
 

 

DESIGN & IMPLEMENTATION OF A CO-PROCESSOR FOR EMBEDDED,  

REAL-TIME, SPEAKER-INDEPENDENT, CONTINUOUS  

SPEECH RECOGNITION SYSTEM-ON-A-CHIP 

University of Pittsburgh 

 

2005 

Submitted to the Graduate Faculty of 

School of Engineering in partial fulfillment  

of the requirements for the degree of 

Master of Science 

by 

Kshitij Gupta 

B.E., Osmania University, 2002 

 



UNIVERSITY OF PITTSBURGH 

SCHOOL OF ENGINEERING 

This thesis was presented 

 

by 

Kshitij Gupta 

It was defended on 

December 2, 2005 

and approved by 

Dr. Alex K. Jones, Assistant Professor, Department of Electrical & Computer Engineering 

Dr. Steven P. Levitan, Professor, Department of Electrical & Computer Engineering 

Thesis Advisor: Dr. Raymond R. Hoare, Assistant Professor, Department of Electrical & 

Computer Engineering 

 ii 



Copyright © by Kshitij Gupta 

2005 

 iii 



 iv 

 

 

This thesis aims to break the myth that multi-GHz machines are required for processing 

speaker-independent, continuous speech recognition based on full models performing full-

precision computations in real-time. Through the design of a custom hardware architecture this 

research shows that 100 MHz is sufficient to process a 1,000 word dictionary in real-time. The 

design and implementation of the architecture is discussed in this thesis. It is shown that this 

implementation requires limited hardware resources and therefore can be incorporated as a 

dedicated speech recognition co-processor. 

The system comprises of three major blocks corresponding to Acoustic, Phonetic and 

Word Modeling. For maximum performance, each of the blocks has been implemented in a 

highly pipelined manner, thereby enabling the computation of several quantities simultaneously. 

Further, fewer computations implies lower power consumption. To achieve this, optimizations at 

every stage of the computations have been made by incorporating feedback which enables the 

computation of only active data at any given time instant. For ensuring a scalable 

implementation, a dynamic memory allocation scheme has also been incorporated which helps 

manage the internal memory. 

Amongst the three blocks, Acoustic Modeling contributes between 55-95% towards the 

overall computations performed by the system. Therefore special attention was paid onto the 

computations in Acoustic Modeling and a new computation reduction technique, bestN, is 

proposed. This technique addresses both the bandwidth requirement and the complexity of the 

computations. It is shown that for little loss in relative accuracy, only 8-bit integer addition 

operations are required while traditional systems need numerous 32-bit multiply and add 

operations. This technique also helps address the bandwidth requirement of the system by 

requiring 1/8th the bandwidth of traditional methods and for the same bus width, an 8x speedup 

in performance can be achieved. 
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1.0  INTRODUCTION 

1.1 MOTIVATION 

Evolution of life as we know it today has been a function of several factors, one of the 

key ones being communication. The ability to quickly and efficiently communicate, interact and 

exchange ideas/experiences has helped us, humans, to progress much quicker than any other life-

form. What sets humans apart from most of the other life forms is the ability to combine all 5 

sensory perceptions in our day-to-day lives. Amongst them, speech, with its ability to convey 

information precisely and with minimal effort has been one of the major drivers of human 

progress as we know it.  

With the increase in scientific knowledge over the past few decades, tremendous progress 

in the field of information technology has been achieved. Progress on the information technology 

front has directly helped humans to progress further and ensure their well-being. The 

development in information technology is revolutionizing virtually every aspect of human life: 

from disease diagnosis and cure, to entertainment and communication.  

These technological enhancements have made the world today a small place where 

several things can be done at the mere touch of a button. What if the most important aspect of 

human communication, speech, could be integrated with these devices that are helping us 

achieve so many things in our day-to-day lives? Realizing the tremendous benefit to the 

community at large, this research focuses on exploring ways to enable seamless integration of 

speech enabled devices. 
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1.1.1 The Problem 

Although several years of research has gone into the development of speech recognition, 

the progress has been rather slow. This is a result of several limiting factors amongst which 

recognition accuracy is one of the most important. The ability of machines to mimic the human 

auditory perceptory organs and the decoding process taking place in the brain has been a 

challenge, especially when it comes to the recognition of natural, irregular speech [1]. 

These challenges are a direct result of the tremendous variability in the speech signal. 

This variability is mostly a function of a few factors: difference in dialects, gender, age, 

environment and the target application. Every time one or more of these variables are changed, a 

new set of conditions needs to be addressed. This leads to non-reproduceable results and 

therefore requires further research into each of the specific aspects created by the change in 

variables. 

To date, however, state-of-the-art recognition systems have been able to overcome some 

of these issues. Specifically, recognition systems that are centered around command and control-

based applications provide accuracies in excess of 90% for speaker independent systems with 

medium sized dictionaries [2]. 

Despite the satisfactory accuracy rate achieved for such applications, speech recognition 

is still yet to penetrate our day-to-day lives in a big way. Whether it be the setting of functions 

for the washing machine or switching of channels on the television or to typing short text/email 

messages on the mobile devices like PDAs and cell phones, we still need to use our hands and 

are required to press buttons in order to perform these operations. These are a few examples of 

medium vocabulary, command and control type applications that we come across in our every 

day lives. 

The problem stems from the fact that speech recognition is computationally intensive 

requiring several million floating-point operations per second. Most speech recognition systems 

in use today are predominantly software based [12,13]. They utilize the computational and 

memory resources provided by General Purpose Processors (GPP) that are built on architectures 

to support a wide range of applications.  

Such general architectures however, because of limited Arithmetic Logic Units (ALU) 

prove to be insufficient for computationally intensive applications like Speech Recognition. The 
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number of ALUs is not the only problem. The problem lies with the very nature of GPPs which 

are based on cache-based architectures for speed of operation. While such architectures work 

well for applications in general, speech, with tremendous variability requires access to large 

amounts of non-sequential data. Cache sizes in most processors available today, especially those 

catering towards embedded applications, is very limited, the order being 10s of KBs only [3]. 

Therefore, accessing 10’s of MB of speech data using 10’s of kB of on-chip cache results in 

several cache misses thereby leading to pipeline stalls. Hence, several extra processor compute 

cycles are needed to process the data.  

Further, since several peripherals and applications running on a device need access to a 

common processor, bus-based communication is required. This requires the synchronization of 

all elements connected to the bus by making use of bus transaction protocols thereby incurring 

several cycles of additional cycle overhead. For example, a Microblaze based interface to DDR 

memory using the On-Chip Peripheral Bus (OPB) requires 4 cycles for read and 5 cycles for 

write operations to account for bus arbitration in addition to memory access latencies which can 

range between 3-4 cycles. This in turn implies decreasing the overall performance of memory 

read/write operations by almost 50%. 

Because of these inefficiencies, it is not surprising that Speech Recognition systems 

execute less than 1 Instructions Per Cycle (IPC) [4,5] on such GPPs making speech recognition 

process slower than real-time [6]. Considering some of the regular computations that are 

performed in these systems, this result is counter-intuitive.  

To counter these effects, implementers have two options. They could either make use of 

processors with higher clock-rate to account for processor idle time caused on account of 

pipeline stalls and bus arbitration overheads, or, they could re-design the processor that caters to 

the specific requirements of the application. Since implementers developing software based 

systems are dependent on the underlying processor architecture, they tend to take the former 

option. This approach results in the need for devices with multi-GHz processors.  

Since multi-GHz machines is not always practical, implementers are forced to make 

some compromises. The reduction in the bit-precision and making use of coarser models so as to 

decrease the data size are two favored approaches. While this helps in making the system 

practically deployable, the loss in computational precision in most cases leads to a degraded 

performance (in terms of accuracy) and in decreasing the robustness of the system (from speaker 
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independent to speaker dependent and from continuous to discrete speech). All in all, the user 

experience suffers. 

1.1.2 The Solution 

On analyzing these aspects, it is clear that GPP-based speech recognition needs to be 

done away with. The solution lies with the development of dedicated hardware architecture with 

bit-level optimizations that can cater to the heavy computational requirements of speech 

recognition algorithms. This hardware could act as a speech co-processor and could be directly 

interfaced with existing commercially available GPPs. 

Designing a dedicated architecture would not only allow for optimizing the available 

resources required by the application, but also allow for the creation of dedicated data-paths 

thereby eliminating significant bus transaction overhead. It would also allow for performing bit-

level optimizations and enable the design of a power-efficient system. All in all, such an 

approach would provide the ability to process speech in real-time without sacrificing the 

necessary bit-precision.  

The design and implementation of such an architecture is the focus of this thesis. It is 

shown that a highly efficient design running at less than 100 MHz is sufficient for processing a 

1,000 word Command and Control based application and can be implemented using 93,000 gates 

implying a small silicon-footprint, thereby enabling it to be incorporated into existing systems as 

a dedicated speech recognition co-processor.  

Rather than the traditional theoretical approach most theses related to speech recognition 

tend to take, a more computation based approach is followed in this thesis. The description of the 

algorithms/computations is done in a way so as to enable in understanding some of the design 

considerations made on the various blocks and subsequently used in the implementation phase. 
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1.2 OVERVIEW 

Speech Recognition is essentially a search problem since it deals with finding the most 

“probable” words/sequences of words from among a set of pre-defined words in the system 

dictionary. A conceptual representation of a speech recognition system is shown in Figure 1.1. 

Feature 
Extraction

Search 
Space

Knowledge-base

Application

 

Figure 1.1 Conceptual view of Automatic Speech Recognition System 

The spoken words are first processed by the Speech Recognizers Front-end (FE). As its 

name suggests, this block is responsible for obtaining meaningful information from the input 

speech samples by extracting essential speech features. A 39-dimensional feature vector with 

each dimension corresponding to frequency characteristic in different frequency bands is output 

from FE to Search Space at 10ms intervals. Each 10ms interval is known as a frame. The Search 

Space along with the trained statistical models contained in the knowledgebase, produces 

probability of observing pre-defined words for the given speech input. The computation in the 

Search Space accounts for almost 95-99% of the overall computations in the entire system. 

Whenever the probability of a word in the Search Space crosses a certain threshold, the 

word along with its probability is forwarded to the Application for further processing. The 

application then parses the information from several possible observed words over several 

frames and picks the most promising one determined by its probability. This is the basic idea of 

how machine based automatic speech recognition is performed. 
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Since the majority of the computational work-load is accounted by the Search Space, data 

processing in the Feature Extraction and Application blocks can be thought as pre- and post-

processing operations respectively. Therefore, this thesis focuses completely on the computations 

performed within the Search Space. 

1.2.1 Basic Definition 

As for a more formal definition of speech recognition, it deals with finding the most 

probable word/sequence of words given a particular set of speech samples (observation) and can 

be represented by the expression [7]. This however implies finding the probability of all 

possible words in the word database for the given samples of speech, which is virtually 

impossible. 

)/( WOP

Hence, the problem needs to be reframed. For this purpose, using basic probability and 

statistic algorithm, Baye’s rule [8], the above expression can be re-written as, 

⎥
⎦

⎤
⎢
⎣

⎡
=

)(
)(*)/()/(

OP
WPWOPOWP  Eq. 1.1 

According to this equation, Speech Recognition could be seen as the probability of 

finding the word given the observed speech samples, , and can be found by evaluating 

the probability of observing the given speech samples for a given word , times the 

probability of observing the word itself, , over the probability of the observation, . 

The probability of observation, , is assumed to be completely random and therefore does 

not provide useful information and hence, can be ignored altogether.   

)/( OWP

)/( WOP

)(WP )(OP

)(OP

However, one slight modification needs to be made to the above equation. Since the aim 

of speech recognition is to find the most likely word, a more accurate representation of speech 

recognition is given in Eq. 1.2. From this equation it can be seen that the aim is to find the word, 

W, which maximizes the overall probability for a given set of speech samples, O. 

[ )(*)/(maxarg
)/(maxarg

WPWOP
OWPW

W

Wbest

=
=

] Eq. 1.2 

From a computation stand-point, this equation consists of the computation of two main 

quantities, the word (right hand term, ) and sub-word units, phonemes, that make up the )(WP
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word (left hand term, ). The probability of the word is obtained during the training 

process and is computed as the frequency of occurrence of the given word over the probability of 

all possible words in the training setup. For better performance in sentence recognition, state-of-

the-art recognition systems use higher order probabilities by keeping context of previously 

spoken words. However, since this information is pre-computed, the task of obtaining is 

completely based on looking up appropriate values from the database and hence does not pose a 

computational bottleneck. 

)/( WOP

)(WP

The probability of the sub-word units, phonemes (also referred to as phones), is based on 

the input feature stream. Modeling of phones essentially deals with pattern matching whereby the 

frequency characteristic of the phonetic sound is compared with the input speech. There are two 

main approaches of modeling phones: Hidden Markov Models (HMM) [16] and Neural 

Networks. Most state-of-the-art recognition systems today use HMM-based models. One such 

system, Sphinx3 [6] developed at Carnegie Mellon University, is used as the basis of this 

research. 

Sphinx3 is a HMM-based state-of-the-art, speaker independent, large vocabulary, 

continuous speech recognition system developed at CMU. Since the aim of this research was to 

design an architecture, all statistical models used were derived from Sphinx 3.3. This research 

focuses on a 1,000 word Command & Control dictionary based on the RM1 Speech Corpus [9] 

which relates to commands spoken by naval officers in a Resource Management task. 

Sphinx uses a simple 3-state HMM Model, each state corresponding to sub-phonetic, 

acoustic sounds, modeling the beginning, middle and end of the phone (Figure 1.2). Each state 

has a Gaussian distribution and two possible transitions associated with it. The process of 

recognition deals with traversing the states and is described in detail in Chapter 2. 

t00 t11 t22

t01 t12 t2e

H0 H1 H2 Hout

Hin

t00 t11 t22

t01 t12 t2e

H0 H1 H2 Hout

Hin

S0 S1 S2

 
Figure 1.2: A simple 3-state Hidden Markov Model 

Since the feature vector output of the Feature Extraction phase is a 39-dimensional 

quantity, each Gaussian shown in Figure 1.2 too is a 39-dimensional quantity. In speech 

recognition systems, there can be as many as 100k such multi-dimensional Gaussians requiring 
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several hundreds of million floating-point operations per second. Since the evaluation of 

Gaussian probabilities is not only a computationally intensive task, but also very different in 

nature when compared to the core computations related to state-tracing that take place in the 

evaluation of a HMM, the two computations can be thought to be performed in two separate, 

Acoustic Modeling and Phone Modeling Blocks respectively. 

Based on this information, the conceptual apeech recognition system presented in Figure 

1.1 can be re-drawn to include the major blocks according to the different sounds, Word, 

Phonetic and Acoustic sounds each of them model. Hence the system can be viewed as a 

combination of the Word (WRD), Phone (PHN) and Acoustic Modeling (AM) Blocks, which 

have unique data-structures associated with each of them. This is represented as ROMs in the 

Knowledgebase in Figure 1.3. 
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Figure 1.3: Conceptual view of an Automatic Speech Recognition System with the tree major blocks, namely, 

AM, PHN, WRD Blocks along with the major data-structures associated with each of them 

1.2.2 Task-level Overview 

In this section, the order of computations is presented. Each computation is treated as a 

task and hence, the description of the system is presented at a task level. First, a computationally 

un-optimized, brute-force approach is described whereby all computations are performed in a left 
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to right order of Figure 1.3 (Section 1.2.2.1). Such an approach however requires the 

computation of all quantities in each data-structure. But at any given time, based on processing 

the first few frames of speech, only a limited number of words can be hypothesized. Therefore, 

data corresponding to only the most likely spoken words need to be evaluated.  

Based on this, the ability to compute only those quantities in the individual data-

structures that correspond to the likely list of hypothesized words can help reduce the number of 

computations significantly. This is done by the incorporation of feedback from every stage 

(Section 1.2.2.2). The incorporation of feedback into the architecture in an efficient manner is 

one of the major contributions of this thesis. 

1.2.2.1 Computationally Un-optimized Brute-force Approach 

For a brute-force approach, the system can be thought to follow a left to right approach of 

Figure 1.3. The processing of each frame begins from at the Feature Extraction block, goes 

through the evaluations in the Search Space and ends at the Application. A Block Diagram 

representing this flow is shown in Figure 1.4 and a corresponding pseudo-code representation of 

the major computations being performed in each of the blocks is shown in Figure 1.5.  
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Figure 1.4: Conceptual Block Diagram depicting Brute-force Approach 

The processing begins with the Analog-to-Digital sampling of input speech. A frequency 

response of the speech samples is obtained using a 512-point FFT. The frequency response is 
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filtered and the output from each of the filters is de-correlated resulting in a 39-dimensional 

feature vector.  

 

for frame 
 FEATURE EXTRACTION [FE]: 

INPUT: Speech Samples 
  A-to-D Sampling from Microphone() 
  512-point FFT() 

Filter and obtain de-correlated features() 
  OUTPUT: 39-dimensional feature vector 
 ACOUSTIC MODELING [AM]: 
  INPUT: 39-dimensional feature vector 
  Gaussian probability evaluation() 

Normalizing probabilities w.r.t. the BEST() 
  OUTPUT: Normalized Gaussian probabilities 
 PHONE MODELING [PHN]: 
  INPUT: Normalized Gaussian probabilities 
  Phone score evaluation() 

Prune Phones based on their scores() 
  OUTPUT: Phone scores + List of pruned phones Phones 
 WORD MODELING [WRD]: 

INPUT: Phone scores + List of pruned phones 
  Reset scores for non-promising phones() 
  Propagate Phones from current to next in the word() 
  OUTPUT: List of possible words with their probabilities 
 APPLICATION [APP]: 
  Pick most likely word() 
end frame 

Figure 1.5: Pseudo-code representation of the Brute-force Approach 

In the Search Space, first, the Acoustic Modeling Block uses the 39-dimensional feature 

vector to compute Gaussian probabilities with respect to the mean and variance pairs in the 

database (AM_ROM). The probabilities for all Gaussians in the data-structure are computed for 

the input feature vector. The probabilities are then normalized with the best probability for the 

current frame and the set of normalized scores are forwarded to the Phone Block. There are two 

major computations performed in the Phone Block. The first relates to the computation of the 

Phone Scores themselves based on moving through the 3-state structure of Figure 1.2 while the 

second one relates to pruning of phones that are not above a certain threshold. 

The phone scores along with the list of pruned data are forwarded to the Word Block 

which essentially consists of a word to phone mapping. This mapping is maintained as a tree 

structure as part of the WRD_ROM. The Word Block essentially deals with traversing this tree 

structure from the beginning to the end of a word. Stepping through the tree is based on Phone 
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scores forwarded by the Phone Block. Succeeding Phones are assigned their scores based on the 

score of their predecessors. This management is done by the Word Block. 

Further, un-promising Phones which the Phone Block determines can be pruned out are 

reset and paths corresponding to such words are stopped from further processing at the Word 

level. Based on the scores, a list of all possible words that can be hypothesized is generated and 

forwarded to the Application for post-processing. This is the sequence of operations when 

following a brute-force approach. 

1.2.2.2 Computationally Optimized Approach using Feedback 

While implementation of a system based on the brute-force approach requires little 

synchronization between the individual blocks thereby enabling the implementation of a less 

complex system, this approach has one major drawback. Since all quantities in the individual 

databases are calculated, it implies the computation of even those quantities that do not 

correspond to words that are very different sounding. This in turn implies a significant overhead 

on the computations performed. Hence, for a system to be practically deployable, especially for 

systems with tight power constraints, the number of computations needs to be reduced. 

One way of achieving this is to keep track of “active” data. Since at any given point in 

time only a subset of words can be hypothesized, extensive data management needs to be 

incorporated into the system enabling it to keep track of these “active” words and their 

associated data-structures. From an implementation stand-point, this implies the incorporation of 

a feedback mechanism that helps in keeping track of “active” data based on information form 

preceding stages. 

For the sake of clarity, Figure 1.4 has been re-drawn to show the feedback in Figure 1.6. 

Although from a high-level, the feedback has been depicted as one block, in reality it 

corresponds to a list of active data for each of the individual blocks in the Search Space. 

Having incorporated feedback into the system, the sequence of operation of the tasks 

needs to be re-ordered. For this reason, the pseudo-code of Figure 1.5 has been re-ordered into 

Figure 1.7. While the underlying computations are the same, the order in which they are 

evaluated has been changed. Further, two steps relating to the computation of active lists from 

Words to Phones and Phones to Gaussians has been incorporated into the flow. 
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Figure 1.6: Conceptual Block Diagram depicting a Computationally Optimized Approach using Feedback 

 

for frame 
 FEATURE EXTRACTION [FE]: 

INPUT: Speech Samples 
  A-to-D Sampling from Microphone() 
  512-point FFT() 

Filter and obtain de-correlated features() 
  OUTPUT: 39-dimensional feature vector 
 WORD MODELING [WRD]: 
  INPUT: Phone scores + List of pruned phones 

Reset scores for non-promising phones() 
  Propagate Phones from current to next in the word() 

Generate list of active Phones() 
OUTPUT: List of possible words + List of active Phones 

 GENERATE LIST OF ACTIVE SENONES from active Phone list() 
 ACOUSTIC MODELING [AM]: 
  INPUT: 39-dimensional feature vector 
  Gaussian probability evaluation for active Senones() 

Normalizing probabilities w.r.t. the BEST() 
OUTPUT: Normalized Gaussian probabilities 

 PHONE MODELING [PHN]: 
  INPUT: Normalized Gaussian probabilities 

Phone score evaluation for active Phones() 
Prune Phones based on their scores() 
OUTPUT: Phone scores + List of pruned Phones 

 APPLICATION [APP]: 
  Pick most likely word() 
end frame 

Figure 1.7: Pseudo-code representation for Computationally Optimized Approach 
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Since a word is the biggest sound unit, the processing starts from the Word Block. On 

performing the computations, a list of active phones corresponding to active words is generated. 

Since the computation of Phone scores requires the computation of Gaussian probabilities, the 

next step is the generation of a list of active Gaussians that correspond to the active Phones. Only 

the Gaussians included in this list are computed. After this, Phone scores for all active phones are 

computed and pruned as appropriate. The same steps are repeated for every frame. 

1.3 PERFORMANCE SPECIFICATIONS 

1.3.1 Performance Characterization of Speech Algorithms 

State-of-the-art Speech Recognition systems have been profiled and it have been found 

that Feature Extraction phase consumes less than 1% [10] of the overall compute cycles. This 

stems from the fact that the most dominant computation relates to the computation of a 512-point 

FFT to obtain the necessary frequency response of the system followed by obtaining the energy 

of the signal in different frequency bands requiring multiply and addition operations. Therefore, 

it was concluded that since feature extraction is not a computational bottleneck, dedicated 

hardware resources need not be allocated. For this reason, Feature Extraction can be 

implemented on a standard floating-point DSP and hence is not a focus of this thesis. 

Acoustic Modeling on the other hand takes between 55-95% [10,11] of the compute 

cycles. All computations in AM are devoted towards the computation of multi-dimensional 

Gaussian probabilities. It was observed that one of the major problems associated with this block 

was the shear number of values that need to be computed. This in turn requires accessing of 

several millions of mean/variance pairs for every Gaussian distribution thereby making this a 

memory bandwidth intensive task. Further, because large amounts of data need to be processed, 

processors with small caches perform poorly. From these observations, it was concluded that a 

hardware resources would significantly help address the issues that prove to be a performance 

limiter. 

Finally, Word Modeling has been found to take between 45-5% [10] of the total compute 

cycles. As described earlier, since Word Modeling essentially deals with the look-up of pre-
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computed word probabilities for different sequences of words several 10’s of 100’s of MBytes of 

data, a majority of the compute cycles can be attributed to delays in memory access. 

1.3.2 System Specifications 

It was observed that Speech Recognition for a 64k word task was 1.8 times slower than 

real-time on a 1.7 GHz AMD Athalon processor [10]. The models for a 64k word task are 3 

times larger than that for a 1,000 word Command & Control task. Therefore, extending this 

linearly in terms of the number of compute cycles required, it can be said that a 1,000 word task 

would take 0.6 times real-time to process at 1.7 GHz.  

For real-time operation, since feature frames are generated in 10ms intervals, the 

processing of every frame should be completed within 10ms before the next frame is available 

for processing. Designing the system on this constraint would ensure that the system would 

process speech in real-time. Based on open-source Sphinx models [38,39], Table 1.1 was created 

for three different recognition tasks: digit recognition, command & control, and continuous 

speech. 

Table 1.1: Numbner of Compute Cycles for 3 different Speech Corpouses 

Continuous Digits [TI 
Digits] 12 4816 192.64

Command & Control 
[RM 1] 1,000 15480 619.2

Continuos Speech 
[HUB-4] 64,000 49152 1966.08

Speech Corpus Dictionary Size 
(words) # of Gaussians

# of Gaussian 
Evals per 10ms 

(1,000)

 
The table shows the number of “compute cycles” required for the computation of all 

Gaussians for different tasks assuming a fully pipelined design. It can be seen that assuming a 

one-cycle latency in access memory, the RM1 task would require 620k compute cycles while 

HUB4 would require 2M cycles.  
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Given that 100 frames are generated every second, this implies that 62M and 200M 

compute cycles are required for real-time operation of the RM1 and HUB4 tasks. This implies 

the need for designs running at 62 MHz and 200 MHz respectively.   

Since the computation of Gaussian probabilities in AM constitutes the majority of the 

processing time, keeping some cushion for computations in the PHN and WRD blocks, it was 

determined that 1 million cycles should be sufficient to process data for every frame for RM1 

task. Therefore, based on the assumption that 1 million operations need to be completed every 

10ms; 100 million operations would be performed in 1 second. This in turn implies a clock 

speech of 100 MHz. Based on this calculation, the target frequency of 100 MHz was set for the 

system to operate in real-time. Further, given that most mobile processors run around the 100 

MHz range [3], a 100 MHz clock would make it ideally suited for being incorporated as a 

dedicated speech co-processor. 

1.4 CONTRIBUTIONS & ORGANIZATION OF THE THESIS 

1.4.1 Major Contributions 

The major contributions of this thesis are as follows: 

♦ Designed and implemented a scalable, fully pipelined custom hardware architecture for 

real-time, speaker-independent continuous speech recognition. 

♦ Using dedicated FIFOs, incorporated feedback into the architecture in an efficient way 

from every stage of the design so as to enable the computation of only the active data, 

thereby minimizing the number of computations to be performed. 

♦ Incorporated dynamic memory management into the architecture for maintaining all 

active data at the Word and Phone level, thereby allowing for the implementation of a 

scalable system. 

♦ Converted single-precision floating-point computations into 32-bit custom fixed-point 

computations for Gaussian probability evaluation in Acoustic Modeling with an average 

of 10-3 % loss in accuracy. 
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♦ Explored a computation reduction technique in Acoustic Modeling from a fully hardware 

implementation perspective. This lead to proposing the “bestN” technique that allows for 

a bandwidth reduction by a factor of 8 and reduces the computation operations into 8-bit 

integer addition as opposed to several 32-bit multiply & add/subtract operations with 

0.1% degradation in word recognition accuracy when compared to the baseline Sphinx 3 

system on a 1,000 word Command & Control task. 

1.4.2 Organization of the Thesis 

The remainder of this thesis is organized as follows. The following chapter discusses 

some of the previous work done towards the creation of dedicated hardware for speech 

recognition. This is followed by a brief description of the basic computations and data-structures 

corresponding to the tree major blocks discussed above. The terms and terminologies introduced 

in this chapter are used throughout the remainder of this thesis. 

Chapter 3 is devoted to the description of the system architecture. Based on timing and 

resource requirements, first, the design methodology followed for the design of the system is 

presented. After this, the system architecture is discussed in detail. Initially, a conceptual system 

is described with the major data-structures. Block and phase partitioning considerations that 

influenced the design process are discussed in detail. It was concluded that non-overlapping 

phases had certain distinct advantages and hence, the entire system was designed to ensure that at 

no point in time two blocks would access the same resources. Further, it is shown that an 

efficient mechanism for information and data exchange was achieved by using dedicated FIFOs 

and shared memories.  

Finally, a detailed discussion of the top-level blocks in the system is presented along with 

data-flow information. The data-flow presented includes feedback of a list of active data from 

predecessor blocks thereby enabling the computation of only active data. The incorporation of 

feedback into the system results in a huge savings in the number of overall computations for the 

entire system. 

In Chapters 4-6 a description of the three major blocks in the system is discussed. Since 

the Gaussian probability evaluations in the Acoustic Modeling block account for a majority of 

the computations performed in the entire system, special attention was paid to the computations 
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in this block. For this reason, Chapters 4 and 5 are devoted for Acoustic Modeling while Chapter 

6 is devoted for the Phone and Word Modeling blocks. 

In Chapter 4 a detailed description of the computations performed in Acoustic Modeling 

is discussed. Since most software-based state-of-the-art recognition systems perform floating 

point computations, it was first necessary to convert these computations into fixed-point with 

minimal loss in accuracy. For this, a thorough analysis of the bit-precision using MATLAB was 

done. It is shown that 32-bit fixed-point operations can be used with 10-3 % loss in accuracy over 

floating-point computations. 

Since a brute-force approach for the computations is very expensive, it was important to 

incorporate computation reduction a technique which would help in decreasing the number of 

computations. For this, the Sub-Vector Quantization (SubVQ) technique employed in Sphinx 

was chosen. Implementation details of the hardware design of this technique are provided. 

Finally, with the use of a top-level block diagram, the integration of SubVQ into brute-force 

Acoustic Modeling is discussed. The various phases are discussed in detail. 

Chapter 5 is devoted to a completely new theoretical technique, bestN, proposed in this 

thesis for helping reduce the number of computations significantly. While the SubVQ technique 

helps reduce the computations by 60-70%, it imposes a significant overhead thereby reducing the 

overall gain in reduction of the number of computations. For this reason, a new technique, which 

represents the input as a function of multiplies of standard deviation away from the mean of a 

Gaussian is proposed.  

It is shown that for a 0.1% decrease in the word recognition accuracy over the baseline 

performance of 3% Word Error Rate for a RM1 dictionary, significant computation savings can 

be achieved. By requiring only 8-bit addition operations, instead of 32-bit multiply/add 

operations, the bandwidth and computation complexity can be reduced significantly. Further, 

since this technique is based on looking-up pre-computed values at run-time, it is ideally suited 

for hardware-based implementation. 

In Chapter 6, the implementation details for the Phone and Word Modeling blocks is 

provided in detail. Since the computations in these two blocks are relatively more data-

movement intensive, data-flow is explained through the use of block diagrams. A description of 

the generation of the feedback from the Phone to the Acoustic Modeling block is presented. 
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Finally, the working of the Word block is described along with a dynamic memory management 

scheme that allows for the management of active data corresponding to active phones. 

The results obtained on implementing the system based on the architecture described in 

Chapter 3 are discussed in detail in Chpater 7. It is shown that the system was successfully 

implemented and tested in simulation for a 15-word test dictionary. For testing purposes, a 

MATAB model of the computations was made. It was ensured that the core computations in the 

AM and PHN blocks were accurated with Sphinx’s computations. Then, the MATLAB models 

were used as the reference to test and debug the computations and the entire system.  

It is shown that for a change in the word dictionary, since the only data-structure that 

would to be modified is the word database, a full 1,000-word RM1 dictionary can be 

implemented using the current design. Further, it is shown that the system would perform in real-

time at 100 MHz. 

It is also shown that the system can be implemented using 93,000 equivalent gates 

thereby making it a good candidate for a co-processor based implementation. The benefits of 

incorporating feedback are also discussed and a huge reduction in the number of overall 

computations is shown for the 15-word test dictionary. 

In conclusion, it is shown that by implementing a fully pipelined design using dedicated 

FIFOs for information exchange, shared memories for data exchange, and processing data by 

non-overlapping phases, a highly efficient system has been designed and implemented. 



2.0  LITERATURE & ALGORITHM OVERVIEW 

2.1 LITERATURE OVERVIEW 

Given the vast applications of recognition of speech by machines, speech recognition has 

been a hot topic of research for the past 50 years. Until the past decade, focus tended to be more 

towards signal processing issues. Today, the effort is more focused towards artificial intelligence 

issues. Specifically, understanding and mimicking the process the human brain goes through 

when it interprets speech. This exploration has been greatly helped with the enhancement in 

computational power providing researchers the ability to create and analyze data quickly and 

efficiently. Developers use software for the design, development and testing of algorithms with 

different setups because software provides the necessary flexibility and ease of use.  

However, the software based approach is not just limited to research and development. 

The final system that is deployed in the field also tends to be software based. Most, if not all 

research and commercial state-of-the-art systems available today are software based. Whether it 

be commercial system slike the Dragon Naturally Speaking [12], IBM’s ViaVoice [13]; or 

research systems like Sphinx [6], developed at Carnegie Mellon University, HTK from 

University of Cambridge [14], they are all software-based systems. 

Very limited work has been done to-date towards the development of dedicated hardware 

for speech recognition [10,24-26]. This is a direct result of the speech community’s focus 

towards the development of algorithms using software development and implementing them on 

General Purpose Processors available in the market.  

This approach while helpful in research and development of the system, has the major 

drawback of being based on General Purpose Processors built for applications in general and the 

architectural limitations posed by them. Hence, as described in Chapter 1, computationally 

intensive applications speech  recognition have a poor performance running several times slower 
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than real-time. Part of this trend can be attributed to be a direct result of the fact that 

development of dedicated hardware is a time-consuming and expensive process. However, once 

done, the overall performance of the system can be much higher resulting in rapid wide-spread 

deployment of these systems. 

Further, because of the lack of process technology until a copule of years back, the 

transisitor packing desnsity of 130um and higher is significantly less. This means that any 

dedicated hardware design would consurme a greater percentage of the overall chip resources 

thereby making it difficult for such designs to be incorporated pratically into commercial 

systems. For this reason, systems with very limited processing power have been proposed.  

Ananthraman, et al [24] was one of the first people to implement dedicated hardware for 

speech recognition. They implemented a custom multiprocessor architecture for improving 

Viterbi beam search. This work however was done in 1986 and therefore, used simple statistical 

models when compared to todays state-of-the-art systems available today. 

Binu Mathew et. al [10] proposed a Gaussian co-processor devoted to the computation of 

the computationally intensive Gaussian probabilities. To address the large memory bandwidth 

requirement and high cache miss rate in AM, they proposed the computation of several speech 

frames simultaneously so that rather than iterating over the same data (mean/variance pairs) for 

successive frames, the data would be accessed once and the computation for several frames of 

speech computed together. While this would help decrease the amount of memory accesses 

made, the system would need to perform all Gaussian computations because of non-availablity of 

feedback from previous stages thereby making it extremely computtionally intensive for 

embedded devices. 

They also performed an extensive analysis on the cache size required for processing data 

in real-time and conclude that considering a 14 MB data size, an 8 MB cache would be required 

to get satisfactory performance. Further, on hand optimizing the implementation, they could 

almost double the IPC of Gaussian calculations from 0.59 to 1.1. 

Melnikoff, et. al [25] proposed using multiple FPGAs for performing speech recognition. 

They implemented the computations that take place in a HMM which were made of continous 

gaussian distributions. While this was a big step forward, the overall system performance was 

basaed on 49 mono-phones and 634 bi-phones as compared to Sphinx’s 30k tri-phones. Sergui 

et. al [26] proposed a hardware implementation approach that could process 10’s of words.  

 20 



Today, the only dedicated chips for speech processing are available from Sensory Inc. 

[15]. They have two families of chips RSC-4x and SC-6x dedicated for this purpose. The RSC-

4x family [16] is a 8-bit speech optimized microcontroller dedicated towards speech recognition, 

speaker verification, and speech synthesis for use in low cost consumer applications like toys. 

The SC-6x family [17] is dedicated towards high quality speech synthesis. These chips have the 

ability to recognize up to 60 words.  

Given that these chips are based on a 8-bit microcontroller architecture with a 12.32 

MIPS DSP processor, it is highly unlikely that the system is robust. It is good for cheap 

applications like toys where the task is simple, but for more complex tasks of speaker-

independent continuous recognition, a chip providing the ability to perform full blown 

computations and the necessary memory management support is needed. 

With advancements in fabrication technology presently using 90nm processes and with 

65nm processes on the horizon, the ability to pack more transistors is increasing significantly. 

This in turn implies that the necessary computational resources can be packed into the chip 

without a significant increase in the silicon area required to implement the design thereby 

keeping the cost of the chip at a minimum. 

Keeping this in mind, the design of one such system is the focus of this thesis. The design 

and implementation of this architecture is discussed in the following chapters. It is shown that 

the entire design based on full-precision computations can be implemented using 93,000 

equivalent gates using 90nm technology. This implies that the design has a small foot-print and 

can be incorporated as a dedicated co-processor into exisiting systems without signifiicant 

increase in the cost of the system. 

2.2 THEORY & ALGORITHM OVERVIEW 

In this section the necessary theory, mathematical equations and terminologies are 

introduced that will help understand the architectural design and implementation issues of the 

system covered in subsequent chapters. To obtain a working knowledge of the system, a simple 

top-level system representation with the major blocks is shown in Figure 2.1. As mentioned in 

Chapter 1, the computations have been broken up into three major blocks each relating to 
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Acoustic, Phonetic and Word Modeling. The figure includes a view of the basic data structures 

that are part of the each of the blocks.  
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Figure 2.1: Conceptual view of a Automatic Speech Recognition System with AM, PHN, WRD Blocks 

As stated in Chapter 1, Acoustic Modeling (AM) deals with the evaluation of Gaussian 

Probabilities and therefore its database is entirely composed of mean/variance pairs (AM_ROM). 

Phone Modeling deals with the evaluation of a statistical model towards deciding the entry and 

exit of individual phones from one to the next. As shown in the figure, it essentially deals with 

state-tracing (3-states for this research). The phone database (PHN_ROM) consists of this state 

information for each phone. Finally, words are represented as a sequence of phones and hence 

this sequence is maintained in the word database (WRD_ROM). 

The following three sub-sections are devoted to each of these three blocks and a brief 

description of the underlying data structures and computations performed. The necessary 

terminologies are also introduced for each of the blocks and will be used throughout the 

remainder of the thesis.  

The description of each of the blocks is described in a top-down manner (right to left of 

the search space in Figure 2.1) whereby the biggest sound units, Words, are described first. This 

is followed by sub-word units called Phonemes (Phones) followed by sub-phonetic units 

comprising of a mixture of multi-dimensional Gaussian distributions which make up the 

Acoustic Modeling is described. 
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2.2.1 Word Block 

As can be imagined, words are the biggest sound units of any language. As stated in Eq. 

1.2, Automatic speech recognition deals with searching for which word amongst a pre-defined 

set of words was spoken for a given sequence of speech samples. The pre-defined set of words is 

said to part of a dictionary of words which the system is trained to recognize.  

Typical dictionary sizes range from 10 to 64k. 10 words can be used for trivial tasks such 

as digit recognition, while a relatively more complex task would be command and control based, 

having dictionaries anywhere in the range of 300 to 1,000 words. The recognition process deals 

with recognizing specific sequences of spoken word utterances. The most challenging task is that 

of 64k words dealing with the recognition of naturally spoken speech which tends to be irregular 

in nature.  

This thesis focuses on a 1,000 word Command & Control based application. For this, a 

standard Speech Corpus, Resource Management 1 (RM1) [9], dealing with naval commands is 

used. All statistical models used are based on this corpus and extracted from Sphinx 3.3. 

A word can be thought to be a sequence of basic sounds units called phonemes. Every 

phoneme has a unique frequency characteristic associated with it. The English language is made 

up 40 such phonemes. To make the recognition process easier, machine based speech recognition 

also represents the words in the dictionary as a function of sequence of phones. A sample 8-word 

dictionary depicting this is shown in Figure 2.2. 

PRONUNCIATIONWORD

K AE N AX DX AXCANADA
K AE NCAN
K AE M B AX L ZCAMPBELL'S
K AE M B AX LCAMPBELL
K AE M D AX N ZCAMDEN'S
K AE M D AX NCAMDEN
K AE L AX F AO  R N  Y AXCALIFORNIA
K AE L IX D OW N IY AXCALEDONIA

PRONUNCIATIONWORD

K AE N AX DX AXCANADA
K AE NCAN
K AE M B AX L ZCAMPBELL'S
K AE M B AX LCAMPBELL
K AE M D AX N ZCAMDEN'S
K AE M D AX NCAMDEN
K AE L AX F AO  R N  Y AXCALIFORNIA
K AE L IX D OW N IY AXCALEDONIA

 

Figure 2.2: A 8-word Sample Dictionary with its Phonetic Representation 
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Hence, in finding the most likely word that was spoken, the recognition process involves 

traversing through each of these sequences of phones and picking the one with the highest 

probability. However, it can be seen from the above figure that the number of total phones that 

need to be evaluated is fairly large. Typically, a word is comprises of a sequence 5-6 phones on 

average. This implies a total of in excess of 300k individual states for a 64k dictionary.  

