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ABSTRACT
HARDY SPACES AND HARDY-TYPE INEQUALITIES
Asli Bektas, M.S.

University of Pittsburgh, 2010

This Master’s Thesis is devoted to special kinds of inequalities which generalize Hardy’s
Inequality and Paley’s Inequality in H'. We provide a more detailed proof for Hardy’s
Inequality by using a new approach. We also establish Hardy-Like Inequalities by using
H' — H? Factorization theorem, and we calculate the best constant for these Hardy-Like

Inequalities.
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1.0 INTRODUCTION

Inequalities are one of the most important instruments in many branches of mathematics,
such as harmonic analysis, functional analysis, real analysis, etc. This thesis is devoted to
special kinds of inequalities:Hardy’s inequality, Hardy-type inequalities,and Paley’s inequal-
ity.

The classical Hardy space in complex analysis, denoted by HP(A), consists of analytic
functions f on the interior of the unit disc A in C.

0=2m %
HP(A)_{JC3A—>C:”fHHp_rhm(/60 \f(ﬁ%%?%) <oo}

—1

Here C is the set of complex numbers. An analytic function f on A can be represented

by:
f(z) = Z a,z".
n=0

We call a,, the n.th Fourier coefficient of f. In this thesis we sometimes use f (n) instead of

Q.-

This theory was introduced by Frigyes Riesz,[1], and it is named in honor of the mathe-

matician G. H. Hardy, because of the paper [2].

A basic presentation of Hardy spaces for the unit disc (A) and Hardy spaces on the unit

circle (C') can be found in the second chapter.

There are many Hardy’s inequalities named after G. H. Hardy. One theorem ([3]) states

that if a, as,as,--- is a sequence of nonnegative real numbers which is not identically zero,



then for every real number p > 1 one has:

(a1 +ay+az+---+a,\’ e
M ) <(5) Xe
n p—1 vt

n=1

The integral version of Hardy’s inequality states if f is an integrable function with non-

negative values then:

/0 i (i /0 xf(t)dt)pdm < (}%) /0 * P,

In this thesis speciﬁcally, we focus on Hardy’s inequality for H! functions. It states that

if f € H' where f(z Zanz then one has ([4]):

n=0

= |a
ZTSWHfHHl

We also deal with Paley’s inequality ([5]) which states that if f(z Z a,z" is an analytic

n=0
function in the unit disc A satisfying

2w
sup / |f(re’®)|do < oo,
0

0<r<1

1

then (Z |a2k|2) < 00. Equivalently 3 a constant C' > 0 s.t.

(Z |a2k|2> < C|[fl -
k=1

Wojtaszczyk [6] proved that if f € H' then

WE

(lagt—a[*) < 4 f1l7

b
Il

1

We extend Wojtaszczyk’s argument for the lacunary sequence indexed by A, = 2" —1 to

obtain a better constant for this case, i.e. we obtain the stronger Paley’s inequality below:

NE

(‘a2k71|2) < QHfHEI

>
I

1

One of the main tools to deal with the inequalities in this thesis is, the H* — H? factor-



ization theorem. Indeed, we are concerned with the following topics:

e H'! — H? factorization theorem

Hardy’s inequality for H' functions:

— |an]

> <Al flln
n

n=1

and finding a more detailed proof for Hardy’s inequality.

Developing Hardy-like inequalities.

Finding the best possible constants for these Hardy-like inequalities.

Finding a better constant for Paley’s inequality, as described above.

This thesis consists of the introduction part and 5 more chapters.

Chapter two is the preliminary section which develops the background for the other
sections. Most of the theorems, definitions and discussions in the preliminaries are based on
Hoffman’s [4] and Rudin’s [7] approach. Here we provide some well known definitions and
theorems which will be used in other chapters. In this part we focus on important properties
of L? and HP? functions. We also focus on analytic and harmonic functions in the unit disc
and provide the answer to the boundary value problem [4]. At the end of the preliminary
section we deal with factorization of H? functions and the H' — H? factorization theorem,
which is an important part of the proof of Hardy’s inequality. Also by using H' — H?
factorization we develop Hardy-like inequalities in the third chapter. Finally we provide a
proof of the classical Hardy’s inequality (Theorem 2.24) in the last subsection of chapter
two, via Hoffman’s approach [4]. Hoffman’s approach inspired us to try to find a detailed
proof for Hardy’s inequality by using a new approach. Hence Hardy’s inequality is a good
place to begin our discussion of chapter three. In chapter three we provide a detailed proof
by using a weight function w;(e?) = m — §. We extend w; to w; : R — R by 27 periodicity.
The difference between our approach and Hoffman’s approach is that we use the Fourier
coefficients of the weight function w;(e) with the f(e?) function instead of using just the
imaginary part of f(e?), and we obtain the same result as Hoffman, i.e. if f € H! with each

an > 0 then

> a
S < all
n=1



From here to obtain the Hardy’s inequality below,

o0 ’a ’

> = <l fll
n

n=1

we use the H' — H? factorization as in Hoffman [4]. The new approach inspires us to produce
new Hardy-like inequalities by changing the weight function. At the beginning we obtained
the inequality below for the special case: ag;.;. We find that if f € H' then

A2k+1
2k + 1

WE

s
< 2l

=
Il

0

This result encouraged us to extend this method to the other special cases, for example
asp+j; case for j < 3 and a4, case for j < 4. These new Hardy-like inequalities drew our
attention to the fact that there is a relationship between the Fourier coefficients that we use
on the left hand side and the constants that we find on the right hand side. We were able to
extend this method to some other cases for example bk + j, 8k + 7, etc. Each time we notice
the same kind of relationships between the Fourier coefficients and the constants. Finally we
extend our results to the general case. We were able to find a inequality for the case a,;

where j < v. So we obtained that: if f € H! then:

EOO |@ok] T 1
- ) v 1.1
k=0 vk +7 sin (7;_2) UHfHHl ( )

Besides the proof of the inequality (1.1), the 3rd chapter also includes the detailed proof

of the “asry;” and “agr4;” cases to provide a better understanding of the method.

Moreover, we provide a proof by using the H' — H? factorization theorem for the lemma

which states that if f € H' and if we define the function:(P,y,;f)(2), in this way,

(Pung+5f)(2) = Z a2, Yz €A
k=0
then Vj < wv:
(Pung+sf)(2) € H'

and

I Ponio 5. £) () g < NSl -



In the 4.th chapter we discuss the best constant problems for the Hardy-like inequalities

that we obtained in chapter 3. Basically our purpose is to give an answer to the question:

Is the constant B in the inequality below:

|avk+]| -
Z b S @) 1l
B

the best constants for all cases? If so, can we find a proof for it; and if not, can we find

better constants?

Firstly, we develop a method to prove that 7 is the best constant for the Hardy Inequality:
- |a
ZT < 7| fll -

But this method does not work for all cases. We tried to find better constants for other

cases, and finally we found that if % > % then

Moreover, we were able to find a method to prove that * is the best constant for this

case.

For the remaining special case (vk + j) Where < we obtain not only that B above is

the best constant, but also the following interesting result holds: for m >3 and 1 < j < 7,
Elf = me0+j c H s.t.

= kit msin (72) 701

To do this we used some specific properties of special functions [8], [9], and we used
Pochammer symbols and hypergeometric functions [10], inspired by Mathematica experi-

ments.

The 5.th chapter contains a discussion of Paley’s inequality and a strengthening of Paley’s

inequality. The classical Paley’s inequality states that: if f € H' and (),), is lacunary



sequence in Ng = {0,1,2,---} s.t.

An
L= inf 22 5 q
neN n

then 3B € (0,00) s.t. Vf € H'(A)

2

<Z|f(kn)!2) < B[ fllg [14].

As we discussed above, we found a special case in Wojtaszczyk’s book [6] for A, = 2" —1.
He found B = 2 as a constant for this case. We extend Paley’s Inequality for the special
case \, = 2" — 1 and obtain constant B = v/2 for this case.

The last chapter contains an application of Paley’s and Hardy’s inequalities. We define

amap: J: H' — *st. J(f) = (-2

n+1)neN0 where f(z) € H', and prove that the function

J is not onto (see 6.6). As a background for this proof we present a discussion about the
Schur property of the Banach spaces. We also provide some proofs about the relationship
between isomorphic isomorphism and having Schur property for Banach spaces. By using

both Hardy’s Inequality [4] and Paley’s inequality, the proof of Theorem 6.6 follows.



2.0 PRELIMINARIES

In this chapter we introduce the basic facts that will be taken for granted through the

development of this thesis.

Definition 2.1. (Lebesgue Measure) Suppose X be the real line or a closed interval, and
F be a monotone increasing function in X, which is continuous from the left i.e.:

F(z) = sup F(t)

t<x

And let v be a function on semi-closed interval |a,b) s.t.

p(la, b)) = F(b) — F(a)

According to “Hahn Banach Extension Theorem, 7 u has a unique extension to a positive
Borel measure on X. The measure is finite iff F' is bounded. If X is the real line, every positive
Borel measure on X arises in this way from the left continuous increasing function F. If X
1s closed interval, every finite positive Borel measure on X comes from such an increasing
monotone function. If X is either the real line or an interval, the measure induced by the
function

F(z)=1=z

18 called Lebesque Measure.

Definition 2.2. (Simple Borel Function) Let X be locally compact set. A simple Borel



function on X is complex valued function f on X s.t.

fl2) = 0, ()

where
® ay,as,---a, are compler numbers
o [, Fy,--- E, are disjoint Borel sets of finite u measure.

e Xy is characteristic function of the set E.

Definition 2.3. The Borel function is called integrable with respect to p if there exists a

sequence of functions f,, such that

1. Fach f, is a simple Borel function for u
2. limy, oo [ | fn = fuldm =0

3. fn converges to f in measure, i.e. for each € >0,

lim p({z:|f(z) = fu(z)| = €}) =0

n—oo

2.1 THE SPACE L!

If f is integrable and f, converges to f in measure then

/ Jndp

converges and the limit of this sequence denoted by,

| fan

L' (du) denotes the class of y integrable functions and it is clear that L' (du) is a vector space.
f — fdu is a linear functional on L'. The Borel function f € L'(du) <= |f| € L'(du).

If fis in L'(du) then
‘/fdu‘ < /Ifldu



Definition 2.4. (1 Measure Zero) A subset S of X has . measure zero if for each € > 0
there is a Borel set A containing S with u(A) < e

Theorem 2.1. [4] (Lebesgue Dominated Convergence Theorem) If f, is a sequence
of integrable functions such that the limit f(x) = lim,_, fn(x) exists almost everywhere, and

if there is a fized integrable function g such that |f,| < |g| for each n then, f is integrable

[ fdn=tim [ fuda

and

2.2 THE SPACE L”

Definition 2.5. (Conjugate Exponents) If p and q are positive real numbers s.t.

1 1
__|__:1
p q

then p and q are called conjugate exponents.

It is clear that 1 < p < oo and 1 < ¢ < oco. Consequently we can conclude that 1 and oo

are also a pair of conjugate exponents.
Definition 2.6. (L”(u)) :
Let X be an arbitrary measure space with a complete positive measure p. If 0 < p < 0o
1

and if f 1s a complex measurable function on X then we define Hpr _ {/ |f|pdlu}P where
X
1£1l, is called L? norm of f.

The space of LP (du) consists of all f measurable functions, which satisfies:

1f1l, < o0

We identify the functions f and g that differ on a set of measure zero. If p is positive number
the space LP (du) consists of all measurable functions which satisfy: |f[” is in L' (du). If p

is positive number

fe L (dp)



g € L*(dp)

and p and ¢ are conjugate exponents then

(fg) € L' (dp)

i1, =/ Ifl”du);

It is not a norm since we may have || f||, = 0 without f = 0. It becomes a norm when we

Note that when we define:

agree to identify two functions in LP(du) which agree almost everywhere wtih respect to p.

Some Important Facts about LP(du)

e Let X be compact and p be a finite measure. Then every continuous function on X is

integrable. Moreover for f € L' and € > 0 then 3 a continuous function g s.t.
/ |f—gldp <e.
So the space of continuous functions is dense in L*.

e If p > 1 then L” is contained in L' and the continuous functions are dense subspace of
LP, ie.

/If—glpdu <e

e Let S be a locally compact Hausdorff space and fix a positive Borel measure p on S.

Choose a number p > 1 and let X = L? (du). Define the norm of f € L? to be its LP

i1, = ( / |f\f’du)‘i

The space L? (du) p > 1 is a Banach space using the LP norm.

norm:

e The space L* (dpu) is the space of bounded p measurable functions with the p—ess— sup

norm.

[fllo = essu = sup, | f(2)]

Definition 2.7. (Conjugate Space of X) Let X be a Banach space and let X* be the

10



space of all linear functionals of F which are continuous, i.e.:
|tn —z|| = 0= |F(z,) — F(x)| =0

then the set X* forms a vector space. The linear functional F' is continuous if and only if it

s bounded. i.e.: if and only if there is a constant K > 0 s.t.
|F(2)] < K [|]
for every x € X. The smallest such K 1is called the norm of F'. Then

IF = sup |F(x)].
Jall<1

With this norm X* becomes a Banach Space which is called the conjugate space of X.

EXAMPLE 2.1. [4] Let S be a locally compact space and p a positive Borel measure on S.
Suppose 1 < p < oo and that X = LP(du). Then the conjugate space of X is L(du) where
% + % =1. Ifp=1, X*=L>. Ifge Li(du) then g induces a continuous linear functional

F on LP by
F(H) = [ fodu.s € 1.

Every continuous linear functional on LP has this form and
IEN = llgll,-

Definition 2.8. (Inner Product Space and Hilbert Spaces):
Let H be a real or complex vector space. An inner product on H is a function (.,.) which

assigns to each ordered pair of vectors in H a scalar in such way that:

T+ x27y) = (xhy) + ($2,y)

Such a space H with a specified inner product on H is called an inner product space. If

H is complete in the norm genrated by (.,.), © — (z, a:)%, we say that H is a Hilbert space

11



EXAMPLE 2.2. [}] Let X be a locally compact space and p a positive Borel measure on
X. Let H = L*(dp) with the inner product

mmzfmm
then H is a Hilbert space.

