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In order to understand the behavior of upper layer protocols and to design or fine tune their parameters 
over wireless networks, it is common to assume that the underlying channel is a flat Rayleigh fading 
channel. Such channels are commonly modeled as finite state Markov chains. Recently, hidden Markov 
models have also been employed to characterize these channels. Although Markov models have been 
widely used to study the performance of communications protocols at the link and transport layers, no 
validation of their accuracy has been performed against experimental data. These models are not 
applicable to frequency selective fading channels. Moreover, there are no good models to consider the 
effects of path loss (average received SNR), the packet size, and transmission rate variations which are 
significant in IEEE 802.11 wireless local area networks. 
 
This research performs validation of Markov models with experimental data and discusses the limitations 
of the process. In this dissertation, we present different models that have been proposed along with their 
validity analysis. We use the experimental data with stochastic modeling approaches to characterize the 
frame losses in IEEE 802.11 wireless LANs. We also characterize the important factor of current wireless 
LAN technology, the transmission rate variations.  New guidelines for the construction of Markov and 
hidden Markov models for wireless LAN channels are developed and presented along the necessary data 
to implement them in performance studies. Furthermore we also evaluate the validity of using Markovian 
models to understand the effects on upper layer protocols such as TCP. 
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1. INTRODUCTION 

1.1. CURRENT STATE OF CHANNEL MODELING OF WIRELESS CHANNELS 

In wireless communications the nature of the channel poses several challenges for data transmission.  

Wireless channels experience different phenomena than those observed in wired ones.  In wired 

communications the transmitted signals do not experience all the degradations inherent in the wireless 

channel.  Representing these signal degradations with models is not necessarily a straightforward process 

and a considerable amount of research has been performed to address this matter.  [13] [23] [53].  It is 

desirable that models represent certain characteristics of interest with accuracy.  Models can be 

constructed to represent the degradations or their effects at different levels.   For example, it is not only 

important to understand the impact of the channel and the degradation on the signal itself, but on how this 

affects frames or packets as they are transmitted through the air.  The importance of channel models lies 

on how they can be used to simplify the analysis, design and deployment of communication systems. 

In performance studies of wireless communications systems it is important to make use of 

accurate channel models.  For example, in simulation studies, a simple but accurate channel model is 

essential to explore diverse variables such as throughput or transfer time versus signal to noise ratio. 

Furthermore, channel modeling can also be helpful in understanding how to predict the behavior of the 

channel itself.  The predicted results could then potentially be used to make decisions about the operation 

of a system, designing protocols for more efficient operation (e.g. improving energy efficiency), or for 

fine tuning the parameters of existing protocols. In this dissertation, the research interest lies on discrete 

channel models for emerging wireless LANs. These models are useful to characterize how bits or packets 

are lost when transmitted over wireless channels as opposed to how a signal is distorted, which is often of 

interest in receiver design.  

Generally the quality of a channel is described by the value of the received signal to noise ratio.  

In the past, modeling of wireless channels has used the envelope of this ratio to characterize models.  Due 

to the nature of the wireless channel this envelope varies in time and experiences fading.  Fading may 

result in considerable degradation of the received the signal and therefore should be taken into account in 

the models.  Usually wireless channel models take fading into account, by partitioning its time 

1 



representation and assigning each partition to a state in the model.  Then by generating transitions 

between several states the variations of the original envelope are considered. 

Markovian models have been used to represent the faded envelope as well as the frame or packet 

losses that occur because of fading.  These models are quite popular and have been used in a variety of 

performance studies. For example, Chaskar et al. [16] and Chiani et al. [17] studied the performance of a 

transport protocol (TCP) over wireless links using a two state Markov model.  Labiod [28] studied the 

performance of error correcting codes over wireless links with the same type of model.  In all of these 

cases, the channel model determined how frames were lost at the link layer.    The performance of other 

communication protocols, such as ATM [25] [39], over wireless links has also been studied via 

simulations using two state Markov models.  Hidden Markov models have also been suggested to 

characterize losses in fading channels [49], for example in [51] these models were proven to be accurate 

in characterizing data transmission in cellular systems where the carriers are narrowband (30-200 KHz 

wide). 

Markovian models are used because of the simplicity of their characterization and 

implementation [49].    For instance, [31] illustrates how such a model can be successfully used to 

characterize channels in which errors occurs in bursts.  As the authors indicate in [31] these models are 

usually mathematically tractable.  In particular, characterizing these models requires defining a few scalar 

parameters and matrices that determine how often the channel oscillates between ‘good’ and ‘bad’ states. 

Implementation is usually done by incorporating a simple error-generating mechanism for each state. 

Markovian channel models have also been used in channel prediction studies [15] [22].  In these 

studies the channel model was used as a basis for comparing how well the prediction technique follows 

the channel behavior.  In this case it is even easier to visualize how important an adequate channel model 

is.  This is because the output of a simulated channel was used to measure the accuracy of the prediction 

technique 

Several validity studies for Markovian models have been performed in the past.  These have 

focused their efforts in verifying the legitimacy of fundamental assumptions and the statistical 

characteristics of the model.  For example, Wang and Chang [54] showed under what conditions the 

Markovian assumption of Rayleigh fading is adequate while Tan and Beaulieu [46] extended this idea and 

suggested that a better approach is to analyze the autocorrelation function of the model.  However, in the 

past, validity studies have mostly used simulated data to verify the accuracy of the models.  Further issues 

related to the modeling of wireless channels and a discussion on the limitations of existing models are 

presented next. 
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1.2. ISSUES RELATED TO CHANNEL MODELING OF WIRELESS CHANNELS 

Markovian models that have been proposed in the past have assumed simplified conditions for their 

mathematical characterization.  In particular, fairly simple modulation schemes like BPSK or DPSK [53] 

have been assumed in order to simplify the construction of the model.  Furthermore, for the 

characterization of the models it has been assumed that the underlying communications channel is not 

frequency selective.  Even though these assumptions are valid for some cellular systems with simple 

modulation schemes, there are circumstances under which it is not clear if they hold.  For example, 

current wireless local area network devices implement complex modulation schemes and operate over 

frequency selective channels.  In these cases it is not clear how to characterize Markovian models or even 

if they are adequate to represent frame losses. 

  All characterization methods and results currently available in the research literature have been 

based on simulated channel conditions.  For example the authors of [52], [53] or [56] used simulated 

versions of the faded envelope to generate their results.  In the past no characterization or validation of the 

loss processes at the frame level has been performed.  Experimental validation has been limited to study 

the accuracy and limits of operation of the fundamental Markovian assumption like in [6].  

 Furthermore, in past studies several characterization issues have been left open to discussion.  

Among these, it was not clear how the mechanism used to partition the received envelope affects the 

model, how many states are necessary to adequately represent the channel, how the packet size affects the 

model or how to relate the characterization parameters to the average received signal to noise ratio.  

In this dissertation the interest lies on channels that are currently used by widely available 

wireless local area network technologies.  In particular the focus will be on IEEE 802.11b and 802.11a 

channels.  These are frequency selective, are currently used in a wide range of physical environments and 

implement new features like variable transmission rates that impact the performance of higher layer 

protocols.  None of these characteristics have been previously taken into account in any model and it is 

unclear what effect if any they could have on the frame loss process. 

1.3. RESEARCH GOALS 

Taking into consideration the challenges detailed in the previous section this dissertation has three main 

goals. 

• Study the accuracy of finite state Markov models and their characterization methods when these 

are used to approximate frame losses in IEEE 802.11 indoor channels. 
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• Study and then generate models for the transmission rate variations in IEEE 802.11 indoor 

channels. 

• Generate a set of guidelines that will allow an accurate and simple characterization of Markovian 

models for frame losses in IEEE 802.11 indoor channels. 

These studies have not been previously performed and their results would contribute to the 

understanding of how appropriate it is to use traditional models and new ones under specific conditions 

such as different values of signal to noise ratio, frame sizes and transmission rates.  All these variables are 

relevant to current deployment of wireless local area networks devices and applications.  

A distinguishable advantage of the approach taken in this dissertation is that since it will be based 

on experimental data it will automatically take into account the effects of frequency selective fading.  

This would eliminate the need for unnecessarily increasing the mathematical complexity of the models.  

The goals are not to analytically relate the underlying physical phenomena to the impact on frame losses 

but consider this issue in an empirical manner, similar to other channel modeling approaches at the signal 

level [34]. 

1.4. CONTENTS 

Chapter 2 presents a basic conceptual description of the fading process in wireless channels.  The Finite 

State Markov Channel (FSMC) characteristics and limitations are briefly discussed.  Source and error 

modeling are also introduced as a basis for presenting hidden Markov models.  This chapter finishes by 

briefly describing how to fit hidden Markov models to experimental data, a description of issues relevant 

to this research and some peculiarities of the IEEE 802.11 standard. 

Chapter 3 discusses the experimental trials necessary to acquire data to validate traditional 

models and create new ones.  The chapter starts by defining the structure of the experimental data that can 

be collected and the notation that will be used through the remainder of the dissertation.  This chapter also 

details the characteristics of the experimental sites used for the experiments as well as the limitations 

encountered during the process.  The main subject, modeling, is elaborated next.  Particulars on the 

construction of Markov and hidden Markov models are given to explain how they can be created to 

characterize frame loss processes and the variations in the transmission rate in 802.11 systems.  This 

chapter finishes by presenting the quantitative methods used to validate the modeling results. 

Chapter 4 presents a summary of the vast amount of experimental data collected at the 

measurement sites.  The chapter gives a glimpse of the tendencies present in the statistical distributions of 

frame loss processes.  Results for two different types of environments, office and residential, and IEEE 
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802.11b and 802.11a wireless local area network technologies are gradually presented with a step by step 

change of the influencing factors.  The chapter concludes by analyzing the experimental results with a 

factorial design approach that quantitatively illustrates the importance of each factor. 

A discussion on the limitations in the characterization of previous Markovian models is presented 

in Chapter 5.  This chapter illustrates the difficulties and inaccuracies that the construction of a model 

faces when traditional methods are used to describe it.  These inaccuracies were found to be quite 

significant as shown by the sample models constructed throughout the chapter. 

All the results of modeling the frame loss process and rate variations of the channel are presented 

in Chapter 6.  In this chapter, the output obtained from both Markov and hidden Markov models is 

analyzed with the validation methods elaborated upon in Chapter 3.  An insight on how well each model 

represents reality is given along with the guidelines for constructing practical and accurate Markovian 

models for 802.11b and 802.11a channels. 

In the final chapter a summary of the relevant findings is given along with a discussion of future 

research work that can be explored in the area.  The document ends by including in the Appendix detailed 

information about the creation and mathematical characterization of frame loss models as well as 

supporting numerical data obtained during the collection of data and the construction of Markovian 

models. 
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2. DISCRETE MODELING OF THE WIRELESS CHANNEL 

The main interest of this dissertation revolves around the concepts related to the modeling of the wireless 

fading channel for WLANs.  This chapter will start by covering the basics of fading, which is a 

degradation of the signal, a phenomenon intrinsic to wireless communications.  Markov modeling of 

fading will then be built upon this introductory foundation.  

2.1. CHARACTERIZING THE SIGNAL TO NOISE RATIO VARIATIONS 

In wireless communication systems signals may travel through multiple paths between a transmitter and a 

receiver.  This effect is called multipath propagation.  Due to the multiple paths, the receiver of a signal 

will observe variations of amplitude, phase and angle of arrival of the transmitted signal.  These variations 

originate the phenomenon referred to as multipath fading.  Two manifestations, large-scale and small-

scale fading characterize these variations [42].  These manifestations generate specific degradations in the 

signals.  Figure 1 presents the fading manifestations and its associated degradations [42]. 
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Fading 
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Time variation 
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Figure 1 Fading manifestations and degradations. 
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The first fading manifestation, large-scale fading, refers to the path loss caused by the effects of 

the signal traveling over large areas.  Large-scale fading characterizes losses due to considerably big 

physical objects in the signal’s path like hills or forests.  The path loss is characterized by a mean loss 

(due to the distance between the transmitter and the receiver and the propagation environment 

characteristics) and a variation around the mean loss. 

On the other hand, small-scale fading characterizes the effects of small changes in the separation 

between a transmitter and a receiver.  These changes can be caused by mobility of the transmitter, 

receiver or the intermediate objects in the path of the signal. Small scale changes result in considerable 

variations of signal amplitude and phase.   Small-scale fading is also known as Rayleigh fading since the 

fluctuation of the signal envelope is Rayleigh distributed1 when there is no predominant line of sight 

between the transmitter and receiver.  When there is a predominant line of sight between the transmitter 

and receiver the fluctuations are statistically described by a Rician probability distribution function.  Both 

large and small scale fading can be present in a wireless system.   

Figure 1 shows two sub-manifestations of small scale fading.  The first one, signal dispersion, 

refers to the time spreading of the signal.  Dispersion causes the underlying digital pulses transmitted in 

the signal to spread in time.  The second manifestation reflects the time variant behavior of the channel 

that is due to relative mobility between a transmitter and a receiver or the objects in the path of the signal.  

Both of these manifestations can be characterized in the time and frequency domain by fading 

degradation types. 

In Figure 1 it is also shown that the degradation types of the dispersion manifestation are 

frequency selective and flat fading.  From the time domain point of view, frequency selective fading 

occurs when the maximum spread in time of a symbol is greater than the duration of the symbol.  

Consequently, another name for this fading degradation is channel induced intersymbol interference.  

From the frequency domain point of view, frequency selective fading occurs when the spectral 

components of a signal are affected in different ways by the channel.  In particular, frequency selective 

fading occurs when the channel’s coherence bandwidth (the channel’s bandwidth in which all 

components experience approximately the same fading characteristics) is smaller than the signal’s 

bandwidth.  When the conditions described above are not met (for frequency selective fading) the 

degradation is referred to as flat fading.  In this case the channel characteristics are approximately flat for 

all frequencies. 

The types of degradation for the time variation manifestation are fast and slow fading.  From the 

time domain point of view, fast fading refers to the condition in which the channel’s coherence time (the 
                                                 
1 The Rayleigh probability distribution is: b

r

e
b
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expected time duration during which the channel’s response is invariant), is smaller than the symbol 

duration.  Slow fading occurs when the coherence time is greater than the symbol duration.  

From the frequency domain point of view, fast fading occurs when the signal bandwidth is less 

than the maximum frequency Doppler shift2.  Slow fading degradation occurs when the signal bandwidth 

is greater than the maximum frequency shift.   

2.1.1. The Finite State Markov Channel Model 

Wang and Moayeri [53] proposed the modeling of a Rayleigh fading narrowband channel using a Markov 

process with a finite number of states referred to as the Finite State Markov Channel (FSMC) model.  The 

FSMC model originated as an extension of a simpler model proposed earlier, and known as the Gilbert-

Elliot channel.  In the FSMC, the fading process is related to the received signal to noise ratio (SNR).  

Such models are applicable primarily to flat fading channels.  

The SNR is used since it is a common parameter that represents the quality of the channel [53].  

For instance, the variations in the SNR can also affect the performance of other layers, like the link layer.  

At high average SNR the average number of lost frames due to transmission errors is expected to be low, 

the opposite occurs at low average SNR values.  Therefore an accurate modeling of the received SNR can 

result in accurate channel models at the bit or frame level.  

Figure 2 illustrates how the received SNR can be used in a FSMC model.  First the SNR is 

partitioned into ‘n’ intervals or levels.  Then each interval is associated with a state of a Markov process. 

The first interval starts at a level of zero SNR while the last one usually includes all received SNR values 

greater than a certain threshold.  This procedure has been implemented in the past using a simulated 

received SNR that is assumed to be valid for all frequencies and path losses, conditions which are not 

valid for all wireless systems. 

 

 

 

                                                 
2 The Doppler frequency, fD= v/λ  characterizes the maximum frequency shift of the signals in a mobile environment. ‘v’ is the 

relative velocity between the transmitter and receiver and ‘λ ’ is the wavelength of the transmitted signal.   
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Figure 2 Partitioning the received SNR and assigning each interval to a state of the FSMC. 
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Figure 3 The finite state Markov channel model representation. 

 
 
 

Figure 3 shows the FSMC represented by a chain of ‘n’ states.   As seen in the figure, only 

transitions to the same state or to adjacent ones are allowed in the model.  In the figure the in-state 

transition probabilities (pii) and the adjacent state transition probabilities (pij) are shown next to each 

arrow in Figure 3.   

The goal of the model is to relate the varying nature of the channel with a loss process.  For this, 

each of the ‘n’ states is associated with a different binary symmetric channel (BSC).  The ‘n’ BSCs are 

shown in the lower part of Figure 3.   In each state the associated BSC determines how a symbol being 

transmitted, for example a zero or a one, could be received in error.  The individual probabilities of 

receiving a symbol in error are called crossover probabilities and are shown in the figure as 1-pi.   

FSMC models are based on the theory of constant Markov processes3.   Constant Markov 

processes have the property that the state transition probabilities are independent of the time at which they 

occur.  These processes can be defined by a finite number of possible states that are usually represented 

                                                 
3 A Markov process with a discrete state space is also referred as a Markov chain [5, pg. 21] 

time

Interval assigned to state 1 
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by a set S= {s0, s1, … , sn-1} and a sequence of states {sk}, k=0,1,2,…. Table 1 summarizes what is 

necessary to mathematically describe an ‘n’ state FSMC model [53]. 

The elements described in Table 1 must follow some constraints.    Any element of the transition 

probability matrix P should be between 0 and 1; the rows of P should add up to one and the elements of e 

should be between 0 and 0.5.  Furthermore, not any set of P, π and e that satisfy these basic constraints 

will represent the physical channel [53].  Therefore it is necessary to establish other relationships between 

these elements and the channel characteristics, such as the modulation scheme, speed of the mobile and 

the frequency of the transmission.  This would allow a correct characterization of the elements shown in 

Table 1.  That procedure is discussed in greater detail in Appendix A.   

 
 
 

Table 1 Necessary elements needed to describe the finite state Markov channel (FSMC) 

 
 

Component Notation Description for an ‘n’ state 
FSMC 

Transition  
Probability matrix 

P A n×n matrix representing 
the probability of transition 
between states or into the 
same current state. 

Steady state  
Probability vector 

π A 1×n vector representing 
the steady state probability of 
being in any of the n states 
(additionally, π P= π  and 
∑ π  =1). 

Crossover  
Probability vector 

e A 1×n vector representing 
the different crossover 
probabilities of having a 
symbol in error in each of the 
n states. 

 
 
 
Several issues arise during the characterization of the elements of Table 1.  In particular it is 

important to understand how the partitioning scheme of the SNR, the number of states, the modulation 

and the coding affect the accuracy of the model. 

Numerous partitioning schemes [52] [53] have been proposed to create the intervals that represent 

the states of the channel.  Nonetheless no approaches have included in the partitioning criteria any fading 

characteristics.  Only in [2] Aráuz and Krishnamurthy proposed a set of schemes that took into account 

the fading in the channel.  That study compared several schemes and concluded that taking into account 

fading did not result in any major advantages in terms of the accuracy of the model parameters.  
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Appendix A discusses in detail the issues related to partitioning as well as a comparison between the 

existing schemes. 

Just a few authors [6] [7] [8] have explored how the number of states affects the accuracy of a 

FSMC model.  In all cases simulation studies have been used to generate the results; however no precise 

guidelines exist for the selection of the number of states the model should have.   

The modulation and coding schemes of the model have been studied and in the past taken into 

consideration in great detail [53] [56] [57] [58].  It has been shown that a FSMC is accurate under a wide 

range of simple modulation and error correction schemes.  Nevertheless no study has taken into 

consideration complex schemes such as those used in IEEE 802.11b and 802.11a wireless local area 

network technologies.  Appendix A includes a detailed discussion of these issues as well as current 

relevant results. 

The basic assumption made by all the FSMC model studies is that the underlying signal to noise 

ratio process follows the Markovian property.  This property indicates that the probability of transition at 

a time ‘n’ to a new state only depends on the state at time ‘n-1’.  Extensive studies have been performed 

[46] [53] to understand the validity of this assumption.  Those studies detail under what slow fading 

conditions the assumption is valid.   

No experimental validation of the results for frequency selective channels has been performed in 

the past.  Usually all validation studies compare the Markov modeling of fading or of frame losses with 

the results that are obtained by looking at mathematical models like the isotropic scattering, omni-

directional receiving antenna (ISORA) model [23][46].  In an ISORA model it is assumed that a signal 

that travels between a transmitter and a receiver experiences a spreading out (scattering) of its energy 

equally in all directions and is received using an omni directional antenna.  Under these assumptions it is 

easier to obtain closed form expressions for some first-order statistics like the autocorrelation function of 

the envelope [46].  This result can then be used to compare a Markov model autocorrelation function to 

the ISORA one and quantify its differences.  A comprehensive discussion of several validity studies is 

included in Appendix B. 

Current literature does not elaborate on the modeling of fading for frequency selective 

channels.  Under frequency selective conditions, how the signals are affected by the channel varies with 

frequency.  Such a situation is illustrated in Figure 4 in which several SNR envelopes have different 

values that vary with time and frequency.  Modeling frequency selective conditions, especially at the 

physical layer level, is not a simple process.  This becomes even more intractable when the bandwidth of 

a signal is large and it spans frequencies that suffer different channel variations at the same time. 

To overcome the effects of a frequency selective channel usually complex modulation schemes 

are used.  Taking into account these schemes will further increase the difficulty of constructing a model 
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that relates the underlying phenomenon to the frame losses.  In the next chapters it will be shown how it is 

not necessary to construct models that look at the signals physical characterization but only at its effects 

on frame losses in order to define an adequate frame level model. 

 

Received SNR

 

Signals spans 
this range of 
frequencies 

time 

frequency 

Figure 4 Variations of received SNR in time and frequency – frequency selective fading 

 

2.1.2. Hidden Markov Models 

As discussed in Appendix B, the application of first order FSMC is adequate under very slowly 

fading applications, that is, for short durations of time.  Whenever there is a need to include the effect of 

very long channel memory the FSMC model is no longer appropriate.  This is for example in the case of 

the study of fade duration distributions in fading channels [48].  Here, there is a need for Markov chains 

with larger memory, however since the number of states grows exponentially with the process memory, 

the approach is no longer practical [48].  In such cases other methods such as those that use hidden 

Markov models can be used. 

Hidden Markov models (HMM) [37] are probabilistic functions of Markov chains (also known as 

Markov sources).  These models can be used to study the fading process of a Rayleigh fading channel.  

We will first start by defining the general characteristics and concepts related to HMMs. Then we will 

proceed to describe how they are used to model fading. 

A common discrete Markov process, like the one used in FSMC, is a stochastic process in which 

the outputs are observable.  The outputs in this case are the set of states at each instant of time.  

Additionally, each state corresponds to some physical and observable event.  These observable models 
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can be extended to include the case where the ‘observation is a probabilistic function of the state’.  This 

results in a ‘doubly embedded stochastic process’ where one of the stochastic processes is not observable 

and hence the name hidden Markov model.  

2.1.2.1. Characterization of HMMs 
A HMM is characterized with the following elements. 

• A set of the Markov chain states represented by S = {1, 2, … , n}.  The number of states 

in the model is ‘n’.  Even though these states are called ‘hidden’, in practical applications 

they are associated with some physical event. 

• The set H of the observable output symbols in any state represented as H = {h1, h2, …, 

hm} with ‘m’ elements.  ‘m’ is also called the alphabet size.   

• The state transition probability distribution matrix P = {pij},  

where pij = Pr[current state = j | previous state = i] = Pr [sj | si ] 

• The observed output symbol probability distribution matrices B.  B are diagonal matrices 

whose elements bj represent the probability p{h | sj} where h ∈H (if H is discrete). 

• The initial state probability vector π. 

In this dissertation we do not intend to fully describe the characterization of HMMs, but to relate 

these models to fading processes. For this purpose, it is also necessary to partition the received SNR and 

assign states to the partitions.  Once the model is established it is possible to compute the autocorrelation 

functions and other statistics of HMM [50].  Furthermore, it is possible to characterize error sources that 

can be used to generate block errors. 

We are interested in describing the methods that can be used to fit a HMM to a specific fading or 

frame loss process.  The first fitting method that can be used is the method of moments [50].  In this 

method the parameters of the model are found by equating the moments of the two models (i.e. HMM and 

ISORA for example or with the moments from experimental observations).  This method has the problem 

that its system of equations is ‘ill posed’.  This means that the moments are the same for very different 

models.  Additionally, the selection of moments according to [50] is in general arbitrary.  For example, 

finding a HMM with an autocorrelation function that resembles that of the fading process does not 

guarantee that the multidimensional probabilities associated with these processes are close.  The method 

of the moments is generally used to obtain a first approximation that will be refined later with more 

advanced statistical methods. 

A second fitting method consists in approximating multidimensional probability densities [50].  

This method tries to answer the question of how to adjust the model parameters in order to maximize the 

probability of having a certain observable sequence.  In more specific terms, if the observation sequence 
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O is given, such that O= O1, O2, … , OT (Oi ∈H).  How do we best describe it based on the model’s 

parameters?  This means we are trying to maximize the probability p(O|θ ), where the model is θ = (P, 

B, π).  The observation sequence used to compute the model parameters is called the training sequence. 

There is no absolute optimal manner of estimating the model parameters to solve for the second 

fitting method.  However, there are methods to locally maximize p(O|θ ) using an iterative procedure.  

One of these iterative procedures is the Baum-Welch method (derived from the EM, expectation 

maximization method) [14].   Details of several procedures that can be applied to optimize the 

computational efficiency of the method are given in [50].  Additionally, an advantage of HMM modeling 

of fading processes is that it provides means to compute closed-form expressions for distributions of the 

fade duration and level crossing rates [50].  These expressions could be useful in the implementation of 

simulations.   

Up to this point the actual HMM parameters have not been related to any real physical 

characteristic of the fading channel.  In [40] and [50] it is illustrated how this is done.  The channel is 

again connected to the HMM via the set of states S.  As in the FSMC the fading amplitude needs to be 

quantized and an element of the set S is assigned to each quantization level.  In these references there are 

no guidelines on how to select the threshold levels.   

It is possible to compute the transition probability matrix P via simulation of the fading envelope.  

This is done by partitioning the SNR and counting the total and the individual transitions between states 

that occur during a given period of time.  The ratios of the latter quantities to the total transitions yield the 

desired quantities.  In a similar manner the probability of the outputs of the model (B matrices) can be 

computed by counting how many times a particular symbol hi is generated in each state and dividing these 

values by the total number of output symbols observed in each state.  This way, Turin and Van Nobelen 

[50] proceeded to compute the state duration distribution of a flat Rayleigh fading channel using the 

Baum-Welch algorithm.  As shown in [50, Fig. 1] the approximation of the state distribution closely 

resembles that obtained from simulated data. 

The advantage of using HMMs is that they provide enough flexibility to model different types of 

fading [48] [50].  Additionally if fading is modeled with a HMM then bit errors and block errors 

occurring over fading channels can also be modeled with HMMs [44] [45]. 
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2.2. CHARACTERIZATION OF ERROR SOURCES 

The FSMC model serves two main purposes.  The first one is to approximate the received signal to noise 

ratio by discretely quantizing the envelope into states; the second, the generation of a loss process.  In this 

section the characterization details of such loss processes is introduced.   