The calculation of such large amounts of data is not practically possible and therefore 

optimizations need to be made. One way is to combine as many similar states as possible. Since 

similar sounding words tend to be made up of the same phone sequences, it is a standard practice 

to combine the beginning of such words [18]. This results in a tree structure shown as in Figure 

2.3 for the 8-word sample dictionary of Figure 2.2. 
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Figure 2.3: Word Tree-structure corresponding to the 8-word Sample Dictionary 

The partitioning of the tree is done is shown in Figure 2.2. Since the models used are 

based on recognition of continuous speech, phones are treated to be similar only if the previous, 

current and the following phones are the same. For this reason, although the 2nd phone in the 

entire dictionary is /AE/, because of different right phones they are considered different and 

therefore represented as different branches in the tree. The full RM1 dictionary comprises of 

approximately 49k phones (circles) shown in Figure 2.3. 
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From an implementation perspective, a tree structure while reducing computations poses 

a huge data management challenge. In software, this tree structure is implemented as a linked-list 

of linked-lists with extensive use of pointers. Details of how this structure is mapped into 

hardware are discussed in Chapter 6. Further, since for any given word only the branch 

corresponding to that leaf needs to be active, a data management of active words needs to be 

done. This is done as part of the Word Block. 

2.2.2 Phone Block 

Phonemes (or phones) are the basic building blocks of any language. Every phone has a 

unique frequency characteristic associated with it. Not just frequency, since every speaker has 

his/her own speaking rate, this leads to a fair amount of variability in the duration of the 

utterance of each phone from speaker to speaker. Typically, a phonetic unit is spoken for 5-7 

speech frames (50 to 70ms). To account for both frequency and time variability, Hidden Markov 

Model (HMM) [7,19] based statistical models are used for representing phonetic data. 

To provide better resolution of the frequency characteristics, every phone can be broken 

up into states. Each state consists of acoustic, sub-phonetic, information representing the being, 

middle and end frequency characteristics of the phone. There are several HMM topologies in use 

for different applications. Sphinx uses a simple 3-state Bakis topology. A figure depicting this is 

shown in Figure 2.4. Apart from the 3-states of the HMM, the Figure also shows a final, dummy 

exit state in red. This dummy state has no statistical significance. Each state in the HMM model 

is associated with two things – a statistical distribution of data and the timing information related 

to staying in the current state and to move to the next one.  

t00 t11 t22

t01 t12 t2e

H0 H1 H2 Hout

Hin

t00 t11 t22

t01 t12 t2e

H0 H1 H2 Hout

Hin

S0 S1 S2

 

Figure 2.4: A Simple 3-state HMM Model 

To account for variability across speaker, age, gender and speaking rates, statistical 

models are used to represent the distribution of data. Therefore, as shown in the figure, each state 
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is represented as Gaussian distribution. Details relating to this acoustic model (S0, S1, S2) are 

provided in the following section. The timing information for each state consists of the 

probability of transitioning from the current state to the next and is referred to as transition 

probability. Only two types of transitions are possible – either staying in the current state itself, 

or moving on to the next state represented by transition probabilities t(n)(n) and t(n)(n+1) 

respectively, for a given current state, n. Therefore, HMM state Hn is represented by the state 

distribution Sn and transition probabilities t(n)(n) and t(n)(n+1). 

There are two main computations involved at the phonetic level. The first deals with the 

computation of finding the probability of observing the input frames for a given phone model. 

The second deals with the computation of whether the phone can de-activated if the probability 

falls below a given threshold and whether the out score of the phone is good enough for the 

phone to have transitioned to the next phone. 

2.2.2.1 Phone Score Calculations 

The phone calculation (referred to as PHN_CALC) mainly deals with traversing the 

phone from the begin to the exit state. The process can be represented as a two dimensional 

trellis (Figure 2.5) with time progression on the x-axis and possible phone transitions on the y-

axis. The 3-state HMM is shown in the figure for reference depicting the possible state 

transitions from the various states. 

Time

H0

H1

H2

TimeTime

H0

H1

H2

H0

H1

H2

 

Figure 2.5: Phone State-tracing using Viterbi Algorithm 

This figure shows all possible paths that can be taken over 6 sample frames. The paths shown 

with dotted lines represent potential paths that can be taken while the solid line path shows the 

actual path taken in this example. The red path indicates the time instant when the phone score is 

greater than the set threshold and therefore successfully exit the current phone onto the next one. 
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The actual computation relates to the computation of all scores of all possible paths. But 

this is extremely expensive since with every increment of time, t, the number of previous paths 

increases exponentially. Therefore, to simplify the computations, at any given time instant 

whenever two paths meet, Viterbi algorithm [20] is applied. This way only the “best” path at that 

time instant is taken and the other one is ignored. Based on this, the following computations are 

made to obtain the HMM scores for a given phone per frame: 

( ) ( )[ )(t1-tH,t1-tHMAX(t)H 22221212 tS]+++=  Eq. 2.1 

( ) ( )[ )(t1-tH,t1-tHMAX(t)H 11110101 tS]+++=  Eq. 2.2 

( ) ( )[ ] ( )tS0000in0 t1-tH,tHMAX(t)H ++=  Eq. 2.3 

2e2out t(t)H(t)H +=  Eq. 2.4 

where;  

♦ t and t-1 represent the current and previous frames respectively, 

♦ Hn(t),Hn-1(t-1) represent the HMM state score for the current and previous frame of state 

n, 

♦ Hin(t),Hout(t) represent the exit score of the previous phone and the exit score of the 

current phone respectively, 

♦ t00, t01, t11, t12, t22, t2e represent the transition probabilities from one state to the next (the 

final state, dummy state is represented as state e), and 

♦ Sn(t) represents the Senone Scores of state n for the current frame. 

These are the core calculations that need to take in the Phone Calculation block. Since 

previous HMM scores for each state is required, sufficient memory needs to be allocated so as to 

store all the scores. Finally, all computations consist of 32-bit integer addition, compare, addition 

operations. Because of limited data dependency, the evaluation of each of the HMM states, Hn 

can be executed in parallel. 

2.2.2.2 Phone Pruning 

Having performed the Phone score calculation, depending on the scores phones can be 

pruned or propagated. These computations are described in this section. For pruning/propagation 

of a phone, three thresholds relating to de-activating phones, propagating phones and 

propagating words, HMM_TH, PHN_TH, WRD_TH respectively need to be computed. To 
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account for the large variability in speech because of varying speaker and environmental 

conditions, relative rather than absolute scores are used when performing pruning and 

propagation operations. By performing beam pruning [21,22], any value lying within a 

predefined beam from the best score for that frame is considered to have passed the threshold.  

BEAMSCOREBESTHRESHOLD += _T  Eq. 2.5 

Prune if,  Eq 2.6 THRESHOLDSCORE <

The calculation of HMM_TH relates to finding whether the phone scores have gone so 

low that this phone cannot be the likely phone being spoken. Once the score goes below this 

threshold the phone can be de-activated implying that the branch corresponding to this phone 

will not be processed further. This way, only promising phones are kept active in the system 

thereby helping keep the number of computations required to a manageable size. The threshold 

used to prune phones this way is referred to as HMM_TH. The computation of this threshold is 

given by 

BEAMHMMHMMBTHHMM ___ +=  Eq. 2.7 

where, B_HMM is the “best” HMM Phone score, Hn,  of all states over all active phones and 

HMM_BEAM is a pre-defined constant. B_HMM can be represented as , where 

 over all active phones in the current frame. 

( )[ tHMAX best ]
]( ) ( ) ( ) ( )[ tHtHtHMAXtHbest 210 ,,=

 

For finding if the active phone can be considered to have successfully propagated into the 

next phone, PHN_TH is calculated and is given by 

BEAMPHNHMMBTHPHN ___ +=  Eq. 2.8 

It can be seen that the computation of HMM_TH and PHN_TH differs only in the BEAM 

applied to them.  

 

The last threshold that is calculated relates to the propagation of the valid word exits. For 

determining whether a word has indeed successfully exited, the final phone that makes a word, 

word-exit phone, is checked against the WRD_TH which is given by 

BEAMWRDwrdHMMBTHWRD ____ +=  Eq. 2.9 

where, B_HMM_wrd represents the best HMM Phone scores for all active word-exit phones in 

the current frame. 
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2.2.2.3 Context-Dependent Phones 

Although in English there are 40 phones, it has been found that continuous speech suffers 

from co-articulatory effects whereby the adjacent phonetic sounds have no clear boundaries and 

therefore the frequency representation of such sounds cannot be accurately represented by just 40 

basic phones. Hence, it is necessary to consider the context in which the phone is being uttered.  

For this reason, taking both the left and right context contexts gives a more accurate 

representation of continuous speech and therefore gives a superior performance [23]. This leads 

to the presence of context-dependent phones. These are also referred to as tri-phones, because of 

the left and right contexts in addition to the basic phone.  

For superior performance, Sphinx makes use of such context-dependent phones. While 

the inclusion of such phones does enhance the overall performance of the system, given the total 

number of possible different left and right phonetic contexts, the number of phones in the 

database is significantly more than 40 basic phones.  

In total, there are 30k tri-phones for the RM1 Corpus. The only characteristic that differs 

one from the other is the statistical distribution of the individual states themselves. Therefore, 

only those phones are retained which have unique state data. This results in obtaining only 5605 

phones with unique sequences of acoustic state data. These phones with the state ID information 

form the major data structures for the PHN_ROM. 

2.2.3 Acoustic Modeling Block 

2.2.3.1 Senone Scoring 

Acoustic Modeling, as the name suggests deals with sub-phonetic, acoustic sounds. As 

stated in the previous section, phones are modeled as begin, middle and end states where each 

state has a distribution associated with it. The distribution of these acoustic sounds is found to be 

accurately represented by a Gaussian distribution. The computation of these Gaussian 

probabilities is handled as part of the Acoustic Modeling block. The data distribution of each 

HMM-state is referred to as a Senone in Sphinx terminology. 

However, because of tremendous variability in speech corresponding to speakers with 

different age, gender, dialect and speaker rate, the data is very widely distributed. Representing 

data with such wide data distributions by a single Gaussian distribution results in undesired 
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smoothening of data. To account for this, instead of using a single Gaussian, multiple, or a 

mixture of Gaussians are used to represent the data more accurately. In Sphinx terminology, each 

Gaussian is referred to as a Component.  

Hence, a Senone can be thought of being composed of a mixture of several Components, 

each with its own set of mean/variance pairs. Typically between 2 to 64 components are used in 

research systems. Depending on the frequency of occurrence of trained data and how many 

samples correspond to each Component, a weighting factor is assigned to each component. This 

weighting factor is known as the Mixture Weight. The final Senone score is represented as a 

summation of all weighted Component scores, and can be given by the following equation.  

[∑
=

=
C

c
cscss ScoreComponentWeightMixtureScoreSenone

1
,, _*__ ] Eq. 2.10 

Since the feature vector output from Feature Extraction is a 39-dimensional vector, the data 

representing the various dimensions also needs to be 39-dimensional. From probability statistics 

[8] multi-dimensional Gaussian probability for Senone, s, Component, c, can be given by, 

( )

( )
∑

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−

==

D

d dcs

dcsdx

cs
Dcs eScoreComponent 1 2

,,

2
,,

2

2
,

,
2

1_ σ
μ

σπ
 Eq. 2.11 

where; 

 

x: Input 

μ: Mean 

σ: Variance 
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2
2,,

2
1,,

2
, .....** Dcscscscs σσσσ =  

The RM1 statistical models of Sphinx used for this research consists of 1935 Senones, S, 

each comprising of 8 Components, C, consisting of 39 dimensions, D. Since the computations at 

this stage are completely related to Gaussian probability evaluations, the entire AM_ROM 

comprises of only mean/variance pairs. The data can be thought of being 3-dimensional and can 

be conceptually visualized as shown in Figure 2.6.  
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Figure 2.6: A 3-Dimensional view of the Acoustic Modeling Database 

There are 1935 rows corresponding to each Senone which is in turn made up of 8 

Components each of which is a 39 dimensional Gaussian (represented by the 3rd dimension). 

Given this data size, there are a total of 603,720 mean/variance pairs in the system. All 

operations in software are 32-bit floating point operations. The total number of operations 

performed is approximately 2 million per 10ms frame and therefore requires 200 million 

floating-point operations per second for a simple 1000 word RM1 command and control word 

dictionary. 

2.2.3.2 Composite Senone Scoring 

While a single Senone is sufficient in representing the state information for phones with-

in a word, cross-words present a new challenge. Since at the end of a word, several possible 

words can be spoken, the complexity of the problem while using context-dependent phones 

increases significantly. The problem stems from the fact that in cross-word utterances for a given 

left-context, the number of possible base-contexts and the right-contexts can lead to a huge 

permutation and combination.  

Figure 2.7 illustrates one such situation. Assuming that the word CALEDONIA has been 

uttered, there are three next possible phones corresponding to the three different right-contexts 

possible for this example dictionary. To account for this situation, researchers try to simplify the 

problem by representing this data structure by a single phone, with a slight difference.  
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Figure 2.7: Cross-word Phone Modeling using Composite Senones 

The HMM states instead of being represented by a single Senone distribution is 

considered to be composed of all the Senone distributions that are possible in different context 

positions. Since the HMM state is now “composed” of several individual Senones, this gives rise 

to a new data structure referred to as Composite State or Composite Senone in Sphinx 

terminology,. Hence, phones corresponding to cross-word pronunciations can be represented as 

shown in the figure below.  
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Figure 2.8: 3-state HMM for a cross-word Phone 
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Except for the states, the basic structure of these phones remains the same. It is useful to 

note that the number of Senoenes that makeup a Composite Senone is variable depending on the 

dictionary. Since a Composite Senone comprises of Senones, the evaluation of the Composite 

Senone is dependent on the evaluation of the Senone Scores themselves. The Score of a 

Composite Senone is the score of the best scoring Senone of that Composite State. 
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3.0  SYSTEM DESIGN 

3.1 INTRODUCTION 

Having both the necessary knowledge of the theory of various algorithms employed in 

Speech Recognition and a thorough understanding of the Sphinx 3 software along with its data 

structures, System level design work could be commenced. This chapter is fully devoted to the 

Design and Development process of the System Architecture.  

In the following section, a summary of the Design Methodology followed during the 

development of the system is presented. This includes laying down the system requirements 

followed by a timing and memory size & bandwidth analysis of the system. TAfter this, system 

level design work could be commenced. A simple top-level block diagram of the system is 

described in Section 3.3.1. This is followed by basic phase partitioning details in Section 3.3.2. 

Some of the considerations towards the phase partitioning are described in detail. Following this, 

the system architecture with detailed top-level and detailed system flow diagrams are presented 

in Section 3.3.3. The description of the system is limited to the top-level. Implementation details 

of the individual blocks are provided in subsequent chapters. 

3.2 DESIGN METHODOLOGY 

3.2.1 System Requirements 

During the conceptual phase of the project, two major requirements were set. Firstly, the 

entire system be able to process all data in real-time at a 100 MHz. A 100 MHz clock frequency 

implies a 10ns clock period. Given that speech frames are computed every 10ms intervals, this 
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implies that there are 1 million cycles available given a 10ns clock period. In other words, the 

requirement can be restated as follows: For any given 10ms frame of speech, all computations 

should be completed within 1 million cycles, assuming a 10ns clock period. 

Secondly, the system would be implemented and demonstrated on a prototyping 

platform. Hence, at every stage of the design process, it was ensured that these two requirements 

would be met. To ensure this, a detailed analysis of the algorithms was made and detailed area, 

memory and cycle-budget analysis was done. 

3.2.2 Timing and Resource Requirements 

The first step in the design process was to analyze the computational resource 

requirements. A detailed analysis of all computations at every stage of the system based on the 

algorithms and data-structures presented in Section 2.2 was performed. A table summarizing the 

number of math and comparator units, bandwidth requirements and the number of cycles 

required by each of the stages is shown below. 
Table 3.1: Timing and resource requirements for the entire system 

AM PHN WRD TOTAL
Add 6 9 1 16

Multiply 3 - - 3
3 6 2 11

603,720 8,192 102,400 714,312
495 - 5 -Memory Bandwidth [MB/sec]

Math Units

Comparator Units
# of cyles [per 10ms frame]

 
The number of cycles presented in this table is based on the assumption that all 

computations are completely pipelined. Therefore, the number of total operations performed in 

each of the blocks is more than that presented above. While a completely pipelined design is 

possible in the case of AM and PHN, computations in the WRD Block don’t share such luxury. 

This is a direct result of the variable branching characteristic of the word tree structure. Hence, to 

account for the loss in parallelism, the computation latency (estimated at a worst case of 10 

cycles) has been accounted into the projected cycles required by the WRD Block. 

Further, the number of cycles required by the PHN and WRD Blocks is completely 

dependent on the number of phones/words active at any given instant. Therefore an analysis of 

the software was performed to obtain the maximum number of phones active at any given time 
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instant. It was observed from Sphinx 3.3 for a RM1 dictionary, that a maximum of 4000 phones 

were simultaneously active. Based on this analysis a worst case estimate of the number of cycles 

required for the computation is presented in the table. 

In the PHN Block since two iterations corresponding to phone calculation and phone 

prune/propagation are done, the number of cycles required by PHN is equal to twice that of 4k. 

The number of computations in the WRD Block presented are based on a worst-case assumption 

that at any given time only half of the phones will propagate. Coupled with this, an average 

branching factor of 5 is assumed along with a 10-cycle pipeline latency. Based on these 

assumptions, the total number of cycles required is almost equivalent to 100k cycles. 

From the table it is evident where lies the computational bottleneck of the system. 

Acoustic Modeling, with 603k Gaussians requires an equivalent number of cycles to complete 

the computations at this stage. As stated in Chapter 1, Acoustic Modeling accounts for 55-95% 

of the computations in any modern Speech Recognition System. In the above system as well, 

almost 85% of the number of computation cycles are devoted to the AM Block. Because of the 

sheer number of values that need to be evaluated, 603k 32-bit mean/variance pairs per 10ms 

frame, 500 MBytes/sec of memory bandwidth is required by this block. Hence, it is essential to 

incorporate computation reduction techniques that significantly reduce the number of 

computations. The best way of achieving this is to incorporate feedback that enables the system 

to calculate only those Senones that correspond to active phones. Further, it can be seen that the 

WRD Block is the least computationally intensive block with just 1 adder and 2 comparators. 

3.3 SYSTEM ARCHITECTURE  

The two major parts of the system architecture, namely Block and Phase partitioning is 

presented in the following two sub-sections. The description is based on the “conceptual” system 

outlining some of the decisions made during the architecture design process. Having basic 

knowledge of the functioning of the system, a much more detailed description is presented in 

Section 3.3.3 with clear description of the various blocks at the top-level and the sub-phases. 
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3.3.1 Top-Level Block Partitioning 

From the characterization of Speech Recognition algorithms it is clear that there are three 

different kinds of computations in Speech Recognition. Each of these computations provides its 

own challenges. From Table 3.1, while Acoustic Modeling is both computationally and 

bandwidth intensive requiring several million floating-point operations per second, Phonetic 

Modeling is relatively less computationally expensive with fewer evaluations but needing several 

math units and Word Modeling comprises of tracing a tree structure. Therefore, based on the 

characterization of each of these computations, the system has been partitioned into three main 

blocks; AM, PHN and WRD. 

A Top-Level Block Diagram of the system showing the major blocks with the basic data 

flow details is shown in Figure 3.1. Apart from the three major blocks AM, PHN, WRD, the 

figure also shows the major memory data structures namely SENONE_RAM and 

PHN_WRD_RAM. This along with the SAL_GEN Block and FIFOs shows the basic data 

movement information. The dotted lines in the diagram serve for showing the clear demarcation 

of the blocks.  

AM PHN WRD
PHN
WRD
RAM

SENONE
RAM

FIFO

FIFO FIFO
SAL
GEN

12 3

Features

 

Figure 3.1: Top-Level System Block Diagram 
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From Figure 3.1, it is clear that the SENONE_RAM and PHN_WRD_RAM data is 

shared between AM-PHN and PHN-WRD respectively. SEONOE_RAM is a single port memory 

whereby Senone scores computed by AM are written into it which is then accessed by PHN for 

the computation of Phone Scores. PHN_WRD_RAM is the other major data structure to which 

both PHN and WRD read and write into. PHN_WRD_RAM is essentially a phone data structure 

that contains all the phone scores, Hin, H0, H1, H2, Hout and Hbest, the PHN_ID and minor word 

information relating to whether this phone is a word-ending phone (WRD_END) and the Word 

ID (WID) for every active phone.  

The overall system flow is maintained by using dedicated FIFOs. This is the only form of 

communication available for the individual blocks to communicate with other blocks. All FIFOs 

consist of only address pointers into the various data structures while all data sharing is achieved 

by sharing the SENONE and PHN_WRD RAMs. At the PHN and WRD level, these address 

pointers are referred to as Tokens (TKN). At the AM level these pointers are IDs for the values 

that need to be evaluated by that block which are generated by the SAL_GEN Block.  

3.3.2 High Level Phase Partitioning 

A conceptual phase partitioning is shown in Figure 4.2 below. The first phase deals with 

the activation of the Phones that are generated by the WRD Block. Since Senone score are 

required for the computation of Phone scores, AM Block is processed which is finally followed 

by the PHN Block whereby Phones are scored and pruned/propagated as appropriate. This is 

how the overall system works.  

Further, it can be seen that the phases are sequential in nature. This is because while 

partitioning the different phases special care was taken to ensure that there was no overlap. 

Although such an approach has a down side because of lost parallelism which would otherwise 

be useful in decreasing the total number of cycles required to complete the necessary operations 

every frame, there are certain key benefits from such an approach. 

Firstly, since every block is using some sort of feedback from its preceding block, it is 

necessary to ensure that all data has been processed by the current stage fully. This helps ensure 

that the assimilation of data corresponding to active data-structures takes place accurately and 

without the need for un-necessary increase in system complexity.  
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Figure 3.2: Conceptual Phase Partitioning of the System 

Secondly, there are no race conditions between the various blocks requiring the use of 

common resources. Each block has dedicated access to the other block(s) as necessary for 

performing the desired computation at every stage. This not only helps eliminate any pipe-line 

stalls that might result due to resource-sharing, but also helps in not requiring arbitration towards 

which block has access to which resource at what point in time.  

From a design and implementation standpoint, phase overlapping would not only add 

more overhead, but would also make the design and debug process much more complicated for 

little gain in reducing the number of cycles required for the processing of each frame. Therefore, 

by eliminating overlap, a highly efficient, pipelined system with maximum throughput and 

performance can be implemented. 

Further, non-overlapping phases imply that computation resources can be shared amongst 

the various blocks. Given that both the AM and PHN Blocks require 9 Math units each, resource 

sharing can help reduce the total number of Math resources required by the system into half if 

the computations by these two blocks could be separated. This not only allows for the device to 

have a smaller silicon foot-print thereby enabling it to be cheaper and more affordable, but would 
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also allow for a more practical implementation, especially towards incorporating the design as a 

co-processor to standard GPPs already available in the market thereby making them part of 

commercial systems. 

3.3.3 Detailed System Architecture and Data Flow 

Having understood the working of the system conceptually, detailed system level 

diagrams depicting the flow by breaking up the computations into sub-phases were created. This 

section summarizes the various phases and described from a top level perspective. A detailed 

top-level block diagram with all the major data structures as shown in Figure 3.1 along with 

addition data structures (FIFOs) is shown in Figure 3.3 so as describe the entire data flow. For 

this, the figure also contains details of the overall system flow and can be correlated with Figure 

3.4 to gain a better understanding of system.  
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Figure 3.3: Detailed Top-Level System Block Diagram with data flow information 

3.3.3.1 Feedback using Active Lists 

Given that the total number of computations required for computing “all” data structures 

simultaneously is not practically feasible, the system needs to keep track of the “active” data. As 
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described in Section 3.3.1, since all information exchange between the blocks is done using 

FIFOs, address locations of active data is stored in the FIFO.  

Since the data in the FIFOs corresponds to a list of “active” data in the system, this is 

referred to as Active List (AL). Depending on the quantity in question, pre-fixes are added to it – 

Senone (S), Composite Senone (CS), Phone (P) resulting in SAL, CSAL, PAL. It is important to 

note that the use of AL (based on feedback from previous stages) does not affect the accuracy of 

the system in any way. This is a direct result of the fact that in-active data is not processed at all. 

The number of cycles required by AM in Table 3.1 is based on a brute-force approach. 

Since this approach might lead to a violation of the 1 Million cycle budget for 10ms of speech, 

given that access to external memory need not have a 1-cycle latency, it was necessary to use 

feedback using SAL and CSAL. This feedback helps reduce the number of Senone computations 

by as much as 50% on average. Not only does this AL allow in ensuring that the real-time 

requirement is met, but it also has helps in decreasing the power consumption of the design 

significantly. 

3.3.3.2 System Data Flow 

A detailed system flow diagram outlining the major phases is shown in Figure 3.4. The 

first step is the initialization of all the memory structures. Once completed, the system can start 

processing data. 

The first data processing step is to clear the memory locations corresponding to the 

Phones that are that need to be de-activated or in other words, are dead. This deals with resetting 

memory locations in PHN_WRD_RAM pointed by TKNs in the DEAD_FIFO. After all TKNs 

are processed, propagation of Phones corresponding to TKNs in the NXT_PHN_FIFO is 

performed. The propagation deals with traversing the word tree structure from the exiting Phone 

to the next one(s) in the tree. For this operation, data is read from the PHN_WRD_RAM and 

WRD_ROM and locations corresponding to active Phones are updated in the PHN_WRD_RAM. 

If this phone was inactive in the previous frame, then it needs to be specified as an active one for 

the PHN Block to process it. This is done by passing the TKN to the new PAL FIFO 

(nPAL_FIFO). The processing of all TKNs in the NXT_PHN_FIFO indicates the completion of 

the computations at the WRD Block. 
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Figure 3.4: Detailed System Data Flow 

Having obtained all the “active” phones in the current frame, the next step can be 

performed. This deals with the calculation of Phone Scores, which are in turn dependent on the 

Senone Scores. Therefore, Senone Scores need to be evaluated first. But as stated earlier, not all 

Senones need to be evaluated. Only those corresponding to the active Phones need to be 

evaluated. 
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For this, the Senone and Composite-Senone Active Lists, SAL and CSAL are generated. 

This is done by using the SAL_GEN Block. The SAL_GEN Block reads all the active Phones 

from the nPAL and PAL FIFOs and looks up the senones corresponding to the PHN_IDs of each 

phone from the PHN_ROM. The data is then sent to the SAL_GEN block which assimilates the 

active Senones and pushes them into the SAL and CSAL FIFOs. 

With this, the Senone Score evaluation can proceed for the current frame. Since the 

presence of SAL can imply non-contiguous active Senones, SAL entries are used to generate 

appropriate addresses into the AM_ROM. This data along with the features from the FE phase 

are combined to compute the Senone Scores. The scores are finally written into the 

SENONE_RAM.  

Once the Senone scores have been computed, Phones can be evaluated. The first step is 

the computation of the Phone scores. This deals with popping one TKN at a time from the 

nPAL_FIFO and later the PAL_FIFO. Data from the corresponding locations in 

PHN_WRD_RAM is used for accessing the PHN_ROM giving data pointers into 

SENONE_RAM. This data is combined with the scores for the previous frame and the Phone 

scores are computed. These scores are finally written back into locations from where they were 

read from in the PHN_WRD_RAM and “all” TKNs (from both nPAL and PAL FIFOs) are fed 

back into the PAL_FIFO. 

Once the computation of all entries in the nPAL and PAL FIFOs are completed, the final 

phase corresponding to pruning and propagating can commence. The scores for each Phone is 

checked with the thresholds presented in Section 2.2.2. If Hbest(t) is greater than the threshold, the 

phone remains active and this TKN is sent into the PAL_FIFO, else into the DEAD_FIFO so as 

to be de-activated at the beginning of processing of the next frame. If the Hout(t) of the Phone 

passes the threshold it can be propagated further for which it is sent to the NXT_PHN_FIFO. On 

processing all the TKNs in the PAL_FIFO, the processing for the current speech frame can be 

said to be completed. The same sequence of operations is repeated over all following frames. 
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3.4 SUMMARY 

Having good knowledge of the computations taking place in each of the blocks along 

with the knowledge of the system architecture and the processing flow, implementation details 

are provided in the Chapters 4-6. Contrary to the system flow presented in Figure 3.2, the 

organization of the chapters is as follows: AM, followed by PHN and in turn followed by the 

WRD Block. This has been done so as to focus on the more computationally intensive blocks in 

descending order of computational complexity. Chapters 4 and 5 deals with the AM Block while 

Chapter 6 deals with the PHN and WRD Blocks. Finally, Chapter 7 provides the necessary 

integration, testing and area, performance numbers of the system implemented. 

In Chapter 4, a brute-force implementation followed by a computation reduction 

technique, SubVQ, is described. To overcome some of the limitations imposed by present 

computation reduction techniques further analysis was done and a new technique called “bestN” 

is proposed. This technique helps reduce the bandwidth by a factor of 8 and requires 8-bit 

additions for a 0.1% degradation if word recognition accuracy. The bestN technique is described 

in Chapter 5.  

In Chapter 6, the PHN and WRD Blocks are described. Apart from the basic functioning 

of the individual blocks according to the information presented in Section 2.2, the generation of 

the SAL/CSAL feedbacks using the SAL_GEN Block is described along with the incorporation 

of a dynamic memory allocation scheme that allows for managing the active phones. Both these 

implementations are critical to the system whereby the feedback mechanism enables a huge 

reduction in computation and power savings. The dynamic memory allocation mechanism allows 

for the implementation of a scalable system. 
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4.0  ACOUSTIC MODELING 

4.1 INTRODUCTION 

As described in Section 1.2.2, Acoustic Modeling contributes over 2/3rd of the 

computational requirements of modern Speech Recognition Systems. The computations are 

dominated by the evaluation of multi-dimensional Gaussian probabilities towards the evaluation 

of Senone scores given by the following equation. 
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The Senone score is an accumulation of the weighted Gaussian probability of the 

Components that make up that Senone. Considering that a total of 1935 Senones, each having 8 

Components of 39-dimensions make up the database, the sheer number of iterations that need to 

be performed in the inner-most loop is enormous. Further, these operations require several 

multiply and add/subtract operations typically done in floating-point. 

Further, exponentials also needs to be evaluated. In computation terms, the calculation of 

an exponential is several orders of magnitude more intensive when compared to even floating-

point operations. This stems from that fact that most General Purpose Processors possess 

dedicated on-chip circuitry in the ALU for basic add/multiply operations while logarithm 

calculations, being less common, are not directly supported by hardware. 

The calculation of an exponential on the other hand can either be calculated using an 

approximation of the Taylor Series expansion or by using look up tables. Both these techniques 
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are very expensive. While a Taylor series expansion requires several multiply and add operations 

[27], look up tables require huge amounts of storage space. The required memory space is 

directly proportional to the dynamic range of the values in question and the level of quantization 

required for the error induced to be below the desired threshold.  

To address these issues, certain transforms need to be applied. One way of eliminating 

the exponential operation is to perform the computations in the log-domain. Applying 

logarithmic identities, an exponential with the base ‘e’ can be reduced to the computation of just 

the exponent part [28]. If the logarithmic properties are extended to the entire equation, then this 

would enable in reducing multiply operations into addition operations. In effect, the 

transformation of computations into the log-domain would result in considerably reducing the 

amount of computational power required to perform the calculations. 

Hence, all the computations in speech recognition are performed in the log-domain. This 

conversion in the domain leads to the evaluation of log-likelihoods rather than probabilities. 

Taking on both sides, Eq. 4.1 can be re-written as,  elog
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Taking the log inside the summation, we get, 
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where, represents the summation of values which are in the log-domain. This is strange 

looking representation is known as “log-add”. More details on the log-add are provided in 

Section 4.2.2. 
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Now substituting for Component_Score in the above equation, we get 
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Since the scores obtained have a very small dynamic range, the calculations are scaled by 

a constant factor so as to aid in differentiating the scores. For this, extensive research was done 

during the development of Sphinx at CMU. They arrived at a scaling factor of 3333.83 (related 

to logs3 e, where s3 = 1.0003, the Sphinx-log-base). 

To account for the scaling factor, both sides of Equation 4.7 need to be multiplied with 

logs3 e. On applying the logarithmic identities and simplifying the equation, the log-base of the 

values changes to s3 and the final resultant equation is shown below. 
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On closer observation it can be seen that Eq. 4.9 deals with the computation of the 

Gaussian Likelihood, Gaussian probability in the log-domain. It basically deals with the 

computation of the distance of the observed input, xd, from the mean, μs,c,d scaled by the inverted 

variance, σ's,c,d. for a given Seonone, s, Component, c, and Dimension, d. The only variable in 

this equation is xd, the input feature frame from the Feature Extraction phase.  

The remainder of the calculation deals with the scaling of the Gaussian Likelihood 

followed by the addition of the weight of this Component amongst the Components making up 

the Senone giving Weighted-Component score. This is further accumulated over all Components 
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of the Senone to give the final Senone Score. This is the core computation that takes place at the 

Acoustic Modeling phase. 

From Eq. 4.9 it can be seen that the Senone Score calculation, requires 2-multiply and 2-

add/subtract operations. This is computationally intensive requiring several hundreds of millions 

of operations per second. In most state-of-the-art recognition systems, these computations are 

performed in floating-point. A table presenting the number of operations for various data sizes is 

presented below. 

Table 4.1: Number of operations per second required for Acoustic Modeling 

Continuous Digits [TI 
Digits] 12 602 4816 192.64 77.056

Command & Control 
[RM 1] 1,000 1,935 15480 619.2 247.68

Continuos Speech 
[HUB-4] 64,000 6,144 49152 1966.08 786.432

# of ops per 
second (Million)Speech Corpus Dictionary Size 

(words) # of Senones # of Components
# of Gaussian 

Evals per 10ms 
(1,000)

  

However, additional processing is required to account for the tremendous variability in 

speech. For this, “relative” rather than “absolute” scores give a more accurate representation of 

the observed values. For this reason, a running MAX of all Senone scores is computed every 

frame. All Senone Scores are normalized w.r.t. this MAX value. As a result of this 

normalization, the largest Senone Score obtained is zero. All others are some negative value.  

The concept of “Composite Senones” was introduced in Section 2.2.3.2. Since the end 

result is a Senone Score, the input to the next phase, the computation of this quantity is 

implemented as part of the final phase of AM. A pseudo-code representation of the entire 

arithmetic of Eq. 4.8 including log-adding and relative Senone scoring of the AM Block is 

shown below:  
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for frame 
 for s = 1 to N_SENONE 
  for c = 1 to N_COMP 

 
 
 

 
 

 

end frame
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   for d = 1 to N_COEFF 
    if (d == 1) 
     part_sum = 0 
    end if 
    diff = xd – μs,c,d
    square = diff * diff 
    multiply = square * σs,c,d
    part_sum = part_sum + multiply 
   end for 

  summ = K – part_sum 
  component_scr’ = f * summ 
  component_scr = W + component_scr’ 

   if (c == 1) 
    tmp_a = NEG_INFINITY 
   else 
    tmp_a = tmp_senone_scr 
   end if 
   tmp_b = component_scr 

  tmp_c = greater of (a,b) 
  diff = abs(a – b) 

   if (diff >= 30,000) 
    diff = 30,000 
   end if 
   ROM_data = LOG_ADD_LUT[diff] 

  tmp_senone_scr = tmp_c + ROM_data 
   if (c == 8) 
    senone_scrs = tmp_senone_scr 
   end if 
  end for 
  if (s == 1) 
   MAX = NEG_INFINITY 
  end if 
  if (MAX < senone_scrs) 
   MAX = senone_scrs
  end if 
 end for 
 for s = 1 to N_SENONE 
  senone_scrs = senone_scrs – MAX 
 end for 
 for cs = 1 to N_CSTATE 
  for csen = 1 to N_CSENONEcs
   if (csen == 1) 
    TMP_MAX = NEG_INFINITY 
   end if 
   if (TMP_MAX < senone_scrcs,csen) 
    TMP_MAX = senone_scrcs,csen
   end if 
   senone_scr[s + cs] = TMP_MAX 
  end for 
 end for 

 

GAUS DIST BLK

LOG ADD BLK

RELATIVE_SENONE

_SCORING 

COMPOSITE_SENONE_

SCORING 

Figure 4.1: Pseudo-code representation of Brute-force Acoustic Modeling Calculations 
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Based on the overall computations that need to be performed, the hardware was 

partitioned in a way so as to aid in the implementation of a highly efficient, fully pipelined 

architecture. From the pseudo-code, the overall computation at this phase can be characterized as 

follows: 

♦ Lines 4 to 15 deal with the computation of Gaussian Likelihood Scores. This computation 

is extremely math intensive: GAUS_DIST_BLK 

♦ Lines 16 to 32 mainly deal with a large memory look-up related to the addition of values 

in the log-domain: LOG_ADD_BLK 

♦ Lines 33 to 42 deal with the normalization of the Senone Scores with the BEST for the 

current frame and lines 43 to 53 deal with the computation of Composite Senone Scores. 

As seen from the pseudo-code, given the similarity in the computations in these two 

sections, the computations are combined into a single SSCR_CSSCR_BLK. 

 

Based on this partitioning, a top-level block diagram is shown below. 

AM
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Figure 4.2: Top-level Block Diagram for brute-force Acoustic Modeling 
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Given the broad overview of the operations that needs to be performed in Acoustic 

Modeling, the following section focuses on the architectural and implementation aspects. For the 

sake of clarity, first, a computationally un-optimized “brute-force” implementation based on the 

above pseudo-code is described. Such an implementation however computes “all” the values 

present in the AM Database requiring several hundreds of Million floating point operations per 

second.  

Both in terms of real-time operation and power consumption, a system with such large 

number of computations cannot be afforded and hence cannot be part of any practical system. 

Therefore techniques that allow for reduction in the number of these Gaussian Computations 

need to be incorporated into the design.  

In Section 4.3, a popular coarse-grain/fine-grain approach is presented. This approach, 

known as Sub-Vector Quantization is also part of Sphinx 3.3. After presenting the basic idea, 

design considerations along with some implementation details are discussed. Finally, in Section 

4.4, a Top-level description of Acoustic Modeling is presented. The integration of the various 

blocks and the various phases is shown. A description of the working of each of the blocks is 

presented. 

4.2 BRUTE-FORCE ACOUSTIC MODELING 

4.2.1 Gaussian Distance Block 

The Gaussian Distance Block, GAUS_DIST_BLK deals with the computation of 

Gaussian Likelihoods and is extremely math intensive. From the pseudo-code it can also be seen 

that this computation forms the “inner-most” loop. Hence, for any system to have superior 

performance, it is critical to optimize the functioning of this block to the greatest extent possible.  
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for frame 
 for s = 1 to N_SENONE 
  for c = 1 to N_COMP 
   /* GAUS_DIST() */ 
   for d = 1 to N_COEFF 
    if (d == 1) 
     part_sum = 0 
    end if 

    diff = xd – μs,c,d
    square = diff * diff 

    multiply = square * σs,c,d
    part_sum = part_sum + multiply 
   end for 
   summ = K – part_sum 
   component_scr’ = f * summ 
   component_scr = W + component_scr’ 
   LOG_ADD() 
  end for 
 end for 
 RELATIVE_SENONE_SCORE() 
 COMPOSITE_SENONE_SCORE() 
end frame 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
. 
. 
. 
. 
. 
. 
. 

Figure 4.3: Pseudo-code for Gaussian Distance Calculation 

4.2.1.1 Bit-precision Analysis for Fixed-point Computations 

For this, the first hurdle was the bit-precision of the computations themselves. For 

maximum accuracy, Sphinx3 stores data in single-precision floating-point format and performs 

double-precision floating-point computations. For embedded devices with limited computational 

and battery resources, it is critical to explore the possibility of converting these computations 

from double-precision to single-precision and further to fixed-point with minimal loss in 

accuracy, if possible. 

The MATLAB programming environment was chosen for this exploration. This stems 

from the fact that MATLAB is a tool that is designed towards addressing the needs of the 

computationally and algorithmically intensive industry. It not only allows easy data management 

with the use of matrix-based data-structures as opposed to pointer-based data-structures in 

languages like C, but it also provides certain libraries with in-built functions in the form of 

Toolboxes that further ease the exploration process. One such toolbox, the Fixed-point Toolbox 

[29] in MATLAB 7 (Release 14) [30], a library with in-built functions for performing fixed-

point math made it an ideal choice for the required analysis. 
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The first analysis that was required was the difference in values obtained when moving 

from double-precision to single-precision floating-point operations. On simple observation, it 

was noted that the gain in precision obtained was negligible and hence it was concluded that in 

the worst-case, single-precision floating point operations could be performed.  

Having done this, the next step was to explore the possibility of converting floating-point 

operations into fixed-point operations. For this analysis, the first step was to identify the range of 

values in the AM Database. For this, 80 sentence utterances from the RM1 Corpus were 

processed and the range of values at each stage of the computation (lines 8, 9, 11, 13, 15 and 30 

of the pseudo-code) were obtained. The observations are presented in the table below. 

