asthma, examination stress has been associated 

with  reliable elevations in the production of the Th2 cytokines, IL-6 and IL-10 and concomitant 

decreases in the Th1 cytokines,  IFN-gamma and IL-2, among healthy participants (Kang & Fox, 

2001; Marshall & Agarwal, 2000; Marshall et al., 1998; Paik, Toh, Lee, Kim & Lee, 2000).  For 

instance, Marshall and colleagues (1998) assessed immune function among 16 healthy first- year 

medical students 4 weeks prior to and 48 hours following medical school exams.  During the 

exam period, medical students showed relative increases in Th2 cytokine production as well as a 

decrease in the Th1:Th2 ratio when compared to cytokine production 4 weeks earlier.  In 

addition, number of daily hassles during the pre-exam period was inversely associated with 

Th1:Th2 cytokine production pre- and post-exam.    

To date, only a limited number of studies have examined the association between stress 

and immune function among an asthmatic population.  Overall, studies provide initial support for 

an increase in Th2 cytokine production among chronically stressed asthmatics.  For example, 

Chen, Fisher, Bacharier, and Strunk (2003) found that among asthmatics lower socioeconomic 

status (SES) was associated with a significantly higher level of IL-5 production when compared 

with higher SES.  Regression analysis showed that when stress and control beliefs were 

controlled SES no longer predicted IL-5 production suggesting that psychological stress may be 

driving this relationship. Similarly, studies examining immune responses to examinations show a 

stress-related increase in the production of Th-2 cytokine production among asthmatics. For 

example, Kang and colleagues ( 1997) examined cytokine production among 21 adolescent 
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asthmatics  and 13 healthy controls a month prior to final exams, during final exams and 2-3 

weeks following the exam period.  Although there were no significant changes in cytokine 

production across the three time periods, asthmatics produced significantly more mitogen 

stimulated IL-5 during the exam period and lower IL-2/IL-5 (Th1:Th2) ratios across all 3 periods 

than healthy controls..  The same finding was reported for IFN-gamma/IL-5 (Th1:Th2) during 

the exam and post-exam periods providing initial support for differential cytokine production at   

times of stress among asthmatics and healthy controls. Unfortunately, this study is limited by a 

failure to assess levels of perceived stress and thus to validate the examination stress paradigm.  

In a more recent study, the same group of investigators examined 24 college students (13 

with asthma and 11 without asthma) during the middle of the semester and again during the final 

exam week (Kang & Fox, 2001).  In contrast to their previous study, Kang and colleagues 

reported a significant exam-related increase in stress using a single item measure of stress, but 

not when assessed with the Perceived Stress Scale (PSS; Cohen, Kamarck & Mermelstein, 

1983). In this study, both groups displayed a significant increase in Th2 cytokine (IL-6) 

production as well as a decrease in Th1 cytokine (IFN-gamma and IL-2) production from before 

to during the exam period.  However, there were no stress-related changes in the production of 

IL-4 or IL-5 among asthmatics or controls. Asthmatics did show higher basal IL-5 production 

than controls. It is possible that their failure to find more significant effects is the consequence of 

the level of stress, with no detectable differences between exam and mid-semester periods on the 

PSS, a widely used and reliable measure of stress.  In addition, the asthmatics in this sample 

were heterogeneous with respect to asthma medication usage.  As a consequence, the 

immunomodulatory effects of asthma medication may have obscured further differences in 

cytokine production among asthmatic participants.   
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In contrast to studies that examine the impact of psychological stress on cytokine 

production within peripheral blood, Liu and colleagues (2002) utilized a more proximal model 

assessing changes in cytokine levels in sputum in response to the inhalation of  a nonspecific 

mitogen.  In this study, 20 mild asthmatic college students underwent the inhaled antigen 

challenge during a low stress period and again during final exams.  In addition to the cytokine 

assessment, percentages of eosinophils were evaluated both in sputum and in peripheral blood.  

Liu and colleagues reported a significant stress-related increase in IL-5 production in sputum 

following the inhaled antigen challenge.  Additionally, the percentage of eosinophils, assessed 

both in sputum and peripheral blood, were significantly elevated during the high versus low 

stress period with the percentage in sputum at 24 hours inversely associated with pulmonary 

function, as assessed by FEV1.   

Taken together, studies examining the impact of examinations on cytokine production 

among asthmatics and healthy individuals provide initial evidence for a stress-induced shift from 

Th1 to Th2 cytokine production.  This shift may have clinical implications for asthmatic 

individuals by (1) increasing their risk of airway inflammation in response to benign antigens, 

and (2) increasing their susceptibility to URI a known trigger of asthma episodes.  Unfortunately 

methodological shortfalls in the existing literature, including inconsistent measurement of 

psychological stress and variability in asthma medication usage, make it difficult to conclude that 

psychological stress is reliably associated with greater Th2 activity among asthmatics.  

Additionally, in light of the limited number of studies examining the impact of stress among 

asthmatics and available evidence linking stress to changes in cytokine production patterns that 

may confer increased susceptibility to asthma, further research examining the impact of 

psychological stress on cytokine production among asthmatics is warranted.  

 19 



To this end, the primary aim of this study was to examine changes in Th1 and Th2 

cytokine production during periods of high and low stress among an asthmatic population and to 

determine whether these changes in cytokine production differ from those observed in healthy 

controls.  For this purpose, a quasi-experimental study was conducted examining immune 

responses to the stress of taking the Pennsylvania bar exam among asthmatics and healthy 

controls.   

4.1 HYPOTHESES 

Hypothesis 1:  Asthmatic and healthy participants will report higher levels of perceived 

stress, anxiety and negative affect prior to the bar exam relative to a lower stress period (1 month 

following the exam).   

Hypothesis 2:  Asthmatics will show higher basal levels of IL-4 and IL-5 and greater 

stress-related increases in stimulated levels of IL-5 and IL-4 production and concomitant 

decreases in IFN-gamma production when compared to healthy controls   

Hypothesis 3:  Asthmatics will show higher basal numbers of eosinophils and levels of 

IgE in peripheral circulation than non-asthmatics.  Asthmatics will also show greater stress-

related increases in circulating numbers of eosinophils than controls.  In addition, IL-5 

production will be associated with the levels of circulating eosinophils in peripheral blood during 

both high and low stress period.  
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5.0  METHODS 

The primary goal of this study was to examine the impact of examination stress on Th1 

and Th2 cytokine production in response to whole blood stimulation by phytohemagglutinin 

(PHA), a nonspecific mitogen, among mild asthmatics and healthy controls.  To this end, we 

employed a quasi-experimental design in which participants were assessed approximately 1 

week prior to taking the Pennsylvania bar exam (high stress period) and 1 month following the 

exam (low stress period).  This design allowed for the examination of differences in cytokine 

production both within and between asthmatic and non-asthmatic participants.     

