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ABSTRACT 
 
 

USING SIMULATION TO EXAMINE CUTTING  
POLICIES FOR A STEEL FIRM 

 
 

Susan Marie Olsen, MS 
 
 

University of Pittsburgh, 2003 
 
 
 

 Minimizing the cost of filling demand is a problem that reaches back to the foundation of 

operations research.  Here we use simulation to investigate various heuristic policies for a one-

dimensional, guillotine cutting stock problem with stochastic demand and multiple supply and 

demand locations.  The policies investigated range from a random selection of feasible pieces, to 

a more strategic search of pieces of a specific type, to a new policy using dual values from a 

long-range linear program that models a static, deterministic demand environment.  We focus on 

an application in the steel industry and we use real data in our model.  We show that simulation 

can effectively model such a system, and further we exhibit the relative performance of each 

policy.  Our results demonstrate that this new policy provides statistically significant savings 

over the other policies investigated.  
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CHAPTER I 
 

INTRODUCTION 
 
 
 
 

A. BACKGROUND 
 

 In 1991, the United States steel industry sold over $27.3 billion worth of material and 

employed over 180,000 people in this country alone [12].  In September 2003, over 78.1 million 

metric tons of steel were produced throughout the world, an increase of 3.7% over September 

2002 [11].   

Sheet steel comprises the largest portion of the steel business[5].  Customers to this 

segment include the automotive, appliance, construction, and electrical industries, as well as the 

agricultural and industrial equipment industry.  The actual products required by these customers 

vary greatly, from stainless to galvanized, to hot-rolled steel.  In addition, the product 

dimensions, length, width, and thickness (gage), vary from order to order as well. 

Although steel is desired in all shapes and sizes, it is simply not cost efficient for a mill to 

produce small orders (less than a full coil) to the exact dimensions requested.  Instead, steel is 

mass produced in large coils.  Note, these coils are essentially one long sheet of steel of a given 

width.  These coils, pictured in Figure 1, are produced in many different widths. 
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Figure 1: Steel in Coil Form [14] 

 
 
 Frequently, steel is not actually used in coil form however, and is instead needed in 

sheets.  Since a coil is essentially one extremely long sheet, in order to create several shorter 

sheets from a single coil, the steel is unrolled and cuts are made width-wise across the steel.  The 

result is steel in sheet form as pictured in Figure 2. 

 

 
 

Figure 2: Steel in Sheet Form [14] 

 
 
 Obviously, not every customer desires sheets of the same width.  Therefore, coils of 

varying widths are needed.  While mills are able to produce coils in varying widths, it is not 

efficient to produce an entire coil of a specified width if there is only a demand for a short length 

of that particular width.  Instead, that demanded piece should be cut from a larger, available 

piece.   
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 Coils can also be cut length-wise to create two narrower coils.  This is done to satisfy 

demand for widths that are either too narrow for mills to produce, or in the case that the proper 

width of coil is unavailable for immediate use.  However, it is important to note that all cuts are 

made through the entire length (or width) of the steel, meaning no “L-shaped” pieces can be 

created (nor can they be resultant).  This restriction is due to machine capabilities and is 

commonly referred to as a guillotine cut restriction.  Figure 3 provides an example of 2-

dimensional guillotine cuts. 
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Figure 3: Example of Guillotine Cutting Restriction 
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 Although new technologies are developing within the industry everyday, most steel mills 

use similar equipment and have comparable capabilities.  Thus, if one steel supply company is 

unable to gain a significant edge over a competitor due to technological or manufacturing 

capabilities, they must look elsewhere within their business for such an advantage. 

 One such area of advantage comes in the form of a careful business plan.  If one company 

is able to fully understand their customers’ demand, they have the basis to develop a better plan 

to handle that demand.   But, a complete and accurate forecast is only helpful if one is able to 

take that information and use it to meticulously plan their demand fulfillment.  One must decide 

what steel to produce when and where, and what width source coil to produce it to.  Successful 

steel firms are able to meet their customers’ demands while producing and scrapping the least 

amount of steel.  Although it may seem complicated enough to determine how to best cut one 

piece of steel from another, the situation is further complicated by the availability of various 

sized coils, the costs and capacities of processing plants, the shipping costs associated with 

delivering the finished product to the customer, and the uncertainty of the actual demand.  

However, we will show that a new policy developed by doctoral candidate Zhouyan Wang [15] 

is able to fully consider all of these factors and return information such that any planner could 

develop an optimal policy for handling demand.   

 We consider the problem one-dimensionally, meaning that each piece of steel is of 

varying widths, yet their lengths remain constant (120 feet).  Examining the problem in this way 

allows us to demonstrate the actual costs associated with each of the various policies most 

apparently.  One could imagine that the cost differentials between policies will only expand 

when the cutting policies are applied to other dimensions, but we will not complicate the policy 

with such expansion at this time. 
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B. THE CUTTING STOCK PROBLEM (CSP) 

 

1. Static Demand 

 

 The Cutting Stock Problem (CSP) is one of the earliest problems pondered in the field of 

Operations Research.  The first known CSP was formulated by the Russian economist 

Kantorovich in 1939 [8].  The problem has wide applicability and strong economic implications 

and is therefore investigated in many industries, sometimes under different names.  For example, 

in the paper industry the CSP is referred to as the deckling problem [6].  In all cases, the CSP 

remains an issue, because it is nearly impossible to build and solve an appropriate integer 

program to optimality [13].  Because of this issue, most researchers focus their attention on 

either heuristics or linear programming relaxations [13].   

 The approach that a researcher decides to take is largely based on the specific application 

with which he is working.  For example, in one-dimensional problems, a frequent consideration 

is to minimize trim loss.  That is, one minimizes the amount of unusable material resulting from 

cutting the raw material to meet demand.  However, this wasted material is not the only cost 

worth consideration.  Other researchers focus their attention on minimizing the cutting pattern 

changes. Haessler (1975) even provides a formulation combining the two objectives.  Another 

cost worth consideration is the transportation cost associated with moving the final product from 

the supply depot to the demand point. 

 Adelman and Nemhauser (1999) consider a problem that is very similar to the one we 

examine here.  However, their model only accounts for a single supply and a single demand 
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location.  Their work provides the motivation for our investigation and will be discussed further 

in Section 3.3. 

 

2. Stochastic Demand 

 

 Although stochastic demand may be a reality in many systems similar to the one we 

discuss here, few people have explored it in their model formulations.  An exception is 

Krichagina, et al. (1996) who did consider stochastic demand in their model of a paper plant.  

However, their model did not consider remnant inventories and it also only considered a single 

supply/demand location.   

