

LEARNING PATIENT-SPECIFIC MODELS
FROM CLINICAL DATA

by

Shyam Visweswaran

MBBS, JIPMER, Pondicherry, 1987

MS (Physiology and Biophysics), University of Illinois at Urbana-Champaign, 1995

Submitted to the Graduate Faculty of

the School of Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2007

 ii

UNIVERSITY OF PITTSBURGH

SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Shyam Visweswaran

It was defended on

September 25, 2007

and approved by

Gregory F. Cooper, Department of Biomedical Informatics and Intelligent Systems Studies

Program, University of Pittsburgh

 Tom Mitchell, Machine Learning Department, Carnegie Mellon University

Marek J. Druzdzel, School of Information Sciences and Intelligent Systems Studies Program,

University of Pittsburgh

Milos Hauskrecht, Department of Computer Science and Intelligent Systems Studies

Program, University of Pittsburgh

Dissertation Advisor: Gregory F. Cooper, Department of Biomedical Informatics and

Intelligent Systems Studies Program, University of Pittsburgh

 iii

2007

Copyright © by Shyam Visweswaran

LEARNING PATIENT-SPECIFIC MODELS FROM CLINICAL DATA

Shyam Visweswaran, MBBS, MS, PhD

University of Pittsburgh, 2007

A key purpose of building a model from clinical data is to predict the outcomes of future

individual patients. This work introduces a Bayesian patient-specific predictive framework for

constructing predictive models from data that are optimized to predict well for a particular

patient case. The construction of such patient-specific models is influenced by the particular

history, symptoms, laboratory results, and other features of the patient case at hand. This

approach is in contrast to the commonly used population-wide models that are constructed to

perform well on average on all future cases.

The new patient-specific method described in this research uses Bayesian network

models, carries out Bayesian model averaging over a set of models to predict the outcome of

interest for the patient case at hand, and employs a patient-specific heuristic to locate a set of

suitable models to average over. Two versions of the method are developed that differ in the

representation used for the conditional probability distributions in the Bayesian networks. One

version uses a representation that captures only the so called global structure among the

variables of a Bayesian network and the second representation captures additional local structure

among the variables.

The patient-specific methods were experimentally evaluated on one synthetic dataset, 21

UCI datasets and three medical datasets. Their performance was measured using five different

performance measures and compared to that of several commonly used methods for constructing

predictive models including naïve Bayes, C4.5 decision tree, logistic regression, neural networks,

 iv

k-Nearest Neighbor and Lazy Bayesian Rules. Over all the datasets, both patient-specific

methods performed better on average on all performance measures and against all the

comparison algorithms. The global structure method that performs Bayesian model averaging in

conjunction with the patient-specific search heuristic had better performance than either model

selection with the patient-specific heuristic or non-patient-specific Bayesian model averaging.

However, the additional learning of local structure by the local structure method did not lead to

significant improvements over the use of global structure alone. The specific implementation

limitations of the local structure method may have limited its performance.

 v

TABLE OF CONTENTS

TABLE OF CONTENTS .. vi

LIST OF TABLES ... xi

LIST OF FIGURES ... xiii

ACKNOWLEDGEMENTS .. xvi

1.0 INTRODUCTION.. 1

1.1 OVERVIEW OF PROPOSED PATIENT-SPECIFIC METHOD 5

1.2 AIMS OF THE DISSERTATION.. 8

1.3 OVERVIEW OF DISSERTATION... 9

2.0 BACKGROUND .. 10

2.1 PREDICTION IN CLINICAL MEDICINE ... 10

2.2 PATIENT-SPECIFIC METHODS CAN HAVE BETTER

PERFORMANCE... 14

2.3 DECISION THEORETIC COMPARISON OF POPULATION-WIDE AND

PATIENT-SPECIFIC MODELS .. 16

2.4 MODEL SELECTION VERSUS MODEL AVERAGING 20

2.5 LAZY LEARNING VERSUS EAGER LEARNING 23

2.6 TIME-VARYING PATIENT-SPECIFIC MODELS 24

2.7 RELATED WORK.. 25

 vi

2.8 RELATED WORK IN MACHINE LEARNING ... 25

2.9 RELATED WORK IN PREDICTIVE MODELING IN MEDICINE 29

3.0 BAYESIAN NETWORKS .. 33

3.1 NOTATION.. 33

3.2 BAYESIAN NETWORK REPRESENTATION .. 34

3.2.1 Local Markov condition and factorization of the joint probability

distribution ... 36

3.2.2 Global Markov condition and d-separation ... 38

3.2.3 Markov blanket... 40

3.3 REPRESENTATION OF LOCAL PROBABILITY DISTRIBUTIONS..... 41

3.3.1 Context-specific independence... 42

3.3.2 Decision tree CPDs.. 45

3.3.3 Decision graph CPDs .. 46

3.3.4 Summary of CPD representations... 47

3.4 LEARNING BAYESIAN NETWORKS FROM DATA 48

3.4.1 Parameter estimation.. 48

3.4.2 Structure learning... 53

3.4.3 Structure scores... 56

3.4.4 Bayesian score ... 58

3.4.5 Search methods ... 61

3.5 LEARNING BAYESIAN NETWORKS WITH LOCAL STRUCTURE 66

3.5.1 Bayesian score ... 68

3.5.2 Search methods ... 70

 vii

3.6 LEARNING BAYESIAN NETWORK CLASSIFIERS FROM DATA....... 76

3.6.1 Minimum error rate classification .. 78

3.6.2 Calibration... 79

3.6.3 Bayesian network classifiers .. 80

3.7 BAYESIAN MODEL AVERAGING... 83

4.0 METHODOLOGY... 85

4.1 MODEL SPACE .. 86

4.2 MARKOV BLANKET LOCAL STRUCTURE ... 89

4.3 PATIENT-SPECIFIC BAYESIAN MODEL AVERAGING........................ 94

4.3.1 Inference in Markov blankets.. 94

4.3.2 Bayesian score of Markov blankets... 96

4.3.3 Selective Bayesian Model Averaging... 99

4.4 PATIENT-SPECIFIC SEARCH.. 100

4.4.1 PSMBg search and operators .. 101

4.4.2 PSMBl search and operators ... 105

4.5 SPACE AND TIME COMPLEXITY .. 106

4.5.1 PSMBg algorithm.. 107

4.5.2 PSMBl algorithm .. 108

5.0 EXPERIMENTAL EVALUATION... 113

5.1 DATASETS .. 114

5.1.1 Pneumonia ... 115

5.1.2 Sepsis .. 117

5.1.3 Heart Failure ... 118

 viii

5.2 PREPROCESSING ... 120

5.3 PERFORMANCE MEASURES... 122

5.3.1 Misclassification error (ERR).. 123

5.3.2 Area under the ROC curve (AUC).. 124

5.3.3 Brier score or mean squared error (MSE) ... 125

5.3.4 Mean logarithmic loss or mean cross-entropy (MXE) 126

5.3.5 Calibration score (CAL)... 127

5.4 MACHINE LEARNING ALGORITHMS.. 128

5.4.1 Patient-specific algorithms... 128

5.4.2 Comparison algorithms.. 130

5.5 EVALUATION ON SYNTHETIC DATA .. 131

5.5.1 Results .. 133

5.6 EVALUATION OF THE PSMBG ALGORITHM 137

5.6.1 Experimental design ... 138

5.6.2 Results .. 139

5.6.3 Discussion... 141

5.7 EVALUATION OF THE PSMBL ALGORITHM....................................... 155

5.7.1 Experimental design ... 155

5.7.2 Results .. 156

5.7.3 Discussion... 156

5.8 SUMMARY.. 158

6.0 CONCLUSIONS .. 167

6.1 CONTRIBUTIONS AND FINDINGS ... 167

 ix

6.2 DISCUSSION... 169

6.3 FUTURE WORK... 171

APPENDIX: COUNTING MARKOV BLANKET STRUCTURES 174

BIBLIOGRAPHY... 177

 x

 LIST OF TABLES

Table 2-1: Categories of methods for predictive modeling. ... 21

Table 2-2: Eager and lazy learning. .. 23

Table 3-1: Labels for CPDs, BNs and MBs based on the CPD representation. 47

Table 4-1: Number of Bayesian network structures and Markov blanket structures. 88

Table 5-1: Description of the UCI datasets... 114

Table 5-2: Description of the medical datasets... 115

Table 5-3: Brief description of the performance measures... 123

Table 5-4: Six versions of the patient-specific algorithm... 129

Table 5-5: Results obtained from the training and test sets that are shown in Figure 5-2. 133

Table 5-6: Mean misclassification errors of different algorithms. ... 143

Table 5-7: Mean AUCs of different algorithms.. 144

Table 5-8: Mean logarithmic losses of different algorithms... 145

Table 5-9: Mean squared errors of different algorithms... 146

Table 5-10: Mean CAL scores of different algorithms... 147

Table 5-11: Wilcoxon paired-samples signed ranks test. ... 148

Table 5-12: Paired-samples t test. ... 148

Table 5-13: Average number of models in phases 1 and 2... 154

Table 5-14: Mean misclassification error rates of different algorithms. 160

 xi

Table 5-15: Mean AUCs of different algorithms.. 160

Table 5-16: Mean logarithmic losses of different algorithms... 161

Table 5-17: Mean squared errors of different algorithms... 161

Table 5-18: Mean CAL scores of different algorithms... 162

Table 5-19: Paired-samples t test. ... 163

Table 5-20: Wilcoxon paired-samples signed ranks. .. 163

Table 5-21: Approximate running times of the various algorithms.. 164

 xii

LIST OF FIGURES

Figure 1-1: Induction and inference in population-wide and patient-specific models. 4

Figure 2-1: A LBR model with five predictors and a target variable. .. 28

Figure 3-1: A simple hypothetical Bayesian network for a medical domain 35

Figure 3-2: Examples of the local Markov condition and the global Markov condition.............. 39

Figure 3-3: Example of a Markov blanket.. 40

Figure 3-4: Examples of CPD representations.. 44

Figure 3-5: Examples of indexing of parent states in CPDs. .. 67

Figure 3-6: Bayesian network global operators.. .. 71

Figure 3-7: Bayesian network local operators. ... 73

Figure 3-8: Example of encapsulated search. ... 74

Figure 3-9: Example of unified search.. 75

Figure 4-1: An example of local Markov blanket structure.. 89

Figure 4-2: A decision tree representation of local structure.. 90

Figure 4-3: A decision graph representation of local structure... 92

Figure 4-4: A decision graph representation of local structure that cannot be represented by a

decision tree. ... 92

Figure 4-5: An example of a complete decision tree representation. ... 93

Figure 4-6: Constraints on the Markov blanket global operators. .. 102

 xiii

Figure 4-7: An example where the application of an operator leads to additional removal of arcs

to produce a valid Markov blanket structure. ... 103

Figure 4-8: Pseudocode for the two-phase (phase 1 and phase 2) search procedure used by the

PSMBg algorithm. .. 110

Figure 4-9: Pseudocode for the two-phase (phase 1 and phase 2) and two-tier (outer and inner)

search procedure used by the PSMBl algorithm... 111

Figure 5-1: Pseudocode for non-parametric imputation of missing values. 121

Figure 5-2: Synthetic training and test datasets.. .. 132

Figure 5-3: Markov blanket model with the best score discovered by the PSMBl algorithm for

the dataset given in Table 5-2.. ... 134

Figure 5-4: Plots of model averaged estimate of P(Z = T) and the model score obtained by the

PSMBg and the NPSMBg algorithms on the three test cases given in Figure 5-2. 136

Figure 5-5: Pairwise plots of the mean misclassification error rates of PSMBg vs. competing

algorithms. .. 149

Figure 5-6: Pairwise plots of the mean AUCs of PSMBg vs. competing algorithms................. 150

Figure 5-7: Pairwise plots of the mean logarithmic losses of PSMBg vs. competing algorithms..

... 151

Figure 5-8: Pairwise plots of the mean squared errors of PSMBg vs. competing algorithms.... 152

Figure 5-9: Pairwise plots of the mean CAL scores of PSMBg vs. competing algorithms........ 153

Figure 5-10: Pairwise plots of the mean misclassification errors, mean AUCs and mean

logarithmic losses of PSMBl and vs. competing algorithms. ... 165

Figure 5-11: Pairwise plots of the mean squared errors and the mean CAL scores of PSMBl vs.

competing algorithms.. 166

 xiv

Figure A-1: An example of a Markov blanket structure demonstrating various node types...... 175

 xv

 xvi

ACKNOWLEDGEMENTS

First and foremost I express my gratitude to my advisor professor Greg Cooper for his patient

guidance, invaluable advice and constant support during this research. I thank my other

committee members professor Marek Drudzel, professor Milos Hauskrecht and professor Tom

Mitchell for helpful discussions and critical feedback. In addition, I thank professor Roger Day

for his stimulating discussions and assistance with the statistical analyses.

I thank Cleat Szczepaniak, Joseph Cummings, Rose Ann Thomas, Toni Porterfield,

Kimberlee Barnhart and William Milberry for making my stay at DBMI pleasant and enjoyable.

I acknowledge the financial support of the National Library of Medicine that enabled me

to pursue my interest in biomedical informatics. Without this financial support it would not have

been possible for me to complete the doctoral degree.

Finally, I cannot thank enough my family for supporting my endeavor of becoming an

informatics researcher. I specially appreciate my wife Rajani’s unwavering support and love and

my daughter Anushka’s cheerful demeanor. I am extremely grateful to my parents for their

support and inspiration that encouraged me to pursue my dreams.

1.0 INTRODUCTION

Making predictions, typically under uncertainty, is a common theme in clinical care activities.

Critical activities in clinical care include risk assessment, diagnosis, and prognosis, all of which

entail making predictions in individuals. Risk assessment implies predicting the future

occurrence of disease from current exposure to risk factors; diagnosis entails predicting the

possibility of disease from current symptoms, signs and tests; and, prognosis involves predicting

the future course and outcome of disease both with and without therapy [1, 2]. The better these

predictions can be performed, the better the decisions and the ensuing outcomes are likely to be

both for the individual and for society at large. Therefore, finding ways to make better

predictions is an important problem.

Typically, the clinician makes these predictions implicitly from knowledge obtained from

medical training as well as experience acquired from past patient care. This is occasionally

facilitated by paper-based guidelines and flowcharts derived from simple predictive models.

Such use of explicit models can help in making better predictions, enhance clinical decision

making, improve patient outcomes, and reduce healthcare costs. In recent years, medical

artificial intelligence and machine learning techniques are being increasingly used to learn

sophisticated predictive models in the biomedical domain. However, much work remains to be

done in improving the performance of such models and incorporating their use in routine clinical

care.

 1

One clear trend in healthcare is the accumulation of more and more data per patient that

is then available for clinical decision-making. Today’s clinician not only has to assimilate large

amounts of data but also has to integrate diverse types of patient data: demographic,

environmental, clinical, genetic, imaging, and outcomes in the course of patient care. Predictive

models can aid the clinician’s decision-making in the face of this data deluge. Another trend in

healthcare is the increasing use of computers in clinical care and the availability of patient data in

electronic form which allows for automatic processing of such data. Thus, it is becoming feasible

to use sophisticated models that require computationally intensive modeling methods that have

better predictive performance over simple paper-based flowchart models. For example, it seems

plausible that the future will see more computationally intensive methods that construct distinct

models for each individual from patient data in clinical computer systems. The development of

such methods that learn models tailored to an individual’s characteristics is the focus of the

research described in this dissertation.

Even modest improvements in predictive performance can have significant impact on

healthcare in terms of improved patient care, better outcomes and reduced costs. For example, in

[3] the authors estimate that if improved prediction of dire outcomes in pneumonia can reduce

hospital admissions of pneumonia patients by just one percent this can result in 89 million

dollars of savings per year in the United States without any expected decrease in clinical

outcomes. Thus, finding ways to improve predictive performance of current modeling techniques

is an important problem.

Two fields that have focused on the learning and application of predictive models are

statistics and machine learning. Both fields use similar terminology. A variable (also known as

attribute) is a quantity that describes an aspect of an object of the world. A feature is the

 2

specification of a variable and its value. For example, eye color is a variable and “eye color =

black” is a feature. Though often the term feature is used as a synonym for variable, in this

document the term feature is used exclusively to refer to a variable-value pair. A case (also

known as example, instance or record) is a single object of the world and is described by a list of

features. A dataset (also known as database) is a collection of cases.

Predictive models can be constructed either manually or by methods that automatically

extract relevant information from datasets. Classical statistical methods typically involve

substantial expert input for deriving the model. In semi-automatic methods, the model structure

(e.g., which variables are considered dependent) is derived from experts and the parameters of

the structure (e.g., coefficients in logistic regression) are extracted from datasets. Completely

automated methods learn both the structure and the parameters automatically from the dataset

and are the focus in machine learning. The research described in this dissertation investigates

automatic machine learning methods that learn models (tailored to an individual’s

characteristics) from data.

Among the machine learning methods, classification algorithms are often used for

learning predictive models from clinical data. Examples of such algorithms include logistic

regression, neural networks, classification trees (also know as decision trees), Bayesian networks

and support vector machines. Typically, these methods induce a single model from a training set

of cases, with the intent of applying it to all future patient cases. I call such a model a

population-wide model because it is intended to be applied to an entire population of future

cases. A population-wide model is optimized to predict well on average when applied to

expected future cases.

 3

Recent research in machine learning has shown that inducing models that are specific to

the particular features of a given instance can improve predictive performance [4]. I call such a

model an instance-specific model since it is constructed specifically for a particular instance

(case). The structure and parameters of an instance-specific model are specialized to the

particular features of an instance, so that it is optimized to predict especially well for that

instance. In the context of clinical prediction models, I call such a model a patient-specific

model, because the learning of the model is influenced by the particular history, symptoms,

laboratory results, and other features of the patient case being predicted. That is, the structure and

parameters of the model are influenced by the patient case being predicted. In this dissertation

the term patient-specific is used, though much of the description of patient-specific models

population-wide
modeltraining set

patient case prediction

apply population-wide method

do inference

patient-specific
modeltraining set

patient case prediction

apply patient-specific method

 do inference

Figure 1-1: A general characterization of the induction and inference of population-wide (top
panel) and patient-specific (bottom panel) models. In the bottom panel, there is an extra arc from
patient case to model, because the structure and parameters of the model are influenced by the
features of the patient case at hand.

 4

applies to the more general instance-specific models. The goal of inducing a patient-specific

model is to have optimal prediction for the patient case at hand. This is in contrast to the

construction of a population-wide model where the goal is to have optimal predictive

performance on average on all future patient cases.

Predictive modeling consists of two steps: induction of a model or models from a training

set of cases and inference of the variable of interest in a patient case at hand to derive a

prediction. Inference always involves the use of the features of the patient case at hand in

conjunction with a model. In the biomedical literature, the adjective patient-specific in the

context of predictive modeling is sometimes used more loosely to refer to model inference.

However, the use of patient features for inference does not necessarily make the model or the

method used for induction patient-specific. I designate only those methods as patient-specific

that use the features of the patient case at hand in conjunction with a training set of cases in order

to induce a model. This situation is illustrated in Figure 1-1 which shows that the patient case

being predicted is used for inference in both population-wide and patient-specific methods;

however, for induction, only the patient-specific method uses the patient case.

This work presents a decision-theoretic framework for induction of patient-specific

models, and investigates methods for learning Bayesian network models for prediction in a

patient-specific manner.

1.1 OVERVIEW OF PROPOSED PATIENT-SPECIFIC METHOD

There are several possible approaches for learning predictive models that are relevant to a single

patient case. One approach is to learn a model from a subset of cases in the dataset that consist of

 5

patients that are similar in some way to the patient case at hand. Another approach is to learn a

model from a subset of variables that are pertinent in some fashion to the patient case at hand. A

third approach, applicable to model averaging where a set of models is collectively used for

prediction, is to locate a set of models that are relevant to prediction for the patient case at hand.

In this work, I investigate a new method for learning predictive models that uses (1)

Bayesian network models, (2) carries out Bayesian model averaging over a set of models to

predict the outcome of interest for the patient case at hand, and (3) employs a patient-specific

heuristic to locate a set of suitable models to average over. The remainder of this section gives a

brief description of each of these characteristics.

Bayesian networks (BNs) are probabilistic graphical models that provide a powerful

formalism for representation, reasoning and learning under uncertainty [5-7]. These graphical

models are sometimes referred to as probabilistic networks, belief networks or Bayesian belief

networks. The last two decades have witnessed significant advances in the theoretical

development of BNs as well as in their application to a growing number of domains. A BN

combines a graphical representation with numerical information to represent a probability

distribution over a set of random variables in a domain. The graphical representation constitutes

the BN structure, and it explicitly highlights the probabilistic independencies among the domain

variables. The complementary numerical information constitutes the BN parameterization,

which quantifies the probabilistic relationships among the variables.

At the outset, BNs were constructed manually from knowledge acquired from domain

experts, which proved to be both time-consuming and difficult. Subsequent advances in BN

learning have culminated in numerous machine learning algorithms that learn both model

 6

structure and model parameters automatically from data. Such algorithms underlie most current

methods that use BNs for predictive modeling.

Typically, methods that learn predictive models from data, including those that learn BN

models, perform model selection. In model selection a single good model is selected that

summarizes the data well; it is then used to make future predictions. However, given finite data,

there is uncertainty in choosing one model to the exclusion of all others, and this can be

especially problematic when the selected model is one of several distinct models that all

summarize the data more or less equally well. A coherent approach to dealing with the

uncertainty in model selection is Bayesian model averaging (BMA). BMA is the standard

Bayesian approach wherein the prediction is obtained from a weighted average of the predictions

of a set of models, with better models influencing the prediction more than others. In practical

situations, the number of models to be considered is enormous and averaging the predictions

over all of them is infeasible. A pragmatic approach is to average over a few good models,

termed selective Bayesian model averaging, which serves to approximate the prediction obtained

from averaging over all models. The patient-specific method performs selective Bayesian model

averaging over a set of models that have been selected in a patient-specific fashion.

The patient-specific method learns both the structure and parameters of BNs

automatically from data. The patient-specific characteristic of the method is motivated by the

intuition that in constructing predictive models, all the available information should be utilized

including available knowledge of the features of the current patient case. Specifically, the

patient-specific method uses the features of the patient case to inform the BN learning algorithm

to select models that differ considerably in their predictions for the outcome of interest in the

 7

patient case at hand. The differing predictions of the selected models are then combined to

predict the outcome of interest.

1.2 AIMS OF THE DISSERTATION

The main aim of this dissertation is to introduce a new patient-specific method and evaluate

whether it yields better predictive performance than commonly applied population-wide

methods. The performance of the patient-specific method outlined in the previous section is

compared to six other machine learning algorithms. Four of these comparison methods are

standard machine learning algorithms that induce population-wide models. These are naïve

Bayes, C4.5 decision tree, logistic regression and neural networks. Two other comparison

methods, k-Nearest Neighbor and Lazy Bayesian Rules, are instance-based methods. In addition,

the patient-specific method is compared to a model selection version of the method whereby a

single model is selected for prediction. The methods are compared and evaluated on five

performance measures: misclassification rate, area under the Receiver Operating Characteristic

(ROC) curve, squared error, logarithmic loss, and a calibration score. The datasets on which the

experiments are conducted include 21 publicly available datasets obtained from the UCI

Machine Learning repository and three real world medical datasets.

The null (H0) and alternate hypotheses (H1) for the primary aim are as follows:

H0: Patient-specific Bayesian network models do not predict better than population-wide

models.

H1: For at least some performance measures patient-specific Bayesian network models

predict better than population-wide models.

 8

1.3 OVERVIEW OF DISSERTATION

Chapter 2 provides relevant background to set the context for patient-specific modeling and

surveys some of the related work in machine learning and in medical predictive modeling.

Chapter 3 introduces the Bayesian network formalism, describes several representations for

modeling BNs, and reviews methods for learning BNs for data. In particular, it focuses on the

Bayesian approach to BN learning, learning BNs for classification, and Bayesian model

averaging over BNs.

Chapter 4 describes in detail the proposed patient-specific learning method, the patient-

specific search for BNs and the patient-specific score for evaluating BNs. Chapter 5 presents the

results of the experimental evaluation of the patient-specific method and compares its

performance to that of the algorithms listed in the previous section. Chapter 6 summarizes the

contributions of this dissertation and presents some potential extensions of this work for future

research.

 9

2.0 BACKGROUND

This chapter provides the background and context for patient-specific modeling and reviews

related work in machine learning and in medical predictive modeling. Section 2.1 highlights the

importance of improving predictive modeling in healthcare. Section 2.2 provides illustrative

examples where patient-specific modeling can improve upon population-wide models and

Section 2.3 provides a decision theoretic comparison of the two paradigms. The patient-specific

method described in the dissertation is characterized by the use of model averaging for

prediction, induction of models in a lazy fashion, and the use of atemporal data. The following

sections provide background on these characteristics of the patient-specific method. Section 2.4

compares model selection with model averaging and Section 2.5 compares lazy and eager

methods for learning models. Section 2.6 presents time-varying patient-specific modeling as an

extension of the patient-specific method. The final two sections summarize some of the relevant

literature in machine learning and medicine respectively that is related to predictive modeling.

2.1 PREDICTION IN CLINICAL MEDICINE

A common characteristic of clinical care activities like risk assessment, diagnosis, and prognosis

in individuals is making predictions [1]. Risk assessment is an important component of

 10

preventive healthcare where healthcare providers judge the chances of an individual developing

future medical problems based on the individual’s past and current history of exposure to risk

factors. For example, individuals who are judged to be at high risk for developing hypertension

may undergo further medical evaluation and testing and may be advised to make changes to their

lifestyle and diet. Accurate risk assessment is necessary to identify individuals at risk for

developing hypertension correctly, since lifestyle and dietary changes are very difficult to initiate

and maintain for most individuals.

Accurate and timely diagnosis in individuals with current symptoms is important in

making decisions such as the need for additional testing, for choosing appropriate therapy, and

the need for hospitalization. Inappropriate decisions arising from erroneous diagnoses can lead to

unnecessary distress and incorrect therapy for the individual as well as needless expenditure of

healthcare resources.

Prognosis entails the prediction of the course and outcome of disease and is an important

component of management of an individual with a disease [2]. Given accurate diagnoses,

choosing the appropriate therapy entails predicting accurately the course and outcome of the

disease in the individual under various available therapies. For example, for the same disease, the

optimal medication for one individual may be different from that for another individual due to

differences in genetic and environmental characteristics. Thus, improvement in predictive

performance is an important healthcare problem since it has the potential to improve clinical

decision-making, which in turn can lead to better outcomes in patients. In addition, efficient use

of healthcare resources depends on being able to determine accurately when and where a

resource is likely to be useful, which in turn depends on accurately anticipating patients’

healthcare-resource requirements.

 11

A second common feature of clinical care activities that involve prediction is uncertainty.

Uncertainty in medicine arises from various causes: uncertainty from incomplete medical

knowledge, uncertainty from incomplete patient data, and uncertainty from noisy patient data

[1]. Thus, risk assessment, diagnosis, and prognosis in individuals are associated with various

degrees of uncertainty. Judging and handling uncertainty appropriately is imperative for

improving predictions.

One important way to assist healthcare providers in making better predictions under

uncertainty is to supplement their clinical judgments with predictions from mathematical models.

Such models embedded in clinical computer systems have the potential to complement the

clinician’s assessment at the point-of-care. Clinical computer systems that help in clinical

decision-making, called clinical decision support systems (CDSSs), have been in developed

since the early 1960s. CDSSs have the potential to improve healthcare by improving patient

safety, by improving quality of care, and by improving efficiency in health care delivery [8].

Though researchers have developed numerous CDSSs, few are in routine clinical use. A variety

of factors have been implicated in this failure, such as, lack of deep causal knowledge in the

medical domain, poor user interfaces, failure to fit into the clinical workflow, and inadequate

predictive performance of the models incorporated into such systems [9].

Numerous decision-support models have been developed and employed in CDSSs. The

earliest CDSSs used simple branching logic (equivalent to a flowchart). For example, Bliech and

his colleagues developed a computerized flowchart using branching logic to diagnose acid-base

disorders [10]. This was followed by the development of rule-based models that were

incorporated into expert system CDSSs. A rule-based model represents the domain knowledge as

a set of rules that is applied to patient data by a logical reasoning engine. A well known example

 12

of such a system is MYCIN that was introduced by Shortliffe to diagnose organisms causing

infections in patients [11]. Simple logical and rule-based models, however, could not handle well

the ubiquitous uncertainty in clinical decision making.

One of the earliest theoretical developments of a CDSS model, outlined in a classic paper

published in 1959 by Ledley and Lusted [12], stated that logic should be combined with

probabilistic reasoning for automated reasoning and prediction in the medical domain. With the

development of Bayesian network models (also known as probabilistic networks, belief networks

or Bayesian belief networks) in the late 1980s, full-fledged probabilistic reasoning using such

models was implemented in the medical domain. Examples of medical models based on

Bayesian networks include the Pathfinder [13, 14], a pathology diagnostic system for diagnosing

lymph-node diseases, and the probabilistic version of INTERNIST-1/QMR [15, 16], an internal

medicine diagnostic system for diagnosing medical disorders. A PubMed search showed that 378

articles have been published in the biomedical literature in the last 10 years (from July 1997 to

June 2007) with one of the following phrases in the title or abstract: “Bayesian network”,

“Bayesian networks”, “probabilistic network”, “probabilistic networks”, “belief network”,

“belief networks”, “Bayesian belief network” or “Bayesian belief networks”. Thus, Bayesian

networks remain popular and their application to biomedical and clinical problems is an active

area of research.

In this dissertation, the focus is on probabilistic models that make predictions in the

clinical domain, and, in particular, on models that are learned from a training dataset of patient

cases. Datasets in the clinical domain can be broadly categorized into two major types.

Observational data are often used for assessing diagnostic conditions; experimental data (e.g.,

 13

from randomized controlled trials) are often used for evaluating therapeutic interventions. The

data collected in both these scenarios can be used for inducing predictive models.

Numerous statistical and machine learning methods have been developed for learning

probabilistic models from a dataset of cases and several of them have been applied for learning

predictive models from clinical and biomedical data [17]. A survey of the machine learning

literature and the medical literature is provided in sections 2.8 and 2.9 respectively. Almost

always, these are population-wide methods that learn a single population-wide model from a set

of known patient cases, with the intent of applying it to all future patient cases. By design

population-wide models are expected to perform well on average on all future patient cases, but

can potentially perform poorly on a particular patient case. Little literature is available on

methods that take into account the current patient case while learning a model. Such a patient-

specific method constructs a patient-specific model for each future patient that is optimized to

predict especially well for the particular patient case at hand. The following section illustrates

how patient-specific models can have better performance than population-wide models.

2.2 PATIENT-SPECIFIC METHODS CAN HAVE BETTER PERFORMANCE

Figure 1-1 illustrates the key difference between population-wide and patient-specific models:

the patient-specific model is constructed from data in the training set, as well as, from available

data about the particular patient case to which it will be applied. In contrast, the population-wide

model is constructed only from data in the training set. Thus, intuitively, the extra information

available to the patient-specific method can facilitate inducing a model that provides better

prediction for the patient-specific case. In patient-specific modeling, different patient cases will

 14

potentially result in different models, because the cases contain potentially different values for

the features. The patient-specific models may differ in the variables included in the model

(variable selection or also known as feature selection), in the interaction among the included

variables (encoded in the structure of the model), and in the strength of the interaction (encoded

in the parameters of the model). Another approach is to select a subset of the training data that

are similar in their feature values to those of the patient case at hand and learn the model from

the subset. A generalization of this is to weight the cases in the training dataset such that cases

that are more similar to the patient case are assigned greater weights than others, and then learn

the model from the weighted dataset. The following are two illustrative examples where patient-

specific methods may perform better than population-wide methods.

Variable selection. Many model induction methods implicitly or explicitly perform

variable selection, a process by which a subset of the domain variables is selected for model

construction. For example, logistic regression is often used with a stepwise variable selection

process. A patient-specific version of logistic regression may select different variables for

different patients being predicted, compared to the standard population-wide version that selects

a single subset of variables. In the context of a healthcare scenario in the not-too-distant future,

consider a gene G that has several alleles. Suppose that allele a1 is rare, and it is the only allele

that predicts the development of disease D; indeed, it predicts D with high probability. For future

patients, the aim is to predict P(D | G). In a population-wide logistic regression model, G may

not be included as a predictor (variable) of D, because in the vast majority of cases in the dataset

G ≠ a1 and D is absent, and having G as a predictor would just increase the overall noise in

predicting D. In contrast, if there is a patient case at hand in which G = a1, then the training data

may contain enough cases to indicate that D is highly likely. In this situation, G would be added

 15

as a predictor in a patient-specific model. Thus, for a patient in whom G = a1, the typical

population-wide logistic regression model would predict poorly.

This idea can be extended to examples with more than one predictor, in which some

predictors are characterized by having particular values that are relatively rare but strongly

predictive for the outcome. A population-wide model tends to include only those predictors that

on average provide the best predictive performance. In contrast, a patient-specific model will

potentially include predictors that are highly predictive for the particular patient case at hand;

such predictors could be different from those included in the population-wide model.

Value-specific interactions. Variable selection is one important way in which models

can be tailored to individual patient cases, as just described. Feature interaction (dependence) is

another major way. Continuing with a genetic example, consider two genes E and F. When E =

e1 and F = f1, disease K usually occurs; otherwise, K rarely occurs. Thus, when E = e1 and F =

f1, there is an interaction between E and F in predicting K, and otherwise, there is not an

interaction. Such value-specific interactions form another basis for constructing patient-specific

models that take those interactions into account. Thus, patient-specific methods can construct

better models by employing better variable selection and by capturing value-specific interactions

among features.

2.3 DECISION THEORETIC COMPARISON OF POPULATION-WIDE AND

PATIENT-SPECIFIC MODELS

This section first introduces some notation and definitions and then compares population-wide

with patient-specific models in decision theoretic terms. Capital letters like X, Z, denote random

 16

variables and corresponding lower case letters, x, z, denote specific values assigned to them. A

feature is a specification of a variable and its value. Thus, X = x is a feature that specifies that

variable X is assigned the value x. Bold upper case letters, such as X, Z, represent sets of

variables or random vectors and their realization is denoted by the corresponding bold lower case

letters, x, z. A feature vector is a list of features. Thus, X = x is a feature vector that specifies that

the variables in X have the values given by x. In addition, Z denotes the target variable (class

variable) being predicted, X denotes the set of predictor variables, M denotes a model (and

includes both structure and parameters), D denotes the training dataset, Ci ≡ <Xi, Zi> denotes a

generic training case in D and Ct ≡ <Xt, Zt> denotes a generic test case that is not in D. A test

case t is one in which the unknown value of the target variable Zt is to be predicted from the

known values of the predictors Xt and the known values of <Xi, Zi> of a set of training cases.

A probabilistic model is a family of probability distributions indexed by a set of

parameters. Model selection refers to the problem of using data to select one model from a set of

models under consideration [18]. Model averaging refers to the process of estimating some

quantity (e.g., prediction of an outcome for a patient) under each of the models under

consideration and then obtaining a weighted average of their estimates [18].

Both model selection and model averaging can be done using either non-Bayesian or

Bayesian approaches. Non-Bayesian methods of model selection include choosing among

competing models by maximizing the likelihood, by maximizing a penalized version of the

likelihood or by maximizing some measure of interest (e.g., accuracy) using cross-validation.

Examples of non-Bayesian methods of model averaging include bagging and boosting. In both

bagging and boosting, the data are resampled several times, a model is constructed from each

sample, and the predictions of the individual models are averaged to obtain the final prediction.

 17

In the non-Bayesian approach, the heuristics used in model selection and model averaging are

typically different. In contrast, the Bayesian approach to model selection and model averaging

both involve computing the posterior probability of each model under consideration.

In Bayesian model selection the single model found that has the highest posterior

probability is chosen. In Bayesian model averaging the prediction is the weighted average of the

individual predictions of the models with the model posterior probabilities comprising the

weights.

When the goal is prediction of future data or future values of the target variable, Bayesian

model averaging is preferred, since it suitably incorporates the uncertainty about the true model.

However, sometimes interest is focused on a single model. For example, a single model may be

useful for providing insight into the relationships among the domain variables or can be used as a

computationally less expensive method for prediction. In such cases, Bayesian model selection

maybe preferred to Bayesian model averaging. However, the proper Bayesian approach is to

perform model averaging, and model selection, is at best, an approximation to model averaging.

Population-wide model selection and patient-specific model selection are characterized in

decision theoretic terms as follows. Given training data D and a generic test case <Xt, Zt>, the

optimal population-wide model is:

[]
⎭
⎬
⎫

⎩
⎨
⎧∑

tX

ttt XXX)|(),|(),,|(maxarg DPMZPDZPU tt

M
, (2.1)

where the utility function U gives the utility of approximating the Bayes optimal estimate P(Zt |

Xt, D) with the estimate P(Zt | Xt, M) obtained from model M. For a model M, Expression 2.1

considers all possible instantiations of Xt and for each instantiation computes the utility of

estimating P(Zt | Xt, D) with the specific model estimate P(Zt | Xt, M), and weights that utility by

 18

the posterior probability of that instantiation. The maximization is over the models M in a given

model space.

The Bayes optimal estimate P(Zt | Xt, D) in Expression 2.1 is obtained by combining the

estimates of all models (in a given model space) weighted by their posterior probabilities:

dMDMPMZPDZP
M

tttt)|(),|(),|(∫= XX . (2.2)

The term P(Xt | D) in Expression 2.1 is given by:

dMDMPMPDP
M

tt)|()|()|(∫= XX . (2.3)

The optimal patient-specific model for estimating Zt is the one that maximizes the following:

[]{ }),|(),,|(maxarg MZPDZPU tt

M

tt xx , (2.4)

where xt are the values of the predictors of the test case Xt for which the target variable Zt is to be

predicted. The Bayes optimal estimate P(Zt | xt, D) is derived using Equation 2.2, for the special

case in which Xt = xt, as follows:

dMDMPMZPDZP
M

tttt)|(),|(),|(∫= xx . (2.5)

The difference between the population-wide and the patient-specific model selection can be

noted by comparing Expressions 2.1 and 2.4. Expression 2.1 for the population-wide model

selects the model that on average will have the greatest utility. Expression 2.4 for the patient-

specific model, however, selects the model that will have the greatest utility for the specific case

Xt = xt. For predicting Zt given case Xt = xt, application of the model selected using

Expression 2.1 can never have an expected utility greater than the application of the model

 19

selected using Expression 2.4. This observation provides support for developing patient-specific

models.

2.4 MODEL SELECTION VERSUS MODEL AVERAGING

Equations 2.2 and 2.3 carry out Bayesian model averaging over all models in some specified

model space. Expressions 2.1 and 2.4 include Equation 2.2; thus, these expressions for

population-wide and patient-specific model selection, respectively, are theoretical ideals.

Moreover, Equation 2.2 is the Bayes optimal prediction of Zt. Thus, in order to do optimal model

selection, the optimal prediction obtained from Bayesian model averaging must already be

known.

Model selection, even if performed ideally, ignores the uncertainty inherent in choosing a

single model based on limited data. Bayesian model averaging is a normative approach for

dealing with the uncertainty in model selection, and has been shown to improve predictive

performance as well as provide more accurate estimates of the error in prediction. Several

examples of significant decrease in prediction errors with the use of Bayesian model averaging

are described in [19]. Such averaging is primarily useful when no single model in the model

space under consideration has a high posterior probability. However, since the number of models

in practically useful model spaces is enormous, complete Bayesian model averaging, where the

averaging is done over the entire model space, is usually not feasible. That is, it is usually not

computationally feasible to solve for the exact solution given by Equation 2.2. In such cases,

selective Bayesian model averaging is typically performed, where the averaging is done over a

selected subset of models.