5.1 PARTICIPANTS 

Sixteen recently graduated law students who were scheduled to take the Pennsylvania bar 

exam in July 2005 were recruited to take part in this study.  Individuals were eligible to 

participate if they were 1)  healthy or had been diagnosed with mild asthma by a physician 

sometime in their lifetime, 2)  non-smokers, 3)  free from systemic disorders or medications 

affecting the immune, nervous or endocrine systems, with the exception of asthma and asthma 

medications 4)  not currently being treated for a psychiatric disorder 5) consumed less than 15 

alcoholic beverages per week, and 6)  not experiencing an acute respiratory infection on days of 

data collection.  The study protocol was approved by the Institutional Review Board at the 
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University of Pittsburgh and informed consent was obtained from each student prior to 

participation. 

5.2 PROCEDURES 

The study consisted of two separate data collection periods.  The first study session took 

place at the Behavioral Immunology Laboratory, within one week of the Pennsylvania bar exam; 

participants returned for a second visit approximately 1 month later.  Laboratory sessions were 

generally scheduled in the morning, and great effort was made to ensure that time of day was 

kept consistent within subject.  Upon arrival, the study procedures were reviewed, any questions 

were answered and consent to participate was obtained.  Prior to any data collection, participants 

were screened for the presence of acute upper respiratory infections using modified Jackson 

criteria.  No participant met this criterion at either the exam or post-exam data collection period.  

Height and weight were obtained using a standard medical-grade balance scale.  Participants then 

completed a battery of psychological questionnaires and underwent a venipuncture to collect 12 

mls of blood for later assessment of immune functioning.  Participants were compensated $50 for 

taking part in both study sessions.  

5.3 PSYCHOLOGICAL MEASURES 

The following psychological questionnaires were completed at both study visits. The 

Perceived Stress Scale (PSS-10; Cohen, et al. 1983) was used to assess the degree to which 
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participants’ perceived their daily lives as unpredictable, uncontrollable, and overloading.  The 

PSS is a reliable measure of perceived stress (Cronbach’s coefficient alpha = .85; Cohen & 

Williamson, 1988).  Moreover, the PSS has been shown to be a reliable measure of the stress 

associated with taking professional examinations (Malarkey, Pearl, Demers, Kiecolt-Glaser & 

Glaser, 1995).  It was expected that this measure would confirm that high levels of stress were 

associated with preparing for the Pennsylvania bar exam.  

Negative affect was measured using Positive and Negative Affect Schedule- expanded 

form (PANAS-X; Watson & Clark, 1994).  The PANAS-X is considered to be a reliable measure 

of general positive and negative affect (Cronbach’s coefficient alpha for positive affect= .88, 

negative affect= .85; Watson & Clark, 1994).  Negative affect is often experienced during 

periods of stress.  Thus, it was expected that higher scores on the negative affect subscale of this 

measure would be observed prior to the examination when compared with a lower stress period.   

Anxiety was measured using the Speilberger State Anxiety Inventory (STAI; Spielberger, 

Gorsuch, Lushene, Vagg, and Jacobs, 1983).  The STAI is considered a reliable measure of state 

anxiety (Cronbach’s coefficient alpha= .92, Spielberger et al., 1983).  Anxiety is often 

experienced during periods of stress and thus was expected to increase during the examination 

period.   

The Beck Depression Inventory-2 (BDI-2; Beck, Steer, & Brown, 1996) was used to 

measure depression at both time points.  Research has found the BDI-2 to be a valid measure of 

depressive symptomatology (Cronbach alphas for the BDI  =  .92; Beck et al., 1996). This 

measure was employed to rule out individuals who met criteria for clinical depression (scores > 

19).   

 23 



5.4 HEALTH BEHAVIORS 

A number of health behaviors known to be associated with both stress and immune 

parameters relevant to asthma exacerbation were measured, including sleep quality, physical 

activity and alcohol consumption.  Sleep quality was assessed using the Pittsburgh Sleep Quality 

Index (PSQI; Buysse, Reynolds, Monk, Berman & Kupfer, 1989). The PSQI is a well accepted 

and reliable measure of sleep quantity and quality over the past month.  (Cronbach coefficient 

alpha= .83; Buysse et al., 1989).  Physical activity was measured using the Paffenbarger Activity 

Index (PAI; Paffenbarger, Blair, Lee & Hyde, 1993).The PAI is a well accepted and reliable 

measure of the  average amount of physical activity per week (Cronbach coefficient alpha= .66-

.83; Paffenbarger et al., 1993). Finally, at both time points, participants were asked to report their 

average consumption of alcohol (number of alcoholic drinks/day), for both weekdays and 

weekends.      

5.5 BIOLOGICAL MEASURES 

A number of health behaviors known to be associated with both stress and immune 

parameters relevant to asthma exacerbation were measured, including sleep quality, physical 

activity and alcohol consumption.  Sleep quality was assessed using the Pittsburgh Sleep Quality 

Index (PSQI; Buysse, Reynolds, Monk, Berman & Kupfer, 1989). The PSQI is a well accepted 

and reliable measure of sleep quantity and quality over the past month.  (Cronbach coefficient 

alpha= .83; Buysse et al., 1989).  Physical activity was measured using the Paffenbarger Activity 

Index (PAI; Paffenbarger, Blair, Lee & Hyde, 1993).The PAI is a well accepted and reliable 
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measure of the  average amount of physical activity per week (Cronbach coefficient alpha= .66-

.83; Paffenbarger et al., 1993). Finally, at both time points, participants were asked to report their 

average consumption of alcohol (number of alcoholic drinks/day), for both weekdays and 

weekends.      
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6.0  DATA ANALYSIS AND RESULTS 

Data was analyzed with SPSS version 14.0.  Initially, the distributions, descriptive 

statistics, and intercorrelations of all variables were examined to determine normality and 

multicollinearity. To correct for non-normally distributed data, natural log transformations were 

employed.  Pearson product-moment and point-biserial correlations were used to examine 

associations between demographic, psychosocial measures, self-report health behaviors and 

immune outcomes.  Based on these preliminary analyses, demographic and background variables 

found to be significantly associated with primary outcomes were treated as covariates in further 

analyses.   