  

3. Classification of CSP 

 

 Dyckhoff (1990) published a typology of CSP’s.  He qualified each problem in seven 

ways.  Here, we discuss how our problem fits each category. 

 

a. Dimensionality 

Dyckhoff defined dimensionality as, “the minimum number of dimensions of real 

numbers necessary to describe the geometry of patterns.”  Here we will work in one-dimension.  

However, the dimensionality aspect is actually more complicated than that.  Since our problem 

also has the specific restriction of requiring guillotine cuts, he considers it to be ‘1 + 1-

dimensional’. 
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b. Quantity Measurement 

That is, “the way of measuring the quantity of the large objects and of the small items, 

respectively.”  He considered two classes: discrete or integer measurement, and continuous or 

fractional measurement.  Our problem falls into the discrete category. 

 

c. Shape of the Figures 

Different applications may require shapes of a wide variety.  Here we are only 

considering rectangles.  Therefore, his classification puts our problem into the different (regular) 

forms category.  This category allows us to have rectangles with distinct ratios of width to 

length. 

 

d. Assortment 

“The assortment is given by the shapes and the number of permitted figures.”  Here 

again, we are dealing with rectangles of specified dimensions, but it is not a necessary condition 

that only congruent rectangles may be cut from the source rectangle.  In fact, that is not likely to 

be optimal due to trim loss.  There is no limit on the number of figures that may be cut from a 

source rectangle.  The source is exhausted only when its dimensions fall into the scrap category.  

That is, the dimensions of the remnant are smaller than the smallest possible order size. 

 

e. Availability 

We cover availability in two ways.  First, we impose a limit on the number of source 

pieces arriving daily, and second, we limit the number of pieces that a warehouse can store in 
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inventory.  We do not impose a sequence or order, for our material, steel, generally has a long 

shelf life (approximately 5 years). 

 

f. Pattern Restrictions 

One dimensionally, our problem has few restrictions.  There is no minimum distance 

required between finished parts, no orientation restrictions, nor any frequency restrictions.  

However, we are dealing with the restriction that all of our cuts will be guillotine cuts.  That is, 

whenever a cut is made, it must continue across the entire width of the sheet.  

  

g. Assignment Restrictions 

We assign one order to one stock piece at a time and we do not aggregate.   

 

h. Objectives 

Here, we will minimize the cost of the raw material used, less the scrap refund recovered, 

plus the cost of transporting the steel from the warehouse to the customer’s demand location.  

This is what we assume to be the total cost of the model. 

 

i. Status of Information and Variability 

Here our demand is stochastic in nature.  Although we cannot guarantee the dimensions 

of requested materials, we are allowed a 10% tolerance on our orders.  Therefore, we assume that 

the dimension we produce is the dimension we ordered. 
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j. Combined Type 

 Dyckhoff then simplifies all of these classifications into combined types.  These types 

consist of the four main characteristics of a problem: dimensionality, kind of assignment, 

assortment of large objects, and the assortment of small items.  He then assigns symbols to each 

possible classification within each characteristic.  Then, according to his notion, our problem can 

be considered a 1/B/D/R. 

 

 

C. PROBLEM DEFINITION 

 

 Our simulation is modeled on the steel industry, and Straightline, a division of U.S. Steel, 

provided actual data for this simulation.  We utilize this data to better represent an actual order-

processing system.  However, this data is not used directly in our system, but rather it is used to 

determine the underlying distribution of stochastic demand.  The goal of the project is to analyze 

the current process for planning steel orders and to compare it with a new method [15]. 

 Straightline’s vision is to, “revolutionize the steel business” by putting the customer in 

control [14].  The company provides its customers an interactive website and ultimately, the 

opportunity to purchase steel in any size and shape they desire.  Since the livelihood of the 

company is contingent on satisfying its customers’ requirements efficiently and cost-effectively, 

Straightline is always seeking way to improve upon its current processes. 

 Straightline’s goals are not uncommon in the business world.  We seek to investigate 

these goals by modeling the order processing procedures using a variety of heuristic policies.  

Among these policies there is a new policy that uses dual values from a linear program to 
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determine the inherent value of remnant pieces.  Interestingly, this linear program considers only 

static, deterministic demand, while our model will consider stochastic demand. 

 
 
 
 

D. OBJECTIVES 

 

 The objectives of this research are listed below: 

1. To investigate current cutting policies used in the steel industry 

2. To research alternate methods that could be applied to the situation. 

3. To build a simulation to compare policies and to demonstrate the effects of each. 

 

 

E. OVERVIEW 

 

 In Chapter 2 we will discuss the simulation structure and inputs.  Then in Chapter 3 we 

present the cutting policies that we investigated, with particular interest in the policies of 

Adelman and Nemhauser [2] and Wang [15].  The results of our investigation are summarized in 

Chapter 4.  Finally, conclusions drawn on our results, as well as an outline of future directions 

for this research are presented in Chapter 5. 
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CHAPTER II 

THE SIMULATION 
 
 
 
 

A. SIMULATION STRUCTURE 

 

 There are several ways to investigate the effectiveness of a cutting policy.  Certainly, 

simply implementing a new cutting policy may be a bit rash.  After all, if something went wrong, 

the company could suffer complete financial ruin.  Instead, the new policy could be implemented 

in stages; but once again, there could potentially be some major pitfalls.  The old policy and the 

new policy may be formulated very differently.  This would lead to different priorities in supply 

and demand and could ultimately be very destructive.   

 In order to observe our plan in action, without threatening Straightline’s financial well-

being, we elected to build a simulation.  This simulation allows us to model the real-world 

situation, using a variety of cutting policies, so that we may compare, contrast, and ultimately 

determine the optimal policy. 

 The simulation model is built in C++.  This is a convenient choice for the modelers both 

in the flexibility of the language and the familiarity of the modeling team with the language.  

Further, the model incorporates discretized real data into the incoming demand, and roughly 

estimates supply and demand depots throughout the United States.   
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 Simulation is a powerful tool that provides an immense amount of information.  We can 

easily run the model for any length of time and any number of locations.  Then, we can 

investigate the model outputs to determine which policy performs optimally under which 

circumstances, and also whether the policies’ performances are significantly different.  The 

replication data allows us to investigate whether there is a significant difference in the results 

between runs. 

 The simulation model was built in many steps, starting with the very basic, and building 

up to the rather complex.  This allowed us to constantly verify that the model was performing as 

expected in each circumstance, without too much difficulty.  Also, the code was reviewed by one 

of the team members to assure that everything was proper.  Finally, our contact at Straightline is 

able to validate that our results correspond to likely events. 