 20

Methods for inducing predictive models can be classified along two axes as shown in

Table 2-1. Along the horizontal axis are population-wide and patient-specific methods that differ

chiefly in whether the features of the test case are utilized or not in developing the model. Along

the vertical axis are model selection and model averaging.

The table focuses on a subset of supervised learning methods, namely, model-based

learning methods. Model-based methods and instance-based methods (variants of which are

known as instance-based learning, memory-based learning, exemplar-based learning or case-

based reasoning) belong to two extremes of supervised learning methods [20]. Model-based

methods learn an explicit model or models from the training cases that are then applied to the test

case. In contrast, instance-based methods estimate the target variable in the test case by

combining the values of the target variable in a subset of the training cases that are similar in

some sense to the test case. Thus, instance-based methods are characterized by the use of a

similarity (or distance) measure necessary for measuring the similarity between cases. The

canonical example of an instance-based method is the k-Nearest Neighbor technique where the

prediction of the target variable in the test case is based on the majority vote of the values of the

target variable in the k-nearest cases (for classification) or the average over a set of k-nearest

Table 2-1: Categories of methods for predictive modeling.

 population-wide method patient-specific method
(instance-specific method)

model selection
(mainly non-Bayesian)

1. Commonly used for
predictive modeling; e.g.,
logistic regression, neural
networks

3. Less commonly used for
predictive modeling; e.g., Lazy
Bayesian Rules [20]

model averaging
(mainly Bayesian)

2. Less commonly used for
predictive modeling; e.g.,
averaging over rule-sets [8],
averaging over discrete
Bayesian networks [10]

4. None described in the
literature for predictive
modeling; e.g., the patient-
specific method described in
this dissertation

 21

training cases (for regression). It should be pointed out that instance-specific methods including

patient-specific methods discussed in this dissertation are not instance-based methods but are

rather model-based methods. In particular, the patient-specific methods explored here induce a

model or set of models that are influenced by the values of the features of the test case; a

similarity measure is not used. To keep the distinction between instance-specific methods and

instance-based methods clear, I will refer to instance-based methods as similarity-based methods.

The typical predictive algorithms, both in machine learning and in the medical literature,

perform non-Bayesian model selection to induce a population-wide model (cell 1 in Table 2-1).

Examples of such methods are logistic regression, neural networks, CART-like decision trees,

Bayesian networks1 and support vector machines [17]. Less commonly, model averaging over

population-wide models (cell 2 in Table 2-1) has been used for prediction; such techniques can

improve predictive performance over population-wide model selection. One such example is the

algorithm for classification that is described in [21]. This algorithm uses stochastic search to find

multiple models of rule-sets over which to perform selective Bayesian model averaging.

Instance-specific methods that perform model selection (cell 3 in Table 2-1) are also not that

common. One example of such a method is Lazy Bayesian Rules that is described in detail in

Section 2.8. It is a model-based, instance-specific method and not a similarity based method, and

it has been shown to improve predictive performance over several population-wide model

selection methods.

In this dissertation, I describe a method that belongs to the fourth category (cell 4 in

Table 2-1): a patient-specific method that performs selective Bayesian model averaging. The key

component of such a method is the heuristic used for searching and selecting models in the

1 The Bayesian networks referred to here typically perform inference using non-Bayesian methods, and are hence
properly classified under non-Bayesian methods.

 22

model space over which model averaging is done. The patient-specific method employs a

heuristic that searches the model space in a patient-specific manner. That is, the values of the

features in the test case are used to direct the search. The algorithm is described in detail in

Chapter 4.

2.5 LAZY LEARNING VERSUS EAGER LEARNING

Machine learning methods that defer model construction until a response to a test case is

required are said to employ lazy learning. This is in contrast to methods that induce a model

from the training data before ever encountering a test case, which are said to employ eager

learning [22]. In terms of computation, lazy methods often have higher memory and time costs

since they, typically, store the entire training data and construct a new model for every test case.

In contrast, eager methods, usually, discard the original training cases and retain only the model

that is then applied to all future cases. Table 2-2 illustrates the application of lazy versus eager

Table 2-2: Eager and lazy learning.

 population-wide method patient-specific method
(instance-specific method)

eager learning

1. Very common; e.g., logistic
regression, neural networks,
decision tree, etc., typically use
eager learning.

3. In theory, it is possible to learn
all possible patient-specific models
in an eager fashion and then retrieve
the appropriate model for a test
case. However, this is feasible only
if a small number of possible test
cases exist.

lazy learning

2. While it is possible to construct
models mentioned in cell 1. in a
lazy fashion, it is uncommon to do
so since the increase in memory and
time requirements may not be offset
by better performance.

4. Lazy learning is the usual
approach used to learn patient-
specific models.

 23

learning to population-wide and patient-specific methods. Population-wide methods are usually

eager, but they need not be, and patient-specific methods are usually lazy, but in theory they

need not be (see cell 3 in Table 2-2). Since population-wide methods learn a single model that is

applied to all future cases, it is usually more efficient in computation time to eagerly learn the

model once from the training data. In addition, with eager learning, only the model needs to be

retained after learning and typically the model requires lesser memory than the entire training

data. Patient-specific methods are usually lazy since they require the test case for guiding model

induction. The increased computation time and memory requirements of the lazy method can be

offset by better predictive performance, as for example in the case of Lazy Bayesian Rules that is

discussed in greater detail in Section 2.8.

2.6 TIME-VARYING PATIENT-SPECIFIC MODELS

In the clinical literature, patient-specific models sometimes refer to models that are induced from

a time series of data obtained from a patient. Many of the variables included in such models have

values that have been measured over multiple time points. Such time-varying patient-specific

models are distinct from atemporal patient-specific models that are induced from atemporal data

and/or a single (e.g., initial) time slice of data. In this work, I investigate atemporal patient-

specific models, and for brevity I will refer to them as patient-specific models. This approach to

patient-specific modeling is complementary to the methods that assume a time series, since the

atemporal approach can construct an initial model from atemporal data (e.g., demographics of

the patient) and/or data for an initial time slice (e.g., vital signs like blood pressure and

temperature at the time of admission to the hospital). The initial model can then be revised based

 24

on the time series data obtained from a specific patient (e.g., blood pressure and temperature

measurements over time).

2.7 RELATED WORK

The following sections review some of the literature related to the machine learning methods

introduced in the previous section. While not comprehensive in its coverage, this review

provides a representative sample of related previous work in machine learning and in clinical

predictive modeling that is most closely related to patient-specific modeling.

2.8 RELATED WORK IN MACHINE LEARNING

There exists a vast literature in machine learning, data mining and pattern recognition that is

concerned with the problem of predictive modeling and supervised learning. This section focuses

on some of the aspects of the similarity-based methods followed by a review of some recent

work on instance-specific methods.

Similarity-based methods. These methods are also known as memory-based, case-

based, instance-based, or exemplar-based learners. They (1) use a similarity or a distance

measure, (2) defer most of the processing until a test case is encountered (i.e., they are lazy), (3)

combine the training cases in some fashion to predict the target in the test case, and (4) discard

the answer and any intermediate results after the prediction [23]. Typically, no explicit model is

induced from the training cases at the time of prediction. The similarity measure evaluates the

 25

similarity between the test case and the training cases and selects the appropriate training cases

and their relative weights in response to the test case [24]. The selected training cases can be

equally weighted or weighted according to their similarity to the test case. To predict the target

variable in the test case, the values of the target variable in the selected training cases are

combined in some simple fashion such as majority vote, simple numerical average or fitted with

a polynomial.

The nearest-neighbor technique is the canonical similarity-based method. When a test

case is encountered, the training case that is most similar to the test case is located and its target

value is returned as the prediction [25]. A straight-forward extension to the nearest-neighbor

technique is the k-Nearest Neighbor (kNN) method. For a test case, this method selects the k

most similar training cases and either averages or takes a majority vote of their target values.

Another extension is the distance-weighted k-Nearest Neighbor method. This weights the

contribution of each of the k most similar training cases according to its similarity to the test

case, assigning greater weights to more similar cases [26]. A further extension is locally

weighted regression that selects cases similar to the test case, weights them according to their

similarity, and performs regression to predict the target [27].

One drawback of the similarity-based methods is that they may perform poorly when

predictors are redundant, irrelevant or noisy. To make the similarity metric more robust, variable

selection and variable weighting have been employed [28]. Two generic approaches that have

been used for variable selection and weighting are filter methods and wrapper methods [23].

Filter methods determine whether variables are predictive of the target variable using heuristics

based on characteristics of the data. Typically, filter methods are applied as a preprocessing step

and search for an optimal variable subset in the space of variable subsets independent of the

 26

classification method to be applied subsequently. An example of a filter method is the selection

of a subset of variables that are highly correlated with the target variable as measured by mutual

information between each predictor variable and the target variable. Wrapper methods make use

of the classification method that will ultimately be applied to the data in order to evaluate the

predictive power of predictors. Typically, wrapper methods search for an optimal variable subset

in the space of variable subsets using the criterion optimized by the classification method. An

example of a wrapper method is the selection of a subset of variables that produces high

accuracy when used by the classification method [29].

Instance-specific methods. Instance-specific methods in general and patient-specific

methods in particular are model-based methods that take advantage of the features in the test

case while inducing the model. Such methods are not as reliant on a similarity measure, if they

use one at all, as the similarity-based methods.

Friedman et al. [30] describe one such algorithm called LazyDT that searches for the best

CART-like decision tree for a test case. As implemented by the authors, LazyDT did not perform

pruning and processed only nominal variables. The algorithm was compared to ID3 and C4.5

(standard population-wide methods for inducing decision trees), each with and without pruning.

When evaluated on 28 datasets from the UCI Machine Learning repository, LazyDT generally

out-performed both ID3 and C4.5 without pruning and performed slightly better than C4.5 with

pruning.

Ting et al. [31] have developed a framework for inducing rules in a lazy fashion that are

tailored to the features of the test case. Zheng et al. [32] describe an implementation of this

framework called the Lazy Bayesian Rules (LBR) learner that induces a rule tailored to the

features of the test case that is then used to classify it. A LBR rule consists of (1) a conjunction

 27

of the variable-value pairs present in the test case as the antecedent and (2) a local naive Bayes

classifier as the consequent. The structure of the local naive Bayes classifier consists of the target

variable as the parent of all other variables that do not appear in the antecedent, and the

parameters of the classifier are estimated from those training cases that satisfy the antecedent.

Figure 2-1 shows an example of a LBR rule constructed using five predictor variables and a

target variable from the pneumonia dataset (described in Chapter 5). The rule has two predictors

in the antecedent and a naive Bayes classifier with three predictors in the consequent. A greedy

step-forward search selects the optimal LBR rule for a test case to be classified. In particular,

each predictor is added to the antecedent of the current best rule and evaluated for whether it

reduces the overall error rate on the training set. The predictor that most reduces the overall error

rate is added to the antecedent and removed from the consequent, and the search continues; if no

single predictor move can decrease the current error rate, then the search halts and the current

rule is applied to predict the outcome for the test case. LBR is an example of a patient-specific

method that utilizes feature information available in the test case to direct the search for a

suitable model in the model space.

Status = retired Glucose = >250

Gender Cough Infiltrate

Dire outcome

Figure 2-1: A LBR model (or rule) with five predictors and a target variable (dire outcome). The
two nodes at the top represent predictors in the antecedent of the LBR rule that have been
instantiated to their respective values in the test case. The node in the center (the target variable
being predicted) and the three nodes at the bottom form the local naive Bayes classifier present in
the consequent of the LBR rule.

 28

The performance of LBR was evaluated by Zheng et al. [32] on 29 datasets from the UCI

Machine Learning repository and compared to that of six algorithms: a naïve Bayes classifier

(NB), a decision tree algorithm (C4.5), a Bayesian tree learning algorithm (NBTree) [33], a

constructive Bayesian classifier that replaces single variables with new variables constructed

from Cartesian products of existing nominal variables (BSEJ) [34], a selective naive Bayes

classifier that deletes irrelevant variables using Backward Sequential Elimination (BSE) [35],

and LazyDT, which is described above. Based on ten three-fold cross validation trials (for a total

of 30 trials), LBR achieved the lowest average error rate across the 29 datasets. The average

relative error reduction of LBR over NB, C4.5, NBTree, BSEJ, BSE and LazyDT were 9%, 10%,

2%, 3%, 5% and 16% respectively. LBR performed significantly better than all other algorithms

except BSE; compared to BSE its performance was better but not statistically significantly so.

Some of the more recent algorithms have some limitations in that they can process only

discrete variables – continuous variables have to be discretized. Also, they are computationally

more intensive than many other learning algorithms. However, they have been shown to have

better accuracy than several of the population-wide methods. These results provide empirical

support for the possibility that patient-specific methods can have better predictive performance

than population-wide models constructed using standard eager techniques.

2.9 RELATED WORK IN PREDICTIVE MODELING IN MEDICINE

In the medical domain, machine learning methods are been increasingly used for the induction of

predictive models. In a recent study, Dreiseitl and Ohno-Machado [17] examined the number of

publications indexed in Medline that used modeling and found that logistic regression, neural

 29

networks, k-Nearest Neighbors (kNN), CART-like decision trees (classification trees) and

support vector machines (SVM) were the most popular in descending order. Logistic regression

is widely used in many clinical domains: for example, APACHE II is a severity of disease

classification system that computes a score based upon routine physiologic measurements, age,

and previous health status to provide a general measure of severity of disease [36]. Logistic

regression models (without interaction terms) are easy to construct and interpret; however, they

may not capture dependencies among attributes adequately. In contrast, neural networks, which

generalize logistic regression models, are more flexible since they can express complex non-

linear relationships among the attributes.

The kNN is the most commonly used similarity-based method in the medical domain. For

example, it has been applied in searching for patterns in radiographic images for diagnostic

purposes [37] and for diagnosis of diseases from gene expression profiles [38]. Though less

commonly used than the preceding methods, CART-like decision trees are attractive since they

provide a representation that lends itself to easy interpretation by humans. They can also be

easily translated into a disjunction of conjunctions or the more convenient ‘if-then’ rules.

Support vector machines have been used for several clinical problems ranging from diagnosis of

breast cancer on ultrasound images [39] to classification of tumors based on gene expression

profiles [40]. The basic SVM binary classification algorithm computes a maximum-margin

hyperplane in a transformed predictor space. The hyperplane separates training cases of one class

from the other such that the distance from the closest cases (the margin) to the hyperplane is

maximized [41].

Several of the patient-specific models described in the medical literature are models that

are induced from a time series of data about a patient. Such a model may be trained only on data

 30

obtained from the patient for whom it will be used, or it may be trained from a combination of

population data and data obtained from the patient. As an example, patient-specific modeling has

been used to detect onset of seizures in real-time during long-term electroencephalogram (EEG)

monitoring of epileptic patients. The model is trained from labeled seizure and nonseizure EEG

data recorded in a patient and is then applied to ongoing EEG recording of that patient [42]. EEG

patterns of seizures are very stereotypic for a given patient but vary widely among patients even

for the same type of seizures. Thus, models induced from data from several patients usually

perform poorly when compared to those constructed from a single patient and applied to that

patient [43].

An example of patient-specific modeling that combines population data with data from a

patient is the Bayesian method for forecasting drug dosage developed by Sheiner et al. [44, 45].

Here, the future drug dosage is individualized by revising the estimates of that individual’s

pharmacokinetic (PK) parameters. The individual’s estimates of the PK parameters are obtained

by combining information from population PK parameters (that describe the typical relationship

between dosage and drug concentrations derived from a population of individuals) and past

measurements of drug concentrations from that individual (that provide information on the

relationship between dosage and drug concentrations specific to that individual). The initial

prediction of a drug dose for an individual is based on just the population PK parameters, since

no measurements of drug concentrations from that individual are yet available. This method has

been shown to provide more accurate estimates of the individual’s PK parameters than methods

that use only one of the sources of information [46]. In this dissertation the focus is on

developing methods that can improve initial such predictions based on data already available on

the individual. Such methods aim to improve the predictive performance when repeated

 31

measurements of the target variable are not possible (e.g., mortality) or when the initial value of

a target variable that can be measured repeatedly has to be predicted (e.g., blood level after the

first dose of a drug).

Though numerous predictive models in the clinical domain have been published by

researchers, few are in routine clinical use. Lack of clinical credibility and lack of evidence of

accuracy, generality, and effectiveness were some of the reasons identified by Wyatt et al. for the

failure of acceptance of prognostic models in medicine [9]. Newer machine learning methods,

such as the one described in this proposal, have the potential to improve the accuracy of

predictive models. With increasing use of ever more powerful computers in clinical care and the

increasing capture of patient information in clinical computer systems, computationally intensive

modeling methods as part of decision support systems will become more feasible. If such

methods can predict patient outcomes well and are incorporated in clinical decision support

systems, they are likely to be clinically useful. In support of this point, a recent study

demonstrated that physicians are quite amenable to having the recommendations of decision

support systems for clinical decision making [47].

 32

3.0 BAYESIAN NETWORKS

This chapter describes the formalism of Bayesian networks (BN) and reviews the methods for

learning them from datasets. This provides the necessary background for the patient-specific

algorithms that learn both structure and parameters of BNs from data. Section 3.1 introduces

some notation and Section 3.2 briefly describes the BN formalism. Section 3.3 describes several

representations of probability distributions in BNs. Sections 3.4 and 3.5 review some of the

commonly used methods for learning the structure and parameters of BNs from data. In

particular, the Bayesian approach to BN learning is reviewed in detail, including a description of

the Bayesian scoring metric that is defined to be the posterior probability of the BN structure

conditioned on the observed data. Section 3.6 focuses on the learning of BNs for the purpose of

classification and reviews the utility of the Bayesian scoring metric for classification. Finally,

Section 3.7 describes Bayesian model averaging as a coherent approach for improving

predictions.

3.1 NOTATION

Random variables are denoted with upper case letters, such as X, Z, and their instantiation or

assignment with the corresponding lower case letters x, z. Thus, X = x denotes that random

variable X is assigned the value (or state) x. Likewise, sets of variables or random vectors are

 33

denoted with bold upper case letters, such as X, Z, and their instantiation or assignment with the

corresponding bold lower case letters x, z. Thus, X = x denotes that the random variables in X

have the values (or states) given by x. Given a domain of interest, X = denotes the

complete set of variables in the domain and x = represents a complete instantiation of

the variables in X. For a discrete random variable Xi, ri denotes its number of values and

denote the domain of the values.

},...,{ 1 nXX

},...,{ 1 nxx

}...,,{ 21 inii xxx

Generally, Z denotes the target (class) variable being predicted, X denotes the set of

predictor variables excluding the class variable, M denotes a model, D denotes the training

dataset, Ci ≡ <Xi, Zi> denotes a generic training case and Ct ≡ <Xt, Zt> denotes a generic test

case. The goal is to predict the value of the target variable Zt of the test case Ct.

3.2 BAYESIAN NETWORK REPRESENTATION

A Bayesian network (BN) is a probabilistic model that combines a graphical representation (the

BN structure) with quantitative information (the BN parameterization) to represent a joint

probability distribution over a set of random variables [5, 6]. More specifically, a Bayesian

network model M representing the set of random variables X for some domain consists of a pair

(G, θG). The first component G is a directed acyclic graph (DAG) that contains a node for every

variable in X and an arc between a pair of nodes if the corresponding variables are directly

probabilistically dependent. Conversely, the absence of an arc between a pair of nodes denotes

probabilistic independence between the corresponding variables. In this document, the terms

variable and node are used interchangeably in the context of random variables being modeled by

 34

history
of smoking

X1

chronic
bronchitis

lung X2 X3 cancer

X5 X4

mass seen on
chest X-ray

fatigue

P(X1 = F) = 0.80

P(X2 = F | X1 = F) = 0.95

nodes in a BN. A variable Xi in the domain of interest will usually be represented by a node

labeled Xi in the BN graph.

The terminology of kinship is used to denote various relationships among nodes in a

graph. These kinship relations are defined along the direction of the arcs. Predecessors of a node

Xi in G, both immediate and remote, are called the ancestors of Xi. In particular, the immediate

predecessors of Xi are called the parents of Xi. The set of parents of Xi in G is denoted by

Figure 3-1: A simple hypothetical Bayesian network for a medical domain, taken from [48]. All
the nodes represent binary variables, taking values in the domain {T, F} where T stands for True
and F for False. The graph at the top represents the Bayesian network structure. Associated with
each variable (node) is a conditional probability table representing the probability of each
variable’s value conditioned on its parent set. (Note: these probabilities are for illustration only;
they are not intended to reflect frequency of events in any actual patient population.)

P(X2 = F | X1 = T) = 0.75

P(X3 = F | X1 = F) = 0.995
P(X3 = F | X1 = T) = 0.997

P(X4 = F | X1 = F, X3 = F) = 0.99995
P(X4 = F | X1 = F, X3 = T) = 0.50
P(X4 = F | X1 = T, X3 = F) = 0.90
P(X4 = F | X1 = T, X3 = T) = 0.25

P(X5 = F | X1 = F) = 0.98
P(X5 = F | X1 = T) = 0.40

P(X1 = T) = 0.20

P(X2 = T | X1 = F) = 0.05
P(X2 = T | X1 = T) = 0.25

P(X3 = T | X1 = F) = 0.005
P(X3 = T | X1 = T) = 0.003

P(X4 = T | X1 = F, X3 = F) = 0.00005
P(X4 = T | X1 = F, X3 = T) = 0.50
P(X4 = T | X1 = T, X3 = F) = 0.10
P(X4 = T | X1 = T, X3 = T) = 0.75

P(X5 = T | X1 = F) = 0.02
P(X5 = T | X1 = T) = 0.60

Node X1

Node X2

Node X3

Node X4

Node X5

 35

Pa(Xi, G) or more simply as Pai when the BN structure is obvious from the context. In a similar

fashion, successors of Xi in G, both immediate and remote, are called the descendants of Xi, and

the immediate successors are called the children of Xi. A node Xj is termed a spouse of Xi if Xj is

a parent of a child of Xi. The set of nodes consisting of a node Xi and its parents is called the

family of Xi. Figure 3-1 gives an illustrative example of a simple hypothetical BN taken from

[48], where the top panel shows the graphical or the structural component G of the BN. In the

figure, the variable history of smoking is a parent of the variable lung cancer as well as a parent

of the variable chronic bronchitis. The variable fatigue is a child of the variable lung cancer as

well as a child of the variable chronic bronchitis. A descendant of a node Xi is a node Xj that can

be reached by a directed path from Xi to Xj. In the example, variables lung cancer and mass seen

on chest X-ray are descendants of the variable history of smoking.

The second component θG represents the parameterization of the probability distribution

over the space of possible instantiations of X and is a set of local probabilistic models that

encode quantitatively the nature of dependence of each variable on its parents. For each node Xi

there is a local probability distribution (that may be discrete or continuous) defined on that node

for each state of its parents. The set of all the local probability distributions associated with all

the nodes comprises the complete parameterization of the BN. The bottom panel in Figure 3-1

gives an example of a set of parameters for G. Taken together, the top and bottom panels in

Figure 3-1 provide a fully specified structural and quantitative representation for the BN.

3.2.1 Local Markov condition and factorization of the joint probability distribution

The topology of the graph G encodes compactly the set of independencies among the variables in

the domain. These independence relations include both marginal and conditional independencies

 36

and can be enumerated for a BN by the application of the local and global Markov conditions to

the topology of the network. This section describes the local Markov condition and the next

section describes the global Markov condition.

The local Markov condition identifies the independencies local to a node: A node is

conditionally independent of its non-descendants given just the states its parents [5]. In Figure

3-1, one such independence relation is this: the variable history of smoking is independent of the

variable mass seen on chest X-ray given the state of the variable lung cancer.

The local Markov condition provides a factored representation for the complete joint

probability distribution over the variables in the domain, which is a crucial characteristic of a

BN. This factored representation can be substantially more compact than the complete joint

probability distribution, especially when the graph is sparse. The joint probability distribution is

factored by applying the chain rule of probability followed by simplification of the terms based

on the independencies asserted by the local Markov condition. Let the variables in X =

 be topologically sorted relative to G, such that if i < j then Xi is a non-descendant of

Xj in G. Using the chain rule of probability the joint distribution is factored as:

},...,{ 1 nXX

∏
=

−=
n

i
iin XXXPXXP

1
111),...,|(),...,(. (3.1)

The local Markov condition asserts that for all Xi in X,

)|(),...,|(11 iPaiii XPXXXP =− , (3.2)

where , because in the sorting of the variables all of the parents of Xi are in

the set , and none of the descendants of Xi are in this set. Substituting Equation 3.2

into Equation 3.1 gives the following equation, which is also known as the chain rule for

Bayesian networks:

},...,{ 11 −⊆ iXXiPa

},...,{ 11 −iXX

 37

∏
=

=
n

i
in XPXXP

1
1)|(),...,(iPa . (3.3)

As an example, applying the local Markov condition to the BN in Figure 3-1 leads to the

following factorization:

)|(),|()|()|()(),,,,(353241312154321 XXPXXXPXXPXXPXPXXXXXP = (3.4)

The local Markov condition, thus, translates a high dimensional multivariate joint probability

distribution into a product of potentially low dimensional univariate probability distributions.

The BN network represents and stores univariate probability distributions which typically require

fewer parameters for specification than the complete joint probability distribution. For example,

the BN in Figure 3-1 requires only 11 independent probabilities to be specified (the probabilities

in the right hand column are redundant), while the full joint probability distribution for the same

example where a probability is to be specified for each instantiation of the five variables would

require 25 – 1 = 31 independent probabilities.

3.2.2 Global Markov condition and d-separation

The global Markov condition also identifies independencies with respect to a node: A node is

conditionally independent of all other nodes in the network, given its parents, its children, and

the children’s parents. This set of nodes is also known as the Markov blanket of the node and is

described in the next section. Figure 3-2 distinguishes graphically the local and the global

Markov conditions.

The global Markov condition can be extended to identify independencies among disjoint

sets of nodes in a BN. A topological procedure called d-separation can identify the complete set

of conditional independencies in the graph implied by the global Markov condition [5]. Pearl

 38

describes the application of d-separation as follows. Consider three disjoint subsets of nodes X, Y

and Z in graph G. Whether X is independent of Y given Z is tested by testing whether the nodes

in Z “block” all paths from nodes in X to nodes in Y. A path refers to a sequence of consecutive

arcs (of any directionality) in the graph, and “blocking” is interpreted as barring the dependency

between variables that are connected by such paths. A path p is said to be d-separated or

“blocked” by a set of nodes Z if and only if:

1. p contains a chain kj or a fork kji XXX →→ i XXX →← such that the

middle node Xj is in Z

2. p contains a collider kji XXX ←→ such that the middle node Xj is not in Z and

also no descendant of Xj is in Z

A set Z is said to d-separate X from Y if and only if Z blocks every path from a node in X to a

node in Y. The global Markov condition states that X and Y are conditionally independent given

Z if and only if Z d-separates X from Y [5, 49]. Thus, d-separation identifies all the conditional

independencies implied by the global Markov condition.

Figure 3-2: Examples of the local Markov condition and the global Markov condition. (a) Local
Markov condition: The node X6 (shown stippled) is conditionally independent of its non-
descendants given its parents (shown shaded). (b) Global Markov condition: the node X6 (shown
stippled) is conditionally independent of all other nodes in the network given its Markov blanket
(shown shaded).

X1 X2 X3

X5 X7 X6

X4

X9 X8

X10 X11

(a)

X1 X2 X3

X5 X7 X6

X4

X9 X8

X10 X11

(b)

 39

In a BN, the local Markov condition implies the global Markov condition and vice-versa

and both conditions identify all the independencies implied by the topology of the network [49,

50].

3.2.3 Markov blanket

The Markov blanket (MB) of a variable Z, denoted by MB(Xi), is a minimal set of variables such

that Xi is conditionally independent of all other variables given MB(Xi) [5]. This entails that the

variables in MB(Xi) are sufficient to determine the probability distribution of Xi. Since d-

separation is applied to the graphical structure of a BN to identify all conditional independence

relations, it can also be applied to identify the MB of a node in a BN. The MB of a node Xi

consists of its parents, its children, and its children’s parents and is illustrated in Figure 3-3. The

parents and children of Xi are directly connected to it and are hence in its MB. In addition, the

spouses are also included in the MB, because of the phenomenon of explaining away which

X5

X1 X2 X3

X7 X6

X4

X9 X8

X10 X11

Figure 3-3: Example of a Markov blanket. The Markov blanket of the node X6 (shown stippled)
comprises the set of parents, children and spouses of the node and is indicated by the shaded
nodes. The nodes in the Markov blanket include X2 and X3 as parents, X8 and X9 as children, and
X5 and X7 as spouses of X6. X1, X4, X2 and X10 and X11 are not in the Markov blanket of X6.

 40

refers to the observation that when a child node is instantiated its parents in general are

statistically dependent.

The MB of a node is noteworthy because it identifies all the variables that shield the node

from the rest of the network. In particular, when interest centers on the distribution of a specific

target node, as is the case in classification, the structure and parameters of only the MB of the

target node need be learned.

3.3 REPRESENTATION OF LOCAL PROBABILITY DISTRIBUTIONS

The global structure of the BN represented by the arcs connecting the nodes implies a set of

conditional independencies that allows the decomposition of a high dimensional joint probability

distribution into a product of potentially low dimensional conditional probability distributions

(CPDs). Each factor P(Xi | Pai) on the right hand side of Equation 3.3 is a set of CPDs that is

associated with Xi. This section describes several representations for these CPDs, including some

representations that capture additional regularities that are not implied by the global structure.

The choice of representation depends on the type of the variables involved (i.e., discrete or

continuous), on the nature of the relationship among the variables (i.e., deterministic or

probabilistic), and on the need to represent local dependencies among parameters.

In domains with discrete random variables, the tabular representation for CPDs is simple

and straight-forward. In this representation, P(Xi | Pai) is a table that contains an entry for each

joint instantiation of Xi and Pai. Each column (or row) in the table represents a single conditional

probability distribution, P(Xi | Pai = pai), corresponding to a particular instantiation of Pai.

Tabular CPDs are aptly called conditional probability tables (CPTs) and are almost always the

 41

representation used in discrete BNs. For example, the CPD for node X4 in the top panel in

Figure 3-1 is represented by the hypothetical CPT shown in the bottom panel in Figure 3-1 that

contains four independent parameters. CPTs are a very general representation for discrete nodes

in that every possible discrete conditional probability distribution can be represented by a

conditional probability table. However, the CPT representation has several disadvantages. First,

in general the number of parameters of a CPT of a node grows exponentially in the number of

parents of the node, and when parameters are estimated from data, this expansion of the CPT

leads to poor estimates of the parameters since fewer data points contribute to the estimate of

each parameter. Second, the tabular representation ignores structure and regularities within the

CPDs; capturing such regularities provides additional domain knowledge about the interactions

among the parents and reduces the number of parameters needed to specify the CPDs.

Interactions among parents are captured by a type of independence relation called context-

specific independence and is described in the next section. The subsequent sections briefly

describe several representations for CPDs that explicitly capture context-specific independencies.

3.3.1 Context-specific independence

The DAG of a BN encodes statements of variable independence. For example, a variable X is

independent of Y given variable Z if P(x | y, z) = P(x | z) for all values x, y and z that the variables

X, Y, Z can take.

In the standard discrete BN, the graphical structure makes explicit independence relations

of the form which implies that ZYX |⊥)|(),|(ZXPZYXP = for all values of the variables X,

Y and Z. However, these are not the only independencies that may be present in a domain. For

instance, value-specific independencies that hold for only particular assignments of values to

 42

certain nodes cannot be represented by the BN graphical structure. Value-specific

independencies are of the form zZYX =⊥ | which implies that

for all values of the variables X and Y when Z takes the particular

value z. This type of independence relation is also known as context-specific independence; the

preceding example can be interpreted as X is independent of Y in the context of Z taking the

value z. In general, these independent statements imply that in some contexts, defined by an

assignment of specific values to the variables in the BN, the conditional probability of a variable

is independent of some of its parents [51].

)|(),|(zZXPzZYXP ===

=⊥ 324 | XXX

In the CPT representation, context-specific independencies become apparent only on

examining the numerical values of the parameters. Context-specific independence is present

when the conditional probability distributions for two or more parent states have identical values

of the parameters; such an independence relation is not explicitly represented in the CPT

structure. For example, in Figure 3-4 (b), an examination of the parameters in the CPT reveals

that three of the four possible parent states have the same parameter values (0.6, 0.4) implying

that context-specific independencies are present. Indeed, the following two context-specific

independence relations among the variables can be identified:

(1) T (i.e., fatigue⊥ chronic bronchitis | lung cancer = T)

(2) T (i.e., fatigue=⊥ 434 | XXX ⊥ lung cancer | chronic bronchitis = T)

BNs that do not explicitly represent context-specific structure are referred to as BNs with

global structure, in contrast to BNs that explicitly capture context-specific structure which are

referred to as BNs with local structure. Several CPD representations have been developed for

discrete variables that explicitly capture context-specific structure. The following sections

describe two such local structure representations, namely, decision trees and decision graphs.

 43

Figure 3-4: Examples of CPD representations. Several CPD representations for the BN node X4
(fatigue) in panel (a) are shown in subsequent panels. Panel (b) shows a CPT for the node X4 with
four parameters. The CPT can be equivalently represented by a complete decision tree as shown
in panel (c). Panels (d) and (e) show alternate decision trees where each one captures one of the
two context specific independence relations that is present but not both (see text for details).
Panel (f) shows a decision graph that captures both the context specific independence relations
(see text for details). Nodes of a BN are shown as ellipses with single lines while nodes o

esentations for the BN node X4
(fatigue) in panel (a) are shown in subsequent panels. Panel (b) shows a CPT for the node X4 with
four parameters. The CPT can be equivalently represented by a complete decision tree as shown
in panel (c). Panels (d) and (e) show alternate decision trees where each one captures one of the
two context specific independence relations that is present but not both (see text for details).
Panel (f) shows a decision graph that captures both the context specific independence relations
(see text for details). Nodes of a BN are shown as ellipses with single lines while nodes of
decision trees and decision graphs are shown as either circles with double lines (interior nodes) or
as rectangles with double lines (leaf nodes).

(b)

X3 (lung cancer) F T
X2 (chronic bronchitis) F T F T

X4 (fatigue = F, fatigue = T) 0.9, 0.1 0.6, 0.4 0.6, 0.4 0.6, 0.4

fatigue

X2 X3

X4

lung
cancer

(a)

chronic
bronchitis

X3

F T

(c)

X2

T F

X4 X4

X2

T F

X4

F T

(d)

X4

X3

X4 X2

T F

X4 X4

F T

(e)

X2

X4X3

T F

X4X4

F
T

(f)

X3

X2

T F

X4 X4

 44

3.3.2 Decision tree CPDs

Friedman and Goldszmidt describe a decision tree representation for learning BNs with local

structure from data [51]. In this representation, a decision tree is used to represent the local

structure for a BN node Xi. Such a representation is called a decision tree CPD or a tree CPD for

short. A decision tree is a graph where the root node has no parents, and all other nodes have a

single parent. Nodes that have children and appear in the interior of the tree are called interior

nodes and terminal nodes are called leaf nodes. Each leaf node in the tree contains a conditional

distribution over Xi, and the path to the leaf from the root provides the context in which the

distribution is valid. Each interior node is annotated with the name of one of the parent variables

Xj Pai and out-going arcs from that interior node are annotated with mutually exclusive and

collectively exhaustive sets of values for the variable Xj. In other words, values of parent nodes

of Xi appear along the path and determine the parent states for which the distribution in the

corresponding leaf node is applicable. Each leaf node contains a set of k parameters – where k is

the number of states of Xi – that defines a single conditional probability distribution

P(Xi | Pai = pai) corresponding to a particular instantiation of Pai.

∈

As an example, Figure 3-4 (d) shows a decision tree CPD that represents the local

structure of the node X4 in Figure 3-4 (a). The decision tree representation is more compact than

the CPT representation in that the decision tree CPD contains one less CPD and hence requires

one fewer set of parameters than the CPT. This is achieved by capturing the context-specific

independence relation =⊥ 324 | XXX T (fatigue ⊥ chronic bronchitis | lung cancer = T),

which is seen in Figure 3-4 (d) by noticing that the path along the right from the root node X3

(lung cancer) does not contain a node for the variable chronic bronchitis. An alternate decision

 45

tree, shown in Figure 3-4 (e), that has as the root node the variable X2 (chronic bronchitis) can

capture the other context-specific independence relation =⊥ 434 | XXX T (fatigue ⊥ lung

cancer | chronic bronchitis = T). However, no decision tree is unable to capture both context-

specific independence relations given in the example.

3.3.3 Decision graph CPDs

Chickering et al. generalized the decision tree representation to decision graphs, which can

represent a richer set of context-specific independence relations [52]. A decision tree is a graph

where the root node has no parents, and all other nodes have one or more parents. Nodes that

have children and appear in the interior of the tree are called interior nodes and terminal nodes

are called leaf nodes. A decision graph differs from a decision tree in that an interior node may

have multiple parents, rather than just one parent. A decision graph, thus, allows two or more

distinct paths from the root node to terminate in the same leaf node. Such a representation is

called a decision graph CPD or a graph CPD for short. For a BN node Xi that is represented by a

decision graph, the leaf nodes contain conditional distributions over Xi similar to those in a

decision tree, and interior nodes and outgoing arcs in a decision graph are annotated in a similar

fashion as in a decision tree. All paths that lead to the same leaf node represent distinct parent

states for which Xi has the same conditional distribution. The decision graph representation is

more general than the decision tree representation, in that, any local structure that can be

represented compactly as a tree can be represented as a graph, but the converse is not true.

As an example, Figure 3-4 (f) shows a decision graph CPD representing the local

structure of the node X4 in Figure 3-4 (a). In this example, the decision graph CPD is more

compact than either the CPT or the decision tree representation since it requires one less set of

 46

parameters than the decision tree CPD and two fewer sets of parameters than the CPT. The

decision graph is able to capture both context-specific independence relations given in the

example, demonstrating that it is a more general representation than the decision tree.

3.3.4 Summary of CPD representations

From the preceding discussion, it is evident that the CPDs in BNs can be represented with

varying degrees of parsimony. Representations of CPDs that do not attempt to capture context

specific independencies are the least parsimonious; such representations explicitly capture only

the global structure. The classical representation for a CPD is the complete table (commonly

known as the CPT); each node Xi stores ii rq × parameters in a large table where qi is the number

of parent states for Xi and ri the number of states of Xi. An equivalent representation to the

complete table is the complete decision tree which can represent all of the parameters in a

complete table. A complete decision tree for a node Xi is a tree of depth qi such that every

interior node at level l is annotated by the lth parent Xl ∈ Pai and has exactly as many children as

there are states in Xl. It follows from this definition that a complete decision tree has the same

number of leaf nodes as the number of columns in an equivalent complete table. For example,

the CPT in Figure 3-4 (b) is equivalently represented by the complete decision tree in

Table 3-1: Labels for CPDs, BNs and MBs based on the CPD representation.

structure CPD representation CPD label BN label MB label
complete table (CPT) tabular CPD tabular CPD BN tabular CPD MB global

complete decision tree complete CPD complete CPD BN complete CPD MB

decision tree decision tree CPD decision tree CPD BN decision tree CPD MB local
decision graph decision graph

CPD
decision graph CPD
BN

decision graph CPD
MB

 47

Figure 3-4 (c). I will refer to a BN with tabular CPDs as a tabular CPD BN, and a BN with

complete decision tree CPDs as a complete CPD BN.