Definition 2.9. [//

Let H = L*(—m,w). The space of Lebesque square integrable functions on the closed

interval [—m, 7] . Then we define the inner product

— o |t

So L*(—m,m) = L*(dp) where p is normalized Lebesgue measure and dp = 5-dx. Let @, (z) =
e™® then it is clear that p, is an orthonormal set. This orthonormal set is complete. If

f € L*(—x,w) the numbers

— (f.pn) = /f Jemine g

are the fourier coefficients of f, the Fourier series for f is:

o0
§ Cne’L’rLI

n=—0oo

and the n.th partial sum 1s:

sp(x) = Z et

k=—n
Note that the sequence of Fourier coefficients is square summable and

o0

> lal =11 = 52 [ 1@

n=-—o00 -

And n.th partial sum s, of the Fourier series converges to f in the L? norm:

lim /W () — sn(z)dz = 0.

—T

Theorem 2.2. [J] (RIESZ-FISHER THEOREM):

Every square summable sequence of complex numbers is the sequence of Fourier coefficients

12



of a function in L*(—m, 7). For if
o
Z lea|® < 00
n=-—00

n
and if s,(z) = Z c,e™® then it is easy to see that s, converges in L? to a function f

k=—n
with Fourier coefficients c¢,,.

2.3 FOURIER SERIES

If f is a complex valued Lebesgue integrable function on the closed interval [—7, 7] then the

Fourier coefficients of f are the complex numbers:

1 [7 ;
%25‘/QWmem,n=&vﬁ&~~ (2.1)
m —T

and the Fourier series for f is the formal series:

i ™ (2.2)

n=—oo

Let construct the partial sums for this Fourier coefficients in such way;

Sp(x) = Z cpe’t? (2.3)

We know that if f is square integrable then the partial sums converges to f in the L?

norm. Our question here is, if f in L' how can we recapture f from its Fourier coefficients?

Definition 2.10. [{] (CESARO MEANS): The first Cesiro means of the Fourier series

for f are the arithmetic means

O =L(s0+  +su-1), where n=1,2, -

If fisin LP(—7,m) , 1 < p < oo then the Cesaro means o, converges to f in the LP

norm. And if f is continuous and f(—m) = f(m) then the o, converges uniformly to f.

13



Definition 2.11. /4] (FEJER'S KERNEL): We know that

n

‘ "1 [T .
sn(x) = Z cpe™ = Z em%/ f(t)e *at = / f(t) et
k=—n - k:— n

k=—n

o 2W/.f oz — t)dt

where K,(x) is the n th Cesaro means of the sequence:

n ik .
Y open € Thus;

(n+1)K,i1(x) — (n)Kp(x) = Z pike

k=—n

_ Z eikx + Z efika:
k=0 k=1
1— ei(n+1)x 1— efi(TL‘Fl)I )
1—ew 1—e

cos(nz) — cos(n + 1)z
1 — cos(x)

Since K1(x) =1 then

0= [Tt |

1 [singz 2
~ n|sin %x
this sequence of functions K, is called Fejér’s kernel.

Note that

« K, >0

= [T Ky(z)de =

e If /is any open interval about = 0 then

lim sup [K,(z)] = 0, (|2 <)

(2.4)

(2.6)

Definition 2.12. /4] (Approximate Identity): Any sequence of Lebesgue integrable func-

tions, K, which has the properties above we call a, ‘Approzimate identity’.

14



oo
Suppose f is a Lebesgue integrable function on the interval [—m, 7].Let Z ™ be

n=—oo

n
the Fourier series for f. It is important to know whether the partial sums s,,(x) = Z crett®

k=—n
of the Fourier series for f are convergent or not. If it is convergent it is also important to

know whether the s, converge pointwise, converge pointwise almost everywhere, converge

uniformly,or converge in some type of norm? If they are convergent, do they converge to f?

We can easily find the answer of this question by using Cesaro means:

Theorem 2.3. [4] Let f be a function in LP(—m,7) where 1 < p < co. Then the Cesaro
means of the Fourier series for f converge to f in the LP norm. If f is continuous and

f(=m) = f(m) then the Cesaro means converge uniformly to f.

Theorem 2.4. [}] If f is in the L*>°(—m, ) then the Cesaro means of the Fourier series for

f converge to f in the weak star topology on L.

Theorem 2.5. [4] Let yu be a finite complex Baire measure on the interval [—m, 7] and let
o, be the n th. Cesaro mean of the Fourier series for p. If f is any continuous function of

period 2w, then

which means the measures %andx converge to i in the weak star topology.
For the proofs see [4].

Corollary 2.1. (FEJER’S THEOREM )[15] Every continuous function of period 2w is a

uniform limit of trigonometric polynomials.

n

p(x) _ Z akez’km

k=—n

Since for f € L? the o, converges to f € L* we can easily conclude that the orthonormal
family ™ is complete in L*(—m, ).
Note that if we have defined Fourier coefficients of two functions it is obvious that if

we add two functions, it requires that we add respective Fourier coefficients. Moreover for

15



f,g9 € L*(—7, ) we can define a multiplication by convolution:

(f * g)(x) = % / " o — D)t

Fubini’s theorem implies that, f % ¢ is again in L' and it is easy to see that ||f xg||, <

11 lgll
Hence
L [T cime(ag@de = = [ e X [0 pe - tyg(t)ded
o 46 g)z)dr = o 46 o | x g x
R / - tde| dt (2.8)
=5 _Wg o _ﬂe x x .
1 s s

. 1 .
g(t)e ™ dt— / e "™ f(y)dy
2

=5 3 -
The n.th Fourier coefficient of f x ¢ is is the product of the n.th Fourier coefficients of f
and g. We can also define the convolution of two measures for example the convolution of
two measures which are absolutely continuous with respect to Lebesgue measure. Then the

convolution of f and p is defined in this way:

(f  1)(x) = / " fe — (o)

Again the Fourier coefficients of f * p are the products of the corresponding coefficients of f
and p. If fis in L' then o, = f * K,,. The measures 5-K, (x)dz are approaching the delta

measure

1, if 0 e B;
6o(B) = (2.9)

0, otherwise.

where B is a Borel set.

Hence Cesaro means of f converges to f in L'. Note that the Fejer’s kernel K, is the
n.th Cesaro mean of the Fourier series for the delta measure dy.S0 we can convert the results
into the case when K, is any approximate identity for L!. So we can conclude that f x K,
converges uniformly to f if f is continuous, converges to f in LP norm if 1 < p < oo, and

converges weak-star to f if f is in L*.

16



2.4 CHARACTERIZATION OF TYPES OF FOURIER SERIES

Consider a formal Fourier series:
o

§ : cnemx'

n=—o00

If the sequence {c,} is square summable, then we know that this formal series is the
Fourier series of an L? function. The question here is how can we decide whether this formal
series is the Fourier series of an L' function an LP function, a measure, or a continuous
function? We can give a satisfactory answer again in terms of the Cesaro means of the
series. Let’s simplify this question. For a given sequence ¢,,n =0,+1,4+2, £3,--- find a
necessary and sufficient condition for ¢, to be the Fourier transform of a function L?. We
want necessary and sufficient condition for the existence of a function f where f is in LP for

some p s.t. f(n) = ¢, for all n.

It is clear that the partial sums of the series Z €™ are in LP for every p. If these
n=-—o00

partial sums converge for the norm of some L” space then the limit is a function in L” whose
Fourier transform is ¢,. Thus the convergence for some L” norm of our series is a sufficient
condition for ¢, to be the Fourier transform of a LP function.

o0 n
Let consider a series g ai. For each n = 0,1,--- s, = E ai. If s, is Cesaro
k=—o0 k=—n
convergent to f then the given series is said to be Cesaro convergent to the same function.

Here we assumed ¢, was given and asked for necessary and sufficient conditions for this

sequence to be the Fourier transform of an LP function. Let o, is the n.th Cesaro means of

o0
the series Z cn€™. If n > |m| then the m.th Fourier coefficient of o, (z) is [—n;‘f"‘] Crn.-
n=—00
Hence

1 )
lim —/an(x)e_”nzdx =Cn

n—oo 27T

for every m.

Theorem 2.6. [11] If for some p > 1, the Cesaro means of

o
§ CneZnIE

n=—oo

are bounded for the LP norm, then the sequence ¢, is the Fourier transform of a function in

17



this space.

Theorem 2.7. [11] If the Cesaro means of the series converge for the Ly norm then the

sequence ¢, is the Fourier transform of a function in this space.

Suppose that for some p > 1 the sequence o,(x) is bounded for the L, norm which means

for some p > 1
Sup{HJ”(x)Hp’ n=123-- } < 0.

Since p > 1, then LP is the dual of the Banach Space L? where }D + é = 1. Then there is a

h € LP s.t. for any € > 0

<€

[ [ontwiate - nargtoia]

for infinitely many n. So e € LY and ﬁ(m) = ¢, for all m. So this takes care of theorem

2.6 and 2.7.

Theorem 2.8. [11] A sequence ¢, is the Fourier transform of a function in LP, p > 1 iff
the Cesaro means ofz cn€™ are uniformly bounded for the LP norm. The given sequence
is the Fourier transform of a function in L' iff the Cesaro means of the series converge for

the L' norm.

Proof. If p = 1 then the theorem follows from Theorem 2.6 and 2.7. If 1 < p < oo then
it follows from Riemann Lebesgue lemma. If f € L*> it follows from Theorem 2.7 and the
Banach Steinhaus theorem that the Cesaro means of its Fourier series are uniformly bounded

for the L* norm. O

2.5 ANALYTIC AND HARMONIC FUNCTIONS IN THE UNIT DISC

Let A denote the open unit disc in the complex plane:
A={zlz <1}
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and C' denote the unit circle;

C={zlz| =1}

Definition 2.13. (Analytic Function in A):[4] Suppose f is a complex function defined

in A If zo € A and if
f(2) = f(20)

ZimZHZO
Z— 20

exists we denote this limit by f (z9) and call it the derivative of f at zy.If f'(20) exists for

every zo € A we say that f is analytic (or holomorphic) in A.

If the complex valued function f is analytic in A then it is the sum of the convergent

power series:
oo
f(z) = Z anz"
n=0

Definition 2.14. (Harmonic Function in A):[]] A complex valued function u is har-

monic on A, if it satisfies the Laplace equations:

Ou  *u

o2 T =

Note that any analytic function is a complex valued harmonic function. A real valued

function w is harmonic iff it is the real part of an analytic function.
f=u+iv
Given the real harmonic function u there is a harmonic function v for which
f=u+iwv

is analytic.

Such v is called the harmonic conjugate of u and satisfies Cauchy-Riemann equations

below:
Ou v
ox  dy
ou v
dy Oz

and v vanishes at the origin.
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2.5.1 The Cauchy and Poisson Kernels

Suppose we have an analytic function f in a disc of radius 1 + ¢. We know that f has
boundary values and it is determined by these boundary values by using the Cauchy integral

formula where z is on the boundary here.

1 s » 62'9
2m /_ﬂf(e )619—2

If we have an analytic function in the open disc then,

[o.¢]
= E anz"

n=0

If we restrict f to the circle of radius r we obtain a continuous function on that circle

which can be interpreted as a function on the unit circle.

fr(e) — Z anrneznﬁ
n=0

where f,.(0) = f(re?) is a function on the unit circle. The n.th Fourier coefficients of f,.(6)

are:

e a,r" forn >0
e 0 forn<0

and the Cauchy integral formula becomes:

I 27r / 1(#) rew

/ /) rel(g y 4 (2.10)

(9 t)

_ % " HOC0 - t)dt.

Note that f,.(6) is the convolution of f(e") and C..(#) so the Fourier coefficients of f, are the
Fourier coefficients of the product of those of C,.(6) and f(e™).

If w is harmonic in the disc then u is the real part of an analytic function of f(z). If we
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restrict u to the circle of radius r then,

u, (") = 2Re (ag) + Z anre™ + Za_nr_”eme
n=1 n=1
o (2.11)
= 2Re(ag) + c,ri™em?
(a)+ Y

co n=—00, n#0

where a,, = ¢, for n > 0 and a_,, = ¢, for n < 0. If u is harmonic in the closed disc, then

the boundary function u; has the Fourier coefficients c,.

ur(0) = u(e”)

— ind
= 2Re (ap) + Z Ccpe (2.12)

n=—oo

= 2Re (ag) + f: ane™ + i@e_me
n=1 n=1

Since
o

u-(6) = Z cprmlein?

n=-—00
and
oo
u(0) = Z cne’™
n=-—00

it is clear that the Fourier coefficients of u,(6) are a multiplication of the Fourier coefficients
of u1(0) and the Fourier coefficients of another function whose Fourier coefficients is 7™, Let

us call the second function P,(6). Then

P.(0) = Z rlnlgind

n=—oo

= Cr<9) + Cr<9) —1

=2ReC,.(0) — 1
(2.13)
= Re(2C,)(0) — 1
1+ ret?
1 —re?
_ 1—r?
1 —2rcos(d) +r?

~ e
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Since u,(#) is the convolution of u(f) and P,(6) then

() = — /W u(t) P (0 — t)dt

2 ),

where u(t) denotes u(e®).
Note that this Poisson integral formula holds for an analytic function f. So both the
Poisson kernel and Cauchy kernel reproduce analytic functions from their boundary values

by convolution.

1 [ _
o ) e~ P (0)dh = r"!
1 [T r*, it n > 0;
7 e C(0)do = (2.14)

0 ifn<O;

As we see above if we use the Poisson kernel and Cauchy kernel for an analytic function
on the circle the result is the same because they both have the same Fourier coefficients for
positive integers, but they behave differently for negative integers. The Fourier coefficients
of P, are symmetric about zero on the integers, but the Fourier coefficients of C). vanish on

the negative integers.

2.5.2 Boundary Values:

The main problem in this part is: If we have a given continuous function f on the unit circle

C how to find a harmonic function » in open unit disc A whose boundary values are f ?
Theorem 2.9. [4] If f € L*(C) then the Poisson integral of f is a harmonic function in A.

Theorem 2.10. [}/ Let f be a continuous function on C' and define (H f) on the closed unit
disc A by

f(ew)v ifr=1

P(re®), if0<r<1

(Hf)(re") =

then (Hf) is a continuous function on the closed unit disc .

Proof. Let ||g||, denote the supremum of |g| on the set C, and P [g] denote the Poisson
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integral of g. Recall that
1 ™

— P.(t)dt=1,0<r<1
2 ).

Since P.(t) > 0, then for every continuous g in C'
P [g] (re”)| < llgllc

So

1Hgllx = llgllc

If

is any trigonometric polynomial, it follows that

N

(Hg)(re') = Z c,r™etn?

n=—N

so (Hg) is a continuous function in A. Finally we can conclude that there are trigonometric

polynomials g such that lim;_. ||gr — f||o = 0. It follows that
|Hgr — Hfllx = 1H(gx — f)llg — 0.

