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LEARNING PATIENT-SPECIFIC MODELS FROM CLINICAL DATA 

Shyam Visweswaran, MBBS, MS, PhD 

University of Pittsburgh, 2007

 

A key purpose of building a model from clinical data is to predict the outcomes of future 

individual patients. This work introduces a Bayesian patient-specific predictive framework for 

constructing predictive models from data that are optimized to predict well for a particular 

patient case. The construction of such patient-specific models is influenced by the particular 

history, symptoms, laboratory results, and other features of the patient case at hand. This 

approach is in contrast to the commonly used population-wide models that are constructed to 

perform well on average on all future cases. 

The new patient-specific method described in this research uses Bayesian network 

models, carries out Bayesian model averaging over a set of models to predict the outcome of 

interest for the patient case at hand, and employs a patient-specific heuristic to locate a set of 

suitable models to average over. Two versions of the method are developed that differ in the 

representation used for the conditional probability distributions in the Bayesian networks. One 

version uses a representation that captures only the so called global structure among the 

variables of a Bayesian network and the second representation captures additional local structure 

among the variables.  

The patient-specific methods were experimentally evaluated on one synthetic dataset, 21 

UCI datasets and three medical datasets. Their performance was measured using five different 

performance measures and compared to that of several commonly used methods for constructing 

predictive models including naïve Bayes, C4.5 decision tree, logistic regression, neural networks, 
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k-Nearest Neighbor and Lazy Bayesian Rules. Over all the datasets, both patient-specific 

methods performed better on average on all performance measures and against all the 

comparison algorithms. The global structure method that performs Bayesian model averaging in 

conjunction with the patient-specific search heuristic had better performance than either model 

selection with the patient-specific heuristic or non-patient-specific Bayesian model averaging. 

However, the additional learning of local structure by the local structure method did not lead to 

significant improvements over the use of global structure alone. The specific implementation 

limitations of the local structure method may have limited its performance.  
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1.0  INTRODUCTION 

Making predictions, typically under uncertainty, is a common theme in clinical care activities. 

Critical activities in clinical care include risk assessment, diagnosis, and prognosis, all of which 

entail making predictions in individuals. Risk assessment implies predicting the future 

occurrence of disease from current exposure to risk factors; diagnosis entails predicting the 

possibility of disease from current symptoms, signs and tests; and, prognosis involves predicting 

the future course and outcome of disease both with and without therapy [1, 2]. The better these 

predictions can be performed, the better the decisions and the ensuing outcomes are likely to be 

both for the individual and for society at large. Therefore, finding ways to make better 

predictions is an important problem. 

Typically, the clinician makes these predictions implicitly from knowledge obtained from 

medical training as well as experience acquired from past patient care. This is occasionally 

facilitated by paper-based guidelines and flowcharts derived from simple predictive models. 

Such use of explicit models can help in making better predictions, enhance clinical decision 

making, improve patient outcomes, and reduce healthcare costs. In recent years, medical 

artificial intelligence and machine learning techniques are being increasingly used to learn 

sophisticated predictive models in the biomedical domain. However, much work remains to be 

done in improving the performance of such models and incorporating their use in routine clinical 

care. 
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One clear trend in healthcare is the accumulation of more and more data per patient that 

is then available for clinical decision-making. Today’s clinician not only has to assimilate large 

amounts of data but also has to integrate diverse types of patient data: demographic, 

environmental, clinical, genetic, imaging, and outcomes in the course of patient care. Predictive 

models can aid the clinician’s decision-making in the face of this data deluge. Another trend in 

healthcare is the increasing use of computers in clinical care and the availability of patient data in 

electronic form which allows for automatic processing of such data. Thus, it is becoming feasible 

to use sophisticated models that require computationally intensive modeling methods that have 

better predictive performance over simple paper-based flowchart models. For example, it seems 

plausible that the future will see more computationally intensive methods that construct distinct 

models for each individual from patient data in clinical computer systems. The development of 

such methods that learn models tailored to an individual’s characteristics is the focus of the 

research described in this dissertation.  

Even modest improvements in predictive performance can have significant impact on 

healthcare in terms of improved patient care, better outcomes and reduced costs. For example, in 

[3] the authors estimate that if improved prediction of dire outcomes in pneumonia can reduce 

hospital admissions of pneumonia patients by just one percent this can result in 89 million 

dollars of savings per year in the United States without any expected decrease in clinical 

outcomes. Thus, finding ways to improve predictive performance of current modeling techniques 

is an important problem. 

Two fields that have focused on the learning and application of predictive models are 

statistics and machine learning. Both fields use similar terminology. A variable (also known as 

attribute) is a quantity that describes an aspect of an object of the world. A feature is the 
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specification of a variable and its value. For example, eye color is a variable and “eye color = 

black” is a feature. Though often the term feature is used as a synonym for variable, in this 

document the term feature is used exclusively to refer to a variable-value pair. A case (also 

known as example, instance or record) is a single object of the world and is described by a list of 

features. A dataset (also known as database) is a collection of cases.  

Predictive models can be constructed either manually or by methods that automatically 

extract relevant information from datasets. Classical statistical methods typically involve 

substantial expert input for deriving the model. In semi-automatic methods, the model structure 

(e.g., which variables are considered dependent) is derived from experts and the parameters of 

the structure (e.g., coefficients in logistic regression) are extracted from datasets. Completely 

automated methods learn both the structure and the parameters automatically from the dataset 

and are the focus in machine learning. The research described in this dissertation investigates 

automatic machine learning methods that learn models (tailored to an individual’s 

characteristics) from data. 

Among the machine learning methods, classification algorithms are often used for 

learning predictive models from clinical data. Examples of such algorithms include logistic 

regression, neural networks, classification trees (also know as decision trees), Bayesian networks 

and support vector machines. Typically, these methods induce a single model from a training set 

of cases, with the intent of applying it to all future patient cases. I call such a model a 

population-wide model because it is intended to be applied to an entire population of future 

cases. A population-wide model is optimized to predict well on average when applied to 

expected future cases. 
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Recent research in machine learning has shown that inducing models that are specific to 

the particular features of a given instance can improve predictive performance [4]. I call such a 

model an instance-specific model since it is constructed specifically for a particular instance 

(case). The structure and parameters of an instance-specific model are specialized to the 

particular features of an instance, so that it is optimized to predict especially well for that 

instance. In the context of clinical prediction models, I call such a model a patient-specific 

model, because the learning of the model is influenced by the particular history, symptoms, 

laboratory results, and other features of the patient case being predicted. That is, the structure and 

parameters of the model are influenced by the patient case being predicted. In this dissertation 

the term patient-specific is used, though much of the description of patient-specific models 

population-wide 
modeltraining set 

patient case prediction 

apply population-wide method

do inference 

patient-specific 
modeltraining set 

patient case prediction 

apply patient-specific method

 do inference 

Figure 1-1: A general characterization of the induction and inference of population-wide (top 
panel) and patient-specific (bottom panel) models. In the bottom panel, there is an extra arc from 
patient case to model, because the structure and parameters of the model are influenced by the 
features of the patient case at hand. 

 4 



  

applies to the more general instance-specific models. The goal of inducing a patient-specific 

model is to have optimal prediction for the patient case at hand. This is in contrast to the 

construction of a population-wide model where the goal is to have optimal predictive 

performance on average on all future patient cases. 

Predictive modeling consists of two steps: induction of a model or models from a training 

set of cases and inference of the variable of interest in a patient case at hand to derive a 

prediction. Inference always involves the use of the features of the patient case at hand in 

conjunction with a model. In the biomedical literature, the adjective patient-specific in the 

context of predictive modeling is sometimes used more loosely to refer to model inference. 

However, the use of patient features for inference does not necessarily make the model or the 

method used for induction patient-specific. I designate only those methods as patient-specific 

that use the features of the patient case at hand in conjunction with a training set of cases in order 

to induce a model. This situation is illustrated in Figure 1-1 which shows that the patient case 

being predicted is used for inference in both population-wide and patient-specific methods; 

however, for induction, only the patient-specific method uses the patient case. 

This work presents a decision-theoretic framework for induction of patient-specific 

models, and investigates methods for learning Bayesian network models for prediction in a 

patient-specific manner. 

1.1 OVERVIEW OF PROPOSED PATIENT-SPECIFIC METHOD 

There are several possible approaches for learning predictive models that are relevant to a single 

patient case. One approach is to learn a model from a subset of cases in the dataset that consist of 
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patients that are similar in some way to the patient case at hand. Another approach is to learn a 

model from a subset of variables that are pertinent in some fashion to the patient case at hand. A 

third approach, applicable to model averaging where a set of models is collectively used for 

prediction, is to locate a set of models that are relevant to prediction for the patient case at hand.  

In this work, I investigate a new method for learning predictive models that uses (1) 

Bayesian network models, (2) carries out Bayesian model averaging over a set of models to 

predict the outcome of interest for the patient case at hand, and (3) employs a patient-specific 

heuristic to locate a set of suitable models to average over. The remainder of this section gives a 

brief description of each of these characteristics. 

Bayesian networks (BNs) are probabilistic graphical models that provide a powerful 

formalism for representation, reasoning and learning under uncertainty [5-7]. These graphical 

models are sometimes referred to as probabilistic networks, belief networks or Bayesian belief 

networks. The last two decades have witnessed significant advances in the theoretical 

development of BNs as well as in their application to a growing number of domains. A BN 

combines a graphical representation with numerical information to represent a probability 

distribution over a set of random variables in a domain. The graphical representation constitutes 

the BN structure, and it explicitly highlights the probabilistic independencies among the domain 

variables. The complementary numerical information constitutes the BN parameterization, 

which quantifies the probabilistic relationships among the variables.  

At the outset, BNs were constructed manually from knowledge acquired from domain 

experts, which proved to be both time-consuming and difficult. Subsequent advances in BN 

learning have culminated in numerous machine learning algorithms that learn both model 
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structure and model parameters automatically from data. Such algorithms underlie most current 

methods that use BNs for predictive modeling.  

Typically, methods that learn predictive models from data, including those that learn BN 

models, perform model selection. In model selection a single good model is selected that 

summarizes the data well; it is then used to make future predictions. However, given finite data, 

there is uncertainty in choosing one model to the exclusion of all others, and this can be 

especially problematic when the selected model is one of several distinct models that all 

summarize the data more or less equally well. A coherent approach to dealing with the 

uncertainty in model selection is Bayesian model averaging (BMA). BMA is the standard 

Bayesian approach wherein the prediction is obtained from a weighted average of the predictions 

of a set of models, with better models influencing the prediction more than others. In practical 

situations, the number of models to be considered is enormous and averaging the predictions 

over all of them is infeasible. A pragmatic approach is to average over a few good models, 

termed selective Bayesian model averaging, which serves to approximate the prediction obtained 

from averaging over all models. The patient-specific method performs selective Bayesian model 

averaging over a set of models that have been selected in a patient-specific fashion. 

The patient-specific method learns both the structure and parameters of BNs 

automatically from data. The patient-specific characteristic of the method is motivated by the 

intuition that in constructing predictive models, all the available information should be utilized 

including available knowledge of the features of the current patient case. Specifically, the 

patient-specific method uses the features of the patient case to inform the BN learning algorithm 

to select models that differ considerably in their predictions for the outcome of interest in the 
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patient case at hand. The differing predictions of the selected models are then combined to 

predict the outcome of interest. 

1.2 AIMS OF THE DISSERTATION 

The main aim of this dissertation is to introduce a new patient-specific method and evaluate 

whether it yields better predictive performance than commonly applied population-wide 

methods. The performance of the patient-specific method outlined in the previous section is 

compared to six other machine learning algorithms. Four of these comparison methods are 

standard machine learning algorithms that induce population-wide models. These are naïve 

Bayes, C4.5 decision tree, logistic regression and neural networks. Two other comparison 

methods, k-Nearest Neighbor and Lazy Bayesian Rules, are instance-based methods. In addition, 

the patient-specific method is compared to a model selection version of the method whereby a 

single model is selected for prediction. The methods are compared and evaluated on five 

performance measures: misclassification rate, area under the Receiver Operating Characteristic 

(ROC) curve, squared error, logarithmic loss, and a calibration score. The datasets on which the 

experiments are conducted include 21 publicly available datasets obtained from the UCI 

Machine Learning repository and three real world medical datasets. 

The null (H0) and alternate hypotheses (H1) for the primary aim are as follows: 

H0: Patient-specific Bayesian network models do not predict better than population-wide 

models. 

H1: For at least some performance measures patient-specific Bayesian network models 

predict better than population-wide models. 
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1.3 OVERVIEW OF DISSERTATION 

Chapter 2 provides relevant background to set the context for patient-specific modeling and 

surveys some of the related work in machine learning and in medical predictive modeling. 

Chapter 3 introduces the Bayesian network formalism, describes several representations for 

modeling BNs, and reviews methods for learning BNs for data. In particular, it focuses on the 

Bayesian approach to BN learning, learning BNs for classification, and Bayesian model 

averaging over BNs.   

Chapter 4 describes in detail the proposed patient-specific learning method, the patient-

specific search for BNs and the patient-specific score for evaluating BNs. Chapter 5 presents the 

results of the experimental evaluation of the patient-specific method and compares its 

performance to that of the algorithms listed in the previous section. Chapter 6 summarizes the 

contributions of this dissertation and presents some potential extensions of this work for future 

research. 
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2.0  BACKGROUND 

This chapter provides the background and context for patient-specific modeling and reviews 

related work in machine learning and in medical predictive modeling. Section 2.1 highlights the 

importance of improving predictive modeling in healthcare. Section 2.2 provides illustrative 

examples where patient-specific modeling can improve upon population-wide models and 

Section 2.3 provides a decision theoretic comparison of the two paradigms. The patient-specific 

method described in the dissertation is characterized by the use of model averaging for 

prediction, induction of models in a lazy fashion, and the use of atemporal data. The following 

sections provide background on these characteristics of the patient-specific method. Section 2.4 

compares model selection with model averaging and Section 2.5 compares lazy and eager 

methods for learning models. Section 2.6 presents time-varying patient-specific modeling as an 

extension of the patient-specific method. The final two sections summarize some of the relevant 

literature in machine learning and medicine respectively that is related to predictive modeling. 

2.1 PREDICTION IN CLINICAL MEDICINE 

A common characteristic of clinical care activities like risk assessment, diagnosis, and prognosis 

in individuals is making predictions [1]. Risk assessment is an important component of 
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preventive healthcare where healthcare providers judge the chances of an individual developing 

future medical problems based on the individual’s past and current history of exposure to risk 

factors. For example, individuals who are judged to be at high risk for developing hypertension 

may undergo further medical evaluation and testing and may be advised to make changes to their 

lifestyle and diet. Accurate risk assessment is necessary to identify individuals at risk for 

developing hypertension correctly, since lifestyle and dietary changes are very difficult to initiate 

and maintain for most individuals.  

Accurate and timely diagnosis in individuals with current symptoms is important in 

making decisions such as the need for additional testing, for choosing appropriate therapy, and 

the need for hospitalization. Inappropriate decisions arising from erroneous diagnoses can lead to 

unnecessary distress and incorrect therapy for the individual as well as needless expenditure of 

healthcare resources.  

Prognosis entails the prediction of the course and outcome of disease and is an important 

component of management of an individual with a disease [2]. Given accurate diagnoses, 

choosing the appropriate therapy entails predicting accurately the course and outcome of the 

disease in the individual under various available therapies. For example, for the same disease, the 

optimal medication for one individual may be different from that for another individual due to 

differences in genetic and environmental characteristics. Thus, improvement in predictive 

performance is an important healthcare problem since it has the potential to improve clinical 

decision-making, which in turn can lead to better outcomes in patients. In addition, efficient use 

of healthcare resources depends on being able to determine accurately when and where a 

resource is likely to be useful, which in turn depends on accurately anticipating patients’ 

healthcare-resource requirements. 
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A second common feature of clinical care activities that involve prediction is uncertainty. 

Uncertainty in medicine arises from various causes: uncertainty from incomplete medical 

knowledge, uncertainty from incomplete patient data, and uncertainty from noisy patient data 

[1]. Thus, risk assessment, diagnosis, and prognosis in individuals are associated with various 

degrees of uncertainty. Judging and handling uncertainty appropriately is imperative for 

improving predictions.  

One important way to assist healthcare providers in making better predictions under 

uncertainty is to supplement their clinical judgments with predictions from mathematical models. 

Such models embedded in clinical computer systems have the potential to complement the 

clinician’s assessment at the point-of-care. Clinical computer systems that help in clinical 

decision-making, called clinical decision support systems (CDSSs), have been in developed 

since the early 1960s. CDSSs have the potential to improve healthcare by improving patient 

safety, by improving quality of care, and by improving efficiency in health care delivery [8]. 

Though researchers have developed numerous CDSSs, few are in routine clinical use. A variety 

of factors have been implicated in this failure, such as, lack of deep causal knowledge in the 

medical domain, poor user interfaces, failure to fit into the clinical workflow, and inadequate 

predictive performance of the models incorporated into such systems [9].  

Numerous decision-support models have been developed and employed in CDSSs. The 

earliest CDSSs used simple branching logic (equivalent to a flowchart). For example, Bliech and 

his colleagues developed a computerized flowchart using branching logic to diagnose acid-base 

disorders [10]. This was followed by the development of rule-based models that were 

incorporated into expert system CDSSs. A rule-based model represents the domain knowledge as 

a set of rules that is applied to patient data by a logical reasoning engine. A well known example 
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of such a system is MYCIN that was introduced by Shortliffe to diagnose organisms causing 

infections in patients [11]. Simple logical and rule-based models, however, could not handle well 

the ubiquitous uncertainty in clinical decision making.  

One of the earliest theoretical developments of a CDSS model, outlined in a classic paper 

published in 1959 by Ledley and Lusted [12], stated that logic should be combined with 

probabilistic reasoning for automated reasoning and prediction in the medical domain. With the 

development of Bayesian network models (also known as probabilistic networks, belief networks 

or Bayesian belief networks) in the late 1980s, full-fledged probabilistic reasoning using such 

models was implemented in the medical domain. Examples of medical models based on 

Bayesian networks include the Pathfinder [13, 14], a pathology diagnostic system for diagnosing 

lymph-node diseases, and the probabilistic version of INTERNIST-1/QMR [15, 16], an internal 

medicine diagnostic system for diagnosing medical disorders. A PubMed search showed that 378 

articles have been published in the biomedical literature in the last 10 years (from July 1997 to 

June 2007) with one of the following phrases in the title or abstract: “Bayesian network”, 

“Bayesian networks”, “probabilistic network”, “probabilistic networks”, “belief network”, 

“belief networks”, “Bayesian belief network” or “Bayesian belief networks”. Thus, Bayesian 

networks remain popular and their application to biomedical and clinical problems is an active 

area of research. 

In this dissertation, the focus is on probabilistic models that make predictions in the 

clinical domain, and, in particular, on models that are learned from a training dataset of patient 

cases. Datasets in the clinical domain can be broadly categorized into two major types. 

Observational data are often used for assessing diagnostic conditions; experimental data (e.g., 

 13 



  

from randomized controlled trials) are often used for evaluating therapeutic interventions. The 

data collected in both these scenarios can be used for inducing predictive models.  

Numerous statistical and machine learning methods have been developed for learning 

probabilistic models from a dataset of cases and several of them have been applied for learning 

predictive models from clinical and biomedical data [17].  A survey of the machine learning 

literature and the medical literature is provided in sections 2.8 and 2.9 respectively. Almost 

always, these are population-wide methods that learn a single population-wide model from a set 

of known patient cases, with the intent of applying it to all future patient cases. By design 

population-wide models are expected to perform well on average on all future patient cases, but 

can potentially perform poorly on a particular patient case. Little literature is available on 

methods that take into account the current patient case while learning a model. Such a patient-

specific method constructs a patient-specific model for each future patient that is optimized to 

predict especially well for the particular patient case at hand. The following section illustrates 

how patient-specific models can have better performance than population-wide models. 

2.2 PATIENT-SPECIFIC METHODS CAN HAVE BETTER PERFORMANCE 

Figure 1-1 illustrates the key difference between population-wide and patient-specific models: 

the patient-specific model is constructed from data in the training set, as well as, from available 

data about the particular patient case to which it will be applied. In contrast, the population-wide 

model is constructed only from data in the training set. Thus, intuitively, the extra information 

available to the patient-specific method can facilitate inducing a model that provides better 

prediction for the patient-specific case. In patient-specific modeling, different patient cases will 
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potentially result in different models, because the cases contain potentially different values for 

the features. The patient-specific models may differ in the variables included in the model 

(variable selection or also known as feature selection), in the interaction among the included 

variables (encoded in the structure of the model), and in the strength of the interaction (encoded 

in the parameters of the model). Another approach is to select a subset of the training data that 

are similar in their feature values to those of the patient case at hand and learn the model from 

the subset. A generalization of this is to weight the cases in the training dataset such that cases 

that are more similar to the patient case are assigned greater weights than others, and then learn 

the model from the weighted dataset. The following are two illustrative examples where patient-

specific methods may perform better than population-wide methods.  

Variable selection. Many model induction methods implicitly or explicitly perform 

variable selection, a process by which a subset of the domain variables is selected for model 

construction. For example, logistic regression is often used with a stepwise variable selection 

process. A patient-specific version of logistic regression may select different variables for 

different patients being predicted, compared to the standard population-wide version that selects 

a single subset of variables. In the context of a healthcare scenario in the not-too-distant future, 

consider a gene G that has several alleles. Suppose that allele a1 is rare, and it is the only allele 

that predicts the development of disease D; indeed, it predicts D with high probability. For future 

patients, the aim is to predict P(D | G). In a population-wide logistic regression model, G may 

not be included as a predictor (variable) of D, because in the vast majority of cases in the dataset 

G ≠ a1 and D is absent, and having G as a predictor would just increase the overall noise in 

predicting D. In contrast, if there is a patient case at hand in which G = a1, then the training data 

may contain enough cases to indicate that D is highly likely. In this situation, G would be added 
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as a predictor in a patient-specific model. Thus, for a patient in whom G = a1, the typical 

population-wide logistic regression model would predict poorly.   

This idea can be extended to examples with more than one predictor, in which some 

predictors are characterized by having particular values that are relatively rare but strongly 

predictive for the outcome. A population-wide model tends to include only those predictors that 

on average provide the best predictive performance. In contrast, a patient-specific model will 

potentially include predictors that are highly predictive for the particular patient case at hand; 

such predictors could be different from those included in the population-wide model.  

Value-specific interactions. Variable selection is one important way in which models 

can be tailored to individual patient cases, as just described. Feature interaction (dependence) is 

another major way. Continuing with a genetic example, consider two genes E and F. When E = 

e1 and F = f1, disease K usually occurs; otherwise, K rarely occurs. Thus, when E = e1 and F = 

f1, there is an interaction between E and F in predicting K, and otherwise, there is not an 

interaction. Such value-specific interactions form another basis for constructing patient-specific 

models that take those interactions into account. Thus, patient-specific methods can construct 

better models by employing better variable selection and by capturing value-specific interactions 

among features. 

2.3 DECISION THEORETIC COMPARISON OF POPULATION-WIDE AND 

PATIENT-SPECIFIC MODELS 

This section first introduces some notation and definitions and then compares population-wide 

with patient-specific models in decision theoretic terms. Capital letters like X, Z, denote random 
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variables and corresponding lower case letters, x, z, denote specific values assigned to them. A 

feature is a specification of a variable and its value. Thus, X = x is a feature that specifies that 

variable X is assigned the value x. Bold upper case letters, such as X, Z, represent sets of 

variables or random vectors and their realization is denoted by the corresponding bold lower case 

letters, x, z. A feature vector is a list of features. Thus, X = x is a feature vector that specifies that 

the variables in X have the values given by x. In addition, Z denotes the target variable (class 

variable) being predicted, X denotes the set of predictor variables, M denotes a model (and 

includes both structure and parameters), D denotes the training dataset, Ci ≡ <Xi, Zi> denotes a 

generic training case in D and Ct ≡ <Xt, Zt> denotes a generic test case that is not in D. A test 

case t is one in which the unknown value of the target variable Zt is to be predicted from the 

known values of the predictors Xt and the known values of <Xi, Zi> of a set of training cases. 

A probabilistic model is a family of probability distributions indexed by a set of 

parameters. Model selection refers to the problem of using data to select one model from a set of 

models under consideration [18]. Model averaging refers to the process of estimating some 

quantity (e.g., prediction of an outcome for a patient) under each of the models under 

consideration and then obtaining a weighted average of their estimates [18]. 

Both model selection and model averaging can be done using either non-Bayesian or 

Bayesian approaches. Non-Bayesian methods of model selection include choosing among 

competing models by maximizing the likelihood, by maximizing a penalized version of the 

likelihood or by maximizing some measure of interest (e.g., accuracy) using cross-validation. 

Examples of non-Bayesian methods of model averaging include bagging and boosting. In both 

bagging and boosting, the data are resampled several times, a model is constructed from each 

sample, and the predictions of the individual models are averaged to obtain the final prediction. 
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In the non-Bayesian approach, the heuristics used in model selection and model averaging are 

typically different. In contrast, the Bayesian approach to model selection and model averaging 

both involve computing the posterior probability of each model under consideration.  

In Bayesian model selection the single model found that has the highest posterior 

probability is chosen. In Bayesian model averaging the prediction is the weighted average of the 

individual predictions of the models with the model posterior probabilities comprising the 

weights.  

When the goal is prediction of future data or future values of the target variable, Bayesian 

model averaging is preferred, since it suitably incorporates the uncertainty about the true model. 

However, sometimes interest is focused on a single model. For example, a single model may be 

useful for providing insight into the relationships among the domain variables or can be used as a 

computationally less expensive method for prediction. In such cases, Bayesian model selection 

maybe preferred to Bayesian model averaging. However, the proper Bayesian approach is to 

perform model averaging, and model selection, is at best, an approximation to model averaging.  

Population-wide model selection and patient-specific model selection are characterized in 

decision theoretic terms as follows. Given training data D and a generic test case <Xt, Zt>, the 

optimal population-wide model is: 

[ ]
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⎫

⎩
⎨
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tX

ttt XXX )|(),|(),,|(maxarg DPMZPDZPU tt

M
,  (2.1) 

where the utility function U gives the utility of approximating the Bayes optimal estimate P(Zt | 

Xt, D) with the estimate P(Zt | Xt, M) obtained from model M. For a model M, Expression 2.1 

considers all possible instantiations of Xt and for each instantiation computes the utility of 

estimating P(Zt | Xt, D) with the specific model estimate P(Zt | Xt, M), and weights that utility by 
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the posterior probability of that instantiation. The maximization is over the models M in a given 

model space. 

The Bayes optimal estimate P(Zt | Xt, D) in Expression 2.1 is obtained by combining the 

estimates of all models (in a given model space) weighted by their posterior probabilities: 

dMDMPMZPDZP
M

tttt )|(),|(),|( ∫= XX .   (2.2) 

 

The term P(Xt | D) in Expression 2.1 is given by: 

dMDMPMPDP
M

tt )|()|()|( ∫= XX .    (2.3) 

 

The optimal patient-specific model for estimating Zt is the one that maximizes the following: 

[ ]{ }),|(),,|(maxarg MZPDZPU tt

M

tt xx ,    (2.4) 

 

where xt are the values of the predictors of the test case Xt for which the target variable Zt is to be 

predicted. The Bayes optimal estimate P(Zt | xt, D) is derived using Equation 2.2, for the special 

case in which Xt = xt, as follows: 

dMDMPMZPDZP
M

tttt )|(),|(),|( ∫= xx .   (2.5) 

 

The difference between the population-wide and the patient-specific model selection can be 

noted by comparing Expressions 2.1 and 2.4. Expression 2.1 for the population-wide model 

selects the model that on average will have the greatest utility. Expression 2.4 for the patient-

specific model, however, selects the model that will have the greatest utility for the specific case 

Xt = xt. For predicting Zt given case Xt = xt, application of the model selected using 

Expression 2.1 can never have an expected utility greater than the application of the model 
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selected using Expression 2.4. This observation provides support for developing patient-specific 

models. 

2.4 MODEL SELECTION VERSUS MODEL AVERAGING 

Equations 2.2 and 2.3 carry out Bayesian model averaging over all models in some specified 

model space. Expressions 2.1 and 2.4 include Equation 2.2; thus, these expressions for 

population-wide and patient-specific model selection, respectively, are theoretical ideals. 

Moreover, Equation 2.2 is the Bayes optimal prediction of Zt. Thus, in order to do optimal model 

selection, the optimal prediction obtained from Bayesian model averaging must already be 

known. 

Model selection, even if performed ideally, ignores the uncertainty inherent in choosing a 

single model based on limited data. Bayesian model averaging is a normative approach for 

dealing with the uncertainty in model selection, and has been shown to improve predictive 

performance as well as provide more accurate estimates of the error in prediction. Several 

examples of significant decrease in prediction errors with the use of Bayesian model averaging 

are described in [19]. Such averaging is primarily useful when no single model in the model 

space under consideration has a high posterior probability. However, since the number of models 

in practically useful model spaces is enormous, complete Bayesian model averaging, where the 

averaging is done over the entire model space, is usually not feasible. That is, it is usually not 

computationally feasible to solve for the exact solution given by Equation 2.2. In such cases, 

selective Bayesian model averaging is typically performed, where the averaging is done over a 

selected subset of models.  
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Methods for inducing predictive models can be classified along two axes as shown in 

Table 2-1. Along the horizontal axis are population-wide and patient-specific methods that differ 

chiefly in whether the features of the test case are utilized or not in developing the model. Along 

the vertical axis are model selection and model averaging.  

The table focuses on a subset of supervised learning methods, namely, model-based 

learning methods. Model-based methods and instance-based methods (variants of which are 

known as instance-based learning, memory-based learning, exemplar-based learning or case-

based reasoning) belong to two extremes of supervised learning methods [20]. Model-based 

methods learn an explicit model or models from the training cases that are then applied to the test 

case. In contrast, instance-based methods estimate the target variable in the test case by 

combining the values of the target variable in a subset of the training cases that are similar in 

some sense to the test case. Thus, instance-based methods are characterized by the use of a 

similarity (or distance) measure necessary for measuring the similarity between cases. The 

canonical example of an instance-based method is the k-Nearest Neighbor technique where the 

prediction of the target variable in the test case is based on the majority vote of the values of the 

target variable in the k-nearest cases (for classification) or the average over a set of k-nearest 

Table 2-1: Categories of methods for predictive modeling. 

 population-wide method patient-specific method 
(instance-specific method) 

model selection 
(mainly non-Bayesian) 

1. Commonly used for 
predictive modeling; e.g., 
logistic regression, neural 
networks 

3. Less commonly used for 
predictive modeling; e.g., Lazy 
Bayesian Rules [20] 

model averaging 
(mainly Bayesian) 

2. Less commonly used for 
predictive modeling; e.g., 
averaging over rule-sets [8], 
averaging over discrete 
Bayesian networks [10] 

4. None described in the 
literature for predictive 
modeling; e.g., the patient-
specific method described in 
this dissertation 
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training cases (for regression). It should be pointed out that instance-specific methods including 

patient-specific methods discussed in this dissertation are not instance-based methods but are 

rather model-based methods. In particular, the patient-specific methods explored here induce a 

model or set of models that are influenced by the values of the features of the test case; a 

similarity measure is not used. To keep the distinction between instance-specific methods and 

instance-based methods clear, I will refer to instance-based methods as similarity-based methods.  

The typical predictive algorithms, both in machine learning and in the medical literature, 

perform non-Bayesian model selection to induce a population-wide model (cell 1 in Table 2-1). 

Examples of such methods are logistic regression, neural networks, CART-like decision trees, 

Bayesian networks1 and support vector machines [17]. Less commonly, model averaging over 

population-wide models (cell 2 in Table 2-1) has been used for prediction; such techniques can 

improve predictive performance over population-wide model selection. One such example is the 

algorithm for classification that is described in [21]. This algorithm uses stochastic search to find 

multiple models of rule-sets over which to perform selective Bayesian model averaging. 

Instance-specific methods that perform model selection (cell 3 in Table 2-1) are also not that 

common. One example of such a method is Lazy Bayesian Rules that is described in detail in 

Section 2.8. It is a model-based, instance-specific method and not a similarity based method, and 

it has been shown to improve predictive performance over several population-wide model 

selection methods. 

In this dissertation, I describe a method that belongs to the fourth category (cell 4 in 

Table 2-1): a patient-specific method that performs selective Bayesian model averaging. The key 

component of such a method is the heuristic used for searching and selecting models in the 
                                                 

1 The Bayesian networks referred to here typically perform inference using non-Bayesian methods, and are hence 
properly classified under non-Bayesian methods. 
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model space over which model averaging is done. The patient-specific method employs a 

heuristic that searches the model space in a patient-specific manner. That is, the values of the 

features in the test case are used to direct the search. The algorithm is described in detail in 

Chapter 4. 