A schematic of the basic simulation operation is displayed in Figure 4. 
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General Model Logic

Receive orders as 
single sheets of steel

Record order 
widths

Implement desired 
cutting policy

Make cut from 
standard or remnant 

inventory

Record raw cost if 
cutting from a std 

size

Scrap remaining piece
Place remaining piece 

in inventory

Calculate scrap 
value & refund 

the cost

No

YesRemaining
piece wider than

10 inches?

Record width of
scrap produced

Record width
of piece for 
inventory

Inventory capacities      
exceeded?

Allow cutting policy to 
look at any size 

(standard or remnant)

Force cutting policy to 
only look at remnants 

Yes

No

 

Figure 4: Simulation Flowchart 
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B. ASSUMPTIONS 

 

 Every attempt is made to ensure that the simulation model resembles real-world activity.  

However, programming time was limited and for simplicity, not every single variable 

encountered on a daily basis can be included.  The main objective of our study is to investigate 

cutting policies, so we have designed our model to show how these policies most affect the real-

world system. 

 For example, although it would be simple to create a demand set that is steady or 

fluctuates little, this is not representative of the real world.  For our model, we discretized actual 

data so that it shows the stark contrasts in demand for pieces of different sizes.  However, we do 

not simply implement this data as though it were the actual demand.  Instead we recognize the 

stochastic nature of actual demand and therefore we use an exponential distribution based on this 

discretized data to represent the actual data.   

Also, it is important to investigate the relative availability of stock sizes versus ordered 

sizes.  It is obviously easier to fulfill demand efficiently when every size is already available to 

you.  Again, we turned to the real-world system to investigate the proportion of raw sizes 

available versus the number of sizes that orders are filled for.  From this information we 

determined a set of “standard sizes”.  All orders were then cut either directly from these standard 

sizes, or indirectly from them by using the remnant remaining from an earlier cutting operation. 

Further, there are multiple ways for a company to handle its inventory limits, and we 

wanted to demonstrate the method that is the best balance of simplicity and effectiveness.  

Therefore, we investigated many different ways of approaching the issue and tested each of 

them.  After this investigation, we decided that the best method was to limit each policy based on 
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the current model.  After several rounds of testing, we determined that the optimal limit was 10 

sheets of steel for each size.  In many cases, limiting the inventory actually increased the cutting 

policies’ efficiency. 

 Another inventory issue that required attention was the issue of inventory availability.  

Although it would be simple to assume that whenever a piece of steel was requested it was 

immediately available, that assumption is not very realistic.  In reality, we must decide in 

advance what sizes to order so that we have the appropriate sized pieces on-hand when needed.  

Wang’s method not only determines an optimal cutting policy, but it also outputs optimal 

consumption rates for raw material.  These consumption rates can then be used to determine 

optimal raw size ordering rates.  Then, those raw sizes, in their predetermined quantities, arrive 

into the system daily.  However, we did not determine such ordering rates for the other policies 

and instead assumed that the other policies had unlimited access to all standard sizes at all times.  

Although this may introduce bias into the system, this bias is actually supportive of the other 

policies and detrimental to Wang’s policy.  Additionally, we show the effect of this restriction by 

giving results with and without it in place.  Our computational experiments show that Wang’s 

policy still appears to be optimal, despite this bias. 

 Assumptions were also made regarding transportation between cities.  For simplicity, we 

decided that we would charge a consistent per-mile per-inch transportation rate across the entire 

country.   

Demand locations were randomly selected, however, steel supply locations were located 

arbitrarily rather than randomly, because random placement could easily place a steel mill in a 

completely unlikely and unfavorable location.  The steel supply locations were held consistent 
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between various model runs to investigate the effectiveness of the model under different demand 

conditions. 

 

 

C. PERFORMANCE MEASURES 

 

 In order to analyze the performance of the model, one must determine certain 

performance measures to collect.  These measures are collected each day that the simulation is 

run and then are also summarized per replication. 

 

1. Ordered Weight 

 

 This measure tracks the total amount of demanded weight that the model must handle 

each day.  Ordered weight is dependent upon both the number of orders received each day and 

the dimensions of those orders. 

 

2. Cost 

 

 The cost tracked here is the cost to fulfill the incoming demand, both in the raw material 

cost and in the shipping cost, less some refund for scrapping unusable pieces.  Raw material cost 

is calculated whenever a standard size is cut.  Remnant pieces can then be used at no cost.  One 

objective may be to minimize the cost that the steel firm must pay to fulfill all of its customers’ 

demands. 
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3. Inventory Weight 

 

 This measure tracks the total amount of inventory that the model is holding on a daily 

basis.  This includes the entire inventory across all of the supply depots.  Inventory contains steel 

that we have already paid for but have not yet used, thus, it is generally best to keep inventory to 

a minimum. 

 

4. Scrap Weight 

 

 Our final performance measure, scrap weight, tracks the amount of steel that has been 

scrapped by the model.  By definition, a piece is scrap if it is smaller than the smallest possible 

demanded size.  Also, our model forces a piece to be scrapped if it violates our inventory 

restrictions (it causes us to have more inventory than we can handle).  There is no clear way to 

optimize the system based on scrap weight, which makes it an interesting measure.  A high scrap 

weight may indicate that the standard sizes purchased were too large or that the system more 

effectively removed unnecessary pieces.  Then, a low scrap weight may result from a system 

where the proper standard sizes were used or from a system where more pieces were held in 

inventory instead of being scrapped.   
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D. INPUT DATA 

 

 Model inputs are frequently subject to randomness.   There are several inputs into our 

simulation.  These include number of orders received per day and the dimensions of those orders.  

There are three main ways to handle this randomness in a simulation.   

1.  The actual data values themselves could be used directly in the simulation.   

2.  The data values can be used to define empirical distribution functions.   

3.  The data could be fit to a theoretical distribution.   

 Option 1 was not plausible for our simulation as we did not have enough data for all of 

our runs.  Further, the data that we do have is historical and would therefore be limiting in our 

prediction of future events. 

 Option 2 is not desirable due to the limited scope of our data.  Creating an empirical 

distribution would require significant confidence that our data is very representative of actual 

events.  However, if there are any irregularities in the data, these will also come forth in the 

empirical distribution, outputting non-representative values. 

 Option 3, fitting theoretical distributions, was the best option for each of our sources of 

randomness.  We determined that the best fit for the distribution of the number of incoming 

orders (number of sheets) per day, and the width of the orders was the exponential distribution.  

The exponential distribution has the convenient property of memorylessness.  This is important 

here because we assume that the quantity and dimension of incoming orders is not dependent on 

previous orders.  This assumption is not unrealistic, for Straightline has a wide base of customers 

and does not receive the majority of the orders from the same few customers.  Thus, what one 

customer orders in Texas has no bearing on what another orders in New York.  Similarly, the 
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timing of one customer’s orders has virtually no effect on the timing of another customer’s 

orders.   