So the functions Hg, are continuous functions in A and they converge uniformly on

A. O

Theorem 2.11. [7] Suppose u is a continuous real valued function on the closed unit disc
A and suppose u is harmonic in . Then u is the Poisson integral of its restriction to C

and u is the real part of the analytic function,

f(2) ! /7T <+ Zu(e”)dt,z €A (2.15)

2w ) et —z

Proof. If uy = Re (f) then (2.15) shows that u; is Poisson integral of the boundary values of
u and the only thing we need to prove is: v = u;. Put A = v — u;. Then h is continuous on

A and by the previous theorem A is harmonic in A and h = 0 at all points of C'. Assume
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that h(zp) > 0 for some 2y € A. Fix €, s.t. 0> € > h(zy) and define
6(2) = h(2) + elf? (2.16)

Then g(zp) > h(z) > €. Since g is a continuous function in A and since g = € at all
points of C' there exists a point z; € A at which g has local maximum. This implies that
gz < 0 and gy, < 0 at z;. But (2.16) shows that the Laplacian of g is 4¢ > 0 which is a
contradiction. So u — u; < 0 The same argument shows that u; —u < 0. Hence u; = v and
we are done.

Although theorem 2.11 considered only the unit disc, this theorem can be carried over
to arbitrary circular disc,by changing variables. i.e.: If u is a continuous real function on the
boundary of a disc with radius R and center a then u is defined in that disc by the Poisson

integral
™ R2 _ ,',.2

~ 1
0y _ _—
u(aret) = 27 /_7r R2? — 2Rrcos( — t) + r?

Then u is continuous on the closed disc and harmonic in the open disc. If w is harmonic

u(a + Re')dt.

in an open set U and if A(a; R) C U then u satisfies the condition above and there is a
holomorphic function f defined in A(a; R) whose real part is u. So we can say that every
real harmonic function is the real part of a holomorphic function. [7]

Now, let consider the Dirichlet problem by Hoffman’s approach [4] before beginning the
discussion of the boundary behaviour of harmonic functions and the description of H? spaces.
Suppose we have a given real valued continuous function f on the unit circle. The Dirichlet
problem consists in finding a function u which is continuous on closed disc, such that u

satisfies the following conditions:

1. w is harmonic in the open disc
2. u agrees with f on the circle.
Recall the Poisson kernel:

B 1—r?
1 —2rcos(0) + 2

b.(0)

The Poisson integral formula satisfies the following conditions:

e P. >0 (and P, is continuous on the circle)
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° %ffﬂPT(O)d6:1,0§r<1.
e if 0 < v < 7 then

lim,_1sup|P.(0)| for 0] >~

For if v < |0] < 7 then:

1—r?
P0) <
1 —2rcos(y) + 1?2

Then to solve the Dirichlet problem the only thing we need to do is, to show that the

family of functions P,, 0 < r < 1 is approximate identity for L' of the circle. n

Theorem 2.12. [7] Let f be a complex valued function in LP of the unit circle where 1 <

p < o0o. Define [ in the unit disc by,

) 1 &
0
= — t)P.(0 — t)dt.
fre”) = 5 [ R0 -0
then the extended function f is harmonic in the open unit disc.

Proof. If the original f is real valued then the function f(re?) is the real part of the analytic
function

1 (7 et + 2
o2 =5 | fOGa

The harmonic function f(re) is the Poisson integral of the corresponding function on the

circle.
Note that it is easy to show that the family of functions P., 0 < r < 1 is an approximate
identity for L' of the circle. So we can conclude that if f is a complex valued function in L?

of the unit circle where 1 < p < oo and if we define f in the unit disc by

fret) = 5 [ sope - na,

as v+ 1 the functions f.(0) = f(re?) converge to f in the LP norm. If f is continuous
on the unit circle, then f,. converge uniformly to f, so the extended f is continuous on the

closed disc, harmonic in the interior. O

Suppose we have a given harmonic function in the disc. How can we decide if it is the
Poisson integral of some type of function? We can solve the problem by using the same

method as we did for Cesaro mean.
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Theorem 2.13. [/] Let f be a complex valued harmonic function in the open unit disc and

1. If 1 < p < oo then f is the Poisson integral of an LP function on the unit circle if
and only if the functions f, are bounded in LP norm. (if p = oo this is called Fatou’s
Theorem. see for details [4] )

2. f is the Poisson integral of an integrable function on the circle if and only if the f,.
converge in the L' norm.

3. f is the Poisson integral of a continuous function on the unit circle if and only if f.
converge uniformly.

4. f is the Poisson integral of a finite complex Borel measure on the circle if and only if the
f» are bounded in L* norm.

5. f is the Poisson integral of a finite positive Borel measure if and only if f is nonnegative.

2.6 H' SPACES

Before starting the discussion about the space HP we need a corollary of the theorems from

the previous section.

Corollary 2.2. [}/ Let f be a complex valued harmonic function in the unit disc and suppose

that the integrals

/ ' | f(re®)|"do

—T

are bounded as r — 1 for some p ,1 < p < oo. Then for almost every 6 the radial limits
F(6) = lim f(re?)
r—1

exist and define a function f in LP. If p > 1 then f is the Poisson integral of f. If p =1
then f is the Poisson integral of a finite measure whose absolutely continuous part is % fdo.
If f 1s bounded harmonic function the boundary values exist almost everywhere and define a

bounded measurable function f whose Poisson integral is f.
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Suppose 1 < p < oo and let f be a harmonic function in the open disc s.t. the function
f+(0) = f(re?) is bounded in L norm. This class of functions forms a Banach space under

the norm

1£11 = lim 1 £,

For 1 < p < oo this Banach space is isomorphic to L? of the unit circle. The isomorphism

is f — f where f is the boundary function for f. If 1 < p < co we have not only

il =t £,
but also
lim f— frll =0
r—1 p

For p = 1 this Banach space is isomorphic to the space of finite Borel measures on the

circle, the isomorphism is: f — pu where f is the Poisson integral of p.

The results about harmonic functions apply in particular to analytic functions.

() = fré®),0 < v < 1

1], = {/lerlde} 0<p<os

£l = sup [ f(re”)]

and

where o is normalized Lebesgue measure on C, so o(C') = 1.

If 0 < p < oo the space HP is denotes by the class of analytic functions f in the unit
disc for which the functions f,(9) = f(re®) are bounded in LP norm asr — 1. If 1 < p < oo

then H? is a Banach space under the norm

111 = tim 17,1,

so H? is a closed subspace of the corresponding space of harmonic functions. If 1 < p <
oo then HP can be identified with a closed subspace of LP of the circle because of the

isomorphism. It consists of all functions f in L” whose Poisson integrals are analytic on the
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disc, i.e.

/ f(0)em™dh =0,n=1,2,3

When p = 1 then we can identify H' with the closed sub-space of finite measure p on

the circle which are analytic:

/ e™du(f) =0,n=1,2,3,---

-
Remarks[4]
e | fer is a nondecreasing function of r for every f when p < cc.

e For 1 <p < oo, | f[, satisfies the triangle inequality so H? is a normed linear space. By

the Minkowski inequality:

ICF+9)ll, = 15+ gell, < AL+ lgrll,

If0<r<1andasr—1then
1f+gll, < IfIL, +llgll,

e As we mentioned before H? is Banach space if 1 < p < oo. We suppose { f,,} is a Cauchy
sequence in H? | |z| <r < R < 1 and apply the Cauchy formula to f,, — f,, by integrating

around the circle of radius R center 0 then we obtain:

(B =) fa(2) = fn(2)] < [ (fa = Fm)glly < N(Fn = Fin) gll, < [1(Fn = F)l,

Then {f,} converges uniformly on compact subsets of A to a function f € H(A). Given

€ > 0 there is an m, s.t. [|(f, — f)|l, < € for all n > m and then for every r <1

10 = Fal, = e [[(Fu = ], < e
which gives us [|(f — fin)ll, — 0 as m — oo

e For p < 1, H? is still a vector space but the triangle inequality is no longer satisfied by

fll. - In this case H? is an F-space.
p
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2.7 H' SPACES AND THE H' — H? FACTORIZATION THEOREM:

Let A denote the collection of functions which are continuous on the closed unit disc and
analytic at each interior point. Then A is a Banach space under the sup norm:
[ flloe = sup|f(2)]
|2|<1

Each f in A is the Poisson integral of its boundary values

fre®) =5 [ R0 -t

and

1flle = sup [f:(e”)]
~—
o<r<1

by the maximum modulus principle for analytic functions. It is easy to see that there is an
isomorphism between A and and the Banach space of continuous functions on the circle so
we can identify the functions in A with their boundary values, where the boundary value

function such that:

/ f(@)em™dd =0, V n=1,2,3,---

If f is continuous on the circle and if the Fourier coefficients of f vanish on the negative inte-
gers, then the Cesaro means of the Fourier series for f contains a sequence of trigonometric

polynomials of the form:

P(6) = Z ape™®

k=0
which converge uniformly to f. Then we can identify A as an algebra on the disc consisting

of all functions which are uniformly approximable by polynomials in z:

n

P(z) = Z a2

k=0
so by this property of A we obtain Fejer’s theorem in the following form:
Theorem 2.14. [/] The real part of functions in A are uniformly dense in the space of

real valued continuous functions on the unit circle. In other words if i is a finite real Borel

measure on the circle s.t./ fdu =0 for every f in A, then p is the zero measure.
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2.7.1 Some Important Facts about H' Functions:

We have defined the space H? as the class of analytic functions f in the open unit disc for
which the functions f.(6) = f(re??) are bounded in LP norm. For 1 < p < oo since the

functions in H? are analytic we can identify H? with the space of LP functions on the circle.

For p = 1, the functions in H! are harmonic. This fact leads us to identify f with the
finite measure p on the circle where f is Poisson integral of u. Recall that if f is analytic,

then p is analytic i.e.
/emedu(ﬁ) =0, n=1,2,3,---

The theorem of F. and M.Riesz tells us:
1 -
dp = — fdb
2

where f is in L' and f is the Poisson integral of f. The functions f, converge to f in L!

norm and for almost every 6

f(&) = lim f(reie)

r—1-
Then we define H' as the space of L' functions on the circle which are analytic.

One of the important theorems about H' functions is H' — H? factorization theorem
that we are going to use later to obtain ‘Hardy Type Inequalities’. Before the H' — H?
factorization theorem we need to go over some basic properties of H' functions. Let A,
denote the set of functions f in A for which / fdf = 0. If u is a positive measure, then we
define the square root of the distance between 1 and A, by:

inf [1L=Plau= [ |1- Pl

f€Ao

where F' is the orthogonal projection of 1 into the closed subspace of L?(du), which is spanned

by the function A.

Theorem 2.15. [4] Let u be a finite positive Borel measure on the circle and suppose 1
is not in the closed subspace of L*(du) which is spanned by the functions in Ag=the set of
functions f € A for which [ fdf = 0. Let F be the orthogonal projection of 1 into that closed

subspace.
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1. The measure |1 — F|2du 18 a non-zero constant multiple of Lebesque measure. In partic-

ular, Lebesgue measure is absolutely continuous with respect to pu.
2. The function (1 — F) " is in H>.

3. If h 1s the deriwvative of pu with respect to normalized Lebesgue measure, then the function
(1 — F)h is in L?, where
L*=r (%d&)
Theorem 2.16. [/] Let f be any function in H' s.t.

£(0) = 5- / £(6)d6 #0

then log|f(0)| is Lebesque integrable and

1 ™
o | 1ealr©)lds = 1o (0)
™ —T
Theorem 2.17. [4] (H' — H? Factorization Theorem:) FEvery function in H' is the
product of two functions in H?.

We will give a nice proof for this theorem later on this chapter.

2.8 FACTORIZATION OF H?” FUNCTIONS

2.8.1 Inner and Outer Functions

Definition 2.15. (Inner Function)/[}]
An inner function is an analytic function g € H*® for which |g(e?)| = 1 almost every-

where on the unit circle. Note that ||g||,, = 1.

Definition 2.16. (Outer Function)[}] Let F be an analytic function, on the unit disc. F
1s called an outer function if there exists a positive measurable function ¢ on the unit circle

such that logp € L'(C) and

1 K 61,9 _|_ z i
F(2) = aexp [%/ o Zlog¢(€ "\do
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for z € A and |a| = 1.

The outer function F is in H' if and only if ¢(6) = €/°9¢(®) is integrable. If F is an outer
function in H' then

(e = |F(e”)] ac.

Note that if f is a nonzero function of the class H' on the unit disc then f has nontangential

limits at almost every point of the unit circle:

f(e) = lim f(2)

and
) 1 4 .
f(re?) = 7 /Tr f(eYP.(0 — t)dt.

Also log|f(e")] is also Lebesgue integrable. Let

P = eap |- [ 't “log] ) 00

6
2 J_e? —z

and u is Poisson integral of log|f| then |F| = e* and

1 (7 , 1 [ ,
F 0 < 0
Felds < o [ 15(eas

o ) .

—T

So F is in H' because it is bounded. Define a function

o) = 4

. We know that
. 1 ™ .
tog Fre")| = 5 [ logl(e1P.(6 —
7-(_ s

so |F(z)| > |f(z)] for each z in the open disc. It is easy to see by Jensen’s inequality:

tog F(re")| < 5 [ 1o\ (") |6 — )it = og|F(re”)
™ ™

then we obtain:
90 = | 2

Theorem 2.18. [4] Let f be a nonzero function in H'. Then we can write f in the form:

f = gF where g is an inner function and F is an outer function. This factorization is unique
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up to constants of modulus 1 and the outer function F is in H*

Proof. We know that if

2 | e — 2

1 T if )

F(z) = exp [—/ C L og| £ ()] d8

then F is an outer function in H' and % = ¢ is an inner function. If we have f = g, f; with
g1 inner and Fj outer then |F| = |Fi| on the boundary.

It is clear that F' = «F) for some number a with |a| = 1. So agF; = ¢ F; and

g1 = ag. O

2.8.2 Blaschke Products

Theorem 2.19. [4] Let {a,,} be a sequence in A such that every «,, # 0 and each «, has
multiplicity p, € N and

D (1= ag|) < o0 (2.17)
n=1
If k is a nonnegative integer and if
S an — 2 |
B(z) = 2" cA 2.18

then B € H* and B has no zeros except at the points av,, and the origin if k > 0.

