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Glaucoma is the second leading cause of blindness worldwide, which induces irreversible 

structural damage (retinal ganglion cell loss and retinal nerve fiber layer (RNFL) thinning) on the 

retina. Optical coherence tomography (OCT) provides non-contact in vivo cross-sectional 

imaging of the human retina, enabling microscopic RNFL thickness measurements, which have 

become an essential clinical measure for objective glaucoma assessment. However, with the 

conventional time-domain OCT (TD-OCT), its operator dependent scan registration contributes 

to major measurement variability. 

Recently, spectral domain OCT (SD-OCT) technology has been introduced. SD-OCT 

provides faster scanning (up to 100x) and finer axial resolution (up to 2x) compared to TD-OCT, 

allowing three-dimensional (3D) volume sampling. This allows us to create a virtual OCT image 

along any sampling path (curved or straight), which permits virtually perfect scan registration. 

However, this also introduced backward measurement comparability problem in clinical 

ophthalmology since the RNFL thickness measured by TD-OCT and SD-OCT are not directly 

comparable. 

Without ensuring the OCT measurement “backward-comparability”, physicians must 

retake baseline measurements using newer technologies. This wastes all accumulated OCT 
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measurements and shortens the longitudinal observation time. This is a critical limitation 

especially for glaucoma as it is a slow progressing disease. 

The objective of this study is to improve the clinical utility of OCT RNFL measurement 

by establishing data comparability across the multiple OCT generations and models. First, we 

developed an algorithm to match the TD-OCT scan location within the corresponding 3D SD-

OCT volume. Scan location matching (SLM) enabled computation of the calibration equation 

between TD- and SD-OCT for direct comparison of measurements. Second, the performance of 

the SLM method was measured using various SD-OCT devices with different spatial sampling 

methods. Finally, we developed a mathematical model of the retinal nerve fiber bundle 

distribution pattern to normalize the off-centered TD-OCT RNFL thickness to a virtually 

centered one. This allowed us to bring TD-OCT RNFL thickness measurements from different 

locations, over multiple visits to a virtually uniform location for longitudinal glaucoma 

progression analysis. The outcome of this study would facilitate more accurate and reliable 

glaucoma disease/progression detection in cross-sectional as well as longitudinal clinical settings. 
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1.0  INTRODUCTION 

1.1 PRINCIPLES OF OPTICAL COHERENCE TOMOGRAPHY (OCT) 

Optical coherence tomography (OCT) provides microscopic cross-sectional images of living 

tissue in a non-contact and non-invasive fashion and has been applied to various medical fields 

primarily in ophthalmology.  Figure 1-1A shows schematic of time domain OCT system (TD-

OCT). [1-3] TD-OCT has a moving reference arm and a sample arm (e.g. eye) with a broadband 

light source (super-luminescent diode or SLD). An interference pattern is generated by the 

combination (Figure 1-1A and 1-1B, interferometer) of backscattered light from the reference 

arm, which oscillates back and forth to provide depth information, and the sample arm.  

 

Figure 1-1. Diagrams of A) TD-OCT and B) SD-OCT. 
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 The interference of two sources (i.e., reference and sample arms) can be described by the 

following equation: 

 

Then, this interference pattern, I(τ) , can be converted into a gray-scale image. The commercial 

TD-OCT system (StratusOCT, Carl Zeiss Meditec, Dublin, CA) optimized for ophthalmology 

use, has an axial resolution of 8-10µm and obtains B-mode scans at a rate of 400 A-scans per 

second. With OCT, various layer structures of the human retina can be analyzed qualitatively as 

well as quantitatively. [4-8] 

Recently, more advanced OCT systems (spectral domain OCT or SD-OCT) have been 

introduced (Figure 1-1). SD-OCT has eliminated the necessity of mechanical motion in the 

reference arm by acquiring the entire axial samplings simultaneously in the frequency domain 

using a grating optics system, which resulted in a dramatic improvement in sampling speed. [2, 

3] The interference pattern in frequency domain (Figure 1-1B, rainbow color) needs to be 

converted into time-domain to be visualized as a gray-scale image. The faster sampling of SD-

OCT allows the acquisition of comprehensive, 3D volumetric information on the retina and optic 

nerve head. [9] Several SD-OCT instruments are commercially available, most operating with 5-

7µm axial resolution at least 25,000 A-scans per second. 
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1.2 GLAUCOMA AND CLINICAL ASSESSMENT BY OCT 

1.2.1 Glaucoma 

Glaucoma is a slow progressive optic neuropathy, which induces irreversible structural damage 

(retinal ganglion cell (RGC) loss and retinal nerve fiber layer (RNFL) thinning) in the retina 

(Figure 1-2). [10-12] Glaucoma is also one of the leading causes of blindness not only in the 

United States but also globally. Glaucomatous damage can be triggered by many factors 

including intraocular pressure (IOP) and structural changes of the optic nerve head. [10-12] 

 

 

Figure 1-2. Localized glaucomatous damage appears on fundus photo: A) healthy eye and B) glaucoma eye. 

The localized defect region (B, shadowed region) resembles retinal axon bundle pattern because 

glaucomatous damage occurs along axon bundle. 
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1.2.2 Clinical assessment 

There are two ways to detect glaucoma: 1) functional assessment and 2) structural assessment. 

Visual field (VF) testing has been long used as gold standard for assessing functional 

glaucomatous damage (Figure 1-3, upper). However, due to its subjective measurements, test-to-

test variability is often substantially large. Moreover, by the time minimal VF abnormality 

appears, up to 40% of RNFL might have already been lost. [13-15] This is a critical limitation of 

this test because glaucomatous damage is irreversible. Early detection is essential for effective 

glaucoma treatment. 

 

Figure 1-3. Glaucomatous damage sample: visual field tests (upper) in different time points and 

reconstruction of gradual vision loss from the same eye (lower). One third of the template image projected on 

the retina became dark (vision loss) at the year 2007 due to glaucomatous damage. 

 

Structural damage can be assessed by many different imaging modalities such as 

traditional fundoscopy and color optic disc photography, and more recently confocal scanning 

laser ophthalmoscopy (CSLO), scanning laser polarimetry (SLP), and OCT. [13-15] Recent 
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development of these ocular imaging modalities helped transform structural assessment from a 

subjective and qualitative method to an objective and quantitative one. Many studies suggested 

that structural changes of RNFL and optic nerve head (ONH) are earlier indicators for 

glaucomatous abnormality that may precede the VF abnormality. [15] With TD-OCT, a 3.4 mm 

diameter circular scan centered at the ONH (Figure 1-4) is used to measure RNFL thickness as 

the circular scanning pattern captures all incoming nerve fibers to the optic nerve. [13, 16] 

Multiple repeated TD-OCT scans over time are needed to assess glaucoma progression. [15] 

 

Figure 1-4. Visualization of A) TD-OCT 3.4 mm diameter circle scan (yellow) and B) its cross-sectional image 

and RNFL segmentation (white) along the yellow circle in depth. Major vessel generates a shadow artifact 

(vertical black lines on (B)) because scanning beam is absorbed by blood flow. 

1.3 ANATOMY OF THE RETINA 

Figure 1-5 shows the healthy human retina. The retina is a thin transparent layer and captures 

light like the charge-coupled device (CCD) camera (Figure 1-6, left). [10, 17, 18]  The retina can 

be divided mainly into many different regions: periphery, macula and fovea. [10, 17, 18] Fovea 
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is a small round area in the center of the retina and has the highest visual acuity. The region 

around the fovea is called the macula, which is responsible for central vision. The ONH consists 

of a big bundle of retinal nerve fibers and blood vessels. Retinal nerve fibers (Figure 1-6 and 1-7) 

originate from the retinal ganglion cells, which receive visual information from photoreceptors 

and transmit visual information from the retina to the brain (i.e., visual cortex) through the ONH.  

[10, 17, 18] The cross-section of the retina is composed of many different cell layers (Figure 1-6, 

right). [10, 17, 18] The top highly reflective layer is called RNFL, and its thickness is considered 

as a clinically useful parameter in assessing glaucomatous damage. [10-13] Automated 

segmentation algorithms distinguishing the RNFL have been developed and are used widely for 

RNFL thickness measurements. [4-8] 

 

Figure 1-5. Appearance of the human retina.



 7 

 

Figure 1-6. Anatomy of the human retina. The green colored region on left-hand side image is similar 

to the right-hand side image.  

 

 

Figure 1-7. Axon bundle distribution pattern: A) Fundus photo, B) magnification of the inverted region on 

(A), and C) artistic drawing of axon bundle distribution on the retina. 
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1.4 CLINICAL PROBLEMS TO BE SOLVED 

The above mentioned TD-OCT circular scan pattern (Figure 4-1) has certain limitations, which 

can induce significant RNFL thickness measurement variability (Figure 1-8). [19-21] First, scan 

location varies from scan to scan due to manual placement of the scanning circle position 

(operators manually center the scan circle on the ONH) (Figure 1-8A). Secondly, sampling 

points can be scattered along 3.4mm diameter circle due to eye motion during relatively slow 

scanning of TD-OCT (Figure 1-8B). 

 

Figure 1-8. Major sources of retinal nerve fiber layer thickness measurement variability using 3.4 mm 

circular OCT scan centered on the optic nerve head. A) Scanning circle placement may vary from scan to 

scan (yellow, green, and blue circles). B) Schematic presentation of sampling points scattered along 3.4mm 

diameter circle due to eye motion during the scan. 

 

 In addition, technological transition from TD- to has introduced backward data 

comparability problems between the two different OCT technologies. [22-24] The systematic 

measurement bias and variable segmentation algorithm behaviors due to different signal 



 9 

characteristics between TD- and SD-OCTs make it impossible to directly compare the RNFL 

thickness data obtained from different OCT technologies. Lack of effective and practical data 

comparability forces physicians to retake the baseline measurements using newer technologies, 

which wastes all the accumulated measurements and shortens the longitudinal observation time. 

This is a critical limitation especially for glaucoma as it commonly appears with a slow 

progression rate. [22-24] 

 We hypothesize that both the backward comparability and scan/sampling location 

problems can be solved by utilizing the comprehensive 3D volumetric data obtained using SD-

OCT. By summing all the axial reflectivity at each sampling point, a 3D data can be visualized 

as a 2D en face image (surface view) of the scanned retina (Figure 1-9). [9] On this view, one 

can design any virtual sampling path within the 3D data, which provides virtually perfect 

scan/sampling locations on every single 3D scan. Also one can detect the TD-OCT scan location 

within the corresponding SD-OCT 3D data by computing similarities between the original TD-

OCT scan and a virtually resampled SD-OCT scan. With this matched scan location information, 

one can establish a proper conversion equation in order to make TD- and SD-OCT RNFL 

thickness measurements directly comparable. 
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Figure 1-9. 3D SD-OCT data visualization: A) 3D SD-OCT volume rendered, B) OCT fundus image, C) 2D 

RNFL thickness map, D) horizontal re-sampling, E) vertical re-sampling, F) arbitrary angle re-sampling, G) 

circular re-sampling. By summing the reflectivity data in z-direction (A), OCT fundus (en face) image is 

generated (B). On the OCT fundus image, one can specify any re-sampling path (e.g., circular scanning path 

shown on G left) so that virtual re-sampled OCT cross-sectional image can be generated (G right). 