Based on the data we received from Straightline, we were unable to determine the 

number of incoming orders per day precisely, but rather we were able to examine the orders that 

they considered on a daily basis.  This is an important distinction, because the planner at 

Straightline has the opportunity to delay a decision on a particular order to the next day if he 

desires.  This flexibility is not accounted for in our model due to our lack of data and our desire 

to maintain simplicity whenever possible. 

Although we did use the data provided to investigate the arrivals of orders, we could not 

use it directly for two reasons.  First, we did not have enough data to input to run our simulation 

for the length of time desired.  Second, we are aware that the order sizes requested vary over 

time.  Therefore we decided to use the means of the data as inputs into the exponential 

distribution.  Although the exponential distribution presents the possibility of generating 

arbitrarily large data values, we were able to avoid this situation by setting truncation values 

reasonable levels.   

 As our simulation considers many random variables per day, it is very important to 

carefully select a random number generator to appropriately handle this situation.  We elected to 

use a Mersenne Twister pseudo-random number generator [10].  The primary reasons for 

selecting this particular generator were for its speed and period.  Also, this generator was also 

chosen for its efficient use of memory. 

 There were also several other important inputs to determine, including the run-length, 

warm-up period and the number of replications to be run.  As our model is a non-terminating 
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system, we implemented the replication/deletion technique for determining warm-up period, run-

length, and the number of replications. 

 The replication/deletion method is used to remove bias from a system to allow for a 

reduction in variability and ultimately, to form confidence intervals on various performance 

measures [10].  This is achieved by removing initial transient data and then performing 

independent replications.  In each replication (we use 10), the model is initialized and the 

transient data is deleted in the same way. 

 First, we made one very long run for each of our instances.  Then, we analyzed the total 

weight ordered each day to determine the length of the initial transient data.   Figure 5 shows this 

graph for Instance S, a single supply/single demand location instance, and Figure 6 shows this 

graph for Instance A, a multiple supply/multiple demand locations instance. 

 

Model S: Ordered Weight by Day
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Figure 5: Instance S: Long-Run Ordered Weight by Day 
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Model A: Ordered Weight
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Figure 6: Instance A: Long-Run Ordered Weight by Day 

 
 

In order to successfully implement the replication/deletion methodology, we first 

determined an adequate warm-up period.  Notice that neither graph indicates a clear initial 

transient period.  In fact, we believe that the actual warm-up period is only a fraction of a day.  

The only factor that appears periodically is the inventory capacity situation.  That is, at the very 

beginning of the first day of the simulation, there are no remnants in inventory.  Thus, all initial 

orders are cut from standard sizes.  However, we limit the total size of the inventory to fewer 

than 500 pieces and yet we handle an average of 20,000 pieces per day.  With a run length of 

several days, this initial transient period is quickly dominated.  However, in order to ensure 

model accuracy, we determined a warm-up period of one day.   

The replication/deletion method states that as a rough rule, the run-length should be at 

least ten times longer than the warm-up period whenever possible [3].  Although this indicates 

that a run-length of 10 days would be adequate, we decided to use a run-length of 20 days.  Then, 
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each day is considered a batch, and our first batch is deleted.  Confidence intervals may then be 

calculated based on the remaining 19 batches to determine the long-run mean of each 

performance measure.   

Finally, we considered the total number of replications required.  Fortunately, the model 

run-time did not restrict us in such a determination.  We started with 10 replications and then 

checked to see if that number was adequate.  In fact, for each of our instances, 10 replications 

were enough to ensure that with 95% confidence our half-width was within 0.2% of our sample 

mean for all of our performance measures. 
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CHAPTER III 

CUTTING POLICIES 
 
 
 
 

A. NOTATION 

 

1. Index Sets 
 

I = index set of facility locations. 
 
J = index set of demand locations. 
 
K = set of all possible sizes (including scrap) that could be generated (across all 

facilities). 
 

KD ⊂ = subset of all sizes that are demanded at one or more j ∈  J. 
 

KS ⊂ = subset of all raw stock sizes that are processed at one or more i ∈  I. 
 

 
2. Data 
 

λj,k = demand rate at location j ∈  J for a product of size k ∈  D. 
 

ci,j,k = cost of transporting one unit of size k ∈  D from location i ∈  I to location  
j ∈  J. 
 

 ai,k = unit cost of raw stock size k ∈  S at location i ∈  I. 
 
 σi = unit salvage value of one unit of product at facility i ∈  I. 
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3. Variables 
 

xi,j,k = rate of shipment of units of size k from facility location i ∈  I to demand location j 
 J.  Define x∈ i,j,k = 0 if a unit of size k either cannot be generated at location i or 

is not required at location j. 
 
ym-n,i = rate of generation at facility location i ∈  I, of units of size (m-n) that are obtained 

by cutting size m down to size n.   
 

ri,k = rate of replenishment of raw units of size k ∈  S at facility location i ∈  I.   
 
si,k = rate of production of scrap of size k at facility location i ∈  I.   

 
 
 
 

B. HEURISTIC POLICIES 
 

 
1. Smallest Fit 

 

1. Find the available piece that is equal in size to the desired piece, and cut the order from it.   

Arg {m-n | m-n = 0} 

2. If the actual size is not available, cut from the smallest non-standard size piece that is 

large enough to fulfill the demand.  

Arg Min {m-n | m-n > 0, m non-standard size} 

3.  If no such non-standard size piece exists, cut from the smallest standard size piece that is 

large enough to fulfill the demand. 

Arg Min {m-n | m-n > 0, m standard size} 
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2. Random  

 

Find all pieces equal or larger than the ordered size and randomly select one to cut the 

order from. 

Arg Random {m | m  n} ≥

 

3. Largest 

 

1. Cut from the largest available acceptable non-standard piece.   

Arg Max{m-n | m-n  0, m non-standard} ≥

2. If no non-standard pieces of adequate size exist, cut from the smallest adequate standard 

piece. 

Arg Min{m-n | m-n  0, m standard} ≥

 

4. Highest Quantity 

 

Find all acceptable pieces (greater or equal to order size), then compare their stock 

quantities.  Cut from the size that has the greatest number of pieces in inventory.  Break ties by 

choosing the smallest stock size. 

Arg Max{ (ym-n,i) | m-n  0} ≥
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5. Make Highest Quantity 

 

Find all pieces available (greater or equal to order size), then determine the remnant size 

that would remain if the order was cut from that stock piece.  Choose the stock piece that would 

generate the most common stock size.  Break ties by choosing the smallest stock size. 