2.5 LAZY LEARNING VERSUS EAGER LEARNING 

Machine learning methods that defer model construction until a response to a test case is 

required are said to employ lazy learning. This is in contrast to methods that induce a model 

from the training data before ever encountering a test case, which are said to employ eager 

learning [22]. In terms of computation, lazy methods often have higher memory and time costs 

since they, typically, store the entire training data and construct a new model for every test case. 

In contrast, eager methods, usually, discard the original training cases and retain only the model 

that is then applied to all future cases. Table 2-2 illustrates the application of lazy versus eager 

Table 2-2: Eager and lazy learning. 

 population-wide method patient-specific method 
(instance-specific method) 

eager learning 

1. Very common; e.g., logistic 
regression, neural networks, 
decision tree, etc., typically use 
eager learning. 

3. In theory, it is possible to learn 
all possible patient-specific models 
in an eager fashion and then retrieve 
the appropriate model for a test 
case. However, this is feasible only 
if a small number of possible test 
cases exist. 

lazy learning 

2. While it is possible to construct 
models mentioned in cell 1. in a 
lazy fashion, it is uncommon to do 
so since the increase in memory and 
time requirements may not be offset 
by better performance. 

4. Lazy learning is the usual 
approach used to learn patient-
specific models. 
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learning to population-wide and patient-specific methods. Population-wide methods are usually 

eager, but they need not be, and patient-specific methods are usually lazy, but in theory they 

need not be (see cell 3 in Table 2-2). Since population-wide methods learn a single model that is 

applied to all future cases, it is usually more efficient in computation time to eagerly learn the 

model once from the training data. In addition, with eager learning, only the model needs to be 

retained after learning and typically the model requires lesser memory than the entire training 

data. Patient-specific methods are usually lazy since they require the test case for guiding model 

induction. The increased computation time and memory requirements of the lazy method can be 

offset by better predictive performance, as for example in the case of Lazy Bayesian Rules that is 

discussed in greater detail in Section 2.8.  

2.6 TIME-VARYING PATIENT-SPECIFIC MODELS 

In the clinical literature, patient-specific models sometimes refer to models that are induced from 

a time series of data obtained from a patient. Many of the variables included in such models have 

values that have been measured over multiple time points. Such time-varying patient-specific 

models are distinct from atemporal patient-specific models that are induced from atemporal data 

and/or a single (e.g., initial) time slice of data. In this work, I investigate atemporal patient-

specific models, and for brevity I will refer to them as patient-specific models. This approach to 

patient-specific modeling is complementary to the methods that assume a time series, since the 

atemporal approach can construct an initial model from atemporal data (e.g., demographics of 

the patient) and/or data for an initial time slice (e.g., vital signs like blood pressure and 

temperature at the time of admission to the hospital). The initial model can then be revised based 
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on the time series data obtained from a specific patient (e.g., blood pressure and temperature 

measurements over time). 

2.7 RELATED WORK 

The following sections review some of the literature related to the machine learning methods 

introduced in the previous section. While not comprehensive in its coverage, this review 

provides a representative sample of related previous work in machine learning and in clinical 

predictive modeling that is most closely related to patient-specific modeling. 

2.8 RELATED WORK IN MACHINE LEARNING 

There exists a vast literature in machine learning, data mining and pattern recognition that is 

concerned with the problem of predictive modeling and supervised learning. This section focuses 

on some of the aspects of the similarity-based methods followed by a review of some recent 

work on instance-specific methods. 

Similarity-based methods. These methods are also known as memory-based, case-

based, instance-based, or exemplar-based learners. They (1) use a similarity or a distance 

measure, (2) defer most of the processing until a test case is encountered (i.e., they are lazy), (3) 

combine the training cases in some fashion to predict the target in the test case, and (4) discard 

the answer and any intermediate results after the prediction [23]. Typically, no explicit model is 

induced from the training cases at the time of prediction. The similarity measure evaluates the 
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similarity between the test case and the training cases and selects the appropriate training cases 

and their relative weights in response to the test case [24]. The selected training cases can be 

equally weighted or weighted according to their similarity to the test case. To predict the target 

variable in the test case, the values of the target variable in the selected training cases are 

combined in some simple fashion such as majority vote, simple numerical average or fitted with 

a polynomial. 

The nearest-neighbor technique is the canonical similarity-based method. When a test 

case is encountered, the training case that is most similar to the test case is located and its target 

value is returned as the prediction [25]. A straight-forward extension to the nearest-neighbor 

technique is the k-Nearest Neighbor (kNN) method. For a test case, this method selects the k 

most similar training cases and either averages or takes a majority vote of their target values. 

Another extension is the distance-weighted k-Nearest Neighbor method. This weights the 

contribution of each of the k most similar training cases according to its similarity to the test 

case, assigning greater weights to more similar cases [26]. A further extension is locally 

weighted regression that selects cases similar to the test case, weights them according to their 

similarity, and performs regression to predict the target [27]. 

One drawback of the similarity-based methods is that they may perform poorly when 

predictors are redundant, irrelevant or noisy. To make the similarity metric more robust, variable 

selection and variable weighting have been employed [28]. Two generic approaches that have 

been used for variable selection and weighting are filter methods and wrapper methods [23]. 

Filter methods determine whether variables are predictive of the target variable using heuristics 

based on characteristics of the data. Typically, filter methods are applied as a preprocessing step 

and search for an optimal variable subset in the space of variable subsets independent of the 
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classification method to be applied subsequently. An example of a filter method is the selection 

of a subset of variables that are highly correlated with the target variable as measured by mutual 

information between each predictor variable and the target variable. Wrapper methods make use 

of the classification method that will ultimately be applied to the data in order to evaluate the 

predictive power of predictors. Typically, wrapper methods search for an optimal variable subset 

in the space of variable subsets using the criterion optimized by the classification method. An 

example of a wrapper method is the selection of a subset of variables that produces high 

accuracy when used by the classification method [29]. 

Instance-specific methods. Instance-specific methods in general and patient-specific 

methods in particular are model-based methods that take advantage of the features in the test 

case while inducing the model. Such methods are not as reliant on a similarity measure, if they 

use one at all, as the similarity-based methods.  

Friedman et al. [30] describe one such algorithm called LazyDT that searches for the best 

CART-like decision tree for a test case. As implemented by the authors, LazyDT did not perform 

pruning and processed only nominal variables. The algorithm was compared to ID3 and C4.5 

(standard population-wide methods for inducing decision trees), each with and without pruning. 

When evaluated on 28 datasets from the UCI Machine Learning repository, LazyDT generally 

out-performed both ID3 and C4.5 without pruning and performed slightly better than C4.5 with 

pruning. 

Ting et al. [31] have developed a framework for inducing rules in a lazy fashion that are 

tailored to the features of the test case. Zheng et al. [32] describe an implementation of this 

framework called the Lazy Bayesian Rules (LBR) learner that induces a rule tailored to the 

features of the test case that is then used to classify it. A LBR rule consists of (1) a conjunction 
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of the variable-value pairs present in the test case as the antecedent and (2) a local naive Bayes 

classifier as the consequent. The structure of the local naive Bayes classifier consists of the target 

variable as the parent of all other variables that do not appear in the antecedent, and the 

parameters of the classifier are estimated from those training cases that satisfy the antecedent. 

Figure 2-1 shows an example of a LBR rule constructed using five predictor variables and a 

target variable from the pneumonia dataset (described in Chapter 5). The rule has two predictors 

in the antecedent and a naive Bayes classifier with three predictors in the consequent. A greedy 

step-forward search selects the optimal LBR rule for a test case to be classified. In particular, 

each predictor is added to the antecedent of the current best rule and evaluated for whether it 

reduces the overall error rate on the training set. The predictor that most reduces the overall error 

rate is added to the antecedent and removed from the consequent, and the search continues; if no 

single predictor move can decrease the current error rate, then the search halts and the current 

rule is applied to predict the outcome for the test case. LBR is an example of a patient-specific 

method that utilizes feature information available in the test case to direct the search for a 

suitable model in the model space.  

Status = retired Glucose = >250 

Gender Cough Infiltrate 

Dire outcome 

Figure 2-1: A LBR model (or rule) with five predictors and a target variable (dire outcome). The 
two nodes at the top represent predictors in the antecedent of the LBR rule that have been 
instantiated to their respective values in the test case. The node in the center (the target variable 
being predicted) and the three nodes at the bottom form the local naive Bayes classifier present in 
the consequent of the LBR rule. 
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The performance of LBR was evaluated by Zheng et al. [32] on 29 datasets from the UCI 

Machine Learning repository and compared to that of six algorithms: a naïve Bayes classifier 

(NB), a decision tree algorithm (C4.5), a Bayesian tree learning algorithm (NBTree) [33], a 

constructive Bayesian classifier that replaces single variables with new variables constructed 

from Cartesian products of existing nominal variables (BSEJ) [34], a selective naive Bayes 

classifier that deletes irrelevant variables using Backward Sequential Elimination (BSE) [35], 

and LazyDT, which is described above. Based on ten three-fold cross validation trials (for a total 

of 30 trials), LBR achieved the lowest average error rate across the 29 datasets. The average 

relative error reduction of LBR over NB, C4.5, NBTree, BSEJ, BSE and LazyDT were 9%, 10%, 

2%, 3%, 5% and 16% respectively. LBR performed significantly better than all other algorithms 

except BSE; compared to BSE its performance was better but not statistically significantly so. 

Some of the more recent algorithms have some limitations in that they can process only 

discrete variables – continuous variables have to be discretized. Also, they are computationally 

more intensive than many other learning algorithms. However, they have been shown to have 

better accuracy than several of the population-wide methods. These results provide empirical 

support for the possibility that patient-specific methods can have better predictive performance 

than population-wide models constructed using standard eager techniques. 

2.9 RELATED WORK IN PREDICTIVE MODELING IN MEDICINE 

In the medical domain, machine learning methods are been increasingly used for the induction of 

predictive models. In a recent study, Dreiseitl and Ohno-Machado [17] examined the number of 

publications indexed in Medline that used modeling and found that logistic regression, neural 
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networks, k-Nearest Neighbors (kNN), CART-like decision trees (classification trees) and 

support vector machines (SVM) were the most popular in descending order. Logistic regression 

is widely used in many clinical domains: for example, APACHE II is a severity of disease 

classification system that computes a score based upon routine physiologic measurements, age, 

and previous health status to provide a general measure of severity of disease [36]. Logistic 

regression models (without interaction terms) are easy to construct and interpret; however, they 

may not capture dependencies among attributes adequately. In contrast, neural networks, which 

generalize logistic regression models, are more flexible since they can express complex non-

linear relationships among the attributes.  

The kNN is the most commonly used similarity-based method in the medical domain. For 

example, it has been applied in searching for patterns in radiographic images for diagnostic 

purposes [37] and for diagnosis of diseases from gene expression profiles [38]. Though less 

commonly used than the preceding methods, CART-like decision trees are attractive since they 

provide a representation that lends itself to easy interpretation by humans. They can also be 

easily translated into a disjunction of conjunctions or the more convenient ‘if-then’ rules. 

Support vector machines have been used for several clinical problems ranging from diagnosis of 

breast cancer on ultrasound images [39] to classification of tumors based on gene expression 

profiles [40]. The basic SVM binary classification algorithm computes a maximum-margin 

hyperplane in a transformed predictor space. The hyperplane separates training cases of one class 

from the other such that the distance from the closest cases (the margin) to the hyperplane is 

maximized [41]. 

Several of the patient-specific models described in the medical literature are models that 

are induced from a time series of data about a patient. Such a model may be trained only on data 
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obtained from the patient for whom it will be used, or it may be trained from a combination of 

population data and data obtained from the patient. As an example, patient-specific modeling has 

been used to detect onset of seizures in real-time during long-term electroencephalogram (EEG) 

monitoring of epileptic patients. The model is trained from labeled seizure and nonseizure EEG 

data recorded in a patient and is then applied to ongoing EEG recording of that patient [42]. EEG 

patterns of seizures are very stereotypic for a given patient but vary widely among patients even 

for the same type of seizures. Thus, models induced from data from several patients usually 

perform poorly when compared to those constructed from a single patient and applied to that 

patient [43]. 

An example of patient-specific modeling that combines population data with data from a 

patient is the Bayesian method for forecasting drug dosage developed by Sheiner et al. [44, 45]. 

Here, the future drug dosage is individualized by revising the estimates of that individual’s 

pharmacokinetic (PK) parameters. The individual’s estimates of the PK parameters are obtained 

by combining information from population PK parameters (that describe the typical relationship 

between dosage and drug concentrations derived from a population of individuals) and past 

measurements of drug concentrations from that individual (that provide information on the 

relationship between dosage and drug concentrations specific to that individual). The initial 

prediction of a drug dose for an individual is based on just the population PK parameters, since 

no measurements of drug concentrations from that individual are yet available. This method has 

been shown to provide more accurate estimates of the individual’s PK parameters than methods 

that use only one of the sources of information [46]. In this dissertation the focus is on 

developing methods that can improve initial such predictions based on data already available on 

the individual. Such methods aim to improve the predictive performance when repeated 
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measurements of the target variable are not possible (e.g., mortality) or when the initial value of 

a target variable that can be measured repeatedly has to be predicted (e.g., blood level after the 

first dose of a drug). 

Though numerous predictive models in the clinical domain have been published by 

researchers, few are in routine clinical use. Lack of clinical credibility and lack of evidence of 

accuracy, generality, and effectiveness were some of the reasons identified by Wyatt et al. for the 

failure of acceptance of prognostic models in medicine [9]. Newer machine learning methods, 

such as the one described in this proposal, have the potential to improve the accuracy of 

predictive models. With increasing use of ever more powerful computers in clinical care and the 

increasing capture of patient information in clinical computer systems, computationally intensive 

modeling methods as part of decision support systems will become more feasible. If such 

methods can predict patient outcomes well and are incorporated in clinical decision support 

systems, they are likely to be clinically useful. In support of this point, a recent study 

demonstrated that physicians are quite amenable to having the recommendations of decision 

support systems for clinical decision making [47]. 
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3.0  BAYESIAN NETWORKS 

This chapter describes the formalism of Bayesian networks (BN) and reviews the methods for 

learning them from datasets. This provides the necessary background for the patient-specific 

algorithms that learn both structure and parameters of BNs from data. Section 3.1 introduces 

some notation and Section 3.2 briefly describes the BN formalism. Section 3.3 describes several 

representations of probability distributions in BNs. Sections 3.4 and 3.5 review some of the 

commonly used methods for learning the structure and parameters of BNs from data. In 

particular, the Bayesian approach to BN learning is reviewed in detail, including a description of 

the Bayesian scoring metric that is defined to be the posterior probability of the BN structure 

conditioned on the observed data. Section 3.6 focuses on the learning of BNs for the purpose of 

classification and reviews the utility of the Bayesian scoring metric for classification. Finally, 

Section 3.7 describes Bayesian model averaging as a coherent approach for improving 

predictions. 

3.1 NOTATION 

Random variables are denoted with upper case letters, such as X, Z, and their instantiation or 

assignment with the corresponding lower case letters x, z. Thus, X = x denotes that random 

variable X is assigned the value (or state) x. Likewise, sets of variables or random vectors are 
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denoted with bold upper case letters, such as X, Z, and their instantiation or assignment with the 

corresponding bold lower case letters x, z. Thus, X = x denotes that the random variables in X 

have the values (or states) given by x. Given a domain of interest, X = denotes the 

complete set of variables in the domain and x =  represents a complete instantiation of 

the variables in X.  For a discrete random variable Xi, ri denotes its number of values and 

denote the domain of the values.  

},...,{ 1 nXX

},...,{ 1 nxx

}...,,{ 21 inii xxx

Generally, Z denotes the target (class) variable being predicted, X denotes the set of 

predictor variables excluding the class variable, M denotes a model, D denotes the training 

dataset, Ci ≡ <Xi, Zi> denotes a generic training case and Ct ≡ <Xt, Zt> denotes a generic test 

case. The goal is to predict the value of the target variable Zt of the test case Ct. 

3.2 BAYESIAN NETWORK REPRESENTATION 

A Bayesian network (BN) is a probabilistic model that combines a graphical representation (the 

BN structure) with quantitative information (the BN parameterization) to represent a joint 

probability distribution over a set of random variables [5, 6]. More specifically, a Bayesian 

network model M representing the set of random variables X for some domain consists of a pair 

(G, θG). The first component G is a directed acyclic graph (DAG) that contains a node for every 

variable in X and an arc between a pair of nodes if the corresponding variables are directly 

probabilistically dependent. Conversely, the absence of an arc between a pair of nodes denotes 

probabilistic independence between the corresponding variables. In this document, the terms 

variable and node are used interchangeably in the context of random variables being modeled by 

 34 



  

history 
of smoking 

X1 

chronic 
bronchitis 

lung X2 X3 cancer 

X5 X4 

mass seen on 
chest X-ray 

fatigue 

P(X1 = F) = 0.80 
 
P(X2 = F | X1 = F) = 0.95 

nodes in a BN. A variable Xi in the domain of interest will usually be represented by a node 

labeled Xi in the BN graph.  

The terminology of kinship is used to denote various relationships among nodes in a 

graph. These kinship relations are defined along the direction of the arcs. Predecessors of a node 

Xi in G, both immediate and remote, are called the ancestors of Xi. In particular, the immediate 

predecessors of Xi are called the parents of Xi. The set of parents of Xi in G is denoted by 

Figure 3-1: A simple hypothetical Bayesian network for a medical domain, taken from [48]. All 
the nodes represent binary variables, taking values in the domain {T, F} where T stands for True 
and F for False. The graph at the top represents the Bayesian network structure. Associated with 
each variable (node) is a conditional probability table representing the probability of each 
variable’s value conditioned on its parent set. (Note: these probabilities are for illustration only; 
they are not intended to reflect frequency of events in any actual patient population.) 

P(X2 = F | X1 = T) = 0.75 
 
P(X3 = F | X1 = F) = 0.995 
P(X3 = F | X1 = T) = 0.997 
 
P(X4 = F | X1 = F, X3 = F) = 0.99995 
P(X4 = F | X1 = F, X3 = T) = 0.50 
P(X4 = F | X1 = T, X3 = F) = 0.90 
P(X4 = F | X1 = T, X3 = T) = 0.25 
 
P(X5 = F | X1 = F) = 0.98 
P(X5 = F | X1 = T) = 0.40 
 

P(X1 = T) = 0.20 
 
P(X2 = T | X1 = F) = 0.05 
P(X2 = T | X1 = T) = 0.25 
 
P(X3 = T | X1 = F) = 0.005 
P(X3 = T | X1 = T) = 0.003 
 
P(X4 = T | X1 = F, X3 = F) = 0.00005 
P(X4 = T | X1 = F, X3 = T) = 0.50 
P(X4 = T | X1 = T, X3 = F) = 0.10 
P(X4 = T | X1 = T, X3 = T) = 0.75 
 
P(X5 = T | X1 = F) = 0.02 
P(X5 = T | X1 = T) = 0.60 

Node X1  
 
Node X2  
 
 
Node X3  
 
 
Node X4  
 
 
 
 
Node X5  
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Pa(Xi, G) or more simply as Pai when the BN structure is obvious from the context. In a similar 

fashion, successors of Xi in G, both immediate and remote, are called the descendants of Xi, and 

the immediate successors are called the children of Xi. A node Xj is termed a spouse of Xi if Xj is 

a parent of a child of Xi. The set of nodes consisting of a node Xi and its parents is called the 

family of Xi. Figure 3-1 gives an illustrative example of a simple hypothetical BN taken from 

[48], where the top panel shows the graphical or the structural component G of the BN. In the 

figure, the variable history of smoking is a parent of the variable lung cancer as well as a parent 

of the variable chronic bronchitis. The variable fatigue is a child of the variable lung cancer as 

well as a child of the variable chronic bronchitis. A descendant of a node Xi is a node Xj that can 

be reached by a directed path from Xi to Xj. In the example, variables lung cancer and mass seen 

on chest X-ray are descendants of the variable history of smoking.  

The second component θG represents the parameterization of the probability distribution 

over the space of possible instantiations of X and is a set of local probabilistic models that 

encode quantitatively the nature of dependence of each variable on its parents. For each node Xi 

there is a local probability distribution (that may be discrete or continuous) defined on that node 

for each state of its parents. The set of all the local probability distributions associated with all 

the nodes comprises the complete parameterization of the BN. The bottom panel in Figure 3-1 

gives an example of a set of parameters for G. Taken together, the top and bottom panels in 

Figure 3-1 provide a fully specified structural and quantitative representation for the BN.  

3.2.1 Local Markov condition and factorization of the joint probability distribution 

The topology of the graph G encodes compactly the set of independencies among the variables in 

the domain. These independence relations include both marginal and conditional independencies 
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and can be enumerated for a BN by the application of the local and global Markov conditions to 

the topology of the network. This section describes the local Markov condition and the next 

section describes the global Markov condition. 

The local Markov condition identifies the independencies local to a node: A node is 

conditionally independent of its non-descendants given just the states its parents [5]. In Figure 

3-1, one such independence relation is this: the variable history of smoking is independent of the 

variable mass seen on chest X-ray given the state of the variable lung cancer.  

The local Markov condition provides a factored representation for the complete joint 

probability distribution over the variables in the domain, which is a crucial characteristic of a 

BN. This factored representation can be substantially more compact than the complete joint 

probability distribution, especially when the graph is sparse. The joint probability distribution is 

factored by applying the chain rule of probability followed by simplification of the terms based 

on the independencies asserted by the local Markov condition. Let the variables in X = 

 be topologically sorted relative to G, such that if i < j then Xi is a non-descendant of 

Xj in G. Using the chain rule of probability the joint distribution is factored as: 

},...,{ 1 nXX

∏
=

−=
n

i
iin XXXPXXP

1
111 ),...,|(),...,(  .    (3.1) 

The local Markov condition asserts that for all Xi in X, 

)|(),...,|( 11 iPaiii XPXXXP =− ,     (3.2) 

where , because in the sorting of the variables all of the parents of Xi are in 

the set , and none of the descendants of Xi are in this set. Substituting Equation 3.2 

into Equation 3.1 gives the following equation, which is also known as the chain rule for 

Bayesian networks: 

},...,{ 11 −⊆ iXXiPa

},...,{ 11 −iXX
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As an example, applying the local Markov condition to the BN in Figure 3-1 leads to the 

following factorization: 

)|(),|()|()|()(),,,,( 353241312154321 XXPXXXPXXPXXPXPXXXXXP =  (3.4) 

The local Markov condition, thus, translates a high dimensional multivariate joint probability 

distribution into a product of potentially low dimensional univariate probability distributions. 

The BN network represents and stores univariate probability distributions which typically require 

fewer parameters for specification than the complete joint probability distribution. For example, 

the BN in Figure 3-1 requires only 11 independent probabilities to be specified (the probabilities 

in the right hand column are redundant), while the full joint probability distribution for the same 

example where a probability is to be specified for each instantiation of the five variables would 

require 25 – 1 = 31 independent probabilities. 

3.2.2 Global Markov condition and d-separation  

The global Markov condition also identifies independencies with respect to a node: A node is 

conditionally independent of all other nodes in the network, given its parents, its children, and 

the children’s parents. This set of nodes is also known as the Markov blanket of the node and is 

described in the next section. Figure 3-2 distinguishes graphically the local and the global 

Markov conditions. 

The global Markov condition can be extended to identify independencies among disjoint 

sets of nodes in a BN. A topological procedure called d-separation can identify the complete set 

of conditional independencies in the graph implied by the global Markov condition [5]. Pearl 
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describes the application of d-separation as follows. Consider three disjoint subsets of nodes X, Y 

and Z in graph G. Whether X is independent of Y given Z is tested by testing whether the nodes 

in Z “block” all paths from nodes in X to nodes in Y. A path refers to a sequence of consecutive 

arcs (of any directionality) in the graph, and “blocking” is interpreted as barring the dependency 

between variables that are connected by such paths. A path p is said to be d-separated or 

“blocked” by a set of nodes Z if and only if: 

1. p contains a chain kj  or a fork kji XXX →→ i XXX →←  such that the 

middle node Xj is in Z 

2. p contains a collider kji XXX ←→  such that the middle node Xj is not in Z and 

also no descendant of Xj is in Z 

A set Z is said to d-separate X from Y if and only if Z blocks every path from a node in X to a 

node in Y. The global Markov condition states that X and Y are conditionally independent given 

Z if and only if Z d-separates X from Y [5, 49]. Thus, d-separation identifies all the conditional 

independencies implied by the global Markov condition.  

Figure 3-2: Examples of the local Markov condition and the global Markov condition. (a) Local 
Markov condition: The node X6 (shown stippled) is conditionally independent of its non-
descendants given its parents (shown shaded). (b) Global Markov condition: the node X6 (shown 
stippled) is conditionally independent of all other nodes in the network given its Markov blanket 
(shown shaded). 
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In a BN, the local Markov condition implies the global Markov condition and vice-versa 

and both conditions identify all the independencies implied by the topology of the network [49, 

50]. 

3.2.3 Markov blanket 

The Markov blanket (MB) of a variable Z, denoted by MB(Xi), is a minimal set of variables such 

that Xi is conditionally independent of all other variables given MB(Xi) [5]. This entails that the 

variables in MB(Xi) are sufficient to determine the probability distribution of Xi. Since d-

separation is applied to the graphical structure of a BN to identify all conditional independence 

relations, it can also be applied to identify the MB of a node in a BN. The MB of a node Xi 

consists of its parents, its children, and its children’s parents and is illustrated in Figure 3-3. The 

parents and children of Xi are directly connected to it and are hence in its MB. In addition, the 

spouses are also included in the MB, because of the phenomenon of explaining away which 

X5 

X1 X2 X3 

X7 X6 

X4 

X9 X8 

X10 X11 

Figure 3-3: Example of a Markov blanket. The Markov blanket of the node X6 (shown stippled) 
comprises the set of parents, children and spouses of the node and is indicated by the shaded 
nodes. The nodes in the Markov blanket include X2 and X3 as parents, X8 and X9 as children, and 
X5 and X7 as spouses of X6. X1, X4, X2 and X10 and X11 are not in the Markov blanket of X6. 
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refers to the observation that when a child node is instantiated its parents in general are 

statistically dependent.  

The MB of a node is noteworthy because it identifies all the variables that shield the node 

from the rest of the network. In particular, when interest centers on the distribution of a specific 

target node, as is the case in classification, the structure and parameters of only the MB of the 

target node need be learned.  

3.3 REPRESENTATION OF LOCAL PROBABILITY DISTRIBUTIONS 

The global structure of the BN represented by the arcs connecting the nodes implies a set of 

conditional independencies that allows the decomposition of a high dimensional joint probability 

distribution into a product of potentially low dimensional conditional probability distributions 

(CPDs). Each factor P(Xi | Pai) on the right hand side of Equation 3.3 is a set of CPDs that is 

associated with Xi. This section describes several representations for these CPDs, including some 

representations that capture additional regularities that are not implied by the global structure. 

The choice of representation depends on the type of the variables involved (i.e., discrete or 

continuous), on the nature of the relationship among the variables (i.e., deterministic or 

probabilistic), and on the need to represent local dependencies among parameters. 

In domains with discrete random variables, the tabular representation for CPDs is simple 

and straight-forward. In this representation, P(Xi | Pai) is a table that contains an entry for each 

joint instantiation of Xi and Pai. Each column (or row) in the table represents a single conditional 

probability distribution, P(Xi | Pai = pai), corresponding to a particular instantiation of Pai. 

Tabular CPDs are aptly called conditional probability tables (CPTs) and are almost always the 
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representation used in discrete BNs. For example, the CPD for node X4 in the top panel in 

Figure 3-1 is represented by the hypothetical CPT shown in the bottom panel in Figure 3-1 that 

contains four independent parameters. CPTs are a very general representation for discrete nodes 

in that every possible discrete conditional probability distribution can be represented by a 

conditional probability table. However, the CPT representation has several disadvantages. First, 

in general the number of parameters of a CPT of a node grows exponentially in the number of 

parents of the node, and when parameters are estimated from data, this expansion of the CPT 

leads to poor estimates of the parameters since fewer data points contribute to the estimate of 

each parameter. Second, the tabular representation ignores structure and regularities within the 

CPDs; capturing such regularities provides additional domain knowledge about the interactions 

among the parents and reduces the number of parameters needed to specify the CPDs. 

Interactions among parents are captured by a type of independence relation called context-

specific independence and is described in the next section. The subsequent sections briefly 

describe several representations for CPDs that explicitly capture context-specific independencies. 

3.3.1 Context-specific independence 

The DAG of a BN encodes statements of variable independence. For example, a variable X is 

independent of Y given variable Z if P(x | y, z) = P(x | z) for all values x, y and z that the variables 

X, Y, Z can take. 

In the standard discrete BN, the graphical structure makes explicit independence relations 

of the form which implies that ZYX |⊥ )|(),|( ZXPZYXP = for all values of the variables X, 

Y and Z. However, these are not the only independencies that may be present in a domain. For 

instance, value-specific independencies that hold for only particular assignments of values to 
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certain nodes cannot be represented by the BN graphical structure. Value-specific 

independencies are of the form zZYX =⊥ |  which implies that 

for all values of the variables X and Y when Z takes the particular 

value z. This type of independence relation is also known as context-specific independence; the 

preceding example can be interpreted as X is independent of Y in the context of Z taking the 

value z. In general, these independent statements imply that in some contexts, defined by an 

assignment of specific values to the variables in the BN, the conditional probability of a variable 

is independent of some of its parents [51].  

)|(),|( zZXPzZYXP ===

=⊥ 324 | XXX

In the CPT representation, context-specific independencies become apparent only on 

examining the numerical values of the parameters. Context-specific independence is present 

when the conditional probability distributions for two or more parent states have identical values 

of the parameters; such an independence relation is not explicitly represented in the CPT 

structure. For example, in Figure 3-4 (b), an examination of the parameters in the CPT reveals 

that three of the four possible parent states have the same parameter values (0.6, 0.4) implying 

that context-specific independencies are present. Indeed, the following two context-specific 

independence relations among the variables can be identified:   

(1)  T  (i.e., fatigue⊥ chronic bronchitis | lung cancer = T) 

(2)  T (i.e., fatigue=⊥ 434 | XXX ⊥  lung cancer | chronic bronchitis = T) 

BNs that do not explicitly represent context-specific structure are referred to as BNs with 

global structure, in contrast to BNs that explicitly capture context-specific structure which are 

referred to as BNs with local structure. Several CPD representations have been developed for 

discrete variables that explicitly capture context-specific structure. The following sections 

describe two such local structure representations, namely, decision trees and decision graphs.  
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Figure 3-4: Examples of CPD representations. Several CPD representations for the BN node X4
(fatigue) in panel (a) are shown in subsequent panels. Panel (b) shows a CPT for the node X4 with 
four parameters. The CPT can be equivalently represented by a complete decision tree as shown 
in panel (c). Panels (d) and (e) show alternate decision trees where each one captures one of the 
two context specific independence relations that is present but not both (see text for details). 
Panel (f) shows a decision graph that captures both the context specific independence relations
(see text for details). Nodes of a BN are shown as ellipses with single lines while nodes o

esentations for the BN node X4
(fatigue) in panel (a) are shown in subsequent panels. Panel (b) shows a CPT for the node X4 with 
four parameters. The CPT can be equivalently represented by a complete decision tree as shown 
in panel (c). Panels (d) and (e) show alternate decision trees where each one captures one of the 
two context specific independence relations that is present but not both (see text for details). 
Panel (f) shows a decision graph that captures both the context specific independence relations
(see text for details). Nodes of a BN are shown as ellipses with single lines while nodes of 
decision trees and decision graphs are shown as either circles with double lines (interior nodes) or 
as rectangles with double lines (leaf nodes). 
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3.3.2 Decision tree CPDs 

Friedman and Goldszmidt describe a decision tree representation for learning BNs with local 

structure from data [51]. In this representation, a decision tree is used to represent the local 

structure for a BN node Xi. Such a representation is called a decision tree CPD or a tree CPD for 

short. A decision tree is a graph where the root node has no parents, and all other nodes have a 

single parent. Nodes that have children and appear in the interior of the tree are called interior 

nodes and terminal nodes are called leaf nodes. Each leaf node in the tree contains a conditional 

distribution over Xi, and the path to the leaf from the root provides the context in which the 

distribution is valid. Each interior node is annotated with the name of one of the parent variables 

Xj  Pai and out-going arcs from that interior node are annotated with mutually exclusive and 

collectively exhaustive sets of values for the variable Xj. In other words, values of parent nodes 

of Xi appear along the path and determine the parent states for which the distribution in the 

corresponding leaf node is applicable. Each leaf node contains a set of k parameters – where k is 

the number of states of Xi – that defines a single conditional probability distribution 

P(Xi | Pai = pai) corresponding to a particular instantiation of Pai. 

