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ABSTRACT

HARDY SPACES AND HARDY-TYPE INEQUALITIES

Asli Bektas, M.S.

University of Pittsburgh, 2010

This Master’s Thesis is devoted to special kinds of inequalities which generalize Hardy’s

Inequality and Paley’s Inequality in H1. We provide a more detailed proof for Hardy’s

Inequality by using a new approach. We also establish Hardy-Like Inequalities by using

H1 − H2 Factorization theorem, and we calculate the best constant for these Hardy-Like

Inequalities.
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1.0 INTRODUCTION

Inequalities are one of the most important instruments in many branches of mathematics,

such as harmonic analysis, functional analysis, real analysis, etc. This thesis is devoted to

special kinds of inequalities:Hardy’s inequality, Hardy-type inequalities,and Paley’s inequal-

ity.

The classical Hardy space in complex analysis, denoted by Hp(∆), consists of analytic

functions f on the interior of the unit disc ∆ in C.

Hp(∆) =

{
f : ∆→ C : ‖f‖Hp = lim

r→1−

(∫ θ=2π

θ=0

∣∣f(reiθ)
∣∣p dθ

2π

) 1
p

<∞

}

Here C is the set of complex numbers. An analytic function f on ∆ can be represented

by:

f(z) =
∞∑
n=0

anz
n.

We call an the n.th Fourier coefficient of f . In this thesis we sometimes use f̂(n) instead of

an.

This theory was introduced by Frigyes Riesz,[1], and it is named in honor of the mathe-

matician G. H. Hardy, because of the paper [2].

A basic presentation of Hardy spaces for the unit disc (∆) and Hardy spaces on the unit

circle (C) can be found in the second chapter.

There are many Hardy’s inequalities named after G. H. Hardy. One theorem ([3]) states

that if a1, a2, a3, · · · is a sequence of nonnegative real numbers which is not identically zero,

1



then for every real number p > 1 one has:

∞∑
n=1

(
a1 + a2 + a3 + · · ·+ an

n

)p
<

(
p

p− 1

)p ∞∑
n=1

apn.

The integral version of Hardy’s inequality states if f is an integrable function with non-

negative values then:∫ ∞
0

(
1

x

∫ x

0

f(t)dt

)p
dx ≤

(
p

p− 1

)p ∫ ∞
0

f(x)pdx.

In this thesis specifically, we focus on Hardy’s inequality for H1 functions. It states that

if f ∈ H1 where f(z) =
∞∑
n=0

anz
n then one has ([4]):

∞∑
n=1

|an|
n
≤ π‖f‖H1

We also deal with Paley’s inequality ([5]) which states that if f(z) =
∞∑
n=0

anz
n is an analytic

function in the unit disc ∆ satisfying

sup
0<r<1

∫ 2π

0

|f(reiθ)|dθ <∞,

then

(
∞∑
k=1

|a2k |2
) 1

2

<∞. Equivalently ∃ a constant C > 0 s.t.

(
∞∑
k=1

|a2k |2
) 1

2

< C‖f‖H1 .

Wojtaszczyk [6] proved that if f ∈ H1 then

∞∑
k=1

(
|a2k−1|2

)
≤ 4‖f‖2

H1

We extend Wojtaszczyk’s argument for the lacunary sequence indexed by λn = 2n− 1 to

obtain a better constant for this case, i.e. we obtain the stronger Paley’s inequality below:

∞∑
k=1

(
|a2k−1|2

)
≤ 2‖f‖2

H1

One of the main tools to deal with the inequalities in this thesis is, the H1 −H2 factor-
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ization theorem. Indeed, we are concerned with the following topics:

• H1 −H2 factorization theorem

• Hardy’s inequality for H1 functions:

∞∑
n=1

|an|
n
≤ π‖f‖H1

and finding a more detailed proof for Hardy’s inequality.

• Developing Hardy-like inequalities.

• Finding the best possible constants for these Hardy-like inequalities.

• Finding a better constant for Paley’s inequality, as described above.

This thesis consists of the introduction part and 5 more chapters.

Chapter two is the preliminary section which develops the background for the other

sections. Most of the theorems, definitions and discussions in the preliminaries are based on

Hoffman’s [4] and Rudin’s [7] approach. Here we provide some well known definitions and

theorems which will be used in other chapters. In this part we focus on important properties

of Lp and Hp functions. We also focus on analytic and harmonic functions in the unit disc

and provide the answer to the boundary value problem [4]. At the end of the preliminary

section we deal with factorization of Hp functions and the H1 −H2 factorization theorem,

which is an important part of the proof of Hardy’s inequality. Also by using H1 − H2

factorization we develop Hardy-like inequalities in the third chapter. Finally we provide a

proof of the classical Hardy’s inequality (Theorem 2.24) in the last subsection of chapter

two, via Hoffman’s approach [4]. Hoffman’s approach inspired us to try to find a detailed

proof for Hardy’s inequality by using a new approach. Hence Hardy’s inequality is a good

place to begin our discussion of chapter three. In chapter three we provide a detailed proof

by using a weight function w1(eiθ) = π − θ. We extend w1 to w1 : R 7→ R by 2π periodicity.

The difference between our approach and Hoffman’s approach is that we use the Fourier

coefficients of the weight function w1(eiθ) with the f(eiθ) function instead of using just the

imaginary part of f(eiθ), and we obtain the same result as Hoffman, i.e. if f ∈ H1 with each

an ≥ 0 then
∞∑
n=1

an
n
≤ π‖f‖H1

3



From here to obtain the Hardy’s inequality below,

∞∑
n=1

|an|
n
≤ π‖f‖H1

we use the H1−H2 factorization as in Hoffman [4]. The new approach inspires us to produce

new Hardy-like inequalities by changing the weight function. At the beginning we obtained

the inequality below for the special case: a2k+1. We find that if f ∈ H1 then

∞∑
k=0

a2k+1

2k + 1
≤ π

2
‖f‖H1

This result encouraged us to extend this method to the other special cases, for example

a3k+j case for j ≤ 3 and a4k+j case for j ≤ 4. These new Hardy-like inequalities drew our

attention to the fact that there is a relationship between the Fourier coefficients that we use

on the left hand side and the constants that we find on the right hand side. We were able to

extend this method to some other cases for example 5k+ j, 8k+ j, etc. Each time we notice

the same kind of relationships between the Fourier coefficients and the constants. Finally we

extend our results to the general case. We were able to find a inequality for the case aυk+j

where j ≤ υ. So we obtained that: if f ∈ H1 then:

∞∑
k=0

|aυk+j|
υk + j

≤ π

sin
(
πj
υ

) 1

υ
‖f‖H1 (1.1)

Besides the proof of the inequality (1.1), the 3rd chapter also includes the detailed proof

of the “a4k+j” and “a3k+j” cases to provide a better understanding of the method.

Moreover, we provide a proof by using the H1−H2 factorization theorem for the lemma

which states that if f ∈ H1 and if we define the function:(PυN0+jf)(z), in this way,

(PυN0+jf)(z) =
∞∑
k=0

aυk+jz
υk+j, ∀z ∈ ∆

then ∀j ≤ υ:

(PυN0+jf)(z) ∈ H1

and

‖(PυN0+jf)(z)‖H1 ≤ ‖f‖H1 .

4



In the 4.th chapter we discuss the best constant problems for the Hardy-like inequalities

that we obtained in chapter 3. Basically our purpose is to give an answer to the question:

Is the constant B in the inequality below:

∞∑
k=0

|aυk+j|
υk + j

≤ π

sin
(
πj
υ

) 1

υ︸ ︷︷ ︸
B

‖f‖H1

the best constants for all cases? If so, can we find a proof for it; and if not, can we find

better constants?

Firstly, we develop a method to prove that π is the best constant for the Hardy Inequality:

∞∑
n=1

|an|
n
≤ π‖f‖H1 .

But this method does not work for all cases. We tried to find better constants for other

cases, and finally we found that if j
υ
≥ 1

2
then

∞∑
k=0

|aυk+j|
υk + j

≤ π

υ
‖f‖H1 .

Moreover, we were able to find a method to prove that π
υ

is the best constant for this

case.

For the remaining special case (υk + j) where j
υ
< 1

2
we obtain not only that B above is

the best constant, but also the following interesting result holds: for m ≥ 3 and 1 ≤ j ≤ m
2

,

∃f = fmN0+j ∈ H1 s.t.

∞∑
k=0

|f̂mN0+j(mk + j)|
mk + j

=
π

m

1

sin
(
πj
m

)‖f‖H1 .

To do this we used some specific properties of special functions [8], [9], and we used

Pochammer symbols and hypergeometric functions [10], inspired by Mathematica experi-

ments.

The 5.th chapter contains a discussion of Paley’s inequality and a strengthening of Paley’s

inequality. The classical Paley’s inequality states that: if f ∈ H1 and (λn)n is lacunary

5



sequence in N0 = {0, 1, 2, · · · } s.t.

L = inf
n∈N

λn+1

λn
> 1

then ∃B ∈ (0,∞) s.t. ∀f ∈ H1(∆)(
∞∑
n=1

|f̂(λn)|
2

) 1
2

≤ B‖f‖H1 [14].

As we discussed above, we found a special case in Wojtaszczyk’s book [6] for λn = 2n−1.

He found B = 2 as a constant for this case. We extend Paley’s Inequality for the special

case λn = 2n − 1 and obtain constant B =
√

2 for this case.

The last chapter contains an application of Paley’s and Hardy’s inequalities. We define

a map: J : H1 → `1 s.t. J(f) =
(
an
n+1

)
n∈N0

where f(z) ∈ H1, and prove that the function

J is not onto (see 6.6). As a background for this proof we present a discussion about the

Schur property of the Banach spaces. We also provide some proofs about the relationship

between isomorphic isomorphism and having Schur property for Banach spaces. By using

both Hardy’s Inequality [4] and Paley’s inequality, the proof of Theorem 6.6 follows.
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2.0 PRELIMINARIES

In this chapter we introduce the basic facts that will be taken for granted through the

development of this thesis.

Definition 2.1. (Lebesgue Measure) Suppose X be the real line or a closed interval, and

F be a monotone increasing function in X, which is continuous from the left i.e.:

F (x) = sup
t<x

F (t)

And let µ be a function on semi-closed interval [a, b) s.t.

µ([a, b)) = F (b)− F (a)

According to “Hahn Banach Extension Theorem, ” µ has a unique extension to a positive

Borel measure on X. The measure is finite iff F is bounded. If X is the real line, every positive

Borel measure on X arises in this way from the left continuous increasing function F. If X

is closed interval, every finite positive Borel measure on X comes from such an increasing

monotone function. If X is either the real line or an interval, the measure induced by the

function

F (x) = x

is called Lebesgue Measure.

Definition 2.2. (Simple Borel Function) Let X be locally compact set. A simple Borel

7



function on X is complex valued function f on X s.t.

f(x) =
n∑
k=1

akXEk(x)

where

• a1, a2, · · · an are complex numbers

• E1, E2, · · ·En are disjoint Borel sets of finite µ measure.

• XE is characteristic function of the set E.

Definition 2.3. The Borel function is called integrable with respect to µ if there exists a

sequence of functions fn such that

1. Each fn is a simple Borel function for µ

2. limm,n→∞
∫
|fm − fn|dm = 0

3. fn converges to f in measure, i.e. for each ε > 0,

lim
n→∞

µ({x : |f(x)− fn(x)| ≥ ε }) = 0

2.1 THE SPACE L1

If f is integrable and fn converges to f in measure then∫
fndµ

converges and the limit of this sequence denoted by,∫
fdµ

L1(dµ) denotes the class of µ integrable functions and it is clear that L1(dµ) is a vector space.

f → fdµ is a linear functional on L1. The Borel function f ∈ L1(dµ) ⇐⇒ |f | ∈ L1(dµ).

If f is in L1(dµ) then ∣∣∣∣∫ fdµ

∣∣∣∣ ≤ ∫ |f |dµ
8



Definition 2.4. (µ Measure Zero) A subset S of X has µ measure zero if for each ε > 0

there is a Borel set A containing S with µ(A) < ε

Theorem 2.1. [4] (Lebesgue Dominated Convergence Theorem) If fn is a sequence

of integrable functions such that the limit f(x) = limn→∞ fn(x) exists almost everywhere, and

if there is a fixed integrable function g such that |fn| ≤ |g| for each n then, f is integrable

and ∫
fdµ = lim

n→∞

∫
fndµ

2.2 THE SPACE LP

Definition 2.5. (Conjugate Exponents) If p and q are positive real numbers s.t.

1

p
+

1

q
= 1

then p and q are called conjugate exponents.

It is clear that 1 < p <∞ and 1 < q <∞. Consequently we can conclude that 1 and ∞

are also a pair of conjugate exponents.

Definition 2.6. (Lp(µ)) :

Let X be an arbitrary measure space with a complete positive measure µ. If 0 < p < ∞

and if f is a complex measurable function on X then we define ‖f‖p =

{∫
X

|f |pdµ
} 1

p

where

‖f‖p is called Lp norm of f .

The space of Lp (dµ) consists of all f measurable functions, which satisfies:

‖f‖p <∞

We identify the functions f and g that differ on a set of measure zero. If p is positive number

the space Lp (dµ) consists of all measurable functions which satisfy: |f |p is in L1 (dµ). If p

is positive number

f ∈ Lp (dµ)

9



g ∈ Lq (dµ)

and p and q are conjugate exponents then

(fg) ∈ L1 (dµ)

Note that when we define:

‖f‖p =

(∫
|f |pdµ

) 1
p

It is not a norm since we may have ‖f‖p = 0 without f = 0. It becomes a norm when we

agree to identify two functions in Lp(dµ) which agree almost everywhere wtih respect to µ.

Some Important Facts about Lp(dµ)

• Let X be compact and µ be a finite measure. Then every continuous function on X is

integrable. Moreover for f ∈ L1 and ε > 0 then ∃ a continuous function g s.t.∫
|f − g| dµ < ε.

So the space of continuous functions is dense in L1.

• If p ≥ 1 then Lp is contained in L1 and the continuous functions are dense subspace of

Lp, i.e. ∫
|f − g|pdµ < ε

• Let S be a locally compact Hausdorff space and fix a positive Borel measure µ on S.

Choose a number p ≥ 1 and let X = Lp (dµ). Define the norm of f ∈ Lp to be its Lp

norm:

‖f‖p =

(∫
|f |pdµ

) 1
p

The space Lp (dµ) p ≥ 1 is a Banach space using the Lp norm.

• The space L∞ (dµ) is the space of bounded µ measurable functions with the µ−ess−sup

norm.

‖f‖∞ = essµ − supx |f(x)|

Definition 2.7. (Conjugate Space of X) Let X be a Banach space and let X∗ be the

10



space of all linear functionals of F which are continuous, i.e.:

‖xn − x‖ → 0⇒ |F (xn)− F (x)| → 0

then the set X∗ forms a vector space. The linear functional F is continuous if and only if it

is bounded. i.e.: if and only if there is a constant K > 0 s.t.

|F (x)| ≤ K ‖x‖

for every x ∈ X. The smallest such K is called the norm of F . Then

‖F‖ = sup
‖x‖≤1

|F (x)| .

With this norm X∗ becomes a Banach Space which is called the conjugate space of X.

EXAMPLE 2.1. [4] Let S be a locally compact space and µ a positive Borel measure on S.

Suppose 1 ≤ p < ∞ and that X = Lp(dµ). Then the conjugate space of X is Lq(dµ) where

1
p

+ 1
q

= 1. If p = 1 , X∗ = L∞. If g ∈ Lq(dµ) then g induces a continuous linear functional

F on Lp by

F (f) =

∫
fgdµ, f ∈ Lp.

Every continuous linear functional on Lp has this form and

‖F‖ = ‖g‖q.

Definition 2.8. (Inner Product Space and Hilbert Spaces):

Let H be a real or complex vector space. An inner product on H is a function (., .) which

assigns to each ordered pair of vectors in H a scalar in such way that:

• (x1 + x2, y) = (x1, y) + (x2, y)

• (λx, y) = λ(x, y)

• (y, x) = (x, y)

• (x, x) ≥ 0, (x, x) = 0⇔ x = 0

Such a space H with a specified inner product on H is called an inner product space. If

H is complete in the norm genrated by (., .), x→ (x, x)
1
2 , we say that H is a Hilbert space

11



EXAMPLE 2.2. [4] Let X be a locally compact space and µ a positive Borel measure on

X. Let H = L2(dµ) with the inner product

(f, g) =

∫
fḡdµ

then H is a Hilbert space.

Definition 2.9. [4]

Let H = L2(−π, π). The space of Lebesgue square integrable functions on the closed

interval [−π, π] . Then we define the inner product

(f, g) =
1

2π

∫ π

−π
f(x)g(x)dx.

So L2(−π, π) = L2(dµ) where µ is normalized Lebesgue measure and dµ = 1
2π
dx. Let ϕn(x) =

einx then it is clear that ϕn is an orthonormal set. This orthonormal set is complete. If

f ∈ L2(−π, π) the numbers

cn = (f, ϕn) =
1

2π

∫ π

−π
f(x)e−inxdx

are the fourier coefficients of f , the Fourier series for f is:

∞∑
n=−∞

cne
inx

and the n.th partial sum is:

sn(x) =
n∑

k=−n

cke
ikx.

Note that the sequence of Fourier coefficients is square summable and

∞∑
n=−∞

|cn|2 = ‖f‖2 =
1

2π

∫ π

−π
|f(x)|2dx.

And n.th partial sum sn of the Fourier series converges to f in the L2 norm:

lim
n→∞

1

2π

∫ π

−π
|f(x)− sn(x)|2dx = 0.

Theorem 2.2. [4] (RIÉSZ-FISHER THEOREM):

Every square summable sequence of complex numbers is the sequence of Fourier coefficients

12



of a function in L2(−π, π). For if

∞∑
n=−∞

|cn|2 <∞

and if sn(x) =
n∑

k=−n

cke
ikx then it is easy to see that sn converges in L2 to a function f

with Fourier coefficients cn.

2.3 FOURIER SERIES

If f is a complex valued Lebesgue integrable function on the closed interval [−π, π] then the

Fourier coefficients of f are the complex numbers:

cn =
1

2π

∫ π

−π
f(x)e−inxdx, n = 0,+− 2,+− 3, · · · (2.1)

and the Fourier series for f is the formal series:

∞∑
n=−∞

cne
inx (2.2)

Let construct the partial sums for this Fourier coefficients in such way;

sn(x) =
n∑

k=−n

cke
ikx (2.3)

We know that if f is square integrable then the partial sums converges to f in the L2

norm. Our question here is, if f in L1 how can we recapture f from its Fourier coefficients?

Definition 2.10. [4] (CESÀRO MEANS): The first Cesàro means of the Fourier series

for f are the arithmetic means

σn = 1
n
(s0 + · · ·+ sn−1), where n = 1, 2, · · ·

If f is in Lp(−π, π) , 1 ≤ p < ∞ then the Cesàro means σn converges to f in the Lp

norm. And if f is continuous and f(−π) = f(π) then the σn converges uniformly to f .

13



Definition 2.11. [4] (FEJÉR′S KERNEL): We know that

sn(x) =
n∑

k=−n

cke
ikx =

n∑
k=−n

eikx
1

2π

∫ π

−π
f(t)e−iktdt =

1

2π

∫ π

−π
f(t)

n∑
k=−n

eik(x−t)dt. (2.4)

Then;

σn(x) =
1

2π

∫ π

−π
f(t)Kn(x− t)dt (2.5)

where Kn(x) is the n th Cesàro means of the sequence:∑n
k=−n e

ikx Thus;

(n+ 1)Kn+1(x)− (n)Kn(x) =
n∑

k=−n

eikx

=
n∑
k=0

eikx +
n∑
k=1

e−ikx

=
1− ei(n+1)x

1− eix
+

1− e−i(n+1)x

1− e−ix
− 1

=
cos(nx)− cos(n+ 1)x

1− cos(x)

(2.6)

Since K1(x) = 1 then

Kn(x) =
1

n

[
1− cos(nx)

1− cos(x)

]
=

1

n

[
sin n

2
x

sin 1
2
x

]2 (2.7)

this sequence of functions Kn is called Fejér’s kernel.

Note that

• Kn ≥ 0

• 1
2π

∫ π
−πKn(x)dx = 1

• If I is any open interval about x = 0 then

lim
n→∞

sup
x/∈I
|Kn(x)| = 0, (|x| ≤ π)

Definition 2.12. [4] (Approximate Identity): Any sequence of Lebesgue integrable func-

tions, Kn which has the properties above we call an ‘Approximate identity’.
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Suppose f is a Lebesgue integrable function on the interval [−π, π].Let
∞∑

n=−∞

cne
inx be

the Fourier series for f . It is important to know whether the partial sums sn(x) =
n∑

k=−n

cke
ikx

of the Fourier series for f are convergent or not. If it is convergent it is also important to

know whether the sn converge pointwise, converge pointwise almost everywhere, converge

uniformly,or converge in some type of norm? If they are convergent, do they converge to f?