Table 4.2: Summary of minimum and maximum data ranges for each stage of the Gaussian Distance 

computation with the corresponding number of “integer” bits required to represent the ranges accurately 

 EXPRESSION MIN MAX Bit-precision 
DIFF (x - μ) -28.68 27.89 1 |  5 | x 

SQUARE (x - μ)2 0 822.54 0 | 10 | x 
PART_SUM (x - μ)2 * Var 0 9,087.40 0 | 14 | x 

SUMM Summation 0 13,390.00 0 | 14 | x 
    

COMPNENTT_SCR Weighted Comp -44,464,464.00 84,397.00 1 | 28 | 0 
SENONE_SCR Senone Scr -6,231,617.00 84,398.00 1 | 25 | 0 

    
FEAT Input Feautres -15.85 18.22 1 |  5 | x 
MEAN Mean -9.67 12.83 1 |  4 | x 

VAR_PRECOMP Percomputed Var 0.01 3,866.70 0 | 12 | x 
LRD Const [K] -2.11 70.89 1 |  7 | x 

MIXWT Mixture Weight 
[w] -14,051.00 -3,958.00 1 | 14 | 0 

         
 

The table shows the minimum and maximum signed values in the AM Database along 

with those at the individual stages of the computation. These values were used to create a table of 

the “minimum” bit-precision required to safely represent the integer part. This is shown in the 

“Bit-precision” column in the table where each value is represented as “Signed or unsigned | # of 

integer-bits | # of fraction-bits”. 

This representation is similar to that of the Fixed-point Toolbox, with the exception of the 

fact that the second field represents the number of integer-bits as opposed to total number of bits 

so as to provide a more intuitive representation of the individual values. The ‘x’ in the fraction-
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bits field represents an unknown quantity about how many fraction bits are required to keep the 

percentage error at a minimum. 

Upon making this table, a couple of observations were made.  

1. Considering the large range of the Component and Senone Scores, the fractional part can 

be safely ignored without inducing any error. This is a direct result from the multiplication 

of the summ with the scaling factor of 3333.83. es3log

2. The dynamic range of diff, square, part_sum and summ quantities, at least on the integer-

bits, is very small, when compared to the range provided by using floating point numbers. 

Therefore, depending on the impact of the number of fraction-bits required, floating-point 

calculations might not be necessary. 

The next step was to identify the level of fractional-bit precision required at each stage of 

the computation. First, a very lenient approach was taken whereby the computations were 

allowed to take the maximum possible bit-precision. Such an approach would also help in 

identifying small bugs in the MATLAB code written for this exploration, if any. Based on these 

precision values, extensive tests were run to ensure that there was negligible loss in accuracy. 

Upon ensuring a bug-free test setup based on the results obtained, the reduction in the number of 

fractional bits could be explored further. 

Initially, the quantization of the fractional-bits was done aggressively. This approach 

resulted in percentage errors greater than those that were acceptable. Therefore, rather than 

employing a completely trial and error based methodology, the number of bits at each stage of 

the operation was fixed. For this, the precision required to represent the input data was taken as 

the queue.  

Based on this approach, a few preliminary trial and error experiments were run to obtain 

the bit-widths. As a result of these experiments, it was observed that 32-bits of precision on the 

input values resulted in negligible loss in accuracy. Fixing the bit-widths of the input values then 

helped in focusing completely on the precision required towards the representation of the values 

at the individual stages. 

After running a few experiments, fixed-precision values for each stage of the 

computation were obtained. Detailed final results of the analysis conducted are shown below. 

The bit-widths of the combination of the values are shown below. 
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Table 4.3: Final bit-precision breakup for representing the inputs and the intermediate outputs of Acoustic 

Modeling 

INPUTS Bit-precision TOTAL Bits OUTPUTS Bit-precision TOTAL Bits 
FEAT 1 |  6 | 25 32 DIFF 1 |  6 | 25 32 
MEAN 1 |  6 | 25 32 SQUARE 0 | 14 | 18 32 

VAR_PRECOMP 0 | 12 | 20 32 PART_DIST 0 | 18 | 14 32 
LRD 1 | 17 | 14 32 SUMM 1 | 17 | 14 32 

MIXWT 1 | 32 |  0 32 CSCR 1 | 32 |  0 32 
f 1 | 14 | 18 32 SSCR 1 | 32 |  0 32 

 

As can be seen, the number of fractional bits varies significantly at some of the stages. 

This was necessary because of the varying dynamic ranges of computations at each of these 

blocks. On a side note, the fixed-point implementation doesn’t perform rounding. Instead, 

“truncation” math was used at the gain in precision on account of rounding is negligible. Further, 

implementing rounding in the FPGA would add overhead and lead to a degradation in the 

performance of the system. 

During the entire analysis process, two metrics were of particular interest. Since the 

Senone Scores are the final outputs of this block, the percentage error in the floating-point versus 

fixed-point Senone Scores would be a very important indication of how well the bit-precision 

values were calculated. A graph depicting this for a sample utterance is shown below. This 

utterance consists of over 500 frames corresponding to 5 seconds of speech requiring the 

calculation of almost 1 billion Senone Scores. 
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Figure 4.4: A Graph showing average percentage error in Senone Scores per frame over all frames in the 

sample utterance  

The average percentage error per Senone over the entire utterance was of the order of   

10-3. This is a clear indication that the conversion into fixed-point math has been done 

successfully. 

Another interesting metric is the distribution of the percentage errors obtained. This 

would give a good indication of the worst-case percentage error. In previous analysis, some 

percentage errors were found to be in the several thousands. On a closer observation, it was 

found that a majority of these cases were because of the proximity of the Senone Score around 

zero. Because of this, when the floating-point and fixed-point values are close to zero (below 1), 

then there can be a huge percentage error in “absolute” terms. But the significance of this 

“absolute” difference is insignificant considering the large range of Senone Scores that are 

obtained. 
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992k 

Figure 4.5: A Histogram of Percentage Error in Senone Scores for the Sample Utterance 

The histogram shows that 99.99 % of the computations lie with-in 1% error. Further, 

there are only 3 values that are greater than 20%. This further indicates that all computations 

using fixed-precision are very close to the floating-point scores. 

Having successfully converted the Gaussian distance evaluations from double-precision 

floating-point operations into fixed-precision, with custom precision values at every stage of the 

computation, a quantity that could be mapped reasonably well into the FPGA architecture was 

obtained. With these results, the design and implementation process was commenced. 

4.2.2 Log-add Block 

Upon obtaining the Component Score from the GAUS_DIST_BLK, 8 of these scores 

need to be accumulated to obtain the Senone Score. As a direct result of the conversion of the 
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computations into the log-domain whereby log-likelihoods instead of probabilities are being 

calculated as shown in Eq. 4.8, the accumulation is no more a straight-forward addition of 

Components, instead, it involves the addition of values in the log-domain represented 

by .This operation is known as “Log-add”, LOG_ADD_BLK. The following derivation 

shows one of the techniques of how the log-add operation can be performed in the most optimum 

manner. 

∑
=

8

1c
LOG

Suppose that P = Q + R.  

Calculate z such that, Pz Blog= ,  andQx Blog= Ry Blog= . 

Applying log-identities, the above values can be represented in the natural domain as zBP = , 

and xBQ = yBR = respectively 

Substituting them in the original equation, we get 
yxz BBB +=  Eq. 4.9 

[ ]xyx BB −+= 1  Eq. 4.10 

Taking on both sides and applying log-identities, Blog

[ ]( )xyx
B BBz −+= 1log  Eq. 4.11 

Taking the inside the parenthesis, the equation can finally be reduced to Blog

[ ]xy
B Bxz −++= 1log  Eq. 4.12 

Re-writing,  
( )[ ]yx

B Bxz −−++= 1log  Eq. 4.13 

Once again, the computation of a logarithm value is encountered. On closer observation 

however it can be seen that the only variable for the calculation of the logarithm is the (x - y) 

value. Therefore, one possible solution to avoid the computation of the logarithm during the 

operation of the system is that of “pre-computing” for all possible x and y values. 

 

This now poses another challenge given that the number of combinations of x and y 

values can be very large. However, if the result of (x - y) can be kept as a positive quantity, then 

as the difference between x, y increases, ( )yxB −− decreases. Beyond a certain value, the result from 

the exponent calculation approaches 0 thereby reducing ( )[ ]yx
B B −−+1log  to 0 
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(since ). For B = s3, Sphinx log-base (=1.0003), [ ] 001log =+B
( )[ ]yx

B B −−+1log  and ranges 

between 2311.33 and 0.912 for (x - y) for a difference 0 through 30k. A plot depicting this is 

shown below. 

 

Figure 4.6: Monotonically decreasing value of the Pre-computed Log-add with increase in the difference of 

the inputs 

From the figure, it can be seen that ( )[ ]yx
B B −−+1log  is a monotonically decreasing 

function of the difference (x - y). In Sphinx, data is stored as 32-bit floating-point values. This 

pre-computed data is known as the Log-add lookup table (abbreviated as Log-add LUT).  

Given the limited dynamic range of the pre-computed values, and the impact of the 

fractional precision having negligible if not any impact on the accuracy (given that Senone 

Scores are represented in integer form), it was concluded that the fractional-bits could be ignored 

altogether. By doing this, the number of required bits was reduced to 12-bits per log-add LUT 

entry. Therefore, the amount of memory required to store the log-add LUT has been reduced by 

almost 2/3rd’s. 
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Depending on the prototyping environment and the type of resources available, the Log-

add LUT can either be placed on-chip or off-chip. Off-chip implementation would be the 

preferred choice if a two-memory implementation was available. The AM Database could be in 

one and the log-add LUT in the other. This would help ensure that the GAUS_DIST_BLK pipe 

is being fed with data in an un-interrupted manner. To minimize design complexity, the log-add 

LUT has been implemented using on-chip BRAM resources. 

By taking the look-up approach, the log-add of two values can be computed by simply 

calculating the difference of (x - y), followed by a look-up table corresponding to this difference 

and finally adding the look-up value with x. A pseudo-code representation of this calculation is 

shown below. 

 

for frame 
 for s = 1 to N_SENONE 
  for c = 1 to N_COMP 
   GAUS_DIST() 
   /* LOG_ADD() */ 
   if (c == 1) 
    tmp_a = NEG_INFINITY 
   else 
    tmp_a = tmp_senone_scr 
   end if 
   tmp_b = component_scr 
   tmp_c = greater of (a,b) 
   diff = abs(a – b) 
   if (diff >= 30,000) 
    diff = 30,000 
   end if 
   ROM_data = LOG_ADD_LUT[diff] 
   tmp_senone_scr = tmp_c + ROM_data 
   if (c == 8) 
    senone_scrs = tmp_senone_scr 
   end if 
  end for 
 end for 
 RELATIVE_SENONE_SCORE() 
 COMPOSITE_SENONE_SCORE() 

. 

. 

. 

. 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
. 
. 
. 
. 

end frame.  

Figure 4.7: Pseudo-code for Log-add Calculation 

Whenever the first component of a Senone is being evaluated, the first Component is log-

added with NEG_INFINITY, a very large negative value. In the natural domain, this would 

mean addition of the Component Score with 0. The computation of (x – y) is a bit tricky in that 
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not only does the difference needs to be computed, but the greater of the two values also needs to 

be found. Since the difference directly acts as the address of the log-add LUT, absolute 

difference is taken. The greater of the two values is required to obtain which of the two values is 

x in Eq. 4.13. Further, since the size of the log-add LUT is limited, values for which (x – y) is 

greater than 30k, the size of the log-add LUT, thresholding of the difference is done. Based on 

these computations the LOG_ADD_BLK was designed.  

4.2.3 Senone/Composite Senone Scoring Block 

As described earlier, there is a fair amount of variability in speech. To account for this, 

“relative” rather than “absolute” scores are used as the final Senone scores. For this, the best 

Senone score over all Senones is found and Senone scores are normalized w.r.t. the best score for 

a given frame. Normalization of the scores therefore results in the best score of 0 and all other 

scores being some negative quantity. The normalization not only gives a “relative” measure of 

the scores, but it also helps in limiting the dynamic range of the values. A pseudo-code 

representation of the computation is shown below. 

 

for frame 
 for s = 1 to N_SENONE 
  GAUS_DIST() 
  LOG_ADD() 
  /* RELATIVE_SENONE_SCORE() */ 
  if (s == 1) 
   MAX = NEG_INFINITY 
  end if 
  if (MAX < senone_scrs) 
   MAX = senone_scrs
  end if 
 end for 
 for s = 1 to N_SENONE 
  senone_scrs = senone_scrs – MAX 
 end for 
 COMPOSITE_SENONE_SCORE() 
end frame 

. 

. 

. 

. 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
. 
. 
. 

Figure 4.8: Pseudo-code for Normalized Senone score Calculation 

As described earlier, each composite state is composed of several Senones. The number 

of Senones per Composite state varies. For a given Composite state, the Composite Senone score 
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is the “best” Senone Score for all Senones making up that Composite state. This is shown in the 

pseudo-code below. 

 

for frame 
 GAUS_DIST() 
 LOG_ADD() 
 RELATIVE_SENONE_SCORE() 
 /* COMPOSITE_SENONE_SCORE() */ 
 for cs = 1 to N_CSTATE 
  for csen = 1 to N_CSENONEcs
   if (csen == 1) 
    TMP_MAX = NEG_INFINITY 
   end if 
   if (TMP_MAX < senone_scrcs,csen) 
    TMP_MAX = senone_scrcs,csen
   end if 
   senone_scr[s + cs] = TMP_MAX 
  end for 
 end for 
end frame 

. 

. 

. 

. 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
. 

Figure 4.9: Pseudo-code for Composite Senone score Calculation 

From an implementation perspective, computation in the SSCR_BLK and CSSCR_BLK 

is very similar. They both deal with the computation of a running MAX and the subtraction for 

calculating the normalized values (in the case of Senone score evaluation). Further, there is no 

overlap in the timing of the required resources by each of these blocks. Hence, an optimization 

was performed and the computation of these two blocks was clubbed into one block, 

SSCR_CSSCR_BLK. 

4.3 SUBVECTOR QUANTIZATION 

4.3.1 Introduction 

Given that the number of computations required by a Brute-force system is very 

substantial, computation reduction techniques are implemented in practical systems. Due to the 

significance of decreasing the computational load on the system, computation reduction 

techniques have been a hot topic of research. These reduction techniques have tended to focus on 
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two major aspects. The reduction in the dimensionality of the Gaussians [31,32], and by reducing 

the number of Components that need evaluation in a Senone.  

The latter is more popular and results in a two-pass, coarse-grain/fine-grain approach. 

The first pass is made on a quantized set of the model from which the Components that are likely 

to contribute most to the Senone score for each Senone are selected. These selected Components 

are evaluated in the full model. Since the quantized model is a cruder representation of the data, 

fewer Components are required to represent the data space that is represented by the original, full 

models. Not only this, since a handful of Components are being evaluated, typically 2 or 3 

Components per Senone on an average, the savings over calculating the full-model is a gain of 

greater than 66% savings. This however does not include the overhead of the coarse-grain 

approach itself. 

One of the most popular techniques using this coarse-grain/fine-grain approach is the 

Sub-Vector Quantization approach (SubVQ). It was introduced by Bocecheiri [33] and refined 

by Ravishankar [34,35]. It has been employed in the Sphinx3 system as a technique to reduce 

computations. Details of this technique are provided in the following section. 

4.3.2 Motivation 

One of the major motivations behind the SubVQ approach is based on a very interesting 

observation. According to this observation, after extensive analysis, over 89% of the Senone 

score was found to be contributed by the “best” scoring Components of any Senone. An 

illustration of this is shown in the graph below. 
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Figure 4.10: Senone Scores as a function of Component Score 

This graph shows a stem plot of Component scores for a small section of Components for 

one frame of speech. The Components that makeup the corresponding Senones are demarcated 

by dotted lines. The Senone scores for each Senone are superimposed on this graph and 

represented by the red ‘*’. From the graph it is clear that the final Senone score tends to be 

closest to the best scoring Component Score(s). The graph is on a negative scale and hence the 

smaller the magnitude, the larger the value. 

Based on this observation, techniques that can help find the most likely “best” or “top” 

scoring Components can be utilized to reduce the number of computations that go towards the 

calculation of Senone scores. SubVQ is one such technique. 

4.3.3 Sub-Vector Quantization 

Sub-Vector Quantization, SubVQ, as the name suggests, is a technique whereby the 

original database of Gaussian mean/variance pairs is quantized such that the entire database can 
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be rep esented by a subset of a few r Gaussians. The original model is sometimes referred to as the 

full continuous model (since it is not quantized) and the quantized version is referred to as sub-

vector 

be mapped into one Codeword. This mapping is referred to as the MAP 

table. H

. 

quantized model. 

The quantization of the data results in what are referred to as Codewords, quantized 

version of Components that make a Senone. Since Codewords are obtained by quantizing 

Components, each Component can be represented by a cruder form, the Codeword. This way, 

several Components can 

ence, using the MAP table, a Senone can now be represented by Codewords. 

The major benefit of quantization is that fewer unique quantities are needed to represent 

the same data set. Therefore, in Sphinx upon quantization, 15,480 Componets for the RM1 

Corpus can be represented by 4096 Codewords. A 3D representation is shown in Figure 4.10. It 

can be seen that each codeword is made of just one 39-dimensional Gaussian quantity
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Figure 4.11: A 3-Dimensional Representation of the SubVQ Database 

On evaluating these Codewords, Components that are likely to correspond to the best/top 

Components in a Senone can be obtained. Based on this, Components in the full-continuous 

model are evaluated towards the computation of the Senone score. Hence, assuming that the top 

2 components are g in computation 

can be 

st/top likely components and are set as 

 required to accurately pick the best Components, a 75% savin

achieved (since totally there are 8 components).  

However, it has been found that Beam based pruning is more appropriated. Hence, 

similar to the discussion in Section 2.2.2.2, the best Codeword score for a Senone is obtained and 

to this best a beam is added giving the threshold. Components corresponding to Codeword scores 

that are greater than the threshold are treated as the be
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active. 

 below. 

Similar to the feedback notation mentioned in Chapter 3, the list of all active Components 

is maintained as a Component Active List (CAL). This is essentially a bit-vector for each Senone 

and is set depending on whether the Component is active or not. 

4.3.4 Implementation 

A pseudo-code representation of the calculations is shown

 

Figure 4.12: Pseudo-code for Sub-Vector Quantization Calculation 

As can be seen from the above code, similar to brute-force AM, lines 3 thru 13 deal with 

the evaluation of Gaussian likelihoods with the only difference that Codeword scores are being 

computed. After the computation of the Codeword scores, the next step is to find the “active” 

for frame 
 to N_CW 

  for d = 1 to N_COEFF 
   if (d == 1) 

   diff = xd – μs,c,d
   square = diff * diff 

   multiply = square * σs,c,d
   part_sum = part_sum + multiply 
  end for 
  summ = K – part_sum 
  component_scr’ = f * summ 
 end for 
 for s = 1 to N_SENONE 
  for c = 1 to N_COMP 
   TMP_MAX = codeword_scr[MAPs,c] 
  end for 
  SUB-VQ_THRESOLD = TMP_MAX + SUB-VQ_BEAM 
  for c = 1 to N_COMP 
   if (codeword_scr[MAPs,c] >= SUB-VQ_THRESOLD) 
    COMPONENT_ACTIVEs,c = 1 
   else 
    COMPONENT_ACTIVEs,c = 0 
   end if 
  end for 
 end for 
end frame 

1 
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6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
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24 
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28 

 for cw = 1

    part_sum = 0 
   end if 

2 

GAUS_DIST_BLK
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Compo

TOP-LEVEL 

All these blocks discussed above were integrated and the resulting top-level diagram is 

shown in Figure 4.7. Apart from sho  th s, this figure also shows the phases 

each block goes through. 

nents over all Senones. These active components are the ones that are likely to contribute 

towards the final Senone score the most. 
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Figure 4.13: Top-level Block Diagram of Acoustic Modeling with SubVQ along with the phase breakup 

The first phase, Phase 0, deals with the initialization of the Senone Scores to 

NEG_INFINITY in SSCR_CSSCR_BLK and the computation of the shortlist using SubVQ. For 

obtaining the shortlist of active Components, Codeword Scores for all Codewords are computed 

and the result is stored in the Codeword_RAM in the SubVQ_BLK. After this, computations 

shown in pseudo-code 4.x are performed giving a list of active Components. This is stored in the 

Component Active List FIFO (CAL_FIFO). 
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Figure 4.14: High-level Pseudo-code representation of Acoustic Modeling Block (with SubVQ) 

Phase 1 corresponds to computing of Senone Scores for active Senones (from 

SAL_FIFO) based on the active Components (from CAL_FIFO). The ROM Interface Block 

(ROM_INTF_BLK) merges data from these two FIFOs and generates appropriate addresses for 

accessi

M, normalized and 

written

 CState_ROM in turn generates addresses based on the 

Senone

for frame 
 for cw = 1 to N_CW 
  GAUS_DIST()   /* Compute Codeword Scores */ 
 end for 
 for s = 1 to N_SENONE 
  compute_CAL()  /* Compute list of active Components */ 
 end for 
 for s = 1 to N_SENONE 
  for active components in CAL 
   GAUS_DIST() 
   LOG_ADD() 
  end for 

end for 
 RELATIVE_SENONE_SCORE() 
 COMPOSITE_SENONE_SCRE() 
end frame 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16

ng the AM_Database. The data output is then passed through the GAUS_DIST_BLK 

giving the Component Scores, which in-turn is passed through the LOG_ADD_BLK for the 

computation of Senone Scores. A running MAX of Senone Scores is computed and the scores 

themselves are stored in the Senone_Scr_RAM in the SSCR_CSSCR_BLK. 

Once the SAL_FIFO is empty, it indicates that all active Senones have been computed 

implying that the next phase can begin processing. Phase 2 deals with the normalization of 

Senone Scores. The Senone Scores are accessed from the Senone_Scr_RA

 back into the same memory. 

Upon the completion of computing the final, normalized, Senone Scores, Composite 

Senones can be evaluated. For this, entries from the CSAL_FIFO are popped one at a time and 

passed onto the CState_ROM. The

s that combine to form the Composite State and passes that over to the 

SSCR_CSSCR_BLK. Corresponding Senone Scores are accessed from the Senone_Scr_RAM 

and a running MAX is maintained for each Composite. After processing all Senones, the MAX 

value is written back into the Senone_Scr_RAM where N_SENONE + CState_ID servers as the 

destination address into the Senone_Scr_RAM. 
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All scores that are written into the Senone_Scr_RAM are also output to the top-level, 

where they are stored in the SENONE_RAM. All these computations take place in the Acoustic 

Modeling Block. 
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5.0  THE “BESTN” COMPUTATION REDUCTION TECHNIQUE FOR AM 

5.1 MOTIVATION 

Although the Sub-Vector Quantization technique [34] does reduce the number of 

computations by almost 65-75%, these computations are based on Gaussian Likelihood 

computations that are both bandwidth and resource intensive, contributing to almost a 25% 

overhead (for RM1 Corpus). As a result, only 40-50% reduction in overall computations is 

possible due to this technique. 

With these considerations in mind, the necessity of a technique that would address some 

of the limitations posed by SubVQ was felt. For this, a detailed analysis of the Gaussian 

Computation was made and, a new “bestN” technique is proposed. This technique is based on 

the same coarse-grain/fine-grain approach, but requires 1/8th the bandwidth and 8-bit integer 

addition operations by using pre-computation and look-up, thereby addressing both the 

bandwidth and the overhead issues. Further, it is shown that the accuracy of the system is better 

than that of SubVQ for the same number of computations of the full model. 

5.1.1 Ideal Characteristics of Computation Reduction Techniques 

Any computation reduction technique can be deemed to be successful based on how well 

it is able to address the following three issues: 

1. Accuracy: Since the application of computation reduction techniques are generally based 

on some approximations, the accuracy of the system is certain to be equal to or below that 

of the full-continuous model. The degradation in the resultant accuracy of the system is 

generally a very important benchmark that indicates how successful a computation 

reduction technique is. 

2. Overhead: Another important aspect is the amount of processing required by the 

computation reduction technique so as to reduce the number of evaluations in the original 
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model. If the overhead is significant, then the overall benefit achieved by employing such a 

technique would be quite limited, as is the case of the SubVQ implementation. 

3. Implementation Issues: While some techniques might seem to be theoretically attractive, 

practical implementation issues are also a very important consideration for successfully 

minimizing the computational load. These considerations must include additional chip-

resources along with memory size and bandwidth requirements that such a technique might 

require. Special attention should also be paid to the overall system setup (especially the 

processor architecture) on which the technique is being targeted. Neglecting any of these 

aspects can lead to undesired inefficiencies, and in some cases even result in a severe 

degradation in the overall system performance. 

It is shown that bestN addresses all the above issues outlined above. In the following sub-section, 

based on hindsight observation, a detailed flow of how the technique was derived is presented. A 

preliminary analysis on accuracy results based on this approach followed by a more detailed 

analysis allowing for implementation into practical systems is discussed. Finally, possible 

implementation techniques are presented followed by a summary of the results of Word Error 

Rate (WER) obtained for 9 setups based on this technique are discussed. 

5.2  HINDSIGHT OBSERVATION 

On observing that the computation of Gaussian Likelihoods was a computationally and 

bandwidth intensive task, a detailed analysis of the computations was performed. From Eq. 4.9, 

the evaluation of GAUS_DIST is given by,  

( )[∑ −−
=

39

1
,,

22
,,, '*

d
dcsdcsdcs xK σμ ] Eq. 5.1 

On closer observation of this equation, it can seen that the portion inside the summation actually 

deals with the computation of the distance of the observed input, xd, from the mean, μs,c,d scaled 

by the inverted variance, σ's,c,d. for a given dimension, d, within Component, c, for Senone, s. As 

discussed earlier, the only variable in this equation is xd, the input feature frame from the Feature 

Extraction phase.  
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A further analysis of the probability evaluation was made. It was then felt that a likelihood graph 

superimposed onto the probability graph for a single feature dimension would provide some 

insights. A figure depicting this is shown in Figure 5.1. 

 

Nσ 

Figure 5.1: Gaussian Probability superimposed onto GAUS_DIST calculation for a single dimension 

In this graph, for a given dimension, d, x-axis represents the inputs, x, the top half of the 

y-axis shows the probability of a Gaussian distribution for a given mean/variance pair, and the 

bottom half of the y-axis shows the corresponding Gaussian “distance” of Eq. 5.1. From the 

graph it can be seen that even though the probability for varying values of x varies more when 

closer to the mean, it is exactly the opposite when it comes to the evaluation of GAUS_DIST. 

The distance value is an exponentially increasing function of the distance from the mean. The 

farther the inputs form the mean, the greater is the distance. On observing this, more analysis 

was done with several dimensions superimposed on the probability-likelihood graph.  
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Figure 5.2: Distance Metric Superimposed on Probability graph for a single dimension 

This graph provided one interesting observation. If the likelihood distance is represented 

as a function of the number of times the standard deviation away from the mean, then for a given 

multiple factor, N, the likelihood distance was the same. A derivation of how the N was obtained 

is shown below. Given that for a given dimension d, the likelihood distance is given by 

( )
2

2

2 d

dd
d

mxdist
σ
−

=  Eq. 5.2 

Representing the input, xd, in terms of distance away from the mean in multiple factors of 

standard deviation, it can be represented by dddd Nmx σ+= .  

Substituting it in the above equation, we get, 

[ ]( )
⎥
⎦

⎤
⎢
⎣

⎡ −+
= 2

2

2 d

dddd
d

mNmdist
σ
σ  Eq. 5.3 

( )
⎥
⎦

⎤
⎢
⎣

⎡
= 2

2

2 d

ddN
σ
σ  Eq. 5.4 
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( )
⎥
⎦

⎤
⎢
⎣

⎡
=

2

2
dN  Eq. 5.5 

Therefore, dd distN *2=  Eq. 5.6 

Based on this observation, a new metric was introduced whereby the closeness of the 

input from the mean for a given mean/variance pair is represented as a factor of multiples of 

standard deviation, Nσ, away from the mean, rather than the traditional “distance” approach. 

5.3 THE “BESTN” METHOD 

Having represented the distance as a function of Nσ, further analysis was done. The first 

step was to observe any trends that might be present. For this a 3D graph depicting the N’s of all 

39 Dimensions for all 8 Components of a Senone was created and is shown in Figure 5.3.  
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Figure 5.3: A 3D graph of N’s for all Coefficients over all Components of 1 Senone 
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It was observed that there is a lot of variability over all dimensions for different 

Components. Some dimensions had a greater N value while others had a smaller value. To see if 

there was some trend across multiple Senones, the number of observations was further increased 

and a graph depicting the N’s for 5 Senones was created (Figure 5.4). This proved to be an eye-

bawler and it was difficult to gather any meaningful information. 
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Figure 5.4: A 3D graph of N’s for all Coefficients over all Components of 5 Senones 

Not having found a clear trend, it became necessary to decrease the information at hand 

so as to help see if there was indeed some trend or correlation between distance when 

represented as a function of Nσ. The information from each of the dimensions needed to be 

combined in a way so as to provide meaningful information at the Component level.  

Amongst several possible ways of combining the various dimensions, one way stood out. 

Similar to the addition of the likelihood distances over all dimensions, the Nd from each 

dimension could be summed to give a single N value over all dimensions for the Component. A 

graphical representation of this process is shown below. 
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Figure 5.5: Summation of N’s of individual dimensions of a Component 

On obtaining the N for each component, it was necessary to look at it from a Senone 

perspective which is a combination of the Components. It can be seen from Figure 5.1 that 

greater the distance from the mean, the greater would be the N value. Further, from Figure 4.9 

Components with smaller distances dominate the final Senone score implying that the 

Component with the least N needs to be found from among the various Components of the 

Senone. Hence, because the “best” N needs to found, the technique is referred to as “bestN”.  

However, it is not necessary that the Component obtained as the “best” is indeed the 

dominating Component in the Senone. Similar to SubVQ, there is some room for error. To 

account for this the “top” instead of “best” Components are chosen. Hence, a rank-ordering 

based on ascending values of N’s over all components in the Senone is done and the “top few” 

are chosen. A graphical representation of picking the “top” Components is show in Figure 5.6.  
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Figure 5.6: Selection of “top” Components based on ascending order of N’s in a Senone 

Based on this methodology, preliminary tests were run to ascertain the validity of the 

assumptions made. The preliminary analysis conducted consisted of 1 utterance from the RM1 

corpus consisting of 398 frames of speech. These 398 frames of speech correspond to the 

 76 



evaluation of 770,130 Senones. For the analysis, percentage error in various segments of Senone 

Scores was compiled. Three different approaches differing only in the kind of coarse-grain 

approach were taken. 

The first approach was based on the Sub-vector Quantized models of Sphinx while the 

second one was based on the bestN method using SubVQ Models. The result from both these 

approaches is a shortlist (best few) of the Components which are closest to the Senone. The third 

approach was to find the effect of using the bestN approach over the full-continuous model 

whereby the top Components based on their N values were selected as the shortlist. The 

shortlisted Components are then computed using the full-continuous model and the Senone 

Scores were obtained. Each of these approaches has been labeled as Sphinx_SubVQ, 

bestN_SubVQ and bestN_FULL respectively. The results of the analysis are shown in the Table 

5.1. 

Table 5.1: Percentage Error in Senone Scores of the three setups w.r.t. the original scores 

% Error Sphinx_SubVQ bestN_subVQ bestN_FULL Sphinx_SubVQ bestN_subVQ bestN_FULL
< 1000 770,101 770,036 770,086 100.00 99.99 99.99
< 500 770,068 769,936 770,032 99.99 99.97 99.99
< 100 766,033 768,410 769,569 99.47 99.78 99.93
< 50 746,549 762,299 768,659 96.94 98.98 99.81
< 25 700,673 742,915 765,864 90.98 96.47 99.45
< 15 660,994 721,752 761,953 85.83 93.72 98.94

< 10 632,932 705,070 757,894 82.19 91.55 98.41
< 5 567,165 681,836 750,384 73.65 88.54 97.44
< 2 566,830 661,129 741,442 73.60 85.85 96.27
< 1 550,372 649,204 735,312 71.46 84.30 95.48

TOTAL Senones = 770,130 [RM1] [1utt = 398 Frames]
Actual Numbers Percentages

 
The table shows a detailed data analysis of the ballpark of the percentage errors of 

Senone Scores obtained by computing all Components versus those obtained by the techniques 

outlined above. The percentage errors are shown for various error ranges. The left half of the 

table shows the actual number of Senones that lie within a specified percentage range and the 

right side shows the percentage of Senones that lie within the specified error percentage. 

From the table the very first observation made was that over 95% percent of the scores 

obtained based on the bestN_FULL approach had less than 1% error. This is a very important 

statistic since the evaluation of the N’s is based on the true, un-quantized model. Hence, because 

of the phenomenal result of a majority of the Senone scores being computed within 1% error, 
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this statistic shows that the component with the least distance can be predicted very accurately 

based on the “N” method. From this it was concluded that the “bestN” method was a sound 

technique. 

Further, it was observed that results from the bestN_SubVQ approach were not as good 

as those obtained from bestN_FULL. This loss in accuracy is a result of computing the N’s for 

SubVQ model, quantized version of the full-continuous model. This shows that quantization 

leads to errors and therefore more Components need to be evaluated as part of the shortlist to 

ensure that the Senone Scores are being computed accurately. In effect this implies the selection 

of the “top few” Components instead of the “top” Component.  

Lastly, it was seen that the results obtained by using Sphinx_SubVQ approach, only 72% 

of the data was below the 1% error when compared to bestN_SubVQ’s 85%. Similar results were 

obtained while calculating average percentage error for all Senones per frame. A graph showing 

the results for the same sample utterance consisting of 398 frames is shown in Figure 5.7. 

 

Figure 5.7: Average Percentage Error of Senone Scores per frame for all frames of sample utterance 
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This graph further illustrates the soundness of the bestN technique. The average 

percentage error for all Senones in a frame are consistently better for bestN_FULL followed by 

SubVQ_bestN which are in turn much better than that for Sphinx_SL. Based on these results, it 

was concluded that the bestN technique is a good approach and further analysis was carried out. 

5.4 IMPLEMENTATION ASPECTS 

The discussion so far has been theoretical. For the analysis performed to get the above 

results, computations were performed on-the-fly. This on-the-fly computation is fairly 

computationally intensive since it not only requires the computation of the “distance” value, but 

as shown in Eq. 5.6, the computation of the N is based on the square-root of the distance. A 

square-root operation is several times more involved than several multiply and add operations 

put together. Hence, the observation so far is possible in hindsight and a more efficient approach 

is needed that would make the implementation of this technique in systems more practical.  

For decreasing the number of computations, a look-up based approach is ideal since pre-

computed values need to be looked-up from memory as opposed to on-the-fly computations. The 

first step therefore was to analyze the possibility of using this look-up based approach for the 

bestN technique. One of the limitations of a look-up based approach is that the data set needs to 

be quantized.  The remainder of this section deals with analyzing the effects of quantization of 

the only variables, N and the x. 

The first step was to study the effect of quantizing N when computed on-the-fly. Several 

quantization levels were analyzed. Based on these results, the most significant ones, 

corresponding to quantization levels of full precision, 1/10th (0.1), 1/4th (0.25), ½ (0.5) and 1 

(integer) are shown in Table 5.2. Similar to Table 5.1, the percentage of Senones lying in various 

percentage error ranges for Senone scores computed using full Sphinx versus bestN_SubVQ is 

shown. 
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Table 5.2: Ballpark of Senone Scores on quantizing for N for different levels 

bestN_subVQ FULL 0.1 0.25 0.5 1
< 1000 99.99 99.99 99.99 99.99 99.99
< 500 99.97 99.97 99.97 99.97 99.97
< 100 99.78 99.78 99.77 99.76 99.72
< 50 98.98 98.98 98.97 98.91 98.71
< 25 96.47 96.45 96.42 96.27 95.73
< 15 93.72 93.71 93.66 93.43 92.66

< 10 91.55 91.54 91.48 91.22 90.32
< 5 88.54 88.52 88.44 88.14 87.10
< 2 85.85 85.83 85.75 85.42 84.28
< 1 84.30 84.28 84.19 83.87 82.67

TOTAL Senones = 770,130 [RM1] [1utt = 398 Frames]
Quantization Level

 
From the table it can be seen that there was a minimal effect of quantization. The percent 

of values that lie within 1% error were same for no quantization (full precision), to quantizing 

based on 1/10th quantization. Further, when the values are quantized as integers (extreme right 

column), only a 2% drop in the number of values within 1% error is observed. A similar trend is 

repeated throughout the table.  

From this observation it was concluded that integer based N values would be sufficient to 

provide the necessary accuracy. Therefore, integer based addition could replace fixed-precision 

based multiply and add/subtract operations. 

The last step in the analysis was to quantize the only variable in Eq. 5.1, xd. The 

quantization of xd would enable for a true pre-computation/look-up based implementation. This 

quantization results in the creation of “bins” where each bin corresponds to pre-defined x range. 

A graphical representation of how such an approach would be implemented is shown in Figure 

5.8.  
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Figure 5.8: Implementation technique for bestN in a practical system 

The input feature, xd is first processed through a quantizing function which helps identify 

the bin corresponding to the input. On obtaining the bin number, the starting address 

corresponding to this bin is found and the N’s corresponding to the quantized input for all 

Codewords can be accessed.  

The quantization function could be based on either a uniform or non-uniform 

quantization scheme. To keep the implementation of the quantization function simple, uniform 

quantization was first considered. For this, then entire range corresponding to xd was broken-up 

into bins with equal data ranges. Experiments proved that satisfactory results were obtained on 

using uniform quantization and hence non-uniform quantization was not considered. From an 

implementation perspective, uniformly quantized bins gave the ability to have a single 

quantization function for all dimensions and thereby help reduce implementation complexity. 

A pseudo-code representation for the SubVQ_bestN implementation is shown below. 
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for frame 
 for d = 1 to N_COEFF 
  bin_d = quantize{xd} 
 end for 
 for cw = 1 to N_CW 
  for d = 1 to N_COEFF 
   Ncw = Ncw + Nd,cw,bin_d
  end for 
 end for 
 for s = 1 to N_SENONE 
  Ncw_SORT = ASCENDING_SORT {Ncw[MAPs,1],..., Ncw[MAPs,8]} 
  for f = 1 to N_SHORTLIST 
   COMPONENT_ACTIVEs,Ncw_SORT[f] = 1 
  end for 
 end for 
end for 
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Figure 5.9: Pseudo-code representation of the bestN implementation 

This code is written in a manner such that it is closer to the SubVQ implementation. It 

can be seen that lines 5 thru 9 consist of only addition operations which is in stark contrast to 

SubVQ’s Gaussian Likelihood evaluation requiring 32-bit 2 multiply and 2 add/subtract 

operations. Line 11 deals with sorting the N’s for each component amongst which the “top” few 

(given by N_SHORTLIST) are considered to be active (lines 12 thru 14). This is one way of 

implementing the bestN method based on SubVQ. 

However, for better performance, the stated code can be modified by interchanging the 

cw and d loops of lines 5 and 6. This change would enable in accessing successive N’s for a 

given bin instead of shuffling between the dimensions and thereby enable for a burst-mode DDR 

memory access implementation resulting in higher throughput and fewer burnt cycles. 

5.5 TEST RESULTS 

Based on the analysis presented above, two quantities were fixed: 

1. The quantization of N was fixed to being an integer. The maximum range of N over the 

entire x-rage for all dimensions is 256 and therefore can be represented by 8-bits per entry. 

2. Based on the dynamic range of x, 120 bins were fixed and the ranges uniformly quantized.  
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Upon fixing these quantities, detailed analysis were run on the entire RM1 Corpus. Three 

sets of experiments were run for 3 different setups. The three setups correspond to the bestN 

based on the full continuous model (bestN_FULL) with quantized versions of N and the 

quantized version of bestN_SubVQ without bins and with bins. The sets of experiments 

themselves only differ based on the number of “top” Components that were part of the shortlist.  

Since Senone scores are intermediate results, the final results are quoted as a function of 

the Word Error Rate (WER) which show the accuracy of the entire system as a whole. The 

results were obtained by running the entire set of test sentences of the RM1 Corpus. The RM1 

Test Corpus consists of 40 Speakers covering 8 different dialects. There are 42 utterances per 

speaker, 1680 in total corresponding to almost 96 minutes of speech. A tabular column depicting 

the results obtained is shown below. 