∈

As an example, Figure 3-4 (d) shows a decision tree CPD that represents the local 

structure of the node X4 in Figure 3-4 (a). The decision tree representation is more compact than 

the CPT representation in that the decision tree CPD contains one less CPD and hence requires 

one fewer set of parameters than the CPT. This is achieved by capturing the context-specific 

independence relation =⊥ 324 | XXX  T (fatigue ⊥  chronic bronchitis | lung cancer = T), 

which is seen in Figure 3-4 (d) by noticing that the path along the right from the root node X3 

(lung cancer) does not contain a node for the variable chronic bronchitis. An alternate decision 
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tree, shown in Figure 3-4 (e), that has as the root node the variable X2 (chronic bronchitis) can 

capture the other context-specific independence relation =⊥ 434 | XXX  T (fatigue ⊥  lung 

cancer | chronic bronchitis = T). However, no decision tree is unable to capture both context-

specific independence relations given in the example.  

3.3.3 Decision graph CPDs 

Chickering et al. generalized the decision tree representation to decision graphs, which can 

represent a richer set of context-specific independence relations [52]. A decision tree is a graph 

where the root node has no parents, and all other nodes have one or more parents. Nodes that 

have children and appear in the interior of the tree are called interior nodes and terminal nodes 

are called leaf nodes. A decision graph differs from a decision tree in that an interior node may 

have multiple parents, rather than just one parent. A decision graph, thus, allows two or more 

distinct paths from the root node to terminate in the same leaf node. Such a representation is 

called a decision graph CPD or a graph CPD for short. For a BN node Xi that is represented by a 

decision graph, the leaf nodes contain conditional distributions over Xi similar to those in a 

decision tree, and interior nodes and outgoing arcs in a decision graph are annotated in a similar 

fashion as in a decision tree. All paths that lead to the same leaf node represent distinct parent 

states for which Xi has the same conditional distribution. The decision graph representation is 

more general than the decision tree representation, in that, any local structure that can be 

represented compactly as a tree can be represented as a graph, but the converse is not true.  

As an example, Figure 3-4 (f) shows a decision graph CPD representing the local 

structure of the node X4 in Figure 3-4 (a). In this example, the decision graph CPD is more 

compact than either the CPT or the decision tree representation since it requires one less set of 
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parameters than the decision tree CPD and two fewer sets of parameters than the CPT. The 

decision graph is able to capture both context-specific independence relations given in the 

example, demonstrating that it is a more general representation than the decision tree.  

3.3.4 Summary of CPD representations 

From the preceding discussion, it is evident that the CPDs in BNs can be represented with 

varying degrees of parsimony. Representations of CPDs that do not attempt to capture context 

specific independencies are the least parsimonious; such representations explicitly capture only 

the global structure. The classical representation for a CPD is the complete table (commonly 

known as the CPT); each node Xi stores ii rq ×  parameters in a large table where qi is the number 

of parent states for Xi and ri the number of states of Xi. An equivalent representation to the 

complete table is the complete decision tree which can represent all of the parameters in a 

complete table. A complete decision tree for a node Xi is a tree of depth qi such that every 

interior node at level l is annotated by the lth parent Xl ∈  Pai and has exactly as many children as 

there are states in Xl. It follows from this definition that a complete decision tree has the same 

number of leaf nodes as the number of columns in an equivalent complete table. For example, 

the CPT in Figure 3-4 (b) is equivalently represented by the complete decision tree in 

Table 3-1: Labels for CPDs, BNs and MBs based on the CPD representation. 

structure CPD representation CPD label BN label MB label 
complete table (CPT) tabular CPD tabular CPD BN tabular CPD MB global 

complete decision tree complete CPD complete CPD BN complete CPD MB 

decision tree decision tree CPD decision tree CPD BN decision tree CPD MB local 
decision graph decision graph 

CPD 
decision graph CPD 
BN 

decision graph CPD 
MB 
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Figure 3-4 (c). I will refer to a BN with tabular CPDs as a tabular CPD BN, and a BN with 

complete decision tree CPDs as a complete CPD BN. 

Representations for CPDs that explicitly represent context-specific independence 

relations include decision trees and decision graphs. I will refer to a BN with decision tree CPDs 

as a tree CPD BN, and a BN with decision graph CPDs as a graph CPD BN. Both tree CPD BNs 

and graph CPD BNs capture the local structure. Of note, the local structure implies the global 

structure. This can be seen from the observation that the parents of a BN node Xi are those nodes 

that appear in the decision tree or the decision graph associated with Xi. Table 3-1 summarizes 

the nomenclature for BNs based on the CPD representations. 

3.4 LEARNING BAYESIAN NETWORKS FROM DATA 

Learning a BN from a dataset of cases consists of learning its two components: the graphical 

structure of conditional dependencies (structure learning) and the conditional probability 

distributions (parameter estimation). Given a fixed network structure, parameter estimation is 

the easier problem and frequentist or Bayesian statistical approaches can be applied to the 

problem. The learning of the graphical structure that best fits the data is a more challenging task. 

3.4.1 Parameter estimation 

This section focuses on the estimation of the parameters of the conditional probability 

distributions P(Xi | Pai) under the assumptions that the BN structure is known, all the variables 

are discrete and the data has no missing values for any of the variables. There are two main 
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approaches for parameter estimation: the maximum likelihood approach that depends only on the 

data and the Bayesian approach that combines prior probabilities for the parameters with the 

data. In both approaches, the task is to find a good value or a set of good values for each 

parameter in the BN. This can be formulated as a learning task that consists of a hypothesis space 

which defines the set of all possible values being considered and a scoring function that scores 

different hypotheses in the space relative to the given data. The BN structure reduces the 

parameter estimation problem to a set of unrelated simpler parameter estimation problems 

involving only a node and its parents. In particular, for discrete variables in which conditional 

probability distributions are multinomial distributions whose parameters are stored in tables, 

decision trees or decision graphs, the parameters for each multinomial distribution can be 

estimated independently.  

3.4.1.1 Maximum likelihood estimation  

The scoring function in maximum likelihood estimation is the standard likelihood. The 

likelihood function computes the probability of the data as a function of the parameter values. 

Parameter values with higher likelihood are more likely to generate the data; thus the likelihood 

function measures how well different parameter values predict the data. In the maximum 

likelihood method, the parameter values that maximize the likelihood are selected, and the 

estimator is called the maximum likelihood estimator (MLE). For many parametric distributions, 

including the multinomial distribution, the likelihood function is maximized easily in closed 

form. 

In a discrete BN with n nodes, the parameterization θ over the entire network can be 

decomposed as where each θi represents the set of parameters defining the },...,,...,{ 1 ni θθθθ =
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conditional distributions P(Xi | Pai) associated with node Xi. It is typically assumed that the θi are 

mutually independent; an assumption that is referred to as the global parameter independence. 

Further, each θi is decomposed as },...,,...,{ 1 iiqiji θθθθ i =  where qi is the number of possible 

instantiations of Pai.. Each θij represents the parameters defining the single conditional 

distribution P(Xi | Pai = j). It is typically assumed that the θij are mutually independent; an 

assumption that is referred to as the local parameter independence. For a discrete variable each 

θij parameterizes a multinomial distribution. Thus, for each instantiation Pai = j, 

)( ijθl)|( iPa multinomiajXP i == ,     (3.5) 

where, and θijk = P(Xi = k | Pai = j). Similarly, the multinomial likelihood 

function for a discrete BN decomposes into a product of local likelihood functions over the 

nodes, and the local likelihood function at each node further decomposes into a product of simple 

likelihood functions over the instantiations of the parent nodes. Each simple likelihood function 

is a multinomial likelihood function that is easily maximized to obtain the following MLE 

parameters: 

},...,,...,{ 1 iijnijkij θθθθ ij =

ij

ijk
ijk N

N
=θ̂ ,        (3.6) 

where, Nijk is the number of cases in the training data such that node i has value k and the parents 

of i have the state denoted by j, and ∑= k ijkij NN . 

3.4.1.2 Bayesian parameter estimation 

The MLE approach attempts to find a single set of parameter values  that explain the data well. 

The Bayesian approach, in contrast, does not attempt to find a single set of best parameter 

values. Rather, it provides a distribution over the possible parameter values that quantifies the 

θ̂
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uncertainty of each of the values. Thus, it combines prior knowledge of the parameterization θ 

with the data to arrive at a posterior distribution over θ. The prior knowledge of θ is encoded 

with a probability distribution; this distribution represents the a priori knowledge and beliefs 

about the different values of the parameters. Then, a joint distribution over θ and the data D 

captures all the necessary information: 

)()|(),( θθθ PDPDP =       (3.7) 

The first term on the right hand side is the likelihood function, which is the same function that is 

used for obtaining the MLE estimates. The second term is the prior distribution over the 

parameter values. Once the likelihood function and the prior have been specified, Bayes rule is 

applied to obtain the posterior distribution over the parameters: 

)(
)()|()|(

DP
PDPDP θθθ = .      (3.8) 

The term P(D) in the denominator is the marginal likelihood of the data obtained by integrating 

the likelihood over all possible parameter values: 

θθθ dPDPDP ∫=
θ

)()|()( .      (3.9) 

This term represents the a priori likelihood of observing the obtained data given the prior beliefs. 

 In a discrete BN, when the variables are multinomial, typically the prior over the 

parameters of the multinomial distributions are represented by Dirichlet distributions. For a node 

Xi with the distribution 

)()()|( 1 iijrijk, ijiji ,...,θ...,θθlmultinomialmultinomiajXP ≡== θPai , (3.10) 

the Dirichlet prior is specified as: 

),...,,...,()()( 1 iijrijkijijij DirichletDirichletP ααα≡= αθ ,  (3.11) 
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where the parameters ijkα  of the Dirichlet distribution are called hyperparameters. Applying 

Bayes rule to a Dirichlet prior and a multinomial likelihood produces a posterior that is also a 

Dirichlet distribution: 

),...,,...,()|( 11
ii ijrijrijkijkijijij NNNDirichletDP +++= αααθ , (3.12) 

where, Nijk is the number of occurrences of P(Xi = k | Pai = j) in the data.  

The posterior summarizes all the information available about the different values of the 

parameters. A common use of a BN, which has been parameterized from a training dataset D of 

N cases {X1, X2,…, XN }, is to predict the probability of a new case XN +1 taking the value x, that 

is, compute the predictive probability distribution P(XN +1 = x | D). This prediction is obtained by 

averaging over all the parameters weighted by the posterior as follows: 
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When the prior and corresponding posterior are Dirichlet, under the assumptions of global and 

local parameter independence, the prediction for a future example can be decomposed as 

follows: 

 .   (3.14) 
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Assuming that in the future example X = x, Xi = k and Pai = j, the computation yields: 
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From Equations 3.6 and 3.15, it can be seen that the maximum likelihood and the Bayesian 

parameter estimators have similar form. Both rely on sufficient statistics of the data that are 

counts of the form count(Xi = k and Pai = j) that can all be collected simultaneously in a single 

pass through the data. Both estimators are asymptotically correct in that as the number of cases 

increases, both methods converge to the true parameter values if the data is actually generated 

from the given network structure. However, in the finite sample setting the maximum likelihood 

estimator may overfit. In the Bayesian method such overfitting is counteracted by the use of 

suitable parameter priors as described in Section 3.4.4. 

3.4.2 Structure learning 

Learning the structure of a BN is harder than estimating the parameters of a known structure. 

Typically, structure learning methods learn the structure as well as the parameters of the 

structure to generate a fully specified BN. Structure learning is influenced by the goal of the 

learning task as well as the representation used for the conditional probability distributions. 

There are two main motivations for learning a BN from data. The first is for knowledge 

acquisition – to learn important dependencies and independencies among the domain variables.  

A BN structure not only discovers the independencies but also distinguishes between direct and 

indirect dependencies both of which lead to correlations in the data. Since the data available for 

learning is finite and noisily sampled from the actual but unknown joint probability distribution 

P*, it is not possible with complete reliability to detect all the independencies in the underlying 

distribution. Thus, the learned structure may contain fewer arcs and miss true dependencies or 

may learn more arcs some of which are spurious dependencies. Additionally, several different 

BN structures can all represent the same distribution; such structures are said to be members of 
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the Markov equivalence class of G*. Members of G* cannot be distinguished based on 

observational data alone. Observational data is data that is passively observed in contrast to 

experimental data in which one or more variables are manipulated and the effects on other 

variables are measured [48]. In causal learning, for example, it is important to try to distinguish 

between members of a Markov equivalence class since different member graphs represent 

different causal knowledge. 

The second reason to learn a BN structure is for density estimation. Here it is less 

important to capture the actual dependencies and independencies in G* than it is to approximate 

the underlying P* well. That is, the aim is to estimate well a statistical model of the underlying 

joint probability distribution. Typically, the goal is to learn a statistical model from a training set 

of data that can be applied to future cases. For example, in classification, the goal is to be able to 

correctly predict the true state of a target variable using the BN structure learned from the 

training set.  

At first glance it appears that as G* captures the true dependencies and independencies in 

the domain, the best generalization will be obtained by recovering the structure G*. Moreover it 

appears that it is better to err on having too many arcs in the learned structure than too few, since 

a more complex structure can still represent the data-generating distribution P*. However, it 

turns out that because data available for learning is limited, complex structures can lead to less 

reliable parameter estimates. For example, adding more parents to a variable Z leads to a larger 

CPT for Z with fewer data available for estimating each cell of the CPT. Thus, it is often better to 

prefer a sparser structure even if this structure cannot accurately represent the underlying P*. 

There are two major approaches for learning BNs: (1) constraint-based methods that 

employ independence tests among the domain variables, and (2) search-and-score methods that 
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employ a scoring metric to evaluate the goodness of the statistical model represented by a BN 

structure. More recently, methods that combine these two traditional approaches have emerged.  

Constraint-based methods. These methods view a BN as a representation of 

independence relations among the domain variables. They attempt to discover a set of 

conditional dependence and independence relations in the data and use them to determine the 

presence or absence of arcs in the network. The final induced BN structure is then hopefully one 

that best captures the independencies in the domain. A key component of these methods is the 

use of statistical tests that are applied repeatedly to the data for testing conditional independence 

relations. The main disadvantage of these methods is that with limited data the statistical tests 

can sometimes fail, and a few errors made by the testing procedure can significantly mislead the 

network construction procedure.  

Search-and-score methods. These methods view a BN as a representation of a statistical 

model of the domain variables. The scoring function measures the goodness of a BN in terms of 

how well the corresponding statistical model fits the observed data. The methods then search a 

hypothesis space of possible network structures to find a single structure or a set of high scoring 

structures. However, the space of BN structures suffers from combinatorial explosion; it contains 

a superexponential number of structures – , where n is the number of nodes in the 

network. In general, finding the highest-scoring network has been shown to be NP-hard for a 

variety of scores, and various heuristic search techniques are used to locate good networks [53].  

)2(
2nO

 Search-and-score methods consider the whole structure at once, and are therefore less 

sensitive to the absence or presence of a few erroneous arcs. In general, finding the optimal BN 

is intractable and heuristic search is typically used. 
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 The subsequent sections give details of the search-and-score methods, since the patient-

specific methods explored in this dissertation employ these methods to learn BNs from data. 

3.4.3 Structure scores 

Learning a fully specified BN from data using the search-and-score method consists of three 

components: (1) a scoring function that measures the quality of a network structure with respect 

to the data; (2) a heuristic search method for exploring the space of network structures; and (3) 

an estimator for learning the parameters of the conditional probability distributions associated 

with a specified network structure. 

 Several scoring metrics have been described. The non-Bayesian scores are discussed first 

followed by a detailed discussion of the Bayesian scores. 

Likelihood score. The simplest scoring function is the likelihood function. This is the 

same function as the one used for maximum likelihood parameter estimation. Maximizing the 

likelihood of a BN entails finding both a graph structure and parameters for that structure that 

maximize the likelihood. For a given structure the likelihood is maximized by simply choosing 

the maximum likelihood parameters as noted in the parameter estimation section. Extending this, 

in a given set of BN structures the maximum likelihood structure G is the one which has the 

highest likelihood when parameterized with MLE estimates: 
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Therefore, the likelihood structure score is defined as: 
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);ˆ,(log);();( DGLDBLLDGscore GL 〉〈=≡ θ ,   (3.17) 

where, are the maximum likelihood parameters for G. The logarithmic form of the likelihood 

function is usually used as it makes mathematical manipulations easier. For a discrete BN, the 

likelihood structure score is: 
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The likelihood score is a good measure of the fit of a BN to the training data. Typically, the 

likelihood score overfits the training data and the maximum likelihood BN generalizes poorly. 

The likelihood score learns a model that precisely fits the specifics of the empirical distribution 

in the training data, and hence the model captures both true dependencies present in P* and 

spurious dependencies that are artifacts of the specific set of cases in the training data. In BN 

structure learning with the likelihood score, on average the addition of an arc never decreases the 

score and the highest scoring structure is the completely connected network. The completely 

connected network will obviously generalize poorly since it captures no independencies present 

in P*. 

 The likelihood score is still useful when additional constraints are present that disallow 

more complex structures. For example, limiting the maximum number of parents for a node can 

overcome the likelihood score’s tendency to overfit. Another alternative, that is widely used, is 

to penalize the likelihood score; typically with a term that in some manner measures the 

complexity of the structure. 

Description Length score. The structure learning method based on the Minimum 

Description Length (MDL) principle searches for a BN that minimizes the combined length of 

the encoding of the model and the data. The model score is the length of the encoding and is 
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called the Description Length which consists of two components: (1) the length of the encoding 

of the model (for a BN the model consists of the domain variables, the structure and the 

parameters), and (2) the length of the encoding of the observed data. The first component 

penalizes model complexity, while the second component rewards the model’s fitness to the 

data. Thus, the MDL criterion optimizes the trade-off between the complexity of the selected 

structure and its fit to the training data. For a discrete BN, the Description Length structure score 

is defined as: 

[ ] );(log);( DBLLNGDimDGscoreDL −=
2

,    (3.19) 

where  is the number of independent parameters in the BN and N is the cardinality of the 

data D.  

[ ]GDim

3.4.4 Bayesian score 

In the Bayesian approach, the scoring function is based on the posterior probability P(G | D) of 

the BN structure G given data D. The Bayesian approach treats both the structure and parameters 

as random uncertain quantities and incorporates prior distributions for both. The specification of 

the structure prior P(G) assigns prior probabilities for the different graph structures, and the 

specification of the parameter prior ) assigns prior probabilities for the possible 

parameter values for a specified structure. Application of Bayes rule gives: 

GP G |(θ

)(
)()|()|(

DP
GPGDPDGP = .      (3.20) 
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Since the denominator P(D) does not vary with the structure, it simply acts as a normalizing 

factor that does not distinguish between different structures. Dropping the denominator gives the 

Bayesian score which is defined as: 

)(log)|(log);( GPGDPDGscoreB += .    (3.21) 

The second term on the right is the prior over structures, while the first term is the marginal 

likelihood (also know as the integrated likelihood or evidence) which measures the goodness of 

fit of the given structure to the data. The marginal likelihood is computed as follows: 

GGG dGPGDPGDP
G

θθθ
θ

)|(),|()|( ∫= ,    (3.22) 

where is the likelihood of the data given the BN (G, θG) and  is the 

specified prior distribution over the possible parameter values for the network structure G. 

Intuitively, the marginal likelihood measures the goodness of fit of the structure over all possible 

values of its parameters. It is to be noted that the marginal likelihood is distinct from the 

maximum likelihood, though both are computed from the same function: the likelihood of the 

data given the structure. The maximum likelihood is the maximum value of this function while 

the marginal likelihood is the integrated (or the average) value of this function with the 

integration being carried out with respect to the prior . 

),|( GDP Gθ )|( GP Gθ

)|( GP Gθ

Marginal likelihood for discrete Bayesian networks. Equation 3.22 can be evaluated 

analytically when the following assumptions hold: (1) the variables are discrete and the data D is 

a multinomial random sample with no missing values; (2) global parameter independence, that 

is, the parameters associated with each variable are independent [54]; (3) local parameter 

independence, that is, the parameters associated with each parent state of a variable are 

independent [54]; and (4) the parameters’ prior distribution is Dirichlet. Under the above 

assumptions, the closed form for P(D | G) is given by [54-57]: 
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where is the Gamma function, and )(•Γ ∑= k ijkij αα . Also, as previously described, Nijk is the 

number of cases in the data where node i has value k and the parents of i have the state denoted 

by j, and . The Bayesian score based on the marginal likelihood is called the 

Bayesian-Dirichlet metric because of the assumption that the parameters are distributed 

according to a Dirichlet distribution [56]. 

∑= k ijkNijN

Priors. The Bayesian score in Equation 3.22 incorporates both structure and parameter 

priors. The term P(G) is called the structure prior and is the prior probability assigned to the BN 

structure G. In many situations, a uniform prior over all structures is used, in which case the 

Bayesian score reduces to the marginal likelihood. Heckerman et al. suggest the following 

structure prior with reference to a prior structure specified by an expert [56]: 

δκcGP =)( ,        (3.24) 

where c is a normalization constant, ]1,0(∈κ  is a factor that penalizes the structure for each 

unmatched arc with the prior structure, and δ is the so-called symmetric difference between G 

and the prior structure. If the prior structure is set to the empty network, the Bayesian scoring 

metric based on this prior gives preference to simpler structures. In the case of BN structures that 

represent local structure in the form of decision trees or decision graphs, the structure prior will 

incorporate terms for priors on the global structure as well as terms for priors on the local 

structures. An example of such a prior is described in the next chapter. 

The parameter priors are incorporated in the marginal likelihood as is obvious from 

Equation 3.23. In the case of the Bayesian-Dirichlet metric several parameter priors have been 

described. Cooper and Herkovits introduced the K2 metric where all hyperparameters ijkα  in 
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Equation 3.24 are set to 1 [55, 58].  Heckerman et al. showed that if for all nodes i the sum 

is constant, then Equation 3.23 yields the same score for all Markov equivalent 

structures given D. Due to this property of likelihood equivalence, this scoring metric is known 

as the Bayesian Dirichlet likelihood-equivalent (BDe) metric. A special case of the BDe metric is 

the BDeu (Bayesian Dirichlet likelihood-equivalent and uniform) metric that uses uniform priors 

such that 

∑= jk ijkαα 0

ijk ii rq/0αα =  where qi is the number of parent states of Xi and ri is the number of 

values of Xi [59]. 

Bayesian score avoids overfitting. The difference between the marginal likelihood and 

the maximum likelihood provides one view of why the Bayesian score avoids overfitting. The 

maximum likelihood overfits because it evaluates the likelihood function at the best parameter 

values for the training data. These parameter values need not be the optimal values for the data in 

general because of noise in the training data. The Bayesian approach concurs that the MLE 

parameter values are the most likely given the training data; however, it emphasizes that there 

are other parameter values which though less likely are still plausible and should be taken into 

consideration. By integrating  rather than maximizing it, the Bayesian approach 

measures the expected likelihood averaged over different choices of , which typically leads to 

a more conservative estimate of the goodness of fit of the model. 

),|( GDP Gθ

Gθ

3.4.5 Search methods 

Given a scoring function, a training dataset and a space of possible network structures, the goal 

of a search-and-score method is to find a network structure or a set of network structures that 

maximize the score. Efficient algorithms have been developed for learning network structures 
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under certain restrictions. For example, in the restricted space of networks that are trees the 

optimal tree can be learned efficiently in polynomial time [56, 60]. Also, given an ordering on 

the domain variables finding the network with the highest score consistent with the ordering is 

not NP-hard [55, 59]. Unfortunately, the task of finding a network structure that optimizes the 

score is a combinatorial optimization problem, and is known to be NP-hard [53, 61], even if each 

node is restricted to having at most two parents. Since it is unlikely that there is an efficient 

algorithm for finding the highest scoring structure, the search-and-score methods employ 

heuristic search that attempts to find the best network but is not guaranteed to do so. In practice 

several heuristic search methods like greedy hill-climbing search work well. 

 Several properties of the scoring function make heuristic search computationally 

efficient. A key property that aids the search algorithm is the decomposability of the score, that 

is, the score can be expressed as a sum of sub-scores where each sub-score is a function of only 

one node and its parents (termed FamScore below): 
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);|();( Pa .    (3.25) 

To appreciate the advantage of a decomposable score, consider two network structures that differ 

only in the presence or absence of an arc into a node Xi. To compare the scores of the two 

networks, it suffices to compute the sub-score for both structures; the 

remaining sub-scores are the same for both structures and need not be recomputed. Since the cost 

of computing the scores of structures usually consumes most of the running time of the 

algorithm, score decomposability provides a large reduction in running time. 

);|( GXFamScore ii Pa

A second property of a scoring function that is useful is score equivalence, that is, if two 

structures belong to the same Markov equivalence class they are assigned the same score. In the 

standard representation of BN that uses DAGs, several distinct DAGs may represent the same 
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statistical model because they encode the same set of conditional independencies. All DAGs that 

encode the same set of conditional independencies are said to belong to a single Markov 

equivalence class. Searching in the space of DAGs to find high scoring statistical models can be 

wasteful since the search procedure is likely to score multiple structures in the same equivalence 

class. A score equivalent scoring function can enable the search algorithm to search in the space 

of equivalence classes which is smaller than the corresponding space of DAGs. Typically, this 

property is less crucial than score decomposability for the search algorithm. 

Heuristic search for BN structures encompasses several aspects. The major components 

of heuristic search include the search space together with the operators for navigating this space, 

the scoring function for evaluating candidate network structures, and the search procedure. 

The search space is a graph where each vertex represents a candidate network structure 

and each arc connects two vertices where a network structure represented by one vertex can be 

converted to the network structure represented by the neighboring vertex by the single 

application of a valid operator. Each vertex in the search space is associated with a score (that is 

computed by the scoring function) and has a set of neighboring vertices. The search procedure 

begins at one vertex and explores the search space via the neighboring vertices to find a high 

scoring vertex. 

One of the earliest search-and-score methods that was developed is the K2 algorithm 

[55]. This algorithm assumes a topological ordering on the nodes and constrains the number of 

parents that a node can have. For each node Xi, the search procedure iteratively adds as a parent 

the node from the set of predecessors of Xi (given in the topological ordering) that most increases 

the K2 score. The search for the parents of Xi terminates when none of the remaining predecessor 

nodes when added to the parent set increases the score, or the number of parents exceeds a 
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predetermined constant. Since an ordering of the nodes may not be easily obtainable in many 

domains, attempts have been made to relax this requirement. Cooper and Herskovits describe a 

modification of the K2 algorithm that is based on many random node orderings, and thus does 

not require a pre-specified node ordering [55]. Another method that overcomes the necessity for 

a node ordering performs heuristic search over the space of node orderings rather than the space 

of network structures [62]. 

The search-and-score methods for leaning BN structures traverse the space of structures 

by making small modifications to the structure at each step, typically a single arc change, and 

evaluating the merit of each change. The K2 algorithm, for example, at each iteration of the 

search selects a new BN structure that has one more arc more than the current structure. The K2 

algorithm uses a single operator of adding an arc between two unlinked nodes to generate 

candidate BN structures. More typically, search-and-score methods employ several single arc 

change operators  [57]. The commonly used operators to make single arc changes are: 

• add an arc between two nodes if there is no arc connecting them, 

• remove an existing arc, and 

• reverse an existing arc. 

In the application of these operators only those operations are considered that result in a legal 

network: the network should be acyclic and should satisfy other additional constraints that may 

have been specified like a maximum indegree. These algorithms are typically coupled with a 

decomposable score that consists of a sum of sub-scores, one for each node. The application of 

the above operators to a structure results in structures whose scores differ from that of the 

previous structure either in one sub-score (in the case of addition or deletion of an arc) or in two 

sub-scores (in the case of arc reversal).  
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 These algorithms are said to employ local search procedures (hence they are known 

local search algorithms) where the search procedure moves from one candidate structure to a 

neighboring structure that differs from the previous structure in a single arc resulting from the 

application of a single operator. The simplest, and often used, local search procedure is the 

greedy hill-climbing procedure. At each iteration, the search procedure selects the neighboring 

structure with the largest improvement in the score to replace the current structure. The search 

terminates when no neighboring structure can be found that improves on the score of the current 

structure. Greedy hill-climbing often works well in practice, although it has the propensity of 

terminating in a local maximum or a plateau.  

Several strategies are employed to escape from local maxima or plateaus and improve on 

the performance of greedy hill-climbing. One effective strategy is TABU search [63]. TABU 

search keeps a list of the recently applied operators and at each iteration those operators that 

result in the reversal of the effect of the recently applied operators are not considered. This forces 

the search to explore new directions in the search space and escape local maxima. 

Another strategy is random restart search. When greedy hill-climbing search terminates, 

the resulting best network is perturbed by the application of several randomly chosen operators, 

and the greedy search is restarted from the new network. A third strategy is simulated annealing 

that interleaves regular hill-climbing moves with random moves that may temporarily decrease 

the score in the hopes of leading the search to eventually find models with higher scores.  

Finally, more exhaustive search methods like best-first search and beam search can 

improve on the performance of local search methods. Recent advances in structure learning have 

led to efficient methods of discovering the optimal structure in small to medium sized domains 

using exhaustive search. Koivisto describes an algorithm that is only O(n2n) in time complexity 
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and O(n2n) in space complexity where n is the number of domain variables, and demonstrates 

that the algorithm is practically feasible for domains containing up to 25 variables [64, 65]. This 

algorithm obtains computational time savings of the order of n2 over standard structure learning 

methods. 

3.5 LEARNING BAYESIAN NETWORKS WITH LOCAL STRUCTURE 

The discussion on structure learning has so far focused on tabular CPD BNs and the same 

discussion is also applicable to complete CPD BNs which use the alternate representation of 

complete decision trees for CPDs. When additional local structure is captured by the use of 

decision tree CPDs or decision graph CPDs, the standard scoring metrics and search methods 

described previously can be used with minor modifications. This section describes the 

modifications to the standard search-and-score method for learning decision graph CPD BNs, 

and in particular, focuses on the Bayesian score and greedy hill-climbing search. 

Learning decision tree CPD BNs where the local CPDs are represented by decision trees 

is discussed in detail by Friedman and Goldszmidt [51].  Chickering et al. describe in detail the 

learning of decision graph CPD BNs where the local CPDs are represented by decision graphs 

[52]. As noted previously, decision graph CPDs are a generalization of decision tree CPDs in 

that they can represent a richer set of equality constraints among local parameters than either 

decision tree CPDs or CPTs. 
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Figure 3-5: Examples of indexing of parent states in CPDs. Several CPD representations for the 
BN node X4 (fatigue) in panel (a) are shown in subsequent panels. Panel (b) shows a CPT 
associated with node X4 in which the parent states of X4 are indexed by j as indicated in the 
shaded row. The CPT can be equivalently represented by a full decision tree as shown in panel (c) 
in which the parent states of X4 are indexed by l as indicated in the shaded boxes. Panel (d) shows 
a decision graph CPD for the node X4 in which the parent states are indexed by l as indicated in 
the shaded boxes. In both decision tree and decision graph CPDs the indexing of parent states is 
carried over the set of leaf nodes. 

 

 



  

3.5.1 Bayesian score 

A tabular CPD BN or a complete CPD BN is represented by the pair (G, θG) where G, the global 

network structure, specifies the set of parents for each node Xi. The local conditional probability 

distributions  for each Xi in a tabular CPD BN are represented by a unique CPT, the 

size of which is determined by the number of parent states and the number of states of Xi. 

Equivalently, in a complete CPD BN the local conditional probability distributions for each Xi 

are represented by a complete decision tree. For both these representations, the Bayesian score of 

the BN structure is given by Equation 3.21 and the Bayesian parameter estimates for the CPDs at 

each node Xi are given by Equation 3.15. 

)|( iPaiXP

For a decision graph CPD BN, the specification of the structure S consists of the global 

network structure G that specifies the set of parents for each node Xi, and, additionally, a local 

decision graph structure DGi for each Xi. Thus, the fully specified decision graph CPD BN is 

given by SnDGDGGS θ},,...,,{ 1≡  where each DGi represents the local conditional probability 

distributions  for the corresponding node Xi. In both complete CPD BNs and 

decision graph CPD BNs, the BN nodes are indexed by the variable i and the states of a BN node 

Xi are indexed by the variable k. However, the two representations will potentially differ in the 

number of parent states for a BN node Xi. An illustrative example is given in Figure 3-5. For the 

BN node X4 in Figure 3-5 (a), the CPT representation is given in Figure 3-5 (b) where each 

column corresponds to a parent state and the columns are indexed by the variable j. For the same 

node, the decision graph representation is given in Figure 3-5 (d) where each leaf node 

corresponds to a set of parent states that have the same CPD and the leaf nodes are indexed by 

the variable l. Both representations have the same number of parent states and differ only in the 

)|( iPaiXP
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name of the indexing variable: CPT columns are indexed by variable j and decision graph leaf 

nodes are indexed by the variable l. Of note, the CPT in Figure 3-5 (b) can also be represented by 

a complete decision tree as shown in 3-5 (c). 