Arg Max{ (ym-n,i) | m-n  0} ≥

 

6. Multiple  

 

1. First, if an inventory piece of the exact size of the demanded piece exists, use that piece 

to fill the demand.   

{m-n | m-n = 0} 

2. If such a piece is not available, look for a non-standard sized piece that would create a 

resultant piece that is smaller than the smallest acceptable order size (scrap).  Of these 

pieces, cut from the one that will result in the smallest piece of scrap.   

Arg Min {m-n | m-n < min (n), m non-standard} 

3. If no such pieces exist, cut from the largest non-standard piece in stock.   

Arg Max{m-n | m-n  0, m non-standard} ≥

4. Finally, if no non-standard pieces in stock are large enough to fill the order from, 

reconsider steps 2 and 3 for the standard raw sizes. 
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7. Extension to Multiple Supply and Demand Locations 

 There are many different ways to extend these policies to account for multiple supply and 

demand locations.  We consider this extension in a simple, yet realistic way.  That is, we first 

find the supply location that is nearest to our demand.  If there is a tie, we break it randomly.  

Then, we follow one of the above policies to fill the demand from that nearest facility’s supply. 

 

 

C. ADELMAN AND NEMHAUSER’S POLICY 

 

 A closely related problem in the fiber optics industry was researched by Adelman and 

Nemhauser (1999).  There, lengths of fiber optics were cut from standard sizes and/or remnants 

to satisfy static demand.  Adelman and Nemhauser built a linear programming model of the 

system and used the resulting duals as inherent values for the various lengths of fiber optics.  

Their cutting policy entailed cutting from the piece that created the smallest reduction in value.  

They built a simulation and were able to demonstrate that their policy presented great savings 

over traditional heuristic policies.  

However, Adelman and Nemhauser’s policy is not directly applicable to this problem.  

Unusable lengths retain no value in the fiber optics industry, thus no scrap values were 

considered.  Yet, in the steel industry, scrap remnants are recycled and therefore represent 

significant value. 

Further, Adelman and Nemhauser considered only a single supply, single demand set-up.  

We, however, are managing a network of supply and demand points and must encompass this 

complexity into our model. 

 27 
 



 

D. WANG’S POLICY 

 

 Wang (2003) researched the work of Adelman and Nemhauser and tailored it to include 

the extra complexity of our system, stochastic demand and remnant scrap value. 

 

 

1. Wang’s Algorithm 

 

Calculate dual prices for all feasible stock sizes (original stock sizes, the sizes that may 

result after cutting different sized orders from the stock sizes, and the sizes that would result 

from those remnants).  Also, the scrap values of the unusable remnants (narrower than the 

smallest demanded size) play a role in the dual price calculations, and the transportation costs.  

His program for calculating duals also takes into account the daily average demand. 

 

a. Objective 

Selecting a piece to cut from using this method requires a calculation of the reduction in 

value of the piece.  That is, for all stock sizes available that are greater than or equal to the order 

size, subtract the dual price value of the resultant piece from the current value of the stock piece.  

Choose to cut from the stock piece that will result in the smallest reduction in value.   

Arg Min{ηm-n - ηm } 

 

Note: Ties are frequent with this policy.  Several tie-breaking policies were implemented and 

compared.  They are as follows: 

 28 
 



 

 Cut from the next larger piece (smallest fit) 

 Cut from a randomly selected piece (random) 

 Cut from the piece with the highest quantity in inventory (highest quantity) 

  

b. Inventory Limits 

 Wang’s linear program results include optimal raw size consumption rates.  We 

investigate the transferability of this information to our model.  That is, we restrict incoming 

inventory availability to the optimal consumption rates that Wang’s output provides (plus a 

safety factor of 10%).  We compare the performance of Wang’s model under these conditions 

with the performance of Wang’s model without these incoming inventory restrictions. 
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CHAPTER IV 

RESULTS 

 

 

 All policies are described in the previous section.  Wang’s policies were tested with each 

of three tie-breaking rules (shown in parentheses) as well as with and without incoming 

inventory restrictions (limits). 

 

 

A. SINGLE SUPPLY, SINGLE DEMAND LOCATION 

 

1. Instance S 

 

 Instance S is a single supply/single demand location instance.  For this instance, there is 

only one facility from which demand may be fulfilled, and thus, shipping costs can be ignored.  

We ran this instance for 20 days (with a 1 day warm-up) and for 10 replications. 

 Figure 7 shows the daily cost averages per replication for each policy.  This graph shows 

the relative performance of each policy, however, we are unable to draw any statistical 

conclusions based on this graph alone.  Note that the Random policy has been removed from this 

graph as this policy performs far worse than all others.  Removing it from the graph allows one 

to more closely examine the relationship between the other policies. 
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Instance S: Average Total Cost by Policy
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Figure 7: Instance S: Average Daily Cost for Each Policy 

 
  

Figure 8 summarizes the average cost of each policy over all replications.  Once again, 

this graph alone is not adequate for drawing statistical conclusions.  Therefore, we created Figure 

9, a graph of confidence intervals for the average cost by policy.  Table 1 explicitly lists the 

interval values.  One can determine the statistical independence of the policies by evaluating 

these intervals.  If two intervals are wholly independent (not overlapping), the policies are 

determined to be statistically different. 

Our 95% confidence intervals are not inclusive of all replication means, and we are 

unable to conclusively give a reason for that at this time.  We suspect that repeated replications 
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and further statistical analysis would reveal that one of our replications is drawing on a bad seed 

value. 

 

Instance S: Average Cost by Policy
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Figure 8: Instance S: Average Daily Cost Over All Replications by Policy 
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Figure 9: Instance S: 95% Confidence Intervals for Mean Cost by Policy 
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Table 1: Instance S: 95% Confidence Intervals for Mean Cost by Policy 

 
 Lower 

95% Mean Upper 
95% 

Random 448698 450804 452910 

Wang (smallest fit) 436980 438944 440908 

Multiple 436837 438879 440921 

Wang (random) 436627 438343 440059 

Wang (highest qty) 436499 438512 440525 

Largest 436435 438471 440507 

Make Highest Qty 436322 438365 440407 

Highest Qty 436283 438323 440362 

Smallest Fit 436283 438323 440362 

Wang (random)      
NO LIMITS 435988 438059 440129 

Wang (highest qty)   
NO LIMITS 435665 437704 439743 

Wang (smallest fit)   
NO LIMITS 435353 437403 439453 

 

 

Table 2: Instance S: Groupings of Significantly Different Policies, Highest Cost (top) to Lowest Cost 
(bottom) 

 
 

Random 

Highest Qty, Largest, Multiple, Make Highest Qty, 
Smallest Fit, Wang(highest qty), Wang(random), 

Wang(smallest fit), Wang(highest qty)- NO LIMITS, 
Wang(random)- NO LIMITS, Wang(smallest fit)- 

NO LIMITS 
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 In order to summarize our findings based on these confidence intervals, we created Table 

2.  Table 2 shows groupings of significantly different policies.  In this case, the “random” policy 

is the only policy that performs significantly different from the others.   