Repeated measures analysis of variance (ANOVA) was employed to analyze the 

significance of overall group differences, cell responses across the two time points (exam and 

post-exam), and group x time interactions.  When appropriate, between and within group 

differences were examined using independent and paired t-tests.   

Finally, exploratory analyses were conducted to assess whether health behaviors were 

associated with both stress and cytokine production and thus could be a possible mediator of the 

effect of stress on cytokine production.  This study did not have the statistical power to test 

mediating effects. Thus relationships were examined using Pearson product-moment 

correlations.  Health behaviors found to correlate with immune outcomes were then treated as 

covariates.  
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6.1 PARTICIPANT STATISTICS 

Sixteen participants were recruited to take part in this study, 5 asthmatics and 11 non-

asthmatics.  One healthy participant was unable to be contacted for the post-exam period; 

therefore, the final sample consisted of 5 asthmatic and 10 non-asthmatic participants.  

Demographic information describing the sample is provided in Table 1.  All participants recently 

graduated from law school and were taking the Pennsylvania bar exam for the first time in July 

of 2005.  Participants ranged in age from 24-35 with a mean of 27.3 (SD= 3.17), they were 

primarily Caucasian (87%) and a little more than half were female (60%).  Asthma diagnosis was 

based on participants self-report of physician diagnosis.  Asthma severity was determined by 

NHBLI guidelines with all asthmatic participants meeting criteria for mild asthma.  No study 

participants endorsed taking corticosteroids.  With the exception of having mild asthma, all 

participants reported being in good physical health.  No participant reported being currently 

treated for a psychiatric disorder.  The presence of depressive symptoms was measured at both 

study time points using the Beck Depression Inventory.  While the scores ranged from 6-15 with 

a mean of 9.3 (SD= 4.4) during the exam and 3.3 (SD= 2.7) during the post-exam period, no 

participant exceeded the established cutoff score of 19 indicating moderate depression.  

However, twenty-five percent of the sample endorsed taking antidepressants.  

In order to determine whether any systematic differences in demographic information 

existed between asthmatic and healthy participants, chi-squared and independent t-tests were 

performed.  Analyses revealed that asthmatic and healthy participants did not differ statistically 

(p>.05) on any of the demographic variables (gender, age, BMI, ethnicity), nor were any 

differences detected among other background variables (antidepressant usage or upper 

respiratory infection scores).   
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Table 1: Means and standard deviations for Demographics and Background Variables 

 Entire Sample 
N= 15 

Asthmatic 
N= 5 

Non-Asthmatic 
N= 10 

Gender (% female) 9/15 (60%) 3/5 (60%) 6/10 (60%) 
Age 27.3 (3.17) 26.2 (2.28) 27.9 (3.51) 
BMI 25.2 (4.62) 24.4 (3.10) 25.6 (5.26) 

Ethnicity (% Caucasian) 13/15 (87%) 4/5 (80%) 9/10 (90%) 
Modified Jackson infection 

score T1 
1.30 (2.19) 1.00 (1.00) 1.45 (2.63) 

Modified Jackson infection 
score T2 

1.47 (2.59) 2.40 (3.29) 1.00 (2.21) 

Antidepressant use T1 4/15 (27%) 1/5 (20%) 3/10 (30%) 
Antidepressant use T2 4/15 (27%) 1/5 (20%) 3/10 (30%) 

 

To identify potential co-variates correlations were computed between demographic 

variables and psychosocial and immune outcomes (Tables 2 and 3). Demographic variables that 

were significantly correlated with psychosocial or immune outcomes at both time points were 

included as covariates in all analyses.  Age and ethnicity were not associated with any 

psychosocial or immune variables at either study time point.  Body mass index (BMI) correlated 

with eosinophil count (r=.64, p=.01) and state anxiety (r=.78, p=.001) during the exam period but 

was not associated with these variables during the low stress period.  Gender was associated with 

eosinophil count during the both the exam (rpb=.70, p=.004) and the post-exam session (rpb=.71, 

p=.003) with males showing a higher level of circulating eosinophils.  As a consequence, gender 

was treated as a covariate in analyses involving numbers of circulating eosinophils.  In addition, 

given the high correlation between BMI and eosinophil count during post-exam and the 

relationship between BMI and inflammatory mediators (Tilg & Moschen, 2006), BMI was also 

treated as a covariate.   
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Table 2: Correlations among immune demographic and background variables 

 Age Ethnicity Gender BMI Psych 
Medication 

Infection 
Score 

Stimulated IFN-gamma 
(pg/ml) 

      

   EXAM -.24 .16 .46 .45 .11 .28 
   POST-EXAM -.09 .11 .34 .17 .25 -.07 
Serum IgE (IU/ml)       
   EXAM -.29 -.02 .21 -.42 -.39 .21 
   POST-EXAM -.31 -.01 .18 -.41 -.32 .46 
Eosinophil Count (x 106 

cells/ml) 
      

   EXAM -.15 .23 .70** .64** .01 .46 
   POST-EXAM -.13 .26 .71** -.01 .12 .49 
**p<.01 

Correlations between background variables, such as the use of antidepressant medication 

and participants’ Modified Jackson criteria infection scores, and psychosocial and immune 

outcomes revealed no association between the use of antidepressant medication and any 

psychological or immune outcome.  In contrast, infection scores during the post-exam period 

were found to be associated with levels of state anxiety (r=.52, p=.045), negative affect (r=.57, 

p=.028) and perceived stress (r=.68, p=.005) during that time point.   Based on these preliminary 

analyses, post-exam infection scores were used as a covariate in analyses involving 

psychological measures. 
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Table 3: Correlations among psychosocial, demographic and background variables 

 Age Ethnicity Gender BMI Psych 
Medication 

Infection 
Score 

Perceived Stress Scale       
   EXAM -.36 -.13 -.06 .26 .05 .38 
   POST-EXAM -.51 .32 .39 .41 .40 .68** 
State Negative Affect 
(PANAS-X) 

      

   EXAM -.10 -.29 -.15 .39 .03 .35 
   POST-EXAM -.41 .22 .38 .23 .11 .57* 
State Anxiety (STAI)       
   EXAM -.12 -.01 .10 .78** .08 .47 
   POST-EXAM -.26 .40 .30 .38 .39 .52* 
Beck Depression  
Inventory 

      

   EXAM -.37 -.58* -.19 .27 -.30 .32 
   POST-EXAM -.50 .36 .46 .43 .11 .68** 
*p<.05, **p<.01 

6.2 HYPOTHESIS 1: ANALYSES AND RESULTS 

It was hypothesized that asthmatic and healthy participants would report higher levels of 

perceived stress, state anxiety and state negative affect during the week prior to the bar exam 

than 1 month following the examination, with no group differences in the magnitude of this 

response.  To examine this hypothesis, 2x2 repeated measure Analysis of Covariance 

(ANCOVA) were conducted, with 2 between group factors (asthmatic vs. non-asthmatic) and 2 

within group factors (examination period vs. post-exam period), to examine differences in levels 

of perceived stress, state anxiety, and negative affect.  