Definition 2.17. [/] We call the function (2.18) a Blaschke Product. Note that each factor
in (2.18) has absolute value 1. This product converges uniformly on compact sets and the
only zeros of B are a zero of order k at the origin and a zero of order p, at a,,. A Blaschke
product is an analytic function. Note that whenever a Blaschke product converges uniformly

on compact subset of A,

o0

Z(l —|an]) < 0.

n=1

Theorem 2.20. /4] If B is is a Blaschke product, then

|lim B(re™)| =1

r—1
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L NP
71}_{1}%/ log|B(re")|d0 =0 (2.19)

—T

Proof. Since the integral is a monotonic function of r then the limit exists. Suppose B(z) is

a Blaschke product then

[e.e]

By(2) = H ap — 2 |

1—a,z o,

Since log(|%|) is continuous in a open set then the limit (2.19) is not changed when we
replace B by By. So we obtain

1T . 1 . ’
< — ¢ < — ¢ <
log | By (0)| < 11_13} o /_ﬂ log |B(re")|df < o /_7r loglgg\B(re )|dg <0

As N — oo the first term of the previous inequality tends to 0. Then

: AN
/logb_rg\B(re ) =0

Now we can easily prove the following theorem

Theorem 2.21. [}/ Let f be a bounded analytic function in the unit disc and suppose f(0) #
0. If {a,} is the sequence of zeros of f in the open disc each repeated as often as the
multiplicity of the zeros of f ordered accordingly to their multiplicities, then the product

[1lcn| is convergent i.e.

n
o0

Z(l — |an]) < o0

n=1
Proof. Suppose |f| < 1. If f has only a finite number of zeros, it is obvious that the product

is convergent. Otherwise f has a countable number of zeros: ai,as,as,---. Let B,(z) be

the finite product

Bn<z):1—[12—ﬁk

— Q2
k=1
Now B,(z) is a rational function, analytic in the closed unit disc and |B,(e??)| = 1, Since
each of the function
Z — QA
1 —agz

34



is modulus one on the unit circle. And since

FE) o
Ba(c®)] ~ [f(e”)] <1
then we have |f(z)| < |B,(z)| which says
I
B,

is a bounded analytic function in the disc. In particular
0 < [£(0)] < [Ba(0)] = ] laxl
k=1

Since |ag| < 1 for each k and since each of the partial products [],_, |ax| is not less than

| £(0)| then the infinite products converges. O

Theorem 2.22. [//
Let f be a non-zero bounded analytic function in the unit disc. Then f is uniquely
expressible in the form f = Bg where B is Blaschke product and g is a bounded analytic

function without zeros.

Proof. Since f # 0 we can write f(z) = zPh(z) where h(0) # 0. Let B be the product
of 2P and the Blaschke product formed from the zeros of h. Then g = % is analytic and
bounded in the disc. The factorization f = Bg is unique since a Blaschke product is uniquely
determined by its zeros.

Let f above be an inner function. Then f = Bg where B is Blaschke product and g is

inner function without zeros. O

Theorem 2.23. [//
Suppose 0 < p < oo, f € HP, f #0 and B is the Blaschke product formed with the zeros
of f. Then there is a zero-free function h € H? such that

LA

f=DB(h)
Proof. f = gF where g is an inner and F is an outer (ans so zero-free). Without loss of
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generality f = ¢, a bounded function. By theorem 2.22 % € HP? in fact

f
1] =1,
p
Since % has no zero in A then there exists
ue H(A)
such that exp(u) = %. Put,
h = ewp(%)
then h € H(A) and
= |2
B

hence h € H? which proves the theorem.

Note that ||R],” = [ £1l,7 in the previous theorem.Let p = 1. If we write

f=Bh)r
in the form:
f=(Bh)h
above then we will obtain
f=gh

where g and h are both in H2. Which gives us a proof of H' — H? factorization theorem.(see

the next section). O

2.9 ABSOLUTE CONVERGE OF TAYLOR SERIES

This last subsection contains one of the important theorems for the H' functions. Recall that
the Riemann-Lebesgue Lemma says that the Fourier coefficients of an integrable function

tend to zero. If we have an H! function we can say something else.
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Theorem 2.24. (HARDY):[}] Let f be a function in H' with the power series:

oo
g a,z".

n=0
Then:
=1
> Elanl <7l fll;- (2.20)
n=1

Proof. First suppose that a, >0, n=0,1,2,--- Then

Imf(re?) = Z a,r" sin(nf)
n=1
Since
L o ) sin(nd)d6 = (2.21)
— 7 — @) sin(n == )
2 Jo n
then we obtain:
> Lo = L [ e 0yt pre)a0
—a,r" = — m—0)Imf(re
—n 2 Jo
1 27 ]
< _/ \f(re®|db (2.22)
2 /o
=7fl,
Let r tend to 1 and we are done. Recall the H' — H? factorization theorem: For the

general f write f = gh where g and h are both H? functions. Define g and h by,

s-a(f) ()

and B is the Blaschke product of the zeros of f. If

9(z) =Y buz"
n=0

h(z) i 2"
n=0

then by the Riész-Fisher theorem, the functions
G(z) =) |bal ="
n=0
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H(z) =) lea| 2"
n=0

are also in H? and

I1Gly = llglly and |[H]|; = [l

Let F = GH; Then F € H' and

F(z)= i an 2"
n=0

where a, > 0. It is also obvious that |a,| < @,. Then

=1 =1
Zg|an| < Zﬁ&n < l|F,
n=1 n=1

So
1N, < NGl IHI, = [lgllollRlly = 11£1]
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3.0 DETAILED PROOF FOR HARDY’S INEQUALITY AND
DEVELOPING HARDY-TYPE INEQUALITIES

This chapter starts with a more detailed proof for the Hardy’s Inequality based on Hoffman’s
Proof [4]. To develop a variation on that proof we use the weight function w;(e??) =7 — 6
and we extend w; to w; : R — R by 2 — 7 periodicity instaed of using the function sin(nf)
in equation (2.21). Then by using the same method we develop new Hardy-like inequalities.

Finally we demonstrate the following,

Let f be any arbitrary H' function i.e.

feH = |f(2) :ianz",v,zez

n=0

where a,, is n.th Fourier coefficient of f. Let 1 < j < wv — 1 where v > 2. Then

Ay
Z auess] LYy

Uk—l—j sm( )

which is the crucial result of our new approach.

3.1 DETAILED PROOF FOR HARDY’S INEQUALITY BY USING NEW
APPROACH

Theorem 3.1. (Hardy) Let A be the closed unit disc, then ¥f € H' s.t.
= Z a2 Vze A
n=0
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- |an]
S <l
n=1

Proof. Let wy(e?) =7 -6, VO €[0,2r). We extend w; to w; : R +— R by 27 periodicity.
Then the Fourier coefficients of w; are:
1 2

iy () / wi(e)e= " dp (3.1)

21 Jo—o

Vn € Z and, w,(0) = 0. Fix n € Z — {0}

T on

1 2m )
wi(n) / (m — 6)e""df

9=0
1 —ingq 27 2w —inf
= H(w—e)e : } —/ (1) d@] (3:2)
27 —in Jo_q 0—0 —in
_ 1
~in

Then
1 )
wi(z) = Z %z" PV =e"
neZ—{0}

Consider f € H' with coefficient sequence (a,). Assume every a, > 0. Then

1 2w 0 0 0 1 2 ) )
- 0 0\ 10 = Y — inf 6 do
e G G IR WY - [ et
wlzin)
= 1
:Zan. (3.3)
n=1 Z(-TL)
O Gn
=1 _
n=1

= % /0 :Z f(ew)wl(ew)de' (3.4)
<o [ 1) fune)] s

40



Since |wy(e?)| < 7 for 6 € [0, 27),

8] 1 27 ]
e = £ ()| ndf
o 2T Joso (3.5)
= 7| f]l 2

Next using the H' — H? factorization theorem using the same method that we used in
Theorem 2.24 in chapter 2 we can show that Vf € H' = [f(z) = Z an?", ¥V z€ A | and

a, € C' we have

— |a
ZTSWHme

Corollary 3.1. Let f € H.

Proof. Let f € H'(A) Vz € A s.t.

o0
z) = Z a,z"

z=0
and
g(z) =zf(2)Vz € A
then

o0 o0
= E a, 2" = agz + E a, 2"
n=0 n=1

Let a,_1 = by, then

z) = apz + Zak_lzk = Zak 2P = Zbkz
k=2 k=1
if g = 2f(z) then g € H' where

1 0=27 0 0
ol = 5= [ )] ap
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from the Hardy’s Inquality:

o0 i o0 k o0 oo ’a
S gty = sy = D = =D 731 °
k=1 k=1 =0 k=0

3.2 HARDY-LIKE INEQUALITIES:

Lemma 3.1. Let T be the unit circle and v € L'0,2r] = LY(T) with normalized Haar
measure. Extend u to a 27- periodic function on R — C. Fiz a € R and let v(e¥) =
u(e’?=) Vo € R, then

O(n) = e~ (n)
where u(n) represents the Fourier coefficients of u.

Proof. We know that for every n € Z

1 2 ) )
@(n) = % \/eo U (el(e—a)) e—lnede

1 B=21—a ‘ '
= u(e®)e el
T Jp=—a (3.6)

— 67ino¢i /,3227? u (61,8) efinﬁdﬁ
2 B=0

= e ""q(n).
Hardy Type Inequalities

Theorem 3.2. Let f € H' = [f(z) = Zanz”, Vz € A| and assume each a, > 0 then

1.

3k:—|—1 -

Z sl o 728y
k=

Z’“s’“”' )
- 3k+2— Ht
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(Al

[~]¢
SR
+ 17
w ¥
(VAN
w| 3

Proof. 1. Let wi(e?) =7 — 0, V0 € [0,27). Define the functions:
() = wi (€07

pa(e”) = wy (€0)
p3 () = wy (105
297

and let o = e~ 5 . Then by the Lemma 3.1

fir (n) = €% i (n)

0 if n =0;

because w0 (n) = = (see (3.2)).

Since 4iy(n) = wy (/@ 5)) then:

2t ifneZ—{0}; (3.8)

0 ifn=0;

2t ifneZ—{0};
0 ifn=0; (3.9)

L ifneZ—{0};

0 ifn=0;
\
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Also notice that o? = g'. Construct a set A = {0?, o', 0°}. We define the new function

wany+1(2) as follows:

W3Ny+1(2) = Elﬂl(z) + Qlﬂz(z) + Qoug(z)

Then
Wang11(2) = 0" (2) + o' pa(2) + 0 ps(z)

= Y (@(n) + o'hiz(n) + Ljig(n))z"
neZ—{0}

n 2\" 1
- Y @Lylfly

mn m mn
neZ—{0}

(3.10)

n—1 Q2n+1 1

= Y )
m m m

neZ—{0}

Since
2n+1

ol gt 1 (e%) + (e%) +1
mn mn mn mn

(
0, if n = 3k;

n—1

(3.11)

0, if n =3k + 2

So

Let 6 € [0, %) then
- (3.12)

and

fenons(e)] =7 22 (3.13)

It is easy to see thatwsy,y1 is constant and |wsy,,1(e?)| = 7 (%) for the intervals:



0 €[, %), and 0 € [, 27). Let us have an arbitrary

feH = [f(z) :Zanz” VzeA
n=0

and assume each a,, > 0. Then

= Z an’lfjgN0+1 (n) (314)

Then
A3k+1 A3k+1

3 —
S <y e

- | / Y )00
1 ™

- | £ ()] [wany 1 (e7)] d6
TJr e (3.15)
T3
2 1 4 »
\/_ / | (619)| de
3 27r

J/

”fHHl

2
=2

So we obtain:

f) fwnfn .
3k + 1 - H

For the general case f € H' = | f(2) :Zanz”,Vz €Al|, a, € C By the H' — H?

n=0
factorization theorem;

39, h € H® with |[fllz = llglz= = Al

s.t.
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g(z) = anz”,v,z €A
n=0

and
o0

h(z) = chz”,‘v’z €A

n=0

for some sequences (by),~ and (c,),so € I*(No). Also

1
00 2
191l 72 = (Z Ibn|2>
n=0

1
12/l 72 = (Z Icnl2>
n=0

define G, H € H? by

o0

G(z) =) |ba|z" Yz €A
n=0
H(z) =) lea|z" V2 €A
n=0
Note that
1G5z = gl = = 1111 7
and

1
[ g2 = Al g2 = 171 -

Define F(z) = G(2)H(z) ,¥ € A. Then F € H' and

IE N < NGl el H 2 = 1Ll

where
F(z)= Zdnz" VzeA
n=0
and
dn =Y |bjllen—j| ¥n € Ny
=0
So
S 2V py 2
£e3k+1- 9 9
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Moreover Vn > 0

|lan| = ancn—J
=0
. (3.16)
<> b fen-sl
=0
— dn
Thus . .
Z |asgki1] < Z d3p41
k+1— k+1
o Skt o 3kt (3.17)

27r\/_

(s

. To prove the second part of Theorem 3.2 the only thing we need to do is to define a
function similarly by using the set A? = {9%, 0%, 0"} = {0,790, 0"}, and then we define a

function:
wsng42(2) = opa(2) + Opa(z) + 0" ps(z)

It is easy to see that:
3
wanossl?) = D ey
neZ—0

and then by following exactly the same steps as the previous case, we obtain that:

Z"”’“”' \/_HfH
- 3k+2— Ht:

. To prove the third part of Theorem 3.2 we are going to use a slightly different method.

Let 6 € R, and construct the function:

wany (2) = Ly (2 )+1u2( )+ 1ps(z)

(3.18)
wan, () = wy eF)) £y (¢-5)) 4wy (e
- ( >+. ( >+ ) (3.19)
= 11 (") + Lpa(e™) + 1pz(e™)



Notice that:

;

(m—30), if6el0,3);

war () = 4 (3w — 36), if 6 € [Z,4T); (3.20)

(57 —36), if 6 € [, 2m);

\

So

‘ngO(ewﬂ <m VOeR

Let f € H' Assume each a, > 0.

ol SR LG COL S SRRN Ty

0} (3.21)

Then

oo ‘ 0

a3k+3 . a3k+3
3y S _ 3
;3“3 ZkZZ()Bk+3

- " 0 90
o | [ e temag -
1T e
<3 B | £ (e7)] Twsn, ()] dO
=7 fll 2
And it is obvious that:
a3k+43
and by the H' — H? factorization theorem, VfeH!
- |a3k+3| ™
> < Sl
23k +3 3
]
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Lemma 3.2. Consider the function

(Panof) (2) = ) _azez™, Vze A
k=0
Then

1. ]P)gNOf e H!