Representations for CPDs that explicitly represent context-specific independence

relations include decision trees and decision graphs. I will refer to a BN with decision tree CPDs

as a tree CPD BN, and a BN with decision graph CPDs as a graph CPD BN. Both tree CPD BNs

and graph CPD BNs capture the local structure. Of note, the local structure implies the global

structure. This can be seen from the observation that the parents of a BN node Xi are those nodes

that appear in the decision tree or the decision graph associated with Xi. Table 3-1 summarizes

the nomenclature for BNs based on the CPD representations.

3.4 LEARNING BAYESIAN NETWORKS FROM DATA

Learning a BN from a dataset of cases consists of learning its two components: the graphical

structure of conditional dependencies (structure learning) and the conditional probability

distributions (parameter estimation). Given a fixed network structure, parameter estimation is

the easier problem and frequentist or Bayesian statistical approaches can be applied to the

problem. The learning of the graphical structure that best fits the data is a more challenging task.

3.4.1 Parameter estimation

This section focuses on the estimation of the parameters of the conditional probability

distributions P(Xi | Pai) under the assumptions that the BN structure is known, all the variables

are discrete and the data has no missing values for any of the variables. There are two main

 48

approaches for parameter estimation: the maximum likelihood approach that depends only on the

data and the Bayesian approach that combines prior probabilities for the parameters with the

data. In both approaches, the task is to find a good value or a set of good values for each

parameter in the BN. This can be formulated as a learning task that consists of a hypothesis space

which defines the set of all possible values being considered and a scoring function that scores

different hypotheses in the space relative to the given data. The BN structure reduces the

parameter estimation problem to a set of unrelated simpler parameter estimation problems

involving only a node and its parents. In particular, for discrete variables in which conditional

probability distributions are multinomial distributions whose parameters are stored in tables,

decision trees or decision graphs, the parameters for each multinomial distribution can be

estimated independently.

3.4.1.1 Maximum likelihood estimation

The scoring function in maximum likelihood estimation is the standard likelihood. The

likelihood function computes the probability of the data as a function of the parameter values.

Parameter values with higher likelihood are more likely to generate the data; thus the likelihood

function measures how well different parameter values predict the data. In the maximum

likelihood method, the parameter values that maximize the likelihood are selected, and the

estimator is called the maximum likelihood estimator (MLE). For many parametric distributions,

including the multinomial distribution, the likelihood function is maximized easily in closed

form.

In a discrete BN with n nodes, the parameterization θ over the entire network can be

decomposed as where each θi represents the set of parameters defining the },...,,...,{ 1 ni θθθθ =

 49

conditional distributions P(Xi | Pai) associated with node Xi. It is typically assumed that the θi are

mutually independent; an assumption that is referred to as the global parameter independence.

Further, each θi is decomposed as },...,,...,{ 1 iiqiji θθθθ i = where qi is the number of possible

instantiations of Pai.. Each θij represents the parameters defining the single conditional

distribution P(Xi | Pai = j). It is typically assumed that the θij are mutually independent; an

assumption that is referred to as the local parameter independence. For a discrete variable each

θij parameterizes a multinomial distribution. Thus, for each instantiation Pai = j,

)(ijθl)|(iPa multinomiajXP i == , (3.5)

where, and θijk = P(Xi = k | Pai = j). Similarly, the multinomial likelihood

function for a discrete BN decomposes into a product of local likelihood functions over the

nodes, and the local likelihood function at each node further decomposes into a product of simple

likelihood functions over the instantiations of the parent nodes. Each simple likelihood function

is a multinomial likelihood function that is easily maximized to obtain the following MLE

parameters:

},...,,...,{ 1 iijnijkij θθθθ ij =

ij

ijk
ijk N

N
=θ̂ , (3.6)

where, Nijk is the number of cases in the training data such that node i has value k and the parents

of i have the state denoted by j, and ∑= k ijkij NN .

3.4.1.2 Bayesian parameter estimation

The MLE approach attempts to find a single set of parameter values that explain the data well.

The Bayesian approach, in contrast, does not attempt to find a single set of best parameter

values. Rather, it provides a distribution over the possible parameter values that quantifies the

θ̂

 50

uncertainty of each of the values. Thus, it combines prior knowledge of the parameterization θ

with the data to arrive at a posterior distribution over θ. The prior knowledge of θ is encoded

with a probability distribution; this distribution represents the a priori knowledge and beliefs

about the different values of the parameters. Then, a joint distribution over θ and the data D

captures all the necessary information:

)()|(),(θθθ PDPDP = (3.7)

The first term on the right hand side is the likelihood function, which is the same function that is

used for obtaining the MLE estimates. The second term is the prior distribution over the

parameter values. Once the likelihood function and the prior have been specified, Bayes rule is

applied to obtain the posterior distribution over the parameters:

)(
)()|()|(

DP
PDPDP θθθ = . (3.8)

The term P(D) in the denominator is the marginal likelihood of the data obtained by integrating

the likelihood over all possible parameter values:

θθθ dPDPDP ∫=
θ

)()|()(. (3.9)

This term represents the a priori likelihood of observing the obtained data given the prior beliefs.

 In a discrete BN, when the variables are multinomial, typically the prior over the

parameters of the multinomial distributions are represented by Dirichlet distributions. For a node

Xi with the distribution

)()()|(1 iijrijk, ijiji ,...,θ...,θθlmultinomialmultinomiajXP ≡== θPai , (3.10)

the Dirichlet prior is specified as:

),...,,...,()()(1 iijrijkijijij DirichletDirichletP ααα≡= αθ , (3.11)

 51

where the parameters ijkα of the Dirichlet distribution are called hyperparameters. Applying

Bayes rule to a Dirichlet prior and a multinomial likelihood produces a posterior that is also a

Dirichlet distribution:

),...,,...,()|(11
ii ijrijrijkijkijijij NNNDirichletDP +++= αααθ , (3.12)

where, Nijk is the number of occurrences of P(Xi = k | Pai = j) in the data.

The posterior summarizes all the information available about the different values of the

parameters. A common use of a BN, which has been parameterized from a training dataset D of

N cases {X1, X2,…, XN }, is to predict the probability of a new case XN +1 taking the value x, that

is, compute the predictive probability distribution P(XN +1 = x | D). This prediction is obtained by

averaging over all the parameters weighted by the posterior as follows:

)|(

)|()|(

)|(),|()|(

1
)|(

1

11

θxXΕ

θθθxX

θθθxXxX

θ ==

==

===

+

+

++

∫
∫

N
DP

N

NN

P

dDPP

dDPDPDP

 . (3.13)

When the prior and corresponding posterior are Dirichlet, under the assumptions of global and

local parameter independence, the prediction for a future example can be decomposed as

follows:

 . (3.14)
ii θθθPa

θθθxXxX

dDPXP

dDPPDP

i

n

i
ii

NN

)|(),|(

)|()|()|(

1

11

∏∫

∫

=

++

=

===

Assuming that in the future example X = x, Xi = k and Pai = j, the computation yields:

ijij

ijkijk

ijijijiiijk

N
N

dDPjkXP

+

+
=

==≡ ∫

α
α

θ θθθPaΕ)|(),|(][
 . (3.15)

 52

From Equations 3.6 and 3.15, it can be seen that the maximum likelihood and the Bayesian

parameter estimators have similar form. Both rely on sufficient statistics of the data that are

counts of the form count(Xi = k and Pai = j) that can all be collected simultaneously in a single

pass through the data. Both estimators are asymptotically correct in that as the number of cases

increases, both methods converge to the true parameter values if the data is actually generated

from the given network structure. However, in the finite sample setting the maximum likelihood

estimator may overfit. In the Bayesian method such overfitting is counteracted by the use of

suitable parameter priors as described in Section 3.4.4.

3.4.2 Structure learning

Learning the structure of a BN is harder than estimating the parameters of a known structure.

Typically, structure learning methods learn the structure as well as the parameters of the

structure to generate a fully specified BN. Structure learning is influenced by the goal of the

learning task as well as the representation used for the conditional probability distributions.

There are two main motivations for learning a BN from data. The first is for knowledge

acquisition – to learn important dependencies and independencies among the domain variables.

A BN structure not only discovers the independencies but also distinguishes between direct and

indirect dependencies both of which lead to correlations in the data. Since the data available for

learning is finite and noisily sampled from the actual but unknown joint probability distribution

P*, it is not possible with complete reliability to detect all the independencies in the underlying

distribution. Thus, the learned structure may contain fewer arcs and miss true dependencies or

may learn more arcs some of which are spurious dependencies. Additionally, several different

BN structures can all represent the same distribution; such structures are said to be members of

 53

the Markov equivalence class of G*. Members of G* cannot be distinguished based on

observational data alone. Observational data is data that is passively observed in contrast to

experimental data in which one or more variables are manipulated and the effects on other

variables are measured [48]. In causal learning, for example, it is important to try to distinguish

between members of a Markov equivalence class since different member graphs represent

different causal knowledge.

The second reason to learn a BN structure is for density estimation. Here it is less

important to capture the actual dependencies and independencies in G* than it is to approximate

the underlying P* well. That is, the aim is to estimate well a statistical model of the underlying

joint probability distribution. Typically, the goal is to learn a statistical model from a training set

of data that can be applied to future cases. For example, in classification, the goal is to be able to

correctly predict the true state of a target variable using the BN structure learned from the

training set.

At first glance it appears that as G* captures the true dependencies and independencies in

the domain, the best generalization will be obtained by recovering the structure G*. Moreover it

appears that it is better to err on having too many arcs in the learned structure than too few, since

a more complex structure can still represent the data-generating distribution P*. However, it

turns out that because data available for learning is limited, complex structures can lead to less

reliable parameter estimates. For example, adding more parents to a variable Z leads to a larger

CPT for Z with fewer data available for estimating each cell of the CPT. Thus, it is often better to

prefer a sparser structure even if this structure cannot accurately represent the underlying P*.

There are two major approaches for learning BNs: (1) constraint-based methods that

employ independence tests among the domain variables, and (2) search-and-score methods that

 54

employ a scoring metric to evaluate the goodness of the statistical model represented by a BN

structure. More recently, methods that combine these two traditional approaches have emerged.

Constraint-based methods. These methods view a BN as a representation of

independence relations among the domain variables. They attempt to discover a set of

conditional dependence and independence relations in the data and use them to determine the

presence or absence of arcs in the network. The final induced BN structure is then hopefully one

that best captures the independencies in the domain. A key component of these methods is the

use of statistical tests that are applied repeatedly to the data for testing conditional independence

relations. The main disadvantage of these methods is that with limited data the statistical tests

can sometimes fail, and a few errors made by the testing procedure can significantly mislead the

network construction procedure.

Search-and-score methods. These methods view a BN as a representation of a statistical

model of the domain variables. The scoring function measures the goodness of a BN in terms of

how well the corresponding statistical model fits the observed data. The methods then search a

hypothesis space of possible network structures to find a single structure or a set of high scoring

structures. However, the space of BN structures suffers from combinatorial explosion; it contains

a superexponential number of structures – , where n is the number of nodes in the

network. In general, finding the highest-scoring network has been shown to be NP-hard for a

variety of scores, and various heuristic search techniques are used to locate good networks [53].

)2(
2nO

 Search-and-score methods consider the whole structure at once, and are therefore less

sensitive to the absence or presence of a few erroneous arcs. In general, finding the optimal BN

is intractable and heuristic search is typically used.

 55

 The subsequent sections give details of the search-and-score methods, since the patient-

specific methods explored in this dissertation employ these methods to learn BNs from data.

3.4.3 Structure scores

Learning a fully specified BN from data using the search-and-score method consists of three

components: (1) a scoring function that measures the quality of a network structure with respect

to the data; (2) a heuristic search method for exploring the space of network structures; and (3)

an estimator for learning the parameters of the conditional probability distributions associated

with a specified network structure.

 Several scoring metrics have been described. The non-Bayesian scores are discussed first

followed by a detailed discussion of the Bayesian scores.

Likelihood score. The simplest scoring function is the likelihood function. This is the

same function as the one used for maximum likelihood parameter estimation. Maximizing the

likelihood of a BN entails finding both a graph structure and parameters for that structure that

maximize the likelihood. For a given structure the likelihood is maximized by simply choosing

the maximum likelihood parameters as noted in the parameter estimation section. Extending this,

in a given set of BN structures the maximum likelihood structure G is the one which has the

highest likelihood when parameterized with MLE estimates:

);ˆ,(max

);,(maxmax

);,(max);(max
,,

DGL

DGL

DGLDBL

GG

GG

GGG

G

GG

〉〈=

⎥⎦
⎤

⎢⎣
⎡ 〉〈=

〉〈=

θ

θ

θ

θ

θθ

. (3.16)

Therefore, the likelihood structure score is defined as:

 56

);ˆ,(log);();(DGLDBLLDGscore GL 〉〈=≡ θ , (3.17)

where, are the maximum likelihood parameters for G. The logarithmic form of the likelihood

function is usually used as it makes mathematical manipulations easier. For a discrete BN, the

likelihood structure score is:

Gθ̂

∑∑∑
= = =

=
n

i

q

j

r

k ij

ijk
ijkL

i i

N
N

NDGscore
1 1 1

log);(. (3.18)

The likelihood score is a good measure of the fit of a BN to the training data. Typically, the

likelihood score overfits the training data and the maximum likelihood BN generalizes poorly.

The likelihood score learns a model that precisely fits the specifics of the empirical distribution

in the training data, and hence the model captures both true dependencies present in P* and

spurious dependencies that are artifacts of the specific set of cases in the training data. In BN

structure learning with the likelihood score, on average the addition of an arc never decreases the

score and the highest scoring structure is the completely connected network. The completely

connected network will obviously generalize poorly since it captures no independencies present

in P*.

 The likelihood score is still useful when additional constraints are present that disallow

more complex structures. For example, limiting the maximum number of parents for a node can

overcome the likelihood score’s tendency to overfit. Another alternative, that is widely used, is

to penalize the likelihood score; typically with a term that in some manner measures the

complexity of the structure.

Description Length score. The structure learning method based on the Minimum

Description Length (MDL) principle searches for a BN that minimizes the combined length of

the encoding of the model and the data. The model score is the length of the encoding and is

 57

called the Description Length which consists of two components: (1) the length of the encoding

of the model (for a BN the model consists of the domain variables, the structure and the

parameters), and (2) the length of the encoding of the observed data. The first component

penalizes model complexity, while the second component rewards the model’s fitness to the

data. Thus, the MDL criterion optimizes the trade-off between the complexity of the selected

structure and its fit to the training data. For a discrete BN, the Description Length structure score

is defined as:

[]);(log);(DBLLNGDimDGscoreDL −=
2

, (3.19)

where is the number of independent parameters in the BN and N is the cardinality of the

data D.

[]GDim

3.4.4 Bayesian score

In the Bayesian approach, the scoring function is based on the posterior probability P(G | D) of

the BN structure G given data D. The Bayesian approach treats both the structure and parameters

as random uncertain quantities and incorporates prior distributions for both. The specification of

the structure prior P(G) assigns prior probabilities for the different graph structures, and the

specification of the parameter prior) assigns prior probabilities for the possible

parameter values for a specified structure. Application of Bayes rule gives:

GP G |(θ

)(
)()|()|(

DP
GPGDPDGP = . (3.20)

 58

Since the denominator P(D) does not vary with the structure, it simply acts as a normalizing

factor that does not distinguish between different structures. Dropping the denominator gives the

Bayesian score which is defined as:

)(log)|(log);(GPGDPDGscoreB += . (3.21)

The second term on the right is the prior over structures, while the first term is the marginal

likelihood (also know as the integrated likelihood or evidence) which measures the goodness of

fit of the given structure to the data. The marginal likelihood is computed as follows:

GGG dGPGDPGDP
G

θθθ
θ

)|(),|()|(∫= , (3.22)

where is the likelihood of the data given the BN (G, θG) and is the

specified prior distribution over the possible parameter values for the network structure G.

Intuitively, the marginal likelihood measures the goodness of fit of the structure over all possible

values of its parameters. It is to be noted that the marginal likelihood is distinct from the

maximum likelihood, though both are computed from the same function: the likelihood of the

data given the structure. The maximum likelihood is the maximum value of this function while

the marginal likelihood is the integrated (or the average) value of this function with the

integration being carried out with respect to the prior .

),|(GDP Gθ)|(GP Gθ

)|(GP Gθ

Marginal likelihood for discrete Bayesian networks. Equation 3.22 can be evaluated

analytically when the following assumptions hold: (1) the variables are discrete and the data D is

a multinomial random sample with no missing values; (2) global parameter independence, that

is, the parameters associated with each variable are independent [54]; (3) local parameter

independence, that is, the parameters associated with each parent state of a variable are

independent [54]; and (4) the parameters’ prior distribution is Dirichlet. Under the above

assumptions, the closed form for P(D | G) is given by [54-57]:

 59

∏∏∏
== = Γ

+Γ

+Γ

Γ
=

ii r

k ijk

ijkijk
n

i

q

j ijij

ij N
N

GDP
11 1)(

)(
)(

)(
)|(

α
α

α
α

, (3.23)

where is the Gamma function, and)(•Γ ∑= k ijkij αα . Also, as previously described, Nijk is the

number of cases in the data where node i has value k and the parents of i have the state denoted

by j, and . The Bayesian score based on the marginal likelihood is called the

Bayesian-Dirichlet metric because of the assumption that the parameters are distributed

according to a Dirichlet distribution [56].

∑= k ijkNijN

Priors. The Bayesian score in Equation 3.22 incorporates both structure and parameter

priors. The term P(G) is called the structure prior and is the prior probability assigned to the BN

structure G. In many situations, a uniform prior over all structures is used, in which case the

Bayesian score reduces to the marginal likelihood. Heckerman et al. suggest the following

structure prior with reference to a prior structure specified by an expert [56]:

δκcGP =)(, (3.24)

where c is a normalization constant,]1,0(∈κ is a factor that penalizes the structure for each

unmatched arc with the prior structure, and δ is the so-called symmetric difference between G

and the prior structure. If the prior structure is set to the empty network, the Bayesian scoring

metric based on this prior gives preference to simpler structures. In the case of BN structures that

represent local structure in the form of decision trees or decision graphs, the structure prior will

incorporate terms for priors on the global structure as well as terms for priors on the local

structures. An example of such a prior is described in the next chapter.

The parameter priors are incorporated in the marginal likelihood as is obvious from

Equation 3.23. In the case of the Bayesian-Dirichlet metric several parameter priors have been

described. Cooper and Herkovits introduced the K2 metric where all hyperparameters ijkα in

 60

Equation 3.24 are set to 1 [55, 58]. Heckerman et al. showed that if for all nodes i the sum

is constant, then Equation 3.23 yields the same score for all Markov equivalent

structures given D. Due to this property of likelihood equivalence, this scoring metric is known

as the Bayesian Dirichlet likelihood-equivalent (BDe) metric. A special case of the BDe metric is

the BDeu (Bayesian Dirichlet likelihood-equivalent and uniform) metric that uses uniform priors

such that

∑= jk ijkαα 0

ijk ii rq/0αα = where qi is the number of parent states of Xi and ri is the number of

values of Xi [59].

Bayesian score avoids overfitting. The difference between the marginal likelihood and

the maximum likelihood provides one view of why the Bayesian score avoids overfitting. The

maximum likelihood overfits because it evaluates the likelihood function at the best parameter

values for the training data. These parameter values need not be the optimal values for the data in

general because of noise in the training data. The Bayesian approach concurs that the MLE

parameter values are the most likely given the training data; however, it emphasizes that there

are other parameter values which though less likely are still plausible and should be taken into

consideration. By integrating rather than maximizing it, the Bayesian approach

measures the expected likelihood averaged over different choices of , which typically leads to

a more conservative estimate of the goodness of fit of the model.

),|(GDP Gθ

Gθ

3.4.5 Search methods

Given a scoring function, a training dataset and a space of possible network structures, the goal

of a search-and-score method is to find a network structure or a set of network structures that

maximize the score. Efficient algorithms have been developed for learning network structures

 61

under certain restrictions. For example, in the restricted space of networks that are trees the

optimal tree can be learned efficiently in polynomial time [56, 60]. Also, given an ordering on

the domain variables finding the network with the highest score consistent with the ordering is

not NP-hard [55, 59]. Unfortunately, the task of finding a network structure that optimizes the

score is a combinatorial optimization problem, and is known to be NP-hard [53, 61], even if each

node is restricted to having at most two parents. Since it is unlikely that there is an efficient

algorithm for finding the highest scoring structure, the search-and-score methods employ

heuristic search that attempts to find the best network but is not guaranteed to do so. In practice

several heuristic search methods like greedy hill-climbing search work well.

 Several properties of the scoring function make heuristic search computationally

efficient. A key property that aids the search algorithm is the decomposability of the score, that

is, the score can be expressed as a sum of sub-scores where each sub-score is a function of only

one node and its parents (termed FamScore below):

∑
=

=
n

i
ii GXFamScoreDGscore

1
);|();(Pa . (3.25)

To appreciate the advantage of a decomposable score, consider two network structures that differ

only in the presence or absence of an arc into a node Xi. To compare the scores of the two

networks, it suffices to compute the sub-score for both structures; the

remaining sub-scores are the same for both structures and need not be recomputed. Since the cost

of computing the scores of structures usually consumes most of the running time of the

algorithm, score decomposability provides a large reduction in running time.

);|(GXFamScore ii Pa

A second property of a scoring function that is useful is score equivalence, that is, if two

structures belong to the same Markov equivalence class they are assigned the same score. In the

standard representation of BN that uses DAGs, several distinct DAGs may represent the same

 62

statistical model because they encode the same set of conditional independencies. All DAGs that

encode the same set of conditional independencies are said to belong to a single Markov

equivalence class. Searching in the space of DAGs to find high scoring statistical models can be

wasteful since the search procedure is likely to score multiple structures in the same equivalence

class. A score equivalent scoring function can enable the search algorithm to search in the space

of equivalence classes which is smaller than the corresponding space of DAGs. Typically, this

property is less crucial than score decomposability for the search algorithm.

Heuristic search for BN structures encompasses several aspects. The major components

of heuristic search include the search space together with the operators for navigating this space,

the scoring function for evaluating candidate network structures, and the search procedure.

The search space is a graph where each vertex represents a candidate network structure

and each arc connects two vertices where a network structure represented by one vertex can be

converted to the network structure represented by the neighboring vertex by the single

application of a valid operator. Each vertex in the search space is associated with a score (that is

computed by the scoring function) and has a set of neighboring vertices. The search procedure

begins at one vertex and explores the search space via the neighboring vertices to find a high

scoring vertex.

One of the earliest search-and-score methods that was developed is the K2 algorithm

[55]. This algorithm assumes a topological ordering on the nodes and constrains the number of

parents that a node can have. For each node Xi, the search procedure iteratively adds as a parent

the node from the set of predecessors of Xi (given in the topological ordering) that most increases

the K2 score. The search for the parents of Xi terminates when none of the remaining predecessor

nodes when added to the parent set increases the score, or the number of parents exceeds a

 63

predetermined constant. Since an ordering of the nodes may not be easily obtainable in many

domains, attempts have been made to relax this requirement. Cooper and Herskovits describe a

modification of the K2 algorithm that is based on many random node orderings, and thus does

not require a pre-specified node ordering [55]. Another method that overcomes the necessity for

a node ordering performs heuristic search over the space of node orderings rather than the space

of network structures [62].

The search-and-score methods for leaning BN structures traverse the space of structures

by making small modifications to the structure at each step, typically a single arc change, and

evaluating the merit of each change. The K2 algorithm, for example, at each iteration of the

search selects a new BN structure that has one more arc more than the current structure. The K2

algorithm uses a single operator of adding an arc between two unlinked nodes to generate

candidate BN structures. More typically, search-and-score methods employ several single arc

change operators [57]. The commonly used operators to make single arc changes are:

• add an arc between two nodes if there is no arc connecting them,

• remove an existing arc, and

• reverse an existing arc.

In the application of these operators only those operations are considered that result in a legal

network: the network should be acyclic and should satisfy other additional constraints that may

have been specified like a maximum indegree. These algorithms are typically coupled with a

decomposable score that consists of a sum of sub-scores, one for each node. The application of

the above operators to a structure results in structures whose scores differ from that of the

previous structure either in one sub-score (in the case of addition or deletion of an arc) or in two

sub-scores (in the case of arc reversal).

 64

 These algorithms are said to employ local search procedures (hence they are known

local search algorithms) where the search procedure moves from one candidate structure to a

neighboring structure that differs from the previous structure in a single arc resulting from the

application of a single operator. The simplest, and often used, local search procedure is the

greedy hill-climbing procedure. At each iteration, the search procedure selects the neighboring

structure with the largest improvement in the score to replace the current structure. The search

terminates when no neighboring structure can be found that improves on the score of the current

structure. Greedy hill-climbing often works well in practice, although it has the propensity of

terminating in a local maximum or a plateau.

Several strategies are employed to escape from local maxima or plateaus and improve on

the performance of greedy hill-climbing. One effective strategy is TABU search [63]. TABU

search keeps a list of the recently applied operators and at each iteration those operators that

result in the reversal of the effect of the recently applied operators are not considered. This forces

the search to explore new directions in the search space and escape local maxima.

Another strategy is random restart search. When greedy hill-climbing search terminates,

the resulting best network is perturbed by the application of several randomly chosen operators,

and the greedy search is restarted from the new network. A third strategy is simulated annealing

that interleaves regular hill-climbing moves with random moves that may temporarily decrease

the score in the hopes of leading the search to eventually find models with higher scores.

Finally, more exhaustive search methods like best-first search and beam search can

improve on the performance of local search methods. Recent advances in structure learning have

led to efficient methods of discovering the optimal structure in small to medium sized domains

using exhaustive search. Koivisto describes an algorithm that is only O(n2n) in time complexity

 65

and O(n2n) in space complexity where n is the number of domain variables, and demonstrates

that the algorithm is practically feasible for domains containing up to 25 variables [64, 65]. This

algorithm obtains computational time savings of the order of n2 over standard structure learning

methods.

3.5 LEARNING BAYESIAN NETWORKS WITH LOCAL STRUCTURE

The discussion on structure learning has so far focused on tabular CPD BNs and the same

discussion is also applicable to complete CPD BNs which use the alternate representation of

complete decision trees for CPDs. When additional local structure is captured by the use of

decision tree CPDs or decision graph CPDs, the standard scoring metrics and search methods

described previously can be used with minor modifications. This section describes the

modifications to the standard search-and-score method for learning decision graph CPD BNs,

and in particular, focuses on the Bayesian score and greedy hill-climbing search.

Learning decision tree CPD BNs where the local CPDs are represented by decision trees

is discussed in detail by Friedman and Goldszmidt [51]. Chickering et al. describe in detail the

learning of decision graph CPD BNs where the local CPDs are represented by decision graphs

[52]. As noted previously, decision graph CPDs are a generalization of decision tree CPDs in

that they can represent a richer set of equality constraints among local parameters than either

decision tree CPDs or CPTs.

 66

 67

fatigue

X2 X3

X4

chronic
bronchitis

lung
cancer

(a)

(b)

X3 (lung cancer) F T
X2 (chronic bronchitis) F T F T

parent state index j j = 1 j = 2 j = 3 j = 4
X4 (fatigue = F, fatigue = T) 0.9, 0.1 0.6, 0.4 0.6, 0.4 0.6, 0.4

T

(d)

X3

T

(c)

X3
F F

X2

T F

X4 X4

X2 X2

T F

X4 X4

l = 1 l = 2

T F

X4 X4

l = 1 l = 2 l = 3 l = 4

Figure 3-5: Examples of indexing of parent states in CPDs. Several CPD representations for the
BN node X4 (fatigue) in panel (a) are shown in subsequent panels. Panel (b) shows a CPT
associated with node X4 in which the parent states of X4 are indexed by j as indicated in the
shaded row. The CPT can be equivalently represented by a full decision tree as shown in panel (c)
in which the parent states of X4 are indexed by l as indicated in the shaded boxes. Panel (d) shows
a decision graph CPD for the node X4 in which the parent states are indexed by l as indicated in
the shaded boxes. In both decision tree and decision graph CPDs the indexing of parent states is
carried over the set of leaf nodes.

3.5.1 Bayesian score

A tabular CPD BN or a complete CPD BN is represented by the pair (G, θG) where G, the global

network structure, specifies the set of parents for each node Xi. The local conditional probability

distributions for each Xi in a tabular CPD BN are represented by a unique CPT, the

size of which is determined by the number of parent states and the number of states of Xi.

Equivalently, in a complete CPD BN the local conditional probability distributions for each Xi

are represented by a complete decision tree. For both these representations, the Bayesian score of

the BN structure is given by Equation 3.21 and the Bayesian parameter estimates for the CPDs at

each node Xi are given by Equation 3.15.

)|(iPaiXP

For a decision graph CPD BN, the specification of the structure S consists of the global

network structure G that specifies the set of parents for each node Xi, and, additionally, a local

decision graph structure DGi for each Xi. Thus, the fully specified decision graph CPD BN is

given by SnDGDGGS θ},,...,,{ 1≡ where each DGi represents the local conditional probability

distributions for the corresponding node Xi. In both complete CPD BNs and

decision graph CPD BNs, the BN nodes are indexed by the variable i and the states of a BN node

Xi are indexed by the variable k. However, the two representations will potentially differ in the

number of parent states for a BN node Xi. An illustrative example is given in Figure 3-5. For the

BN node X4 in Figure 3-5 (a), the CPT representation is given in Figure 3-5 (b) where each

column corresponds to a parent state and the columns are indexed by the variable j. For the same

node, the decision graph representation is given in Figure 3-5 (d) where each leaf node

corresponds to a set of parent states that have the same CPD and the leaf nodes are indexed by

the variable l. Both representations have the same number of parent states and differ only in the

)|(iPaiXP

 68

name of the indexing variable: CPT columns are indexed by variable j and decision graph leaf

nodes are indexed by the variable l. Of note, the CPT in Figure 3-5 (b) can also be represented by

a complete decision tree as shown in 3-5 (c).

The Bayesian score and the Bayesian parameter estimates for the decision graph CPD

BN are now derived. Analogous to the tabular CPD BN Bayesian score given by Equation 3.21,

the Bayesian score for the decision graph CPD BN is:

)(log)|(log);(SPSDPDSscoreB += . (3.26)

The marginal likelihood is derived in an analogous fashion to the marginal likelihood of the

tabular CPD BN given by Equation 3.23:

 ∏∏ ∏
= = = Γ

+Γ
+Γ

Γ
=

n

i

L

l

r

k ilk

ilkilk

ilil

il
i i N

N
SDP

1 1 1)(
)(

)(
)(

)|(
α

α
α

α
, (3.27)

where iL is the cardinality of the set of leaves in the decision graph DGi of Xi, Nilk is the number

of cases in the dataset D that have Xi = k and have parent states of Xi that correspond to one of

the paths in the decision graph leading to the leaf node l, and ∑= k ilkil NN . The key difference

between Equation 3.23 and 3.27 is in the middle product, which in Equation 3.23 runs over all

the columns in the CPT, while in Equation 3.27 it runs over all the leaf nodes of the decision

graph of Xi.

 The structure prior P(S) in Equation 3.26 can be decomposed into a prior over the global

structure G and a prior for each decision graph structure DGi:

 (3.28)

,)|()(

)|,...,,()(
),...,,,()(

1

21

21

∏
=

=

=
≡

n

i
i

n

n

GDGPGP

GDGDGDGPGP
DGDGDGGPSP

 69

where, the decomposition in the second line is obtained by the application of the chain rule of

probability and the product in the third line is based on the assumption that the priors for the

local structure at each node are specified independently of each other. Substituting Equation 3.28

into Equation 3.26 and expanding S gives:

∑
=

++=
n

i
innB GDGPGPDGDGGDPDDGDGGscore

1
11)|(log)(log),...,,|(log);,...,,(

 (3.29)

A complete specification of a decomposable prior over both the global BN structure and the local

decision graph structures is given in the next chapter in conjunction with the description of the

patient-specific algorithms.

The Bayesian parameter estimates for the decision graph CPDs of Xi are derived in a

similar fashion to the parameter estimates for the CPT of Xi (which is given in Equation 3.15):

ilil

ilkilk
ilk N

N
+
+

=
α
α

θ̂ , (3.30)

where, Nilk is the number of cases in the dataset D that have Xi = k and have parent states of Xi

that correspond to one of the paths in the decision graph leading to the leaf node l,

and . ∑= k ilkil NN

3.5.2 Search methods

The search space for learning decision graph CPD BNs is richer than the corresponding space for

learning tabular CPD BNs (or equivalently the complete CPD BNs). The tabular representation

provides a single CPT associated with a node Xi, while the decision graph representation

provides several possible decision graphs for the node Xi, where each decision graph asserts a

 70

distinct set of equality constraints among the local parameters for Xi. Consequently, the search in

the space of decision graph CPD BNs has to include a search over the local structure of the

nodes. There are two approaches to performing this search.

Encapsulated search spaces. This approach uses a two-tier search procedure that

consists of an outer search procedure and an inner search procedure. The outer search procedure

generates candidate global structures while the inner search procedure refines a given global

structure by generating and evaluating candidate local structures. The operators used in the outer

search procedure will be referred to as global operators to distinguish them from those that are

used in the inner search procedure which will be referred to as local operators. Also, two types

of nodes will be distinguished. The nodes in the DAG structure of the BN will be termed as BN

nodes while the nodes in the decision graph structure will be termed as DG nodes.

The global operators modify the DAG structure of the BN by adding, removing or

reversing an arc between the BN nodes (see Figure 3-6). Application of a global operator results

in a new global structure that has one more arc, one less arc or an arc that is reversed which

implies that the parent sets of at most two BN nodes have changed.

Figure 3-6: Bayesian network global operators: (a) the original BN with three BN nodes where
X1 is a parent of X3, (b) the result of applying the add operator, which adds an arc from X2 to X3,
(c) the result of applying the remove operator, which removes the existing arc between X1 to X3,
and (d) the result of applying the reverse operator, which reverses the existing arc between X2 and
X3. The add and remove operators modify the parent set of a single BN node while the reverse
operator modifies the parent set of a pair BN nodes.

X1 X2

X3

(b)(a)

X2

X3

(c)

X1 X1 X2

X3

(d)

X1 X2

X3

 71

Following the generation of a new global structure by the outer search procedure, the

inner search procedure searches for an optimal decision graph for only those BN nodes whose

parent sets have changed by the application of the global operator. A decision graph for a BN

node Xi is a graph that contains two types of DG nodes: internal DG nodes and leaf DG nodes.

An internal DG node represents a parent of Xi and a leaf DG node represents the parameters of a

CPD of Xi. To traverse the space of decision graph structures associated with Xi, a set of three

local operators was defined by Chickering [52]. The three local operators are the complete split,

the binary split, and the merge. Each local operator modifies the current set of leaf DG nodes in

the decision graph structure as follows (see Figure 3-7):

• The complete split local operator replaces a leaf DG node in the graph with an internal

DG node corresponding to a variable from the parent set. New leaf DG nodes are added

as children to the new internal DG node, with one leaf DG node for each distinct state of

the variable.

• The binary split local operator also replaces a leaf DG node in the graph with an internal

DG node corresponding to a variable from the parent set. However, only two new leaf

DG nodes are added as children to the new internal DG node, with one leaf DG node for

a distinct value of the variable and the remaining leaf DG node for all other states of the

variable.

• The merge local operator merges two distinct leaf DG nodes into a single leaf DG node

that inherits all incoming arcs from both the original leaf DG nodes.

 72

Examples of the application of these local operators are shown in Figure 3-7. These operators are

sufficient for moving from a decision graph structure to any other one in the search space. For

example, starting with a decision graph containing a single DG leaf node, a complete decision

tree can be generated by repeatedly applying the complete split operator. By repeatedly applying

the merge operator to the leaves of the complete decision tree, a graph that represents any

parameter set equalities can be generated. Though the complete split operator is not essential

since it can replaced by a series of applications of the binary split operator, it is included to

enable the search procedure to move more efficiently in the search space.

Typically, greedy hill-climbing search is used to locate a high-scoring decision graph

structure. The search starts with a decision graph containing a single DG leaf node and applies

the local operators to generate candidate local structures. An example showing search in an

Figure 3-7: Bayesian network local operators: (a) the original decision graph for the BN node X3,
showing one parent X1 that is in X3’s decision graph, (b) the result of applying the complete split
operator, which splits based on all values of X1, (c) the result of applying the binary split operator,
which splits one state of X2 from all other states, and (d) the result of applying the merge operator,
which merges two values of X1 into a single value. In this figure, all the variables have three
states, but in general each variable can have an arbitrary number of discrete states. Figure
modified from [52].

(a)

X1

0 1 2

X3 X3 X3

(b)

X1

0 1 2

X2
X3 X3

X3 X3 X3

(c)

X1

0 1 2

X2

0 1,2

X3

(d)

X1

0 1,2

X3 X3 X3 X3

X3

 73

 74

(a)

X2 X3

X4

X3

T F

X4X4

X2 X3

F T

(c)

X3

X4 X2

T F

X4X4

F
T

(d)

X3

X2

T F

X4X4

X2 X3

X4

X3

T F

X4 X4

X2 X3

(b)
complete split

add

merge

Figure 3-8: Example of encapsulated search demonstrating the application of a global operator
followed by the application of two local operators. BN nodes are shown as ellipses with a single
border and DG nodes are shown as circular or rectangular nodes with double borders. Application
of the global operator add that adds an arc from node X3 to X4 to the structure in (a) results in the
structure in (b). Application of the local operator complete split to the left hand leaf node of the
decision graph of X4 in (b) results in the decision graph in (c). Application of the local operator
merge to the two right hand leaf nodes of the decision graph of X4 in (c) results in the decision
graph in (d).

encapsulated search space is given in Figure 3-8.

Unified search spaces. An alternative approach for learning the local structure of a BN

node employs a unified search space. Instead of two sets of operators, one for modifying the

global DAG and another for modifying the local decision graph, a single set of operators modify

the joint representation of the global network and the local structures in a single search space.

This is feasible since the local structure associated with the BN node Xi identifies the set of BN

nodes that are the parents of Xi; the set of all local structures thus identifies the parents of every

BN node which is sufficient to uniquely identify the DAG of the BN.

 In the case of decision graph CPD BNs, each member in the unified search space consists

of a collection of n decision graphs nDGDG ,...,1 that represent the local structures associated

(a)

X3

T F

Figure 3-9: Example of unified search demonstrating the application of two operators. BN nodes
are shown as ellipses with a single border and DG nodes are shown as circular or rectangular
nodes with double borders. In each panel, the set of local structures is shown at the top enclosed
in a box and the implied global structure is shown at the bottom. Application of the operator
complete split to the left hand leaf node of the lower decision graph in (a) results in the decision
graph in (b). Application of the operator merge to the two right hand leaf nodes of the lower
decision graph in (b) results in the decision graph in (c).

X4 X4

X2 X3

X2 X3

X4

F T

X3

X4X2

T F

X4X4

X2 X3

X2 X3

X4

(b)

F
T

X3

X2

T F

X4 X4

X2 X3

X2 X3

X4

(c)

 75

with the n domain variables . A collection of local structures induces a unique network

structure among the domain variables: an arc is present in the network structure if

there is a node for Xj in the decision graph DGi. Only those collections of decision graphs that

induce an acyclic network among the domain variables are legal members of the search space.