The Bayesian score and the Bayesian parameter estimates for the decision graph CPD 

BN are now derived. Analogous to the tabular CPD BN Bayesian score given by Equation 3.21, 

the Bayesian score for the decision graph CPD BN is: 

)(log)|(log);( SPSDPDSscoreB += .    (3.26) 

The marginal likelihood is derived in an analogous fashion to the marginal likelihood of the 

tabular CPD BN given by Equation 3.23: 
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where iL  is the cardinality of the set of leaves in the decision graph DGi of Xi, Nilk is the number 

of cases in the dataset D that have Xi = k and have parent states of Xi that correspond to one of 

the paths in the decision graph leading to the leaf node l, and ∑= k ilkil NN . The key difference 

between Equation 3.23 and 3.27 is in the middle product, which in Equation 3.23 runs over all 

the columns in the CPT, while in Equation 3.27 it runs over all the leaf nodes of the decision 

graph of Xi. 

 The structure prior P(S) in Equation 3.26 can be decomposed into a prior over the global 

structure G and a prior for each decision graph structure DGi: 

     (3.28) 
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where, the decomposition in the second line is obtained by the application of the chain rule of 

probability and the product in the third line is based on the assumption that the priors for the 

local structure at each node are specified independently of each other. Substituting Equation 3.28 

into Equation 3.26 and expanding S gives: 

∑
=
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innB GDGPGPDGDGGDPDDGDGGscore

1
11 )|(log)(log),...,,|(log);,...,,(  

          (3.29) 

A complete specification of a decomposable prior over both the global BN structure and the local 

decision graph structures is given in the next chapter in conjunction with the description of the 

patient-specific algorithms. 

The Bayesian parameter estimates for the decision graph CPDs of Xi are derived in a 

similar fashion to the parameter estimates for the CPT of Xi (which is given in Equation 3.15): 
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θ̂ ,       (3.30) 

where, Nilk is the number of cases in the dataset D that have Xi = k and have parent states of Xi 

that correspond to one of the paths in the decision graph leading to the leaf node l, 

and .  ∑= k ilkil NN

3.5.2 Search methods 

The search space for learning decision graph CPD BNs is richer than the corresponding space for 

learning tabular CPD BNs (or equivalently the complete CPD BNs). The tabular representation 

provides a single CPT associated with a node Xi, while the decision graph representation 

provides several possible decision graphs for the node Xi, where each decision graph asserts a 
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distinct set of equality constraints among the local parameters for Xi. Consequently, the search in 

the space of decision graph CPD BNs has to include a search over the local structure of the 

nodes. There are two approaches to performing this search. 

Encapsulated search spaces. This approach uses a two-tier search procedure that 

consists of an outer search procedure and an inner search procedure. The outer search procedure 

generates candidate global structures while the inner search procedure refines a given global 

structure by generating and evaluating candidate local structures. The operators used in the outer 

search procedure will be referred to as global operators to distinguish them from those that are 

used in the inner search procedure which will be referred to as local operators. Also, two types 

of nodes will be distinguished. The nodes in the DAG structure of the BN will be termed as BN 

nodes while the nodes in the decision graph structure will be termed as DG nodes. 

The global operators modify the DAG structure of the BN by adding, removing or 

reversing an arc between the BN nodes (see Figure 3-6). Application of a global operator results 

in a new global structure that has one more arc, one less arc or an arc that is reversed which 

implies that the parent sets of at most two BN nodes have changed.  

Figure 3-6: Bayesian network global operators: (a) the original BN with three BN nodes where 
X1 is a parent of X3, (b) the result of applying the add operator, which adds an arc from X2 to X3, 
(c) the result of applying the remove operator, which removes the existing arc between X1 to X3, 
and (d) the result of applying the reverse operator, which reverses the existing arc between X2 and
X3. The add and remove operators modify the parent set of a single BN node while the reverse
operator modifies the parent set of a pair BN nodes. 
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Following the generation of a new global structure by the outer search procedure, the 

inner search procedure searches for an optimal decision graph for only those BN nodes whose 

parent sets have changed by the application of the global operator. A decision graph for a BN 

node Xi is a graph that contains two types of DG nodes: internal DG nodes and leaf DG nodes. 

An internal DG node represents a parent of Xi and a leaf DG node represents the parameters of a 

CPD of Xi. To traverse the space of decision graph structures associated with Xi, a set of three 

local operators was defined by Chickering [52].  The three local operators are the complete split, 

the binary split, and the merge. Each local operator modifies the current set of leaf DG nodes in 

the decision graph structure as follows (see Figure 3-7): 

• The complete split local operator replaces a leaf DG node in the graph with an internal 

DG node corresponding to a variable from the parent set. New leaf DG nodes are added 

as children to the new internal DG node, with one leaf DG node for each distinct state of 

the variable. 

• The binary split local operator also replaces a leaf DG node in the graph with an internal 

DG node corresponding to a variable from the parent set. However, only two new leaf 

DG nodes are added as children to the new internal DG node, with one leaf DG node for 

a distinct value of the variable and the remaining leaf DG node for all other states of the 

variable. 

• The merge local operator merges two distinct leaf DG nodes into a single leaf DG node 

that inherits all incoming arcs from both the original leaf DG nodes. 

 72 



  

Examples of the application of these local operators are shown in Figure 3-7. These operators are 

sufficient for moving from a decision graph structure to any other one in the search space. For 

example, starting with a decision graph containing a single DG leaf node, a complete decision 

tree can be generated by repeatedly applying the complete split operator. By repeatedly applying 

the merge operator to the leaves of the complete decision tree, a graph that represents any 

parameter set equalities can be generated. Though the complete split operator is not essential 

since it can replaced by a series of applications of the binary split operator, it is included to 

enable the search procedure to move more efficiently in the search space.  

Typically, greedy hill-climbing search is used to locate a high-scoring decision graph 

structure. The search starts with a decision graph containing a single DG leaf node and applies 

the local operators to generate candidate local structures. An example showing search in an 

Figure 3-7: Bayesian network local operators: (a) the original decision graph for the BN node X3, 
showing one parent X1 that is in X3’s decision graph, (b) the result of applying the complete split
operator, which splits based on all values of X1, (c) the result of applying the binary split operator, 
which splits one state of X2 from all other states, and (d) the result of applying the merge operator, 
which merges two values of X1 into a single value. In this figure, all the variables have three 
states, but in general each variable can have an arbitrary number of discrete states. Figure 
modified from [52]. 
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Figure 3-8: Example of encapsulated search demonstrating the application of a global operator 
followed by the application of two local operators. BN nodes are shown as ellipses with a single 
border and DG nodes are shown as circular or rectangular nodes with double borders. Application 
of the global operator add that adds an arc from node X3 to X4 to the structure in (a) results in the 
structure in (b). Application of the local operator complete split to the left hand leaf node of the 
decision graph of X4 in (b) results in the decision graph in (c). Application of the local operator 
merge to the two right hand leaf nodes of the decision graph of X4 in (c) results in the decision 
graph in (d).  

encapsulated search space is given in Figure 3-8. 

Unified search spaces. An alternative approach for learning the local structure of a BN 

node employs a unified search space. Instead of two sets of operators, one for modifying the 

global DAG and another for modifying the local decision graph, a single set of operators modify 

the joint representation of the global network and the local structures in a single search space. 



  

This is feasible since the local structure associated with the BN node Xi identifies the set of BN 

nodes that are the parents of Xi; the set of all local structures thus identifies the parents of every 

BN node which is sufficient to uniquely identify the DAG of the BN.  

 In the case of decision graph CPD BNs, each member in the unified search space consists 

of a collection of n decision graphs nDGDG ,...,1  that represent the local structures associated 

(a) 

X3 

T F 

Figure 3-9: Example of unified search demonstrating the application of two operators. BN nodes 
are shown as ellipses with a single border and DG nodes are shown as circular or rectangular 
nodes with double borders. In each panel, the set of local structures is shown at the top enclosed 
in a box and the implied global structure is shown at the bottom. Application of the operator 
complete split to the left hand leaf node of the lower decision graph in (a) results in the decision 
graph in (b). Application of the operator merge to the two right hand leaf nodes of the lower 
decision graph in (b) results in the decision graph in (c). 
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with the n domain variables . A collection of local structures induces a unique network 

structure among the domain variables: an arc  is present in the network structure if 

there is a node for Xj in the decision graph DGi. Only those collections of decision graphs that 

induce an acyclic network among the domain variables are legal members of the search space. 

The operators for moving in this search space are typically the same ones that modify the local 

structure in the encapsulated search space, namely, the complete split, binary split, and merge 

local operators described above. The global operators of adding, deleting and reversing arcs are 

not needed in this search space. 

nXX ,...,1

ij XX →

 Typically, greedy hill-climbing search is used to locate a high-scoring structure. The 

search starts with an empty network with each node’s decision graph initialized to a single root 

DG node. Each node Xi is considered in turn as follows. All non-descendants that are not already 

parents of Xi are added to the parent set of Xi and the highest scoring decision graph is learned in 

a greedy fashion. This decision graph DGi becomes the local structure for Xi. Any parent variable 

that is not present in DGi is removed from the parent set of Xi and the corresponding arc 

is deleted from the global structure. The search terminates after all the nodes have been 

considered. An example showing search in a unified search space is given in Figure 3-9. 

ij XX →

3.6 LEARNING BAYESIAN NETWORK CLASSIFIERS FROM DATA 

Classification is a central problem in machine learning that involves inducing a classifier from a 

set of classified training cases that can be applied to unclassified cases. The goal in classification 

is to predict the value of a discrete class variable Z from the known values of a set of predictor 
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variables . Given a set of classified training cases 

 a classification algorithm induces a classifier or a 

classification rule c(x) that is capable of predicting the likely value of Z for future cases where 

only the values of the predictor variables X are known. 

},...,,{ 21 nXXX=X

,(),...,,(),, 2211 zz mxx )}{( mzD x=

Probabilistic classifiers specify a probability distribution over the class variable 

conditioned on the predictor variables. This distribution is then used for deciding the predicted 

class for a test case where the values of the predictor variables are known. For example, if the 

class variable is binary, a threshold is selected and the test case is assigned to one class value if 

the predicted probability is above the threshold or to the other class value if below the threshold. 

A test case where the predicted probability is equal to the threshold may be assigned to either 

class value. For a class variable with more than two classes, the test case is typically assigned to 

the class value with the highest probability. 

In the decision-theoretic framework, the distribution over the class variable specified by 

the probabilistic classifier is combined with a loss function (or cost function) to formally specify 

a decision rule which is termed a classification rule in the context of classification. A 

classification rule c(x) is a function that maps every possible combination of variable values x, to 

a class value z.  A loss function specifies the loss or cost that is incurred by predicting 

the class value zi when the true value is zj, for all values zi and zj. The expected loss or expected 

misclassification cost, incurred in predicting the class value zi on observing the variable values x 

is: 

),( ji zzL

)|(),()|( xx jji
j

i zpzzLzEL ∑= .     (3.31) 
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This is the weighted average of the losses incurred by predicting the particular class value zi as 

the true class value ranges over all possible values zj, with each loss corresponding to the true 

class value zj being weighted by the predicted probability for that class. According to 

the Bayes decision procedure, the optimal class value is the one that minimizes the expected loss 

or the expected classification cost. Thus, the classification rule is: 

)|( xjzp
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zELxc
i

= ].      (3.32) 

To summarize, probabilistic classifiers such as BN classifiers (described later), operate 

by estimating the probability distribution for a test case at hand, which is then used in 

computing the expected misclassification costs for each of the class values using equation 3.31. 

Finally, the classification rule in equation 3.32 selects the class value with the minimum 

expected misclassification cost. Thus, the predicted class value depends on both the probabilities 

estimated by the classifier and the specified loss function. 

)|( xzp

3.6.1 Minimum error rate classification 

A commonly used criterion for evaluating the performance of classifiers is the misclassification 

error rate or simply the error rate. If the true class value is zi, then predicting any class value 

other than zi results in a misclassification error. If the error rate is to be low then it is natural to 

seek a classification rule that minimizes the probability of error. The loss function used for 

minimizing the error rate is the zero-one loss function, which assigns zero loss to a correct 

classification and unit loss to any misclassification thus penalizing all errors equally: 

otherwiseandjiifzzL ji 01),( ≠= .    (3.33) 

The expected loss for predicting the class value zj is: 
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where the last term  is the average probability of error, since is the 

conditional probability that the class value zj is correct given x is observed. The classification 

rule according to the Bayes decision procedure is 
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which states that the average probability of error is minimized when the class value zj with the 

highest predicted probability is selected. Thus, the optimal minimum error rate classifier simply 

chooses the class value with the highest probability. 

3.6.2 Calibration 

Another criterion that is used for evaluating the performance of a classifier is calibration. 

Calibration is the extent to which the classifier’s probability estimate agrees with the true 

probability. More precisely, the predicted probability p of a class zi is well calibrated when the 

cases assigned a probability p of belonging to class zi actually belong to that class a fraction p of 

the time.  

It is possible for a classifier to have a small error rate yet have poor calibration. For 

example, consider a classifier that consistently produces excessively high probabilities for the 

true class. The classifier remains accurate if it produces any probability that is higher than the 

 79 



  

calibrated probability p for the true class. However, its predicted probability for the true class is 

far too high leading to poor calibration. Naïve Bayes classifiers have been shown to produce 

probabilities that are arbitrarily close to 1 or arbitrarily close to 0 that are more extreme than 

warranted [66]. This behavior typically does not increase the error rate but leads to poor 

calibration. 

Quite commonly, a classifier learns a classification rule by directly optimizing the error 

rate or the zero-one loss function. However, this may be inappropriate when the correct loss 

function is unknown or the zero-one loss function is unsuitable. For example, in predicting 

clinical outcomes with classifiers, the misclassification cost may be significantly influenced by 

patient utilities in which case the misclassification loss function varies from case to case. 

Therefore minimizing the error rate, which corresponds to minimizing a fixed misclassification 

cost, is inappropriate. If the estimated probabilities are well calibrated, optimal predictions will 

be obtained for any future misclassification costs that may need to be applied. 

3.6.3 Bayesian network classifiers 

Several probabilistic classification algorithms use Bayesian network models for classification. 

The naïve Bayes classifier is the simplest BN classifier that is learned very efficiently from data. 

Among its early applications was in the context of a medical diagnostic system [67]. In spite of 

its simplicity it often has excellent misclassification error rates and it is widely used as a 

benchmark against which to compare new classifiers. The naïve Bayes classifier makes the 

strong assumption that the predictor variables are mutually independent conditioned on the class 

variable, which implies that all predictors are considered equally important for classification and 
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that the predictors do not interact. This assumption allows for a very parsimonious representation 

of the joint probability distribution over the domain variables: 

∏
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Learning the naïve Bayes classifier from data, without variable selection, is simple since no 

structure learning is necessary. The learning of the parameters of the model requires estimating 

the class probability distribution  and the conditional probabilities  for each 

predictor variable Xi. This is done easily and efficiently from data using either the Bayesian or 

the non-Bayesian methods described in Section 3.4.1. 

)(Zp )|( ZXp i

The Tree Augmented Naïve Bayes (TAN) classifier extends the naïve Bayes classifier by 

relaxing the naïve Bayes structure to allow one extra parent per predictor variable in addition to 

the class variable. This enables the modeling of interactions among predictor variables not 

captured by the class variable and thus overcomes the main weakness of the naïve Bayes 

classifier. The TAN classifier has been shown to improve on the accuracy of the naïve Bayes 

classifier while maintaining its computational simplicity of learning [68].  

However, extending the TAN classifier to the general Bayesian network classifier does 

not necessarily improve on the classification performance over simpler BN structures. 

Intuitively, learning general BNs corresponds to solving the more general problem of learning 

the joint probability distribution over all the variables in the domain, whereas learning a 

classifier corresponds to solving the simpler problem of learning the conditional distribution of 

the class variable given the predictor variables. The standard scores used for learning BNs are 

proportional to the joint likelihood of all the variables. The Bayesian score, for example, is 

proportional to the log marginal likelihood, log , which can be decomposed as )|( MDp
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)|(log),|(log)|(log MDpMDDpMDp Z XX += ,  (3.37) 

where, DZ is the segment of the training dataset limited to the values of the target variable Z and 

DX is the remaining portion of the dataset limited to the values of the predictor variables X. The 

first term on the right hand side of Equation 3.37 measures how well M estimates the probability 

of the target variable Z given the predictor variables X, and this term directly relates to the 

performance of M as a classifier. Note, however, that as the number of predictors increases the 

second term dominates the overall score. Thus, it is possible for a high scoring BN structure to 

have a high misclassification error rate if the contribution of the second term to the score is 

relatively larger than that of the first term to the overall score. 

This first term, known as the conditional likelihood, can form the basis for a better score 

for learning BN classifiers. However, the conditional likelihood does not decompose into 

separate terms for each variable and hence is not node-decomposable as is the case for the 

marginal likelihood. There is, also, no known closed form for computing the parameters that 

maximize the conditional likelihood, as is the case for the marginal likelihood; hence there is no 

known tractable algorithm that learns both the structure and parameters of a general Bayesian 

network that maximizes the conditional likelihood. Recently, efforts have been made to induce 

Bayesian network classifiers that approximately maximize the conditional likelihood. One 

approach uses a numerical method to estimate parameter values that maximize the conditional 

likelihood of a given BN structure [69]. Another approach computes the conditional likelihood of 

a BN structure using the easily estimated maximum likelihood parameter values rather than the 

maximum conditional likelihood parameter values [70]. These approaches have been shown to 

improve on the performance of naïve Bayes and TAN classifiers. 
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3.7 BAYESIAN MODEL AVERAGING 

Choosing a single BN structure that has a large Bayesian score as described so far is a form of 

model selection that can sometimes serve as an approximation to the complete Bayesian 

approach of model averaging. In Bayesian model averaging (BMA) with BNs, in addition to 

modeling the uncertainty in parameters, the uncertainty in the BN structure is modeled as well.  

The general procedure for BMA is as follows [19]. If h is a quantity of interest, such as 

an effect size, a future observable, or the utility of a course of action, BMA computes the 

probability distribution of h given the data D by averaging over possible structures and their 

parameters: 
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where 
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Equation 3.39 emphasizes that the probability distribution of h is an average of the probability 

distributions of h under each model m weighted by the posterior probability of that model given 

the data. Equation 3.38 shows that for each model m, the probability distribution of h is obtained 

by integrating over all parameters.  

Given data, the posterior distributions for each m and  are obtained by applying Bayes’ 

rule: 
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where 

 .    (3.42) ∫= mmm dmpmDpmDp θθθ )|(),|()|(

The term  is called the marginal likelihood or the integrated likelihood. Here the 

uncertainty about m is encoded in the prior distribution p(m). In addition, for each model 

structure m, the uncertainty about  is encoded in the prior distribution . 

)|( mDp

mθ )|( mp mθ

When BNs structures are used for classification, the quantity of interest h is the value of 

the class variable Zt for a future case t with features Xt = xt. According to BMA, the posterior 

distribution P(Zt | xt, D) is obtained by averaging over all BN structures G: 

∑=
G

tt DGPDGZPDZP )|(),,|(),|( tt xx .    (3.43) 

Averaging over all the models in this fashion provides better predictive ability, as measured by 

logarithmic loss than using any single model [71, 72]. 
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4.0  METHODOLOGY 

This chapter describes the patient-specific approach to learning Bayesian networks from data. 

After a summary of the main ideas of this approach that have been covered in the previous 

chapters, a detailed description of two versions of the patient-specific algorithm is given. 

The goal of the patient-specific algorithm is to predict well a discrete target variable of 

interest, such as a patient outcome. In particular, the focus is on the prediction of low-

dimensional, atemporal outcomes (e.g., binary outcomes such as death versus survival). In 

machine learning terminology, the patient-specific algorithm is an example of an instance-

specific classification algorithm.  

Relative to some model space, Bayesian model averaging is the optimal method for 

making predictions in the sense that it achieves the lowest expected error rate in predicting the 

outcomes of future cases. Such Bayes optimal predictions involve averaging over all models in 

the model space which is usually computationally intractable. One approach, termed selective 

model averaging, has been to approximate the Bayes optimal prediction by averaging over a 

subset of the possible models and has been shown to improve predictive performance [19, 71, 

72]. The patient-specific algorithm performs selective model averaging and uses a novel 

heuristic search to select the models over which averaging is done. The patient-specific 

characteristic of the algorithm arises from the observation that the search heuristic is sensitive to 

the features of the particular case at hand. 
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The model space employed by the patient-specific algorithm is the space of Bayesian 

networks over the domain variables. In particular, the algorithm considers only Markov blankets 

of the target node, since this is sufficient for predicting the target variable. Two versions of the 

patient-specific algorithm are considered that differ in the representation employed for the 

conditional probability distributions. The patient-specific Markov blanket global structure 

(PSMBg) algorithm learns MBs that allow for explicit representation of only global 

independencies among nodes of the MB. The patient-specific Markov blanket local structure 

(PSMBl) algorithm learns MBs that allow for explicit representation of value-specific 

independencies in the conditional distributions associated with a node. This implies that the 

PSMBl algorithm employs a richer space of models than the PSMBg algorithm. 

The remainder of the chapter describes the patient-specific algorithms in terms of the (1) 

model space, (2) representations of the models, (3) scoring metrics including parameter and 

structure priors, and (4) the search procedure for exploring the space of models. The current 

versions of the algorithms handle only discrete variables and do not handle missing values. 

4.1 MODEL SPACE 

The primary goal is to compute the predictive distribution of the target variable. In a BN, the 

nodes that effect the distribution of the target node are those contained in the Markov blanket 

(MB) of the target, and include the parents, the children and the parents of the children (spouses) 

of the target node. Provided the MB nodes of the target are observable, nodes of the BN that are 

not part of the MB are not required for determining the distribution of the target and are hence 
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not needed for inference as asserted by the global Markov condition. Therefore, the patient-

specific algorithms learn MBs of the target variable rather than entire BNs over all the variables. 

Typically, BN structure learning algorithms that learn from data, such as the search-and-

score and the constraint-based methods described in the previous chapter, induce a BN structure 

over all the variables in the domain. The MB of the target variable can be extracted from the 

learned BN structure by ignoring those nodes and their relations that are not members of the MB. 

However, it is practically somewhat more efficient to modify the typical BN structure learning 

algorithm to learn only MBs of the target node of interest, by using a set of global operators that 

have been modified to generate only the MB structures of the target variable. 

The patient-specific Markov blanket algorithms are search-and-score methods that search 

in the space of possible MB structures. The Bayesian network structure learning algorithms 

search in the space of possible BN structures which is exponential in the number of domain 

variables. The number of BN structures with n variables is given by the following recurrence 

formula where BN(n) is the number of DAGs that can be constructed from n nodes [73, 74]: 

1)0(

0)(2),()1()(
1

)(1

=

>−−= ∑
=

−−

BN

nforknBNknCnBN
n

k

knkk

,  (4.1) 

where, C(n, k) is the count of the number ways to choose k objects from n distinct objects. 

Hence, exhaustive search in the space of BN structures is infeasible for domains containing more 

than a few variables and heuristic search is appropriate.  

The number of MB structures with respect to a single target variable in a domain with m 

variables (where m excludes the target variable) is given by the following equation: 
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where, m  is number of parent nodes, m  is the number of child nodes, mo is the number of other 

nodes, and is computed as m  = m - m  – m . BN(m ) is the number of DAGs that can be 

constructed from n  nodes and is computed from Equation 4.1. The derivation of the recurrence 

formula in Equation 4.2 is given in Appendix A. 

Table 4-1 gives the number of BN and MB structures for domains having up to 12 

variables. It can be seen from the table that while there are fewer MB structures of the target 

variable than there are BN structures, the number of MB structures is nevertheless exponential in 

the number of variables. Thus, exhaustive search in the space of MB structures is also infeasible 

for domain priate. 

o p o c

c

s containing more than a few variables and heuristic search is appro

Table 4-1: Number of Bayesian network structures BN(n) and Markov blanket structures MB(n-1) 
as a function of number of nodes n. The number of Markov blanket structures is with respect to a 
single node and is not a count of all Markov blanket structures for all nodes. The last column gives 
the ratio of the two types of structures. Both BN(n) and MB(n-1) are exponential in n.  

BN(n) MB(n-1) BN(n) / MB(n-1)n 
0 1 - - 
1 1 1  1.0 
2 3 3  1.0 
3 25 15 1.67 
4 543 153 3.55 
5 29281 3567 8.21 
6 3781503 196833 19.21 
7 1138779265 25604415 44.48 
8 783702329343 7727833473 101.41 
9 1213442454842881 5321887813887 228.01 
10 4175098976430598143 8241841773665793 506.57 
11 31603459396418917607425 28359559029362676735 1114.38 
12 521939651343829405020504063 214672167825864945784833 2431.33 



  

4.2 MARKOV BLANKET LOCAL STRUCTURE 

The PSMBg algorithm learns complete CPD MBs in which the CPDs are represented with 

Figure 4-1: An example in which the local Markov blanket structure depends on the value of 
lung cancer. Panel (a) shows the global structure and the associated parameters for the node X4. 
Panel (b) illustrates four structures that explicitly demonstrate how the structure varies for 

complete decision trees. Complete decision trees capture only the global structure, that is, 

different values of lung cancer. The values T and F stand for True and False respectively.  

X2=F X3=F 

X4 

chronic 
bronchitis 

lung 
cancer 

fatigue 

X2=F X3=T 

X4 

chronic 
bronchitis 
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cancer 

fatigue 

X2=T X3=F 

X4 

chronic 
bronchitis 
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cancer 

fatigue 

X2=T X3=T 

X4 

chronic 
bronchitis 

lung 
cancer 

fatigue 

X2 X3 

X4 

chronic 
bronchitis 

lung 
cancer 

fatigue (a) 

(b) 

P(X4 = F | X2 = F, X3 = F) = 0.95 
P(X4 = F | X2 = T, X3 = F) = 0.90 
P(X4 = F | X2 = F, X3 = T) = 0.40 
P(X4 = F | X2 = T, X3 = T) = 0.40 
 
P(X4 = T | X2 = F, X3 = F) = 0.05 
P(X4 = T | X2 = T, X3 = F) = 0.10 
P(X4 = T | X2 = F, X3 = T) = 0.60 
P(X4 = T | X2 = T, X3 = T) = 0.60 
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independence relations among variables that hold for all values of the variables. The PSMBl 

algorithm learns graph CPD MBs in which CPDs are represented with decision graphs. Decision 

graphs 

fewer parameters [75]. Corresponding to the parents of a node in a global Bayesian network, in a 

local Bayesian network, a node Xi has a set of global parents Pai. However, in general, for a 

particular instantiation of the variables in Pai, only some of those variables will be correlated 

capture the local structure, that is, value-specific independencies among the variables. 

Value-specific independencies are those that hold only for particular assignments of values to 

certain nodes and cannot be explicitly represented by the global structure.  

Bayesian networks that can represent local structure (i.e., local constraints) that hold 

among the parameters of a node have been shown to capture additional independences with 

lung cancer F F T T 

Figure 4-2: A decision tree representation of the local structure for the variable fatigue that 
captures the four structures shown in Figure 4-1 (b). The parameters at the leaves are explained in 
the table. 

chronic bronchitis F T F T 
fatigue = F θ1 θ2 θ3 θ4 
fatigue = T 1- θ  1 – θ  1 – θ  1 – θ  1 2 3 4

lung 
cancer

chronic 

F T 

T 

θ3 =  θ4
bronchitis

F

θ1 θ2 
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with Xi. For example, in Figure 4-1 (a), suppose when the node lung cancer has the value True, 

the nod

 

representation of the local structure for the variable fatigue given in Figure 4-1. The parameters 

used for the CPDs at the leaves of the decision tree are shown in the associated table in the 

figure. Root-to-leaf paths in the tree correspond to value-specific parents of the variable fatigue.  

Another representation for the local structure is the decision graph which is a 

generalization of the decision tree; this representation is described in detail in Section 3.3.3. 

Briefly, in a decision graph non-root nodes can have multiple parents, rather than a single parent 

as in a decision tree  [52]. A decision graph, thus, allows two or more branches of a decision tree 

to share the same leaf node, which expresses the following equality constraint: conditioned on 

the variable values in any one of the shared branches (the parents), the conditional probability 

distribution of the leaf node (the child) is the same. All equality constraints represented by 

decision trees can be represented by decision graphs, but not vice-versa. Figure 4-3 illustrates a 

decision graph representation for the decision tree in Figure 4-2. Figure 4-4 shows an example of 

e chronic bronchitis has no influence on the node fatigue. Indeed the probabilities in 

Figure 4-1 (a) reflect this situation. Figure 4-1 (b) illustrates the local Bayesian network structure 

that represents this example. 

One representation for the local structure is the decision tree; this representation is 

described in detail in Section 3.3.2. Briefly, in this representation, a decision tree is used to 

represent the local structure between a node and its parents in a Bayesian network [76]. The 

decision tree used here is not a decision analytic decision tree, but a CART-like probability tree 

in which branches denote variable values. Each leaf node in the tree contains the probability 

distribution of the variable being predicted given the values of the predictor variables that appear 

along the path that goes from the root node to that leaf node. Figure 4-2 shows a decision tree
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lung 
cancer

chronic 
bronchitis

F T 

T 

θ1 

a decision graph where the shared leaf node expresses that P(fatigue = T | lung cancer = F, 

chronic bronchitis = T) = P(fatigue = T | lung cancer = T, chronic bronchitis = F). This is an 

example of a local structure that cannot be represented with a decision tree. 

The PSMBl algorithm uses decision graphs to represent and explicitly capture value-

specific independences among the CPDs of a node, while the PSMBg algorithm represents the 

CPDs of a node with a complete decision tree which is equivalent to a conditional probability 

table. Figure 4-5 shows an example of a complete decision tree that would be used by the 

A decision graph representation of the local structure represented by the decision tree 
in Figure 4-2. 

decision tree. 

Figure 4-3: 

Figure 4-4: A decision graph representation of a local structure that cannot be represented by a 
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lung 
cancer

chronic 
bronchitis

F T 

T 

PSMBg

o of parent states. A formula for 

countin

 algorithm. Note that the complete decision tree is a type of decision graph, in which, 

every possible parent state is accorded a distinct leaf node. In effect, the complete decision tree 

encodes the same parameters as the equivalent CPT; each leaf node contains a table that 

corresponds to a column in the CPT that encodes the parameters of a conditional probability 

distribution.   

Given a set of parents, a MB node has a single global structure while it can have several 

possible local structures. The single global structure can be represented by a complete table 

(CPT) or a complete decision tree. The number of possible local structures is the number of all 

possible decisi n graphs that can be constructed for a given set 

g all possible decision graphs is derived in Section 4.3.2. From this it follows that the 

PSMBl algorithm’s model space is richer than the PSMBg algorithm’s model space; in fact the 

latter is a subset of former. 

Figure 4-5: An example of a complete decision tree representation used by the PSMBg algorithm 
to represent the probability distributions associated with the node fatigue. 

θ1 θ4 

T 

chronic 
bronchitis

F F

θ2 θ3 

 93 



  

4.3 PATIENT-SPECIFIC BAYESIAN MODEL AVERAGING 

The objective of the patient-specific algorithms is to derive the posterior distribution P(Zt | xt, D) 

for the target variable Zt in the case at hand, given the values of the other variables Xt = xt and the 

training data D. The Bayes decision rule is then applied to select the target value with the highest 

post y Bayesian 

model averaging is as follows: 

t t t t

below. This parameterization of  

G produces predictions equivalent to those obtained by inte  possible 

parameterizations for G. The second term, P(G | D), is the posterior probability of the MB 

erior probability. The ideal computation of the posterior distribution P(Zt | xt, D) b

∑
∈

=
MG

tt DGPDGZPDZP )|(),,|(),|( tt xx  ,   (4.3) 

where the sum is taken over all MB structures G in the model space M. The first term on the 

right hand side, P(Z  | x , G, D), is the probability P(Z  | x ) computed with a MB that has 

structure G and parameters θG that are given by Equation 4.4 

grating over all the

structure G given the data D. In essence, Equation 4.3 states that a conditional probability of 

interest P(Zt | xt) is derived by taking a weighted average of that probability over all MB 

structures, where the weight associated with a MB structure is the probability of that MB 

structure given the data. In general, P(Z t | xt) will have different values for the different sets of 

MB structures over which the averaging is carried out. 