We can easily find the answer of this question by using Cesàro means:

Theorem 2.3. [4] Let f be a function in Lp(−π, π) where 1 ≤ p < ∞. Then the Cesàro

means of the Fourier series for f converge to f in the Lp norm. If f is continuous and

f(−π) = f(π) then the Cesàro means converge uniformly to f .

Theorem 2.4. [4] If f is in the L∞(−π, π) then the Cesàro means of the Fourier series for

f converge to f in the weak star topology on L∞.

Theorem 2.5. [4] Let µ be a finite complex Baire measure on the interval [−π, π] and let

σn be the n th. Cesàro mean of the Fourier series for µ. If f is any continuous function of

period 2π, then

lim
n→∞

1

2π

∫ π

−π
f(x)σn(x)dx =

∫ π

−π
f(x)dµ(x)

which means the measures 1
2π
σndx converge to µ in the weak star topology.

For the proofs see [4].

Corollary 2.1. (FEJÉR′S THEOREM)[15] Every continuous function of period 2π is a

uniform limit of trigonometric polynomials.

p(x) =
n∑

k=−n

ake
ikx

Since for f ∈ L2 the σn converges to f ∈ L2 we can easily conclude that the orthonormal

family einx is complete in L2(−π, π).

Note that if we have defined Fourier coefficients of two functions it is obvious that if

we add two functions, it requires that we add respective Fourier coefficients. Moreover for

15



f, g ∈ L1(−π, π) we can define a multiplication by convolution:

(f ∗ g)(x) =
1

2π

∫ π

−π
f(x− t)g(t)dt.

Fubini’s theorem implies that, f ∗ g is again in L1 and it is easy to see that ‖f ∗ g‖1 ≤

‖f‖1‖g‖1.

Hence

1

2π

∫ π

−π
e−inx(f ∗ g)(x)dx =

1

2π

∫ π

−π
e−inx

1

2π

∫ π

−π
f(x− t)g(t)dtdx

=
1

2π

∫ π

−π
g(t)

[
1

2π

∫ π

−π
e−inxf(x− t)dx

]
dt

=
1

2π

∫ π

−π
g(t)e−intdt

1

2π

∫ π

−π
e−inyf(y)dy

(2.8)

The n.th Fourier coefficient of f ∗ g is is the product of the n.th Fourier coefficients of f

and g. We can also define the convolution of two measures for example the convolution of

two measures which are absolutely continuous with respect to Lebesgue measure. Then the

convolution of f and µ is defined in this way:

(f ∗ µ)(x) =

∫ π

−π
f(x− t)dµ(t)

Again the Fourier coefficients of f ∗µ are the products of the corresponding coefficients of f

and µ. If f is in L1 then σn = f ∗Kn. The measures 1
2π
Kn(x)dx are approaching the delta

measure

δ0(B) =

1, if 0 ∈ B;

0, otherwise.

(2.9)

where B is a Borel set.

Hence Cesàro means of f converges to f in L1. Note that the Fejer’s kernel Kn is the

n.th Cesàro mean of the Fourier series for the delta measure δ0.So we can convert the results

into the case when Kn is any approximate identity for L1. So we can conclude that f ∗Kn

converges uniformly to f if f is continuous, converges to f in Lp norm if 1 ≤ p < ∞, and

converges weak-star to f if f is in L∞.
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2.4 CHARACTERIZATION OF TYPES OF FOURIER SERIES

Consider a formal Fourier series:
∞∑

n=−∞

cne
inx.

If the sequence {cn} is square summable, then we know that this formal series is the

Fourier series of an L2 function. The question here is how can we decide whether this formal

series is the Fourier series of an L1 function an Lp function, a measure, or a continuous

function? We can give a satisfactory answer again in terms of the Cesàro means of the

series. Let’s simplify this question. For a given sequence cn, n = 0,±1,±2,±3, · · · find a

necessary and sufficient condition for cn to be the Fourier transform of a function Lp. We

want necessary and sufficient condition for the existence of a function f where f is in Lp for

some p s.t. f̂(n) = cn for all n.

It is clear that the partial sums of the series
∞∑

n=−∞

cne
inx are in Lp for every p. If these

partial sums converge for the norm of some Lp space then the limit is a function in Lp whose

Fourier transform is cn. Thus the convergence for some Lp norm of our series is a sufficient

condition for cn to be the Fourier transform of a Lp function.

Let consider a series
∞∑

k=−∞

ak. For each n = 0, 1, · · · sn =
n∑

k=−n

ak. If sn is Cesàro

convergent to f then the given series is said to be Cesàro convergent to the same function.

Here we assumed cn was given and asked for necessary and sufficient conditions for this

sequence to be the Fourier transform of an Lp function. Let σn is the n.th Cesàro means of

the series
∞∑

n=−∞

cne
inx. If n > |m| then the m.th Fourier coefficient of σn(x) is

[
n−|m|
n

]
cm.

Hence

lim
n→∞

1

2π

∫
σn(x)e−imxdx = cm

for every m.

Theorem 2.6. [11] If for some p > 1, the Cesàro means of

∞∑
n=−∞

cne
inx

are bounded for the Lp norm, then the sequence cn is the Fourier transform of a function in
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this space.

Theorem 2.7. [11] If the Cesàro means of the series converge for the L1 norm then the

sequence cn is the Fourier transform of a function in this space.

Suppose that for some p > 1 the sequence σn(x) is bounded for the Lp norm which means

for some p > 1

sup
{
‖σn(x)‖p, n = 1, 2, 3, · · ·

}
<∞.

Since p > 1, then Lp is the dual of the Banach Space Lq where 1
p

+ 1
q

= 1. Then there is a

h ∈ Lp s.t. for any ε > 0 ∣∣∣∣∫ [σn(x)g(x)− h(x)g(x)dx
]∣∣∣∣ < ε

for infinitely many n. So eimx ∈ Lq and ĥ(m) = cm for all m. So this takes care of theorem

2.6 and 2.7.

Theorem 2.8. [11] A sequence cn is the Fourier transform of a function in Lp, p > 1 iff

the Cesàro means of
∑

cne
inx are uniformly bounded for the Lp norm. The given sequence

is the Fourier transform of a function in L1 iff the Cesàro means of the series converge for

the L1 norm.

Proof. If p = 1 then the theorem follows from Theorem 2.6 and 2.7. If 1 < p < ∞ then

it follows from Riemann Lebesgue lemma. If f ∈ L∞ it follows from Theorem 2.7 and the

Banach Steinhaus theorem that the Cesàro means of its Fourier series are uniformly bounded

for the L∞ norm.

2.5 ANALYTIC AND HARMONIC FUNCTIONS IN THE UNIT DISC

Let ∆ denote the open unit disc in the complex plane:

∆ = {z; |z| < 1}
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and C denote the unit circle;

C = {z; |z| = 1}

Definition 2.13. (Analytic Function in ∆):[4] Suppose f is a complex function defined

in ∆ If z0 ∈ ∆ and if

limz→z0
f(z)− f(z0)

z − z0

exists we denote this limit by f
′
(z0) and call it the derivative of f at z0.If f

′
(z0) exists for

every z0 ∈ ∆ we say that f is analytic (or holomorphic) in ∆.

If the complex valued function f is analytic in ∆ then it is the sum of the convergent

power series:

f(z) =
∞∑
n=0

anz
n

Definition 2.14. (Harmonic Function in ∆):[4] A complex valued function u is har-

monic on ∆, if it satisfies the Laplace equations:

∂2u

∂x2
+
∂2u

∂y2
= 0

Note that any analytic function is a complex valued harmonic function. A real valued

function u is harmonic iff it is the real part of an analytic function.

f = u+ iv

Given the real harmonic function u there is a harmonic function v for which

f = u+ iv

is analytic.

Such v is called the harmonic conjugate of u and satisfies Cauchy-Riemann equations

below:
∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x

and v vanishes at the origin.
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2.5.1 The Cauchy and Poisson Kernels

Suppose we have an analytic function f in a disc of radius 1 + ε. We know that f has

boundary values and it is determined by these boundary values by using the Cauchy integral

formula where z is on the boundary here.

f(z) =
1

2π

∫ π

−π
f(eiθ)

eiθ

eiθ − z
dθ

If we have an analytic function in the open disc then,

f(z) =
∞∑
n=0

anz
n

If we restrict f to the circle of radius r we obtain a continuous function on that circle

which can be interpreted as a function on the unit circle.

fr(θ) =
∞∑
n=0

anr
neinθ

where fr(θ) = f(reiθ) is a function on the unit circle. The n.th Fourier coefficients of fr(θ)

are:

• anrn for n ≥ 0

• 0 for n < 0

and the Cauchy integral formula becomes:

fr(θ) =
1

2π

∫ π

−π
f(t)

eit

eit − reiθ
dt

=
1

2π

∫ π

−π
f(t)

1

1− rei(θ−t)︸ ︷︷ ︸
Cr(θ−t)

dt

=
1

2π

∫ π

−π
f(t)Cr(θ − t)dt.

(2.10)

Note that fr(θ) is the convolution of f(eit) and Cr(θ) so the Fourier coefficients of fr are the

Fourier coefficients of the product of those of Cr(θ) and f(eit).

If u is harmonic in the disc then u is the real part of an analytic function of f(z). If we
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restrict u to the circle of radius r then,

ur(e
iθ) = 2Re (a0) +

∞∑
n=1

anr
neinθ +

∞∑
n=1

anrneinθ

= 2Re (a0)︸ ︷︷ ︸
c0

+
∞∑

n=−∞, n 6=0

cnr
|n|einθ

(2.11)

where an = cn for n > 0 and a−n = cn for n < 0. If u is harmonic in the closed disc, then

the boundary function u1 has the Fourier coefficients cn.

u1(θ) = u(eiθ)

= 2Re (a0) +
∞∑

n=−∞

cne
inθ

= 2Re (a0) +
∞∑
n=1

ane
inθ +

∞∑
n=1

ane
−inθ

(2.12)

Since

ur(θ) =
∞∑

n=−∞

cnr
|n|einθ

and

u1(θ) =
∞∑

n=−∞

cne
inθ

it is clear that the Fourier coefficients of ur(θ) are a multiplication of the Fourier coefficients

of u1(θ) and the Fourier coefficients of another function whose Fourier coefficients is r|n|. Let

us call the second function Pr(θ). Then

Pr(θ) =
∞∑

n=−∞

r|n|einθ

= Cr(θ) + Cr(θ)− 1

= 2ReCr(θ)− 1

= Re(2Cr)(θ)− 1

= Re

[
1 + reiθ

1− reiθ

]
=

1− r2

1− 2r cos(θ) + r2

(2.13)
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Since ur(θ) is the convolution of u(θ) and Pr(θ) then

ur(θ) =
1

2π

∫ π

−π
u(t)Pr(θ − t)dt

where u(t) denotes u(eit).

Note that this Poisson integral formula holds for an analytic function f . So both the

Poisson kernel and Cauchy kernel reproduce analytic functions from their boundary values

by convolution.

1

2π

∫ π

−π
e−inθPr(θ)dθ = r|n|

1

2π

∫ π

−π
e−inθCr(θ)dθ =

r
n, if n ≥ 0;

0 if n < 0;

(2.14)

As we see above if we use the Poisson kernel and Cauchy kernel for an analytic function

on the circle the result is the same because they both have the same Fourier coefficients for

positive integers, but they behave differently for negative integers. The Fourier coefficients

of Pr are symmetric about zero on the integers, but the Fourier coefficients of Cr vanish on

the negative integers.

2.5.2 Boundary Values:

The main problem in this part is: If we have a given continuous function f on the unit circle

C how to find a harmonic function u in open unit disc ∆ whose boundary values are f ?

Theorem 2.9. [4] If f ∈ L1(C) then the Poisson integral of f is a harmonic function in ∆.

Theorem 2.10. [4] Let f be a continuous function on C and define (Hf) on the closed unit

disc ∆ by

(Hf)(reiθ) =

f(eiθ), if r = 1;

P (reiθ), if 0 ≤ r < 1

then (Hf) is a continuous function on the closed unit disc ∆.

Proof. Let ‖g‖C denote the supremum of |g| on the set C, and P [g] denote the Poisson
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integral of g. Recall that
1

2π

∫ π

−π
Pr(t)dt = 1, 0 ≤ r < 1

Since Pr(t) > 0, then for every continuous g in C

∣∣P [g] (reiθ)
∣∣ ≤ ‖g‖C

So

‖Hg‖∆ = ‖g‖C

If

g(eiθ) =
N∑

n=−N

cne
inθ

is any trigonometric polynomial, it follows that

(Hg)(reiθ) =
N∑

n=−N

cnr
|n|einθ

so (Hg) is a continuous function in ∆. Finally we can conclude that there are trigonometric

polynomials gk such that limk→∞ ‖gk − f‖C = 0. It follows that

‖Hgk −Hf‖∆ = ‖H(gk − f)‖∆ 7→ 0.

So the functions Hgk are continuous functions in ∆ and they converge uniformly on

∆.

Theorem 2.11. [7] Suppose u is a continuous real valued function on the closed unit disc

∆ and suppose u is harmonic in ∆. Then u is the Poisson integral of its restriction to C

and u is the real part of the analytic function,

f(z) =
1

2π

∫ π

−π

eit + z

eit − z
u(eit)dt, z ∈ ∆ (2.15)

Proof. If u1 = Re (f) then (2.15) shows that u1 is Poisson integral of the boundary values of

u and the only thing we need to prove is: u = u1. Put h = u− u1. Then h is continuous on

∆ and by the previous theorem h is harmonic in ∆ and h = 0 at all points of C. Assume
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that h(z0) > 0 for some z0 ∈ ∆. Fix ε, s.t. 0 > ε > h(z0) and define

g(z) = h(z) + ε|z|2 (2.16)

Then g(z0) ≥ h(z0) > ε. Since g is a continuous function in ∆ and since g = ε at all

points of C there exists a point z1 ∈ ∆ at which g has local maximum. This implies that

gxx ≤ 0 and gyy ≤ 0 at z1. But (2.16) shows that the Laplacian of g is 4ε > 0 which is a

contradiction. So u− u1 ≤ 0 The same argument shows that u1 − u ≤ 0. Hence u1 = u and

we are done.

Although theorem 2.11 considered only the unit disc, this theorem can be carried over

to arbitrary circular disc,by changing variables. i.e.: If u is a continuous real function on the

boundary of a disc with radius R and center a then u is defined in that disc by the Poisson

integral

u(a+ reiθ) =
1

2π

∫ π

−π

R2 − r2

R2 − 2Rrcos(θ − t) + r2
u(a+Reiθ)dt.

Then u is continuous on the closed disc and harmonic in the open disc. If u is harmonic

in an open set U and if ∆(a;R) ⊂ U then u satisfies the condition above and there is a

holomorphic function f defined in ∆(a;R) whose real part is u. So we can say that every

real harmonic function is the real part of a holomorphic function. [7]

Now, let consider the Dirichlet problem by Hoffman’s approach [4] before beginning the

discussion of the boundary behaviour of harmonic functions and the description of Hp spaces.

Suppose we have a given real valued continuous function f on the unit circle. The Dirichlet

problem consists in finding a function u which is continuous on closed disc, such that u

satisfies the following conditions:

1. u is harmonic in the open disc

2. u agrees with f on the circle.

Recall the Poisson kernel:

Pr(θ) =
1− r2

1− 2rcos(θ) + r2

The Poisson integral formula satisfies the following conditions:

• Pr ≥ 0 (and Pr is continuous on the circle)
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• 1
2π

∫ π
−π Pr(θ)dθ = 1 , 0 ≤ r < 1.

• if 0 < γ < π then

limr→1sup|Pr(θ)| for |θ| ≥ γ

For if γ ≤ |θ| ≤ π then:

Pr(θ) ≤
1− r2

1− 2rcos(γ) + r2

Then to solve the Dirichlet problem the only thing we need to do is, to show that the

family of functions Pr, 0 ≤ r < 1 is approximate identity for L1 of the circle.

Theorem 2.12. [7] Let f be a complex valued function in Lp of the unit circle where 1 ≤

p <∞. Define f in the unit disc by;

f(reiθ) =
1

2π

∫ π

−π
f(t)Pr(θ − t)dt.

then the extended function f is harmonic in the open unit disc.

Proof. If the original f is real valued then the function f(reiθ) is the real part of the analytic

function

g(z) =
1

2π

∫ π

−π
f(t)

eit + z

eit − z
dt.

The harmonic function f(reiθ) is the Poisson integral of the corresponding function on the

circle.

Note that it is easy to show that the family of functions Pr, 0 ≤ r < 1 is an approximate

identity for L1 of the circle. So we can conclude that if f is a complex valued function in Lp

of the unit circle where 1 ≤ p <∞ and if we define f in the unit disc by

f(reiθ) =
1

2π

∫ π

−π
f(t)Pr(θ − t)dt,

as r 7→ 1 the functions fr(θ) = f(reiθ) converge to f in the Lp norm. If f is continuous

on the unit circle, then fr converge uniformly to f , so the extended f is continuous on the

closed disc, harmonic in the interior.

Suppose we have a given harmonic function in the disc. How can we decide if it is the

Poisson integral of some type of function? We can solve the problem by using the same

method as we did for Cesàro mean.
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Theorem 2.13. [4] Let f be a complex valued harmonic function in the open unit disc and

fr(θ) = f(reiθ)

1. If 1 < p ≤ ∞ then f is the Poisson integral of an Lp function on the unit circle if

and only if the functions fr are bounded in Lp norm. (if p = ∞ this is called Fatou’s

Theorem. see for details [4] )

2. f is the Poisson integral of an integrable function on the circle if and only if the fr

converge in the L1 norm.

3. f is the Poisson integral of a continuous function on the unit circle if and only if fr

converge uniformly.

4. f is the Poisson integral of a finite complex Borel measure on the circle if and only if the

fr are bounded in L1 norm.

5. f is the Poisson integral of a finite positive Borel measure if and only if f is nonnegative.

2.6 HP SPACES

Before starting the discussion about the space Hp we need a corollary of the theorems from

the previous section.

Corollary 2.2. [4] Let f be a complex valued harmonic function in the unit disc and suppose

that the integrals ∫ π

−π

∣∣f(reiθ)
∣∣pdθ

are bounded as r → 1 for some p ,1 ≤ p <∞. Then for almost every θ the radial limits

f̃(θ) = lim
r→1

f(reiθ)

exist and define a function f̃ in Lp. If p > 1 then f is the Poisson integral of f̃ . If p = 1

then f is the Poisson integral of a finite measure whose absolutely continuous part is 1
2π
f̃dθ.

If f is bounded harmonic function the boundary values exist almost everywhere and define a

bounded measurable function f̃ whose Poisson integral is f .
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Suppose 1 ≤ p ≤ ∞ and let f be a harmonic function in the open disc s.t. the function

fr(θ) = f(reiθ) is bounded in Lp norm. This class of functions forms a Banach space under

the norm

‖f‖ = lim
r→1
‖fr‖p

For 1 < p ≤ ∞ this Banach space is isomorphic to Lp of the unit circle. The isomorphism

is f 7→ f̃ where f̃ is the boundary function for f . If 1 < p <∞ we have not only∥∥∥f̃∥∥∥
p

= lim
r→1
‖fr‖p

but also

lim
r→1

∥∥∥f̃ − fr∥∥∥
p

= 0

For p = 1 this Banach space is isomorphic to the space of finite Borel measures on the

circle, the isomorphism is: f 7→ µ where f is the Poisson integral of µ.

The results about harmonic functions apply in particular to analytic functions.

fr(e
iθ) = f(reiθ), 0 ≤ r < 1

‖fr‖p =

{∫
C

|fr|pdσ
} 1

p

, 0 < p <∞

and

‖fr‖∞ = sup
∣∣f(reiθ)

∣∣
where σ is normalized Lebesgue measure on C, so σ(C) = 1.

If 0 < p ≤ ∞ the space Hp is denotes by the class of analytic functions f in the unit

disc for which the functions fr(θ) = f(reiθ) are bounded in Lp norm as r → 1. If 1 ≤ p ≤ ∞

then Hp is a Banach space under the norm

‖f‖ = lim
r→1
‖fr‖p;

so Hp is a closed subspace of the corresponding space of harmonic functions. If 1 < p ≤

∞ then Hp can be identified with a closed subspace of Lp of the circle because of the

isomorphism. It consists of all functions f in Lp whose Poisson integrals are analytic on the
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disc, i.e. ∫ π

−π
f(θ)einθdθ = 0, n = 1, 2, 3

When p = 1 then we can identify H1 with the closed sub-space of finite measure µ on

the circle which are analytic: ∫ π

−π
einθdµ(θ) = 0, n = 1, 2, 3, · · ·

Remarks[4]

• ‖fr‖p is a nondecreasing function of r for every f when p <∞.