The operators for moving in this search space are typically the same ones that modify the local

structure in the encapsulated search space, namely, the complete split, binary split, and merge

local operators described above. The global operators of adding, deleting and reversing arcs are

not needed in this search space.

nXX ,...,1

ij XX →

 Typically, greedy hill-climbing search is used to locate a high-scoring structure. The

search starts with an empty network with each node’s decision graph initialized to a single root

DG node. Each node Xi is considered in turn as follows. All non-descendants that are not already

parents of Xi are added to the parent set of Xi and the highest scoring decision graph is learned in

a greedy fashion. This decision graph DGi becomes the local structure for Xi. Any parent variable

that is not present in DGi is removed from the parent set of Xi and the corresponding arc

is deleted from the global structure. The search terminates after all the nodes have been

considered. An example showing search in a unified search space is given in Figure 3-9.

ij XX →

3.6 LEARNING BAYESIAN NETWORK CLASSIFIERS FROM DATA

Classification is a central problem in machine learning that involves inducing a classifier from a

set of classified training cases that can be applied to unclassified cases. The goal in classification

is to predict the value of a discrete class variable Z from the known values of a set of predictor

 76

variables . Given a set of classified training cases

 a classification algorithm induces a classifier or a

classification rule c(x) that is capable of predicting the likely value of Z for future cases where

only the values of the predictor variables X are known.

},...,,{ 21 nXXX=X

,(),...,,(),, 2211 zz mxx)}{(mzD x=

Probabilistic classifiers specify a probability distribution over the class variable

conditioned on the predictor variables. This distribution is then used for deciding the predicted

class for a test case where the values of the predictor variables are known. For example, if the

class variable is binary, a threshold is selected and the test case is assigned to one class value if

the predicted probability is above the threshold or to the other class value if below the threshold.

A test case where the predicted probability is equal to the threshold may be assigned to either

class value. For a class variable with more than two classes, the test case is typically assigned to

the class value with the highest probability.

In the decision-theoretic framework, the distribution over the class variable specified by

the probabilistic classifier is combined with a loss function (or cost function) to formally specify

a decision rule which is termed a classification rule in the context of classification. A

classification rule c(x) is a function that maps every possible combination of variable values x, to

a class value z. A loss function specifies the loss or cost that is incurred by predicting

the class value zi when the true value is zj, for all values zi and zj. The expected loss or expected

misclassification cost, incurred in predicting the class value zi on observing the variable values x

is:

),(ji zzL

)|(),()|(xx jji
j

i zpzzLzEL ∑= . (3.31)

 77

This is the weighted average of the losses incurred by predicting the particular class value zi as

the true class value ranges over all possible values zj, with each loss corresponding to the true

class value zj being weighted by the predicted probability for that class. According to

the Bayes decision procedure, the optimal class value is the one that minimizes the expected loss

or the expected classification cost. Thus, the classification rule is:

)|(xjzp

[)|(minarg)(xi
z

zELxc
i

=]. (3.32)

To summarize, probabilistic classifiers such as BN classifiers (described later), operate

by estimating the probability distribution for a test case at hand, which is then used in

computing the expected misclassification costs for each of the class values using equation 3.31.

Finally, the classification rule in equation 3.32 selects the class value with the minimum

expected misclassification cost. Thus, the predicted class value depends on both the probabilities

estimated by the classifier and the specified loss function.

)|(xzp

3.6.1 Minimum error rate classification

A commonly used criterion for evaluating the performance of classifiers is the misclassification

error rate or simply the error rate. If the true class value is zi, then predicting any class value

other than zi results in a misclassification error. If the error rate is to be low then it is natural to

seek a classification rule that minimizes the probability of error. The loss function used for

minimizing the error rate is the zero-one loss function, which assigns zero loss to a correct

classification and unit loss to any misclassification thus penalizing all errors equally:

otherwiseandjiifzzL ji 01),(≠= . (3.33)

The expected loss for predicting the class value zj is:

 78

)|(1

)|(

)|(),()|(

x

x

xx

j

ij
i

iji
j

j

zp

zp

zpzzLzEL

−=

=

=

∑

∑

≠

, (3.34)

where the last term is the average probability of error, since is the

conditional probability that the class value zj is correct given x is observed. The classification

rule according to the Bayes decision procedure is

)|(1 xjzp−)|(xjzp

[]
[
[])|(maxarg

)|(1minarg

)|(minarg)(

x

x

x

j
z

j
z

j
z

zp

zp

zELxc

j

j

j

=

−=

=

], (3.35)

which states that the average probability of error is minimized when the class value zj with the

highest predicted probability is selected. Thus, the optimal minimum error rate classifier simply

chooses the class value with the highest probability.

3.6.2 Calibration

Another criterion that is used for evaluating the performance of a classifier is calibration.

Calibration is the extent to which the classifier’s probability estimate agrees with the true

probability. More precisely, the predicted probability p of a class zi is well calibrated when the

cases assigned a probability p of belonging to class zi actually belong to that class a fraction p of

the time.

It is possible for a classifier to have a small error rate yet have poor calibration. For

example, consider a classifier that consistently produces excessively high probabilities for the

true class. The classifier remains accurate if it produces any probability that is higher than the

 79

calibrated probability p for the true class. However, its predicted probability for the true class is

far too high leading to poor calibration. Naïve Bayes classifiers have been shown to produce

probabilities that are arbitrarily close to 1 or arbitrarily close to 0 that are more extreme than

warranted [66]. This behavior typically does not increase the error rate but leads to poor

calibration.

Quite commonly, a classifier learns a classification rule by directly optimizing the error

rate or the zero-one loss function. However, this may be inappropriate when the correct loss

function is unknown or the zero-one loss function is unsuitable. For example, in predicting

clinical outcomes with classifiers, the misclassification cost may be significantly influenced by

patient utilities in which case the misclassification loss function varies from case to case.

Therefore minimizing the error rate, which corresponds to minimizing a fixed misclassification

cost, is inappropriate. If the estimated probabilities are well calibrated, optimal predictions will

be obtained for any future misclassification costs that may need to be applied.

3.6.3 Bayesian network classifiers

Several probabilistic classification algorithms use Bayesian network models for classification.

The naïve Bayes classifier is the simplest BN classifier that is learned very efficiently from data.

Among its early applications was in the context of a medical diagnostic system [67]. In spite of

its simplicity it often has excellent misclassification error rates and it is widely used as a

benchmark against which to compare new classifiers. The naïve Bayes classifier makes the

strong assumption that the predictor variables are mutually independent conditioned on the class

variable, which implies that all predictors are considered equally important for classification and

 80

that the predictors do not interact. This assumption allows for a very parsimonious representation

of the joint probability distribution over the domain variables:

∏
=

=
n

i
i ZXpZpZp

1

)|()(),(X . (3.36)

Learning the naïve Bayes classifier from data, without variable selection, is simple since no

structure learning is necessary. The learning of the parameters of the model requires estimating

the class probability distribution and the conditional probabilities for each

predictor variable Xi. This is done easily and efficiently from data using either the Bayesian or

the non-Bayesian methods described in Section 3.4.1.

)(Zp)|(ZXp i

The Tree Augmented Naïve Bayes (TAN) classifier extends the naïve Bayes classifier by

relaxing the naïve Bayes structure to allow one extra parent per predictor variable in addition to

the class variable. This enables the modeling of interactions among predictor variables not

captured by the class variable and thus overcomes the main weakness of the naïve Bayes

classifier. The TAN classifier has been shown to improve on the accuracy of the naïve Bayes

classifier while maintaining its computational simplicity of learning [68].

However, extending the TAN classifier to the general Bayesian network classifier does

not necessarily improve on the classification performance over simpler BN structures.

Intuitively, learning general BNs corresponds to solving the more general problem of learning

the joint probability distribution over all the variables in the domain, whereas learning a

classifier corresponds to solving the simpler problem of learning the conditional distribution of

the class variable given the predictor variables. The standard scores used for learning BNs are

proportional to the joint likelihood of all the variables. The Bayesian score, for example, is

proportional to the log marginal likelihood, log , which can be decomposed as)|(MDp

 81

)|(log),|(log)|(log MDpMDDpMDp Z XX += , (3.37)

where, DZ is the segment of the training dataset limited to the values of the target variable Z and

DX is the remaining portion of the dataset limited to the values of the predictor variables X. The

first term on the right hand side of Equation 3.37 measures how well M estimates the probability

of the target variable Z given the predictor variables X, and this term directly relates to the

performance of M as a classifier. Note, however, that as the number of predictors increases the

second term dominates the overall score. Thus, it is possible for a high scoring BN structure to

have a high misclassification error rate if the contribution of the second term to the score is

relatively larger than that of the first term to the overall score.

This first term, known as the conditional likelihood, can form the basis for a better score

for learning BN classifiers. However, the conditional likelihood does not decompose into

separate terms for each variable and hence is not node-decomposable as is the case for the

marginal likelihood. There is, also, no known closed form for computing the parameters that

maximize the conditional likelihood, as is the case for the marginal likelihood; hence there is no

known tractable algorithm that learns both the structure and parameters of a general Bayesian

network that maximizes the conditional likelihood. Recently, efforts have been made to induce

Bayesian network classifiers that approximately maximize the conditional likelihood. One

approach uses a numerical method to estimate parameter values that maximize the conditional

likelihood of a given BN structure [69]. Another approach computes the conditional likelihood of

a BN structure using the easily estimated maximum likelihood parameter values rather than the

maximum conditional likelihood parameter values [70]. These approaches have been shown to

improve on the performance of naïve Bayes and TAN classifiers.

 82

3.7 BAYESIAN MODEL AVERAGING

Choosing a single BN structure that has a large Bayesian score as described so far is a form of

model selection that can sometimes serve as an approximation to the complete Bayesian

approach of model averaging. In Bayesian model averaging (BMA) with BNs, in addition to

modeling the uncertainty in parameters, the uncertainty in the BN structure is modeled as well.

The general procedure for BMA is as follows [19]. If h is a quantity of interest, such as

an effect size, a future observable, or the utility of a course of action, BMA computes the

probability distribution of h given the data D by averaging over possible structures and their

parameters:

∑=
m

DmpDmhpDhp)|(),|()|(, (3.38)

where

∫= mmm dDmpmhpDmhp θθθ),|(),|(),|(. (3.39)

Equation 3.39 emphasizes that the probability distribution of h is an average of the probability

distributions of h under each model m weighted by the posterior probability of that model given

the data. Equation 3.38 shows that for each model m, the probability distribution of h is obtained

by integrating over all parameters.

Given data, the posterior distributions for each m and are obtained by applying Bayes’

rule:

mθ

∑
=

'
)'()'|(

)()|()|(

m
mpmDp

mpmDpDmp , (3.40)

)|(
)|(),|(),|(

mDp
mpmDpDmp mm

m
θθθ = , (3.41)

 83

where

 . (3.42) ∫= mmm dmpmDpmDp θθθ)|(),|()|(

The term is called the marginal likelihood or the integrated likelihood. Here the

uncertainty about m is encoded in the prior distribution p(m). In addition, for each model

structure m, the uncertainty about is encoded in the prior distribution .

)|(mDp

mθ)|(mp mθ

When BNs structures are used for classification, the quantity of interest h is the value of

the class variable Zt for a future case t with features Xt = xt. According to BMA, the posterior

distribution P(Zt | xt, D) is obtained by averaging over all BN structures G:

∑=
G

tt DGPDGZPDZP)|(),,|(),|(tt xx . (3.43)

Averaging over all the models in this fashion provides better predictive ability, as measured by

logarithmic loss than using any single model [71, 72].

 84

4.0 METHODOLOGY

This chapter describes the patient-specific approach to learning Bayesian networks from data.

After a summary of the main ideas of this approach that have been covered in the previous

chapters, a detailed description of two versions of the patient-specific algorithm is given.

The goal of the patient-specific algorithm is to predict well a discrete target variable of

interest, such as a patient outcome. In particular, the focus is on the prediction of low-

dimensional, atemporal outcomes (e.g., binary outcomes such as death versus survival). In

machine learning terminology, the patient-specific algorithm is an example of an instance-

specific classification algorithm.

Relative to some model space, Bayesian model averaging is the optimal method for

making predictions in the sense that it achieves the lowest expected error rate in predicting the

outcomes of future cases. Such Bayes optimal predictions involve averaging over all models in

the model space which is usually computationally intractable. One approach, termed selective

model averaging, has been to approximate the Bayes optimal prediction by averaging over a

subset of the possible models and has been shown to improve predictive performance [19, 71,

72]. The patient-specific algorithm performs selective model averaging and uses a novel

heuristic search to select the models over which averaging is done. The patient-specific

characteristic of the algorithm arises from the observation that the search heuristic is sensitive to

the features of the particular case at hand.

 85

The model space employed by the patient-specific algorithm is the space of Bayesian

networks over the domain variables. In particular, the algorithm considers only Markov blankets

of the target node, since this is sufficient for predicting the target variable. Two versions of the

patient-specific algorithm are considered that differ in the representation employed for the

conditional probability distributions. The patient-specific Markov blanket global structure

(PSMBg) algorithm learns MBs that allow for explicit representation of only global

independencies among nodes of the MB. The patient-specific Markov blanket local structure

(PSMBl) algorithm learns MBs that allow for explicit representation of value-specific

independencies in the conditional distributions associated with a node. This implies that the

PSMBl algorithm employs a richer space of models than the PSMBg algorithm.

The remainder of the chapter describes the patient-specific algorithms in terms of the (1)

model space, (2) representations of the models, (3) scoring metrics including parameter and

structure priors, and (4) the search procedure for exploring the space of models. The current

versions of the algorithms handle only discrete variables and do not handle missing values.

4.1 MODEL SPACE

The primary goal is to compute the predictive distribution of the target variable. In a BN, the

nodes that effect the distribution of the target node are those contained in the Markov blanket

(MB) of the target, and include the parents, the children and the parents of the children (spouses)

of the target node. Provided the MB nodes of the target are observable, nodes of the BN that are

not part of the MB are not required for determining the distribution of the target and are hence

 86

not needed for inference as asserted by the global Markov condition. Therefore, the patient-

specific algorithms learn MBs of the target variable rather than entire BNs over all the variables.

Typically, BN structure learning algorithms that learn from data, such as the search-and-

score and the constraint-based methods described in the previous chapter, induce a BN structure

over all the variables in the domain. The MB of the target variable can be extracted from the

learned BN structure by ignoring those nodes and their relations that are not members of the MB.

However, it is practically somewhat more efficient to modify the typical BN structure learning

algorithm to learn only MBs of the target node of interest, by using a set of global operators that

have been modified to generate only the MB structures of the target variable.

The patient-specific Markov blanket algorithms are search-and-score methods that search

in the space of possible MB structures. The Bayesian network structure learning algorithms

search in the space of possible BN structures which is exponential in the number of domain

variables. The number of BN structures with n variables is given by the following recurrence

formula where BN(n) is the number of DAGs that can be constructed from n nodes [73, 74]:

1)0(

0)(2),()1()(
1

)(1

=

>−−= ∑
=

−−

BN

nforknBNknCnBN
n

k

knkk

, (4.1)

where, C(n, k) is the count of the number ways to choose k objects from n distinct objects.

Hence, exhaustive search in the space of BN structures is infeasible for domains containing more

than a few variables and heuristic search is appropriate.

The number of MB structures with respect to a single target variable in a domain with m

variables (where m excludes the target variable) is given by the following equation:

 87

 88

1)0(

0)(22
!!!

! ..

0 0
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

=

−

= mmm
m mmmm

m

m

mm

m ocp

pc

P

p

c
, (4.2)

p c

)(

=

>= ∑ ∑
MB

mformBNmMB c
oc

where, m is number of parent nodes, m is the number of child nodes, mo is the number of other

nodes, and is computed as m = m - m – m . BN(m) is the number of DAGs that can be

constructed from n nodes and is computed from Equation 4.1. The derivation of the recurrence

formula in Equation 4.2 is given in Appendix A.

Table 4-1 gives the number of BN and MB structures for domains having up to 12

variables. It can be seen from the table that while there are fewer MB structures of the target

variable than there are BN structures, the number of MB structures is nevertheless exponential in

the number of variables. Thus, exhaustive search in the space of MB structures is also infeasible

for domain priate.

o p o c

c

s containing more than a few variables and heuristic search is appro

Table 4-1: Number of Bayesian network structures BN(n) and Markov blanket structures MB(n-1)
as a function of number of nodes n. The number of Markov blanket structures is with respect to a
single node and is not a count of all Markov blanket structures for all nodes. The last column gives
the ratio of the two types of structures. Both BN(n) and MB(n-1) are exponential in n.

BN(n) MB(n-1) BN(n) / MB(n-1)n
0 1 - -
1 1 1 1.0
2 3 3 1.0
3 25 15 1.67
4 543 153 3.55
5 29281 3567 8.21
6 3781503 196833 19.21
7 1138779265 25604415 44.48
8 783702329343 7727833473 101.41
9 1213442454842881 5321887813887 228.01
10 4175098976430598143 8241841773665793 506.57
11 31603459396418917607425 28359559029362676735 1114.38
12 521939651343829405020504063 214672167825864945784833 2431.33

4.2 MARKOV BLANKET LOCAL STRUCTURE

The PSMBg algorithm learns complete CPD MBs in which the CPDs are represented with

Figure 4-1: An example in which the local Markov blanket structure depends on the value of
lung cancer. Panel (a) shows the global structure and the associated parameters for the node X4.
Panel (b) illustrates four structures that explicitly demonstrate how the structure varies for

complete decision trees. Complete decision trees capture only the global structure, that is,

different values of lung cancer. The values T and F stand for True and False respectively.

X2=F X3=F

X4

chronic
bronchitis

lung
cancer

fatigue

X2=F X3=T

X4

chronic
bronchitis

lung
cancer

fatigue

X2=T X3=F

X4

chronic
bronchitis

lung
cancer

fatigue

X2=T X3=T

X4

chronic
bronchitis

lung
cancer

fatigue

X2 X3

X4

chronic
bronchitis

lung
cancer

fatigue (a)

(b)

P(X4 = F | X2 = F, X3 = F) = 0.95
P(X4 = F | X2 = T, X3 = F) = 0.90
P(X4 = F | X2 = F, X3 = T) = 0.40
P(X4 = F | X2 = T, X3 = T) = 0.40

P(X4 = T | X2 = F, X3 = F) = 0.05
P(X4 = T | X2 = T, X3 = F) = 0.10
P(X4 = T | X2 = F, X3 = T) = 0.60
P(X4 = T | X2 = T, X3 = T) = 0.60

 89

independence relations among variables that hold for all values of the variables. The PSMBl

algorithm learns graph CPD MBs in which CPDs are represented with decision graphs. Decision

graphs

fewer parameters [75]. Corresponding to the parents of a node in a global Bayesian network, in a

local Bayesian network, a node Xi has a set of global parents Pai. However, in general, for a

particular instantiation of the variables in Pai, only some of those variables will be correlated

capture the local structure, that is, value-specific independencies among the variables.

Value-specific independencies are those that hold only for particular assignments of values to

certain nodes and cannot be explicitly represented by the global structure.

Bayesian networks that can represent local structure (i.e., local constraints) that hold

among the parameters of a node have been shown to capture additional independences with

lung cancer F F T T

Figure 4-2: A decision tree representation of the local structure for the variable fatigue that
captures the four structures shown in Figure 4-1 (b). The parameters at the leaves are explained in
the table.

chronic bronchitis F T F T
fatigue = F θ1 θ2 θ3 θ4
fatigue = T 1- θ 1 – θ 1 – θ 1 – θ 1 2 3 4

lung
cancer

chronic

F T

T

θ3 = θ4
bronchitis

F

θ1 θ2

 90

with Xi. For example, in Figure 4-1 (a), suppose when the node lung cancer has the value True,

the nod

representation of the local structure for the variable fatigue given in Figure 4-1. The parameters

used for the CPDs at the leaves of the decision tree are shown in the associated table in the

figure. Root-to-leaf paths in the tree correspond to value-specific parents of the variable fatigue.

Another representation for the local structure is the decision graph which is a

generalization of the decision tree; this representation is described in detail in Section 3.3.3.

Briefly, in a decision graph non-root nodes can have multiple parents, rather than a single parent

as in a decision tree [52]. A decision graph, thus, allows two or more branches of a decision tree

to share the same leaf node, which expresses the following equality constraint: conditioned on

the variable values in any one of the shared branches (the parents), the conditional probability

distribution of the leaf node (the child) is the same. All equality constraints represented by

decision trees can be represented by decision graphs, but not vice-versa. Figure 4-3 illustrates a

decision graph representation for the decision tree in Figure 4-2. Figure 4-4 shows an example of

e chronic bronchitis has no influence on the node fatigue. Indeed the probabilities in

Figure 4-1 (a) reflect this situation. Figure 4-1 (b) illustrates the local Bayesian network structure

that represents this example.

One representation for the local structure is the decision tree; this representation is

described in detail in Section 3.3.2. Briefly, in this representation, a decision tree is used to

represent the local structure between a node and its parents in a Bayesian network [76]. The

decision tree used here is not a decision analytic decision tree, but a CART-like probability tree

in which branches denote variable values. Each leaf node in the tree contains the probability

distribution of the variable being predicted given the values of the predictor variables that appear

along the path that goes from the root node to that leaf node. Figure 4-2 shows a decision tree

 91

lung
cancer

chronic
bronchitis

F T

T

θ1

a decision graph where the shared leaf node expresses that P(fatigue = T | lung cancer = F,

chronic bronchitis = T) = P(fatigue = T | lung cancer = T, chronic bronchitis = F). This is an

example of a local structure that cannot be represented with a decision tree.

The PSMBl algorithm uses decision graphs to represent and explicitly capture value-

specific independences among the CPDs of a node, while the PSMBg algorithm represents the

CPDs of a node with a complete decision tree which is equivalent to a conditional probability

table. Figure 4-5 shows an example of a complete decision tree that would be used by the

A decision graph representation of the local structure represented by the decision tree
in Figure 4-2.

decision tree.

Figure 4-3:

Figure 4-4: A decision graph representation of a local structure that cannot be represented by a

θ2 θ3 = θ4

T

chronic
bronchitis

F F

lung
cancer

chronic
bronchitis

F T

T

θ1 θ4 θ2 = θ3

T

chronic
bronchitis

F F

 92

lung
cancer

chronic
bronchitis

F T

T

PSMBg

o of parent states. A formula for

countin

 algorithm. Note that the complete decision tree is a type of decision graph, in which,

every possible parent state is accorded a distinct leaf node. In effect, the complete decision tree

encodes the same parameters as the equivalent CPT; each leaf node contains a table that

corresponds to a column in the CPT that encodes the parameters of a conditional probability

distribution.

Given a set of parents, a MB node has a single global structure while it can have several

possible local structures. The single global structure can be represented by a complete table

(CPT) or a complete decision tree. The number of possible local structures is the number of all

possible decisi n graphs that can be constructed for a given set

g all possible decision graphs is derived in Section 4.3.2. From this it follows that the

PSMBl algorithm’s model space is richer than the PSMBg algorithm’s model space; in fact the

latter is a subset of former.

Figure 4-5: An example of a complete decision tree representation used by the PSMBg algorithm
to represent the probability distributions associated with the node fatigue.

θ1 θ4

T

chronic
bronchitis

F F

θ2 θ3

 93

4.3 PATIENT-SPECIFIC BAYESIAN MODEL AVERAGING

The objective of the patient-specific algorithms is to derive the posterior distribution P(Zt | xt, D)

for the target variable Zt in the case at hand, given the values of the other variables Xt = xt and the

training data D. The Bayes decision rule is then applied to select the target value with the highest

post y Bayesian

model averaging is as follows:

t t t t

below. This parameterization of

G produces predictions equivalent to those obtained by inte possible

parameterizations for G. The second term, P(G | D), is the posterior probability of the MB

erior probability. The ideal computation of the posterior distribution P(Zt | xt, D) b

∑
∈

=
MG

tt DGPDGZPDZP)|(),,|(),|(tt xx , (4.3)

where the sum is taken over all MB structures G in the model space M. The first term on the

right hand side, P(Z | x , G, D), is the probability P(Z | x) computed with a MB that has

structure G and parameters θG that are given by Equation 4.4

grating over all the

structure G given the data D. In essence, Equation 4.3 states that a conditional probability of

interest P(Zt | xt) is derived by taking a weighted average of that probability over all MB

structures, where the weight associated with a MB structure is the probability of that MB

structure given the data. In general, P(Z t | xt) will have different values for the different sets of

MB structures over which the averaging is carried out.

4.3.1 Inference in Markov blankets

Computing P(Zt | xt, G, D) in Equation 4.3 involves doing inference in the MB with a specified

global structure G:

 94

 G
tt

GG dDGPG
G

θθ
θ

),|()ZPDGZP θxx tt ,,|(),,|(∫= . (4.4)

 3.4.1.2. In summary, under the assumptions of (1) the variables are discrete

D consists of independent and identically di issing

values; (2) parameterization θG over the entire MB of n nodes can be decomposed as θG =

i i

i ij

conditional distribution of Xi, are mutually independent (local parameter independence); and (4)

the parameter prior distribution is Dirichlet; the parameter estimates are given by the following

The parameters for the MB structure G are estimated using Bayesian parameter estimation that is

described in Section

and the dataset stributed (i.i.d.) cases without m

},...,,...,,{ 21 θθθθ where the θi, the parameters associated with node Xi, are mutually

independent (global parameter independence); (3) parameterization θ of a node with q parent

states is decomposed as θ = },...,,...,,{ where the θ , the parameters of a single

expression:

ini

21 iiqijii θθθθ

ijij
ijkii N+

ijkijk N
jPakXP

+
=≡==

α
α

θ)|(, (4.5)

 by j, (2) (3) αijk is a parameter prior that can be interpreted as belief

equivalent to having prev prior to arents of

Xi have the state denoted by

where (1) Nijk is the number of cases in dataset D in which Xi = k and the parents of Xi have the

state denoted ∑= k ijkij NN ,

iously (i.e.,

j, and (4)

D) seen αijk cases in which Xi = k and the p

.∑= k ijkij αα For the patient-specific algorithms αijk is set

to 1 for all i, j, and k, as a simple non-informative parameter prior [55].

For decision graph representations of CPDs, the interpretation of Equation 4.5 has to be

Xi

modified slightly. Specifically, the parent state index j is replaced with a new index l that ranges

over the leaf nodes in the decision graph for node . Thus, Equation 4.5 now becomes:

ilil

ilkilk
ilkii N

NlPakXP
+
+

=≡==
α
αθ)|(, (4.6)

 95

where

and N431

represents the number of cases in D wher he parent

configuration index l = 3. This index corresponds to a single parent configuration represented by

421

2 3

2

d is computed by applying Bayes rule as follows:

(1) Nilk is the number of cases in dataset D in which Xi = k and the parents of Xi have a

configuration corresponding to any of the paths that converge to the leaf node l in the decision

graph. For example, in Figure 4-4, l ranges over the three leaves in the decision graph

e fatigue = F (i.e., i = 4 and X4 = 1) with t

the path leading to θ4, namely, lung cancer (T) → chronic bronchitis (T) → θ4 (the rightmost

path in the figure). As another example, consider N , which represents the number of cases in D

where fatigue = F (i.e., i = 4 and X4 = 1) with the parent configuration index l = 2. This index

corresponds to two parent configurations represented by the two paths converging on θ = θ ,

namely, (1) lung cancer (F) → chronic bronchitis (T) → θ and (2) lung cancer (T) → chronic

bronchitis (F) → θ3 (the two paths along the middle in the figure). The same interpretation is also

applicable to a decision tree representation of CPDs (e.g., the decision trees shown in Figure 4-2

and Figure 4-5), since a decision tree is a type of a decision graph. Equation 4.6 is applicable to

both the PSMBl algorithm (which uses decision graph CPDS) and the PSMBg algorithm (which

uses complete decision tree CPDs).

4.3.2 Bayesian score of Markov blankets

The second term on the right hand side in Equation 4.3, P(G | D), is the posterior probability of

the MB structure G given the data an

)(
)()|()|(

DP
GPGDPDGP = , (4.7)

where P(D) is a constant for all G and need not be computed. Thus, the Bayesian score for G, as

previously shown in Equation 3.21, is:

 96

(log)|(log);(GPGDPDGscoreB +=) . (4.8)

The computation of the marginal likelihood, P(D | G), for the decision graph representation is

parameter

independence, that is, the param (3) local

parameter independence, that is, the parameters associated with each parent state of a variable

are independent; and (4) the parameter prior distribution is Dirichlet; the marginal likelihood is:

derived in Section 3.5.1. In summary, under the assumptions of (1) the variables are discrete and

the data D is a multinomial random sample with no missing values; (2) global

eters associated with each variable are independent;

∏∏ ∏
= = = Γ

+Γ
+Γ

Γ
=

n

i

L

l

r

k ilk

ilk

)
)

α
, (4.9) ilk

ilil

il
i i N

N
GDP

1 1 1 (
(

)(
)(

)|(
α

α
α

 is the cardinality of the set of leaves in the decision graph DG of X , N is the number iLwhere i i ilk

of cases in the dataset D that have Xi = k and have parent states of Xi that correspond to one of

the paths in the decision graph leading to the leaf node l, and ∑= NN
k ilkil

and PSMBl algorithms use the logarithmic form of Equation 4.9 in computing the Bayesian

score as follows:

. Both the PSMBg

∑∑ ∑
= = = Γ

+Γ
+Γ

Γ
=

n

i

L

l

r

k ilk

ilkilk

ilil

il
i i N

N
GDP

1 1 1)(
)(

)(
)(

)|(log
α

α
α

α
. (4.10)

The term

the data was generated by some distribution that can be modeled with the MB structure G. For

the PSMBg algorithm, a uniform prior belief over all G is assumed which reduces the term P(G)

to a constant. Thus, P(G | D) is equal to P(D | G) up to a proportionality constant and the

. (4.11)

 P(G) in Equation 4.8 is the structure prior which represents the prior belief that

Bayesian score for G is defined simply as the logarithmic marginal likelihood as follows:

PSMBg)|(log);(GDPDGscoreB =

 97

Equatio

ntrast,

in the PSMBl algorithm, a specified gl ructures

DAG structure as

before

 (4.12)

As in the case of the PSMBg algorithm, a uniform prior belief over all G is assumed, and

therefore the term P(G) reduces to a constant. Given G, a uniform prior belief over all possible

decision graph structures for each MB node is assumed. The number of possible decision graph

structures is the same as the number of ways in which the parent configurations can be

partitioned into nonempty sets. The number of ways in which n elements can be partitioned into

mber is

n 4.11 implies that the PSMBg algorithm evaluates MB structures only on the basis of

the marginal likelihood and does not apply a penalty for structure complexity.

For the PSMBl algorithm, a two-level hierarchical structure prior is derived

corresponding to the global and the local structures. In the PSMBg algorithm, specification of

the global DAG structure uniquely specifies each MB node’s complete decision tree. In co

obal structure corresponds to a family of local st

consisting of all possible decision graphs for each of the MB nodes, and the complete structure

specification is given by {G, DG1, …, DGi, …, DGn} where G is the global

and DGi is the local decision graph structure for node Xi. Including both the global and

local structure priors, the Bayesian score in Equation 4.8 is rewritten as (see Section 3.5.1 for the

derivation):

∑
=

++=
n

i
innB GDGPGPDGDGGDPDDGDGGscore

1
11)|(log)(log),...,,|(log);,...,,(.

nonempty subsets is called a Bell number and is denoted by B(n) [77]. The Bell nu

typically computed as the following sum:

∑
=

=
n

k
knSnB

1
),()(, (4.13)

 98

where, S(n, k) is a Stirling number of the second kind which is the number of ways in which n

elements can be partitioned into k nonempty sets [78]. The Stirling number of the second kind is

computed as:

∑
=

− nik iikC),()1 , (4.14) −=
k

ik
knS

0
(

!
1),(

MBl algorithm is now defined as:

where C(k, i) is the binomial coefficient. The prior for the local structure associated with node Xi

is then given by 1 / B(|Pai|), where |Pai| is the number of parent states of Xi. The Bayesian score

used by the PS

∑−=
n

in BDGDGGDP 1)(log),...,,|(log Pa .
=i

n
PSMBl
B DDGDGGscore

1
1);,...,,((4.15)

the algorithm will prefer decision graphs with a

smaller number of nodes to ones with a larger number of nodes. By incorporating a hierarchical

structure prior, the Bayesian score given by Equation 4.15 penalizes complex structures. This is

has no

raging given by Equation 4.3 is approximated with selective

model averaging, and heuristic search (described in the next section) is used to sample the model

The derivation of the two terms needed for the computation of Equation 4.3 is now complete.

The structure prior just described biases the PSMBl algorithm to prefer simpler local

structures over more complex ones. On average,

in contrast to the Bayesian score used by the PSMBg algorithm (given by Equation 4.11) which

analogous structure penalty.

4.3.3 Selective Bayesian Model Averaging

Since Equation 4.3 sums over a very large number of MB structures, it is not feasible to solve it

exactly. Hence, complete model ave

 99

space. For a set R of MB structures that have been chosen from the model space by heuristic

search, selective model averaging estimates P(Zt | xt, D) as:

∑

∑

∈

∈≅

RG

RGDZP

t

t),|(

t

tx . (4.16)

The computations for the inference of the target variable Zt and the posterior probability for the

MB structure G are described in the preceding Sections 4.31 and 4.32 res

DGP

DGPDGZP

)|(

)|(),,|(x

pectively.

4.4 PATIENT-SPECIFIC SEARCH

ch to sample

the space of MB structures. A high level description of the two-phase search is now given. The

first phase ignores the current patient case evidence xt at hand, while searching for MB structures

that best fit the tra the set of MB structures

obtained from the first phase, but now searches for MB structures that have the greatest impact

e first phase search terminates in a local

maxim

The patient-specific algorithms that I developed and applied use a two-phase sear

ining data. The second phase continues to add to

on the prediction of Zt for the current patient case.

The first phase uses greedy hill-climbing search and accumulates the best model

discovered at each iteration of the search in a set R. At each iteration of the search, successor

models are generated from the current best model; the best of the successor models is added to R

only if this model is better than current best model; and the remaining successor models are

discarded. Since, no backtracking is possible, th

um.

 100

The second phase uses best-first search and adds the best model discovered at each

iteration of the search to the set R. Unlike greedy hill-climbing search, best-first search holds

models that have not been expanded (i.e., whose successors have not be generated) in a priority

queue Q. At each iteration of the search, successor models are generated from the current best

model

MBg search and operators

ich the CPDs are

represented as complete decision trees, and the operators used in traversing this space are the

ture learning with minor modifications. As mentioned in

the previous chapter, the standard BN structure learning operators are (1) add an arc between two

and added to Q; the best model from Q is added to R even if this model is not better than

the current best model. The second phase search terminates when a user set criterion is satisfied.

Since, the number of successor models that are generated can be quite large, the priority queue Q

is limited to a capacity of at most w models. Thus, if Q already contains w models, addition of a

new model to it leads to removal of the worst model from it. The queue allows the algorithm to

keep in memory up to w good scoring models, and facilitates limited backtracking to escape local

maxima.

The next section describes in detail the search used by the PSMBg algorithm and the

section after that describes in detail the search used by the PSMBl algorithm.

4.4.1 PS

The PSMBg algorithm searches in the space of global MB structures in wh

same as those used in standard BN struc

nodes if one does not exist, (2) delete an existing arc, and (3) reverse an existing arc, with the

constraint that an operation is considered valid only if it generates a legal BN structure. This

constraint simply implies that the graph of the generated BN structure be a DAG. A similar

constraint is applicable to the generation of global MB structures, namely, that an operation is

 101

 Y
X

considered valid if it produces a legal MB structure of the target node. This constraint entails that

some of the operations be deemed invalid, as illustrated in the following examples. With respect

to a MB, the nodes can be categorized into five groups: (1) the target node, (2) parent nodes of

the target, (3) child nodes of the target, (4) spousal nodes, which are parents of the children, and

(5) other nodes, which are not part of the current MB. Incoming arcs into parents or spouses are

not part of the MB structure and, hence operations that add such arcs are deemed invalid. Arcs

between nodes not in the MB are not part of the MB structure and, hence operations that add

such arcs are also deemed invalid. Figure 4-6 gives exhaustively the validity of the MB global

operators. Furthermore, the application of the delete arc or the reverse arc operators may lead to

additional removal of arcs to produce a valid MB structure (see Figure 4-7 for an example).

The search for MB structures proceeds in two sequential phases: phase 1 uses greedy hill-

climbing search and phase 2 uses best-first search with a priority queue of capacity w. In phase 1

the candidate MB structures are scored with the phase 1 score which is the Bayesian score shown

in Equation 4.11. This phase of the search begins with the empty graph and terminates in a local

Figure 4-6: Constraints on the Markov blanket global operators. The nodes are categorized into
five groups: T = target, P = parent, C = child, S = spouse, and O = other (not in the Markov
blanket of T). The cells with check marks indicate valid operations and are the only ones that
need to be considered in generating candidate structures. The cells with an asterisk indicate that
the operation is valid only if the resulting graph is acyclic.

T P C S O

T

P

C *

S

O

(a) Add arc X → Y

 Y
X T P C S O

T

P

C

S

O

(b) Delete arc X → Y

 Y
X T P C S O

T

P

C *

S

O

(c) Reverse arc X → Y

 102

X4

X1 X2

X5

Z

X3 X4

X1 X2

X5

Z

X3

(a) (b)

Figure 4-7: An example where the application of an operator leads to additional removal of arcs
to produce a valid Markov blanket structure. Deletion of arc Z → X5 leads to removal of the arc
X4 → X5 since X5 is no longer a part of the Markov blanket. Reversal of the same arc also leads to
removal of the arc X4 → X5 since X5 is now a parent and is precluded from having incoming arcs.
Also, unless X4 → X5 is removed there will be a cycle.

Figure 4-7: An example where the application of an operator leads to additional removal of arcs
to produce a valid Markov blanket structure. Deletion of arc Z → X5 leads to removal of the arc
X4 → X5 since X5 is no longer a part of the Markov blanket. Reversal of the same arc also leads to
removal of the arc X4 → X5 since X5 is now a parent and is precluded from having incoming arcs.
Also, unless X4 → X5 is removed there will be a cycle.

maximum when none of the successor MB structures generated from the current best MB

structure has a score higher than that of the current best MB structure. The highest scoring MB

structure from each iteration of the search is accumulated in a set R. The purpose of this phase is

to identify a set of MB structures that are highly probable, given data D.

Phase 2 searches for MB structures that change the current model-averaged estimate of

P(Zt | xt, D) the most. The intuition here is to find viable competing MB structures for making

this posterior probability prediction. When no competitive MB structures can be found, the

prediction is assumed to be stable. Phase 2 differs from phase 1 in two as

ures generated from the current best MB

structure has a score higher than that of the current best MB structure. The highest scoring MB

structure from each iteration of the search is accumulated in a set R. The purpose of this phase is

to identify a set of MB structures that are highly probable, given data D.

Phase 2 searches for MB structures that change the current model-averaged estimate of

P(Zt | xt, D) the most. The intuition here is to find viable competing MB structures for making

this posterior probability prediction. When no competitive MB structures can be found, the

prediction is assumed to be stable. Phase 2 differs from phase 1 in two aspects: it uses best-first

search

ing to

legal MB structures are applied to it; the successor structures are scored with the phase 2 score;

pects: it uses best-first

search

ing to

legal MB structures are applied to it; the successor structures are scored with the phase 2 score;

and it employs a different scoring function for evaluating candidate MB structures.

At the beginning of phase 2, R contains MB structures that were generated in phase 1.

Successors to the MB structures in R are generated, scored with the phase 2 score (described in

detail below) and added to the priority queue Q. At each iteration of the search, the highest

scoring MB structure in Q is removed from Q and added to R; all global operations lead

and it employs a different scoring function for evaluating candidate MB structures.

At the beginning of phase 2, R contains MB structures that were generated in phase 1.

Successors to the MB structures in R are generated, scored with the phase 2 score (described in

detail below) and added to the priority queue Q. At each iteration of the search, the highest

scoring MB structure in Q is removed from Q and added to R; all global operations lead

 103

and the scored structures are added to Q. Phase 2 search terminates when no MB structure in Q

has a score higher than some small value ε or when a period of time t has elapsed, where ε and t

are user specified.