Only participants who completed psychosocial measures at both time points were 

included in these analyses.  As noted earlier, the infection score from the post-exam period was 

significantly correlated with the psychological measures and thus was entered as a covariate in 
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these analyses.   Means and standard deviations for the psychosocial measures are presented in 

Table 4 and Figure 2 depicts changes in perceived stress.  Similar changes were observed for 

state negative affect and state anxiety over time.  Indeed, we observed a main effect of time on 

perceived stress (F(1,13)= 22.98, p=.001, partial eta2 = .657), negative affect (F(1,13)= 14.86, 

p=.003, partial eta2 =.547), and state anxiety (F(1, 13)= 16.38, p= .002, partial eta2 = .577). Both 

asthmatics and non-asthmatics reported significantly more perceived stress, negative affect, and 

state anxiety during the exam period relative to the post-exam period.  As predicted, there was no 

main effect of group or group x time interaction on analysis of any of these parameters, 

indicating that both asthmatic and healthy participants experienced similar levels of distress.   

 

Table 4: Means and standard deviations for psychosocial measures 

  
Asthmatic 

N= 5 

 
Non-Asthmatic 

N= 10 

 
Contrasts (asthmatic vs. 
non-asthmatic) p-value 

 M SD M SD  
Perceived Stress Scale      
   EXAM 16.0 4.4 16.5 5.8 n.s. 
   POST-EXAM 10.2 5.6 8.3 5.8 n.s. 
State Negative Affect 
(PANAS-X) 

     

   EXAM 14.8 6.6 16.1 7.2 n.s. 
   POST-EXAM 6.4 4.7 8.0 4.7  
State Anxiety (STAI)      
   EXAM 44.4 9.3 47.0 11.7 n.s. 
   POST-EXAM 30.8 7.0 33.7 9.2 n.s. 
Beck Depression  
Inventory 

     

   EXAM 9.3 6.4 9.2 3.3 n.s. 
   POST-EXAM 3.2 2.7 3.3 2.8 n.s. 
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Figure 2: Changes in perceived stress from exam to post-exam period after controlling for post-exam   

URI infection score. 

6.3 HYPOTHESIS 2: ANALYSES AND RESULTS 

The second set of hypotheses concerned stress-related changes in immune function, 

specifically cytokine production, among asthmatic and non-asthmatic participants. Here, it was 

hypothesized that there would be baseline differences, with greater stimulated production of the 

Th2 cytokines IL-4 and IL-5. Additionally, it was predicted that asthmatics would show a more 

substantial increase in IL-5, IL-4 and a more substantial decrease in IFN-gamma production in 

response to examination stress when compared with their non-asthmatic counterparts.  

Unfortunately, the assay employed in this study did not reliably stimulate levels of IL-5 and IL-4 

that were detectable using commercial ELISAs and thus IL-4 and IL-5 data could not be 
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included in these analyses.  Levels of IFN-gamma production were quantifiable and results are 

presented below. 

The means and standard deviations for all available immune parameters are presented in 

Table 5.  Stimulated IFN-gamma levels were adjusted for total lymphocyte cell number and were 

natural log transformed to better approximate a normal distribution prior to analysis. As 

expected, unstimulated IFN-gamma levels were undetectable. A group (asthmatic versus non-

asthmatic) x period (exam versus post-exam) repeated measures ANOVA was conducted to 

assess stress-related changes in IFN-gamma production.  These analyses revealed a significant 

interaction (F(1,13)= 14.611, p=.002, partial eta2 squared= .529), which is plotted in Figure 3.  

No main effect of group or time was observed.  Paired and independent t-tests revealed that non-

asthmatics experienced a significant increase in IFN-gamma production from the exam to the 

post-exam period (t(9)= 2.85, p=.019, eta2 = .475).  Change in IFN-gamma production over time 

among asthmatics tended to decrease, but did not achieve statistical significance (t(4)=  -2.38, 

p=.076, eta2 =.585).  However, the large size of the effect of time on IFN-gamma production 

among asthmatics suggests that if there was greater power to detect effects this decrease in IFN-

gamma production may have met statistical significance.  
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Figure 3: Changes in stimulated IFN-gamma from exam to the post-exam period 

 

An independent t-test revealed that during the lower stress post-exam period, asthmatics 

produced significantly less IFN-gamma than healthy participants (t(13)= 2.26, p=.041, eta2 = .28.  

Taken together, these findings suggest there are baseline differences in IFN-gamma production 

between asthmatics and healthy participants.  Moreover, during periods of naturalistic stress 

healthy participants appear to respond with a significant decrease in IFN-gamma production 

while asthmatics show a marginal increase. 
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Table 5: Means and standard deviations for immune outcomes 

  
Asthmatic 

N= 5 

 
Non-asthmatic 

N=10 

 
Contrasts (asthmatic vs. 
non-asthmatic) p-value 

 M SD M SD  
Stimulated IFN-gamma 
(pg/ml)* 

     

   EXAM 0.74 0.31 0.87 0.61 n.s. 
   POST-EXAM 0.52 0.36 1.10 0.57 .041 
Eosinophil count (x 106 
cells/ml) 

     

   EXAM 0.26 0.25 0.28 0.29 n.s. 
   POST-EXAM 0.29 0.18 0.18 0.18 n.s. 
Serum IgE (IU/ml)      
   EXAM 173.6 145.6 62.6 95.6 .031 
   POST-EXAM 187.5 125.8 61.2 90.0 .038 
* adjusted for cell number 

6.4 HYPOTHESIS 3: ANALYSES AND RESULTS 

The third hypothesis examined circulating levels of IgE and numbers of eosinophils. 