• For 1 ≤ p ≤ ∞, ‖f‖p satisfies the triangle inequality so Hp is a normed linear space. By

the Minkowski inequality:

‖(f + g)r‖p = ‖fr + gr‖p ≤ ‖fr‖p + ‖gr‖p

If 0 < r < 1 and as r → 1 then

‖f + g‖p ≤ ‖f‖p + ‖g‖p

• As we mentioned before Hp is Banach space if 1 ≤ p ≤ ∞. We suppose {fn} is a Cauchy

sequence in Hp , |z| ≤ r < R < 1 and apply the Cauchy formula to fn−fm by integrating

around the circle of radius R center 0 then we obtain:

(R− r)|fn(z)− fm(z)| ≤ ‖(fn − fm)R‖1 ≤ ‖(fn − fm)R‖p ≤ ‖(fn − fm)‖p

Then {fn} converges uniformly on compact subsets of ∆ to a function f ∈ H(∆). Given

ε > 0 there is an m, s.t. ‖(fn − fm)‖p < ε for all n > m and then for every r < 1

‖(f − fm)r‖p = lim
n→∞

‖(fn − fm)r‖p ≤ ε

which gives us ‖(f − fm)‖p 7→ 0 as m 7→ ∞

• For p < 1, Hp is still a vector space but the triangle inequality is no longer satisfied by

‖f‖p. In this case Hp is an F-space.

28



2.7 H1 SPACES AND THE H1 −H2 FACTORIZATION THEOREM:

Let A denote the collection of functions which are continuous on the closed unit disc and

analytic at each interior point. Then A is a Banach space under the sup norm:

‖f‖∞ = sup
|z|≤1

|f(z)|

Each f in A is the Poisson integral of its boundary values

f(reiθ) =
1

2π

∫ π

−π
f(eiθ)Pr(θ − t)dt

and

‖f‖∞ = sup︸︷︷︸
0<r<1

|fr(eiθ)|

by the maximum modulus principle for analytic functions. It is easy to see that there is an

isomorphism between A and and the Banach space of continuous functions on the circle so

we can identify the functions in A with their boundary values, where the boundary value

function such that: ∫ π

−π
f(θ)einθdθ = 0, ∀ n = 1, 2, 3, · · ·

If f is continuous on the circle and if the Fourier coefficients of f vanish on the negative inte-

gers, then the Cesàro means of the Fourier series for f contains a sequence of trigonometric

polynomials of the form:

P (θ) =
n∑
k=0

ake
ikθ

which converge uniformly to f . Then we can identify A as an algebra on the disc consisting

of all functions which are uniformly approximable by polynomials in z:

P (z) =
n∑
k=0

akz
k

so by this property of A we obtain Fejer’s theorem in the following form:

Theorem 2.14. [4] The real part of functions in A are uniformly dense in the space of

real valued continuous functions on the unit circle. In other words if µ is a finite real Borel

measure on the circle s.t.

∫
fdµ = 0 for every f in A, then µ is the zero measure.
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2.7.1 Some Important Facts about H1 Functions:

We have defined the space Hp as the class of analytic functions f in the open unit disc for

which the functions fr(θ) = f(reiθ) are bounded in Lp norm. For 1 < p ≤ ∞ since the

functions in Hp are analytic we can identify Hp with the space of Lp functions on the circle.

For p = 1, the functions in H1 are harmonic. This fact leads us to identify f with the

finite measure µ on the circle where f is Poisson integral of µ. Recall that if f is analytic,

then µ is analytic i.e. ∫
einθdµ(θ) = 0, n = 1, 2, 3, · · ·

The theorem of F. and M.Riesz tells us:

dµ =
1

2π
f̃dθ

where f̃ is in L1 and f is the Poisson integral of f̃ . The functions fr converge to f̃ in L1

norm and for almost every θ

f̃(θ) = lim
r→1−

f(reiθ)

Then we define H1 as the space of L1 functions on the circle which are analytic.

One of the important theorems about H1 functions is H1 − H2 factorization theorem

that we are going to use later to obtain ‘Hardy Type Inequalities’. Before the H1 − H2

factorization theorem we need to go over some basic properties of H1 functions. Let A0

denote the set of functions f in A for which

∫
fdθ = 0. If µ is a positive measure, then we

define the square root of the distance between 1 and A0 by:

inf
f∈A0

∫
|1− f 2|2dµ =

∫
|1− F |2dµ

where F is the orthogonal projection of 1 into the closed subspace of L2(dµ), which is spanned

by the function A0.

Theorem 2.15. [4] Let µ be a finite positive Borel measure on the circle and suppose 1

is not in the closed subspace of L2(dµ) which is spanned by the functions in A0=the set of

functions f ∈ A for which
∫
fdθ = 0. Let F be the orthogonal projection of 1 into that closed

subspace.
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1. The measure |1− F |2dµ is a non-zero constant multiple of Lebesgue measure. In partic-

ular, Lebesgue measure is absolutely continuous with respect to µ.

2. The function (1− F )−1 is in H2.

3. If h is the derivative of µ with respect to normalized Lebesgue measure, then the function

(1− F )h is in L2, where

L2 = L2

(
1

2π
dθ

)
Theorem 2.16. [4] Let f be any function in H1 s.t.

f(0) =
1

2π

∫
f(θ)dθ 6= 0

then log|f(θ)| is Lebesgue integrable and

1

2π

∫ π

−π
log|f(θ)|dθ ≥ log|f(0)|

Theorem 2.17. [4] (H1 − H2 Factorization Theorem:) Every function in H1 is the

product of two functions in H2.

We will give a nice proof for this theorem later on this chapter.

2.8 FACTORIZATION OF HP FUNCTIONS

2.8.1 Inner and Outer Functions

Definition 2.15. (Inner Function)[4]

An inner function is an analytic function g ∈ H∞ for which |g(eiθ)| = 1 almost every-

where on the unit circle. Note that ‖g‖∞ = 1.

Definition 2.16. (Outer Function)[4] Let F be an analytic function, on the unit disc. F

is called an outer function if there exists a positive measurable function φ on the unit circle

such that logϕ ∈ L1(C) and

F (z) = α exp

[
1

2π

∫ π

−π

eiθ + z

eiθ − z
logϕ(eiθ)dθ

]
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for z ∈ ∆ and |α| = 1.

The outer function F is in H1 if and only if φ(θ) = elogϕ(θ) is integrable. If F is an outer

function in H1 then

ϕ(eiθ) = |F (eiθ)| a.e.

Note that if f is a nonzero function of the class H1 on the unit disc then f has nontangential

limits at almost every point of the unit circle:

f(eiθ) = lim
z→eiθ

f(z)

and

f(reiθ) =
1

2π

∫ π

−π
f(eit)Pr(θ − t)dt.

Also log|f(eit)| is also Lebesgue integrable. Let

F (z) = exp

[
1

2π

∫ π

−π

eiθ + z

eiθ − z
log|f(eiθ)|dθ

]
and u is Poisson integral of log|f | then |F | = eu and

1

2π

∫ π

−π
|F (reiθ)|dθ ≤ 1

2π

∫ π

−π
|f(eiθ)|dθ

So F is in H1 because it is bounded. Define a function

g(z) =
f(z)

F (z)

. We know that

log|F (reiθ)| = 1

2π

∫ π

−π
log|f(eit)|Pr(θ − t)dt

so |F (z)| ≥ |f(z)| for each z in the open disc. It is easy to see by Jensen’s inequality:

log|f(reiθ)| ≤ 1

2π

∫ π

−π
log|f(eit)|Pr(θ − t)dt = log|F (reiθ)|

then we obtain:

|g(z)| =
∣∣∣∣ f(z)

F (z)

∣∣∣∣ ≤ 1

Theorem 2.18. [4] Let f be a nonzero function in H1. Then we can write f in the form:

f = gF where g is an inner function and F is an outer function. This factorization is unique
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up to constants of modulus 1 and the outer function F is in H1

Proof. We know that if

F (z) = exp

[
1

2π

∫ π

−π

eiθ + z

eiθ − z
log|f(eiθ)|dθ

]
then F is an outer function in H1 and f

F
= g is an inner function. If we have f = g1f1 with

g1 inner and F1 outer then |F | = |F1| on the boundary.

It is clear that F = αF1 for some number α with |α| = 1. So αgF1 = g1F1 and

g1 = αg.

2.8.2 Blaschke Products

Theorem 2.19. [4] Let {αn} be a sequence in ∆ such that every αn 6= 0 and each αn has

multiplicity pn ∈ N and
∞∑
n=1

(1− |αn|) <∞ (2.17)

If k is a nonnegative integer and if

B(z) = zk
∞∏
n=1

αn − z
1− αnz

|αn|
αn

, z ∈ ∆ (2.18)

then B ∈ H∞ and B has no zeros except at the points αn, and the origin if k > 0.

Definition 2.17. [4] We call the function (2.18) a Blaschke Product. Note that each factor

in (2.18) has absolute value 1. This product converges uniformly on compact sets and the

only zeros of B are a zero of order k at the origin and a zero of order pn at αn. A Blaschke

product is an analytic function. Note that whenever a Blaschke product converges uniformly

on compact subset of ∆,

∞∑
n=1

(1− |αn|) <∞.

Theorem 2.20. [4] If B is is a Blaschke product, then

| lim
r→1

B(reiθ)| = 1
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lim
r→1

1

2π

∫ π

−π
log|B(reiθ)|dθ = 0 (2.19)

Proof. Since the integral is a monotonic function of r then the limit exists. Suppose B(z) is

a Blaschke product then

BN(z) =
∞∏
n=N

αn − z
1− αnz

|αn|
αn

Since log(| B
BN
|) is continuous in a open set then the limit (2.19) is not changed when we

replace B by BN . So we obtain

log |BN(0)| ≤ lim
r→1

1

2π

∫ π

−π
log |B(reiθ)|dθ ≤ 1

2π

∫ π

−π
log lim

r→1
|B(reiθ)|dθ ≤ 0

As N →∞ the first term of the previous inequality tends to 0. Then∫
log lim

r→1
|B(reiθ)| = 0

Now we can easily prove the following theorem

Theorem 2.21. [4] Let f be a bounded analytic function in the unit disc and suppose f(0) 6=

0. If {αn} is the sequence of zeros of f in the open disc each repeated as often as the

multiplicity of the zeros of f ordered accordingly to their multiplicities, then the product∏
n

|αn| is convergent i.e.

∞∑
n=1

(1− |an|) <∞

Proof. Suppose |f | ≤ 1. If f has only a finite number of zeros, it is obvious that the product

is convergent. Otherwise f has a countable number of zeros: α1, α2, α3, · · · . Let Bn(z) be

the finite product

Bn(z) =
n∏
k=1

z − ak
1− akz

Now Bn(z) is a rational function, analytic in the closed unit disc and |Bn(eiθ)| = 1, Since

each of the function
z − ak
1− akz
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is modulus one on the unit circle. And since

|f(eiθ)|
|Bn(eiθ)|

= |f(eiθ)| ≤ 1

then we have |f(z)| ≤ |Bn(z)| which says

f

Bn

is a bounded analytic function in the disc. In particular

0 < |f(0)| ≤ |Bn(0)| =
n∏
k=1

|ak|

Since |ak| < 1 for each k and since each of the partial products
∏n

k=1 |ak| is not less than

|f(0)| then the infinite products converges.

Theorem 2.22. [4]

Let f be a non-zero bounded analytic function in the unit disc. Then f is uniquely

expressible in the form f = Bg where B is Blaschke product and g is a bounded analytic

function without zeros.

Proof. Since f 6= 0 we can write f(z) = zph(z) where h(0) 6= 0. Let B be the product

of zp and the Blaschke product formed from the zeros of h. Then g = f
B

is analytic and

bounded in the disc. The factorization f = Bg is unique since a Blaschke product is uniquely

determined by its zeros.

Let f above be an inner function. Then f = Bg where B is Blaschke product and g is

inner function without zeros.

Theorem 2.23. [4]

Suppose 0 < p <∞ , f ∈ Hp, f 6= 0 and B is the Blaschke product formed with the zeros

of f . Then there is a zero-free function h ∈ H2 such that

f = B(h)
2
p

Proof. f = gF where g is an inner and F is an outer (ans so zero-free). Without loss of
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generality f = g, a bounded function. By theorem 2.22 f
B
∈ Hp in fact∥∥∥∥ fB

∥∥∥∥
p

= ‖f‖p.

Since f
B

has no zero in ∆ then there exists

u ∈ H(∆)

such that exp(u) = f
B

. Put,

h = exp(
pu

2
)

then h ∈ H(∆) and

|h|2 =

∣∣∣∣ fB
∣∣∣∣p

hence h ∈ H2 which proves the theorem.

Note that ‖h‖2
2 = ‖f‖p

p in the previous theorem.Let p = 1. If we write

f = B(h)
2
p

in the form:

f = (Bh)h

above then we will obtain

f = gh

where g and h are both in H2. Which gives us a proof of H1−H2 factorization theorem.(see

the next section).

2.9 ABSOLUTE CONVERGE OF TAYLOR SERIES

This last subsection contains one of the important theorems for the H1 functions. Recall that

the Riemann-Lebesgue Lemma says that the Fourier coefficients of an integrable function

tend to zero. If we have an H1 function we can say something else.
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Theorem 2.24. (HARDY):[4] Let f be a function in H1 with the power series:

∞∑
n=0

anz
n.

Then:
∞∑
n=1

1

n
|an| ≤ π‖f‖1. (2.20)

Proof. First suppose that an ≥ 0 , n = 0, 1, 2, · · · Then

Imf(reiθ) =
∞∑
n=1

anr
n sin(nθ)

Since
1

2π

∫ 2π

0

(π − θ) sin(nθ)dθ =
1

n
(2.21)

then we obtain:
∞∑
n=1

1

n
anr

n =
1

2π

∫ 2π

0

(π − θ)Imf(reiθ)dθ

≤ 1

2

∫ 2π

0

|f(reiθ|dθ

= π‖f‖1

(2.22)

Let r tend to 1 and we are done. Recall the H1 − H2 factorization theorem: For the

general f write f = gh where g and h are both H2 functions. Define g and h by,

g(z) = B

(
f

B

) 1
2

h =

(
f

B

) 1
2

and B is the Blaschke product of the zeros of f . If

g(z) =
∞∑
n=0

bnz
n

h(z) =
∞∑
n=0

cnz
n

then by the Riész-Fisher theorem, the functions

G(z) =
∞∑
n=0

|bn| zn
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H(z) =
∞∑
n=0

|cn| zn

are also in H2 and

‖G‖2 = ‖g‖2 and ‖H‖2 = ‖h‖2

Let F = GH; Then F ∈ H1 and

F (z) =
∞∑
n=0

ãnz
n

where ãn ≥ 0. It is also obvious that |an| ≤ ãn. Then

∞∑
n=1

1

n
|an| ≤

∞∑
n=1

1

n
ãn ≤ π‖F‖1

So

‖F‖1 ≤ ‖G‖2‖H‖2 = ‖g‖2‖h‖2 = ‖f‖1
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3.0 DETAILED PROOF FOR HARDY’S INEQUALITY AND

DEVELOPING HARDY-TYPE INEQUALITIES

This chapter starts with a more detailed proof for the Hardy’s Inequality based on Hoffman’s

Proof [4]. To develop a variation on that proof we use the weight function w1(eiθ) = π − θ

and we extend w1 to w1 : R→ R by 2− π periodicity instaed of using the function sin(nθ)

in equation (2.21). Then by using the same method we develop new Hardy-like inequalities.

Finally we demonstrate the following,

Let f be any arbitrary H1 function i.e.

f ∈ H1 =

[
f(z) =

∞∑
n=0

anz
n,∀z ∈ ∆

]

where an is n.th Fourier coefficient of f . Let 1 ≤ j ≤ υ − 1 where υ ≥ 2. Then

∞∑
k=0

|aυk+j|
υk + j

≤ π

sin
(
πj
υ

) 1

υ
‖f‖H1 ;

which is the crucial result of our new approach.

3.1 DETAILED PROOF FOR HARDY’S INEQUALITY BY USING NEW

APPROACH

Theorem 3.1. (Hardy) Let ∆ be the closed unit disc, then ∀f ∈ H1 s.t.

f(z) =
∞∑
n=0

anz
n ∀z ∈ ∆
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∞∑
n=1

|an|
n
≤ π‖f‖H1 .

Proof. Let w1(eiθ) = π− θ , ∀θ ∈ [0, 2π). We extend w1 to w1 : R 7→ R by 2π periodicity.

Then the Fourier coefficients of w1 are:

ŵ1(n) =
1

2π

∫ 2π

θ=0

w1(eiθ)e−inθdθ (3.1)

∀n ∈ Z and, ŵ1(0) = 0. Fix n ∈ Z− {0}

ŵ1(n) =
1

2π

∫ 2π

θ=0

(π − θ)e−inθdθ

=
1

2π

[[
(π − θ)e

−inθ

−in

]2π

θ=0

−
∫ 2π

θ=0

(−1)
e−inθ

−in
dθ

]
=

1

in

(3.2)

Then

w1(z) =
∑

n∈Z−{0}

1

in
zn ; ∀ z = eiθ

Consider f ∈ H1 with coefficient sequence (an). Assume every an ≥ 0. Then

1

2π

∫ 2π

θ=0

f(eiθ)w1(eiθ)dθ =
∞∑
n=0

an
1

2π

∫ 2π

θ=0

einθw1(eiθ)dθ︸ ︷︷ ︸
ŵ1(−n)

=
∞∑
n=1

an
1

i(−n)

= i

∞∑
n=1

an
n
.

(3.3)

Some details ommited here. See previous section (2.9). Thus,

∞∑
n=1

an
n

=

∣∣∣∣∣i
∞∑
n=1

an
n

∣∣∣∣∣
=

∣∣∣∣ 1

2π

∫ 2π

θ=0

f(eiθ)w1(eiθ)dθ

∣∣∣∣
≤ 1

2π

∫ 2π

θ=0

∣∣f(eiθ)
∣∣ ∣∣w1(eiθ)

∣∣ dθ
(3.4)
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Since |w1(eiθ)| ≤ π for θ ∈ [0, 2π),

∞∑
n=1

an
n
≤ 1

2π

∫ 2π

θ=0

∣∣f(eiθ)
∣∣ πdθ

= π‖f‖H1

(3.5)

Next using the H1 − H2 factorization theorem using the same method that we used in

Theorem 2.24 in chapter 2 we can show that ∀f ∈ H1 =

[
f(z) =

∞∑
n=0

anz
n, ∀ z ∈ ∆

]
and

an ∈ C we have
∞∑
n=1

|an|
n
≤ π‖f‖H1

Corollary 3.1. Let f ∈ H1.
∞∑
n=0

|an|
n+ 1

≤ π‖f‖H1

Proof. Let f ∈ H1(∆) ∀z ∈ ∆ s.t.

f(z) =
∞∑
z=0

anz
n

and

g(z) = zf(z)∀z ∈ ∆

then

g(z) =
∞∑
n=0

anz
n+1 = a0z +

∞∑
n=1

anz
n+1

Let ak−1 = bk then

g(z) = a0z +
∞∑
k=2

ak−1z
k =

∞∑
k=1

ak−1z
k =

∞∑
k=1

bkz
k

if g = zf(z) then g ∈ H1 where

‖g‖H1(T ) =
1

2π

∫ θ=2π

θ=0

∣∣eiθf(eiθ)
∣∣ dθ
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from the Hardy’s Inquality:

∞∑
k=1

|bk|
k
≤ π‖g‖H1(T) = π‖f‖H1(∆) =⇒

∞∑
k=1

|bk|
k

=
∞∑
n=0

|ak−1|
k

=
∞∑
k=0

|ak|
k + 1

≤ π‖f‖H1 .

3.2 HARDY-LIKE INEQUALITIES:

Lemma 3.1. Let T be the unit circle and u ∈ L1[0, 2π] ∼= L1(T) with normalized Haar

measure. Extend u to a 2π- periodic function on R 7→ C. Fix α ∈ R and let υ(eiθ) =

u(ei(θ−α)) ∀θ ∈ R, then

υ̂(n) = e−inαû(n)

where û(n) represents the Fourier coefficients of u.

Proof. We know that for every n ∈ Z

υ̂(n) =
1

2π

∫ 2π

θ=0

u
(
ei(θ−α)

)
e−inθdθ

=
1

2π

∫ β=2π−α

β=−α
u(eiβ)e−in(β+α)dβ

= e−inα
1

2π

∫ β=2π

β=0

u
(
eiβ
)
e−inβdβ

= e−inαû(n).