A loss process in a FSMC is determined by the individual symbol error probabilities of the BSCs 

associated to each state.  These probabilities are computed symbol by symbol based on the quantized 

SNR and the modulation scheme.  As mentioned earlier, it is fairly easy to compute these probabilities 

with simple modulation schemes.  However, when more complex schemes are used, like the ones present 

in spread spectrum systems and those used in wireless local area networks (802.11b and 802.11a 

technologies), this computation is not straightforward. 

The symbol by symbol process created from the FSMC does offer the advantage that it could 

result in a good approximation if used to decide whether frames are received in error.  This is because this 

decision can be made by looking at the number of errors that occurred and the error detection or 

correction schemes being used.  On the other hand, a clear disadvantage of this approach is that the 

number of computations needed per frame in a simulation is quite high compared to an approach that does 

not look at all the individual symbols in a frame, but the entire frame as a whole. 

The starting point for the characterization of loss processes will be a formal definition for the 

finite state channel developed by Shannon in 1948 [53].  When working with these models it is practical 

to use matrix notation instead of scalars. Appendix C details how this notation works by slowly migrating 

the explanation from basic probability expressions to matrix probability [48] notation.   

2.2.1. The Finite State Channel 

The finite state channel (FSC) allows the representation of a communications channel in which a given set 

of inputs when transmitted over the channel results in certain outputs.  The channel itself can be in any 

state from a state space.  Let S represent the state space and each of its elements the individual states so 

that S={1, 2, …u}.  The transitions between states follow a state sequence also known as regime.  If the 

set of input symbols is A={a1, a2, …} and the set of output symbols is H={h1, h2, …} then the probability 

of being in state st-1 with at as input to the channel and going to state st with ht as the output can be written 

as Pr(ht, st | at, st-1).  In order to describe the FSC it is sufficient to count with the set: 

{S, A, B, π, P(h|a)}, 

where: 

S:   channel state space 

A:   input alphabet 
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B:   output alphabet 

π:   initial state probabilities vector 

P(h|a):  called the conditional matrix probability of the observing  the output symbol h ∈ H 

given the input symbol a ∈  A (if the channel is not discrete the MP are replaced with the 

matrix probability distribution functions MPDF [48]).  

Appendix C discusses in detail the notation and relations that can be established with these elements.  

It also illustrates how using matrix notation greatly simplifies the handling of them. 

 

2.2.2. Source modeling 

Source modeling can be used to model the channel input.  The source can be modeled by an autonomous 

FSC (one in which the output does not depend on its input).  A source can be described by the set {Ss, πs, 

Ps(a)}.  Where Ss is the set of states, πs the initial state probabilities vector and Ps(a) a matrix such that: 

Ps(a) = {Pr[a, j|i]}  =  probability of transferring from state ‘i’ to ‘j’ and producing symbol a. 

 = Pr(j|i) Pr(a | i,j) 

  

This source is called a FINITE STATE GENERATOR (FSG) [48].  In a manner similar to that 

shown in Appendix C, using equation (7) one can compute the probability of observing a certain sequence 

of outputs at
1=a1, a2, …, at with the next expression: 

∏
=

=
t

i
iss

t

1
1 )()Pr( 1aPa π  

As illustrated in Appendix C, the states constitute a Markov chain with transition probability 

matrix: 

P=[Pr(j|i)]= ∑
a

aP )(s  

Furthermore, if the probability of observing a symbol at depends only on the current state, this is 

Pr(at | i,j) = Pr(at | j) the model is called a discrete hidden MARKOV model. 

2.2.3. Error source modeling 

In error source modeling it is convenient to consider error sequences et
1 instead of channel outputs ht

1 

since the errors are just deterministic functions of the channel inputs and outputs.  Appendix C develops 

expressions used to handle the elements of finite state sources and error souces. 
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The probability of observing a sequence of errors et
1=e1, e2, …, et given a sequence of inputs at

1 

can be computed as: 

Pr(e1
t | a1

t ) = π Π
k=1

t
P(ek | ak )1 

 

If the matrices of the form P(e|a) = P(e) that is, they do not depend on the input a, then the 

channel is called symmetric.  With this:  

Pr(e1
t ) = π Π

k=1

t
P(ek )1 

One can use a HMM to model the sequence of states with the set {S, E, π, P(e)}, where E is the 

set of possible errors. 

The symbol error probability can be expressed as: 

Pr(e)=πP(e)1 

2.2.4. Problems related to hidden Markov models 

There are three basic problems that are inherent to HMM characterization.  Only one of these problems is 

relevant to this dissertation.  Nevertheless since all problems are related, a description of all of them is 

included in Appendix D.  By solving these problems it is possible to characterize a HMM based on 

experimental data in an optimal manner.   

 The first problem refers to computing the probability of observing a sequence of output symbols 

given a specific model.  In particular if the observation sequence of output symbols is O=O1, O2, …OT 

(where Oi ∈set of output symbols), the goal is to efficiently compute P(O|model).  One approach would 

be to compute P(O|model) by enumerating every possible sequence of states of length T, calculate the 

probability of occurrence of each sequence and then adding up the results to obtain the joint probability 

over all state sequences.  This procedure is inefficient since it involves a considerable number of 

multiplications and additions.   To solve this problem a procedure called forward algorithm can be used; 

this computes the probability of observing partial sequences of O, considerably reducing the number of 

operations needed.  

 The second problem is not of interest for this document.  In this problem the goal is to compute 

the probability of observing a certain sequence of states given a sequence of observed output symbols.  To 

solve this problem the Viterbi algorithm can be used. 

 The third problem determines values for the model parameters such that the probability of 

observing a given sequence of output symbols is maximized.  There is no analytical solution to the 

problem of generally maximizing the probability, but locally maximized probabilities can be found by 

17 



iterative procedures such as the Baum-Welch method.  This method will be used in later chapters to 

obtain HMMs that represent frame losses. 

The Baum-Welch method operates by using a first approximation of the solution, labeled θ in the 

next figure.  This first approximation is generated by taking the experimental data and computing the 

elements π, P, B by counting the occurrences of total and individual transitions and output symbols for 

each state. After θ  is computed a second approximation of the model, labeledθ , is computed using the 

re-estimation equations shown in Appendix D.   

The second approximation is used again to re-estimate the model with the re-estimation 

equations.  Then the procedure is repeated iteratively until the differences between the new parameters 

and the old ones are not significant.  In particular, for obtaining the results in later chapters the procedure 

was stopped when the values of the transition matrix probability P changed less than 10-4 between 

iterations.  This limiting point where the algorithm stops is not part of the re-estimation procedure or the 

description of the algorithm.  The next figure illustrates the procedure. 

 

 

 

  

 

Figure 5 Block diagram illustrating the training process of a HMM. 

2.3. THE IEEE 802.11 CHANNELS 

The IEEE 802.11 standard, published in 1997, details the characteristics of the medium access and 

physical layers for what currently is a widely accepted access technology for wireless local area networks.  

The standard specifies how communications at 1 and 2 Mbps should be implemented in a 2.4 GHz band 

(ISM unlicensed band).   The 1997 standard was followed by a 1999 supplement denominated 802.11b 

 
Define a first model 

θ =(π, P, B) 

Use (π, P, B) to compute 
θ  by using re-estimation 

equations  
(see Appendix D). 

 
Make 
θ =θ   
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which specifies operation at 5.5 and 11 Mbps in the same band.   In late 1999 a high speed physical layer 

specification supplement, denominated IEEE 802.11a, was approved.  This high speed specification 

details the communications mechanisms to provide transmission rates of 6, 9, 12, 18, 24, 36, 48 and 54 

Mbps in a 5 GHz band (U-NII unlicensed band).  Currently the last addition to the original standard is the 

IEEE 802.11g amendment approved in mid 2003. This amendment details how “further higher data rate 

extensions” of 22 and 33Mbps should be implemented in a 2.4 GHz band while maintaining backwards 

compatibility with 802.11 and IEEE 802.11b devices. 

At the physical layer level, the 802.11 and 802.11b standards specify three kinds of physical layer 

“units”. The first one using frequency hopping spread spectrum technology and the second one using 

direct sequence spread spectrum (DSSS) technology.  The DSSS unit, which is of interest in this 

document, can operate in any of 11 channels in a 2.4 GHz band (for North America).  The third unit 

defined in the standard specifies operation in the infrared region of the spectrum.  On the other hand, the 

802.11a supplement specifies the operation of a radio unit using orthogonal frequency division 

multiplexing (OFDM) in any of 12 channels in a 5 GHz band.   

At the MAC layer level the 802.11 standard defines three services.  The first service, referred to 

as an asynchronous data service allows peer link layers to exchange MAC service data units (MSDU) on 

a best effort basis.  The second service provides the adequate security means to authenticate and encrypt 

information transfer between two stations.  The last MAC service is a MSDU ordering service that may 

reorder broadcast and multicast units in relation to unicast data units. 

In this dissertation we will use the notation “802.11b” for those channels that can operate at 1, 2, 

5.5 or 11 Mbps.  To refer to those channels that operate at 6, 9, 12, 18, 24, 36, 48 or 54 Mbps we will use 

the “802.11a” notation.  The notation “802.11” will be used to refer to both the 802.11b and 802.11a 

technologies. 

2.3.1. Detection of frame losses in 802.11 channels 

The 802.11 standard details the operation of devices at both the physical and link layers.  The physical 

layer is further subdivided into two layers, a physical medium dependent (PMD) sublayer and a physical 

layer convergence procedure (PLCP) sublayer.  The PMD sublayer defines the actual transmission 

characteristics that should be used by two stations transmitting information over the wireless medium.  

The PLCP sublayer which maps the MAC protocol data units (MPDU) to a framing scheme suitable for 

the PMD sublayer. 

 Before passing MPDUs to the PMD sublayer the PLCP sublayer adds an additional preamble and 

header.  The preamble includes synchronization and frame delimiters bits.  The header among other thing 
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indicates the transmission speed that should be used for transmission and reception of the MPDU.  The 

header also includes a CRC-16 field that covers all the other fields in the header.  

Frames (which are also referred as MPDUs) at the MAC layer level are constructed with three 

components.  The first one is a variable length header which includes control information such as duration 

and addressing.  The frame body is the second component, its length its variable and carries diverse 

information depending on the frame type.  The last component is a frame check sequence which 

implements a 32 bit CRC that is computed over the header and body and allows the detection of errors in 

received frames. 

As explained in Chapter 1 the multipath propagation effect affects to a great extent the correct 

detection of transmitted symbols, furthermore noise at the receiver creates additional reception 

challenges.  Frames can be discarded at a receiving station when either the CRC-16 in the PLCP header 

fails or when the CRC-32 in the MPDU fails.  When frames are discarded by the receiving PLCP entity 

these are not passed or reported to upper layers so it is not possible to detect those losses without directly 

obtaining them from the receiving WLAN card.  Since the firmware inside the manufacturers cards is 

proprietary and not open source those losses cannot be accounted for.  However, when the PLCP delivers 

an MPDU to the MAC layer, it is stored in memory before the error detection takes place.  The 32 bit 

CRC used will allow the detection of all single, double and most triple single bit errors.  Therefore MAC 

layer information can be used to keep track of the statistics of error and error free received frames. 

2.3.2. Rate variations in 802.11 channels 

The IEEE 802.11 standard published in 1997 establishes that devices that conform to the standard can 

perform “dynamic rate switching with the objective of improving performance”.  The algorithm to 

perform the switching is not specified in the standard.  However, in broad terms, rate switching allows a 

station to vary its transmission rate based on the measured SNR.  That way, when the SNR falls below a 

certain level a lower transmission rate with a corresponding modulation scheme is used.  In a similar way 

when the SNR increases above a certain level an analogous operation takes place. 

2.3.3. Effects of frame losses on upper layers 

The channel characteristics may impede stations in an 802.11 WLAN from maintaining continuous 

communications among them.  From an upper layer perspective, discontinuity in the correct reception of 

frames will usually hinder the correct interpretation of these losses. For example in the case of transport 

layer communications that use TCP, continuous losses of frames could be misinterpreted as congestion in 

the intermediate network.   

20 



In particular in the case of TCP, frame losses may generate timeouts in the active connections.  

This is because losses at the link layer will be recovered at this level by retransmissions that will delay the 

transmission of subsequent frames and therefore of subsequent TCP data units.  When a TCP connection 

times out it will retransmit the data that has not been acknowledged.   If the receiving station continues to 

receive frames in error (or if the station is temporarily disconnected) these successive TCP 

retransmissions will also be delayed.  When the information originally transmitted and the retransmitted 

one finally reach the destination, the receiver will have to discard any duplicated information.  In such a 

situation wireless bandwidth and battery power have been unnecessarily used by mobile stations.  

Furthermore, if TCP times out it slows down its transmission rate and enters a phase known as ‘slow 

start’.  During this phase a TCP sender will limit the amount of data units it places into the network 

believing there is congestion, even though there is none. 
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3. EXPERIMENTAL DESIGN AND METHODOLOGY 

The theoretical basis for channel modeling was developed in chapter two.  In order to compare the 

traditional models described there with experimental data and circumvent their limitations, this chapter 

presents the experiment design to collect data, construct models and validate them.  We will first discuss 

how the frame loss process can be characterized.  Then a description of the experimental sites and the 

devices used to collect the data follows along with a discussion of their limitations.  The design response 

variables, factors and levels are then presented.  The chapter then proceeds to discuss the construction of 

Markovian models for the frame loss process and for the transmission rate variations.  The validation 

methods for these models are presented in the last section. 

3.1. NOTATION OF FRAME LOSSES 

The goal behind the characterization of frame loss processes is the construction of a model that represents 

the loss behavior of the channel.  In general this means that such a model should indicate periods of time 

when frames are received in error or are error free.  These periods of time should have similar 

characteristics to those observed in actual experiments.   

 One can characterize a frame loss process by taking into direct consideration the errors that are 

detected at a receiver’s MAC level.  The information reported by this layer allows the collection of traces 

that are sequences of frames received in error or error free.  These traces are basically a series of zeros 

and ones that represent frames received either correctly or in error respectively.     

To further understand how the traces can be collected and their structure, let’s assume that frames 

of fixed length are being transferred at a constant rate between two 802.11 stations.  The following figure 

illustrates such a situation.  In the figure, the sending station wirelessly transmits frames to a receiver.  

Some of these frames can get corrupted during their transmission and arrive in error; these are marked 

with the         symbol in Figure 6. 
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Figure 6 Characterization of frame losses. 

  

In this example, the first and third frames transmitted by the sender arrive in error at the receiving 

station.  In this particular case the observed frame trace sequence would be: 10100.  This is because 

frames that arrive in error are represented by a one and frames that are error free are represented by a 

zero. 

 To understand how the duration of error and error free periods can be characterized, let’s assume 

that a longer sequence of received frames is captured.  For example: 

 
 
 

1010000011000111000001100000100100001000111000110 

 

 

 

Length = 1 Length = 2 Length = 3 Length = 1 

 
Figure 7 Frame loss sequence. 

 
 
 

From the above sequence one can count that the number of error sequences of length one is five.  

This is because there five individual “1”’s in the sequence.  On the other hand, the number of error free 

sequences of length one is two.  If one counts all the error sequences and error free sequences of different 

existing lengths the following table can be constructed. 

 
 
 
 
 
 
 
 

802.11 station 1 
(receiver) 

These two frames will 
arrive in error 

802.11 station 2
(sender) 
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Table 2 Example of a count of error sequences. 

 

 Length of the sequence (in frames) 
 

 1 5 2 3 4 

sequences 
5 3 2 0 0 

Count of error free 2 1 3 1 3 
sequences 

Count of error 

 

 By analyzing very long sequences it is then possible to construct a histogram of the count of error 

e figure some basic statistics are also presented.  These are the 

 
 

and error free sequences.  An example of such a histogram is presented in Figure 8 for the case in which 

1000-bytes frames are sent in an 802.11b system operating at 11 Mbps at an office location in which the 

average SNR at the receiver is 34 dB.  These results were obtained by analyzing a sequence of 100,000 

frames collected in an office environment. 

 Next to each of the histograms in th

mean, maximum, minimum, standard deviation and number of samples.  With all this information it is 

possible to characterize the frame loss process by using a model that generates sequences with 

distributions similar to those shown in Figure 8. 
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Figure 8 Experimental results obta ed at a SNR of 34 dB – 802.11b. 
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Notice that the statistics in the figure are in “frame” units.  The actual mean in seconds for the 

duration of the error and error free periods can be computed by multiplying the shown averages by the 

interarrival time between frames.  The time between frames is a value that can be extracted from the 

experimental traces.  This value varies according to the transmission rate, frame size and processing speed 

of the stations used during the collection of a trace.  Appendix F includes a table with the observed values 

for each configuration; the values vary in the range of 12.6 ms to 0.6 ms.  Since these values vary with the 

processing power of the stations they were only used in computations that involved the trace from which 

they were extracted from. 

3.2. EXPERIMENTAL DATA ACQUISITION 

In this dissertation, the characterization of frame losses with experimental data is employed for the 

construction of models such as Markov or hidden Markov models that represent the wireless channel.  

This section provides details on the sites selected for data acquisition, the experimental design itself, as 

well as the limitations encountered during the acquisition process. 

3.2.1. Experimental sites and statistics 

The sites selected to collect the experimental traces were chosen by first looking at typical current 

implementations in which IEEE 802.11b and 802.11a operate and then selecting environments similar to 

those that are common nowadays.   Currently it is extremely popular to find 802.11 implementations in 

places such as offices, cafeterias, libraries, airports, plazas and residences.  Collecting traces for every 

single type of environment can be done.   However, we believe that looking at two typical cases, offices 

and residences, should provide enough valid information that can be used to understand how these 

channels behave at the frame level.  This kind of approach is common in wireless channel modeling 

where models are developed for different environments [34]. 

The office environment used for the test was that from 4th floor of the School of Information 

Sciences, outside the Wireless Telecommunications laboratory.  This environment is composed of 

concrete ceilings and floors and dry walls with metal framing.  This type of setting resembles that found 

in typical offices. 

The residential environment was composed of wooden floors and ceilings and dry walls with 

wooden frames.  This setting also resembles the circumstances found in typical American apartments or 

houses.  Figure 9 details the general distribution of the objects in both setups. 
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Figure 9 Physical setup where measurements were collected.  Office (left), residential (right). 

 
 
 
 For both sites it was important to employ measurements that resemble the typical operating 

conditions in terms of distance and line of sight (LOS).  Table 3 summarizes the relevant points 

considered for the selection of the measurement locations labeled a through q in the figure.  As explained 

in the table the specific conditions selected for the experiments resemble those from today’s 

implementations. 

 
 

Table 3 Criteria selection of experimental sites 

 
 
 

 Typical Conditions selected for 
the Office (4th floor SIS) 

Conditions selected 
for the residential 

setting 
Distance 
between 
transmitter 
and receiver 

Vendors like Cisco and Proxim 
suggest maximum distances of 80 
m.  In an office or a residence you 
could see distances varying from a 
few meters to the maximum 
suggested.   

Distances vary from 10 to 
25 m. 

Distances vary from 5 to 
10 m. 

LOS 
between 
transmitter 
and receiver  

Because of partitions, walls and 
doors there is usually no LOS. 

All measurement locations 
had no LOS. 

All measurement 
locations had no LOS. 

  

At both the office and residential sites the selection of the individual measurement locations (a 

through q) was done by first looking at the percentage of lost frames in each site.  It was desirable to have 

locations that presented both low and high frame losses since this would allow the creation of models for 

a wide range of conditions.  In particular at the office, locations d, e, and f were selected because at these 

places, even when the lowest transmission rates were used (1 Mbps for 802.11b and 6 Mbps for 802.11a) 

 

f 

p 

q

Receiver 

e 
a b

Receiver Senderc d

Sender
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the percentage of lost frames was above 50%.  In the next chapter it will be illustrated how this high 

percentage of losses is not a typical operating condition in an office or a residence but a critical one.  High 

frame loss situations such as those at locations d, e and f will provide a good understanding of the loss 

process under bad conditions.   

In the office setting it was also necessary to include a corner in the path of the signal between the 

sender and locations e and f.  The corner significantly reduced the average observed SNR, which resulted 

in higher frame losses.   The same criterion was used to select the residential locations p and q.  In the 

residential case since the distances were smaller it was necessary to lower the power of the transmitter to 

increase the percentage of lost frames. 

Because of the physical dimensions of the office environment, it was possible to test larger 

distances between the transmitter and receiver.   In particular, in the office environment locations e and f 

were selected to collect data at the lowest transmission rates of 1 and 2 Mbps.  At these low rates the 

effects of the environment on the frame loss process were not noticeable in locations a through d.  An 

extremely low number of frames was lost (less than 0.01%) in locations a through d when the 

transmission rate was set at 1 or 2 Mbps.  In locations e and f much higher percentages were observed.  

Locations e and f were not used to collect data at 24, 12 or 6 Mbps since the average SNR at those 

locations was extremely low (less than 5dB) and all frames arrived in error.   

The transmission power used at the office site was 50mW.  Higher transmission powers could 

have been selected.  However, at this particular value in the setting selected it was possible to include 

corners, doors and typical distances between the devices and still observe high losses. 

In the residential environment the shorter distances between the devices made it difficult to 

observe high percentages of losses when the transmission power was set at 50mW.  A lower transmission 

power, 5mW, was used for the measurements.  The lower power allowed the recording of several traces 

with a wide range of frame loss percentages. 

Some significant characteristics of the selected sites are summarized next. 

• The construction materials (ceiling, divisions, etc…) are different at both sites; this 

should provide an insight about whether there is a significant difference between the 

office and residential environments. 

• All the sites have at least one dry wall in the direct path between transmitter and receiver.  

This is similar to the typical configuration found in offices and residences. 

• The distances from the transmitter to the closest points (a and q) are 10 and 5 meters 

respectively.  This resembles the distances in an office or residential setting. 
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• The distances from the transmitter to the farthest points (e and p) are 25 and 10 meters 

respectively.  This resembles the typical maximum distances in an office or residential 

setting. 

• Locations a, b, c and d are located around one dry wall corner from the transmitter. 

• Locations e and f are located around one concrete corner from the transmitter.  This 

corner was selected in order to see considerably low average SNR at the receiver. 

3.2.2. Setup details for characterizing frame losses 

The frame loss process characterization is based on the statistical analysis of frames that consecutively 

arrive in error or are error free.  Ideally this process should be independent of the MAC layer, software 

and hardware limitations.  As explained later in this chapter when a frame arrives in error the transmitter 

has to time out before resending the frame.  During this timeout, samples of the channel are not taken and 

the characterization could lose precision.  Therefore, a slightly different setup to that simplification 

presented in Figure 9 was used. 

 In order to avoid seeing a high number of frames arriving in error at the receiver that would delay 

the transmission of future frames, in the actual setup the distance between the transmitter and receiver 

was fixed.    A third device that operated in promiscuous mode was used to capture the traces.  This third 

device captured traces at different distances from the transmitter.  Figure 10 illustrates the configuration 

used. 

 
 
 

 
 

Figure 10 Generalized setup for capturing the frame loss traces. 

Transmits 
data frames 

site 1 
high SNR

site 2 

A 3rd station was used to capture 
the trace at different distances from 

the transmitter 
site 3 

low SNRSends 
back ACKs 
(receiver) 
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 Notice that the distance between the transmitter and receiver is small, less than one meter, fixed 

and with line of sight.  Under these conditions a great percentage (close to 100%) of the frames that arrive 

at the receiver are error free and acknowledged.  The capturing station can then be moved away from the 

transmitter to record the experimental traces.  As the capturing station is moved farther away the mean 

SNR decreases and the percentage of data frames that arrive in error at the different locations (a, b, etc…) 

increases. 

3.2.2.1. Frame loss trace specifications 
For all the experiments the traces were captured using the WildPackets AiropeekNX v2.0 software 

tool running on a laptop with a Windows operation system.  This tool allowed the capture of 802.11b and 

802.11a traces that were later analyzed with statistics and math software packages.  The actual captured 

traces contain the information described in Table 4. 

 
 
 

Table 4 Experimental traces contents. 

 

 
Column Description Comments 

Frame number Sequential number of captured 
frame 

Around 100,000 frames were captured for each 
experiment. 

Transmission rate Transmission rate used to transmit 
the frame 

For individual experiments the transmission of all 
data frames and acknowledgments was fixed to 
the set of available values. 

RSSI Received Signal Strength Indicator Represents a value between 1 and 100% 
proportional to the average SNR at the receiver 
and captured during the reception of every 
frame. 

Frame size Frame size in bytes Several payloads were selected in order to 
construct frames of 100, 500, 1000 and 1500 
bytes 

Flag Indicates if the received frame 
arrived in error or error free 

Only CRC frame losses are detected by the 
software tool used 

Timestamp Absolute time at which a frame 
was completely received. 

- 

Protocol Protocol that the payload or control 
frame corresponds to 

- 

  
 
 
 The version of the software tool used does not report the received SNR of every frame but the 

average RSSI which is proportional to it.  The exact procedure of how the RSSI is computed by the 

hardware and software tools has not been disclosed by the vendors.  A sample of an actual trace is shown 

in Table 5. 
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Table 5 Example of an experimental trace. 

 
 

Frame 
Sequence 

Tx 
Rate 

(Mbps) 

RSSI Flag 
(# means 
in error) 

Frame size 
(bytes) 

Timestamp (seconds) Protocol 

1 5.5 74%  1500 0 UDP 
2 5.5 44%  14 0.000144 802.11 Ack 
3 5.5 70%  1500 0.002681 UDP 
4 5.5 42%  14 0.002815 802.11 Ack 
5 5.5 74%  1500 0.005355 UDP 
6 5.5 42%  14 0.005485 802.11 Ack 
7 5.5 74% # 1500 0.008144 UDP 

 
 
 
The last table contains the first seven entries of a trace captured at a 5.5 Mbps fixed rate with 

1500 byte data frames.  Whenever an error is detected at the capturing station a “#” symbol is inserted in 

the “Flag” column.  By using the information of the “Flag” column it is possible to construct the sequence 

of frames in error/no error.  In our case only the frames carrying UDP information are of interest, since 

these are the ones with sizes being manipulated by the software application developed to control the 

transfers.  The information from the RSSI column will be useful in the creation of hidden Markov models. 

3.2.3. Setup details for characterizing rate variations 

Rate variations occur according to a process that monitors the link quality in a transmitting station.  

Specific details about this process are in general not disclosed by the hardware manufacturers.  However, 

it is known that this process takes into account the observed SNR to determine if it is appropriate to 

change the transmission rate in order to decrease the number of frames received in error.  Taking samples 

to observe how this process evolves is fairly simple.  Figure 11 shows the setup used. 

Transmits data 
frames 

Sends 
back ACKs

 

Figure 11 Actual setup for capturing the frame loss traces. 