4.3.1 Inference in Markov blankets 

Computing P(Zt | xt, G, D) in Equation 4.3 involves doing inference in the MB with a specified 

global structure G: 
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tt

GG dDGPG
G

θθ
θ

),|()ZPDGZP θxx tt ,,|(),,|( ∫= .  (4.4) 

 3.4.1.2. In summary, under the assumptions of (1) the variables are discrete 

D consists of independent and identically di issing 

values; (2) parameterization θG over the entire MB of n nodes can be decomposed as θG = 

i i

i ij

conditional distribution of Xi, are mutually independent (local parameter independence); and (4) 

the parameter prior distribution is Dirichlet; the parameter estimates are given by the following 

The parameters for the MB structure G are estimated using Bayesian parameter estimation that is 

described in Section

and the dataset stributed (i.i.d.) cases without m

},...,,...,,{ 21 θθθθ where the θi, the parameters associated with node Xi, are mutually 

independent (global parameter independence); (3) parameterization θ  of a node with q  parent 

states is decomposed as θ  = },...,,...,,{ where the θ , the parameters of a single 

expression: 

ini

21 iiqijii θθθθ

ijij
ijkii N+

ijkijk N
jPakXP

+
=≡==

α
α

θ)|( ,    (4.5) 

 by j, (2)  (3) αijk is a parameter prior that can be interpreted as belief 

equivalent to having prev  prior to arents of 

Xi have the state denoted by 

where (1) Nijk is the number of cases in dataset D in which Xi = k and the parents of Xi have the 

state denoted ∑= k ijkij NN ,

iously (i.e.,

j, and (4) 

D) seen αijk cases in which Xi = k and the p

.∑= k ijkij αα  For the patient-specific algorithms αijk is set 

to 1 for all i, j, and k, as a simple non-informative parameter prior [55]. 

For decision graph representations of CPDs, the interpretation of Equation 4.5 has to be 

Xi

modified slightly. Specifically, the parent state index j is replaced with a new index l that ranges 

over the leaf nodes in the decision graph for node . Thus, Equation 4.5 now becomes: 

ilil

ilkilk
ilkii N

NlPakXP
+
+

=≡==
α
αθ)|( ,     (4.6) 
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where 

and N431 

represents the number of cases in D wher he parent 

configuration index l = 3. This index corresponds to a single parent configuration represented by 

421

2 3

2

d is computed by applying Bayes rule as follows: 

(1) Nilk is the number of cases in dataset D in which Xi = k and the parents of Xi have a 

configuration corresponding to any of the paths that converge to the leaf node l in the decision 

graph. For example, in Figure 4-4, l ranges over the three leaves in the decision graph 

e fatigue = F (i.e., i = 4 and X4 = 1) with t

the path leading to θ4, namely, lung cancer (T) → chronic bronchitis (T) → θ4 (the rightmost 

path in the figure). As another example, consider N , which represents the number of cases in D 

where fatigue = F (i.e., i = 4 and X4 = 1) with the parent configuration index l = 2. This index 

corresponds to two parent configurations represented by the two paths converging on θ  = θ , 

namely, (1) lung cancer (F) → chronic bronchitis (T) → θ  and (2) lung cancer (T) → chronic 

bronchitis (F) → θ3 (the two paths along the middle in the figure). The same interpretation is also 

applicable to a decision tree representation of CPDs (e.g., the decision trees shown in Figure 4-2 

and Figure 4-5), since a decision tree is a type of a decision graph. Equation 4.6 is applicable to 

both the PSMBl algorithm (which uses decision graph CPDS) and the PSMBg algorithm (which 

uses complete decision tree CPDs).  

4.3.2 Bayesian score of Markov blankets 

The second term on the right hand side in Equation 4.3, P(G | D), is the posterior probability of 

the MB structure G given the data an

)(
)()|()|(

DP
GPGDPDGP = ,      (4.7) 

where P(D) is a constant for all G and need not be computed. Thus, the Bayesian score for G, as 

previously shown in Equation 3.21, is: 
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(log)|(log);( GPGDPDGscoreB += ) .    (4.8) 

The computation of the marginal likelihood, P(D | G), for the decision graph representation is 

parameter 

independence, that is, the param  (3) local 

parameter independence, that is, the parameters associated with each parent state of a variable 

are independent; and (4) the parameter prior distribution is Dirichlet; the marginal likelihood is: 

 

derived in Section 3.5.1. In summary, under the assumptions of (1) the variables are discrete and 

the data D is a multinomial random sample with no missing values; (2) global 

eters associated with each variable are independent;
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 is the cardinality of the set of leaves in the decision graph DG  of X , N  is the number iLwhere i i ilk

of cases in the dataset D that have Xi = k and have parent states of Xi that correspond to one of 

the paths in the decision graph leading to the leaf node l, and ∑= NN
k ilkil

and PSMBl algorithms use the logarithmic form of Equation 4.9 in computing the Bayesian 

score as follows: 

. Both the PSMBg 

∑∑ ∑
= = = Γ
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The term

the data was generated by some distribution that can be modeled with the MB structure G. For 

the PSMBg algorithm, a uniform prior belief over all G is assumed which reduces the term P(G) 

to a constant. Thus, P(G | D) is equal to P(D | G) up to a proportionality constant and the 

.     (4.11) 

 P(G) in Equation 4.8 is the structure prior which represents the prior belief that 

Bayesian score for G is defined simply as the logarithmic marginal likelihood as follows: 

PSMBg )|(log);( GDPDGscoreB =
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Equatio

ntrast, 

in the PSMBl algorithm, a specified gl ructures 

DAG structure as 

before 

          (4.12) 

As in the case of the PSMBg algorithm, a uniform prior belief over all G is assumed, and 

therefore the term P(G) reduces to a constant. Given G, a uniform prior belief over all possible 

decision graph structures for each MB node is assumed. The number of possible decision graph 

structures is the same as the number of ways in which the parent configurations can be 

partitioned into nonempty sets. The number of ways in which n elements can be partitioned into 

mber is 

n 4.11 implies that the PSMBg algorithm evaluates MB structures only on the basis of 

the marginal likelihood and does not apply a penalty for structure complexity. 

For the PSMBl algorithm, a two-level hierarchical structure prior is derived 

corresponding to the global and the local structures. In the PSMBg algorithm, specification of 

the global DAG structure uniquely specifies each MB node’s complete decision tree. In co

obal structure corresponds to a family of local st

consisting of all possible decision graphs for each of the MB nodes, and the complete structure 

specification is given by {G, DG1, …, DGi, …, DGn} where G is the global 

and DGi is the local decision graph structure for node Xi. Including both the global and 

local structure priors, the Bayesian score in Equation 4.8 is rewritten as (see Section 3.5.1 for the 

derivation): 

∑
=

++=
n

i
innB GDGPGPDGDGGDPDDGDGGscore

1
11 )|(log)(log),...,,|(log);,...,,( . 

nonempty subsets is called a Bell number and is denoted by B(n) [77]. The Bell nu

typically computed as the following sum: 

∑
=

=
n

k
knSnB

1
),()( ,       (4.13) 
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where, S(n, k) is a Stirling number of the second kind which is the number of ways in which n 

elements can be partitioned into k nonempty sets [78]. The Stirling number of the second kind is 

computed as: 

∑
=

− nik iikC ),()1 ,     (4.14) −=
k

ik
knS

0
(

!
1),(

MBl algorithm is now defined as: 

where C(k, i) is the binomial coefficient. The prior for the local structure associated with node Xi 

is then given by 1 / B( |Pai| ), where |Pai| is the number of parent states of Xi. The Bayesian score 

used by the PS

∑−=
n

in BDGDGGDP 1 )(log),...,,|(log Pa . 
=i

n
PSMBl
B DDGDGGscore

1
1 );,...,,( (4.15) 

the algorithm will prefer decision graphs with a 

smaller number of nodes to ones with a larger number of nodes. By incorporating a hierarchical 

structure prior, the Bayesian score given by Equation 4.15 penalizes complex structures. This is 

has no 

raging given by Equation 4.3 is approximated with selective 

model averaging, and heuristic search (described in the next section) is used to sample the model 

The derivation of the two terms needed for the computation of Equation 4.3 is now complete.  

The structure prior just described biases the PSMBl algorithm to prefer simpler local 

structures over more complex ones. On average, 

in contrast to the Bayesian score used by the PSMBg algorithm (given by Equation 4.11) which 

analogous structure penalty. 

4.3.3 Selective Bayesian Model Averaging 

Since Equation 4.3 sums over a very large number of MB structures, it is not feasible to solve it 

exactly. Hence, complete model ave
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space. For a set R of MB structures that have been chosen from the model space by heuristic 

search, selective model averaging estimates P(Zt | xt, D) as: 

∑

∑

∈

∈≅

RG

RGDZP

t

t ),|(

t

tx .   (4.16) 

 
The computations for the inference of the target variable Zt and the posterior probability for the 

MB structure G are described in the preceding Sections 4.31 and 4.32 res

DGP

DGPDGZP

)|(

)|(),,|( x

pectively. 

4.4 PATIENT-SPECIFIC SEARCH 

ch to sample 

the space of MB structures. A high level description of the two-phase search is now given. The 

first phase ignores the current patient case evidence xt at hand, while searching for MB structures 

that best fit the tra  the set of MB structures 

obtained from the first phase, but now searches for MB structures that have the greatest impact 

e first phase search terminates in a local 

maxim

The patient-specific algorithms that I developed and applied use a two-phase sear

ining data. The second phase continues to add to

on the prediction of Zt for the current patient case.  

The first phase uses greedy hill-climbing search and accumulates the best model 

discovered at each iteration of the search in a set R. At each iteration of the search, successor 

models are generated from the current best model; the best of the successor models is added to R 

only if this model is better than current best model; and the remaining successor models are 

discarded. Since, no backtracking is possible, th

um. 
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The second phase uses best-first search and adds the best model discovered at each 

iteration of the search to the set R. Unlike greedy hill-climbing search, best-first search holds 

models that have not been expanded (i.e., whose successors have not be generated) in a priority 

queue Q. At each iteration of the search, successor models are generated from the current best 

model 

MBg search and operators 

ich the CPDs are 

represented as complete decision trees, and the operators used in traversing this space are the 

ture learning with minor modifications. As mentioned in 

the previous chapter, the standard BN structure learning operators are (1) add an arc between two 

and added to Q; the best model from Q is added to R even if this model is not better than 

the current best model. The second phase search terminates when a user set criterion is satisfied. 

Since, the number of successor models that are generated can be quite large, the priority queue Q 

is limited to a capacity of at most w models. Thus, if Q already contains w models, addition of a 

new model to it leads to removal of the worst model from it. The queue allows the algorithm to 

keep in memory up to w good scoring models, and facilitates limited backtracking to escape local 

maxima. 

The next section describes in detail the search used by the PSMBg algorithm and the 

section after that describes in detail the search used by the PSMBl algorithm.  

4.4.1 PS

The PSMBg algorithm searches in the space of global MB structures in wh

same as those used in standard BN struc

nodes if one does not exist, (2) delete an existing arc, and (3) reverse an existing arc, with the 

constraint that an operation is considered valid only if it generates a legal BN structure. This 

constraint simply implies that the graph of the generated BN structure be a DAG. A similar 

constraint is applicable to the generation of global MB structures, namely, that an operation is 
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considered valid if it produces a legal MB structure of the target node. This constraint entails that 

some of the operations be deemed invalid, as illustrated in the following examples. With respect 

to a MB, the nodes can be categorized into five groups: (1) the target node, (2) parent nodes of 

the target, (3) child nodes of the target, (4) spousal nodes, which are parents of the children, and 

(5) other nodes, which are not part of the current MB. Incoming arcs into parents or spouses are 

not part of the MB structure and, hence operations that add such arcs are deemed invalid.  Arcs 

between nodes not in the MB are not part of the MB structure and, hence operations that add 

such arcs are also deemed invalid. Figure 4-6 gives exhaustively the validity of the MB global 

operators. Furthermore, the application of the delete arc or the reverse arc operators may lead to 

additional removal of arcs to produce a valid MB structure (see Figure 4-7 for an example).  

The search for MB structures proceeds in two sequential phases: phase 1 uses greedy hill-

climbing search and phase 2 uses best-first search with a priority queue of capacity w. In phase 1 

the candidate MB structures are scored with the phase 1 score which is the Bayesian score shown 

in Equation 4.11. This phase of the search begins with the empty graph and terminates in a local 

Figure 4-6: Constraints on the Markov blanket global operators. The nodes are categorized into 
five groups: T = target, P = parent, C = child, S = spouse, and O = other (not in the Markov 
blanket of T). The cells with check marks indicate valid operations and are the only ones that 
need to be considered in generating candidate structures. The cells with an asterisk indicate that 
the operation is valid only if the resulting graph is acyclic.  
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Figure 4-7: An example where the application of an operator leads to additional removal of arcs 
to produce a valid Markov blanket structure. Deletion of arc Z → X5 leads to removal of the arc 
X4 → X5 since X5 is no longer a part of the Markov blanket. Reversal of the same arc also leads to 
removal of the arc X4 → X5 since X5 is now a parent and is precluded from having incoming arcs. 
Also, unless X4 → X5 is removed there will be a cycle. 

Figure 4-7: An example where the application of an operator leads to additional removal of arcs 
to produce a valid Markov blanket structure. Deletion of arc Z → X5 leads to removal of the arc 
X4 → X5 since X5 is no longer a part of the Markov blanket. Reversal of the same arc also leads to 
removal of the arc X4 → X5 since X5 is now a parent and is precluded from having incoming arcs. 
Also, unless X4 → X5 is removed there will be a cycle. 

maximum when none of the successor MB structures generated from the current best MB 

structure has a score higher than that of the current best MB structure. The highest scoring MB 

structure from each iteration of the search is accumulated in a set R. The purpose of this phase is 

to identify a set of MB structures that are highly probable, given data D.  

Phase 2 searches for MB structures that change the current model-averaged estimate of 

P(Zt | xt, D) the most. The intuition here is to find viable competing MB structures for making 

this posterior probability prediction. When no competitive MB structures can be found, the 

prediction is assumed to be stable. Phase 2 differs from phase 1 in two as

ures generated from the current best MB 

structure has a score higher than that of the current best MB structure. The highest scoring MB 

structure from each iteration of the search is accumulated in a set R. The purpose of this phase is 

to identify a set of MB structures that are highly probable, given data D.  

Phase 2 searches for MB structures that change the current model-averaged estimate of 

P(Zt | xt, D) the most. The intuition here is to find viable competing MB structures for making 

this posterior probability prediction. When no competitive MB structures can be found, the 

prediction is assumed to be stable. Phase 2 differs from phase 1 in two aspects:  it uses best-first 

search 

ing to 

legal MB structures are applied to it; the successor structures are scored with the phase 2 score; 

pects:  it uses best-first 

search 

ing to 

legal MB structures are applied to it; the successor structures are scored with the phase 2 score; 

and it employs a different scoring function for evaluating candidate MB structures.  

At the beginning of phase 2, R contains MB structures that were generated in phase 1. 

Successors to the MB structures in R are generated, scored with the phase 2 score (described in 

detail below) and added to the priority queue Q. At each iteration of the search, the highest 

scoring MB structure in Q is removed from Q and added to R; all global operations lead

and it employs a different scoring function for evaluating candidate MB structures.  

At the beginning of phase 2, R contains MB structures that were generated in phase 1. 

Successors to the MB structures in R are generated, scored with the phase 2 score (described in 

detail below) and added to the priority queue Q. At each iteration of the search, the highest 

scoring MB structure in Q is removed from Q and added to R; all global operations lead
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and the scored structures are added to Q. Phase 2 search terminates when no MB structure in Q 

has a score higher than some small value ε or when a period of time t has elapsed, where ε and t 

are user specified. 

The model score for phase 2 is computed as follows. Each successor MB structure G* to 

be added to Q is scored based on how much it changes the current estimate of P(Zt | xt, D); this is 

obtained by model averaging over the MB structures in R. More change is better. The phase 2 

score of a candidate MB structure G* is computed as the distance between two distributions for 

Zt as follows: 
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Specifically, the Kullback-Leibler divergence (KL divergence) is used as the distance metric for 

the experiments described in Chapter 5. The KL divergence, or relative entropy, is a quantity 

which measures the difference between two probability distributions [79]. That is, the phase 2 

score for G* is the KL divergence between the two estimates of P(Zt | xt, D stimate 

computed without and another computed with G* in the set of models over which the model 

), one e

averaging is carried out. Thus, the phase 2 score for a candidate MB structure G* is: 

∑≡=
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The pseudocode for the two-phase search procedure used by the PSMBg algorithm is given in 

Figure 4-8. 

4.4.2 PSMBl search and operators 

 algorithm searches in the space of local MB structures in which the CPDs are 

represented as decision graphs, and uses the two-tier search procedure described in Section 3.5.2. 

e global operators for the outer search procedure as those 

used in the PSMBg algorithm and a set of local operators for the inner search procedure. The 

 for the split, (2) the binary split 

operato

The PSMBl

The PSMBl algorithm employs the sam

PSMBl algorithm may be considered an extension of the PSMBg algorithm, in that, it 

supplements the search procedure used in the PSMBg algorithm with an inner search procedure 

that is invoked at every iteration of the outer search procedure.  

The local operators used by the PSMBl algorithm are those described in Section 3.5.2 

that are used for traversing the space of local decision graph structures. Briefly, they are (1) the 

complete split operator that replaces a leaf node with an internal node and a set of leaf nodes 

corresponding to the states of the parent variable which is used

r that is similar to the complete split operator, except that only two new leaf nodes are 

introduced, and (3) the merge operator that merges two leaf nodes into a single leaf node. An 

example of the application of these operators is illustrated in Figure 3-7. 

The outer search procedure generates global MB structures; a global MB structure is 

specified by a DAG among the domain variables. In essence the DAG specifies the parent set of 
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nodes for each node. The nodes of the DAG are referred to as MB nodes to distinguish them 

from the nodes of the local decision graph structures which are referred to as DG nodes. DG 

nodes a

y the application of the global operator. Given a MB node Xi and its parent MB nodes, 

the sec

This section provides an analysis of the space and time complexity for the PSMBg and the 

PSMBl algorithms.  

re either called internal nodes if the nodes have children or leaf nodes if the nodes are 

terminal. 

The search for MB structures is very similar to that used by the PSMBg algorithm and 

proceeds in two sequential phases. Additionally, for every application of a global operator, a 

secondary search is performed to find an optimal local decision graph structure for the nodes 

affected b

ondary search starts with a decision graph containing a single DG node that represents the 

parameters of the CPD of Xi assuming that Xi has no parents. Application of the local operators 

introduces the parents of Xi as internal DG nodes in the decision graph structure. For reasons of 

efficiency, the secondary search always uses the phase 1 score to score the decision graph 

structure irrespective of which phase in the primary search procedure invokes it. The pseudocode 

for the two-phase and two-tier search procedure used by the PSMBl algorithm is given 

Figure 4 9. 

4.5 SPACE AND TIME COMPLEXITY 
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4.5.1 PSMBg 

he training dataset D, n is the number of domain variables, d is the sum of 

the number of iterations of the search for phase 1 and phase 2, b – the branching factor – is the 

ssors generated from a MB structure, and w is the capacity of the 

priority queue Q. 

meters. For a given MB node, the number of parameters (using a CPT or a 

comple

over the MB nodes, to compute it for a newly generated 

MB structure only those MB nodes whose parent nodes have changed need be evaluated. The 

algorithm 

The PSMBg algorithm runs in O((b + d)Nn) time and uses O((w + d)Nn) space, where N is the 

number of cases in t

maximum number of succe

Space complexity of PSMBg. The PSMBg algorithm searches in the space of MB 

structures using greedy hill-climbing search for phase 1 and best-first search with a priority 

queue of capacity w for phase 2. For d iterations of the search, the maximum number of MB 

structures that is stored is O(w + d). The space required for each MB structure is linear in the 

number of its para

te decision tree) is exponential in the number of its parent nodes. However, the number of 

distinct parameters cannot be greater than the number of cases N in the training data D; the 

remaining parameters have a single default value. Thus, the space required for the parameters of 

a BN node is O(N). In a domain with n variables, a MB structure can have up to n nodes and thus 

requires space of O(Nn). In total, the space required by the PSMBg algorithm that runs for d 

iterations of the search is O((w + d)Nn). 

Time complexity of PSMBg. At each iteration of the search, a maximum of b successor 

MB structures are generated. For d iterations of the search, the number of MB structures 

generated and scored with the phase 1 score is O(bd). Note that both phase 1 and phase 2 require 

successor MB structures to be scored with the phase 1 score. 

Since phase 1 score decomposes 
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number

requires one pass over D and takes 

O(Nn) 

 structure generated in all d iterations of the search will have to be 

evaluat

n

rch 

(namely, phase 1 and phase 2) and each phase uses a two-tier search procedure (namely, outer 

search procedure and inner search procedure). The outer search procedure is the same as the 

search procedure used by the PSMBg algorithm. At each iteration of the outer search procedure, 

 of MB nodes that need to be evaluated is either one (when the add or remove global 

operator is applied) or two (when the reverse global operator is applied). Computing the phase1 

score for a MB node entails estimating the parameters for that node and calculating the marginal 

likelihood from those parameters. Estimating the parameters 

time. Calculating the marginal likelihood requires retrieving every parameter of the CPDs 

associated with the MB node and takes O(N) time. Thus, scoring a MB structure with phase 1 

score takes O((N + 1)n) time.  

Phase 2 score computes the effect of a candidate MB structure on the model averaged 

estimate of the distribution of the target variable. This requires doing inference for the target 

node in a MB structure which takes O(n) since at most n nodes influence the target distribution 

and hence at most n sets of parameters need be retrieved. Computing both phase 1 and phase 2 

scores for a MB structure takes O((N + 1)(n + 1)) time which is approximately O(nN) time. In 

the worst case, every candidate

ed with the phase 2 score. In total, the time required by the PSMBg algorithm that runs 

for d iterations of the search and generates b MB structures at each iteration is O((b + d)Nn). 

4.5.2 PSMBl algorithm 

The PSMBl algorithm runs in O((b + d)Nn2 ) time and uses O((w + d)Nn) space. It has the same 

space complexity as the PSMBg algorithm but has exponential time complexity. 

Space complexity of PSMBl. The PSMBl algorithm employs a two-phase sea
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the inner search procedure is invoked on those MB nodes whose parent nodes have been 

modified. The inner search procedure when invoked on a MB node, locates a local structure 

uired by a CPT 

or a co

f the outer search procedure and 

generat

represented by a decision graph using greedy hill-climbing search in the space of decision 

graphs. The maximum space required by a decision graph is the same as that req

mplete decision tree for that MB node. Hence, the PSMBl algorithm has the same space 

complexity as the PSMBg algorithm, that is, of O((w + d)Nn). 

Time complexity of PSMBl. Estimating the parameters and computing both the phase 1 

and phase 2 scores of a MB node represented by a CPT or a complete decision tree takes O(Nn) 

time for the PSMBg algorithm as described above. The time requirement is the same for a MB 

node represented by a decision graph. For each structure generated by the outer search 

procedure, the inner search procedure can potentially generate all possible decision graphs for 

one or two MB nodes whose parent nodes have changed. The number of possible decision graphs 

for a MB node is given by Equation 4.2 and is exponential in n, that is, of O(2n). In total, the time 

required by the PSMBl algorithm that runs for d iterations o

es b MB structures at each iteration where each MB structure can have O(2n) local 

structures, is of O((b + d)Nn2n). 
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ProcedureGlobalSearchForPSMBg 

// phase 1 greedy hill-climbing search 
1 R ← empty set 
2 BestModel ← empty graph 
3 Score BestModel with phase 1 score 
4 BestScore ← phase 1 score of BestModel 
5 Add BestModel to R 
  
6 Do 
7  For every possible global operator O that can be applied to BestModel 
8   Apply O to BestModel to derive Model 
9   Score Model with phase 1 score 
10   ModelScore ← phase 1 score of Model 
11   If ModelScore > BestScore 
12    BestModel ← Model 
13    BestScore ← ModelScore 
14    FoundBetterModel ← True 
15   End if 
16  End for 
 
17  If FoundBetterModel is True 
18   Add BestModel to R 
19  Else 
20   Terminate do 
21  End if 
22 End do 
 
 // phase 2 best-first search 
23 Q ← empty priority queue with maximum capacity w 
24 Generate all successors for the MB structures in R and add them to Q 
25 Score all MB structures in Q with phase 2 score 
  
26 Do while elapsed time < t 
27  BestModel ← remove MB structure with highest phase 2 score from Q 
28  BestScore ← phase 2 score of BestModel 
29  For every possible global operator O that can be applied to BestModel 
30   Apply O to BestModel to derive Model 
31   Score Model with phase 2 score 
32   Add Model to Q 
33  End for 
 
34  If BestScore > ε 
35   Add BestModel to R 
36  Else 
37   Terminate do 
38  End if 
39 End do 
 
40 Return R 

 

Figure 4-8: Pseudocode for the two-phase (phase 1 and phase 2) search procedure used by the 
PSMBg algorithm. Phase 1 uses greedy hill-climbing search while phase 2 uses best-first search. 
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ProcedureGlobalSearchForPSMBl 

// phase 1 greedy hill-climbing search 
1 R ← empty set 
2 BestMB ← empty graph 
3 Score BestMB with phase 1 score 
4 BestScore ← phase 1 score of BestMB 
5 Add BestMB to R 
  
6 Do 
7  For every possible global operator O that can be applied to BestMB 
8   Apply O to BestMB to derive MB 
9 For every MBNode in MB whose parent nodes have been modified by O do   

 ProcedureLocalSearchForPSMBl(MBNode, MBNodeParents) 
10   Score MB with phase 1 score 
11   MBScore ← phase 1 score of MB 
12   If MBScore > BestScore 
13    BestMB ← MB 
14    BestScore ← MBScore 
15    FoundBetterMB ← True 
16   End if 
17  End for 
 
18  If FoundBetterMB is True 
19   Add BestMB to R 
20  Else 
21   Terminate do 
22  End if 
23 End do 
 
 // phase 2 best-first search 
24 Q ← empty priority queue with maximum capacity w 
25 Generate all successors for the MB structures in R and add them to Q 
26 Score all MB structures in Q with phase 2 score 
  
27 Do while elapsed time < t 
28  BestMB ← remove MB structure with highest phase 2 score from Q 
29  BestScore ← phase 2 score of BestMB 
30  For every possible global operator O that can be applied to BestMB 
31   Apply O to BestMB to derive MB 
32 For every MBNode in MB whose parent nodes have been modified by O do 

 ProcedureLocalSearchForPSMBl(MBNode, MBNodeParents) 
33   Score MB with phase 2 score 
34   Add MB to Q 
35  End for 
 
36  If BestScore > ε 
37   Add BestMB to R 
38  Else 
39   Terminate do 
40  End if 
41 End do 
 
42 Return R                  (continues on next page) 

 
Figure 4-9: Pseudocode for the two-phase (phase 1 and phase 2) and two-tier (outer and inner) 
search procedure used by the PSMBl algorithm. Figure continues on next page. 
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ProcedureLocalSearchForPSMBl(MBNode, MBNodeParents, MB) 
// inner loop greedy hill-climbing search 
Inputs:  MBNode: MB node for which a decision graph (DG) is to be located 

              MBNodeParents: set of parent MB nodes of MBNode 
       MB: current MB structure 
  
43 BestDG ← decision graph for MBNode with a single leaf DGNode  
44 Score BestDG with phase 1 score 
45 BestScore ← phase 1 score of BestDG 

 
46 Do 
47  For every possible local operator O that can be applied to BestDG 
48   Apply O to BestDG to derive DG 
49   Score DG with phase 1 score 
50   DGScore ← phase 1 score of DG 
51   If DGScore > BestScore 
52    BestDG ← DG 
53    BestScore ← DGScore 
54    FoundBetterDG ← True 
55   End if 
56  End for 
 
57  If FoundBetterDG is not True 
58   Terminate do 
59  End if 
60 End do 
 
61 For each MBNodePa in MBNodeParents 
62  If MBNodePa is not represented as a DGNode in BestDG 
63   Remove MBNodePa from MBNodeParents  
64   Remove arc from MBNodePa to MBNode in MB 
65  End if 
66 End for 

  
67 Return MB 

Figure 4-9: Continued from previous page. Pseudocode for the two-phase (phase 1 and phase 2) 
and two-tier (outer and inner) search procedure used by the PSMBl algorithm. The procedure 
ProcedureGlobalSearchForPSMBl is similar to the one used by the PSMBg algorithm shown in 
Figure 4-8. The main difference is in the extra lines 9 and 32 which invoke an additional 
procedure ProcedureLocalSearchPSMBl for the inner search. As in the PSMBg algorithm, the 
PSMBl algorithm uses greedy hill-climbing in phase 1 and best-first search in phase 2. The inner 
search procedure uses greedy hill-climbing. MBNode represents a node in the Markov blanket 
(MB) while DGNode represents a node in a decision graph (DG). 
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5.0  EXPERIMENTAL EVALUATION 

The hypothesis put forth in Section 1.2 is that for at least some performance measures patient-

specific Bayesian network models predict better than population-wide models. This chapter 

evaluates the merits of the patient-specific algorithms on several datasets including a synthetic 

dataset, 21 datasets from the UCI Machine Learning repository (UCI datasets) and three medical 

datasets.  

Section 5.1 describes the UCI datasets and the medical datasets in detail. Section 5.2 

gives details of preprocessing that includes descriptions of the handling of missing values and the 

discretization of continuous variables. The algorithms are evaluated on five performance 

measures that are described in Section 5.3.  Several versions of the patient-specific algorithms 

are used in the experiments and these are described in Section 5.4 along with the algorithms used 

for comparison.  

Sections 5.5 through 5.7 provide the experimental results. Section 5.5 describes the 

experimental evaluation of the patient-specific algorithms on a small synthetic dataset. Section 

5.6 gives results obtained from the PSMBg algorithm which searches in the model space of MB 

structures that capture only global structure, and Section 5.7 gives results obtained from the 

PSMBl algorithm which searches in the model space of MB structures that capture additional 

local structure. The final section provides a summary of the results. 
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5.1 DATASETS 

The publicly available UCI Machine Learning Repository [80] has more than 100 datasets and 

machine learning algorithms are often trained and validated on a subset of these datasets. 

Twenty-one UCI datasets were selected; these datasets have between four and 60 predictor 

variables and a single target variable that has between two and seven classes. The size of the 

Table 5-1: Description of the UCI datasets used in the experiments described in this chapter. In 
the column on predictors, the number of continuous (cnt) and discrete (dsc) predictors as well as 
the total number of predictor variables (excluding the target variable) are given. In the column on 
cases, the numbers of cases used in the experiments are given; this may be less than the total 
number of cases in the original UCI dataset since cases with missing values were removed. In the 
column on test method, “10-fold CV * 2” is short for 10-fold stratified cross-validation done 
twice. 

Dataset # Predictors 
(cnt + dsc = total)

# Classes # Cases Test Method 

australian 6 + 8 = 14 2 690 10-fold CV * 2 
breast-cancer 9 + 0 =   9 2 683 10-fold CV * 2 
cleveland 6 + 9 = 13 2 296 10-fold CV * 2 
corral 0 + 6 =   6 2 128 10-fold CV * 2 
crx 6 + 9 = 15 2 653 10-fold CV * 2 
diabetes 8 + 0 =   8 2 768 10-fold CV * 2 
flare 0 + 10 = 10 2 1066 10-fold CV * 2 
german 7 + 13 = 20 2 1000 10-fold CV * 2 
glass2 9 + 0 =   9 2 163 10-fold CV * 2 
glass 9 + 0 =   9 7 214 10-fold CV * 2 
heart 13 + 0 = 13 2 270 10-fold CV * 2 
hepatitis 6 + 13 = 19 2 80 10-fold CV * 2 
iris 4 + 0 =   4 3 150 10-fold CV * 2 
lymphography 0 + 18 = 18 4 148 10-fold CV * 2 
pima 8 + 0 =   8 2 768 10-fold CV * 2 
postoperative 1 + 7 =   8 3 87 10-fold CV * 2 
sonar 60 + 0 = 60 2 208 10-fold CV * 2 
vehicle 18 + 0 = 18 4 846 10-fold CV * 2 
vote 0 + 16 = 16 2 435 10-fold CV * 2 
wine 13 + 0 = 13 3 178 10-fold CV * 2 
zoo 0 + 16 = 16 7 101 10-fold CV * 2 
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datasets, the number and type of predictor variables, and the number of classes (states) taken by 

the target variable are given in Table 5-1. In addition to the UCI datasets, three medical datasets 

with five target variables were used in the experiments (see Table 5-2). Each target variable in a 

medical dataset represents a clinically relevant patient outcome like mortality or the occurrence 

of a clinical condition. In the following sections, the medical datasets are described in detail. 