Table 5.3: the Word Error Rate Results for 3 setups of bestN 

TEST-RUN # BASELINE 1 2 5 3 4 6 7 8 9
Shortlist size -

Setup
Original 
Sphinx

bestN_FUL
L

SVQ_best
N

SVQ_best
N_bins

bestN_FUL
L

SVQ_best
N

SVQ_best
N_bins

bestN_FUL
L

SVQ_best
N

SVQ_best
N_bins

Bins - - - Yes - - Yes - - Yes
% Savings 0

WER 3 3.1 3.2 3.1 3.7 4.6 4.3 6.2 8.1 8

3 2 1

62.5 75 87.5
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Figure 5.10: Word Error Rates for 3 sets of experiements with varying use of the number of Components 

From the graph above, it can be seen that a shortlist of 3 Components gave the best 

performance with only 0.1% increase in the WER over baseline Sphinx’s WER of 3.0. The 

bestN_FULL and bestN_SubVQ with bins have the same error rate. This is a very good 

indication that a greater shortlist can hide some of the effects due to quantization of the original 

models. As the shortlist size decreases, the WER increases. This can be thought of a direct result 

of the ability to pick the most contributing Components. bestN_FULL however performs a lot 

better than the other two methods. This can be attributed to the effect of quantization of the 

original models. The same trend extends to selecting the “top” component in the final 

experimental set. 

5.6 CONCLUSION 

Based on these results it is clear that the bestN method can help reduce the number of 

computations significantly. While SubVQ, based on 4096 Components requiring 160k Gaussians 

to be evaluated each comprising of 32-bit 2 multiplies and 2 add/subtract operations, the bestN 
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technique requires only 160k addition of 8-bit quantities. Hence, simple 8-bit adders can be 

implemented in the system to achieve the shortlist of Components. 

Further, the evaluation of 160k Gaussians requires access to 2 32-bit values (mean, 

variance pairs) implying a bandwidth requirement of 130.21 Mbytes/sec. The bestN technique 

requires only 16.27 Mbytes/sec, a reduction by a factor of 8. However, because of using bins, the 

memory size requirement is greater for bestN.  Considering 4096 Components, 120-bins and 39 

dimensions, 19.16 MB of memory is required.  (as opposed to 1.3MB for SubVQ) 

From an implementation perspective, the increase in the required memory size is not a 

problem since the capacities of DRAM are increasing. Further, since only limited amount of data 

needs to be accessed at any given point in time, 160 KB, coupled with the ability to access data 

from consecutive memory locations allowing for burst-mode transfer, the computations can help 

in a low-power implementation.  

In summary, a 8x reduction in the number of compute cycles, data bandwidth, and the 

required on-chip resources can be achieved by using the bestN computation reduction technique 

thereby addressing accuracy, overhead and implementation considerations simultaneously. 
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6.0  PHONEME & WORD MODELING 

6.1 INTRODUCTION 

This chapter is fully devoted to the discussion of the Phone and Word Blocks. Continuing 

the description of the system in decreasing order of computational complexity, the Phone Block 

followed by the Word Block is discussed in the subsequent sections. Details on the feedback 

generated by each of these blocks are also discussed. 

The discussion of the Phone block starts with the discussion of the top-level phone block 

and its associated data-structures. This is followed by the description of the Senone Active List 

(SAL) feedback generated by the SAL_GEN Block using phone data-structures. After this, 

implementation details for the various blocks is provided along with a data flow description.  

The Word Block is discussed in Section 6.3. A top-level working description of the block 

is first provided. This is followed by the discussion of the mapping of data structures from 

software to hardware. Finally, a dynamic memory allocation scheme is discussed that allows for 

maintaining active data.  

6.2 PHONE BLOCK 

6.2.1 Introduction 

As discussed in Section 2.2.2, phonetic sounds are modeled by a 3-state Hidden Markov 

Model (HMM) statistical model (Figure 6.1). Each state, Hn, has a Gaussian distribution, Senone 

Sn, and a pair of transition probabilities pertaining to either staying in the same state, t(n)(n), or 

transitioning into the next, t(n)(n+1),. ssociated with it. 
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Figure 6.1: 3-state HMM Structure 

As stated in Section 2.2.2, there are two main computations at this stage. The first one 

deals with calculating the scores of the individual states themselves, and the second one uses the 

computed score to determine pruning and propagation of the phone. Based on the set threshold 

for that frame, if the score of the phone falls below the threshold, then the phone is de-activated 

and if Hout, output score of the phone lies within the threshold, then the phone can be propagated 

to the next one(s) according to the word tree structure. 

Restating the equations used towards phone computations,  

( ) ( )[ ] ( )tS0000in0 t1-tH,tHMAX(t)H ++=  Eq. 6.1 

( ) ( )[ )(t1-tH,t1-tHMAX(t)H 11110101 tS]+++=  Eq. 6.2 

( ) ( )[ )(t1-tH,t1-tHMAX(t)H 22221212 tS]+++=  Eq. 6.3 

2e2out t(t)H(t)H +=  Eq. 6.4 

( ) ( ) ( )[ tH,tH,tHMAX(t)H 210best = ]  Eq. 6.5 

The computations relating to obtaining the threshold is shown below. 

BEAMHMMHMMBTHHMM ___ +=  Eq. 6.6 

BEAMPHNHMMBTHPHN ___ +=  Eq. 6.7 

BEAMWRDwrdHMMBTHWRD ____ +=  Eq. 6.8 

where;  ( )[ ]tHMAX_B best=HMM

All these computations are performed in the PHN_CALC Block. 

Having obtained the 3 thresholds, Hbest(t) and Hout(t) of every phone are checked with the 

HMM_TH and PHN_TH to determine if the phone can be de-activated and if the phone can be 

propagated. These operations require comparators for checking the scores w.r.t the thresholds. 
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6.2.2 Phone Block Top-Level 

Considering the basic operations, the design of the phone block was fairly straight 

forward. As a result of the design, there are two main blocks relating to the Phone Calculation 

(PHN_CALC) and Phone Pruning (PHN_PRN). Since there is data dependency between current 

(t) and previous frame (t-1), all the scores corresponding to Hin, H0, H1, H2, Hout, and Hbest need to 

be stored in memory. This storage has been implemented as part of the PHN_WRD_RAM. Apart 

from the scores, the PHN_Id which has state and transition information for each individual 

phone is also required and therefore stored along with the scores in this RAM. In effect, each 

entry in the PHN_WRD_RAM consists of the following entries: PHN_ID | Hin | H0 | H1 | H2 | 

Hout | Hbest | WRD_END | WRD_ID. 

PHN
WRD
RAM

DEAD

NXT_PHN

PAL

Phone 
Calculation

Block

PHN
Controller

Phone
Prune
Block

SAL
GEN

PHN_BLK
SENONE

RAM

PHN
ROM

nPAL

 

Figure 6.2: Top-level Block Diagram representing the various blocks associated with Phone Block 

Calculations 

As mentioned earlier, all data movement between the various blocks takes place using 

FIFOs. The new-Phone Active List FIFO (nPAL_FIFO) and the Phone Active List FIFOs 

(PAL_FIFO) consist of pointers, TKNs, of active phones. The nPAL_FIFO consists of those 

phones that have been newly activated in the current frame, while the PAL_FIFO consists of the 

phones that remain to be active from the previous frame. 
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The phones that need to be de-activated are stored in the DEAD_FIFO while the 

NXT_PHN_FIFO on the other hand stores those phone TKNs that can be propagated in the word 

tree-structure. Both these FIFOs are writen into by PHN Block the during the PHN_PRN phase. 

6.2.3 Phone Feedback: Generation of Senone Active List (SAL) 

Since the computation of phone scores is based on Senone scores, Senones need to be 

computed first. This step assumes importance because of the enormous computational savings it 

provides by minimizing the Gaussian computations. On average, it helps reduce the number of 

Senones required to be evaluated by 50%. Hence, the first step is to generate the list of active 

Senones that the Acoustic Modeling Block needs to compute. 

For this purpose, since every phone comprises of its own sequence of Senones, the 

PHN_ID of every active phone is required to obtain the list of Senones. Therefore the first 

processing step is to obtain the PHN_ID of corresponding to active phones stored as TKNs from 

both the nPAL and PAL FIFOs. After obtaining the PHN_ID, the PHN_ROM which has 

information about the phone to senone mapping is accessed and the entries corresponding to 

active PHN_IDs are passed to the SAL_GEN Block.  
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Figure 6.3: Top-level Block Diagram with Phase information for SAL Generation 
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The SAL_GEN Block stores the senones corresponding to active PHN_IDs sperately for 

each state. Doing so allows for the processing to be pipelined. Once all TKNs from the nPAL 

and PAL FIFOs have been processed, if composite senones are present, then they need to be 

processed first. For all active composites, the senones making-up the composite need to be 

obtained and activated. Once this is done, the Senone information from each of the states is 

assimilated to obtain a single list of active senones. This list is passed to the SAL FIFO which is 

then used by AM. A block diagram showing the blocks used for generating the SAL feedback is 

shown in Figure 6.2. It also contains some the data flow information of the sequence of 

operation. A pseudo-code representation of generation of this feedback technique is shown 

below.   
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/* Process nPAL FIFO */ 
while (nPAL not empty) 
 TKN_ID = POP[nPAL] 
 PHN_ID = PHN_WRD_RAM[TKN_ID] 
 [SID_0 SID_1 SID_2] = PHN_ROM[PHN_ID] 
 SEN_ACTIVE_ROM0[SID_0] = 1; 
 SEN_ACTIVE_ROM1[SID_1] = 1; 
 SEN_ACTIVE_ROM2[SID_2] = 1; 
end while 
 
/* Similar processing is done for the PAL FIFO */ 
while (PAL not empty) 
 TKN_ID = POP[PAL] 
 PHN_ID = PHN_WRD_RAM[TKN_ID] 
 [SID_0 SID_1 SID_2] = PHN_ROM[PHN_ID] 
 SEN_ACTIVE_ROM0[SID_0] = 1; 
 SEN_ACTIVE_ROM1[SID_1] = 1; 
 SEN_ACTIVE_ROM2[SID_2] = 1; 
end while 
 
/* Process Composite States (CState), if active */ 
if Composite states active 
 for active CStates 
  CSAL = PUSH CStates 
  {SID_LIST} = Obtain list of SIDs from CState_ROM 
  SEN_ACTIVE_ROM0[{SID_LIST}] = 1 
 end for 
end if 
 
/* Assimilate the Active Senones */ 
for s = 1 to N_SENONE 
 if (SEN_ACTIVE_ROM0[s] or SEN_ACTIVE_ROM1[s] or SEN_ACTIVE_ROM2[s]) 
  SAL = PUSH s into SAL 
 else 
  /* Do nothing */ 
 end if 
end for 

Figure 6.4: Pseudo-code for the Generation of the Senone Active List 

6.2.4 Phone Calculation Block 

The Phone Calculation Block (PHN_CALC) as the name suggests deals purely with the 

computation of the HMM state scores. The computation of Eq.. 6.1-6.5 is shown in the form of a 

block diagram (Figure. 6.3). 
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Figure 6.5: Block Diagram representation of computations in PHN_CALC 

From an implementation perspective, it can be seen from this diagram that the computation of 

H0(t), H1(t) and H2(t) can be performed in parallel. Such an implementation however would 

require the availability of a huge amount of data simultaneously, 3 senones scores, 6 transitions, 

previous HMM-state scores H0(t-1), H1(t-1), H2(t-1) and current in-score, Hin(t). Since 3 senone 

scores corresponding to different Senones are required every cycle, the only way to achieve this 

is to provide 3 separate Senone Score_RAMs, each of which are an exact mirror copy of the 

other. 

This implementation is motivated from the aim of reducing the number of compute 

cycles, in this case, by a factor of 3. However, depending on the chip architecture and the 

resource constraints, this implementation can be modified so to perform 1 HMM-state score 

evaluation per cycle thereby requiring only 1/3rd the number of math resources and a single 

Senone_RAM.  
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The data flow for PHN_CALC is shown in Figure 6.6. The first step is to pop active 

TKNs from the nPAL and PAL FIFOs. For every popped TKN, PHN_ID, H0(t-1), H1(t-1), H2(t-

1) and Hin(t) are obtained from the  PHN_WRD_RAM. Corresponding to the PHN_ID, Senone 

Scores are obtained from the SENONE_RAM after a look-up into the PHN_ROM. Once all the 

information is ready, phone calculations are performed in the PHN_CALC Block, the output of 

which is stored back into the location it was accessed from in the PHN_WRD_RAM. 
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Figure 6.6: Top-level Block Diagram with Phase information for PHN_CALC 

6.2.5 Prune Block 

As mentioned earlier, once the HMM-state scores have been computed, the pruning and 

propagation of phones can be done. This operation is performed in the Phone Prune Block 

(PHN_PRN). The computations in this block are a simple compare operation and can be 

summarized by the pseudo-code shown below. 
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while (PAL not empty) 
 TKN_ID = POP[PAL] 
 [OUT_SCR BEST_SCR] = PHN_WRD_RAM[TKN_ID] 
 if (BEST_SCR > HMM_TH) 
  PUSH TKN into PAL   /* keep as active */ 
 else 
  PUSH TKN into DEAD  /* de-activate */ 
 end if 
 if (OUT_SCR > PHN_TH) 
  PUSH TKN into NXT_PHN /* propagate to next phone(s) */ 
 end if 
 end while 

Figure 6.7: Pseudo-code for the Phone Prune Phase 

A graphical representation of the data-flow is shown in Figure 6.6.  
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Figure 6.8: Top-level Block Diagram with Phase information for PHN_PRN 

The phone pruning phase is the final phone processing phase. 
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6.3 WORD BLOCK 

6.3.1 Introduction 

The Word Block, as stated in Section 2.2.1, essentially consists of a word-to-phone 

mapping. As stated in Section 2.2.1, in order to decrease the number of computations, it is 

standard practice to implement this mapping by using a tree structure (Figure 6.9). Each circle in 

this figure represents a phone.  
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Figure 6.9: 8-word sample dictionary tree structure 

In tree structure terminology, each circle is known as a node. Each node consists of both 

phone and word data. The phone data corresponds to the PHN_ID while the word data 

corresponds to the Probability of observing the word (LM_SCR). It also comprises of whether 

the phone corresponds to the last phone of a word (WRD_END). This information helps process 

the cross-word effects using Composite Senones and the propagation of the exited word into 

other words with the use of LC_ROOT_ROM (for the recognition of sequences of words). All 

this WRD_END | PHN_ID | LM_SCR information corresponding to each node is stored in the 

WRD_Database. 
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One of the first challenges during the design and implementation process was the 

mapping of the tree structure into hardware. In software it is implemented as a linked-list of 

linked-lists. A similar approach was taken for hardware design. Similar to a software linked-list 

structure, which as a starting address and a bunch of next addresses along with data which is 

traced until the NULL pointer indicating the end of list, hardware uses a starting address and a 

count of the number of entries in the list.  

The starting address acts as the base address and is incremented by one every cycle until 

the count of number of values read is equal to the count of entries in this list. The resulting 

address acts as the read address into another ROM structure which contains the necessary data. 

In short, there are two memory units required to represent the tree structure – a starting address | 

count ROM and a data ROM. The word lexical tree is mapped using this methodology. The 

resulting data structure (consisting of two ROMs) is referred to as Lextree_ROM.  

A top-level block diagram showing the various blocks in the Word block and all the 

various blocks it interacts with during processing are shown in Figure 6.10.  
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Figure 6.10: Top-level Block Diagram representing the various blocks associated with Word Block 

Calculations 
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Apart from the Lextree_ROM, LC_ROOT_ROM and WRD_Database, there are a couple 

of other blocks. These are the Word Compute Block (WRD_CMPT) and Dynamic Memory 

Management Block (MEM_MGMT). As the name suggests, the WRD_CMPT Block is 

responsible for all the computation that takes place in the entire WRD Block. The computation 

relates to deciding whether a word can be deemed to be successfully exited and towards what the 

Hin of the active phones is by making performing simple addition and compare operations. 

Details are provided later.  

Since there are thousands of nodes in any given dictionary, having a static memory 

allocation scheme would imply a one-to-one mapping whereby for every node in the 

WRD_Database a corresponding entry in the PHN_WRD_RAM would be required to store the 

computed phone data. This however is not practical since the width of the PHN_WRD_RAM is 

of the order of a couple of hundred bits per entry. Further, the power consumption of such a big 

RAM also requires that the PHN_WRD_RAM be as small as practically possible. 

Realizing this, it is essential to incorporate a mechanism whereby only the active data 

needed to be stored. The MEM_MGMT Block serves this purpose. It is responsible for managing 

the memory space of active phones. The memory is managed by using pointers, referred to as 

tokens (TKN) for a hardware implementation. Since memory locations in the PHN_WRD_RAM 

correspond with TKNs (active phones), and the WRD_Database correspond to nodes 

(NODE_IDs), it was necessary to have a two way mapping between TKNs and nodes. This two 

way mapping allows proper access of both the PHN_WRD_RAM and the WRD_Database in a 

reliable way eliminating the need for static memory allocation.  

The availability of free memory locations is maintained within a FIFO (TKN_FIFO) 

whereby free TKN locations are stored in the FIFO. This way, a dynamic memory allocation 

scheme was incorporated in the system, the presence of which allows for the implementation of a 

truly scalable system.  

With the knowledge of the top-level blocks, phase and data flow details are provided in 

the following sections. First the dead phase is described followed by the more complicated 

propagation of phones phase. 

 97 



6.3.2 Word Phone De-activation Phase 

The first phase of the Word Block relates to de-activating phones that have been found 

not be so promising. The operation is quite simple. TKNs from the DEAD_FIFO are popped one 

at a time and the memory contents pointed by these TKNs are reset. The PHN_ID is replaced by 

a large quantity, greater than the total number of PHN_IDs present in the system. All scores, Hin, 

H0, H1, H2, Hout, and Hbest are reset to NEG_INFINITY (a very large negative value). A basic 

block diagram showing this is shown in Figure 6.11. 
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Figure 6.11: Top-level Block Diagram depicting the Dead Phase 

From the Figure it can be seen that the de-activation phase is very straight forward. Only 

two actions need to be performed. As mentioned in the previous paragraph, all the contents of the 

PHN_WRD_RAM are reset. Also, the memory management unit needs to keep track of de-

activated memory locations. Therefore TKNs from the DEAD_FIFO are sent to the 

MEM_MGMT block which stores in-active TKNs. 

6.3.3 Word Phone Propagation Phase 

Propagation of phone from the current to the next one(s) is a fairly complicated process. 

Processing of this phase accounts for the majority of the project number of cycles required for 
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processing data in the Word Block. At a very basic level, the processing consists of obtaining 

next-phone(s) for the current exiting phones from the Lextree_ROM and updating the Hin after 

using the information for each of the phones from the WRD_ROM. If this phone was previously 

in-active, then the TKN corresponding to such phones are pushed into the nPAL_FIFO. 

From a word perspective, phones can be divided into word-end (WRD_END) phones and 

non-word end phones. As far as data-structures corresponding to the phone is concerned, there is 

no difference. The only difference is how such phones are processed when it has been 

determined that any one of them can be propagated. Since after exiting a word, there are several 

possible next phones, the beginning of the word tree for each of these need to be entered. This 

information is maintained is by another data-structure, LC_ROOT_ROM. Hence, depending on 

whether the exiting phone is a WRD_END phone, the Lextree_ROM is accessed either directly 

or though the LC_ROOT_ROM.  

This is how phones are propagated. A more detailed description including 

implementation aspects is described below. For the purpose of showing the data flow, the entire 

phone propagation has been shown using two Figures (Figure. 6.12 and 6.13). Figure 6.12 shows 

operations 1 thru 4 while Figure 6.13 shows the remainder operations. 
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Figure 6.12: Top-level Block Diagram with Phase information for WRD_NXT_PHN phase (1) 

The first step is to pop the NXT_PHN_FIFO and obtain the TKN that needs to be 

processed. The TKN is passed to both the PHN_WRD_RAM and the MEM_MGMT Blocks. 

The output from the PHN_WRD_RAM is the Hout score and the indication of whether this is 
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phone corresponds to WRD_END and is fed into the WRD_COMPUTE Block. The first step 

that occurs at this stage is to check if the current phone is a WRD_END phone. If this is true and 

if Hout is greater than the WRD_TH (passed on from the PHN Block) then it can be said that the 

word has been successfully exited. The EXIT_WRD_ID is output to both the application as well 

as LC_ROOT_ROM (as described above). If on the other hand if Hout is less than then threshold, 

then the phone is not deemed to have exited and therefore cannot be processed further. Hence, 

the next entry from the NXT_PHN_FIFO can be processed. 

On the other hand, if the phone does not correspond to a WRD_END, then a TKN-to-

NODE mapping needs to be done so as to be able to process it further in the Lextree_ROM. This 

mapping operation is done in the MEM_MGMT Block. This way, the 4th step in the processing 

is to read from the Lextree_ROM based on the current phone. 
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Figure 6.13: Top-level Block Diagram with Phase information for WRD_NXT_PHN phase (2) 

The next phone(s) output from the Lextree_ROM is sent to the MEM_MGMT Block 

which keeps track of all active nodes. If the node is currently in-active then a new TKN is 

allocated for this node and the TKN_ID is sent to the nPAL_FIFO for the phone to be processed 

by the PHN Block. All TKNs (already active or newly active) are then forwarded to the 

PHN_WRD_RAM and the WRD Database. The data from both memories is sent to the 
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WRD_COMPUTE_BLK where Hout(t-1) + LM_SCORE (of each next node) is compared against 

the Hin(t-1) of the TKNs allocated to the next phone(s). The larger of the two is treated as Hin(t) 

and the PHN_ID and WRD_ID data corresponding to the larger value are written into the 

PHN_WRD_RAM (indicated by operation 8 in Figure 6.13). This is the basic functioning of the 

processing that takes place when propagating phones.  

The implementation of all these block has been done in a manner so as to allow for 

processing all next phone(s) in successive cycles (fully pipelined implementation). Since the data 

corresponding to the NXT_PHN TKN is used to compare values from the next phone(s), the 

NXT_PHN_FIFO is not popped until the processing of the current branch is completed. While 

this helps in simplifying the read and write accesses to the PHN_WRD_RAM, they also imply a 

pipeline stall. Unfortunately, this pipeline stall cannot be overcome. 
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7.0  SYSTEM INTEGRATION, TESTING, AREA AND PERFORMANCE 

7.1 INTRODUCTION 

Having described the individual blocks and how they work, this chapter discusses 

implementation details of the system. The first step in the implementation process was to define 

the target technology. This is described in the following section. Then, a brief description of the 

Design Environment is presented in Section 7.3. Section 7.4 discusses some of the System set-

up, Testing, and Area and Performance results. 

It is shown that with a fully pipelined design, a 1,000 word Command & Control based 

Speech Recognition application can be run faster than real-time when operating at 100 MHz. 

Further, it is shown that a highly efficient, fully pipelined implementation has been done on a 

Xilinx Virtex4 SX-35 with the entire design running at 154 MHz. Finally, the overall system 

resources required by this design can be implemented using 93,000 “equivalent gates”. This 

makes it ideally suited for incorporation as a co-processor to existing processors. 

7.2 IMPLEMENTATION 

7.2.1 Introduction 

The first step in the implementation process was to define the target technology which 

would enable in achieving the two system requirements, real-time operation at 100 MHz and a 

system which is demonstrable. Looking at these goals, Field Programmable Gate Array (FPGAs) 

seem to be an ideal choice. They not only provide for extensive flexibility in the implementation 

process with the availability of hundreds of thousands of programmable logic slices, dedicated 
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math units and on-chip memory, but they also provide for a inexpensive prototyping 

environment. 

7.2.2 FPGA Prototyping Environment 

After extensive survey of the various FPGAs and the resources provided by them, 

Xilinx’s Virtex4 FPGA [36], based on the latest 90nm fabrication technology, was chosen. The 

90nm process allows for higher density chips performing at higher frequencies. The biggest 

Virtex4 SX chip (SX-55) contains as many as 320 memory blocks and 512 dedicated Multiply-

Accumulate units (MACs), each with the ability to perform 18x18 multiplication and 48-bit 

accumulation on chip. 

Amongst the three Virtex4 families available, LX, SX, and FX, the SX device is targeted 

towards heavy signal processing based applications. For this reason, it contains the maximum 

number of memory blocks and multiply units when compared to other Virtex4 families. Given 

the intensive computational nature of Speech Recognition algorithms, the SX family is an ideal 

choice. From a demonstration perspective, Xilinx offers a ML-402 development kit with an SX-

35 device.  

The ML-402 platform not only includes the SX-family chip, but also has the necessary 

off-chip resources making it an ideal demonstration platform. It consists of 64 MBytes of DDR 

memory (ideal for bandwidth intensive task of AM), a 9 Mbit SRAM (ideal for storing of the 

WRD Database), an LCD screen (for displaying the recognized words) and header expansion 

pins (enabling the interface of FPGA with the DSP development kit performing Feature 

Extraction). Based on these factors, the target chip decided on was the Xilinx Virtex4 SX-35 

speed grade 10. A Block Diagram of the Prototyping environment is shown in Figure 7.2. 
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Figure 7.1: Prototyping Environment Top-Level Diagram 

7.2.3 Highly efficient, fully pipelined design 

Due to the sheer number of calculations involved in speech recognition, a system with 

tight power constraints should process data as fast as possible. Minimizing the number of 

computation cycles greatly helps in reducing dynamic power consumption and is critical for the 

design to be incorporated in embedded systems. As discussed in previous chapters, one way of 

achieveing this from an algorithmic perspective was to keep track of active “data” at every stage 

and compute only these quantities. For this feedback from one stage to the next was implemented 

(active Senones and Phones). 

But the number of computations still required is fairly substantial. For this reason, it was 

necessary to decrease the number of compute cycles further.  One of the best possible ways of 

achieving this is to pipeline the computations as much as possible. This way, even though the 

computation of a single quantity in reality requires multiple cycles, as in the case of Gaussian 

distance calculation, a pipelined design enables a higher throughput at an increased latency. If 

latency is not a cause of concern and if data can be streamed to ensure that the computation pipes 

are constantly full, the number of compute cycles can be reduced significantly. 
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The Gaussian Distance (GAUS_DIST) calculation of Eq. 4.9 is a very good example for 

this. The computation of GAUS_DIST for each dimension comprises of 1 subtract, 2 multiply 

and 1 add operation, thereby requiring 4 compute cycles. Given the necessary resources 

however, a pipelined design can reduce the number of cycles by a factor of 4 with a 4-stage pipe. 

Therefore, the total number of cycles required to perform brute-force AM is 603k cycles, rather 

than 2.4M cycles (corresponding to total number of operations). 

Further, a pipelined design strategy also enables in increasing the overall performance of 

the system. From an implementation perspective, the prototyping set-up should have enough 

resources to meet these requirements. Specifically, special care was taken to ensure the 

availability of adequate DSP (math computation) and on-chip memory resources. Since a 

pipelined system would consist of many registers, an FPGA with several hundreds of thousands 

of logic cells is a good fit.  

For this reason, the entire design is fully pipelined. The design can be thought of as being 

made of meta-pipes with each of the blocks with AM being a 25 stage pipe, PHN being a 15 

stage pipe and WRD being a 12-stage pipe.  

7.3 DESIGN ENVIRONMENT 

7.3.1 Xilinx System Generator 

Initially, for shortening the design cycle, a SysGen based implementation of the Gaussian 

Distance calculation of Acoustic Modeling was made in the MATLAB/Simulink environment. 

SysGen is a MATLAB Toolbox from Xilinx [37] which enables the creation of hardware blocks 

in Simulink. Pre-created Simulink blocks from the SysGen Library can be simply dragged and 

dropped into Simulink. They can then be configured according to the specific needs. After 

completing the design, the user can convert the Simulink design into RTL with the mere push of 

a button. 

Although such a design environment enables in quickly implementating the design, it was 

observed that the FMAX for Gaussian Distance evaluation was only 125 MHz, which is far below 

the quoted capability of the Virtex4’s DSP-slices. The performance is also about 40% of that 
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obtained by hand-coding this block. One reason for this inferior performance can be attributed to 

SysGen being designed for a generic implementation. 

While the generic implementation helps in easier GUI management where several details 

can be hidden from a naïve user with little knowledge of hardware design, it comes at the cost of 

significantly increased overhead for any implementation, which, in turn, results in the inferior 

performance observed.  

To account for this loss in performance, there are certain constraints built into the tool 

thereby limiting the amount of flexibility a designer has when implementing certain special cases 

the system being implemented might require. This can be thought of as a direct result of limiting 

the performance degradation below a certain threshold. Because of the above two factors, it was 

necessary to hand-code the entire system. For this, a RTL design environment was chosen. 

7.3.2 Xilinx ISE 

The entire system was designed using Xiilinx’s design environment, ISE 7.1. All 

hardware design files were coded in VHDL using Xilinx’s text editor within ISE. Since synthesis 

of a design is based on “estimates”, it does not provide a very accurate representation of the 

performance of the circuit after place and route. But it was observed that the Xilinx Synthesis 

Tool (XST) provided a fairly accurate estimate of the design’s performance, being off by no 

more than 20 MHz when compared to the results obtained after Place & Route. This led to 

significantly shortening the design cycle, since critical paths could be obtained from the 

synthesis results. To ensure the best performance, Xilinx libraries were used for configuring the 

memory and math blocks. This was done using Xilinx’s Core Generator front-end, a GUI-based 

tool that allows for configuring the memory and math units.  

The entire design consists of almost 100 VHDL files! This shows the complexity of the 

design and the various blocks that go along with it. While some of these files correspond to the 

various FIFOs, memory and math blocks, there are several design files corresponding to the top-

level blocks and sub-blocks. In total, there are 4 top-level entities corresponding to the System, 

AM, PHN, and WRD Blocks. Each of these blocks is associated with a Controller. The VHDL 

implementation corresponding to these blocks has been attached for reference in Appendix A. 
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7.4 SYSTEM SET-UP, TESTING & RESULTS 

7.4.1 System Set-up 

A table detailing the number of computational resources in terms of math and comparator 

units, along with the number of cycles required for the computations in each block based on the 

assumption of a fully pipelined design was discussed in detail in Section 3.2.2. To this table 

additional information regarding the memory size for each block shown in Figure 7.2 has been 

added and is shown in Table 7.1. 
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FIFO FIFO
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GEN
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Features

 

Figure 7.2: Top-Level System Block Diagram 

Table 7.1: Detailed Resource and Timing Requirements of the System 

AM AM_PHN PHN PHN_WRD WRD TOTAL
Add 6 - 9 - 1 16

Multiply 3 - - - - 3
3 - 6 - 2 11

On-chip 456 384 264 881 792 2,777
Off-chip 38,638 - - - 2,079 40,717

603,720 - 8,192 - 102,400 714,312
495 - - - 5 -Memory Bandwidth [MB/sec]

Math Units

Comparator Units

Memory [Kbits]

# of cyles [per 10ms frame]
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7.4.1.1 Compute Cycles 

As discussed in Section 3.2.2, while the total number of operations required by the 

system is significantly more than that allowed for by a 1 million cycle-budget, by pipelining the 

design, the number of compute cycles required to perform the same number of operations is 

significantly reduced. Based on this assumption, the number of compute cycles for a 10ms frame 

is presented in Table 7.1.  

The number of cycles presented in the table is based on the assumption that the 

computations in AM are brute-force, with no use of feedback from PHN Block. The compute 

cycles for the PHN Block are based on the worst-case estimate obtained by observing Sphinx, 

where it was found that at any give time only 4,000 phones are simultaneously active.  

Finally, the number of compute cycles in the WRD Block is based on the assumption that 

at any given point in time not more than half of the 4,000 active phones will be propagated. 

Since the WRD data-structure is based on a tree-structure, even though the design is pipelined, in 

order to decrease implementation complexity, phones that need to be propagated are not 

processed until the predecessor has been fully processed. This results in a pipeline stall. The loss 

in compute cycles because of this pipeline stall has been accounted in the projected number of 

compute cycles for the WRD Block. 

Based on these estimates, assuming a 1-cycle memory access latency, it can be seen that 

even assuming the brute-force AM approach, all data for the RM1 1,000-word Command & 

Control dictionary can be processed in 710k cycles, with 290k cycles to spare (for a 1 million 

cycle budget). Therefore, a system based on a fully-pipelined architecture can perform at faster 

than real-time. 

However, to decrease the number of computations further, as described in Chapter 3, 

feedback from the PHN to the AM Block has been implemented. It is shown in Section 7.5.3 that 

the incorporation of this feedback into the architecture can reduce the number of computations 

significantly thereby decreasing the number of overall compute cycles further from those 

presented in Table 7.1. 

7.4.1.2 Memory 

From Table 7.1 it can be seen that a decision of on-chip and off-chip memory was made. 

This decision was based entirely on the size of the data-structures. Since the data-structures of 
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both the AM and WRD Blocks are very large for being incorporated on-chip, they need to be 

implemented as external off-chip memories. The memories corresponding to the data-structure of 

these blocks contain Gaussian mean/variance pairs and the word tree structure, respectively. All 

other memories are fairly small, and hence can be implemented on-chip. 

However, the larger the set of words that need to be recognized, the more complex the 

word tree structure gets. Hence, a more test-friendly environment, with as little complexity as 

possible, was needed to help focus on the core computations that are performed in each of the 

blocks. This would aid in efficiently debugging the system and identifying any bugs either in the 

computations themselves, or in the dataflow. For this reason, a small sub-set of 15-words was 

chosen from the RM1 Speech Corpus. This shortlist of words is referred to as the test dictionary.  

The words in the test dictionary were carefully chosen so as to mimic the overall tree-

structure for the entire RM1 corpus and account for any special cases that the tree-structure 

might include so as to test the system as thoroughly as possible by accounting for all possible 

cases. Hence, once the system is tested satisfactorily for the test dictionary, the entire 1,000-word 

dictionary can be implemented with minimal or no further de-bugging. 

By using a 15-word test dictionary, the only data-structures that required change was 

related to the WRD Block. Specifically, the size of the WRD database is significantly smaller 

than that presented in Table 7.1 for the test dictionary. Hence, the WRD database in the test 

system has been implemented as on-chip. All other data-structures relating to the AM and PHN 

blocks need not be modified and have been implemented as shown in Table 7.1. 

7.4.2 Testing 

All the blocks shown in Figure 7.2 were individually tested and integrated. For the 

purpose of verification, first, a functionally accurate model of the system (presented in Figure 

3.3) was developed in MATLAB. For the same inputs, the outputs of the AM and PHN Blocks 

were obtained and the necessary de-bugging was done. This way, once the core-computations 

were ensured to be correct, the MATLAB implementation was used as the reference for testing 

and de-bugging the computations in hardware.  

A few simulation waveforms corresponding to the core-computations in the AM and 

PHN Blocks with a one-to-one comparison with MATLAB are presented in the following sub-
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section. For the purpose of testing the system based on the sample 15-word test dictionary, 3-test 

utterances were run and found to output the correct words. 

7.4.3 Simulation Results 

Simulation waveforms depicting the operation of the various blocks are shown in the 

following figures. Figure 7.3 shows the signals of the System Controller. The waveform shows 

the controller going through the phases in the order outlined in Figure 3.4. The computations 

start from the Dead phase within the WRD Block, followed by the propagation of phones. Then 

the generation of SAL is performed, whereby a list of active Senones corresponding to active 

Phones is computed. Following this, Senone scores in the AM Block are calculated. Finally, the 

Phone scores are computed, followed by pruning/propagation of the phones based on whether the 

scores pass the computed thresholds. This indicates the completion of the processing for the 

current frame. 

 

Figure 7.3: Simulation Result for System Controller going through the various phases 

Figure 7.4 shows the generation of SAL corresponding to the SILENCE phone (phones 

102, 103, and 104). 
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Figure 7.4: Simulation Result for SAL Generator (the active phones correspond to the SIL phone) 

Figure 7.5 shows the AM Controller going through its 4 phases.  

 

Figure 7.5: Simulation Result showing AM Controller going through the 4 phases 

 Finally, Figure 7.6 shows a write-back operation into the PHN_WRD_RAM after the 

computation of the Phone scores. This can be compared with the scores obtained from MATLAB 

as shown in the figure. 
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Figure 7.6: Simulation and MATLAB results for Phone Scores 

7.5 AREA & PERFORMANCE 

A summary of the resource utilization and performance of the individual blocks and the 

system as a whole is shown in Table 7.1. The resources of interest include the number of 

dedicated on-chip multiply and add blocks (DSP Slices), on-chip memory (Block RAMs) and 

Logic Slices required by each of the blocks. Further, from the perspective of implementation on 

an ASIC, the “equivalent gate count”, for each of the blocks is also presented. The last column in 

the table details the overall performance of each of these blocks, which are based on Post Place 

& Route results. Finally, the last row presents the percentage of chip resources used by the entire 

system when implemented on a Virtex4 SX-35 chip. 
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Table 7.2: Area and Performance of the entire System as implemented on the Virtex4 SX-35 FPGA 

15493,9674,52210644SYSTEM [#]

19213,14373083WRD

16132,0761,2011422PHN

21027,8061,4042719AM

Performance 
[MHz]

Eq. Gate 
Count

Logic 
Slices

RAM 
Blocks

DSP 
Slices

Resources

15493,9674,52210644SYSTEM [#]

19213,14373083WRD

16132,0761,2011422PHN

21027,8061,4042719AM

Performance 
[MHz]

Eq. Gate 
Count

Logic 
Slices

RAM 
Blocks

DSP 
Slices

Resources

--29%55%22%SYSTEM [%] --29%55%22%SYSTEM [%]
 

A detailed description of the utilization of individual resources is presented in the 

following sub-section. Performance results are discussed in Section 7.5.2. A floorplan of the 

final system as implemented on the Virtex4 SX-35 FPGA is shown in Figure 7.7. 

7.5.1 Area 

7.5.1.1 DSP Blocks 

In order to ensure that the system works at peak performance, extensive use of DSP 

Slices was made, wherever possible. As expected, AM, the computationally intensive block, 

requires a fair number of DSP Slices. Since the Virtex4 architecture provides for 18x18-bit 

multipliers in each DSP Block, 32x32-bit multiplication is achieved by making use of 4 DSP 

Blocks. There are 3 multipliers in the AM Block (all used for GAUS_DIST calculation), thereby 

requiring 12 DSP Blocks. The rest of the DSP Slices in this block are used towards addition and 

subtraction operations spread over the various blocks. 

It might come as a surprise that the PHN Block requires as many as 22 DSP Blocks. This 

is a direct result of the parallel processing approach taken for this block as pointed out in Section 

6.2, where each HMM-state requires 3-additions and 1-compare operation (all 32-bits). To help 

achieve maximum performance, comparators have also been implemented using DSP Blocks, the 

result of the sign obtained by subtraction of the two quantities being compared, giving the 

comparison result. 

Finally, as expected, since the WRD Block operation is dominated by maintaining the 

tree structure for the word to phone mapping, it requires only 3 DSP Blocks. It can also be seen 
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from the table that all DSP resources are accounted for inside the individual blocks, indicating 

that data-management takes place only at the top-level of the system. 

7.5.1.2 RAM Blocks 

The RAM Blocks in AM are mostly consumed by the LOG_ADD Look-up table. 

Further, a few RAM Blocks are used for storing the Senone scores. The AM_Database is 

considered to be external to the system and hence has not been included in the above numbers. 

The PHN Block of the PHN_ROM takes 14 RAM Blocks. The WRD Block consists of mainly 

the Lextree_ROM and the WRD_Database (implemented as on-chip for the simple 15-word test 

dictionary).  

However, not all Block RAMs have been accounted for thus far. This is because of the 

two major memory data-structures at the top-level of the system, the SENONE_RAM and 

PHN_WRD_RAM. It could be argued that these are shared memories and hence can be treated 

as part of either of any of the blocks (AM or PHN or WRD). Therefore, they have been 

accounted for as part of the system top-level consuming over 50% of the overall memory 

requirement of the system.  

7.5.1.3 Logic Slices 

Considering that the entire design has been completely pipelined, it can be seen that a fair 

number of logic slices are used up by both the AM and PHN Blocks. A majority of the slices in 

the PHN Block are devoted towards synchronization of the Senone Scores and the Phone Scores 

from the previous frame. The WRD Block again requires relatively fewer logic slices.  

From the synthesis reports in Xilinx, it was observed that the implementation of the entire 

system would require around 93,000 “equivalent gates”. This includes all on-chip resources 

utilized, including DSP, memory and logic slices utilized. This is a very interesting statistic since 

it shows that the silicon footprint required by the design is quite small, thereby making it a 

practical option for implementation in commercial products available today. 

7.5.1.4 Design Floorplan on Xilinx’s Virtex4 SX-35 

The Floorplan for the entire system as implemented on Xilinx’s Virtex4 SX-35 FPGA is 

shown in Figure 7.7. 
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Figure 7.7: Floorplan for the entire Speech Recognition System on a Virtex4 SX-35 
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7.5.2 Performance 

The performance of the system is shown in Table 7.2. It can be seen that the 

computational bottleneck in the AM Block has been successfully implemented with a 

performance of 210 MHz. The overall performance is limited by the LOG_ADD Block, 

considering that the computationally intensive GAUS_DIST Block runs at 310 MHz.  

The performance of the PHN Block is limited by the requirement of accessing several 

memory structures, each consisting of wide data busses. Hence, despite using DSP-slice 

resources for the PHN_CALC Block, a peak performance of only 165 MHz could be obtained. 

The WRD Block, on the other hand, is not limited by this aspect and hence a performance in 

excess of 190 MHz was obtained.  