2. And we have
1Pang e < N f Iz

Proof. Fix
f=f(z) :Zanz" VzeA| e H
n=0

Then by the H! — H? factorization theorem 3¢, h € H? s.t.;

f(z) = g(2)h(z) Vz€A

and
£l = Nlglze = 1Al 3
Let
g(z) = anz", Vze A
n=0
h(z) = chz”, VzeA
n=0
where )
e’} 2
gl 2 = (Z |an2>
n=0
0 2
1Al o = (Z |Cn|2>
n=0
So
flz) = (Z bjzj) (Z ckzk>
009’0 . h=0 (3.23)
k=0 \ j=0



Then

(&%) 3k
(Psno f) (2) = ( bﬂ?»k:—j) 2%
k=0 \j=0

00 k 00 k—1

= boco + Z (Z ijC3k—3j> 22 4 Z (Z b3j+1c3k(3j+1)> 2%
=1 \j= k=1 \j=0

+ Z (Z b3j12C3k—(3j42) )

(Z b3] ) ( 03k23k> + (Z b3j+123j+1> (Z 63k+2z3k+2>
k= 7=0 k=0

0
(Z b3j+223j+2) (Z C3k+12’3k+1>
0 k=0
h)

IP3NO ) (P3N 0

(3.24)

+ (Pang+19) (Pang42h) + (Pang29) (Pang+19)

Since Pyyg10g, Pangsoh € H2,: Yo € {0,1,2}, Py, f € H?

Moreover:

IPang fll i1 < [Pano gl 2 1Pano ol 2 + [Pavig 19| g2 [Paig 22 2 + [[Panig 29| g2 [|Pang 17| g2
< (IPswogl%e + [Pasios191% + [Py 291%2)
 (IPswo ol + [P 12l e + [Pasi 2h%e)
— gl el o

1212 = 1 £l
(3.25)

Theorem 3.3. Let f € H' = f(z)= Zanz”, Vz € A| and assume each a, > 0 then




Z sl T2
4k+3 = H1

o0

|a4k+4|
Z < <l

:]

e~

Proof. 1. Let wi(e?) =7 — 0, VO € [0,27). Define the functions
)

ug(eie) = w, (6i(9—ﬂ-)>

i(0—

[NIE]

() = w (e

By the Lemma 3.1

(3.26)

(3.27)

(3.28)



fua(n) = e "y (n)

= (e7*™) "1 (n)

(3.29)

(17):, if n #0;

0, if n =0;

Now let o = e#, notice that: ¢® = o'. Construct a set similarly as the 3k + v cases.

Let,
A={d", 0" 0" 0"}
and construct a function by using the set A:

Wang+1(2) = 0 1 (2) + 0°p2(2) + 0" 3 (z) + 0 pa(2)

A . ) ) . 3.30
= S (@) + Phal) + o hs(n) + () 2 )
nezZ—{0}
And
N A A A~ 1 — -\ n -\ T
@'fu(n) + ¢*fin(n) + o' fis(n) + o"fu(n) = — (@"(=1)" + &*(=1)" + o(i)" +1)
(
0 if n = 4k;
0 if n =4k + 2;
\0 if n =4k + 3;
Then:
W4N +1(Z) ! Akt
0 ~i(4k +1)
Let 0 € [0, 7)
T T
Wi (€?) =7 (=2 = 0) + 2(~0) + o (5 ~6) + (r—0)
_ (.2, ¢ —0(5+ 2
—w( 2+2+1) 9~(Q+QV+QH)/ (3.32)
0
=m(l—1)
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Wy, 41 (") = ' (377 - 9) +0*(—0) + o <g — 9) + (m —0)

-
:7?(7@—0—%)4—1)—9(@—1-@24-@4-1) (3.33)
0
(1+1)
0 € [r,3)
. 3T m
wing11(e”) = 0" (7 - 9) +0*(2m —0) + o (5 - 9) + (T —0)
. 30 2, 0 =4 2
=75 +20+5+1 —0(o+0*+o+1) (3.34)
0
=m(—1+1)
0 €[22, 2n)

. 3 5
w4NO+1(e’9) =7 (; — 9) +0°(2Tr —0) + o (; - 9) + (m—0)

30 50
:7r<2+2 +2+1)—0(@+92+g+1) (3.35)

0

=m(—1—1)

And notice that for 6 € [W, (kzlzw)’ k€ {1,2,3}, and |wsn,41(e?)| = 7v2. Let

f € H'. Assume each a, > 0. Then;

/ F(e)wapg 1 (€ d@— — Zan O wang+1(€)dO
— n— —inf 10 do
nzga 27T/_7r6 Wan, +1(€7)
= Z anw‘lNo-l-l(n)
n=0

o0

. A4k4+1
=4
i) Ak + 1

(3.36)

23



Then

= A4k+1 . = A4k4+1
DI DM
£ 4k 41 4k + 1
1 4 B
= %/ﬂ fle 0)w4No+1(€w)d9‘
1 4 N | T
< 57 | e Tomaela

= 7V2|
So

- A4k4+1 7T\/§
> < Ml

Laqk+1 "

By the H' — H? factorization theorem:
[e.e]
k=0

2. To prove the second part of Theorem 3.3 we will use the set A2

@l _ V2
4k +1— 4 H!

construct the function:

Wang42(2) = 0 (2) + pa(2) + 0 u3(2) + p1a(2)
Then it is easy to see that

4
P P N
kEZ

and by using the same method we obtain:

(3.37)

= {2°,1,0% 0"} to

. kr (k+1
wangea(@)| = 7. for o€ [0 EEDT) wpere 0<k<s
So, we get
- A4k+2 ™
Akt O
> 5 < el

and by the H' — H? factorization theorem:

00
k=0

|a4k+2|
4k + 2

s
< 2l

3. As we expect, we will use the set A3

o4

{@"(2)".(0".(2")"} = {0.¢%.2.0%} 10 con-



struct the function:

Wing+3(2) = op1 (2) + 0*pa(z) + Opa(2) + 0°pa(2)

and then

4
Wany+3(2) = Z mz%ﬁ.

Since
k2m (K +1)2m
4

A4k+3
42 s STV

Wyn,+3(€" )|—\/_7r Vo € [

And by the H! — H? factorization theorem

Z sl T2
4k+3_ H:

. Now we will use the set AY to construct the function

2(2) + p3(2) + pa(2)

W4N, (Z) - 1%
4 4k
k‘Z

2

1(2) +
14
z—{0}

W
ke

wan, (€") = w(e*?), which is Z periodic function. Then

| ork 2m(k + 1
lwa, (¢)] < 7, VO € [ mh 2m(k + >>,

4’ 4

Assume each a,, > 0. Then;

o [ i = 2 [ ane (o

- T n=0

95

) where k=1,2,3.

(3.38)

(3.39)



So finally we get:

oo

A4kt 4 L [T, i0
4y Lkt
2 hd " 2. / f(e)wan, (e")db
1
= on \wmo [ f(e)] a0 (3.40)
§7T||f||H1

And by the H' — H? factorization theorem:

k=0
]
Lemma 3.3. Let f € H' and consider:
(Pino f)(2) = Za4kz4k VzeA
k=0
Then
(Pavof)(2) € H'
and,
1 (Paro L) () L < M Nl e
Proof.
(Pano f) = Z (Zb Cak— J)
k=0
_ b4jz4j> (Z C4kz4k> n (Z b4j+1z4j+1> <Z C4k+324k+3>
=0 k=0 - k=0
+ Zb‘lﬂ AL ) (Z Can 2Z4k+2> + (Z b4j+3z4j+3> (Z C4k+124k+1>
j=0 7=0 k=0
= [(Paneg) (Pawoh)] + [(Paio+19) (Paro+3h)]
+ [(Pano+29) (Pang+2h)] + [(Pang+39) (Pang+17)]
(3.41)

Since (Pyn,+v)g and (P, +0)h € H? for v € {0,1,2,3} then Py, f € H'.
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On the other hand;

IPano fll i1 < IPanvog | g2 1Panvo 2l 72 + Panio 119 g2 Panio 872l 2

+ [Panor2gl g2 [Panor2hrll 2 + Pano 39 g2 [ Pano+1 2| 72

SSD UMD SUMUCED SITWACS SN BN
=0 k=0 k=0 k=0 '

NG

[NIES

o0 [e.9]

() () ]
D olewl + D lewaa P+ lewnral* + Y learys|”
k=0 k=0 k=0 J

Lk=0

1 1
= [z 1z = 11 e

Notice that this argument is quite tight. When g = h then f = ¢* and;

1 s
|Pano fll g = 5/ |(Panog)” + (Pang+19)” + (Pangs29)” + (Panos39)° | dO

1
S Gy (IParvogl” + [Parvy119]* + [Parig 1291° + [Paryy139[*) dO

(3.43)
= ||P4Nog||§{2 + ||P4N0+19H§{2 + HP4N0+29||§{2 + ||P4No+39||§{2

= [ £l

Note that by using exactly the same method with the proof of Py, f € H' case we can easily
prove that Py, f € H' for v ={1,2,3}. O

Now we are going to find a general inequality for the case a,i4; case where v € N and
1 < j <wv—1. To provide a better understanding, we will develop the general formula step
by step.

As a first step we will prove the following theorem:

Theorem 3.4. Let wy(e?) = 7 — 0 and suppose we have the set of functions below:
11 (%) = ws <ei(9*27ﬁ)>
pa(e) = ws (ei(e*@»

fo(€?) = wy (ei(e_@))
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—2im

Also let p = e v, and:

A — {(Qv—1>j7 (Qv—z)jf” 7Qo}

If we construct a function in such way;

wono15(2) = (077 m(2) + (872 paz) + -+ + (077) pu(2)

where j € {1,2,--- v} Then

karj
vao+J E :
Uk
Z - ‘7

Also when 7 =0, wyn,(2) = ZkeZ—{O} ﬁzvk

Proof. By the Lemma 3.1

and we have

where

Then,
i2n (3.44)

2im

since p =€~ v

=1 ezZ—{0} mn
(3.45)
=Y IS ey
n
nezZ—{0} = 7=1 1



Assume j > 1. For the case: n = vk + j, the coefficient of 2" is

1 v—1

iR 5
— (3.46)

v
v

i (vk + )

For the other cases i.e: n=vk+1, |#j andl € {0,1,2,--- v}, the coefficient of 2" is

—_

R ——

T i(vk+1) & ()"
. (3.47)
BT PG

Il
o

T

The case j = 0 is easier, and proceeds similarly to the proof of Theorem 3.3 (the case

v =4). O

Before proving the general Hardy’s Inquality we need to calculate }wUNOﬂ-(ew)‘ as a

second step:

Theorem 3.5. Consider the same assumptions as theorem 3.4. Then when j > 1,

A .
vaoJrJ(e ) sin (%r)

Also when 7 =0,

[worsg(e)| <

Proof. To prove theorem 3.5 we need to consider two different cases: Case 1: Let v = 2a
where ¢ € N— {0} and 1 < j < v — 1. Since we need to consider the general case wyy,+; we

are going to use the set:

w={@) @) @ @) e (@) )



Let 6 € [0,25). Then wyn,+j(e") can be expressed as:

wis(e) = @ (~r = (6-27)) 4+

Say;

Wyny 1 (€?) = 279 + X.
If 6 € [, %) then
Wong1i (") = 27 (27 + 27) + X.
Ifoc [M ”2—”>

WyNg+j(2) = 27 (@] +07 + -+ (@“71)]') + X.
Then for § € [K2Z, (k+1)2),0<k<v—1.

k

v—2
A ~2t—v (27t -
Wyny i (€7) =7 [1 + 21 Z osin ( ‘7) + Z 27 (")’

v
t=1

n=1

—
Y

60

(3.48)

(3.49)



2 ¢ 2 o N N (3.50)
B 1+;tht_aztwt+ <—Zzt+2wt>

(3.51)

and

By {zmi @y | e ((veg)o) - (<N<Z> e (§)] }
- Nil {2@'31'7;{(%') {(QN (-1 eos <7:J_j) + (1Y cos (Z_j)} }

(3.52)
S
O cos (ﬂ)
A+ B = y
isin (7)
; cos (Z2) K o
oty (€7) =1+ 18in (ﬂ) + ZQW(Q )
v n=1
cos (g k N
=7\ 2) (@ 3.53
" +isin(§)+ ;(g)_ ( )
cos (g) ko ]
" isin (g) + ;( )

v v

fl1<k<v-—1,0¢ [kQ_ﬂ’(k:-‘rl)%r).




when £k =0 and 6 € []“27”, W) Case2: Let v = 2a + 1 then we need to use the set:

A = {57’7523'7... ’ (@T)j’ (QUEIY'?... 790}

and for 0 € [27:5]“), w> we obtain the formula:

v—1

(2 — v ot i -
WyNg4j = T 1+2i2( " )sin(T)—FQZ(@”)]

~ =1 ., n=1
X
Then:
2 N 2 N N N
TS ST ST SIS 3
v t=1 v t=1 —1 =1
- e W 1) - e (e )+ )
v (1—2) 1—w)
B
w — wN+1 y— ZN+1
ey (=)
A
(3.54)
_ 1 3 1
g () oo () =20 ({3 3) )]
and 6
B = — _1 2003((]\[_{_1)6)_SZTL<(N+§)?)COS<§)
21sin (g) 2 (N—i-%) <in (g)
B
Arpo o (ZB)
isin (5)

for

sl e g 2T N_v;l
Then _ k

B
Worngg (%) = 7 |1+ COS(%) +23° (‘”)J]
isin (5) o
i k (3.55)
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For 0 € [%, w> where 0 < k < v — 1. So by the equations (3.50) and (3.52) we see

that even if v = 2a + 1 or v = 2a we have the same formula:

,3
cos(5 (@
vaoﬂ(ew) isin( 2@ — 142 § (@")

2)

For 0 € [2’;—’“, W) where 0 < k < v. Now the only thing we need to calculate is

2> (2"
n=0
and then we will find the whole formula for: |w,n,+;|. Let 8 = 2%] and z = ¢’ then;
k k

2 @)=
n=0 n=0

1 — k1

 1—z
1 — (iBlkt1)

[sméﬁk)ws (g) + H%S(ﬁk)sm (g)] ), [1 08(B) o s (g) + Msin (g)]

2

_ 51 (sin (§) —icos (3)) + (sin (§) +icos (5)) }
(3.56)
So
e Jes®) {5 (sin (8) — icos (8)) + (sin (8) +ic0s () H
UNOﬂ( ) KB (g) * s (g)
. e'Pk (cos (5) + 281N (g))]
I 181N (g)
B reiBlk+3)
 isin (g)
i j(2k2+1) 1 |
(@) isin (7;—])

(3.57)
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Then we are done,
T

The case 7 = 0 is simpler, and proceeds similarly to that case in the proof of Theorem

3.3 ]

|wUN0+j(€i9)| =

Theorem 3.6. Let f be any arbitrary H' function i.e.

o0

feH = |f(z) :Zanz",v,zez

n=0

And let a,, be n.th Fourier coefficient of f. Let 1 < j <wv — 1 where v > 2. Then

- ‘akarj‘ < -
> it S () 1l

k=0

Proof. By the Theorem 3.4 and 3.5 we have:

G v vk—+j
w N0+](2) ;0 Z(’Uk—i—j)z z
and
| wong+s(€ O = 0
sin (;)

Let f € H' and assume each a, > 0. Then;

= Z oy +5(€7) (3.58)



Which gives us:

- avk-‘,—j - avk—i—j
’UZ - =V (1 E—
pr vk + 7 pr vk + 7
S
Nk / F (€Yo s (96
2m ) x (3.59)
(R N R—
< 5r |17 w5 | a6
= (%)Hfllm
= Ayk+j
= < -
; Uk’+] = sin (%) ||f||H1

and by the H' — H? factorization theorem:

|| < 1
kZ:()Uk+j < Sm(Tj) Hf“Hl

Here we need to consider one more case, when v = j for wyyy+;(2) in theorem 3.4 This time

we need to construct our function as follows:

wony (2) = pn(2) + pa(z) + -+ + pro(2)

We know that

—in2mwT 1
f-(n) =e v wi(n) where wi(n) = —
in

Since p = e~ then:

Won, (2 Z fir (2
D3>

7=1 neZ—{0}
( Uk) (3.60)
neZ—{0} 7=1
>
= - z
n€Z—{0} Z(Uk)

where n = vk in equation (3.58)
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Also we have:

wong (€)= pur(€”) + pa(€”) + -+ po(e”)

=y (0)) g (08)) ey (02 (3.61)

Let 0 € [0, 27”), then
Wy, (€7) = 7 — v (3.62)

v v

And it easily follows that for 6 € [k%r _<'f+1>27r>;
won, (€) = ((2k + 1) — v0)

So it is clear that |w,y,(€?)| < 7, for all cases above.