The model score for phase 2 is computed as follows. Each successor MB structure G* to

be added to Q is scored based on how much it changes the current estimate of P(Zt | xt, D); this is

obtained by model averaging over the MB structures in R. More change is better. The phase 2

score of a candidate MB structure G* is computed as the distance between two distributions for

Zt as follows:

∑

∑

∑

∑

∪∈

∪∈

∈

∈ −=

*}{

*}{

)|(

)|(),,|(

)|(

)|(),,|(

*),(

GRG

GRG

RG

RG
GDP

GDPDGZP

GDP

GDPDGZP

GRf

tt tt xx

. (4.17)

Specifically, the Kullback-Leibler divergence (KL divergence) is used as the distance metric for

the experiments described in Chapter 5. The KL divergence, or relative entropy, is a quantity

which measures the difference between two probability distributions [79]. That is, the phase 2

score for G* is the KL divergence between the two estimates of P(Zt | xt, D stimate

computed without and another computed with G* in the set of models over which the model

), one e

averaging is carried out. Thus, the phase 2 score for a candidate MB structure G* is:

∑≡=
x xq

xpxpqpKLGRscore
)(
)(log)()||(*),(, (4.18)

where

∑

∑

GDP

GDPDGZP t

)|(

)|(),,|(tx

∈

∈=

RG

RGxp)(, and

 104

∑

∑

∪∈

∪∈=

*}{

*}{

)|(

)|(),,|(

)(

GRG

GRG

GDP

GDPDGZP

xq

t tx

.

The pseudocode for the two-phase search procedure used by the PSMBg algorithm is given in

Figure 4-8.

4.4.2 PSMBl search and operators

 algorithm searches in the space of local MB structures in which the CPDs are

represented as decision graphs, and uses the two-tier search procedure described in Section 3.5.2.

e global operators for the outer search procedure as those

used in the PSMBg algorithm and a set of local operators for the inner search procedure. The

 for the split, (2) the binary split

operato

The PSMBl

The PSMBl algorithm employs the sam

PSMBl algorithm may be considered an extension of the PSMBg algorithm, in that, it

supplements the search procedure used in the PSMBg algorithm with an inner search procedure

that is invoked at every iteration of the outer search procedure.

The local operators used by the PSMBl algorithm are those described in Section 3.5.2

that are used for traversing the space of local decision graph structures. Briefly, they are (1) the

complete split operator that replaces a leaf node with an internal node and a set of leaf nodes

corresponding to the states of the parent variable which is used

r that is similar to the complete split operator, except that only two new leaf nodes are

introduced, and (3) the merge operator that merges two leaf nodes into a single leaf node. An

example of the application of these operators is illustrated in Figure 3-7.

The outer search procedure generates global MB structures; a global MB structure is

specified by a DAG among the domain variables. In essence the DAG specifies the parent set of

 105

nodes for each node. The nodes of the DAG are referred to as MB nodes to distinguish them

from the nodes of the local decision graph structures which are referred to as DG nodes. DG

nodes a

y the application of the global operator. Given a MB node Xi and its parent MB nodes,

the sec

This section provides an analysis of the space and time complexity for the PSMBg and the

PSMBl algorithms.

re either called internal nodes if the nodes have children or leaf nodes if the nodes are

terminal.

The search for MB structures is very similar to that used by the PSMBg algorithm and

proceeds in two sequential phases. Additionally, for every application of a global operator, a

secondary search is performed to find an optimal local decision graph structure for the nodes

affected b

ondary search starts with a decision graph containing a single DG node that represents the

parameters of the CPD of Xi assuming that Xi has no parents. Application of the local operators

introduces the parents of Xi as internal DG nodes in the decision graph structure. For reasons of

efficiency, the secondary search always uses the phase 1 score to score the decision graph

structure irrespective of which phase in the primary search procedure invokes it. The pseudocode

for the two-phase and two-tier search procedure used by the PSMBl algorithm is given

Figure 4 9.

4.5 SPACE AND TIME COMPLEXITY

 106

4.5.1 PSMBg

he training dataset D, n is the number of domain variables, d is the sum of

the number of iterations of the search for phase 1 and phase 2, b – the branching factor – is the

ssors generated from a MB structure, and w is the capacity of the

priority queue Q.

meters. For a given MB node, the number of parameters (using a CPT or a

comple

over the MB nodes, to compute it for a newly generated

MB structure only those MB nodes whose parent nodes have changed need be evaluated. The

algorithm

The PSMBg algorithm runs in O((b + d)Nn) time and uses O((w + d)Nn) space, where N is the

number of cases in t

maximum number of succe

Space complexity of PSMBg. The PSMBg algorithm searches in the space of MB

structures using greedy hill-climbing search for phase 1 and best-first search with a priority

queue of capacity w for phase 2. For d iterations of the search, the maximum number of MB

structures that is stored is O(w + d). The space required for each MB structure is linear in the

number of its para

te decision tree) is exponential in the number of its parent nodes. However, the number of

distinct parameters cannot be greater than the number of cases N in the training data D; the

remaining parameters have a single default value. Thus, the space required for the parameters of

a BN node is O(N). In a domain with n variables, a MB structure can have up to n nodes and thus

requires space of O(Nn). In total, the space required by the PSMBg algorithm that runs for d

iterations of the search is O((w + d)Nn).

Time complexity of PSMBg. At each iteration of the search, a maximum of b successor

MB structures are generated. For d iterations of the search, the number of MB structures

generated and scored with the phase 1 score is O(bd). Note that both phase 1 and phase 2 require

successor MB structures to be scored with the phase 1 score.

Since phase 1 score decomposes

 107

number

requires one pass over D and takes

O(Nn)

 structure generated in all d iterations of the search will have to be

evaluat

n

rch

(namely, phase 1 and phase 2) and each phase uses a two-tier search procedure (namely, outer

search procedure and inner search procedure). The outer search procedure is the same as the

search procedure used by the PSMBg algorithm. At each iteration of the outer search procedure,

 of MB nodes that need to be evaluated is either one (when the add or remove global

operator is applied) or two (when the reverse global operator is applied). Computing the phase1

score for a MB node entails estimating the parameters for that node and calculating the marginal

likelihood from those parameters. Estimating the parameters

time. Calculating the marginal likelihood requires retrieving every parameter of the CPDs

associated with the MB node and takes O(N) time. Thus, scoring a MB structure with phase 1

score takes O((N + 1)n) time.

Phase 2 score computes the effect of a candidate MB structure on the model averaged

estimate of the distribution of the target variable. This requires doing inference for the target

node in a MB structure which takes O(n) since at most n nodes influence the target distribution

and hence at most n sets of parameters need be retrieved. Computing both phase 1 and phase 2

scores for a MB structure takes O((N + 1)(n + 1)) time which is approximately O(nN) time. In

the worst case, every candidate

ed with the phase 2 score. In total, the time required by the PSMBg algorithm that runs

for d iterations of the search and generates b MB structures at each iteration is O((b + d)Nn).

4.5.2 PSMBl algorithm

The PSMBl algorithm runs in O((b + d)Nn2) time and uses O((w + d)Nn) space. It has the same

space complexity as the PSMBg algorithm but has exponential time complexity.

Space complexity of PSMBl. The PSMBl algorithm employs a two-phase sea

 108

the inner search procedure is invoked on those MB nodes whose parent nodes have been

modified. The inner search procedure when invoked on a MB node, locates a local structure

uired by a CPT

or a co

f the outer search procedure and

generat

represented by a decision graph using greedy hill-climbing search in the space of decision

graphs. The maximum space required by a decision graph is the same as that req

mplete decision tree for that MB node. Hence, the PSMBl algorithm has the same space

complexity as the PSMBg algorithm, that is, of O((w + d)Nn).

Time complexity of PSMBl. Estimating the parameters and computing both the phase 1

and phase 2 scores of a MB node represented by a CPT or a complete decision tree takes O(Nn)

time for the PSMBg algorithm as described above. The time requirement is the same for a MB

node represented by a decision graph. For each structure generated by the outer search

procedure, the inner search procedure can potentially generate all possible decision graphs for

one or two MB nodes whose parent nodes have changed. The number of possible decision graphs

for a MB node is given by Equation 4.2 and is exponential in n, that is, of O(2n). In total, the time

required by the PSMBl algorithm that runs for d iterations o

es b MB structures at each iteration where each MB structure can have O(2n) local

structures, is of O((b + d)Nn2n).

 109

ProcedureGlobalSearchForPSMBg

// phase 1 greedy hill-climbing search
1 R ← empty set
2 BestModel ← empty graph
3 Score BestModel with phase 1 score
4 BestScore ← phase 1 score of BestModel
5 Add BestModel to R

6 Do
7 For every possible global operator O that can be applied to BestModel
8 Apply O to BestModel to derive Model
9 Score Model with phase 1 score
10 ModelScore ← phase 1 score of Model
11 If ModelScore > BestScore
12 BestModel ← Model
13 BestScore ← ModelScore
14 FoundBetterModel ← True
15 End if
16 End for

17 If FoundBetterModel is True
18 Add BestModel to R
19 Else
20 Terminate do
21 End if
22 End do

 // phase 2 best-first search
23 Q ← empty priority queue with maximum capacity w
24 Generate all successors for the MB structures in R and add them to Q
25 Score all MB structures in Q with phase 2 score

26 Do while elapsed time < t
27 BestModel ← remove MB structure with highest phase 2 score from Q
28 BestScore ← phase 2 score of BestModel
29 For every possible global operator O that can be applied to BestModel
30 Apply O to BestModel to derive Model
31 Score Model with phase 2 score
32 Add Model to Q
33 End for

34 If BestScore > ε
35 Add BestModel to R
36 Else
37 Terminate do
38 End if
39 End do

40 Return R

Figure 4-8: Pseudocode for the two-phase (phase 1 and phase 2) search procedure used by the
PSMBg algorithm. Phase 1 uses greedy hill-climbing search while phase 2 uses best-first search.

 110

ProcedureGlobalSearchForPSMBl

// phase 1 greedy hill-climbing search
1 R ← empty set
2 BestMB ← empty graph
3 Score BestMB with phase 1 score
4 BestScore ← phase 1 score of BestMB
5 Add BestMB to R

6 Do
7 For every possible global operator O that can be applied to BestMB
8 Apply O to BestMB to derive MB
9 For every MBNode in MB whose parent nodes have been modified by O do

 ProcedureLocalSearchForPSMBl(MBNode, MBNodeParents)
10 Score MB with phase 1 score
11 MBScore ← phase 1 score of MB
12 If MBScore > BestScore
13 BestMB ← MB
14 BestScore ← MBScore
15 FoundBetterMB ← True
16 End if
17 End for

18 If FoundBetterMB is True
19 Add BestMB to R
20 Else
21 Terminate do
22 End if
23 End do

 // phase 2 best-first search
24 Q ← empty priority queue with maximum capacity w
25 Generate all successors for the MB structures in R and add them to Q
26 Score all MB structures in Q with phase 2 score

27 Do while elapsed time < t
28 BestMB ← remove MB structure with highest phase 2 score from Q
29 BestScore ← phase 2 score of BestMB
30 For every possible global operator O that can be applied to BestMB
31 Apply O to BestMB to derive MB
32 For every MBNode in MB whose parent nodes have been modified by O do

 ProcedureLocalSearchForPSMBl(MBNode, MBNodeParents)
33 Score MB with phase 2 score
34 Add MB to Q
35 End for

36 If BestScore > ε
37 Add BestMB to R
38 Else
39 Terminate do
40 End if
41 End do

42 Return R (continues on next page)

Figure 4-9: Pseudocode for the two-phase (phase 1 and phase 2) and two-tier (outer and inner)
search procedure used by the PSMBl algorithm. Figure continues on next page.

 111

ProcedureLocalSearchForPSMBl(MBNode, MBNodeParents, MB)
// inner loop greedy hill-climbing search
Inputs: MBNode: MB node for which a decision graph (DG) is to be located

 MBNodeParents: set of parent MB nodes of MBNode
 MB: current MB structure

43 BestDG ← decision graph for MBNode with a single leaf DGNode
44 Score BestDG with phase 1 score
45 BestScore ← phase 1 score of BestDG

46 Do
47 For every possible local operator O that can be applied to BestDG
48 Apply O to BestDG to derive DG
49 Score DG with phase 1 score
50 DGScore ← phase 1 score of DG
51 If DGScore > BestScore
52 BestDG ← DG
53 BestScore ← DGScore
54 FoundBetterDG ← True
55 End if
56 End for

57 If FoundBetterDG is not True
58 Terminate do
59 End if
60 End do

61 For each MBNodePa in MBNodeParents
62 If MBNodePa is not represented as a DGNode in BestDG
63 Remove MBNodePa from MBNodeParents
64 Remove arc from MBNodePa to MBNode in MB
65 End if
66 End for

67 Return MB

Figure 4-9: Continued from previous page. Pseudocode for the two-phase (phase 1 and phase 2)
and two-tier (outer and inner) search procedure used by the PSMBl algorithm. The procedure
ProcedureGlobalSearchForPSMBl is similar to the one used by the PSMBg algorithm shown in
Figure 4-8. The main difference is in the extra lines 9 and 32 which invoke an additional
procedure ProcedureLocalSearchPSMBl for the inner search. As in the PSMBg algorithm, the
PSMBl algorithm uses greedy hill-climbing in phase 1 and best-first search in phase 2. The inner
search procedure uses greedy hill-climbing. MBNode represents a node in the Markov blanket
(MB) while DGNode represents a node in a decision graph (DG).

 112

5.0 EXPERIMENTAL EVALUATION

The hypothesis put forth in Section 1.2 is that for at least some performance measures patient-

specific Bayesian network models predict better than population-wide models. This chapter

evaluates the merits of the patient-specific algorithms on several datasets including a synthetic

dataset, 21 datasets from the UCI Machine Learning repository (UCI datasets) and three medical

datasets.

Section 5.1 describes the UCI datasets and the medical datasets in detail. Section 5.2

gives details of preprocessing that includes descriptions of the handling of missing values and the

discretization of continuous variables. The algorithms are evaluated on five performance

measures that are described in Section 5.3. Several versions of the patient-specific algorithms

are used in the experiments and these are described in Section 5.4 along with the algorithms used

for comparison.

Sections 5.5 through 5.7 provide the experimental results. Section 5.5 describes the

experimental evaluation of the patient-specific algorithms on a small synthetic dataset. Section

5.6 gives results obtained from the PSMBg algorithm which searches in the model space of MB

structures that capture only global structure, and Section 5.7 gives results obtained from the

PSMBl algorithm which searches in the model space of MB structures that capture additional

local structure. The final section provides a summary of the results.

 113

5.1 DATASETS

The publicly available UCI Machine Learning Repository [80] has more than 100 datasets and

machine learning algorithms are often trained and validated on a subset of these datasets.

Twenty-one UCI datasets were selected; these datasets have between four and 60 predictor

variables and a single target variable that has between two and seven classes. The size of the

Table 5-1: Description of the UCI datasets used in the experiments described in this chapter. In
the column on predictors, the number of continuous (cnt) and discrete (dsc) predictors as well as
the total number of predictor variables (excluding the target variable) are given. In the column on
cases, the numbers of cases used in the experiments are given; this may be less than the total
number of cases in the original UCI dataset since cases with missing values were removed. In the
column on test method, “10-fold CV * 2” is short for 10-fold stratified cross-validation done
twice.

Dataset # Predictors
(cnt + dsc = total)

Classes # Cases Test Method

australian 6 + 8 = 14 2 690 10-fold CV * 2
breast-cancer 9 + 0 = 9 2 683 10-fold CV * 2
cleveland 6 + 9 = 13 2 296 10-fold CV * 2
corral 0 + 6 = 6 2 128 10-fold CV * 2
crx 6 + 9 = 15 2 653 10-fold CV * 2
diabetes 8 + 0 = 8 2 768 10-fold CV * 2
flare 0 + 10 = 10 2 1066 10-fold CV * 2
german 7 + 13 = 20 2 1000 10-fold CV * 2
glass2 9 + 0 = 9 2 163 10-fold CV * 2
glass 9 + 0 = 9 7 214 10-fold CV * 2
heart 13 + 0 = 13 2 270 10-fold CV * 2
hepatitis 6 + 13 = 19 2 80 10-fold CV * 2
iris 4 + 0 = 4 3 150 10-fold CV * 2
lymphography 0 + 18 = 18 4 148 10-fold CV * 2
pima 8 + 0 = 8 2 768 10-fold CV * 2
postoperative 1 + 7 = 8 3 87 10-fold CV * 2
sonar 60 + 0 = 60 2 208 10-fold CV * 2
vehicle 18 + 0 = 18 4 846 10-fold CV * 2
vote 0 + 16 = 16 2 435 10-fold CV * 2
wine 13 + 0 = 13 3 178 10-fold CV * 2
zoo 0 + 16 = 16 7 101 10-fold CV * 2

 114

datasets, the number and type of predictor variables, and the number of classes (states) taken by

the target variable are given in Table 5-1. In addition to the UCI datasets, three medical datasets

with five target variables were used in the experiments (see Table 5-2). Each target variable in a

medical dataset represents a clinically relevant patient outcome like mortality or the occurrence

of a clinical condition. In the following sections, the medical datasets are described in detail.

5.1.1 Pneumonia

Community acquired pneumonia (CAP) is an important clinical condition, both from a resource-

utilization and a patient-outcome point of view. Pneumonia affects over three million people

annually in the U.S. [81] and is the sixth leading cause of death [82]. Accurate evaluation of

CAP patients in the Emergency Department followed by appropriate treatment (including the

decision whether to admit to the hospital or not) is an important clinical problem.

Pneumonia Dataset. The pneumonia data comes from the Pneumonia Patient Outcomes

Research Team (PORT) project and was collected during October 1991 to March 1994 from five

Table 5-2: Description of the medical datasets used in the experiments described in this chapter.
In the column on predictors, the number of continuous (cnt) and discrete (dsc) predictors as well
as the total number of predictor variables (excluding the target variable) are given. All outcome
variables that were studied are binary. The last column gives the number of cases in the training
set and the test set respectively.

Dataset # Predictors
(cnt + dsc = total)

Outcome variable # Classes # Cases # Train + # Test

pneumonia 120 + 36 = 156 dire outcome 2 2287 1601 + 686

sepsis-d 7 + 14 = 21 death 2 1673 1115 + 558

sepsis-s 7 + 14 = 21 severe sepsis 2 1673 1115 + 558

heart failure-d 11 + 10 = 21 death 2 11178 7453 + 3725

heart failure-c 11 + 10 = 21 complication incld. death 2 11178 7453 + 3725

 115

hospitals in three geographical regions: Pittsburgh, Boston, and Halifax, Nova Scotia. The

dataset has 2287 CAP hospitalized and ambulatory care patients many of whom where seen in

the Emergency Department. One purpose of the project was to develop accurate criteria for

prognosis of patients with CAP that could help physicians assess their risks and provide guidance

on which patients should be hospitalized. Fine et al. [83] developed a scoring system called the

Pneumonia Severity Index (PSI) for stratifying patients with CAP with respect to 30-day

mortality. The PSI was derived from 20 demographic and clinical variables that were selected

using regression analysis. This dataset has been extensively analyzed with machine learning

algorithms for predicting various outcomes [84].

Pneumonia Predictor Variables. The PORT project collected data on more than 150

patient variables including demographic data and findings on admission like co-existing diseases,

symptoms, signs, initial laboratory tests, and initial medications.

For the experiments, 156 patient variables were selected as predictors; these variables are

typically available in the Emergency Department at the time the decision whether to admit or not

is made. The variables include demographic information, history and physical examination

information, laboratory results, and chest X-ray findings. Of the 156 variables, 120 are discrete

and the remaining 36 are continuous. A majority of the discrete variables are binary and the rest

have between three to seven values. The 36 continuous variables are derived mainly from

laboratory tests and were discretized based on thresholds provided by clinical experts on the

PORT project.

Pneumonia Outcome Variables. Several patient outcomes on both inpatients and

outpatients were measured at 30 days in the PORT project. The binary outcome variable selected

for prediction is called dire outcome. A patient was considered to have experienced a dire

 116

outcome if any of the following occurred: (1) death within 30 days of presentation, (2) an initial

intensive care unit admission for respiratory failure, respiratory or cardiac arrest, or shock, or (3)

the presence of one or more specific, severe complications. Based on these criteria, 261 patients

(11.4%) had a dire outcome.

5.1.2 Sepsis

Sepsis is a syndrome of systemic inflammation in response to infection that leads to complex

physiologic and metabolic changes and can result in multi-system organ dysfunction [85]. Sepsis

occurs in more than 450,000 individuals annually in the U.S. and is associated with a 30%

mortality rate [86]. The incidence of sepsis is rising in the U.S. and hospital care of sepsis is a

significant cost to the healthcare system [87]. Thus, considerable research is underway towards a

fuller understanding of the complex pathophysiology of human sepsis, including the

identification of markers predictive of response to specific therapies and subsequent outcomes

[88].

Sepsis Dataset. The sepsis data comes from the GenIMS (Genetic and Inflammatory

Markers of Sepsis) project that has collected data on 2320 patients with community acquired

pneumonia who presented to the emergency departments of 30 hospitals in southwestern

Pennsylvania, Connecticut, Michigan and Tennessee. These patients were followed during their

hospitalization for the development of sepsis. The aims of the GenIMS project include

investigating the relationships among genetic polymorphisms, inflammatory mediator response,

and clinical course and outcome.

Sepsis Predictor Variables. The GenIMS project collected data on 108 clinical variables

at the time of patient enrollment in the study and 99 clinical variables on a daily basis during the

 117

period of hospitalization. In addition, the project collected data on five inflammatory mediators

and on 29 genes that are believed to be involved in sepsis. The genetic data include information

on single nucleotide polymorphisms (SNPs), short tandem repeat (STR) polymorphisms, and

variable-number-tandem-repeat (VNTR) polymorphisms within the regulatory and coding

regions of these genes.

The experimental datasets consist of 21 variables as predictors that include three

demographic variables, six clinical variables, one inflammatory marker and 10 genetic variables.

These variables were selected by the GenIMS project investigators for analysis of a subset of the

dataset to investigate the role of the macrophage migration inhibitory factor (MIF) gene in the

susceptibility, severity, and outcome of community-acquired pneumonia.

Sepsis Outcome Variables. Several outcomes including include death, severe sepsis,

interventions such as mechanical ventilation, and hospital length of stay were measured in the

project. Two binary outcome variables were selected for prediction: (1) death within 90 days of

inclusion in the study, and (2) the development of severe sepsis during the study.

5.1.3 Heart Failure

Heart failure is an acute and chronic condition that affects 5 million people in the U.S. [89]

leading to one million hospital admissions each year with a primary discharge diagnosis of heart

failure and another two million with a secondary discharge diagnosis of this condition [90].

Hospital care for heart failure accounts for a significant portion of annual healthcare expenditure

in the U.S. Accurate evaluation of heart failure patients in the Emergency Department followed

by appropriate treatment (including the decision whether to admit to the hospital or not) is an

important clinical problem. However, existing heart failure predictive models and guidelines

 118

have limited utility in this setting because they are based on narrowly defined patient subgroups

rather than the broad spectrum of heart failure patients treated in the Emergency Department, or

they rely on clinical data unavailable in this setting [91].

Heart Failure Dataset. The Heart Failure dataset includes 33,533 heart failure patients

who were hospitalized from the Emergency Departments of 180 general acute care hospitals in

Pennsylvania for the year 1999. Overall, 1498 (4.5%) patients died during hospitalization.

Among survivors at hospital discharge, 2269 (6.8%) experienced a serious medical complication.

This dataset has been analyzed by the original investigators to construct a prediction rule to

identify patients who are at low risk of death and serious complications [92].

Heart Failure Predictor Variables. The Heart Failure dataset contains data on

numerous variables that were collected the day of admission or the day before admission if the

patient was already in the Emergency Department at that time. Such information includes

demographic data, historical and physical examination findings, and electrocardiographic,

routine laboratory tests and radiographic findings at the time of admission.

The experimental datasets consist of 21 variables as predictors that include demographic,

clinical, laboratory, electrocardiographic and radiographic findings. These variables had been

identified as good predictors during the construction of a prediction rule by the original

investigators [92].

Heart Failure Outcome Variables. Outcome variables that were recorded in the study

included death from any cause and several serious medical complications that occurred during

the hospitalization. A patient was counted as having a serious medical complication if he or she

experienced a life-threatening clinical condition or received a life-saving inpatient treatment.

Life-threatening clinical conditions included were acute myocardial infarction, ventricular

 119

fibrillation, cardiogenic shock, and cardiac arrest. Life-saving inpatient treatments were: (1)

resuscitation defined as intubation or mechanical ventilation not initiated during surgery, cardiac

compression, resuscitation, defibrillation, and (2) reperfusion therapy defined as coronary artery

bypass graft surgery, percutaneous transluminal coronary angioplasty, or intravenous

thrombolytics.

Two binary outcome variables were selected for prediction: (1) the occurrence of death

from any cause during the hospitalization, and (2) the development of a serious medical

complication (including death) during the hospitalization.

5.2 PREPROCESSING

This section describes the several preprocessing steps that were carried out on the datasets.

Since, the patient-specific algorithms do not currently handle continuous variables or missing

values, the continuous variables were discretized and missing values were either imputed or

eliminated.

Training and test sets. The UCI datasets were evaluated with two stratified 10-fold

cross-validation. Hence, each UCI dataset was split twice into 10 stratified training and test folds

to create a total of 20 training and test folds. All experiments were carried out on the same set of

20 training and test folds. The medical datasets were each evaluated with a single training and

test set. For each medical dataset associated with a specific outcome, the training set was created

by randomly sampling from the entire dataset such that both the training and the test datasets had

approximately the same proportion of cases with the positive outcome. The training set included

approximately 70% of the dataset and the test set the remaining 30%. The numbers of cases in

 120

Impute(dataset, Dist(i, j))
Inputs: dataset with N cases and F features
 Dist(i, j): distance metric defined on cases i and j that have no missing values

1 Repeat until convergence (i.e., no change in the estimates of the unknown values)

or until some fixed number of iterations has been reached:
2 For c∈ },...,1{ N
3 For f ∈ },...,1{ F
4 If value[c, f] = unknown
5 Re-impute value[c, f] using 1-Nearest Neighbor:
6 Produce a new estimate of value[c, f] by setting it to

value[n, f] where n is the nearest neighbor case to c. The
nearest neighbor case n is the case where value[n, f] ≠
missing and Dist(c, n) is the least.

7 End if
8 End for
9 End for

Dist(i, j)
Input: cases i and j that have no missing values and have F features

10 distance ←0
11 For f ∈ },...,1{ F
12 If f is a continuous variable
13 distance ← square(value[i, f] – value[j, f]) + distance
14 End if
15 If f is a nominal variable
16 distance ← 1 + distance if value[i, f] = value[j, f]
17 distance ← 0 + distance if value[i, f] ≠ value[j, f]
18 End if
19 End for
20 Return distance

the training and test sets for the medical datasets are given in Table 5-2. The original Heart

Failure dataset contains 33,533 cases. However, for the experiments described in this chapter

only one-third of the cases that were randomly selected from the original dataset were used. This

was done to reduce the running times of the patient-specific algorithms to several days from the

several weeks that would be needed if the complete dataset was used.

Figure 5-1: Pseudocode for non-parametric imputation of missing values using 1-Nearest
Neighbor (modified from [93]). In the pseudocode, values that are missing in the original dataset
are called “unknown” (as opposed to “known” values that are never missing) and values that have
not yet been filled-in by the algorithm are called “missing”.

 121

Missing values. For the UCI datasets, any case that had one or more missing values was

removed from the dataset, as is done in [68]. Sixteen of the 21 UCI datasets have no missing

values and no cases were removed. In the remaining five datasets, removal of missing values

resulted in a decrease in the size of the dataset of less than 10%.

The medical datasets have a large proportion of missing values and eliminating cases

with missing values would have led to substantial reduction in the size of the datasets. Instead,

the missing values were imputed using an iterative non-parametric imputation algorithm

described by Caruana [93]. The pseudocode for this algorithm is given in Figure 5-1. This

method had previously been applied to fill in missing predictor values for the pneumonia dataset

with good results [93].

Discretization. All target variables in all the datasets are discrete. However, some of the

predictor variables are continuous (numerical) as indicated in Tables 5-1 and 5-2. All continuous

variables were discretized using the method described by Fayyad and Irani [94]. This is an

entropy based method that analyzes the values of a continuous variable and creates thresholds

such that the resulting intervals have high information gain. The discretization thresholds were

determined only from the training sets and then applied to both the training and test sets.

5.3 PERFORMANCE MEASURES

Many methods and measures are available to measure the performance of classifiers and

predictive algorithms [95, 96]. The performance of the algorithms was evaluated on two

measures of discrimination and three probability measures. The discrimination measures used are

the misclassification error (ERR) and the area under the ROC curve (AUC). The discrimination

 122

Table 5-3: Brief description of the performance measures used in evaluation of the performance
of the algorithms. For the AUC, scores closer to 1 indicate better performance. For the remaining
measures, scores closer to 0 indicate better performance.

Performance measure Abbreviation Range Best score

misclassification error ERR [0, 1] 0
area under the ROC curve AUC [0, 1] 1
mean squared error / Brier score MSE [0, 2] 0
mean logarithmic loss / mean cross entropy MXE [0, ∞) 0
calibration score CAL [0, 1] 0

measures evaluate how well the algorithm differentiates among the various classes (or values of

the target variable). The probability measures considered are the logarithmic loss or cross

entropy (MXE), Brier score or squared error (MSE), and calibration (CAL). The probability

measures are uniquely minimized (in expectation) when the predicted value for the target of each

case coincides with the true probability of that case taking that target value. A brief description

of the measures is given in Table 5-3.

5.3.1 Misclassification error (ERR)

Misclassification error (or its complement classification accuracy) is probably the most widely

used performance measure for evaluating classifiers and prediction algorithms. It is defined as

the proportion of incorrect class predictions the algorithm makes relative to the size of dataset. If

an algorithm produces a continuous output, as in the case of a probabilistic classifier, then the

class with the highest value of the output is declared to be the predicted class. Misclassification

error is sometimes a poor criterion for assessing performance since it makes the implicit

assumption that costs of the different kinds of misclassification are equal; an assumption that

often does not hold in practice. For example, falsely diagnosing a deadly disease in a healthy

 123

person is typically considered a less costly error than not diagnosing the disease when it is

actually present.

Misclassification error is computed as the number of misclassifications divided by the

total number of cases in the dataset. It varies from 0 to 1 with 0 representing perfect

classification.

5.3.2 Area under the ROC curve (AUC)

The Receiver Operating Characteristic (ROC) curve is defined only for a binary target and is a

plot of the sensitivity versus (1 – specificity) for all possible thresholds. Given two classes,

namely, class 0 and class 1 that the target variable can take, sensitivity is defined as the

probability of predicting correctly a case that belongs to class 1 and specificity is defined as the

probability of predicting correctly a case that belongs to class 0. The area under the ROC curve

(AUC) is typically used as a summary statistic of discrimination. The AUC is equivalent to the

probability that a randomly chosen case from class 0 will have a smaller predicted probability of

belonging to class 1 than a randomly chosen case from class 1. Based on this interpretation, the

binary class AUC can be estimated as follows:

10

000 2/)1(
)1|0(ˆ

nn
nnS

AAUCbinary
+−

=≡ , (5.1)

where S0 is the sum of the ranks of the cases that belong to class 0, after the cases have been

ranked in ascending order of the predicted probability of belonging to class 0; n0 is the number of

cases that belong to class 0 and n1 is the number of cases that belong to class 1 [97, 98]. The

AUC is generally considered superior to misclassification error since it is independent of costs,

priors and any classification threshold.

 124

Several extensions of the AUC from binary to multiple classes have been described,

which include the volume under the ROC surface [99] and the mean of the AUCs obtained by

aggregation over all pairs of classes [98, 100]. For multiple classes, say c classes, the method

described by Hand and Till [98] is used for computing the AUC, as follows:

∑
<−

=
ji

multiclass jiA
cc

AUC),(ˆ
)1(

2 , (5.2)

where

2
)|(ˆ)|(ˆ

),(ˆ ijAjiAjiA +
= , (5.3)

such that represents the binary class AUC when only classes i and j are considered and is

computed using Equation 5.1.

)|(ˆ jiA

The AUC varies from 0 to 1 with 1 representing perfect discrimination.

5.3.3 Brier score or mean squared error (MSE)

Let a binary target variable Yi take on values in {0, 1}, and let yi denote an indicator variable

such that yi = 1 if Yi = 1 and yi = 0 if Yi = 0. Let pi denote the predicted probability that Yi for

case i takes the value 1. The mean squared error or the Brier score for a dataset of n cases is

defined as [101]:

∑
=

−=
n

i

ii
binary py

n
MSE

1

2)(1 . (5.4)

If the predicted probabilities pi are constrained to be equal to 0 or 1, the Brier score is equal to

the misclassification error. The Brier score is a probability measure and depends on the predicted

 125

values and not merely on the ranking of the cases based on the values (as in the AUC) or how the

values fall relative to a threshold (as in the misclassification error).

The MSE or the generalized Brier score for the multiclass case is a natural extension of

the binary case [102]. Let a target variable Yi take on values in {0, 1, …, K-1}, and let yik denote

an indicator variable such that yik = 1 if Yi = k and Yi = 0 otherwise, where k = {0, 1, …, K-1}.

Let pik denote the predicted probability of class k for case i. The generalized Brier score is

defined as:

 ∑∑
=

−

=

−=
n

i

K

k

ikik
multiclass py

n
MSE

1

1

0

2)(1 . (5.5)

The Brier score ranges from 0 to 2 with a score of 0 indicating perfect predictive

performance.

5.3.4 Mean logarithmic loss or mean cross-entropy (MXE)

Mean logarithmic loss or mean cross entropy is another probability measure. Let a binary target

variable Yi take on values in {0, 1}, and let yi denote an indicator variable such that yi = 1 if Yi =

1 and yi = 0 if Yi = 0. Let pi denote the predicted probability that Yi for case i takes the value 1.

The mean logarithmic loss for a dataset of n cases is defined as [103]:

)1log()1()log(1
1

i
n

i

iii
binary pypy

n
MXE −−−−= ∑

=

. (5.6)

For the multiclass case, the mean logarithmic loss is defined in a similar fashion to the

generalized Brier score [104]:

∑∑
=

−

=

−=
n

i

K

k

ikik
multiclass py

n
MXE

1

1

0
)log(1 , (5.7)

where yik and pik are defined as in the preceding section.

 126

The logarithmic loss ranges from 0 to ∞ with a score of 0 indicating perfect predictive

performance, meaning that a probability of 1 was assigned to the correct state of Yi in very case.

5.3.5 Calibration score (CAL)

The calibration score, CAL, was developed by Caraua [96] and is based on reliability diagrams

[105]. Let a binary target variable Yi take on values in {0, 1}, and let yi denote an indicator

variable such that yi = 1 if Yi = 1 and yi = 0 if Yi = 0. Let pi denote the predicted probability that Yi

for case i takes the value 1. The calibration score is calculated as follows. Order all cases by pi,

and put cases 1 to c in the same bin, where c is a suitable number that is smaller than the total

number of test cases. Calculate the proportion of these cases where Yi = 1; this proportion

approximates the true probability that in these cases Yi takes the value 1. Then calculate the mean

prediction for these cases. The absolute value of the difference between the observed proportion

and the mean prediction is the calibration error for this bin. Similarly, compute the calibration

errors for the bins containing cases 2 to (c + 1), 3 to (c + 1), and so on. Then, CAL is the grand

mean of the calibration errors of all the bins. For the experiments reported in this chapter, c was

set to 50. This value of c provided an adequate number of bins since the number of test cases was

not less than 50 for any dataset.

For the multiclass case, as before, let pik denote the predicted probability of class k for

case i. The CAL score is computed separately for each class k over all the cases. The final CAL

score is the mean of the k CAL scores.

The CAL score ranges from 0 to 1 with a score of 0 indicating perfect calibration.

 127

5.4 MACHINE LEARNING ALGORITHMS

Several versions of the patient-specific algorithm were evaluated on the UCI and the medical

datasets and their performance compared with six machine leaning methods that are commonly

used for developing clinical prediction models.

5.4.1 Patient-specific algorithms

Six versions of the patient-specific algorithms are used in the experiments described later in this

chapter. They are listed in Table 5-4. The PSMBg, PSMBg-MS and the NPSMBg algorithms all

use MB structures with the complete decision tree representation for CPDs that captures only the

global MB structure (hence the suffix “g” in the acronym). The PSMBg algorithm is described in

detail Section 4.4.1 and it performs selective model averaging to estimate the distribution of the

target variable of the case at hand (i.e., the test case). The MB structures used for the model

averaging are selected through a two-phase search, where phase 1 of the search is non patient-

specific while phase 2 of the search is patient-specific. Phase 1 uses greedy hill-climbing search

that terminates at a local maximum and phase 2 uses best-first search and terminates when no

candidate MB structure has a score higher than a small value ε or when a period of time t has

elapsed, where ε and t are user specified. The PSMBg-MS algorithm is a model selection version

of the PSMBg algorithm. It chooses the MB structure that has the highest posterior probability

from those selected by the PSMBg algorithm in the two-phase search, and uses that single model

to estimate the distribution of the target variable of the case at hand. Comparing the PSMBg

algorithm to the PSMBg-MS algorithm measures the effect of approximating the selective model

averaging by model selection. When the training dataset is large the performance of the PSMBg

 128

algorithm and the PSMBg-MS algorithm may be similar if a single model with a relatively large

posterior probability overwhelms the contributions of the remaining models during model

averaging.

The NPSMBg algorithm is the non-patient-specific (i.e., population-wide) version of the

PSMBg algorithm. Phase 1 of the NPSMBg algorithm is identical to that of the PSMBg

algorithm. In phase 2, the NPSMBg algorithm accumulates the same number of models as the

PSMBg algorithm except that the MB structures are identified on the basis of the non-patient-

specific phase 1 score. Thus, the NPSMBg algorithm averages over the same number of models

as the PSMBg algorithm. Comparing the PSMBg algorithm to the NPSMBg algorithm measures

the additional effect of the patient-specific heuristic on the performance of model averaging

Table 5-4: Six versions of the patient-specific algorithm with a brief description of each one.

Acronym Algorithm Phase1 Phase 2 Prediction

PSMBg
Patient-specific
Markov blanket
(global)

Is non-patient-specific
Uses greedy hill-climbing
Uses phase 1 score

Is patient-specific
Uses best-first
Uses phase 2 score

By model averaging
over models selected
in phase 1 and phase 2

PSMBg-MS

Patient-specific
Markov blanket
(global) –
Model Selection

Same as PSMBg Same as PSMBg Based on the highest
scoring model from
models selected by
PSMBg

NPSMBg

Non-patient-
specific Markov
blanket (global)

Is non-patient-specific
Uses greedy hill-climbing
Uses phase 1 score

Is non-patient-specific
Uses best-first
Uses phase 1 score

By model averaging;
number of selected
models is the same as
in PSMBg

PSMBl
Patient-specific
Markov blanket
(local)

Is non-patient-specific
Uses greedy hill-climbing
Uses phase 1 score

Is patient-specific
Uses best-first
Uses phase 2 score

By model averaging
over models selected
in phase 1 and phase 2

PSMBl-MS

Patient-specific
Markov blanket
(local) – Model
Selection

Same as PSMBl Same as PSMBl Based on the highest
scoring model from
models selected by
PSMBl

Non-patient-
specific Markov
blanket (local)

Is non-patient-specific
Uses greedy hill-climbing
Uses phase 1 score

Is non-patient-specific
Uses best-first NPSMBl Uses phase 1 score

By model averaging;
number of selected
models is the same as
in PSMBl

 129

realized by a non-patient-specific (i.e., population-wide) method.