(3.6)

Hardy Type Inequalities

Theorem 3.2. Let f ∈ H1 =

[
f(z) =

∞∑
n=0

anz
n, ∀z ∈ ∆

]
and assume each an ≥ 0 then

1.
∞∑
k=0

|a3k+1|
3k + 1

≤ π2
√

3

9
‖f‖H1

2.
∞∑
k=0

|a3k+2|
3k + 2

≤ π2
√

3

9
‖f‖H1

42



3.
∞∑
k=0

|a3k+3|
3k + 3

≤ π

3
‖f‖H1

Proof. 1. Let w1(eiθ) = π − θ, ∀θ ∈ [0, 2π). Define the functions:

µ1(eiθ) = w1(ei(θ−
2π
3

))

µ2(eiθ) = w1(ei(θ−
4π
3

))

µ3(eiθ) = w1(ei(θ−
6π
3

))

and let % = e−
2iπ
3 . Then by the Lemma 3.1

µ̂1(n) = e−in
2π
3 ŵ1(n)

= (e−
2iπ
3 )

n
ŵ1(n)

= (e−
2iπ
3 )

n 1

in

=


%n

in
, if n ∈ Z− {0};

0 if n = 0;

(3.7)

because ŵ1(n) = 1
in

(see (3.2)).

Since µ̂2(n) = w1(ei(θ−
4π
3

)) then:

µ̂2(n) = e−in
4π
3 ŵ1(n)

=


%2n

in
, if n ∈ Z− {0};

0 if n = 0;

(3.8)

and since µ̂3(n) = w1(ei(θ−
6π
3

)) then:

µ̂3(n) = e−in
6π
3 ŵ1(n)

=


%3n

in
, if n ∈ Z− {0};

0 if n = 0;

=


1
in
, if n ∈ Z− {0};

0 if n = 0;

(3.9)

43



Also notice that %2 = %1. Construct a set A = {%2, %1, %0}. We define the new function

w3N0+1(z) as follows:

w3N0+1(z) = %1µ1(z) + %1µ2(z) + %0µ3(z)

Then

w3N0+1(z) = %1µ1(z) + %1µ2(z) + %0µ3(z)

=
∑

n∈Z−{0}

(%1µ̂1(n) + %1µ̂2(n) + 1µ̂3(n))zn

=
∑

n∈Z−{0}

(%1%
n

in
+ %1 (%2)

n

in
+

1

in
)zn

=
∑

n∈Z−{0}

(
%n−1

in
+
%2n+1

in
+

1

in
)zn

(3.10)

Since
%n−1

in
+
%2n+1

in
+

1

in
=

(e
−2iπ

3 )
n−1

+ (e
−2iπ

3 )
2n+1

+ 1

in

=


0, if n = 3k;

3
i(3k+1)

, if n = 3k + 1;

0, if n = 3k + 2;

(3.11)

So

w3N0+1(z) =
∑
k∈Z

3

i(3k + 1)
z3k+1,

Let θ ∈ [0, 2π
3

) then

w3N0+1(eiθ) = %
(
−π

3
− θ
)

+ %
(π

3
− θ
)

+ (π − θ)

= π

(
1− %

3
+
%

3

)
− θ (%+ %+ 1)︸ ︷︷ ︸

0

= π

[
1−
√

3i

3

] (3.12)

and

|w3N0+1(eiθ)| = π

(
2√
3

)
(3.13)

It is easy to see thatw3N0+1 is constant and |w3N0+1(eiθ)| = π
(

2√
3

)
for the intervals:
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θ ∈ [2π
3
, 4π

3
), and θ ∈ [4π

3
, 2π). Let us have an arbitrary

f ∈ H1 =

[
f(z) =

∞∑
n=0

anz
n ,∀z ∈ ∆

]

and assume each an ≥ 0. Then

1

2π

∫ π

−π
f(eiθ)w3N0+1(eiθ)dθ =

∞∑
n=0

an
1

2π

∫ π

−π
w3N0+1(eiθ)einθdθ

=
∞∑
n=0

anŵ3N0+1(n)

= 3i
∞∑
k=0

a3k+1

3k + 1

(3.14)

Then

3
∞∑
k=0

a3k+1

3k + 1
=

∣∣∣∣∣3i
∞∑
k=0

a3k+1

3k + 1

∣∣∣∣∣
=

∣∣∣∣ 1

2π

∫ π

−π
f(eiθ)w3N0+1(eiθ)dθ

∣∣∣∣
≤ 1

2π

∫ π

−π

∣∣f(eiθ)
∣∣ |w3N0+1(eiθ)|︸ ︷︷ ︸

π 2
√

3
3

dθ

=
2
√

3

3
π

1

2π

∫ π

−π

∣∣f(eiθ)
∣∣ dθ︸ ︷︷ ︸

‖f‖H1

=
2
√

3

3
π‖f‖H1

(3.15)

So we obtain:
∞∑
k=0

a3k+1

3k + 1
≤ 2
√

3

9
π‖f‖H1 .

For the general case f ∈ H1 =

[
f(z) =

∞∑
n=0

anz
n,∀z ∈ ∆

]
, an ∈ C By the H1 − H2

factorization theorem;

∃g, h ∈ H2 with ‖f‖H1 = ‖g‖2
H2 = ‖h‖2

H2

s.t.

f(z) = g(z)h(z), ∀z ∈ ∆
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g(z) =
∞∑
n=0

bnz
n, ∀z ∈ ∆

and

h(z) =
∞∑
n=0

cnz
n,∀z ∈ ∆

for some sequences (bn)n≥0 and (cn)n≥0 ∈ l2(N0). Also

‖g‖H2 =

(
∞∑
n=0

|bn|2
) 1

2

‖h‖H2 =

(
∞∑
n=0

|cn|2
) 1

2

define G,H ∈ H2 by

G(z) =
∞∑
n=0

|bn| zn ,∀z ∈ ∆

H(z) =
∞∑
n=0

|cn| zn ,∀z ∈ ∆

Note that

‖G‖H2 = ‖g‖H2 = ‖f‖
1
2

H1

and

‖H‖H2 = ‖h‖H2 = ‖f‖
1
2

H1 .

Define F (z) = G(z)H(z) ,∀ ∈ ∆. Then F ∈ H1 and

‖F‖H1 ≤ ‖G‖H2‖H‖H2 = ‖f‖H1

where

F (z) =
∞∑
n=0

dnz
n ,∀z ∈ ∆

and

dn =
n∑
j=0

|bj| |cn−j| ∀n ∈ N0

So
∞∑
k=0

d3k+1

3k + 1
≤ 2π

√
3

9
‖F‖H1 ≤

2π
√

3

9
‖f‖H1
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Moreover ∀n ≥ 0

|an| =

∣∣∣∣∣
n∑
j=0

bncn−j

∣∣∣∣∣
≤

n∑
j=0

|bj| |cn−j|

= dn

(3.16)

Thus
∞∑
k=0

|a3k+1|
3k + 1

≤
∞∑
k=0

d3k+1

3k + 1

≤ 2π
√

3

9
‖f‖H1

(3.17)

2. To prove the second part of Theorem 3.2 the only thing we need to do is to define a

function similarly by using the set A2 = {%2, %2, %0} = {%, %, %0}, and then we define a

function:

w3N0+2(z) = %µ1(z) + %µ2(z) + %0µ3(z)

It is easy to see that:

w3N0+2(z) =
∑
n∈Z−0

3

i(3k + 2)
z3k+2

and then by following exactly the same steps as the previous case, we obtain that:

∞∑
k=0

|a3k+2|
3k + 2

≤ π2
√

3

9
‖f‖H1 .

3. To prove the third part of Theorem 3.2 we are going to use a slightly different method.

Let θ ∈ R, and construct the function:

w3N0(z) = 1µ1(z) + 1µ2(z) + 1µ3(z)

=
∑
k∈Z−0

3

i(3k)
z3k

(3.18)

w3N0(eiθ) = w1

(
ei(θ−

2π
3 )
)

+ w1

(
ei(θ−

4π
3 )
)

+ w1(eiθ)

= 1µ1(eiθ) + 1µ2(eiθ) + 1µ3(eiθ)
(3.19)
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Notice that:

w3N0(eiθ) =


(π − 3θ), if θ ∈ [0, 2π

3
);

(3π − 3θ), if θ ∈ [2π
3
, 4π

3
);

(5π − 3θ), if θ ∈ [4π
3
, 2π);

(3.20)

So ∣∣w3N0(eiθ)
∣∣ ≤ π, ∀θ ∈ R

Let f ∈ H1 Assume each an ≥ 0.

1

2π

∫ π

−π
f(eiθ)w3N0(eiθ)dθ =

∞∑
n=1

anŵ3N0(n)

=
∑

k∈N−{0}

a3k

(
3

i(3k)

)

= 3i
∞∑
k=1

a3k

3k

= 3i
∞∑
k=0

a3k+3

3k + 3

(3.21)

Then

3
∞∑
k=0

a3k+3

3k + 3
=

∣∣∣∣∣3i
∞∑
k=0

a3k+3

3k + 3

∣∣∣∣∣
=

1

2π

∣∣∣∣∫ π

−π
f(eiθ)w3N0(eiθ)dθ

∣∣∣∣
≤ 1

2π

∫ π

−π

∣∣f(eiθ)
∣∣ |w3N0(eiθ)|dθ

= π‖f‖H1

(3.22)

And it is obvious that:
∞∑
k=0

a3k+3

3k + 3
≤ π

3
‖f‖H1

and by the H1 −H2 factorization theorem, ∀f ∈ H1

∞∑
k=0

|a3k+3|
3k + 3

≤ π

3
‖f‖H1
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Lemma 3.2. Consider the function

(P3N0f) (z) =
∞∑
k=0

a3kz
3k, ∀z ∈ ∆

Then

1. P3N0f ∈ H1

2. And we have

‖P3N0f‖H1 ≤ ‖f‖H1

Proof. Fix [
f = f(z) =

∞∑
n=0

anz
n ,∀z ∈ ∆

]
∈ H1

Then by the H1 −H2 factorization theorem ∃g, h ∈ H2 s.t.;

f(z) = g(z)h(z) ,∀z ∈ ∆

and

‖f‖H1 = ‖g‖2
H2 = ‖h‖2

H2

Let

g(z) =
∞∑
n=0

bnz
n, ∀z ∈ ∆

h(z) =
∞∑
n=0

cnz
n, ∀z ∈ ∆

where

‖g‖H2 =

(
∞∑
n=0

|bn|2
) 1

2

‖h‖H2 =

(
∞∑
n=0

|cn|2
) 1

2

So

f(z) =

(
∞∑
j=0

bjz
j

)(
∞∑
k=0

ckz
k

)

=
∞∑
k=0

(
k∑
j=0

bjck−j

)
zk

(3.23)
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Then

(P3N0f) (z) =
∞∑
k=0

(
3k∑
j=0

bjc3k−j

)
z3k

= b0c0 +
∞∑
k=1

(
k∑
j=0

b3jc3k−3j

)
z3k +

∞∑
k=1

(
k−1∑
j=0

b3j+1c3k−(3j+1)

)
z3k

+
∞∑
k=1

(
k−1∑
j=0

b3j+2c3k−(3j+2)

)
z3k

=

(
∞∑
j=0

b3jz
3j

)(
∞∑
k=0

c3kz
3k

)
+

(
∞∑
j=0

b3j+1z
3j+1

)(
∞∑
k=0

c3k+2z
3k+2

)

+

(
∞∑
j=0

b3j+2z
3j+2

)(
∞∑
k=0

c3k+1z
3k+1

)

= (P3N0g) (P3N0h) + (P3N0+1g) (P3N0+2h) + (P3N0+2g) (P3N0+1g)

(3.24)

Since P3N0+υg, P3N0+υh ∈ H2, ; ∀υ ∈ {0, 1, 2}, P3N0f ∈ H1

Moreover:

‖P3N0f‖H1 ≤ ‖P3N0g‖H2‖P3N0h‖H2 + ‖P3N0+1g‖H2‖P3N0+2h‖H2 + ‖P3N0+2g‖H2‖P3N0+1h‖H2

≤
(
‖P3N0g‖

2
H2 + ‖P3N0+1g‖2

H2 + ‖P3N0+2g‖2
H2

) 1
2

·
(
‖P3N0h‖

2
H2 + ‖P3N0+1h‖2

H2 + ‖P3N0+2h‖2
H2

) 1
2

= ‖g‖H2‖h‖H2

= ‖f‖
1
2

H1‖f‖
1
2

H1 = ‖f‖H1

(3.25)

Theorem 3.3. Let f ∈ H1 =

[
f(z) =

∞∑
n=0

anz
n, ∀z ∈ ∆

]
and assume each an ≥ 0 then

1.
∞∑
k=0

|a4k+1|
4k + 1

≤ π
√

2

4
‖f‖H1

2.
∞∑
k=0

|a4k+2|
4k + 2

≤ π

4
‖f‖H1
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3.
∞∑
k=0

|a4k+3|
4k + 3

≤ π
√

2

4
‖f‖H1

4.
∞∑
k=0

|a4k+4|
4k + 4

≤ π

4
‖f‖H1

Proof. 1. Let w1(eiθ) = π − θ, ∀θ ∈ [0, 2π). Define the functions

µ1(eiθ) = w1

(
ei(θ−

π
2

)
)

µ2(eiθ) = w1

(
ei(θ−π)

)
µ3(eiθ) = w1

(
ei(θ−

3π
2

)
)

µ4(eiθ) = w1

(
ei(θ−2π)

)
= π − θ

By the Lemma 3.1

µ̂1(n) = e−
inπ
2 ŵ1(n)

=
(
e−

iπ
2

)n
ŵ1(n)

=


(−i)n
in

, if n 6= 0;

0, if n = 0;

(3.26)

µ̂2(n) = e−inπŵ1(n)

=
(
e−iπ

)n
ŵ1(n)

=


(−1)n

in
, if n 6= 0;

0, if n = 0;

(3.27)

µ̂3 = e−
3inπ

2 ŵ1(n)

=
(
e−

3iπ
2

)n
ŵ1(n)

=


(i)n

in
, if n 6= 0;

0, if n = 0;

(3.28)
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µ̂4(n) = e−2inπŵ1(n)

=
(
e−2iπ

)n
ŵ1(n)

=


(1)n

in
, if n 6= 0;

0, if n = 0;

(3.29)

Now let % = e
−2iπ

4 , notice that: %3 = %1. Construct a set similarly as the 3k + υ cases.

Let,

A =
{
%1, %2, %1, %0

}
and construct a function by using the set A:

w4N0+1(z) = %1µ1(z) + %2µ2(z) + %1µ3(z) + %0µ4(z)

=
∑

n∈Z−{0}

(
%1µ̂1(n) + %2µ̂2(n) + %1µ̂3(n) + %0µ̂4(n)

)
zn

(3.30)

And

%1µ̂1(n) + %2µ̂2(n) + %1µ̂3(n) + %0µ̂4(n) =
1

in

(
%1(−i)n + %2(−1)n + %(i)n + 1

)

=



0 if n = 4k;

4
i(4k+1)

if n = 4k + 1;

0 if n = 4k + 2;

0 if n = 4k + 3;

(3.31)

Then:

w4N0+1(z) =
∑
k∈Z

4

i(4k + 1)
z4k+1

Let θ ∈ [0, π
2
)

w4N0+1(eiθ) = %1
(
−π

2
− θ
)

+ %2(−θ) + %
(π

2
− θ
)

+ (π − θ)

= π

(
−%

2
+
%

2
+ 1

)
− θ

(
%+ %2 + %+ 1

)︸ ︷︷ ︸
0

= π(1− i)

(3.32)
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θ ∈ [π
2
, π)

w4N0+1(eiθ) = %1

(
3π

2
− θ
)

+ %2(−θ) + %
(π

2
− θ
)

+ (π − θ)

= π

(
3%

2
+
%

2
+ 1

)
− θ

(
%+ %2 + %+ 1

)︸ ︷︷ ︸
0

= π(1 + i)

(3.33)

θ ∈ [π, 3π
2

)

w4N0+1(eiθ) = %1

(
3π

2
− θ
)

+ %2(2π − θ) + %
(π

2
− θ
)

+ (π − θ)

= π

(
3%

2
+ 2%2 +

%

2
+ 1

)
− θ

(
%+ %2 + %+ 1

)︸ ︷︷ ︸
0

= π(−1 + i)

(3.34)

θ ∈ [3π
2
, 2π)

w4N0+1(eiθ) = %1

(
3π

2
− θ
)

+ %2(2π − θ) + %

(
5π

2
− θ
)

+ (π − θ)

= π

(
3%

2
+ 2%2 +

5%

2
+ 1

)
− θ

(
%+ %2 + %+ 1

)︸ ︷︷ ︸
0

= π(−1− i)

(3.35)

And notice that for θ ∈ [ (k−1)2π
4

, (k)2π
4

), k ∈ {1, 2, 3}, and |w4N0+1(eiθ)| = π
√

2. Let

f ∈ H1. Assume each an ≥ 0. Then;

1

2π

∫ π

−π
f(eiθ)w4N0+1(eiθ)dθ =

1

2π

∫ π

−π

∞∑
n=0

ane
inθw4N0+1(eiθ)dθ

=
∞∑
n=0

an
1

2π

∫ π

−π
e−inθw4N0+1(eiθ)dθ

=
∞∑
n=0

anŵ4N0+1(n)

= 4i
∞∑
k=0

a4k+1

4k + 1

(3.36)
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Then

4
∞∑
k=0

a4k+1

4k + 1
=

∣∣∣∣∣4i
∞∑
k=0

a4k+1

4k + 1

∣∣∣∣∣
=

∣∣∣∣ 1

2π

∫ π

−π
f(eiθ)w4N0+1(eiθ)dθ

∣∣∣∣
≤ 1

2π

∫ π

−π

∣∣f(eiθ)
∣∣ |w4N0+1(eiθ)|dθ

= π
√

2‖f‖H1

(3.37)

So
∞∑
k=0

a4k+1

4k + 1
≤ π
√

2

4
‖f‖H1

By the H1 −H2 factorization theorem:

∞∑
k=0

|a4k+1|
4k + 1

≤ π
√

2

4
‖f‖H1

2. To prove the second part of Theorem 3.3 we will use the set A2 = {%2, 1, %2, %0} to

construct the function:

w4N0+2(z) = %2µ1(z) + µ2(z) + %2µ3(z) + µ4(z)

Then it is easy to see that

w4N0+2(z) =
∑
k∈Z

4

i(4k + 2)
z4k+2,

and by using the same method we obtain:

∣∣w4N0+2(eiθ)
∣∣ = π, for θ ∈ [

kπ

2
,
(k + 1)π

2
) where 0 ≤ k ≤ 3.

So, we get
∞∑
k=0

a4k+2

4k + 2
≤ π

4
‖f‖H1

and by the H1 −H2 factorization theorem:

∞∑
k=0

|a4k+2|
4k + 2

≤ π

4
‖f‖H1

3. As we expect, we will use the set A3 =
{

(%)3, (%2)
3
, (%)3, (%0)

3
}

= {%, %2, %, %0} to con-
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struct the function:

w4N0+3(z) = %µ1(z) + %2µ2(z) + %µ3(z) + %0µ4(z)

and then

w4N0+3(z) =
∑ 4

i(4k + 3)
z4k+3.

Since

|w4N0+3(eiθ)| =
√

2π, ∀θ ∈ [
k2π

4
,
(k + 1)2π

4
) where k = 1, 2, 3.

4
∞∑
k=0

a4k+3

4k + 3
≤ π
√

2‖f‖H1 .

And by the H1 −H2 factorization theorem

∞∑
k=0

|a4k+3|
4k + 3

≤ π
√

2

4
‖f‖H1 .

4. Now we will use the set A0 to construct the function

w4N0(z) = µ1(z) + µ2(z) + µ3(z) + µ4(z)

=
∑

k∈Z−{0}

4

i4k
z4k (3.38)

w4N0(eiθ) = w1(e4iθ), which is π
2

periodic function. Then

|w4N0(eiθ)| ≤ π, ∀θ ∈
[

2πk

4
,
2π(k + 1)

4

)
, 0 ≤ k ≤ 3

Assume each an ≥ 0. Then;

1

2π

∫ π

−π
f(eiθ)w4N0(eiθ)dθ =

1

2π

∫ π

−π

∞∑
n=0

ane
inθw4N0(eiθ)dθ

=
∞∑
n=0

anŵ4N0(n)

= 4i
∞∑
k=1

a4k

4k

= 4i
∞∑
k=0

a4k+4

4k + 4

(3.39)
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So finally we get:

4
∞∑
k=0

a4k+4

4k + 4
=

1

2π

∣∣∣∣∫ π

−π
f(eiθ)w4N0(eiθ)dθ

∣∣∣∣
≤ 1

2π

∫ π

−π

∣∣w4N0(eiθ)
∣∣ ∣∣f(eiθ)

∣∣ dθ
≤ π‖f‖H1

(3.40)

And by the H1 −H2 factorization theorem:

∞∑
k=0

|a4k+4|
4k + 4

≤ π

4
‖f‖H1

Lemma 3.3. Let f ∈ H1 and consider:

(P4N0f)(z) =
∞∑
k=0

a4kz
4k ∀z ∈ ∆

Then

(P4N0f)(z) ∈ H1

and,

‖(P4N0f)(z)‖H1 ≤ ‖f‖H1

Proof.