1.5 PROJECT OBJECTIVES 

The overall goal of this project is to improve the clinical utility of OCT RNFL measurement by 

establishing data comparability across the OCT technology generations and models. To achieve 

this, first, we developed a scan location matching (SLM) method (PCT/US2009/052951 

pending) to find the matching center location of TD-OCT circular scan within 3D SD-OCT 

volume (Objective #1). [25] Next, we tested the SLM method with multiple SD-OCT devices for 

assessing its robustness since different SD-OCT devices use different 3D data scanning patterns; 
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one is spatially isotropic (evenly spaced) and others are anisotropic (oddly spaced) (Objective 

#2). With the Objectives #1 and 2, the above raised clinical problems are mostly solved except 

for progression trend analysis. By making TD-OCT measurement in one time point comparable 

to the most recent SD-OCT measurement, glaucoma progression can be assessed between one 

time point in the past and the present time. However, due to the variable TD-OCT scan locations 

in multiple visits in the past, still one cannot analyze the trend of glaucoma progression as RNFL 

thickness measured at different locations are not directly comparable. Therefore, we developed a 

mathematical model of the retinal nerve fiber bundle distribution (RNFBD) pattern to normalize 

the RNFL thickness measurements of off-centered TD-OCT circle scans to a virtual universal 

location centered on the ONH (Objective #3). Both the mathematical model of the RNFBD 

pattern and the SLM algorithm [25] were used for RNFL thickness normalization. The outcome 

of this study would facilitate more accurate and reliable glaucoma disease/progression detection 

in cross-sectional as well as longitudinal clinical settings. 

 

1.5.1 Objective 1: Development of scan location matching (SLM) method, which finds the 

TD-OCT circle scan location within 3D SD-OCT volume 

With the conventional TD-OCT, RNFL thickness is measured on a cross-sectional retinal image 

sampled along a 3.4mm circle centered to ONH. [13, 16] Due to the operator dependent nature of 

OCT scan registration, one of the major causes of measurement variability is inconsistent 

scanning circle placement, which may affect the accuracy and reliability of long term follow-up 

using TD-OCT (Figure 1-8A). SD-OCT can be used to obtain a raster scan to acquire a 3D 

volumetric data set within the same amount of scanning time as single TD-OCT imaging. SD-
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OCT volume can be visualized as an en face image of the scanned area on the retina (OCT 

fundus image) by the backscattered signal at each transverse point on the retina. [26, 27] The 

OCT fundus image allows us to detect eye motion during scanning by checking the retinal blood 

vessel integrity and to create a virtual OCT cross-sectional image along any sampling line 

(curved or straight; Figure 1-9). This virtual sampling capability minimizes the above mentioned 

scanning circle placement variability because the virtual sampling happens after image 

acquisition allowing near perfect circle placement. At the same time, if the scanning circle 

placement of the baseline scan is not well centered, the virtual sampling may allow us to match 

the scanning location with the off-centered baseline scan so that the RNFL thickness 

measurement can be directly compared. 

The aim of this objective was to develop and implement an OCT SLM algorithm, which 

finds the original scan location of a TD-OCT cross-sectional image within the corresponding 3D 

SD-OCT volume. The performance of SLM algorithm was quantified by comparing the TD-

OCT peripapillary scan center to the matched SD-OCT scan center. The absolute difference of 

RNFL thickness measurement was also compared. 

1.5.2 Objective 2: The performance investigation of SLM method with various SD-OCT 

devices 

SD-OCT 3D volume scan, which is a series of multiple horizontal cross-sectional images (B-

scans) scanned in a raster fashion, is a common scanning protocol with SD-OCT. However, 3D 

SD-OCT volume samples can be spatially isotropic (spatially evenly sized and spaced) or 

anisotropic (spatially oddly sized and spaced) depending on the makes and models of SD-OCT. 

It is possible that this spatial sampling variation may affect the performance of SLM method 
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because SLM is based on the similarity of the measurement between two different scans. For 

example, when SD-OCT volume contains a relatively smaller number of samples in one axis 

than the other, its similarity to TD-OCT scan, which is evenly sampled along a circle, may 

decrease along a lesser sampled axis resulting in larger SLM error or vice versa. 

Therefore, the second aim of this project was to compare the performance of SLM 

method on multiple commercial SD-OCT devices that provides spatially isotropic and 

anisotropic volumes: Cirrus HD-OCT (spatially isotropic, 200x200 samplings in 6x6 mm), 

RTVue (spatially anisotropic, 513x101 samplings in 4x4 mm; Optovue, Fremont, CA), and 

Spectralis (spatially anisotropic, 512x193 samplings in 6x6 mm; Heidelberg Engineering, 

Heidelberg, Germany). Moreover, not only the scanning protocol but also the signal 

characteristics are different among these units.  

In this objective, the performance of SLM method was quantified by comparing TD-OCT 

peripapillary scan center to matched SD-OCT scan center. In addition, the calibration equation 

between TD- and SD-OCT devices (Cirrus, RTVue, and Spectralis) was also computed. 

1.5.3 Objective 3: Virtual normalization of TD-OCT circular scan locations  

We have established a method to make TD-OCT RNFL thickness measurements in one time 

point directly comparable to the corresponding SD-OCT RNFL thickness measurements in 

another time point. Hence, longitudinal TD-OCT data can be compared to the present SD-OCT 

data, without requiring multiple time points where both scans are acquired, for trend analysis. 

Scan-to-scan RNFL thickness measurement variability is relatively high mainly due to the 

operator dependent manual placement of the TD-OCT circular scanning path (variable TD-OCT 



 14 

circular scan locations). This prevents us to compare multiple time points together even after 

scan location matching and proper measurement conversion (both fixed and variable bias). 

 Retinal nerve fiber bundles form a pattern specific to each individual. A pattern can be 

generated from a 2D RNFL thickness map of a given SD-OCT 3D data. By mathematically 

modeling the pattern, virtual RNFL thickness values can be computed on any sampling circle 

location based on the actual values measured on one location. In other words, RNFL thickness 

measured along an off-centered circle can be normalized to the RNFL thickness virtually 

sampled along the properly centered circle. This way, multiple TD-OCT RNFL thickness 

measurements at multiple visits can be made comparable to each other even when the actual scan 

locations vary.  

The aim of this final objective was to develop a mathematical model of the retinal nerve 

fiber bundle distribution (RNFBD) pattern to normalize the RNFL thickness measurements of 

off-centered TD-OCT circle scans to a virtual universal location properly centered on the ONH. 

The reproducibility of normalized RNFL thickness measurement was compared to the one from 

the actual TD-OCT circular scans (variable scan locations) in order to assess the clinical 

usefulness of this approach. 
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2.0  RETINAL NERVE FIBER LAYER THICKNESS MEASUREMENT 

COMPARABILITY BETWEEN TIME DOMAIN OPTICAL COHERENCE 

TOMOGRAPHY (TD-OCT) AND SPECTRAL DOMAIN OCT (SD-OCT) 

SD-OCT is quickly replacing the conventional TD-OCT. SD-OCT allows a raster scan to acquire 

a 3D volumetric data set within the same amount of scanning time as single TD-OCT imaging 

(Figure 1-9A). SD-OCT volume can be visualized as an en face image (Figure 1-9B) of the 

scanned area on the retina (OCT fundus image) by the backscattered signal at each transverse 

point on the retina. [26, 27] The OCT fundus image allows us to detect eye motion during 

scanning, by checking the retinal blood vessel integrity and to create a virtual OCT cross-

sectional image along any sampling line (curved or straight; Figure 1-9). This virtual sampling 

capability minimizes the above mentioned TD-OCT scanning circle placement variability 

because the virtual sampling happens after image acquisition allowing near perfect circle 

placement. At the same time, if the scanning circle placement of the baseline scan is not well 

centered, the virtual sampling may allow us to match the scanning location with the off-centered 

baseline scan so that the RNFL thickness measurement can be directly compared. 

It is possible that SD-OCT may improve the sensitivity of glaucoma progression 

detection. [1, 28-30] However, SD-OCT RNFL thickness measurement is not directly inter-

changeable with TD-OCT RNFL thickness measurement from the same eye. [22-24] Without 

ensuring the OCT measurement “backward-comparability”, physicians must retake the baseline 
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measurements using newer technologies, which wastes all the accumulated measurements and 

shortens the longitudinal observation time. This is a critical limitation especially for glaucoma as 

it consists of a slow progression rate. [10-12] To our knowledge, there exists no method 

providing data comparability between TD- and SD-OCT.  

We hypothesized that an automated detection of the TD-OCT circular scan registration 

location within the corresponding 3D SD-OCT can be achieved by utilizing OCT image data 

without using any external reference information, such as the TD-OCT video fundus image. The 

purpose of this study was to develop an automated system for such scan location matching 

between TD- and SD-OCT and to test its performance in terms of accuracy of the matched 

scanning circle location as well as the RNFL thickness measurements. 

2.1 METHODS 

Eleven eyes of 11 healthy subjects and seven eyes of seven glaucoma subjects from the 

University of Pittsburgh Medical Center Eye Center were enrolled. University of Pittsburgh 

Institutional Review Board and ethics committee approval were obtained for the study, and 

informed consent was obtained from all subjects. This study followed the tenets of the 

Declaration of Helsinki and was conducted in compliance with the Health Insurance Portability 

and Accountability Act. 
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2.1.1 Clinical diagnosis 

Inclusion criteria were best corrected visual acuity of 20/40 or better, refractive error within ± 

6.0 D, and no media opacities which interfere with fundus imaging. Subjects were excluded if 

they were using medications known to affect retinal thickness or if they had systemic diseases 

that might affect the retina or visual field.  Subjects were also excluded if they had any previous 

intra-ocular surgeries other than uneventful cataract extraction. One randomly selected eye was 

included if both eyes were eligible in the same subject. 

Healthy eyes had normal comprehensive ocular examination and automated perimetry 

glaucoma hemifield test (GHT) within normal limits (Humphrey Visual Field Analyzer, HVF IIi, 

Carl Zeiss Meditec, Inc. (CZMI), Dublin, CA). Glaucomatous eyes showed both glaucomatous 

optic neuropathy and GHT outside normal limits. Glaucomatous optic neuropathy was defined as 

general or focal neuro-retinal rim thinning, disc hemorrhage or inter-eye cup/disc (C/D) ratio 

asymmetry >0.2.  

2.1.2 Image acquisition 

The peripapillary region was scanned on all eyes using conventional TD-OCT (Stratus OCT; 

CZMI) and SD-OCT (Cirrus HD-OCT; CZMI) at a single visit. All scans were performed 

through dilated pupils. 

2.1.2.1 TD-OCT 

Circular scans centered on the ONH were obtained using the “Circle Scan” pattern, which was a 

single 3.4 mm diameter circular scan with 256x1024 samplings acquired in 0.64 second. Nine 
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Circle scans were obtained from each eye in a single session by one operator. Each of nine scans 

had its scanning circle manually centered differently (Figure 2-1). Starting with the circle 

manually centered on the ONH followed by eight different manual displacements so that each 

circle had clearly visible displacement without touching the ONH margin. Images with signal 

strength (SS) less than six were discarded as poor quality images as the manufacturer 

recommends. RNFL thickness was measured using the Stratus OCT system software version 5.0. 

Segmentation failure was defined as obvious deviation of the segmented inner and/or outer 

RNFL borders from the subjectively perceived borders. Consecutive 5% or cumulative 10% 

segmentation failure within a given image was considered to be poor analysis quality and 

discarded. 

 

Figure 2-1. Illustration of TD-OCT Circle scans in 9 different locations per eye. 
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2.1.2.2 SD-OCT  

A single Cirrus HD-OCT “Optic Disc Cube 200x200” scan was obtained from each eye.  This 

isotropic (equal A-scan spacing in x, y plane) raster scan contained 200x200x1024 samplings of 

a 6x6x2 mm volume manually centered on the ONH, and was acquired in 1.48 seconds. Images 

with SS less than eight were discarded as poor quality images, as the manufacturer recommends. 