 Now that we have examined the performance of each policy with respect to cost, we need 

to also consider the performance of our other measures.  First, consider the ordered weight by 

replication, Figure 10.  Careful examination of this graph shows that the average ordered weight 

only varies about 0.5% between replications.  This measure shows us the relative order amounts 

per replication.  Then, one might hypothesize that our other measures, cost, inventory weight, 

and scrap weight, may also follow a similar pattern.   

 

Average Ordered Weight by Replication
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Figure 10: Instance S: Average Daily Ordered Weight by Replication 

 

 As expected, our average inventory weight (Figure 11) appears to vary linearly with the 

ordered weight per policy.  Also, reconsider Figure 7, Cost by Policy, and notice that it too 

appears to vary linearly with respect to the ordered weight.  This is an indication that our 
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instance requires more steel and carries more inventory when there are more orders in the 

system. 

 

Instance S: Average Inventory Weight by Policy
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Figure 11: Instance S: Average Daily Inventory Weight by Policy 

 
 
 Similarly, Figure 12 displays the scrap weight by policy.  It is difficult to see due to the 

scale of the graph, however, the scrap weight also seems to obey this linear relationship. 

 Another important note about all of these figures is the relative performance of each 

policy.  Notice that in general, policies that have higher total costs also have higher inventory 

weights and higher scrap weights.  Likewise, policies that have lower total costs also tend to 

have lower inventory weights and lower scrap weights. 
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Instance S: Average Scrap Weight by Policy
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Figure 12: Instance S: Average Daily Scrap Weight by Policy 
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B. MULTIPLE DEMAND, MULTIPLE SUPPLY LOCATIONS 

 

 We extended our model to accommodate multiple supply and multiple demand locations.  

Once again, we investigated the policies described in Chapter 3, however, here we adjusted the 

policies to accommodate the multiple locations.  For all heuristic policies expect for Wangs’, the 

demand was filled from the nearest supply location whenever possible.  In the few cases where 

that was not possible, demand was then fulfilled from the next closest facility.  Other than this 

adjustment, the policies maintained their structures.   

We developed a series of five similar instances (A-E) on the Euclidean Plane.  Each 

instance has an identical set of supply locations (though the raw costs vary per instance) and a 

varying set of demand locations.  However, the total demand rates per size remain constant 

across all instances.  Figures 13-17 display the relative layouts of the instances.  Here again, 

random is removed from the below graphs allowing us to better compare the more significant 

policies. 
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Sample Problem A: 
5 Supply Points, 10 Demand Points
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Figure 13: Layout of Sample Problem A 

 
 
 
 

Sample Problem B: 
5 Supply Points, 10 Demand Points
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Figure 14: Layout of Sample Problem B 
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Sample Problem C: 
5 Supply Points, 10 Demand Points
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Figure 15: Layout of Sample Problem C 

 
 
 
 

Sample Problem D: 
5 Supply Points, 10 Demand Points
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Figure 16: Layout of Sample Problem D 
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Sample Problem E: 
5 Supply Points, 10 Demand Points
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Figure 17: Layout of Sample Problem E 

 
 
 While instances A, B, C, D, and E are different (each is generated based on different 

random variables), their results are remarkably similar.  Once again, if one considers the ordered 

weight for a instance and then compares the cost, inventory weight, and scrap weight, he will 

find predictable correlations between them all.  Since all of the instances are so similar in this 

manner, we will only examine all performance measures for Instance A.  Then, the costs and 

statistical performance of each policy in regards to costs will be analyzed for each policy. 

 

1. Instance A 

 Figure 18 shows the average amount of weight ordered during each replication.  Here too, 

the ordered weight varies minimally, 1.1% between replications at their maximum.  This will 

again act as our baseline for comparing the performance of our other measures. 
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Instance A: Ordered Weight by Replication
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Figure 18: Instance A: Average Daily Ordered Weight 

 
 
 Inventory weight for each policy is displayed according to replication number in Figure 

19.  Although it may be difficult to discern the actual policies, there appear to be three groupings 

of policies.  In Figure 20, the scrap weight for each policy, a similar pattern emerges.  Also 

notice that all of the policies seem to perform somewhat linearly to the ordered weight.  Finally, 

in Figure 21, the cost for each policy also follows these trends.  

 Note the relative positioning of each policy in each graph.  That is, the policies that tend 

to have higher costs also tend to have higher inventory weights and higher scrap weights.  

Likewise, the policies with lower costs have smaller quantities in inventory and they also scrap 

less weight. 
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Instance A: Inventory Weight by Policy
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Figure 19: Instance A: Average Daily Inventory Weight by Policy 
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Instance A: Scrap Weight by Policy
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Figure 20: Instance A: Average Daily Scrap Weight by Policy 
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Instance A: Average Cost by Policy

382500

387500

392500

397500

402500

407500

1 2 3 4 5 6 7 8 9 10

Replication

C
os

t (
$)

Highest Quantity Largest Multiple
Make Highest Qty Smallest Fit Wang(highest qty)
Wang(highest qty)- NO LIMITS Wang(random) Wang(random)- NO LIMITS
Wang(smallest f it) Wang(smallest f it)- NO LIMITS

 

Figure 21: Instance A: Average Daily Cost by Policy 

 
 
 The costs for each policy shown in Figure 21 do appear to be obviously grouped 

according to performance, yet this figure alone is not enough to draw any conclusions.  Figure 22 

gives a summarized view of the same data.  This figure allows one to see the relative 

performance of each policy, that is, one can discern which policies fall into which groupings. 
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Instance A: Average Cost by Policy

375000

380000

385000

390000

395000

400000

405000

410000

Wang
(sm

all
es

t fi
t)-

 N
O LIM

ITS

Wang
(ra

nd
om

)- N
O LI

MITS

wan
g(h

igh
es

t q
ty)

- N
O LI

MITS

Wang
(ra

nd
om

)

wan
g(h

igh
es

t q
ty)

Wang
(sm

all
es

t fi
t)

mak
e h

igh
es

t q
ty

mult
ipl

e

sm
all

es
t f i

t

hig
he

st 
qty

large
st

Policy

Av
er

ag
e 

Co
st

 ($
)

 

Figure 22: Instance A: Average Daily Cost by Policy over All Replications 

 
 
 Figure 23 and Table 3 show 95% confidence intervals for the mean cost for each policy.  