(P4N0f) =
∞∑
k=0

(
∞∑
j=0

bjc4k−j

)
z4k

=

(
∞∑
j=0

b4jz
4j

)(
∞∑
k=0

c4kz
4k

)
+

(
∞∑
j=0

b4j+1z
4j+1

)(
∞∑
k=0

c4k+3z
4k+3

)

+

(
∞∑
j=0

b4j+2z
4j+2

)(
∞∑
k=0

c4k+2z
4k+2

)
+

(
∞∑
j=0

b4j+3z
4j+3

)(
∞∑
k=0

c4k+1z
4k+1

)

= [(P4N0g) (P4N0h)] + [(P4N0+1g) (P4N0+3h)]

+ [(P4N0+2g) (P4N0+2h)] + [(P4N0+3g) (P4N0+1h)]

(3.41)

Since (P4N0+υ)g and (P4N0+υ)h ∈ H2 for υ ∈ {0, 1, 2, 3} then P4N0f ∈ H1.
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On the other hand;

‖P4N0f‖H1 ≤ ‖P4N0g‖H2‖P4N0h‖H2 + ‖P4N0+1g‖H2‖P4N0+3h‖H2

+ ‖P4N0+2g‖H2‖P4N0+2h‖H2 + ‖P4N0+3g‖H2‖P4N0+1h‖H2

≤

[
∞∑
k=0

|b4k|2 +
∞∑
k=0

|b4k+1|2 +
∞∑
k=0

|b4k+2|2 +
∞∑
k=0

|b4k+3|2
] 1

2

·

[
∞∑
k=0

|c4k|2 +
∞∑
k=0

|c4k+1|2 +
∞∑
k=0

|c4k+2|2 +
∞∑
k=0

|c4k+3|2
] 1

2

= ‖f‖
1
2

H1‖f‖
1
2

H1 = ‖f‖H1

(3.42)

Notice that this argument is quite tight. When g = h then f = g2 and;

‖P4N0f‖H1 =
1

2π

∫ π

−π

∣∣(P4N0g)2 + (P4N0+1g)2 + (P4N0+2g)2 + (P4N0+3g)2
∣∣ dθ

≤ 1

2π

∫ π

−π

(
|P4N0g|

2 + |P4N0+1g|2 + |P4N0+2g|2 + |P4N0+3g|2
)
dθ

= ‖P4N0g‖
2
H2 + ‖P4N0+1g‖2

H2 + ‖P4N0+2g‖2
H2 + ‖P4N0+3g‖2

H2

= ‖f‖H1

(3.43)

Note that by using exactly the same method with the proof of P4N0f ∈ H1 case we can easily

prove that P4N0+υf ∈ H1 for υ = {1, 2, 3} .

Now we are going to find a general inequality for the case aυk+j case where υ ∈ N and

1 ≤ j ≤ υ − 1. To provide a better understanding, we will develop the general formula step

by step.

As a first step we will prove the following theorem:

Theorem 3.4. Let w1(eiθ) = π − θ and suppose we have the set of functions below:

µ1(eiθ) = w1

(
ei(θ−

2π
υ )
)

µ2(eiθ) = w1

(
ei(θ−

2(2π)
υ )
)

...

µυ(e
iθ) = w1

(
ei(θ−

υ(2π)
υ )
)
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Also let % = e
−2iπ
υ , and:

A =
{
%υ−1, %υ−2, · · · , %0

}
so:

Aj =
{(
%υ−1

)j
,
(
%υ−2

)j
, · · · , %0

}
If we construct a function in such way;

wυN0+j(z) =
(
%υ−1

)j
µ1(z) +

(
%υ−2

)j
µ2(z) + · · ·+

(
%υ−υ

)j
µυ(z)

where j ∈ {1, 2, · · · , υ} Then

wυN0+j(z) =
∑
k∈Z

υ

i(υk + j)
zυk+j

Also when j = 0, wυN0(z) =
∑

k∈Z−{0}
υ
iυk
zυk

Proof. By the Lemma 3.1

µ̂τ (n) = e−
in2πτ
υ ŵ1(n) where ŵ1(n) =

1

in

and we have

wυN0+j(z) =
υ∑
τ=1

(%υ−τ )
j
µτ (z)

where

µτ (z) =
∑

n∈Z−{0}

(e−
i2π
υ
τ )
n

in
zn (0 ≤ j ≤ υ − 1) .

Then,

wυN0+j(z) =
υ∑
τ=1

(%υ−τ )
j
µτ (z)

=
υ∑
τ=1

(%υ−τ )
j
∑

n∈Z−{0}

(e−
i2π
υ
τ )
n

in
zn

(3.44)

since % = e−
2iπ
υ ;

wυN0+j(z) =
υ∑
τ=1

(%υ−τ )
j
∑

n∈Z−{0}

%τn

in
zn

=
∑

n∈Z−{0}

1

in

υ−1∑
τ=1

(%n−j)
τ

(%υ)j︸ ︷︷ ︸
1

zn
(3.45)
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Assume j ≥ 1. For the case: n = υk + j, the coefficient of zn is

=
1

i (υk + j)

υ−1∑
τ=0

(
%υk
)τ

︸ ︷︷ ︸
υ

=
υ

i (υk + j)

(3.46)

For the other cases i.e.: n = υk + l, l 6= j and l ∈ {0, 1, 2, · · · , υ}, the coefficient of zn is

=
1

i (υk + l)

υ−1∑
τ=0

(
%υk+l−j)τ

=
1

i (υk + l)

υ−1∑
τ=0

(
%l−j

)τ
= 0

(3.47)

The case j = 0 is easier, and proceeds similarly to the proof of Theorem 3.3 (the case

υ = 4).

Before proving the general Hardy’s Inquality we need to calculate
∣∣wυN0+j(e

iθ)
∣∣ as a

second step:

Theorem 3.5. Consider the same assumptions as theorem 3.4. Then when j ≥ 1,

∣∣wυN0+j(e
iθ)
∣∣ =

π

sin
(
jπ
υ

)
Also when j = 0, ∣∣wυN0(eiθ)

∣∣ ≤ π

Proof. To prove theorem 3.5 we need to consider two different cases: Case 1: Let υ = 2a

where a ∈ N−{0} and 1 ≤ j ≤ υ− 1. Since we need to consider the general case wυN0+j we

are going to use the set:

Aj =
{(
%1
)j
,
(
%2
)j
, · · · ,

(
%
υ
2
−1
)j
,
(
%
υ
2

)j
,
(
%
υ
2
−1
)j
, · · · ,

(
%0
)j}
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Let θ ∈
[
0, 2π

υ

)
. Then wυN0+j(e

iθ) can be expressed as:

wυN0+j(e
iθ) = (%)j

(
−π −

(
θ − 2π

υ

))
+ · · ·

+
(
%
υ
2
−1
)j (−π −(θ − 2π

(
υ
2

+ 1
)

υ

))
+ · · ·

+ %j
(
−π −

(
θ −

(
2π − 2π

υ

)))
+ %0 (−π − (θ − 2π))

= π

[(
−1 +

2

υ

)
2isin

(
2πj

υ

)
+ · · ·

]
+ π

[(
−1 +

(
2
(
υ
2
− 1
)

υ

))
2isin

(
2πj

(
υ
2
− 1
)

υ

)]
+ π

(3.48)

Notice that:θ
(
%j + %2j + · · ·+ %0

)
= 0.

Say;

X = π

[(
−1 +

2

υ

)
2isin

(
2πj

υ

)
+ · · ·

]
+ π

[(
−1 +

(
2
(
υ
2
− 1
)

υ

))
2isin

(
2πj

(
υ
2
− 1
)

υ

)
+ 1

] (3.49)

Let, θ ∈
[

2π
υ
, 4π
υ

)
. Then

wυN0+j(e
iθ) = 2π%j +X.

If θ ∈
[

4π
υ
, 6π
υ

)
then

wυN0+j(e
iθ) = 2π

(
%j + %2j

)
+X.

If θ ∈
[

(υ−1)2π
υ

, υ2π
υ

)
wυN0+j(z) = 2π

(
%j + %2j + · · ·+ (%υ−1)

j
)

+X.

Then for θ ∈
[
k 2π
υ
, (k + 1) 2π

υ

)
, 0 ≤ k ≤ υ − 1.

wυN0+j(e
iθ) = π

1 + 2i

υ−2
2∑
t=1

2t− υ
υ

sin

(
2πtj

υ

)
︸ ︷︷ ︸

Y

+
k∑

n=1

2π(%n)j
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Y = 1 + 2i


υ−2

2∑
t=1

2t

υ

(
e
i2πtj
υ − e− i2πtjυ

2i

)
−

υ−2
2∑
t=1

(
e
i2πtj
υ − e− i2πtjυ

2i

)
= 1 +

2

υ

N∑
t=1

tzt − 2

υ

N∑
t=1

twt︸ ︷︷ ︸
B

+

(
−

N∑
t=1

zt +
N∑
t=1

wt

)
︸ ︷︷ ︸

A

(3.50)

where z = eiβ, w = e−iβ, β = 2πj
υ

, N = υ−2
2

. Then

A =
1

2isin
(
β
2

) [2cos(β
2

)
− 2cos

(
β

(
N +

1

2

))]
=

1

isin
(
πj
υ

) [cos(πj
υ

)
− (−1)jcos

(
πj

υ

)] (3.51)

and

B =
1

N + 1

{
1

2isin
(
β
2

) [(2N + 1)cos

((
N +

1

2

)
β

)
−
sin
((
N + 1

2

)
β
)

sin
(
β
2

) cos

(
β

2

)]}

=
1

N + 1

{
1

2isin
(
πj
υ

) [(2N + 1)(−1)jcos

(
πj

υ

)
+ (−1)jcos

(
πj

υ

)]}

=
(−1)jcos

(
πj
υ

)
isin

(
πj
υ

)
(3.52)

So

A+B =
cos
(
πj
υ

)
isin

(
πj
υ

)
wυN0+j(e

iθ) = π

[
1 +

cos
(
πj
υ

)
isin

(
πj
υ

)]+
k∑

n=1

2π(%n)j

= π

[
1 +

cos
(
β
2

)
isin

(
β
2

) + 2
k∑

n=1

(%n)j
]

= π

[
cos
(
β
2

)
isin

(
β
2

) − 1 + 2
k∑

n=0

(%n)j
] (3.53)

If 1 ≤ k ≤ υ − 1, θ ∈
[
k2π
υ
, (k+1)2π

υ

)
.

wυN0+j(e
iθ) = π

[
1 +

cos
(
πj
υ

)
isin

(
πj
υ

)]
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when k = 0 and θ ∈
[
k2π
υ
, (k+1)2π

υ

)
. Case2: Let υ = 2a+ 1 then we need to use the set:

Aj =

{
%j, %2j, · · · ,

(
%
υ−1

2

)j
,
(
%
υ−1

2

)j
, · · · , %0

}
and for θ ∈

[
2π(k)
υ
, 2π(k+1)

υ

)
we obtain the formula:

wυN0+j = π

1 + 2i

υ−1
2∑
t=1

(
2t− υ
υ

)
sin

(
2πtj

υ

)
︸ ︷︷ ︸

X

+2
k∑

n=1

(%n)j

 .
Then:

X = 1 +

[
2

υ

N∑
t=1

tzt − 2

υ

N∑
t=1

twt −
N∑
t=1

zt +
N∑
t=1

wt

]

=
2

υ

[
z

(1− z)2

(
NzN+1 − zN(N + 1) + 1

)
− w

(1− w)2

(
NwN+1 − wN(N + 1) + 1

)]
︸ ︷︷ ︸

B

+

[(
w − wN+1

1− w

)
−
(
z − zN+1

1− z

)]
︸ ︷︷ ︸

A

+1

(3.54)

A =
1

2isin
(
β
2

) [2cos(β
2

)
− 2cos

((
N +

1

2

)
β

)]
and

B =
1

2isin
(
β
2

) [2cos

((
N +

1

2

)
β

)
−
sin
((
N + 1

2

)
β
)
cos
(
β
2

)(
N + 1

2

)
sin
(
β
2

) ]

A+B =
cos
(
β
2

)
isin

(
β
2

)
for

z = eiβ, w = e−iβ, β =
2πj

υ
, N =

υ − 1

2
.

Then

wυN0+j(e
iθ) = π

[
1 +

cos
(
β
2

)
isin

(
β
2

) + 2
k∑

n=1

(%n)j
]

= π

[
cos
(
β
2

)
isin

(
β
2

) − 1 + 2
k∑

n=0

(
%j
)n] (3.55)
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For θ ∈
[

2πk
υ
, 2π(k+1)

υ

)
where 0 ≤ k ≤ υ − 1. So by the equations (3.50) and (3.52) we see

that even if υ = 2a+ 1 or υ = 2a we have the same formula:

wυN0+j(e
iθ) = π

[
cos(β

2
)

isin(β
2
)
− 1 + 2

k∑
n=0

(%n)j
]

For θ ∈
[

2πk
υ
, 2π(k+1)

υ

)
where 0 ≤ k ≤ υ. Now the only thing we need to calculate is

2
k∑

n=0

(%n)j

and then we will find the whole formula for: |wυN0+j|. Let β = 2πj
υ

and z = eiβ then;

k∑
n=0

(%j)
n

=
k∑

n=0

zn

=
1− zk+1

1− z

=
1− eiβ(k+1)

1− eiβ

= e
iβk
2

sin
(
β(k+1)

2

)
sin
(
β
2

)


=

[
sin(βk)

2
cos
(
β
2

)
+ 1+cos(βk)

2
sin
(
β
2

)]
+ i
[

1−cos(βk)
2

cos
(
β
2

)
+ sin(βk)

2
sin
(
β
2

)]
sin
(
β
2

)
=

1
2

{
eiβk

(
sin
(
β
2

)
− icos

(
β
2

))
+
(
sin
(
β
2

)
+ icos

(
β
2

))}
sin
(
β
2

)
(3.56)

So

wυN0+j(e
iθ) = π

[
cos
(
β
2

)
isin

(
β
2

) − 1 +

{
eiβk

(
sin
(
β
2

)
− icos

(
β
2

))
+
(
sin
(
β
2

)
+ icos

(
β
2

))
sin
(
β
2

) }]

= π

[
eiβk

(
cos
(
β
2

)
+ isin

(
β
2

))
isin

(
β
2

) ]

=
πeiβ(k+ 1

2
)

isin
(
β
2

)
= π(%)j(

2k+1
2 ) 1

isin
(
πj
υ

)
(3.57)
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Then we are done,

|wυN0+j(e
iθ)| = π

sin
(
πj
υ

)
The case j = 0 is simpler, and proceeds similarly to that case in the proof of Theorem

3.3

Theorem 3.6. Let f be any arbitrary H1 function i.e.

f ∈ H1 =

[
f(z) =

∞∑
n=0

anz
n,∀z ∈ ∆

]

And let an be n.th Fourier coefficient of f . Let 1 ≤ j ≤ υ − 1 where υ ≥ 2. Then

∞∑
k=0

|aυk+j|
υk + j

≤ π

sin
(
πj
υ

) 1

υ
‖f‖H1

Proof. By the Theorem 3.4 and 3.5 we have:

wυN0+j(z) =
∞∑
k=0

υ

i(υk + j)
zυk+j z ∈ C

and

|wυN0+j(e
iθ)| = π

sin
(
πj
υ

)
Let f ∈ H1 and assume each an ≥ 0. Then;

1

2π

∫ π

−π
f(eiθ)wυN0+j(eiθ)dθ =

1

2π

∫ π

−π

∞∑
n=1

ane
inθwυN0+j(eiθ)dθ

=
∞∑
n=1

an
1

2π

∫ π

−π
e−inθwυN0+j(eiθ)dθ

=
∞∑
n=1

anŵυN0+j(eiθ)

=
∞∑
k=0

aυk+j

(
υ

i(υk + j)

)
= υi

∞∑
k=0

aυk+j

υk + j

(3.58)
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Which gives us:

υ

∞∑
k=0

aυk+j

υk + j
= υ

∣∣∣∣∣i
∞∑
k=0

aυk+j

υk + j

∣∣∣∣∣
=

∣∣∣∣ 1

2π

∫ π

−π
f(eiθ)wυN0+j(eiθ)dθ

∣∣∣∣
≤ 1

2π

∫ π

−π

∣∣f(eiθ)
∣∣ ∣∣∣wυN0+j(eiθ)

∣∣∣ dθ
=

π

sin
(
πj
υ

)‖f‖H1

(3.59)

⇒
∞∑
k=0

aυk+j

υk + j
≤ π

sin
(
πj
υ

) 1

υ
‖f‖H1

and by the H1 −H2 factorization theorem:

∞∑
k=0

|aυk+j|
υk + j

≤ π

sin
(
πj
υ

) 1

υ
‖f‖H1 .

Here we need to consider one more case, when υ = j for wυN0+j(z) in theorem 3.4 This time

we need to construct our function as follows:

wυN0(z) = µ1(z) + µ2(z) + · · ·+ µυ(z)

We know that

µ̂τ (n) = e
−in2πτ

υ ŵ1(n) where ŵ1(n) =
1

in

Since % = e
−2πi
υ then:

wυN0(z) =
υ∑
τ=1

µτ (z)

=
υ∑
τ=1

∑
n∈Z−{0}

(%)τn

in
zn

=
∑

n∈Z−{0}

υ∑
τ=1

(
(%)υk

)τ
i(υk)

zυk

=
∑

n∈Z−{0}

υ

i(υk)
zυk

(3.60)

where n = υk in equation (3.58)
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Also we have:

wυN0(eiθ) = µ1(eiθ) + µ2(eiθ) + · · ·+ µυ(e
iθ)

= w1

(
ei(θ−

2π
υ )
)

+ w1

(
ei(θ−

4π
υ )
)

+ · · ·+ w1

(
ei(θ−2π)

) (3.61)

Let θ ∈
[
0, 2π

υ

)
, then

wυN0(eiθ) = π − υθ (3.62)

And it easily follows that for θ ∈
[
k2π
υ
, (k+1)2π

υ

)
;

wυN0(eiθ) = ((2k + 1)π − υθ)

So it is clear that |wυN0(eiθ)| ≤ π, for all cases above.

Now let f ∈ H1 and assume each an ≥ 0. Then,

1

2π

∫ π

−π
f(eiθ)wυN0(eiθ)dθ =

∞∑
n=0

anŵυN0(n)

=
∑

k∈N−{0}

aυk

(
υ

i(υk)

)

= υi
∞∑
k=1

aυk
υk

= υi
∞∑
k=0

aυk+υ

υk + υ

(3.63)

Then

υ

∞∑
k=0

aυk+υ

υk + υ
=

∣∣∣∣∣υi
∞∑
k=0

aυk+υ

υk + υ

∣∣∣∣∣
=

∣∣∣∣ 1

2π

∫ π

−π
f(eiθ)wυN0(eiθ)dθ

∣∣∣∣
≤ 1

2π

∫ π

−π

∣∣f(eiθ)
∣∣ |wυN0(eiθ)|dθ

≤ π
1

2π

∫ π

−π

∣∣f(eiθ)
∣∣ dθ

= π‖f‖H1

(3.64)

And by the H1 −H2 factorization theorem it is clear:

∞∑
k=0

|aυk+υ|
υk + υ

≤ π

υ
‖f‖H1
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Lemma 3.4. For f ∈ H1 =

[
∞∑
n=0

anz
n , ∀z ∈ ∆

]
define

(PυN+jf)(z) =
∞∑
k=0

aυk+jz
υk+j ∀z ∈ ∆

Then (PυN+jf) ∈ H1. For j ∈ {0, 1, 2, · · · , υ − 1}.