The overall system performance slightly degrades when compared to the performance of 

the individual blocks. Despite several post-place and route re-runs, the critical path was 

consistently observed to be in the routing, with the worst critical path consisting of 25% logic 

delay and 75% path delay. Therefore, the overall performance of the system can be improved  by 

better floorplanning. 

7.5.3 Reduction in Computation using Feedback  

Because of the incorporation of feedback at every stage, the amount of active data 

determines the number of computations that are performed at each stage. Hence, in order to 

quantify the gains from feedback, the number of active quantities from simulation would be 

needed. However, since this process is tedious and time-consuming, the MATLAB version of the 

system which is functionally equivalent to hardware was used for this purpose. Some results 

obtained for the 3 test utterances for the 15-word test dictionary are presented in the table below 

(Table 7.3). 
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Table 7.3: Table showing the number of Phones and Senones active for 3 test-utterances 

4119.7235.53

7225.3175.112

4729.4217.11

Maximum 
SAL Size

Average 
SAL Size

Maximum 
PAL Size

Average 
PAL Size

Test 
Utterance #

4119.7235.53

7225.3175.112

4729.4217.11

Maximum 
SAL Size

Average 
SAL Size

Maximum 
PAL Size

Average 
PAL Size

Test 
Utterance #

 
The average and worst case number of active Phones and Senones is shown in this table. 

It can be seen that on an average, only 7 Phones are active simultaneously with the maximum 

being 23 for the 3rd utterance. This shows that out of 450 possible phones for the test dictionary, 

only 23 are ever active simultaneously thereby indicating the benefit of the feedback in 

decreasing the number of overall computations. Further, since at-most 5% of the data is active, 

instead of having one-to-one mapping for every phone in the PHN_WRD_RAM, the on-chip 

resources can be optimized to provide for only the active data. This is where the dynamic 

memory management in the WRD Block comes in handy. The incorporation of this scheme 

allows for the implementation of a scalable system. 

The savings in the number of computations is considerably more in AM. It can be seen 

from the table that at any time instant, only 72 Senones at most need to be computed for the 3 

test utterances, with the average being 25 Senones. This is in comparison to a total of 1935 

Senones in the AM_Database. 

7.6 SUMMARY 

From the results presented in this chapter, it can be concluded that a highly efficient, fully 

pipelined system has been implemented that would enable the processing of data for a 1,000- 

word Command & Control dictionary with a 1 million cycle budget in real-time. With only 

93,000 equivalent gates required for the implementation of the system, this design can be 

incorporated as a co-processor to commercially available General Purpose Processors. Finally, 

with the incorporation of feedback into the architecture, it can be seen that the number of overall 

computations can be reduced significantly. 
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8.0  CONCLUSIONS 

In conclusion, an architecture that enables the implementation of a continuous speech 

recognition system has been designed and simulated successfully. It was shown that by using a 

highly pipelined implementation, data for every 10ms speech frame could be processed in less 

than 1 million cycles thereby implying that the system is real-time at 100 MHz for a Command 

& Control dictionary. From an implementation perspective, the system was implemented 

efficiently with an Fmax of 154 MHz (post place & route) on a Virtex4 SX-35 device. 

It was shown that the design can be implemented using 93,000 equivalent gates 

indicating a small silicon footprint. With the results obtained, it was concluded that this design 

can be readily incorporated as a dedicated speech recognition co-processor into existing 

processors with minimal increase in overall cost of implementation. 

It was shown that the inclusion of feedback can help in reducing the number of 

computations significantly. Further, since only a small fraction of the overall data is active 

simultaneously, the inclusion of a dynamic memory management scheme helps manage the 

active data space, thereby enabling the implementation of a scalable design. 

It was shown that the Gaussian Distance computations in Acoustic Modeling can be 

implemented using 32-bit fixed-point computations, with only 10-3 % error on an average when 

compared to 32-bit floating-point computations. Finally, a new computation reduction technique, 

bestN, was proposed. It was shown that with 0.1% degradation in word recognition accuracy 

when selecting the top 3 components, the computations for obtaining the shortlist of Components 

can be reduced to 8-bit addition operations instead of the traditional 32-bit multiply/add 

operations. This implies a bandwidth reduction by a factor of 8 for a slight increase in storage 

memory. 
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8.1 MAJOR CONTRIBUTIONS 

The major contributions of this thesis are as follows: 

♦ Designed and implemented a scalable, fully pipelined custom hardware architecture for 

real-time, speaker-independent continuous speech recognition. 

♦ Using dedicated FIFOs, incorporated feedback into the architecture in an efficient way 

from every stage of the design so as to enable the computation of only the active data, 

thereby minimizing the number of computations to be performed. 

♦ Incorporated dynamic memory management into the architecture for maintaining all 

active data at the Word and Phone level, thereby allowing for the implementation of a 

scalable system. 

♦ Converted single-precision floating-point computations into 32-bit custom fixed-point 

computations for Gaussian probability evaluation in Acoustic Modeling with an average 

of 10-3 % loss in accuracy. 

♦ Explored a computation reduction technique in Acoustic Modeling from a fully hardware 

implementation perspective. This lead to proposing the “bestN” technique that allows for 

a bandwidth reduction by a factor of 8 and reduces the computation operations into 8-bit 

integer addition as opposed to several 32-bit multiply & add/subtract operations with 

0.1% degradation in word recognition accuracy when compared to the baseline Sphinx 3 

system on a 1,000 word Command & Control task. 

8.2 CONCLUSIONS 

The conclusions drawn from this research are as follows: 

♦ Speech Recognition does not require multi-GHz processors for real-time performance. A 

system based on dedicated hardware running at 100 MHz is sufficient for this purpose. 

♦ A fully pipelined approach greatly helps in increasing the throughput of the system. Such 

an approach is especially useful for applications like speech recognition, where because 
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of the regular nature of the computations and limited data-dependency within a block, a 

highly pipelined system can be implemented for attaining maximum throughput. 

♦ Despite being a highly pipelined design, the system can be implemented using 93,000 

equivalent gates which shows that the silicon footprint of such a design is reasonably 

small for it to be incorporated as a dedicated speech recognition co-processor. 

♦ Incorporating feedback can significantly decrease the number of computations in the 

system without impact on the overall recognition accuracy. 

♦ Floating-point operations for the computation of Gaussian probabilities in Acoustic 

Modeling need not be performed. Instead, 32-bit custom fixed-point computations can be 

used for little loss in accuracy. 

♦ Using the bestN technique for computation reduction in Acoustic Modeling, 32-bit 

multiply/add operations can give way to 8-bit integer addition operations. For the same 

bus bandwidth, a speedup of 8x can be achieved.  

8.3 FUTURE DIRECTIONS 

Having shown that the architecture developed requires few gates for being implemented, 

the design can be readily moved into a ASIC flow. With availability of sufficient on-chip 

memory, the current implementation can be used for recognizing in excess of 1,000 words.  
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APPENDIX A 

VHDL CODE FOR TOP-LEVEL ENTITIES OF THE ENTIRE SYSTEM 

This Appendix contains the VHDL code of the implemented system. Top-level entities for the 

AM, PHN, WRD Blocks, and the System have been included here for reference. 

 

 121 



A.1 SYSTEM TOP-LEVEL 

 

-------------------------------------------------------------------------------- 
-- Organization:    University of Pittsburgh  
-- Author:    Kshitij Gupta 
-- 
-- Design Name:    SYSTEM TOP-lEVEL 
-- Module Name:    SYS_TOP_v2 - struct 
-- Project Name:   University of Pittsburgh’s Speech Recognition System-on-a-Chip 
-- Target Device:  Xilinx Virtex4 SX-35  
-- Tool versions:  ISE 7.1i 
-------------------------------------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity SYS_TOP_v2 is 
 port ( 
  clk : IN std_logic; 
  ce : IN std_logic; 
  HARD_RST : IN std_logic; 
  UTT_GO : IN std_logic; 
  FRAME_READY : IN std_logic; 
  X : IN std_logic_vector(31 downto 0); 
  X_valid : IN std_logic; 
  MK : IN std_logic_vector(31 downto 0); 
  MK_valid : IN std_logic; 
  VW : IN std_logic_vector(31 downto 0); 
  VW_valid : IN std_logic; 
  ROM_BUSY_STALL : IN std_logic; 
  X_ADDR : OUT std_logic_vector(5 downto 0); 
  X_ADDR_valid : OUT std_logic; 
  MV_ADDR : OUT std_logic_vector(20 downto 0); 
  MV_ADDR_valid : OUT std_logic; 
  EXIT_WRD_ID : OUT std_logic_vector(4 downto 0); 
  EXIT_WRD_ID_VALID : OUT std_logic; 
  EXIT_WRD_SCR : OUT std_logic_vector(31 downto 0); 
  FRAME_DONE : OUT std_logic 
 ); 
end SYS_TOP_v2; 
 
architecture struct of SYS_TOP_v2 is 
 
component SYS_CTRL_v2 
   PORT(  
      AM_DONE                : IN     std_logic; 
      DEAD_PHASE_DONE        : IN     std_logic; 
      FRAME_READY            : IN     std_logic; 
      NXT_PHN_PHASE_DONE     : IN     std_logic; 
      PHN_DONE               : IN     std_logic; 
      SAL_DONE               : IN     std_logic; 
      TKN_INIT_DONE          : IN     std_logic; 
      UTT_GO                 : IN     std_logic; 
      ce                     : IN     std_logic; 
      clk                    : IN     std_logic; 
      rst                    : IN     std_logic; 
      AM_EN                  : OUT    std_logic; 
      AM_GO                  : OUT    std_logic; 
      AM_PHN_PHASE           : OUT    std_logic; 
      AM_RST                 : OUT    std_logic; 
      DEAD_PHASE             : OUT    std_logic; 
      DEAD_PHASE_GO          : OUT    std_logic; 
      FRAME_DONE             : OUT    std_logic; 
      INSERT_SIL_on_SOFT_RST : OUT    std_logic; 
      NXT_PHN_PHASE_GO       : OUT    std_logic; 
      PHN_EN                 : OUT    std_logic; 
      PHN GO                 : OUT    std logic;
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      PHN_RST                : OUT    std_logic; 
      PHN_WRD_PHASE          : OUT    std_logic; 
      SAL_GO                 : OUT    std_logic; 
      SAL_MODE               : OUT    std_logic; 
      SOFT_RST               : OUT    std_logic; 
      TKN_INIT_GO            : OUT    std_logic; 
      WRD_EN                 : OUT    std_logic; 
      WRD_RST                : OUT    std_logic 
   ); 
end component; 
 
component AM_CState_ROM_v2 
 port( 
  clk : IN std_logic; 
  ce : IN std_logic; 
  sclr : IN std_logic; 
  CSID_in : IN std_logic_vector(10 downto 0); 
  CSID_in_valid : IN std_logic; 
  CSID_out : OUT std_logic_vector(11 downto 0); 
  CSID_out_valid : OUT std_logic; 
  CURR_CSEN_done : OUT std_logic; 
  SID_out : OUT std_logic_vector(10 downto 0); 
  SID_out_valid : OUT std_logic 
 ); 
end component; 
 
component sal_fifo 
    port ( 
    clk: IN std_logic; 
    sinit: IN std_logic; 
    din: IN std_logic_VECTOR(10 downto 0); 
    wr_en: IN std_logic; 
    rd_en: IN std_logic; 
    dout: OUT std_logic_VECTOR(10 downto 0); 
    full: OUT std_logic; 
    empty: OUT std_logic; 
    rd_ack: OUT std_logic; 
    data_count: OUT std_logic_VECTOR(10 downto 0)); 
end component; 
 
component csal_fifo 
    port ( 
    clk: IN std_logic; 
    sinit: IN std_logic; 
    din: IN std_logic_VECTOR(10 downto 0); 
    wr_en: IN std_logic; 
    rd_en: IN std_logic; 
    dout: OUT std_logic_VECTOR(10 downto 0); 
    full: OUT std_logic; 
    empty: OUT std_logic; 
    rd_ack: OUT std_logic; 
    data_count: OUT std_logic_VECTOR(10 downto 0)); 
end component; 
 
component AM_TOP_LEVEL_v2 
 PORT ( 
  clk : IN std_logic; 
  ce : IN std_logic; 
  sclr : IN std_logic; 
  AM_GO : IN std_logic; 
  SVQ_BYPASS_GLOBAL : IN std_logic; 
  CW_SAL_SID : IN std_logic_vector(10 downto 0); 
  CW_SAL_SID_valid : IN std_logic; 
  SEN_SAL_SID : IN std_logic_vector(10 downto 0); 
  SEN_SAL_SID_valid : IN std_logic; 
  CW_SAL_EMPTY : IN std_logic; 
  SEN_SAL_EMPTY : IN std_logic;   
  CSAL_EMPTY : IN std_logic; 
  SEN_SAL_SID_CNT : IN std_logic_vector(10 downto 0); 
  CSAL_CSID_CNT : IN std_logic_vector(10 downto 0); 
  ROM_BUSY_STALL : IN std_logic; 
  X : IN std_logic_vector(31 downto 0); 
  X_valid : IN std_logic; 
  MK : IN std_logic_vector(31 downto 0); 
  VW : IN std_logic_vector(31 downto 0); 
  MKVW_valid : IN std_logic; 
  CSID : IN std_logic_vector(11 downto 0); 
  CSID_valid : IN std_logic; 
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  C_SID : IN std_logic_vector(10 downto 0); 
  C_SID_valid : IN std_logic; 
  CURR_CSEN_DONE : IN std_logic; 
  CW_SAL_POP : OUT std_logic; 
  SEN_SAL_POP : OUT std_logic; 
  CSAL_POP : OUT std_logic; 
  FEAT_ADDR : OUT std_logic_vector(5 downto 0); 
  FEAT_ADDR_VALID : OUT std_logic; 
  AM_ROM_ADDR : OUT std_logic_vector(20 downto 0); 
  AM_ROM_ADDR_VALID : OUT std_logic; 
  AM_SID_CSID : OUT std_logic_vector(11 downto 0); 
  AM_sscr_out : OUT std_logic_vector(31 downto 0); 
  AM_sscr_out_valid : OUT std_logic; 
  AM_DONE : OUT std_logic; 
  ERR_AM_ACTIVE_SENONE_CNT_IS_ZERO : OUT std_logic; 
  ERR_AM_N_ACTIVE_COMPONENTS_IS_ZERO : OUT std_logic; 
  ERR_AM_FEAT_AM_ROM_ADDR_NOT_VALID_SIMULTANEOUSLY : OUT std_logic; 
  ERR_AM_SENSAL_CAL_cnt_EMPTY_UNEQUAL : OUT std_logic 
 ); 
end component; 
 
component sal_top_level 
 port ( 
  clk, ce, sclr : std_logic; 
  SAL_GO : IN std_logic; 
  nPAL_PAL_DONE : IN std_logic;           
  sid_csid : IN std_logic_vector(41 downto 0); 
  sid_csid_valid : IN std_logic; 
  C_SID : IN std_logic_vector(10 downto 0); 
  C_SID_valid : IN std_logic; 
  CState_done : IN std_logic; 
  SAL_RST_DONE : OUT std_logic; 
  SAL : OUT std_logic_vector(10 downto 0); 
  SAL_valid : OUT std_logic; 
  CSAL : OUT std_logic_vector(10 downto 0); 
  CSAL_valid : OUT std_logic; 
  SAL_DONE : OUT std_logic 
 ); 
end component; 
 
component SSEQ_CSSEQ_ROM_WRAPPER 
 port( 
  clk : IN std_logic; 
  ce : IN std_logic; 
  sclr : IN std_logic; 
  SSID : IN std_logic_vector(13 downto 0); 
  SSID_valid : IN std_logic; 
  addr_seq : OUT std_logic_vector(41 downto 0); 
  addr_seq_valid : OUT std_logic 
 ); 
end component; 
 
COMPONENT am_phn_ram 
 PORT( 
  clk : IN std_logic; 
  ce : IN std_logic; 
  sclr : IN std_logic; 
  phase_sel : IN std_logic; 
  am_sscr_din : IN std_logic_vector(31 downto 0); 
  am_sid : IN std_logic_vector(11 downto 0); 
  am_sscr_din_valid : IN std_logic; 
  phn_sid_t012 : IN std_logic_vector(41 downto 0); 
  phn_sid_t012_valid : IN std_logic;           
  phn_sscr_t012 : OUT std_logic_vector(179 downto 0); 
  phn_sscr_t012_valid : OUT std_logic 
 ); 
END COMPONENT; 
 
component phn_top 
 port ( 
  clk, ce, sclr : IN std_logic; 
  rst : IN std_logic; 
  SAL_MODE : IN std_logic; 
  SAL_GO : IN std_logic; 
  SAL_RST_DONE : IN std_logic; 
  PHN_GO : IN std_logic; 
  tmat_sscr_in : IN std_logic_vector(179 downto 0); 
  tmat_sscr_in_valid : IN std_logic; 
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  nPAL_TKN : IN std_logic_vector(10 downto 0); 
  nPAL_TKN_valid : IN std_logic; 
  nPAL_empty : IN std_logic;   
  ram_rd_dout : IN std_logic_vector(215 downto 0); 
  ram_rd_dout_valid : IN std_logic_vector(3 downto 0); 
  nPAL_din_s : OUT std_logic_vector(10 downto 0); 
  nPAL_PUSH_s : OUT std_logic; 
  nPAL_POP : OUT std_logic; 
  ram_wr_addr : OUT std_logic_vector(9 downto 0); 
  ram_wr_din : OUT std_logic_vector(215 downto 0); 
  ram_wr_en : OUT std_logic_vector(3 downto 0); 
  ram_rd_addr : OUT std_logic_vector(9 downto 0); 
  ram_rd_en : OUT std_logic_vector(3 downto 0);           
  nPAL_PAL_DONE : OUT std_logic; 
  dead_PUSH_s : OUT std_logic; 
  nxt_phn_PUSH_s : OUT std_logic; 
  TKN_prn : OUT std_logic_vector(10 downto 0); 
  WRD_TH : OUT std_logic_vector(31 downto 0); 
  th_valid : OUT std_logic; 
  PHN_DONE : OUT std_logic 
 ); 
end component; 
 
COMPONENT phn_wrd_ram 
 PORT( 
  clk : IN std_logic; 
  ce : IN std_logic; 
  sclr : IN std_logic; 
  wr_addr : IN std_logic_vector(9 downto 0); 
  wr_din : IN std_logic_vector(215 downto 0); 
  wr_en : IN std_logic_vector(3 downto 0); 
  rd_addr : IN std_logic_vector(9 downto 0); 
  rd_en : IN std_logic_vector(3 downto 0);           
  rd_dout : OUT std_logic_vector(215 downto 0); 
  rd_dout_valid : OUT std_logic_vector(3 downto 0) 
 ); 
END COMPONENT; 
 
component phn_wrd_fifo 
    port ( 
    clk: IN std_logic; 
    sinit: IN std_logic; 
    din: IN std_logic_VECTOR(10 downto 0); 
    wr_en: IN std_logic; 
    rd_en: IN std_logic; 
    dout: OUT std_logic_VECTOR(10 downto 0); 
    full: OUT std_logic; 
    empty: OUT std_logic; 
    rd_ack: OUT std_logic; 
    rd_err: OUT std_logic; 
    wr_err: OUT std_logic; 
    data_count: OUT std_logic_VECTOR(9 downto 0)); 
end component; 
 
component wrd_top 
 PORT( 
  clk : IN std_logic; 
  ce : IN std_logic; 
  sclr : IN std_logic; 
  DEAD_PHASE : IN std_logic; 
  TKN_INIT_GO : IN std_logic; 
  WRD_TH : IN std_logic_vector(31 downto 0); 
  RAM_rd_dout : IN std_logic_vector(215 downto 0); 
  RAM_rd_dout_valid : IN std_logic_vector(3 downto 0); 
  DEAD_GO : IN std_logic; 
  DEAD_empty : IN std_logic; 
  DEAD_TKN : IN std_logic_vector(10 downto 0); 
  DEAD_TKN_valid : IN std_logic; 
  NXT_PHN_GO : IN std_logic; 
  NXT_PHN_empty : IN std_logic; 
  NXT_PHN_TKN : IN std_logic_vector(10 downto 0); 
  NXT_PHN_TKN_valid : IN std_logic; 
  TKN_INIT_DONE : OUT std_logic; 
  RAM_rd_addr : OUT std_logic_vector(9 downto 0); 
  RAM_rd_addr_valid : OUT std_logic_vector(3 downto 0); 
  RAM_wr_addr : OUT std_logic_vector(9 downto 0); 
  RAM_wr_din : OUT std_logic_vector(215 downto 0); 
  RAM_wr_addr_valid : OUT std_logic_vector(3 downto 0); 
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  nPAL_TKN : OUT std_logic_vector(10 downto 0); 
  nPAL_TKN_valid : OUT std_logic; 
  DEAD_pop : OUT std_logic; 
  DEAD_phase_done : OUT std_logic; 
  NXT_PHN_pop : OUT std_logic; 
  NXT_PHN_phase_done : OUT std_logic; 
  WRD_EXIT_SCR : OUT std_logic_vector(31 downto 0); 
  WRD_EXIT_ID : OUT std_logic_vector(4 downto 0); 
  WRD_EXIT_ID_valid : OUT std_logic; 
  WRD_ERR_TKN_FIFO_EMPTY : OUT std_logic; 
  WRD_ERR_TKN_FIFO_WR_ERROR : OUT std_logic; 
  WRD_ERR_LAST_PHN_ACCESSED : OUT std_logic; 
  WRD_DATA_MINE_TKN_FIFO_CNT : OUT std_logic_vector(9 downto 0) 
 ); 
end component; 
 
signal sclr : std_logic; 
signal SOFT_RST : std_logic; 
signal INS_SIL_on_SOFT_RST : std_logic; 
signal TKN_INIT_GO : std_logic; 
signal TKN_INIT_DONE : std_logic; 
signal AM_EN : std_logic; 
signal AM_GO : std_logic; 
signal AM_RST : std_logic; 
signal AM_DONE : std_logic; 
signal PHN_EN : std_logic; 
signal PHN_GO : std_logic; 
signal PHN_RST : std_logic; 
signal PHN_DONE : std_logic; 
signal WRD_EN : std_logic; 
signal WRD_RST : std_logic; 
signal DEAD_GO : std_logic; 
signal NXT_PHN_GO : std_logic; 
signal DEAD_PHASE_DONE : std_logic; 
signal NXT_PHN_PHASE_DONE : std_logic; 
signal DEAD_PHASE : std_logic; 
signal AM_PHN_PHASE : std_logic; 
signal PHN_WRD_PHASE : std_logic; 
signal SAL_MODE : std_logic; 
signal CSID_in : std_logic_vector(10 downto 0);  
signal CSID_in_valid : std_logic; 
signal CSID_out : std_logic_vector(11 downto 0); 
signal CSID_out_valid : std_logic; 
signal CURR_CSEN_DONE : std_logic; 
signal C_SID : std_logic_vector(10 downto 0);  
signal C_SID_valid : std_logic; 
signal am_CSID : std_logic_vector(11 downto 0); 
signal am_CSID_valid : std_logic; 
signal am_CURR_CSEN_DONE : std_logic; 
signal am_C_SID : std_logic_vector(10 downto 0); 
signal am_C_SID_valid : std_logic; 
signal phn_C_SID : std_logic_vector(10 downto 0); 
signal phn_C_SID_valid : std_logic; 
signal phn_CURR_CSEN_DONE : std_logic; 
signal phn_SAL_sid : std_logic_vector(10 downto 0);  
signal phn_SAL_PUSH : std_logic; 
signal SAL_CW_FULL : std_logic; 
signal SAL_CW_count : std_logic_vector(10 downto 0); 
signal am_SAL_CW_POP : std_logic;  
signal SAL_CW_EMPTY : std_logic; 
signal am_SAL_CW_sid : std_logic_vector(10 downto 0);  
signal am_SAL_CW_valid : std_logic; 
signal SAL_SEN_FULL : std_logic; 
signal SAL_SEN_count : std_logic_vector(10 downto 0); 
signal am_SAL_SEN_POP : std_logic;  
signal SAL_SEN_EMPTY : std_logic; 
signal am_SAL_SEN_sid : std_logic_vector(10 downto 0);  
signal am_SAL_SEN_valid : std_logic; 
signal CSAL_FULL : std_logic; 
signal CSAL_count : std_logic_vector(10 downto 0); 
signal phn_CSAL_csid : std_logic_vector(10 downto 0);  
signal phn_CSAL_PUSH : std_logic; 
signal am_CSAL_POP : std_logic;  
signal CSAL_EMPTY : std_logic; 
signal am_CSAL_csid : std_logic_vector(10 downto 0);  
signal am_CSAL_valid : std_logic; 
signal SVQ_BYPASS_GLOBAL : std_logic; 
signal MKVW_valid : std_logic; 
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signal ERR_AM : std_logic_vector(3 downto 0); 
signal phn_SSID : std_logic_vector(13 downto 0); 
signal phn_SSID_valid : std_logic; 
signal SSEQ_ADDR : std_logic_vector(41 downto 0); 
signal SSEQ_ADDR_valid : std_logic; 
signal sal_SSEQ_ADDR_valid : std_logic; 
signal sscr_SSEQ_ADDR_valid : std_logic; 
signal SAL_GO : std_logic; 
signal SAL_RST_DONE : std_logic; 
signal SAL_DONE : std_logic; 
signal am_SID_CSID : std_logic_vector(11 downto 0); 
signal am_SSCR_dout : std_logic_vector(31 downto 0); 
signal am_SSCR_dout_valid : std_logic; 
signal phn_sscr_t012 : std_logic_vector(179 downto 0); 
signal phn_sscr_t012_valid : std_logic; 
signal nPAL_PAL_DONE : std_logic; 
signal TKN_prn : std_logic_vector(10 downto 0); 
signal RAM_wr_addr : std_logic_vector(9 downto 0); 
signal RAM_wr_din : std_logic_vector(215 downto 0); 
signal RAM_wr_en : std_logic_vector(3 downto 0); 
signal RAM_rd_addr : std_logic_vector(9 downto 0); 
signal RAM_rd_en : std_logic_vector(3 downto 0);           
signal RAM_rd_dout : std_logic_vector(215 downto 0); 
signal RAM_rd_dout_valid : std_logic_vector(3 downto 0); 
signal phn_RAM_wr_addr : std_logic_vector(9 downto 0); 
signal phn_RAM_wr_din : std_logic_vector(215 downto 0); 
signal phn_RAM_wr_en : std_logic_vector(3 downto 0); 
signal phn_RAM_rd_addr : std_logic_vector(9 downto 0); 
signal phn_RAM_rd_en : std_logic_vector(3 downto 0);           
signal phn_RAM_rd_dout : std_logic_vector(215 downto 0); 
signal phn_RAM_rd_dout_valid : std_logic_vector(3 downto 0); 
signal wrd_RAM_wr_addr : std_logic_vector(9 downto 0); 
signal wrd_RAM_wr_din : std_logic_vector(215 downto 0); 
signal wrd_RAM_wr_en : std_logic_vector(3 downto 0); 
signal wrd_RAM_rd_addr : std_logic_vector(9 downto 0); 
signal wrd_RAM_rd_en : std_logic_vector(3 downto 0);           
signal wrd_RAM_rd_dout : std_logic_vector(215 downto 0); 
signal wrd_RAM_rd_dout_valid : std_logic_vector(3 downto 0); 
signal phn_WRD_TH, wrd_WRD_TH : std_logic_vector(31 downto 0); 
signal phn_WRD_TH_valid, wrd_WRD_TH_valid : std_logic; 
signal ERR_WRD : std_logic_vector(2 downto 0); 
signal WRD_TKN_CNT : std_logic_vector(9 downto 0); 
signal phn_nPAL_din : std_logic_vector(10 downto 0); 
signal phn_nPAL_PUSH : std_logic; 
signal wrd_nPAL_din : std_logic_vector(10 downto 0); 
signal wrd_nPAL_PUSH : std_logic; 
signal wrd_nPAL_din_s : std_logic_vector(10 downto 0); 
signal wrd_nPAL_PUSH_s : std_logic; 
signal nPAL_din : std_logic_vector(10 downto 0); 
signal nPAL_PUSH : std_logic; 
signal nPAL_wr_err : std_logic; 
signal nPAL_FULL : std_logic; 
signal nPAL_dout : std_logic_vector(10 downto 0); 
signal nPAL_dout_valid : std_logic; 
signal nPAL_POP : std_logic; 
signal nPAL_rd_err : std_logic; 
signal nPAL_EMPTY : std_logic; 
signal nPAL_CNT : std_logic_vector(9 downto 0); 
signal NXT_PHN_din : std_logic_vector(10 downto 0); 
signal NXT_PHN_PUSH : std_logic; 
signal NXT_PHN_wr_err : std_logic; 
signal NXT_PHN_FULL : std_logic; 
signal NXT_PHN_dout : std_logic_vector(10 downto 0); 
signal NXT_PHN_dout_valid : std_logic; 
signal NXT_PHN_POP : std_logic; 
signal NXT_PHN_rd_err : std_logic; 
signal NXT_PHN_EMPTY : std_logic; 
signal NXT_PHN_CNT : std_logic_vector(9 downto 0); 
signal DEAD_din : std_logic_vector(10 downto 0); 
signal DEAD_PUSH_s : std_logic; 
signal DEAD_PUSH : std_logic; 
signal DEAD_wr_err : std_logic; 
signal DEAD_FULL : std_logic; 
signal DEAD_dout : std_logic_vector(10 downto 0); 
signal DEAD_dout_valid : std_logic; 
signal DEAD_POP : std_logic; 
signal DEAD_rd_err : std_logic; 
signal DEAD_EMPTY : std_logic; 
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signal DEAD_CNT : std_logic_vector(9 downto 0); 
signal SAL_SEN_CNT_reg : std_logic_vector(10 downto 0); 
signal SAL_CW_CNT_reg : std_logic_vector(10 downto 0); 
signal CSAL_CSEN_CNT_reg : std_logic_vector(10 downto 0); 
signal nPAL_CNT_reg : std_logic_vector(9 downto 0); 
signal WRD_TKN_CNT_reg : std_logic_vector(9 downto 0); 
 
constant NEG_INF : std_logic_vector(31 downto 0) := X"C8000000"; 
 
begin 
 
sclr <= SOFT_RST or HARD_RST; 
SVQ_BYPASS_GLOBAL <= '1'; 
MKVW_valid <= MK_valid or VW_valid; 
 
SYS_CTRL_BLK : SYS_CTRL_v2 
   PORT MAP(  
      AM_DONE            => AM_DONE, 
      DEAD_PHASE_DONE    => DEAD_PHASE_DONE, 
      FRAME_READY        => FRAME_READY, 
      NXT_PHN_PHASE_DONE => NXT_PHN_PHASE_DONE, 
      PHN_DONE           => PHN_DONE, 
      SAL_DONE           => SAL_DONE, 
      TKN_INIT_DONE      => TKN_INIT_DONE, 
      UTT_GO             => UTT_GO, 
      ce                 => ce, 
      clk                => clk, 
      rst                => HARD_RST, 
      AM_EN              => AM_EN, 
      AM_GO              => AM_GO, 
      AM_PHN_PHASE       => AM_PHN_PHASE, 
      AM_RST             => AM_RST, 
      DEAD_PHASE         => DEAD_PHASE, 
      DEAD_PHASE_GO      => DEAD_GO, 
      FRAME_DONE         => FRAME_DONE, 
      INSERT_SIL_on_SOFT_RST => INS_SIL_on_SOFT_RST, 
      NXT_PHN_PHASE_GO   => NXT_PHN_GO, 
      PHN_EN             => PHN_EN, 
      PHN_GO             => PHN_GO, 
      PHN_RST            => PHN_RST, 
      PHN_WRD_PHASE      => PHN_WRD_PHASE, 
      SAL_GO             => SAL_GO, 
      SAL_MODE           => SAL_MODE, 
      SOFT_RST           => SOFT_RST, 
      TKN_INIT_GO        => TKN_INIT_GO, 
      WRD_EN             => WRD_EN, 
      WRD_RST            => WRD_RST 
   ); 
 
SYS_AM_CState_ROM_BLK : AM_CState_ROM_v2 
 port map( 
  clk => clk, 
  ce => ce, 
  sclr => sclr, 
  CSID_in => CSID_in, 
  CSID_in_valid => CSID_in_valid, 
  CSID_out => CSID_out, 
  CSID_out_valid => CSID_out_valid, 
  CURR_CSEN_done => CURR_CSEN_DONE, 
  SID_out => C_SID, 
  SID_out_valid => C_SID_valid 
 ); 
 
process(SAL_MODE, C_SID, C_SID_valid, CURR_CSEN_DONE, phn_CSAL_csid, phn_CSAL_PUSH, am_CSAL_csid, 
am_CSAL_valid, CSID_out, CSID_out_valid) 
begin 
 if (SAL_MODE = '1') then 
  CSID_in <= phn_CSAL_csid; 
  CSID_in_valid <= phn_CSAL_PUSH; 
  am_CSID <= (OTHERS => '0'); 
  am_CSID_valid <= '0'; 
  am_C_SID_valid <= '0'; 
  am_curr_CSEN_done <= '0'; 
  phn_C_SID <= C_SID; 
  phn_C_SID_valid <= C_SID_valid; 
  phn_curr_CSEN_done <= CURR_CSEN_DONE; 
 else 
  CSID_in <= am_CSAL_csid; 

CSID in valid <= am CSAL valid;
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  am_CSID <= CSID_out; 
  am_CSID_valid <= CSID_out_valid; 
  am_C_SID <= C_SID; 
  am_C_SID_valid <= C_SID_valid; 
  am_curr_CSEN_done <= CURR_CSEN_DONE; 
  phn_C_SID_valid <= '0'; 
  phn_curr_CSEN_done <= '0'; 
 end if; 
end process; 
 
SYS_FIFO_SAL_CW : sal_fifo 
   port map ( 
       clk => clk, 
       sinit => sclr, 
       din => phn_SAL_sid, 
       wr_en => phn_SAL_PUSH, 
       rd_en => am_SAL_CW_POP, 
       dout => am_SAL_CW_sid, 
       full => SAL_CW_FULL, 
       empty => SAL_CW_EMPTY, 
       rd_ack => am_SAL_CW_valid, 
       data_count => SAL_CW_count 
  ); 
 
SYS_FIFO_SAL_SEN : sal_fifo 
   port map ( 
       clk => clk, 
       sinit => sclr, 
       din => phn_SAL_sid, 
       wr_en => phn_SAL_PUSH, 
       rd_en => am_SAL_SEN_POP, 
       dout => am_SAL_SEN_sid, 
       full => SAL_SEN_FULL, 
       empty => SAL_SEN_EMPTY, 
       rd_ack => am_SAL_SEN_valid, 
       data_count => SAL_SEN_count 
  ); 
 
SYS_FIFO_CSAL : csal_fifo 
   port map ( 
       clk => clk, 
       sinit => sclr, 
       din => phn_CSAL_csid, 
       wr_en => phn_CSAL_PUSH, 
       rd_en => am_CSAL_POP, 
       dout => am_CSAL_csid, 
       full => CSAL_FULL, 
       empty => CSAL_EMPTY, 
       rd_ack => am_CSAL_valid, 
       data_count => CSAL_count 
  ); 
 
SYS_AM_TOP_BLK : AM_TOP_LEVEL_v2 
 PORT MAP( 
  clk => clk, 
  ce => AM_EN, 
  sclr => AM_RST, 
  AM_GO => AM_GO, 
  SVQ_BYPASS_GLOBAL => SVQ_BYPASS_GLOBAL, 
  CW_SAL_SID => am_SAL_CW_sid, 
  CW_SAL_SID_valid => am_SAL_CW_valid, 
  SEN_SAL_SID => am_SAL_SEN_sid, 
  SEN_SAL_SID_valid => am_SAL_SEN_valid, 
  CW_SAL_EMPTY => SAL_CW_EMPTY, 
  SEN_SAL_EMPTY => SAL_SEN_EMPTY, 
  CSAL_EMPTY => CSAL_EMPTY, 
  SEN_SAL_SID_CNT => SAL_SEN_count, 
  CSAL_CSID_CNT => CSAL_count, 
  ROM_BUSY_STALL => ROM_BUSY_STALL, 
  X => X, 
  X_valid => X_valid, 
  MK => MK, 
  VW => VW, 
  MKVW_valid => MKVW_valid, 
  CSID => am_CSID, 
  CSID_valid => am_CSID_valid, 
  C_SID => am_C_SID, 
  C_SID_valid => am_C_SID_valid, 
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  CURR_CSEN_DONE => am_curr_CSEN_done, 
  CW_SAL_POP => am_SAL_CW_POP, 
  SEN_SAL_POP => am_SAL_SEN_POP, 
  CSAL_POP => am_CSAL_POP, 
  FEAT_ADDR => X_ADDR, 
  FEAT_ADDR_VALID => X_ADDR_valid, 
  AM_ROM_ADDR => MV_ADDR, 
  AM_ROM_ADDR_VALID => MV_ADDR_valid, 
  AM_SID_CSID => am_SID_CSID, 
  AM_sscr_out => am_SSCR_dout, 
  AM_sscr_out_valid => am_SSCR_dout_valid, 
  AM_DONE => AM_DONE, 
  ERR_AM_ACTIVE_SENONE_CNT_IS_ZERO => ERR_AM(0), 
  ERR_AM_N_ACTIVE_COMPONENTS_IS_ZERO => ERR_AM(1), 
  ERR_AM_FEAT_AM_ROM_ADDR_NOT_VALID_SIMULTANEOUSLY => ERR_AM(2), 
  ERR_AM_SENSAL_CAL_cnt_EMPTY_UNEQUAL => ERR_AM(3) 
 ); 
 
SYS_SAL_GENERATOR : sal_top_level 
 port map ( 
  clk => clk, 
  ce => ce, 
  sclr => sclr, 
  SAL_GO => SAL_GO, 
  nPAL_PAL_DONE => nPAL_PAL_DONE, 
  sid_csid => SSEQ_ADDR, 
  sid_csid_valid => sal_SSEQ_ADDR_valid, 
  C_SID => phn_C_SID, 
  C_SID_valid => phn_C_SID_valid, 
  CState_done => phn_curr_CSEN_done, 
  SAL_RST_DONE => SAL_RST_DONE, 
  SAL => phn_SAL_sid, 
  SAL_valid => phn_SAL_PUSH, 
  CSAL => phn_CSAL_csid, 
  CSAL_valid => phn_CSAL_PUSH, 
  SAL_DONE => SAL_DONE 
 ); 
 
phn_SSID <= phn_RAM_rd_dout(215 downto 202); 
phn_SSID_valid <= phn_RAM_rd_dout_valid(3); 
 
SYS_SSEQ_CSSEQ_ROM_BLK : SSEQ_CSSEQ_ROM_WRAPPER 
 port map( 
  clk => clk, 
  ce => ce, 
  sclr => sclr, 
  SSID => phn_SSID, 
  SSID_valid => phn_SSID_valid, 
  addr_seq => SSEQ_ADDR, 
  addr_seq_valid => SSEQ_ADDR_valid 
 ); 
 
sal_SSEQ_ADDR_valid <= SSEQ_ADDR_valid and SAL_MODE; 
sscr_SSEQ_ADDR_valid <= SSEQ_ADDR_valid and NOT(SAL_MODE); 
 
SYS_AM_PHN_RAM_BLK : am_phn_ram  
 PORT MAP( 
  clk => clk, 
  ce => ce, 
  sclr => sclr, 
  phase_sel => AM_PHN_PHASE, 
  am_sscr_din => am_SSCR_dout, 
  am_sid => am_SID_CSID, 
  am_sscr_din_valid => am_SSCR_dout_valid, 
  phn_sid_t012 => SSEQ_ADDR, 
  phn_sid_t012_valid => sscr_SSEQ_ADDR_valid, 
  phn_sscr_t012 => phn_sscr_t012, 
  phn_sscr_t012_valid => phn_sscr_t012_valid 
 ); 
 
SYS_PHN_TOP_BLK : phn_top 
 port map( 
  clk => clk, 
  ce => PHN_EN, 
  sclr => PHN_RST, 
  rst => sclr, 
  SAL_MODE => SAL_MODE, 
  SAL_GO => SAL_GO, 
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  SAL_RST_DONE => SAL_RST_DONE, 
  PHN_GO => PHN_GO, 
  tmat_sscr_in => phn_sscr_t012, 
  tmat_sscr_in_valid => phn_sscr_t012_valid, 
  nPAL_TKN => nPAL_dout, 
  nPAL_TKN_valid => nPAL_dout_valid, 
  nPAL_empty => nPAL_EMPTY, 
  ram_rd_dout => RAM_rd_dout, 
  ram_rd_dout_valid => RAM_rd_dout_valid, 
  nPAL_din_s => phn_nPAL_din, 
  nPAL_PUSH_s => phn_nPAL_PUSH, 
  nPAL_POP => nPAL_POP, 
  ram_wr_addr => phn_RAM_wr_addr, 
  ram_wr_din => phn_RAM_wr_din, 
  ram_wr_en => phn_RAM_wr_en, 
  ram_rd_addr => phn_RAM_rd_addr, 
  ram_rd_en => phn_RAM_rd_en, 
  nPAL_PAL_DONE => nPAL_PAL_DONE, 
  dead_PUSH_s => DEAD_PUSH_s, 
  nxt_phn_PUSH_s => NXT_PHN_PUSH, 
  TKN_prn => TKN_prn, 
  WRD_TH => phn_WRD_TH, 
  th_valid => phn_WRD_TH_valid, 
  PHN_DONE => PHN_DONE 
 ); 
 