Now let f € H' and assume each a, > 0. Then,

3 | 1w (e = Y i)

>

0
—{0}

ke

(3.63)

Then

Ayk+ov . Ayk+uv
v — = |vi —_—
Z vk +wv Z vk + v

o) ‘ 0o
k=0 k=0

% / : f(ew)wUNO(ei")dQ‘

<o [ 15 T (@0 (3.64)
gwi W\f(e”)}d@

2 ),

=7/ f |l g
And by the H! — H? factorization theorem it is clear:




Lemma 3.4. For f ¢ H' = [Z a2 ¥z € A| define
n=0
(Pon f)(2 Z Aops 2T V2 € A

k=0
Then (Pyny,f) € H'. For j €{0,1,2,--+ v —1}.

Moreover

”]P)’UNJrijHl S ”fHHl fOT je {071727"' , U — 1}

Proof. Let 1 < j <w—1, g(2) = >.",b,2" and, h(z) = > 7 c,2" where both g(z) and
h(z) are H? functions Then:

UNO+] ( bn’ucj-l-(k n) v) Zkarj
=0
"“20 (3.65)

k 0
t (Z bkv+1zku+1> <ZCJ 1)+vkZ G- 1)+Uk> +oe
k=0 k=0
k=0 k=0

CASE 1: 1 <j<v—-2

Pungts = [(Pungg) (Pungt57)] + [(Pung+19) (Porg+j—1h)]

+ [(Pong+29) (Pong+j—2R)] + -+ + [(Pongo-19) (Pongrj41h)]

(3.66)

CASE 2: j=v—1

PUNOJFJ = [(PUNOQ) (]IDUN0+jh)] + [(PngJrlg) (PUNO‘Fj*lh)]

+ [(Poro+29) (Pongrj—2)] + -+ + [(Povg+0-19) (Poroh)]

(3.67)

Since (Pung+ag) and (Ponysah) are in H? for a € {0,1,2,--- ;v — 1} then by the H' — H?

factorization theorem (P,y,+;f) € H'.
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CASE 3: Let 5 =0, then:

(Por f —Z (Zb Cok n>

k=0 \n=0

0o k 00 k-1
= bOCO + Z (Z bvncvkvj> ka =+ <Z bvn+1cvk—(vn+1)> ka
n= =1
+ Z (Z bvn+26vk (vn+2) ) iy Z (Z banr (v—1)Cok—(vn+(v— 1))) ok

= [(Puny9) (Punoh)] + [(Pomio+19) (Povorw-h)] + ++ + [(Povoto-1)9) (Porg+1h)]
(3.68)

Since (Pung+a(g)) and (Pyy,1a(h)) are in H? for a € {0,1,2,---, (v — 1)} then again by the
H' — H? factorization theorem (P,y,(f)) € H'. then we are done with the first part of the
proof.

Moreover, for 1 < j <wv — 2, by (3.64)

||PvNo+jf||H1 < ||]P)UN09||H2||]P)UN0+jh||H2 + HPvNo-i-lgHH?||PvNo+j—1h||H2

+ [[Pung 29 g2 [Pongri—2hll g2 + - + Pong o191 g2 Pong i1 ]| g2

1 1
00 o0 2 0 [e%s) 2
2 2 2 2
< (g |bok|” + -+ + E |bukto—1] > (E Cobygl” + o+ E |Coktjtl >
k=0 k=0 k=0 k=0

= llgll g2 ll2ll g2 = 1f e
(3.69)

It can be shown that

||]P)UN0+jf||H1 S ||f”H1 fOT .] S {071727"' , U — 1}

for j =v — 1 and j = 0. Proof is almost same with the proof of case 1 < j < v — 2. m
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4.0 OPTIMAL CONSTANTS FOR HARDY-LIKE INEQUALITIES

Theorem 4.1. Let f € H' = [f(z) = anz” 2z € A |. Then w is the best constant for the
n=0
Hardy’s Inequality below:
= | /)
>, <7 fllmn
1 n N——
- RHS
LHS

Before starting the proof of theorem 4.1 we need to prove the lemma below:

Lemma 4.1. If (a;);cy and (B;) oy are sequences in (0,00) s.t.

A Z/Bj:oo
j=1

and

a;
oY : .
B: — 1 asj — 00. i.e.:0j ~ f;

B

then by the limit comparison test:

o0
1: E Qj = 00.
j=1

Moreover: N
Zj:M Qj

Z;‘V:M 5]‘

—1 as N — oo and where M < N

Proof. Let A and B be given. We prove the second statement here:
Fix e > 0 and ¢ < 1. Then dM, € N, s.t.

Y 5> M, <e¢1—e<%<1—|—e

J

Q5
-1
B;
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Then VN > M > M,

J

N N N

(1 — E)Bj < Z oy < Z(l +€)5j
=M j=M j=M
Hence VN > M > M.:

N
zj:M a]

(1—¢) < Z;-V:Mﬁj

< (l+e)
Now let A be given i.e.:

> B=00

j=1
Fix My € N and fix N > M,. Then for My < M < N:

N M N
Zj:Mg @ Zj:MO aj + Zj:M @

N — &N N
Zj:Mo B; Zj:Mg B+ Zj:M Bi
Fix 1 > € > 0, and choose M, € N, s.t. VN > M > M.:

N
Zj:M aj

1—6<N—<1+E.
j=M Mj

Since M, is fixed, without loss of generality; M, > Mj.

N
> =M. &

1—6<JN—j<1+e

j=M. Jj
Then VN > M, ,
N M. N
Zj:MO a; Zj:Mg aj + Z:]':M€ Qj
N T M. N
Zj:Mg 5]’ Zj:Mo ﬁj + Zj:ME 53‘
Z;V[;MO @ Z;'V:Me @y (41)
N -+ 5§ )
_ =M, Bj j=Me Bj
>y Bi
==+ 1
Z;'V:Me Bj +
N Me
Z B — oo as N — oo is given. Since Z o is constant, then:
j=Me Jj=Mo
ij:{M Q;
= ~0as N—=o0
Then dK, > M, s.t. VN > K,
Me
PPV ETLL
Zj:ME @'
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and similarly:

M.

N
Zj:ME /6]

—€e < <e€
Hence Ve € (0,1) 3K, € Ns.t. VN > K,

1—2e<§j2%aj<1+26
N
1+e Zj:Moﬁj 1—e

N
E:j:ﬂﬂ)aj

lim =% =1 asN — o0
N—oo Zj:Mo ﬂj
O
Proof of Theorem 4.1. Let V. N € N,
(a) B F(CE + k‘)
L TN
and
1—2)"=> ¢V
=0
Also define:
1 > 1
92 = (1=2)h = 3oV
=0
Let:f(2) = g(2)°. We see below that g(z) = (1 — z)_% ¢ H?. Let; VN € N;
N
gn(z) = Zq](i)zj € H?
=0
then:
fn(z) = (gn(2))" € H'
. Hence: N N
1 1
- (3540 (540
j=0 3=0
2N "oo(1) (1 (4.2)
-3 () =
n:O\ k=0 .
v

Ym=1Vne{0,1,--- ,N}and vy, >0 Vn e {N+1,--- ,2N}.
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Fix N € N.

Then

2
Il = llgnlli= =D

and

We know that

|
Yo
=1
SO
LHSy > e
= RHSy ~

Let B; = W_1] We know that:

and
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AN 2
because <q](2)> ~ % Then, by the Lemma 4.1

N 1
S LHSy _ Wijhr_j o1

¢’

And finally we obtain that:

N f(n
Z Lf(n)] N Z

n=1 n

Fa— n(q]( >>2

as N — oo.

Theorem 4.2. Let f € H' Consider the Hardy Type inequality below:

| f(4k +2)]
<C 1.
ZO P 11

Then the best constant for this inequality is: C'= %

Proof. We have already obtained that

> f(4k + 2)]
Z| i %HfHHl (Theorem3.2)

— 4k + 2

Now we need to prove that 7 is the best constant for this ”inequality “. Let
[o¢]
g€ H*=|g(2) :anz”Vz €A

Suppose by = 0 and each b,, > 0.

f(z)=2"g(2))", feH"
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Fix N € N.

(
0, if n ¢ {4k + 2,k > 0};
0, if n =0;
b, =
L Vke{0,---,N} and n = 4k + 2;
(4k+2)2
0, VE > N+ 1;
\
00 N 1 [e's)
g(z) = Z b,2" = Z — = Z birs22**? Then by the definition of f(z)
n—=1 i—o (4k +2)? k=0
00 k
f(z) = <Z b4m+2b4(k—m)+2> Akt
k=0 \m=0
So,
1 e =D 03
=0
2
=\ (4k +2)3 (4.4)
N
~ d
/xo (4z +2) ’
= }lln(2N +1)
On the other hand;
i )] _ i |/ (4k + 2)]
n 4k + 2
n=1 k=0
N
Ao (dm+2)7 5 (45 + 2)2 (45 + 4m + 2) @5)
N i 1 /°° du 1 /00 da
TS UM ) S a1 () AT (4m o+ 2)? Jemn (4o 4 2)2
s 1 V2
> T meN+1)— [ - Y2
— 16 ( ) (2 \/4N+2)

Recall that

1
£l = 72N +1)
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Then,

§x |f(4n+2) llln(2N+1)_<%_ V2 )

n=0 " 4ni2 6 IN+2
Il 72N +1)
(-~ i)
T 2~ ViNi2
4 TIn(2N +1) ) (4.6)
T |1 V2 1
4 |2 VAN f2| 4In(2N +1)
N
4
as N — oo.
We can generalize this results for all n = vk + § cases, where v is even. O

Theorem 4.3. By the Theorem 3.6 we know that:

00 ‘f(vk’—k%)
) Dy ssm< AE Nl = Tl

n=0

Then % is the best possible constant for the inequality above.

Proof. Let g € H* = [g(z) = anz” ,Vz € A|. Suppose by = 0 and each b, > 0, and

define f
f(z)=2"Y9(2)", fe H'

Then: ||f[l;n =Y b2 And

oo oo 1 n (e e] oo

j=1 m=1
Fix N e N. (
0, forn¢ {v+%.k>};
0, for n = 0;
b, =
(vkig)%’ forn=vk+35 ke{0,--- N}
& for k> N+1;
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Then

Since

Then

Then

vk+2
bvk+%z 2

e
—~
N
~—
I
S
3
N
3
I
—_
c
N
c
o
+
SIS
I
()

i

—

o

Il

o

—~
c
o
_I_

no

~—
N |=

bl

I

o

= ﬁ: (Uk1+ 5) 0

D D

n=1 k=0
00 1 k
- b”um—i-ﬂbv(k:—m)—l—E
= > bv(k—m)+2
= bom+2 —_—
mzzo > vk + 3
23 by 3
- vm+2 )
m=0 i =0 v(j+m)+3

1
(vi+5)* (vi+vm+3) (4.8)
>
mZ:% (om + ) ]Z:; (vf + 2)2 (v) + vm + v)

N N
:Z 1 U)é/m - dx

=0 (v + 2)%(wt+vm+v)

:ZN: 1U>%/°O dx

o (vm + 5)% e=N (v + %)%(vx +vm +v)




o° d
A:/ @
2=0 (v + 2)?2 (5:1 2 + 1) vm + &
D () (e g) o
B o du
wr (um 4 2)2uz (u+ 1)v
And
B S/ d—xg
e=N (v + %)5
Then
[es) A N N
fln 1 o du 1 o dx
sy L[ -y —
n—1 m=o (vm +3)* Vot v(u+ Duz(om + 5)2 5 (vm + §)2 Jo=N (v + 5)2
N 1 N
1 1 2m1 du 1 o dx
o Tl ki M| B S e
0 2 u=0 (u)2 m=o (vm + )2 Ja=N (vE + §)>
i 11 2 i 1 2 1
= e 1 - 1 1
sy (vm+3)v @m+1)7) 5= (om+5)2 Y \(uN +34)?
m=0 v (Um + %{ m=0 U2(2m + 1)% v (UN + %)é m=0 (Um + %)%
oz In(aN+H) 1%[1_\/21{7-0-1] f?[k 21{7+1]
(4.10)
Recall that
1
7l = 3 (2N +1)
Then:
sl SN +1) - & [1- 7]
[ars s In(2N + 1) (4.11)
. 8 1 . T
v vIn(2N +1) v
as N — oo. OJ

Which proves that % is the best possible constant in this case.