5.1.1 Pneumonia 

Community acquired pneumonia (CAP) is an important clinical condition, both from a resource-

utilization and a patient-outcome point of view. Pneumonia affects over three million people 

annually in the U.S. [81] and is the sixth leading cause of death [82]. Accurate evaluation of 

CAP patients in the Emergency Department followed by appropriate treatment (including the 

decision whether to admit to the hospital or not) is an important clinical problem. 

Pneumonia Dataset. The pneumonia data comes from the Pneumonia Patient Outcomes 

Research Team (PORT) project and was collected during October 1991 to March 1994 from five 

Table 5-2: Description of the medical datasets used in the experiments described in this chapter. 
In the column on predictors, the number of continuous (cnt) and discrete (dsc) predictors as well 
as the total number of predictor variables (excluding the target variable) are given. All outcome 
variables that were studied are binary. The last column gives the number of cases in the training 
set and the test set respectively. 

Dataset # Predictors 
(cnt + dsc = total) 

Outcome variable # Classes # Cases # Train + # Test 

pneumonia 120 + 36 = 156 dire outcome 2 2287 1601 + 686

sepsis-d 7 + 14 =   21 death 2 1673 1115 + 558

sepsis-s 7 + 14 =   21 severe sepsis 2 1673 1115 + 558

heart failure-d 11 + 10 =   21 death 2 11178 7453 + 3725

heart failure-c 11 + 10 =   21 complication incld. death 2 11178 7453 + 3725
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hospitals in three geographical regions: Pittsburgh, Boston, and Halifax, Nova Scotia. The 

dataset has 2287 CAP hospitalized and ambulatory care patients many of whom where seen in 

the Emergency Department. One purpose of the project was to develop accurate criteria for 

prognosis of patients with CAP that could help physicians assess their risks and provide guidance 

on which patients should be hospitalized. Fine et al. [83] developed a scoring system called the 

Pneumonia Severity Index (PSI) for stratifying patients with CAP with respect to 30-day 

mortality. The PSI was derived from 20 demographic and clinical variables that were selected 

using regression analysis. This dataset has been extensively analyzed with machine learning 

algorithms for predicting various outcomes [84]. 

Pneumonia Predictor Variables. The PORT project collected data on more than 150 

patient variables including demographic data and findings on admission like co-existing diseases, 

symptoms, signs, initial laboratory tests, and initial medications.  

For the experiments, 156 patient variables were selected as predictors; these variables are 

typically available in the Emergency Department at the time the decision whether to admit or not 

is made. The variables include demographic information, history and physical examination 

information, laboratory results, and chest X-ray findings. Of the 156 variables, 120 are discrete 

and the remaining 36 are continuous. A majority of the discrete variables are binary and the rest 

have between three to seven values. The 36 continuous variables are derived mainly from 

laboratory tests and were discretized based on thresholds provided by clinical experts on the 

PORT project.  

Pneumonia Outcome Variables. Several patient outcomes on both inpatients and 

outpatients were measured at 30 days in the PORT project. The binary outcome variable selected 

for prediction is called dire outcome. A patient was considered to have experienced a dire 
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outcome if any of the following occurred: (1) death within 30 days of presentation, (2) an initial 

intensive care unit admission for respiratory failure, respiratory or cardiac arrest, or shock, or (3) 

the presence of one or more specific, severe complications. Based on these criteria, 261 patients 

(11.4%) had a dire outcome.  

5.1.2 Sepsis 

Sepsis is a syndrome of systemic inflammation in response to infection that leads to complex 

physiologic and metabolic changes and can result in multi-system organ dysfunction [85]. Sepsis 

occurs in more than 450,000 individuals annually in the U.S. and is associated with a 30% 

mortality rate [86]. The incidence of sepsis is rising in the U.S. and hospital care of sepsis is a 

significant cost to the healthcare system [87]. Thus, considerable research is underway towards a 

fuller understanding of the complex pathophysiology of human sepsis, including the 

identification of markers predictive of response to specific therapies and subsequent outcomes 

[88]. 

Sepsis Dataset. The sepsis data comes from the GenIMS (Genetic and Inflammatory 

Markers of Sepsis) project that has collected data on 2320 patients with community acquired 

pneumonia who presented to the emergency departments of 30 hospitals in southwestern 

Pennsylvania, Connecticut, Michigan and Tennessee. These patients were followed during their 

hospitalization for the development of sepsis. The aims of the GenIMS project include 

investigating the relationships among genetic polymorphisms, inflammatory mediator response, 

and clinical course and outcome.  

Sepsis Predictor Variables. The GenIMS project collected data on 108 clinical variables 

at the time of patient enrollment in the study and 99 clinical variables on a daily basis during the 
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period of hospitalization. In addition, the project collected data on five inflammatory mediators 

and on 29 genes that are believed to be involved in sepsis. The genetic data include information 

on single nucleotide polymorphisms (SNPs), short tandem repeat (STR) polymorphisms, and 

variable-number-tandem-repeat (VNTR) polymorphisms within the regulatory and coding 

regions of these genes. 

The experimental datasets consist of 21 variables as predictors that include three 

demographic variables, six clinical variables, one inflammatory marker and 10 genetic variables. 

These variables were selected by the GenIMS project investigators for analysis of a subset of the 

dataset to investigate the role of the macrophage migration inhibitory factor (MIF) gene in the 

susceptibility, severity, and outcome of community-acquired pneumonia. 

Sepsis Outcome Variables. Several outcomes including include death, severe sepsis, 

interventions such as mechanical ventilation, and hospital length of stay were measured in the 

project. Two binary outcome variables were selected for prediction: (1) death within 90 days of 

inclusion in the study, and (2) the development of severe sepsis during the study. 

5.1.3 Heart Failure 

Heart failure is an acute and chronic condition that affects 5 million people in the U.S. [89] 

leading to one million hospital admissions each year with a primary discharge diagnosis of heart 

failure and another two million with a secondary discharge diagnosis of this condition [90]. 

Hospital care for heart failure accounts for a significant portion of annual healthcare expenditure 

in the U.S. Accurate evaluation of heart failure patients in the Emergency Department followed 

by appropriate treatment (including the decision whether to admit to the hospital or not) is an 

important clinical problem. However, existing heart failure predictive models and guidelines 
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have limited utility in this setting because they are based on narrowly defined patient subgroups 

rather than the broad spectrum of heart failure patients treated in the Emergency Department, or 

they rely on clinical data unavailable in this setting [91].  

Heart Failure Dataset. The Heart Failure dataset includes 33,533 heart failure patients 

who were hospitalized from the Emergency Departments of 180 general acute care hospitals in 

Pennsylvania for the year 1999. Overall, 1498 (4.5%) patients died during hospitalization. 

Among survivors at hospital discharge, 2269 (6.8%) experienced a serious medical complication. 

This dataset has been analyzed by the original investigators to construct a prediction rule to 

identify patients who are at low risk of death and serious complications [92]. 

Heart Failure Predictor Variables. The Heart Failure dataset contains data on 

numerous variables that were collected the day of admission or the day before admission if the 

patient was already in the Emergency Department at that time. Such information includes 

demographic data, historical and physical examination findings, and electrocardiographic, 

routine laboratory tests and radiographic findings at the time of admission.  

The experimental datasets consist of 21 variables as predictors that include demographic, 

clinical, laboratory, electrocardiographic and radiographic findings. These variables had been 

identified as good predictors during the construction of a prediction rule by the original 

investigators [92].  

Heart Failure Outcome Variables. Outcome variables that were recorded in the study 

included death from any cause and several serious medical complications that occurred during 

the hospitalization. A patient was counted as having a serious medical complication if he or she 

experienced a life-threatening clinical condition or received a life-saving inpatient treatment. 

Life-threatening clinical conditions included were acute myocardial infarction, ventricular 
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fibrillation, cardiogenic shock, and cardiac arrest. Life-saving inpatient treatments were: (1) 

resuscitation defined as intubation or mechanical ventilation not initiated during surgery, cardiac 

compression, resuscitation, defibrillation, and (2) reperfusion therapy defined as coronary artery 

bypass graft surgery, percutaneous transluminal coronary angioplasty, or intravenous 

thrombolytics. 

Two binary outcome variables were selected for prediction: (1) the occurrence of death 

from any cause during the hospitalization, and (2) the development of a serious medical 

complication (including death) during the hospitalization. 

5.2 PREPROCESSING 

This section describes the several preprocessing steps that were carried out on the datasets. 

Since, the patient-specific algorithms do not currently handle continuous variables or missing 

values, the continuous variables were discretized and missing values were either imputed or 

eliminated.   

Training and test sets. The UCI datasets were evaluated with two stratified 10-fold 

cross-validation. Hence, each UCI dataset was split twice into 10 stratified training and test folds 

to create a total of 20 training and test folds. All experiments were carried out on the same set of 

20 training and test folds. The medical datasets were each evaluated with a single training and 

test set. For each medical dataset associated with a specific outcome, the training set was created 

by randomly sampling from the entire dataset such that both the training and the test datasets had 

approximately the same proportion of cases with the positive outcome. The training set included 

approximately 70% of the dataset and the test set the remaining 30%. The numbers of cases in 
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Impute(dataset, Dist(i, j)) 
Inputs: dataset with N cases and F features 
             Dist(i, j): distance metric defined on cases i and j that have no missing values 
 
1 Repeat until convergence (i.e., no change in the estimates of the unknown values) 

or until some fixed number of iterations has been reached: 
2 For c∈  },...,1{ N
3  For f ∈  },...,1{ F
4   If value[c, f] = unknown 
5    Re-impute value[c, f] using 1-Nearest Neighbor: 
6 Produce a new estimate of value[c, f] by setting it to 

value[n, f] where n is the nearest neighbor case to c. The 
nearest neighbor case n is the case where value[n, f] ≠ 
missing and Dist(c, n) is the least. 

7   End if 
8  End for 
9 End for 
    
 
Dist(i, j) 
Input: cases i and j that have no missing values and have F features 
 
10 distance ←0 
11 For f ∈  },...,1{ F
12  If f is a continuous variable 
13   distance ←  square(value[i, f] – value[j, f]) + distance 
14  End if 
15  If f is a nominal variable 
16   distance ←  1 + distance if value[i, f] = value[j, f] 
17   distance ←  0 + distance if value[i, f] ≠ value[j, f] 
18  End if 
19 End for 
20 Return distance 

the training and test sets for the medical datasets are given in Table 5-2. The original Heart 

Failure dataset contains 33,533 cases. However, for the experiments described in this chapter 

only one-third of the cases that were randomly selected from the original dataset were used. This 

was done to reduce the running times of the patient-specific algorithms to several days from the 

several weeks that would be needed if the complete dataset was used. 

Figure 5-1: Pseudocode for non-parametric imputation of missing values using 1-Nearest 
Neighbor (modified from [93]). In the pseudocode, values that are missing in the original dataset 
are called “unknown” (as opposed to “known” values that are never missing) and values that have 
not yet been filled-in by the algorithm are called “missing”. 
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Missing values. For the UCI datasets, any case that had one or more missing values was 

removed from the dataset, as is done in [68]. Sixteen of the 21 UCI datasets have no missing 

values and no cases were removed. In the remaining five datasets, removal of missing values 

resulted in a decrease in the size of the dataset of less than 10%.  

The medical datasets have a large proportion of missing values and eliminating cases 

with missing values would have led to substantial reduction in the size of the datasets. Instead, 

the missing values were imputed using an iterative non-parametric imputation algorithm 

described by Caruana [93].  The pseudocode for this algorithm is given in Figure 5-1. This 

method had previously been applied to fill in missing predictor values for the pneumonia dataset 

with good results [93].  

Discretization. All target variables in all the datasets are discrete. However, some of the 

predictor variables are continuous (numerical) as indicated in Tables 5-1 and 5-2. All continuous 

variables were discretized using the method described by Fayyad and Irani [94]. This is an 

entropy based method that analyzes the values of a continuous variable and creates thresholds 

such that the resulting intervals have high information gain. The discretization thresholds were 

determined only from the training sets and then applied to both the training and test sets. 

5.3 PERFORMANCE MEASURES 

Many methods and measures are available to measure the performance of classifiers and 

predictive algorithms [95, 96]. The performance of the algorithms was evaluated on two 

measures of discrimination and three probability measures. The discrimination measures used are 

the misclassification error (ERR) and the area under the ROC curve (AUC). The discrimination 
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Table 5-3: Brief description of the performance measures used in evaluation of the performance 
of the algorithms. For the AUC, scores closer to 1 indicate better performance. For the remaining 
measures, scores closer to 0 indicate better performance. 

 
Performance measure Abbreviation Range Best score

misclassification error ERR [0, 1] 0 
area under the ROC curve AUC [0, 1] 1 
mean squared error / Brier score MSE [0, 2] 0 
mean logarithmic loss / mean cross entropy MXE [0, ∞) 0 
calibration score CAL [0, 1] 0 

measures evaluate how well the algorithm differentiates among the various classes (or values of 

the target variable). The probability measures considered are the logarithmic loss or cross 

entropy (MXE), Brier score or squared error (MSE), and calibration (CAL). The probability 

measures are uniquely minimized (in expectation) when the predicted value for the target of each 

case coincides with the true probability of that case taking that target value. A brief description 

of the measures is given in Table 5-3.  

5.3.1 Misclassification error (ERR) 

Misclassification error (or its complement classification accuracy) is probably the most widely 

used performance measure for evaluating classifiers and prediction algorithms. It is defined as 

the proportion of incorrect class predictions the algorithm makes relative to the size of dataset. If 

an algorithm produces a continuous output, as in the case of a probabilistic classifier, then the 

class with the highest value of the output is declared to be the predicted class. Misclassification 

error is sometimes a poor criterion for assessing performance since it makes the implicit 

assumption that costs of the different kinds of misclassification are equal; an assumption that 

often does not hold in practice. For example, falsely diagnosing a deadly disease in a healthy 
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person is typically considered a less costly error than not diagnosing the disease when it is 

actually present.  

Misclassification error is computed as the number of misclassifications divided by the 

total number of cases in the dataset. It varies from 0 to 1 with 0 representing perfect 

classification. 

5.3.2 Area under the ROC curve (AUC) 

The Receiver Operating Characteristic (ROC) curve is defined only for a binary target and is a 

plot of the sensitivity versus (1 – specificity) for all possible thresholds. Given two classes, 

namely, class 0 and class 1 that the target variable can take, sensitivity is defined as the 

probability of predicting correctly a case that belongs to class 1 and specificity is defined as the 

probability of predicting correctly a case that belongs to class 0. The area under the ROC curve 

(AUC) is typically used as a summary statistic of discrimination. The AUC is equivalent to the 

probability that a randomly chosen case from class 0 will have a smaller predicted probability of 

belonging to class 1 than a randomly chosen case from class 1. Based on this interpretation, the 

binary class AUC can be estimated as follows: 

10
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where S0 is the sum of the ranks of the cases that belong to class 0, after the cases have been 

ranked in ascending order of the predicted probability of belonging to class 0; n0 is the number of 

cases that belong to class 0 and n1 is the number of cases that belong to class 1 [97, 98]. The 

AUC is generally considered superior to misclassification error since it is independent of costs, 

priors and any classification threshold.  
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Several extensions of the AUC from binary to multiple classes have been described, 

which include the volume under the ROC surface [99] and the mean of the AUCs obtained by 

aggregation over all pairs of classes [98, 100].  For multiple classes, say c classes, the method 

described by Hand and Till [98] is used for computing the AUC, as follows: 

∑
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such that  represents the binary class AUC when only classes i and j are considered and is 

computed using Equation 5.1. 

)|(ˆ jiA

The AUC varies from 0 to 1 with 1 representing perfect discrimination. 

5.3.3 Brier score or mean squared error (MSE) 

Let a binary target variable Yi take on values in {0, 1}, and let yi denote an indicator variable 

such that yi = 1 if Yi = 1 and yi = 0 if Yi = 0.  Let pi denote the predicted probability that Yi for 

case i takes the value 1. The mean squared error or the Brier score for a dataset of n cases is 

defined as [101]: 
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If the predicted probabilities pi are constrained to be equal to 0 or 1, the Brier score is equal to 

the misclassification error. The Brier score is a probability measure and depends on the predicted 
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values and not merely on the ranking of the cases based on the values (as in the AUC) or how the 

values fall relative to a threshold (as in the misclassification error). 

The MSE or the generalized Brier score for the multiclass case is a natural extension of 

the binary case [102]. Let a target variable Yi take on values in {0, 1, …, K-1}, and let yik denote 

an indicator variable such that yik = 1 if Yi = k and Yi = 0 otherwise, where k = {0, 1, …, K-1}. 

Let pik denote the predicted probability of class k for case i. The generalized Brier score is 

defined as: 
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The Brier score ranges from 0 to 2 with a score of 0 indicating perfect predictive 

performance. 

5.3.4 Mean logarithmic loss or mean cross-entropy (MXE) 

Mean logarithmic loss or mean cross entropy is another probability measure. Let a binary target 

variable Yi take on values in {0, 1}, and let yi denote an indicator variable such that yi = 1 if Yi = 

1 and yi = 0 if Yi = 0. Let pi denote the predicted probability that Yi for case i takes the value 1. 

The mean logarithmic loss for a dataset of n cases is defined as [103]: 
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For the multiclass case, the mean logarithmic loss is defined in a similar fashion to the 

generalized Brier score [104]: 
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where yik and pik are defined as in the preceding section.  
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The logarithmic loss ranges from 0 to ∞ with a score of 0 indicating perfect predictive 

performance, meaning that a probability of 1 was assigned to the correct state of Yi in very case. 

5.3.5 Calibration score (CAL) 

The calibration score, CAL, was developed by Caraua [96] and is based on reliability diagrams 

[105]. Let a binary target variable Yi take on values in {0, 1}, and let yi denote an indicator 

variable such that yi = 1 if Yi = 1 and yi = 0 if Yi = 0. Let pi denote the predicted probability that Yi 

for case i takes the value 1. The calibration score is calculated as follows. Order all cases by pi, 

and put cases 1 to c in the same bin, where c is a suitable number that is smaller than the total 

number of test cases. Calculate the proportion of these cases where Yi = 1; this proportion 

approximates the true probability that in these cases Yi takes the value 1. Then calculate the mean 

prediction for these cases. The absolute value of the difference between the observed proportion 

and the mean prediction is the calibration error for this bin. Similarly, compute the calibration 

errors for the bins containing cases 2 to (c + 1), 3 to (c + 1), and so on. Then, CAL is the grand 

mean of the calibration errors of all the bins. For the experiments reported in this chapter, c was 

set to 50. This value of c provided an adequate number of bins since the number of test cases was 

not less than 50 for any dataset. 

For the multiclass case, as before, let pik denote the predicted probability of class k for 

case i. The CAL score is computed separately for each class k over all the cases. The final CAL 

score is the mean of the k CAL scores. 

The CAL score ranges from 0 to 1 with a score of 0 indicating perfect calibration.  
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5.4 MACHINE LEARNING ALGORITHMS 

Several versions of the patient-specific algorithm were evaluated on the UCI and the medical 

datasets and their performance compared with six machine leaning methods that are commonly 

used for developing clinical prediction models. 

5.4.1 Patient-specific algorithms 

Six versions of the patient-specific algorithms are used in the experiments described later in this 

chapter. They are listed in Table 5-4. The PSMBg, PSMBg-MS and the NPSMBg algorithms all 

use MB structures with the complete decision tree representation for CPDs that captures only the 

global MB structure (hence the suffix “g” in the acronym). The PSMBg algorithm is described in 

detail Section 4.4.1 and it performs selective model averaging to estimate the distribution of the 

target variable of the case at hand (i.e., the test case). The MB structures used for the model 

averaging are selected through a two-phase search, where phase 1 of the search is non patient-

specific while phase 2 of the search is patient-specific. Phase 1 uses greedy hill-climbing search 

that terminates at a local maximum and phase 2 uses best-first search and terminates when no 

candidate MB structure has a score higher than a small value ε or when a period of time t has 

elapsed, where ε and t are user specified. The PSMBg-MS algorithm is a model selection version 

of the PSMBg algorithm. It chooses the MB structure that has the highest posterior probability 

from those selected by the PSMBg algorithm in the two-phase search, and uses that single model 

to estimate the distribution of the target variable of the case at hand. Comparing the PSMBg 

algorithm to the PSMBg-MS algorithm measures the effect of approximating the selective model 

averaging by model selection. When the training dataset is large the performance of the PSMBg 
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algorithm and the PSMBg-MS algorithm may be similar if a single model with a relatively large 

posterior probability overwhelms the contributions of the remaining models during model 

averaging. 

The NPSMBg algorithm is the non-patient-specific (i.e., population-wide) version of the 

PSMBg algorithm. Phase 1 of the NPSMBg algorithm is identical to that of the PSMBg 

algorithm. In phase 2, the NPSMBg algorithm accumulates the same number of models as the 

PSMBg algorithm except that the MB structures are identified on the basis of the non-patient-

specific phase 1 score. Thus, the NPSMBg algorithm averages over the same number of models 

as the PSMBg algorithm. Comparing the PSMBg algorithm to the NPSMBg algorithm measures 

the additional effect of the patient-specific heuristic on the performance of model averaging 

Table 5-4: Six versions of the patient-specific algorithm with a brief description of each one. 
 

Acronym Algorithm Phase1 Phase 2 Prediction 

PSMBg 
Patient-specific 
Markov blanket 
(global) 

Is non-patient-specific 
Uses greedy hill-climbing
Uses phase 1 score 

Is patient-specific 
Uses best-first  
Uses phase 2 score 

By model averaging 
over models selected 
in phase 1 and phase 2 

PSMBg-MS 

Patient-specific 
Markov blanket 
(global) – 
Model Selection 

Same as PSMBg Same as PSMBg Based on the highest 
scoring model from 
models selected by 
PSMBg 

NPSMBg 

Non-patient-
specific Markov 
blanket (global) 

Is non-patient-specific 
Uses greedy hill-climbing
Uses phase 1 score 

Is non-patient-specific 
Uses best-first  
Uses phase 1 score 

By model averaging; 
number of selected 
models is the same as 
in PSMBg 

PSMBl 
Patient-specific 
Markov blanket 
(local) 

Is non-patient-specific 
Uses greedy hill-climbing
Uses phase 1 score 

Is patient-specific 
Uses best-first  
Uses phase 2 score 

By model averaging 
over models selected 
in phase 1 and phase 2 

PSMBl-MS 

Patient-specific 
Markov blanket 
(local) – Model 
Selection 

Same as PSMBl Same as PSMBl Based on the highest 
scoring model from 
models selected by 
PSMBl 

Non-patient-
specific Markov 
blanket (local) 

Is non-patient-specific 
Uses greedy hill-climbing
Uses phase 1 score 

Is non-patient-specific 
Uses best-first  NPSMBl Uses phase 1 score 

By model averaging; 
number of selected 
models is the same as 
in PSMBl 
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realized by a non-patient-specific (i.e., population-wide) method. 

The PSMBl, PSMBl-MS and the NPSMBl algorithms are very similar to the PSMBg, 

PSMBg-MS and the NPSMBg algorithms respectively, and differ from them in two respects. 

First, they use MB structures with the decision graph representation for CPDs that captures both 

global and local MB structure (hence the suffix “l” in the acronym). Second, the two-phase 

search procedure of the global algorithms is supplemented with an inner search procedure. 

Specifically, for each phase of the search, the local algorithms use a nested search procedure: an 

outer search procedure (which is the same as in the PSMBg algorithm) that applies the global 

operators to generate global MB structures and in inner search procedure (which is new to the 

PSMBl algorithm) that applies local operators to generate local structures. Note that the inner 

and outer search procedures are distinct from the two phases of the search. In summary, the 

PSMBl algorithm employs a two-phase two-tier search as follows. The outer search procedure of 

phase 1 uses greedy hill-climbing and the outer search procedure for phase 2 uses best-first 

search just as in the PSMBg algorithm. The inner search procedures for both phase 1 and phase 2 

use greedy hill-climbing. The PSMBl algorithm is described in detail Section 4.4.2. 

5.4.2 Comparison algorithms 

The performance of the patient-specific algorithms is compared to the following methods: (1) 

naïve Bayes (NB), (2) C4.5 decision tree (DT), (3) logistic regression (LR), (4) neural networks 

(NN), (5) k-Nearest Neighbor (kNN), and (6) Lazy Bayesian Rules (LBR). The first five methods 

are among the commonest multivariate techniques currently applied in developing clinical 

prediction models [17]. The first four are representative population-wide methods, and the next 

two are examples of patient-specific methods. kNN is a similarity-based patient-specific method. 
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The LBR algorithm induces a rule tailored to the features of the test case that is then used to 

classify it and is described in detail in Section 2.8. It is an example of a model-based patient-

specific method that performs model selection. For all the six methods listed above, the 

implementations in the Weka software package (version 3.4.3) were used. The Weka software 

package is available freely from the Weka machine learning project at the University of Waikato, 

New Zealand [103]. 

5.5 EVALUATION ON SYNTHETIC DATA 

This section describes the evaluation of the PSMBg and PSMBl algorithms on a small synthetic 

dataset. The synthetic domain consists of five binary variables A, B, C, D, Z where Z is a 

deterministic function of the other variables: 

)( DCBAZ ∧∧∨= . 

This function implies the value-specific independence relation )|,,( TADCBZ =⊥  that can be 

represented explicitly by a MB with local structure (i.e., with a decision graph) but not by a MB 

with global structure (i.e., with a CPT or a complete decision tree). The training and the test sets 

used in the experiments are shown in Figure 5-2. The training set simulates a low occurrence of 

A = T (only five out of 69 cases have A = T), and the test set consists of three cases of A = T 

which are not present in the training set. 

The following algorithms were used in the experiments: (1) a complete model averaged 

version of the PSMBg algorithm where model averaging is carried over all 3567 possible MB 

structures, (2) the PSMBg algorithm, (3) the NPSMBg algorithm, (4) the PSMBl algorithm, and 

(5) the NPSMBl algorithm.  
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The settings used for the PSMBg and PSMBl algorithms are as follows: 

• Phase 1: The model score for phase 1 is the Bayesian score computed using 

Equation 4.11 for the PSMBg algorithm and Equation 4.15 for the PSMBl 

algorithm, with a Dirichlet parameter prior with hyperparameters 1=ijkα  for all i, 

j, k. Phase 1 uses greedy hill-climbing search that terminates at a local maximum. 

• Phase 2: The model score for phase 2 is computed using Equation 4.18 that is 

based on KL-divergence. Phase 2 uses best-first search with a priority queue Q 

whose maximum capacity w is set to 1000. Phase 2 search terminates when no 

MB structure in Q has a phase 2 score higher than ε = 0.001 for 10 consecutive 

iterations of the search. The maximum period of running time t for phase 2 was 

not specified since the algorithm terminated in a reasonable period of time with 

the specified value for ε. 

Training set 
 
A,B,C,D,Z 
T,F,F,F,T 
T,F,T,F,T 
T,T,F,T,T 
T,T,T,F,T 
T,T,T,T,T 
F,F,F,F,F 
F,F,F,T,F 
F,F,T,F,F 
F,F,T,T,F 
F,T,F,F,F 
F,T,F,T,F 
F,T,T,F,F 
F,T,T,T,T 

Test set 
 
A,B,C,D,Z 
T,F,F,T,T 
T,T,F,F,T 
T,F,T,T,T 

Repeated 8 times

Figure 5-2: Training and test datasets derived from the deterministic 
function )( DCBAZ ∧∧∨= . The training set contains a total of 69 cases and the test set a 
total of three cases as shown; the test cases are not present in the training set. The training set 
simulates low prevalence of A = T since only five of the 69 cases have this variable value 
combination. 
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• The predicted distribution for the target variable of the test case is computed using 

Equation 4.16; for each MB structure the parameters are estimated using 

Equation 4.6. 

5.5.1 Results 

The results are given in Table 5-5. All performance measures except the AUC were computed 

for the test set of three cases. The AUC could not be computed since all the cases in the test set 

are from the same class, Z = T. The results from complete model averaging represent the best 

achievable performance given the training set and the class of MB models with global structure. 

The PSMBg and the NPSMBg algorithms that average over a subset of all models had poorer 

performance than complete model averaging. However, the PSMBg algorithm improved over the 

performance of the NPSMBg algorithm. Though both methods average over the same number of 

models, the PSMBg algorithm uses the patient-specific phase 2 score to choose phase 2 models 

Table 5-5: Results obtained from the training and test sets that are shown in Figure 5-2. The 
AUC could not be computed since the test set has cases from a single class. Results in the first 
column are obtained by model averaging over all 3567 MBs with global structure. Similar 
complete model averaging over all MBs with local structure is not given since it was not 
tractable. 

Performance measure 

PSMBg 
complete 

model 
averaged

PSMBg NPSMBg PSMBl NPSMBl 

Misclassification error 0.0000 0.0000 0.3333 0.0000 0.0000 
- - - - AUC - 

Logarithmic loss 0.0684 0.0783 0.0862 0.0184 0.0183 
Squared error 0.0406 0.0505 0.0585 0.0042 0.0042 
CAL score 0.3720 0.4092 0.4284 0.1106 0.1103 
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while the NPSMBg algorithm uses the non-patient-specific phase 1 score to choose both phase1 

and phase 2 models. The phase 2 models chosen by the PSMBg algorithm are potentially 

different for each test case in contrast to the NPSMBg algorithm which selects the same models 

irrespective of the test case. This result provides support that the patient-specific search for 

models is able to choose models that better approximate the distribution of the target variable of 

the case at hand.   

Figure 5-4 plots the estimate of P(Z = T) for each test case as it varies with each addition 

of a model to the set of models being averaged over. A second curve plots the model score as the 

logarithmic posterior probability of the model given the data; this score measures the relative 

contribution of the model to the final estimate of P(Z = T). Each row in the figure contains a pair 

of plots for a single test case, the plot on the left is obtained from the PSMBg algorithm and the 

corresponding plot on the right is obtained from the NPSMBg algorithm. The plot for the 

estimate of P(Z = T) is shown in black while the plot for the model score is shown in gray.  In 

(a) 
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T
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Figure 5-3: Markov blanket model with the best score discovered by the PSMBl algorithm for the dataset 
given in Table 5-2. The global structure is given in (a) and the corresponding local structure for Z is given by 
the decision graph in (b). All other nodes from A through D have local structures consisting of a single DG 
node. 
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each plot, on going from left to right, the estimate of P(Z = T) initially fluctuates widely and then 

settles to a stable estimate as the number of models providing the estimate increases. In the first 

two test cases the final estimates of P(Z = T) obtained from the patient-specific and non-patient-

specific model averaging respectively are very close; both the PSMBg and the NPSMBg 

algorithms predicted the value of Z correctly as T. In the third test case, the final estimates of 

P(Z = T) are quite different; the PSMBg algorithm predicted the value of Z correctly as T while 

the NPSMBg algorithm predicted the value of Z incorrectly as F.  

Table 5-5 also gives the results obtained from the PSMBl and NPSMBl algorithms. 

Complete model averaging over the space of MB with local structures could not be carried out 

since the number of models in this space is too large to be tractable. Both the PSMBl and 

NPSMBl algorithms have similar performance on the three test cases and show considerable 

improvement in logarithmic loss, squared error and the CAL score over the PSMBg algorithms. 

Their performance is also better than that of complete model averaging over MBs with global 

structure. This is due the fact that the generating model can be represented exactly by a MB with 

local structure. One such structure is shown in Figure 5-3; this structure was discovered by both 

the PSMBl and the NPSMBl algorithms as the best scoring structure. For the three test cases the 

PSMBl algorithm produced estimates of P(Z = T) that are only marginally different from those 

produced by the NPSMBl algorithm, and the two algorithms are nearly indistinguishable on all 

the performance measures. 
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Figure 5-4: Plots of model averaged estimate of P(Z = T) and the model score obtained by the 
PSMBg and the NPSMBg algorithms on the three test cases given in Figure 5-2. Each row 
represents a single test case with the plot on the left obtained from the PSMBg algorithm and the 
plot on the right obtained from the NPSMBg algorithm. The value of the final averaged estimate 
of P(Z = T) is the point where the black curve meets the Y-axis on the right. 
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The best scoring structure shown in Figure 5-3 was the last structure discovered in phase 

1 by both the PSMBl and the NPSMBl algorithms. This structure has a posterior probability 

about 200 times larger than the next best structure, and thus its estimate of Z contributes to a 

great extent to the final model averaged estimate of Z. This explains the lack of improvement in 

performance of the PSMBl algorithm over the NPSMBl algorithm. In contrast, several structures 

with similar posterior probabilities were found by the PSMBg and the NPSMBg algorithms and 

the final model averaged estimate of Z was not dominated by the estimate obtained from a single 

structure. 