Moreover

‖PυN+jf‖H1 ≤ ‖f‖H1 for j ∈ {0, 1, 2, · · · , υ − 1}

Proof. Let 1 ≤ j ≤ υ − 1, g(z) =
∑∞

n=0 bnz
n and, h(z) =

∑∞
n=0 cnz

n where both g(z) and

h(z) are H2 functions Then:

PυN0+j =
∞∑
k=0

(
k∑

n=0

bnυcj+(k−n)υ

)
zkυ+j

=

[(
∞∑
k=0

bυkz
υk

)(
∞∑
k=0

cj+υkz
j+υk

)]

+

[(
∞∑
k=0

bkυ+1z
kυ+1

)(
∞∑
k=0

c(j−1)+υkz
(j−1)+υk

)]
+ · · ·

+

[(
∞∑
k=0

b(k+1)υ−1z
(k+1)υ−1

)(
∞∑
k=0

ckυ+j+1z
kυ+j+1

)]
(3.65)

CASE 1: 1 ≤ j ≤ υ − 2

PυN0+j = [(PυN0g) (PυN0+jh)] + [(PυN0+1g) (PυN0+j−1h)]

+ [(PυN0+2g) (PυN0+j−2h)] + · · ·+ [(PυN0+υ−1g) (PυN0+j+1h)]
(3.66)

CASE 2: j = υ − 1

PυN0+j = [(PυN0g) (PυN0+jh)] + [(PυN0+1g) (PυN0+j−1h)]

+ [(PυN0+2g) (PυN0+j−2h)] + · · ·+ [(PυN0+υ−1g) (PυN0h)]
(3.67)

Since (PυN0+ag) and (PυN0+ah) are in H2 for a ∈ {0, 1, 2, · · · , υ − 1} then by the H1 − H2

factorization theorem (PυN0+jf) ∈ H1.
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CASE 3: Let j = 0, then:

(PυN0f) =
∞∑
k=0

(
∞∑
n=0

bncυk−n

)
zυk

= b0c0 +
∞∑
k=1

(
k∑

n=0

bυncυk−υj

)
zυk +

∞∑
k=1

(
k−1∑
n=0

bυn+1cυk−(υn+1)

)
zυk

+
∞∑
k=1

(
k−1∑
n=0

bυn+2cυk−(υn+2)

)
zυk + · · ·+

∞∑
k=1

(
k−1∑
n=0

bυn+(υ−1)cυk−(υn+(υ−1))

)
zυk

= [(PυN0g) (PυN0h)] +
[
(PυN0+1g)

(
PυN0+(υ−1)h

)]
+ · · ·+

[(
PυN0+(υ−1)g

)
(PυN0+1h)

]
(3.68)

Since (PυN0+a(g)) and (PυN0+a(h)) are in H2 for a ∈ {0, 1, 2, · · · , (υ − 1)} then again by the

H1 −H2 factorization theorem (PυN0(f)) ∈ H1. then we are done with the first part of the

proof.

Moreover, for 1 ≤ j ≤ υ − 2, by (3.64)

‖PυN0+jf‖H1 ≤ ‖PυN0g‖H2‖PυN0+jh‖H2 + ‖PυN0+1g‖H2‖PυN0+j−1h‖H2

+ ‖PυN0+2g‖H2‖PυN0+j−2h‖H2 + · · ·+ ‖PυN0+υ−1g‖H2‖PυN0+j+1h‖H2

≤

(
∞∑
k=0

|bυk|2 + · · ·+
∞∑
k=0

|bυk+υ−1|2
) 1

2
(
∞∑
k=0

|cυk+j|2 + · · ·+
∞∑
k=0

|cυk+j+1|2
) 1

2

= ‖g‖H2‖h‖H2 = ‖f‖H1

(3.69)

It can be shown that

‖PυN0+jf‖H1 ≤ ‖f‖H1 for j ∈ {0, 1, 2, · · · , υ − 1}

for j = υ − 1 and j = 0. Proof is almost same with the proof of case 1 ≤ j ≤ υ − 2.
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4.0 OPTIMAL CONSTANTS FOR HARDY-LIKE INEQUALITIES

Theorem 4.1. Let f ∈ H1 =

[
f(z) =

∞∑
n=0

bnz
n z ∈ ∆

]
. Then π is the best constant for the

Hardy’s Inequality below:
∞∑
n=1

∣∣∣f̂(n)
∣∣∣

n︸ ︷︷ ︸
LHS

≤ π ‖f‖H1︸ ︷︷ ︸
RHS

Before starting the proof of theorem 4.1 we need to prove the lemma below:

Lemma 4.1. If (αj)j∈N and (βj)j∈N are sequences in (0,∞) s.t.

A :
∞∑
j=1

βj =∞

and

B :
αj
βj
→ 1 asj →∞. i.e. : αj ∼ βj

then by the limit comparison test:

1 :
∞∑
j=1

αj =∞.

Moreover:

2 :

∑N
j=M αj∑N
j=M βj

→ 1 as N →∞ and where M < N

Proof. Let A and B be given. We prove the second statement here:

Fix ε > 0 and ε < 1. Then ∃Mε ∈ N, s.t.

∀ j ≥Mε

∣∣∣∣αjβj − 1

∣∣∣∣ < ε⇒ 1− ε < αj
βj

< 1 + ε
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Then ∀N ≥M ≥Mε
N∑

j=M

(1− ε)βj <
N∑

j=M

αj <
N∑

j=M

(1 + ε)βj

Hence ∀N ≥M ≥Mε:

(1− ε) <
∑N

j=M αj∑N
j=M βj

< (1 + ε)

Now let A be given i.e.:
∞∑
j=1

βj =∞

Fix M0 ∈ N and fix N ≥M0. Then for M0 ≤M ≤ N :∑N
j=M0

αj∑N
j=M0

βj
=

∑M
j=M0

αj +
∑N

j=M αj∑N
j=M0

βj +
∑N

j=M βj

Fix 1 > ε > 0, and choose Mε ∈ N, s.t. ∀N ≥M ≥Mε:

1− ε <
∑N

j=M αj∑N
j=M βj

< 1 + ε.

Since M0 is fixed, without loss of generality; Mε > M0.

1− ε <
∑N

j=Mε
αj∑N

j=Mε
βj

< 1 + ε

Then ∀N ≥Mε , ∑N
j=M0

αj∑N
j=M0

βj
=

∑Mε

j=M0
αj +

∑N
j=Mε

αj∑Mε

j=M0
βj +

∑N
j=Mε

βj

=

∑Mε
j=M0

αj∑N
j=Mε

βj
+

∑N
j=Mε

αj∑N
j=Mε

βj∑Mε
j=M0

βj∑N
j=Mε

βj
+ 1

(4.1)

N∑
j=Mε

βj →∞ as N →∞ is given. Since
Mε∑
j=M0

αj is constant, then:

∑Mε

j=M0
αj∑N

j=Mε
βj
→ 0 as N →∞

Then ∃Kε ≥Mε s.t. ∀N ≥ Kε

−ε <
∑Mε

j=M0
αj∑N

j=Mε
βj

< ε
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and similarly:

−ε <
∑Mε

j=M0
βj∑N

j=Mε
βj

< ε

Hence ∀ε ∈ (0, 1
2
) ∃Kε ∈ N s.t. ∀N ≥ Kε

1− 2ε

1 + ε
<

∑N
j=M0

αj∑N
j=M0

βj
<

1 + 2ε

1− ε

⇒

lim
N→∞

∑N
j=M0

αj∑N
j=M0

βj
= 1 asN →∞

Proof of Theorem 4.1. Let ∀ N ∈ N,

q
(α)
k =

Γ(α + k)

k!Γ(α)

and

(1− z)−α =
∞∑
j=0

q
(α)
j zj

Also define:

g(z) = (1− z)−
1
2 =

∞∑
j=0

q
( 1

2)
j zj

Let:f(z) = g(z)2. We see below that g(z) = (1− z)−
1
2 /∈ H2. Let; ∀N ∈ N;

gN(z) =
N∑
j=0

q
( 1

2
)

j zj ∈ H2

then:

fN(z) = (gN(z))2 ∈ H1

. Hence:

fN(z) =

(
N∑
j=0

q
( 1

2)
j zj

)(
N∑
j=0

q
( 1

2)
j zj

)

=
2N∑
n=0

(
n∑
k=0

q
( 1

2)
n−kq

( 1
2)

k

)
︸ ︷︷ ︸

γn

zn
(4.2)

γn = 1 ∀n ∈ {0, 1, · · · , N} and γn ≥ 0 ∀n ∈ {N + 1, · · · , 2N}.
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Fix N ∈ N.

LHSN =
∞∑
n=1

∣∣∣f̂N(n)
∣∣∣

n

=
2N∑
n=1

|γn|
n

≥
N∑
n=1

|γn|
n

=
N∑
n=1

1

n

(4.3)

Then

RHSN = ‖fN‖H1 ,

‖fN‖H1 = ‖gN‖2
H2 =

N∑
j=0

(
q
( 1

2)
j

)2

and

q
( 1

2)
j ∼ j

1
2
−1

Γ
(

1
2

) =
1
√
πj

1
2

⇒ (
q
( 1

2)
j

)2

∼ 1

πj
as N →∞.

We know that
N∑
j=1

1

πj
−→∞

so

π ≥ LHSN
RHSN

≥
∑N

n=1
1
n∑N

j=0

(
q
( 1

2)
j

)2

Let βj = 1
πj

. We know that:
∞∑
j=1

1

πj
=∞

and
1
πj(

q
( 1

2)
j

)2 → 1
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because

(
q
( 1

2)
j

)2

∼ 1
πj

. Then, by the Lemma 4.1

π ≥ LHSN
RHSN

=
π
∑N

j=1
1
πj∑N

j=0

(
q
( 1

2)
j

)2 → π1

And finally we obtain that: ∑N
n=1

|f̂(n)|
n

‖f‖H1

≥
∑N

n=1
1
n∑N

j=0

(
q
( 1

2)
j

)2 → π

as N →∞.

Theorem 4.2. Let f ∈ H1 Consider the Hardy Type inequality below:

∞∑
k=0

|f̂(4k + 2)|
4k + 2

≤ C‖f‖H1 .

Then the best constant for this inequality is: C = π
4
.

Proof. We have already obtained that

∞∑
k=0

|f̂(4k + 2)|
4k + 2

≤ π

4
‖f‖H1 (Theorem3.2)

Now we need to prove that π
4

is the best constant for this ”inequality“. Let

g ∈ H2 =

[
g(z) =

∞∑
n=0

bnz
n ∀z ∈ ∆

]

Suppose b0 = 0 and each bn ≥ 0.

f(z) = z−1(g(z))2 , f ∈ H1
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Fix N ∈ N.

bn =



0, if n /∈ {4k + 2, k ≥ 0};

0, if n = 0;

1

(4k+2)
1
2
, ∀k ∈ {0, · · · , N} and n = 4k + 2;

0, ∀k ≥ N + 1;

g(z) =
∞∑
n=1

bnz
n =

N∑
k=0

1

(4k + 2)
1
2

z4k+2 =
∞∑
k=0

b4k+2z
4k+2 Then by the definition of f(z)

f(z) =
∞∑
k=0

(
k∑

m=0

b4m+2b4(k−m)+2

)
z4k+2

So,

‖f‖H1 =
∞∑
j=0

b2
j

=
N∑
k=0

(
1

(4k + 2)
1
2

)2

∼
∫ N

x=0

1

(4x+ 2)
dx

=
1

4
ln(2N + 1)

(4.4)

On the other hand;

∞∑
n=1

|f̂(n)|
n

=
∞∑
k=0

|f̂(4k + 2)|
4k + 2

=
N∑
m=0

1

(4m+ 2)
1
2

N∑
j=0

1

(4j + 2)
1
2 (4j + 4m+ 2)

≥
N∑
m=0

1

(4m+ 2)

∫ ∞
2

4m+2

du

4(u+ 1)(u)
1
2

−
N∑
m=0

1

(4m+ 2)
1
2

∫ ∞
x=N

dx

(4x+ 2)
3
2

≥ π

16
ln(2N + 1)−

(
1

2
−

√
2√

4N + 2

)
(4.5)

Recall that

‖f‖H1 =
1

4
ln(2N + 1)
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Then, ∑∞
n=0

|f̂(4n+2)
4n+2

‖f‖H1

≥
π
16

ln(2N + 1)−
(

1
2
−

√
2√

4N+2

)
1
4

ln(2N + 1)

=
π

4
−


(

1
2
−

√
2√

4N+2

)
1
4

ln(2N + 1)


=
π

4
−

[
1

2
−

√
2√

4N + 2

]
1

4 ln(2N + 1)

→ π

4

(4.6)

as N −→∞.

We can generalize this results for all n = υk + υ
2

cases, where υ is even.

Theorem 4.3. By the Theorem 3.6 we know that:

∞∑
n=0

∣∣∣f̂(υk + υ
2
)
∣∣∣

υk + υ
2

≤ π

sin
(
π υ

2

υ

) 1

υ
‖f‖H1 =

π

υ
‖f‖H1

Then π
υ

is the best possible constant for the inequality above.

Proof. Let g ∈ H2 =

[
g(z) =

∞∑
n=0

bnz
n ,∀z ∈ ∆

]
. Suppose b0 = 0 and each bn ≥ 0, and

define f

f(z) = z−1(g(z))2 , f ∈ H1

Then: ‖f‖H1 =
∞∑
n=1

b2
n. And

∞∑
n=1

|f̂(n)|
n

=
∞∑
n=1

1

n

n∑
j=1

bjbn−j+1 =
∞∑
j=1

∞∑
m=1

bjbm
m+ j − 1

Fix N ∈ N.

bn =



0, for n /∈
{
υ + υ

2
, k ≥

}
;

0, for n = 0;

1

(υk+υ
2

)
1
2
, for n = υk + υ

2
, k ∈ {0, · · · , N};

0, for k ≥ N + 1 ;

75



Then

g(z) =
∞∑
n=1

bnz
n =

N∑
k=0

1

(υk + υ
2
)

1
2

zυk+ 1
2 =

∞∑
k=0

bυk+υ
2
zυk+υ

2

Since

f(z) = z−1(g(z))2

Then

‖f‖H1 =
∞∑
j=0

b2
j

=
N∑
k=0

(
1

υk + υ
2

)
∼ 1

υ
ln(2N + 1)

(4.7)

Then
∞∑
n=1

∣∣∣f̂(n)
∣∣∣

n
=
∞∑
k=0

∣∣∣f̂(υk + υ
2
)
∣∣∣

υk + υ
2

=
∞∑
k=0

1

υk + υ
2

k∑
m=0

bυm+υ
2
bυ(k−m)+υ

2

=
∞∑
m=0

bυm+υ
2

∞∑
k=m

bυ(k−m)+υ
2

υk + υ
2

=
∞∑
m=0

bυm+υ
2

∞∑
j=0

bυj+υ
2

υ(j +m) + υ
2

=
N∑
m=0

1(
υm+ υ

2

) 1
2

N∑
j=0

1(
υj + υ

2

) 1
2
(
υj + υm+ υ

2

)
≥

N∑
m=0

1

(υm+ υ
2
)

1
2

N∑
j=0

1

(υj + υ
2
)

1
2 (υj + υm+ υ)

=
N∑
m=0

1

(υm+ υ
2
)

1
2

∫ N

x=0

dx

(υ + υ
2
)

1
2 (υx+ υm+ υ)

=
N∑
m=0

1

(υm+ υ
2
)

1
2

∫ ∞
x=0

dx

(υx+ υ
2
)

1
2 (υx+ υm+ υ)︸ ︷︷ ︸
A

−
N∑
m=0

1

(υm+ υ
2
)

1
2

∫ ∞
x=N

dx

(υx+ υ
2
)

1
2 (υx+ υm+ υ)︸ ︷︷ ︸
B

(4.8)
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A =

∫ ∞
x=0

dx

(υx+ υ
2
)

1
2

(
υx+υ

2

υm+υ
2

+ 1
) (
υm+ υ

2

)
=

∫ ∞
1

2m+1

du(
υm+ υ

2

) 1
2u

1
2 (u+ 1)υ

(4.9)

And

B ≤
∫ ∞
x=N

dx

(υx+ υ
2
)

3
2

Then:

∞∑
n=1

|f̂(n)|
n
≥

N∑
m=0

1

(υm+ υ
2
)

1
2

∫ ∞
1

2m+1

du

υ(u+ 1)u
1
2 (υm+ υ

2
)

1
2

−
N∑
m=0

1

(υm+ υ
2
)

1
2

∫ ∞
x=N

dx

(υx+ υ
2
)

3
2

≥
N∑
m=0

1

(υm+ υ
2
)

1

υ

[
π −

∫ 1
2m+1

u=0

du

(u)
1
2

]
−

N∑
m=0

1

(υm+ υ
2
)

1
2

∫ ∞
x=N

dx

(υx+ υ
2
)

3
2

=
N∑
m=0

1

(υm+ υ
2
)

1

υ

(
π − 2

(2m+ 1)
1
2

)
−

N∑
m=0

1

(υm+ υ
2
)

1
2

2

υ

(
1

(υN + υ
2
)

1
2

)

=
N∑
m=0

π

υ

1

(υm+ υ
2
)︸ ︷︷ ︸

π
υ2 ln(2N+1)

−
N∑
m=0

4

υ2(2m+ 1)
3
2︸ ︷︷ ︸

4
υ2

[
1− 1√

2N+1

]
− 2

υ

(
1

(υN + υ
2
)

1
2

)
N∑
m=0

1

(υm+ υ
2
)

1
2︸ ︷︷ ︸

4
υ2

[
1− 1√

2N+1

]
(4.10)

Recall that

‖f‖H1 =
1

υ
ln(2N + 1)

Then: ∑∞
n=0

|f̂(n)|
n

‖f‖H1

=

π
υ2 ln(2N + 1)− 8

υ2

[
1− 1√

2N+1

]
1
υ

ln(2N + 1)

=
π

υ
− 8

υ

1

ln(2N + 1)
−→ π

υ

(4.11)

as N −→∞.

Which proves that π
υ

is the best possible constant in this case.

The method that we used in Theorem 4.3 to solve the best constant problem in “Hardy

like inequalities” does not work in the general case. Which means we could not prove that
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“ π

sin(πjυ )
1
υ
” is the best constant for the general form of the “Hardy like inequality” below:

∞∑
k=0

|f̂υk+j|
υk + j

≤ π

sin
(
πj
υ

) 1

υ
‖f‖H1

This condition led us to think about if we can find better constants for the other cases.

Moreover the method to provide the proof is cumbersome for calculations. So we seek to

develop an easier way to prove that those constants are the best ones.

Our experiments with Mathematica shows us that for f ∈ H1

∞∑
k=0

|f̂(υk + j)|
υk + j

≤ π

υ
‖f‖H1 (4.12)

when j
υ
> 1

2
. Finally we were able to find a method to prove it.

Before starting the proof of general case i.e. equation (4.12) let consider special cases to

provide better understanding.

We know by the Theorem 3.6 that if f ∈ H1 =

[
f(z) =

∞∑
n=0

anz
n

]
, then:

∞∑
k=0

|a8k+4|
8k + 4

≤ π

8
‖f‖H1

Our claim is here:

1.
∞∑
k=0

|a8k+5|
8k + 5

≤ π

8
‖f‖H1

2.
∞∑
k=0

|a8k+6|
8k + 6

≤ π

8
‖f‖H1

3.
∞∑
k=0

|a8k+7|
8k + 7

≤ π

8
‖f‖H1

Proof. 1. Case 1: Let a0 = 0 and f ∈ H1.

f(z) =
∞∑
n=0

anz
n = z

∞∑
n=1

anz
n−1 = z

∞∑
m=0

cmz
m where cm = am+1
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Define:

Ψ(z) =
∞∑
m=0

cmz
m ⇒ ‖f‖H1 = ‖Ψ‖H1

Since Ψ ∈ H1 then:
∞∑
k=0

|Ψ̂(8k + 4)|
8k + 4

≤ π

8
‖Ψ‖H1 =

π

8
‖f‖H1

Fix k ∈ N0.

Ψ̂(8k + 4) = c8k+4 = a8k+4+1 = a8k+5 = f̂(8k + 5)

Then:
∞∑
k=0

|f̂(8k + 5)|
8k + 5

≤
∞∑
k=0

|f̂(8k + 5)|
8k + 4

=
∞∑
k=0

|Ψ̂(8k + 4)|
8k + 4

≤ π

8
‖f‖H1

Case 2: Let a0 6= 0.

∞∑
k=0

f̂(8k + 5)

8k + 5
=

1

2π

1

8i

∫ π

−π
w8N0+5(eiθ)f(eiθ)dθ

=
1

2π

1

8i

∫ π

−π
a0w8N0+5(eiθ)dθ︸ ︷︷ ︸

0

+
1

2π

1

8i

∫ π

−π
w8N0+5(eiθ)

∞∑
n=1

ane
inθdθ︸ ︷︷ ︸

eiθΨ(eiθ)

(4.13)

Define: eiθΨ(eiθ) = Φ(eiθ) Then:

∞∑
k=0

f̂(8k + 5)

8k + 5
=

1

2π

1

8i

∫ π

−π
w8N0+5(eiθ)Φ(eiθ)

=
∞∑
k=0

Φ̂(8k + 5)

8k + 5
=
∞∑
k=0

Ψ̂(8k + 4)

8k + 5

≤
∞∑
k=0

Ψ̂(8k + 4)

8k + 4

=
1

2π

1

8i

∫ π

−π
w8N0+4(eiθ)

(
a0e
−iθ + Ψ(eiθ)

)︸ ︷︷ ︸
e−iθ(a0+eiθΨ(eiθ))

dθ


≤ 1

8

1

2π

∫ π

−π
|w8N0+4(eiθ)||e−iθf(eiθ)|

=
1

8
‖w8N0+4‖∞‖f‖L1

=
π

8
‖f‖H1

(4.14)

The remaining part follows by the H1 −H2 factorization theorem.