This cut-off differs from that of TD-OCT because of inherent hardware and software differences 

between the two platforms. Inclusion also required that eye movements be less than the diameter 

of major vessels judged on OCT fundus images. The segmentation quality criteria for virtual 

OCT slices (or re-sampled images) from the Cirrus scans was the same as for the Stratus OCT 

scans with the additional criteria of more than 10% of frames labeled as analysis failure 

disqualified any scan. 

2.1.3 Scan location matching process 

Every possible 3.4mm circular re-sampling paths contained within physical boundaries of the 3D 

SD-OCT scan was generated (Figure 2-2 and 2-3). Along each circle, a virtual OCT cross-

sectional image was re-sampled with 256 evenly distributed sampling points (A-scans). The 

spatially closest actual A-scan data within the 3D volume were used for re-sampling arbitrary 

virtual location.  
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Figure 2-2. Diagram of scan location matching process. 

 

 

Figure 2-3. Visualization of re-sampling process boundary (region of interest). Re-sampling center boundary 

(light green square) was determined so that virtual 3.4 mm diameter circles did not go out of the sampled 

volume in order to avoid missing data point. During the search of the matching re-sampling center, the 

algorithm iterates from the center point A through the center point B pixel by pixel within the green square. 
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Each A-scan of the re-sampled scans was aligned to a corresponding A-scan in the TD-

OCT circular scan. Similarity for each virtual scan was assessed by cross correlation, and a two-

dimensional similarity map, with correlation coefficient value ranging from zero to one, was 

generated (Figure 2-4). .The location of the re-sampled scan with the highest correlation 

coefficient was automatically recorded as the most likely location of the center of the TD-OCT 

scan. 

 

Figure 2-4. Scan location matching sample: A & B) Fundus video image (A) and cross-sectional OCT image 

(B) of a TD-OCT circular scan; C & D) OCT fundus image (C) and virtually re-sampled cross-sectional OCT 

image (D) of a SD-OCT 3D scan on the same eye; E) Similarity map was generated by computing correlation 

coefficients between TD-OCT data and virtually re-sampled data centered at each pixel within the re-

samping center boundary (color ranges correlation coefficient 0 (dark blue) to 1 (white)); F) Aligned 

matching virtually re-sampled image (note the locations of the vessel shadows nicely match up with TD-OCT 

image; dashed lines). 
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2.1.4 Similarity assessment of the matched scan location 

Agreement between matched scan locations was assessed by measuring the distance between the 

center points of the TD-OCT and the matched virtual SD-OCT scans. Global and sectoral RNFL 

thickness measurements from these two OCT scans were also compared. 

2.1.4.1 Distance between the center points 

Each TD-OCT video fundus image was manually registered with the corresponding SD-OCT 

fundus image by rotation, scaling, and translation, using major vessels as references (Figure 2-5). 

The distance between the center points of the scan circles was measured on the composite image.  

 

Figure 2-5. Manual registration of TD-OCT video fundus image with SD-OCT fundus image: A) SD-OCT 

fundus image; B) TD-OCT video fundus image with circle scan location (blue); C) matched scan location with 

virtual 3.4 mm circle on SD-OCT fundus image; D) two fundus images manually registered by rotating, 

scaling, and translation (green SD-OCT fundus image superimposed on TD-OCT video fundus image 

(yellow)) and matched scan circle (white) was imported to the registered image. 
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2.1.4.2 RNFL thickness measurements comparison 

RNFL thickness, from the nine TD-OCT scans, was obtained using the Stratus OCT system 

software (version 5.0). SD-OCT RNFL thickness measurements were obtained using Cirrus HD-

OCT the system software (version 3.0) at both the default ONH centered location and the 

matched scan location. 

A calibration equation was computed to compensate for the systematic difference in 

RNFL thickness measurement between TD-OCT and SD-OCT. This computation was performed 

by using an independent group consisting of 48 eyes of 24 healthy subjects. All eyes satisfied the 

above criteria for healthy eyes and were scanned both with TD- and SD-OCT at the same visit. 

The details of the calibration equation computation are described in the appendix A. 

2.1.5 Statistical Analysis 

A mixed effect model [31-33] was used to estimate the difference between the TD-OCT scan 

location and the matched scan location on the SD-OCT 3D volume. In addition, a structural 

equation model (SEM; Figure 2-6) was used to model the measurement error of the devices. This 

model describes the relative systematic error (bias) between devices and the random error 

(imprecision) of each device. Linear mixed effects model was used to compute the confidence 

intervals for the imprecision comparisons after calibration. 
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Figure 2-6. Diagram of structural equation model. 

2.2 RESULTS 

Subject demographics were summarized in Table 2-1. Healthy eyes had thicker mean RNFL 

thickness than glaucomatous eyes (p<0.01, mixed effects model). 

Table 2-1. Subject demographics (mean ± standard deviation) 

 Healthy 
(N=11) 

Glaucoma 
(N=7) 

Male : Female 5 : 6 2 : 5 

Age (years) 37.6 ± 10.6 63.2 ± 4.3 

TD-OCT RNFL Thickness (µm) 112.2 ± 11.7 88.6 ± 16.5 
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2.2.1 Distance between the center points 

The distance between TD-OCT scan circle centers and the corresponding matched virtual SD-

OCT scan circle centers were 2.3 pixels (69.0 µm on the retina) for healthy eyes and 3.1 pixels 

(93.0 µm on the retina) for glaucomatous eyes (Table 2-2). These distances were notably smaller 

than the distance (e.g., 15.1 [14.3 – 15.8] pixels of mean displacement, p<0.01) between the 

matched scan location and the properly centered scan location on a given SD-OCT 3D volume 

data (Figure 2-7). When the matched distance was decomposed into X and Y components, there 

was no statistically significant difference between the two components for both healthy and 

glaucomatous eyes. 

 

Figure 2-7. A sample case for distances (in pixels) between matched circle (yellow) and the properly centered 

circle (white) on SD-OCT fundus image. 
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Table 2-2. Distance between scanning circle center points (mean [95% confidence interval]) 

Distance 

Healthy Glaucoma 

Pixel Distance on Retina 
(µm) Pixel Distance on Retina 

(µm) 

Center Distance 2.3 
[1.5 – 3.2] 

69.0 
[45.0 –  96.0] 

3.1 
[2.0 – 4.1] 

93.0 
[60.0 – 123.0] 

X Component of 
Distance 

1.6 
[0.7 – 2.4] 

48.0 
[21.0 –  72.0] 

1.9 
[0.8 – 2.9] 

57.0 
[24.0 –   87.0] 

Y Component of 
Distance 

1.3 
[0.7  – 2.0] 

39.0 
[21.0 –  60.0] 

2.0 
[1.2 – 2.8] 

60.0 
[36.0 –   84.0] 

 

2.2.2 RNFL thickness measurements comparison with and without scan location 

matching 

Table 2-3 shows the RNFL measurements in four conditions for each of healthy and 

glaucomatous eyes. The difference between TD- and SD-OCT measurements with and without 

scan location matching was summarized in Table 2-4. Diagnosis statistically significant 

influenced measurement differences in 4 sectors (temporal quadrant and clock hours 8, 9, 10, and 

12; Table 2-5). The RNFL measurement differences were statistically significantly smaller with 

scan location matching than without in all sectors except for clock hours 8, 9, and 10 for 

glaucomatous eyes. 
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Table 2-3. Retinal nerve fiber layer thickness results (µm) on time domain OCT (TD-OCT; with and without 

calibration) and spectral domain OCT (SD-OCT; with and without scan location matching). 

Sector 

Healthy Glaucoma 

TD-OCT TD-OCT 
Calibrated 

SD-OCT  
No 

Matching 

SD-OCT 
Matched TD-OCT TD-OCT 

Calibrated 

SD-OCT  
No 

Matching 

SD-OCT 
Matched 

Global Mean 112.2 106.2 96.7 97.5 88.6 82.8 84.1 83.4 

Q
uadrant 

Temporal 84.5 74.0 64.7 73.9 78.3 69.1 65.1 70.9 

Superior 139.6 132.5 123.5 125.1 103.5 97.4 99.0 99.4 

Nasal 87.6 82.7 68.1 68.2 70.4 63.7 69.7 68.1 

Inferior 137.0 135.9 130.4 122.9 102.1 94.7 102.4 94.9 

C
lock H

our 

1 128.7 115.3 116.6 115.1 92.1 90.4 83.6 86.4 

2 100.2 97.0 88.1 84.2 79.0 73.1 83.1 79.3 

3 71.6 64.5 51.7 54.1 62.6 57.1 59.1 59.3 

4 91.0 82.6 64.5 66.3 69.7 61.0 66.9 65.7 

5 120.1 117.1 105.6 99.0 85.5 75.6 83.0 77.8 

6 143.1 143.5 140.0 128.7 108.4 101.5 111.9 100.2 

7 147.7 139.5 145.5 141.0 112.4 110.3 112.1 106.9 

8 89.0 78.6 65.9 80.4 80.0 71.0 63.9 76.8 

9 65.2 56.5 51.2 56.7 62.4 54.8 53.3 57.5 

10 99.5 92.9 77.2 84.7 92.7 85.5 78.0 78.6 

11 148.8 139.9 137.8 134.5 119.1 111.4 119.0 113.2 

12 141.2 140.6 116.3 125.7 99.1 89.5 94.3 98.5 
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Table 2-4. Retinal nerve fiber layer thickness absolute difference (µm [95% confidence interval]) between 

time domain OCT (TD-OCT) and spectral domain OCT (SD-OCT) comparison. Temporal quadrant and 

clock hours 8, 9, 10, and 12 were analyzed separately (Table 2-5). 

Sector Difference without 
Matching (A) 

Difference with 
Matching (B) A-B p-value 

Global Mean 10.1  [7.0 − 13.2]   9.1  [6.1 − 12.2] 1.0 0.02 

Q
uad-rant 

Superior 16.6  [13.0 − 20.3] 10.3  [7.1 − 13.6] 6.3 <0.01 

Nasal 23.2  [19.3 − 27.1] 15.6  [12.2 – 19.0] 7.6 <0.01 

Inferior 20.0  [15.3 − 24.8] 13.9  [9.5 − 18.2] 6.2 <0.01 

C
lock H

our 

1 15.1  [9.8 − 20.3] 11.1  [6.0 − 16.2] 4.0 <0.01 

2 25.6  [21.6 − 29.7] 16.9  [13.5 − 20.4] 8.7 <0.01 

3 16.6  [13.1 − 20.1] 11.9  [8.7 − 15.1] 4.7 <0.01 

4 24.4  [18.8 − 29.9] 17.6  [12.4 − 22.7] 6.8 <0.01 

5 28.8  [23.1 − 34.5] 18.9  [14.4 − 23.4] 9.9 <0.01 

6 30.3  [25.1 − 35.6] 17.6  [13.3 − 21.9] 12.7 <0.01 

7 19.0  [15.3 − 22.6] 11.9  [8.8 – 15.0] 7.1 <0.01 

11 19.4  [16.1 − 22.7] 11.9  [9.1 − 14.7] 7.5 <0.01 

 

Table 2-5. Retinal nerve fiber layer thickness absolute difference (µm [95% confidence interval]) between 

time domain OCT (TD-OCT) and spectral domain OCT (SD-OCT) comparison at the sectors that showed 

statistically significant interaction between methods (with and without scan location matching) and diagnosis 

(healthy and glaucoma). 