(sender) 

site 2 

Captures 
Trace 

site 1 site 3 
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Two stations were used to capture the rate variations traces.   One station was used to capture the 

trace while a second station was in charge of sending back acknowledgments to the sender.  With this 

setup the amount of work that has to be done by each station decreases.  With fewer tasks to perform the 

receiving station can reply to acknowledgements faster; this results in a more accurate trace. 

3.2.3.1. Rate variations trace specifications 
The rate variations traces were also captured using Airopeek NX.  The structure of these traces is 

the same as that presented in Table 5.  For the rate variations analysis, the transmission rate column was 

used to obtain the information about consecutive runs at a given speed.  In general these runs have a much 

longer duration than the error/no error runs, therefore it was necessary to collect longer traces to capture 

enough information.  These traces included a total 500,000 frames. 

3.2.4. Limitations imposed by the MAC and PHY layers 

In an ideal approach the collection of frame losses in wireless channels should be independent of any 

limitations imposed by the measurement devices and the software running on them.  In practice it is not 

possible to cancel all the effects of the elements that influence the data acquisition process.  In terms of 

hardware and software, the frame loss traces are influenced by the 802.11 MAC and PLCP protocols and 

the processing speed of the stations involved in the measurements.   
The 802.11 MAC protocol operates in a manner very similar to a stop-and-wait approach.  This 

means that after a station places a data frame in the air, it waits until an acknowledgment is transmitted 

back by the receiving station before transmitting the next data frame.  This basic exchange process is 

illustrated in Figure 12. 

 

Data Frame 1

 
Figure 12 Frame exchange detail for 802.11 systems. 

802.11 station (receiver) 802.11 station (transmitter)

Processing time 1 

ACK

Processing time 2 

Data Frame 2
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Notice that in the  at the receiver it will be 

processe

ansmission time + processing time 2 + transmission time of “Data Frame 2” 

  we do not consider the propagation delay between stations, this period of no measurements has 

he physical layer may also introduce an additional period of time during which it is not possible 

to meas

ring the periods of time when no measurements are taken, it could be possible to have changes 

3.2.5. Experimental Design 

sented in Figure 10, it was possible to design experiments that allow 

 will help in the evaluation of the performance of the 

model. 

last figure, as soon as “Data Frame 1” arrives

d and an entry in the trace will be made (either a 1 or a 0).  However during the processing time 

at the receiver (Processing time 1) and the transmission time of the acknowledgment it is not possible to 

send any more data frames.  Furthermore, only after the acknowledgement is processed at the transmitter, 

“Data Frame 2” is sent.  Meanwhile no measurements of the channel state can be made at the receiver. 

Without taking into consideration the propagation time of the signals, the period during which no 

measurements are taken can be expressed as: 

 
 processing time 1 + ACK tr

 

If

an average maximum value of 500 ms.  This value was computed from a trace collected using 1,500 byte 

frames.  The value varies with the frame size used in the transfers and with the processing power of 

stations. 

T

ure the state of the channel.  This occurs when an error is detected by the PLCP layer. However 

these errors are not reported to upper layers and therefore cannot be taken into consideration in the frame 

loss trace. 

 Du

in the channel state.  However the physical devices used do not offer means to circumvent this limitation.  

In the next chapters it will be seen how this limitation does not considerably affect the accuracy of the 

proposed models.  

With a basic setup, such as that pre

the collection of data for the characterization of frame loss processes and rate variations in 802.11 

channels.  Several experiments were designed for the collection of frame loss and rate variations data.  

The formal definition of these experiments is presented next. 

3.2.5.1. Frame loss experiment design 
Response variables.-  These variables

 The first variable selected was the mean of the duration of the error or error free periods.  This 

variable will be used in a preliminary comparison approach to understand the differences between the 

experimental data and the model.  If the mean of these processes in the model do not match that of the 
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experiments it will be a sufficient measure to reject the frame loss process generated by the model.  

However if the means do match, this statistic is not sufficient to guarantee that the underlying 

distributions of the error and error free runs are the same.   

To understand if the underlying distributions of each run generated by the model are similar to the 

experim

have also been selected as response variables.  However the 

existenc

e 

transpo

id for both 802.11b 

and 802

Table 6 Response variables details. 

Response variables Description Response evaluation 

ental ones, histograms will be constructed.  Further validation tests explained later in this chapter 

will be used to quantitatively understand the differences between the histograms of the models and the 

frame losses observed experimentally. 

Higher order statistics could 

e of simple statistical methods, like the two sample Kolgomorov-Smirnov test, that allow the 

comparison of the underlying distributions will be illustrated in later chapters to be a sufficient measure. 

To understand how well the model fits the experimental data in terms of the effects at th

rt layer, the transfer time of files between stations will also be considered as a response variable.  

This will be measured in a simulated environment that incorporates the file transfer protocol (FTP) over 

transport control protocol (TCP).  This response is usually selected [16][17] to understand the effects of 

wireless channels on upper layers.  The transfer times of 10 Mbytes files will be measured in a simulation 

that can use both the Markovian model and the experimental traces to discard frames. 

Table 6 summarizes the variables chosen for the frame loss case and are val

.11a technologies.  In the tables, the term “run” refers to periods of consecutive 1’s or 0s observed 

in the traces. 

 
 
 

 
  

Me Computed for the le n 
frames) of: 

 

Compare the r with those 
from the exp will be 

an of runs ngth (i

1. Error free runs 
2. Error runs 

esults from the model 
erimental trace.  A t-test 

used. 

C puted for the distr

2. Error runs differences between the model and the 
experimental distributions. 

TCP/IP/WLAN 802.11b
stack and  FTP. 

puted for large file

two 802.11b stations. 

Compare the results between a model d
and a trace driven simulatio
used. 

 

Histogram of runs om ibution of: 
1. Error free runs 

Compare the results of Kolmogorov-Smirnov 
tests for two independent samples to evaluate 

Transfer time over a 
wireless link using a 

 

Com  sizes (100 
Mbytes) being transferred between 

riven 
ns.  A t-tes will be 
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Factors.- Factors are elements that could affect the response.  Each factor can be assigned several 

values r

ate between 

stations

packet l

r used to report 

channel

 was not selected as a factor since current installations usually select 

by defa

eferred to as levels.  For IEEE 802.11b and 802.11a systems there are several factors that could 

affect the response.  In particular it is possible to change the transmission rate, frame size, frequency, 

medium access method, power of the transmission between stations among other vendor specific factors.  

For the studies in this dissertation only the transmission rate, frame size and the power of the transmitting 

station were taken into consideration.  The transmission power factor was not taken directly but analyzed 

through the average SNR at the receiver.    The justification for the selection criteria follows. 

Currently wireless local area networks are configured in way that the transmission r

 varies in time according to channel conditions, hence the need to include this factor in the 

experiments.  All transmission rates available in 802.11b systems and in 802.11a systems were selected.  . 

The frame size is another element that is usually present in performance studies at the frame or 

evel [16][17].  This is because the percentage of frames or packets lost varies with the frame size 

selected for transmissions.  The levels selected for this factor varied from the most common level of 1500 

bytes (corresponding to the maximum allowed in the standard) to 1000, 500 and 100 bytes.  This wide 

range of levels would allow a better understanding of the behavior of the channel as a function of the 

frame size.  The smallest frame size of 100 bytes (or in general small frames) did not generate useful data 

in all the experiments with 802.11a systems; the reason for this hardware barrier at the collecting station 

was not identified.   Therefore small frame sizes were not used in 802.11a measurements. 

The average SNR at the receiver was selected because it is a common paramete

 quality and can be easily varied by selecting different locations for data collection.  The values at 

the diverse locations were not selected directly but were measured when the locations were selected.  As 

mentioned before the locations were selected in such a way that a wide range of percentage of frame 

losses was observed.  Both low loss and high loss locations were needed since these conditions are 

usually observed in any typical installation in which users access the networks at different distances 

between transmitter and receivers. 

The medium access method

ult the standard distributed reservation method for accessing the channel.  Therefore this default 

access method was also used during the collection of the experimental data.  The frequency of the 

transmissions was also left out as a factor with varying levels.  To take into consideration the worst path 

loss case, the highest frequency was selected for the collection of the traces.   

The following table summarizes the factors selected for the design. 
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Table 7 Factors details. 

 

Factor Levels Description 
 

Transmissio 11, 5.5, 2 and 2.11 
b) 

 48, 36, 24, 12 and 6 Mbps (for 
02.11a) 

All the allowable transmissi were taken 
into consideration

n rate  1 Mbps (for 80

 
54,
8
 

on rates 
. 

 
 

100, 500, 
802.11b and 500, 1000 and 1500 
bytes for 802.11a. 

data for the traces. 

36, 32, 26 and 23 dB in an office 
and residential envi
802.11b) 
 
17, 14 and
residential environments (for 
802.11a) 

For two different typ

transmitter and receiver allowed taking 
measurements at different SNR values.

Frame size 1000 and 1500 bytes for Different frame sizes were used to collect the 

Mean SNR at the receiver 
ronments (for 

 9 dB in an office and 

es of locations, office and 
residential, several distances between 

 

 

3.2.5.2. Rate variations experiment design 
ose selected for the frame loss situation.  In this case 

instead 

n of the runs differs significantly from the experimental ones the model will be 

rejected

 
 

 
Response variables.-  These are similar to th

of taking into consideration the runs that describe the frame losses, the runs of periods of constant 

transmission rates were used.  As before the mean of the runs for each rate are considered as a first 

measure of comparison.   

If the mean duratio

, however if they match it is necessary to perform further comparisons.  In order to perform such 

comparisons the histograms of the duration of each transmission rate will be analyzed using a two sample 

Kolmogorov-Smirnov test.  Table 8 summarizes the response variables selected for the experiments. 
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Table 8 Response variables details for rate variations. 

 

Response variables Description Response evaluation 
 

Me Computed for the le n 
frames) of: 

a 

n 

 

Compare the r with those 
from the exp

an of runs ngth (i

1. Continuous runs at 
fixed rate and analyzed 
for all the  transmissio
rates 

esults from the model 
erimental trace.   

Comp

fixed rate and analyzed 
for all the  transmission 
rates 

differences between the model and experiment
distributions. 

Histogram of runs uted for the distribution of: 
1. Continuous runs at a 

Compare the results of Kolmogorov-Smirnov 
tests for two independent samples to evaluate 

 

 

actors.- For the rate variations case, the frame size and the mean SNR at the receiver were 

selected

size was selected as a factor because the percentage of frames lost varies with it. 

Therefo

 the average SNR at the receiver.  

Stations

 

 

F

 as factors. 

The frame 

re it is relevant to understand how the rate variations get affected by the choice of frame size.  

Frames sizes ranging from the maximum allowed, 1500 bytes, to 100 bytes (only for 802.11b) were 

incorporated in the measurements.  These frame sizes were selected in order to have information of how 

the rate varies from the maximum allowable size to small frame sizes. 

The other main factor that influences the transmission rate is

 closer to the transmitter are expected to use higher rates in comparison to those stations situated 

farther away.  The same locations used to collect the frame loss process were selected since this will 

allow a characterization of both the rates and the loss process at a given average SNR value.  Table 9 

summarizes the factors and levels selected. 
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Table 9 Factors details for rate variations. 

 

Factor Levels Description 
 

Frame size 100, 500, 100 00 bytes for 
802.11b and 5 d 1500 

Different frame sizes ect the 
data for the traces

0 and 15
00, 1000 an

bytes for 802.11a. 

were used to coll
. 

36, 32, 26 and 23 dB in an office 
and residential environments (for 
802.11b) 
 
17, 14 and
re
802.11a) 

For two different typ
residential, several distances between 
transmitter and receiver allowed taking 
measurements at different SNR values.

Mean SNR at the receiver 

 9 dB in an office and 
sidential environments ( for 
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3.3. CONSTRUCTION OF MARKOVIAN MODELS FOR FRAME LOSSES  

Frame losses and rate variations can be modeled with similar methods if the distributions of consecutive 

3.3.1. FSMC model construction 

The Finite State Markov Channel model can be used to describe the frame loss process occurring on the 

 in two ways: 

• 

• al data obtained in a wireless local area network setting. 

3.3.1.1. Model construction based on the characteristics of the fading envelope 
s m uch as the 

a known velocity and direction. 

runs are taken into account.  Given a distribution, and its parameters, it may be possible to approximate 

experimental data characteristics by using Markov models.  In particular, two types of models are of 

interest for the following discussion.  These are the finite state and hidden Markov models.  For both of 

these models, certain assumptions should be verified before the data is modeled.  The validations of these 

assumptions and of the models themselves will be discussed in section 3.6. 

wireless medium.  By definition, this model is a birth-death process in which transitions take place only 

between neighboring states.  If two states are used, these neighboring states can directly represent periods 

of time in which all frames are received either in error or error free.   

 In this section the construction of the FSMC will be illustrated

Following the traditional method of constructing the model based on the characteristics of the 

fading envelope. 

Using experiment

 Thi ethod has been widely used in the past to construct two-state Markov models, s

one shown in Figure 13.  The method assumes that a wireless signal with a given frequency is sent 

between two stations with no line of sight between them and that one of the stations or both are moving at 
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 The goal of the model is to assign durations to each of two states by using the curves from figures 

1.3-4 and 1.3-5 developed by Jakes in [23].  These curves are reproduced via simulation in Figure 14 and 

2. Assume that the center frequency of the carrier used in the transmission is f. 

Figure 15.  The normalized average duration of a fade at a certain fade depth below the r.m.s value of the 

received envelope can be read from Figure 14.  The normalized positive crossing rates in relation to the 

r.m.s value of the envelope are plotted in Figure 15.  Both figures show results generated from the 

theoretical expressions [23] and simulations. 

 The next list illustrates the traditional procedure followed to assign durations to the bad and good 

states. 

1. Assume that the relative speed between transmitter and receiver is v. 

3. Compute the Doppler frequency as fD = v ×  f. 

4. Select a fade depth value p.  This value will be used to compute the duration of the bad 

h evel one is assuming that whenever the 

rec

a. 

b. 

state (s1) of the model.  By selecting t is l

eived envelope is below p the channel is assumed to be in the bad state. 

Let “b” be the mean normalized duration of a fade at level p.  Obtain “b” by directly 

reading this value from Figure 14. 

The mean duration of the bad state 
1 b
µ Df

Let “r” be defined as the reciprocal of the sum of th ur

 is equal to: . 

5. e d ation of the good and bad states, 

this is: 

µλ
11

+
=

+
=

badgood durationduration
r .  

11

a. Let “s” be the normalized level crossing rates at fade depth p. “s” can be read directly 

from Figure 15. 

r o  of the good state 

b. Make r = s ×  fD. 

c. The mean du ati n
λ
1

is then equal to: 
µ
11

−
r

. 

 After is odel by assigning the 

mean durations to each state as the means of geometrically distributed periods of time.  By definition the 

ons are assumed to be the same for 

every value of the SNR.  There are no clear guidelines on what the value of the fade depth “p” should be.  

 computing the duration of both states it  possible to construct the m

states of the Markov model have geometrically distributed duration.   

 With this approach, notice how there is no way to directly relate the states’ durations to the actual 

average value of the received SNR. This means that the signal variati
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Furthermore there is no way of incorporating other factors such as the frame size or the transmission rate 

in the characterization.  The model is assumed to be the same for all sizes and rates. 
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The two-state Markov model with transitioning rates λ µ .Figure 13 and  
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Figure 14 Normalized average duration of fades as a function of the fade depth 
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Figure 15 Normalized positive crossing rate as a function of the fade depth. 

 
 

3.3.1.2. Model construction based on experimental data 
 The characterization based on experimental data can be performed by directly extracting the 

values for the states’ durations (1/λ  and 1/µ ) from the distributions of the error and error free runs in 

the experimental traces.  The model can be then constructed by including these values in an event 

simulator, such as Opnet’s Modeler, which includes advanced resources for the generation of 

geometrically distributed periods of time in finite state machines.  Details on the computer simulations 

implemented can be found in Section 3.10 and in Appendix E.   

 By looking at the experimental results, which will be detailed in the next chapter, it was apparent 

that the mean duration of the error or error free runs observed in the experimental traces stayed constant.  

This was tested by taking each of the traces and computing their means and comparing them with a 

statistical t-test.  The constant mean indicated that the underlying process can be assumed to be stationary.  

With this observation in mind the characterization was done as follows.    

 Figure 16 illustrates the characterization process for computing the state duration values.  The 

figure shows the computation of the 
λ
1  value, the good state duration.  A similar approach can be taken to 

compute 
µ
1  , the bad state duration.   

 The process consists in taking three error free runs and computing their means.  Then taking an 

average of these three means and assigning the resulting value to  
λ
1 .    For the bad state it is necessary to 
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compute the means of experimental error runs and the average of their means to obtain the value to be 

assigned to 
µ
1 . 
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Figure 16 Experimental data base computation of the good state duration for a two state Markov model  

 

mean3=2.11 mean1=2.2894 mean2=2.2101 

  
 
 

After computing the durations of both states and in order to generate the frame loss process from 

the model, it is frequently assumed that all the frames arriving at the receiver during state s0  (good state) 

will arrive error free, while all the frames during state s1 (bad state) will arrive in error.  It could also be 

possible to assign other percentages to the frame loss process in each state. However other percentages 

are not necessary to obtain an accurate model, this will be illustrated when the results are presented in 

Chapter 6. 

3.3.1.3. Summary of FSMC construction 
The next table summarizes the two methods presented for the characterization of a FSMC model for 

frame losses. 

 
 
 

s0 s1

λ
Bood stateGood state 

µ
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Table 10 Summary for characterization of the FSMC model for frame losses. 

 
 
 

Method based on Elements necessary for 
characterization 

 

Can be obtained from Characterization 
problems 

 
 

The fading 
envelope 

characteristics 

• Velocity of the mobile 
 
• Frequency of transmission 
 
• Fade depth p 
 
• Average duration of fade at p 
 
• Positive crossing rate of 

envelope at p 

• Given by the experiment’s 
setting 

• Given by the experiment’s 
setting 

• NO GUIDELINES FOR 
SELECTION 

• Theoretical expressions 
 
• Theoretical expressions 

There are no guidelines 
for the selection of the 
fade depth p. 
 
There is no relation 
between the method and 
the average SNR at the 
receiver, frame size or 
transmission rate. 

Experimental data • Histograms of error free runs 
• Histograms of error runs 

• Experimental traces 
• Experimental traces 

Experimental data must 
be available beforehand. 

 
 

 

3.3.2. Hidden Markov model construction 

For the actual construction of a HMM it is necessary to have as a “hidden” variable, one that 

follows the Markovian property.  Traditionally the SNR has been used as the hidden variable and its 

Markovian properties have been extensively studied [46][54].  However, SNR values are not available in 

the experimental traces, therefore it was necessary to use the received signal strength indicator (RSSI) to 

construct the HMMs.  Later in the chapter we will discuss the Markovian properties of the RSSI. 

3.3.2.1. HMM construction based on experimental data 
To model the frame losses with a HMM it is first necessary to characterize the underlying 

Markov chain that models the evolution of a Markovian variable.   The collected traces do not include the 

SNR that existed during the reception of each frame but the average received signal strength (RSSI).   

The process consists of analyzing the traces and computing a first approximation for the variables 

π, P, B of the HMM.  These variables will then represent a “first” model θ  that is needed for the Baum 

Welch algorithm described in Appendix D.  With these elements in place it is then possible to generate an 

output that represents the frame losses.  The step by step process is described next. 

1. Select the Markovian variable for the underlying hidden process.   In our case this is the 

RSSI available in the traces. 

2. Select a partitioning method for the RSSI 

a. Select the number of states 
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b. Select the partitioning scheme 

3. Partition the RSSI 

4. Obtain first approximation for the values of  π, P and B 

Number of states - This number represents the number of intervals into which the RSSI will be 

partitioned.  During the selection of the number of states, an important fact about the RSSI from the 

collected traces was first noticed, this is its coarseness.   

The RSSI values vary widely from one sample to the next one.  It was determined that the 

information from the traces was only useful to construct Markov models with a low number of states.  

The reason for this is that as the number of states increases a higher granularity in the recorded data is 

needed.  For example, increasing the number of states to three resulted in observing transitions between 

non adjacent states.  When computing the probability of transitioning between states, these non adjacent 

state transitions cannot be taken into consideration since the model assumes that transitions occur only 

within neighboring states.  Therefore, after analyzing the RSSI data it was determined that only models 

with two states can be actually constructed with the data available. 

The model under construction does not incorporate transitions to non-neighboring states.  The 

variations in the RSSI could indicate that a model with more than two states and with transitions between 

non adjacent states is needed.  However as it will be shown in later chapters, it was not necessary to use 

such a model since the results from the two-state one accurately modeled the frame loss process. 

Partitioning scheme - As stated in Appendix B, the effects of different partitioning schemes are 

not critical to the output.  Therefore a simple partitioning scheme was selected in which the observed 

range of the RSSI was divided into two intervals of the same width.  The limits of the intervals were 

computed using the following expressions. 

For state s0: ]max,
2

max[ RSSIRSSI  

For state s1:  

An outline of the process followed is illustrated in  

Figure 17.  By analyzing the RSSI in the traces it is possible to count the transitions between the 

two states and generate the transition probability matrix P and then the vector π.  By looking at the 

column that indicates if a frame was received in error or error free and the corresponding RSSI state in the 

Markov chain, it is possible to construct the B matrices.  With these three elements a first model 

approximation can be obtained and then the Baum Welch algorithm can be used to obtain an “optimal” 

HMM that represents the observed frame loss process. 

 

RSSImaxRSSI , ][min
2
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EXPERIMENTAL TRACE 
RSSI (%) Frame in 

Error? 
40 1 
40 1 
40 1 

 

Figure 17 HMM construction of a first model for frame losses based on experimental traces. 

  

In particular, in Figure 17 matrix P is obtained by partitioning the RSSI and then counting the 

transitions between states.  Each element of P corresponds to the transition probabilities of the two-state 

“hidden” Markov process shown on the bottom of the figure.   

 By looking at the frame error sequence it is possible count how many times a frame arrives in 

error or is error free during interval of the partitioned RSSI.  With this information it is the possible to 

construct the B matrices.  For example, matrix B(0) contains the probability of observing a “0” in the 

sequence in each of the two states of the hidden process.  In B(0) the element labeled a0 represents the 

probability a “0” occurred in state s0; the element labeled a1 represents the probability a “0” occurred in 

state s1.  In a similar way, matrix B(1) contains the observation probabilities for observing a “1” in the 

sequence of frames. 

75 0 
75 0 
40 1 
40 1 
… …

s0 s1

⎥
⎦

⎤
⎢
⎣

⎡
=

1110

0100

pp
pp

P  

1. Partitioning 
and 

counting

2. Count and 
check in which 
state it ocurred 

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=

1

0

1

0

0
0

)1(

0
0

)0(

b
b

B

a
a

B
Construct 

Markov chain 

44 



3.3.3. Summary of models constructed for characterizing frame losses 

Two types of models have been proposed for characterizing frame losses, a two-state Markov and a 

hidden Markov model.  For the first model two characterization techniques were detailed.  Only one 

characterization technique was detailed for hidden Markov models.  The next table summarizes the 

proposed models and their characterization. 

 
 
 

Table 11 Summary of models for characterizing frame losses 

 
 

Model Characterization 
method 

Advantages Limitations 

Based on the fading 
envelope 

• Provides a starting point for 
characterizing a model when no 
experimental data is available.  
(However this starting point is 
not accurate). 

• There are no guidelines on how 
to characterize it given average 
SNR, frame sizes or 
transmission rates. 

• State durations are assumed to 
be geometric. 

 
 
 
 

Two-state 
Markov model 

Based on 
experimental data 

• Only the state durations are 
needed for characterization. 

• Experimental data contains 
information about average SNR, 
frame size and transmission 
rate. 

 

• Experimental data must be 
available. 

• State durations are assumed to 
be geometric. 

 
Hidden Markov 

Model 

 
 
 

Based on 
experimental data 

• Once a first model is obtained it 
can be trained using Baum-
Welch algorithm and count with 
a better approximation to 
experimental data. 

• Characterization and 
implementation include more 
parameters than a two state 
model. 

• Experimental data must be 
available. 

• RSSI granularity limits the 
number of states for the hidden 
variable. 

 

3.4. CONSTRUCTION OF MARKOVIAN MODELS FOR TRANSMISSION RATE 
VARIATIONS 

The 802.11 standards allow the variation of the transmission rate of frames based on the observed SNR.  

These variations could be modeled by constructing a Markov chain or with a HMM that uses the RSSI as 

the underlying variable for the hidden process.  These models would yield as output a variable that 
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represents the transmission rate and its variations.  The selection of the type of model to be used in later 

chapters will be done after analyzing how well each one fits the experimental data. 

3.4.1. FSM construction 

The first alternative that was tested for modeling the rate variations was to directly characterize these 

variations with a Markov chain.  In order to construct the model based on experimental data, the rate 

variations information was extracted from the traces.   In particular, the construction of the model consists 

in computing the transition probability matrix P for the experimentally observed rates.  The values of P 

are computed by counting the transitions between the transmission rates. 
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Figure 18 Characterization of rate variations with a Markov model based on experimental data. 

EXPERIMENTAL TRACE 
RSSI (%) Transmission 

Rate (Mbps) 
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Figure 18 illustrates the process.  In this case each of the four states, labeled 0 through 3, 

represent an individual transmission rate.  The process was constructed as a birth-death process, which 

only includes transitions between neighboring states.  To deal with non-adjacent transitions, while 

maintaining simplicity, if the experimental trace indicated that a transition between non neighboring states 

occurred, it was assumed that a transition to an intermediate state occurred first.  

Times in intermediate states generated by non-adjacent transitions correspond to the duration of 

only one frame.  This duration of a frame is extremely small compared to how much time the system stays 

at any transmission rate.  For example a maximum sized frame (1500 bytes) transmitted at the lowest 

transmission rate (1Mbps) takes only 12 ms to be transmitted.  On the other hand an 802.11 system 

selects any transmission rate for more than a few seconds, sometimes even dozens of seconds.   Therefore 

0 1 2 3 

40 11 
40 11 
75 5.5 
75 5.5 
40 11 
40 11 
… … 
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counting transitions to intermediate states and including them in P will not affect the characterization 

process. 

 

3.4.2. HMM construction 

The generation of transmission rates as the output of the HMM can be done by taking the RSSI, 

partitioning it to obtain a first model, and then using the Baum Welch algorithm to obtain an optimal 

model.  This procedure is basically the same to that one illustrated in Figure 17.  However, instead of 

considering the frame loss information from the traces, the B matrices are constructed by analyzing the 

transmission rates.  Figure 19 illustrates the procedure.   
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Figure 19 HMM construction of a first model for rate variations based on experimental traces. 

 

75 5.5 
75 5.5 
40 11 
40 11 
… …

s0 s1

⎥
⎦

⎤
⎢
⎣

⎡
=

1110

0100

pp
pp

P  

 

Partitioning and
counting 

Count and 
check in which 
state it ocurred

Construct 
Markov chain 

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=

1

0

1

0

1

0

1

0

0
0

)3(

0
0

)2(

0
0

)1(

0
0

)0(

d
d

B

c
c

B

b
b

B

a
a

B

B(0) represent the 11 Mbps periods, B(1) the 5.5 Mpbs, B(2) the 2 
Mbps and B(3) the 1 Mbps. 