The method that we used in Theorem 4.3 to solve the best constant problem in “Hardy

like inequalities” does not work in the general case. Which means we could not prove that

7



“szrﬂ- ) %” is the best constant for the general form of the “Hardy like inequality” below:

Z Fonsl il

Uk+] szn( )

This condition led us to think about if we can find better constants for the other cases.
Moreover the method to provide the proof is cumbersome for calculations. So we seek to
develop an easier way to prove that those constants are the best ones.

Our experiments with Mathematica shows us that for f € H!

o0

Uk:—i—j s
— 1 4.12
Z <ol (412)

When > <. Finally we were able to find a method to prove it.
Before starting the proof of general case i.e. equation (4.12) let consider special cases to

provide better understanding.

We know by the Theorem 3.6 that if f € H' = [f(z) = Z anz"] , then:

> \a | T

8k+4
> sl Ty
k=0

Our claim is here:

- |a8k+5| ™
< —
Z8k+5 - 8Hf”H1

C |a8k+6‘ ™
< — 1
> ot < Sl Sl

|a8k+7‘ ™
< —
> e < Sl

o o0 o
f(z) = E anz" =z E a,z" ' =2 E cm2" where ¢ = apma
n=0 n=1 m=0
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Define:
oo
=Y en™ = | fllg = 19
m=0

Since ¥ € H' then:
|\If 8k+4)] « T
Z < ¥ = ngHHI

8k +4
FiXkJENo.
@(8k+4)208k+4:a8k+4+1:a8k+5:f(8k‘+5)
Then:
2 Nf 8k +5)] o= |f(8k +5)| U8k +4) =
kz 8k +5 kz 8k + 4 Z strd =gl

Case 2: Let ag # 0.

> f®k+5) 11 [f—
Z wany () f(e')do

— 8k+5  2m8i
11 — 11 (7 in (4.13)
= %g aongO_,_g,(el )d9 +2ﬂ_ 3 w8N0+5 Z an€ 946
) ¥ ——
eieqj(eig)
Define: ¢?W(e?) = ®(e¥) Then:
S f(8k+5) 11 [T N
- 7 @ 7
kz% k5 2nsi ) Ceers(€) ()

8k +5

> 8k +5 > (8 + 4
% ( ) 3 ( )

e 8k+4
1 ) (4.14)
= %g /ﬂ. w8N0+4(619) £a0€ ¢ t\I/(eZ )),de
e=10 (ag+ei0 T (eif))
< I L7 wgerale® e ()
82 ) ¢
1

m
= 20l

The remaining part follows by the H'! — H? factorization theorem.
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2. Let f € H! and this time define:

[e o]

U(z) = Z cmz2™ where ¢, = Qpio

m=0
and

®(z) = 22U(z)

Case 1: Let agp = a; = 0, then it is obvious that ||f|| ;1 = [|¥] ;. Fix & € Ny. Then
\11(81{3 + 4) = C8k+4 — QA8k+6 — f(&l{? + 6) =

28k +6)] o= |f(8k +6)| U8k +4) =
g 8k +6 kz 8k + 4 Z strd =gl
Case2: Let consider general case, i.e.: ag # 0 or a; # 0.
f(z) = Zanz" c H'
k=0
then:
> ask 11—
Z +6 = 5% w8N0+6(629)f(6 ?)do
11 I 11
= %g a0w8N0+6(619)d9 + %g CL1€ engo_i_G(Gw)dH
0 0
L1 [T in
+ Sy » Wsny+6(e”) nz ane™
g,‘_/
2(e’) (4.15)
i@ (8k + 6) iqf (8k + 4) i W (8k + 4)
pr 8k 4+ 6 pre 8k + 6 — 8k +4
11—
= %g » ”lUgNO_HL(@ZG)\I](@ G)de
=5rgi ) Wsno+4(€7) [ (ag + are™ + (U (e)))] db
11 " 0| —2i i m
<53 [ TososaleleF)]as = Tl

It is easy to prove the remaining part by using the H' — H? factorization theorem.
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3. To prove that:

The only thing we need to do is to deﬁne:

oo

U(z) = Z cmz2™ where ¢, = a3

m=0

and then follow the same steps as the previous cases.

Notice that the method that we use to prove that 7 is a better constant for the Hardy like

|f (wk+7)]
vk+j

1

inequalites >~ < Z||fll 2 works when £ > 5 and when v is even. Let’s consider

2

the cases when v is odd. Now we are going to find a better constant for the 3k + 2 case by

using 6k + 4 case. And then we will generalize this method for all @, ; cases where 2 > s

Theorem 4.4. Let f be any arbitrary H' function then,

2 \fBk+2) 7
< —
> Ty =gl

Proof. Let f(z Z%Z and G(z) = f(2?). Then,

Gl = 5 / )b = 5 / 209 = [

|G(6k +4)] |f(3k +2)] |f(3k +2)]
E: 6k + 4 E: 6k + 4 §: 3k + 2

Consider now arbitrary function [ € H 1. By the H' — H? factorization theorem we may

And

assume that each u, > 0. We know by Theorem (3.6) that:

[e.9]

s L1 [T g
Z = 5o B I(e®)wey, 13(e?)db
s.t.
w6N0+3 Z w6N0+3 me
nez
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and

Similarly,

s.t.

and

Assume VU(z) =

—Z.(6k6+3) if n = 6k + 3;

0 otherwise;

> 11 [T o
> = G | (s

pr 6k +4 6i 21
w6N0+4 Z w6N0+4 né
nez
6 e .
. m lf n = 6]{3 + 47
WeNy14(n) =
0 otherwise;

Yoo Cm2™ where ¢, = Upp1. And assume 2¥(z) =

(e 9] T

6 11 ——
Z I4 = 6ion I(e Y wery4(e?)do

11 / S gy 2 ()
= —— upe™ wen,+4(e)dl
6i2m ) =~
11 [ ,
- [&%/ uoewey 14(€e?)db)]

~
0

iar |, 22 v o)
GZZW&/Q EE:U" Pt a(€)d0)

~ g5 [ (e

11

= [&%/ D () weng+4(e)dl]

iiéwk+®

6k + 4
T(6k + 3)
6k + 4
U (6k + 3)
6k + 3

k=0

[M]8

e
i
o

K

B
Il
o

82

®(z). Then:

(4.16)



On the other hand:

o0

6k+3 11 ”—i 0
; 6k + 3 E% _Ww6No+3(e )W (e”)do

1L | Y

= giae e @ e a4 oo | W@ ()
0
= L L e (g + (e
T Giom ) PP N / (4.17)
[(eie)

11

<

<org | wmea(e)lle 1) a9

IN

<l sl 71
s
= Sl

Since G € H', then:

Z| F3k+2)] _2Z|G6k+4
e 3k +2 6k + 4

4.18
< 2% )Gl 19

m
= 21l

1

Now let’s generalize the cases above for all a,x4; cases where % > 5.

Theorem 4.5. Let f € H' = [f(2) = Y popanz" z € A

(vk
y Ut Wk Dl 2y,

Proof. Case 1: Let v be even. We already know that;

|ka:—|— T
Z e < T

Let j > & where v, j € N—{0}. Then j =% +t,t € N—{0}.

Case 1(a): Let f(2) =) " jan2z" and ag = a1 = --- = a;_1 = 0. Then
S S B

83



[e.9]

where ¢, = @y say W(z) = Z cm2™. Then ||f]l;n = |1 Since U € H' then;

m=0
|\If Uk‘+ 7r ™
Z < D1 = Tl
Let j =5 +tand t < §,te N*. Fix k € Ny.

A~ v N .
vk + 5) = Cobtt = Quktytt = Qukyj = f(Uk + 7).

Then: o
Z |f (vk + )| < Z | f(vk + )|
vk +j =~ vk+3
_ i 1 (vk + 5)] (4.19)
— vk + 5
T
< TNl
Casel(b):Consider now the general case, i.e.:at least one of ag # 0,a; # 0,--- ,a;—1 # 0,
and define
U(z) = Z CmZ™ Cm = Qmyy and P(z) = 2'U(2)
m=0
Then:

ika—l—j 11
vk + 7 27 vi

11 [ [ — T ——————
= —— / anUNO+j(eZ‘9)d9+/ alezewUNO+j(e’9)d0+~-l

2rur | J_, o

WyNg+j (eie ) f (ela)de
—0 -7

Y BE—1) 0 i inf
27 vi /ﬂa 1€ Wog-+5(€ )d9+/ﬂvao+y(€ )nz::tae do
0 ——
° B(eit)

(4.20)
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and

" o (0 i0
p =5 WyNy+z (€)W (e™)dl

|:/ w’L}No-‘r%(eZa)aoe_Zte + / w’uNo-i—% (eze)ale—l(t—l)ede + . .:|

S Pwk+Y) 11
Z _

k=0

27T V1

—r -7

R T Y — . T
+—— [/ wUNo+;(€’9)at16’9d9+/ vao+g(€w)‘I’(€w)d91

2rve | J_, -7
11 ’ Wyng42 (€)™ f(e)df
2rvi J_. 02
< [ g (@)l ()] | a0
“wv2r | ) . 072

1
= sz Il = 20
(4.21)

Case 2: Now, let’s consider the case, when t is odd.

|ftk‘+] T
Z Dl < 2l

for all % > % where ¢ is odd. Our assumption here is ¢ is odd then 2t is even. For given

= Zanz", 2z € A. Define
G(z) = f(z°) =) _an2™

n=0
mm——/ ()]0

=5 |f(e*)|db
T o= (4.22)

B 1 1 2T i3 1 0 8
—§k;4ﬂuw>mw5;42%u@nw]

U ez A+ W ] = 1 e

Then

l\')l»—l

On the other hand:
th + 2]
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|f(th + j)] |G (2t + 2§)]
Z —22

th+j 2k + 2] (4.23)
< 221Gl = 17
So we proved that it is allways true that:
|f (vk + j)|
Z e < Sl
where % > %
Now let’s prove that  is the best possible constant for this inequality:
Claim If f € H! then; 7 is the best constant for the inequality below:
|f vk + j)|
Z < T
vk +j UV - —’
k=0 , RHS
LHS
where £ > 1.
Proof: Let define:
(3) _on
9() => @'z
n=0
where
1
q(%) e
I'(3)
It is obvious that:
( §)> ¢l g¢ H
n€eNg
But
- ()
gN(Z) _ Zq 2) on o H2,
n=0
hence
j 2 (< (3) = (3)
fn(2) = Z(gn(2)? = 2 anz LU anz Lun
n=0 n=0
N o . (4.24)
- [ (Sl ) e 3 e
n=0 \k=0 ) n=N+1
qul;;'Yn
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fn(z) € H' Then:

2N

]f (vn + 7)] al
LHSy Z un 4+ j Z’Uﬂ—i—] Zvn—l—j

n=0 n=0

RHSN = |fllg = |7 9n(2)|[5ye = lgn(2) 32

and

We know that:
1
E — =0 as N =
n

Now let’s take care of LHS y:

N q(1) N 1 1 N
LHSy > L ~ = il
N_nzovn+j ;%vnjtj Unz:n

for large n.
Since
Syl
7\,—1" —1 as n — o0
Zn 1n
then:

1 N 1 N 1
T LHSN > ;anlﬁ _ 7TZn:lﬁ N E

V

v T RHSy = 2V L oyN 1Ty

n=1 mn n=1n

the best constant for the Hardy like inequality below. So we proved that C' = 7 is

k
S VEEED

o vk + 7 ~——
k= _ RHS

~
LHSN

The following theorem is the most important result of this chapter:

Theorem 4.6. Let n =mk+j andm >3 s.t. 1 < j < 2. Then; 3f = fun,+; € H' s.t.

k=0 mk + m sin (:rz_j) "

Proof. Fixm >3. 1< j <2 Leto=2L 0<o<i

Let f = fmny+; be defined by:
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f(z)=2(1- z)%] Vz € A. Since

(1—2)” Z ) ok ,Va >0 and v € A

k=

[e=]

then:

Z Jomiti v e A 2| < 1
k=

Since o = % then it is obvious that:

f(z)= Zq,(fa)zmkﬂ Vz e A
k=0

By the Stirling’s formula [8]:

Then define:

2 S g

[fovori(mE + §)] = lgi°
LH =
5= Z mk + j z:%mkjtj kz:%mk:—l—j

By the “limit comparison test”, since
=~ 1
Z k2(1—a’) <0
k=1
Then LHS < o0, g(z) = (1 — zm)% , Vz € A. Since |27| =1, and

1l = (lglz)?

= [|27(9(2))? (4.25)

i
= 1) |11y

Claim:

g € H*(A) = H(T)

Proof:

— iql(jn Z i (o) mk
k=0
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Since q,(f) ~ %

" T(o) I(o) k2
So by the “Limit comparison test”

[e.9]

RHS = |lglloery = Y _ (97)) < oc

k=0
= g€ H*(T) =~ H*(A)
= fe H(T)~ H'(A)

Now define a new function:

o ()

Gz) =Y L mk+i v, ¢ R,
pr mk + )
Then the series:
(%)
Z lag] < oo ay: O —k___mki
T mk + ¥

even when |z| = 1. Then Vz € A

and

So by the fundamental theorem of Calculus,

Wre(01) Gir)—G0) = /:de

Since G is continuous at all z € A then

=T

G(1) = lim G(r) = lim —_ldf = /1 (—g

r—1— r—=17 J.—g (1 —gjm)QU

Fix 0 <r, <1 and 7, is increasing. Then if we define:

Q,(z) = m X[0,0] ()
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PP A14

®,dm” is increasing and converges to
[0,1]

then by the “monotone convergence theorem

/ ddm”. Hence:
[0,1]

=1 x]*l

LHS =G(1) = / ———-dx
Let u = 2™ < ¢ = um then:

j—1

u=1 =21
m 1
LHS :/ sl
u=0 (L—u)m

1 (4.26)
1 = 1
_ 1 / w1 =) g = 2301 — 20)
m Ju—o m

Where S is the classical “Beta function” and 0 < o < % Since Vzx,y € (0, 00)

~ I(@)l(y)
8] (8.20) Then:
1 ['(o)[(1 - 20)
LS =" I'(l1-o0)

and

Now we need to define “Pochhammer-symbol”

Definition 4.1. (Pochhammer symbol) Voo € R “Pochhammer symbol” is defined by

(a), = ala+ 1)(a+2)---(a+k—1)

(a)y =1
and
(1), = &!
Let o« > 0 Then:
(o), = % ,Vk e N

And it is easy to obtain by using integration by parts that:
Mx+1)=al'(z) ,Yx>0 [§]
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Let a =0 = T%, then:

— (0),(0)
s = 5 p(0k - 5= 0u

=0
Now we need to define “Hypergeometrlc function”:

2F1 ,B5; 2 Z a)

The Hypogeometric function oF; converges Vz € C with |z| < 1. ([10] p203) Let F' = oF.
Consider F(o,0;1;z) = H(z). Then

We know that:
o0
ZTk < o0
k=1

Then H(z) is well defined in this case for |z| < 1, and H is continuous on A. So from the

integral representation theorem for ' = oF},it is easy to see that RHS = H(1) ([10]).
Va> >0 VYa>0 and Vz € A

F = (2) oF1(, B35 2) = % /tz 71— )P - at) Tt

Apply this integral representation to: a =0 >0, =0 >0and y=1 > 0.