79



2. Let f ∈ H1 and this time define:

Ψ(z) =
∞∑
m=0

cmz
m where cm = am+2

and

Φ(z) = z2Ψ(z)

Case 1: Let a0 = a1 = 0, then it is obvious that ‖f‖H1 = ‖Ψ‖H1 . Fix k ∈ N0. Then

Ψ(8k + 4) = c8k+4 = a8k+6 = f̂(8k + 6) ⇒

∞∑
k=0

|f̂(8k + 6)|
8k + 6

≤
∞∑
k=0

|f̂(8k + 6)|
8k + 4

=
∞∑
k=0

|Ψ̂(8k + 4)|
8k + 4

≤ π

8
‖f‖H1

Case2: Let consider general case, i.e.: a0 6= 0 or a1 6= 0.

f(z) =
∞∑
k=0

anz
n ∈ H1

then:

∞∑
k=0

a8k+6

8k + 6
=

1

2π

1

8i

∫ π

−π
w8N0+6(eiθ)f(eiθ)dθ

=
1

2π

1

8i

∫ π

−π
a0w8N0+6(eiθ)dθ︸ ︷︷ ︸

0

+
1

2π

1

8i

∫ π

−π
a1e

iθw8N0+6(eiθ)dθ︸ ︷︷ ︸
0

+
1

2π

1

8i

∫ π

−π
w8N0+6(eiθ)

∞∑
n=2

ane
inθ

︸ ︷︷ ︸
Φ(eiθ)

=
∞∑
k=0

Φ̂(8k + 6)

8k + 6
=
∞∑
k=0

Ψ̂(8k + 4)

8k + 6
≤

∞∑
k=0

Ψ̂(8k + 4)

8k + 4

=
1

2π

1

8i

∫ π

−π
w8N0+4(eiθ)Ψ(eiθ)dθ

=
1

2π

1

8i

∫ π

−π
w8N0+4(eiθ)

[
e−2iθ(a0 + a1e

iθ + e2iθ(Ψ(eiθ)))
]
dθ

≤ 1

8

1

2π

∫ π

−π
|w8N0+4(eiθ)|e−2iθf(eiθ)|dθ =

π

8
‖f‖H1

(4.15)

It is easy to prove the remaining part by using the H1 −H2 factorization theorem.
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3. To prove that:
∞∑
k=0

|f̂(8k + 7)|
8k + 7

≤ π

8
‖f‖H1

The only thing we need to do is to define:

Ψ(z) =
∞∑
m=0

cmz
m where cm = am+3

and then follow the same steps as the previous cases.

Notice that the method that we use to prove that π
υ

is a better constant for the Hardy like

inequalites
∑∞

k=0
|f̂(υk+j)|
υk+j

≤ π
υ
‖f‖H1 works when j

υ
> 1

2
and when υ is even. Let’s consider

the cases when υ is odd. Now we are going to find a better constant for the 3k + 2 case by

using 6k + 4 case. And then we will generalize this method for all aυk+j cases where j
υ
> 1

2
.

Theorem 4.4. Let f be any arbitrary H1 function then,

∞∑
k=0

|f̂(3k + 2)|
3k + 2

≤ π

3
‖f‖H1

Proof. Let f(z) =
∞∑
n=0

anz
n and G(z) = f(z2). Then,

‖G‖H1 =
1

2π

∫ π

−π
|G(eiθ)|dθ =

1

2π

∫ π

−π
|f(e2iθ)|dθ = ‖f‖H1

And
∞∑
k=0

|Ĝ(6k + 4)|
6k + 4

=
∞∑
k=0

|f̂(3k + 2)|
6k + 4

=
1

2

∞∑
k=0

|f̂(3k + 2)|
3k + 2

Consider now arbitrary function I ∈ H1. By the H1 − H2 factorization theorem we may

assume that each un ≥ 0. We know by Theorem (3.6) that:

∞∑
k=0

u6k+3

6k + 3
=

1

6i

1

2π

∫ π

−π
I(eiθ)w6N0+3(eiθ)dθ

s.t.

w6N0+3(eiθ) =
∑
n∈Z

ŵ6N0+3(n)einθ
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and

ŵ6N0+3(n) =


6

i(6k+3)
if n = 6k + 3;

0 otherwise;

Similarly,
∞∑
k=0

u6k+4

6k + 4
=

1

6i

1

2π

∫ π

−π
I(eiθ)w6N0+4(eiθ)dθ

s.t.

w6N0+4(eiθ) =
∑
n∈Z

ŵ6N0+4(n)einθ

and

ŵ6N0+4(n) =


6

i(6k+4)
if n = 6k + 4;

0 otherwise;

Assume Ψ(z) =
∑∞

m=0 cmz
m where cm = um+1. And assume zΨ(z) = Φ(z). Then:

∞∑
k=0

u6k+4

6k + 4
=

1

6i

1

2π

∫ π

−π
I(eiθ)w6N0+4(eiθ)dθ

=
1

6i

1

2π

∫ π

−π

∞∑
n=0

une
inθw6N0+4(eiθ)dθ

= [
1

6i

1

2π

∫ π

−π
u0e

iθw6N0+4(eiθ)dθ]︸ ︷︷ ︸
0

+ [
1

6i

1

2π

∫ π

−π

∞∑
n=1

une
inθw6N0+4(eiθ)dθ]

= [
1

6i

1

2π

∫ π

−π

∞∑
n=1

une
inθw6N0+4(eiθ)dθ]

= [
1

6i

1

2π

∫ π

−π
eiθΨ(eiθ)w6N0+4(eiθ)dθ]

= [
1

6i

1

2π

∫ π

−π
Φ(eiθ)w6N0+4(eiθ)dθ]

=
∞∑
k=0

Φ̂(6k + 4)

6k + 4

=
∞∑
k=0

Ψ̂(6k + 3)

6k + 4

≤
∞∑
k=0

Ψ̂(6k + 3)

6k + 3

(4.16)
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On the other hand:

∞∑
k=0

Ψ̂(6k + 3)

6k + 3
=

1

6i

1

2π

∫ π

−π
w6N0+3(eiθ)Ψ(eiθ)dθ

=
1

6i

1

2π
[

∫ π

−π
w6N0+3(eiθ)u0e

−iθdθ]︸ ︷︷ ︸
0

+
1

6i

1

2π
[

∫ π

−π
w6N0+3(eiθ)Ψ(eiθ)dθ]

=
1

6i

1

2π

∫ π

−π
w6N0+3(eiθ)e−iθ (u0 + eiθΨ(eiθ))︸ ︷︷ ︸

I(eiθ)

dθ

≤ 1

2π

1

6

∫ π

−π
|w6N0+3(eiθ)||e−iθI(eiθ)|dθ

≤ 1

6
‖w6N0+3‖∞‖I‖H1

=
π

6
‖I‖H1

(4.17)

Since G ∈ H1, then:
∞∑
k=0

|f̂(3k + 2)|
3k + 2

= 2
∞∑
k=0

|Ĝ(6k + 4)|
6k + 4

≤ 2
π

6
‖G‖H1

=
π

3
‖f‖H1

(4.18)

Now let’s generalize the cases above for all aυk+j cases where j
υ
> 1

2
.

Theorem 4.5. Let f ∈ H1 =
[
f(z) =

∑∞
k=0 anz

n z ∈ ∆
]

∞∑
k=0

|f̂(υk + j)|
υk + j

≤ π

υ
‖f‖H1

Proof. Case 1: Let υ be even. We already know that;

∞∑
k=0

|f̂(υk + υ
2
)|

υk + υ
2

≤ π

υ
‖f‖H1

Let j > υ
2

where υ, j ∈ N− {0}. Then j = υ
2

+ t , t ∈ N− {0}.

Case 1(a): Let f(z) =
∑∞

n=0 anz
n and a0 = a1 = · · · = at−1 = 0. Then

f(z) =
∞∑
n=0

anz
n = zt

∞∑
n=t

anz
n−t = zt

∞∑
m=0

cmz
m,
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where cm = am+t say Ψ(z) =
∞∑
m=0

cmz
m. Then ‖f‖H1 = ‖Ψ‖H1 . Since Ψ ∈ H1 then;

∞∑
k=0

|Ψ̂(υk + υ
2
)|

υk + υ
2

≤ π

υ
‖Ψ‖H1 =

π

υ
‖f‖H1

Let j = υ
2

+ t and t < υ
2
, t ∈ N+. Fix k ∈ N0.

Ψ̂(υk +
υ

2
) = cυk+υ

2
= aυk+υ

2
+t = aυk+j = f̂(υk + j).

Then:
∞∑
k=0

|f̂(υk + j)|
υk + j

≤
∞∑
k=0

|f̂(υk + j)|
υk + υ

2

=
∞∑
k=0

|Ψ̂(υk + υ
2
)|

υk + υ
2

≤ π

υ
‖f‖H1

(4.19)

Case1(b):Consider now the general case, i.e.:at least one of a0 6= 0, a1 6= 0, · · · , at−1 6= 0,

and define

Ψ(z) =
∞∑
m=0

cmz
m cm = am+t and Φ(z) = ztΨ(z)

Then:

∞∑
k=0

f̂(υk + j)

υk + j
=

1

2π

1

υi

∫ π

−π
wυN0+j(eiθ)f(eiθ)dθ

=
1

2π

1

υi

[∫ π

−π
a0wυN0+j(eiθ)dθ +

∫ π

−π
a1e

iθwυN0+j(eiθ)dθ + · · ·
]

+
1

2π

1

υi


∫ π

−π
at−1e

iθ(t−1)wυN0+j(eiθ)dθ︸ ︷︷ ︸
0

+

∫ π

−π
wυN0+j(eiθ)

∞∑
n=t

ane
inθ

︸ ︷︷ ︸
Φ(eiθ)

dθ


=
∞∑
k=0

Φ̂(υk + j)

υk + j
=
∞∑
k=0

Ψ̂(υk + υ
2
)

υk + j

≤
∞∑
k=0

Ψ̂(υk + υ
2
)

υk + υ
2

(4.20)
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and

∞∑
k=0

Ψ̂(υk + υ
2
)

υk + υ
2

=
1

2π

1

υi

∫ π

−π
wυN0+υ

2
(eiθ)Ψ(eiθ)dθ

=
1

2π

1

υi

[∫ π

−π
wυN0+υ

2
(eiθ)a0e

−itθ +

∫ π

−π
wυN0+υ

2
(eiθ)a1e

−i(t−1)θdθ + · · ·
]

+
1

2π

1

υi

[∫ π

−π
wυN0+υ

2
(eiθ)at−1e

−iθdθ +

∫ π

−π
wυN0+υ

2
(eiθ)Ψ(eiθ)dθ

]
=

1

2π

1

υi

∫ π

−π
wυN0+υ

2
(eiθ)e−itθf(eiθ)dθ

≤ 1

υ

1

2π

[∫ π

−π
|wυN0+υ

2
(eiθ)||e−itθf(eiθ)|

]
dθ

=
1

υ

∥∥wυN0+υ
2

∥∥
∞‖f‖L1 =

π

υ
‖f‖H1

(4.21)

Case 2: Now, let’s consider the case, when t is odd.

∞∑
k=0

|f̂(tk + j)|
tk + j

≤ π

t
‖f‖H1

for all j
t
> 1

2
where t is odd. Our assumption here is t is odd then 2t is even. For given

f(z) =
∞∑
n=0

anz
n, z ∈ ∆. Define

G(z) = f(z2) =
∞∑
n=0

anz
2n

Then

‖G‖H1 =
1

2π

∫ π

−π
|G(eiθ)|dθ

=
1

2π

∫ π

θ=−π
|f(e2iθ)|dθ

=
1

2

[
1

2π

∫ 2π

β=0

|f(eiβ)|dβ +
1

2π

∫ 0

β=−2π

|f(eiβ)|dβ
]

=
1

2
[‖f‖H1 + ‖f‖H1 ] = ‖f‖H1

(4.22)

On the other hand:
∞∑
k=0

|Ĝ(2tk + 2j)|
2tk + 2j

=
∞∑
k=0

|f̂(tk + j)|
2tk + 2j
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∞∑
k=0

|f̂(tk + j)|
tk + j

= 2
∞∑
k=0

|Ĝ(2tk + 2j)|
2tk + 2j

≤ 2
π

2t
‖G‖H1 =

π

t
‖f‖H1

(4.23)

So we proved that it is allways true that:

∞∑
k=0

|f̂(υk + j)|
υk + j

≤ π

υ
‖f‖H1

where j
υ
≥ 1

2
.

Now let’s prove that π
υ

is the best possible constant for this inequality:

Claim If f ∈ H1 then; π
υ

is the best constant for the inequality below:

∞∑
k=0

|f̂(υk + j)|
υk + j︸ ︷︷ ︸
LHS

≤ π

υ
‖f‖H1︸ ︷︷ ︸
RHS

where j
υ
≥ 1

2
.

Proof: Let define:

g(z) =
∞∑
n=0

q
( 1

2
)

n zυn

where

q
( 1

2
)

n ∼ n
1
2
−1

Γ(1
2
)

It is obvious that: (
q

( 1
2

)
n

)
n∈N0

/∈ `2 ⇔ g /∈ H2.

But

gN(z) =
N∑
n=0

q
( 1

2
)

n zυn ∈ H2;

hence

fN(z) = zj(gN(z))2 = zj

(
N∑
n=0

q
( 1

2
)

n zυn

)(
N∑
n=0

q
( 1

2
)

n zυn

)

= zj


N∑
n=0

(
n∑
k=0

q
( 1

2
)

n−kq
( 1

2
)

k

)
︸ ︷︷ ︸

q
(1)
n =γn

zυn +
2N∑

n=N+1

γnz
υn


(4.24)
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fN(z) ∈ H1 Then:

LHSN =
∞∑
n=0

|f̂N(υn+ j)|
υn+ j

=
2N∑
n=0

|γn|
υn+ j

≥
N∑
n=0

|γn|
υn+ j

RHSN = ‖fN‖H1 =
∥∥zjgN(z)

∥∥2

H2 = ‖gN(z)‖2
H2

and
N∑
n=0

(
q

( 1
2

)
n

)2

∼
N∑
n=1

(
1

Γ(1
2
)n

1
2

)2

=
1(

Γ(1
2
)
)2

N∑
n=1

1

n

We know that:
N∑
n=1

1

n
→∞ as N →∞

Now let’s take care of LHSN :

LHSN ≥
N∑
n=0

q
(1)
n

υn+ j
=

N∑
n=0

1

υn+ j
∼ 1

υ

N∑
n=1

1

n

for large n.

Since ∑N
n=1

1
n∑N

n=1
1
n

→ 1 as n→∞

then:
π

υ
≥ LHSN
RHSN

≥
1
υ

∑N
n=1

1
n∑N

n=1
1
πn

=
π

υ

∑N
n=1

1
n∑N

n=1
1
n

→ π

υ

the best constant for the Hardy like inequality below. So we proved that C = π
υ

is

∞∑
k=0

|f̂(υk + j)|
υk + j︸ ︷︷ ︸

LHSN

≤ C ‖f‖H1︸ ︷︷ ︸
RHSN

The following theorem is the most important result of this chapter:

Theorem 4.6. Let n = mk + j and m ≥ 3 s.t. 1 ≤ j < m
2

. Then; ∃f = fmN0+j ∈ H1 s.t.

∞∑
k=0

|f̂mN0+j(mk + j)|
mk + j

=
π

m

1

sin
(
πj
m

)‖f‖H1

Proof. Fix m ≥ 3. 1 ≤ j < m
2

. Let σ = j
m

. 0 < σ < 1
2
. Let f = fmN0+j be defined by:
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f(z) = zj(1− z)
−2j
m ∀z ∈ ∆. Since

(1− x)−α =
∞∑
k=0

q
(α)
k︸︷︷︸

Γ(α+k)
k!Γ(α)

xk ,∀α > 0 and x ∈ ∆

then:

f(z) =
∞∑
k=0

q
( 2j
m )

k zmk+j ∀z ∈ ∆. |z| < 1

Since σ = j
m

then it is obvious that:

f(z) =
∞∑
k=0

q
(2σ)
k zmk+j ∀z ∈ ∆

By the Stirling’s formula [8]:

q
(2σ)
k ∼ 1

Γ(2σ)

1

(k1−σ)2

Then define:

LHS =
∞∑
k=0

|f̂mN0+j(mk + j)|
mk + j

=
∞∑
k=0

|q2σ
k |

mk + j
=
∞∑
k=0

q
(2σ)
k

mk + j

By the “limit comparison test”, since

∞∑
k=1

1

k2(1−σ)
<∞

Then LHS <∞, g(z) = (1− zm)
−j
m , ∀z ∈ ∆. Since |zj| = 1, and

‖f‖H1 = (‖g‖H2)2

=
∥∥zj(g(z))2

∥∥
H1(T )

=
∥∥(g(z))2

∥∥
H1(T )

(4.25)

Claim:

g ∈ H2(∆) ∼= H2(T )

Proof:

g(z) =
∞∑
k=0

q
( j
m

)

k zmk =
∞∑
k=0

q
(σ)
k zmk
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Since q
(σ)
k ∼ kσ−1

Γ(σ)

(q
(σ)
k )

2
∼ k2σ−2

Γ(σ)
=

1

Γ(σ)

1

k2(1−σ)

So by the “Limit comparison test”

RHS = ‖g‖L2(T ) =
∞∑
k=0

(g
(σ)
k )

2
<∞

⇒ g ∈ H2(T ) ≈ H2(∆)

⇒ f ∈ H1(T ) ≈ H1(∆)

Now define a new function:

G(z) =
∞∑
k=0

q
( 2j
m )

k

mk + j
zmk+j ∀z ∈ ∆.

Then the series:
∞∑
k=1

|αk| <∞ αk :=
q
( 2j
m )

k

mk + j
zmk+j,

even when |z| = 1. Then ∀z ∈ ∆

G
′
(z) =

∞∑
k=0

q
(2σ)
k zmk+j−1 = zj−1(1− zm)

−2j
m

and

zG
′
(z) = f(z) = zj(1− zm)

−2j
m

So by the fundamental theorem of Calculus,

∀r ∈ (0, 1) G(r)−G(0) =

∫ x=r

x=0

xj−1

(1− xm)
2j
m

dx

Since G is continuous at all z ∈ ∆ then

G(1) = lim
r→1−

G(r) = lim
r→1−

∫ x=r

x=0

xj−1

(1− xm)2σ dx =

∫ 1

0

xj−1

(1− xm)2σ dx

Fix 0 < rn < 1 and rn is increasing. Then if we define:

Φn(x) =
xj−1

(1− xm)2σ χ[0,rn](x)
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then by the “monotone convergence theorem” “

∫
[0,1]

Φndm” is increasing and converges to“∫
[0,1]

Φdm”. Hence:

LHS = G(1) =

∫ x=1

x=0

xj−1

(1− xm)2σ dx

Let u = xm ⇔ x = u
1
m then:

LHS =

∫ u=1

u=0

u
j−1
m

(1− u)2σ

1

m
u

1
m
−1du

=
1

m

∫ u=1

u=0

uσ−1(1− u)(1−2σ)−1du =
1

m
β(σ, 1− 2σ)

(4.26)

Where β is the classical “Beta function” and 0 < σ < 1
2
. Since ∀x, y ∈ (0,∞)

β(x, y) =
Γ(x)Γ(y)

Γ(x+ y)

[8] (8.20) Then:

LHS =
1

m

Γ(σ)Γ(1− 2σ)

Γ(1− σ)

and

RHS =
∞∑
k=0

(
q

(σ)
k

)2

=
∞∑
k=0

[
Γ(σ + k)

k!Γ(σ)

]2

Now we need to define “Pochhammer-symbol”

Definition 4.1. (Pochhammer symbol) ∀α ∈ R “Pochhammer symbol” is defined by

(α)k = α(α + 1)(α + 2) · · · (α + k − 1)

(α)0 = 1

and

(1)k = k!