The PSMBl, PSMBl-MS and the NPSMBl algorithms are very similar to the PSMBg,

PSMBg-MS and the NPSMBg algorithms respectively, and differ from them in two respects.

First, they use MB structures with the decision graph representation for CPDs that captures both

global and local MB structure (hence the suffix “l” in the acronym). Second, the two-phase

search procedure of the global algorithms is supplemented with an inner search procedure.

Specifically, for each phase of the search, the local algorithms use a nested search procedure: an

outer search procedure (which is the same as in the PSMBg algorithm) that applies the global

operators to generate global MB structures and in inner search procedure (which is new to the

PSMBl algorithm) that applies local operators to generate local structures. Note that the inner

and outer search procedures are distinct from the two phases of the search. In summary, the

PSMBl algorithm employs a two-phase two-tier search as follows. The outer search procedure of

phase 1 uses greedy hill-climbing and the outer search procedure for phase 2 uses best-first

search just as in the PSMBg algorithm. The inner search procedures for both phase 1 and phase 2

use greedy hill-climbing. The PSMBl algorithm is described in detail Section 4.4.2.

5.4.2 Comparison algorithms

The performance of the patient-specific algorithms is compared to the following methods: (1)

naïve Bayes (NB), (2) C4.5 decision tree (DT), (3) logistic regression (LR), (4) neural networks

(NN), (5) k-Nearest Neighbor (kNN), and (6) Lazy Bayesian Rules (LBR). The first five methods

are among the commonest multivariate techniques currently applied in developing clinical

prediction models [17]. The first four are representative population-wide methods, and the next

two are examples of patient-specific methods. kNN is a similarity-based patient-specific method.

 130

The LBR algorithm induces a rule tailored to the features of the test case that is then used to

classify it and is described in detail in Section 2.8. It is an example of a model-based patient-

specific method that performs model selection. For all the six methods listed above, the

implementations in the Weka software package (version 3.4.3) were used. The Weka software

package is available freely from the Weka machine learning project at the University of Waikato,

New Zealand [103].

5.5 EVALUATION ON SYNTHETIC DATA

This section describes the evaluation of the PSMBg and PSMBl algorithms on a small synthetic

dataset. The synthetic domain consists of five binary variables A, B, C, D, Z where Z is a

deterministic function of the other variables:

)(DCBAZ ∧∧∨= .

This function implies the value-specific independence relation)|,,(TADCBZ =⊥ that can be

represented explicitly by a MB with local structure (i.e., with a decision graph) but not by a MB

with global structure (i.e., with a CPT or a complete decision tree). The training and the test sets

used in the experiments are shown in Figure 5-2. The training set simulates a low occurrence of

A = T (only five out of 69 cases have A = T), and the test set consists of three cases of A = T

which are not present in the training set.

The following algorithms were used in the experiments: (1) a complete model averaged

version of the PSMBg algorithm where model averaging is carried over all 3567 possible MB

structures, (2) the PSMBg algorithm, (3) the NPSMBg algorithm, (4) the PSMBl algorithm, and

(5) the NPSMBl algorithm.

 131

The settings used for the PSMBg and PSMBl algorithms are as follows:

• Phase 1: The model score for phase 1 is the Bayesian score computed using

Equation 4.11 for the PSMBg algorithm and Equation 4.15 for the PSMBl

algorithm, with a Dirichlet parameter prior with hyperparameters 1=ijkα for all i,

j, k. Phase 1 uses greedy hill-climbing search that terminates at a local maximum.

• Phase 2: The model score for phase 2 is computed using Equation 4.18 that is

based on KL-divergence. Phase 2 uses best-first search with a priority queue Q

whose maximum capacity w is set to 1000. Phase 2 search terminates when no

MB structure in Q has a phase 2 score higher than ε = 0.001 for 10 consecutive

iterations of the search. The maximum period of running time t for phase 2 was

not specified since the algorithm terminated in a reasonable period of time with

the specified value for ε.

Training set

A,B,C,D,Z
T,F,F,F,T
T,F,T,F,T
T,T,F,T,T
T,T,T,F,T
T,T,T,T,T
F,F,F,F,F
F,F,F,T,F
F,F,T,F,F
F,F,T,T,F
F,T,F,F,F
F,T,F,T,F
F,T,T,F,F
F,T,T,T,T

Test set

A,B,C,D,Z
T,F,F,T,T
T,T,F,F,T
T,F,T,T,T

Repeated 8 times

Figure 5-2: Training and test datasets derived from the deterministic
function)(DCBAZ ∧∧∨= . The training set contains a total of 69 cases and the test set a
total of three cases as shown; the test cases are not present in the training set. The training set
simulates low prevalence of A = T since only five of the 69 cases have this variable value
combination.

 132

• The predicted distribution for the target variable of the test case is computed using

Equation 4.16; for each MB structure the parameters are estimated using

Equation 4.6.

5.5.1 Results

The results are given in Table 5-5. All performance measures except the AUC were computed

for the test set of three cases. The AUC could not be computed since all the cases in the test set

are from the same class, Z = T. The results from complete model averaging represent the best

achievable performance given the training set and the class of MB models with global structure.

The PSMBg and the NPSMBg algorithms that average over a subset of all models had poorer

performance than complete model averaging. However, the PSMBg algorithm improved over the

performance of the NPSMBg algorithm. Though both methods average over the same number of

models, the PSMBg algorithm uses the patient-specific phase 2 score to choose phase 2 models

Table 5-5: Results obtained from the training and test sets that are shown in Figure 5-2. The
AUC could not be computed since the test set has cases from a single class. Results in the first
column are obtained by model averaging over all 3567 MBs with global structure. Similar
complete model averaging over all MBs with local structure is not given since it was not
tractable.

Performance measure

PSMBg
complete

model
averaged

PSMBg NPSMBg PSMBl NPSMBl

Misclassification error 0.0000 0.0000 0.3333 0.0000 0.0000
- - - - AUC -

Logarithmic loss 0.0684 0.0783 0.0862 0.0184 0.0183
Squared error 0.0406 0.0505 0.0585 0.0042 0.0042
CAL score 0.3720 0.4092 0.4284 0.1106 0.1103

 133

while the NPSMBg algorithm uses the non-patient-specific phase 1 score to choose both phase1

and phase 2 models. The phase 2 models chosen by the PSMBg algorithm are potentially

different for each test case in contrast to the NPSMBg algorithm which selects the same models

irrespective of the test case. This result provides support that the patient-specific search for

models is able to choose models that better approximate the distribution of the target variable of

the case at hand.

Figure 5-4 plots the estimate of P(Z = T) for each test case as it varies with each addition

of a model to the set of models being averaged over. A second curve plots the model score as the

logarithmic posterior probability of the model given the data; this score measures the relative

contribution of the model to the final estimate of P(Z = T). Each row in the figure contains a pair

of plots for a single test case, the plot on the left is obtained from the PSMBg algorithm and the

corresponding plot on the right is obtained from the NPSMBg algorithm. The plot for the

estimate of P(Z = T) is shown in black while the plot for the model score is shown in gray. In

(a)

A B C D

Z

D

C

T

Z Z

A

F

B

F

F

F

T

T

T

(b)

Figure 5-3: Markov blanket model with the best score discovered by the PSMBl algorithm for the dataset
given in Table 5-2. The global structure is given in (a) and the corresponding local structure for Z is given by
the decision graph in (b). All other nodes from A through D have local structures consisting of a single DG
node.

 134

each plot, on going from left to right, the estimate of P(Z = T) initially fluctuates widely and then

settles to a stable estimate as the number of models providing the estimate increases. In the first

two test cases the final estimates of P(Z = T) obtained from the patient-specific and non-patient-

specific model averaging respectively are very close; both the PSMBg and the NPSMBg

algorithms predicted the value of Z correctly as T. In the third test case, the final estimates of

P(Z = T) are quite different; the PSMBg algorithm predicted the value of Z correctly as T while

the NPSMBg algorithm predicted the value of Z incorrectly as F.

Table 5-5 also gives the results obtained from the PSMBl and NPSMBl algorithms.

Complete model averaging over the space of MB with local structures could not be carried out

since the number of models in this space is too large to be tractable. Both the PSMBl and

NPSMBl algorithms have similar performance on the three test cases and show considerable

improvement in logarithmic loss, squared error and the CAL score over the PSMBg algorithms.

Their performance is also better than that of complete model averaging over MBs with global

structure. This is due the fact that the generating model can be represented exactly by a MB with

local structure. One such structure is shown in Figure 5-3; this structure was discovered by both

the PSMBl and the NPSMBl algorithms as the best scoring structure. For the three test cases the

PSMBl algorithm produced estimates of P(Z = T) that are only marginally different from those

produced by the NPSMBl algorithm, and the two algorithms are nearly indistinguishable on all

the performance measures.

 135

Figure 5-4: Plots of model averaged estimate of P(Z = T) and the model score obtained by the
PSMBg and the NPSMBg algorithms on the three test cases given in Figure 5-2. Each row
represents a single test case with the plot on the left obtained from the PSMBg algorithm and the
plot on the right obtained from the NPSMBg algorithm. The value of the final averaged estimate
of P(Z = T) is the point where the black curve meets the Y-axis on the right.

0

0.2

0.4

0.6

0.8

1

1 5 9 13 17

model count

21 25
-210

-205

-200

-195

-190

-185

-180

-175

m
od

el
 s

co
re

P(Z=T) model score

0

0.2

0.4

0.6

0.8

1

1 5 9 13 17 21 25

model count

-210

-205

-200

-195

-190

-185

-180

-175

m
od

el
 s

co
re

P(Z=T) model score

Te
st

 c
as

e
1

P(
Z=

T)

P(
Z=

T)

0

0.2

0.6

0.8

1

1 5 9 13 17 21 25 29

model count

0.4

-210

-205

-200

-195

-190

-185

-180

-175

m
od

el
 s

co
re

0

0.2

0.4

0.6

0.8

1

1 5 9 13 17 21 25 29

model count

-210

-205

-200

-195

-190

-185

-180

-175

m
od

el
 s

co
re

Te
st

 c
as

e
2

P(
Z=

T)

P(
Z=

T)

0

0.2

4

0.6

0.8

1

1 5 9 13 17 21 25

model count

0.

-210

-205

-200

-195

-190

-185

-180

-175

m
od

el
 s

co
re

0

0.2

4

0.6

0.8

1

1 5 9 13 17 21 25

model count

-210

-205

-200

-195

-190

-185

-180

-175

m
od

el
 s

co
re

0.

Te
st

 c
as

e
3

P(
Z=

T)

P(
Z=

T)

 136

The best scoring structure shown in Figure 5-3 was the last structure discovered in phase

1 by both the PSMBl and the NPSMBl algorithms. This structure has a posterior probability

about 200 times larger than the next best structure, and thus its estimate of Z contributes to a

great extent to the final model averaged estimate of Z. This explains the lack of improvement in

performance of the PSMBl algorithm over the NPSMBl algorithm. In contrast, several structures

with similar posterior probabilities were found by the PSMBg and the NPSMBg algorithms and

the final model averaged estimate of Z was not dominated by the estimate obtained from a single

structure.

5.6 EVALUATION OF THE PSMBG ALGORITHM

This section describes the evaluation of the PSMBg algorithm on 21 UCI datasets and three

medical datasets. The performance of the PSMBg algorithm is compared to that of the PSMBg-

MS and the NPSMBg algorithms which are described in Section 5.4.1, and also to that of the six

comparison machine learning methods which are described in Section 5.4.2. To recall, the

PSMBg algorithm selects MB structures for model averaging using a two-phase search where

phase 2 is patient-specific, the PSMBg-MS algorithm is a model selection version of the PSMBg

algorithm that measures the effect of approximating the model averaging by model selection, and

the NPSMBg algorithm is a non-patient-specific (i.e., population-wide) version of the PSMBg

algorithm that measures the additional effect of the patient-specific heuristic on the performance

of model averaging that can be achieved by a non-patient-specific method.

 137

5.6.1 Experimental design

The experimental design is as follows:

• For each dataset, a total of 10 machine learning algorithms were run: PSMBg,

PSMBg-MS, NPSMBg, NB, DT, LR, NN, kNN, LBR and ZR.

• The datasets used in the experiments are the 21 UCI datasets (listed in Table 5-1)

and the three medical datasets with five target variables (listed in Table 5-2).

• Summary statistics were measured using 10-fold stratified cross-validation done

twice (for a total of 20 training-test pairs) for the UCI datasets and a single

training-test pair for the medical datasets. The summary statistics were computed

for misclassification error, the AUC, logarithmic loss, squared error and the CAL

score.

• The statistical tests performed were (1) significance testing with the Wilcoxon

paired-samples signed ranks test, and (2) effect size testing with paired-samples t

test.

The settings for the PSMBg algorithm are as follows:

• Phase 1: The model score for phase 1 is the Bayesian score computed using

Equation 4.11, with a Dirichlet parameter prior with hyperparameters 1=ijkα for

all i, j, k. Phase 1 uses greedy hill-climbing search that terminates at a local

maximum.

• Phase 2: The model score for phase 2 is computed using Equation 4.18 that is

based on KL-divergence. Phase 2 uses best-first search with a priority queue Q

whose maximum capacity is set to 1000. Phase 2 search terminates when no MB

 138

structure in Q has a phase 2 score higher than ε = 0.001 for 10 consecutive

iterations of the search. The maximum period of running time t for phase 2 was

not specified since the algorithm terminated in a reasonable period of time on all

the datasets with the specified value for ε.

• The predicted distribution for the target variable of the test case is computed using

Equation 4.16; for each MB structure the parameters are estimated using

Equation 4.6.

5.6.2 Results

Tables 5.6 to 5.10 report the means of the misclassification error, the AUC, logarithmic loss,

squared error and the CAL score respectively for the PSMBg algorithm, its variants and the

comparison algorithms. In each table, a row represents a dataset and a column represents an

algorithm. The last three rows in each table give for each algorithm the overall mean of the

specified performance measure across the UCI datasets, the medical datasets and the combined

UCI and medical datasets respectively. The results are also plotted in Figures 5-5 to 5-9 along

with the standard errors of the means. From the tables, it is seen that on all five performance

measures, the PSMBg algorithm achieved a better overall average score than all other

algorithms.

Tables 5.11 and 5.12 report results from pair-wise comparisons of the performance of the

algorithms on the combined UCI and medical datasets that is aimed at assessing the statistical

significance and the magnitude of the observed differences in the measures. Table 5-11 reports

results from the Wilcoxon paired-samples signed ranks test. This test is a non-parametric

procedure used to test whether there is sufficient evidence that the median of two probability

 139

distributions differ in location. In evaluating algorithms, it can be used to test whether two

algorithms differ significantly in performance on a specified measure. As it takes into account

the magnitude and the direction of the difference between paired samples, this test is more

powerful than the sign test [106]. Being a non-parametric test, it does not make any assumptions

about the form of the underlying probability distribution of the sampled population. The test is

carried out by sorting the absolute values of the paired differences from smallest to largest,

assigning ranks to the absolute values (rank 1 to the smallest, rank 2 to the next smallest, and so

on) and then finding the sum of the ranks of the positive differences. If the null hypothesis is

true, the sum of the ranks of the positive differences should be about the same as the sum of the

ranks of the negative differences.

Table 5-12 reports results from the paired-samples t test. This test is a parametric

procedure used to determine whether there is a significant difference between the average values

of the same performance measure for two different algorithms. The test assumes that the paired

differences are independent and identically normally distributed. Though the measurements

themselves may not be normally distributed, the pair-wise differences are often normally

distributed.

The results are encouraging in that they show that the PSMBg algorithm never

underperformed on any performance measure when compared to the other learning methods

including the variants of the PSMBg algorithm that do model selection and non-patient-specific

model averaging. This can be seen in the mean differences shown in Table 5-12. For

misclassification error, logarithmic loss, squared error and the CAL score, the mean difference is

always negative which denotes that the PSMBg algorithm always has a lower score on these

measures. For the AUC, the difference is always positive which means that the PSMBg

 140

algorithm always has a higher AUC. However, all mean differences are not statistically

significant at the 0.05 level as can be seen by the p-values in Table 5-12. The best performance is

seen in logarithmic loss where the PSMBg algorithm significantly outperforms all other

methods, followed by squared error and CAL score where the PSMBg algorithm significantly

outperforms many of the methods. On misclassification error and the AUC, the PSMBg

algorithm has smaller performance gains. Similar results are seen in Table 5.11 that gives the Z

statistics from the Wilcoxon paired-samples signed ranks test..

Table 5-13 gives the average number of models selected by the PSMBg and the NPSMBg

algorithms in each of the phases for each dataset. The average number of models varies from

17.99 for the iris dataset (with four predictor variables) to 589.52 for the pneumonia dataset

(with 152 predictor variables). The average number of phase 1 models in the pneumonia dataset

was unusually high. This was due to the fact that this dataset has the largest number of variables

and the phase 1 hill-climbing search terminates at a local maximum after a large number of

iterations.

The average running time of the PSMBg algorithm for a single test case was

approximately 1 hour and 30 minutes (see Table 5-21). This includes time spent in both phase 1

and 2 of the search. Typically, 70% - 90% of the running time was spent in phase 2.

5.6.3 Discussion

Overall, the PSMBg algorithm significantly improved on the probabilities of the predictions

while maintaining or slightly improving on discrimination over all other algorithms used in the

experiments. The non-patient-specific NPSMBg algorithm had inferior performance on

logarithmic loss and squared error but similar performance on the other measures when

 141

compared to the PSMBg algorithm. Both the PSMBg and the NPSMBg algorithms average over

the same number of models and both select the same models in phase 1 of the search. In phase 2

of the search, while the number of selected models is the same, the two methods identify

potentially different models. This provides evidence that the models selected in phase 2 by the

PSMBg algorithm, using patient-specific search, are able to improve the performance of the

PSMBg algorithm over the already good performance obtained by the NPSMBg algorithm.

Comparison of the PSMBg algorithm with the PSMBg-MS algorithm shows that model

averaging outperformed the single best model on all the performance measures (Tables 5.11 and

5.12).

 142

Table 5-6: Mean misclassification errors of different algorithms based on 10-fold cross-
validation done twice on the UCI datasets and a single train-test validation on the medical
datasets. To avoid cluttering only the mean for each dataset is shown. The bottom three rows give
the average misclassification errors for the UCI datasets, the medical datasets and all the datasets
respectively. Best results are in underlined.

Dataset PSMBg PSMBg-
MS NPSMBg NB DT LR NN kNN LBR

australian 0.1457 0.1457 0.1435 0.1449 0.1333 0.1486 0.1848 0.1457 0.1471
breast-cancer 0.0256 0.0271 0.0256 0.0256 0.0403 0.0337 0.0373 0.0286 0.0256

cleveland 0.1740 0.1791 0.1740 0.1655 0.2095 0.1655 0.1993 0.1791 0.1655

corral 0.0000 0.0156 0.0000 0.1328 0.0508 0.1289 0.0000 0.0977 0.1250
crx 0.1547 0.1577 0.1485 0.1348 0.1317 0.1424 0.1692 0.1485 0.1340
diabetes 0.2116 0.2129 0.2142 0.2201 0.2194 0.2135 0.2272 0.2201 0.2207
flare 0.1806 0.1834 0.1825 0.2012 0.1735 0.1721 0.2054 0.1806 0.1750
german 0.2580 0.2585 0.2580 0.2445 0.2845 0.2425 0.2980 0.2695 0.2475

glass2 0.1503 0.1564 0.1472 0.1595 0.1933 0.1442 0.1442 0.1411 0.1503
glass 0.2150 0.2220 0.2196 0.2687 0.2500 0.2547 0.2220 0.2173 0.2500
heart 0.1778 0.1778 0.1778 0.1630 0.1870 0.1630 0.1963 0.1741 0.1630

hepatitis 0.0938 0.1000 0.1000 0.1375 0.1250 0.1375 0.1688 0.0688 0.1375
iris 0.0567 0.0600 0.0633 0.0533 0.0600 0.0567 0.0633 0.0633 0.0533

lymphography 0.1622 0.1486 0.1622 0.1486 0.2365 0.2365 0.1622 0.1622 0.1520

pima 0.2155 0.2135 0.2142 0.2214 0.2259 0.2148 0.2389 0.2246 0.2227
postoperative 0.3391 0.3851 0.3391 0.3103 0.2989 0.3736 0.4138 0.3333 0.3103
sonar 0.1635 0.1659 0.1731 0.1490 0.1659 0.1442 0.1611 0.1707 0.1490

vehicle 0.2600 0.2577 0.2612 0.3712 0.2843 0.2914 0.2825 0.2766 0.2784
vote 0.0453 0.0582 0.0453 0.0927 0.0388 0.0733 0.0711 0.0819 0.0927

wine 0.0084 0.0084 0.0056 0.0112 0.0702 0.0253 0.0169 0.0281 0.0112
zoo 0.0347 0.0396 0.0347 0.0644 0.0792 0.0594 0.0495 0.0347 0.0644

pneumonia 0.1531 0.1516 0.1531 0.2274 0.1443 0.1472 0.1356 0.1137 0.1210
sepsis-d 0.0986 0.0968 0.0968 0.1649 0.0896 0.0914 0.1272 0.0896 0.1057

sepsis-s 0.2294 0.2276 0.2276 0.2563 0.2240 0.2312 0.2491 0.2348 0.2204

heart failure-d 0.0462 0.0464 0.0475 0.0561 0.0448 0.0448 0.0623 0.0464 0.0472
heart failure-c 0.1246 0.1246 0.1272 0.1426 0.1106 0.1111 0.1420 0.1128 0.1272

UCI average 0.1463 0.1511 0.1471 0.1629 0.1647 0.1629 0.1672 0.1546 0.1463

medical average 0.1304 0.1294 0.1304 0.1695 0.1227 0.1251 0.1432 0.1195 0.1304

overall average 0.1432 0.1469 0.1439 0.1641 0.1566 0.1557 0.1626 0.1478 0.1499

 143

Table 5-7: Mean AUCs of different algorithms based on 10-fold cross-validation done twice on
the UCI datasets and a single train-test validation on the medical datasets. To avoid cluttering
only the mean for each dataset is shown. The bottom three rows give the average AUCs for the
UCI datasets, the medical datasets and all the datasets respectively. Best results are in underlined.

Dataset PSMBg PSMBg-
MS NPSMBg NB DT LR NN kNN LBR

australian 0.9315 0.9303 0.9313 0.9200 0.9032 0.9187 0.8937 0.9092 0.9186

breast-cancer 0.9926 0.9922 0.9925 0.9933 0.9613 0.9879 0.9818 0.9930 0.9933

cleveland 0.9098 0.9079 0.9084 0.9141 0.7952 0.9089 0.8781 0.8995 0.9141

corral 1.0000 0.9997 1.0000 0.9252 0.9916 0.9459 1.0000 0.9827 0.9373
crx 0.9303 0.9280 0.9302 0.9301 0.9087 0.9138 0.9002 0.9057 0.9302

diabetes 0.8468 0.8468 0.8466 0.8438 0.7991 0.8439 0.8311 0.8148 0.8423

flare 0.7289 0.7288 0.7261 0.7557 0.4916 0.7451 0.6445 0.6797 0.7520
german 0.7662 0.7633 0.7641 0.7903 0.6736 0.7839 0.7340 0.7442 0.7891
glass2 0.8703 0.8653 0.8700 0.8769 0.7982 0.8845 0.8483 0.8384 0.8826

glass 0.9364 0.9361 0.9361 0.9408 0.8834 0.9101 0.9241 0.9112 0.9434

heart 0.9055 0.9049 0.9073 0.9106 0.8239 0.9032 0.8649 0.8791 0.9106

hepatitis 0.9225 0.9262 0.9237 0.9013 0.8203 0.7784 0.8436 0.8792 0.8970
iris 0.9890 0.9900 0.9905 0.9938 0.9629 0.9846 0.9785 0.9886 0.9938

lymphography 0.9139 0.9156 0.9173 0.9193 0.7741 0.8571 0.9192 0.9087 0.9175
pima 0.8431 0.8424 0.8424 0.8450 0.7977 0.8456 0.8237 0.8134 0.8449
postoperative 0.5026 0.4943 0.4538 0.5035 0.4228 0.4515 0.4113 0.3665 0.5035
sonar 0.9203 0.9204 0.9217 0.9343 0.8521 0.9275 0.9331 0.9132 0.9345

vehicle 0.9234 0.9228 0.9235 0.8655 0.8761 0.9016 0.8931 0.9032 0.9109
vote 0.9875 0.9850 0.9854 0.9684 0.9578 0.9582 0.9871 0.9735 0.9660
wine 0.9994 0.9994 0.9994 1.0000 0.9660 0.9967 0.9994 0.9981 1.0000

zoo 0.9994 0.9992 0.9992 0.9989 0.9565 0.9967 0.9916 0.9995 0.9989

pneumonia 0.8236 0.8262 0.8261 0.8585 0.5591 0.7414 0.7740 0.7874 0.8306

sepsis-d 0.8619 0.8618 0.8575 0.8698 0.7894 0.8482 0.8093 0.8517 0.8522

sepsis-s 0.7689 0.7697 0.7677 0.7748 0.6870 0.7558 0.7401 0.7702 0.7814

heart failure-d 0.7457 0.7424 0.7393 0.7725 0.1769 0.7607 0.7073 0.7455 0.7576
heart failure-c 0.7709 0.7698 0.7712 0.7879 0.4573 0.7898 0.6419 0.7465 0.7805

UCI average 0.8962 0.8952 0.8938 0.8919 0.8293 0.8783 0.8705 0.8715 0.8943

medical average 0.7942 0.7940 0.7924 0.8127 0.7059 0.7792 0.7345 0.7803 0.8005

overall average 0.8786 0.8757 0.8743 0.8767 0.8056 0.8592 0.8444 0.8539 0.8763

 144

Table 5-8: Mean logarithmic losses of different algorithms based on 10-fold cross-validation
done twice on the UCI datasets and a single train-test validation on the medical datasets. To avoid
cluttering only the mean for each dataset is shown. The bottom three rows give the average
logarithmic losses for the UCI datasets, the medical datasets and all the datasets respectively. Best
results are in underlined.

Dataset PSMBg PSMBg-
MS NPSMBg NB DT LR NN kNN LBR

australian 0.3390 0.3456 0.3417 0.4476 0.4091 0.7136 0.4263 0.8627 0.4482

breast-cancer 0.1068 0.1138 0.1083 0.2497 0.2955 0.1485 0.1205 0.2138 0.2497
cleveland 0.3925 0.4067 0.4021 0.4491 1.3001 0.6500 0.4584 0.8625 0.4491

corral 0.1018 0.1101 0.0989 0.3326 0.1475 0.2753 0.1542 0.0175 0.3130
crx 0.3451 0.3564 0.3525 0.4113 0.3783 0.9377 0.4678 0.8747 0.4018

diabetes 0.4601 0.4606 0.4604 0.4809 0.5497 0.4588 0.6039 0.5028 0.4826

flare 0.4282 0.4294 0.4314 0.5904 0.4879 0.4042 0.5333 0.5858 0.5182

german 0.5331 0.5413 0.5377 0.5213 1.4604 0.5229 0.5801 1.5415 0.5221
glass2 0.4238 0.4302 0.4246 0.4532 0.8498 0.4154 0.8853 0.4562 0.4447

glass 0.7112 0.7239 0.7113 0.7697 2.3005 4.0749 1.3612 0.8685 0.7264

heart 0.3996 0.4069 0.3973 0.4560 0.6920 0.3907 0.6109 0.8483 0.4560

hepatitis 0.2396 0.2517 0.2583 0.4247 0.6122 17.7871 0.3562 0.6253 0.4272

iris 0.1560 0.1909 0.1620 0.1621 0.5287 0.7579 0.5770 0.2240 0.1621

lymphography 0.4100 0.4289 0.4430 0.4282 2.9112 21.6371 0.5765 0.7272 0.4409
pima 0.4647 0.4657 0.4657 0.4793 0.5268 0.4572 0.5873 0.5114 0.4774
postoperative 0.7381 0.7776 0.7287 0.7953 1.1395 2.8236 1.3339 1.9418 0.7953

sonar 0.3573 0.3726 0.3743 0.4573 1.2814 0.5762 0.4170 0.5728 0.4554

vehicle 0.5863 0.5900 0.5866 1.8645 2.3842 3.9997 1.0134 1.2590 0.7815
vote 0.1393 0.1635 0.1588 0.6804 0.3028 5.5427 0.3171 0.2782 0.5629
wine 0.0418 0.0402 0.0367 0.0303 0.8270 0.9593 0.1032 0.0409 0.0303

zoo 0.1297 0.1202 0.1268 0.1474 1.1102 0.5325 0.0596 0.1595 0.1474

pneumonia 0.5728 0.5713 0.5733 1.8092 1.6659 0.7102 0.5795 0.8787 0.6483
sepsis-d 0.2525 0.2520 0.2528 0.5183 0.3700 0.3492 0.2569 0.6711 0.3299
sepsis-s 0.4726 0.4751 0.4748 0.7639 0.5990 0.6016 0.8871 1.5491 0.6199

heart failure-d 0.3174 0.3179 0.3182 0.3491 0.5374 0.2962 0.3269 1.2575 0.3212
heart failure-c 0.1690 0.1700 0.1707 0.1797 0.1825 0.1626 0.1740 0.7067 0.1686

UCI average 0.3573 0.3679 0.3622 0.5063 0.9759 3.0507 0.5497 0.6654 0.4425

medical average 0.3569 0.3573 0.3580 0.7240 0.6710 0.4240 0.4449 1.0126 0.4176

overall average 0.3572 0.3659 0.3614 0.5481 0.9173 2.5456 0.5295 0.7322 0.4377

 145

Table 5-9: Mean squared errors of different algorithms based on 10-fold cross-validation done
twice on the UCI datasets and a single train-test validation on the medical datasets. To avoid
cluttering only the mean for each dataset is shown. The bottom three rows give the average
squared errors for the UCI datasets, the medical datasets and all the datasets respectively. Best
results are in underlined.

Dataset PSMBg PSMBg-
MS NPSMBg NB DT LR NN kNN LBR

australian 0.2054 0.2082 0.2060 0.2234 0.2066 0.2116 0.3062 0.2287 0.2287
breast-cancer 0.0440 0.0449 0.0441 0.0474 0.0731 0.0542 0.0689 0.0484 0.0474
cleveland 0.2433 0.2499 0.2462 0.2553 0.3516 0.2339 0.3364 0.2526 0.2553

corral 0.0352 0.0463 0.0354 0.2056 0.0887 0.1836 0.0038 0.1051 0.1951

crx 0.2081 0.2146 0.2087 0.2092 0.1965 0.2121 0.2948 0.2363 0.2078

diabetes 0.2978 0.2981 0.2979 0.3073 0.3219 0.2978 0.3156 0.3315 0.3086

flare 0.2619 0.2626 0.2652 0.3145 0.2846 0.2513 0.3203 0.2843 0.2700
german 0.3526 0.3570 0.3555 0.3419 0.4196 0.3368 0.5104 0.3591 0.3433
glass2 0.2469 0.2513 0.2468 0.2450 0.3116 0.2409 0.2572 0.2603 0.2393

glass 0.3609 0.3635 0.3605 0.3823 0.4186 0.4363 0.4075 0.3880 0.3673
heart 0.2444 0.2486 0.2420 0.2570 0.3113 0.2394 0.3273 0.2611 0.2570
hepatitis 0.1410 0.1495 0.1534 0.2079 0.2170 0.2750 0.2579 0.1481 0.2090
iris 0.0727 0.0828 0.0753 0.0751 0.1122 0.0942 0.1032 0.1086 0.0751

lymphography 0.2391 0.2353 0.2433 0.2344 0.4162 0.4545 0.2687 0.2650 0.2406
pima 0.3009 0.3011 0.3011 0.3065 0.3264 0.2968 0.3248 0.3332 0.3060
postoperative 0.4772 0.5044 0.4748 0.4894 0.4525 0.6011 0.7221 0.6168 0.4894
sonar 0.2349 0.2391 0.2369 0.2411 0.2887 0.2228 0.2764 0.2402 0.2405

vehicle 0.3471 0.3481 0.3470 0.5805 0.4171 0.4109 0.4672 0.3934 0.4059
vote 0.0788 0.0903 0.0810 0.1681 0.0703 0.1461 0.1172 0.1293 0.1529
wine 0.0183 0.0158 0.0142 0.0191 0.1268 0.0503 0.0213 0.0407 0.0191

zoo 0.0612 0.0652 0.0630 0.0860 0.1415 0.0991 0.0568 0.0406 0.0860

pneumonia 0.2442 0.2435 0.2433 0.4149 0.2647 0.2546 0.2453 0.1952 0.2051
sepsis-d 0.1501 0.1500 0.1516 0.2473 0.1505 0.1513 0.2226 0.1458 0.1754
sepsis-s 0.3120 0.3123 0.3139 0.4156 0.3428 0.3155 0.4431 0.3499 0.3348
heart failure-d 0.0839 0.0842 0.0844 0.0951 0.0853 0.0810 0.1161 0.0852 0.0838
heart failure-c 0.1883 0.1886 0.1892 0.2137 0.1925 0.1726 0.2677 0.1910 0.1913

UCI average 0.2129 0.2179 0.2142 0.2475 0.2644 0.2547 0.2745 0.2415 0.2354

medical average 0.1957 0.1957 0.1965 0.2773 0.2072 0.1950 0.2590 0.1934 0.1981

overall average 0.2096 0.2137 0.2108 0.2532 0.2534 0.2432 0.2715 0.2323 0.2283

 146

Table 5-10: Mean CAL scores of different algorithms based on 10-fold cross-validation done
twice on the UCI datasets and a single train-test validation on the medical datasets. To avoid
cluttering only the mean for each dataset is shown. The bottom three rows give the average CAL
scores for the UCI datasets, the medical datasets and all the datasets respectively. Best results are
in underlined.

Dataset PSMBg PSMBg-
MS NPSMBg NB DT LR NN kNN LBR

australian 0.0470 0.0459 0.0454 0.0775 0.0463 0.0440 0.0526 0.1423 0.0817
breast-cancer 0.0146 0.0146 0.0144 0.0200 0.0261 0.0155 0.0114 0.0299 0.0200
cleveland 0.0497 0.0630 0.0569 0.0930 0.0690 0.0295 0.0432 0.1543 0.0930

corral 0.0583 0.0656 0.0561 0.0470 0.0505 0.0473 0.0162 0.0115 0.0368
crx 0.0452 0.0518 0.0503 0.0711 0.0440 0.0394 0.0722 0.1354 0.0689
diabetes 0.0403 0.0401 0.0411 0.0618 0.0633 0.0433 0.0813 0.0662 0.0590

flare 0.0551 0.0546 0.0562 0.1260 0.0467 0.0414 0.0762 0.1000 0.0707
german 0.0684 0.0696 0.0699 0.0625 0.1038 0.0504 0.0547 0.2363 0.0645

glass2 0.0359 0.0395 0.0373 0.0644 0.0386 0.0322 0.0482 0.0561 0.0569
glass 0.0188 0.0189 0.0186 0.0282 0.0223 0.0262 0.0258 0.0246 0.0241

heart 0.0498 0.0585 0.0513 0.0913 0.0641 0.0321 0.0624 0.1385 0.0913
hepatitis 0.0422 0.0294 0.0381 0.0488 0.0306 0.0462 0.0197 0.0492 0.0466

iris 0.0110 0.0115 0.0114 0.0132 0.0188 0.0142 0.0219 0.0205 0.0132
lymphography 0.0226 0.0259 0.0256 0.0326 0.0279 0.0863 0.0272 0.0512 0.0359
pima 0.0532 0.0539 0.0539 0.0596 0.0660 0.0444 0.0960 0.0805 0.0586

postoperative 0.0404 0.0358 0.0438 0.0436 0.0450 0.0707 0.0844 0.1175 0.0436
sonar 0.0437 0.0656 0.0643 0.1042 0.0591 0.0814 0.0503 0.1336 0.1045

vehicle 0.0479 0.0481 0.0480 0.1272 0.0654 0.0632 0.0567 0.0984 0.0690
vote 0.0247 0.0285 0.0306 0.0722 0.0227 0.0520 0.0603 0.0346 0.0658
wine 0.0062 0.0043 0.0054 0.0083 0.0247 0.0154 0.0256 0.0133 0.0083

zoo 0.0065 0.0067 0.0069 0.0078 0.0094 0.0055 0.0029 0.0075 0.0078

pneumonia 0.0998 0.0991 0.0985 0.2078 0.0696 0.1001 0.0730 0.1051 0.0905
sepsis-d 0.0353 0.0466 0.0310 0.1255 0.0373 0.0314 0.0161 0.0921 0.0585
sepsis-s 0.0627 0.0710 0.0690 0.1923 0.0857 0.0578 0.1077 0.2066 0.1329

heart failure-d 0.0263 0.0288 0.0255 0.0448 0.0667 0.0280 0.0266 0.0490 0.0269

heart failure-c 0.0533 0.0523 0.0584 0.0854 0.1505 0.0372 0.0586 0.1271 0.0577

UCI average 0.0372 0.0396 0.0393 0.0600 0.0450 0.0419 0.0471 0.0810 0.0533

medical average 0.0555 0.0596 0.0565 0.1312 0.0820 0.0509 0.0564 0.1160 0.0733

overall average 0.0407 0.0434 0.0426 0.0737 0.0521 0.0437 0.0489 0.0877 0.0572

 147

Table 5-11: Wilcoxon paired-samples signed ranks test comparing the performance of PSMBg with other
algorithms. For each performance measure the number on top is the Z statistic and the number at the
bottom is the corresponding p-value. The Z statistic is negative when PSMBg has a lower score on a
performance measure than the competing algorithm. On all measures except the AUC, a negative Z
statistic indicates better performance by PSMBg; on the AUC a positive Z statistic indicates better
performance by PSMBg. Underlined results indicate p-values of 0.05 or smaller.

Performance
measure

PSMBg-
MS NPSMBg NB DT LR NN kNN LBR

-2.338

-0.776 -2.121 -2.070 -1.181 -3.861 -0.825 -0.368 Misclassification
error 0.019 0.438 0.034 0.038 0.238 0.000 0.409 0.713

2.085 1.257 1.511 4.457 2.197 4.029 4.203 0.927
AUC

0.037 0.209 0.131 0.000 0.028 0.000 0.000 0.354

-3.595 -2.426 -4.280 -4.457 -3.340 -4.254 -4.026 -4.051
Logarithmic loss

0.000 0.015 0.000 0.000 0.001 0.000 0.000 0.000

-3.608 -2.313 -3.975 -3.24 -2.121 -4.127 -3.518 -3.213
Squared error

0.000 0.021 0.000 0.000 0.034 0.000 0.000 0.001

-2.032 -1.867 -4.026 -2.806 -0.063 -4.076 -1.892 -3.543
CAL score

0.042 0.062 0.000 0.005 0.949 0.000 0.058 0.000

Table 5-12: Paired-samples t test comparing the performance of PSMBg with other algorithms. For each
performance measure the number on top is the mean difference between PSMBg and the indicated
algorithm and the number at the bottom is the corresponding p-value. The mean difference is negative
when PSMBg has a lower score on a performance measure than the competing algorithm. On all
measures except the AUC, a negative mean difference indicates better performance by PSMBg; on the
AUC a positive mean difference indicates better performance by PSMBg. Underlined results indicate p-
values of 0.05 or smaller.