Policies are defined as significantly different if there 95% confidence intervals are completely 

independent.  Thus, this information allows one to discern which policies are significantly 

different. 

Our 95% confidence intervals are not inclusive of all replication means, and we are 

unable to conclusively give a reason for that at this time.  We suspect that repeated replications 

and further statistical analysis would reveal that one of our replications is drawing on a bad seed 

value. 
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Figure 23: Instance A: 95% Confidence Intervals on the Average Daily Cost 
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Table 3: Instance A: 95% Confidence Intervals for the Mean Cost by Policy 

 
 Lower 

95% Mean Upper 
95% 

Random 414955 415938 416921 

Largest 404729 405697 406665 

Highest Qty 404521 405487 406453 

Smallest Fit 404521 405487 406453 

Multiple 404383 405347 406311 

Make Highest Qty 404283 405247 406211 

Wang (smallest fit) 403782 404702 405622 

Wang (highest qty) 403566 404487 405407 

Wang (random) 403555 404475 405395 

Wang (highest qty)   
NO LIMITS 386282 387213 388144 

Wang (random)      
NO LIMITS 385807 386738 387670 

Wang (smallest fit)    
NO LIMITS 385775 386704 387633 

 
 
 Table 4 summarizes the groupings of significantly different policies for Instance A.  The 

table is arranged such that the most expensive policy appears at the top of the chart and the least 

expensive policies appear at the bottom of the chart.  Notice that there are only four significantly 

different levels of performance.  
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Table 4: Instance A: Groupings of Significantly Different Policies, Highest Cost (top) to Lowest Cost 
(bottom) 

 
 

Random 

Highest Qty, Largest, Multiple, Make Highest Qty, Smallest Fit, 
Wang(highest qty), Wang(random), Wang(smallest fit) 

Wang(highest qty)- NO LIMITS, Wang(random)- NO LIMITS, 
Wang(smallest fit)- NO LIMITS 

 

 
  
2. Instance B 

Similar analysis is performed for Instance B.  First, the cost for each policy is examined 

in Figure 24.  Notice that once again, four groupings emerge in the graph.  These policies may 

also be viewed side-by-side in Figure 25. 
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Instance B: Cost by Policy
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Figure 24: Instance B: Average Daily Cost for Each Policy 
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Instance B: Average Cost by Policy
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Figure 25: Instance B: Average Daily Cost by Policy over All Replications 

 
 
 Figure 26 and Table 5 show 95% confidence intervals for mean cost per policy.  The 

confidence intervals are used to confirm which policies are statistically different.  We have 

grouped like policies into each level of Table 6 and have ordered them from the highest cost 

grouping at the top to the lowest cost grouping at the bottom.  
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Figure 26: Instance B: 95% Confidence Intervals for Mean Daily Cost for Each Policy 
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Table 5: Instance B: 95% Confidence Intervals for Mean Daily Cost 

 
 Lower 

95% Mean Upper 
95% 

Random 424214 425209 426204 

Largest 414132 415110 416087 

Highest Qty 413944 414922 415899 

Smallest Fit 413944 414922 415899 

Make Highest Qty 413798 414774 415750 

Multiple 413754 414734 415713 

Wang (highest qty)  411088 412070 413052 

Wang (random) 410824 411805 412786 

Wang (smallest fit) 410417 411396 412375 

Wang (smallest fit)    
NO LIMITS 359684 360550 361416 

Wang (random)       
NO LIMITS 359647 360513 361378 

Wang (highest qty)    
NO LIMITS 359592 360457 361322 

  
 
 
“Random” is significantly different from all others.  Wang’s policies with limiting are not 

significantly different from one another, yet, the three of them are all significantly different from 

all of the other policies.  Similarly, Wang’s’ policies without limiting are not significantly 

different from one another, yet, the three of them are all significantly different from all of the 

other policies.  The remaining policies (highest quantity, largest, multiple, make highest quantity, 

and smallest fit) are not significantly different from one another.  These conclusions are 

summarized in Table 6. 

. 
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Table 6: Instance B: Groupings of Significantly Different Policies, Highest Cost (top) to Lowest Cost 
(bottom) 

 

Random 

Highest Qty, Largest, Multiple, Make Highest Qty, Smallest Fit 

Wang(highest qty), Wang(random), Wang(smallest fit) 

Wang(highest qty)- NO LIMITS, Wang(random)- NO LIMITS, 
Wang(smallest fit)- NO LIMITS 

 
 
 
3. Instance C 

 The costs of each policy are summarized in Figure 27.  There appear to be three 

groupings in this graph, though one of the groups is considerably more variant than the others.  

Therefore, it is beneficial to view a summary by policy as in Figure 28.  In this graph, four 

groups appear to emerge, though we are unable to draw that conclusion with any certainty. 
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Instance C: Cost by Policy
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Figure 27: Instance C: Average Daily Cost by Policy 
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Instance C: Average Cost by Policy
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Figure 28: Instance C: Average Daily Cost by Policy over All Replications 

 
 
 Figure 29 and Table 7 show 95% confidence intervals for mean cost for each policy.  

This figure and this table allow us to statistically confirm five groupings: random; highest 

quantity, large, multiple, make highest quantity, and smallest fit; Wang (highest quantity) and 

Wang (smallest fit); Wang (random); and Wang (highest quantity) - NO LIMITS, Wang 

(smallest fit) - NO LIMITS, and Wang (random) - NO LIMITS.  These groupings are 

summarized in Table 8. 
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Figure 29: Instance C: 95% Confidence Intervals for Mean Cost for Each Policy 
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Table 7: Instance C: 95% Confidence Intervals for Mean Cost for Each Policy 
 
 

 Lower 
95% Mean Upper 

95% 

Random 403645 404587 405528 

Largest 393166 394103 395040 

Highest Qty 393049 393986 394923 

Smallest Fit 393049 393987 394924 

Make Highest Qty 392995 393931 394866 

Multiple 392939 393871 394804 

Wang (smallest fit) 391321 392266 393211 

Wang (highest qty) 390924 391871 392817 

Wang (random) 389584 390503 391422 

Wang (highest qty)   
NO LIMITS 357601 358463 359326 

Wang (smallest fit)   
NO LIMITS 357306 358163 359020 

Wang (random)      
NO LIMITS 357204 358067 358930 

 

 
 

Table 8: Instance C: Groupings of Significantly Different Policies, Highest Cost (top) to Lowest Cost 
(bottom) 

 
 

Random 

Highest Qty, Largest, Multiple, Make Highest Qty, Smallest Fit 

Wang(highest qty), Wang(smallest fit) 

Wang(random) 

Wang(highest qty)- NO LIMITS, Wang(random)- NO LIMITS, 
Wang(smallest fit)- NO LIMITS 
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4. Instance D 

 Figure 30 shows the cost of fulfilling all orders for each policy.  There appear to be five 

different groupings of cost for this instance.  In Figure 31, we see the averages across all 

replications of the costs using each policy.  Here it is difficult to discern whether there are four or 

five distinct groups. 