Sector 

Healthy Glaucoma 

Difference 
without 

Matching (A) 

Difference 
with 

Matching (B) 
A-B p-

value 

Difference 
without 

Matching (C) 

Difference 
with Matching 

(D) 
C-D p-

value 

Temporal 14.3 
[11.6 – 16.9] 

4.6 
[3.4 – 5.8] 9.7 <0.01 11.3 

[9.4 – 13.3] 
6.5 

[13.3 – 8.3] 2.9 0.03 

8 19.4 
[15.2 – 23.5] 

7.4 
[4.6 – 10.1] 12.0 <0.01 14.7 

[9.5 – 19.9] 
6.5 

[19.9 – 11.5] 3.0 0.12 

9 9.1 
[7.6 – 10.6] 

4.6 
[3.9 – 5.3] 4.4 <0.01 9.2 

[7.1 – 11.4] 
6.2 

[11.4 – 9.0] 0.8 0.89 

10 24.5 
[18.6 – 30.4] 

11.4 
[6.8 – 15.9] 13.2 <0.01 21.2 

[14.2 – 28.2] 
9.4 

[28.2 – 16.2] 4.8 0.06 

12 37.9 
[30.2 – 45.6] 

18.4 
[12.7 – 24.0] 19.5 <0.01 27.7 

[22.2 – 33.3] 
15.3 

[33.3 – 20.0] 6.8 <0.01 
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2.3 DISCUSSION 

We have invented and evaluated a method to simultaneously compensate both systematic 

measurement difference between TD- and SD-OCT and scan location variability associated with 

TD-OCT. The results suggest that our scan location matching algorithm properly identified the 

actual TD-OCT scan location within the corresponding 3D SD-OCT volume data with relatively 

small error. This allowed the comparison of RNFL measurements in essentially the same 

location between TD- and SD-OCT scans, improving agreement and reducing measurement 

variability.  

Despite the relatively small sample size, RNFL thickness measurement differences 

between TD- and SD-OCT in most of the sectors were smaller with than without scan location 

matching, suggesting the robustness of the proposed algorithm. In most sectors, the measurement 

differences between TD-OCT and scan location matched SD-OCT were larger than the expected 

measurement errors on both TD- and SD-OCT. Since calibration adjustment removed the 

systematic measurement difference and the scan location matching algorithm removed the global 

registration components of measurement variability, the remaining differences may be attributed 

to A-scan location jitter due to eye movement during scanning (Figure 1-8B). The proposed 

algorithm re-samples data along a perfect circle, which precludes simulating the sampling jitter. 

Theoretically, the algorithm can be designed to look for the best match at every sampling 

location within the certain range based on the eye movement model. However, this approach will 

be computationally intensive and was not included in this first generation algorithm. The 

processing time per image is currently approximately 60 minutes. This can be reduced by 

optimizing the range of search (e.g. removing any re-sampling path intercepting the ONH) and 
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the computational routine (e.g. taking advantage of the hardware vector processing acceleration 

available to the latest processors). Further investigation and optimization are warranted. 

 The advantage of the present approach is that it requires only OCT data. No external 

reference information (e.g. fundus image) is required; therefore, it is possible to apply the same 

method to other TD-OCT and SD-OCT devices. Since multiple SD-OCT systems have been 

commercially introduced, data comparability issue between the legacy TD-OCT data and the 

new SD-OCT data needs to be resolved. A bridging method is needed to ensure a smooth 

technological transition while maintaining the integrity of longitudinal comparisons essential to 

detecting disease progression. The proposed method is a strong candidate to bridge the gap 

between TD- and SD-OCT RNFL measurements. Further investigation of its application to 

different TD- and SD-OCT devices is needed. 

A potential limitation of the proposed algorithm is its unselective use of OCT data. Since 

it is assessing the similarity of the OCT data, it might be more advantageous to selectively use 

stable structures that are unlikely affected by glaucomatous changes (e.g. retinal blood vessels). 

Unfortunately, the cumulative area of the major retinal blood vessels within a circular OCT scan 

cross-section is less than one fifth of the entire image. Our unpublished pilot data using only 

blood vessel information revealed that the selective approach was not robust. Unless significant 

global damage is inflicted within a short period of time, we hypothesize that area affected by 

glaucoma progression within a circular OCT cross-section is small enough not to adversely 

affect the algorithm performance. However, this hypothesis is yet to be tested. 

Another limitation of this study was that the Stratus video fundus images were used to 

assess the accuracy of scan location matching. The scan circle appearing on the Stratus video 

fundus image does not always correspond exactly to its cross-sectional image due to eye 
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movement during scanning. [19] This might have affected the distance assessment between TD- 

and SD-OCT scan locations. However, by subjectively observing the major retinal blood vessel 

shadows in cross-sectional OCT images, there was no clearly noticeable disagreement between 

TD-OCT scan and the corresponding matched virtual SD-OCT scan. Nonetheless, this might add 

to the residual difference that was noted between TD- and matched SD-OCT. 

In conclusion, our novel method of scan location matching may bridge the gap in RNFL 

thickness measurements between TD-OCT circular scan and 3D SD-OCT scan data, providing 

longitudinal comparability between TD- and SD-OCT measurements. 
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3.0  COMPARABILITY TEST BETWEEN TIME DOMAIN OPTICAL COHERENCE 

TOMOGRAPHY (TD-OCT) SCAN AND SPATIALLY ISOTROPIC/ANISOTROPIC 

THREE DIMENSIONAL (3D) SPECTRAL DOMAIN OCT (SD-OCT) SCAN 

Our previous aim [25] demonstrated a novel method, which can be used to establish backward 

data comparability between two generations of OCT technologies, TD-OCT (Stratus OCT) and 

SD-OCT (Cirrus HD-OCT), by detecting TD-OCT scan location within 3D SD-OCT cube scan. 

However, there are many different SD-OCT devices providing various scan designs. For 

example, a 3D SD-OCT scan can be performed in two ways (Figure 3-1): spatially isotropic 

(evenly sampled) scan and anisotropic (unevenly sampled) scan. In the previous study, the 

performance of SLM algorithm was measured with spatially isotropic 3D SD-OCT cube scans 

(Cirrus HD-OCT Optic Disc Cube 200×200). 

We hypothesized that SLM method is robust and can be applied to any 3D SD-OCT data 

regardless of scan design. However, it is possible that this spatial variation in scanning pattern 

may affect the performance of SLM method because SLM algorithm is based on the similarity 

measurement between two different scans (Figure 2-2, 2-3, and 2-4). For example, when the 

sampled points of SD-OCT, along the virtual 3.4 mm diameter circle, are less than the 256 points 

of the TD-OCT circle scan, a bigger SLM error will result. The purpose of this study was to 

compare the performance of the SLM method on SD-OCT devices that provide both spatially 
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isotropic and anisotropic volumes and to investigate the RNFL thickness measurement difference 

as well. 

 

 

Figure 3-1. Illustration of spatially isotropic (A) and anisotropic (B) 3D SD-OCT volume scans. Each black 

dot represents single A-scan. 

3.1 METHODS 

Twelve eyes of 12 healthy subjects and seven eyes of seven glaucoma subjects from the 

University of Pittsburgh Medical Center Eye Center were enrolled. University of Pittsburgh 

Institutional Review Board and ethics committee approval were obtained for the study, and 

informed consent was obtained from all subjects. This study followed the tenets of the 

Declaration of Helsinki and was conducted in compliance with the Health Insurance Portability 

and Accountability Act. 
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3.1.1 Clinical diagnosis 

Inclusion criteria were identical to the previous study design (section 2.1.1). Healthy and 

glaucoma eyes were defined by the previous study design (section 2.1.1), as well. The 

peripapillary region was scanned on all eyes using conventional TD-OCT (Stratus OCT) and SD-

OCT (Cirrus, RTVue, and Spectralis) at the same visit. All scans were performed through dilated 

pupils. 

3.1.2 Image Acquisition 

3.1.2.1 TD-OCT 

The image acquisition of the TD-OCT 3.4 mm diameter circle scan was identical to the previous 

study design (section 2.1.2.1). Nine circular scans were obtained from each eye in a single 

session by one operator. Each of nine scans had its scanning circle manually centered differently 

by moving the fixation target (Figure 2-1). 

3.1.2.2 SD-OCT 

Three SD-OCT volume scans per eye were obtained from three SD-OCT devices (one from each 

device): Cirrus HD-OCT Optic Disc Cube 200×200 (spatially isotropic, 200×200 samplings in 

6×6 mm), RTVue 3D Disc (spatially anisotropic, 513×101 samplings in 4×4 mm), and Spectralis 

(spatially anisotropic, 512×193 samplings in 6×6 mm) (Table 3-1, Figure 3-2). Scans were 

included with signal strength (SS) scores recommended by manufacturer: SS scores of Cirrus, 

RTVue, and Spectralis were eight or above, 57 or above, and blue, respectively. Included scans 

also required that eye movements be less than the diameter of major vessels appeared on SD-
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OCT fundus (en face) image. RNFL thickness was measured on every sampling point, except for 

the area within the ONH, in a fully automated fashion using a software program of our own 

design. The volume scans with more than 10% of frames labeled as RNFL analysis failure were 

considered as poor quality scans and discarded. The segmentation failure criteria for virtual OCT 

slices (or re-sampled images) from the SD-OCT scans was the same as for the TD-OCT scans. 

 

Table 3-1. Specification of SD-OCT devices. The scanning time of Spectralis depends on the amount of eye 

motion during scanning because eye motion tracking is on. 

 Cirrus RTVue Spectralis 

Scan Type Isotropic Anisotropic Anisotropic 

SD-OCT window 
size 

mm 6×6 4×4 6×6 

pixel 200 (W) × 200 (H) 513 (W) × 101 (H) 512 (W) × 193 (H) 

Scanning speed 
(A-scans / sec) 27,027 52,000 40,000 

Scanning time (sec.) 1.48 1.00 N/A 

 
 

 

Figure 3-2. 3D SD-OCT volume scans from three different manufacturers: A) Cirrus HD-OCT Optic Disc 

Cube 200×200, B) Spectralis volume scan, C) RTVue 3D Disk. 
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3.1.3 Scan location matching (SLM) process 

The scan location matching algorithm finds a TD-OCT scan within the SD-OCT volume scan by 

measuring the similarity between the two OCT cross-sectional images (Figure 2-3 and 2-4). [25] 

The detailed methodology is described in the previous aim, but briefly, every possible 3.4mm 

circular scan contained within the physical boundaries of the 3D SD-OCT scan was generated by 

mimicking the “Circle scan” pattern of conventional TD-OCT.  The radius of the sampling circle 

was adjusted for each device according to the calibration measurements (see below for details). 

Then, each A-scan of the re-sampled scan was aligned to a corresponding A-scan in the TD-OCT 

circular scan. Similarity for each virtual scan was computed by cross correlation, and the re-

sampled scan with the highest correlation coefficient was recorded as a matching scan location. 

3.1.4 Sampling Circle Calibration 

A virtual 3.4mm diameter circle size within 3D SD-OCT volume was adjusted by the calibration 

measurement of each SD-OCT device. A fake (phantom) eye was used with grid to find the 

calibration factor of each SD-OCT device (Figure 3-3). SD-OCT fundus image was manually 

registered to a reference scanning laser ophthalmoscopy (SLO) image by scaling, rotating, and 

translation. The relative scan size of each device was then determined by measuring the width of 

the OCT fundus image on the SLO image (Figure 3-3C). The precise window size of each device 

is summarized in Table 3-2 and visualized in Figure 3-4. 
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Figure 3-3. Visualization of measuring calibration factor: A) SLO image of phantom eye with grid; B) SD-

OCT fundus image of phantom eye; C) superimposed image of both SLO image (A) and SD-OCT fundus 

image (B). 