Performance
measure

PSMBg-
MS NPSMBg NB DT LR NN kNN LBR

-0.004 -0.001 -0.021 -0.013 -0.012 -0.019 -0.005 -0.007 Misclassification
error 0.077 0.312 0.014 0.021 0.065 0.000 0.334 0.289

0.001 0.002 0.000 0.104 0.017 0.032 0.023 0.000
AUC

0.077 0.242 0.975 0.000 0.022 0.000 0.000 0.932

-0.009 -0.004 -0.163 -0.211 -0.215 -0.306 -0.140 -0.071
Logarithmic loss

0.001 0.026 0.005 0.000 0.006 0.000 0.000 0.000

-0.004 -0.001 -0.044 -0.044 -0.034 -0.062 -0.023 -0.019
Squared error

0.003 0.054 0.002 0.000 0.009 0.002 0.000 0.017

-0.003 -0.002 -0.033 -0.011 -0.003 -0.047 -0.008 -0.016
CAL score

0.044 0.058 0.000 0.018 0.441 0.000 0.079 0.001

 148

0 0.1 0.2 0.3 0.4 0.5
PSMBg

0

0.1

0.2

0.3

0.4

0.5

NNk

0 0.1 0.2 0.3 0.4 0.5
PSMBg

0

0.1

0.2

0.3

0.4

0.5

RBL

0 0.1 0.2 0.3 0.4 0.5
PSMBg

0

0.1

0.2

0.3

0.4

0.5

TD

0 0.1 0.2 0.3 0.4 0.5
PSMBg

0

0.1

0.2

0.3

0.4

0.5

RL

0 0.1 0.2 0.3 0.4 0.5
PSMBg

0

0.1

0.2

0.3

0.4

0.5

NN

0 0.1 0.2 0.3 0.4 0.5
PSMBg

0

0.1

0.2

0.3

0.4

0.5

gB
MSP

-
S

M

0 0.1 0.2 0.3 0.4 0.5
PSMBg

0

0.1

0.2

0.3

0.4

0.5

gB
MSPN

0.0 0.1 0.2 0.3 0.4 0.5
PSMBg

0.0

0.1

0.2

0.3

0.4

0.5

BN

Figure 5-5: Pairwise plots of the mean misclassification errors of PSMBg vs. competing algorithms. Each
point represents the mean misclassification errors of PSMBG and a competing algorithm on a single dataset,
and the crosshairs represent one standard deviation on either side of the mean misclassification errors. Points
above the diagonal line represent better performance by PSMBg than the competing algorithm.

 149

0.2 0.4 0.6 0.8 1
PSMBg

0.2

0.4

0.6

0.8

1

NNk

0.2 0.4 0.6 0.8 1
PSMBg

0.2

0.4

0.6

0.8

1

RBL

0.2 0.4 0.6 0.8 1
PSMBg

0.2

0.4

0.6

0.8

1

TD

0.2 0.4 0.6 0.8 1
PSMBg

0.2

0.4

0.6

0.8

1

RL

0.2 0.4 0.6 0.8 1
PSMBg

0.2

0.4

0.6

0.8

1

NN

0.2 0.4 0.6 0.8 1
PSMBg

0.2

0.4

0.6

0.8

1

gB
MSP

-
S

M

0.2 0.4 0.6 0.8 1
PSMBg

0.2

0.4

0.6

0.8

1

gB
MSPN

0.2 0.4 0.6 0.8 1
PSMBg

0.2

0.4

0.6

0.8

1

BN

Figure 5-6: Pairwise plots of the mean AUCs of PSMBg vs. competing algorithms. Each point represents the
mean AUCs of PSMBG and a competing algorithm on a single dataset, and the crosshairs represent one
standard deviation on either side of the mean AUCs. Points above the diagonal line represent better
performance by PSMBg than the competing algorithm.

 150

0 0.2 0.4 0.6 0.8 1
PSMBg

0

0.4

0.8

1.2

1.6

2

NNk

0 0.2 0.4 0.6 0.8 1
PSMBg

0

0.4

0.8

1.2

1.6

2

RBL

0 0.2 0.4 0.6 0.8 1
PSMBg

0

0.4

0.8

1.2

1.6

2

TD

0 0.2 0.4 0.6 0.8 1
PSMBg

0

0.4

0.8

1.2

1.6

2

RL

0 0.2 0.4 0.6 0.8 1
PSMBg

0

0.4

0.8

1.2

1.6

2

NN

0 0.2 0.4 0.6 0.8 1
PSMBg

0

0.4

0.8

1.2

1.6

2

gB
MSP

-
S

M

0 0.2 0.4 0.6 0.8 1
PSMBg

0

0.4

0.8

1.2

1.6

2

gB
MSPN

0 0.2 0.4 0.6 0.8 1
PSMBg

0

0.4

0.8

1.2

1.6

2

BN

Figure 5-7: Pairwise plots of the mean logarithmic losses of PSMBg vs. competing algorithms. Each point
represents the mean logarithmic losses of PSMBG and a competing algorithm on a single dataset, and the
crosshairs represent one standard deviation on either side of the mean logarithmic losses. Points above the
diagonal line represent better performance by PSMBg than the competing algorithm.

 151

0 0.2 0.4 0.6 0.8
PSMBg

0

0.2

0.4

0.6

0.8

NNk

0 0.2 0.4 0.6 0.8
PSMBg

0

0.2

0.4

0.6

0.8

RBL

0 0.2 0.4 0.6 0.8
PSMBg

0

0.2

0.4

0.6

0.8

TD

0 0.2 0.4 0.6 0.8
PSMBg

0

0.2

0.4

0.6

0.8

RL

0 0.2 0.4 0.6 0.8
PSMBg

0

0.2

0.4

0.6

0.8

NN

0 0.2 0.4 0.6 0.8
PSMBg

0

0.2

0.4

0.6

0.8

gB
MSP

-
S

M

0 0.2 0.4 0.6 0.8
PSMBg

0

0.2

0.4

0.6

0.8

gB
MSPN

0 0.2 0.4 0.6 0.8
PSMBg

0

0.2

0.4

0.6

0.8

BN

Figure 5-8: Pairwise plots of the mean squared errors of PSMBg vs. competing algorithms. Each point
represents the mean squared errors of PSMBG and a competing algorithm on a single dataset, and the
crosshairs represent one standard deviation on either side of the mean squared errors. Points above the diagonal
line represent better performance by PSMBg than the competing algorithm.

 152

0 0.05 0.1 0.15 0.2
PSMBg

0

0.05

0.1

0.15

0.2

NNk

0 0.05 0.1 0.15 0.2
PSMBg

0

0.05

0.1

0.15

0.2

RBL

0 0.05 0.1 0.15 0.2
PSMBg

0

0.05

0.1

0.15

0.2

TD

0 0.05 0.1 0.15 0.2
PSMBg

0

0.05

0.1

0.15

0.2

RL

0 0.05 0.1 0.15 0.2
PSMBg

0

0.05

0.1

0.15

0.2

NN

0 0.05 0.1 0.15 0.2
PSMBg

0

0.05

0.1

0.15

0.2

gB
MSP

-
S

M

0 0.05 0.1 0.15 0.2
PSMBg

0

0.05

0.1

0.15

0.2

gB
MSPN

0 0.05 0.1 0.15 0.2
PSMBg

0

0.05

0.1

0.15

0.2

BN

Figure 5-9: Pairwise plots of the mean CAL scores of PSMBg vs. competing algorithms. Each point
represents the mean CAL scores of PSMBG and a competing algorithm on a single dataset, and the crosshairs
represent one standard deviation on either side of the mean CAL scores. Points above the diagonal line
represent better performance by PSMBg than the competing algorithm.

 153

Table 5-13: Average number of models in phases 1 and 2 over which averaging is carried out by the
PSMBg and NPSMBg algorithms. Both algorithms average over the same number of models in each
phase. Both algorithms select the same models in phase 1 but potentially different models in phase 2. The
number of models in phases 1 and 2 is the sum of the models selected in the two phases.

Dataset # models

phase 1
models
phase 2

models
phases 1

and 2
australian 28.55 11.00 39.55
breast-cancer 18.85

10.15 29.00
cleveland 20.45 11.99 32.44
corral 10.65 15.03 25.68
crx 32.10 13.42 45.52
diabetes 11.65 10.03 21.68
flare 20.75 11.44 32.19
german 22.45 19.23 41.68
glass2 12.05 13.26 25.31
glass 15.80 10.73 26.53
heart 18.50 11.32 29.82
hepatitis 27.45 26.63 54.08
iris 7.25 10.74 17.99
lymphography 51.55 37.83 89.38
pima 40.40 16.97 57.37
postoperative 12.00 10.02 22.02
sonar 11.65 10.09 21.74
vehicle 1.15 21.09 22.24
vote 59.80 18.44 78.24
wine 39.30 10.73 50.03
zoo 45.55 13.53 59.08
pneumonia 577.00 12.52 589.52
sepsis-d 23.80 11.45 35.25
sepsis-s 27.00 13.63 40.63
heart failure-d 47.00 19.07 66.07
heart failure-c 22.00 20.92 42.92

 154

5.7 EVALUATION OF THE PSMBL ALGORITHM

This section describes the evaluation of the performance of the PSMBl algorithm and compares

its performance to that of the PSMBg algorithm. Analogous to the PSMBg algorithm, the PSMBl

algorithm selects MB structures for model averaging using a two-phase search where phase 2 is

patient-specific. The difference between the two is in the model space: the PSMBl algorithm

searches in the richer space of MB structures that explicitly represent local structure by using

decision graphs for CPDs. The performance of the PSMBl algorithm is compared to: (1) the

PSMBl-MS algorithm which is a model selection version of the PSMBl algorithm, (2) the

NPSMBl algorithm which is a non-patient-specific (i.e., population-wide) version of the PSMBl

algorithm, and (3) the PSMBg algorithm. The first two algorithms are analogous to the PSMBg-

MS and the NPSMBg algorithms. The PSMBl-MS algorithm chooses the model with the highest

posterior probability from the set of models identified by the PSMBl algorithm, and uses that

single model for predicting the target variable of the case at hand. The NPSMBl algorithm

averages over the same number of models as the PSMBl algorithm except that the patient-

specific model score of phase 2 is not used to score models; instead all models are scored with

the non-patient-specific model score of phase 1.

5.7.1 Experimental design

The experimental design for the evaluation the PSMBl algorithm is the same as that for the

PSMBg algorithm and is described in section 5.6.1.

 155

5.7.2 Results

Tables 5-15 to 5-19 report the means of the misclassification error, the AUC, logarithmic loss,

squared error and the CAL score respectively. The last three rows in each table give for each

algorithm the overall mean of the specified performance measure across the UCI datasets, the

medical datasets and combined UCI and medical datasets respectively. The results are also

plotted in Figures 5-8 and 5-9 along with the standard errors of means. Table 5-18 reports results

from the paired-samples t test and Table 5-19 reports results from the Wilcoxon paired-samples

signed ranks test for the combined UCI and medical datasets. The PSMBl algorithm performed

significantly better than the PSMBl-MS algorithm on all measures except the CAL score, which

is similar to the results obtained from the PSMBg algorithm. However, the PSMBl algorithm

showed no improvement in performance over the NPSMBl algorithm. When compared to the

PSMBg algorithm, the PSMBl algorithm performed at a similar level on all the measures except

the AUC on which it performed slightly worse.

The average running time of the PSMBl algorithm for a single test case was

approximately 5 hours and 30 minutes (see Table 5-21). This includes time spent in both phase 1

and 2 of the search. Typically, 80% - 90% of the running time was spent in phase 2.

5.7.3 Discussion

While on the synthetic dataset the PSMBl algorithm performed considerably better than the

PSMBg algorithm, on most of the UCI datasets and on all the medical datasets it showed no

improvement over the PSMBg algorithm. One exception is the corral dataset which is a synthetic

 156

dataset with seven variables of which four deterministically determine the target variable Z as

follows:

)()(DCBAZ ∧∨∧= .

Of the remaining two variables, one is correlated with Z and the other is irrelevant for predicting

Z. On this dataset, the PSMBl algorithm significantly improved on logarithmic loss, squared

error and the CAL score over the PSMBg algorithm while both algorithms had perfect

performance on misclassification error and the AUC. The superior performance of the PSMBl

algorithm stems from the fact that the deterministic function can be represented exactly by a MB

with local structure. In fact, the PSMBl-MS algorithm which chooses the best scoring model

performed even better since the chosen model is the generating model.

Two possible reasons may explain the inability of the PSMBl algorithm to improve

significantly over the performance of the PSMBg algorithm in the UCI and medical datasets.

First, there may not be many value-specific independencies present in the datasets and the

PSMBl algorithm may be capturing spurious value-specific independencies. Second, the patient-

specific phase 2 search as implemented in the PSMBl algorithm is not optimal. Ideally, in phase

2 every candidate MB structure should be evaluated with the patient-specific phase 2 score.

However, for reasons of computational efficiency, phase 2 search in the PSMBl algorithm is

implemented as follows. At each iteration of the outer search procedure, all possible global

operators are applied to the current best MB structure to generate successor MB structures. Then,

for each successor MB structure, the inner search procedure is invoked on those MB nodes

whose parent sets have been modified by the application of the global operator. For each MB

node on which it is invoked, the inner search procedure performs greedy hill-climbing search to

identify a decision graph with phase 1 score, rather than a decision graph with high phase 2 score

 157

(see the pseudocode for ProcedureLocalSearchForPSMBl in Figure 4-9). This is because the

phase 1 score is computed efficiently for the MB node in question, while computation of the

phase 2 score requires doing inference in the MB and is less efficient in the current

implementation of the PSMBl algorithm. After the inner search procedure returns decision

graphs with high phase 1 scores, the phase 2 score is computed for the MB. A more efficient

implementation of the PSMBl algorithm can allow the inner search procedure to evaluate

candidate local structures with the phase 2 score, which can potentially improve its performance.

5.8 SUMMARY

The two patient-specific algorithms, namely, the PSMBg and the PSMBl algorithms, were

evaluated on one synthetic, 21 UCI and three medical datasets. Their performances on five

measures were compared to that of non-patient-specific and model selection versions as well six

commonly used predictive algorithms.

The PSMBg algorithm improved the prediction of the target variable on average over all

the comparison algorithms. The greatest improvements occurred in logarithmic loss and squared

error, followed by good improvement in calibration and smaller improvements in

misclassification error and the AUC. In addition, the PSMBg algorithm that performs Bayesian

model averaging in conjunction with the patient-specific heuristic had better performance than

either model selection with the patient-specific heuristic or non-patient-specific Bayesian model

averaging.

The PSMBl algorithm did not improve significantly over the PSMBg algorithm on any

measure. In addition, the PSMBl algorithm that performs Bayesian model averaging in

 158

conjunction with the patient-specific heuristic had better performance than model selection with

the patient-specific heuristic but performed on par with non-patient-specific Bayesian model

averaging. The use of local structure did not lead to significant improvements over the use of

global structure alone. Possible reasons for this lack of improvement were given in the previous

section.

 159

 160

Table 5-14: Mean misclassification errors of
different algorithms based on 10-fold cross-
validation done twice on the UCI datasets and a
single train-test validation on the medical
datasets. To avoid cluttering only the mean for
each dataset is shown. The bottom three rows
give the average misclassification errors for the
UCI datasets, for the medical datasets and for all
the datasets respectively. Best results are
underlined.

Table 5-15: Mean AUCs of different algorithms
based on 10-fold cross-validation done twice on
the UCI datasets and a single train-test
validation on the medical datasets. To avoid
cluttering only the mean for each dataset is
shown. The bottom three rows give the average
AUCs for the UCI datasets, for the medical
datasets and for all the datasets respectively.
Best results are underlined.

Dataset PSMBl PSMBl-
MS

NPSMBl PSMBg

australian 0.1428 0.1457 0.1428 0.1457
breast-cancer 0.0264 0.0271 0.0271 0.0256

cleveland 0.1723 0.1774 0.1807 0.1740
corral 0.0000 0.0000 0.0000 0.0000

crx 0.1455 0.1462 0.1386 0.1547
diabetes 0.2188 0.2194 0.2168 0.2116

flare 0.1820 0.1815 0.1801 0.1806
german 0.2480 0.2460 0.2475 0.2580
glass2 0.1718 0.1718 0.1840 0.1503

glass 0.2734 0.2850 0.2734 0.2150

heart 0.1704 0.1741 0.1759 0.1778
hepatitis 0.1438 0.1375 0.1500 0.0938

iris 0.0533 0.0533 0.0533 0.0567
lymphography 0.1486 0.1588 0.1520 0.1622
pima 0.2155 0.2148 0.2129 0.2155
postoperative 0.2989 0.2989 0.2989 0.3391
sonar 0.1731 0.1755 0.1731 0.1635

vehicle 0.2902 0.2908 0.2931 0.2600

vote 0.0603 0.0625 0.0647 0.0453

wine 0.0140 0.0140 0.0140 0.0084

zoo 0.0396 0.0396 0.0396 0.0347

pneumonia 0.1530 0.1545 0.1532 0.1531
sepsis-d 0.1022 0.1022 0.1022 0.0986

sepsis-s 0.2079 0.2133 0.2061 0.2294
heart failure-d 0.0467 0.0479 0.0466 0.0462

heart failure-c 0.1241 0.1255 0.1244 0.1246
UCI average 0.1518 0.1533 0.1533 0.1463

medical average 0.1268 0.1287 0.1265 0.1304
overall average 0.1521 0.1537 0.1533 0.1478

Dataset PSMBl PSMBl-
MS

NPSMBl PSMBg

australian 0.9209 0.9189 0.9208 0.9315

breast-cancer 0.9910 0.9907 0.9910 0.9926

cleveland 0.9049 0.9035 0.9036 0.9098

corral 1.0000 1.0000 1.0000 1.0000

crx 0.9242 0.9231 0.9262 0.9303

diabetes 0.8436 0.8425 0.8451 0.8468

flare 0.7140 0.7138 0.7185 0.7289

german 0.7662 0.7659 0.7667 0.7662
glass2 0.8763 0.8752 0.8757 0.8703
glass 0.9242 0.9214 0.9244 0.9364

heart 0.9076 0.9076 0.9081 0.9055
hepatitis 0.8312 0.8243 0.8203 0.9225

iris 0.9930 0.9938 0.9930 0.9890
lymphography 0.9124 0.9195 0.9195 0.9139
pima 0.8444 0.8444 0.8449 0.8431
postoperative 0.4363 0.4346 0.4324 0.5026

sonar 0.9292 0.9253 0.9332 0.9203
vehicle 0.9135 0.9134 0.9131 0.9234

vote 0.9822 0.9813 0.9808 0.9875

wine 1.0000 1.0000 1.0000 0.9994
zoo 0.9879 0.9871 0.9865 0.9994

pneumonia 0.8232 0.8241 0.8238 0.8236
sepsis-d 0.8597 0.8583 0.8549 0.8619

sepsis-s 0.7594 0.7617 0.7609 0.7689

heart failure-d 0.7465 0.7472 0.7464 0.7457
heart failure-c 0.7702 0.7717 0.7711 0.7709
UCI average 0.8859 0.8851 0.8859 0.8962

medical average 0.7918 0.7926 0.7914 0.7942

overall average 0.8792 0.8785 0.8791 0.8786

 161

Table 5-16: Mean squared errors of different
algorithms based on 10-fold cross-validation
done twice on the UCI datasets and a single
train-test validation on the medical datasets. To
avoid cluttering only the mean for each dataset
is shown. The bottom three rows give the
average squared errors for the UCI datasets, for
the medical datasets and for all the datasets
respectively. Best results are in underlined.

Table 5-17: Mean logarithmic losses of
different algorithms based on 10-fold cross-
validation done twice on the UCI datasets and a
single train-test validation on the medical
datasets. To avoid cluttering only the mean for
each dataset is shown. The bottom three rows
give the average logarithmic losses for the UCI
datasets, for the medical datasets and for all the
datasets respectively. Best results are underlined.

Dataset PSMBl PSMBl-
MS

NPSMBl PSMBg

australian 0.3589 0.3651 0.3607 0.3390

breast-cancer 0.1206 0.1248 0.1239 0.1068

cleveland 0.4205 0.4337 0.4276 0.3925

corral 0.0457 0.0290 0.0425 0.1018
crx 0.3683 0.3753 0.3673 0.3451

diabetes 0.4655 0.4671 0.4644 0.4601

flare 0.4365 0.4385 0.4346 0.4282

german 0.5221 0.5240 0.5221 0.5331
glass2 0.4571 0.4574 0.4611 0.4238

glass 0.7598 0.7650 0.7598 0.7112

heart 0.3998 0.4026 0.3999 0.3996

hepatitis 0.4200 0.4949 0.4960 0.2396

iris 0.1618 0.1614 0.1619 0.1560

lymphography 0.4164 0.4445 0.4328 0.4100

pima 0.4632 0.4641 0.4627 0.4647
postoperative 0.6882 0.6948 0.6881 0.7381
sonar 0.3334 0.3541 0.3310 0.3573
vehicle 0.5986 0.5994 0.5975 0.5863

vote 0.1848 0.2024 0.2040 0.1393

wine 0.0227 0.0286 0.0226 0.0418
zoo 0.1256 0.1256 0.1255 0.1297
pneumonia 0.5748 0.5751 0.5746 0.5728

sepsis-d 0.2586 0.2597 0.2610 0.2525

sepsis-s 0.4704 0.4717 0.4642 0.4726
heart failure-d 0.3170 0.3181 0.3170 0.3174
heart failure-c 0.1692 0.1697 0.1691 0.1690

UCI average 0.3700 0.3787 0.3755 0.3573

medical average 0.3580 0.3589 0.3572 0.3569

overall average 0.3695 0.3776 0.3744 0.3572

Dataset PSMBl PSMBl-
MS

NPSMBl PSMBg

australian 0.2137 0.2166 0.2140 0.2054

breast-cancer 0.0445 0.0444 0.0458 0.0440

cleveland 0.2535 0.2596 0.2574 0.2433

corral 0.0086 0.0051 0.0074 0.0352
crx 0.2132 0.2164 0.2098 0.2081

diabetes 0.3012 0.3028 0.3007 0.2978

flare 0.2679 0.2691 0.2671 0.2619

german 0.3444 0.3450 0.3439 0.3526
glass2 0.2577 0.2574 0.2619 0.2469

glass 0.3745 0.3769 0.3745 0.3609

heart 0.2429 0.2449 0.2438 0.2444
hepatitis 0.2084 0.2315 0.2295 0.1410

iris 0.0758 0.0757 0.0759 0.0727

lymphography 0.2350 0.2441 0.2391 0.2391
pima 0.3009 0.3013 0.3001 0.3009
postoperative 0.4386 0.4429 0.4385 0.4772
sonar 0.2201 0.2301 0.2179 0.2349
vehicle 0.3580 0.3585 0.3577 0.3471

vote 0.0958 0.1024 0.1056 0.0788

wine 0.0160 0.0184 0.0156 0.0183
zoo 0.0632 0.0656 0.0632 0.0612

pneumonia 0.2452 0.2463 0.2451 0.2442

sepsis-d 0.1579 0.1581 0.1590 0.1501

sepsis-s 0.3077 0.3083 0.3030 0.3120
heart failure-d 0.0842 0.0849 0.0842 0.0839

heart failure-c 0.1882 0.1893 0.1884 0.1883
UCI average 0.2159 0.2159 0.2176 0.2129

medical average 0.1966 0.1974 0.1959 0.1957

overall average 0.2174 0.2207 0.2188 0.2145

Table 5-18: Mean CAL scores of different
algorithms based on 10-fold cross-validation done
twice on the UCI datasets and a single train-test
validation on the medical datasets. To avoid
cluttering only the mean for each dataset is shown.
The bottom three rows give the average CAL scores
for the UCI datasets, for the medical datasets and for
all the datasets respectively. Best results are
underlined.

PSMBl NPSMBl PSMBgPSMBl-
MS Dataset

0.0380 0.0436 0.0409 0.0470australian

0.0139 0.0141 0.0147 0.0146breast-cancer

0.0672 0.0775 0.0716 0.0497cleveland

0.0255 0.0190 0.0240 0.0583corral

0.0438 0.0473 0.0451 0.0452crx

0.0451 0.0447 0.0391 0.0403diabetes

0.0581 0.0600 0.0558 0.0551flare

0.0533 0.0576 0.0515 0.0684german

0.0580 0.0466 0.0547 0.0359glass2

 0.0274 0.0282 0.0274 0.0188glass

0.0574 0.0625 0.0586 0.0498heart

0.0401 0.0445 0.0366 0.0422hepatitis

0.0139 0.0135 0.0140 0.0110iris

0.0212 0.0264 0.0247 0.0226lymphography

0.0458 0.0542 0.05320.0496pima

0.0547 0.0482 0.0552 0.0404postoperative

 0.0561 0.0650 0.0609 0.0437sonar

0.0300 0.0303 0.0306 0.0479vehicle

0.0289 0.0322 0.0337 0.0247vote

0.0085 0.0079 0.0078 0.0062 wine

0.0058 0.0057 0.0058 0.0065zoo

0.0994 0.0999 0.0995 0.0998pneumonia

0.0323 0.0314 0.0314 0.0353sepsis-d

0.0608 0.0676 0.0519 0.0627sepsis-s

0.0255 0.0264 0.0258 0.0263heart failure-d

0.0530 0.0538 0.0531 0.0533heart failure-c

 UCI average 0.0379 0.0391 0.0384 0.0372

medical average 0.0542 0.0558 0.0523 0.0555

overall average 0.0387 0.0400 0.0387 0.0382

 162

Table 5-19: Wilcoxon paired-samples signed ranks test comparing the performance of PSMBl with other
algorithms. For each performance measure the number on top is the Z statistic and the number at the
bottom is the corresponding p-value. The Z statistic is negative when PSMBl has a lower score on a
performance measure than the competing algorithm. On all measures except the AUC, a negative Z
statistic indicates better performance by PSMBl; on the AUC a positive Z statistic indicates better
performance by PSMBl. Underlined results indicate p-values of 0.05 or smaller.

 Performance
measure

PSMBl-
MS NPSMBl PSMBg

-2.122 -1.350 -0.695 Misclassification
error 0.034 0.177 0.487

2.235 0.282 -2.581
AUC

0.025 0.778 0.010

-3.458 -0.766 -1.430
Logarithmic loss

0.001 0.444 0.153

-3.469 -0.539 -1.120
Squared error

0.001 0.539 0.263

-1.278 -0.243 -0.532
CAL score

0.201 0.808 0.594

Table 5-20: Paired-samples t test comparing the performance of PSMBl with other algorithms. For each
performance measure the number on top is the mean difference between PSMBl and the indicated
algorithm and the number at the bottom is the corresponding p-value. The mean difference is negative
when PSMBl has a lower score on a performance measure than the competing algorithm. On all measures
except the AUC, a negative mean difference indicates better performance by PSMBl; on the AUC a
positive mean difference indicates better performance by PSMBl. Underlined results indicate p-values of
0.05 or smaller.

Performance
measure

PSMBl-
MS NPSMBl PSMBg

 -0.002 -0.001 0.004 Misclassification
error 0.056 0.163 0.343

0.001 0.000 -0.010
AUC

0.0490.193 0.881

-0.008 -0.005 0.012 Logarithmic loss
0.033 0.169 0.222

 -0.003 -0.001 0.002
Squared error

0.007 0.213 0.478

-0.001 0.000 0.000
CAL score 0.233 0.971 0.860

 163

Table 5-21: Approximate running times of the various algorithms. For each algorithm, the time shown is
the average running time for a single test case over all the UCI and medical datasets. For both population-
wide and the patient-specific algorithms the running time includes the time for learning the model and for
doing inference for the target variable of the test case.

Average running time for a
test case Algorithm

Naïve Bayes < 1 minute
Decision Tree (Classification Tree) < 1 minute
Logistic Regression < 1 minute
Neural Networks < 1 minute

 k-Nearest Neighbor < 1 minute
Lazy Bayesian Rule ~ 1 minute

 PSMBg ~ 1 hour 30 minutes
PSMBl ~ 5 hours 30 minutes

 164

0 0.2 0.4 0.6 0.8 1
PSMBl

0

0.4

0.8

1.2

1.6

2

lB
MSP

-
S

M

0 0.2 0.4 0.6 0.8 1
PSMBl

0

0.4

0.8

1.2

1.6

2

lB
MSPN

0 0.2 0.4 0.6 0.8 1
PSMBl

0

0.4

0.8

1.2

1.6

2

gB
MSP

0.2 0.4 0.6 0.8 1
PSMBl

0.2

0.4

0.6

0.8

1

lB
MSP

-
S

M

0.2 0.4 0.6 0.8 1
PSMBl

0.2

0.4

0.6

0.8

1

lB
MSPN

0.2 0.4 0.6 0.8 1
PSMBl

0.2

0.4

0.6

0.8

1

BgB
MSP

0 0.1 0.2 0.3 0.4 0.5
PSMBl

0

0.1

0.2

0.3

0.4

0.5

lB
MSP

-
S

M

0 0.1 0.2 0.3 0.4 0.5
PSMBl

0

0.1

0.2

0.3

0.4

0.5

lB
MSPN

0.0 0.1 0.2 0.3 0.4 0.5
PSMBl

0.0

0.1

0.2

0.3

0.4

0.5

gB
MSP

Figure 5-10: Pairwise plots of the mean misclassification errors (top row), mean AUCs (middle row) and
mean logarithmic losses (bottom row) of PSMBl vs. competing algorithms. Each point represents the mean
score of PSMBl and a competing algorithm on a single dataset, and the crosshairs represent one standard
deviation on either side of the mean score. Points above the diagonal line represent better performance by
PSMBl than the competing algorithm.

 165

0 0.05 0.1 0.15 0.2
PSMBl

0

0.05

0.1

0.15

0.2

lB
MSP

-
S

M

0 0.05 0.1 0.15 0.2
PSMBl

0

0.05

0.1

0.15

0.2

lB
MSPN

0 0.05 0.1 0.15 0.2
PSMBl

0

0.05

0.1

0.15

0.2

gB
MSP

0 0.2 0.4 0.6 0.8
PSMBl

0

0.2

0.4

0.6

0.8

lB
MSP

-
S

M

0 0.2 0.4 0.6 0.8
PSMBl

0

0.2

0.4

0.6

0.8

lB
MSPN

0 0.2 0.4 0.6 0.8
PSMBl

0

0.2

0.4

0.6

0.8

gB
MSP

Figure 5-11: Pairwise plots of the mean squared errors (top row) and the mean CAL scores (bottom row) of
PSMBl vs. competing algorithms. Each point represents the mean score of PSMBl and a competing algorithm
on a single dataset, and the crosshairs represent one standard deviation on either side of the mean score. Points
above the diagonal line represent better performance by PSMBl than the competing algorithm.

 166

6.0 CONCLUSIONS

In this dissertation, I presented a new framework for learning predictive models that is

characterized by the use of a patient-specific heuristic in selecting models for Bayesian model

averaging (BMA). I implemented two basic algorithms using Bayesian network Markov blanket

(MB) models and evaluated them extensively on several datasets. The patient-specific algorithms

were able to better predict the target by improving on probabilistic, discriminative and

calibration measures when compared to several commonly used machine learning methods. A

summary of the findings is presented in the next section followed by some directions for future

work in the last section.

6.1 CONTRIBUTIONS AND FINDINGS

This section summarizes the main contributions and the experimental results of the research

presented in this dissertation.

This dissertation described the development and evaluation of a new approach for

learning predictive models that are relevant to a single patient case. The new patient-specific

methods that were developed use Bayesian network models, carry out selective Bayesian model

averaging to predict the outcome of interest for the patient case at hand, and employ a patient-

specific heuristic to locate a set of suitable models to average over. The main contribution is the

 167

development of a new search heuristic for identifying models over which to perform Bayesian

model averaging that is guided by the features of the patient case at hand. This heuristic was

implemented in two algorithms, namely, the patient-specific Markov blanket (global) (PSMBg)

and the patient-specific Markov blanket (local) (PSMBl) algorithms. Both algorithms employ the

patient-specific heuristic to select models in the space of MB structures but differ in the model

space. The difference between the model spaces of the two algorithms lies in the representation

used for the CPDs: the PSMBg algorithm uses conditional probability tables (CPTs) that capture

explicitly only the global structure while the PSMBl algorithm uses decision graphs that capture

explicitly global and local structure. Given a set of parents, a node in a MB structure has only

one global structure represented by a CPT but has several distinct local structures represented by

decision graphs. Since the global structure is equivalent to one of the possible local structures,

the model space of the PSMBg algorithm is a subset of that of the PSMBl algorithm.

A second contribution is the development of new operators to traverse the space of MB

structures; these operators are modifications of operators used in existing techniques for learning

general Bayesian network structures.

A third contribution is the development of a new hierarchical structure prior for BNs and

MBs with local decision graph structures that penalizes complex decision graph structures over

simpler ones. This structure prior is used in computing the Bayesian score that is used by the

PSMBl algorithm.

The experimental results demonstrate that the PSMBg algorithm improves prediction of

the target variable on a variety of performance measures when compared to several population-

wide predictive algorithms. The greatest improvements occur in logarithmic loss and squared

error, followed by good improvement in calibration and smaller improvements in

 168

misclassification error and the AUC. Bayesian model averaging has better performance than

Bayesian model selection, and within model averaging, patient-specific Bayesian model

averaging has better performance than non-patient-specific Bayesian model averaging though the

improvement is not as large as that of model averaging over model selection.

The PSMBl algorithm also improves prediction of the target variable when compared to

several population-wide predictive algorithms. However, it did not significantly improve on the

performance of the PSMBg algorithm on any measure.

Overall, Bayesian model averaging in conjunction with patient-specific search led to

better performance than either non-patient-specific Bayesian model averaging or patient-specific

search for a single good model. However, the use of local structure did not lead to significant

improvements over the use of global structure alone. The implementation of patient-specific

phase 2 in the PSMBl algorithm may have limited the performance of local structures.

6.2 DISCUSSION

This section summarizes some of the key aspects of the patient-specific method. The essence of

the patient-specific method lies in the model score used in phase 2 of the search. This score is

sensitive to both the posterior probability of the model and the predicted distribution for the

outcome variable of the patient case at hand (see Equations 4.17 and 4.16). Typically, methods

that evaluate models with a score employ a score that is sensitive only to the fit of the model to

the training data and not to the prediction of the outcome variable.

Several situations are possible where the patient-specific method has no advantage over a

population-wide method. As one example, in a domain where complete BMA is tractable and

 169

model averaging is carried out over all models in the model space, a search heuristic that selects

a subset of models such as the one used by the patient-specific method is superfluous. Typically,

in real life domains complete BMA over all models is not tractable due to the enormous number

of models in the model space. Thus, the patient-specific method is useful for selective model

averaging where it identifies a potentially relevant set of models that is predictive of the patient

case at hand. As another example, in a domain where features that are relevant are commonly

present, selection of relevant variables may not be a problem. In such a situation, the variables

selected by a population-wide method are likely to be relevant for predicting any future case and

the patient-specific method that performs model selection will likely select the same set of

variables for each new case.

There are several open questions regarding the behavior of the patient-specific method.

Characterizing the bias of the selective model averaged prediction of the patient-specific method

is an open problem. In contrast, the bias of selective BMA over models that are chosen randomly

is low. However, the variance of selective BMA over models that are chosen randomly is likely

to be much larger than the variance of selective BMA over models chosen by the patient-specific

method which is constrained to prefer models that are good fit to the training data.

Another open issue is the comparison of the performance of patient-specific selective

BMA to that of other ensemble methods. Ensemble methods construct a set of predictive models

that predict the target variable for a new case by taking a weighted average of their predictions.

In addition to BMA, examples of other ensemble methods include bagging, boosting and

stacking [107, 108]. Boosting, in particular, has been shown to improve on the performance of a

single model for classification and for predictive tasks. Boosting selects a new model by

weighting more those training cases that have been misclassified by the models selected

 170

previously. The patient-specific method described in this dissertation selects a new model that

disagrees considerably with the predictions of models selected previously. Thus, both methods

select a set of models that are diverse with respect to different heuristics.

6.3 FUTURE WORK

The experimental work presented in this research is intended as a first step in exploring the

utility of the patient-specific framework. Several extensions and directions for future work are

feasible.

Efficient computation of phase 2 score. In the current implementation of the PSMBl

algorithm, the inner search procedure in phase 2 search evaluates candidate local structures with

the non-patient-specific phase 1 score rather than the patient-specific phase 2 score. Only the

local decision graph structure that has the highest phase 1 score is evaluated with the phase 2

score. Ideally, the patient-specific phase 2 score should be computed for every candidate local

structure that is encountered by the inner search procedure. In the current implementation,

computation of the phase 2 score is less efficient than the computation of the phase 1 score. More

efficient implementations of the phase 2 score with caching of intermediate computational results

will enable the scoring of all local structures.

Unified search. The encapsulated search strategy employed by the PSMBl algorithm

decouples the problem of network structure learning (global structure) from that of learning the

CPD structures (local structure). However, this strategy typically leads to considerable

duplication of effort. This arises due to the repetitive characteristic of the inner search procedure:

the search for local structure of the CPD is restarted with every addition of a new parent. Often,

 171

the new parent is irrelevant and will be discarded when the local structure is learned. Unified

search employs a single search procedure with operators that modify explicitly only the local

structure, since a set of local structures is sufficient to determine the global structure. Unified

search will typically learn the local structure of a MB node only once and is potentially more

efficient. However, the downside of unified search is that operations like reversing an arc in the

global structure are not well defined.

Alternative dissimilarity metric for phase 2 scores. The computation of the phase 2

score (See Equation 4.17) requires a dissimilarity metric to compare the predictive distributions

of the target variable in candidate MB structures. The current implementation of the PSMB

algorithms use KL divergence as the dissimilarity metric. The experimental results indicate that

KL divergence optimizes most logarithmic loss since the largest improvement in performance is

observed on this measure. Alternative dissimilarity metrics may optimize other performance

measures. The following dissimilarity metric, for example, has the potential for optimizing

misclassification error:

)',|(max),|(max)',(MZPMZPMMf tt XX −= ,

where the phase 2 score, , for the candidate model M’ is the absolute value of the

difference in the maximum probabilities achieved in the distributions for the target Zt estimated

by the current model M and the candidate model M’.

)',(MMf

Alternative models. The patient-specific framework is a general formulation and any

statistical model can be substituted for MB structures. Alternative models that would be

interesting to explore include logistic regression models and decision trees.

Comparison with other ensemble techniques. Several non-Bayesian ensemble

techniques such as bagging, boosting and stacking have been shown to improve on the

 172

performance of a single model for classification and for predictive tasks. Further comparisons

between patient-specific selective Bayesian model averaging and these non-Bayesian ensemble

techniques would be worthwhile.

 173

APPENDIX

COUNTING MARKOV BLANKET STRUCTURES

This section gives the derivation of a formula for counting the number of possible Markov

blanket (MB) structures with respect to a specified domain variable.

The MB of a node in a Bayesian network (BN) consists of its parents, its children, and

the parents of its children (spouses). With respect to a MB, the nodes can be categorized into five

groups: (1) the target node, (2) parent nodes of the target, (3) child nodes of the target, (4)

spousal nodes, which are parent nodes of the children, and (5) other nodes, which are not part of

the MB. The node under consideration is called the target node. A parent node is one that has an

outgoing arc to the target node and may have additional outgoing arcs to one or more child

nodes. A child node is one that has an incoming arc from the target node, may have additional

incoming arcs from parent nodes, spousal nodes and other child nodes, and may have outgoing

arcs to other child nodes. A spousal node is one that has outgoing arcs to one or more child

nodes and has neither an incoming arc from the target node nor an outgoing arc to the target

node. An other node is one that is not in the MB and is considered to be a potential spousal node.

An example demonstrating the various types of nodes in a MB is given in Figure A-1.

 174

The number of possible Markov blanket structures for a domain with m variables (where

m excludes the target variable) is given by the following equation:

1)0(

0)(22
!!!

!)(..