47 



 

In Figure 19, matrix P is obtained by partitioning the RSSI and then counting the transitions 

between states.  Each element of P corresponds to the transition probabilities of the two-state “hidden” 

Markov process shown on the bottom of the figure.   

 By looking at the transmission it is possible to count how many times a particular rate is selected 

during each interval of the partitioned RSSI.  With this information it is possible to construct the B 

matrices.  For example, matrix B(0) contains the probability of observing a frame transmitted at 1 Mbps 

in the sequence in each of the two states of the hidden process.  In B(0) the element labeled a0 represents 

the probability a transmission rate of 1 Mbps occurred in state s0; the element labeled a1 represents the 

number of a transmission rate of 1Mbps occurred in state s1.  In a similar way matrices B(1), B(2) and 

B(3) contains the observation probabilities for transmissions at 2 Mbps, 5.5 Mbps and 11 Mbps 

respectively.    

3.4.3. Summary of models constructed for characterizing rate variations 

In this section, two types of models have been proposed for characterizing rate variations, a multi-state 

Markov and a hidden Markov model.  In the Markov model each state represents a transmission rate.  In 

the HMM the RSSI is used to follow the transmission rate.  The next table summarizes the proposed 

models and their characterization. 

 

 
Table 12 Summary of models for characterizing rate variations 

 
 

Model Characterization 
method 

Advantages Limitations 

 
 

Multi-state 
Markov Model 

 
Based on 

experimental data 

• Only the state durations are 
needed for characterization. 

• Experimental data contains 
information about average SNR, 
frame size and transmission 
rate. 

 

• Experimental data must be 
available. 

• State durations are assumed to 
be geometric. 

 
Hidden Markov 

Model 

 
Based on 

experimental data 

• Once a first model is obtained it 
can be trained using Baum-
Welch algorithm and count with 
a better approximation to 
experimental data. 

• Experimental data must be 
available. 

• RSSI granularity limits the 
number of states for the hidden 
variable. 
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3.5. COMPOSITE MODEL CONSTRUCTION 

In 802.11 systems both frame losses and rate variations are present at the same time.  An accurate way of 

modeling the effects of the channel on communications should include both effects.  It is possible to 

construct a composite model that includes these effects by combining the models proposed before. 

 The results obtained from the experimental traces showed that one of the processes, the 

transmission rate variations, possesses states durations that are much longer than those from the frame 

loss process.  For instance, the duration of a transmission rate state is usually in the order of dozens of 

seconds while the duration of frame loss condition is in the order of seconds.  By taking into account this 

characteristic a composite model is proposed next. 

 The construction of a model for both processes can be made by combining the frame traces 

generation that uses a HMM based on the variation of the RSSI, with a Markov chain that follows the 

variations of the transmission rates.  Figure 20 illustrates the generic structure of such a model.   

 
 
 

Markov Chain used  for rate variations 

2 Mbps 5.5 Mbps 11 Mbps 1 Mbps 

 
 

Figure 20 Composite model construction. 

 

 

The construction in Figure 20 shows the composite model for an 802.11b system.    The model 

contains a Markov chain the follows the transmission rate variations.  This chain is the same used to 

HMMs in each rate generate the frame loss process 

S0 S1 S2 S3 S4 S5 S7 S6 

HMM1 HMM2 HMM3 HMM4 
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model the rate variations in the previous section.  Therefore the duration of each state in the chain 

represents the length of time the system transmit data at each rate.   

During each state, the frame loss process is generated by activating a HMM model.  Each rate has 

a different HMM that should be characterized with the procedure detailed in Section 3.3.2.1.  When the 

transmission rate changes, a new HMM is selected and the corresponding frame loss process gets 

activated.   A similar solution can be used for 802.11a systems by including the corresponding 

transmission rates. 

3.6. VALIDATION OF FRAME LOSS MODELS 

The output of the models that can be constructed using the methods described in the previous section, is a 

discrete variable that represents either the frame loss process or the transmission rate variations.  This 

section details the methods for analyzing the validity of these output variables.  The validity will be 

studied via quantitative methods that indicate how close the model is to the experimental results.  One of 

these methods, the Kolmogorov-Smirnov test, described in the next subsection will be used in both the 

analysis of the output obtained with FSMC models and hidden Markov models.  Another method, the 

contingency table analysis, will be used in the study of the Markovian property for hidden Markov 

models. 

3.6.1. Validation of the frame loss FSMC model output  

When a FSMC model is used to represent the frame loss process over the channel, the output is a binary 

variable that indicates if a received frame is in error or not.  In order to compare how similar the 

distribution of this output variable is to the experimental traces, a Kolmogorov-Smirnov test can be used.  

This test is described next. 

3.6.1.1. The Kolmogorov-Smirnov test for two independent samples 

The distributions of error and error free runs generated by a model can be compared to those 

observed experimentally by using a Kolmogorov-Smirnov test (also called K-S test) for two independent 

samples.  This test is nonparametric [30], meaning that it makes no assumptions about the underlying 

distributions of the data to be compared.  For the run distributions this test is particularly useful since the 

experimental data may not fit any known distribution.  Additionally, neither the model’s run distributions 
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nor the experimentally observed run distributions appear to be normal, a requisite for some parametric 

tests such as the t-test. 

The two-sample K-S test is based on the comparison of two sample distribution functions.  The 

comparison is based on the statistic D [30] defined as: 

D = supallx | Fm(x) – Gn(x)|, 

Where Fm(x) is the sample distribution function of a sample of size m from X and Gn(x) is the sample 

distribution function of a sample of size n from Y.  The hypothesis of equal distributions is rejected, at a 

significance levelα , when: 
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3.6.1.2. Validation of the FSMC model output against experimental data  
In order to validate the output coming from the FSMC model it is first necessary to use the 

method illustrated in Figure 16 to characterize the model and then use it to generate frame losses over a 

channel.  Such a basic setup is illustrated in Figure 21. 

 
 
 

 
Figure 21 Setup required to validate the FSMC model output. 

 
 
 
 By selecting the appropriate transmission rates and frame sizes at the sender in Figure 21, a trace 

that can be directly compared to the corresponding experimental trace is generated. The similarity 

between the two traces, the model’s output and the experimental one, can then be analyzed by using a two 

sample K-S test.  This test can be applied to the error and error free runs separately to compare their 

distributions to the ones from the experimental traces.  As result the two-sample K-S will indicate if these 

variables have the similar distributions or not. 
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3.6.2. Validation of the assumption behind the hidden Markov model construction  

In order to construct the hidden Markov model using the parameters defined in Section 2.1.2.1 it is first 

necessary to verify if the ‘hidden’ variable follows the Markovian property or not as explained in 

Appendix B.  The RSSI is the only variable available in the experimental traces that represents the 

channel’s quality and it is necessary to use it in the construction of the HMM.  Therefore it is relevant to 

first test the Markovian characteristic of the RSSI.  For this Markovian test the method of contingency 

tables can be used. 

3.6.2.1. Contingency table construction for validating the Markovian assumption 

The Markovian property indicates that in a Markov process, the probability of transition at a time 

‘n’ to a new state depends only on the state at time ‘n-1’.  Contingency tables can be used to verify if 

experimental data follows this property.  In particular this is useful in the analysis of the RSSI values 

captured in the experimental traces. 

In general, a contingency table summarizes the results of classifying data.  For example, when 

one performs an experiment, each outcome can be classified according to more than one variable and the 

results can be presented in a table.  The table represents an array of frequencies in which each cell stands 

for the count of the row and column intersection.  When only two variables are considered, this table is 

called a two-way contingency table [20] [30]. 

For the Markovian study of the RSSI it is first necessary to partition the RSSI range in two states; 

the actual partitioning details are detailed in the Section 3.3.2.  As the RSSI value changes one can record 

in which state the RSSI falls in.  With this information, contingency tables can be constructed by taking 

into consideration the current and previous states of the RSSI sequence.    

The simplest contingency table that can be constructed is presented next.  This table shows as 

column and row headings the current and previous states of the RSSI evolution in a collected trace.  For 

this example, the table illustrates the number of times each two state combinations occurs. 

 
 
 

Table 13 Two-way contingency table for the RSSI and a previous state sequence length of one. 

   
 

 Previous State  

Current State 0 1 Totals 
0 a c a + c 
1 b d b + d 

Totals a + b c + d T=a + b + c + d 
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The count in each individual cell (labeled a, b, c and d) represents the number of times the 

observed RSSI went from the state indicated by the intersection of the column labeled “previous state” 

with the row labeled “current state”.  In the particular case of the study of the Markovian property, one is 

interested in analyzing the independence or dependence between the previous and current state. 

To study the independence or dependence between the variables, a chi-square test of 

independence [20] can be used.  For this test the null-hypothesis is that the two variables have no 

relationship; this would mean that the current state does not depend on the previous state. 

To perform the chi-Square test of independence one can compute the “expected cell frequencies” 

using the expression:  

T
TotalTotal

E ji
ij

×
= , 

where Eij represents the expected frequency for the cell in the ith row and the jth column.  Totali 

represents the total number of transitions in the ith row and Totalj is the total number of transitions in the 

jth column.  T is the total number of transitions in the whole table.  For the example above, four values of 

Eij can be computed, one for each cell.  With these values it is possible to compute the chi-square value 

for the contingency table, which is expressed as: 

∑
−

=
observed

)observedexpected( 2
2χ  

)1)(1(__ −−= ColumnsRowsfreedomofDegrees  

With the chi-square value it is then possible to compute the corresponding probability value from 

the chi-square distribution and either reject or accept the null-hypothesis.  If this results in a probability 

value of less than 0.05 (95% confidence level) it means that the null-hypothesis is rejected and that the 

current state depends on the previous state.  Notice that this dependency is expected to be observed in 

data that follows the Markovian property. 

The independence or dependence between the current state and several previous states can be 

analyzed in a similar way.  This is done by constructing tables with previous state sequences of length 

greater than one.  For example, the next table shows the counts for the transitions to the current state 

occurring from a history of two previous states. 
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Table 14 Sample Two-way Contingency table for the RSSI and a previous state sequence length of two. 

 
 

 Previous State Sequences  
Current State 00 01 10 11 Totals 

0 m o q s m + o + q + s 
1 n p r t n + p + r + t 

Totals m + n o + p q + r s + t m + n +…+ t 
 
 
 
The chi-square test of independence can be applied again to the last table.  In this case, with three 

degrees of freedom, if this results in a probability of less than 0.05 the null hypothesis is rejected.  This 

would mean that the current state does have a strong dependence on the two previous states.  If the value 

of computed chi-square is higher than in previous state sequence length of 2, this could mean that this 

dependence starts to decrease. 

During the actual data analysis, the evolution of the RSSI was used to construct two-way 

contingency tables.  The results for previous state sequences lengths of two, three and four indicated that 

the RSSI process was not Markovian since a dependency with the previous states was observed.  

However, as the length of previous state sequence increased, the dependency between the previous states 

and the current state decreased significantly.  Therefore the representation of the RSSI sequence with a 

two-state first order Markov chain is only an approximation of the experimental sequence.   

Since the RSSI is the only value available in the experimental traces that links the received frame 

with the SNR present at the time of reception, it had to be included in the creation of HMMs.  As it will 

be illustrated in chapter 6, the results obtained from the models for frame losses do not differ significantly 

from those observed in the experiments.  The similarity between the simulation results and the 

experimental observations validate the coarse approximation of the RSSI with a first order Markov chain 

for the particular conditions of the experiments. 

3.6.3. Validation of the hidden Markov model frame loss output  

The validation of the HMM output can be performed in the same way as in the FSMC case.  When used 

to model frame losses, the HMM output is also a binary variable.  The error and error free runs from the 

output can be analyzed with the same two-sample K-S test used in for the FSMC output analysis.   

Unfortunately, the tool used to collect the experimental traces does not allow the acquisition of the actual 

average SNR value during the reception of individual frames.  As explained before the RSSI value is 
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recorded by the tool and therefore it is first necessary to verify if this variable follows or not the 

Markovian property.   

3.6.4. Validation of frame loss processes by analyzing the effects on upper layers 

Besides analyzing the output from the models with two sample K-S tests it is possible to analyze the 

effects of the models on upper layers. These effects can be compared with those observed from the 

experimental frame losses.  The loss of frames at the MAC layer level could have effects on upper layers.  

In particular, transport layer protocols like TCP can get affected by frame losses.  For example, a TCP 

sender can misinterpret as congestion. the timeouts that occur due to information segments lost due to the 

channel conditions.  This misinterpretation leads to periods of inactivity during which no information is 

sent over the channel even if the channel is in a good state. 

 In order to further compare the modeled frame loss processes with the experimental traces, it is 

possible to analyze the effects of the frame losses on TCP/IP data transfers.  In particular, the effects on 

file transfers can be studied by using the model in a setup that incorporates the file transfer protocol 

(FTP).  The setup should be able to use both the constructed models and the experimental data as frame 

loss processes.  By comparing the effects on transfer time of files it is possible to further understand the 

impact on upper layers coming from the output of the model and the actual experimental traces.   The 

actual setup used for this comparison will be described in Section 3.10. 

3.7. VALIDATION OF THE MODEL FOR THE TRANSMISSION RATE 
VARIATIONS 

A transmission rate variations model has as output a discrete variable with levels that represent each 

transmission rate available for a particular technology.  The duration of each transmission rate and its 

distribution can be studied with the same methods described in the last section.  In particular, for 

understanding the similarities or differences between the distributions it is possible to use the two-sample 

K-S test.  In this case, the run for each transmission rate can be compared to those observed in the 

experimental traces.  Additionally it is possible to compare the mean transmission rate during the transfer 

of frames; this comparison will be performed using a t-test. 
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3.8. VALIDATION OF THE COMPOSITE MODEL 

The outputs of the composite model are two variables that represent the transmission rate and the frame 

loss process.  This research will validate these variables separately using the methods from sections 3.6 

and 3.7.  In the final chapter we will discuss the limitations and challenges of validating the composite 

model as a whole in the case one desires to study the effects of the model on upper layers. 

3.9. VALIDATION SUMMARY 

The next table summarizes the general validation methods that will be used. 

 
 

Table 15 Summary of validation techniques 

 
Validation technique Process being validated Model under testing 

Frame losses FSMC characterized with data 
form the fading envelope. 

Frame losses FSMC characterized with 
experimental data. 

Frame losses HMM characterized with 
experimental data. 

Transmission rate variations HMM or FSM 

 
 

• Two sample K-S test 
between model’s 
output and 
experimental data for 
distributions 

• t-Test for mean 
duration of runs 

 

Frame losses and transmission 
rate variations 

Composite Model 

 
Two way contingency tables 

 

 
Markovian property of RSSI 

 
HMM hidden process validation 

3.10. SIMULATION PLATFORM AND GENERAL IMPLEMENTATION FEATURES 

The validation processes detailed in this chapter were implemented using computer simulations.  Two 

main tools were used for such implementations, Matlab (v6.5) and Opnet’s Modeler (v10.5pl1).  Matlab 

was also used for all the statistical analysis along with SPSS (v11).  All the software tools were run under 

Windows and/or Solaris operating systems. 

 In particular, for the generation of experimental traces such as those that can be obtained with the 

setups from Figure 21, Matlab or Modeler were used to analyze the experimental traces and then create 

the FSMC or HMM outputs. A major advantage of implementing these models inside Modeler is that this 
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tool allows easy testing of the model’s in packet switched wireless networks configurations similar to that 

illustrated in Figure 23. 

 All the simulations have a common implementation strategy for the generation of transitions 

between states.  To illustrate this concept, Figure 22 shows state “i” of a Markov chain with its associated 

transition probabilities pi, i-1, pi, i+1 and pi,i.  Notice that each of these transitions corresponds to row “i” of 

the transition probability matrix P.  Therefore, if the current state in a simulation is “i”, the next state is 

decided by generating a uniformly distributed random number “r” between zero and one and searching for 

the first index that would make the following condition true: 

r < cumulative sum of row “i” 

 

 

 

Figure 22 A state of a Markov chain with its associated transition probabilities. 

 

 

 The cumulative sum of row “i” is a vector that is formed by adding up the elements of a row up to 

each column index.  In this particular case, if row “i” of matrix P is a vector of the form: 

 

[ 0 0 0 … pi, i-1 pi,i pi, i+1 ... 0 0] 

 

 Then the cumulative sum vector takes the form: 

 

[ 0   0   0 … pi, i-1          pi, i-1+pi,i        pi, i-1+ pi,i+pi, i+1   pi, i-1+ pi,i+pi, i+1    ...    pi, i-1+ pi,i+pi, i+1] 

 

 After this the random value “r” is compared to each element of the cumulative sum vector and 

when the above condition is true, the index of that element is selected as the next state.  In Matlab the 

command cumsum and find give this index directly by using them as in the following construction: 

i i-1 i+1
pi, i-1 pi, i+1 

pi, i 
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next_state = min(find(rand(1) < cumsum(vector)) 

Where rand(1) generates a uniformly distributed number between zero and one and vector is an 

array that contains the probability vector.  This same strategy can be used for the generation of outputs 

like frame loss processes based on probability vectors. 

3.10.1. General simulation setup in Modeler 

It is not possible to capture all the characteristics of an experiment in simulation.  In general a complex 

simulation may take into consideration several variables that may result in increased accuracy.  However 

complex aspects such as processing time at stations or propagation characteristics can be very time 

consuming to simulate.  For this reason when the effects of the model on upper layers are studied, it is 

possible to compare the model’s effect with a trace driven simulation.    

The trace information would tell a receiver when to accept or discard a frame.  An OPNET’s 

Modeler (v10.5) simulation can be implemented to perform such tasks.  To understand the model’s effects 

on FTP transfers a computer simulation was constructed using the basic setup illustrated in Figure 23.  

This setup consists of a sending 802.11b station and an 802.11b receiver.  Both stations had a complete 

802.11b and TCP/IP stack. 

 
 
 

 
 

Figure 23 Simulation setup for comparing the frame loss traces effects on an FTP file transfer. 

Frames are lost 
according to: 
1. Experimental 

trace 
2. FSMC model 
3. HMM  
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In the simulation a wireless client (laptop01) requests via a file transfer protocol (FTP), five 100 

Mbytes files from the FTP server.  The server responds by allowing a TCP connection for downloading 

the files.  The client implemented three different mechanisms for losing arriving frames: based on an 

experimental trace, a FSMC model and a HMM.  Only one of these three mechanisms was activated at 

any time. 

 Since the simulation tool allows the configuration of the frame size and transmission speed used 

during the file transfer, it is possible to match these conditions to those under which the experimental 

traces were collected.  With this setup it is therefore possible to compare the time transfer of the files 

using the three frame loss mechanisms. 

 

 

 

  

59 



 
 

4. EXPERIMENTAL OBSERVATIONS AND ANALYSIS 

4.1. EXPERIMENTAL RESULTS OF FRAME LOSS PROCESS 

The traces collected during the experiments generated a considerable amount of data (approximately 4 

Gigabytes).  For this reason it is essential to summarize the effect of each factor on the error distributions.  

The effects can be illustrated by varying one of the three factors (i.e. average SNR at the receiver, 

transmission rate and frame size) while keeping the other two constant.  Variations in the average SNR at 

the receiver are accomplished by moving the receiver from location to location.  Transmission rates and 

frame size variations were manually configured parameters at the sending station.  Figure 24 illustrates 

how the results will be presented in the following sections for both 802.11b and 802.11a technologies.  

The results for office and residential environments will be presented separately. 

 
 
 

Observed distributions

 
 

 

Figure 24 Presentation order of the experimentally observed distributions 

 
• Transmission rate 
• Frame size 

 
• Average SNR at 

the receiver 

Observed distributions

 
• Average SNR at 

the receiver 
• Frame size 

 
• Transmission rate 

Observed distributions 

• Frame size 

• Average SNR at 
the receiver 

• Transmission rate 

Constant factors 

Variable factor 
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4.1.1. Frame loss distributions observed with 802.11b  

In this section we consider 802.11b systems at 2.4 GHz with four transmission rates.  By keeping both the 

transmission rate and the frame size fixed, it is possible to observe the effect on the distributions of 

moving the receiver farther away from the transmitter.  In general the next results will illustrate how 

under the highest average SNR conditions tested, the experimentally observed distributions presented an 

exponential shape.  Error free runs usually allowed thousands or tens of thousands of frames to be 

transmitted before being interrupted by very short (1 or 2 frames) error runs that occur very sporadically.  

When the average SNR at the receiver was the lowest the opposite effect was observed. 

4.1.1.1. Office environment 
Figure 25 illustrates the effect of different average SNR at the receiver on the error distribution in 

the office environment.  The left part of the figure shows the distribution for the error free runs, while in 

the right the ones for the error runs are plotted.  For this experiment, the average SNR at the receiver 

varied from 36dB to 23dB, for locations a and d in Figure 9 respectively.  The transfer consisted of 

approximately 100,000 frames of 1,500 bytes each at 11Mbps.  On the left part of the figure a grayscale 

legend is included to help with the understanding of this and subsequent plots.  The legend changes 

brightness as the average SNR (or other factor) varies.  Darker shades indicate higher the levels for the 

factor under study. 

The effect of the different locations on the distribution can be seen on the tail length of the error 

and error free runs.  When going from high average SNR to low average SNR, the long tails observed in 

the error free distribution get shorter.  This is also reflected in the percentage of frames received in error, 

0.21% and 84.19% for locations a and d respectively.  These general visual observations about the loss 

distributions suggest that a simple exponential model could be used to generate error and error free 

periods.  However, a qualitative test is necessary before making this claim.  The results from such a test 

are presented in the next chapter. 

The effects of varying the transmission rate between the stations while keeping constant the 

average SNR at the receiver and the frame size can be observed in Figure 26.  In this case all results 

shown correspond to location d in which an average SNR of 23dB was measured.  These results 

correspond to transfers of 1,500 byte frames.  The percentages of frames received in error at this location 

were 0.008, 0.044, 12.17 and 84.19% at 1, 2, 5 and 11Mbps respectively. 

In Figure 26 it can be seen that for 1 and 2 Mbps transfers, which had a percentage of frames 

received in error less than 0.05%, the distribution of the error and error free runs does not have an 

exponential shape.  Under these conditions the frames received in error are seen at extremely sporadic 
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intervals of time.  For example the number of frames received in error was three (out of 38,000) at 1 

Mbps and seven (out of 15,000) at 2 Mbps.   

At higher transmission rates the exponential shape for both distributions was again observed.  As 

the transmission rate increases the tail of the error free run distributions decreases, while the tail of the 

error run distributions increases considerably. 
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Figure 25 A sample of experimentally observed frame loss distributions at two different office locations. 

(802.11b, average SNR at location a=36dB, average SNR at location d=23 dB, frame size=1500 bytes, tx rate = 11 Mbps) 
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The effects of varying the frame size while keeping constant the measurement location and the 

transmission rate are shown in Figure 27.  These figures were generated from traces collected at 11 Mbps 

at an average SNR at the receiver of 23 dB (location d).  The frame size was varied from 1500 to 100 

bytes per frame. 

The variations in frame size did not change the shape of the distributions.  For all the cases in 

Figure 27 the shape of the histograms is similar to that of an exponential distribution.  The percentage of 

frames received in error varied from 25.48% for 100 byte frames to 84.19% for 1,500 byte frames.  This 

variation is what was expected, since larger frames have a higher probability of getting corrupted in 

transit in comparison to small frames. 

4.1.1.2. Residential Environment 
 The results obtained after the analysis of the experimental traces at a residential site showed the 

same tendencies as those presented in the previous section.  In this section only the observed distributions 

at different locations with the transmission speed and frame size fixed will be presented.  Further 

information can be found in the Appendix.  Figure 28 shows the distributions for a transfer of 100,000 

frames at 5.5 Mbps with 1000 byte frames.  The data was collected in a residential environment at 

locations p and q from Figure 9. 

 Figure 28 shows how as in the same manner as in the office environment, the error free run tails 

get shorter as the average SNR at the receiver decreases.  On the other hand, and as in the office 

environment, the tails of the error runs increase with the average SNR decreases.  Both the histograms for 

the error and error free runs have exponential shapes again visually suggesting that an exponential 

distribution could be used to model them. 
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Figure 26 A sample of experimental frame loss distributions at 1, 2, 5.5 and 11 Mbps at office location d. 

(802.11b, average SNR at location d=23dB, frame size=1500 bytes) 
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Figure 27 Sample experimentally observed frame loss distributions for various frame sizes at office location d. 
 (802.11b, average SNR at location d=23dB, frame size=1500 bytes, tx rate=11 Mbps) 
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Figure 28 A sample of experimentally observed frame loss distributions at two different residential locations. 
(802.11 b, average SNR at location p=28 dB, average SNR at location q=25 dB, frame size=1500 bytes, tx rate=11 Mbps) 
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4.1.2. Frame loss distributions observed with 802.11a 

4.1.2.1. Office environment 
 Locations a through c were also used to collect the experimental traces using 802.11a technology.  

In this case, from all the available transmission rates only 6, 12 and 24Mbps were tested.  For the 

remaining rates the collection of data was not possible since the software tool available was not able to 

generate useful data for the analysis. 
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 Figure 29 shows the distributions observed at different measurement locations.  The average SNR 

at the receiver was 17, 14 and 9dB for locations a, b and c respectively.  The frame size and transmission 

rate was kept constant during the transfer of approximately 100,000 frames at 24Mbps.  The frame size 

used for obtaining the distributions in the figure was 1500 bytes. 

 Moving the capturing station from location a towards location c, increased the percentage of 

frames received in error from 3.1 to 61.7%.  At location d it was not possible to obtain usable data since 

the frame loss percentage was close to 100% and the traces contained incoherent data.  The figure also 

illustrates how the same expected effect on the distributions is observed.  In particular at high average 

SNR the error free distributions have longer tails than at low average SNR conditions. 

 The effect of varying the transmission rate at location c is illustrated in Figure 30.  At this place, 

the average SNR was 9 dB.  The effects on the distribution of transferring 1500 byte frames at 6 and 12 

Mbps is similar to what was observed in the 802.11b case.  Both distributions have an exponential shape.  

The percentages of frames in error were 21.41 and 94.73% at 6 and 12 Mbps respectively.  Notice how 

this last percentage is higher to that one observed in an 802.11b system at higher average SNR (see Figure 

26 at 11 Mbps and 23 dB).  These differences in the percentage at similar speeds are due to the disparities 

in propagation characteristics and modulation schemes between 802.11b and 802.11a technologies. 