 

 

Figure 3-4. Visualization of our current SD-OCT scanning window size: A) ideal 6×6mm scanning window, 

B) Cirrus 6×6mm, C) Spectralis 6×6mm, D) RTVue 4×4mm. 

 

Table 3-2. Summary of the current scanning window size for SD-OCT devices. 

 Cirrus Spectralis RTVue 

Window Size 
Scan Setting 6 × 6 mm 

(200 × 200 pixel) 
6 × 6 mm 

(512 × 193 pixel) 
4 × 4 mm 

(513 × 101 pixel) 

Actual Size 6.26 × 6.26 mm 5.89 × 5.89 mm 3.88 × 3.88 mm 
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3.1.5 Performance assessment of the matched scan location 

We assessed the accuracy of the matched scan locations by measuring the distance between two 

center points of TD-OCT circle scan and the matched virtual SD-OCT circle scans. TD-OCT 

video fundus image was manually registered with the corresponding SD-OCT fundus images by 

rotating, scaling, and translation according to major retinal vessels (Figure 3-5). The distance 

between the centers of TD-OCT scan circle and the matched virtual SD-OCT scan circle, was 

measured on the composite images (Figure 3-5B, 3-5C, 3-5D; blue and white circles).  

Additionally, we computed the systematic difference (bias components (α, β)) in RNFL 

thickness measurement between TD-OCT and SD-OCT devices. These bias components can be 

used to drive calibration equation between TD-OCT and SD-OCT and between SD-OCT to SD-

OCT (Appendix A). For example, the following equation can be used to convert SD-OCT RNFL 

measurement to TD-OCT RNFL measurement or vice versa. 

-RNFL  =  -  +  RNFLSD OCT TD OCT TD OCT
TD OCT TD OCT SD OCT

SD OCT SD OCT

α β βα
β β
− − −

− −
− −

   
×   

   
 

When 

TD OCT

SD OCT

β
β

−

−

 
 
 

= 1 and  - SD OCT TD OCT
TD OCT

SD OCT

α βα
β
− −

−
−

 
 
 

 = 0, there is no bias. 

When 

TD OCT

SD OCT

β
β

−

−

 
 
 

= 1 and  - SD OCT TD OCT
TD OCT

SD OCT

α βα
β
− −

−
−

 
 
 

 ≠ 0, there is a constant bias. 

When 

TD OCT

SD OCT

β
β

−

−

 
 
 

≠ 1, there is a non-constant bias. 
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Figure 3-5. Manual registration of TD-OCT video fundus image (A) with SD-OCT fundus images (B, C, and 

D). Distance between the two circle centers (blue and white) was measured after registration. RNFL thickness 

measurement from the cross-sectional image was obtained with our own software.  

3.1.6 Statistical Analysis 

A linear mixed effects model [31-33] was used to assess the constant bias and standard deviation 

(SD) for the distance between scan center location with TD-OCT and SD-OCT. In addition, a 

secondary analysis was conducted only with scans where the entire TD-OCT circle was within 

the smallest SD-OCT scanning window because the dimensions of the scan window varied 
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among SD-OCT device (smallest window with RTVue; Table 3-1). This subset analysis included 

an identical set of scans for all SD-OCT devices due to various scanning window size of SD-

OCT volume. We used a value of p<0.05 as the criterion of statistical significance. 

A structural equation model (SEM; Figure 2-6) was used to model the measurement error 

of the devices. This model describes the relative systematic error (bias) between devices and the 

random error (imprecision) of each device. 

3.2 RESULTS 

Subject demographics were summarized in Table 3-3. Healthy eyes had thicker mean RNFL than 

glaucomatous eyes (p<0.01, mixed effects model). No scans were excluded due to either eye 

motion and/or low signal to noise ratio (SNR) and there was no SLM algorithm failure. 

 

Table 3-3. Patient demographics 

 Healthy 
(N=12) 

Glaucoma 
(N=7) 

Male : Female 5 : 7 2 : 5 

Age (years) 37.6 ± 10.6 63.2 ± 4.3 

TD-OCT RNFL Thickness (µm) 102.8 ± 9.2 88.6 ± 16.5 

 

3.2.1 Distance between the center points 

Table 3-4 summarizes the mean and standard deviation for the distance between TD- and 

matched SD-OCT scan center locations. There was strong interaction between device and 



 41 

diagnosis except for Cirrus: scan location matching algorithm with Cirrus showed no significant 

interaction (p>0.37). According to the primary analysis results with all qualified scans, the mean 

distance with healthy eyes was statistically significantly (p<0.01) larger for RTVue compared to 

Cirrus and Spectralis but not between Cirrus and Spectralis (p>0.22). The mean distance with 

glaucomatous eyes was statistically significantly smaller for Cirrus compared to RTVue and 

Spectralis (p<0.01 and p<0.02, respectively) but not between RTVue and Spectralis (p>0.37). 

The secondary analysis was performed only with scans completely within 4x4 mm area (RTVue 

scanning window size) for a fair comparison (Table 3-4). 77 qualified scans of 18 eyes (11 

healthy and 7 glaucoma) were included in this subset analysis. The analysis of healthy eyes (41 

qualified scans) was almost identical to the primary analysis results (e.g. RTVue showed 

significantly larger mean (p<0.04) of the distance than Cirrus and Spectralis). The mean distance 

with glaucomatous eyes in the secondary analysis no longer showed a statistically significant 

difference between Cirrus and RTVue. The imprecision ratios between devices and conditions 

were also summarized in Table 3-5. The imprecision ratio with identical scans with all devices 

was lower than all qualified scans and consistent between devices. 
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Table 3-4. Mean and standard deviation (SD) [95% confidence interval] for the distance between TD-OCT 

and SD-OCT scan center location. SLM algorithm showed strong interaction between device and condition 

except Cirrus: its mean was consistent for both healthy and glaucoma. 

Analysis 
Dataset 

Device 
No. of 
eyes 

Qualified Scans 
(Healthy: 

Glaucoma) 

Healthy Glaucoma 

Mean (µm) Imprecision SD (µm) Mean (µm) Imprecision SD (µm) 

All 
Qualified 

Scans 

Cirrus 19 171 (108: 63) 
82.2 

[53.7  -  110.7] 
71.9 

 [62.6  -    82.6] 
100.6 

[64.0  -  137.2] 
84.3 

[70.1  -  101.4] 

RTVue 19 171 (108: 63) 
239.9 

[202.2  -  277.6] 
148.8 

[129.7  -  170.7] 
169.1 

[129.7  -  208.5] 
102.6 

[85.7  -  122.7] 

Spectralis 18 162 (99: 63) 
95.0 

[65.5  -  124.5] 
77.3 

[66.9  -    89.4] 
149.2 

[102.3  -  196.2] 
145.6 

[121.8  -  174.1] 

Scans 
Complete 

Within 
4x4mm 

Cirrus 18   77 (41: 36) 
94.1 

[58.0  -  130.2] 
73.1 

[57.7  -    92.6] 
100.6 

[52.7  -  148.5] 
91.6 

[71.9  -  116.5] 

RTVue 18  77 (41: 36) 
144.4 

[93.5  -  195.3] 
137.6 

[109.8  -  172.3] 
108.8 

[73.7  -  144.0] 
60.0 

[46.3  -    77.7] 

Spectralis 18  77 (41: 36) 
96.2 

[62.0  -  130.4] 
106.8 

[50.0  -  154.1] 
154.1 

[106.8  -  201.4] 
113.5 

[88.4  -  145.7] 

 

Table 3-5. Imprecision ratio [95% confidence interval] between devices (Cirrus, RTVue, and Spectralis) and 

conditions (healthy and glaucoma). The imprecision ratio with identical scans with all devices was lower than 

all qualified scans and consistent between devices. 

Imprecision 
Ratio 

Cirrus RTVue Spectralis 

Healthy Glaucoma Healthy Glaucoma Healthy Glaucoma 

All Qualified 
Scans 

1.00 
(Ref.) 

1.17 [0.93 - 1.47] 2.07 [1.70 - 2.52] 1.43 [1.13 - 1.79] 1.08 [0.88 - 1.31] 2.02 [1.61 - 2.55] 

Identical 
Scans Within 

4×4 mm 

1.00 
(Ref.) 

1.25 [0.89 - 1.76] 1.88 [1.36 - 2.61] 0.82 [0.58 - 1.16] 0.86 [0.62 - 1.20] 1.55 [1.10 - 2.19] 

3.2.2 RNFL thickness measurements comparison 

The statistical analysis for RNFL measurement was performed with five out of nine repeated 

TD-OCT scans (Figure 2-1) in randomized fashion. The corresponding five matched SD-OCT 
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resampled images were paired with them. Table 3-6 shows the RNFL thickness measurements 

from four OCT devices: TD-OCT, Cirrus, RTVue, and Spectralis. The calibration equation 

coefficients (α, β) were computed from the matched SD-OCT images. The scale components (β) 

of Cirrus, RTVue, and Spectralis were 1.07, 1.26, and 1.26, respectively. In other words, the 

global mean RNFL thickness measurements of Cirrus, RTVue, and Spectralis were, respectively, 

7%, 26%, and 26% higher than TD-OCT circle scan. However, the difference was not 

statistically significant. Figure 3-6 scatter plot summaries the calibration equations of sectoral 

parameters: global mean, temporal, superior, nasal, and inferior. The RNFL thickness 

measurement from TD-OCT is plotted against Cirrus, RTVue, and Spectralis. The calibration 

equation (solid red) described on Table 3-7 is plotted with the ideal diagonal line (dashed). 
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Table 3-6. The RNFL thickness measurements from four OCT devices: TD-OCT, Cirrus, RTVue, and 

Spectralis. 

 
TD-OCT Cirrus RTVue Spectralis 

Healthy Glaucoma Healthy Glaucoma Healthy Glaucoma Healthy Glaucoma 

Global Mean 101.6 85.5 115.1 101.2 123.7 100.5 109.9 96.1 

Q
uadrant 

Temporal 81.4 79.1 98.7 87.2 109.3 96.0 92.0 90.3 
Superior 125.7 101.6 138.4 120.7 143.5 113.6 129.5 107.7 

Nasal 72.5 64.3 83.8 84.3 100.2 78.2 89.3 76.9 
Inferior 127.0 97.1 139.3 112.5 141.8 114.1 128.7 109.6 

C
lock H

our 

1 60.2 63.6 80.4 70.8 93.3 81.3 77.1 74.9 
2 95.0 94.3 114.9 102.1 123.1 109.4 102.6 100.8 
3 146.3 120.1 163.3 129.2 168.2 131.9 142.4 120.2 
4 119.8 98.5 131.0 113.4 135.6 103.5 121.8 104.0 
5 111.0 86.0 121.5 119.2 127.2 105.4 124.8 99.1 
6 85.1 76.1 104.0 106.0 118.5 98.2 103.9 91.3 
7 61.3 52.8 69.9 67.6 84.5 60.8 78.0 64.9 
8 71.2 63.5 78.4 81.1 97.9 75.9 87.0 75.1 
9 98.2 80.7 107.1 95.1 117.3 92.9 105.7 88.9 
10 131.5 101.0 136.4 115.8 134.8 122.1 123.5 110.6 
11 151.5 109.9 169.0 123.8 170.1 124.1 152.8 125.3 
12 88.6 79.1 110.8 96.0 120.0 103.2 104.9 101.9 

 

Table 3-7. The estimated bias components (α, β) for calibration equation. 