Then Vr € (0,1)

) = 2Fi0.71i0) = e |, 020 0
Ar(t)

Fix 0 < r, , r, is increasing and limr, — 1. Let ®,(t) = A,, (¢).
O,(t) = d(t) =t 11 —t)
Since 0 < 7, is arbitrary and r, is increasing then by the “monotone convergence theorem”
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®,, is a strictly increasing function,
t=1
H(r,) = K / O(t)dt
t=0

—>K/ tydt ,as r— 17

and

H is continuous on A hence it is continuous at 1. Thus:
RHS=H()=K / Y1 —t)"*dt = KB(o,1 —20)

_ __Irm .
where K = o) (=0)" Then:

T'(o)I(1 - o)

KB(o,1—-0)=K N

and as we obtained before

|f mk + j)| 1
LH E 1-2
5= —  mk+j mﬂw’ o)

where 0 = L and 0 < o < L.
m 2

So:
LHS  +f(0,1—20)
RHS — Kp(o,1—20)
1
where K = )F((l)fa)
Hence
LHS 2iT(o)l(1—-o0) 1 1
=1 =—T()l(l-0)=—
RHS r'(1) m ()01 ~0) m sin(mo)

By using the theorem 4.7 below:

Theorem 4.7. If0 < o < 1 then:

I(o)(1 - o) =

(see for the proof [9])
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5.0 NEW THOUGHTS ON PALEY’S INEQUALITY

Suppose f is a function in H!, i.e.:
feH(A) = |f(z)= Zanz” VzeA
n=0

and suppose \, is a lacunary sequence in Ny = {0, 1,2,3,--- } s.t.

An
L=inf2 > 1,

neN n

Then according to Paley’s Inequality [14],

3B € (0,00), s.t. Vfe€ HY(A)

2

(Z \fwf) < B|flln

where the f(n)’s are the Fourier coefficients of f € H'(A).

EXAMPLE 5.1. Let f € H' with the power series -, a,z" then

(z w) < A1,
k=1

(see for solution [6])
In this section we try to solve the Extended Paley’s Inequality for the case A\, = 2" — 1

and we obtained constant 2 instead of 4.

Theorem 5.1. (Extended Paley’s Inequality) Let f € H'(A). Then

[e%S)
Y lasna* <2 fll7n
n=1
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Proof. If f € H' then by the H' — H? representation theorem, we can define f as, f = gh

where g,h € H? s.t. g(2) = b,2" and h(z) = ¢,2". Then

2

00 oo |27—1
D aza =D D bjeana
n=1 n=1 | 7=0
0o |on-1_1 on_1 2
:Z Zb02n1]+zb62"1]
n=1 j=2n—1
oo [2n71-1 2n -1 ?
= Z Z bjCQn_l_j + Z b2"—1—ZCZ
n=1] j=0 =0
00 on—1l_1 2
<23 (|2 e
c; 2n—1_1 2
+ 22 ( Z bon_1_¢C¢
n=1 =0
S | 2n—1
§2Z< Dbl Y e )
n=1 =0 f=2n-1
0o 2n—1 an—1_1
+23° ( > > el
n=1 \ j=2n-1
ZQZ[(Pn )(Qn = Qno1) + (Po — Poo1)(Qn)]
n=1
- Z [2(PnQn Pn—lQn—l) - Q(Pn - Pn—l)(Qn Qn—l)]
n=1
2n—1 2n—1
For P, = Z b;* and, Q,, = Z leo|.
j=0 =0
0o N
Z(PnQn - Pn—lQn—l) = ]\}l_rgo Z(PNQW - Pn_lQ”_l)
n=1 n=1

= lim (PnQn — FPoQo)
N—oo

(5.1)

(5.2)

2N _1 -1
Since Py = Z |b;> and Qn = Z leo|>. Then; Py = |bo|* and Qo = |co|*. Then we obtain:
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S Jazaf? = 2| lim PyQy — iG] —22 [(Pr = Pat)(Qn = Qu)]

n=1
2N _1 2N 1
<2 lim Db Y el = bol ol —22 [(Po = Pa1)(@n — Qn—1)]
7=0 /=0
[Z!b! Z!cd — [bo[*|col ] —22 [(Py = Puc1) (Qu — Qu)]
= 2 [llgll32 12172 = 1bo|*|col*] —22 [(Pr— Po1)(Qn — Qn-1)]
23 (11— 1FOF] =232 (P~ P)(@ — Qu)
" "~ (5.3)
Then

0o o0 2n 1 2n 1
S lawa <2 |17 — FOF =52 [ 3y (zw) 5.4
n=1

n=1 \ j=2n-1 f=2n—1

By the equation (5.4) it is clear that:

oS
> laon " < 2| 1[0
n=1

So we are done. O
Now we will show here, the best constant K for the inequality
o0
D lasn | < K| fll7n
n=1
isst. 3 <K <2
2
oo on—1 2n—1 oo | 2n—1
S wf) (X ) 22| 5 hes
n=1 j:2n—1 ¢=9on—1 n=1 j=2"71 (55)

S oo 1)

n=1

where (gyn_yhgn_1)(2" + 2771 — 1) is (2" + 2*~! — 1).th Fourier coefficeint of (gar_1han_1).
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Then by the inequality (5.4)

e 2" -1

> ~ 2
2 2 23 (g ihar )2 42 = )] D0 Y b1
n=1

n=1 j:2"—1

Fix f = g% where

122"
g(2) =1+4z+224- 422771 = &

1—=z
VzeAand z# 1. ie. ¢, =b, =1, ¥n>2". Fixn € {1,2,--- , N}. Then:

2"—1 2n—1

Z bj02”+2”*1—1—j - Z (1)(1) - 2n—1
j:2n—1 j:2n—l
Fix n > N + 1. Then:
2" —1
Z bj02n+2n—1,1,j =0
j:2n—1
So
o0 2"—1 2 N 4N 1
n—1)2 _
S5 o)~y -0
n=1 \ j=2n-1 n=1

And in this case:

') ') 2m—1 2
S =3 ( 3 b|)
n=1 7=0

n=1

2m—1

> bican1j| =
j=0

M if 1 <n < N;

0,if n > N +1;

Then it is clear that:

o0 N n
Z |a2n—1|2 = Z4n =4 (4 3_ 1)
n=1 n=1

2

and
2N _1

Il = lgllze = | D (D] = (4Y)

n=0

And by the equations (5.10) and (5.11)

4N 1
S Jaw o A(5)

||f||§p 4N (asNooo)
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On the other hand; by using the equations (5.8), (5.10), and (5.11) we obtain that;

2

00 R 9 00 2" —1
2 Z ’ <g2n_1h2n_1> (2'n, + 2n—1 - 1)‘ + Z Z bj62n+2n*1717j - 2(4N - 1) - A
n=1 n=1 |j=2n—1
then
A 2(4N —1
— = ( ¥ ) — 1 (5.13)
2||f||H1 2(4 ) (asN—00)

Then by using equations (5.12) and (5.13) we can conclude that; the constant 3 < K < 2

for extended Paley’s inequality,

o0

2 2
> lasn [ < K| fII7

n=1
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6.0 AN APPLICATION OF HARDY’S AND PALEY’S INEQUALITIES

Recall that we define the space 7 by:

P = {x = (24) jen, €ach z; € C and Z |lz; P < OO}

J=0

and we know that (P is a Banach space with the norm:

||, = (Z llep) , Vo e
j=0

Consider the mapping; J on H' defined by;

- H! st = an
J — 0 st J(f) <n+1>n€No

v [f(z) :Zanz”,zéz cH'

n=0

Our main goal in this chapter is, to prove the map that we have defined above is not onto

1.e..

Jyelt st. VfeH, J(f)#y

To begin seriously the proof of this theorem we need some premliminary definitions and

theorems. Afterwards the proof of this main theorem will be straightforward to follow.

Theorem 6.1. [7] (Open mapping theorem) Let Ay and Ay be open unit balls of the

Banach spaces X and Y . For every linear transformation A of X onto Y there exists A > 0

s.t.
A(Al) BIP VAT
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where:

Ao ={Ay:y € Ay}

i.e. the set of all y € Ag, s.t. |ly|]| < . It follows,that the image of every open ball in Ay
with center at xq, contains an open ball in Ao with center Axg, so the image of every open

set s open.

Definition 6.1. (Banach Space ({>~,] , ||..))
> = {x = ())jeny; St each "z € C and supjey, |z;] < oo}
1s a Banach space with the norm defined on it:

2]l = Supj20|$j| , Vo € €%

Definition 6.2. (Banach Dual Space X*) For any Banach space, (X, ||, ||y), we define
the Banach dual space (X*,|, ||x+) by,

X* = {linear maps ®: X — C s.t. & is continuous on X}

and

2]

= sup [(x)], VO € X"
X

TE

[zl x <1
Definition 6.3. [7/ (Schur Property) Let (X, |z| y) is a Banach space and let (x(”))neN
is a sequence in X. (X, ||z||y) has the Schur Property if ¥V (ac("))neN in X such that

2™ 0 as n— oo weakly, it follows that Hx(")HX — 0 as n — oo.

Note that ™ +— 0 weakly means;
Vo e X* @ (2) = () =0
This definition easily implies:

Theorem 6.2. If (X, ||, ||x) has the Schur property, then every infinite dimensional closed
vector subspace Z of (Z,| , ||y) has the Schur property.

Theorem 6.3. Let the space (X, ||, ||) has the Schur property, and let us have the space
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(V’ H ’ ”V) s.1.
(V7 H ) ||V> ~ (X7 H ) HX)

then (V, ||, |ly) has also the Schur property.

EXAMPLE 6.1. The Banach space (¢*, |, ||,) has the Schur Property.

Proof. Every weakly convergent sequence is norm convergent to the same limit. (See for the

proof [13] pg:85) O
EXAMPLE 6.2. The Banach space (€2,], ||,) does not have Schur property.

Proof. The Banach dual of (¢2, ], ||,), is isometrically isomorphic to (¢2, |, ||,) via the linear
map:
V@) (0 1) = (@70 ey )
s.t. o
V(z) =.(2) = Zmnzn Vz € l? and x € (?

n=0

Note that

®(2) € ()" and V(@) ey = llzlle Vo = (), € €
Note that the map V defined above is onto. Let e, = (0,---,0, 1 ,0,---,0,---)Vn €
No. Each e, € 2. Fix x = (;),5, € €*. Since 3.7 |2, < o0 S

d.(e,) =2, =0 as n+— oo

Thus ®(e,) — 0, V& € (£3)" ie. e, — 0 weakly. But |le,|l, = 1 Vn € Ny. So |le,|, - 0

Hence (¢%,], ||,) fails to have Schur property. O
Theorem 6.4. (H',||, ||;;1) has an infinite dimensional closed, vector subspace Y s.t.
YUl ) ds isomorphic to (&2, ], [l,)-

Proof. Let define:

Y = { [g(2> = ZCQk,122k_l, z € Z : Z ‘Czk,1|2 < OO} .
k=1 k=1
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It is clear that, Y is well defined vector subspace of H%. But, H* C H*, and ||f]l ;1 < ||f]l 2,
Vf € H% SoY is a vector subspace of H', and

1
[e%s) 2
Vg €Y, llgllm < llgll e = (Z\c2k_1|2>

k=1

And by the Paley’s Inequality, Vg € Y C H!,

-

00 2
(Z |C2k—1|2) < \/§||9||H1
k=1

Now define the linear mapping
W (Yol ) = (501 )

s.t.
Wig) = (CQUH—I)UZOqu ey

Then W is onto and
gl < IW (), < V29l Vg €Y

Thus (Y, ||, ||;1) and (¢2,], ||,) are isomorphic Banach spaces; i.e.

(Y7 || ) HH1> ~ (527 “ ) ||2)

Then we are done. O
Theorem 6.5. Fvery infinite dimensional closed vector subspace Z of (01|, ||,) is not
isomorphic to (€2, , ||,)

Proof. We know by example 77 that (¢',], ||,) has the Schur property so by Theorem 6.2
every infinite dimensional closed vector subspace Z of (¢}, |, ||,) is s.t.. (Z,|, ||;) has

the Schur property. Suppose that 3 an infinite dimensional closed vector subspace Z of
(15 1) st
(Z, 015 1) = (0 1)

then by theorem 6.3, (¢2, ], ||,) should also have Schur property. But by the example 6.1,
(2] , |,) fails to have Schur property. So we are done. O
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Then by the Theorems 6.4 and 6.5 it is clear that

Corollary 6.1. The statement

(Hla || ) ||H1> = (ﬁla || ) ||1)

ie. (HY ||, |l;n) and (€1, |I,) are isomorphic is false.
Finally we can prove our main theorem:

Theorem 6.6. [12] The mapping; J on H* defined by;

J:Hln—>€13.t.J(f):< tn >
n€ENg

n—+1
where .
v [f(z) = Zanz",z cA| e H!
n=0
15 not onto.
Proof. 1t is clear that J maps (H', ||, ||:) into (€%, , ||,). By the Hardy’s Inequality:
19 = 3= 20 <l 45 < 8

Suppose get a contradiction. i.e.. suppose that, J : H' + ¢! is onto. Then J is a one to
one continuous linear mapping, from (H',|, ||,;1) onto the Banach space (¢%,], ||,). By

the Open Mapping Theorem the mapping;
T ) = (L )
is also continuous. Thus 3 a constant B € (0, c0) s.t.
HJ_l(z)HHl < Bz, , Yz € !

Equivalently;
£l < BIJ(H  Vf € H

So the linear mapping J : (H', ||, ||;) — (¢, , |I,) is s.t.. J is onto and

1
gl < NI < ll 1l
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in other words, J is Banach space isomorphism from (H',||, ||;;:) onto (¢, ], ||,). Which
means (H', ||, [|;;:) and (€', ], ||;) are isomorphic. But this contradicts with the corollary

6.1. So the mapping J is not onto. We are done. O
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