Figure 31 shows the effects of varying the frame size from 500 to 1000 bytes.  At location c both 

runs had exponential shapes for their distributions.  Taking measurement with 100 byte frames was not 

always possible with 802.11a technology since the software tool would frequently generate incoherent 

data.  As in the case of 802.11b systems the results for a residential setup resembled those of the office 

case.   
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  (61.77% frames in error) 

 

Figure 29 A sample of experimentally observed frame loss distributions at 2 different office locations. 
(802.11a, average SNRs 17, 14 and 9 dB for locations a, b and c respectively, frame size=1500 bytes, tx rate=24  Mbps) 
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  (94.73% frames in error) 

 

Figure 30 A sample of experimentally observed frame loss distributions at 6 and 12 Mbps at location c. 

(802.11a, average SNR at location c=9 dB, frame size=1500 bytes) 
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Figure 31 Sample experimentally observed frame loss distributions for various frame sizes at office location c. 
(802.11a, average SNR at location c=9 dB, frame size=1500 bytes, tx rate=24 Mbps) 
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4.1.3. Summary of results for 802.11b and 802.11a systems 

The experimental results for 802.11b and 802.11a systems showed the same tendencies for both sites, 

office and residential.  In particular at both sites, as the average SNR at the receiver decreased the error 

free run distribution showed shorter tails while the error run distribution showed longer tails.  This is 

because at lower average SNR the percentage of frames in error increases, therefore long periods of 

consecutive frames in error are likely to occur. 

 The shape of the distribution of the error free and error runs also changed with the transmission 

speed.  This was observed for both 802.11b and 802.11a systems.  At lower transmission rates the 

percentage of frames in error is lower than at higher rates and the runs do not show exponential shapes at 

high average SNR conditions.    

Another common characteristic between the 802.11b and 802.11a results is the variation of the 

percentage of frames in error with the frame size.  As the frame size increases the percentages of frames 
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received in error also increases.   This is what was expected, since large frames have higher probability of 

getting corrupted in comparison to small frames. 

 

 

Table 16 Summary of results for 802.11b and 802.11a systems 

 
 

Characteristic Observation Comments 
Tail of error free runs Shortens as the average SNR at the 

receiver decreases 
The maximum samples that contribute 
to long tails do not have significant 
values of cumulative frequencies.  In 
particular the samples that create long 
tails contribute 1% or less in 
cumulative frequency. 

Tail of error runs Grows as the average SNR at the 
receiver decreases 

The maximum samples that contribute 
to long tails do not have significant 
values of cumulative frequencies.  In 
particular the samples that create long 
tails contribute 1% or less in 
cumulative frequency. 

Distribution of error free and 
error runs at low transmission 

rates 

Do not have an exponential shape 
under high average SNR and low 
transmission rates.  As the 
transmission rate increases the 
exponential shape appears. 

When operating at low transmission 
rates (such as 1Mbps or 6Mbps) a 
receiver situated close to the 
transmitter observes very few frames 
arriving in error. 

Percentage of frames in error 
at a fixed location. 

Increases with the transmission speed 
and frame size.  Decreases with 
increases in average SNR. 

- 

 
 

4.1.4. Average duration of states for 802.11b and 802.11a systems 

The next set of curves present a summary of the results obtained for 802.11 and 802.11a systems.  In 

Figure 32 through Figure 38 the average duration of the good and bad states are plotted for different 

average SNRs at the receiver, different frame sizes and transmission rates.  The averages are the result of 

computing the mean duration of each state from three separate replications of 100,000 frames each.  The 

confidence levels are not plotted in the figures, but their computation indicated that most of the means are 

different.  In the next chapter an analysis of these curves will be presented along with a discussion of how 

they can be used to characterize two state Markov models to represent frame losses.  

 The importance of the following set of curves lies on the fact that this information has not been 

available in the past.  Traditionally, Markov models have been characterized using methods like the one 

presented in Section 3.3.1.1 to assign durations to each of the states in a FSMC model.   This method will 

be shown to be highly inaccurate for IEEE 802.11 channels in Chapter 5.   
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On the other hand, the figures presented next allow an assignment based on experimental data.  In 

Chapter 6 we also discuss what issues are relevant when a Markov model is characterized with the 

experimental data presented throughout this chapter. 
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Figure 32 Experimentally observed average good and bad state durations for 1 Mbps transmissions. 

 
 
 

12 14 16 18 20 22 24 26 28
10

−2

10
−1

10
0

10
1

10
2

10
3

Mean good state duration for various frame sizes − 2 Mbps

Received SNR [dB]

M
ea

n 
du

ra
tio

n 
in

 s
ec

on
ds

1500 bytes
1000 bytes
500 bytes 
100 bytes 

 
12 14 16 18 20 22 24 26 28

10
−4

10
−3

10
−2

10
−1

10
0

Mean bad state duration for various frame sizes − 2 Mbps

Received SNR [dB]

M
ea

n 
du

ra
tio

n 
in

 s
ec

on
ds

1500 bytes
1000 bytes
500 bytes 
100 bytes 

 

 

Figure 33 Experimentally observed average good and bad state durations for 2 Mbps transmissions. 
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Figure 34 Experimentally observed average good and bad state durations for 5.5 Mbps transmissions. 
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Figure 35 Experimentally observed average good and bad state durations for 11 Mbps transmissions. 
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Figure 36 Experimentally observed average good and bad state durations for 6 Mbps transmissions. 
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Figure 37 Experimentally observed average good and bad state durations for 12 Mbps transmissions. 
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Figure 38 Experimentally observed average good and bad state durations for 24 Mbps transmissions. 

 
  
 
 From the information presented in Figure 32 through Figure 38 several relevant conclusions can 

be drawn.  For instance the average duration of the good state increases as the average SNR at the 

receiver increases.  These average durations can vary several orders of magnitude with variations in 

average SNR.  For instance, at 1 Mbps and an average SNR of 12dB the observed duration is the range of 

0.1 seconds while at 28dB the range is around 100 seconds.  This is because the percentages of lost 

frames under high average SNR conditions rapidly decreases and longer periods of consecutive error free 

frames are possible.  On the other hand, the bad state duration decreases as the average SNR at the 

receiver increases.  These observations are valid for both 802.11 systems. 

 The average duration of the states is also a function of the frame size.  In general with smaller 

frames the duration of the good state increases since the probability of losing a frame is proportional to 

the frame size.  Furthermore, because of how the data was collected, more accurate state duration 

measurements are possible with smaller frames.  This property of the experiments will be explained in 

greater detail in the next chapter when guidelines for constructing the models are presented. 

 The transmission rate and site selection also influence the average duration of each state.  When 

higher transmission rates are used at locations with low average SNR, the duration of the good state can 

decrease several orders of magnitude.  This is can be noticed by comparing Figure 32 with Figure 35.  At 

1 Mbps and 23dB of average SNR the average duration of the good state (for several frame sizes) is 

between 10 and 100 seconds.  On the other hand, at the same location when the transmission rate is 11 

Mbps the good state duration is between 0.01 and 0.001 seconds.  The same tendencies are observed in 

both systems, 802.11b and 802.11a.   
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 To characterize a Markov model using Figure 32 through Figure 38 one can directly read from 

the figure the average value of a state duration.  These values can then be assigned to the Markov model 

that by definition will have geometrically distributed state durations.    The selection of a particular value 

should be done taking into consideration the existing conditions at the site to be modeled.  A discussion 

on the importance of each factor is presented in the next section. 

4.1.5. 2k FACTORIAL DESIGN ANALYSIS OF THE EXPERIMENTAL RESULTS  

The interaction between the three factors, average SNR at a location, transmission speed and frame size 

can be analyzed with a 2k experimental design (where k represents the number of factors).  In this 

particular case the outputs of interest were the average durations of the error and error free runs.  Several 

combinations of factors were studied.  For each case, two transmission speeds were selected and the effect 

of varying the capture location and frame size on the error and error free run lengths was studied for three 

replications.  For the analysis, the percentage of variation of the outputs was computed as explained by 

each effect. 

 In the case of 802.11b systems the conditions analyzed involved the following sets of 

transmission rates: 11 & 1 Mbps, 11 & 2 Mbps and 11 & 5 Mbps.  The selection of these levels was done 

following the guidelines presented in [24] in which the analysis starts by testing the effect of the 

minimum and maximum levels of a factor.  The selection of locations corresponds to location a (highest 

average SNR observed) and location d (lowest average SNR observed) for 1500 and 100 byte frames. 

 Table 17 shows the percentage of variation of the two outputs explained by the changes in 

location, transmission rate and frame size in an 802.11b system.  The information from the table indicates 

how for the error free run durations, no factor is predominant except in the 11 and 1 Mbps case in which 

the transmission rate explains the variations.  On the other hand all the error run durations variations 

depend mainly on the frame size.  The larger the frame size the higher the probability of receiving a frame 

in error and the longer the error runs last. 
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Table 17 2k design results for 802.11b experimental data for frame losses. 

 
 
 11 and 1 Mbps 11 and 2 Mbps 11 and 5 Mbps 

Effect Error Free  
Run 

Error 
Run 

Error Free  
Run 

Error 
Run 

Error Free  
Run 

Error 
Run 

Tx Rate 55.78 4.46 13.47 0.13 11.00 7.95
Location 3.43 7.41 16.40 12.50 21.30 14.73
Frame size 7.02 63.45 12.84 50.90 9.31 32.29
Tx Rate & Location 0.08 6.26 12.05 11.49 10.67 11.75
Tx Rate & Frame Size 17.07 4.40 17.04 0.41 18.68 6.13
Location & Frame Size 4.04 6.89 12.04 10.62 9.61 13.62
Tx Rate, Frame Size & Location 12.20 5.78 16.12 11.60 19.11 10.90
Experimental Errors 0.39 1.34 0.05 2.36 0.32 2.62

 
 

 Table 18 shows the percentage of variations of the two outputs in an 802.11a system.  1500 and 

500 byte frames were used in locations a and c.  As explained elsewhere 100 byte frames traces generated 

incoherent information therefore 500 bytes were used for the analysis.  Location d, was not selected for 

the analysis in 802.11a since at this location the percentage of lost frames was practically 100% and no 

useful conclusions can be drawn from such conditions.  In 802.11a the variations of the error free run 

duration are not caused by any predominant effect.  The variation of the error run duration is mainly 

affected by the location and the frame size.   

 

 

 

Table 18 2k design results for 802.11a experimental data. 

 
 

 24 and 6 Mbps 24 and 12 Mbps 
Effect Error Free  

Run 
Error 
Run 

Error Free  
Run 

Error 
Run 

Tx Rate 12.78 0.52 20.92 6.00 
Location 19.44 35.37 37.87 38.61 
Frame size 19.92 27.71 0.66 21.08 
Tx Rate & Location 9.27 11.01 20.82 8.18 
Tx Rate & Frame Size 11.12 0.05 4.53 0.63 
Location & Frame Size 16.23 8.07 0.66 8.88 
Tx Rate, Frame Size & Location 8.37 0.84 4.56 0.49 
Experimental Errors 2.87 16.43 9.99 16.13 

  
 
 
In summary from the two previous tables the following remarks are valuable: 

1. In 802.11b and 802.11a systems the average error free run duration does not appear to be 

affected by any particular factor but by all of them and their combinations. 
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2. In 802.11b systems the average error run duration is mainly affected by the frame size.  

Larger frames result in observing higher average durations. 

3. In 802.11a systems the average error run duration is mainly affected not only by the frame 

size but by the location.  The differences between the systems lie on the fact they use 

different frequencies, modulation and coding schemes.  The propagation characteristics of the 

signals and how the channel affects the signals in both systems are therefore different. 

4.2. EXPERIMENTAL TRANSMISSION RATE VARIATIONS RESULTS 

Using a setup like the one presented in Figure 10 it is possible to obtain experimental traces that contain 

the information about the transmission rate selected for the exchange of frames between the stations.  This 

section shows results for both 802.11b and 802.11a technologies.  The measurements were collected at 

different locations at office and residential environments. 

4.2.1. Rate variations observed with 802.11b technologies 

The possible transmission rates with 802.11b technologies vary between 1 and 11 Mbps.  However, in 

practice a subset of the possible rates was observed depending on the characteristics of the measurement 

location.  For example at high SNR conditions, such as those present at location a of Figure 9 only 5 and 

11 Mbps rates were present.  As the receiver moves away from the transmitter other transmission rates are 

used.   At low SNR conditions the lowest rates are usually selected.   

Figure 39 illustrates the effect observed in the transmission of 1500 and 1000 byte frames at three 

different office locations.  The figure shows the evolution in time of the transmission rate variations.  For 

clarity in the figure, only 20,000 frames are plotted from 500,000 analyzed in three different replications.  

Each subfigure also includes the information about the average transmission rate computed from the three 

different runs.   In the next chapter models for these variations will be created by looking at the 

distribution of the duration of each transmission rate and the average transmission rate. 

4.2.2. Rate variations observed with 802.11a technologies 

The possible transmission rates with 802.11a technologies vary between 6 and 54 Mbps.  As before, in 

practice only a subset of the possible rates is observed depending on the characteristics of the 

measurement location.  Figure 40 presents similar information to that presented for the 802.11a case.  
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Using 802.11a technology resulted in more frequent variations in comparison to the 802.11b case; 

therefore the evolution of transmission rates during only 5,000 frames is shown in each subfigure. 
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Figure 39 Transmission rates variations observed at different office locations with 802.11b technologies 

 ( SNR at the receiver: 36dB (top), 29dB(middle), 27dB(bottom), average rates are shown below each graph ) 
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(average transmission rate: 22.6 Mbps) (average transmission rate:  38.1 Mbps) 
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(average transmission rate: 18.2 Mbps) (average transmission rate: 18.51 Mbps ) 

 
Figure 40 Transmission rates variations observed at 3 different office locations with 802.11a technologies 

 (SNR at the receiver: 17dB (top), 14dB(middle), 9dB(bottom) ) 
 

 

 For both 802.11b and 802.11a Figure 39 and Figure 40 show how selected rates last for longer 

periods of time in comparison to the duration of the good and bad states.  This can be appreciated by first 

80 



looking at Figure 25 through Figure 31 and noticing how the mean duration of the bad state is in the order 

of tens of frames and hundreds of frames for the good state.  On the other hand the duration of each 

transmission rate is usually in the order of hundreds or thousands of frames per rate.  Further examination 

of this characteristic was performed by looking at the experimental traces and noticing that changes in the 

RSSI did not necessarily resulted in immediate changes of the selected transmission rate. 

 Figure 39 and Figure 40 also show the average transmission rate observed in the experiments.  

These averages were computed by taking into account three independent traces for each configuration, 

and computing the mean for each of them.  The values shown in the figure are the average of the three 

independent means.  By looking at these values it was noticed how changes in the average SNR at the 

receiver can noticeably decrease the average rate observed.  This was observed in both 802.11b and 

802.11a systems.  For example, for 802.11b a drop from 9.8 to 2.25 Mbps was observed when the 

receiving station was moved from a location with 36dB to a location with 27dB of average SNR.  In the 

same figure for the 802.11a case, the average transmission rate dropped from 40Mbps to 18Mbps with a 

8dB drop of average SNR. 

4.2.3. 2k FACTORIAL DESIGN ANALYSIS OF THE EXPERIMENTAL RESULTS  

The same type of analysis used to understand the importance of each factor on the frame loss process can 

be applied to the transmission rate variations case.  The factors of interest are now the average SNR at a 

location and the frame size.  The output of interest is the average transmission rate.  As before, several 

combinations of factors were studied.  For each case, two measurement locations were selected and the 

effect of varying the frame size was studied for three replications.   Again, for the analysis, the percentage 

of variation of the outputs was computed as explained by each effect. 

 For both 802.11b and 802.11a systems the conditions analyzed involved one set of locations, 

location a and location c with 1500 and 1000 byte frames in an experiment with three replications.    The 

next table shows the results. 
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Table 19 2k design results for 802.11b and 802.11a for the transmission rate variations. 

 
 
  Location  a(highest SNR)  and Location c(low SNR) 

 Effect Average transmission rate 
Location selection 53.1%
Frame size 35.1%
Location selection & Frame size 4.5%

 
 

802.11b system 
Experimental Errors 7.3%
Location selection 47.5%
Frame size 28.9
Location selection & Frame size 14.9%

 
 

802.11a system 
Experimental Errors 8.7%

 
 
 
Table 19 shows that for both technologies, the average transmission rate mainly depends on the 

location selection.  This means that the average SNR at the receiver is the main factor that influences the 

mean rate observed during the transfer of frames.  This effect is also noticeable in Figure 39 and Figure 

40 in which decreases in SNR result in lower average transmission rates. 
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5. LIMITATIONS OF EXISTING MODELS 

 

Chapter two and three provided the theoretical fundamentals and the details for creating and validating 

models for frame losses that occur in wireless channels.  In order to understand the motivation behind the 

construction of models based on experimental data it is relevant to illustrate the limitations of current 

approaches.  These limitations foster the need for models that can accurately represent frame losses.  

Traditional models use factors that do not have a direct relationship with some common channel variables 

or assume simplified operating conditions.  Without any direct quantitative link between the model 

characterization and the channel itself it is very complicated to assign values to the model parameters. At 

best, the procedure will give inaccurate results.  In this chapter we will explore the limitations and 

illustrate the complexities of characterizing a Markov model. 

5.1. LIMITATIONS IN THE CHARACTERIZATION OF THE MODELS 

The limitations that exist in the traditional characterization of models like the FSMC make it difficult to 

assign with certainty, values to the duration of the states.  In summary the limitations that one faces in this 

process are summarized in Table 20. 
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Table 20 Limitations in the characterization of traditional models 

 
Model Limitation description Importance 

FSMC 
and 
HMM 

Characterization based on the characteristics of 
the fading envelope has been only developed for 
narrowband channels that use simple modulation 
schemes. 

IEEE 802.11 technologies use wideband channels 
with complex modulation schemes. 

FSMC There is no quantitative method to accurately 
tune the duration of each state of the model to 
factors such as: 

• Transmission rate 
• Frame size 
• SNR at the receiver 
• Type of environment (residential or 

office) 
For complex technologies like 802.11 it is quite 
difficult and time consuming to develop 
quantitative means to tune the states’ durations. 

These factors are quite relevant in any 
performance study.  In particular: 

• Transmission rate determines the transfer 
times of frames and varies according to 
the condition of the channel. Models are 
usually constructed assuming the 
transmission rate stays constant during 
operation; this is usually not the case in 
IEEE 802.11 systems. 

• The probability of receiving a frame in 
error varies with the frame size. 

• The SNR is a very common side 
parameter used to represent the quality of   
the channel.  Usually a site is mainly 
characterized by its SNR.  Survey tools 
commonly use it to report status of the 
channel. 

• The propagation characteristics of each 
environment vary according to the 
construction materials. 

 
 

5.1.1. Effects of parameter selection in Markov models 

When there is no experimental data to base the model on, characterizing a Markov model so that its 

output matches the characteristics of a frame loss process could be quite complex.  To illustrate this 

complexity lets assume that the frame loss process can be characterized using a four state Markov model.  

The characterization of this model is typically done based on a simulated received signal envelope 

generated with the procedures mentioned in Appendix C. 

First, the partitioning of a simulated SNR received envelope can be done with one of the schemes 

described in Appendix A.  For this example the second scheme, defined by equation (2) was selected.  As 

shown in [2] this scheme gives a better fit in terms of the values of the steady state vector π.  However it 

is important to mention that no particular partitioning scheme would result in any major improvements in 

terms of the model’s parameters, as shown in [2].  For this case a carrier frequency of 2.4 GHz (the same 

as that one used in 802.11b systems) and a walking speed of 2 Km/hr can be selected for the generation of 

the simulated envelope.  Figure 41 illustrates how the simulated received envelope was partitioned to 

create four intervals that correspond to the states of the model. 
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Figure 41 SNR envelope partitioning and state assignment to a four state FSMC model. 
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By analyzing the simulated envelope and counting the number of times it traverses between states 

it is possible to obtain the values for the vector π and the matrix P.  It is relevant to mention that actual 

values of received average SNR are not taken into consideration in the generation of the envelope.   

After obtaining the values for π and P, it is necessary to determine how frames will be discarded 

or accepted by the model.  Three configurations were tested for this particular case.  For each 

configuration a different percentage of frame loss was assigned to each state for each run.  The runs 

consisted of transmissions of 100,000 frames.  These values are illustrated in Table 21.  

 
Table 21 Configuration settings for a four state FSMC 

 
 

 Percentage of lost frames 
State Configuration 

1 
Configuration 

2 
Configuration 

3 
0 100 100 100 
1 70 80 90 
2 30 40 50 
3 0 0 0 

  
 
 

time

0

1 
2 
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Since the percentage of lost frames in each state is not known when the model is characterized, 

constructing it is challenging.  Only a few studies [53][57] have related the frame size and simple 

modulation schemes to the loss process, but only with simulated envelopes and for narrowband channels.  

This characterization method provides no formal way of assigning the percentages shown in Table 21 and 

so the selection of the percentages was done in a trivial way.   

The only guideline followed for assigning the percentages is that for higher SNR conditions a 

lower number of frames should be lost.  In order to evaluate how well the frame loss process generated by 

this model performs with such percentages, an OPNET simulation was implemented.  In the simulation an 

802.11 environment was constructed for the transmission of 1500 byte frames at 11Mbps between a 

transmitter and a receiver. 

 Figure 42 shows the simulation setup used for generating the simulated traces.  As with the 

experimental traces, these are sequences of zeros and ones that represent the state of the channel.  These 

sequences are generated at the receiver which includes the four state FSMC model.  The setup shown in 

the figure is similar to that illustrated in Chapter 3. 

 
 
 

 

 

Figure 42 Simulation setup for comparing the frame loss traces effects on an FTP file transfer. 

Frames are lost 
according to: 
1. Current state of the 
FMSC at the receiver 
 
 or 
 
2. Percentage of frames 
lost in each state  

  
 
 

The traces obtained via simulation can be directly compared to similar experimental scenarios.  

With this in mind, the next figure shows the histograms of the error and error free runs obtained with the 
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setup from Figure 42.  Only one result is shown; however, the histograms from the three configurations 

had similar ‘exponential’ like shapes. 
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Figure 43 Histograms from the simulation using the setup from Figure 42 with a 4 state FSMC. 

(tx rate=11 Mpbs, frame size=1500 bytes, percentage of frames lost per state: 100%, 70%, 30% and 0%) 

8 max:217 min:1 st
Mean: 7.06 
Max: 217 

Samples: 15601 

dev:15.0067 n:15601 5191 max:44 min:1 s
Mean: 2.52 

Max: 44 
Samples: 15600 

tdev:3.1436 n:15600

  
 
 

In order to understand if any of the configurations tested approached the observed characteristics 

of the frame loss process one can compare a second variable, the observed percentage of frames received 

in error.  This percentage can be computed by looking at the total number of frames received in error in 

each run and then computing the average for three runs.   The results, for the three configurations along 

with the actual average observed results at four different SNR at the receiver are plotted in the next figure. 
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Figure 44 Comparison of results for a four state FSMC. 

(The y axis percentage is the mean percentage from three runs of 100,000 frames each) 
  
 
 
 

Figure 44 clearly shows how the results of using a four state FSMC differ significantly from those 

observed in the experiments.  The mean percentage of frames in error from the four-state model is quite 

different from the experimental one.  This is due to the fact that for all the configurations tested the 

configuration of the FSMC model did not generate a ratio of bad state to good state duration that is 

similar to the one from the experiments.   

It may be possible to tune the parameters of the FSMC to obtain a similar output to the one 

observed in the experiments by taking into account other elements.  However, incorporating elements, 

such as the modulation or coding scheme, in the characterization process cannot be done directly.  The 

complexities of modulation and coding in 802.11 and 802.11a systems cannot be directly related to the 

loss process of the model.  This means that trying to relate them with the frame loss percentages selected 

for each state does not give any additional information. 

In the same manner increasing the number of states does not solve the characterization 

inaccuracies.  For example, in Chapter 4 two-state models were constructed with information from the 

fading envelope and matching the experimental observations was again impossible.  Four-state models 

were used in this chapter and the same problems were encountered.  There is no quantitative way of 

determining an adequate number or states or how to assign the loss process to each state. 

Another approach that could be considered is the construction of a Markov model that includes 

the effects of frequency selective fading.  Such a model has only been proposed in [27] but no accuracy or 
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validity tests have been performed.   Furthermore currently there are no guidelines that indicate how the 

model can be constructed. 

Incorporating elements such as the number of states, partitioning and fading process in the 

characterization of a frequency selective fading would result problematic.  This is due to the fact that 

there is no direct way of relating the observed frame loss percentages to the model’s elements. 
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6. MODELING OF THE CHANNEL AND MODEL VALIDATION 

6.1. MODEL RESULTS AND VALIDATION OF THE FRAME LOSS PROCESSES 

The experimental data collected at the different sites was used to create numerous models.  In this section 

the results obtained from the characterization of frame losses will be presented.  The validity of each 

model will also be studied with the mathematical and simulation tools described in chapter 3.  In this 

chapter we first study the validity of the traditional two-state FSMC model for frame losses when 

characterized with data coming from a fading envelope.  Then the validity of using experimental data for 

the characterization is analyzed for both the FSMC and hidden Markov models.  In Section 6.1.3 both of 

these models are also used to study the effects of frame losses on upper layers.  These effects are studied 

by looking at the transfer time of files using TCP as the transport protocol. 

6.1.1. FSMC model 

6.1.1.1. Findings from the characterization based on the attributes of the fading 
envelope 

Using the equations developed by Jakes [23] and the procedure detailed in Chapter 3 it is possible 

to assign values to the state durations of a two state Markov model.  Following that procedure several 

models were constructed for various fade depths values ranging from 5dB to 70dB below the r.m.s value 

of the received envelope.   

Notice that in the procedure from Chapter 3, for the computation of the states’ durations a non-

zero Doppler frequency value is required.  In the actual experiments the stations were stationary, then a 

mobile velocity of 0.001 m/s was assumed for the Doppler frequency calculation.   This velocity not only 

allows the computation of a non-zero Doppler frequency but also allows the inclusion of changes in the 

environment between the transmitter and receiver.  In an environment such as an office or a residence 

changes occur slowly when pedestrian speeds are considered. 

 For each fade depth, results were generated and compared to the data from the experimental 

traces.  It was found that none of the configurations adequately approximated the observed frame loss 

sequence characteristics for any of the arrangements tested.  Even though larger fade depths gave 
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apparently better results, neither the distributions nor the frame loss percentage were similar to the 

experimental results.  This is mainly due to the fact that the method from Chapter 3 does not generate a 

ratio between the good states and bad state durations that approximates any of the experimentally 

observed ratios.   

By analyzing the received frame sequences, the lengths of the error free and error runs between 

the experimental and the simulation results were compared.  The results showed significant differences.  

The differences were typically in the order of 1000%.  This clearly indicated that the method from 

Chapter 3 does not give adequate results for computing the average state duration when 802.11 channels 

are being characterized with two-state Markov models.  This can be easily visualized in Figure 45.  The 

figure shows the ratios between the average duration of the error free periods and the average duration of 

the error periods.  In Figure 45 the results obtained with the method detailed in Section 3.3.1.1 is plotted 

in the top subfigure.  The experimental results are plotted on the second and third subfigures. 