Here, it was hypothesized that asthmatics would show greater stress-related increases in 

circulating eosinophils count than non-asthmatics. Moreover, given that both IgE and eosinophil 

number have been associated with asthma severity, it was predicted that asthmatics would show 

greater basal levels of both circulating eosinophils and serum IgE than non-asthmatics. 

Prior to these analyses, serum IgE levels were natural log transformed to better 

approximate a normal distribution.  On analysis of serum IgE, an ANOVA revealed no main 

effect of time or group x time interaction.  As predicted, however, there was a main effect of 

group (F(1, 13)= 5.148, p=.040, partial eta2 = .285) (see Figure 4), indicating that asthmatics had 

higher levels of serum IgE relative to healthy participants across both periods.  These findings 
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are consistent with the literature showing higher levels of serum IgE in asthma, which is largely 

an atopic disease (Novak & Bieber, 2003). 
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Figure 4: Changes in serum IgE from exam to the post-exam period 

 

Absolute eosinophil numbers were also natural log transformed prior to analysis. Here a 

2x2 ANCOVA was employed with gender and BMI as covariates. Results showed no significant 

change in eosinophil number in response to stress (F(1, 11)= .115 p=.702, partial eta2 = .014).  In 

addition, there was no effect of group or group x time interaction.    

In sum, these findings suggest that circulating numbers of eosinophils and levels of IgE 

are not responsive to brief, naturalistic stress.  As expected, asthmatic participants displayed 

higher levels of circulating serum IgE relative to non-asthmatics across both sessions.  In 

contrast, asthmatics and healthy controls showed no difference in circulating eosinophil number.  
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The small size of the sample employed in this study limits our ability to draw firm conclusions 

and as a result findings must be considered preliminary and interpreted with caution.    

6.5 ROLE OF HEALTH BEHAVIORS 

Stress-related changes in health behaviors have been posited as potential pathways 

linking psychological stress to immune function (Kiecolt-glaser & Glaser, 1988). While our 

small sample size limited our statistical power to test the mediating effects of health behaviors, 

exploratory analyses were conducted in the hope that they would help guide future research. 

At both study time points, participants reported on the quality and quantity of their sleep, 

their amount of physical activity and the amount of alcohol consumed over the last week.  In 

addition to recording total alcohol consumption, participants were asked to report the amount of 

alcohol consumed during the week and on the weekends.  Means and standard deviations for 

self-reported health behaviors are provided in Table 6.  Due to missing data, sleep scores were 

only available for 11 participants during the exam period and 13 participants at post-exam.  Data 

was collected from all 15 participants for the remaining health behaviors. To determine whether 

systematic differences in health behaviors existed between asthmatic and non-asthmatic 

participants, independent t-tests were employed; no significant differences were observed.  Next, 

changes in health behaviors across the exam and post-exam periods were examined.  A series of 

2x2 repeated measures ANOVAs revealed no statistically significant group x time interactions, 

or main effects.    
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Table 6: Means and standard deviations for health behaviors 

  
Asthmatic 

N= 5 

 
Non-Asthmatic 

N= 10 

 
Contrasts (asthmatic vs. 
non-asthmatic) p-value 

 M SD M SD  
PSQI Global Sleep Scorea      
   EXAM 4.8 1.3 6.1 2.0 n.s. 
   POST-EXAM 4.0 1.6 4.2 2.0 n.s. 
Physical Activity (kcal/week)      
   EXAM 1275.5 1355.9 1847.0 1302.6 n.s. 
   POST-EXAM 1929.2 1508.3 2413.8 1893.7 n.s. 
Total alcohol consumption (# 
drinks/week) 

     

   EXAM 5.1 2.7 2.9 2.7 n.s. 
   POST-EXAM 5.3 2.5 3.1 2.6 n.s. 
Alcohol consumption- weekdays 
(# drinks) 

     

   EXAM 1.5 1.5 1.0 1.3 n.s. 
   POST-EXAM 1.5 1.3 0.6 0.8 n.s. 
Alcohol consumption- weekends 
(# drinks) 

     

   EXAM 3.6 1.6 1.9 2.2 n.s. 
   POST-EXAM 3.8 1.3 2.5 2.3 n.s. 
a missing data, exam period (asthmatic n= 4, non-asthmatic n= 7); post-exam (asthmatic n=4, 
non-asthmatic n=9) 

 

In order to explore the association between health behaviors and immune function, 

pearson product-moment correlations were conducted (see Table 7).  The only significant result 

was an association between stimulated IFN-gamma production during the post-exam period and 

alcohol consumption on the weekdays (r=-.66, p=.008) across all participants.  This result 

suggests that during low stress periods individuals who consume more alcohol during the week 

are less able to mount an IFN-gamma response to mitogen stimulation, suggesting a down-

regulation of cellular immune response. It is worth noting that, although failing to achieve 

statistical significance, total alcohol consumption and weekend alcohol consumption were 

moderately correlated with IFN-gamma production during the post-exam period (r=-.47 and r=-
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.27, respectively), providing further support for a possible relationship between alcohol use and 

down-regulation of cellular immune function.   

Table 7: Correlations among immune outcomes and health behaviors 

  
Sleep Score 

 
Physical 
Activity 

 
Total alcohol 
consumption 

 
Alcohol 

consumption- 
weekdays 

 
Alcohol 

consumption- 
weekends 

Stimulated IFN-
gamma (pg/ml) 

     

   EXAM .05 -.19 .01 -.23 .15 
   POST-EXAM -.38 .08 -.47 -.66** -.27 
Serum IgE 
(IU/ml) 

     

   EXAM -.53 .06 .27 .13 .28 
   POST-EXAM .28 .51 .26 .19 .24 
Eosinophil count      
   EXAM .06 -.37 -.04 -.09 .00 
   POST-EXAM .23 .04 .43 .18 .46 
**p<.01 