Sector TD-OCT (Ref.) Cirrus RTVue Spectralis 
α(µm) β α(µm) β [95% CI] α(µm) β [95% CI] α(µm) β [95% CI] 

Global Mean -3.12 1 15.65 1.07 [0.67-1.72] -1.42 1.26 [0.71-2.10] -13.18 1.26 [0.91-1.90] 

Q
uadrant 

Temporal -17.87 1 -5.87 1.00 [0.62-1.39] 16.56 0.90 [0.61-1.21] 6.25 0.86 [0.64-1.11] 
Superior 7.78 1 30.30 1.05 [0.54-2.56] -33.44 1.55 [0.69-3.83] -14.19 1.36 [0.77-3.38] 

Nasal -28.23 1 19.74 0.74 [0.30-1.61] -6.44 0.90 [0.08-2.29] 9.65 0.56 [-0.01-1.58] 
Inferior -20.55 1 -10.41 1.00 [0.76-1.27] 10.62 0.87 [0.62-1.14] 17.09 0.77 [0.63-0.94] 

C
lock H

our 
1 -13.06 1 53.77 0.58 [0.06-1.51] -56.45 1.55 [0.83-3.46] -10.74 1.08 [0.57-2.48] 
2 -87.66 1 55.39 0.55 [-0.06-1.35] -107.89 1.11 [0.34-4.63] 46.40 0.45 [-0.04-1.78] 
3 -16.98 1 0.59 1.14 [0.56-2.30] 6.46 0.86 [-0.37-2.08] 9.45 0.69 [0.10-1.45] 
4 -16.67 1 7.59 1.09 [0.61-2.36] 12.69 0.99 [0.16-2.51] 4.55 1.13 [0.60-2.82] 
5 -16.81 1 -3.02 0.98 [0.71-1.35] 8.75 0.93 [0.62-1.31] 9.98 0.83 [0.60-1.14] 
6 -24.19 1 -1.20 0.89 [0.70-1.11] 19.46 0.76 [0.56-0.98] 3.24 0.80 [0.66-0.97] 
7 -11.23 1 -20.65 1.19 [0.97-1.52] -13.77 1.16 [0.89-1.51] 35.72 0.73 [0.57-0.95] 
8 -10.43 1 -19.11 1.31 [1.02-1.69] 10.22 1.09 [0.79-1.46] 15.89 0.92 [0.63-1.28] 
9 -8.10 1 -0.59 1.12 [0.17-2.94] 5.47 1.19 [0.36-2.87] 2.57 1.03 [0.44-2.62] 
10 -6.54 1 3.14 1.04 [0.69-1.39] 12.17 1.03 [0.75-1.33] -8.99 1.09 [0.95-1.25] 
11 27.50 1 -22.16 1.62 [1.17-2.35] -14.96 1.52 [0.87-2.39] -0.37 1.26 [0.82-1.91] 
12 -3.74 1 0.10 1.16 [0.70-2.38] -0.85 1.10 [0.41-2.46] 3.95 1.01 [0.62-2.14] 
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Figure 3-6. Scatter plot of the five sectoral RNFL thickness measurements. The RNFL thickness 

measurement from TD-OCT is plotted against Cirrus, RTVue, and Spectralis. The calibration equation (solid 

red) described on Table 6 is plotted with the ideal diagonal line (TD-OCT = Cirrus, dashed). 
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3.3 DISCUSSION 

RNFL thickness measurement needs to be comparable (inter-changeable) between TD-OCT and 

SD-OCT from various manufacturers in order to ensure a smooth technological transition while 

maintaining the integrity of longitudinal observations essential to detecting disease progression. 

In this study, the performance of SLM algorithm was tested on both spatially isotropic and 

anisotropic SD-OCT volume scans with healthy and glaucomatous eyes. The results showed that 

the proposed scan location matching algorithm detected the TD-OCT scan location within the 

corresponding 3D SD-OCT volume scans acquired with various devices in relatively small error 

(e.g. 144.4 µm on RTVue 3D scan is equivalent to about 3.6 pixels on screen). Therefore, this 

approach is a strong candidate to bridge the gap between TD-OCT and SD-OCT. Moreover, no 

external reference information (e.g., fundus image) is required to enable comparability between 

them with this method. 

RTVue scanning window (Figure 3-4) is markedly smaller than other SD-OCT devices 

that substantially reduced the number of scans where the entire TD-OCT circle was within the 

SD-OCT window. Therefore, in some cases, SLM algorithm could not find the exact location of 

TD-OCT circle scan within RTVue volume scan (Figure 3-7). When this happened, we forced 

the SLM algorithm to select the closest location within the RTVue volume. This may explain 

why RTVue was relatively less accurate than Cirrus and Spectralis in the primary analysis but 

not in the secondary analysis. 
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Figure 3-7. Visualization of the various scanning window sizes of SD-OCT: A) Cirrus; B) Spectralis; C) 

RTVue. SD-OCT fundus image is different between devices by manufacturer. White circle on each SD-OCT 

fundus image represents a virtual 3.4 mm diameter circle relative to TD-OCT circle scan. RTVue (C) shows 

relatively small window size and this was a potential problem for SLM algorithm because it was possible that 

TD-OCT circle scan may be partially missing within RTVue volume due to its small widow size. 

 

In addition, the calibration equation coefficients (α, β) were successfully computed from 

the matched SD-OCT images. The difference of scale components (β) of Cirrus, RTVue, and 

Spectralis were not statistically significant. However, we hypothesize that it does not imply that 

there was no difference because the 95% confidence interval was too wide to be conclusive. This 

hypothesis is yet to be tested. 

In conclusion, the SLM algorithm is robust and can be applied to 3D SD-OCT volume 

data regardless of different manufactures and scan designs. This method may bridge the gap in 

RNFL thickness measurements between TD-OCT circular scan and 3D SD-OCT scan data 

acquired using various units, providing longitudinal comparability between TD- and SD-OCT 

measurements. 
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4.0  NORMALIZATION OF TIME DOMAIN-OPTICAL COHERENCE 

TOMOGRAPHY (TD-OCT) RETINAL NERVE FIBER LAYER THICKNESS 

MEASUREMENTS BY USING MATHEMATICAL MODEL OF RETINAL NERVE 

FIBER BUNDLE DISTRIBUTION (RNFBD) PATTERN 

Glaucomatous damage occurs along axon bundles and creates localized wedge-shaped RNFL 

defects on red-free fundus photographs (Figure 1-2, 1-3, and 4-1) because axons originate from 

the retinal ganglion cells and converge at the ONH. [11-14] The conventional TD-OCT 3.4mm 

diameter circle scan centered on the ONH (Figure 1-4) enables quantitative analysis of the retinal 

nerve fiber layer. [13, 16] Furthermore, multiple repeated RNFL thickness measurements using 

TD-OCT circle scans in different time points are used to detect glaucoma progression. [15] 

 

Figure 4-1. Localized axon bundle loss (A) due to glaucomatous damage in human eye can be visualized by 

red-free fundus photo and VF test (B). Superimposed image (C) shows the correspondence between (A) and 

(B). 
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We have established a method to make TD-OCT RNFL thickness measurements in one 

time point directly comparable to the corresponding SD-OCT RNFL thickness measurements at 

another time point (Objectives #1 and #2). Hence, longitudinal TD-OCT data can be compared to 

the present SD-OCT data but not multiple time points together, which are needed for trend 

(progression) analysis. Scan-to-scan RNFL thickness measurement variability is relatively high 

mainly due to the operator dependent manual placement of the TD-OCT circular scanning path 

(variable TD-OCT circular scan locations) (Figure 1-8 and 4-2). [19-21] This prevents us to 

compare multiple time points together even after scan location matching and proper 

measurement conversion (both fixed and variable bias). 

 Retinal nerve fiber bundles form a specific pattern that varies for each individual. 

A pattern can be generated from a 2D RNFL thickness map of given SD-OCT 3D data. By 

mathematically modeling the pattern, virtual RNFL thickness values can be computed on any 

sampling circle location based on the actual values measured in one location. In other words, 

RNFL thickness measured along an off-centered circle can be normalized to the RNFL thickness 

virtually sampled along the properly centered circle. This way, multiple TD-OCT RNFL 

thickness measurements at multiple visits can be made comparable to each other even when the 

actual scan locations vary. 
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Figure 4-2. One limitation of TD-OCT circular scan: scanning location variation due to the manual 

placement of the scanning circles. A) a properly centered circle, B) the scanning circle was displaced inferior 

temporally, and C) the circle was displaced nasally. As a result of displacement, RNFL thickness profile 

graphs show peak location shifting, and the differences in RNFL thickness measurements. 

 

The aim of this final objective was to develop a mathematical model of the retinal nerve 

fiber bundle distribution (RNFBD) pattern to normalize the RNFL thickness measurements of 

off-centered TD-OCT circle scans to a virtual universal location properly centered on the ONH. 

The reproducibility of normalized RNFL thickness measurement was compared to the actual TD-

OCT circular scans (variable scan locations) in order to assess the clinical usefulness of this 

approach.  
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4.1 METHODS 

We recruited 12 eyes of 12 healthy subjects and 7 eyes of 7 glaucoma subjects from the 

University of Pittsburgh Medical Center (UPMC) Eye Center. University of Pittsburgh 

Institutional Review Board (IRB) and ethics committee approval were obtained for the study, 

and informed consent was obtained from all subjects. This study followed the tenets of the 

Declaration of Helsinki and was conducted in compliance with the Health Insurance Portability 

and Accountability Act. 

4.1.1 Clinical diagnosis 

Inclusion criteria for healthy and glaucoma subjects were identical to the previous study design 

(section 2.1.1). 

4.1.2 Image Acquisition 

For this study, the peripapillary region was scanned on all eyes using TD-OCT (StratusOCT; 

CZMI) and SD-OCT (Cirrus HD-OCT; CZMI) at a single visit. All subject eyes had dilated 

pupils at the time of OCT scan. 

4.1.2.1 TD-OCT 

The image acquisition of the TD-OCT 3.4 mm diameter circle scan was identical to the previous 

study design (section 2.1.2.1). Nine circular scans were obtained from each eye in a single 
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session by one operator. Each of nine scans had its scanning circle manually centered differently 

by moving the fixation target (Figure 2-1). 

4.1.2.2 SD-OCT 

The image acquisition of the 3D SD-OCT volume scan was identical to the previous study 

design (section 2.1.2.2). ONH margin was detected and then RNFL thickness was measured on 

every sampling point, except for the area within the ONH, in a fully automated fashion using a 

software program of our own design. The volume scans with more than 10% of frames labeled as 

RNFL analysis failure were considered as poor quality scans and discarded. The segmentation 

failure criteria for virtual OCT slices (or re-sampled images) from the SD-OCT scans was the 

same as that of the TD-OCT scans. 

4.1.3 Mathematical Retinal Nerve Fiber Bundle Distribution (RNFBD) Mapping and 

Normalization of RNFL Thickness Measurements 

RNFL thickness measurements normalization was achieved by utilizing the fact that RNFL 

thickness decreases along the anatomical RNFBD. [21] Knowing the TD-OCT scan location 

within the corresponding 3D SD-OCT volume data allows us to adjust RNFL thickness 

measured on an off-centered circle by tracking the RNFBD to the corresponding point on the 

virtually centered circle. We assumed the decay along the RNFBD was the same in both time 

points when TD- and SD-OCT scans were obtained. The detailed flow chart of the normalization 

is shown in Figure 4-3. 