Figure 45 shows how the range of ratios that can be obtained from Jakes equations varies between 

0.3 and 5 (top subfigure).  On the other hand, the range of experimentally observed ratios varied between 

100,000 and 0.001 for both 802.11b and 802.11a systems.  This means that assigning durations to each of 

the states of the two-state Markov model, is only possible in a very small region if the equations proposed 

by Jakes are used.  Additionally, notice that with Jakes equations there is no direct mechanism to link the 

expressions to an average value of received SNR.    This suggests that the assignment of durations should 

be done in a different way.  The mechanism to effectively assign accurate durations to the states will be 

discussed in a later section of this chapter. 

Figure 45 only serves as a reference for comparing theoretical and experimental results.  It can 

not be used to assign state durations.   It is necessary to know at least the duration of one state to compute 

the duration of the other if the ratio of the two is known in advance.  More information is needed to 

characterize the channel; an alternate process will be proposed later in this chapter. 
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Figure 45 Theoretical and experimentally observed average state duration ratios. 

Range in which the 
theoretical expressions 

yielded similar ratios 
when compared to those 

from the experimental 
data 

Range in which the 
theoretical expressions 
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when compared to those 

from the experimental 
data 
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6.1.1.2. Findings from the characterization based on experimental data 
A practical approach for the assignment of states’ durations is the usage of the set of curves 

presented in Section 4.1.4.  Those curves were generated with the experimental data collected in an office 

environment.  The plots allow the assignment of durations to both states of a two state Markov model for 

802.11b or 802.11a systems under different transmission rates, frame sizes and average SNR at the 

receiver.  In the curves, the average durations of the error free and error runs are referred to as average 

good state and bad state durations respectively.   

The next figure shows a sample of the histograms coming from a two-state Markov model 

constructed using Figure 35.  In this particular case, the results shown correspond to the modeling of a 

transmission of 500 byte frames at 11 Mbps at location d.  As expected, the histogram follows a shape 

that closely resembles an exponential distribution.    The left subfigure shows the histogram of the error 

free runs, the right one presents the one for the error runs. 
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Figure 46 Error run and error free run distributions generated with a two-state Markov model. 

(The characterization was done using data taken from Figure 35 with 500 byte frames at a SNR of 23dB) 
  
 
 

A first comparison of these results with the experimental traces can be done by looking at the 

percentage of frames received in error.  This variable provides a comparison basis for the durations of 

both the good and bad states.  Table 22 shows a sample of the results from this comparison for several 

configurations including that of Figure 46.  For Table 22 transmission rates of 11, 5.5 and 24 Mbps had 

been selected for the computation of the percentage of frames in error at a SNR of 23dB.  
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Table 22 Comparison of the simulation results vs. experiments for a two-state FSMC 

 
Two State Model Parameters for the 

simulation (from Fig. 32-38) 
Transmission rate 
[Mbps] - frame size 

[bytes] Mean good state 
duration [s] 

Mean bad state 
duration [s] 

Average % of 
Frames in error 

from a 
simulation 

Average % of 
Frames in error from 

the experimental 
traces 

11 – 1000 0.0173 0.0015 7.98% 9.54% 

11 – 500 0.0027 0.0037 57.79% 56.65% 

5.5 - 1000 0.1730 0.0023 1.35% 1.39% 

5.5 – 500 49.514 0.0007 0.002% 0.01% 

24 – 1000 0.0132 0.0015 10.12% 10.15% 

24 – 500 0.0438 0.0004 0.88% 0.89% 

 
 
 
Table 22 shows the mean durations of states assigned to a model in six configurations each with 

diverse transmission rates and frame sizes.  It also contains the average percentage of frames in error 

observed in three replications of the simulation and from the experimental traces.   From these results it 

can be seen that the differences in the percentage of frames received in error between the simulation 

results and those observed experimentally are not significant.  However, matching this percentage does 

not necessarily mean that the modeled distributions of error runs match the ones from the experiments.  

The underlying modeled distributions could have completely different characteristics and the percentage 

could still be similar. 

To compare the distributions of the error and error free runs the Kolmogorov-Smirnov (K-S) test 

for two independent samples (see Chapter 3) can be used.  This test will indicate if the differences in the 

distribution shapes are significant or not.  Following the guidelines give in [30] a Z test asymptotic value 

of 0.05 is generally used to decide if these differences are significant or not.  Values below 0.05 indicate 

significant disparities between the distributions, values above 0.05 indicate similar distribution shapes. 

 The results from the two-sample K-S tests are shown in Table 23.  In this particular case, the 

results correspond to 1000 byte frames transmitted at different rates with the conditions existing at 

location d (for 802.11b rates) and location c (for 802.11a rates).  The table shows for each configuration 

the results of the test for both the good and bad states distributions.  The asymptotic value columns 

indicate if the shapes of the distributions from the model are similar or not to those observed in the 

experiments.   
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Table 23 Sample K-S test results for the comparison of the states’ distributions 

 
 

Good state distribution Bad state distribution Transmission rate [Mbps] 
- frame size [bytes] 

K-S test shape result K-S test shape result  

11 – 1000 >0.05 <<0.05 

5.5 – 1000 >0.05 <<0.05 

2 – 1000 0.161 1.001 

1 – 1000 .95 1.000 

24 – 1000 <0.05 <0.05 

12- 1000 <0.05 <0.05 

6 – 1000 <0.05 <0.05 

 
 
 

Notice that for the lower transmission rates of 1 and 2 Mbps the asymptotic value indicates these 

distributions are similar.  For the rest of the cases the distributions have different shapes.  This is due to 

the fact that at low transmission rates, the percentage of frames in error is lower than 0.1% (see Figure 26 

for 1 and 2 Mbps) and matching non-geometric like distributions with Markov models is easy since errors 

occur just sporadically.  This happens because under low rate conditions the model only needs to generate 

very long error free periods followed by short and sporadic error periods.   

On the other hand, when the percentage of frames in error is significant, which is usually the 

observed “average” case, then the shapes resemble a geometric distribution.  However as shown in Table 

23, the K-S test shape results have values lower than 0.05 and therefore the majority of the experimental 

distributions have significant differences with the ones generated from the model.  This was observed for 

all the configurations tested in both 802.11b and 802.11a office and residential environments.  Therefore a 

better approach, like using hidden Markov models, was tested. 

6.1.2. HMM 

The characterization of hidden Markov models to represent frame losses in 802.11b and 802.11a systems 

was done following the steps illustrated in Figure 17.  The experimental traces contained the information 

needed to obtain a first model that was later used to run the Baum Welch algorithm. 

6.1.2.1. Findings from the characterization based on experimental data 
 In order to make a first comparison of the HMM’s output with the experimental results, 

histograms of the error free and error runs were constructed.  Additionally, Kolmogorov-Smirnov tests for 
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two independent samples were used to quantify the differences between the distributions.  Figure 47 

shows a comparison between the experimental distributions and those coming from the HMMs.  The 

histograms in the figure correspond to the transmission of 1500 byte frames at 11Mbps in an office 

environment at two locations, c and d.   

 For Figure 47 the scale of each HMM result is chosen to be the same as the corresponding 

experimental subfigure.  This helps in the visual comparison of the histogram results.  By visually 

analyzing the figure it is clear that the distributions generated with the HMMs do not possess those very 

long tails commonly found in the experimental results.  For example at 20dB, the experimental error free 

run has a tail with a period 2,169 consecutive frames, while the HMM is able to generate an output with a 

much shorter tail of 129 frames. 

 These differences in the tail sizes result in differences in the percentage of frames in error 

between the experimental results and the modeled ones.  These differences at location c are only of 0.2%, 

but at location d the difference is in the order of 8%.  However by looking at the traces it was noticed that 

these differences are created by samples that contribute with less than 1% to the cumulative frequency of 

the error run distribution.  

 Similar results were observed in other 802.11b and 802.11a configurations for both office and 

residential environments. A sample of the results for an 802.11a configuration is shown in Figure 48.  For 

the figure a transmission at 24Mbps with 1500 byte frames at location d was selected.  Notice how the 

tails generated by the HMM in Figure 48 are also shorter than those observed in the experiments. 
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Figure 47 A sample of experimentally and HMM histograms in the office environment at two locations.  

(802.11b, average SNR at location c=20dB, average SNR at location d=18 dB, frame size=1500 bytes, tx rate = 11 Mbps) 
 

Maximum: 121 Maximum: 7494 
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Figure 48 A sample of experimentally and HMM histograms in the office environment. 

(802.11a, average SNR at location d=18 dB, frame size=1500 bytes, tx rate = 24 Mbps) 
 

Mean 1.3 
Maximum: 11 
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In order to quantify the differences between the HMM and the experimental distributions a two-

sample K-S test was used.  For this test, since the experimental distributions have long tails that are 

generated by a very low number of samples, these samples were considered outliers.  The criteria 

suggested in [24] for identifying these outliers was used before the K-S tests were computed.  In 

particular, this was done by first ordering the samples in ascending order and then computing the 

cumulative percentage of each sample.  Tail samples with a cumulative percentage above 99% were 

considered outliers and not taken into account.  In order to compare the shape of the two distributions, the 

experimental and the HMM results were centered around zero on the horizontal axis before computing 

their similarity with the K-S test. 

The following table summarizes the results obtained from the K-S tests in an 802.11b office 

environment.   For different frame sizes and locations the table shows the means and the results for the 

similarities in distribution shapes.  In particular, whenever the resulting asymptotic value is more than 

0.05 it is considered that the two distributions have similar shapes. 
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Table 24 K-S test results for the comparison between HMM and experiments for 802.11b systems 

 
 
 Error free runs Error runs 
Configuration Mean  

(Exper. results) 
Mean  

(HMM results) 
K-S Test 

Shape result 
Mean  

(Exper. results) 
Mean  

(HMM results) 
K-S Test 

Shape result 
1 Mbps       
1500 bytes, 
location e 

5600 5710 >0.05 100000  >0.05 

1500 bytes, 
location f 

109.8 145.2 >0.05 1.3 1 0.001 

1000 bytes, 
location e 

12078 12312 >0.05 1 1 >0.05 

1000 bytes, 
location f 

11001 11231 >0.05 1.5 1.4 >0.05 

2 Mbps       
1500 bytes, 
location d 

1976 2520 >0.05 1 1 >0.05 

1500 bytes, 
location e 

10300 13501 >0.05 7.5 7 >0.05 

1000 bytes, 
location d 

3200 3301 0.01 1.13 1 >0.05 

1000 bytes, 
location e 

16161 16606 >0.05 1 1 >0.05 

5.5 Mbps       
1500 bytes, 
location c 

137 153 0.01 1.32 1.00 >0.05 

1500 bytes, 
location d 

9.5 8.1 >0.05 1.3 1.15 >0.05 

1000 bytes, 
location c 

94.2 225 0.001 1.2 1 >0.05 

1000 bytes, 
location d 

16700 3300 0.001 1 1 >0.05 

11 Mbps       
1500 bytes, 
location c 

15.7 14.9 >0.05 1.17 1.09 >0.05 

1500 bytes, 
location d 

1.8 1.83 >0.05 9.8 13 0.001 

1000 bytes, 
location c 

10900 10000 >0.05 1 1 0.001 

1000 bytes, 
location d 

2753 2700 >0.05 1 1 >0.05 
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In a similar way for the office environment corresponding to 802.11a a summary of the results is 

presented in the next table. 

 
 
Table 25 K-S test results for the comparison between HMM and experiments for 802.11a systems 

 
 
 Error free runs Error runs 
Configuration Mean (Exper. 

results) 
Mean (HMM 

results) 
K-S Test 

Shape result 
Mean (Exper. 

results) 
Mean (HMM 

results) 
K-S Test 

Shape result 
6 Mbps       
1500 bytes, 
location c 

6.79 4.74 >0.05 1.85 1.27 >0.05 

1500 bytes, 
location d 

17.2 16.1 0.001 2.75 1 0.002 

1000 bytes, 
location c 

7.01 3.9 >0.05 2.2 2.3 >0.05 

1000 bytes, 
location d 

16.2 15 >0.05 1.6 1.01 0.01 

12 Mbps       
1500 bytes, 
location c 

1.86 1.04 0.001 33.2 21.1 0.001 

1500 bytes, 
location d 

7.8 6.9 >0.05 1.6 1.2 >0.05 

1000 bytes, 
location c 

2.4 2.25 >0.05 7.4 6.8 >0.05 

1000 bytes, 
location d 

6.7 6.5 >0.05 2.03 1.47 0.001 

24 Mbps       
1500 bytes, 
location c 

3.4 3.3 >0.05 5.4 4.1 0.001 

1500 bytes, 
location d 

13.2 12.7 >0.05 9.17 9.1 >0.05 

1000 bytes, 
location c 

4.3 4.01 >0.05 3.5 3.5 >0.05 

1000 bytes, 
location d 

2.6 2.3 >0.05 39.1 31 0.01 

 
 

Table 24 and Table 25  show that in most cases the state duration distributions obtained for the 

model have similar shapes to those observed in the experiments.  This definitely suggests that using 

hidden Markov models for the frame loss process results in a better representation of the channel than 

using two-state Markov models. 
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6.1.3. Findings from the validation by looking at the effects on upper layers 

A two-state Markov model characterized with experimental data, a hidden Markov model and a trace 

driven frame loss model were implemented in a computer simulation like the one illustrated in Figure 23.  

This was done to study the effects of each model on upper layer protocols.  The simulation was 

configured to transmit 10MByte files between the sender and the receiver using FTP over TCP (Tahoe).  

For each transmission rate available in an 802.11b system, each file was transmitted three times and the 

total average transfer time was computed.  The average transfer times from the Markov and HMM were 

compared against the time taken by the trace driven simulation.   The procedure was repeated for every 

SNR ratio data available from the traces.  These SNR values correspond to the office locations a through 

d.  The results are presented in Table 26. 

 
 
 

Table 26 Comparison of the average transfer time of a file using FTP and several frame loss processes 

(n/a means the file was not transferred due to frequent TCP disconnections) 
 

 

SNR (dB)
time (sec) file size time (sec) file size time (sec) file size

23 1175 100000 n/a 100000 n/a 100000
28 14 10000000 15 10000000 14.5 10000000
32 13.1 10000000 13 10000000 13 10000000
36 13 10000000 13 10000000 13 10000000

SNR (dB)
time (sec) file size time (sec) file size time (sec) file size

23 26 10000000 23 10000000 28 10000000
28 20 10000000 20 10000000 20 10000000
32 19 10000000 20 10000000 21 10000000
36 19 10000000 19.5 10000000 20 10000000

SNR (dB)
time (sec) file size time (sec) file size time (sec) file size

15 n/a n/a n/a
19 65 10000000 66 10000000 67 10000000
23 47 10000000 48 10000000 47.3 10000000

SNR (dB)
time (sec) file size time (sec) file size time (sec) file size

15 100 10000000 93 10000000 93 10000000
19 92 10000000 90 10000000 90 10000000
23 91 10000000 90 10000000 90 10000000

11 Mbps

5.5 Mbps

2 Mbps

FSMC

FSMC

FSMC

Trace HMM

Trace HMM

Trace HMM

1 Mbps
FSMC Trace HMM

 

101 



In Table 26 the column labeled “trace” displays the average transfer time of the file when the loss 

model is driven by the actual experimental data.  The table shows that the average transmission times of 

the files when using the loss model generated by the hidden Markov model results in a better 

approximation of the observed results.  Nevertheless, the transfer times obtained with the FSMC also 

show acceptable average transfer times.  This clearly indicates that at the transport layer both the two-

state and the hidden Markov model provide an accurate representation of reality. 

6.1.4. Summary of findings and frame loss processes modeling guidelines 

In this section we will elaborate on the relevant findings determined after the experimental models have 

been validated.  Additionally, a set of suggested guidelines for the characterization of frame losses in 

802.11b and 802.11a channels will be developed. 

• The characterization of a two-state Markov channel that represents frame losses in 802.11b or 

802.11a channels is not accurate when done with the equations developed by Jakes [23].  These 

equations are valid only in a small range of operation and there is no quantitative way of linking 

them with factors like average SNR, frame size or transmission rate. 

• It is possible to use experimental data from experimental traces to characterize two-state Markov 

models.  However the shape of the distributions of errors and no errors periods from the model 

will not accurately resembled the ones observed in the experiments.    Hidden Markov model 

generate error and error free distributions that closely resemble those observed experimentally. 

6.1.4.1. Model construction guidelines for frame loss processes 
There are several approaches that can be taken to construct frame loss models.  Two-state Markov models 

or hidden Markov models can be constructed for representing frame losses in 802.11 systems.  Both 

approaches provide good approximations for the percentages of frame in error; however, only hidden 

Markov models generates distributions of error free and error free runs that resemble those observed in 

experimental data.  Another option for representing frame losses is to use experimental traces to drive 

simulations.   

 The two-state Markov model implementation is simple.  Its characterization requires only two 

parameters.  Its inclusion in a computer simulation is also uncomplicated since it only requires the 

computation of geometrically distributed variables to generate each state.  During the good state all 

frames are assumed to arrive error free.  During the bad state all frames are assumed to arrive in error. 

 A hidden Markov model implementation is more complex than a two-state Markov model since it 

not only includes the underlying Markov chain but a second Markovian process that during each state 

dictates how frames are lost.  Its characterization requires matrix P, vector π and the B matrices.  If a two-
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state hidden Markov chain is used then a total of ten parameters are required.  Its inclusion in a computer 

simulation requires the generation of both a Markov chain and an observable Markovian process. 

 The selection criteria between a two-state Markov model and a HMM should be based on how 

much accuracy is needed.  For example, to study the transfer of files using TCP both models provided 

excellent results that were easy to validate because of the availability of experimental data.  Therefore for 

such studies a two-state Markov model’s accuracy is adequate.  However, if a new protocol is studied, it 

is recommended to use hidden Markov models because these generate a frame process that adequately 

approximate the one observed experimentally.  The dynamics of a new protocol could be affected by 

differences in the statistics of error or error free runs.  Therefore a more accurate model like a HMM is 

required. 

Two-state Markov model construction guidelines 

1. The first step is to select the technology that the model should represent.  Models for 802.11b and 

802.11a technologies have different state parameter.  Therefore one must first specify the 

technology. 

2. No major differences in mean values or shapes of error and error free runs distributions between 

office and residential environments were noticed during the analysis.  Therefore the choice of 

indoor environment to be considered is not critical.  Most of the summary curves presented in this 

dissertation refer to an office environment. Hence for convenience, the results from this 

environment should be used to characterize indoor channels.  This is valid for both 802.11b and 

802.11a channels. 

3. Since from the 2k factorial design it was found that the frame size is the predominant factor that 

affects the duration of the error periods, the duration indicated by the smallest frame size should 

be taken as the duration for the corresponding state.   The reason being that during the 

transmission of a large frame there is a higher probability of observing a series of changes in the 

channel state.  During the transmission of a large frame the channel could go from “good” to 

“bad” and then back to the “good” state, however in the trace such a condition will be marked as 

“bad” during the whole transmission time.  Using smaller frames gives better readings of the 

actual state of the channel.  This is valid for both 802.11b and 802.11a channels. 

4. The transmission rate and location selection define the values of the state durations needed for the 

model.  Usually in 802.11b systems, simulations consider that transmission occur only at 11 

Mbps.  However this is not necessarily true due to the rate variation algorithms implemented in 

the systems.  Therefore if a channel model for locations with high average SNR conditions is 

needed, high transmission rates should be considered.  For low average SNR conditions, the 

lower transmission rates should be taken into account.  With this in mind the next two tables 
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provide the information necessary to assign duration to the states in 802.11b and 802.11a systems 

under high, medium and low average SNR conditions.  This information has been extracted from 

Figure 32 through Figure 38.  The distinction between high, medium and low average SNR was 

based purely on the observed ordered range of average values of SNR.    

 
 
 
 

Table 27 Two-state frame loss Markov model characterization parameters for 802.11b channels 

 

 
SNR scale Actual SNR considered Transmission 

rate selected 
(Mbps) 

Good state 
duration 

(seconds) 

Bad state 
duration 

(seconds) 
11 0.08 0.0003 High SNR 32dB 
5.5 4 0.0006 
5.5 2 0.00065 Medium SNR 23dB 
2 3 0.001 
2 0.02 0.0015 Low SNR 12dB 
1 0.035 0.0012 

 

  

Table 28 Two-state frame loss Markov model characterization parameters for 802.11a channels 

 
 

SNR scale Actual SNR considered Transmission 
rate selected 

(Mbps) 

Good state 
duration 

(seconds) 

Bad state 
duration 

(seconds) 
High SNR 17dB 24 0.0015 0.00035 

Medium SNR 14dB 12 0.8 0.0007 
Low SNR 9dB 6 0.15 0.0012 

 
 
 

To construct the model using the previous tables it is necessary to select both an SNR condition 

and a transmission rate and then read the values for the states’ duration.  Also notice that since the 2k 

analysis of the experiments for 802.11a systems indicated that the site is a main factor in the duration of 

the states, Table 28 has only one rate per range of SNR.   

Hidden Markov model construction guidelines 

 The step-by-step procedure to construct HMMs is very similar to the one that was proposed to 

construct the two-state Markov models.  In the HMM case, different parameters should be characterized.  

To characterize a HMM like the one presented in Figure 17, the following procedure should be followed. 
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1. As with the two-state Markov model, the first step is to select the technology that the model 

should represent; this is either 802.11b or 802.11a. 

2. As explained before, no major differences in mean values or shapes of error and error free runs 

distributions between office and residential environments were noticed during the analysis.  

Therefore the choice of indoor environment to be considered is not critical.  Due to the 

availability of large amounts of data for office environments, results coming from these 

environments will be used to generate the models. 

3. For the same reasons explained earlier on the guidelines for the construction of the two-state 

Markov model, one should select the results coming from small frame sizes traces to characterize 

the HMMs.    

4. The transmission rate and location selection define the values of the state durations needed for the 

model.  In a similar manner to that presented on the guidelines for the two-state Markov models, 

the next two tables provide the information necessary to construct a hidden Markov model such 

as that illustrated in Figure 17.   The tables specify for each case the 2×2 transition probability 

matrix P and two 2×2 matrices B(0) and B(1).  The vector π can be computed by taking any row 

of the matrix P10000.  After all these elements have been characterized it is possible to follow the 

approach from Section 3.10 to implement the model in a simulation. 
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Table 29 HMM frame loss characterization parameters for 802.11b channels 

 

 
SNR 
scale 

Actual 
SNR 

considered 

Tx  rate 
selected 
(Mbps) 

P matrix  B(0) matrix B(1) matrix 

11 0.4570    0.5430 

0.1873    0.8127 

0.9751         0 

     0    0.9990 

0.0249         0 

     0    0.0010 

High 
SNR 

32dB 

5.5 0.5975    0.4025 

0.0247    0.9753 

0.9997         0 

     0    0.9999 

0.0003         0 
 
     0    0.0001 

5.5 0.2937    0.7063 

0.1744    0.8256 

0.9998         0 

     0    1.0000 

0.0002         0 
 
0              0 

Medium 
SNR 

23dB 

2 0.9598    0.0402 

0.0116    0.9884 

0.9986         0 

     0    1.0000 

0.0014         0 

     0         0 

2 0.6414    0.3586 

0.5168    0.4832 

0.6141         0 

     0    0.6721 

0.3859         0 

     0    0.3279 

Low 
SNR 

12dB 

1 0.8973    0.1027 

0.0434    0.9566 

0.3145         0 

     0    0.9655 

0.6855         0 

     0    0.0345 

 

  

Table 30 HMM frame loss characterization parameters for 802.11a channels 

 
 

SNR 
scale 

Actual 
SNR 

considered 

Tx  rate 
selected 
(Mbps) 

P matrix  B(0) matrix B(1) matrix 

High 
SNR 

32dB 17 0.8553    0.1447 

0.0749    0.9251 

0.9996         0 

     0    0.9995 

0.0004         0 

     0    0.0005 

Medium 
SNR 

23dB 14 0.9110    0.0890 

0.0700    0.9300 

0.9964         0 

     0    0.9998 

0.0036         0 

     0    0.0002 

Low 
SNR 

12dB 9 0.9182    0.0818 

0.1021    0.8979 

0.9903         0 

     0    1.0000 

 0.0097         0 

      0         0 
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6.2. MODEL RESULTS AND VALIDATION OF THE TRANSMISSION RATE 
VARIATIONS 

The transmission rate variations models were constructed using the methods detailed in Section 3.4.  First 

HMM models were constructed using the RSSI as the variable for the “hidden” process, and then Markov 

models were tested and validated with K-S tests. 

6.2.1. HMM and Markov model results for the representation of the transmission rate 
variations 

HMM were constructed to represent the rate variations by taking the RSSI and partitioning it into two 

states and then following the same approach taken in Section 6.1.  Before proceeding with the quantitative 

analysis and validation of the results it was noticed that the HMM was not generating adequate results.  A 

simple visual validation was enough to determine the significant differences between the results.   

Figure 49 shows a sample of the results for 802.11b systems.  The figure illustrates a 

configuration in which 1,500 byte frames are being transmitted at location c.  The top subfigure shows a 

sample of the evolution of the rate variations during the transfer.  The two bottom subfigures show the 

results of modeling these variations with a HMM (left) and a four-state Markov model (right) 

characterized using the procedure described in Section 3.4.1.  Figure 50 shows a sample of the results for 

an 802.11a transmission at the same location (location c at a SNR of 9dB at the receiver).  For the 

802.11a case the Markov model was constructed with eight states, one for each transmission rate 

available in the standard. 
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Figure 49 Sample transmission rate variations evolution during 5000 frames  

(802.11b system at a SNR of 20dB at the receiver, location c) 

 
Sample of the 

experimentally observed 
results in a 802.11b 

system at a SNR of 20dB 

 
HMM result 

 
Markov model result 
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Figure 50 Sample transmission rate variations evolution during 5000 frames  

(802.11a system at a SNR of 9dB at the receiver, location c) 

 
Sample of the 

experimentally observed 
results in a 802.11a 

system at a SNR of 9dB 

 
HMM result 

 
Markov model result 

 
 
 

A visual examination of these results indicates that the HMM is not able to follow the slow 

variations of the transmission rate and that the Markov model apparently outperforms it.  However, 

further quantitative validation is necessary before the Markov models representation is accepted as valid. 

 

6.2.2. Findings from the characterization of rate variations with a Markov model 

A first step in the validation of the Markov model for the rate variations consisted in trying to fit known 

distributions to the experimental durations of each rate.  Several distributions were tested using a one-

sample K-S test but none of them offered an adequate fit.   Since the distribution of the duration of each 

rate had an exponential like shape, a common four-state (for 802.11b) or eight-state (for 802.11a) Markov 

model was selected to characterize the variations.   Then a two-sample K-S test was used to quantify the 
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differences between the distributions shapes.  A sample of the results is presented in the following table.  

These results correspond to a setup that transfers 1500 byte frames at 27 dB (802.11b) and 9dB (802.11a).   

Other frame size and average SNR configurations were also tested yielding similar results. 