Given the high correlation between weekday alcohol consumption and post-exam IFN-

gamma production as well as the existing literature suggesting that alcohol can modulate 

immune function, we reanalyzed stress-related changes IFN-gamma production, including post-

exam weekday alcohol consumption as a covariate.  The group x time interaction, though 

marginally reduced, remained significant on analysis of IFN-gamma production (p=.009; change 

in partial eta2 from .53 to .45), suggesting that while alcohol consumption is significantly 

correlated with IFN-gamma production it does not account for the group differences seen during 

the low stress period.  The main effect of time and group remained nonsignificant (p=.456 and 

p=.631). 
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7.0  DISCUSSION 

Growing evidence supports the role of psychological stress in asthma pathogenesis and 

exacerbation (Wright, et al., 1998), with stress-related modulation of Th2 and Th1 cytokine 

production proposed as one potential mediating mechanism.  The aim of the present study was to 

assess the impact of naturalistic stress on Th1:Th2 cytokine production, as well as other asthma-

relevant immune parameters, among mild asthmatics and healthy participants.  For this purpose, 

immune responses to the stress of preparing for the Pennsylvania bar examination were 

evaluated. As expected, this stressor was associated with a significant increase in perceived 

stress, anxiety and negative affect when compared with a follow-up period 1 month later. There 

were no differences among asthmatics and healthy controls in the level of this exam-related 

distress. These emotional changes validate the use of the bar examination as a naturalistic 

stressor.   

7.1 EXAM STRESS AND IFN-GAMMA PRODUCTION 

Immune function was assessed at both study time points. On analysis of stress-related 

changes in stimulated of IFN-gamma production, interesting differences were observed between 

healthy controls and mild asthmatics. Specifically, healthy controls showed a significant stress-

related decrease in IFN-gamma production. In contrast, asthmatics showed a tendency to respond 
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in the opposite direction with an increase in IFN-gamma production from periods of low-to-high 

stress. The stress-related decrease in IFN-gamma that was observed among healthy controls is 

consistent with existing literature demonstrating a down-regulation of Th1 function at times of 

naturalistic stress (Glaser et al., 1986; Marshall et al., 1998; Paik et al., 2000; Segerstrom and 

Miller, 2004), supporting a stress-related down regulation of cellular immune function. Findings 

from the few studies that have examined how stress influences Th-1 cytokine production among 

asthmatics have been less consistent. The present findings do not corroborate earlier observations 

that IFN-gamma production also decreases in response to naturalistic stress among asthmatics 

(Kang and Fox, 2001; Hoglund et al., 2006). However, other studies report no stress-related 

changes in IFN-gamma production among asthmatics (Kang et al., 1997; Liu et al., 2002).  

Furthermore, a recent cross-sectional study showed elevated levels of IFN-gamma production 

among chronically stress asthmatics when compared to their less stressed healthy counterparts 

(Chen et al., 2003).   

Reasons for different findings across studies remain unclear. To date, available findings, 

including those reported here, derive from small studies and it is possible that multiple factors 

contribute to observed inconsistencies in the IFN-gamma responses of asthmatics to stress, 

including differences in the magnitude and chronicity of the stress, in the severity of the asthma, 

in medication use, and in multiple health behaviors that could influence immune competence.  

Further research is warranted to explore these possibilities and determine whether asthmatics 

show reliable differences from healthy controls in their IFN-gamma responses to naturalistic 

stress. 

In addition to stress effects, the current findings reveal lower baseline levels of IFN-

gamma production among asthmatics than healthy controls. This finding is consistent with 
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previous reports (Rodriguez et al., 1998) and with studies showing that higher ratios of Th2:Th1 

cytokine production are associated with asthma (Bettiol et al., 2000). Indeed, a growing literature 

suggests that asthma is characterized by higher than normal Th2 cytokine production (Liu, 

2000). In light of evidence that Th2 cytokines inhibit the production of Th1 cytokines, it is likely 

that the immune cells of asthmatics are primed by the inhibitory properties of the Th2 cytokines 

to produce lower levels of Th1 cytokines, possibly accounting for the lower levels of IFN-

gamma observed in the current study.    

IFN-gamma plays an integral role in cell-mediated immunity which is, in part, 

responsible for protecting the body from viral infections. Prior findings have shown that 

asthmatics are more susceptible to URI than non-asthmatics (Busse, 1990), suggesting that 

diminished resistance to viral infection may accompany this disease. As a major trigger of 

asthma episodes, increased susceptibility to URIs may play a role in the pathophysiology of this 

disease. Thus, dampened IFN-gamma production following mitogen challenge may be a 

biomarker of a downregulated, or impaired, cellular immune pathway which results in increased 

risk of asthma. Future studies would benefit from the inclusion of other Th1 cytokines, such as 

IL-2, that also play an important role in host resistance and from an examination of how Th1 

cytokine production may contribute asthma pathogenesis.   

7.2 EXAM STRESS, IgE, AND EOSINOPHIL COUNT 

In addition to an examination of T-helper derived cytokines, the current study examined 

how stress impacted two other parameters of relevance to allergic pathology, circulating numbers 

of eosinophils and serum levels of IgE. In regard to eosinophil number, the current findings did 
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not corroborate an earlier observation that the percentage of eosinophils in peripheral circulation 

increases in response to naturalistic stress among asthmatics (Liu et al., 2002). Indeed, no stress-

related changes in eosinophil number were observed for mild asthmatics or controls.  The present 

findings did provide some support for existing findings that asthmatics have higher circulating 

numbers of eosinophils than non-asthmatics (Lewis et al., 2001; Ulrik, 1998), with a tendency 

for asthmatics to show higher eosinophil numbers across both measurement periods than 

controls. It is possible that the failure of this effect to achieve significance denotes a lack of 

robust association between asthma and eosinophil number. A second and more likely explanation 

is that the present study lacks the statistical power necessary to detect effects. Previous research 

reporting group differences had a larger subject numbers and hence more power than the present 

investigation.  

A final possible explanation for our failure to find more convincing group differences in 

eosinophil counts is the inclusion of only mild asthmatics. Recent research suggests that the 

elevation in circulating numbers of eosinophils observed among asthmatics is secondary to an 

increase in circulating levels of IL-5, which occurs during the late phase of an asthma attack (Shi 

et al., 1998).  The mild asthmatics recruited for the current study rarely experience asthma 

attacks and do not require asthma control medications.  Previous research  demonstrating 

differences in eosinophil counts between asthmatics and controls has included individuals with 

more moderate asthma who experience more frequent exacerbation of their disease (Krishna et 

al.,  2001).   Further attempts to determine whether eosinophil counts vary by asthma severity 

and differentiate asthmatics from healthy controls is warranted if the interpretation of these 

results is to be elucidated.  
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On analysis of serum IgE levels, our findings revealed an expected group difference, with 

asthmatics demonstrating higher levels across both measurement periods than healthy controls.  