SYS_PHN_WRD_RAM_BLK : phn_wrd_ram 
 PORT MAP( 
  clk => clk, 
  ce => ce, 
  sclr => sclr, 
  wr_addr => RAM_wr_addr, 
  wr_din => RAM_wr_din, 
  wr_en => RAM_wr_en, 
  rd_addr => RAM_rd_addr, 
  rd_en => RAM_rd_en, 
  rd_dout => RAM_rd_dout, 
  rd_dout_valid => RAM_rd_dout_valid 
 ); 
 
SYS_PHN_WRD_RAM_WRAPPER_BLK : process(PHN_WRD_PHASE, phn_RAM_wr_addr, phn_RAM_wr_din, phn_RAM_wr_en, 
phn_RAM_rd_addr, phn_RAM_rd_en, wrd_RAM_wr_addr, wrd_RAM_wr_din, wrd_RAM_wr_en, wrd_RAM_rd_addr, 
wrd_RAM_rd_en, RAM_rd_dout, RAM_rd_dout_valid) 
begin 
 case PHN_WRD_PHASE is 
  when '1' => 
   RAM_wr_addr <= phn_RAM_wr_addr; 
   RAM_wr_din <= phn_RAM_wr_din; 
   RAM_wr_en <= phn_RAM_wr_en; 
   RAM_rd_addr <= phn_RAM_rd_addr; 
   RAM_rd_en <= phn_RAM_rd_en; 
   phn_RAM_rd_dout <= RAM_rd_dout; 
   phn_RAM_rd_dout_valid <= RAM_rd_dout_valid; 
  when '0' => 
   RAM_wr_addr <= wrd_RAM_wr_addr; 
   RAM_wr_din <= wrd_RAM_wr_din; 
   RAM_wr_en <= wrd_RAM_wr_en; 
   RAM_rd_addr <= wrd_RAM_rd_addr; 
   RAM_rd_en <= wrd_RAM_rd_en; 
   wrd_RAM_rd_dout <= RAM_rd_dout; 
   wrd_RAM_rd_dout_valid <= RAM_rd_dout_valid; 
  when OTHERS => 
   RAM_wr_addr <= (OTHERS => '0'); 
   RAM_wr_en <= "0000"; 
   RAM_rd_addr <= (OTHERS => '0'); 
   RAM_rd_en <= "0000"; 
 end case; 
end process; 
 
process(clk, ce, sclr, PHN_GO, phn_WRD_TH, phn_WRD_TH_valid) 
begin 
 if (clk'event and clk = '1') then 
  if (sclr = '1') then 
   wrd_WRD_TH <= (OTHERS => '0'); 
   wrd_WRD_TH_valid <= '1'; 
  elsif (PHN_GO = '1') then 
   wrd_WRD_TH <= NEG_INF; 
   wrd_WRD_TH_valid <= '0'; 
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  elsif (ce = '1') then 
   if (phn_WRD_TH_valid = '1') then 
    wrd_WRD_TH <= phn_WRD_TH; 
    wrd_WRD_TH_valid <= phn_WRD_TH_valid; 
   end if; 
  end if; 
 end if; 
end process; 
 
process(PHN_WRD_PHASE, phn_nPAL_PUSH, phn_nPAL_din, wrd_nPAL_PUSH, wrd_nPAL_din) 
begin 
 case PHN_WRD_PHASE is 
  when '1' => 
   nPAL_PUSH <= phn_nPAL_PUSH; 
   nPAL_din <= phn_nPAL_din; 
  when '0' => 
   nPAL_PUSH <= wrd_nPAL_PUSH; 
   nPAL_din <= wrd_nPAL_din; 
  when OTHERS => 
   npal_PUSH <= '0'; 
 end case; 
end process; 
 
process(NXT_PHN_PHASE_DONE, wrd_nPAL_din_s, wrd_nPAL_PUSH_s) 
begin 
 if (NXT_PHN_PHASE_DONE = '1') then 
  wrd_nPAL_din <= "10000000000"; 
  wrd_nPAL_PUSH <= '1'; 
 else 
  wrd_nPAL_din <= wrd_nPAL_din_s; 
  wrd_nPAL_PUSH <= wrd_nPAL_PUSH_s; 
 end if; 
end process; 
 
process(INS_SIL_on_SOFT_RST, TKN_prn, DEAD_PUSH_s) 
begin 
 if (INS_SIL_on_SOFT_RST = '1') then 
  DEAD_din <= '0' & "1111111111"; 
  DEAD_PUSH <= '1'; 
 else 
  DEAD_din <= TKN_prn; 
  DEAD_PUSH <= DEAD_PUSH_s; 
 end if; 
end process; 
 
NXT_PHN_din <= TKN_prn; 
 
SYS_nPAL_FIFO : phn_wrd_fifo 
  port map (clk, sclr, nPAL_din, nPAL_PUSH, nPAL_POP, nPAL_dout, nPAL_FULL, nPAL_EMPTY, nPAL_dout_valid, 
nPAL_rd_err, nPAL_wr_err, nPAL_CNT); 
 
SYS_DEAD_FIFO : phn_wrd_fifo 
  port map (clk, sclr, DEAD_din, DEAD_PUSH, DEAD_POP, DEAD_dout, DEAD_FULL, DEAD_EMPTY, DEAD_dout_valid, 
DEAD_rd_err, DEAD_wr_err, DEAD_CNT); 
 
SYS_NXT_PHN_FIFO : phn_wrd_fifo 
  port map (clk, sclr, NXT_PHN_din, NXT_PHN_PUSH, NXT_PHN_POP, NXT_PHN_dout, NXT_PHN_FULL, NXT_PHN_EMPTY, 
NXT_PHN_dout_valid, NXT_PHN_rd_err, NXT_PHN_wr_err, NXT_PHN_CNT); 
 
SYS_WRD_TOP_BLK : wrd_top 
 PORT MAP( 
  clk => clk, 
  ce => WRD_EN,  
  sclr => WRD_RST,  
  DEAD_PHASE => DEAD_PHASE, 
  TKN_INIT_GO => TKN_INIT_GO, 
  WRD_TH => wrd_WRD_TH, 
  RAM_rd_dout => wrd_RAM_rd_dout, 
  RAM_rd_dout_valid => wrd_RAM_rd_dout_valid, 
  DEAD_GO => DEAD_GO, 
  DEAD_empty => DEAD_EMPTY, 
  DEAD_TKN => DEAD_dout, 
  DEAD_TKN_valid => DEAD_dout_valid, 
  NXT_PHN_GO => NXT_PHN_GO, 
  NXT_PHN_empty => NXT_PHN_EMPTY, 
  NXT_PHN_TKN => NXT_PHN_dout, 
  NXT_PHN_TKN_valid => NXT_PHN_dout_valid, 
  TKN_INIT_DONE => TKN_INIT_DONE, 
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  RAM_rd_addr => wrd_RAM_rd_addr, 
  RAM_rd_addr_valid => wrd_RAM_rd_en, 
  RAM_wr_addr => wrd_RAM_wr_addr, 
  RAM_wr_din => wrd_RAM_wr_din, 
  RAM_wr_addr_valid => wrd_RAM_wr_en, 
  nPAL_TKN => wrd_nPAL_din_s, 
  nPAL_TKN_valid => wrd_nPAL_PUSH_s, 
  DEAD_pop => DEAD_POP, 
  DEAD_phase_done => DEAD_PHASE_DONE, 
  NXT_PHN_pop => NXT_PHN_POP, 
  NXT_PHN_phase_done => NXT_PHN_PHASE_DONE, 
  WRD_EXIT_SCR => EXIT_WRD_SCR, 
  WRD_EXIT_ID => EXIT_WRD_ID, 
  WRD_EXIT_ID_valid => EXIT_WRD_ID_VALID, 
  WRD_ERR_TKN_FIFO_EMPTY => ERR_WRD(0), 
  WRD_ERR_TKN_FIFO_WR_ERROR => ERR_WRD(1), 
  WRD_ERR_LAST_PHN_ACCESSED => ERR_WRD(2), 
  WRD_DATA_MINE_TKN_FIFO_CNT => WRD_TKN_CNT 
 ); 
 
process(clk, ce, sclr, SAL_SEN_count, SAL_CW_count, CSAL_count, nPAL_CNT, WRD_TKN_CNT) 
begin 
 if (clk'event and clk = '1') then 
  if (sclr = '1') then 
   SAL_SEN_CNT_reg <= (OTHERS => '0'); 
   SAL_CW_CNT_reg <= (OTHERS => '0'); 
   CSAL_CSEN_CNT_reg <= (OTHERS => '0'); 
   nPAL_CNT_reg <= (OTHERS => '0'); 
   WRD_TKN_CNT_reg <= (OTHERS => '0'); 
  elsif (ce = '1') then 
   SAL_SEN_CNT_reg <= SAL_SEN_count; 
   SAL_CW_CNT_reg <= SAL_CW_count; 
   CSAL_CSEN_CNT_reg <= CSAL_count; 
   nPAL_CNT_reg <= nPAL_CNT; 
   WRD_TKN_CNT_reg <= WRD_TKN_CNT; 
  end if; 
 end if; 
end process; 
 
end struct; 
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A.2 SYSTEM CONTROLLER 

 

-------------------------------------------------------------------------------- 
-- Organization:    University of Pittsburgh  
-- Author:    Kshitij Gupta 
-- 
-- Design Name:    SYSTEM CONTROLLER 
-- Module Name:    SYS_CTRL_v2 - fsm 
-- Project Name:   University of Pittsburgh’s Speech Recognition System-on-a-Chip 
-- Target Device:  Xilinx Virtex4 SX-35  
-- Tool versions:  ISE 7.1i 
-------------------------------------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity SYS_CTRL_v2 is 
   PORT(  
      AM_DONE                : IN     std_logic; 
      DEAD_PHASE_DONE        : IN     std_logic; 
      FRAME_READY            : IN     std_logic; 
      NXT_PHN_PHASE_DONE     : IN     std_logic; 
      PHN_DONE               : IN     std_logic; 
      SAL_DONE               : IN     std_logic; 
      TKN_INIT_DONE          : IN     std_logic; 
      UTT_GO                 : IN     std_logic; 
      ce                     : IN     std_logic; 
      clk                    : IN     std_logic; 
      rst                    : IN     std_logic; 
      AM_EN                  : OUT    std_logic; 
      AM_GO                  : OUT    std_logic; 
      AM_PHN_PHASE           : OUT    std_logic; 
      AM_RST                 : OUT    std_logic; 
      DEAD_PHASE             : OUT    std_logic; 
      DEAD_PHASE_GO          : OUT    std_logic; 
      FRAME_DONE             : OUT    std_logic; 
      INSERT_SIL_on_SOFT_RST : OUT    std_logic; 
      NXT_PHN_PHASE_GO       : OUT    std_logic; 
      PHN_EN                 : OUT    std_logic; 
      PHN_GO                 : OUT    std_logic; 
      PHN_RST                : OUT    std_logic; 
      PHN_WRD_PHASE          : OUT    std_logic; 
      SAL_GO                 : OUT    std_logic; 
      SAL_MODE               : OUT    std_logic; 
      SOFT_RST               : OUT    std_logic; 
      TKN_INIT_GO            : OUT    std_logic; 
      WRD_EN                 : OUT    std_logic; 
      WRD_RST                : OUT    std_logic 
   ); 
end SYS_CTRL_v2; 
 
architecture fsm of SYS_CTRL_v2 is 
 
   TYPE STATE_TYPE IS ( 
      s0, 
      s1, 
      s2, 
      s3, 
      s4, 
      s5, 
      s6, 
      s7, 
      s8, 
      s9, 
      s10, 
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      s11, 
      s12, 
      s13, 
      s14, 
      s15, 
      s16, 
      s17, 
      s18, 
      s19, 
      s20 
   ); 
  
   -- State vector declaration 
   ATTRIBUTE state_vector : string; 
   ATTRIBUTE state_vector OF fsm : ARCHITECTURE IS "current_state"; 
 
   -- Declare current and next state signals 
   SIGNAL current_state : STATE_TYPE; 
   SIGNAL next_state : STATE_TYPE; 
 
BEGIN 
 
   ----------------------------------------------------------------- 
   clocked_proc : PROCESS (  
      clk 
   ) 
   ----------------------------------------------------------------- 
   BEGIN 
      IF (clk'EVENT AND clk = '1') THEN 
         IF (rst = '1') THEN 
            current_state <= s0; 
         ELSIF (ce = '1') THEN 
            current_state <= next_state; 
         END IF; 
      END IF; 
   END PROCESS clocked_proc; 
  
   ----------------------------------------------------------------- 
   nextstate_proc : PROCESS (  
      AM_DONE, 
      DEAD_PHASE_DONE, 
      FRAME_READY, 
      NXT_PHN_PHASE_DONE, 
      PHN_DONE, 
      SAL_DONE, 
      TKN_INIT_DONE, 
      UTT_GO, 
      current_state 
   ) 
   ----------------------------------------------------------------- 
   BEGIN 
      -- Default Assignment 
      AM_GO <= '0'; 
      AM_RST <= '0'; 
      DEAD_PHASE_GO <= '0'; 
      FRAME_DONE <= '0'; 
      INSERT_SIL_on_SOFT_RST <= '0'; 
      NXT_PHN_PHASE_GO <= '0'; 
      PHN_GO <= '0'; 
      PHN_RST <= '0'; 
      SAL_GO <= '0'; 
      SOFT_RST <= '0'; 
      TKN_INIT_GO <= '0'; 
      WRD_RST <= '0'; 
 
      -- Combined Actions 
      CASE current_state IS 
         WHEN s0 =>  
            IF (UTT_GO = '1') THEN  
               SOFT_RST <= '1'; 
               AM_RST <= '1'; 
               PHN_RST <= '1'; 
               WRD_RST <= '1'; 
               AM_EN <= '0'; 
               PHN_EN <= '0'; 
               WRD_EN <= '0'; 
               next_state <= s1; 
            ELSIF (FRAME_READY = '1') THEN 
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               next_state <= s14; 
            ELSIF (UTT_GO = '0' 
                   OR 
                   FRAME_READY = '0') THEN  
               AM_EN <= '0'; 
               PHN_EN <= '0'; 
               WRD_EN <= '0'; 
               AM_PHN_PHASE <= '0'; 
               PHN_WRD_PHASE <= '0'; 
               SAL_MODE <= '0'; 
               DEAD_PHASE <= '0'; 
               TKN_INIT_GO <= '0'; 
               INSERT_SIL_on_SOFT_RST <= '0'; 
               next_state <= s0; 
            ELSE 
               next_state <= s0; 
            END IF; 
         WHEN s1 =>  
            TKN_INIT_GO <= '1'; 
            DEAD_PHASE <= '0'; 
            WRD_EN <= '1'; 
            INSERT_SIL_on_SOFT_RST <= '1'; 
            next_state <= s2; 
         WHEN s2 =>  
            IF (TKN_INIT_DONE = '1') THEN  
               next_state <= s15; 
            ELSE 
               next_state <= s2; 
            END IF; 
         WHEN s3 =>  
            IF (DEAD_PHASE_DONE = '1') THEN  
               next_state <= s4; 
            ELSE 
               next_state <= s3; 
            END IF; 
         WHEN s4 =>  
            NXT_PHN_PHASE_GO <= '1'; 
            DEAD_PHASE <= '0'; 
            next_state <= s5; 
         WHEN s5 =>  
            IF (NXT_PHN_PHASE_DONE = '1') THEN  
               next_state <= s6; 
            ELSE 
               next_state <= s5; 
            END IF; 
         WHEN s6 =>  
            WRD_EN <= '0'; 
            SAL_GO <= '1'; 
            SAL_MODE <= '1'; 
            PHN_EN <= '1'; 
            PHN_WRD_PHASE <= '1'; 
            next_state <= s7; 
         WHEN s7 =>  
            IF (SAL_DONE = '1') THEN  
               SAL_MODE <= '0'; 
               PHN_EN <= '0'; 
               next_state <= s8; 
            ELSE 
               next_state <= s7; 
            END IF; 
         WHEN s8 =>  
            AM_GO <= '1'; 
            AM_PHN_PHASE <= '1'; 
            AM_EN <= '1'; 
            next_state <= s9; 
         WHEN s9 =>  
            IF (AM_DONE = '1') THEN  
               next_state <= s18; 
            ELSE 
               next_state <= s9; 
            END IF; 
         WHEN s10 =>  
            PHN_GO <= '1'; 
            PHN_WRD_PHASE <= '1'; 
            PHN_EN <= '1'; 
            next_state <= s20; 
         WHEN s11 =>  
            IF (PHN_DONE = '1') THEN 

 136 



 

               next_state <= s19; 
            ELSE 
               next_state <= s11; 
            END IF; 
         WHEN s12 =>  
            FRAME_DONE <= '1'; 
            next_state <= s13; 
         WHEN s13 =>  
            next_state <= s0; 
         WHEN s14 =>  
            DEAD_PHASE <= '1'; 
            DEAD_PHASE_GO <= '1'; 
            PHN_WRD_PHASE <= '0'; 
            WRD_EN <= '1'; 
            next_state <= s3; 
         WHEN s15 =>  
            next_state <= s16; 
         WHEN s16 =>  
            WRD_EN <= '0'; 
            next_state <= s17; 
         WHEN s17 =>  
            IF (FRAME_READY = '1') THEN  
               next_state <= s14; 
            ELSE 
               next_state <= s17; 
            END IF; 
         WHEN s18 =>  
            AM_PHN_PHASE <= '0'; 
            AM_EN <= '0'; 
            next_state <= s10; 
         WHEN s19 =>  
            PHN_WRD_PHASE <= '0'; 
            PHN_EN <= '0'; 
            next_state <= s12; 
         WHEN s20 =>  
            next_state <= s11; 
         WHEN OTHERS => 
            next_state <= s0; 
      END CASE; 
   END PROCESS nextstate_proc; 
end fsm; 
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A.3 ACOUSTIC MODELING BLOCK: TOP-LEVEL 

 

-------------------------------------------------------------------------------- 
-- Organization:    University of Pittsburgh  
-- Author:    Kshitij Gupta 
-- 
-- Design Name:    AM TOP-LEVEL 
-- Module Name:    AM_TOP_LEVEL_v2 - struct 
-- Project Name:   University of Pittsburgh’s Speech Recognition System-on-a-Chip 
-- Target Device:  Xilinx Virtex4 SX-35  
-- Tool versions:  ISE 7.1i 
-------------------------------------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity AM_TOP_LEVEL_v2 is 
 PORT ( 
  clk : IN std_logic; 
  ce : IN std_logic; 
  sclr : IN std_logic; 
  AM_GO : IN std_logic; 
  SVQ_BYPASS_GLOBAL : IN std_logic; 
  CW_SAL_SID : IN std_logic_vector(10 downto 0); 
  CW_SAL_SID_valid : IN std_logic; 
  SEN_SAL_SID : IN std_logic_vector(10 downto 0); 
  SEN_SAL_SID_valid : IN std_logic; 
  CW_SAL_EMPTY : IN std_logic; 
  SEN_SAL_EMPTY : IN std_logic;   
  CSAL_EMPTY : IN std_logic; 
  SEN_SAL_SID_CNT : IN std_logic_vector(10 downto 0); 
  CSAL_CSID_CNT : IN std_logic_vector(10 downto 0); 
  ROM_BUSY_STALL : IN std_logic; 
  X : IN std_logic_vector(31 downto 0); 
  X_valid : IN std_logic; 
  MK : IN std_logic_vector(31 downto 0); 
  VW : IN std_logic_vector(31 downto 0); 
  MKVW_valid : IN std_logic; 
  CSID : IN std_logic_vector(11 downto 0); 
  CSID_valid : IN std_logic; 
  C_SID : IN std_logic_vector(10 downto 0); 
  C_SID_valid : IN std_logic; 
  CURR_CSEN_DONE : IN std_logic; 
  CW_SAL_POP : OUT std_logic; 
  SEN_SAL_POP : OUT std_logic; 
  CSAL_POP : OUT std_logic; 
  FEAT_ADDR : OUT std_logic_vector(5 downto 0); 
  FEAT_ADDR_VALID : OUT std_logic; 
  AM_ROM_ADDR : OUT std_logic_vector(20 downto 0); 
  AM_ROM_ADDR_VALID : OUT std_logic; 
  AM_SID_CSID : OUT std_logic_vector(11 downto 0); 
  AM_sscr_out : OUT std_logic_vector(31 downto 0); 
  AM_sscr_out_valid : OUT std_logic; 
  AM_DONE : OUT std_logic; 
  ERR_AM_ACTIVE_SENONE_CNT_IS_ZERO : OUT std_logic; 
  ERR_AM_N_ACTIVE_COMPONENTS_IS_ZERO : OUT std_logic; 
  ERR_AM_FEAT_AM_ROM_ADDR_NOT_VALID_SIMULTANEOUSLY : OUT std_logic; 
  ERR_AM_SENSAL_CAL_cnt_EMPTY_UNEQUAL : OUT std_logic 
 ); 
end AM_TOP_LEVEL_v2; 
 
architecture struct of AM_TOP_LEVEL_v2 is 
 
COMPONENT am_ctrl_fsm_v2 
 PORT ( 
      AM_EN               : IN     std_logic; 
      AM GO               : IN     std logic;
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      AM_PHASE_DONE       : IN     std_logic_vector ( 3 DOWNTO 0 ); 
      BYPASS_SVQ          : IN     std_logic; 
      CAL_CNT             : IN     std_logic_vector ( 11 DOWNTO 0 ); 
      CAL_EMPTY           : IN     std_logic; 
      CSAL_CNT            : IN     std_logic_vector ( 10 DOWNTO 0 ); 
      CSAL_EMPTY          : IN     std_logic; 
      CURR_CAL_DONE       : IN     std_logic; 
      CURR_CSEN_DONE_ctrl : IN     std_logic; 
      CW_SAL_EMPTY        : IN     std_logic; 
      CW_SCORING_DONE     : IN     std_logic; 
      POP_NXT             : IN     std_logic; 
      SEN_SAL_CNT         : IN     std_logic_vector ( 10 DOWNTO 0 ); 
      SEN_SAL_EMPTY       : IN     std_logic; 
      clk                 : IN     std_logic; 
      rst                 : IN     std_logic; 
      AM_DONE             : OUT    std_logic; 
      AM_PHASE_GO         : OUT    std_logic_vector ( 3 DOWNTO 0 ); 
      AM_PHASE_SEL        : OUT    std_logic_vector ( 1 DOWNTO 0 ); 
      CAL_MODE            : OUT    std_logic; 
      CAL_POP             : OUT    std_logic; 
      CSAL_POP            : OUT    std_logic; 
      CW_SAL_POP          : OUT    std_logic; 
      CW_SCORING_GO       : OUT    std_logic; 
      SEN_SAL_POP         : OUT    std_logic; 
      SVQ_MODE            : OUT    std_logic 
 ); 
END COMPONENT; 
 
COMPONENT am_rom_interface_v2 
 PORT( 
  clk : IN std_logic; 
  ce : IN std_logic; 
  sclr : IN std_logic; 
  SVQ_MODE : IN std_logic; 
  CW_SCORING_GO : IN std_logic; 
  SAL_SID : IN std_logic_vector(11 downto 0); 
  SAL_SID_valid : IN std_logic; 
  CAL : IN std_logic_vector(7 downto 0); 
  CAL_valid : IN std_logic;           
  ROM_BUSY_STALL : IN std_logic; 
  SVQ_cnt_done : OUT std_logic; 
  FEAT_ADDR : OUT std_logic_vector(5 downto 0); 
  FEAT_ADDR_VALID : OUT std_logic; 
  ROM_ADDR : OUT std_logic_vector(20 downto 0); 
  ROM_ADDR_VALID : OUT std_logic; 
  UNIT_N : OUT std_logic_vector(11 downto 0); 
  UNIT_NEW : OUT std_logic; 
  UNIT_DONE : OUT std_logic; 
  POP_NXT_SID : OUT std_logic; 
  FEAT_cnt39_done : OUT std_logic; 
  ERR_AM_N_ACTIVE_COMPONENTS_IS_ZERO : OUT std_logic 
 ); 
END COMPONENT; 
 
component am_gaus_dist_v2 
 port ( 
  clk : IN std_logic; 
  ce : IN std_logic; 
  sclr : IN std_logic; 
  X : IN std_logic_vector (31 downto 0); 
  X_valid : IN std_logic; 
  MV_KW_SEL : IN std_logic; 
  MK : IN std_logic_vector (31 downto 0); 
  VW : IN std_logic_vector (31 downto 0); 
  MKVW_valid : IN std_logic; 
  UNIT_N_IN : IN std_logic_vector (11 downto 0); 
  CURR_UNIT_NEW_IN : IN std_logic; 
  CURR_UNIT_DONE_IN : IN std_logic; 
  ALL_UNIT_DONE_IN : IN std_logic; 
  scr : OUT std_logic_vector (31 downto 0); 
  scr_done : OUT std_logic; 
  W_reg : OUT std_logic_vector (31 downto 0); 
  W_valid_reg : OUT std_logic; 
  UNIT_N_OUT : OUT std_logic_vector (11 downto 0); 
  CURR_UNIT_NEW_OUT : OUT std_logic; 
  CURR_UNIT_DONE_OUT : OUT std_logic; 
  ALL_UNIT_DONE_OUT : OUT std_logic 
 ); 
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end component; 
 
COMPONENT am_gaus_mixwt_cgen 
 PORT( 
  AB_IN : IN std_logic_vector(31 downto 0); 
  CE_IN : IN std_logic; 
  CLK_IN : IN std_logic; 
  C_IN : IN std_logic_vector(31 downto 0); 
  RST_IN : IN std_logic;           
  P_OUT : OUT std_logic_vector(31 downto 0) 
 ); 
END COMPONENT; 
 
component AM_LogAdd_v2 
 port ( 
  clk : IN std_logic; 
  ce : IN std_logic; 
  sclr : IN std_logic; 
  cscr : IN std_logic_vector (31 downto 0); 
  cscr_valid : IN std_logic; 
  SID_in : IN std_logic_vector (11 downto 0); 
  CURR_SEN_NEW_in : IN std_logic; 
  CURR_SEN_DONE_in : IN std_logic; 
  ALL_SEN_DONE_in : IN std_logic; 
  SID_out : OUT std_logic_vector (11 downto 0); 
  tmp_sscr_out : OUT std_logic_vector (31 downto 0); 
  tmp_sscr_out_valid : OUT std_logic; 
  ALL_SEN_DONE_out : OUT std_logic 
 ); 
end component; 
 
component AM_SSCR_CSSCR_v2 
 port( 
  clk : IN std_logic; 
  ce : IN std_logic; 
  sclr : IN std_logic; 
  AM_PHASE_SEL : IN std_logic_vector(1 downto 0); 
  AM_PHASE_GO : IN std_logic_vector(3 downto 0); 
  SID_in : IN std_logic_vector(11 downto 0); 
  tmp_sscr_in : IN std_logic_vector(31 downto 0); 
  tmp_sscr_in_valid : IN std_logic; 
  ALL_SEN_DONE : IN std_logic; 
  CSID : IN std_logic_vector(11 downto 0); 
  CSID_valid : IN std_logic; 
  C_SID_in : IN std_logic_vector(10 downto 0); 
  C_SID_in_valid : IN std_logic; 
  CURR_CSEN_DONE_in : IN std_logic; 
  ALL_CSEN_DONE_in : IN std_logic; 
  AM_PHASE_DONE : OUT std_logic_vector(3 downto 0); 
  SID_out : OUT std_logic_vector(11 downto 0); 
  sscr_out : OUT std_logic_vector(31 downto 0); 
  sscr_out_valid : OUT std_logic; 
  CURR_CSEN_DONE_out : OUT std_logic 
 );   
end component; 
 
component SubVQ_TOP_LEVEL_v2 
 port ( 
  clk : IN std_logic; 
  ce : IN std_logic; 
  sclr : IN std_logic; 
  CAL_MODE : IN std_logic; 
  CWID_in : IN std_logic_vector(11 downto 0); 
  CW_scr_in : IN std_logic_vector(31 downto 0); 
  CW_scr_valid_in : IN std_logic; 
  ALL_CW_DONE_in : IN std_logic; 
  SAL_SID : IN std_logic_vector(10 downto 0); 
  SAL_SID_valid : IN std_logic; 
  CW_SCORING_DONE : OUT std_logic; 
  CAL_out : OUT std_logic_vector(7 downto 0); 
  CAL_PUSH_out : OUT std_logic 
 ); 
end component; 
 
component cal_fifo_v2 
    port ( 
    clk: IN std_logic; 
    sinit: IN std_logic; 
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    din: IN std_logic_VECTOR(7 downto 0); 
    wr_en: IN std_logic; 
    rd_en: IN std_logic; 
    dout: OUT std_logic_VECTOR(7 downto 0); 
    full: OUT std_logic; 
    empty: OUT std_logic; 
    rd_ack: OUT std_logic; 
    data_count: OUT std_logic_VECTOR(11 downto 0)); 
end component; 
 
signal AM_PHASE_SEL : std_logic_vector(1 downto 0); 
signal AM_PHASE_GO : std_logic_vector(3 downto 0); 
signal AM_PHASE_DONE : std_logic_vector(3 downto 0); 
signal SVQ_BYPASS : std_logic; 
signal SVQ_MODE : std_logic; 
signal CAL_MODE : std_logic; 
signal CW_SCORING_GO : std_logic; 
signal CW_SCORING_DONE : std_logic; 
signal SVQ_cnt_done : std_logic; 
signal CURR_CAL_DONE : std_logic; 
signal CURR_CSEN_DONE_ctrl : std_logic; 
signal cw_used : std_logic; 
signal POP_NXT_SEN_SAL_SID : std_logic; 
signal FEAT_cnt39_done : std_logic; 
signal FEAT_cnt39_done_reg : std_logic_vector(3 downto 0); 
signal SEN_SAL_SID_s : std_logic_vector(11 downto 0); 
signal UNIT_N : std_logic_vector(11 downto 0); 
signal UNIT_NEW : std_logic; 
signal UNIT_DONE : std_logic; 
signal ALL_UNIT_DONE : std_logic; 
signal N_UNIT_BUF : std_logic_vector(11 downto 0); 
signal N_UNIT_NEW_BUF_s : std_logic_vector(2 downto 0); 
signal N_UNIT_NEW_BUF : std_logic; 
signal N_UNIT_DONE_BUF : std_logic; 
signal N_UNIT_DONE_BUF_s : std_logic_vector(2 downto 0); 
signal ALL_UNIT_DONE_BUF : std_logic; 
signal ALL_UNIT_DONE_BUF_s : std_logic_vector(2 downto 0); 
signal n_unit_no : std_logic_vector(11 downto 0); 
signal curr_new : std_logic; 
signal curr_done : std_logic; 
signal scr : std_logic_vector(31 downto 0); 
signal scr_valid : std_logic; 
signal all_done : std_logic; 
signal n_cw : std_logic_vector(11 downto 0); 
signal cw_scr : std_logic_vector(31 downto 0); 
signal cw_scr_valid : std_logic; 
signal all_done_cw : std_logic; 
signal n_cw_reg : std_logic_vector(11 downto 0); 
signal cw_scr_reg : std_logic_vector(31 downto 0); 
signal cw_scr_valid_reg : std_logic; 
signal all_done_cw_reg : std_logic; 
signal n_sen : std_logic_vector(11 downto 0); 
signal curr_new_sen : std_logic; 
signal curr_done_sen : std_logic; 
signal sen_scr : std_logic_vector(31 downto 0); 
signal sen_scr_valid : std_logic; 
signal all_done_sen : std_logic; 
signal MixWt : std_logic_vector(31 downto 0); 
signal MixWt_valid : std_logic; 
signal n_sen_ladd : std_logic_vector(11 downto 0); 
signal cscr_valid : std_logic; 
signal cscr : std_logic_vector(31 downto 0); 
signal curr_new_sen_ladd : std_logic; 
signal curr_done_sen_ladd : std_logic; 
signal all_done_sen_ladd : std_logic; 
signal n_sen_sscr : std_logic_vector(11 downto 0); 
signal tmp_sscr : std_logic_vector(31 downto 0); 
signal tmp_sscr_valid : std_logic; 
signal all_done_sen_sscr :std_logic; 
signal CAL_FIFO_dout_s : std_logic_vector(7 downto 0); 
signal CAL_FIFO_dout_valid_s : std_logic; 
signal CAL_FIFO_din : std_logic_vector(7 downto 0); 
signal CAL_PUSH : std_logic; 
signal CAL_FULL : std_logic; 
signal CAL_POP : std_logic; 
signal CAL_FIFO_dout : std_logic_vector(7 downto 0); 
signal CAL_FIFO_dout_valid : std_logic; 
signal CAL_EMPTY : std_logic; 
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signal CAL_FIFO_CNT : std_logic_vector(11 downto 0); 
 
constant SEN_CNT_TH : std_logic_vector(11 downto 0) := X"320"; 
constant NEG_INF : std_logic_vector(31 downto 0) := X"C8000000"; 
 
begin 
 
CURR_CAL_DONE <= UNIT_DONE and FEAT_cnt39_done_reg(0); 
SEN_SAL_SID_s <= '0' & SEN_SAL_SID; 
ERR_AM_FEAT_AM_ROM_ADDR_NOT_VALID_SIMULTANEOUSLY <= (X_valid xor MKVW_valid) and 
(NOT(FEAT_cnt39_done_reg(3))); 
 
process(AM_GO, SVQ_BYPASS_GLOBAL, SEN_SAL_SID_CNT) 
begin 
 if (AM_GO = '1') then 
  if ( (SVQ_BYPASS_GLOBAL = '1') or (SEN_SAL_SID_CNT < SEN_CNT_TH) ) then 
   SVQ_BYPASS <= '1'; 
  else 
   SVQ_BYPASS <= '0'; 
  end if; 
 end if; 
end process; 
 
process(AM_GO, SEN_SAL_SID_CNT) 
begin 
 if (AM_GO = '1') then 
  if (SEN_SAL_SID_CNT = X"000") then 
   ERR_AM_ACTIVE_SENONE_CNT_IS_ZERO <= '1'; 
  else 
   ERR_AM_ACTIVE_SENONE_CNT_IS_ZERO <= '0'; 
  end if; 
 end if; 
end process; 
 
process(AM_GO, CW_SAL_EMPTY, CURR_CAL_DONE, SEN_SAL_EMPTY, CAL_EMPTY) 
begin 
 if (AM_GO <= '1') then 
  ERR_AM_SENSAL_CAL_cnt_EMPTY_UNEQUAL <= '0'; 
  cw_used <= '0'; 
 elsif ( (CW_SAL_EMPTY AND CURR_CAL_DONE) = '1') then 
  cw_used <= '1'; 
 elsif (cw_used = '1') then 
  ERR_AM_SENSAL_CAL_cnt_EMPTY_UNEQUAL <= SEN_SAL_EMPTY xor CAL_EMPTY; 
 end if; 
end process; 
 
process(SVQ_BYPASS, SEN_SAL_SID_valid, CAL_FIFO_dout, CAL_FIFO_dout_valid) 
begin 
 if (SVQ_BYPASS = '1') then 
  CAL_FIFO_dout_s <= "11111111"; 
  CAL_FIFO_dout_valid_s <= SEN_SAL_SID_valid; 
 else 
  CAL_FIFO_dout_s <= CAL_FIFO_dout; 
  CAL_FIFO_dout_valid_s <= CAL_FIFO_dout_valid; 
 end if; 
end process; 
 
AM_TOP_CTRL_BLK : am_ctrl_fsm_v2  
 PORT MAP( 
  AM_EN => ce, 
  AM_GO => AM_GO, 
  rst => sclr, 
  AM_PHASE_DONE => AM_PHASE_DONE, 
  BYPASS_SVQ => SVQ_BYPASS, 
  CAL_CNT => CAL_FIFO_CNT, 
  CAL_EMPTY => CAL_EMPTY, 
  CSAL_CNT => CSAL_CSID_CNT, 
  CSAL_EMPTY => CSAL_EMPTY, 
  CURR_CAL_DONE => CURR_CAL_DONE, 
  CURR_CSEN_DONE_ctrl => CURR_CSEN_DONE_ctrl, 
  CW_SAL_EMPTY => CW_SAL_EMPTY, 
  CW_SCORING_DONE => CW_SCORING_DONE, 
  POP_NXT => POP_NXT_SEN_SAL_SID, 
  SEN_SAL_CNT => SEN_SAL_SID_CNT, 
  SEN_SAL_EMPTY => SEN_SAL_EMPTY, 
  clk => clk, 
  AM_DONE => AM_DONE, 
  AM_PHASE_GO => AM_PHASE_GO, 
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  AM_PHASE_SEL => AM_PHASE_SEL, 
  CAL_MODE => CAL_MODE, 
  CAL_POP => CAL_POP, 
  CSAL_POP => CSAL_POP, 
  CW_SAL_POP => CW_SAL_POP, 
  CW_SCORING_GO => CW_SCORING_GO, 
  SEN_SAL_POP => SEN_SAL_POP, 
  SVQ_MODE => SVQ_MODE 
 ); 
 
AM_TOP_ROM_INTERFACE_BLK : am_rom_interface_v2  
 PORT MAP( 
  clk => clk, 
  ce => ce, 
  sclr => sclr, 
  SVQ_MODE => SVQ_MODE, 
  CW_SCORING_GO => CW_SCORING_GO, 
  SAL_SID => SEN_SAL_SID_s, 
  SAL_SID_valid => SEN_SAL_SID_valid, 
  CAL => CAL_FIFO_dout_s, 
  CAL_valid => CAL_FIFO_dout_valid_s, 
  ROM_BUSY_STALL => ROM_BUSY_STALL, 
  SVQ_cnt_done => SVQ_cnt_done, 
  FEAT_ADDR => FEAT_ADDR, 
  FEAT_ADDR_VALID => FEAT_ADDR_VALID, 
  ROM_ADDR => AM_ROM_ADDR, 
  ROM_ADDR_VALID => AM_ROM_ADDR_VALID, 
  UNIT_N => UNIT_N, 
  UNIT_NEW => UNIT_NEW, 
  UNIT_DONE => UNIT_DONE, 
  POP_NXT_SID => POP_NXT_SEN_SAL_SID, 
  FEAT_cnt39_done => FEAT_cnt39_done, 
  ERR_AM_N_ACTIVE_COMPONENTS_IS_ZERO => ERR_AM_N_ACTIVE_COMPONENTS_IS_ZERO 
 ); 
 
process(clk, ce, sclr, MKVW_valid, FEAT_cnt39_done, UNIT_N, UNIT_NEW, UNIT_DONE, ALL_UNIT_DONE) 
begin 
 if (clk'event and clk = '1') then  
  if (sclr = '1') then 
   N_UNIT_BUF <= (OTHERS => '0'); 
   N_UNIT_NEW_BUF_s <= (OTHERS => '0'); 
   N_UNIT_DONE_BUF_s <= (OTHERS => '0'); 
   ALL_UNIT_DONE_BUF_s <= (OTHERS => '0'); 
   FEAT_cnt39_done_reg <= (OTHERS => '0'); 
  elsif (ce = '1') then 
   if (MKVW_valid = '1') then 
    N_UNIT_BUF <= UNIT_N; 
    N_UNIT_NEW_BUF_s <= N_UNIT_NEW_BUF_s(1 downto 0) & UNIT_NEW; 
    N_UNIT_DONE_BUF_s <= N_UNIT_DONE_BUF_s(1 downto 0) & UNIT_DONE; 
    ALL_UNIT_DONE_BUF_s <= ALL_UNIT_DONE_BUF_s(1 downto 0) & ALL_UNIT_DONE; 
    FEAT_cnt39_done_reg <= FEAT_cnt39_done_reg(2 downto 0) & FEAT_cnt39_done; 
   end if; 
  end if; 
 end if; 
end process; 
 
N_UNIT_NEW_BUF <= N_UNIT_NEW_BUF_s(2); 
N_UNIT_DONE_BUF <= N_UNIT_DONE_BUF_s(2); 
ALL_UNIT_DONE_BUF <= ALL_UNIT_DONE_BUF_s(2); 
 