5.6 EVALUATION OF THE PSMBG ALGORITHM 

This section describes the evaluation of the PSMBg algorithm on 21 UCI datasets and three 

medical datasets. The performance of the PSMBg algorithm is compared to that of the PSMBg-

MS and the NPSMBg algorithms which are described in Section 5.4.1, and also to that of the six 

comparison machine learning methods which are described in Section 5.4.2. To recall, the 

PSMBg algorithm selects MB structures for model averaging using a two-phase search where 

phase 2 is patient-specific, the PSMBg-MS algorithm is a model selection version of the PSMBg 

algorithm that measures the effect of approximating the model averaging by model selection, and 

the NPSMBg algorithm is a non-patient-specific (i.e., population-wide) version of the PSMBg 

algorithm that measures the additional effect of the patient-specific heuristic on the performance 

of model averaging that can be achieved by a non-patient-specific method. 
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5.6.1 Experimental design 

The experimental design is as follows: 

• For each dataset, a total of 10 machine learning algorithms were run: PSMBg, 

PSMBg-MS, NPSMBg, NB, DT, LR, NN, kNN, LBR and ZR. 

• The datasets used in the experiments are the 21 UCI datasets (listed in Table 5-1) 

and the three medical datasets with five target variables (listed in Table 5-2). 

• Summary statistics were measured using 10-fold stratified cross-validation done 

twice (for a total of 20 training-test pairs) for the UCI datasets and a single 

training-test pair for the medical datasets. The summary statistics were computed 

for misclassification error, the AUC, logarithmic loss, squared error and the CAL 

score. 

• The statistical tests performed were (1) significance testing with the Wilcoxon 

paired-samples signed ranks test, and (2) effect size testing with paired-samples t 

test. 

The settings for the PSMBg algorithm are as follows: 

• Phase 1: The model score for phase 1 is the Bayesian score computed using 

Equation 4.11, with a Dirichlet parameter prior with hyperparameters 1=ijkα  for 

all i, j, k. Phase 1 uses greedy hill-climbing search that terminates at a local 

maximum. 

• Phase 2: The model score for phase 2 is computed using Equation 4.18 that is 

based on KL-divergence. Phase 2 uses best-first search with a priority queue Q 

whose maximum capacity is set to 1000. Phase 2 search terminates when no MB 
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structure in Q has a phase 2 score higher than ε = 0.001 for 10 consecutive 

iterations of the search. The maximum period of running time t for phase 2 was 

not specified since the algorithm terminated in a reasonable period of time on all 

the datasets with the specified value for ε. 

• The predicted distribution for the target variable of the test case is computed using 

Equation 4.16; for each MB structure the parameters are estimated using 

Equation 4.6. 

5.6.2 Results  

Tables 5.6 to 5.10 report the means of the misclassification error, the AUC, logarithmic loss, 

squared error and the CAL score respectively for the PSMBg algorithm, its variants and the 

comparison algorithms. In each table, a row represents a dataset and a column represents an 

algorithm. The last three rows in each table give for each algorithm the overall mean of the 

specified performance measure across the UCI datasets, the medical datasets and the combined 

UCI and medical datasets respectively. The results are also plotted in Figures 5-5 to 5-9 along 

with the standard errors of the means. From the tables, it is seen that on all five performance 

measures, the PSMBg algorithm achieved a better overall average score than all other 

algorithms.  

Tables 5.11 and 5.12 report results from pair-wise comparisons of the performance of the 

algorithms on the combined UCI and medical datasets that is aimed at assessing the statistical 

significance and the magnitude of the observed differences in the measures. Table 5-11 reports 

results from the Wilcoxon paired-samples signed ranks test. This test is a non-parametric 

procedure used to test whether there is sufficient evidence that the median of two probability 
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distributions differ in location. In evaluating algorithms, it can be used to test whether two 

algorithms differ significantly in performance on a specified measure. As it takes into account 

the magnitude and the direction of the difference between paired samples, this test is more 

powerful than the sign test [106]. Being a non-parametric test, it does not make any assumptions 

about the form of the underlying probability distribution of the sampled population. The test is 

carried out by sorting the absolute values of the paired differences from smallest to largest, 

assigning ranks to the absolute values (rank 1 to the smallest, rank 2 to the next smallest, and so 

on) and then finding the sum of the ranks of the positive differences. If the null hypothesis is 

true, the sum of the ranks of the positive differences should be about the same as the sum of the 

ranks of the negative differences.  

Table 5-12 reports results from the paired-samples t test. This test is a parametric 

procedure used to determine whether there is a significant difference between the average values 

of the same performance measure for two different algorithms. The test assumes that the paired 

differences are independent and identically normally distributed. Though the measurements 

themselves may not be normally distributed, the pair-wise differences are often normally 

distributed.  

The results are encouraging in that they show that the PSMBg algorithm never 

underperformed on any performance measure when compared to the other learning methods 

including the variants of the PSMBg algorithm that do model selection and non-patient-specific 

model averaging. This can be seen in the mean differences shown in Table 5-12. For 

misclassification error, logarithmic loss, squared error and the CAL score, the mean difference is 

always negative which denotes that the PSMBg algorithm always has a lower score on these 

measures. For the AUC, the difference is always positive which means that the PSMBg 
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algorithm always has a higher AUC. However, all mean differences are not statistically 

significant at the 0.05 level as can be seen by the p-values in Table 5-12. The best performance is 

seen in logarithmic loss where the PSMBg algorithm significantly outperforms all other 

methods, followed by squared error and CAL score where the PSMBg algorithm significantly 

outperforms many of the methods. On misclassification error and the AUC, the PSMBg 

algorithm has smaller performance gains. Similar results are seen in Table 5.11 that gives the Z 

statistics from the Wilcoxon paired-samples signed ranks test.. 

Table 5-13 gives the average number of models selected by the PSMBg and the NPSMBg 

algorithms in each of the phases for each dataset. The average number of models varies from 

17.99 for the iris dataset (with four predictor variables) to 589.52 for the pneumonia dataset 

(with 152 predictor variables). The average number of phase 1 models in the pneumonia dataset 

was unusually high. This was due to the fact that this dataset has the largest number of variables 

and the phase 1 hill-climbing search terminates at a local maximum after a large number of 

iterations. 

The average running time of the PSMBg algorithm for a single test case was 

approximately 1 hour and 30 minutes (see Table 5-21). This includes time spent in both phase 1 

and 2 of the search. Typically, 70% - 90% of the running time was spent in phase 2. 

5.6.3 Discussion 

Overall, the PSMBg algorithm significantly improved on the probabilities of the predictions 

while maintaining or slightly improving on discrimination over all other algorithms used in the 

experiments. The non-patient-specific NPSMBg algorithm had inferior performance on 

logarithmic loss and squared error but similar performance on the other measures when 
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compared to the PSMBg algorithm. Both the PSMBg and the NPSMBg algorithms average over 

the same number of models and both select the same models in phase 1 of the search. In phase 2 

of the search, while the number of selected models is the same, the two methods identify 

potentially different models. This provides evidence that the models selected in phase 2 by the 

PSMBg algorithm, using patient-specific search, are able to improve the performance of the 

PSMBg algorithm over the already good performance obtained by the NPSMBg algorithm.  

Comparison of the PSMBg algorithm with the PSMBg-MS algorithm shows that model 

averaging outperformed the single best model on all the performance measures (Tables 5.11 and 

5.12).  
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Table 5-6: Mean misclassification errors of different algorithms based on 10-fold cross-
validation done twice on the UCI datasets and a single train-test validation on the medical 
datasets. To avoid cluttering only the mean for each dataset is shown. The bottom three rows give 
the average misclassification errors for the UCI datasets, the medical datasets and all the datasets 
respectively. Best results are in underlined. 

 

Dataset PSMBg PSMBg-
MS NPSMBg NB DT LR NN kNN LBR 

australian 0.1457 0.1457 0.1435 0.1449 0.1333 0.1486 0.1848 0.1457  0.1471 
breast-cancer 0.0256 0.0271 0.0256 0.0256 0.0403 0.0337 0.0373 0.0286 0.0256    

cleveland 0.1740 0.1791 0.1740 0.1655 0.2095 0.1655 0.1993 0.1791 0.1655   

corral 0.0000 0.0156 0.0000 0.1328 0.0508 0.1289 0.0000   0.0977 0.1250 
crx 0.1547 0.1577 0.1485 0.1348 0.1317 0.1424 0.1692 0.1485  0.1340 
diabetes 0.2116 0.2129 0.2142 0.2201 0.2194 0.2135  0.2272 0.2201 0.2207 
flare 0.1806 0.1834 0.1825 0.2012 0.1735 0.1721 0.2054 0.1806 0.1750 
german 0.2580 0.2585 0.2580 0.2445 0.2845 0.2425 0.2980 0.2695 0.2475  

glass2 0.1503 0.1564 0.1472 0.1595 0.1933 0.1442 0.1442 0.1411 0.1503 
glass 0.2150 0.2220 0.2196 0.2687 0.2500 0.2547 0.2220 0.2173 0.2500 
heart 0.1778 0.1778 0.1778 0.1630 0.1870 0.1630 0.1963 0.1741 0.1630   

hepatitis 0.0938 0.1000 0.1000 0.1375 0.1250 0.1375 0.1688 0.0688 0.1375 
iris 0.0567 0.0600 0.0633 0.0533 0.0600 0.0567 0.0633 0.0633 0.0533  

lymphography 0.1622 0.1486 0.1622 0.1486 0.2365 0.2365 0.1622 0.1622 0.1520   

pima 0.2155 0.2135 0.2142 0.2214 0.2259 0.2148 0.2389 0.2246  0.2227 
postoperative 0.3391 0.3851 0.3391 0.3103 0.2989 0.3736 0.4138  0.3333 0.3103 
sonar 0.1635 0.1659 0.1731 0.1490 0.1659 0.1442 0.1611 0.1707 0.1490  

vehicle 0.2600 0.2577 0.2612 0.3712 0.2843  0.2914 0.2825 0.2766 0.2784 
vote 0.0453 0.0582 0.0453 0.0927 0.0388 0.0733 0.0711 0.0819 0.0927  

wine 0.0084 0.0084 0.0056 0.0112 0.0702 0.0253 0.0169 0.0281  0.0112 
zoo 0.0347 0.0396 0.0347 0.0644 0.0792 0.0594 0.0495 0.0347   0.0644 

pneumonia 0.1531 0.1516 0.1531 0.2274 0.1443 0.1472 0.1356 0.1137 0.1210 
sepsis-d 0.0986 0.0968 0.0968 0.1649 0.0896 0.0914 0.1272 0.0896 0.1057  

sepsis-s 0.2294 0.2276 0.2276 0.2563 0.2240 0.2312 0.2491 0.2348 0.2204 

heart failure-d 0.0462 0.0464 0.0475 0.0561 0.0448 0.0448 0.0623  0.0464 0.0472 
heart failure-c 0.1246 0.1246 0.1272 0.1426 0.1106 0.1111 0.1420 0.1128 0.1272  

UCI average 0.1463 0.1511 0.1471 0.1629 0.1647 0.1629 0.1672 0.1546 0.1463  

medical average 0.1304 0.1294 0.1304 0.1695 0.1227 0.1251 0.1432 0.1195 0.1304  

overall average 0.1432 0.1469 0.1439 0.1641 0.1566 0.1557 0.1626 0.1478  0.1499 
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Table 5-7: Mean AUCs of different algorithms based on 10-fold cross-validation done twice on 
the UCI datasets and a single train-test validation on the medical datasets. To avoid cluttering 
only the mean for each dataset is shown. The bottom three rows give the average AUCs for the 
UCI datasets, the medical datasets and all the datasets respectively. Best results are in underlined.

 

      

Dataset PSMBg PSMBg-
MS NPSMBg NB DT LR NN kNN LBR 

australian 0.9315 0.9303 0.9313 0.9200 0.9032 0.9187 0.8937 0.9092 0.9186  

breast-cancer 0.9926 0.9922 0.9925 0.9933 0.9613 0.9879 0.9818 0.9930 0.9933 

cleveland 0.9098 0.9079 0.9084 0.9141 0.7952 0.9089 0.8781 0.8995 0.9141 

corral 1.0000 0.9997 1.0000 0.9252 0.9916 0.9459 1.0000 0.9827    0.9373 
crx 0.9303 0.9280 0.9302 0.9301 0.9087 0.9138 0.9002 0.9057 0.9302  

diabetes 0.8468 0.8468 0.8466 0.8438 0.7991 0.8439 0.8311 0.8148 0.8423  

flare 0.7289 0.7288 0.7261 0.7557 0.4916  0.7451 0.6445 0.6797 0.7520 
german 0.7662 0.7633 0.7641 0.7903 0.6736 0.7839 0.7340 0.7442  0.7891 
glass2 0.8703 0.8653 0.8700 0.8769 0.7982 0.8845 0.8483 0.8384 0.8826  

glass 0.9364 0.9361 0.9361 0.9408 0.8834 0.9101 0.9241 0.9112 0.9434 

heart 0.9055 0.9049 0.9073 0.9106 0.8239 0.9032 0.8649 0.8791 0.9106 

hepatitis 0.9225 0.9262 0.9237 0.9013 0.8203 0.7784 0.8436 0.8792  0.8970 
iris 0.9890 0.9900 0.9905 0.9938 0.9629 0.9846 0.9785 0.9886 0.9938 

lymphography 0.9139 0.9156 0.9173 0.9193 0.7741 0.8571 0.9192 0.9087 0.9175 
pima 0.8431 0.8424 0.8424 0.8450 0.7977 0.8456 0.8237  0.8134 0.8449 
postoperative 0.5026 0.4943 0.4538 0.5035 0.4228  0.4515 0.4113 0.3665 0.5035 
sonar 0.9203 0.9204 0.9217 0.9343 0.8521 0.9275 0.9331 0.9132 0.9345 

vehicle 0.9234 0.9228 0.9235 0.8655 0.8761 0.9016 0.8931 0.9032 0.9109 
vote 0.9875 0.9850 0.9854 0.9684 0.9578 0.9582 0.9871 0.9735 0.9660 
wine 0.9994 0.9994 0.9994 1.0000 0.9660 0.9967 0.9994 0.9981 1.0000  

zoo 0.9994 0.9992 0.9992 0.9989 0.9565 0.9967 0.9916 0.9995 0.9989 

pneumonia 0.8236 0.8262 0.8261 0.8585 0.5591 0.7414 0.7740 0.7874 0.8306  

sepsis-d 0.8619 0.8618 0.8575 0.8698 0.7894 0.8482 0.8093 0.8517 0.8522  

sepsis-s 0.7689 0.7697 0.7677 0.7748 0.6870 0.7558 0.7401 0.7702 0.7814 

heart failure-d 0.7457 0.7424 0.7393 0.7725 0.1769 0.7607 0.7073  0.7455 0.7576 
heart failure-c 0.7709 0.7698 0.7712 0.7879 0.4573 0.7898 0.6419 0.7465 0.7805  

UCI average 0.8962 0.8952 0.8938 0.8919 0.8293  0.8783 0.8705 0.8715 0.8943 

medical average 0.7942 0.7940 0.7924 0.8127 0.7059 0.7792 0.7345 0.7803 0.8005  

overall average 0.8786 0.8757 0.8743  0.8767 0.8056 0.8592 0.8444 0.8539 0.8763 
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Table 5-8: Mean logarithmic losses of different algorithms based on 10-fold cross-validation 
done twice on the UCI datasets and a single train-test validation on the medical datasets. To avoid 
cluttering only the mean for each dataset is shown. The bottom three rows give the average 
logarithmic losses for the UCI datasets, the medical datasets and all the datasets respectively. Best 
results are in underlined. 

 

Dataset PSMBg PSMBg-
MS NPSMBg NB DT LR NN kNN LBR 

australian 0.3390 0.3456 0.3417 0.4476 0.4091 0.7136 0.4263 0.8627 0.4482  

breast-cancer 0.1068 0.1138 0.1083 0.2497 0.2955  0.1485 0.1205 0.2138 0.2497 
cleveland 0.3925 0.4067 0.4021 0.4491 1.3001 0.6500 0.4584 0.8625 0.4491  

corral 0.1018 0.1101 0.0989 0.3326 0.1475 0.2753 0.1542 0.0175 0.3130 
crx 0.3451 0.3564 0.3525 0.4113 0.3783 0.9377 0.4678 0.8747 0.4018  

diabetes 0.4601 0.4606 0.4604 0.4809 0.5497 0.4588 0.6039 0.5028 0.4826  

flare 0.4282 0.4294 0.4314 0.5904 0.4879 0.4042 0.5333 0.5858 0.5182  

german 0.5331 0.5413 0.5377 0.5213 1.4604 0.5229 0.5801 1.5415 0.5221 
glass2 0.4238 0.4302 0.4246 0.4532 0.8498 0.4154 0.8853 0.4562 0.4447  

glass 0.7112 0.7239 0.7113 0.7697 2.3005 4.0749 1.3612 0.8685 0.7264  

heart 0.3996 0.4069 0.3973 0.4560 0.6920 0.3907 0.6109 0.8483 0.4560  

hepatitis 0.2396 0.2517 0.2583 0.4247 0.6122 17.7871 0.3562 0.6253 0.4272  

iris 0.1560 0.1909 0.1620 0.1621 0.5287 0.7579 0.5770 0.2240 0.1621  

lymphography 0.4100 0.4289 0.4430 0.4282 2.9112  21.6371 0.5765 0.7272 0.4409 
pima 0.4647 0.4657 0.4657 0.4793 0.5268 0.4572 0.5873 0.5114  0.4774 
postoperative 0.7381 0.7776 0.7287 0.7953 1.1395 2.8236 1.3339 1.9418 0.7953  

sonar 0.3573 0.3726 0.3743 0.4573 1.2814 0.5762 0.4170 0.5728 0.4554  

vehicle 0.5863 0.5900 0.5866 1.8645 2.3842  3.9997 1.0134 1.2590 0.7815 
vote 0.1393 0.1635 0.1588 0.6804 0.3028 5.5427 0.3171 0.2782  0.5629 
wine 0.0418 0.0402 0.0367 0.0303 0.8270 0.9593 0.1032 0.0409 0.0303 

zoo 0.1297 0.1202 0.1268 0.1474 1.1102 0.5325 0.0596 0.1595 0.1474  

pneumonia 0.5728 0.5713 0.5733 1.8092 1.6659  0.7102 0.5795 0.8787 0.6483 
sepsis-d 0.2525 0.2520 0.2528 0.5183 0.3700 0.3492 0.2569 0.6711  0.3299 
sepsis-s 0.4726 0.4751 0.4748 0.7639 0.5990 0.6016 0.8871 1.5491 0.6199  

heart failure-d 0.3174 0.3179 0.3182 0.3491 0.5374 0.2962 0.3269 1.2575 0.3212 
heart failure-c 0.1690 0.1700 0.1707 0.1797 0.1825 0.1626 0.1740  0.7067 0.1686 

UCI average 0.3573 0.3679 0.3622 0.5063 0.9759  3.0507 0.5497 0.6654 0.4425 

medical average 0.3569 0.3573 0.3580 0.7240 0.6710 0.4240 0.4449 1.0126 0.4176 

overall average 0.3572 0.3659 0.3614 0.5481 0.9173 2.5456 0.5295 0.7322 0.4377 
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Table 5-9: Mean squared errors of different algorithms based on 10-fold cross-validation done 
twice on the UCI datasets and a single train-test validation on the medical datasets. To avoid 
cluttering only the mean for each dataset is shown. The bottom three rows give the average 
squared errors for the UCI datasets, the medical datasets and all the datasets respectively. Best 
results are in underlined. 

    

Dataset PSMBg PSMBg-
MS NPSMBg NB DT LR NN kNN LBR 

australian 0.2054 0.2082 0.2060 0.2234 0.2066 0.2116  0.3062 0.2287 0.2287 
breast-cancer 0.0440 0.0449 0.0441 0.0474 0.0731 0.0542 0.0689  0.0484 0.0474 
cleveland 0.2433 0.2499 0.2462 0.2553 0.3516 0.2339 0.3364 0.2526 0.2553  

corral 0.0352 0.0463 0.0354 0.2056 0.0887 0.1836 0.0038 0.1051 0.1951  

crx 0.2081 0.2146 0.2087 0.2092 0.1965 0.2121 0.2948 0.2363 0.2078  

diabetes 0.2978 0.2981 0.2979 0.3073 0.3219 0.2978 0.3156 0.3315 0.3086  

flare 0.2619 0.2626 0.2652 0.3145 0.2846 0.2513 0.3203 0.2843 0.2700 
german 0.3526 0.3570 0.3555 0.3419 0.4196 0.3368 0.5104 0.3591  0.3433 
glass2 0.2469 0.2513 0.2468 0.2450 0.3116 0.2409 0.2572 0.2603 0.2393 

glass 0.3609 0.3635 0.3605 0.3823 0.4186 0.4363 0.4075  0.3880 0.3673 
heart 0.2444 0.2486 0.2420 0.2570 0.3113 0.2394 0.3273 0.2611 0.2570 
hepatitis 0.1410 0.1495 0.1534 0.2079 0.2170 0.2750 0.2579 0.1481  0.2090 
iris 0.0727 0.0828 0.0753 0.0751 0.1122 0.0942 0.1032 0.1086 0.0751  

lymphography 0.2391 0.2353 0.2433 0.2344 0.4162 0.4545 0.2687  0.2650 0.2406 
pima 0.3009 0.3011 0.3011 0.3065 0.3264 0.2968 0.3248 0.3332 0.3060 
postoperative 0.4772 0.5044 0.4748 0.4894 0.4525 0.6011 0.7221 0.6168  0.4894 
sonar 0.2349 0.2391 0.2369 0.2411 0.2887 0.2228 0.2764 0.2402 0.2405  

vehicle 0.3471 0.3481 0.3470 0.5805 0.4171 0.4109 0.4672  0.3934 0.4059 
vote 0.0788 0.0903 0.0810 0.1681 0.0703 0.1461 0.1172 0.1293 0.1529 
wine 0.0183 0.0158 0.0142 0.0191 0.1268 0.0503 0.0213 0.0407 0.0191  

zoo 0.0612 0.0652 0.0630 0.0860 0.1415 0.0991 0.0568 0.0406 0.0860 

pneumonia 0.2442 0.2435 0.2433 0.4149 0.2647 0.2546 0.2453 0.1952 0.2051 
sepsis-d 0.1501 0.1500 0.1516 0.2473 0.1505 0.1513 0.2226 0.1458 0.1754 
sepsis-s 0.3120 0.3123 0.3139 0.4156 0.3428 0.3155 0.4431 0.3499 0.3348 
heart failure-d 0.0839 0.0842 0.0844 0.0951 0.0853 0.0810 0.1161 0.0852 0.0838 
heart failure-c 0.1883 0.1886 0.1892 0.2137 0.1925 0.1726 0.2677 0.1910 0.1913 

UCI average 0.2129 0.2179 0.2142 0.2475 0.2644 0.2547 0.2745 0.2415 0.2354  

medical average 0.1957 0.1957 0.1965 0.2773 0.2072 0.1950 0.2590 0.1934 0.1981 

overall average 0.2096 0.2137 0.2108 0.2532 0.2534 0.2432 0.2715 0.2323 0.2283  
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Table 5-10: Mean CAL scores of different algorithms based on 10-fold cross-validation done 
twice on the UCI datasets and a single train-test validation on the medical datasets. To avoid 
cluttering only the mean for each dataset is shown. The bottom three rows give the average CAL 
scores for the UCI datasets, the medical datasets and all the datasets respectively. Best results are 
in underlined. 

 

Dataset PSMBg PSMBg-
MS NPSMBg NB DT LR NN kNN LBR 

australian 0.0470 0.0459 0.0454 0.0775 0.0463 0.0440 0.0526 0.1423 0.0817 
breast-cancer 0.0146 0.0146 0.0144 0.0200 0.0261 0.0155 0.0114 0.0299 0.0200 
cleveland 0.0497 0.0630 0.0569 0.0930 0.0690 0.0295 0.0432 0.1543 0.0930  

corral 0.0583 0.0656 0.0561 0.0470 0.0505 0.0473 0.0162 0.0115 0.0368 
crx 0.0452 0.0518 0.0503 0.0711 0.0440 0.0394 0.0722  0.1354 0.0689 
diabetes 0.0403 0.0401 0.0411 0.0618 0.0633 0.0433 0.0813 0.0662 0.0590  

flare 0.0551 0.0546 0.0562 0.1260 0.0467 0.0414 0.0762 0.1000 0.0707 
german 0.0684 0.0696 0.0699 0.0625 0.1038 0.0504 0.0547 0.2363 0.0645  

glass2 0.0359 0.0395 0.0373 0.0644 0.0386 0.0322 0.0482 0.0561  0.0569 
glass 0.0188 0.0189 0.0186 0.0282 0.0223 0.0262 0.0258 0.0246 0.0241  

heart 0.0498 0.0585 0.0513 0.0913 0.0641 0.0321 0.0624 0.1385 0.0913 
hepatitis 0.0422 0.0294 0.0381 0.0488 0.0306 0.0462 0.0197 0.0492 0.0466  

iris 0.0110 0.0115 0.0114 0.0132 0.0188 0.0142 0.0219 0.0205  0.0132 
lymphography 0.0226 0.0259 0.0256 0.0326 0.0279 0.0863 0.0272  0.0512 0.0359 
pima 0.0532 0.0539 0.0539 0.0596 0.0660 0.0444 0.0960 0.0805 0.0586  

postoperative 0.0404 0.0358 0.0438 0.0436 0.0450  0.0707 0.0844 0.1175 0.0436 
sonar 0.0437 0.0656 0.0643 0.1042 0.0591 0.0814 0.0503 0.1336 0.1045  

vehicle 0.0479 0.0481 0.0480 0.1272 0.0654 0.0632 0.0567 0.0984  0.0690 
vote 0.0247 0.0285 0.0306 0.0722 0.0227 0.0520 0.0603  0.0346 0.0658 
wine 0.0062 0.0043 0.0054 0.0083 0.0247 0.0154 0.0256 0.0133 0.0083  

zoo 0.0065 0.0067 0.0069 0.0078 0.0094 0.0055 0.0029 0.0075 0.0078  

pneumonia 0.0998 0.0991 0.0985 0.2078 0.0696 0.1001 0.0730  0.1051 0.0905 
sepsis-d 0.0353 0.0466 0.0310 0.1255 0.0373 0.0314 0.0161 0.0921  0.0585 
sepsis-s 0.0627 0.0710 0.0690 0.1923 0.0857 0.0578 0.1077 0.2066 0.1329  

heart failure-d 0.0263 0.0288 0.0255 0.0448 0.0667 0.0280 0.0266 0.0490 0.0269  

heart failure-c 0.0533 0.0523 0.0584 0.0854 0.1505 0.0372 0.0586 0.1271 0.0577  

UCI average 0.0372 0.0396 0.0393 0.0600 0.0450 0.0419 0.0471 0.0810 0.0533  

medical average 0.0555 0.0596 0.0565 0.1312 0.0820 0.0509 0.0564 0.1160 0.0733 

overall average 0.0407 0.0434 0.0426 0.0737 0.0521 0.0437 0.0489 0.0877 0.0572  
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Table 5-11: Wilcoxon paired-samples signed ranks test comparing the performance of PSMBg with other 
algorithms. For each performance measure the number on top is the Z statistic and the number at the 
bottom is the corresponding p-value. The Z statistic is negative when PSMBg has a lower score on a 
performance measure than the competing algorithm. On all measures except the AUC, a negative Z 
statistic indicates better performance by PSMBg; on the AUC a positive Z statistic indicates better 
performance by PSMBg. Underlined results indicate p-values of 0.05 or smaller. 

Performance 
measure 

PSMBg-
MS NPSMBg NB DT LR NN kNN LBR 

-2.338 

  

-0.776 -2.121 -2.070 -1.181 -3.861 -0.825 -0.368 Misclassification 
error 0.019 0.438 0.034 0.038 0.238 0.000    0.409 0.713 

2.085 1.257 1.511 4.457 2.197 4.029 4.203 0.927 
AUC 

0.037 0.209 0.131 0.000 0.028 0.000 0.000     0.354 

-3.595 -2.426 -4.280 -4.457 -3.340 -4.254 -4.026 -4.051 
Logarithmic loss 

0.000 0.015 0.000 0.000 0.001 0.000 0.000 0.000        

-3.608 -2.313 -3.975 -3.24 -2.121 -4.127 -3.518 -3.213 
Squared error 

0.000 0.021 0.000 0.000 0.034 0.000 0.000 0.001        

-2.032 -1.867 -4.026 -2.806 -0.063 -4.076 -1.892 -3.543 
CAL score 

0.042 0.062 0.000 0.005 0.949 0.000 0.058 0.000     

 

Table 5-12: Paired-samples t test comparing the performance of PSMBg with other algorithms. For each 
performance measure the number on top is the mean difference between PSMBg and the indicated 
algorithm and the number at the bottom is the corresponding p-value. The mean difference is negative 
when PSMBg has a lower score on a performance measure than the competing algorithm. On all 
measures except the AUC, a negative mean difference indicates better performance by PSMBg; on the 
AUC a positive mean difference indicates better performance by PSMBg. Underlined results indicate p-
values of 0.05 or smaller. 

Performance 
measure 

PSMBg-
MS NPSMBg NB DT LR NN kNN LBR 

-0.004 -0.001 -0.021 -0.013 -0.012 -0.019 -0.005 -0.007 Misclassification 
error 0.077 0.312 0.014 0.021 0.065 0.000   0.334 0.289 

0.001 0.002 0.000 0.104 0.017 0.032 0.023 0.000 
AUC 

0.077 0.242 0.975 0.000 0.022 0.000 0.000    0.932 

-0.009 -0.004 -0.163 -0.211 -0.215 -0.306 -0.140 -0.071 
Logarithmic loss 

0.001 0.026 0.005 0.000 0.006 0.000 0.000 0.000        

-0.004 -0.001 -0.044 -0.044 -0.034 -0.062 -0.023 -0.019 
Squared error 

0.003 0.054 0.002 0.000 0.009 0.002 0.000 0.017       

-0.003 -0.002 -0.033 -0.011 -0.003 -0.047 -0.008 -0.016 
CAL score 

0.044 0.058 0.000 0.018 0.441 0.000 0.079 0.001     
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Figure 5-5: Pairwise plots of the mean misclassification errors of PSMBg vs. competing algorithms. Each 
point represents the mean misclassification errors of PSMBG and a competing algorithm on a single dataset, 
and the crosshairs represent one standard deviation on either side of the mean misclassification errors. Points 
above the diagonal line represent better performance by PSMBg than the competing algorithm. 
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Figure 5-6: Pairwise plots of the mean AUCs of PSMBg vs. competing algorithms. Each point represents the 
mean AUCs of PSMBG and a competing algorithm on a single dataset, and the crosshairs represent one 
standard deviation on either side of the mean AUCs. Points above the diagonal line represent better 
performance by PSMBg than the competing algorithm. 
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Figure 5-7: Pairwise plots of the mean logarithmic losses of PSMBg vs. competing algorithms. Each point 
represents the mean logarithmic losses of PSMBG and a competing algorithm on a single dataset, and the 
crosshairs represent one standard deviation on either side of the mean logarithmic losses. Points above the 
diagonal line represent better performance by PSMBg than the competing algorithm. 
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Figure 5-8: Pairwise plots of the mean squared errors of PSMBg vs. competing algorithms. Each point 
represents the mean squared errors of PSMBG and a competing algorithm on a single dataset, and the 
crosshairs represent one standard deviation on either side of the mean squared errors. Points above the diagonal 
line represent better performance by PSMBg than the competing algorithm. 
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Figure 5-9: Pairwise plots of the mean CAL scores of PSMBg vs. competing algorithms. Each point
represents the mean CAL scores of PSMBG and a competing algorithm on a single dataset, and the crosshairs
represent one standard deviation on either side of the mean CAL scores. Points above the diagonal line 
represent better performance by PSMBg than the competing algorithm. 
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Table 5-13: Average number of models in phases 1 and 2 over which averaging is carried out by the 
PSMBg and NPSMBg algorithms. Both algorithms average over the same number of models in each 
phase. Both algorithms select the same models in phase 1 but potentially different models in phase 2. The 
number of models in phases 1 and 2 is the sum of the models selected in the two phases.  