 

Table 31 Two-sample K-S test results for the analysis of Markov models in transmission rate variations 

 

 

Transmission (Mbps) rate from 802.11 systems K-S Test shape 
result 

1 >0.05 
2 0.0145 

5.5 0.0129 
11 0.0107 

Transmission (Mbps) rate from 802.11a systems  
6 >0.05 
9 0.03 
12 0.023 
18 0.01 
24 0.0013 

 

 

The table indicates that the Markov model represent the rate duration distribution with low accuracy.  

This accuracy is observed to decrease as the transmission rate selected increases.  However, the average 

transmission rate generated by a Markov model was statistically the same as that observed in the 

experimental traces.  In particular for 1500 and 1000 byte transmissions the average modeled rate was in 

all cases less than one percent away from the ones observed in the traces.    

6.2.3. Summary of findings and transmission rate variations modeling guidelines 

The characterization of the transmission rate variations was approached with two different models.  First a 

hidden Markov model was tested.  Then and a four or eight-state Markov model was constructed for 

802.11b and 802.11a technologies respectively.  Experimental data was used to characterize both the 

Markov and the hidden Markov models. 

Regarding the usage of the hidden Markov model: 

• The results obtained from the hidden Markov model were highly inaccurate.  There was no need 

to perform any quantitative analysis to reach this conclusion.  A simple visual test strongly 

suggested that the model was not able to follow the very slow variations in the transmission rate. 
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• Even though the RSSI resulted in a valid variable to model frame losses, this was not the case 

with rate variations. 

1. In the case of frame losses any decrease or increase of RSSI results in an immediate 

change of the state of the channel.  The “weak” Markovian properties of the RSSI 

were enough to avoid having noticeable negative effects on the accuracy of the 

hidden Markov models. 

2. In the case of rate variations a careful examination of the data from the traces 

revealed that variations in the RSSI were usually not followed by immediate changes 

of transmission rate.  The rate changes are also a function of the actual proprietary 

algorithms implemented by the vendors in the wireless stations.  Under these 

conditions the “weak” Markovian properties of the RSSI impeded the creation of an 

accurate hidden Markov model. 

• The characterization of transmission rate variations with a finite state Markov chain approach 

results in a model that matches with high accuracy the average transmission rate and with a lower 

accuracy the distribution of the rate durations. 

1. In order to characterize a rate variations model, 1,500 byte frames were used.  This is 

the frame size that wireless LAN stations will usually select to transmit information.     

6.2.3.1. Model construction guidelines for rate variations 
 

1. The first step is to select the technology that the model should represent.  Models for 802.11b and 

802.11a technologies have different state parameters and therefore, one needs to first specify the 

technology. 

2. No major differences in mean values or shapes rate variations distributions between office and 

residential environments were noticed during the analysis.  This is valid for both 802.11b and 

802.11a channels.  Therefore the choice of indoor environment to be considered is not critical.  

Due to the availability of large amounts of data for office environments, this environment will be 

used to generate the data in this section.   

5. The 2k factorial design indicated that the predominant factor that affects the rate variations is the 

location of the receiver and thus the average SNR at the receiver.   With this in mind, the next two 

tables provide the information necessary to assign the transition probabilities from matrix P to a 

model similar to that shown in Figure 18 for 802.11b or 802.11a systems under high, medium and 

low average SNR conditions.  The distinction between high, medium and low average SNR was 

based purely on the observed ordered range of average values of SNR.  In the case of 802.11b the 

elements of this matrix represent the transitions between states that represent 1, 2, 5.5 and 
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11Mbps rates.  In the case of 802.11a the elements of this matrix represent the transitions between 

states that represent 6, 9, 12, 18, 24, 36, 48 and 54 Mbps rates. 

 
 
 

Table 32 Four-state rate variations Markov model characterization parameters for 802.11b channels 

 

 
SNR scale Actual SNR 

considered 
Transition probability matrix P 

High SNR 32dB          0    1.0000         0         0 

         0         0    1.0000         0 

         0         0    0.9998    0.0002 

         0         0    0.0003    0.9997 

Medium SNR 23dB     0.9866    0.0134         0         0 

    0.0001    0.9997    0.0002         0 

         0    0.0030    0.9935    0.0035 

         0         0    0.0023    0.9977 

Low SNR 12dB     0.9950    0.0050         0         0 

    0.0001    0.9997    0.0002         0 

         0    0.0018    0.9982         0 

         0         0         0         0 
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Table 33 Eight-state rate variations Markov model characterization parameters for 802.11a channels 

 

 
SNR 
scale 

Actual 
SNR 

Transition probability matrix P 

High 
SNR 

17dB  

0.4376    0.5624         0         0         0         0         0         0 

0.4879    0.0184    0.4936         0         0         0         0         0 

     0    0.0649    0.7206    0.2145         0         0         0         0 

     0         0    0.1247    0.6891    0.1863         0         0         0 

     0         0         0    0.1257    0.6989    0.1753         0         0 

     0         0         0         0    0.1468    0.7976    0.0556         0 

     0         0         0         0         0    0.2526    0.7402    0.0072 

     0         0         0         0         0         0    0.2737    0.7263 

Medium 
SNR 

14dB  

0.7453    0.2547         0         0         0         0         0        0 

0.4515    0.0720    0.4765         0         0         0         0        0 

     0    0.1133    0.7336    0.1531         0         0         0        0 

     0         0    0.1099    0.4837    0.4063         0         0        0 

     0         0         0    0.0912    0.7407    0.1680         0        0 

     0         0         0         0    0.0946    0.3944    0.5110        0 

     0         0         0         0         0    0.2478    0.7173   0.0349 

     0         0         0         0         0         0    0.7744   0.2256 

Low 
SNR 

9dB  

0.6074    0.3926         0         0         0         0         0         0 

0.4770    0.0318    0.4911         0         0         0         0         0 

     0    0.0630    0.6114    0.3256         0         0         0         0 

     0         0    0.1225    0.7337    0.1437         0         0         0 

     0         0         0    0.2489    0.7349    0.0162         0         0 

     0         0         0         0    0.7727    0.2273         0         0 

     0         0         0         0         0         0         0         0 

     0         0         0         0         0         0         0         0 
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7. CONCLUSIONS 

This dissertation has explored in diverse ways the characterization of 802.11 wireless channels.  In a first 

step, the underlying fading phenomenon characterization was studied in order to further appreciate the 

challenges inherent to wireless channels in general.  Fading in wireless channel has been widely studied 

and it is possible to use its characteristics to derive models that represent frame losses.  A comprehensive 

review of how traditional models have been constructed in the past was given in order to understand the 

limitations present in those models.  Using experimental data from actual 802.11 systems, models for 

frame losses and for the rate variations present in such systems were constructed and its results were 

validated at both the frame and transport levels.  The main contribution developed throughout this 

dissertation has been the study of traditional models and the characterization of frame losses and rate 

variations in 802.11 systems, all of this performed with experimental data something that has not been 

done in the past. 

Traditional frame loss models for systems like 802.11 have never been subjected to validation 

studies that indicate how well these models represent reality.  This was a major task carried out in this 

dissertation and the findings were quite relevant.  In the past, numerous research studies have used two-

state Markov models to represent frame losses in wireless channels.  With the experimental data collected 

for our studies it was determined that using the equations developed by Jakes [23] for the fading envelope 

results in a completely inaccurate representation of frame losses in 802.11 systems.  The inadequate 

characterization of the model with Jakes’ equations is due to the complexities inherent to 802.11 channels 

which use wideband channels with advanced modulation and coding schemes.  Jakes’ equations can not 

capture all these parameters and therefore are not useful for the generation of Markov models for 802.11 

systems.   

Furthermore, it is impossible to relate the parameters in Jakes’ equations, such as the fading 

duration, average crossing rate or fade depth, with any of the commonly available variables in today’s 

wireless networks.   Variables such as the average signal to noise ratio, frame size or transmission speed 

are commonly used in current research studies because of the simplicity of the extraction of their actual 

values from a indoor wireless system.  Having no way of relating these parameters with Jakes’ variables 
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makes an accurate characterization of a Markov model for frame losses unfeasible.  Any characterization 

with this kind of method was proven to be inadequate. 

Frame losses in 802.11 wireless channels were adequately characterized with Markov models by 

using experimental data coming from actual measurements in indoor networks.  It was found that using 

experimental data for constructing two-state Markov models for frame losses resulted in an accurate 

model.  Two-state Markov models are simple to construct and provide a good match for the 802.11 frame 

loss process.  However they do have a drawback.  The distribution of consecutive periods of frames in 

error or error free do not resemble those observed in the experiments. 

In order to further develop and test characterization methods that allowed the construction of 

accurate models, hidden Markov models were also tested.  The results from HMMs were even better than 

those from the two-state model.  HMMs provided with an accurate match of the underlying distribution of 

error and error free runs.  A disadvantage of HMMs is that their construction requires more parameters 

than the two-state model, a fact that somewhat complicates its implementation. 

Both two-state and HMM gave excellent results when their effects at the transport layer were 

measured.  At this layer computer simulations that included TCP/IP communication between nodes, 

indicated that both models provide an adequate representation of reality.  However if different protocols 

are to be tested it is recommended to use HMMs that more closely match the underlying frame loss 

process distributions.   

Another major contribution of this dissertation is providing specific guidelines for the 

construction of both two-state and hidden Markov models.  Chapter 6 presents all the necessary data to 

construct these models and use them in future simulation studies.  Specific guidelines for both 802.11b 

and 802.11a systems allow the construction of models by relating the numerical results to common 

variables like the signal to noise ratio and the transmission speed.  These types of guidelines, the author 

believes, are the first ones available in the subject.  Furthermore, there are the only guidelines currently 

available that apply to 802.11 systems that use wideband channels which in general present challenges in 

their characterization.  

A variable that has not been explored before, the transmission rate variation, was also studied.  In 

the past research studies have not included the effects of the always present rate variations in 802.11 

systems.  These variations although they occur at slow rate (in comparison to the duration of a maximum 

sized frame) can definitely influence the performance of an 802.11 network.  In this dissertation, models 

for the variations were constructed and specific guidelines for implementing them in future studies were 

provided. 

The actual modeling of indoor 802.11 channels with Markovian approaches was developed in 

great detail in this dissertation.  Nonetheless the rapid changes of today’s technology provide new 
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research opportunities in the area.  In particular it would be interesting to generate guidelines for other 

technologies such as 802.11g, multiple inputs/multiple outputs MIMO and sensor network systems.  For 

all of these new technologies no guidelines are available today.  In addition, the results from the 

experimental traces could also be used to further understand the behavior of the channel and perhaps 

predict its behavior. 
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APPENDIX A - ISSUES RELATED TO THE FSMC CHARACTERIZATION 

 
The necessary elements needed to characterize a FSMC model were described in chapter two.  

Table 1 included a description of each of these elements.  In summary these elements are the transition 

probability matrix P, the steady state probability vector π and the crossover probability vector e.  This 

section will discuss several issues related to the characterization of these parameters.  In particular issues 

regarding the partitioning methods of the SNR, the number of states, the modulation schemes and coding 

will be discussed.   

A.1 CHARACTERIZATION OF P, π AND e 

Under slow fading conditions, the channel is constant over the duration of a symbol and one can 

determine the transition probabilities between the states using the procedure suggested in [53].  When 

slow fading is present, the level crossing rate at any particular SNR partitioning level is very small 

compared to the total time spent in that state.  Jakes [23] showed that given the maximum Doppler 

frequency (fD) it is possible to compute the number of times (Na) that the received SNR passes downward 

across a certain level ‘a’ above or below the RMS value of the SNR. 

The elements of P can then be approximated by the relation between the crossing rate (Na) and 

the ‘symbol rate in each state,’ Rk. Rk can be computed as the product (transmission rate × πk).  For 

example the probability of going from state k to state k-1 is approximately equal to Nk/Rk.   The accuracy 

of these approximations was verified via simulation [53].   

Expressions for  π and e can be developed based on characteristics of the fading envelope and the 

modulation scheme.  Wang and Moayeri [53] showed that with a pre-determined SNR partitioning 

scheme and assuming binary phase shift keying (BPSK) modulation is used, it is possible to obtain closed 

form expressions for the elements of the steady state probability vector π and the elements of the 

crossover probability vector e.  This can be done because the received signal envelope has a known 

probability distribution (i.e. Rayleigh distributed) and with this distribution one can compute the pdf of 

the received SNR. The pdf of the SNR in a Rayleigh fading environment with additive white Gaussian 

noise follows an exponential distribution [36].   
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Eventhough all three elements can be characterized using the guidelines given in [53], several 

open issues were still left for discussion.  For instance, the way in which the SNR should be partitioned, 

the number of states, the order of the model and the relationship with the coding or modulation used are 

some issues that will be discussed in the next sections. 

A.1. PARTITIONING  

In order to construct the actual model, one of the parameters that must be specified is how the 

partitioning of the received SNR should be done.  Wang and Moayeri [53] completely described the 

channel model but did not elaborate on the SNR partitioning.  In the literature a common approach for the 

partitioning is to select the thresholds in such a way that the steady state probabilities of being in any state 

are equal [4][13][39][53].  In terms of the model parameters this means that the elements of the vector π 

can be expressed as follows,  

 π0= π1 … πn-1=1/n.    (for an ‘n’ state FSMC) (1) 

This is referred as the uniform partitioning scheme. Right away one can appreciate the fact that 

the simplicity of this partitioning does not take into account the non-linearity between the SNR and the 

individual symbol probabilities of the BSCs of the model. Therefore, this partitioning scheme can be 

improved. 

In addition to the simple partitioning method mentioned before two other partitioning schemes 

were proposed [52].    These schemes are derived from the quantization analysis for pulse code 

modulation techniques.  The first scheme proposes making: 

 πi = 2 πi-1 and π0 = 1/(2n-1). (2) 

This way the probability of being in a ‘higher’ level doubles as the state index ‘i’ increases.  The 

second scheme proposes making: 

 πi = i π0 and   π0 = 2/(n2+n).  (3) 

How these schemes are related to real channel conditions is not specified in [52].  There is also no 

comparison with simulated or real channel data. 

The impact of these different partitioning schemes was evaluated in [52] by analyzing the 

capacity of the FSMC. The capacity measures how many bits per channel use can effectively be 

transmitted through the channel.   The capacity computed is the average capacity, in bits per channel use, 

over all ‘n’ states.  This is  where ‘h’ is the binary entropy function.  Under average error 

probabilities ranging from 0.005 to 0.1 it was found that while keeping the number of states fixed, the 
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capacity differences between the two latter schemes were minimal (less than 1%).  Greater differences in 

capacity were observed between the uniform partitioning scheme (1) and the ones given by (2) and (3).   

Nevertheless, the capacity is not directly related to the channel itself and thus to the accuracy of the 

model.  Current literature however does not mention any other comparisons between the real channel 

behavior and the partitioning schemes.  

A different approach for computing the partitioning thresholds was proposed by Zhang and 

Kassam [55].   Their goal was to select SNR partitioning intervals that are large enough so that a 

transmitted packet is completely received during each associated state.  On the other hand in their 

approach, it is also desirable that within the duration of a packet similar SNR would be observed.  That 

way, all bits in the packet will experience similar BER conditions. As shown in [55] the SNR interval 

cannot be made too large or too small but must be computed based on the packet duration. Zhang and 

Kassam formulated a system of linear equations that computes the duration of a state as a multiple of the 

duration of a packet.  By solving this system of equations one can obtain the values for the SNR 

partitioning thresholds for a predetermined number of states. Once again, there is no validation with real 

or simulated channel data in [55]. There is also no discussion on how to select an appropriate number of 

states. 

None of the previously mentioned partitioning schemes takes into account the fading 

characteristics of the channel. In [2] Aráuz and Krishnamurthy explored a new alternative.  In that 

approach the authors studied the effect of the partitioning scheme on the model by placing a higher 

number of states in the regions where the average SNR value falls more often.  Therefore, that approach 

necessarily depends on the average value of the SNR.  The authors compared their scheme with others by 

looking at the same response variables used in early studies as well as some new response variables. The 

models were also validated using simulated channel data unlike some of the other approaches.  

In order to take into account the channel fading characteristic in the model in [2] the authors 

proceeded to partition the received SNR based on the average fade duration at different levels of SNR.  

The relation between these two factors was determined by Jakes [23, pg. 37], with functions of the form 

πυ

υ

kf
e

m×
−1

2

, where υ is equal to the ratio R/Rrms and k depends on the field component that is computed.  
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Figure 51 Normalized fade durations vs. R/Ravg [dB]. 

 
 
 
Figure 51 shows both the theoretical and simulated values obtained for the normalized duration of 

fades.  The vertical axis plots the values (average fade duration × fD), while the horizontal axis plots the 

ratio between the level ‘R’ of the envelope and its average value ‘Ravg’.  The figure shows how very deep 

fades last for very short periods of time. The theoretical results shown in the figure are computed based 

on the rms value of the envelope [23], while the simulated values are computed using the average value of 

the envelope.  The simulated values and the results shown in this section were obtained using a modified 

version [35] of the sum of sinusoids fading simulator proposed by Jakes [23]. 

In [2] the SNR was partitioned in two new ways.  Each of these two new schemes tries to study 

the effects of placing a higher number of states in regions of longer or shorter average fade duration.  The 

first scheme includes 70% of the partitions over the mean value (p=0 [dB] in Figure 51) of the received 

SNR.  The second one includes 70% of the partitions under this value.  With knowledge of the SNR 

probability distribution one can compute the values of the elements of the vector π.   

The width of the intervals located over the mean SNR value was computed as: 

 
⎣ ⎦7.0

][E)max(
××
−

=
nm

Rr
width ,  (4) 

where ‘n’ is the number of states and ‘m’ was set to three to scale down the size of the intervals.  

If the value of ‘m’ is set to one (bigger intervals) the SNR does not fall often enough in the highest 
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partitions and this is not useful in practical implementations.  The maximum value of SNR, max(r), is a 

known parameter from the simulation.   

The values of the interval width below the mean are computed in a similar way (in this case ‘m’ 

is set to one): 

 
⎣ ⎦3.0

][E
×

=
n

Rwidth .  (5) 

The second partitioning scheme proposed, uses equations similar to (4) and (5) but including 70% 

of the partitions under the mean value of the received SNR. 

A partitioning scheme like the one proposed takes into account the average fade duration and this 

could be important in performance studies of higher layer protocols.  These protocols transmit frames 

with several symbols over long periods of time that could span numerous fades. 

For studying the effects of the partitioning scheme on the model one can look at the same 

response variables that have been previously analyzed [4][53][55].  In [2] the authors studied the state 

duration distribution, the elements of the transition probability matrix P, the elements of the steady state 

vector π and the autocorrelation function. 

The first two response variables are basically used to test the correctness and accuracy of the 

simulation.  With regard to the elements of the matrix P, the simulation results were compared with the 

mathematical approximations used in [53]. A 2χ test was used to compare between the theoretical value 

of the elements of π and the observed ones in order to understand which partition results in a better fit. 

In [2] five different partitioning schemes were studied; three previously proposed (see equations 

(1), (2), (3)) and those determined by equations (4) and (5).  It was found that the observed values of the 

elements of the matrix P were within 5% of the expected ones.  The largest differences were found for the 

two highest states. This is because the highest states usually require more simulation samples to converge 

to the theoretical value. However the authors did not consider the accuracy of P to be an adequate 

measure of fit for the partitioning scheme, since the obtained values mainly reflect the accuracy of the 

theoretical approximations for P developed in [53].  

In terms of the value of 2χ  for π, it was found that the most commonly used scheme, the 

uniform partition approach, given by (1) gave the worst fit.  The other four partitioning schemes (defined 

by equations 2 through 5) offered acceptable results.  These results are shown in Table 34. 
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Table 34 2χ  test for an 8, 16 and 32 state FSMC 

 
 

Partition type (1) (2) (3) (4) (5) 
8 state 0.0033 0.0021 0.0029 0.0035 0.0022 

16 state 0.0047 0.0021 0.0031 0.0038 0.0039 
32 state 0.0057 0.0020 0.0034 0.0039 0.0039 

 
 
 
 

From Table 34 it can be observed that the uniform partitioning scheme (1) has the worst fit in 

terms of matching the theoretical steady state probabilities.  The second scheme offers an overall adequate 

fit to the simulated values. However for a high number of states this scheme is not practical since the 

interval widths for the highest states become very small and even very long simulations do not generate 

enough data to compute accurate statistics. More details are available in [2].    

The other three schemes performed in similar ways.  In the author’s schemes, it was observed that 

taking the fading durations into account in (4) and (5) resulted in no considerable advantage in 

comparison to the other schemes although it is directly related to the fading process.  The autocorrelation 

of the process was also used in validation of the models and those results are presented later in this 

chapter. 

A.2. NUMBER OF STATES AND MODEL ORDER 

The number of states that should be used in the FSMC model is another issue that has not been 

extensively studied.  In general one could expect that a model with a higher number of states would 

represent the channel more accurately.  Nevertheless, models with large number of states could be too 

complex for practical usage.   There are several approaches that have been proposed to study the effects 

of different values for the number of states. 

Babich and Lombardi [6] studied a two threshold (i.e. three states) FSMC model in a quantized 

Rayleigh fading environment.  Based on experimental data they showed that a first-order FSMC (the first-

order assumption will be discussed later) with three states gives a good approximation of the fading 

process under sufficiently slow fading (fm×τ < 0.02).    Under fast fading conditions (fm×τ > 0.4), an 

uncorrelated model (zero-order model) proved to adequately approximate the fading process.  For 
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intermediate values of fading Babich et al. [7][8] suggested a higher order model.  Nevertheless, this 

literature does not elaborate extensively on the selection process of the number of states.   

A.3. MODULATION AND CODING 

As detailed elsewhere, the parameterization of the FSMC model requires the computation of the 

symbol error probabilities for the associated BSCs.  Given a digital modulation scheme, the average error 

probability is a function of the received SNR, and it is possible to compute the crossover probabilities of 

each associated BSC.  To do this, in general fairly simple modulation schemes have been used.  For 

example [53] studied the behavior of the model using BPSK, while others have used π/4 differential 

quadrature phase shift keying (DQPSK) [55]. 

The modulation scheme could also have an effect on the statistics of block errors. Block errors 

are a function of the channel model and determine how packets are lost when transmitted over a wireless 

link.  The modeling of the loss process is necessary when one studies the performance of upper layer 

protocols.   Zorzi and Rao [56][57] studied the statistics of block errors when transmitting data over 

fading channels with different modulation schemes.  In [56] it was found that a simple two state first 

order Markov model that describes the success/failure of transmitted blocks, called the threshold model, 

gives results that agree with those from a detailed symbol by symbol simulation (under slow fading 

conditions). 

Using two modulation schemes, BPSK and frequency shift keying (FSK) Zorzi and Rao in [57] 

investigated the sensitivity of the block loss process to both the coding and modulation schemes.  The 

block loss process was studied using the threshold model and the symbol by symbol model. At the block 

level, a block was considered in error when the value of the fading envelope is below a certain threshold 

(as also done in [56]).  At the symbol level, a symbol was considered in error with a certain probability 

that depends on both the modulation scheme and the average SNR.   

The effect of using a (N,k) block code was also included in [57].  A block was assumed to be 

correctly received when it contained fewer errors than those that the code is able correct.  By tracking the 

fading envelope at the symbol level the authors included the effects of a varying envelope during the 

transmission of a block.   

The results presented in [57] are quite interesting.   It was found that a Markov approximation for 

the block loss process is a ‘very good model for a broad range of parameters’.  For example, for block 

sizes (ranging from 100 to 2000 symbols per block), several error correcting capabilities and distinct 

levels of modulations, the authors showed [57, Fig. 5, 6] that the threshold model accurately approximates 
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the results obtained by the symbol by symbol tracking process. These results indicate that for tracking 

loss processes at the block level under very slow fading conditions, it is sufficient to use a two state first 

order Markov model (the threshold model).  This model proves to be only sensitive to the value of fD and 

not to the tested modulation or coding schemes. 
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APPENDIX B - VALIDITY AND ACCURACY OF THE FSMC 

The most straightforward way of validating any model consists in comparing its results with 

experimental results.  For example in the FSMC case, a comparison between the distributions of the time 

spent in each state could be performed between results from the model and results from experimental data 

taken from a sample function of the underlying random process.   Previous literature mainly presents 

validations like this, but they usually use simulated and not experimental data to perform the comparisons 

[53][56].  Nevertheless, some results [6] also show that experimental channel data appears to be suitable 

for modeling with a Markov process.  

In current literature, there are two widely studied validation approaches.  The first type of 

validation is based on an information theory analysis.  The second one compares the correlations of the 

processes under analysis.    

Information Theory Validation Analysis - Before presenting the actual analysis for validating 

the FSMC, it is relevant to emphasize that this model by definition conforms to the Markov property.  In 

particular, this property can be expressed as [26]: 

])(|)([])(,...,)(,)(|)([ 1102211 −−−−−− ======= nnnnonnnnnn stSstSpstSstSstSstSp  

This property indicates that the probability of transition at a time ‘n’ to a new state only depends 

on the state at time ‘n-1’ (also referred to as the first-order assumption).  For the FSMC we are therefore 

assuming that the ‘history’ of previous channel states, besides the previous one, does not carry significant 

information about the next state.  Without any further analysis it is difficult to visualize if the Rayleigh 

fading channel can be modeled following this assumption.  Furthermore, it could appear to be more 

desirable to have a model that includes higher order assumptions and therefore maybe increase its 

accuracy [3][4].  However, the problem with higher order models is that the complexity of its analysis and 

implementation increases considerably. 

Wang and Chang [54] proposed a ‘mutual information metric’ to verify the accuracy of the first 

order Markovian assumption for a Rayleigh FSMC model.  The goal of the metric is to confirm that given 

the information about the previous symbol, the uncertainty of the current one should be negligible.   This 

uncertainty is measured in terms of average mutual information of the received amplitudes.   

Let Ai (where i is the time index) be the received SNR of the ith symbol. The information 

contained in Ai given by the two consecutive (and previous) SNR values Ai-1Ai-2 is quantified by the 

average mutual information I(Ai;Ai-1Ai-2).  As proposed in [21], this quantity can be expressed in terms of 

the average conditional mutual information I(Ai;Ai-2|Ai-1)  and can be expressed as follows. 
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I(Ai;Ai-1Ai-2) =  I(Ai;Ai-1) + I(Ai;Ai-2|Ai-1). 

Wang and Chang’s goal is to compute the value for the ratio I(Ai;Ai-2|Ai-1) / I(Ai;Ai-1Ai-2), which 

is a function of the joint pdf of Ai, Ai-1 and Ai-2. Additionally, they showed how this pdf depends on the 

symbol transmission rate.  

If the ratio I(Ai;Ai-2|Ai-1) / I(Ai;Ai-1Ai-2) is much smaller than one, then the average mutual 

information I(Ai;Ai-1Ai-2) mainly depends on the first term, I(Ai;Ai-1).    This would mean that the 

information of Ai would mainly depend on the previous symbol Ai-1.  If this happens, the first order 

assumption for the FSMC would be verified.  Since the joint pdf of Ai, Ai-1 and Ai-2 depends on physical 

characteristics it is important to describe what these are and their ranges in order to maintain the FSMC 

validity. 