AM_TOP_GAUS_DIST_BLK : am_gaus_dist_v2 
 port map( 
  clk => clk, 
  ce => ce, 
  sclr => sclr, 
  X => X, 
  X_valid => X_valid, 
  MV_KW_SEL => FEAT_cnt39_done_reg(1), 
  MK => MK, 
  VW => VW, 
  MKVW_valid => MKVW_valid, 
  UNIT_N_IN => N_UNIT_BUF, 
  CURR_UNIT_NEW_IN => N_UNIT_NEW_BUF, 
  CURR_UNIT_DONE_IN => N_UNIT_DONE_BUF, 
  ALL_UNIT_DONE_IN => ALL_UNIT_DONE_BUF, 
  scr => scr, 
  scr_done => scr_valid, 
  W_reg => MixWt, 
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  UNIT_N_OUT => n_unit_no, 
  CURR_UNIT_NEW_OUT => curr_new, 
  CURR_UNIT_DONE_OUT => curr_done, 
  ALL_UNIT_DONE_OUT => all_done 
 ); 
 
process(SVQ_cnt_done, SEN_SAL_EMPTY, CAL_EMPTY, UNIT_DONE) 
begin 
 if (SVQ_MODE = '1') then 
  ALL_UNIT_DONE <= SVQ_cnt_done; 
 else 
  ALL_UNIT_DONE <= SEN_SAL_EMPTY and CAL_EMPTY and UNIT_DONE; 
 end if; 
end process; 
 
process (SVQ_MODE, scr, scr_valid, n_unit_no, curr_new, curr_done, all_done) 
begin 
 case SVQ_MODE is 
  when '1' => 
   cw_scr <= scr; 
   cw_scr_valid <= scr_valid; 
   n_cw <= n_unit_no; 
   all_done_cw <= all_done; 
   sen_scr <= NEG_INF; 
   sen_scr_valid <= '0'; 
   n_sen <= (OTHERS => '0'); 
   curr_new_sen <= '0'; 
   curr_done_sen <= '0'; 
   all_done_sen <= '0'; 
  when '0' => 
   cw_scr <= NEG_INF; 
   cw_scr_valid <= '0'; 
   n_cw <= (OTHERS => '0'); 
   all_done_cw <= '0'; 
   sen_scr <= scr; 
   sen_scr_valid <= scr_valid; 
   n_sen <= n_unit_no; 
   curr_new_sen <= curr_new; 
   curr_done_sen <= curr_done; 
   all_done_sen <= all_done; 
  when OTHERS => 
   cw_scr <= NEG_INF; 
   cw_scr_valid <= '0'; 
   n_cw <= (OTHERS => '0'); 
   all_done_cw <= '0'; 
   sen_scr <= NEG_INF; 
   sen_scr_valid <= '0'; 
   n_sen <= (OTHERS => '0'); 
   curr_new_sen <= '0'; 
   curr_done_sen <= '0'; 
   all_done_sen <= '0'; 
 end case; 
end process; 
    
process(clk, ce, sclr, MixWt_valid, sen_scr_valid, n_sen, curr_new_sen, curr_done_sen, all_done_sen) 
begin 
 if (clk'event and clk = '1') then 
  if (sclr = '1') then 
   cscr_valid <= '0'; 
  elsif (sclr = '0' and ce = '1') then 
   if ( (sen_scr_valid and MixWt_valid) = '1') then 
    cscr_valid <= '1'; 
    n_sen_ladd <= n_sen; 
    curr_new_sen_ladd <= curr_new_sen; 
    curr_done_sen_ladd <= curr_done_sen; 
    all_done_sen_ladd <= all_done_sen; 
   else 
    cscr_valid <= '0'; 
    n_sen_ladd <= (OTHERS => '0'); 
    curr_new_sen_ladd <= '0'; 
    curr_done_sen_ladd <= '0'; 
    all_done_sen_ladd <= '0'; 
   end if; 
  end if; 
 end if; 
end process; 
 
AM_TOP_MIXWT_BLK : am_gaus_mixwt_cgen 
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 PORT MAP( 
  AB_IN => sen_scr, 
  CE_IN => ce, 
  CLK_IN => clk, 
  C_IN => MixWt, 
  RST_IN => sclr, 
  P_OUT => cscr 
 ); 
 
AM_TOP_LOGADD_BLK : AM_LogAdd_v2 
 port map( 
  clk => clk, 
  ce => ce, 
  sclr => sclr, 
  cscr => cscr, 
  cscr_valid => cscr_valid, 
  SID_in => n_sen_ladd, 
  CURR_SEN_NEW_in => curr_new_sen_ladd, 
  CURR_SEN_DONE_in => curr_done_sen_ladd, 
  ALL_SEN_DONE_in => all_done_sen_ladd, 
  SID_out => n_sen_sscr, 
  tmp_sscr_out => tmp_sscr, 
  tmp_sscr_out_valid => tmp_sscr_valid, 
  ALL_SEN_DONE_out => all_done_sen_sscr 
 ); 
 
AM_TOP_SSCR_CSSCR_BLK : AM_SSCR_CSSCR_v2 
 port map( 
  clk => clk, 
  ce => ce, 
  sclr => sclr, 
  AM_PHASE_SEL => AM_PHASE_SEL, 
  AM_PHASE_GO => AM_PHASE_GO, 
  SID_in => n_sen_sscr, 
  tmp_sscr_in => tmp_sscr, 
  tmp_sscr_in_valid => tmp_sscr_valid, 
  ALL_SEN_DONE => all_done_sen_sscr, 
  CSID => CSID, 
  CSID_valid => CSID_valid, 
  C_SID_in => C_SID, 
  C_SID_in_valid => C_SID_valid, 
  CURR_CSEN_DONE_in => CURR_CSEN_DONE, 
  ALL_CSEN_DONE_in => CSAL_EMPTY, 
  AM_PHASE_DONE => AM_PHASE_DONE, 
  SID_out => AM_SID_CSID, 
  sscr_out => AM_sscr_out, 
  sscr_out_valid => AM_sscr_out_valid, 
  CURR_CSEN_DONE_out => CURR_CSEN_DONE_ctrl 
 );   
 
--AM_TOP_SubVQ_TOP_BLK : SubVQ_TOP_LEVEL_v2 
-- port map( 
--  clk => clk, 
--  ce => ce, 
--  sclr => sclr, 
--  CAL_MODE => CAL_MODE, 
--  CWID_in => n_cw, 
--  CW_scr_in => cw_scr, 
--  CW_scr_valid_in => cw_scr_valid, 
--  ALL_CW_DONE_in => all_done_cw, 
--  SAL_SID => CW_SAL_SID, 
--  SAL_SID_valid => CW_SAL_SID_valid, 
--  CW_SCORING_DONE => CW_SCORING_DONE, 
--  CAL_out => CAL_FIFO_din, 
--  CAL_PUSH_out => CAL_PUSH 
-- ); 
 
process(clk, ce, sclr) 
begin 
 if (clk'event and clk = '1') then 
  if (sclr = '1') then 
   n_cw_reg <= (OTHERS => '0'); 
   cw_scr_reg <= NEG_INF; 
   cw_scr_valid_reg <= '0'; 
   all_done_cw_reg <= '0'; 
   CW_SCORING_DONE <= '0'; 
   CAL_FIFO_din <= (OTHERS => '0'); 
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   CAL_PUSH <= '0'; 
  elsif (ce = '1') then 
   n_cw_reg <= n_cw; 
   cw_scr_reg <= cw_scr; 
   cw_scr_valid_reg <= cw_scr_valid; 
   all_done_cw_reg <= all_done_cw; 
   CW_SCORING_DONE <= CW_SCORING_GO; 
   CAL_FIFO_din <= (OTHERS => '1'); 
   CAL_PUSH <= '0'; 
  end if; 
 end if; 
end process; 
 
AM_TOP_CAL_FIFO : cal_fifo_v2 
  port map ( 
      clk => clk, 
      sinit => sclr, 
      din => CAL_FIFO_din, 
      wr_en => CAL_PUSH, 
      rd_en => CAL_POP, 
      dout => CAL_FIFO_dout, 
      full => CAL_FULL, 
      empty => CAL_EMPTY, 
      rd_ack => CAL_FIFO_dout_valid, 
      data_count => CAL_FIFO_CNT 
 ); 
 
end struct; 
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A.4 ACOUSTIC MODELING BLOCK: CONTROLLER 

 

-------------------------------------------------------------------------------- 
-- Organization:    University of Pittsburgh  
-- Author:    Kshitij Gupta 
-- 
-- Design Name:    AM CONTROLLER 
-- Module Name:    AM_CTRL_FSM_v2 - fsm 
-- Project Name:   University of Pittsburgh’s Speech Recognition System-on-a-Chip 
-- Target Device:  Xilinx Virtex4 SX-35  
-- Tool versions:  ISE 7.1i 
-------------------------------------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity AM_CTRL_FSM_v2 is 
   PORT(  
      AM_EN               : IN     std_logic; 
      AM_GO               : IN     std_logic; 
      AM_PHASE_DONE       : IN     std_logic_vector ( 3 DOWNTO 0 ); 
      BYPASS_SVQ          : IN     std_logic; 
      CAL_CNT             : IN     std_logic_vector ( 11 DOWNTO 0 ); 
      CAL_EMPTY           : IN     std_logic; 
      CSAL_CNT            : IN     std_logic_vector ( 10 DOWNTO 0 ); 
      CSAL_EMPTY          : IN     std_logic; 
      CURR_CAL_DONE       : IN     std_logic; 
      CURR_CSEN_DONE_ctrl : IN     std_logic; 
      CW_SAL_EMPTY        : IN     std_logic; 
      CW_SCORING_DONE     : IN     std_logic; 
      POP_NXT             : IN     std_logic; 
      SEN_SAL_CNT         : IN     std_logic_vector ( 10 DOWNTO 0 ); 
      SEN_SAL_EMPTY       : IN     std_logic; 
      clk                 : IN     std_logic; 
      rst                 : IN     std_logic; 
      AM_DONE             : OUT    std_logic; 
      AM_PHASE_GO         : OUT    std_logic_vector ( 3 DOWNTO 0 ); 
      AM_PHASE_SEL        : OUT    std_logic_vector ( 1 DOWNTO 0 ); 
      CAL_MODE            : OUT    std_logic; 
      CAL_POP             : OUT    std_logic; 
      CSAL_POP            : OUT    std_logic; 
      CW_SAL_POP          : OUT    std_logic; 
      CW_SCORING_GO       : OUT    std_logic; 
      SEN_SAL_POP         : OUT    std_logic; 
      SVQ_MODE            : OUT    std_logic 
   ); 
end AM_CTRL_FSM_v2; 
 
architecture fsm of AM_CTRL_FSM_v2 is 
 
   TYPE STATE_TYPE IS ( 
      s8, 
      s9, 
      s10, 
      s7, 
      s11, 
      s12, 
      AM_PH_0, 
      s13, 
      SVQ_DONE, 
      AM_IDLE, 
      s6, 
      s2, 
      s5, 
      s3, 
      s4 
   ); 
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   -- State vector declaration 
   ATTRIBUTE state_vector : string; 
   ATTRIBUTE state_vector OF fsm : ARCHITECTURE IS "current_state"; 
 
   -- Declare current and next state signals 
   SIGNAL current_state : STATE_TYPE; 
   SIGNAL next_state : STATE_TYPE; 
 
BEGIN 
 
   ----------------------------------------------------------------- 
   clocked_proc : PROCESS (  
      clk, 
      rst 
   ) 
   ----------------------------------------------------------------- 
   BEGIN 
      IF (rst = '1') THEN 
         current_state <= AM_IDLE; 
      ELSIF (clk'EVENT AND clk = '1') THEN 
         IF (AM_EN = '1') THEN 
            current_state <= next_state; 
         END IF; 
      END IF; 
   END PROCESS clocked_proc; 
  
   ----------------------------------------------------------------- 
   nextstate_proc : PROCESS (  
      AM_GO, 
      AM_PHASE_DONE, 
      BYPASS_SVQ, 
      CAL_EMPTY, 
      CSAL_EMPTY, 
      CURR_CAL_DONE, 
      CURR_CSEN_DONE_ctrl, 
      CW_SAL_EMPTY, 
      CW_SCORING_DONE, 
      POP_NXT, 
      SEN_SAL_EMPTY, 
      current_state 
   ) 
   ----------------------------------------------------------------- 
   BEGIN 
      CASE current_state IS 
         WHEN s8 =>  
            IF (SEN_SAL_EMPTY = '0' 
                AND 
                POP_NXT = '1') THEN  
               next_state <= s7; 
            ELSIF (SEN_SAL_EMPTY  = '1' 
                   AND 
                   CAL_EMPTY = '1') THEN  
               next_state <= s9; 
            ELSE 
               next_state <= s8; 
            END IF; 
         WHEN s9 =>  
            IF (AM_PHASE_DONE(1) = '1') THEN  
               next_state <= s10; 
            ELSE 
               next_state <= s9; 
            END IF; 
         WHEN s10 =>  
            IF (AM_PHASE_DONE(2) = '1') THEN  
               next_state <= s11; 
            ELSE 
               next_state <= s10; 
            END IF; 
         WHEN s7 =>  
            next_state <= s8; 
         WHEN s11 =>  
            IF (CSAL_EMPTY = '1') THEN  
               next_state <= s13; 
            ELSE 
               next_state <= s12; 
            END IF; 
         WHEN s12 => 
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           IF (AM_PHASE_DONE(3) = '1') THEN  
               next_state <= s13; 
            ELSIF (CSAL_EMPTY = '0' 
                   AND 
                   CURR_CSEN_DONE_ctrl = '1') THEN  
               next_state <= s11; 
            ELSE 
               next_state <= s12; 
            END IF; 
         WHEN AM_PH_0 =>  
            IF (AM_PHASE_DONE(0) = '1') THEN  
               next_state <= s7; 
            ELSE 
               next_state <= AM_PH_0; 
            END IF; 
         WHEN s13 =>  
            next_state <= AM_IDLE; 
         WHEN SVQ_DONE =>  
            next_state <= AM_PH_0; 
         WHEN AM_IDLE =>  
            IF (AM_GO = '1') THEN  
               next_state <= s2; 
            ELSIF (AM_GO = '0') THEN  
               next_state <= AM_IDLE; 
            ELSE 
               next_state <= AM_IDLE; 
            END IF; 
         WHEN s6 =>  
            IF (CW_SAL_EMPTY = '0' AND CURR_CAL_DONE = '1') THEN  
               next_state <= s5; 
            ELSIF (CW_SAL_EMPTY = '1'  
                   AND  
                   CURR_CAL_DONE = '1') THEN  
               next_state <= SVQ_DONE; 
            ELSE 
               next_state <= s6; 
            END IF; 
         WHEN s2 =>  
            IF (BYPASS_SVQ = '1') THEN  
               next_state <= SVQ_DONE; 
            ELSIF (BYPASS_SVQ = '0') THEN  
               next_state <= s3; 
            ELSE 
               next_state <= s2; 
            END IF; 
         WHEN s5 =>  
            next_state <= s6; 
         WHEN s3 =>  
            next_state <= s4; 
         WHEN s4 =>  
            IF (CW_SCORING_DONE = '1') THEN  
               next_state <= s5; 
            ELSE 
               next_state <= s4; 
            END IF; 
         WHEN OTHERS => 
            next_state <= AM_IDLE; 
      END CASE; 
   END PROCESS nextstate_proc; 
  
   ----------------------------------------------------------------- 
   output_proc : PROCESS (  
      AM_GO, 
      AM_PHASE_DONE, 
      BYPASS_SVQ, 
      CSAL_EMPTY, 
      CW_SCORING_DONE, 
      current_state 
   ) 
   ----------------------------------------------------------------- 
   BEGIN 
      -- Default Assignment 
      AM_DONE <= '0'; 
      AM_PHASE_GO <= (others => '0'); 
      CAL_POP <= '0'; 
      CSAL_POP <= '0'; 
      CW_SAL_POP <= '0'; 
      CW_SCORING_GO <= '0'; 
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      SEN_SAL_POP <= '0'; 
 
      -- Combined Actions 
      CASE current_state IS 
         WHEN s9 =>  
            IF (AM_PHASE_DONE(1) = '1') THEN  
               AM_PHASE_SEL <= "10"; 
               AM_PHASE_GO <= "0100"; 
            END IF; 
         WHEN s10 =>  
            IF (AM_PHASE_DONE(2) = '1') THEN  
               AM_PHASE_SEL <= "11"; 
               --AM_PHASE_GO <= "1000"; 
            END IF; 
         WHEN s7 =>  
            SEN_SAL_POP <= '1'; 
            CAL_POP <= '0'; 
         WHEN s11 =>  
            IF (NOT(CSAL_EMPTY = '1')) THEN  
               CSAL_POP <= '1'; 
            END IF; 
         WHEN AM_PH_0 =>  
            IF (AM_PHASE_DONE(0) = '1') THEN  
               AM_PHASE_SEL <= "01"; 
               AM_PHASE_GO <= "0010"; 
            END IF; 
         WHEN s13 =>  
            AM_DONE <= '1'; 
         WHEN SVQ_DONE =>  
            AM_PHASE_SEL <= "00"; 
            AM_PHASE_GO <= "0001"; 
            SVQ_MODE <= '0'; 
            CAL_MODE <= '0'; 
         WHEN AM_IDLE =>  
            IF (AM_GO = '1') THEN  
               CAL_MODE <= '0'; 
               SVQ_MODE <= '0'; 
            END IF; 
         WHEN s2 =>  
            IF (BYPASS_SVQ = '1') THEN  
            ELSIF (BYPASS_SVQ = '0') THEN  
               SVQ_MODE <= '1'; 
               CW_SCORING_GO <= '1'; 
            END IF; 
         WHEN s5 =>  
            CW_SAL_POP <= '1'; 
            CAL_MODE <= '1'; 
         WHEN s4 =>  
            IF (CW_SCORING_DONE = '1') THEN  
               SVQ_MODE <= '0'; 
            END IF; 
         WHEN OTHERS => 
            NULL; 
      END CASE; 
   END PROCESS output_proc; 
end fsm; 
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A.5 PHONE BLOCK: TOP-LEVEL 

 

-------------------------------------------------------------------------------- 
-- Organization:    University of Pittsburgh  
-- Author:    Kshitij Gupta 
-- 
-- Design Name:    PHN TOP-LEVEL 
-- Module Name:    phn_top - struct 
-- Project Name:   University of Pittsburgh’s Speech Recognition System-on-a-Chip 
-- Target Device:  Xilinx Virtex4 SX-35  
-- Tool versions:  ISE 7.1i 
-------------------------------------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity phn_top is 
 port ( 
  clk, ce, sclr : IN std_logic; 
  rst : IN std_logic; 
  SAL_MODE : IN std_logic; 
  SAL_GO : IN std_logic; 
  SAL_RST_DONE : IN std_logic; 
  PHN_GO : IN std_logic; 
  tmat_sscr_in : IN std_logic_vector(179 downto 0); 
  tmat_sscr_in_valid : IN std_logic; 
  nPAL_TKN : IN std_logic_vector(10 downto 0); 
  nPAL_TKN_valid : IN std_logic; 
  nPAL_empty : IN std_logic;   
  ram_rd_dout : IN std_logic_vector(215 downto 0); 
  ram_rd_dout_valid : IN std_logic_vector(3 downto 0); 
  nPAL_din_s : OUT std_logic_vector(10 downto 0); 
  nPAL_PUSH_s : OUT std_logic; 
  nPAL_POP : OUT std_logic; 
  ram_wr_addr : OUT std_logic_vector(9 downto 0); 
  ram_wr_din : OUT std_logic_vector(215 downto 0); 
  ram_wr_en : OUT std_logic_vector(3 downto 0); 
  ram_rd_addr : OUT std_logic_vector(9 downto 0); 
  ram_rd_en : OUT std_logic_vector(3 downto 0);           
  nPAL_PAL_DONE : OUT std_logic; 
  dead_PUSH_s : OUT std_logic; 
  nxt_phn_PUSH_s : OUT std_logic; 
  TKN_prn : OUT std_logic_vector(10 downto 0); 
  WRD_TH : OUT std_logic_vector(31 downto 0); 
  th_valid : OUT std_logic; 
  PHN_DONE : OUT std_logic 
 ); 
end phn_top; 
 
architecture struct of phn_top is 
 
COMPONENT phn_ctrl 
 PORT( 
      PAL_DONE            : IN     std_logic; 
      PAL_EMPTY           : IN     std_logic; 
      PHN_GO              : IN     std_logic; 
      SAL_GO              : IN     std_logic; 
      SAL_RST_DONE        : IN     std_logic; 
      ce                  : IN     std_logic; 
      clk                 : IN     std_logic; 
      nPAL_DONE           : IN     std_logic; 
      nPAL_EMPTY          : IN     std_logic; 
      prune_done          : IN     std_logic; 
      sclr                : IN     std_logic; 
      scr_done            : IN     std_logic; 
      CURR_PHASE_DONE     : OUT    std_logic; 
      PAL POP             : OUT    std logic;
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      PHN_DONE            : OUT    std_logic; 
      PHN_PHASE_SEL       : OUT    std_logic_vector ( 1 DOWNTO 0 ); 
      STALL_POP     : OUT   std_logic; 
      err_nPAL_empty      : OUT    std_logic; 
      err_PAL_empty       : OUT    std_logic; 
      nPAL_POP            : OUT    std_logic; 
      phn_ptr_ram_disable : OUT    std_logic 
 ); 
END COMPONENT; 
 
component phn_wrd_fifo 
    port ( 
    clk: IN std_logic; 
    sinit: IN std_logic; 
    din: IN std_logic_VECTOR(10 downto 0); 
    wr_en: IN std_logic; 
    rd_en: IN std_logic; 
    dout: OUT std_logic_VECTOR(10 downto 0); 
    full: OUT std_logic; 
    empty: OUT std_logic; 
    rd_ack: OUT std_logic; 
    rd_err: OUT std_logic; 
    wr_err: OUT std_logic; 
    data_count: OUT std_logic_VECTOR(9 downto 0)); 
end component; 
 
COMPONENT phn_scr_info_buf 
 PORT( 
  clk : IN std_logic; 
  ce : IN std_logic; 
  TKN_in : IN std_logic_vector(9 downto 0); 
  TKN_in_valid : IN std_logic; 
  curr_hi012 : IN std_logic_vector(127 downto 0); 
  curr_hi012_valid : IN std_logic; 
  scr_wend : IN std_logic; 
  scr_wend_valid : IN std_logic; 
  scr_done_in : IN std_logic;           
  TKN_in_reg : OUT std_logic_vector(9 downto 0); 
  TKN_in_valid_reg : OUT std_logic; 
  curr_hi012_reg : OUT std_logic_vector(127 downto 0); 
  curr_hi012_reg_valid : OUT std_logic; 
  scr_wend_reg : OUT std_logic; 
  scr_wend_valid_reg : OUT std_logic; 
  scr_done_in_reg : OUT std_logic 
  ); 
END COMPONENT; 
 
COMPONENT phn_phone_calc 
 PORT( 
  clk : IN std_logic; 
  ce : IN std_logic; 
  sclr : IN std_logic; 
  PHN_GO : IN std_logic; 
  TKN_in : IN std_logic_vector(9 downto 0); 
  TKN_in_valid : IN std_logic; 
  W_END_in : IN std_logic; 
  W_END_valid : IN std_logic; 
  ALL_PHN_SCR_DONE : IN std_logic; 
  ALL_PHN_SCR_DONE_valid : IN std_logic; 
  sscr_h012 : IN std_logic_vector(95 downto 0); 
  sscr_h012_valid : IN std_logic; 
  curr_hi012 : IN std_logic_vector(127 downto 0); 
  curr_hi012_valid : IN std_logic; 
  tmat : IN std_logic_vector(83 downto 0); 
  tmat_valid : IN std_logic;           
  TKN_out : OUT std_logic_vector(9 downto 0); 
  TKN_out_valid : OUT std_logic; 
  nxt_hiob : OUT std_logic_vector(95 downto 0); 
  nxt_h012 : OUT std_logic_vector(95 downto 0); 
  nxt_valid : OUT std_logic; 
  hmm_th : OUT std_logic_vector(31 downto 0); 
  nxt_phn_th : OUT std_logic_vector(31 downto 0); 
  wrd_th : OUT std_logic_vector(31 downto 0); 
  th_valid : OUT std_logic 
 ); 
END COMPONENT; 
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COMPONENT phn_prune 
 PORT( 
  clk : IN std_logic; 
  ce : IN std_logic; 
  sclr : IN std_logic; 
  PHN_GO : IN std_logic; 
  TKN_in : IN std_logic_vector(9 downto 0); 
  TKN_in_valid : IN std_logic; 
  HMM_ACTIVE_TH : IN std_logic_vector(31 downto 0); 
  NXT_PHN_TH : IN std_logic_vector(31 downto 0); 
  TH_VALID : IN std_logic; 
  scr_hob : IN std_logic_vector(63 downto 0); 
  scr_valid : IN std_logic;           
  TKN_out : OUT std_logic_vector(10 downto 0); 
  TKN_out_valid : OUT std_logic; 
  dead_PUSH : OUT std_logic; 
  PAL_PUSH : OUT std_logic; 
  nxt_phn_PUSH : OUT std_logic 
 ); 
END COMPONENT; 
 
component shift_reg_generic 
 generic( 
  width : integer; 
  stages : integer 
 ); 
 port( 
  clk, ce : IN std_logic; 
  din : IN std_logic_vector(width-1 downto 0); 
  en_in : IN std_logic; 
  dout : OUT std_logic_vector(width-1 downto 0); 
  en_out : OUT std_logic 
 ); 
end component; 
 
component shift_reg_1bit_generic 
 generic( 
  stages : integer 
 ); 
 port( 
  clk, ce : IN std_logic; 
  din : IN std_logic; 
  en_in : IN std_logic; 
  dout : OUT std_logic; 
  en_out : OUT std_logic 
 ); 
end component; 
 
signal PHN_PHASE_SEL : std_logic_vector(1 downto 0); 
signal PHN_PHASE : std_logic_vector(3 downto 0); 
signal CURR_PHASE_DONE : std_logic; 
signal phn_ptr_ram_disable, phn_ptr_ram_disable_reg : std_logic; 
signal sscr_h012, sscr_h012_reg  : std_logic_vector(95 downto 0); 
signal sscr_h012_valid, sscr_h012_valid_reg : std_logic; 
signal tmat_scr, tmat_scr_reg : std_logic_vector(83 downto 0); 
signal tmat_scr_valid, tmat_scr_valid_reg : std_logic; 
signal curr_hi012, curr_hi012_reg : std_logic_vector(127 downto 0); 
signal curr_hi012_valid, curr_hi012_valid_reg : std_logic; 
signal nxt_h012, nxt_hiob : std_logic_vector(95 downto 0); 
signal nxt_valid : std_logic; 
signal TKN_in_phn, TKN_out_phn : std_logic_vector(9 downto 0); 
signal TKN_in_phn_valid, TKN_out_phn_valid : std_logic; 
signal TKN_in_phncalc, TKN_in_phncalc_reg : std_logic_vector(9 downto 0); 
signal TKN_in_phncalc_valid, TKN_in_phncalc_valid_reg : std_logic; 
signal TKN_in_prn : std_logic_vector(9 downto 0);  signal TKN_in_prn_valid : std_logic; 
signal TKN_prn_active : std_logic_vector(10 downto 0);  signal TKN_prn_active_valid : std_logic; 
signal nPAL_TKN_reg : std_logic_vector(10 downto 0); 
signal nPAL_TKN_valid_reg : std_logic; 
signal nPAL_POP_s : std_logic; 
signal nPAL_done : std_logic; 
signal PAL_POP_s : std_logic; 
signal PAL_POP : std_logic; 
signal PAL_TKN : std_logic_vector(10 downto 0); 
signal PAL_TKN_valid : std_logic; 
signal PAL_TKN_reg : std_logic_vector(10 downto 0); 
signal PAL_TKN_valid_reg : std_logic; 
signal PAL_din : std_logic_vector(10 downto 0); 
signal PAL_PUSH : std_logic; 
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signal PAL_PUSH_s : std_logic; 
signal PAL_PUSH_t : std_logic; 
signal PAL_full, PAL_empty, PAL_rd_err, PAL_wr_err : std_logic; 
signal PAL_data_cnt : std_logic_vector(9 downto 0); 
signal PAL_done: std_logic; 
signal STALL_POP : std_logic; 
signal nSTALL_POP : std_logic; 
signal sal_done_s, scr_done_s, prn_done_s : std_logic; 
signal sal_done_s_reg, scr_done_s_reg, prn_done_s_reg : std_logic; 
signal scr_done_s_buf : std_logic; 
signal scr_wend, scr_wend_reg: std_logic; 
signal scr_wend_valid, scr_wend_valid_reg : std_logic; 
signal HMM_ACTIVE_TH, NXT_PHN_TH : std_logic_vector(31 downto 0); 
signal th_valid_s : std_logic; 
signal prn_hob : std_logic_vector(63 downto 0); 
signal prn_hob_valid : std_logic; 
signal done_in_dummy, done_out_dummy : std_logic_vector(3 downto 0); 
signal err_nPAL_empty, err_PAL_empty : std_logic; 
   
begin 
 
nPAL_PAL_DONE <= sal_done_s_reg; 
nSTALL_POP <= NOT(STALL_POP); 
 
th_valid <= th_valid_s; 
sscr_h012 <= tmat_sscr_in(95 downto 0); 
sscr_h012_valid <= tmat_sscr_in_valid; 
tmat_scr <= tmat_sscr_in(179 downto 96); 
tmat_scr_valid <= tmat_sscr_in_valid; 
curr_hi012 <= ram_rd_dout(105 downto 74) & ram_rd_dout(201 downto 106); 
curr_hi012_valid <= ram_rd_dout_valid(1) and ram_rd_dout_valid(2) and (PHN_PHASE(1) or PHN_PHASE(2)); 
scr_wend <= ram_rd_dout(215); 
scr_wend_valid <= ram_rd_dout_valid(0) and (PHN_PHASE(1) or PHN_PHASE(2)); 
prn_hob <= ram_rd_dout(73 downto 10); 
prn_hob_valid <= ram_rd_dout_valid(1) and PHN_PHASE(3); 
TKN_prn <= TKN_prn_active; 
 
process(PHN_PHASE_SEL) 
begin 
 case PHN_PHASE_SEL is 
  when "00" => PHN_PHASE <= "0001"; 
  when "01" => PHN_PHASE <= "0010"; 
  when "10" => PHN_PHASE <= "0100"; 
  when "11" => PHN_PHASE <= "1000"; 
  when OTHERS => PHN_PHASE <= "0000"; 
 end case; 
end process; 
 
process(PHN_PHASE_SEL, TKN_out_phn, TKN_out_phn_valid, nxt_valid, nxt_h012, nxt_hiob) 
begin 
 ram_wr_addr <= TKN_out_phn; 
 if ((TKN_out_phn_valid and nxt_valid) = '1') then 
  case PHN_PHASE_SEL is 
   when "00" => 
    ram_wr_en <= "0000"; 
    ram_wr_din <= (OTHERS => '0'); 
   when "01" => 
    ram_wr_en <= "0110"; 
    ram_wr_din <= "00000000000000" & nxt_h012 & nxt_hiob & "0000000000"; 
   when "10" => 
    ram_wr_en <= "0110"; 
    ram_wr_din <= "00000000000000" & nxt_h012 & nxt_hiob & "0000000000"; 
   when "11" => 
    ram_wr_en <= "0000"; 
    ram_wr_din <= (OTHERS => '0'); 
   when OTHERS => 
    ram_wr_en <= "0000"; 
    ram_wr_din <= (OTHERS => '0'); 
  end case; 
 else 
  ram_wr_en <= "0000"; 
  ram_wr_din <= (OTHERS => '0'); 
 end if; 
end process; 
 
process(PHN_PHASE_SEL, TKN_in_phn, TKN_in_phn_valid) 
begin 
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 ram_rd_addr <= TKN_in_phn; 
 if (TKN_in_phn_valid = '1') then 
  case PHN_PHASE_SEL is 
   when "00" => 
    ram_rd_en <= "1000"; 
   when "01" => 
    ram_rd_en <= "1110"; 
   when "10" => 
    ram_rd_en <= "1110"; 
   when "11" => 
    ram_rd_en <= "0010"; 
   when OTHERS => 
    ram_rd_en <= "0000"; 
  end case; 
 else 
  ram_rd_en <= "0000"; 
 end if; 
end process; 
 
process(nPAL_TKN(10), nPAL_TKN_valid) 
begin 
 if (nPAL_TKN_valid = '1') then 
  case nPAL_TKN(10) is 
   when '0' => nPAL_done <= '0'; 
   when '1' => nPAL_done <= '1'; 
   when OTHERS => nPAL_done <= '0'; 
  end case; 
 else 
  nPAL_done <= '0'; 
 end if; 
end process; 
 
REG_FB_nPAL_DATA_BLK : shift_reg_generic 
 generic map(11, 1) 
 port map(clk, ce, nPAL_TKN, nPAL_TKN_valid, nPAL_TKN_reg, nPAL_TKN_valid_reg); 
 
process(SAL_MODE, PHN_PHASE, nPAL_TKN_reg, nPAL_TKN_valid_reg) 
begin 
 if ((nPAL_TKN_valid_reg and SAL_MODE) = '1') then 
  nPAL_PUSH_s <= '1'; 
  nPAL_din_s <= nPAL_TKN_reg; 
 else 
  nPAL_PUSH_s <= '0'; 
 end if; 
end process; 
 
process(PHN_PHASE_SEL, SAL_MODE, nPAL_TKN_reg, nPAL_TKN_valid_reg, PAL_TKN_reg, PAL_TKN_valid_reg, 
TKN_prn_active, TKN_prn_active_valid, PAL_PUSH_t, phn_ptr_ram_disable_reg) 
begin 
 case PHN_PHASE_SEL is 
  when "00" => 
   PAL_PUSH_s <= PAL_TKN_valid_reg and SAL_MODE; 
   PAL_din_s <= PAL_TKN_reg; 
  when "01" => 
   PAL_PUSH_s <= nPAL_TKN_valid_reg and (not(phn_ptr_ram_disable_reg)); 
   PAL_din_s <= nPAL_TKN_reg; 
  when "10" => 
   PAL_PUSH_s <= PAL_TKN_valid_reg; 
   PAL_din_s <= PAL_TKN_reg; 
  when "11" => 
   PAL_PUSH_s <= PAL_PUSH_t and TKN_prn_active_valid; 
   PAL_din_s <= TKN_prn_active; 
  when OTHERS => 
   PAL_PUSH_s <= '0'; 
 end case; 
end process; 
 
REG_PHN_RAM_DISABLE_BLK : shift_reg_1bit_generic 
 generic map(1) 
 port map(clk, ce, phn_ptr_ram_disable, done_in_dummy(3), phn_ptr_ram_disable_reg, 
done_out_dummy(3)); 
 
REG_FB_PAL_DATA_BLK : shift_reg_generic 
 generic map(11, 1) 
 port map(clk, ce, PAL_TKN, PAL_TKN_valid, PAL_TKN_reg, PAL_TKN_valid_reg); 
 
process(PAL_TKN(10), PAL_TKN_valid) 
begin 
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 if (PAL_TKN_valid = '1') then 
  case PAL_TKN(10) is 
   when '0' => PAL_done <= '0'; 
   when '1' => PAL_done <= '1'; 
   when OTHERS => PAL_done <= '0'; 
  end case; 
 else 
  PAL_done <= '0'; 
 end if; 
end process; 
 
process(SAL_GO, PAL_din_s, PAL_PUSH_s) 
begin 
 if (SAL_GO = '1') then 
  PAL_PUSH <= '1'; 
  PAL_din <= "10000000001"; 
 else 
  PAL_PUSH <= PAL_PUSH_s; 
  PAL_din <= PAL_din_s; 
 end if; 
end process; 
 
process(clk, ce, PHN_PHASE_SEL, phn_ptr_ram_disable, nPAL_TKN, nPAL_TKN_valid, PAL_TKN, PAL_TKN_valid) 
begin 
 if (clk'event and clk = '1') then 
  if (ce = '1') then 
   case PHN_PHASE_SEL is 
    when "00" => 
     if (nPAL_TKN_valid = '1' and PAL_TKN_valid = '0') then 
      TKN_in_phn_valid <= nPAL_TKN_valid and 
(not(phn_ptr_ram_disable)); 
      TKN_in_phn <= nPAL_TKN(9 downto 0); 
     elsif (nPAL_TKN_valid = '0' and PAL_TKN_valid = '1') then 
      TKN_in_phn_valid <= PAL_TKN_valid and 
(not(phn_ptr_ram_disable)); 
      TKN_in_phn <= PAL_TKN(9 downto 0); 
     else 
      TKN_in_phn_valid <= '0'; 
      TKN_in_phn <= (OTHERS => '0'); 
     end if; 
    when "01" => 
     TKN_in_phn_valid <= nPAL_TKN_valid and 
(not(phn_ptr_ram_disable)); 
     TKN_in_phn <= nPAL_TKN(9 downto 0); 
    when "10" => 
     TKN_in_phn_valid <= PAL_TKN_valid and 
(not(phn_ptr_ram_disable)); 
     TKN_in_phn <= PAL_TKN(9 downto 0); 
    when "11" =>  
     TKN_in_phn_valid <= PAL_TKN_valid and 
(not(phn_ptr_ram_disable)); 
     TKN_in_phn <= PAL_TKN(9 downto 0); 
    when OTHERS => 
     TKN_in_phn_valid <= '0'; 
     TKN_in_phn <= (OTHERS => '0'); 
   end case; 
  end if; 
 end if; 
end process; 
 
process(PHN_PHASE_SEL, TKN_in_phn, TKN_in_phn_valid) 
begin 
 case PHN_PHASE_SEL is 
  when "01" => 
   TKN_in_phncalc <= TKN_in_phn; 
   TKN_in_phncalc_valid <= TKN_in_phn_valid; 
  when "10" => 
   TKN_in_phncalc <= TKN_in_phn; 
   TKN_in_phncalc_valid <= TKN_in_phn_valid; 
  when "11" => 
   TKN_in_prn <= TKN_in_phn; 
   TKN_in_prn_valid <= TKN_in_phn_valid; 
  when OTHERS => 
   TKN_in_phncalc <= (OTHERS => '0'); 
   TKN_in_prn <= (OTHERS => '0'); 
   TKN_in_phncalc_valid <= '0'; 
   TKN_in_prn_valid <= '0'; 
 end case; 
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end process; 
 
process(PHN_PHASE_SEL, CURR_PHASE_DONE) 
begin 
 case PHN_PHASE_SEL is 
  when "00" => 
   sal_done_s <= CURR_PHASE_DONE; 
   scr_done_s <= '0'; 
   prn_done_s <= '0'; 
  when "10" => 
   sal_done_s <= '0'; 
   scr_done_s <= CURR_PHASE_DONE; 
   prn_done_s <= '0'; 
  when "11" => 
   sal_done_s <= '0'; 
   scr_done_s <= '0'; 
   prn_done_s <= CURR_PHASE_DONE; 
  when OTHERS => 
   sal_done_s <= '0'; 
   scr_done_s <= '0'; 
   prn_done_s <= '0'; 
 end case; 
end process; 
 
PHN_CTRL_BLK : phn_ctrl  
 PORT MAP( 
  clk => clk, 
  ce => ce, 
  sclr => sclr, 
  SAL_GO => SAL_GO, 
  SAL_RST_DONE => SAL_RST_DONE, 
  PHN_GO => PHN_GO, 
  nPAL_DONE => nPAL_done, 
  nPAL_EMPTY => nPAL_empty, 
  PAL_DONE => PAL_done, 
  PAL_EMPTY => PAL_empty, 
  prune_done => prn_done_s_reg, 
  scr_done => scr_done_s_reg, 
  PHN_PHASE_SEL => PHN_PHASE_SEL, 
  nPAL_POP => nPAL_POP_s, 
  PAL_POP => PAL_POP_s, 
  STALL_POP => STALL_POP, 
  CURR_PHASE_DONE => CURR_PHASE_DONE, 
  err_nPAL_empty => err_nPAL_empty, 
  err_PAL_empty => err_PAL_empty, 
  phn_ptr_ram_disable => phn_ptr_ram_disable, 
  PHN_DONE => PHN_DONE 
 ); 
 
nPAL_POP <= (nPAL_POP_s and nSTALL_POP and PHN_PHASE(1)) or (nPAL_POP_s and NOT(PHN_PHASE(1))); 
PAL_POP <= (PAL_POP_s and nSTALL_POP and PHN_PHASE(2)) or (PAL_POP_s and NOT(PHN_PHASE(2))); 
 
SHIFT_REG_SAL_DONE_BLK : shift_reg_1bit_generic 
 generic map(12) 
 port map(clk, ce, sal_done_s, done_in_dummy(0), sal_done_s_reg, done_out_dummy(0)); 
 
SHIFT_REG_SCR_DONE_BLK : shift_reg_1bit_generic 
 generic map(8) 
 port map(clk, ce, scr_done_s_buf, done_in_dummy(1), scr_done_s_reg, done_out_dummy(1)); 
 
SHIFT_REG_PRN_DONE_BLK : shift_reg_1bit_generic 
 generic map(6) 
 port map(clk, ce, prn_done_s, done_in_dummy(2), prn_done_s_reg, done_out_dummy(2)); 
 