 
Dataset # models 

phase 1 
# models 
phase 2 

# models 
phases 1 

and 2 
australian 28.55 11.00 39.55 
breast-cancer 18.85 

  

10.15 29.00 
cleveland 20.45 11.99 32.44 
corral 10.65 15.03 25.68 
crx 32.10 13.42 45.52 
diabetes 11.65 10.03 21.68 
flare 20.75 11.44 32.19 
german 22.45 19.23 41.68 
glass2 12.05 13.26 25.31 
glass 15.80 10.73 26.53 
heart 18.50 11.32 29.82 
hepatitis 27.45 26.63 54.08 
iris 7.25 10.74 17.99 
lymphography 51.55 37.83 89.38 
pima 40.40 16.97 57.37 
postoperative 12.00 10.02 22.02 
sonar 11.65 10.09 21.74 
vehicle 1.15 21.09 22.24 
vote 59.80 18.44 78.24 
wine 39.30 10.73 50.03 
zoo 45.55 13.53 59.08 
pneumonia 577.00 12.52 589.52 
sepsis-d 23.80 11.45 35.25 
sepsis-s 27.00 13.63 40.63 
heart failure-d 47.00 19.07 66.07 
heart failure-c 22.00 20.92 42.92 
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5.7 EVALUATION OF THE PSMBL ALGORITHM 

This section describes the evaluation of the performance of the PSMBl algorithm and compares 

its performance to that of the PSMBg algorithm. Analogous to the PSMBg algorithm, the PSMBl 

algorithm selects MB structures for model averaging using a two-phase search where phase 2 is 

patient-specific. The difference between the two is in the model space: the PSMBl algorithm 

searches in the richer space of MB structures that explicitly represent local structure by using 

decision graphs for CPDs. The performance of the PSMBl algorithm is compared to: (1) the 

PSMBl-MS algorithm which is a model selection version of the PSMBl algorithm, (2) the 

NPSMBl algorithm which is a non-patient-specific (i.e., population-wide) version of the PSMBl 

algorithm, and (3) the PSMBg algorithm. The first two algorithms are analogous to the PSMBg-

MS and the NPSMBg algorithms. The PSMBl-MS algorithm chooses the model with the highest 

posterior probability from the set of models identified by the PSMBl algorithm, and uses that 

single model for predicting the target variable of the case at hand. The NPSMBl algorithm 

averages over the same number of models as the PSMBl algorithm except that the patient-

specific model score of phase 2 is not used to score models; instead all models are scored with 

the non-patient-specific model score of phase 1.  

5.7.1 Experimental design 

The experimental design for the evaluation the PSMBl algorithm is the same as that for the 

PSMBg algorithm and is described in section 5.6.1. 
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5.7.2 Results 

Tables 5-15 to 5-19 report the means of the misclassification error, the AUC, logarithmic loss, 

squared error and the CAL score respectively. The last three rows in each table give for each 

algorithm the overall mean of the specified performance measure across the UCI datasets, the 

medical datasets and combined UCI and medical datasets respectively. The results are also 

plotted in Figures 5-8 and 5-9 along with the standard errors of means. Table 5-18 reports results 

from the paired-samples t test and Table 5-19 reports results from the Wilcoxon paired-samples 

signed ranks test for the combined UCI and medical datasets. The PSMBl algorithm performed 

significantly better than the PSMBl-MS algorithm on all measures except the CAL score, which 

is similar to the results obtained from the PSMBg algorithm. However, the PSMBl algorithm 

showed no improvement in performance over the NPSMBl algorithm. When compared to the 

PSMBg algorithm, the PSMBl algorithm performed at a similar level on all the measures except 

the AUC on which it performed slightly worse. 

The average running time of the PSMBl algorithm for a single test case was 

approximately 5 hours and 30 minutes (see Table 5-21). This includes time spent in both phase 1 

and 2 of the search. Typically, 80% - 90% of the running time was spent in phase 2. 

5.7.3 Discussion 

While on the synthetic dataset the PSMBl algorithm performed considerably better than the 

PSMBg algorithm, on most of the UCI datasets and on all the medical datasets it showed no 

improvement over the PSMBg algorithm. One exception is the corral dataset which is a synthetic 
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dataset with seven variables of which four deterministically determine the target variable Z as 

follows: 

)()( DCBAZ ∧∨∧= . 

Of the remaining two variables, one is correlated with Z and the other is irrelevant for predicting 

Z. On this dataset, the PSMBl algorithm significantly improved on logarithmic loss, squared 

error and the CAL score over the PSMBg algorithm while both algorithms had perfect 

performance on misclassification error and the AUC. The superior performance of the PSMBl 

algorithm stems from the fact that the deterministic function can be represented exactly by a MB 

with local structure. In fact, the PSMBl-MS algorithm which chooses the best scoring model 

performed even better since the chosen model is the generating model. 

Two possible reasons may explain the inability of the PSMBl algorithm to improve 

significantly over the performance of the PSMBg algorithm in the UCI and medical datasets. 

First, there may not be many value-specific independencies present in the datasets and the 

PSMBl algorithm may be capturing spurious value-specific independencies. Second, the patient-

specific phase 2 search as implemented in the PSMBl algorithm is not optimal. Ideally, in phase 

2 every candidate MB structure should be evaluated with the patient-specific phase 2 score. 

However, for reasons of computational efficiency, phase 2 search in the PSMBl algorithm is 

implemented as follows. At each iteration of the outer search procedure, all possible global 

operators are applied to the current best MB structure to generate successor MB structures. Then, 

for each successor MB structure, the inner search procedure is invoked on those MB nodes 

whose parent sets have been modified by the application of the global operator. For each MB 

node on which it is invoked, the inner search procedure performs greedy hill-climbing search to 

identify a decision graph with phase 1 score, rather than a decision graph with high phase 2 score 
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(see the pseudocode for ProcedureLocalSearchForPSMBl in Figure 4-9). This is because the 

phase 1 score is computed efficiently for the MB node in question, while computation of the 

phase 2 score requires doing inference in the MB and is less efficient in the current 

implementation of the PSMBl algorithm. After the inner search procedure returns decision 

graphs with high phase 1 scores, the phase 2 score is computed for the MB. A more efficient 

implementation of the PSMBl algorithm can allow the inner search procedure to evaluate 

candidate local structures with the phase 2 score, which can potentially improve its performance.  

5.8 SUMMARY 

The two patient-specific algorithms, namely, the PSMBg and the PSMBl algorithms, were 

evaluated on one synthetic, 21 UCI and three medical datasets. Their performances on five 

measures were compared to that of non-patient-specific and model selection versions as well six 

commonly used predictive algorithms.  

The PSMBg algorithm improved the prediction of the target variable on average over all 

the comparison algorithms. The greatest improvements occurred in logarithmic loss and squared 

error, followed by good improvement in calibration and smaller improvements in 

misclassification error and the AUC. In addition, the PSMBg algorithm that performs Bayesian 

model averaging in conjunction with the patient-specific heuristic had better performance than 

either model selection with the patient-specific heuristic or non-patient-specific Bayesian model 

averaging. 

The PSMBl algorithm did not improve significantly over the PSMBg algorithm on any 

measure. In addition, the PSMBl algorithm that performs Bayesian model averaging in 
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conjunction with the patient-specific heuristic had better performance than model selection with 

the patient-specific heuristic but performed on par with non-patient-specific Bayesian model 

averaging. The use of local structure did not lead to significant improvements over the use of 

global structure alone. Possible reasons for this lack of improvement were given in the previous 

section. 
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Table 5-14: Mean misclassification errors of 
different algorithms based on 10-fold cross-
validation done twice on the UCI datasets and a 
single train-test validation on the medical 
datasets. To avoid cluttering only the mean for 
each dataset is shown. The bottom three rows 
give the average misclassification errors for the 
UCI datasets, for the medical datasets and for all 
the datasets respectively. Best results are 
underlined. 

Table 5-15: Mean AUCs of different algorithms 
based on 10-fold cross-validation done twice on 
the UCI datasets and a single train-test 
validation on the medical datasets. To avoid 
cluttering only the mean for each dataset is 
shown. The bottom three rows give the average 
AUCs for the UCI datasets, for the medical 
datasets and for all the datasets respectively. 
Best results are underlined. 
 

Dataset PSMBl PSMBl-
MS 

NPSMBl PSMBg

australian 0.1428 0.1457 0.1428 0.1457
breast-cancer 0.0264 0.0271 0.0271 0.0256 

cleveland 0.1723 0.1774 0.1807 0.1740
corral 0.0000 0.0000 0.0000 0.0000 

crx 0.1455 0.1462 0.1386 0.1547
diabetes 0.2188 0.2194 0.2168 0.2116 

flare 0.1820 0.1815 0.1801 0.1806
german 0.2480 0.2460 0.2475 0.2580
glass2 0.1718 0.1718 0.1840 0.1503 

glass 0.2734 0.2850 0.2734 0.2150 

heart 0.1704 0.1741 0.1759 0.1778
hepatitis 0.1438 0.1375 0.1500 0.0938 

iris 0.0533 0.0533 0.0533 0.0567
lymphography 0.1486 0.1588 0.1520 0.1622
pima 0.2155 0.2148 0.2129 0.2155
postoperative 0.2989 0.2989 0.2989 0.3391
sonar 0.1731 0.1755 0.1731 0.1635 

vehicle 0.2902 0.2908 0.2931 0.2600 

vote 0.0603 0.0625 0.0647 0.0453 

wine 0.0140 0.0140 0.0140 0.0084 

zoo 0.0396 0.0396 0.0396 0.0347 

pneumonia 0.1530 0.1545 0.1532 0.1531
sepsis-d 0.1022 0.1022 0.1022 0.0986 

sepsis-s 0.2079 0.2133 0.2061 0.2294
heart failure-d 0.0467 0.0479 0.0466 0.0462 

heart failure-c 0.1241 0.1255 0.1244 0.1246
UCI average 0.1518 0.1533 0.1533 0.1463 

medical average 0.1268 0.1287 0.1265 0.1304
overall average 0.1521 0.1537 0.1533 0.1478 

Dataset PSMBl PSMBl-
MS 

NPSMBl PSMBg

australian 0.9209 0.9189 0.9208 0.9315 

breast-cancer 0.9910 0.9907 0.9910 0.9926 

cleveland 0.9049 0.9035 0.9036 0.9098 

corral 1.0000 1.0000 1.0000 1.0000 

crx 0.9242 0.9231 0.9262 0.9303 

diabetes 0.8436 0.8425 0.8451 0.8468 

flare 0.7140 0.7138 0.7185 0.7289 

german 0.7662 0.7659 0.7667 0.7662
glass2 0.8763 0.8752 0.8757 0.8703
glass 0.9242 0.9214 0.9244 0.9364 

heart 0.9076 0.9076 0.9081 0.9055
hepatitis 0.8312 0.8243 0.8203 0.9225 

iris 0.9930 0.9938 0.9930 0.9890
lymphography 0.9124 0.9195 0.9195 0.9139
pima 0.8444 0.8444 0.8449 0.8431
postoperative 0.4363 0.4346 0.4324 0.5026 

sonar 0.9292 0.9253 0.9332 0.9203
vehicle 0.9135 0.9134 0.9131 0.9234 

vote 0.9822 0.9813 0.9808 0.9875 

wine 1.0000 1.0000 1.0000 0.9994
zoo 0.9879 0.9871 0.9865 0.9994 

pneumonia 0.8232 0.8241 0.8238 0.8236
sepsis-d 0.8597 0.8583 0.8549 0.8619 

sepsis-s 0.7594 0.7617 0.7609 0.7689 

heart failure-d 0.7465 0.7472 0.7464 0.7457
heart failure-c 0.7702 0.7717 0.7711 0.7709
UCI average 0.8859 0.8851 0.8859 0.8962 

medical average 0.7918 0.7926 0.7914 0.7942 

overall average 0.8792 0.8785 0.8791 0.8786 
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Table 5-16: Mean squared errors of different 
algorithms based on 10-fold cross-validation 
done twice on the UCI datasets and a single 
train-test validation on the medical datasets. To 
avoid cluttering only the mean for each dataset 
is shown. The bottom three rows give the 
average squared errors for the UCI datasets, for 
the medical datasets and for all the datasets 
respectively. Best results are in underlined. 
 

Table 5-17: Mean logarithmic losses of 
different algorithms based on 10-fold cross-
validation done twice on the UCI datasets and a 
single train-test validation on the medical 
datasets. To avoid cluttering only the mean for 
each dataset is shown. The bottom three rows 
give the average logarithmic losses for the UCI 
datasets, for the medical datasets and for all the 
datasets respectively. Best results are underlined. 

Dataset PSMBl PSMBl-
MS 

NPSMBl PSMBg

australian 0.3589 0.3651 0.3607 0.3390 

breast-cancer 0.1206 0.1248 0.1239 0.1068 

cleveland 0.4205 0.4337 0.4276 0.3925 

corral 0.0457 0.0290 0.0425 0.1018
crx 0.3683 0.3753 0.3673 0.3451 

diabetes 0.4655 0.4671 0.4644 0.4601 

flare 0.4365 0.4385 0.4346 0.4282 

german 0.5221 0.5240 0.5221 0.5331
glass2 0.4571 0.4574 0.4611 0.4238 

glass 0.7598 0.7650 0.7598 0.7112 

heart 0.3998 0.4026 0.3999 0.3996 

hepatitis 0.4200 0.4949 0.4960 0.2396 

iris 0.1618 0.1614 0.1619 0.1560 

lymphography 0.4164 0.4445 0.4328 0.4100 

pima 0.4632 0.4641 0.4627 0.4647
postoperative 0.6882 0.6948 0.6881 0.7381
sonar 0.3334 0.3541 0.3310 0.3573
vehicle 0.5986 0.5994 0.5975 0.5863 

vote 0.1848 0.2024 0.2040 0.1393 

wine 0.0227 0.0286 0.0226 0.0418
zoo 0.1256 0.1256 0.1255 0.1297
pneumonia 0.5748 0.5751 0.5746 0.5728 

sepsis-d 0.2586 0.2597 0.2610 0.2525 

sepsis-s 0.4704 0.4717 0.4642 0.4726
heart failure-d 0.3170 0.3181 0.3170 0.3174
heart failure-c 0.1692 0.1697 0.1691 0.1690 

UCI average 0.3700 0.3787 0.3755 0.3573 

medical average 0.3580 0.3589 0.3572 0.3569 

overall average 0.3695 0.3776 0.3744 0.3572 

Dataset PSMBl PSMBl-
MS 

NPSMBl PSMBg

australian 0.2137 0.2166 0.2140 0.2054 

breast-cancer 0.0445 0.0444 0.0458 0.0440 

cleveland 0.2535 0.2596 0.2574 0.2433 

corral 0.0086 0.0051 0.0074 0.0352
crx 0.2132 0.2164 0.2098 0.2081 

diabetes 0.3012 0.3028 0.3007 0.2978 

flare 0.2679 0.2691 0.2671 0.2619 

german 0.3444 0.3450 0.3439 0.3526
glass2 0.2577 0.2574 0.2619 0.2469 

glass 0.3745 0.3769 0.3745 0.3609 

heart 0.2429 0.2449 0.2438 0.2444
hepatitis 0.2084 0.2315 0.2295 0.1410 

iris 0.0758 0.0757 0.0759 0.0727 

lymphography 0.2350 0.2441 0.2391 0.2391
pima 0.3009 0.3013 0.3001 0.3009
postoperative 0.4386 0.4429 0.4385 0.4772
sonar 0.2201 0.2301 0.2179 0.2349
vehicle 0.3580 0.3585 0.3577 0.3471 

vote 0.0958 0.1024 0.1056 0.0788 

wine 0.0160 0.0184 0.0156 0.0183
zoo 0.0632 0.0656 0.0632 0.0612 

pneumonia 0.2452 0.2463 0.2451 0.2442 

sepsis-d 0.1579 0.1581 0.1590 0.1501 

sepsis-s 0.3077 0.3083 0.3030 0.3120
heart failure-d 0.0842 0.0849 0.0842 0.0839 

heart failure-c 0.1882 0.1893 0.1884 0.1883
UCI average 0.2159 0.2159 0.2176 0.2129 

medical average 0.1966 0.1974 0.1959 0.1957 

overall average 0.2174 0.2207 0.2188 0.2145 



  

Table 5-18: Mean CAL scores of different 
algorithms based on 10-fold cross-validation done 
twice on the UCI datasets and a single train-test 
validation on the medical datasets. To avoid 
cluttering only the mean for each dataset is shown. 
The bottom three rows give the average CAL scores 
for the UCI datasets, for the medical datasets and for 
all the datasets respectively. Best results are 
underlined. 

 

 

 

 

PSMBl NPSMBl PSMBgPSMBl-
MS  Dataset 

0.0380 0.0436 0.0409 0.0470australian  

0.0139 0.0141 0.0147 0.0146breast-cancer  

0.0672 0.0775 0.0716 0.0497cleveland   

0.0255 0.0190 0.0240 0.0583corral  

0.0438 0.0473 0.0451 0.0452crx  

0.0451 0.0447 0.0391 0.0403diabetes 
 

 

0.0581 0.0600 0.0558 0.0551flare  

0.0533 0.0576 0.0515 0.0684german  

0.0580 0.0466 0.0547 0.0359glass2  

 0.0274 0.0282 0.0274 0.0188glass  

0.0574 0.0625 0.0586 0.0498heart  

0.0401 0.0445 0.0366 0.0422hepatitis  

0.0139 0.0135 0.0140 0.0110iris   

0.0212 0.0264 0.0247 0.0226lymphography  

0.0458 0.0542 0.05320.0496pima  

0.0547 0.0482 0.0552 0.0404postoperative  

 0.0561 0.0650 0.0609 0.0437sonar  

0.0300 0.0303 0.0306 0.0479vehicle  

0.0289 0.0322 0.0337 0.0247vote  

0.0085 0.0079 0.0078 0.0062  wine  

0.0058 0.0057 0.0058 0.0065zoo  

0.0994 0.0999 0.0995 0.0998pneumonia  

0.0323 0.0314 0.0314 0.0353sepsis-d   
 

0.0608 0.0676 0.0519 0.0627sepsis-s  

0.0255 0.0264 0.0258 0.0263heart failure-d  

0.0530 0.0538 0.0531 0.0533heart failure-c  

   UCI average 0.0379 0.0391 0.0384 0.0372 

medical average 0.0542 0.0558 0.0523 0.0555 

  
overall average 0.0387 0.0400 0.0387 0.0382 
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Table 5-19: Wilcoxon paired-samples signed ranks test comparing the performance of PSMBl with other 
algorithms. For each performance measure the number on top is the Z statistic and the number at the 
bottom is the corresponding p-value. The Z statistic is negative when PSMBl has a lower score on a 
performance measure than the competing algorithm. On all measures except the AUC, a negative Z 
statistic indicates better performance by PSMBl; on the AUC a positive Z statistic indicates better 
performance by PSMBl. Underlined results indicate p-values of 0.05 or smaller. 

  Performance 
measure 

PSMBl-
MS NPSMBl PSMBg

-2.122 -1.350 -0.695 Misclassification 
error 0.034 0.177 0.487    

2.235 0.282 -2.581 
AUC 

0.025 0.778 0.010  

-3.458 -0.766 -1.430 
Logarithmic loss

0.001 0.444 0.153  

-3.469 -0.539 -1.120 
Squared error 

0.001 0.539 0.263    

-1.278 -0.243 -0.532 
CAL score 

0.201 0.808 0.594 

 

Table 5-20: Paired-samples t test comparing the performance of PSMBl with other algorithms. For each 
performance measure the number on top is the mean difference between PSMBl and the indicated 
algorithm and the number at the bottom is the corresponding p-value. The mean difference is negative 
when PSMBl has a lower score on a performance measure than the competing algorithm. On all measures
except the AUC, a negative mean difference indicates better performance by PSMBl; on the AUC a 
positive mean difference indicates better performance by PSMBl. Underlined results indicate p-values of 
0.05 or smaller. 

Performance 
measure 

PSMBl-
MS NPSMBl PSMBg

  -0.002 -0.001 0.004 Misclassification 
error 0.056 0.163 0.343 

0.001 0.000 -0.010 
AUC 

0.0490.193 0.881  

-0.008 -0.005 0.012   Logarithmic loss
0.033 0.169 0.222  

  -0.003 -0.001 0.002 
Squared error 

0.007 0.213 0.478  

-0.001 0.000 0.000 
CAL score   0.233 0.971 0.860 
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Table 5-21: Approximate running times of the various algorithms. For each algorithm, the time shown is 
the average running time for a single test case over all the UCI and medical datasets. For both population-
wide and the patient-specific algorithms the running time includes the time for learning the model and for 
doing inference for the target variable of the test case. 

Average running time for a 
test case Algorithm 

 
Naïve Bayes < 1 minute 
Decision Tree (Classification Tree) < 1 minute 
Logistic Regression < 1 minute 
Neural Networks < 1 minute 

  k-Nearest Neighbor < 1 minute 
Lazy Bayesian Rule ~ 1 minute 

  PSMBg ~ 1 hour 30 minutes 
PSMBl ~ 5 hours 30 minutes 
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Figure 5-10: Pairwise plots of the mean misclassification errors (top row), mean AUCs (middle row) and 
mean logarithmic losses (bottom row) of PSMBl vs. competing algorithms. Each point represents the mean 
score of PSMBl and a competing algorithm on a single dataset, and the crosshairs represent one standard 
deviation on either side of the mean score. Points above the diagonal line represent better performance by 
PSMBl than the competing algorithm. 
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Figure 5-11: Pairwise plots of the mean squared errors (top row) and the mean CAL scores (bottom row) of 
PSMBl vs. competing algorithms. Each point represents the mean score of PSMBl and a competing algorithm 
on a single dataset, and the crosshairs represent one standard deviation on either side of the mean score. Points 
above the diagonal line represent better performance by PSMBl than the competing algorithm. 
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6.0  CONCLUSIONS 

In this dissertation, I presented a new framework for learning predictive models that is 

characterized by the use of a patient-specific heuristic in selecting models for Bayesian model 

averaging (BMA). I implemented two basic algorithms using Bayesian network Markov blanket 

(MB) models and evaluated them extensively on several datasets. The patient-specific algorithms 

were able to better predict the target by improving on probabilistic, discriminative and 

calibration measures when compared to several commonly used machine learning methods. A 

summary of the findings is presented in the next section followed by some directions for future 

work in the last section. 

6.1 CONTRIBUTIONS AND FINDINGS 

This section summarizes the main contributions and the experimental results of the research 

presented in this dissertation. 

This dissertation described the development and evaluation of a new approach for 

learning predictive models that are relevant to a single patient case. The new patient-specific 

methods that were developed use Bayesian network models, carry out selective Bayesian model 

averaging to predict the outcome of interest for the patient case at hand, and employ a patient-

specific heuristic to locate a set of suitable models to average over. The main contribution is the 
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development of a new search heuristic for identifying models over which to perform Bayesian 

model averaging that is guided by the features of the patient case at hand. This heuristic was 

implemented in two algorithms, namely, the patient-specific Markov blanket (global) (PSMBg) 

and the patient-specific Markov blanket (local) (PSMBl) algorithms. Both algorithms employ the 

patient-specific heuristic to select models in the space of MB structures but differ in the model 

space. The difference between the model spaces of the two algorithms lies in the representation 

used for the CPDs: the PSMBg algorithm uses conditional probability tables (CPTs) that capture 

explicitly only the global structure while the PSMBl algorithm uses decision graphs that capture 

explicitly global and local structure. Given a set of parents, a node in a MB structure has only 

one global structure represented by a CPT but has several distinct local structures represented by 

decision graphs. Since the global structure is equivalent to one of the possible local structures, 

the model space of the PSMBg algorithm is a subset of that of the PSMBl algorithm.  

A second contribution is the development of new operators to traverse the space of MB 

structures; these operators are modifications of operators used in existing techniques for learning 

general Bayesian network structures.  

A third contribution is the development of a new hierarchical structure prior for BNs and 

MBs with local decision graph structures that penalizes complex decision graph structures over 

simpler ones. This structure prior is used in computing the Bayesian score that is used by the 

PSMBl algorithm.  

The experimental results demonstrate that the PSMBg algorithm improves prediction of 

the target variable on a variety of performance measures when compared to several population-

wide predictive algorithms. The greatest improvements occur in logarithmic loss and squared 

error, followed by good improvement in calibration and smaller improvements in 
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misclassification error and the AUC. Bayesian model averaging has better performance than 

Bayesian model selection, and within model averaging, patient-specific Bayesian model 

averaging has better performance than non-patient-specific Bayesian model averaging though the 

improvement is not as large as that of model averaging over model selection. 

The PSMBl algorithm also improves prediction of the target variable when compared to 

several population-wide predictive algorithms. However, it did not significantly improve on the 

performance of the PSMBg algorithm on any measure.  

Overall, Bayesian model averaging in conjunction with patient-specific search led to 

better performance than either non-patient-specific Bayesian model averaging or patient-specific 

search for a single good model. However, the use of local structure did not lead to significant 

improvements over the use of global structure alone. The implementation of patient-specific 

phase 2 in the PSMBl algorithm may have limited the performance of local structures. 

6.2 DISCUSSION 

This section summarizes some of the key aspects of the patient-specific method. The essence of 

the patient-specific method lies in the model score used in phase 2 of the search. This score is 

sensitive to both the posterior probability of the model and the predicted distribution for the 

outcome variable of the patient case at hand (see Equations 4.17 and 4.16). Typically, methods 

that evaluate models with a score employ a score that is sensitive only to the fit of the model to 

the training data and not to the prediction of the outcome variable.  

Several situations are possible where the patient-specific method has no advantage over a 

population-wide method. As one example, in a domain where complete BMA is tractable and 
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model averaging is carried out over all models in the model space, a search heuristic that selects 

a subset of models such as the one used by the patient-specific method is superfluous. Typically, 

in real life domains complete BMA over all models is not tractable due to the enormous number 

of models in the model space. Thus, the patient-specific method is useful for selective model 

averaging where it identifies a potentially relevant set of models that is predictive of the patient 

case at hand. As another example, in a domain where features that are relevant are commonly 

present, selection of relevant variables may not be a problem. In such a situation, the variables 

selected by a population-wide method are likely to be relevant for predicting any future case and 

the patient-specific method that performs model selection will likely select the same set of 

variables for each new case. 

There are several open questions regarding the behavior of the patient-specific method. 

Characterizing the bias of the selective model averaged prediction of the patient-specific method 

is an open problem. In contrast, the bias of selective BMA over models that are chosen randomly 

is low. However, the variance of selective BMA over models that are chosen randomly is likely 

to be much larger than the variance of selective BMA over models chosen by the patient-specific 

method which is constrained to prefer models that are good fit to the training data. 

Another open issue is the comparison of the performance of patient-specific selective 

BMA to that of other ensemble methods. Ensemble methods construct a set of predictive models 

that predict the target variable for a new case by taking a weighted average of their predictions. 

In addition to BMA, examples of other ensemble methods include bagging, boosting and 

stacking [107, 108]. Boosting, in particular, has been shown to improve on the performance of a 

single model for classification and for predictive tasks. Boosting selects a new model by 

weighting more those training cases that have been misclassified by the models selected 
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previously. The patient-specific method described in this dissertation selects a new model that 

disagrees considerably with the predictions of models selected previously. Thus, both methods 

select a set of models that are diverse with respect to different heuristics. 

6.3 FUTURE WORK 

The experimental work presented in this research is intended as a first step in exploring the 

utility of the patient-specific framework. Several extensions and directions for future work are 

feasible. 

Efficient computation of phase 2 score. In the current implementation of the PSMBl 

algorithm, the inner search procedure in phase 2 search evaluates candidate local structures with 

the non-patient-specific phase 1 score rather than the patient-specific phase 2 score. Only the 

local decision graph structure that has the highest phase 1 score is evaluated with the phase 2 

score.  Ideally, the patient-specific phase 2 score should be computed for every candidate local 

structure that is encountered by the inner search procedure. In the current implementation, 

computation of the phase 2 score is less efficient than the computation of the phase 1 score. More 

efficient implementations of the phase 2 score with caching of intermediate computational results 

will enable the scoring of all local structures.  

Unified search. The encapsulated search strategy employed by the PSMBl algorithm 

decouples the problem of network structure learning (global structure) from that of learning the 

CPD structures (local structure). However, this strategy typically leads to considerable 

duplication of effort. This arises due to the repetitive characteristic of the inner search procedure: 

the search for local structure of the CPD is restarted with every addition of a new parent. Often, 
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the new parent is irrelevant and will be discarded when the local structure is learned. Unified 

search employs a single search procedure with operators that modify explicitly only the local 

structure, since a set of local structures is sufficient to determine the global structure. Unified 

search will typically learn the local structure of a MB node only once and is potentially more 

efficient. However, the downside of unified search is that operations like reversing an arc in the 

global structure are not well defined. 

Alternative dissimilarity metric for phase 2 scores. The computation of the phase 2 

score (See Equation 4.17) requires a dissimilarity metric to compare the predictive distributions 

of the target variable in candidate MB structures. The current implementation of the PSMB 

algorithms use KL divergence as the dissimilarity metric. The experimental results indicate that 

KL divergence optimizes most logarithmic loss since the largest improvement in performance is 

observed on this measure. Alternative dissimilarity metrics may optimize other performance 

measures. The following dissimilarity metric, for example, has the potential for optimizing 

misclassification error: 

)',|(max),|(max)',( MZPMZPMMf tt XX −= , 

where the phase 2 score, , for the candidate model M’ is the absolute value of the 

difference in the maximum probabilities achieved in the distributions for the target Zt estimated 

by the current model M and the candidate model M’. 

)',( MMf

Alternative models. The patient-specific framework is a general formulation and any 

statistical model can be substituted for MB structures. Alternative models that would be 

interesting to explore include logistic regression models and decision trees. 

Comparison with other ensemble techniques. Several non-Bayesian ensemble 

techniques such as bagging, boosting and stacking have been shown to improve on the 
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performance of a single model for classification and for predictive tasks. Further comparisons 

between patient-specific selective Bayesian model averaging and these non-Bayesian ensemble 

techniques would be worthwhile. 
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APPENDIX 

COUNTING MARKOV BLANKET STRUCTURES 

This section gives the derivation of a formula for counting the number of possible Markov 

blanket (MB) structures with respect to a specified domain variable. 

The MB of a node in a Bayesian network (BN) consists of its parents, its children, and 

the parents of its children (spouses). With respect to a MB, the nodes can be categorized into five 

groups: (1) the target node, (2) parent nodes of the target, (3) child nodes of the target, (4) 

spousal nodes, which are parent nodes of the children, and (5) other nodes, which are not part of 

the MB. The node under consideration is called the target node. A parent node is one that has an 

outgoing arc to the target node and may have additional outgoing arcs to one or more child 

nodes. A child node is one that has an incoming arc from the target node, may have additional 

incoming arcs from parent nodes, spousal nodes and other child nodes, and may have outgoing 

arcs to other child nodes. A spousal node is one that has outgoing arcs to one or more child 

nodes and has neither an incoming arc from the target node nor an outgoing arc to the target 

node. An other node is one that is not in the MB and is considered to be a potential spousal node. 

An example demonstrating the various types of nodes in a MB is given in Figure A-1.  
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The number of possible Markov blanket structures for a domain with m variables (where 

m excludes the target variable) is given by the following equation: 
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where, mp is number of parent nodes, mc is the number of child nodes, mso is the number of 

spousal and other nodes, and m = mp + mc + mso. BN(mc) is the number of DAGs that can be 

constructed from mc nodes. The number of DAGs that can be constructed from n variables is 

given by the following recurrence formula [73, 74]: 
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where C(n, k) is the count of the number ways to choose k objects from n distinct objects. 

Equation A.1 is derived as follows. The terms inside the double summation count the 

number of MB structures for a specified number of mp, mc and mso nodes. The first term gives the 

number of ways m can be partitioned into mp parent nodes, mc child nodes and mso spousal and 

other nodes. The second term gives the number of distinct MB structures that differ only in the 

P 

Figure A-1: An example of a Markov blanket demonstrating various node types. T is the target 
node, P is a parent node, C is a child node, S is a spousal node, and O is an other node. 
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presence or absence of arcs from parent nodes to child nodes. Each parent node can have an arc 

to none, one or more child nodes for a total of  distinct MB structures. For mp parent nodes, 

the number of distinct MB structures that differ only in the presence or absence of arcs from 

parent nodes to child nodes is . The third term gives the number of distinct MB structures 

that differ only in the presence or absence of arcs from spousal and other nodes to child nodes. 

This derivation is similar to the derivation of the previous term. Each spousal or other node can 

have an arc to none, one or more child nodes for a total of  distinct MB structures. For mso 

spousal or other nodes, the number of distinct MB structures that differ only in the presence or 

absence of arcs from spousal or other nodes to child nodes is . The fourth and last term 

gives the number of DAGs that can be formed with mc child nodes. The summation is carried 

over all possible values of mp and mc; selection of particular values for mp and mc determines the 

value of mso and hence no explicit summation is required over the values of mso.  
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