 
 

Instance D: Cost by Policy
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Figure 30: Instance D: Average Daily Cost by Policy 
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Instance D: Average Cost by Policy
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Figure 31: Instance D: Average Daily Cost by Policy over All Replications 

 
 
 Ninety-five percent confidence intervals for the mean cost per replication are shown in 

Figure 32 and in Table 9.  These confidence intervals allow us to discern five individual 

groupings of distinct policies.  These groupings are summarized in Table 10. 
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Figure 32: Instance D: 95% Confidence Intervals of Mean Cost for Each Policy 
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Table 9: Instance D: 95% Confidence Intervals for Mean Cost 

 
 Lower 

95% Mean Upper 
95% 

Random 414579 415594 416609 

Multiple 404255 405250 406245 

Largest 404223 405222 406222 

Make Highest Qty 404101 405095 406089 

Highest Qty 403971 404968 405965 

Smallest Fit 403971 404968 405965 

Wang (random) 400827 401800 402773 

Wang (smallest fit) 400660 401635 402611 

Wang (highest qty) 399101 400074 401047 

Wang (highest qty)   
NO LIMITS 385259 386184 387110 

Wang (random)      
NO LIMITS 384786 385713 386639 

Wang (smallest fit)   
NO LIMITS 384760 385688 386616 

 
 
 
 
 

Table 10: Instance D: Groupings of Significantly Different Policies, Highest Cost (top) to Lowest Cost 
(bottom) 

 
 

Random 

Highest Qty, Largest, Multiple, Make Highest Qty, Smallest 
Fit 

Wang(random), Wang(smallest fit) 

Wang(highest qty) 

Wang(highest qty)- NO LIMITS, Wang(random)- NO LIMITS, 
Wang(smallest fit)- NO LIMITS 
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5. Instance E 

 The cost of each policy is displayed in Figure 33.  There appear to be three groupings of 

policies based on this graph.  In order to more clearly view how each policy performs, costs were 

averaged over all replications and are summarized in Figure 34.  This instance is interesting, 

because Wang’s policies all appear to perform equally well, even those that are subject to 

incoming inventory limits.  

 

 63 
 



 

Instance E: Cost by Policy
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Figure 33: Instance E: Average Daily Cost by Policy 
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Instance E: Average Cost by Policy
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Figure 34: Instance E: Average Daily Cost by Policy Over All Replications 

 
 

 Figure 35 and Table 11 show 95% confidence intervals for the mean cost of each policy.  

Here we are able to statistically confirm that there is not a significant difference in performance 

for Wang’s policies, regardless of tie-breaking rule or incoming inventory restrictions.  Table 12 

summarizes the groupings of significantly different policies. 
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Figure 35: Instance E: 95% Confidence Intervals for Mean Cost for Each Policy 
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Table 11: Instance E: 95% Confidence Intervals for Mean Cost 

 
 Lower 

95% Mean Upper 
95% 

Random 375071 375966 376861 

Largest 365714 366601 367487 

Highest Qty 365555 366442 367329 

Smallest Fit 365555 366442 367329 

Make Highest Qty 365506 366394 367281 

Multiple 365358 366242 367126 

Wang (highest qty) 358510 359306 360102 

Wang (smallest fit) 358344 359140 359935 

Wang (random) 358337 359136 359934 

Wang (random)      
NO LIMITS 358012 358872 359733 

Wang (smallest fit)    
NO LIMITS 357946 358807 359667 

Wang (highest qty)   
NO LIMITS 357899 358758 359617 

 
 
 
 
 

Table 12: Instance E: Groupings of Significantly Different Policies, Highest Cost (top) to Lowest Cost 
(bottom) 

 
 

Random 

Highest Qty, Largest, Multiple, Make Highest Qty, Smallest 
Fit 

Wang(highest qty), Wang(random), Wang(smallest fit), 
Wang(highest qty)- NO LIMITS, Wang(random)- NO LIMITS, 

Wang(smallest fit)- NO LIMITS 
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C. SUMMARY 

 

 Summary charts of Daily Costs, Inventory Weight and Scrap Weight are shown in Tables 

13, 15, and 16, respectively.  In each case, the smallest performance measure was set to 1.00 for 

each model and then each other measure was divided by this smallest measure to examine the 

relative performance of each policy.  Table 14 provides a graphical summary of the Daily Cost 

information provided in Table 13. 

 

Table 13: Relative Performance of Daily Cost Across all Instances 
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Table 14: Graphical View of Daily Cost by Instance 
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Table 15: Relative Performance of Daily Scrap Weight Across all Instances 
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Table 16: Relative Performance of Daily Inventory Weight Across all Instances 
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CHAPTER V 

CONCLUSIONS AND EXTENSIONS 

 

 

 We were successful in simulating the process by which a steel firm receives orders and 

then decides how to handle them.   We were also able to develop several other interesting, yet 

intuitive policies for comparison.  Our model outputs various performance measures which 

enable us to compare and contrast the performance of each policy. 

 Overall, the results show that any basic policy provides a statistical advantage over 

randomly selecting a piece to cut from.  Moreover, for a single supply, single demand instance, 

Wang’s policy gives no statistical advantage over any other basic policy.  However, when the 

system is expanded to include multiple supply and multiple demand points, Wang’s policy shows 

a significant advantage over the other policies tested. 

 We were unable to show that using the consumption rates from Wang’s model could 

improve his policy’s performance.  In fact, in many cases, Wang’s policy performed significantly 

worse when incoming inventory restrictions (limits) were implemented. 

 Although we applied our model to the specific case of Straightline, we believe that it is 

very generalizable to other industries such as: fiber optics, paper, and plastics.  This application 

may require small adjustments to the model to consider the nuances of each industry, but 

fundamentally they are very similar to the steel industry.   
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Our work on this project could be expanded by more broadly considering incoming 

inventory restrictions.  Also, we could reconsider how to use the inventory consumption rates 

from Wang’s output to improve his policy’s performance, rather than hindering it.   

There is also an opportunity to expand the model to include more detail, such as varied 

costs of cutting based on the size of the piece cut, an inventory cost based on the amount of time 

that a piece is held in inventory, and most importantly, expanding the model to consider two-

dimensional cutting. 
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