PAL_FIFO : phn_wrd_fifo 
  port map (clk, rst, PAL_din, PAL_PUSH, PAL_POP, PAL_TKN, PAL_full, PAL_empty, PAL_TKN_valid, PAL_rd_err, 
PAL_wr_err, PAL_data_cnt); 
 
BUF_PHN_SCR_IN_INFO_BLK : phn_scr_info_buf  
 PORT MAP( 
  clk => clk, 
  ce => ce, 
  TKN_in => TKN_in_phncalc, 
  TKN_in_valid => TKN_in_phncalc_valid, 
  curr_hi012 => curr_hi012, 
  curr_hi012_valid => curr_hi012_valid, 
  scr_wend => scr_wend, 
  scr_wend_valid => scr_wend_valid, 
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  scr_done_in => scr_done_s, 
  TKN_in_reg => TKN_in_phncalc_reg, 
  TKN_in_valid_reg => TKN_in_phncalc_valid_reg, 
  curr_hi012_reg => curr_hi012_reg, 
  curr_hi012_reg_valid => curr_hi012_valid_reg, 
  scr_wend_reg => scr_wend_reg, 
  scr_wend_valid_reg => scr_wend_valid_reg, 
  scr_done_in_reg => scr_done_s_buf 
 ); 
 
PHN_CALC_BLK : phn_phone_calc  
 PORT MAP( 
  clk => clk, 
  ce => ce, 
  sclr => sclr, 
  PHN_GO => PHN_GO, 
  TKN_in => TKN_in_phncalc_reg, 
  TKN_in_valid => TKN_in_phncalc_valid_reg, 
  W_END_in => scr_wend_reg, 
  W_END_valid => scr_wend_valid_reg, 
  ALL_PHN_SCR_DONE => scr_done_s_buf, 
  ALL_PHN_SCR_DONE_valid => scr_done_s_buf, 
  sscr_h012 => sscr_h012, 
  sscr_h012_valid => sscr_h012_valid, 
  curr_hi012 => curr_hi012_reg, 
  curr_hi012_valid => curr_hi012_valid_reg, 
  tmat => tmat_scr, 
  tmat_valid => tmat_scr_valid, 
  TKN_out => TKN_out_phn, 
  TKN_out_valid => TKN_out_phn_valid, 
  nxt_hiob => nxt_hiob, 
  nxt_h012 => nxt_h012, 
  nxt_valid => nxt_valid, 
  hmm_th => HMM_ACTIVE_TH, 
  nxt_phn_th => NXT_PHN_TH, 
  wrd_th => WRD_TH, 
  th_valid => th_valid_s 
 ); 
 
PHN_PRUNE_BLK : phn_prune  
 PORT MAP( 
  clk => clk, 
  ce => ce, 
  sclr => sclr, 
  PHN_GO => PHN_GO, 
  TKN_in => TKN_in_prn, 
  TKN_in_valid => TKN_in_prn_valid, 
  HMM_ACTIVE_TH => HMM_ACTIVE_TH, 
  NXT_PHN_TH => NXT_PHN_TH, 
  TH_VALID => th_valid_s, 
  scr_hob => prn_hob, 
  scr_valid => prn_hob_valid, 
  TKN_out => TKN_prn_active, 
  TKN_out_valid => TKN_prn_active_valid, 
  dead_PUSH => dead_PUSH_s, 
  PAL_PUSH => PAL_PUSH_t,  
  nxt_phn_PUSH => nxt_phn_PUSH_s 
 ); 
 
end struct; 
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A.6 PHONE BLOCK: CONTROLLER 

 

-------------------------------------------------------------------------------- 
-- Organization:    University of Pittsburgh  
-- Author:    Kshitij Gupta 
-- 
-- Design Name:    PHN CONTROLLER 
-- Module Name:    phn_ctrl - fsm 
-- Project Name:   University of Pittsburgh’s Speech Recognition System-on-a-Chip 
-- Target Device:  Xilinx Virtex4 SX-35  
-- Tool versions:  ISE 7.1i 
-------------------------------------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity phn_ctrl is 
   PORT(  
      PAL_DONE            : IN     std_logic; 
      PAL_EMPTY           : IN     std_logic; 
      PHN_GO              : IN     std_logic; 
      SAL_GO              : IN     std_logic; 
      SAL_RST_DONE        : IN     std_logic; 
      ce                  : IN     std_logic; 
      clk                 : IN     std_logic; 
      nPAL_DONE           : IN     std_logic; 
      nPAL_EMPTY          : IN     std_logic; 
      prune_done          : IN     std_logic; 
      sclr                : IN     std_logic; 
      scr_done            : IN     std_logic; 
      CURR_PHASE_DONE     : OUT    std_logic; 
      PAL_POP             : OUT    std_logic; 
      PHN_DONE            : OUT    std_logic; 
      PHN_PHASE_SEL       : OUT    std_logic_vector ( 1 DOWNTO 0 ); 
      STALL_POP           : OUT    std_logic; 
      err_npal_empty      : OUT    std_logic; 
      err_pal_empty       : OUT    std_logic; 
      nPAL_POP            : OUT    std_logic; 
      phn_ptr_ram_disable : OUT    std_logic 
   ); 
end phn_ctrl; 
 
ARCHITECTURE fsm OF phn_ctrl IS 
 
   TYPE STATE_TYPE IS ( 
      s0, 
      s1, 
      s7, 
      s13, 
      s16, 
      s3, 
      s4, 
      s5, 
      s6, 
      s9, 
      s10, 
      s11, 
      s12, 
      s15, 
      s9_stall, 
      s11_stall 
   ); 
  
   -- State vector declaration 
   ATTRIBUTE state_vector : string; 
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   ATTRIBUTE state_vector OF fsm : ARCHITECTURE IS "current_state"; 
 
   -- Declare current and next state signals 
   SIGNAL current_state : STATE_TYPE; 
   SIGNAL next_state : STATE_TYPE; 
 
BEGIN 
 
   ----------------------------------------------------------------- 
   clocked_proc : PROCESS (  
      clk 
   ) 
   ----------------------------------------------------------------- 
   BEGIN 
      IF (clk'EVENT AND clk = '1') THEN 
         IF (sclr = '1') THEN 
            current_state <= s0; 
         ELSIF (ce = '1') THEN 
            current_state <= next_state; 
         END IF; 
      END IF; 
   END PROCESS clocked_proc; 
  
   ----------------------------------------------------------------- 
   nextstate_proc : PROCESS (  
      PAL_DONE, 
      PAL_EMPTY, 
      PHN_GO, 
      SAL_GO, 
      SAL_RST_DONE, 
      current_state, 
      nPAL_DONE, 
      nPAL_EMPTY, 
      prune_done, 
      sclr, 
      scr_done 
   ) 
   ----------------------------------------------------------------- 
   BEGIN 
      -- Default Assignment 
      CURR_PHASE_DONE <= '0'; 
      PAL_POP <= '0'; 
      PHN_DONE <= '0'; 
      err_npal_empty <= '0'; 
      err_pal_empty <= '0'; 
      nPAL_POP <= '0'; 
      phn_ptr_ram_disable <= '0'; 
 
      -- Combined Actions 
      CASE current_state IS 
         WHEN s0 =>  
            IF (SAL_GO = '1') THEN  
               next_state <= s1; 
            ELSIF (sclr = '1' or SAL_GO = '0') THEN  
               PHN_PHASE_SEL <= (OTHERS => '0'); 
               STALL_POP <= '0'; 
               next_state <= s0; 
            ELSE 
               next_state <= s0; 
            END IF; 
         WHEN s1 =>  
            IF (SAL_RST_DONE = '1') THEN  
               PHN_PHASE_SEL <= "00"; 
               STALL_POP <= '0'; 
               nPAL_POP <= '1'; 
               next_state <= s3; 
            ELSE 
               next_state <= s1; 
            END IF; 
         WHEN s7 =>  
            IF ((PHN_GO = '1') AND (nPAL_EMPTY = '1')) THEN  
               STALL_POP <= '0'; 
               phn_ptr_ram_disable <= '1'; 
               err_npal_empty <= '1'; 
               next_state <= s10; 
            ELSIF (PHN_GO = '1') THEN  
               STALL_POP <= '0'; 
               nPAL_POP <= '1'; 
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               PHN_PHASE_SEL <= "01"; 
               next_state <= s9; 
            ELSE 
               next_state <= s7; 
            END IF; 
         WHEN s13 =>  
            IF (scr_done = '1') THEN  
               PAL_POP <= '1'; 
               PHN_PHASE_SEL <= "11"; 
               next_state <= s15; 
            ELSIF (scr_done = '0') THEN  
               next_state <= s13; 
            ELSE 
               next_state <= s13; 
            END IF; 
         WHEN s16 =>  
            IF (prune_done = '1') THEN  
               PHN_DONE <= '1'; 
               next_state <= s0; 
            ELSIF (prune_done = '0') THEN  
               next_state <= s16; 
            ELSE 
               next_state <= s16; 
            END IF; 
         WHEN s3 =>  
            IF (nPAL_DONE = '1') THEN  
               phn_ptr_ram_disable <= '1'; 
               next_state <= s4; 
            ELSIF (nPAL_DONE = '0') THEN  
               nPAL_POP <= '1'; 
               next_state <= s3; 
            ELSE 
               next_state <= s3; 
            END IF; 
         WHEN s4 =>  
            PAL_POP <= '1'; 
            next_state <= s5; 
         WHEN s5 =>  
            IF (PAL_DONE = '1') THEN  
               phn_ptr_ram_disable <= '1'; 
               next_state <= s6; 
            ELSIF (PAL_DONE = '0') THEN  
               PAL_POP <= '1'; 
               next_state <= s5; 
            ELSE 
               next_state <= s5; 
            END IF; 
         WHEN s6 =>  
            CURR_PHASE_DONE <= '1'; 
            next_state <= s7; 
         WHEN s9 =>  
            IF (nPAL_DONE = '1') THEN  
               phn_ptr_ram_disable <= '1'; 
               next_state <= s10; 
            ELSE 
               STALL_POP <= '1'; 
               next_state <= s9_stall; 
            END IF; 
         WHEN s10 =>  
            IF (PAL_EMPTY = '1') THEN  
               phn_ptr_ram_disable <= '1'; 
               err_pal_empty <= '1'; 
               next_state <= s12; 
            ELSE 
               PAL_POP <= '1'; 
               PHN_PHASE_SEL <= "10"; 
               next_state <= s11; 
            END IF; 
         WHEN s11 =>  
            IF (PAL_DONE = '1') THEN  
               phn_ptr_ram_disable <= '1'; 
               next_state <= s12; 
            ELSE 
               STALL_POP <= '1'; 
               next_state <= s11_stall; 
            END IF; 
         WHEN s12 =>  
            CURR_PHASE_DONE <= '1'; 
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            next_state <= s13; 
         WHEN s15 =>  
            IF (PAL_DONE = '1') THEN  
               phn_ptr_ram_disable <= '1'; 
               CURR_PHASE_DONE <= '1'; 
               next_state <= s16; 
            ELSIF (PAL_EMPTY = '0') THEN  
               PAL_POP <= '1'; 
               next_state <= s15; 
            ELSE 
               next_state <= s15; 
            END IF; 
         WHEN s9_stall =>  
            IF (nPAL_DONE = '0') THEN  
               nPAL_POP <= '1'; 
               STALL_POP <= '0'; 
               next_state <= s9; 
            ELSE 
               next_state <= s9_stall; 
            END IF; 
         WHEN s11_stall =>  
            IF (PAL_DONE = '0') THEN  
               PAL_POP <= '1'; 
               STALL_POP <= '0'; 
               next_state <= s11; 
            ELSE 
               next_state <= s11_stall; 
            END IF; 
         WHEN OTHERS => 
            next_state <= s0; 
      END CASE; 
   END PROCESS nextstate_proc; 
end fsm; 
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A.7 WORD BLOCK: TOP-LEVEL 

 

-------------------------------------------------------------------------------- 
-- Organization:    University of Pittsburgh  
-- Author:    Kshitij Gupta 
-- 
-- Design Name:    WRD TOP-LEVEL 
-- Module Name:    wrd_top - struct 
-- Project Name:   University of Pittsburgh’s Speech Recognition System-on-a-Chip 
-- Target Device:  Xilinx Virtex4 SX-35  
-- Tool versions:  ISE 7.1i 
-------------------------------------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity wrd_top is 
 PORT( 
  clk : IN std_logic; 
  ce : IN std_logic; 
  sclr : IN std_logic; 
  DEAD_PHASE : IN std_logic; 
  TKN_INIT_GO : IN std_logic; 
  WRD_TH : IN std_logic_vector(31 downto 0); 
  RAM_rd_dout : IN std_logic_vector(215 downto 0); 
  RAM_rd_dout_valid : IN std_logic_vector(3 downto 0); 
  DEAD_GO : IN std_logic; 
  DEAD_empty : IN std_logic; 
  DEAD_TKN : IN std_logic_vector(10 downto 0); 
  DEAD_TKN_valid : IN std_logic; 
  NXT_PHN_GO : IN std_logic; 
  NXT_PHN_empty : IN std_logic; 
  NXT_PHN_TKN : IN std_logic_vector(10 downto 0); 
  NXT_PHN_TKN_valid : IN std_logic; 
  TKN_INIT_DONE : OUT std_logic; 
  RAM_rd_addr : OUT std_logic_vector(9 downto 0); 
  RAM_rd_addr_valid : OUT std_logic_vector(3 downto 0); 
  RAM_wr_addr : OUT std_logic_vector(9 downto 0); 
  RAM_wr_din : OUT std_logic_vector(215 downto 0); 
  RAM_wr_addr_valid : OUT std_logic_vector(3 downto 0); 
  nPAL_TKN : OUT std_logic_vector(10 downto 0); 
  nPAL_TKN_valid : OUT std_logic; 
  DEAD_pop : OUT std_logic; 
  DEAD_phase_done : OUT std_logic; 
  NXT_PHN_pop : OUT std_logic; 
  NXT_PHN_phase_done : OUT std_logic; 
  WRD_EXIT_SCR : OUT std_logic_vector(31 downto 0); 
  WRD_EXIT_ID : OUT std_logic_vector(4 downto 0); 
  WRD_EXIT_ID_valid : OUT std_logic; 
  WRD_ERR_TKN_FIFO_EMPTY : OUT std_logic; 
  WRD_ERR_TKN_FIFO_WR_ERROR : OUT std_logic; 
  WRD_ERR_LAST_PHN_ACCESSED : OUT std_logic; 
  WRD_DATA_MINE_TKN_FIFO_CNT : OUT std_logic_vector(9 downto 0) 
 ); 
end wrd_top; 
 
architecture struct of wrd_top is 
 
COMPONENT fsm_wrd_cntrl 
 PORT( 
  SIL_processed : IN std_logic; 
  W_END : IN std_logic; 
  W_EXIT_VALID : IN std_logic; 
  ce : IN std_logic; 
  clk : IN std_logic; 
  curr_node_processed : IN std_logic; 
  DEAD empty : IN std logic;
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  NXT_PHN_empty : IN std_logic; 
  NXT_PHN_GO : IN std_logic; 
  rst : IN std_logic; 
  wrd_exit_info_valid : IN std_logic; 
  wrd_info_valid : IN std_logic;           
  DEAD_phase_done : OUT std_logic; 
  DEAD_pop : OUT std_logic; 
  insert_SIL : OUT std_logic; 
  lex_lcroot_tkn_sel : OUT std_logic; 
  lex_tkn_in_en : OUT std_logic; 
  NXT_PHN_phase_done : OUT std_logic; 
  NXT_PHN_pop : OUT std_logic 
 ); 
END COMPONENT; 
 
component wrd_tkn_alloc_dealloc 
 port ( 
  clk, ce, sclr : IN std_logic; 
  TKN_INIT_GO : IN std_logic; 
  DEAD_PHASE : IN std_logic; 
  NID_in_LEX : IN std_logic_vector(9 downto 0); 
  NID_in_LEX_valid : IN std_logic; 
  TKN_RAM_rd_addr : IN std_logic_vector(9 downto 0); 
  TKN_RAM_rd_addr_valid : IN std_logic; 
  TKN_DEAD_dout : IN std_logic_vector(9 downto 0); 
  TKN_DEAD_dout_valid : IN std_logic; 
  TKN_INIT_PHASE : OUT std_logic; 
  TKN_INIT_ID : OUT std_logic_vector(9 downto 0); 
  TKN_INIT_ID_VALID : OUT std_logic; 
  nTKN_ACTIVE : OUT std_logic; 
  ACTIVE_TKN : OUT std_logic_vector(9 downto 0); 
  ACTIVE_TKN_valid : OUT std_logic; 
  NID_out_LEX : OUT std_logic_vector(9 downto 0); 
  NID_out_LEX_valid : OUT std_logic; 
  NID_out_NID_ROM : OUT std_logic_vector(9 downto 0); 
  NID_out_NID_ROM_valid : OUT std_logic; 
  TKN_INIT_DONE : OUT std_logic; 
  TKN_FIFO_EMPTY : OUT std_logic; 
  TKN_FIFO_FULL : OUT std_logic; 
  TKN_FIFO_WR_ERROR : OUT std_logic; 
  TKN_FIFO_CNT : OUT std_logic_vector(9 downto 0); 
  SIL_DEAD : OUT std_logic 
 ); 
end component; 
 
component wrd_lex_rom 
 port ( 
  clk : IN std_logic; 
  ce : IN std_logic; 
  sclr : IN std_logic; 
  EXIT_NID : IN std_logic_vector (9 downto 0); 
  EXIT_NID_valid : IN std_logic; 
  NID : OUT std_logic_vector (9 downto 0); 
  NID_valid : OUT std_logic; 
  LEX_BRANCH_CNT : OUT std_logic_vector(3 downto 0); 
  LEX_BRANCH_CNT_valid : OUT std_logic; 
  LEX_CURR_BRANCH_PROCESSED : OUT std_logic; 
  ERR_LAST_PHONE_ACCESSED : OUT std_logic 
 ); 
end component; 
 
component wrd_node_rom 
   port ( 
    addr: IN std_logic_VECTOR(8 downto 0); 
    clk: IN std_logic; 
    dout: OUT std_logic_VECTOR(45 downto 0); 
    en: IN std_logic; 
    nd: IN std_logic; 
    rfd: OUT std_logic; 
    rdy: OUT std_logic; 
    sinit: IN std_logic 
 ); 
end component; 
 
COMPONENT wrd_compute_data 
 PORT( 
  clk, ce, sclr : IN std_logic; 
  WRD_TH : IN std_logic_vector(31 downto 0); 
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  TKN_INIT_PHASE : IN std_logic; 
  TKN_INIT_ID : IN std_logic_vector(9 downto 0); 
  TKN_INIT_ID_VALID : IN std_logic;   
  DEAD_PHASE : IN std_logic; 
  DEAD_TKN_out : IN std_logic_vector(9 downto 0); 
  DEAD_TKN_out_valid : IN std_logic; 
  NXT_PHN_TKN_out : IN std_logic_vector(9 downto 0); 
  NXT_PHN_TKN_out_valid : IN std_logic; 
  lex_branch_cnt : IN std_logic_vector(3 downto 0); 
  ram_rd_dout : IN std_logic_vector(215 downto 0); 
  ram_rd_dout_valid : IN std_logic_vector(3 downto 0); 
  NODE_DATA : IN std_logic_vector(45 downto 0); 
  NODE_DATA_valid : IN std_logic; 
  ACTIVE_TKN : IN std_logic_vector(9 downto 0); 
  ACTIVE_TKN_valid : IN std_logic; 
  INSERT_SIL : IN std_logic; 
  WID : OUT std_logic_vector(9 downto 0); 
  WRD_END : OUT std_logic;   
  WRD_info_valid : OUT std_logic; 
  WRD_EXIT_VALID : OUT std_logic; 
  WRD_EXIT_info_valid : OUT std_logic; 
  WRD_EXIT_SCR : OUT std_logic_vector(31 downto 0); 
  ram_wr_data : OUT std_logic_vector(215 downto 0); 
  ram_wr_addr : OUT std_logic_vector(9 downto 0); 
  ram_wr_en : OUT std_logic_vector(3 downto 0); 
  ram_rd_addr : OUT std_logic_Vector(9 downto 0); 
  ram_rd_en : OUT std_logic_vector(3 downto 0); 
  CURR_NODE_PROCESSED : OUT std_logic 
 ); 
END COMPONENT; 
 
component wrd_lcroot_rom 
   port ( 
    addr: IN std_logic_VECTOR(4 downto 0); 
    clk: IN std_logic; 
    dout: OUT std_logic_VECTOR(9 downto 0); 
    en: IN std_logic; 
    nd: IN std_logic; 
    rfd: OUT std_logic; 
    rdy: OUT std_logic; 
    sinit: IN std_logic 
 ); 
end component; 
 
signal SIL_DEAD : std_logic; 
signal SIL_DEAD_latch : std_logic; 
signal INSERT_SIL : std_logic; 
signal lex_lcroot_tkn_sel : std_logic; 
signal lex_tkn_in_en : std_logic; 
signal CURR_NODE_PROCESSED : std_logic; 
signal ACTIVE_TKN : std_logic_vector(9 downto 0); 
signal ACTIVE_TKN_valid : std_logic; 
signal WID : std_logic_vector(9 downto 0); 
signal WRD_END : std_logic; 
signal WRD_info_valid : std_logic; 
signal WRD_EXIT_VALID : std_logic; 
signal WRD_EXIT_info_valid : std_logic; 
signal WRD_EXIT_VALID_reg : std_logic; 
signal WRD_EXIT_info_valid_reg : std_logic; 
signal WID_s : std_logic_vector(4 downto 0); 
signal WRD_exit_valid_s : std_logic; 
signal NID_LEX_to_NODE : std_logic_vector(9 downto 0);  
signal NID_LEX_to_NODE_valid : std_logic; 
signal NID_LCROOT_to_LEX : std_logic_vector(9 downto 0); 
signal NID_LCROOT_to_LEX_valid : std_logic; 
signal NID_LCROOT_to_LEX_valid_reg : std_logic; 
signal LEX_ROM_addr : std_logic_vector(9 downto 0);  
signal LEX_ROM_addr_valid : std_logic; 
signal NID_NODE_to_LEX : std_logic_vector(9 downto 0); 
signal NID_NODE_to_LEX_valid : std_logic; 
signal NID_NODE_to_LEX_valid_reg : std_logic_vector(3 downto 0); 
signal NID_to_NODE_ROM : std_logic_vector(9 downto 0); 
signal NID_to_NODE_ROM_valid : std_logic; 
signal NID_to_NODE_ROM_s : std_logic_vector(8 downto 0); 
signal NODE_DATA : std_logic_vector(45 downto 0);  
signal NODE_DATA_valid : std_logic; 
signal TKN_INIT_PHASE : std_logic; 
signal TKN_INIT_ID : std_logic_vector(9 downto 0); 
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signal TKN_INIT_ID_VALID : std_logic;   
signal TKN_RAM_rd_addr : std_logic_vector(9 downto 0);  
signal TKN_RAM_rd_addr_valid : std_logic; 
signal LEX_BRANCH_CNT : std_logic_vector(3 downto 0);  
signal LEX_BRANCH_CNT_valid : std_logic; 
signal LEX_CURR_BRANCH_PROCESSED : std_logic; 
signal TKN_FIFO_FULL : std_logic; 
signal rfd_dummy0, rfd_dummy1 : std_logic; 
 
constant LEX_ROM_SIL_PHN_ADDR : std_logic_vector(9 downto 0) := "0111001101"; 
 
begin 
 
nPAL_TKN <= '0' & ACTIVE_TKN; 
 
process(clk, ce, sclr, NID_LCROOT_to_LEX_valid, NID_NODE_to_LEX_valid) 
begin 
 if (clk'event and clk = '1') then 
  if (sclr = '1') then 
   NID_LCROOT_to_LEX_valid_reg <= '0'; 
   NID_NODE_to_LEX_valid_reg <= (OTHERS => '0'); 
  elsif (ce = '1') then 
   NID_LCROOT_to_LEX_valid_reg <= NID_LCROOT_to_LEX_valid; 
   NID_NODE_to_LEX_valid_reg <= NID_NODE_to_LEX_valid_reg(2 downto 0) & 
NID_NODE_to_LEX_valid; 
  end if; 
 end if; 
end process; 
 
process(INSERT_SIL, lex_tkn_in_en, lex_lcroot_tkn_sel, NID_NODE_to_LEX, NID_NODE_to_LEX_valid_reg, 
NID_LCROOT_to_LEX, NID_LCROOT_to_LEX_valid_reg) 
 variable LEX_ROM_addr_s : std_logic_vector(9 downto 0);  
 variable LEX_ROM_addr_valid_s : std_logic; 
begin 
 case INSERT_SIL is 
  when '0' =>  
   case lex_lcroot_tkn_sel is 
    when '0' =>  
     LEX_ROM_addr_s := NID_NODE_to_LEX; 
     LEX_ROM_addr_valid_s := NID_NODE_to_LEX_valid_reg(3) and 
lex_tkn_in_en; 
    when '1' => 
     LEX_ROM_addr_s := NID_LCROOT_to_LEX; 
     LEX_ROM_addr_valid_s := NID_LCROOT_to_LEX_valid_reg and 
lex_tkn_in_en; 
    when OTHERS => 
     LEX_ROM_addr_s := (OTHERS => '0'); 
     LEX_ROM_addr_valid_s := '0'; 
   end case; 
   LEX_ROM_addr <= LEX_ROM_addr_s; 
   LEX_ROM_addr_valid <= LEX_ROM_addr_valid_s; 
  when '1' => 
   LEX_ROM_addr <= LEX_ROM_SIL_PHN_ADDR; 
   LEX_ROM_addr_valid <= '1'; 
  when OTHERS => 
   LEX_ROM_addr <= (OTHERS => '0'); 
   LEX_ROM_addr_valid <= '0'; 
 end case; 
end process; 
 
process(DEAD_PHASE, NXT_PHN_TKN, NXT_PHN_TKN_valid, DEAD_TKN, DEAD_TKN_valid) 
begin 
 case DEAD_PHASE is  
  when '0' => 
   TKN_RAM_rd_addr <= NXT_PHN_TKN(9 downto 0); 
   TKN_RAM_rd_addr_valid <= NXT_PHN_TKN_valid; 
  when '1' => 
   TKN_RAM_rd_addr <= DEAD_TKN(9 downto 0); 
   TKN_RAM_rd_addr_valid <= DEAD_TKN_valid; 
  when OTHERS => 
   TKN_RAM_rd_addr <= (OTHERS => '0'); 
   TKN_RAM_rd_addr_valid <= '0'; 
 end case; 
end process; 
 
process(clk, ce, sclr, WRD_EXIT_VALID, WRD_EXIT_info_valid) 
begin 
 if (clk'event and clk = '1') thena 
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  if (sclr = '1') then 
   WRD_EXIT_VALID_reg <= '0'; 
   WRD_EXIT_info_valid_reg <= '0'; 
  elsif (ce = '1') then 
   WRD_EXIT_VALID_reg <= WRD_EXIT_VALID; 
   WRD_EXIT_info_valid_reg <= WRD_EXIT_info_valid; 
  end if; 
 end if; 
end process; 
 
WRD_TOP_CTRL_BLK : fsm_wrd_cntrl  
 PORT MAP( 
  SIL_processed => SIL_DEAD_latch, 
  W_END => WRD_END, 
  W_EXIT_VALID => WRD_EXIT_VALID_reg, 
  ce => ce, 
  clk => clk, 
  curr_node_processed => CURR_NODE_PROCESSED, 
  DEAD_empty => DEAD_empty, 
  DEAD_go => DEAD_GO, 
  NXT_PHN_empty => NXT_PHN_empty, 
  NXT_PHN_GO => NXT_PHN_GO, 
  rst => sclr, 
  wrd_exit_info_valid => WRD_EXIT_info_valid_reg, 
  wrd_info_valid => WRD_info_valid, 
  DEAD_phase_done => DEAD_phase_done, 
  DEAD_pop => DEAD_pop, 
  insert_SIL => INSERT_SIL, 
  lex_lcroot_tkn_sel => lex_lcroot_tkn_sel, 
  lex_tkn_in_en => lex_tkn_in_en, 
  NXT_PHN_phase_done => NXT_PHN_phase_done, 
  NXT_PHN_pop => NXT_PHN_pop 
 ); 
 
WRD_TOP_TKN_ALLOC_DEALLOC_BLK : wrd_tkn_alloc_dealloc 
 port map ( 
  clk => clk,  
  ce => ce,  
  sclr => sclr, 
  TKN_INIT_GO => TKN_INIT_GO, 
  DEAD_PHASE => DEAD_PHASE, 
  NID_in_LEX => NID_LEX_to_NODE, 
  NID_in_LEX_valid => NID_LEX_to_NODE_valid, 
  TKN_RAM_rd_addr => TKN_RAM_rd_addr, 
  TKN_RAM_rd_addr_valid => TKN_RAM_rd_addr_valid, 
  TKN_DEAD_dout => DEAD_TKN(9 downto 0), 
  TKN_DEAD_dout_valid => DEAD_TKN_valid, 
  TKN_INIT_PHASE => TKN_INIT_PHASE, 
  TKN_INIT_ID => TKN_INIT_ID, 
  TKN_INIT_ID_VALID => TKN_INIT_ID_VALID, 
  nTKN_ACTIVE => nPAL_TKN_valid, 
  ACTIVE_TKN => ACTIVE_TKN, 
  ACTIVE_TKN_valid => ACTIVE_TKN_valid, 
  NID_out_LEX => NID_NODE_to_LEX, 
  NID_out_LEX_valid => NID_NODE_to_LEX_valid, 
  NID_out_NID_ROM => NID_to_NODE_ROM, 
  NID_out_NID_ROM_valid => NID_to_NODE_ROM_valid, 
  TKN_INIT_DONE => TKN_INIT_DONE, 
  TKN_FIFO_EMPTY => WRD_ERR_TKN_FIFO_EMPTY, 
  TKN_FIFO_FULL => TKN_FIFO_FULL, 
  TKN_FIFO_WR_ERROR => WRD_ERR_TKN_FIFO_WR_ERROR, 
  TKN_FIFO_CNT => WRD_DATA_MINE_TKN_FIFO_CNT, 
  SIL_DEAD => SIL_DEAD 
 ); 
 
process (DEAD_GO, SIL_DEAD) 
begin 
 if (DEAD_GO = '1') then 
  SIL_DEAD_latch <= '0'; 
 else 
  if (SIL_DEAD = '1') then 
   SIL_DEAD_latch <= SIL_DEAD; 
  end if; 
 end if; 
end process; 
 
WRD_TOP_LEXTREE_ROM_BLK : wrd_lex_rom 
 port map ( 
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  clk => clk, 
  ce => ce, 
  sclr => sclr, 
  EXIT_NID => LEX_ROM_addr, 
  EXIT_NID_valid => LEX_ROM_addr_valid, 
  NID => NID_LEX_to_NODE, 
  NID_valid => NID_LEX_to_NODE_valid, 
  LEX_BRANCH_CNT => LEX_BRANCH_CNT, 
  LEX_BRANCH_CNT_valid => LEX_BRANCH_CNT_valid, 
  LEX_CURR_BRANCH_PROCESSED => LEX_CURR_BRANCH_PROCESSED, 
  ERR_LAST_PHONE_ACCESSED => WRD_ERR_LAST_PHN_ACCESSED 
 ); 
 
NID_to_NODE_ROM_s <= NID_to_NODE_ROM(8 downto 0); 
WRD_TOP_NODE_ROM_BLK : wrd_node_rom 
  port map ( 
      addr => NID_to_NODE_ROM_s, 
      clk => clk, 
      dout => NODE_DATA, 
      en => ce, 
      nd => NID_to_NODE_ROM_valid, 
      rfd => rfd_dummy0, 
      rdy => NODE_DATA_valid, 
      sinit => sclr); 
 
WRD_TOP_COMPUTE_DATA_BLK : wrd_compute_data  
 PORT MAP( 
  clk => clk, 
  ce => ce, 
  sclr => sclr, 
  WRD_TH => WRD_TH, 
  TKN_INIT_PHASE => TKN_INIT_PHASE, 
  TKN_INIT_ID => TKN_INIT_ID, 
  TKN_INIT_ID_VALID => TKN_INIT_ID_VALID, 
  DEAD_PHASE => DEAD_PHASE, 
  DEAD_TKN_out => DEAD_TKN(9 downto 0), 
  DEAD_TKN_out_valid => DEAD_TKN_valid, 
  NXT_PHN_TKN_out => NXT_PHN_TKN(9 downto 0), 
  NXT_PHN_TKN_out_valid => NXT_PHN_TKN_valid, 
  lex_branch_cnt => LEX_BRANCH_CNT, 
  ram_rd_dout => RAM_rd_dout, 
  ram_rd_dout_valid => RAM_rd_dout_valid, 
  NODE_DATA => NODE_DATA, 
  NODE_DATA_valid => NODE_DATA_valid, 
  ACTIVE_TKN => ACTIVE_TKN, 
  ACTIVE_TKN_valid => ACTIVE_TKN_valid, 
  INSERT_SIL => INSERT_SIL, 
  WID => WID, 
  WRD_END => WRD_END, 
  WRD_info_valid => WRD_info_valid, 
  WRD_EXIT_VALID => WRD_EXIT_VALID, 
  WRD_EXIT_info_valid => WRD_EXIT_info_valid, 
  WRD_EXIT_SCR => WRD_EXIT_SCR, 
  ram_wr_data => RAM_wr_din, 
  ram_wr_addr => RAM_wr_addr, 
  ram_wr_en => RAM_wr_addr_valid, 
  ram_rd_addr => RAM_rd_addr, 
  ram_rd_en => RAM_rd_addr_valid, 
  CURR_NODE_PROCESSED => CURR_NODE_PROCESSED 
 ); 
 
WID_s <= WID(4 downto 0); 
WRD_exit_valid_s <= WRD_EXIT_VALID and WRD_END and WRD_info_valid; 
 
WRD_TOP_LCROOT_ROM_BLK : wrd_lcroot_rom 
  port map ( 
      addr => WID_s, 
      clk => clk, 
      dout => NID_LCROOT_to_LEX, 
      en => ce, 
      nd => WRD_exit_valid_s, 
      rfd => rfd_dummy1, 
      rdy => NID_LCROOT_to_LEX_valid, 
      sinit => sclr); 
WRD_EXIT_ID <= WID_s; 
WRD_EXIT_ID_valid <= WRD_exit_valid_s; 
 
end struct; 
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A.8 WORD BLOCK: CONTROLLER 

 

-------------------------------------------------------------------------------- 
-- Organization:    University of Pittsburgh  
-- Author:    Kshitij Gupta 
-- 
-- Design Name:    WRD CONTROLLER 
-- Module Name:    fsm_wrd_cntrl - struct 
-- Project Name:   University of Pittsburgh’s Speech Recognition System-on-a-Chip 
-- Target Device:  Xilinx Virtex4 SX-35  
-- Tool versions:  ISE 7.1i 
-------------------------------------------------------------------------------- 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity fsm_wrd_cntrl is 
   PORT(  
      SIL_processed       : IN     std_logic; 
      W_END               : IN     std_logic; 
      W_EXIT_VALID        : IN     std_logic; 
      ce                  : IN     std_logic; 
      clk                 : IN     std_logic; 
      curr_node_processed : IN     std_logic; 
      DEAD_empty          : IN     std_logic; 
      DEAD_go             : IN     std_logic; 
      NXT_PHN_empty       : IN     std_logic; 
      NXT_PHN_go          : IN     std_logic; 
      rst                 : IN     std_logic; 
      wrd_exit_info_valid : IN     std_logic; 
      wrd_info_valid      : IN     std_logic; 
      DEAD_phase_done     : OUT    std_logic; 
      DEAD_pop            : OUT    std_logic; 
      insert_SIL          : OUT    std_logic; 
      lex_lcroot_tkn_sel  : OUT    std_logic; 
      lex_tkn_in_en       : OUT    std_logic; 
      NXT_PHN_phase_done  : OUT    std_logic; 
      NXT_PHN_pop         : OUT    std_logic 
   ); 
end fsm_wrd_cntrl; 
 
architecture fsm of fsm_wrd_cntrl is 
 
 
   TYPE STATE_TYPE IS ( 
      s0, 
      s1, 
      s2, 
      s3, 
      s4, 
      s5, 
      s6, 
      s7, 
      s8, 
      s9, 
      s10, 
      s11, 
      s12, 
      s4_wait 
   ); 
  
   -- State vector declaration 
   ATTRIBUTE state_vector : string; 
   ATTRIBUTE state_vector OF fsm : ARCHITECTURE IS "current_state"; 
 
   -- Declare current and next state signals 
   SIGNAL current state : STATE TYPE; 
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   SIGNAL next_state : STATE_TYPE; 
 
BEGIN 
 
   ----------------------------------------------------------------- 
   clocked_proc : PROCESS (  
      clk 
   ) 
   ----------------------------------------------------------------- 
   BEGIN 
      IF (clk'EVENT AND clk = '1') THEN 
         IF (rst = '1') THEN 
            current_state <= s0; 
         ELSIF (ce = '1') THEN 
            current_state <= next_state; 
         END IF; 
      END IF; 
   END PROCESS clocked_proc; 
  
   ----------------------------------------------------------------- 
   nextstate_proc : PROCESS (  
      SIL_processed, 
      W_END, 
      W_EXIT_VALID, 
      curr_node_processed, 
      current_state, 
      dead_empty, 
      dead_go, 
      nxt_phn_empty, 
      nxt_phn_go, 
      wrd_exit_info_valid, 
      wrd_info_valid 
   ) 
   ----------------------------------------------------------------- 
   BEGIN 
      -- Default Assignment 
      dead_phase_done <= '0'; 
      dead_pop <= '0'; 
      insert_SIL <= '0'; 
      lex_lcroot_tkn_sel <= '0'; 
      lex_tkn_in_en <= '0'; 
      nxt_phn_phase_done <= '0'; 
      nxt_phn_pop <= '0'; 
 
      -- Combined Actions 
      CASE current_state IS 
         WHEN s0 =>  
            IF (dead_go = '1') THEN  
               next_state <= s9; 
            ELSIF (dead_go = '0') THEN  
               next_state <= s0; 
            ELSE 
               next_state <= s0; 
            END IF; 
         WHEN s1 =>  
            IF (nxt_phn_empty = '0') THEN -- NOT EMPTY 
               nxt_phn_pop <= '1'; 
               next_state <= s2; 
            ELSIF (nxt_phn_empty = '1') THEN -- EMPTY 
               next_state <= s5; 
            ELSE 
               next_state <= s1; 
            END IF; 
         WHEN s2 =>  
            IF (wrd_info_valid = '1' and W_END = '0') THEN  
               lex_tkn_in_en <= '1'; 
               lex_lcroot_tkn_sel <= '0'; 
               next_state <= s3; 
            ELSIF (wrd_info_valid = '1'  
                   and  
                   W_END = '1') THEN  
               next_state <= s4; 
            ELSE 
               next_state <= s2; 
            END IF; 
         WHEN s3 =>  
            IF (curr_node_processed = '1') THEN 
               next_state <= s1; 
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            ELSE 
               next_state <= s3; 
            END IF; 
         WHEN s4 =>  
            IF (wrd_exit_info_valid = '1'  
                and  
                W_EXIT_VALID = '0') THEN  
               next_state <= s1; 
            ELSIF (wrd_exit_info_valid = '1'  
                   and  
                   W_EXIT_VALID = '1') THEN  
               next_state <= s4_wait; 
            ELSE 
               next_state <= s4; 
            END IF; 
         WHEN s5 =>  
            IF (SIL_processed = '1') THEN  
               insert_SIL <= '1'; 
               next_state <= s6; 
            ELSIF (SIL_processed = '0') THEN  
               next_state <= s7; 
            ELSE 
               next_state <= s5; 
            END IF; 
         WHEN s6 =>  
            IF (curr_node_processed = '1') THEN  
               next_state <= s7; 
            ELSE 
               next_state <= s6; 
            END IF; 
         WHEN s7 =>  
            nxt_phn_phase_done <= '1'; 
            next_state <= s0; 
         WHEN s8 =>  
            IF (nxt_phn_go ='1') THEN  
               next_state <= s1; 
            ELSE 
               next_state <= s8; 
            END IF; 
         WHEN s9 =>  
            IF (dead_empty = '1') THEN  
               next_state <= s10; 
            ELSIF (dead_empty = '0') THEN  
               dead_pop <= '1'; 
               next_state <= s9; 
            ELSE 
               next_state <= s9; 
            END IF; 
         WHEN s10 =>  
            next_state <= s11; 
         WHEN s11 =>  
            next_state <= s12; 
         WHEN s12 =>  
            dead_phase_done <= '1'; 
            next_state <= s8; 
         WHEN s4_wait =>  
            lex_lcroot_tkn_sel <= '1'; 
            lex_tkn_in_en <= '1'; 
            next_state <= s3; 
         WHEN OTHERS => 
            next_state <= s0; 
      END CASE; 
   END PROCESS nextstate_proc; 
 
end fsm; 
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