This is consistent with existing literature (Novak & Bieber, 2003; Krishna et al., 2001) and 

supports the atopic nature of asthma. There were no stress-related changes in serum IgE levels 

among asthmatics or controls. 

7.3 EXAM STRESS AND CHANGES IN HEALTH BEHAVIORS 

Stress-related changes in health behaviors are considered a possible pathway linking 

psychological stress to increased disease susceptibility and exacerbation (Kiecolt-Glaser & 

Glaser, 1988).  A growing body of evidence suggests that stress is associated with decreased 

physical activity (Ng & Jeffery, 2003; Heslop et al., 2001), decreased sleep quality (Hall et al., 

2000), and increased alcohol consumption (Heslop et al., 2001; Steptoe, Wardle, Pollard, 

Canaan, and Davies, 1996). In contrast, the current study does not reveal a consistent relationship 

between examination stress and any of these health behaviors.   Given the existing evidence 

supporting these relationships, it seems unlikely that this failure to find effects reflects the lack of 

a robust association. As before, it is more likely that this reflects the lack of statistical power to 

detect effects.   Indeed, an examination of the observed relationships demonstrates that most of 

these relationships are in the expected directions, with effect sizes in the range to achieve 

significance with more subjects. The exception to this is alcohol consumption, which decreased 

slightly during the exam period.  It is possible the absence of stress-related changes in health 

behaviors reflect the role of moderating variables, such as social support. In this regard, 

perceived availability of social resources has been demonstrated to buffer the appraisal of a 
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situation as stressful and impact health behavioral choices (Cohen, 2004).    Consistent with the 

current findings, Steptoe and colleagues (1996) found no main effect of examination stress on 

alcohol consumption among 115 students. However, they did find a significant social support x 

time interaction with individuals high in social support reporting a decrease in alcohol 

consumption during examinations and those with low support endorsing an increase in alcohol 

consumption, supporting a moderating role of social support in stress-related alcohol use.  Future 

work assessing social support as well as other potential moderators, e.g. self-esteem, perceived 

coping ability, and social network size, may aid in the interpretation of relationships between 

stress and health behaviors.  

7.4 IFN-GAMMA PRODUCTION AND ALCOHOL CONSUMPTION 

Interestingly, weekday alcohol consumption during the low stress period was inversely 

correlated with stimulated IFN-gamma production across both asthma and control groups.  These 

findings corroborate a growing literature demonstrating an association between alcohol use and 

the decreased ability of Th1 cells to secrete IFN-gamma (Shellito, 1998; Waltenbaugh, Vasquez 

and Peterson, 1998).  Indeed, decreased IFN-gamma production has been observed in response to 

both chronic and acute alcohol administration (Szabo, 1999).  

To date, findings with respect to the impact of alcohol on asthma exacerbation have been 

mixed.  While some beneficial effects of alcohol on asthma have been reported, such as the 

capacity for alcohol to reduce airway sensitivity (Cuddy, 2001), much of literature focuses on 

alcohol-related downregulation of immune function (Szabo, 1999). There were no group 

differences in alcohol consumption during the low stress period; thus, it is unlikely that alcohol 
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use account for differences across asthmatics and controls in IFN-gamma production. This was 

confirmed by multivariate analyses showing that alcohol use does not account for much of the 

between group variance in IFN-gamma production.  Nevertheless associations between alcohol 

use and a down-regulation of cellular immune pathways warrant further investigation and may 

be relevant to susceptibility to viral infections.  

7.5 BIOLOGICAL PATHWAYS 

Activation of the HPA axis and associated release of cortisol is one potential mechanism 

of stress-related changes in IFN-gamma production among healthy participants.  Indeed, 

evidence supports stress-related activation of the HPA axis, as measured by increased levels of 

cortisol in peripheral circulation (Wolkowitz et al., 2001).  Cortisol plays an important role in the 

modulation of immune function.  Of relevance to the current findings, cortisol can act on T-cells 

to potentiate Th2 cytokine production and downregulate Th1 cytokines responses. For example, 

Argawal and Marshall (1998) treated lymphocytes taken from healthy individuals with varying 

concentrations of the synthetic corticosteroid, dexamethasone and observed significant decreases 

in IFN-gamma production and a concomitant increase in the production of Th2 cytokines, 

including IL-4 and IL-10. Thus, it is possible that stress-related cortisol release accounted for the 

decrease in IFN-gamma production observed among the control group in the current study. 

Interestingly, however, the asthmatic subjects tended to show the opposite effect, with stress 

related increases in IFN-gamma production. Reasons for this are less clear. One possible 

explanation is a decrease in the sensitivity of immune cells to cortisol that has been reported 

among asthmatics (Leung, 1995), which could result in an increase in IFN-gamma production. It 
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remains to be determined whether this decline in glucocorticoid sensitivity is an individual 

difference associated with asthma pathogenesis or is an adaptation to the chronic use of 

corticosteroids in the treatment of asthma or to prolonged elevation of cortisol resulting from 

chronic stress. It is unlikely that chronic steroid use accounts for any glucocorticoid resistance in 

the current sample of mild asthmatics; however further research examining the possible role of 

glucocorticoid resistance is warranted.      

Activation of the sympathetic and parasympathetic branches of the ANS are other 

mechanisms by which naturalistic stress may influence IFN-gamma production among asthmatic 

and healthy participants.  Indeed, stress-induced activation of the sympathetic nervous system 

has been shown to modulate lymphocyte distribution (Bachen et al., 1995; Kin & Sanders, 2006) 

and to promote Th2 cytokine production. In vitro findings demonstrate that immune cells 

exposed to the sympathetic neurotransmitter epinephrine show a significant increase in Th2 

production and a concomitant decrease in IFN-gamma (Agarwal & Marshall, 2000).  