RNFBD map was generated by interpolating the major RNFBD curvatures (one in the 

superior and another in the inferior hemifield, Figure 4-4C) mimicking the anatomical RNFBD 
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(Figure 1-7C). Major RNFBD was detected in each hemifield by detecting the center of gravity 

of the RNFL thickness on multiple resampled RNFL profiles along concentric circles with the 

diameter ranging from 3.0 to 5.4 mm with 0.015 mm interval centered on the ONH (Figure 4-4C, 

D, and E). The “raw” major RNFBD information was smoothed by fitting two different 

curvature models: quadratic (f(x) = ax2 + bx + c) and linear (f(x) = ax + b) curves (Figure 4-5). 

[35] The major RNFBD curvature models, f(x), from superior and inferior hemispheres (Figure 

4-4E) were then linearly interpolated, p(x), along concentric circles with a 0.015 mm interval 

centered on the ONH.  

p(x) = f(xi) +  ( f(xi+1) - f(xi) ) × (x – xi) / (xi+1 - xi) 

The interpolation of RNFBD curvature was performed only outside the ONH region. In 

addition, the interpolated lines (Figure 4-5B and 4-5C) were not always quadratic or linear 

functions because the center of concentric circle was the ONH center instead of the intersection 

point of the two major RNFBD curvature models (i.e., superior and inferior hemispheres). This 

was why the individual line on Figure 4-5C does not always look like a linear (i.e., quasi-linear) 

function. 

Using the proposed SLM method, the TD-OCT scan location was identified within the 

3D SD-OCT data (Figure 4-6C). Then corresponding points along the virtual centered circle on 

the SD-OCT data were traced for each sampling point on the off-centered TD-OCT circular scan 

along the RNFBD map (Figure 4-6F and G). The RNFL thickness ratio (RU) on these 

corresponding points (i.e., a/b = a*/b* as in Figure 4-6F and G) was then applied to compute the 

normalized RNFL thickness at each sampling point. The TD-OCT RNFL thickness 

normalization equation is: 

b(x, y) = a(x, y) × Ru, 
Ru = a*(x, y) / b*(x, y), 
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                 Ru: RNFL thickness ratio 
                 a(x, y): RNFL thickness of the off-centered TD-OCT circle scan, 

                       b(x, y): Normalized RNFL thickness at the virtual location on TD-OCT scale, 
                       a*(x, y): RNFL thickness at the matched SD-OCT circle scan (SD-OCT scale), 
                       b*(x, y): RNFL thickness at the ONH centered SD-OCT circle scan, 
                       x, y: X-Y coordinate on the SD-OCT fundus image. 

 

 

 

Figure 4-3. Flow diagram of TD-OCT RNFL thickness measurement normalization process. 
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Figure 4-4. Visualization of mathematical RNFBD mapping process: A) 3D SD-OCT volume, B) 2D RNFL 

thickness map of SD-OCT volume, C) search boundary (green region) for the center of RNFL thickness on 

SD-OCT fundus image, D) search boundary (green region) for the center of RNFL thickness on 2D RNFL 

thickness map, E) the computed centers (i.e., center of gravity, yellow line) of RNFL thickness at each radius, 

F) RNFBD map derived after mathematical interpolation of two fitted curves (E, yellow lines).    

 

 

Figure 4-5. Visualization of the two different mathematical RNFBD mapping methods: A) anatomical 

RNFBD pattern, B) quadratic RNFBD mapping method, and C) quasi-linear RNFBD mapping method. The 

curvature of each method is different (i.e., quadratic and linear). 
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Figure 4-6. Visualization of TD-OCT RNFL thickness measurement normalization process: A) TD-OCT 

circle scan, B) 3D SD-OCT cube scan, C) matched scan location within SD-OCT cube scan using SLM 

method and RNFL thickness of (A) in pseudo-color scale, D) axon bundle distribution map, E) 2D RNFL 

thickness map of (B), F) universal (virtual) location (yellow circle) in TD-OCT scale centered on the optic 

nerve head, G) universal location (yellow circle) in SD-OCT scale centered on the optic nerve head. RNFL 

thickness measurement of TD-OCT circle scan at the universal location (F, yellow circle) is computed by 

using the ratio (RU) between a/b = a*/b*. 
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4.1.4 Normalization Performance Assessment 

The performance of the RNFL thickness normalization method was assessed by comparing the 

reproducibility of the global and sectoral RNFL thickness measurements of the following 

methods: 1) the actual TD-OCT scan with one centered and eight off-centered locations, 2) the 

quadratic RNFBD normalization method (QM), and 3) the quasi-linear RNFBD normalization 

method (QLM). The difference between the QM and QLM was the stiffness of estimated 

RNFBD curves (Figure 4-6). 

4.1.5 Statistical Analysis 

The reproducibility of the methods was assessed by a structural equation model for the 

measurement error (Figure 4-7). This statistical model assessed bias and imprecision 

simultaneously using maximum likelihood estimates of the model parameters along with their 

corresponding 95% confidence intervals (CI) and p-values. For the analysis, 5 of the 9 scans 

were selected in randomized fashion. 
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Figure 4-7. Diagram of structural equation model. 

4.2 RESULTS 

Subject demographics were summarized in Table 4-1. The average RNFL thickness 

measurement from TD-OCT scans was 104.0 µm (± 9.0 µm) with 12 healthy eyes and 91.5 µm 

(± 16.3 µm) with 7 glaucomatous eyes (Table 4-2). No scans were excluded due to either eye 

motion and/or poor signal level and subjectively there was neither SLM algorithm nor RNFBD 

mapping failure. 

Table 4-1. Subject demographics. 

 Healthy 
(N=12) 

Glaucoma 
(N=7) 

Male : Female 5 : 7 2 : 5 

Age (years) 35.2 ± 11.7 63.2 ± 4.3 

TD-OCT RNFL Thickness (µm) 101.8± 9.1 88.6 ± 16.5 
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Table 4-2. RNFL thickness measurements from TD-OCT circle scan. 

Sector Healthy Glaucoma 
Global Mean 104.0 ±9.0 91.5 ±16.3 

Q
uadrant 

Temporal 70.5 ±24.0 70.8 ±13.6 
Superior 118.7 ±28.1 104 ±13.7 

Nasal 93.9 ±33 85.3 ±27.1 
Inferior 132.9 ±21.8 106 ±37.2 

C
lock H

our 

1 56.7 ±23.6 61.1 ±12.2 
2 83.6 ±32.1 79.4 ±21 
3 117.6 ±31.9 116.8 ±27.8 
4 123 ±40.3 102.4 ±20.8 
5 115.2 ±36.8 93 ±17.5 
6 105.1 ±30.4 96.3 ±19.6 
7 83.7 ±33.7 79 ±29.4 
8 93.7 ±38.2 80.5 ±37.9 
9 110.1 ±32.2 101.3 ±48.8 

10 144.3 ±33.5 111.3 ±41.8 
11 144.9 ±34.8 105.7 ±48.3 
12 80.2 ±22.9 77.9 ±26.8 

 

Table 4-3 shows the statistical analysis results of structural equation model. For the 

analysis, 5 of the 9 scans were selected in randomized fashion. The reproducibility of RNFL 

thickness measurement between the three different methods (TD-OCT scan, QM, and QLM) was 

compared. When a ratio is equal to one, the reproducibilities are identical. For example, the 

estimated reproducibility ratio (QLM/TD-OCT) of global mean RNFL thickness measurements 

was 0.80 (95% CI 0.63 to 1.02), which indicates that the reproducibility of QLM was 20% better 

(i.e., the variance was smaller) than for TD-OCT. However, the reproducibilities are not 

statistically significantly different because the 95% CI includes one. The reproducibility ratios 

showed that quadratic RNFBD normalization approach statistically significantly improved 

RNFL thickness measurement reproducibility in comparison with TD-OCT for all sectors except 

for global mean, nasal quadrant, and clock hour 11. For quasi-linear RNFBD normalization 

method, the reproducibility ratios were statistically significant in all sectors except global mean. 
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In addition, the variability of normalized RNFL measurement was close to the previously 

reported TD- and SD-OCT reproducibility on a different population (Figure 4-8, black solid). 

[30] 

 

Table 4-3. Comparison of RNFL thickness measurement reproducibility between three methods: 1) the actual 

TD-OCT circle scan, 2) the quadratic RNFBD normalization method, and 3) the quasi-linear RNFBD 

normalization method.  When a ratio (A/B) is equal to one, reproducibilities are identical. The difference for 

both methods were statistically significant for all sectors except global mean. 

Sector 

TD-OCT Quadratic RNFBD Mapping Quasi-linear RNFBD Mapping 

Imprecision 
SD (µm, A) 

βQUAD / βTD-OCT 
Imprecision 
SD (µm, B) 

Imprecision 
SD ratio 
(B / A) 

βQUASI / βTD-OCT 
Imprecision 
SD (µm, C) 

Imprecision 
SD ratio 
(C / A) 

Global Mean 
4.55 

[5.31-6.31] 
1.03 

[0.90-1.17] 
4.42 

0.83 
[0.64-1.08] 

0.98 
[0.89-1.07] 

4.23 
0.80 

[0.63-1.02] 

Q
uadrant 

Temporal 
19.86 

[17.24-23.18] 
1.11 

[0.81-1.52] 
7.40 

0.37 
[0.25-0.54] 

1.01 
[0.89-1.14] 

6.21 
0.31 

[0.24-0.40] 

Superior 
19.61 

[16.79-23.16] 
1.07 

[0.74-1.49] 
9.50 

0.48 
[0.32-0.76] 

1.05 
[0.90-1.23] 

10.07 
0.51 

[0.39-0.68] 

Nasal 
24.62 

[21.07-29.25] 
0.71 

[0.26-1.78] 
10.92 

0.44 
[0.16-1.25] 

1.07 
[0.88-1.30] 

7.48 
0.30 

[0.23-0.41] 

Inferior 
19.64 

[17.05-22.93] 
1.04 

[0.87-1.28] 
9.15 

0.47 
[0.35-0.62] 

0.94 
[0.84-1.04] 

8.00 
0.41 

[0.32-0.52] 

C
lock H

our 

1 
27.21 

[23.30-32.34] 
0.88 

[0.53-1.32] 
11.79 

0.43 
[0.26-0.75] 

1.02 
[0.83-1.21] 

16.60 
0.61 

[0.46-0.82] 

2 
26.87 

[23.02-31.94] 
0.56 

[0.13-1.18] 
21.80 

0.81 
[0.35-3.39] 

1.01 
[0.77-1.28] 

11.44 
0.43 

[0.31-0.60] 

3 
24.91 

[21.46-29.12] 
0.90 

[0.43-1.69] 
11.21 

0.45 
[0.23-0.99] 

0.94 
[0.68-1.27] 

11.98 
0.48 

[0.33-0.72] 

4 
25.93 

[22.39-30.27] 
1.15 

[0.67-1.86] 
9.38 

0.36 
[0.21-0.66] 

0.91 
[0.76-1.10] 

10.35 
0.40 

[0.30-0.53] 

5 
30.01 

[25.96-35.05] 
0.94 

[0.63-1.35] 
11.23 

0.37 
[0.24-0.59] 

1.04 
[0.89-1.22] 

10.31 
0.34 

[0.26-0.45] 

6 
35.63 

[30.51-42.31] 
0.90 

[0.55-1.42] 
13.27 

0.37 
[0.22-0.65] 