0 0

=

>⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑ ∑

=

−

=

MB

mformBN
mmm

mmMB c
mmmm

m

m

mm

m socp

socpc

P

p

so
, (A.1)

where, mp is number of parent nodes, mc is the number of child nodes, mso is the number of

spousal and other nodes, and m = mp + mc + mso. BN(mc) is the number of DAGs that can be

constructed from mc nodes. The number of DAGs that can be constructed from n variables is

given by the following recurrence formula [73, 74]:

1)0(

0)(2),()1()(
1

)(1

=

>−−= ∑
=

−−

BN

nforknBNknCnBN
n

k

knkk

, (A.2)

where C(n, k) is the count of the number ways to choose k objects from n distinct objects.

Equation A.1 is derived as follows. The terms inside the double summation count the

number of MB structures for a specified number of mp, mc and mso nodes. The first term gives the

number of ways m can be partitioned into mp parent nodes, mc child nodes and mso spousal and

other nodes. The second term gives the number of distinct MB structures that differ only in the

P

Figure A-1: An example of a Markov blanket demonstrating various node types. T is the target
node, P is a parent node, C is a child node, S is a spousal node, and O is an other node.

P S O T

C C

 175

presence or absence of arcs from parent nodes to child nodes. Each parent node can have an arc

to none, one or more child nodes for a total of distinct MB structures. For mp parent nodes,

the number of distinct MB structures that differ only in the presence or absence of arcs from

parent nodes to child nodes is . The third term gives the number of distinct MB structures

that differ only in the presence or absence of arcs from spousal and other nodes to child nodes.

This derivation is similar to the derivation of the previous term. Each spousal or other node can

have an arc to none, one or more child nodes for a total of distinct MB structures. For mso

spousal or other nodes, the number of distinct MB structures that differ only in the presence or

absence of arcs from spousal or other nodes to child nodes is . The fourth and last term

gives the number of DAGs that can be formed with mc child nodes. The summation is carried

over all possible values of mp and mc; selection of particular values for mp and mc determines the

value of mso and hence no explicit summation is required over the values of mso.

cm2

pcmm2

som2

2 soc mm

 176

BIBLIOGRAPHY

1. van Bemmel, J.H. and M.A. Musen, Handbook of Medical Informatics. 1st ed. 1997,
New York: Springer-Verlag.

2. Abu-Hanna, A. and P.J. Lucas, Prognostic models in medicine. AI and statistical
approaches. Methods Inf Med, 2001. 40(1): p. 1-5.

3. Cooper, G.F., et al., An evaluation of machine-learning methods for predicting
pneumonia mortality. Artif Intell Med, 1997. 9(2): p. 107-38.

4. Gottrup, C., et al., Applying instance-based techniques to prediction of final outcome in
acute stroke. Artificial Intelligence in Medicine, 2005. 33(3): p. 223-236.

5. Pearl, J., Probabilistic Reasoning in Intelligent Systems. 1988, San Mateo, California:
Morgan Kaufmann.

6. Neapolitan, R.E., Learning Bayesian Networks. 1st ed. 2003, Upper Saddle River, New
Jersey: Prentice Hall.

7. Russell, S.J. and P. Norvig, Artificial Intelligence: Modern Approach. 2002: Prentice
Hall.

8. Coiera, E., The Guide to Health Informatics. 2nd ed. 2003, London: Hodder Arnold.
9. Wyatt, J.C. and D.G. Altman, Commentary: Prognostic models: Clinically useful or

quickly forgotten? BMJ, 1995. 311: p. 539-1541.
10. Bleich, H.L., Computer evaluation of acid-base disorders. Trans Assoc Am Physicians,

1968. 81: p. 184-9.
11. Buchanan, B.G. and E.H. Shortliffe, Rule-Based Expert Systems: The MYCIN

Experiments of the Stanford Heuristic Programming Project. 1984, Reading, MA:
Addison-Wesley Publishing Company.

12. Ledley, R.S. and L.B. Lusted, Reasoning foundations of medical diagnosis; symbolic
logic, probability, and value theory aid our understanding of how physicians reason.
Science, 1959. 130(3366): p. 9-21.

13. Heckerman, D.E., E.J. Horvitz, and B.N. Nathwani, Toward normative expert systems:
Part I. The Pathfinder project. Methods Inf Med, 1992. 31(2): p. 90-105.

14. Heckerman, D.E. and B.N. Nathwani, Toward normative expert systems: Part II.
Probability-based representations for efficient knowledge acquisition and inference.
Methods Inf Med, 1992. 31(2): p. 106-16.

15. Middleton, B., et al., Probabilistic diagnosis using a reformulation of the INTERNIST-
1/QMR knowledge base. II. Evaluation of diagnostic performance. Methods Inf Med,
1991. 30(4): p. 256-67.

16. Shwe, M.A., et al., Probabilistic diagnosis using a reformulation of the INTERNIST-
1/QMR knowledge base. I. The probabilistic model and inference algorithms. Methods
Inf Med, 1991. 30(4): p. 241-55.

 177

17. Dreiseitl, S. and L. Ohno-Machado, Logistic regression and artificial neural network
classification models: a methodology review. J Biomed Inform, 2002. 35(5-6): p. 352-9.

18. Wasserman, L., Bayesian Model Selection and Model Averaging. J Math Psychol, 2000.
44(1): p. 92-107.

19. Hoeting, J.A., et al., Bayesian model averaging: A tutorial. Statistical Science, 1999.
14(4): p. 382-401.

20. Quinlan, R. Combining instance-based and model-based learning. in Proceedings of the
Tenth International Conference on Machine Learning. 1993. University of
Massachusetts, Amherst: Morgan Kaufmann.

21. Ali, K. and M.J. Pazzani, eds. Classification using Bayes averaging of multiple,
relational rule-based models. Learning from Data: Artificial Intelligence and Statistics,
Vol. 5, ed. D. Fisher and H. Lenz. 1995, Springer-Verlag.

22. Mitchell, T.M., Machine Learning. 1st ed. 1997, New York: McGraw Hill.
23. Aha, D.W., Feature weighting for lazy learning algorithms, in Feature extraction,

construction and selection: A data mining perspective, L. Huan and M. Hiroshi, Editors.
1998, Kluwer Academic Publisher: Norwell, MA. p. 13-32.

24. Zhang, J.P., Y.S. Yim, and J.M. Yang, Intelligent selection of instances for prediction
functions in lazy learning algorithms. Artificial Intelligence Review, 1997. 11(1-5): p.
175-191.

25. Cover, T. and P. Hart, Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, 1967. 13(1): p. 21-27.

26. Dasarathy, B., Nearest Neighbor (NN) norms: NN Pattern Classification Techniques.
1991, Los Alamitos, California: IEEE Computer Society Press.

27. Atkeson, C.G., A.W. Moore, and S. Schaal, Locally weighted learning. Artificial
Intelligence Review, 1997. 11(1-5): p. 11-73.

28. Wettschereck, D., D.W. Aha, and T. Mohri, A review and empirical evaluation of feature
weighting methods for a class of lazy learning algorithms. Artificial Intelligence Review,
1997. 11(1-5): p. 273-314.

29. Kohavi, R. and G.H. John, Wrappers for feature subset selection. Artificial Intelligence,
1997. 97(1-2): p. 273-324.

30. Friedman, J.H., R. Kohavi, and Y. Yun. Lazy decision trees. in Proceedings of the
Thirteenth National Conference on Artificial Intelligence. 1996. Portland, Oregon: AAAI
Press.

31. Ting, K.M., Z. Zheng, and G.I. Webb. Learning lazy rules to improve the performance of
classifiers. in Proceedings of the Nineteenth SGES International Conference on
Knowledge Based Systems and Applied Artificial Intelligence. 1999. Cambridge, UK:
Springer-Verlag.

32. Zheng, Z.J. and G.I. Webb, Lazy learning of Bayesian rules. Machine Learning, 2000.
41(1): p. 53-84.

33. Kohavi, R. Scaling up the accuracy of naive-Bayes classifiers: A decision-tree hybrid. in
Proceedings of the Second International Conference on Knowledge Discovery and Data
Mining. 1996. Portland, Oregon: AAAI Press.

34. Pazzani, M.J., Constructive induction of cartesian product attributes, in Feature
Extraction, Construction and Selection: A Data Mining Perspective, L. Huan and M.
Hiroshi, Editors. 1998, Kluwer Academic Publisher: Norwell, MA.

 178

35. Pazzani, M. Searching for dependencies in Bayesian classifiers. in Proceedings of the
Fifth International Workshop on Artificial Intelli-gence and Statistics. 1995. Fort
Lauderdale, Florida: Springer-Verlag.

36. Knaus, W.A., et al., APACHE II: a severity of disease classification system. Crit Care
Med, 1985. 13(10): p. 818-29.

37. Anbeek, P., et al., Automatic segmentation of different-sized white matter lesions by voxel
probability estimation. Med Image Anal, 2004. 8(3): p. 205-15.

38. Nutt, C.L., et al., Gene expression-based classification of malignant gliomas correlates
better with survival than histological classification. Cancer Res, 2003. 63(7): p. 1602-7.

39. Chang, R.F., et al., Support vector machines for diagnosis of breast tumors on US
images. Acad Radiol, 2003. 10(2): p. 189-97.

40. Lee, Y. and C.K. Lee, Classification of multiple cancer types by multicategory support
vector machines using gene expression data. Bioinformatics, 2003. 19(9): p. 1132-9.

41. Cristianini, N. and J. Shawe-Taylor, An Introduction to Support Vector Machines (and
other kernel-based learning methods). 1st ed. 2000, Cambridge, UK: Cambridge
University Press.

42. Qu, H. and J. Gotman, A patient-specific algorithm for the detection of seizure onset in
long-term EEG monitoring: possible use as a warning device. IEEE Trans Biomed Eng,
1997. 44(2): p. 115-22.

43. Shoeb, A., et al., Patient-specific seizure onset detection. Epilepsy Behav, 2004. 5(4): p.
483-98.

44. Sheiner, L.B., et al., Forecasting individual pharmacokinetics. Clin Pharmacol Ther,
1979. 26(3): p. 294-305.

45. Sheiner, L.B. and S.L. Beal, Bayesian individualization of pharmacokinetics: simple
implementation and comparison with non-Bayesian methods. J Pharm Sci, 1982. 71(12):
p. 1344-8.

46. Sheiner, L.B., et al., Improved computer-assisted digoxin therapy. A method using
feedback of measured serum digoxin concentrations. Ann Intern Med, 1975. 82(5): p.
619-27.

47. Dreiseitl, S. and M. Binder, Do physicians value decision support? A look at the effect of
decision support systems on physician opinion. Artificial Intelligence in Medicine, 2005.
33(1): p. 25-30.

48. Cooper, G.F., An Overview of the Representation and Discovery of Causal Relationships
using Bayesian Networks, in Computation, Causation, and Discovery, C. Glymour and
G.F. Cooper, Editors. 1999, AAAI Press and MIT Press: Menlo Park, CA.

49. Lauritzen, S.L., et al., Independence properties of directed Markov fields. Networks,
1990. 20: p. 491-505.

50. Lauritzen, S.L., Graphical Models. 1996, Oxford: Clarendon Press.
51. Friedman, N. and M. Goldszmidt, Learning Bayesian networks with local structure, in

Learning in graphical models. 1999, MIT Press. p. 421-459.
52. Chickering, D.M., D. Heckerman, and C. Meek. A Bayesian approach to learning

Bayesian networks with local structure. in Proceedings of the Thirteenth Conference on
Uncertainty in Artificial Intelligence. 1997. Brown University, Providence, Rhode Island:
Morgan Kaufmann.

 179

53. Chickering, D.M., Learning Bayesian networks is NP-complete, in Learning from Data:
Artificial Intelligence and Statistics V, D. Fisher and H. Lenz, Editors. 1996, Springer. p.
121-130.

54. Spiegelhalter, D.J. and S.L. Lauritzen, Sequential updating of conditional probabilities
on directed graphical structures. Networks, 1990. 20: p. 579-605.

55. Cooper, G.F. and E. Herskovits, A Bayesian method for the induction of probabilistic
networks from data. Machine Learning, 1992. 9(4): p. 309-347.

56. Heckerman, D., D. Geiger, and D.M. Chickering, Learning Bayesian networks - the
combination of knowledge and statistical data. Machine Learning, 1995. 20(3): p. 197-
243.

57. Heckerman, D., A Tutorial on Learning with Bayesian Networks, in Learning in
Graphical Models, M. Jordan, Editor. 1999, MIT Press: Cambridge, MA.

58. Cooper, G.F. and E. Herskovits. A Bayesian method for constructing Bayesian belief
networks from databases. in Seventh Annual Conference on Uncertainty in Artifical
Intelligence. 1991. Los Angeles, California: Morgan Kaufmann Publishers.

59. Buntine, W., Theory refinement on Bayesian networks in Proceedings of the seventh
conference (1991) on Uncertainty in artificial intelligence 1991 Morgan Kaufmann
Publishers Inc.: Los Angeles, California, United States p. 52-60

60. Chow, C.K. and C.N. Liu, Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory 1968. 14(3): p. 462-467.

61. Chickering, D.M. Large-sample learning of Bayesian networks is hard. in Proceedings of
the Nineteenth Conference on Uncertainty in Artificial Intelligence. 2003. Acapulco,
Mexico: Morgan Kaufmann.

62. Teyssier , M. and D. Koller. Ordering-based Search: A Simple and Effective Algorithm
for Learning Bayesian Networks. in Proceedings of the 21st Annual Conference on
Uncertainty in Artificial Intelligence. 2005. Edinburgh, Scotland: AUAI Press.

63. Glover, F., Tabu search, Part I. ORSA Journal on Computing, 1989. 1: p. 190-206.
64. Koivisto, M. Advances in exact Bayesian structure discovery in Bayesian networks. in

Proceedings of the 22nd Conference in Uncertainty in Artificial Intelligence. 2006.
Cambridge, MA: AUAI Press.

65. Koivisto, M. and K. Sood, Exact Bayesian structure discovery in Bayesian networks.
Journal of Machine Learning Research, 2004. 5: p. 549–573.

66. Bennett, P.N., Assessing the Calibration of Naive Bayes’ Posterior Estimates. 2000,
Carnegie Mellon University: Pittsburgh, PA.

67. Warner, H.R., et al., A mathematical approach to medical diagnosis. Application to
congenital heart disease. Jama, 1961. 177: p. 177-83.

68. Friedman, N., D. Geiger, and M. Goldszmidt, Bayesian Network Classifiers. Machine
Learning, 1997. 29(2-3): p. 131-163.

69. Greiner, R., et al., Structural Extension to Logistic Regression: Discriminative Parameter
Learning of Belief Net Classifiers. Machine Learning, 2005. 59(3): p. 297-322.

70. Grossman, D. and P. Domingos. Learning Bayesian network classifiers by maximizing
conditional likelihood. in International Conference on Machine Learning. 2004. Banff,
Canada.

71. Madigan, D. and A.E. Raftery, Model Selection and Accounting for Model Uncertainty in
Graphical Models using Occam's Window. Journal of the American Statistical
Association, 1994. 89: p. 1335-1346.

 180

72. Raftery, A.E., D. Madigan, and J.A. Hoeting, Model Selection and Accounting for Model
Uncertainty in Linear Regression Models. Journal of the American Statistical
Association, 1997(92): p. 179-191.

73. Robinson, R.W., Counting Labeled Acyclic Digraphs, in New Directions in Graph
Theory, F. Harary, Editor. 1973, Academic Press: New York.

74. Harary, F. and E.M. Palmer, Graphical Enumeration. 1973, New York: Academic Press.
75. Boutilier, C., et al. Context-specific independence in Bayesian networks. in Proceedings

of the Twelfth Annual Conference on Uncertainty in Artificial Intelligence. 1996. Reed
College, Portland, Oregon: Morgan Kaufmann.

76. Friedman, N. and M. Goldszmidt. Learning Bayesian networks with local structure. in
Proceedings of the Twelfth Annual Conference on Uncertainty in Artificial Intelligence.
1996. Reed College, Portland, Oregon: Morgan Kaufmann.

77. Bell, E.T., Exponential Numbers. American Mathematical Monthly, 1934. 41: p. 411-
419.

78. Graham, R.L., D.E. Knuth, and P. Patashnik, Concrete Mathematics: A Foundation for
Computer Science. 2 ed. 1994: Addison-Wesley.

79. Cover, T.M. and A.T. Joy, Elements of Information Theory. 2nd ed. 2006: Wiley-
Interscience.

80. Blake, C.L. and C.J. Merz, UCI Repository of machine learning databases. 1998,
University of California, Department of Information and Computer Science: Irvine, CA.

81. USDHHS, Health United States 1988, DHHS Pub. No. (CDC) 89-8411. 1988, Public
Health Service, Centers for Disease Control: Washington, DC.

82. USGPO, Statistical Abstract of the United States, 108th ed. 1988, U.S. Dept. of
Commerce, Bureau of the Census.

83. Fine, M.J., et al., A prediction rule to identify low-risk patients with community-acquired
pneumonia. N Engl J Med, 1997. 336(4): p. 243-50.

84. Cooper, G.F., et al., Predicting dire outcomes of patients with community acquired
pneumonia. Journal of Biomedical Informatics, 2005. 38(5): p. 347-366.

85. Wheeler, A.P. and G.R. Bernard, Treating patients with severe sepsis. N Engl J Med,
1999. 340(3): p. 207-14.

86. From the Centers for Disease Control. Increase in National Hospital Discharge Survey
rates for septicemia--United States, 1979-1987. JAMA, 1990. 263(7): p. 937-8.

87. Schulman, K.A., et al., Cost-effectiveness of HA-1A monoclonal antibody for gram-
negative sepsis. Economic assessment of a new therapeutic agent. Jama, 1991. 266(24):
p. 3466-71.

88. Barriere, S.L. and S.F. Lowry, An overview of mortality risk prediction in sepsis. Crit
Care Med, 1995. 23(2): p. 376-93.

89. NHLBI, Morbidity and Mortality: 2002 Chartbook on Cardiovascular, Lung, and Blood
Diseases. 2002, National Institutes of Health.

90. Popovich, J.R. and M.J. Hall, 1999 National Hospital Discharge Survey, Advance Data,
No. 319. 2001, Centers for Disease Control and Prevention, National Center for Health
Statistics.

91. Hsieh, M., T.E. Auble, and D.M. Yealy, Evidence-based emergency medicine. Predicting
the future: can this patient with acute congestive heart failure be safely discharged from
the emergency department? Ann Emerg Med, 2002. 39(2): p. 181-9.

 181

 182

92. Auble, T.E., et al., A prediction rule to identify low-risk patients with heart failure. Acad
Emerg Med, 2005. 12(6): p. 514-21.

93. Caruana, R. A non-parametric EM-style algorithm for imputing missing values. in
Proceedings of Artificial Intelligence and Statistics 2001. 2001.

94. Fayyad, U.M. and K.B. Irani. Multi-interval discretization of continuous-valued
attributes for classification. in Proceedings of the International Joint Conference on
Artificial Intelligence. 1993. Chambry, France: Morgan Kaufmann.

95. Adams, N.M. and D.J. Hand, Comparing classifiers when the misallocation costs are
uncertain. Pattern Recognition, 1999. 32: p. 1139-1147.

96. Caruana, R. and N.-M. Alexandru, Data mining in metric space: an empirical analysis of
supervised learning performance criteria. Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining. 2004, Seattle, WA,
USA: ACM Press. 69-78.

97. Hanley, J.A. and B.J. McNeil, The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology, 1982. 143(1): p. 29-36.

98. Hand, D.J. and R.J. Till, A simple generalisation of the area under the ROC curve for
multiple class classification problems. Machine Learning, 2001. 45(2): p. 171-186.

99. Mossman, D., Three-way ROCs. Medical Decision Making 1999. 19: p. 78–89.
100. Provost, F. and P. Domingos, Tree induction for probability-based rankings. Machine

Learning, 2003. 52(3): p. 199 - 215
101. Brier, G.W., Verification of forecasts expressed in terms of probability. Monthly Weather

Review, 1950. 78: p. 1-3.
102. Yeung, K.Y., R.E. Bumgarner, and A.E. Raftery, Bayesian model averaging:

development of an improved multi-class, gene selection and classification tool for
microarray data. Bioinformatics, 2005. 21(10): p. 2394-402.

103. Witten, I.H. and E. Frank, Data Mining: Practical machine learning tools with Java
implementations. 2000, San Francisco: Morgan Kaufmann.

104. Witten, I.H. and E. Frank, Data Mining: Practical Machine Learning Tools and
Techniques. 2nd ed. 2005: Morgan Kaufmann.

105. DeGroot, M.H. and S.E. Fienberg, The comparison and evaluation of forecasters. The
Statistician, 1983. 32: p. 14-22.

106. Daniel, W., Applied Nonparametric Statistics. 2nd ed. 1990: PWS-KENT Publishing
Company.

107. Schapire, R.E. A brief introduction to boosting. in Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence. 1999. Stockholm, Sweden:
Morgan Kaufmann.

108. Breiman, L., Bagging predictors. Machine Learning, 1996. 24(2): p. 123--140.

	TITLE PAGE
	COMMITTEE MEMBERS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	Table 2-1: Categories of methods for predictive modeling.
	Table 2-2: Eager and lazy learning.
	Table 3-1: Labels for CPDs, BNs and MBs based on the CPD representation.
	Table 4-1: Number of Bayesian network structures BN(n) and Markov blanket structures MB(n-1) as a function of number of nodes n. The number of Markov blanket structures is with respect to a single node and is not a count of all Markov blanket structures for all nodes. The last column gives the ratio of the two types of structures. Both BN(n) and MB(n-1) are exponential in
	Table 5-1: Description of the UCI datasets used in the experiments described in this chapter. In the column on predictors, the number of continuous (cnt) and discrete (dsc) predictors as well as the total number of predictor variables (excluding the target variable) are given. In the column on cases, the numbers of cases used in the experiments are given; this may be less
	Table 5-2: Description of the medical datasets used in the experiments described in this chapter. In the column on predictors, the number of continuous (cnt) and discrete (dsc) predictors as well as the total number of predictor variables (excluding the target variable) are given. All outcome variables that were studied are binary. The last column gives the number of cases
	Table 5-3: Brief description of the performance measures used in evaluation of the performance of the algorithms. For the AUC, scores closer to 1 indicate better performance. For the remaining measures, scores closer to 0 indicate better performance.
	Table 5-4: Six versions of the patient-specific algorithm with a brief description of each one.
	Table 5-5: Results obtained from the training and test sets that are shown in Figure 5-2. The AUC could not be computed since the test set has cases from a single class. Results in the first column are obtained by model averaging over all 3567 MBs with global structure. Similar complete model averaging over all MBs with local structure is not given since it was not tractab
	Table 5-6: Mean misclassification errors of different algorithms based on 10-fold cross-validation done twice on the UCI datasets and a single train-test validation on the medical datasets. To avoid cluttering only the mean for each dataset is shown. The bottom three rows give the average misclassification errors for the UCI datasets, the medical datasets and all the datas
	Table 5-7: Mean AUCs of different algorithms based on 10-fold cross-validation done twice on the UCI datasets and a single train-test validation on the medical datasets. To avoid cluttering only the mean for each dataset is shown. The bottom three rows give the average AUCs for the UCI datasets, the medical datasets and all the datasets respectively. Best results are in un
	Table 5-8: Mean logarithmic losses of different algorithms based on 10-fold cross-validation done twice on the UCI datasets and a single train-test validation on the medical datasets. To avoid cluttering only the mean for each dataset is shown. The bottom three rows give the average logarithmic losses for the UCI datasets, the medical datasets and all the datasets respecti
	Table 5-9: Mean squared errors of different algorithms based on 10-fold cross-validation done twice on the UCI datasets and a single train-test validation on the medical datasets. To avoid cluttering only the mean for each dataset is shown. The bottom three rows give the average squared errors for the UCI datasets, the medical datasets and all the datasets respectively. Be
	Table 5-10: Mean CAL scores of different algorithms based on 10-fold cross-validation done twice on the UCI datasets and a single train-test validation on the medical datasets. To avoid cluttering only the mean for each dataset is shown. The bottom three rows give the average CAL scores for the UCI datasets, the medical datasets and all the datasets respectively. Best resu
	Table 5-11: Wilcoxon paired-samples signed ranks test comparing the performance of PSMBg with other algorithms. For each performance measure the number on top is the Z statistic and the number at the bottom is the corresponding p-value. The Z statistic is negative when PSMBg has a lower score on a performance measure than the competing algorithm. On all measures except the
	Table 5-12: Paired-samples t test comparing the performance of PSMBg with other algorithms. For each performance measure the number on top is the mean difference between PSMBg and the indicated algorithm and the number at the bottom is the corresponding p-value. The mean difference is negative when PSMBg has a lower score on a performance measure than the competing algorit
	Table 5-13: Average number of models in phases 1 and 2 over which averaging is carried out by the PSMBg and NPSMBg algorithms. Both algorithms average over the same number of models in each phase. Both algorithms select the same models in phase 1 but potentially different models in phase 2. The number of models in phases 1 and 2 is the sum of the models selected in the two
	Table 5-14: Mean misclassification errors of different algorithms based on 10-fold cross-validation done twice on the UCI datasets and a single train-test validation on the medical datasets. To avoid cluttering only the mean for each dataset is shown. The bottom three rows give the average misclassification errors for the UCI datasets, for the medical datasets and for all
	Table 5-15: Mean AUCs of different algorithms based on 10-fold cross-validation done twice on the UCI datasets and a single train-test validation on the medical datasets. To avoid cluttering only the mean for each dataset is shown. The bottom three rows give the average AUCs for the UCI datasets, for the medical datasets and for all the datasets respectively. Best results
	Table 5-16: Mean squared errors of different algorithms based on 10-fold cross-validation done twice on the UCI datasets and a single train-test validation on the medical datasets. To avoid cluttering only the mean for each dataset is shown. The bottom three rows give the average squared errors for the UCI datasets, for the medical datasets and for all the datasets respect
	Table 5-17: Mean logarithmic losses of different algorithms based on 10-fold cross-validation done twice on the UCI datasets and a single train-test validation on the medical datasets. To avoid cluttering only the mean for each dataset is shown. The bottom three rows give the average logarithmic losses for the UCI datasets, for the medical datasets and for all the datasets
	Table 5-18: Mean CAL scores of different algorithms based on 10-fold cross-validation done twice on the UCI datasets and a single train-test validation on the medical datasets. To avoid cluttering only the mean for each dataset is shown. The bottom three rows give the average CAL scores for the UCI datasets, for the medical datasets and for all the datasets respectively. B
	Table 5-19: Wilcoxon paired-samples signed ranks test comparing the performance of PSMBl with other algorithms. For each performance measure the number on top is the Z statistic and the number at the bottom is the corresponding p-value. The Z statistic is negative when PSMBl has a lower score on a performance measure than the competing algorithm. On all measures except the
	Table 5-20: Paired-samples t test comparing the performance of PSMBl with other algorithms. For each performance measure the number on top is the mean difference between PSMBl and the indicated algorithm and the number at the bottom is the corresponding p-value. The mean difference is negative when PSMBl has a lower score on a performance measure than the competing algorit
	Table 5-21: Approximate running times of the various algorithms. For each algorithm, the time shown is the average running time for a single test case over all the UCI and medical datasets. For both population-wide and the patient-specific algorithms the running time includes the time for learning the model and for doing inference for the target variable of the test case.

	LIST OF FIGURES
	Figure 1-1: A general characterization of the induction and inference of population-wide (top panel) and patient-specific (bottom panel) models. In the bottom panel, there is an extra arc from patient case to model, because the structure and parameters of the model are influenced by the features of the patient case at hand.
	Figure 2-1: A LBR model (or rule) with five predictors and a target variable (dire outcome). The two nodes at the top represent predictors in the antecedent of the LBR rule that have been instantiated to their respective values in the test case. The node in the center (the target variable being predicted) and the three nodes at the bottom form the local naive Bayes classif
	Figure 3-1: A simple hypothetical Bayesian network for a medical domain, taken from [48]. All the nodes represent binary variables, taking values in the domain {T, F} where T stands for True and F for False. The graph at the top represents the Bayesian network structure. Associated with each variable (node) is a conditional probability table representing the probability of
	Figure 3-2: Examples of the local Markov condition and the global Markov condition. (a) Local Markov condition: The node X6 (shown stippled) is conditionally independent of its non-descendants given its parents (shown shaded). (b) Global Markov condition: the node X6 (shown stippled) is conditionally independent of all other nodes in the network given its Markov blanket (s
	Figure 3-3: Example of a Markov blanket. The Markov blanket of the node X6 (shown stippled) comprises the set of parents, children and spouses of the node and is indicated by the shaded nodes. The nodes in the Markov blanket include X2 and X3 as parents, X8 and X9 as children, and X5 and X7 as spouses of X6. X1, X4, X2 and X10 and X11 are not in the Markov blanket of X6.
	Figure 3-4: Examples of CPD representations. Several CPD representations for the BN node X4 (fatigue) in panel (a) are shown in subsequent panels. Panel (b) shows a CPT for the node X4 with four parameters. The CPT can be equivalently represented by a complete decision tree as shown in panel (c). Panels (d) and (e) show alternate decision trees where each one captures one
	Figure 3-5: Examples of indexing of parent states in CPDs. Several CPD representations for the BN node X4 (fatigue) in panel (a) are shown in subsequent panels. Panel (b) shows a CPT associated with node X4 in which the parent states of X4 are indexed by j as indicated in the shaded row. The CPT can be equivalently represented by a full decision tree as shown in panel (c)
	Figure 3-6: Bayesian network global operators: (a) the original BN with three BN nodes where X1 is a parent of X3, (b) the result of applying the add operator, which adds an arc from X2 to X3, (c) the result of applying the remove operator, which removes the existing arc between X1 to X3, and (d) the result of applying the reverse operator, which reverses the existing arc
	Figure 3-7: Bayesian network local operators: (a) the original decision graph for the BN node X3, showing one parent X1 that is in X3’s decision graph, (b) the result of applying the complete split operator, which splits based on all values of X1, (c) the result of applying the binary split operator, which splits one state of X2 from all other states, and (d) the result of
	Figure 3-8: Example of encapsulated search demonstrating the application of a global operator followed by the application of two local operators. BN nodes are shown as ellipses with a single border and DG nodes are shown as circular or rectangular nodes with double borders. Application of the global operator add that adds an arc from node X3 to X4 to the structure in (a) r
	Figure 3-9: Example of unified search demonstrating the application of two operators. BN nodes are shown as ellipses with a single border and DG nodes are shown as circular or rectangular nodes with double borders. In each panel, the set of local structures is shown at the top enclosed in a box and the implied global structure is shown at the bottom. Application of the ope
	Figure 4-1: An example in which the local Markov blanket structure depends on the value of lung cancer. Panel (a) shows the global structure and the associated parameters for the node X4. Panel (b) illustrates four structures that explicitly demonstrate how the structure varies for different values of lung cancer. The values T and F stand for True and False respectively.
	Figure 4-2: A decision tree representation of the local structure for the variable fatigue that captures the four structures shown in Figure 4-1 (b). The parameters at the leaves are explained in the table.
	Figure 4-3: A decision graph representation of the local structure represented by the decision tree in Figure 4-2.
	Figure 4-4: A decision graph representation of a local structure that cannot be represented by a decision tree.
	Figure 4-5: An example of a complete decision tree representation used by the PSMBg algorithm to represent the probability distributions associated with the node fatigue.
	Figure 4-6: Constraints on the Markov blanket global operators. The nodes are categorized into five groups: T = target, P = parent, C = child, S = spouse, and O = other (not in the Markov blanket of T). The cells with check marks indicate valid operations and are the only ones that need to be considered in generating candidate structures. The cells with an asterisk indicat
	Figure 4-7: An example where the application of an operator leads to additional removal of arcs to produce a valid Markov blanket structure.
	Figure 4-8: Pseudocode for the two-phase (phase 1 and phase 2) search procedure used by the PSMBg algorithm. Phase 1 uses greedy hill-climbing search while phase 2 uses best-first search.
	Figure 4-9: Pseudocode for the two-phase (phase 1 and phase 2) and two-tier (outer and inner) search procedure used by the PSMBl algorithm. Figure continues on next page.
	Figure 5-1: Pseudocode for non-parametric imputation of missing values using 1-Nearest Neighbor (modified from [93]). In the pseudocode, values that are missing in the original dataset are called “unknown” (as opposed to “known” values that are never missing) and values that have not yet been filled-in by the algorithm are called “missing”.
	Figure 5-2: Training and test datasets derived from the deterministic function. The training set contains a total of 69 cases and the test set a total of three cases as shown; the test cases are not present in the training set. The training set simulates low prevalence of A = T since only five of the 69 cases have this variable value combination.
	Figure 5-3: Markov blanket model with the best score discovered by the PSMBl algorithm for the dataset given in Table 5-2. The global structure is given in (a) and the corresponding local structure for Z is given by the decision graph in (b). All other nodes from A through D have local structures consisting of a single DG node.
	Figure 5-4: Plots of model averaged estimate of P(Z = T) and the model score obtained by the PSMBg and the NPSMBg algorithms on the three test cases given in Figure 5-2. Each row represents a single test case with the plot on the left obtained from the PSMBg algorithm and the plot on the right obtained from the NPSMBg algorithm. The value of the final averaged estimate of
	Figure 5-5: Pairwise plots of the mean misclassification errors of PSMBg vs. competing algorithms. Each point represents the mean misclassification errors of PSMBG and a competing algorithm on a single dataset, and the crosshairs represent one standard deviation on either side of the mean misclassification errors. Points above the diagonal line represent better performance
	Figure 5-6: Pairwise plots of the mean AUCs of PSMBg vs. competing algorithms. Each point represents the mean AUCs of PSMBG and a competing algorithm on a single dataset, and the crosshairs represent one standard deviation on either side of the mean AUCs. Points above the diagonal line represent better performance by PSMBg than the competing algorithm.
	Figure 5-7: Pairwise plots of the mean logarithmic losses of PSMBg vs. competing algorithms. Each point represents the mean logarithmic losses of PSMBG and a competing algorithm on a single dataset, and the crosshairs represent one standard deviation on either side of the mean logarithmic losses. Points above the diagonal line represent better performance by PSMBg than the
	Figure 5-8: Pairwise plots of the mean squared errors of PSMBg vs. competing algorithms. Each point represents the mean squared errors of PSMBG and a competing algorithm on a single dataset, and the crosshairs represent one standard deviation on either side of the mean squared errors. Points above the diagonal line represent better performance by PSMBg than the competing a
	Figure 5-9: Pairwise plots of the mean CAL scores of PSMBg vs. competing algorithms. Each point represents the mean CAL scores of PSMBG and a competing algorithm on a single dataset, and the crosshairs represent one standard deviation on either side of the mean CAL scores. Points above the diagonal line represent better performance by PSMBg than the competing algorithm.
	Figure 5-10: Pairwise plots of the mean misclassification errors (top row), mean AUCs (middle row) and mean logarithmic losses (bottom row) of PSMBl vs. competing algorithms. Each point represents the mean score of PSMBl and a competing algorithm on a single dataset, and the crosshairs represent one standard deviation on either side of the mean score. Points above the diag
	Figure 5-11: Pairwise plots of the mean squared errors (top row) and the mean CAL scores (bottom row) of PSMBl vs. competing algorithms. Each point represents the mean score of PSMBl and a competing algorithm on a single dataset, and the crosshairs represent one standard deviation on either side of the mean score. Points above the diagonal line represent better performance
	Figure A-1: An example of a Markov blanket demonstrating various node types. T is the target node, P is a parent node, C is a child node, S is a spousal node, and O is an other node.

	1.0 INTRODUCTION
	1.1 OVERVIEW OF PROPOSED PATIENT-SPECIFIC METHOD
	1.2 AIMS OF THE DISSERTATION
	1.3 OVERVIEW OF DISSERTATION

	2.0 BACKGROUND
	2.1 PREDICTION IN CLINICAL MEDICINE
	2.2 PATIENT-SPECIFIC METHODS CAN HAVE BETTER PERFORMANCE
	2.3 DECISION THEORETIC COMPARISON OF POPULATION-WIDE AND PATIENT-SPECIFIC MODELS
	2.4 MODEL SELECTION VERSUS MODEL AVERAGING
	2.5 LAZY LEARNING VERSUS EAGER LEARNING
	2.6 TIME-VARYING PATIENT-SPECIFIC MODELS
	2.7 RELATED WORK
	2.8 RELATED WORK IN MACHINE LEARNING
	2.9 RELATED WORK IN PREDICTIVE MODELING IN MEDICINE

	3.0 BAYESIAN NETWORKS
	3.1 NOTATION
	3.2 BAYESIAN NETWORK REPRESENTATION
	3.2.1 Local Markov condition and factorization of the joint probability distribution
	3.2.2 Global Markov condition and d-separation
	3.2.3 Markov blanket

	3.3 REPRESENTATION OF LOCAL PROBABILITY DISTRIBUTIONS
	3.3.1 Context-specific independence
	3.3.2 Decision tree CPDs
	3.3.3 Decision graph CPDs
	3.3.4 Summary of CPD representations

	3.4 LEARNING BAYESIAN NETWORKS FROM DATA
	3.4.1 Parameter estimation
	3.4.1.1 Maximum likelihood estimation
	3.4.1.2 Bayesian parameter estimation

	3.4.2 Structure learning
	3.4.3 Structure scores
	3.4.4 Bayesian score
	3.4.5 Search methods

	3.5 LEARNING BAYESIAN NETWORKS WITH LOCAL STRUCTURE
	3.5.1 Bayesian score
	3.5.2 Search methods

	3.6 LEARNING BAYESIAN NETWORK CLASSIFIERS FROM DATA
	3.6.1 Minimum error rate classification
	3.6.2 Calibration
	3.6.3 Bayesian network classifiers

	3.7 BAYESIAN MODEL AVERAGING

	4.0 METHODOLOGY
	4.1 MODEL SPACE
	4.2 MARKOV BLANKET LOCAL STRUCTURE
	4.3 PATIENT-SPECIFIC BAYESIAN MODEL AVERAGING
	4.3.1 Inference in Markov blankets
	4.3.2 Bayesian score of Markov blankets
	4.3.3 Selective Bayesian Model Averaging

	4.4 PATIENT-SPECIFIC SEARCH
	4.4.1 PSMBg search and operators
	4.4.2 PSMBl search and operators

	4.5 SPACE AND TIME COMPLEXITY
	4.5.1 PSMBg algorithm
	4.5.2 PSMBl algorithm

	5.0 EXPERIMENTAL EVALUATION
	5.1 DATASETS
	5.1.1 Pneumonia
	5.1.2 Sepsis
	5.1.3 Heart Failure

	5.2 PREPROCESSING
	5.3 PERFORMANCE MEASURES
	5.3.1 Misclassification error (ERR)
	5.3.2 Area under the ROC curve (AUC)
	5.3.3 Brier score or mean squared error (MSE)
	5.3.4 Mean logarithmic loss or mean cross-entropy (MXE)
	5.3.5 Calibration score (CAL)

	5.4 MACHINE LEARNING ALGORITHMS
	5.4.1 Patient-specific algorithms
	5.4.2 Comparison algorithms

	5.5 EVALUATION ON SYNTHETIC DATA
	5.5.1 Results

	5.6 EVALUATION OF THE PSMBG ALGORITHM
	5.6.1 Experimental design
	5.6.2 Results
	5.6.3 Discussion

	5.7 EVALUATION OF THE PSMBL ALGORITHM
	5.7.1 Experimental design
	5.7.2 Results
	5.7.3 Discussion

	5.8 SUMMARY

	6.0 CONCLUSIONS
	6.1 CONTRIBUTIONS AND FINDINGS
	6.2 DISCUSSION
	6.3 FUTURE WORK

	APPENDIX
	BIBLIOGRPAHY