Parasympathetic activation, often associated with bronchoconstriction, also has 

immunomodulatory effects.  For instance, experimental studies show that eosinophils interact 

with cholinergic nerve fibers to induce the release of acetylcholine, a chemical mediator of 

bronchoconstriction (Sawatzky et al., 2003).  In addition, emerging evidence suggests that vagal 

activity can directly influence cytokine production.  While not yet applied to asthma-relevant 

immune parameters vagal activation has been shown to downregulate the inflammatory response 

(Tracey, 2002).  Future studies examining role of vagal activity on asthma relevant cytokine 

production may shed further light on the multiple pathways between the central nervous and 

immune systems.     
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7.6 LIMITATIONS 

There are a number of limitations of the present study.  First, interpretation of results is 

hindered by the small sample size. Thus, findings should be considered as preliminary and 

interpreted with caution.  Although other studies demonstrating relationships between stress and 

asthma-relevant immune parameters have also employed small samples sizes, e.g. 13 asthmatics 

in the study by Kang and Fox (2001), the current study only included 5 individuals with mild 

asthma. Nevertheless, the current findings provide some initial evidence that mild asthmatics 

differ from matched healthy controls in their ability to produce IFN-gamma, an important Th1 

cytokine that is involved in cellular immune function. Further research to determine whether this 

is a robust difference is warranted, especially given the possibility that a dysregulation of Th1 

pathways may render individuals more susceptibly to viral infections, which are a common 

trigger of asthma exacerbation. 

Another limitation of the current study was a failure of the stimulation assay to 

successfully activate T-helper cells and upregulate the expression of Th2 cytokines.  Despite 

pilot testing designed to ensure that the concentration of PHA (10 ug/ml) employed in the current 

assay was adequate to produce a quantifiable Th2 response, and prior research demonstrating 

that 10 ug/ml of PHA reliably stimulates T cell activation, we were unable to detect reliable 

levels of Th2 cytokines when the stimulated samples stored from the current study were analyzed 

by ELISA. Reasons for this technical problem remain unclear. One possible explanation is that 

the potency of the PHA was lower than originally anticipated. Findings from other assays 

conducted in the laboratory around the same time and using the same batch of PHA suggest that 

this may have been the case. Indeed, when employed in another study to stimulated lymphocyte 

proliferation, this batch of PHA resulted in lower than expected cell counts.   IFN-gamma is 
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typically produced at higher concentrations than IL-4 or IL-5.  As a consequence, it appears that 

IFN-gamma levels fell in the detectable range while the Th2 cytokines did not. In light of these 

results, further preliminary testing is indicated before the current study is replicated to determine 

whether stress influences the production of Th-2 cytokines among asthmatics   

Finally, this study was limited by the exclusive recruitment of mild asthmatics.  Previous 

studies utilizing more severe asthmatics have found more significant stress-related immune 

effects (Chen et al, 2003).  Indeed, authors of previous studies examining stress-related immune 

changes among only mild asthmatics have suggested that utilizing individuals with mild disease 

makes it difficult to discern asthmatics from healthy controls (Kang et al., 1997).  That said, 

however, more severe asthmatics often rely on medications known to affect the immune and 

endocrine system thus confounding studies aimed at examining the stress-immune link.   

7.7 FUTURE DIRECTIONS 

The present findings contribute to a growing literature demonstrating immune changes in 

response to naturalistic stress.  Moreover, intriguing basal differences in IFN-gamma production 

provide initial evidence for possible diminished host resistance among asthmatics when 

compared with matched health controls.  Taken together, these findings suggest that future 

studies examining the relationship between psychological stress, susceptibility to viral infection 

and asthma exacerbation should be conducted.  Further examination of whether stress influences 

the production of Th2 cytokines and other immune parameters known to be related to the 

exacerbation of asthma is also indicated.  Emerging research indicates that stress impacts a 

variety of biological processes relevant to asthma.  For instance, oxidative stress, shown to be 
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exacerbated by psychological stress (Forlenza & Miller, 2006), has been postulated to enhance 

inflammation among asthmatics (Wright et al., 2005).  Additionally, stress-induced break down 

in negative feedback loops, e.g. glucocorticoid resistance, may contribute to prolonged 

inflammatory processes in asthma (Wright et al., 2005). 

Stress-related changes in health behaviors remain a possible pathway linking stress to 

asthma exacerbation, either directly or via behaviorally-related modulation of immune function. 

In this regard, future investigations would benefit from the exploration of the role of a range of 

health behaviors.  Given the inverse relationship between IFN-gamma production and alcohol 

consumption reported in the current study, future work measuring alcohol consumption in a more 

rigorous fashion is indicated. For instance, the use of daily diaries to more reliably track alcohol 

use would be beneficial.  Additionally, manipulation of alcohol consumption or the recruitment 

of asthmatics that chronically consume alcohol may help to elucidate the role of alcohol in the 

exacerbation of asthma. 

In addition to determining the underlying mechanisms linking stress and asthma 

exacerbation, it is a hope that knowledge about the impact of stress or the course of asthma will 

translate from the benchtop to the bedside in the form of clinical interventions.  To date, asthma 

interventions have focused primarily on pulmonary function with mixed success (Lehrer et al., 

2002). Others have examined the benefit of teaching relaxation as a form of stress management. 

Here, the results have been mixed. Among healthy individuals, relaxation training has been 

associated with both a shift towards (Carlson, Speca, Patel and Goodey, 2003) and away from 

(Jones, 2001) Th2 cytokine production.  Future studies measuring both pulmonary function and 

asthma relevant cytokine production in response to psychosocial interventions is warranted. 
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8.0  CONCLUSION 

In conclusion, this study provides initial evidence of stress-related changes in asthma 

relevant immune parameters among healthy and mild asthmatic participants.  Indeed, consistent 

with previous research, findings suggest a stress-related decrease in IFN-gamma production 

among healthy participants while asthmatics responded with a marginal increase.  In addition, 

and consistent with a tendency for asthmatics to have poorer host resistance, basal differences in 

IFN-gamma were observed with asthmatics producing lower levels when compared to healthy 

individuals.  No other stress-related differences in asthma relevant immune parameters were 

observed; however, as expected, asthmatics did show higher levels of circulating IgE across both 

study time points.  Finally, exploratory analyses of health behaviors revealed an intriguing 

relationship between alcohol consumption and IFN-gamma production that warrants further 

investigation.  Future studies employing larger sample sizes are needed to better interpret these 

findings.  Moreover, an accurate assessment of Th2 cytokine production, as well as other 

biological processes emerging in the asthma literature, e.g. glucocorticoid sensitivity and 

oxidative stress, will help to elucidate the various pathways linking stress and asthma and inform 

the development of appropriate clinical interventions.  Together with an understanding of the 

underlying pathophysiology, the role of health behaviors and the impact of naturalistic stress, it 

is a hope that, over time, interventions will be designed to make asthma a more manageable 

disease.    
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