The results presented in [54] show that for fD ranging from 2×10-4 to 4×10-3 the value of the ratio 

I(Ai;Ai-2|Ai-1) / I(Ai;Ai-1Ai-2) is less than 1%.  This value is even smaller for small values of fD, since as 

fading gets slower the information of Ai is basically a function of Ai-1 only.  Therefore using higher order 

models will not improve the accuracy of the FSMC.  On the other hand, for cases in which fast fading is 

observed the value of the ratio indicates that this is not negligible and the first order assumption is no 

longer valid.   

Stochastic Validation Analysis - With the results presented in [54] the accuracy of the first order 

model is verified but nevertheless as indicated by Tan and Beaulieu [46] the fact that one has “small 

mutual information is not a sufficient condition to indicate a process is Markovian”.  I(Ai;Ai-2|Ai-1) can 

actually approach zero in two cases.  The first case is when the samples at i, i-1 and i-2 are independent 

and the second, when they are highly correlated.  Under very slow fading conditions, such as those 

explored in [54], the samples are highly correlated. 

Tan and Beaulieu [46] indicated that an appropriate way of verifying the accuracy of the first 

order Markovian assumption with information theory concepts is to analyze  I(Ai;Ai-1,Ai-2, Ai-3,…, A∞).  

The original validation in which Wang and Chang [54] analyze the value of I(Ai;Ai-2|Ai-1) only indicates 

that a second order Markovian model is marginally better than a first order one, but does not indicate that 

even higher order models are not better than the first order one.  However, the intractability of the joint 

pdf needed for the analysis motivates the use of a different method.  This second method was named 

“stochastic” analysis [46].  

In the stochastic analysis the autocorrelation functions of the FSMC model and an ISORA model 

(isotropic scattering, omni directional receiving antenna [46]) are compared. The comparison of the 

autocorrelation functions of these two models provides an insight on how well the FSMC matches a 

generic ‘real’ model, the ISORA model.  The results presented in [46, Fig. 2, 3] indicate that the 

autocorrelation function of a FSMC in general significantly differs from the ISORA model.  These 
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differences between the autocorrelation functions are more noticeable as the fading rate increases.  For 

example, at a value of fD of 0.002 the two models appear to be more consistent with one another, whereas 

at a value of fD of 0.02 the differences are quite noticeable.  Additionally, from [46] it can be inferred that 

for slow fading conditions the two autocorrelation functions tend to match each other as the number of 

states of the FSMC increases.  The range for the number of states used in [46] varied from 50 to 1000 

states.   

The autocorrelation functions shown by Tan and Beaulieu [46] suggested that the FSMC model is 

appropriate for very slowly fading channels but only for ‘very slowly fading’ applications.  Very slowly 

fading applications are those that require analysis over a short duration of time.   An example of a very 

slowly fading application could be the analysis of error correction code block-error rates, which according 

to [46] requires analysis over a moderate number of consecutive samples.   By analyzing how the 

autocorrelation functions diverge over an increasing separation between sampling points, [46] arrives to 

the conclusion of how the FSMC is valid for very slowly fading applications.  For very slowly fading 

applications, the autocorrelation functions of both the ISORA and the FSMC are very similar for distinct 

values of sample separations [46, Fig. 5]. 

Having described the accuracy of a FSMC model under very slowly fading conditions one can 

portray what happens under fast fading conditions.  Under fast fading the autocorrelation function of the 

FSMC and the ISORA model differ but both tend to approach the conditions of an uncorrelated model 

over any fixed sample separation.  This leads to the conclusion that an uncorrelated model is suitable 

under fast fading conditions.  The details of how this model should be formulated are not given in [46] 

although it is pointed out that the implementation and analysis is much simpler than that of the FSMC. 

The author also looked at the autocorrelation function of the FSMC model with the five different 

partitioning schemes detailed in the partitioning section.  The approach used in [46] to compute the 

autocorrelation function of the schemes was implemented.  The autocorrelation function RR, was 

computed as: 
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where m is the sample separation and the values of ri were chosen to be the mid point of each of the 

partitioning intervals. 
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Figure 52 Autocorrelation functions RR for the ISORA and FSMC models with 16 states at fD=0.001. 

 
 
 
Figure 52 shows the results obtained for the autocorrelation functions for the five partitioning 

schemes defined by equations one through five.  It also shows the autocorrelation functions of the ISORA 

reference model for several values of sample separation ‘m’.  The results shown are for slow fading 

conditions at value of fD of 0.001. 

From the results it can be observed that none of the partitioning schemes match the ISORA 

autocorrelation function.  It is important to point out that it was found that the autocorrelation function 

values are very sensitive to the choice of elements to represent each interval (we selected the mid point of 

each interval).  A slight variation in how the selection of these values is made can result in large 

variations of RR[m].  It is even possible to closely approximate the theoretical ISORA autocorrelation 

function by selecting slightly different values.  Therefore, we do not consider this to be a good measure of 

fit for the FSMC model. 

Recently, Bergamo et al. [13] proposed an improvement for the approximation of the fading 

process with Markov models.  Since a one-dimensional model like the FSMC does not show an ACF that 

is like the ISORA model, a two-dimensional model was suggested.  This model takes into account not 

only the amplitude of the received SNR but its speed of variation.  This new model is similar to the 

FSMC but also takes into account the difference in amplitude of two consecutive fading samples of the 

envelope.  This difference is called ‘variation speed’. 
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In the two dimensional Markov model besides the set of states S it is necessary to define a set of 

‘quantized’ variations speeds V.  Therefore the transition matrix instead of being of order S2, as in the 

FSMC, is of order S2V2.  In the practical implementation of [13], V was chosen to have three states while 

the number of states was varied between two and 30.  By taking into account the variation speed in the 

model the resulting ACF was shown to closely resemble the one from Jakes’ model [23].  Furthermore 

the two dimensional model was found insensitive to the number of states.  This work however is still 

related only to narrowband flat fading channels. 
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APPENDIX C – FINITE STATE CHANNEL NOTATION 

 
 
 

Let S represent the state space of a finite state channel and defined as S={1, 2, …u}.  Each 

element of S represents an individual state of the channel. The transitions between states follow a 

sequence also known as regime.  If the set of input symbols to the channel is A={a1, a2, …} and the set of 

output symbols is H={h1, h2, …} then the probability of being in state st-1 with at as input to the channel 

and going to state st with ht as the output can be written as Pr(ht, st | at, st-1).   

Now let’s suppose that the channel is in the initial state s0 and after a series of transitions the final 

state of the channel is st.  The sequence of observed outputs during this transitions is ht
1=(h1, h2, …, ht) 

while the transmitted sequence of inputs was at
1=(a1, a2, …, at).  We are interested in computing the 

probability of observing such sequence of outputs and ending in state st given the inputs and the initial 

state s0, that is we are interested in computing: Pr(ht
1, st | at

1, so).  This can be computed by taking into 

account every possible combination of sequence of states, outputs and inputs and can be expressed as [48 

Eq. 1.1.1]: 
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This notation is too complex to be easily managed; therefore it is convenient to write the 

equations in matrix form.  For this it is necessary to introduce the concept of matrix probabilities.   

Let P(ht|at) be a conditional matrix probability (MP) of dimension u×u of the output symbol ht 

given the input symbol at.  Each element (i,j) represents the probability Pr(ht, st=j | at, st-1=i); this is the 

probability of transitioning from state i to state j while observing ht as the output of the channel with at as 

the input.  In general: 

P(ht|at) = [Pr(ht, st | at, st-1)]u,u 

With this definition (6) can be computed with the help of the expression: 

P(ht
1 | at

1)= P(h1 | a1) P(h2 | a2) … P(ht | at) = , ∏
=

t

i
ii

1
)|( ahP

where P(ht
1 | at

1) is a matrix whose (i,j) element is Pr(ht
1, st=j | at

1, so=i).  This matrix is called the 

conditional MP of the output sequence given the input sequence [48].  This notation will help in making 

expressions like (6) a lot easier to handle. 
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Let’s see how these expressions can be used in an example.  Suppose we have only two states, 

represented by state space },{ 21 αα=S (notice that for this example, α ’s are used to represent the 

states).  Additionally, let’s suppose that the input and output sequences are of length 2 and represented by: 

),(
),(

21
2

1

21
2

1

hhh
aaa

=

=
=

=

t

t

 

Then the conditional matrix probability P(h1|a1) can be expressed as 2×2 matrix that contains all 

the combinations of sequence of states that could have occurred while observing h1 at the output and a1 at 

the input.  Let the state transition sequence for this example be represented by (s0) → (s1) → (s2), where 

(si) can be any of the iα states, then the matrix corresponding to the state transition from (s0) → (s1) can 

be expanded as follows: 
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From the matrix shown above it can be observed that the first row represents all the possible state 

sequences that start in state 1α and end either in state 1α  (first column) or 2α  (second column).  The 

second row represents all the possible state sequences that start in state 2α  and end either in state 1α  

(first column) or 2α  (second column). 

In the same way for the next state transition, from (s1) → (s2) the matrix P(h2|a2) can be 

constructed as: 
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Then the matrix P(h2
1 | a2

1) can be obtained by multiplying P(h1 | a1) × P(h2 | a2).  This matrix, 

P(h2
1 | a2

1) will be a 2×2 matrix in which all the possible combinations of state sequences are taken into 

consideration. For example in P(h2
1 | a2

1), the first element of the second row will represent the 

probability of observing the sequence of outputs and inputs and a sequence of states (s0= 2α ) → (s1= 1α ) 

→ (s2= 1α ) plus the probability of observing the sequence of outputs and inputs with the state sequence 
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(s0= 2α ) → (s1= 2α ) → (s2= 1α ).  Notice that the row index (2) indicates the initial state ( 2α in this case), 

while the column index (1) indicates the final state ( 1α  in this case). 

 

If one multiplies P(ht
1 | at

1) by a column vector of ones (1) we obtain the vector p(ht
1 | at

1), which 

represents the probability of observing the output sequence conditioned on the input sequence for each 

initial state. 

p(ht
1 | at

1) = [Pr(ht
1 | at

1, so=1) Pr(ht
1 | at

1, so=2)  … Pr(ht
1 | at

1, so=u)] 

Therefore (6)  can now be expressed as: ∑∏
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Where,  π=[Pr(s0=1)   Pr(s0=2)  …   Pr(so=u)] is the initial state probabilities vector. 
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APPENDIX D – PROBLEMS RELATED TO HMM 

 
There are three main problems that are related to HMMs and their characterization.  For stating 

the problems let’s suppose a HMM is described by the set {S, H, π, P, B(h)}, where S is the state space, 

H is the set of outputs, π is the initial probability vector, P is the state transition probability matrix and 

B(h) are matrices whose diagonal elements are of the form diag{Pr(h | state=j)}, where h belongs to the 

set of observations.  The elements of a specific matrix B for a particular observed output symbol ‘h’ at a 

given state sj can be represented as bj(h)=Pr(h|sj) 

Following the traditional notation let’s write the vector π as, π = [ π1, π2, … , πN ] 

D. 1. FIRST PROBLEM  

Given an observation sequence O of output symbols, such that O=O1, O2, … OT, where (Oi ∈H) 

and a model θ = (π, P, B(h)). How do we efficiently compute P(O| θ )? 

A general solution will consist in enumerating every possible sequence of states of length T, one 

of these sequences could be Q=q1,q2, … , qT, where qi ∈S and q1 is the initial state.  Then the probability 

of the observation sequence O given the model θ  is obtained by summing the joint probability over all 

possible state sequences Q, this is: ∑=
Qall

QPQO( . POP
_

)|(),|)|( θθθ

The number of operations for computing this probability is (2T-1)NT multiplications  and (NT-1) 

additions. Notice that even for ‘small’ models (N<10) this results in an impractical number of 

computations.  A reduction in the number of operations can be achieved by using the forward-backward 

algorithm. 

Forward algorithm - The algorithm is based on the definition of a forward variable tα  (i), 

defined as the probability of observing a partial sequence O1, O2, … , Ot and being in state si at time t 

(given the model). 

Therefore tα  (i)=P(O1, O2, …, Ot, qt=si | θ ) 

The goal is to solve for tα (i) by induction. 

Induction process to solve for: (i): tα
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1. Initialization:  

1α  (i)=πi bj(O1), for 1 ≤ i ≤ N 

where bj(O1) is obtained from a matrix B as the probability of observing O1 and being in state i. 

2. Induction: 

In the induction phase we want to solve for the next tα  (i) (that is t=t+1) based on previous 

known values of α .  Remember tα (i) represents the partial observation probability up to time t.  Now, 

let’s suppose that at time t+1 state sj is reached.  This state can be reached from any of the previous s1, s2, 

… ,sN states.  This is illustrated in the next figure: 

 
 
 

s1 p1j 
s2 p2j 

sj 
pNj 

sN 

t+1 t 
tα  (i) 1+tα  (j) 

 

 

Figure 53 Forward algorithm next state representation diagram for the induction step. 

 

Then, 

1+tα (j)=  ∑
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3. Termination 

The probability P(O| θ ) is obtained by adding up all the Tα , then: 

∑
=

=
N

i
T iOP

1
)()|( αθ  

This algorithm requires, N(N+1)(T-1)+N multiplications,  N(N-1)(T-1) additions.  This results in 

a great improvement compared to the case in which all sequences are individually considered. 
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Backward algorithm - In a similar way that α was defined one can define a backward variable 

tβ (i) that represents the probability of a partial observation sequence from time t+1 until time T, given 

that at time t the state was si, and given the model.  Let’s illustrate the general procedure. 

The backward variable can be expressed as:  

tβ (i)=P(Ot+1, Ot+2, … , OT | qt=si, θ ) 

 

In the same way one can solve for tβ (i) with induction. 

1. Initialization: 

Arbitrarily set Tβ (i)=1, for 1 ≤ i ≤ N 

 

 

 

2. Induction: 

))()(()( 11
1

jObpi ttj
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j
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=

××= ∑ ββ , for t=T-1, T-2, … , 1 and 1 ≤ i ≤ N 

The induction step can be illustrated with the following figure: 
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Figure 54 Backward algorithm previous state representation diagram for the induction step. 
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D.2.  SECOND PROBLEM 

Given an observation sequence O of output symbols, such that O=O1, O2, …, OT (Oi ∈H), and 

the model θ =( π, P, B(h) ) we want to compute a corresponding state sequence which is “optimal” in 

some meaningful sense.  Diverse optimality criteria have been defined, the most commonly used is the 

one that maximizes the probability Pr(Q|O, θ ), this can be computed via the Viterbi algorithm.  For the 

work in this document, this method is not of interest since usually the states would represent signal to 

noise ratio variations.  The research interests of this document do not lie on the evolution of the signal to 

noise ratio value but on the observable effects of these variations therefore we will not elaborate on the 

second problem. 

D.3.  THIRD PROBLEM 

The third problem consists in determining the model parameters (π, P, B(h)) to maximize the 

probability of an observation sequence given a ‘first’ model. 

There is no analytical solution to the problem of maximizing the probability, but there are 

methods to find locally maximized values of P(O|θ ).  For obtaining the local maximums one can use 

iterative procedures such as the Baum-Welch method (based on the EM method) or use gradient 

techniques. 

The following discussion refers to the Baum Welch method: 

Let’s define ξ t(i,j) as the probability of being in state si at time t and state sj at time t+1, given the 

model and the observation sequence, then: 

ξ t(i,j)=P(qt=si, qt+1=sj | O, θ ) 

 

Using the forward and backward variables one can express ξ t(i,j) as: 
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Where the denominator is included to make ξ t(i,j) a probability measure. 

Now let’s define γ t(i) as the probability of being in state si at time t given the observation 

sequence and the model, this means: 
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Where the denominator is included to make γ t(i) a probability measure, such that 
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One can relate γ t(i) and ξ t(i,j) by summing ξ t(i,j) over all possible j. 
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If one sums γ t(i) over the time index t, one obtains a quantity “that can be interpreted as the 

expected (over time) number of times that state si is visited, or equivalently the expected number of 

transitions made from state si (if we exclude the time slot t=T from the summation, which would avoid 

taking into account the arbitrary value selected for Tβ (i) in the induction step).  In a similar way 

summing ξ t(i,j) over t (from t=1 to t=T-1) can be interpreted as the expected number of transitions from 

state si to state sj”. 

This means that: 
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With these expressions one can state a method for re-estimating the parameters of the HMM.  It 

was proven by Baum that given the re-estimating formulas shown next, either the initial model defines a 

critical point of the likelihood function or the re-estimated model is more likely than the original one. 
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Based on these three expressions if one iteratively uses θ instead of θ and repeat the procedure, one can 

improve the probability of O being observed from the model until a limiting point is reached in which the 

probability of observing O has been maximized locally.  The final result of the procedure is called a 

maximum likelihood estimate of the HMM. 
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APPENDIX E – FURTHER SIMULATION DETAILS 

The simulation results presented in this dissertation were generated with two tools.  Matlab was used both 

for data analysis and simulation.  Opnet Modeler was used for used for the implementation of Markov and 

HMM in environments that used UPD or TCP as transport media in 802.11 wireless networks.  In Chapter 

3 some relevant details on the Matlab implementation were given.  This appendix discuses further details 

on the Modeler implementation. 

E.1. THE WIRELESS CHANNEL MODEL IN OPNET’S MODELER 

Modeler implements an advanced channel model for its wireless modules.  The channel model is able to 

effectively handle collisions occurring in wireless networks by keeping track of the SNR conditions at 

each receiving station.  The channel is represented by a series of stages that model an aspect of the overall 

behavior.  Each state is implemented as a separate sequence of C or C++ procedures.  For each of the 

stages a different pipeline model allows the representation of point-to-point, bus or radio channel 

conditions.   

In wireless links the radio pipeline model is used.  This pipeline consists of a series of stages that 

every transmission in the network follows.  These stages compute for each frame the effects of 

transmission delay, frequency matching, propagation delay, antenna gain, background noise, bit error rate, 

SNR, interference, error allocation and error correction.  At the receiver all of these effects will determine 

if a packet is received in error or error free.  When several stations are configured in a wireless network in 

Modeler, the simulator can accurately keep track of when to discard packets at the receivers. 

 However, from the list of effects taken into consideration in the radio pipeline it should be clear 

that fading is not considered.  This can be clearly verified by analyzing the percentage of frames lost 

when only two wireless stations are included in a network in Modeler.   No frames are lost.  The results 

presented throughout this dissertation have precisely shown that this is not what happens under such 

conditions in real networks. 

 To modify Modeler in a way that the fading effects are considered the simulator was altered.  

Since adding a new radio pipeline to those already available resulted quite a challenge, a different 

approach was taken.  The alteration took advantage of a particular characteristic of the pipelines, this is 

that the pipeline stages are not in charge of discarding packets but only of informing the receiving station 

139 



of packets in error.  Therefore the simulator was modified in a way that the fading effect was included at 

the moment packets are accepted or rejected at the MAC layer. 

 Packets are accepted or discarded by Modeler’s wireless station during the execution of the 

wlan_mac process model.  This process model is written in C and is in charge of implementing all the 

802.11b standard MAC level details. 

 In particular, Modeler was modified as follows: 

• New process models called fsmc or hmm were created to generate the transitions between a two-

state Markov model or a HMM respectively. 

• These process models were connected via a statistic wire to the wlan_mac process model.  A 

statistic wire is a resource that allows inter-process communication.  In this case the wire 

indicated the MAC layer if the channel was in a good or a bad state. 

• The wlan_mac process model was modified at the point it discards packets.  The information 

coming for the pipeline stages was not considered.  Packets were discarded according to the 

information present in the statistic wire.  The code modified in this process model corresponds to 

the wlan_physical_layer_data_arrival() function that is included (partially) next: 

 
static void  
wlan_physical_layer_data_arrival () 
 { 
 char      msg_string [120]; 
 int      dest_addr; 
 int      accept; 
 int      final_dest_addr; 
 OpT_Packet_Id     data_pkt_id; 
 WlanT_Data_Header_Fields*   pk_dhstruct_ptr; 
 WlanT_Control_Header_Fields*  pk_chstruct_ptr; 
 WlanT_Mac_Frame_Type   rcvd_frame_type;  
 Packet*     wlan_rcvd_frame_ptr; 
 Packet*     seg_pkptr; 
 WlanT_Beacon_Body_Fields*   pk_bbstruct_ptr; 
 int      rcvd_sta_bssid; 
 int      temp; 
 int      temp2; 
 Boolean     data_pkt_received=OPC_FALSE; 
 double      tx_drate,rcvd_pk_size, rx_start_time; 
 char      actual_frame_name [256]; 
 /*jnas variables                                         */ 
 int      fsmc_mandate; 

 char      temp_string[90];  
 

/* jnas var */ 
 
 /** Process the frame received from the lower layer.          **/ 
 /** This routine decapsulate the frame and set appropriate    **/ 
 /** flags if the station needs to generate a response to the  **/ 
 /** received frame.          
   **/ 
 FIN (wlan_physical_layer_data_arrival ()); 
 
 /*  Access received packet from the physical layer stream. */ 
 wlan_rcvd_frame_ptr = op_pk_get (i_strm);  
 
 op_pk_nfd_access (wlan_rcvd_frame_ptr, "Accept", &accept); 
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 /* jnas changes to modify the retrieved value of accept */ 
 /* according to the fsmc                                */ 
 jnas_total_frames_received++; 
 fsmc_mandate = op_stat_local_read (CHANNEL_STATUS); 
 if (fsmc_mandate == 0 ) 
 { 
 accept = OPC_TRUE; 
 op_stat_write (frame_seq_handle, 0.0); 
 /* notice that negative logic is used for frame seq */ 
 } 
 if (fsmc_mandate == 1 ) 
 { 
 accept = OPC_FALSE; 
 op_stat_write (frame_seq_handle, 1.0); 
 jnas_total_frames_received_in_error++; 
 } 
 op_stat_write(percent_frames_rx_in_err_handle,(jnas_total_frames_received_in_err
or/jnas_total_frames_received*100)); 
 /* if fsmc_mandate is 99 the other possible value */ 
 /* then accept is not changed at all              */ 
 /* Only first time */ 
 if (jnas_first_temp == 0)  
  { 
  jnas_first_temp = 1; 
  jnas_pointto = accept; 
  if (accept)  jnas_count_noerr++; 
  if (!accept) jnas_count_err++; 
   
  /* check if fsmc is active or not  
  
   
  if ( op_stat_local_read(5) == -1 ) 
   { 
   op_sim_message ("FSMC activated for station with", temp_string); 
   } 
  else 
   { 
   op_sim_message ("Frames will be lost according to pipeline for 
station with ", temp_string); 
   } 
 
  */ 
   
   
  }  
 else { 
 if ( accept == jnas_pointto) 
     { 
  if (accept)  jnas_count_noerr++; 
  if (!accept) jnas_count_err++; 
  } 
 else 
  { 
  if (jnas_pointto)  { 
  op_stat_write (consec_faccp_handle, jnas_count_noerr); 
  /* notice the other counter (the one with error) is set to one */ 
  jnas_count_noerr = 0; 
  jnas_count_err   = 1; 
  } 
  if (!jnas_pointto) { 
  op_stat_write (consec_fdrop_handle, jnas_count_err); 
  jnas_count_err   = 0; 
  jnas_count_noerr = 1; 
  }  
  jnas_pointto = accept; 
  } 
 }  /* end if second time */ 
  
   
 /* Getting frame control field and duration information from*/ 
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    /* the received packet.         
  */   
 op_pk_nfd_access (wlan_rcvd_frame_ptr, "Type", &rcvd_frame_type); 
 
 /* If the packet is received while the station is in transmission, */ 
 /* or if the packet is collided with another packet received or if */ 
 /* the accept field is set to false, then the packet will not be */ 
 /* processed and if needed the station will retransmit the packet. */ 
 if ((wlan_flags->rcvd_bad_packet == OPC_TRUE) || (accept == OPC_FALSE) || 
  (wlan_flags->collided_packet == OPC_TRUE))… 

 

 

The code implements the frame loss process by first reading the status of the channel with the 

following instruction: 
fsmc_mandate = op_stat_local_read (CHANNEL_STATUS); 

With this instruction the channel status is read from the statistic wire labeled CHANNEL_STATUS and it 

is stored in the variable fsmc_mandate. 

 The channel status is read each time a frame arrives at the MAC layer.  Then depending on the 

value of fsmc_mandate the accept flag of each packet is changed.  When the channel indicates that 

packets should be discarded the accept flag is assigned a Boolean false, otherwise it is assigned a Boolean 

true. The rest of the code shown enables the generation of adequate statistics for following the loss 

process. 
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A  PPENDIX F INTERARRIVAL TIMES BETWEEN FRAMES

In order to compute the actual average duration of a particular state given the histogram of either the error 

free or error runs, the interarrival time between frames is necessary.  To compute the average duration of 

a state in seconds it is necessary to multiply the average duration in frames by the intearrival times 

between frames.  This number varies according to the frame size, transmission speed and processing 

power of the wireless stations.  The next table provides the average value observed during the 

experiments.  This average value was computed by considering all the frames transmitted in a trace that 

consisted of approximately 100,000 frames.  For any transmission speed, frame size and wireless stations 

the interarrival time between frames varied less than 1% throughout an entire 100,000 frames trace. 

 

 

Table 35 Average interarrival times (in seconds) for various frame sizes 
 
 

Technology Transmission 
Speed (Mbps) 

1,500 byte 
frames 

1,000 byte 
frames 

500 byte 
frames 

100 byte 
frames 

11 0.0016 0.0013 0.0009 0.0006 
5.5 0.0028 0.0020 0.0013 0.0006 
2 0.0066 0.0046 0.0026 0.0009 

 
802.11b 

1 0.0126 0.0086 0.0047 0.0013 
24 0.0007 0.0006 0.0004 - 
12 0.0012 0.0009 0.0005 - 

 
802.11a 

6 0.0022 0.0015 0.0012 - 
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APPENDIX G RESIDENTIAL ENVIRONMENT DATA 

The traces collected for the experiments presented in this dissertation referred to two types of 

environment.    Most of the data presented in previous chapters corresponds to office environments.  In 

this Appendix a summary of the information obtained at the residential site is given.  The next table 

shows the average duration of the error and error free runs at residential locations p and q. 

 

 

Table 36 Average error and error free run duration (in seconds) at residential locations p and q. 
 
 

Location Technology Transmission Speed 
(Mbps) 

Average duration of error 
free run 

Average duration of 
error 

11 16.48 0.0016 
5.5 4.6 0.0028 
2 12.18 0.0066 

 
802.11b 

1 109.8 0.001 
24 0.033 0.0007 
12 6.12 0.0013 

 
 
 
 

P  
802.11a 

6 0.0016 0.015 
11 41.5 0.0017 
5.5 0.14 0.00812 
2 1.56 0.00818 

 
802.11b 

1 546.6 0.001 
24 0.002 0.007 
12 1.39 0.0014 

 
 
 
 

Q  
802.11a 

6 0.09 0.44 
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