1.03 
[0.90-1.17] 

10.23 
0.29 

[0.22-0.37] 

7 
22.05 

[18.88-25.77] 
1.45 

[1.16-1.76] 
9.38 

0.43 
[0.32-0.59] 

0.95 
[0.86-1.05] 

14.21 
0.64 

[0.51-0.83] 

8 
27.28 

[23.37-32.31] 
1.03 

[0.70-1.46] 
10.83 

0.40 
[0.26-0.63] 

1.03 
[0.91-1.17] 

10.70 
0.39 

[0.30-0.51] 

9 
15.50 

[13.27-18.30] 
1.30 

[0.72-2.18] 
7.14 

0.46 
[0.25-0.88] 

0.95 
[0.77-1.18] 

9.43 
0.61 

[0.45-0.83] 

10 
25.45 

[22.04-29.70] 
1.68 

[1.12-2.46] 
6.52 

0.26 
[0.16-0.41] 

0.94 
[0.83-1.06] 

12.86 
0.51 

[0.40-0.65] 

11 
21.35 

[18.29-25.38] 
1.07 

[0.65-1.56] 
12.54 

0.59 
[0.36-1.01] 

0.97 
[0.83-1.13] 

12.81 
0.60 

[0.46-0.79] 

12 
30.17 

[25.84-35.81] 
1.03 

[0.63-1.63] 
11.25 

0.37 
[0.22-0.65] 

1.02 
[0.87-1.18] 

12.80 
0.42 

[0.32-0.56] 
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Figure 4-8. The imprecision SD plot. The variability of normalized RNFL thickness measurements was 

statistically significantly lower than the actual TD-OCT circle scan except global mean. In addition, the 

variability from Kim JS, et al. study (black solid and brown) [30] was plotted for comparison purpose. 
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4.3 DISCUSSION 

We have developed and evaluated an automated algorithm to normalize the RNFL thickness 

measurement of off-centered TD-OCT circle scan to a virtual properly centered location.  The 

results suggested that our mathematical RNFBD model properly identified the anatomical 

RNFBD pattern by using the corresponding 3D SD-OCT volume data and improved the 

reproducibility of TD-OCT RNFL thickness measurements in all sectors except global mean 

(Table 4-3). Figure 4-10 shows that RNFBD model agrees well with localized defect due to 

glaucoma. This implies that the multiple TD-OCT RNFL measurements from longitudinal 

repeated TD-OCT scans can be compared in ideally the same location regardless the accuracy of 

the actual scan location (Figure 4-2). In other words, this approach made possible for clinicians 

to track, compare, and detect any retinal changes over a longer period of time with relatively low 

measurement variation, which may enable more reliable and sensitive glaucomatous progression 

analysis. 

 

Figure 4-9. RNFBD mapping sample: A) SD-OCT fundus image from a glaucomatous eye, B) 2D RNFL 

thickness map of SD-OCT from the same eye, and C) RNFBD map superimposed with (B). The localized 

defect region was marked with white bracket (B and C). 
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One limitation of the study was that the RNFBD model was based on the RNFL thickness 

map, which may be altered due to glaucomatous damage. In other words, this method works well 

with healthy eyes but may not create the best model in eyes with advanced glaucomatous 

damage. In the present study, since we did not have enough subjects, we did not test the 

performance difference between healthy and glaucoma groups. Further investigation is needed to 

check the robustness of this method with glaucomatous eyes. 

In terms of the RNFL thickness decay ratio along the RNFBD, we assumed that it stayed 

the same even with glaucomatous damage because it was calculated along the RNFBD. This 

assumption also needs to be tested in further investigation.  

In conclusion, the RNFL thickness measurement normalization by combining individual 

mathematical RNFBD models and the SLM algorithm improved reproducibility of TD-OCT 

RNFL thickness measurements. In addition, this method may provide a useful tool for study of 

longitudinal glaucoma progression. 
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5.0  DISCUSSION 

In this study, three objectives were achieved to improve the clinical utility of OCT RNFL 

measurement by establishing data comparability across the OCT technology generations and 

models. The first objective of this work was to develop and implement an OCT SLM algorithm 

(PCT/US2009/052951 pending), which finds the precise scan location of the TD-OCT cross-

sectional image within the 3D SD-OCT volume from the same eye. The performance of the SLM 

algorithm allowed the comparison of RNFL measurements in essentially the same location 

between TD and SD OCT scans, improving agreement and reducing measurement variability. 

The second objective of this work was to compare the performance of the SLM method on SD-

OCT devices that provides spatially isotropic and anisotropic volumes. The performance of the 

SLM method was tested with healthy and glaucomatous eyes. The results showed that the 

proposed scan location matching algorithm detected the TD-OCT scan location within the 

corresponding 3D SD-OCT volume scans, acquired with various devices, with relatively small 

error (e.g. 144.4 µm on RTVue 3D scan is equivalent to about 3.6 pixels on screen). The 

performance of SLM algorithm was robust and may be applied to 3D SD-OCT volume data 

regardless of different manufactures and scan designs. This method may bridge the gap between 

RNFL thickness measurements acquired with TD-OCT circular scan and 3D SD-OCT scan data, 

in various units, providing longitudinal comparability between TD- and SD-OCT measurements. 

Finally, the third objective of this work was to achieve RNFL thickness measurement 
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normalization of off-centered TD-OCT circle scan, which is the major source of RNFL thickness 

measurement variation. The results suggested that the normalization method improved 

reproducibility of TD-OCT RNFL thickness measurements in all sectors including global mean.  

The potential limitations of SLM algorithm were: 1) its unselective use of OCT data (e.g., 

retinal blood vessels are advantageous and stable structure against glaucomatous damage), and 2) 

the Stratus video fundus images were used to assess the accuracy of scan location matching (i.e., 

the scan circle appearing on the Stratus video fundus image does not always correspond exactly 

to its cross-sectional image due to eye motion). The potential limitations of RNFL thickness 

normalization method were: 1) major RNFBD may not be properly detected on glaucomatous 

eyes, and 2) RNFL thickness decay ratio may be variable depending on the amount of 

glaucomatous damage present on a given RNFBD. Despite of these potential limitations, all the 

presented results of the proposed novel approaches showed significant clinical usefulness. 

Further development and refinement of these approaches may yield maximum use of legacy 

OCT data that would otherwise become obsolete. 

In summary, this study addressed the importance of “backward-comparability” between 

the two different OCT technologies and introduced novel methods (i.e., SLM and mathematical 

RNFBD mapping) to improve the clinical utility of OCT RNFL measurement. Implementing the 

methods evaluated in this study would help clinicians track, compare, and detect any structural 

change of the retina over a longer period of time. 
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APPENDIX A 

CALIBRATION EQUATION COMPUTATION 

The following calibration equation was modeled with estimating the bias components (α and β) 

in the RNFL thickness measurement between TD-OCT and SD-OCT, 

 

where the ratio of the betas (βTD-OCT and βSD-OCT) adjusts for scale differences between the two 

devices (TD-OCT and SD-OCT), and alphas (αTD-OCT and αSD-OCT) represent the bias intercepts in the 

statistical structural equation model (SEM) while the betas represent the regression slopes 

between the latent variables and the observed variables for each device and location.  

Table 4-4 shows the estimated bias and the calibration equation components. When the 

ratio of the betas equals one and the differences between alphas equal zero, there is no bias. 

When the ratio of the betas equals one and the difference of the alphas is nonzero, there is a 

constant bias. When the ratio of the betas differs from one, there is a non-constant bias (i.e., the 

bias changes with the measurement level).  
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Table 5-1. The estimated bias (αTD-OCT, αSD-OCT, βTD-OCT, and βSD-OCT) and the calibration equation 

components (intercepts and slopes) for time domain OCT (TD-OCT) and spectral domain OCT (SD-OCT) 

retinal nerve fiber layer thickness measurements. 

Sector 

Bias estimation Calibration equation 

TD-OCT SD-OCT 
Ratio: 

βTD-OCT / βSD-OCT 
On TD-OCT scale On SD-OCT scale 

α β α β Lower Est. Upper Intercept Slope Intercept Slope 

Global Mean 2.51 1.00 -2.51 1.00 0.83 1.01 1.23 5.04 1.01 -4.99 0.99 

Q
uadrants 

Temporal -5.52 1.14 4.46 0.88 0.92 1.30 1.90 -11.30 1.30 8.72 0.77 

Superior 1.61 1.01 -1.64 0.99 0.81 1.03 1.30 3.29 1.03 -3.20 0.97 

Nasal 6.52 0.95 -6.68 1.05 0.65 0.91 1.25 12.59 0.91 -13.87 1.10 

Inferior 11.34 0.92 -12.14 1.09 0.72 0.85 0.99 21.65 0.85 -25.51 1.18 

C
lock H

our 

1 -18.79 1.21 14.92 0.83 0.79 1.47 2.06 -40.71 1.47 27.71 0.68 

2 7.29 0.94 -7.59 1.06 0.66 0.89 1.30 14.04 0.89 -15.80 1.13 

3 -3.86 1.11 3.20 0.90 0.00 1.23 1.94 -7.81 1.23 6.34 0.81 

4 4.75 0.99 -4.76 1.01 0.67 0.99 1.35 9.45 0.99 -9.57 1.01 

5 11.97 0.91 -12.81 1.10 0.70 0.83 1.00 22.64 0.83 -27.20 1.20 

6 12.95 0.91 -14.17 1.10 0.69 0.83 0.97 24.65 0.83 -29.87 1.21 

7 -10.10 1.10 8.99 0.91 0.93 1.21 1.58 -20.98 1.21 17.35 0.83 

8 -2.17 1.09 1.71 0.92 0.75 1.19 1.88 -4.20 1.19 3.54 0.84 

9 -12.77 1.29 9.53 0.78 0.79 1.66 4.76 -28.58 1.66 17.23 0.60 

10 7.13 0.96 -7.25 1.04 0.68 0.92 1.29 13.82 0.92 -14.98 1.08 

11 1.38 1.02 -1.43 0.98 0.49 1.04 1.96 2.87 1.04 -2.75 0.96 

12 13.37 0.91 -14.49 1.10 0.62 0.82 1.24 25.32 0.82 -30.71 1.21 
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APPENDIX B 

ACRONYM, ABBREVIATION, AND SYMBOL DEFINITIONS 

2D two-dimensional 

3D three-dimensional  

αTD-OCT and βTD-OCT bias components of time domain OCT 

αSD-OCT and βSD-OCT bias components of spectral domain OCT 

C/D cup/disc   

CCD charge-coupled device  

CI confidence interval 

CSLO confocal scanning laser ophthalmoscopy  

CZMI Carl Zeiss Meditec, Inc.  

GHT glaucoma hemifield test  

HVF Humphrey Visual Field 

IOP intraocular pressure 

IRB Institutional Review Board  

OCT optical coherence tomography 

ONH optic nerve head 
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QM quadratic RNFBD normalization method  

QLM quasi-linear RNFBD normalization method  

RGC retinal ganglion cell  

RNFBD retinal nerve fiber bundle distribution 

RNFL retinal nerve fiber layer 

RU RNFL thickness ratio  

SD standard deviation 

SD-OCT spectral domain OCT  

SEM structural equation model  

SITA Swedish interactive thresholding algorithm 

SLD super-luminescent diode  

SLM scan location matching 

SLO scanning laser ophthalmoscopy  

SLP scanning laser polarimetry  

SNR signal to noise ratio  

SS signal strength 

TD-OCT time-domain OCT  

UPMC University of Pittsburgh Medical Center  

VF visual field 
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