Let α > 0 Then:

(α)k =
Γ(α + k)

Γ(α)
, ∀k ∈ N

And it is easy to obtain by using integration by parts that:

Γ(x+ 1) = xΓ(x) ,∀x > 0 [8]
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Let α = σ = j
m

, then:

RHS =
∞∑
k=0

(σ)k(σ)k
k!k!

=
∞∑
k=0

(σ)k(σ)k
k!(1)k

Now we need to define “Hypergeometric function”:

2F1(α, β; γ; z) =
∞∑
k=0

(α)k(β)k
(γ)kk!

zk

The Hypogeometric function 2F1 converges ∀z ∈ C with |z| < 1. ([10] p203) Let F = 2F1.

Consider F (σ, σ; 1; z) = H(z). Then

H(z) =
∞∑
k=0

(σ)k(σ)k
(1)kk!︸ ︷︷ ︸

τk=
[
q
(σ)
k

]2

zk ,∀z ∈ ∆

We know that:
∞∑
k=1

τk <∞

Then H(z) is well defined in this case for |z| ≤ 1, and H is continuous on ∆. So from the

integral representation theorem for F = 2F1,it is easy to see that RHS = H(1) ([10]).

∀α > β > 0 ∀α > 0 and ∀z ∈ ∆

F = (z) 2F1(α, β; γ; z) =
Γ(γ)

Γ(β)Γ(γ − β)

∫ t=1

t=0

tβ−1(1− t)γ−β−1(1− zt)−αdt.

Apply this integral representation to: α = σ > 0, β = σ > 0 and γ = 1 > σ.

Then ∀r ∈ (0, 1)

H(r) = 2F1(σ, σ; 1; r) =
Γ(1)

Γ(σ)Γ(1− σ)

∫ t=1

t=0

tσ−1(1− t)1−σ−1(1− rt)−σ︸ ︷︷ ︸
Λr(t)

dt

Fix 0 < rn , rn is increasing and lim rn → 1. Let Φn(t) = Λrn(t).

Φn(t)→ Φ(t) = tσ−1(1− t)−2σ

Since 0 < rn is arbitrary and rn is increasing then by the “monotone convergence theorem”
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Φn is a strictly increasing function,

H(rn)→ K

∫ t=1

t=0

Φ(t)dt

and

H(r)→ K

∫ t=1

t=0

Φ(t)dt , as r → 1−

H is continuous on ∆ hence it is continuous at 1. Thus:

RHS = H(1) = K

∫ t=1

t=0

tσ−1(1− t)−2σdt = Kβ(σ, 1− 2σ)

where K = Γ(1)
Γ(σ)Γ(1−σ)

. Then:

Kβ(σ, 1− σ) = K
Γ(σ)Γ(1− σ)

Γ(1− σ)

and as we obtained before

LHS =
∞∑
k=0

|f̂(mk + j)|
mk + j

=
1

m
β(σ, 1− 2σ)

where σ = j
m

and 0 < σ < 1
2
.

So:
LHS

RHS
=

1
m
β(σ, 1− 2σ)

Kβ(σ, 1− 2σ)

where K = Γ(1)
Γ(σ)Γ(1−σ)

.

Hence:
LHS

RHS
=

1
m

Γ(σ)Γ(1− σ)

Γ(1)
=

1

m
Γ(σ)Γ(1− σ) =

1

m

π

sin(πσ)

By using the theorem 4.7 below:

Theorem 4.7. If 0 < σ < 1 then:

Γ(σ)Γ(1− σ) =
π

sin(πσ)

(see for the proof [9])
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5.0 NEW THOUGHTS ON PALEY’S INEQUALITY

Suppose f is a function in H1, i.e.:

f ∈ H1(∆) =

[
f(z) =

∞∑
n=0

anz
n ∀z ∈ ∆

]

and suppose λn is a lacunary sequence in N0 = {0, 1, 2, 3, · · · } s.t.

L = inf
n∈N

λn+1

λn
> 1.

Then according to Paley’s Inequality [14],

∃B ∈ (0,∞) , s.t. ∀f ∈ H1(∆)(
∞∑
n=1

|f̂(λn)|
2

) 1
2

≤ B‖f‖H1

where the f̂(n)’s are the Fourier coefficients of f ∈ H1(∆).

EXAMPLE 5.1. Let f ∈ H1 with the power series
∑∞

n=0 anz
n then(

∞∑
k=1

|a2k |2
)
≤ 4‖f‖2

H1

(see for solution [6])

In this section we try to solve the Extended Paley’s Inequality for the case λn = 2n − 1

and we obtained constant 2 instead of 4.

Theorem 5.1. (Extended Paley’s Inequality) Let f ∈ H1(∆). Then

∞∑
n=1

|a2n−1|2 ≤ 2‖f‖2
H1
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Proof. If f ∈ H1 then by the H1 −H2 representation theorem, we can define f as, f = gh

where g, h ∈ H2 s.t. g(z) = bnz
n and h(z) = cnz

n. Then

∞∑
n=1

|a2n−1|2 =
∞∑
n=1

∣∣∣∣∣
2n−1∑
j=0

bjc2n−1−j

∣∣∣∣∣
2

=
∞∑
n=1

∣∣∣∣∣∣
2n−1−1∑
j=0

bjc2n−1−j +
2n−1∑
j=2n−1

bjc2n−1−j

∣∣∣∣∣∣
2

=
∞∑
n=1

∣∣∣∣∣
2n−1−1∑
j=0

bjc2n−1−j +
2n−1−1∑
`=0

b2n−1−`c`

∣∣∣∣∣
2

≤ 2
∞∑
n=1

∣∣∣∣∣
2n−1−1∑
j=0

bjc2n−1−j

∣∣∣∣∣
2


+ 2
∞∑
n=1

∣∣∣∣∣
2n−1−1∑
`=0

b2n−1−`c`

∣∣∣∣∣
2


≤ 2
∞∑
n=1

(
2n−1−1∑
j=0

|bj|2
2n−1∑
`=2n−1

|c`|2
)

+ 2
∞∑
n=1

 2n−1∑
j=2n−1

|bj|2
2n−1−1∑
`=0

|c`|2


= 2
∞∑
n=1

[(Pn−1)(Qn −Qn−1) + (Pn − Pn−1)(Qn−1)]

=
∞∑
n=1

[2(PnQn − Pn−1Qn−1)− 2(Pn − Pn−1)(Qn −Qn−1)]

(5.1)

For Pn =
2n−1∑
j=0

|bj|2 and, Qn =
2n−1∑
`=0

|c`|2.

∞∑
n=1

(PnQn − Pn−1Qn−1) = lim
N→∞

N∑
n=1

(PnQn − Pn−1Qn−1)

= lim
N→∞

(PNQN − P0Q0)

(5.2)

Since PN =
2N−1∑
j=0

|bj|2 and QN =
2N−1∑
`=0

|c`|2. Then; P0 = |b0|2 and Q0 = |c0|2. Then we obtain:
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∞∑
n=1

|a2n−1|2 = 2
[

lim
N→∞

PNQN − P0Q0

]
− 2

∞∑
n=1

[(Pn − Pn−1)(Qn −Qn−1)]

≤ 2 lim
N→∞

2N−1∑
j=0

|bj|2
2N−1∑
`=0

|c`|2 − |b0|2|c0|2
− 2

∞∑
n=1

[(Pn − Pn−1)(Qn −Qn−1)]

= 2

[
∞∑
j=0

|bj|2
∞∑
`=0

|c`|2 − |b0|2|c0|2
]
− 2

∞∑
n=1

[(Pn − Pn−1) (Qn −Qn−1)]

= 2
[
‖g‖2

H2‖h‖2
H2 − |b0|2|c0|2

]
− 2

∞∑
n=1

[(Pn − Pn−1)(Qn −Qn−1)]

= 2
∞∑
n=1

[
‖f‖2

H1 − |f̂(0)|
2
]
− 2

∞∑
n=1

[(Pn − Pn−1)(Qn −Qn−1)]

(5.3)

Then
∞∑
n=1

|a2n−1|2 ≤ 2

‖f‖2
H1 − |f̂(0)|

2
−
∞∑
n=1

 2n−1∑
j=2n−1

|bj|2
( 2n−1∑

`=2n−1

|c`|2
) (5.4)

By the equation (5.4) it is clear that:

∞∑
n=1

|a2n−1|2 ≤ 2‖f‖2
H1

So we are done.

Now we will show here, the best constant K for the inequality

∞∑
n=1

|a2n−1|2 ≤ K‖f‖2
H1

is s.t.. 4
3
≤ K ≤ 2.

∞∑
n=1

 2n−1∑
j=2n−1

|bj|2
( 2n−1∑

`=2n−1

|c`|2
)
≥

∞∑
n=1

∣∣∣∣∣∣
2n−1∑
j=2n−1

bjc2n+2n−1−1−j

∣∣∣∣∣∣
2

=
∞∑
n=1

∣∣∣( ˆ(g2n−1h2n−1)(2n + 2n−1 − 1)
)∣∣∣2

(5.5)

where ˆ(g2n−1h2n−1)(2n + 2n+1 − 1) is (2n + 2n−1 − 1).th Fourier coefficeint of (g2n−1h2n−1).
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Then by the inequality (5.4)

2‖f‖2
H1 ≥ 2

∞∑
n=1

∣∣∣ ˆ(g2n−1h2n−1)(2n + 2n−1 − 1)
∣∣∣2 +

∞∑
n=1

∣∣∣∣∣∣
2n−1∑
j=2n−1

bjc2n+2n−1−1−j

∣∣∣∣∣∣
2

(5.6)

Fix f = g2 where

g(z) = 1 + z + z2 + · · ·+ z2N−1 =
1− z2N

1− z
(5.7)

∀z ∈ ∆ and z 6= 1. i.e. cn = bn = 1, ∀n ≥ 2N . Fix n ∈ {1, 2, · · · , N}. Then:

2n−1∑
j=2n−1

bjc2n+2n−1−1−j =
2n−1∑
j=2n−1

(1)(1) = 2n−1

Fix n ≥ N + 1. Then:
2n−1∑
j=2n−1

bjc2n+2n−1−1−j = 0

So
∞∑
n=1

 2n−1∑
j=2n−1

bjc2n+2n−1−1−j

2

=
N∑
n=1

(
2n−1

)2
=

4N − 1

4− 1
(5.8)

And in this case:
∞∑
n=1

|a2n−1|2 =
∞∑
n=1

(
|

2n−1∑
j=0

bjc2n−1−j|

)2

(5.9)

∣∣∣∣∣
2n−1∑
j=0

bjc2n−1−j

∣∣∣∣∣ =

2n, if 1 ≤ n ≤ N ;

0, if n ≥ N + 1;

Then it is clear that:
∞∑
n=1

|a2n−1|2 =
N∑
n=1

4n = 4

(
4n − 1

3

)
(5.10)

and

‖f‖2
H1 = ‖g‖4

H2 =

2N−1∑
n=0

(1)2

2

=
(
4N
)

(5.11)

And by the equations (5.10) and (5.11)

∑∞
n=1 |a2n−1|2

‖f‖2
H1

=
4
(

4N−1
3

)
4N

−→
(asN→∞)

4

3
(5.12)
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On the other hand; by using the equations (5.8), (5.10), and (5.11) we obtain that;

2
∞∑
n=1

∣∣∣( ˆg2n−1h2n−1

) (
2n + 2n−1 − 1

)∣∣∣2 +
∞∑
n=1

∣∣∣∣∣∣
2n−1∑
j=2n−1

bjc2n+2n−1−1−j

∣∣∣∣∣∣
2

= 2(4N − 1) = A

then
A

2‖f‖2
H1

=
2(4N − 1)

2(4N)
−→

(asN→∞)
1 (5.13)

Then by using equations (5.12) and (5.13) we can conclude that; the constant 4
3
≤ K ≤ 2

for extended Paley’s inequality,

∞∑
n=1

|a2n−1|2 ≤ K‖f‖2
H1
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6.0 AN APPLICATION OF HARDY’S AND PALEY’S INEQUALITIES

Recall that we define the space `p by:

`p =

{
x = (xj)j∈N0

; each xj ∈ C and
∞∑
j=0

|xj|p <∞

}

and we know that `p is a Banach space with the norm:

‖x‖p =

(
∞∑
j=0

|xj|p
) 1

p

, ∀x ∈ `p

Consider the mapping; J on H1 defined by;

J : H1 7→ `1 s.t. J(f) =

(
an

n+ 1

)
n∈N0

∀

[
f(z) =

∞∑
n=0

anz
n, z ∈ ∆

]
∈ H1

Our main goal in this chapter is, to prove the map that we have defined above is not onto

i.e..

∃y ∈ `1 s.t.. ∀f ∈ H1, J(f) 6= y

To begin seriously the proof of this theorem we need some premliminary definitions and

theorems. Afterwards the proof of this main theorem will be straightforward to follow.

Theorem 6.1. [7] (Open mapping theorem) Let ∆1 and ∆2 be open unit balls of the

Banach spaces X and Y . For every linear transformation Λ of X onto Y there exists λ > 0

s.t.

Λ(∆1) ⊃ λ∆2
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where:

λ∆2 = {λy : y ∈ ∆2}

i.e. the set of all y ∈ ∆2, s.t. ‖y‖ < λ. It follows,that the image of every open ball in ∆1

with center at x0, contains an open ball in ∆2 with center Λx0, so the image of every open

set is open.

Definition 6.1. (Banach Space (`∞, ‖ , ‖∞))

`∞ =
{
x = (xj)j∈N0

; s.t. each ”xj“ ∈ C and supj∈N0
|xj| <∞

}
is a Banach space with the norm defined on it:

‖x‖∞ = supj≥0|xj| , ∀x ∈ `∞

Definition 6.2. (Banach Dual Space X∗) For any Banach space, (X, ‖ , ‖X), we define

the Banach dual space (X∗, ‖ , ‖X∗) by,

X∗ = {linear maps Φ : X 7→ C s.t. Φ is continuous on X}

and

‖Φ‖X∗ = sup
x∈X
‖x‖X≤1

|Φ(x)|, ∀Φ ∈ X∗

Definition 6.3. [7] (Schur Property) Let (X, ‖x‖X) is a Banach space and let
(
x(n)
)
n∈N

is a sequence in X. (X, ‖x‖X) has the Schur Property if ∀
(
x(n)
)
n∈N in X such that

x(n) 7→ θ as n 7→ ∞ weakly, it follows that
∥∥x(n)

∥∥
X
7→ 0 as n 7→ ∞.

Note that x(n) 7→ θ weakly means;

∀Φ ∈ X∗ ,Φ
(
x(n)
)
7→ Φ(θ) = 0

This definition easily implies:

Theorem 6.2. If (X, ‖ , ‖X) has the Schur property, then every infinite dimensional closed

vector subspace Z of (Z, ‖ , ‖X) has the Schur property.

Theorem 6.3. Let the space (X, ‖ , ‖X) has the Schur property, and let us have the space
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(V , ‖ , ‖V) s.t.

(V , ‖ , ‖V) ≈ (X, ‖ , ‖X)

then (V , ‖ , ‖V) has also the Schur property.

EXAMPLE 6.1. The Banach space (`1, ‖ , ‖1) has the Schur Property.

Proof. Every weakly convergent sequence is norm convergent to the same limit. (See for the

proof [13] pg:85)

EXAMPLE 6.2. The Banach space (`2, ‖ , ‖2) does not have Schur property.

Proof. The Banach dual of (`2, ‖ , ‖2), is isometrically isomorphic to (`2, ‖ , ‖2) via the linear

map:

V(x) :
(
`2, ‖ , ‖2

)
7→
(

(`2)
∗
, ‖ , ‖(`2)∗

)
s.t.

V(x) = Φx(z) =
∞∑
n=0

xnzn ,∀z ∈ `2 and x ∈ `2

Note that

Φx(z) ∈ (`2)
∗
and ‖V(x)‖(`2)∗ = ‖x‖`2 ,∀x = (xj)j∈N0

∈ `2

Note that the map V defined above is onto. Let en = (0, · · · , 0, 1︸︷︷︸
position n

, 0, · · · , 0, · · · ) ∀n ∈

N0. Each en ∈ `2. Fix x = (xj)j≥0 ∈ `
2. Since

∑∞
n=0 |xn|

2 <∞

Φx(en) = xn 7→ 0 as n 7→ ∞

Thus Φ(en) 7→ 0, ∀Φ ∈ (`2)
∗

i.e. en 7→ θ weakly. But ‖en‖2 = 1 ∀n ∈ N0. So ‖en‖2 9 0

Hence (`2, ‖ , ‖2) fails to have Schur property.

Theorem 6.4. (H1, ‖ , ‖H1) has an infinite dimensional closed, vector subspace Y s.t.

(Y, ‖ , ‖H1) is isomorphic to (`2, ‖ , ‖2).

Proof. Let define:

Y =

{[
g(z) =

∞∑
k=1

c2k−1z
2k−1, z ∈ ∆

]
:
∞∑
k=1

|c2k−1|2 <∞

}
.
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It is clear that, Y is well defined vector subspace of H2. But, H2 ⊆ H1, and ‖f‖H1 ≤ ‖f‖H2 ,

∀f ∈ H2. So Y is a vector subspace of H1, and

∀g ∈ Y, ‖g‖H1 ≤ ‖g‖H2 =

(
∞∑
k=1

|c2k−1|2
) 1

2

And by the Paley’s Inequality, ∀g ∈ Y ⊆ H1,(
∞∑
k=1

|c2k−1|2
) 1

2

≤
√

2‖g‖H1

Now define the linear mapping

W : (Y, ‖ , ‖H1) 7→
(
`2, ‖ , ‖2

)
s.t.

W (g) = (c2υ+1−1)υ≥0,∀g ∈ Y.

Then W is onto and

‖g‖H1 ≤ ‖W (g)‖2 ≤
√

2‖g‖H1 , ∀g ∈ Y

Thus (Y, ‖ , ‖H1) and (`2, ‖ , ‖2) are isomorphic Banach spaces; i.e.

(Y, ‖ , ‖H1) ≈
(
`2, ‖ , ‖2

)
Then we are done.

Theorem 6.5. Every infinite dimensional closed vector subspace Z of (`1, ‖ , ‖1) is not

isomorphic to (`2, ‖ , ‖2)

Proof. We know by example ?? that (`1, ‖ , ‖1) has the Schur property so by Theorem 6.2

every infinite dimensional closed vector subspace Z of (`1, ‖ , ‖1) is s.t.. (Z, ‖ , ‖1) has

the Schur property. Suppose that ∃ an infinite dimensional closed vector subspace Z of

(`1, ‖ , ‖1) s.t.

(Z, ‖ , ‖1) ≈
(
`2, ‖ , ‖2

)
then by theorem 6.3, (`2, ‖ , ‖2) should also have Schur property. But by the example 6.1,

(`2, ‖ , ‖2) fails to have Schur property. So we are done.
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Then by the Theorems 6.4 and 6.5 it is clear that

Corollary 6.1. The statement

(
H1, ‖ , ‖H1

)
≈
(
`1, ‖ , ‖1

)
i.e. (H1, ‖ , ‖H1) and (`1, ‖ , ‖1) are isomorphic is false.

Finally we can prove our main theorem:

Theorem 6.6. [12] The mapping; J on H1 defined by;

J : H1 7→ `1 s.t. J(f) =

(
an

n+ 1

)
n∈N0

where

∀

[
f(z) =

∞∑
n=0

anz
n, z ∈ ∆

]
∈ H1

is not onto.

Proof. It is clear that J maps (H1, ‖ , ‖H1) into (`1, ‖ , ‖1). By the Hardy’s Inequality:

‖J(f)‖H1 =
∞∑
n=0

|an|
n+ 1

≤ π‖f‖H1 , ∀f ∈ H1.

Suppose get a contradiction. i.e.. suppose that, J : H1 7→ `1 is onto. Then J is a one to

one continuous linear mapping, from (H1, ‖ , ‖H1) onto the Banach space (`1, ‖ , ‖1). By

the Open Mapping Theorem the mapping;

J−1 :
(
`1, ‖ , ‖1

)
7→
(
H1, ‖ , ‖H1

)
is also continuous. Thus ∃ a constant B ∈ (0,∞) s.t.

∥∥J−1(x)
∥∥
H1 ≤ B‖x‖1 , ∀x ∈ `

1

Equivalently;

‖f‖H1 ≤ B‖J(f)‖1 , ∀f ∈ H
1

So the linear mapping J : (H1, ‖ , ‖H1) 7→ (`1, ‖ , ‖1) is s.t.. J is onto and

1

B
‖f‖H1 ≤ ‖J(f)‖1 ≤ π‖f‖H1
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in other words, J is Banach space isomorphism from (H1, ‖ , ‖H1) onto (`1, ‖ , ‖1). Which

means (H1, ‖ , ‖H1) and (`1, ‖ , ‖1) are isomorphic. But this contradicts with the corollary

6.1. So the mapping J is not onto. We are done.
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