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Lee-Wei Yang, PhD 

 
University of Pittsburgh, 2005 

 
 

The Gaussian network model (GNM) can be used as a first approximation for describing the 

fluctuation dynamics of proteins, the limits of applicability and the range of validity of the model 

parameters need to be established. A systematic analysis of the GNM predictions is done within 

the scope of this thesis, and the potential utility of GNM for elucidating structure-dynamics-

function relations in enzymes is explored. The application of the GNM to a set of 183 non-

homologous proteins shows that it can predict the X-ray crystallographic temperature factors 

more precisely than full-atomic normal mode analysis (NMA) does. Furthermore, the application 

to 1250 non-redundant proteins indicates that the GNM predictions agree better with NMR 

solution data, than X-ray crystallographic, and measurements taken at high diffraction 

temperatures. A systematic study of 98 enzymes that belong to different enzyme classes (EC) 

shows that catalytic residues are distinguished by their restricted mobilities in the global modes. 

The amplitudes of their fluctuations rank in the lowest 7% range amongst the rank-ordered 

mobilities of all residues. Catalytic residues also bear more restricted mobilities than their 4 

flanked neighbors in sequence and this feature holds for more than 70% of the examined 

catalytic residues, suggesting a communication between chemical activity and molecular 

mechanics. The observed restricted mobility of catalytic residues is used as a criterion for 

identifying active sites of enzymes in a newly developed algorithm (COMPACT). The method 

shows a high sensitivity and a moderate-to-low specificity for a set of representative monomeric 
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enzymes. All the false-positives predicted by COMPACT are found to be highly conserved, 

suggesting that their finely tuned dynamics results from evolutionary pressure. These particular 

sites are proposed to serve as alternative drug binding targets. We have implemented this tool in 

iGNM, a database of protein dynamics. Protein dynamics stored in iGNM or computed from the 

online calculation server (oGNM) have assisted in identifying possible silver ion binding residue 

in creatinase and describing the loop mobilities of low-fidelity DNA polymerase. Over all, this 

dissertation supports the view that protein structures have been designed to undergo 

conformational changes that are required for their biological functions. 
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1. INTRODUCTION 
 
 
 
 

1.1. DYNAMICS AND FUNCTION 
 
 
1.1.1. Conformational dynamics: a bridge between structure and function   
 

With recent advances in sequencing genomes, it has become clear that the canonical sequence-

to-function paradigm is far from being sufficient. Structure has emerged as an important source 

of additional information required for understanding the molecular basis of observed biological 

activities. Nowadays, the accumulated structural information presents a unique opportunity for 

high-throughput assessment of structure  function relation. Several groups are now engaged in 

protein structure characterization (Service, 2000), and the size of the Protein Data Bank 

(PDB)(Berman et al., 2000) is growing exponentially. The elucidation of structures permits us to 

develop structure-based tools for characterizing dynamics. A wealth of theoretical (Berendsen et 

al., 2000; Abseher et al. 2000) and experimental (Wand et al., 2001; Goodman et al., 2000) 

studies provide evidence for the close link between dynamics and function (Frauenfelder et al., 

1998; Stock, 1999).  

 

Yet, advances in structural genomics have now demonstrated that structural knowledge is not 

sufficient for understanding the molecular mechanisms of biological function either. The 

connection between structure and function presumably lies in dynamics, suggesting an encoding 

paradigm of sequence to structure to dynamics to function.  
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1.1.2. Functional motions are cooperative fluctuations near the protein 
native state.  

 

While accurate sampling of conformational space is a challenge for macromolecular systems, the 

study of protein dynamics benefits from a great simplification: proteins have uniquely defined 

native structures under physiological conditions, and they are functional only when folded into 

their native conformation. Therefore, while the motions of macromolecules in solution are quite 

complex and involve transitions between an astronomical number of conformations, those of 

proteins near native state conditions are much simpler, as they are confined to a subset of 

conformations, or microstates, near the folded state. These microstates usually share the same 

overall fold, secondary structural elements and even tertiary contacts within individual domains. 

Typical examples are the open and closed forms of enzymes, usually adopted in the unliganded 

and liganded states, respectively. Exploring the fluctuation dynamics of proteins near native state 

conditions is a first step towards gaining insights about the molecular basis and mechanisms of 

their function; and fluctuation dynamics can be treated to a good approximation by linear 

models – such as Normal Mode Analysis (NMA). 

 

Another distinguishable property of protein dynamics – in addition to confinement to a small 

subspace of conformations – is the collective nature of residue fluctuations. The fluctuations are 

indeed far from random, involving the correlated motions of large groups of atoms, residues, or 

even entire domains or molecules whose concerted movements underlie biological function. An 

analytical approach that takes account of the collective coupling between all residues is needed, 

and again NMA emerges as a reasonable first approximation. 
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1.2. TWO APPROACHES FOR DESCRIBING PROTEIN 
DYNAMICS: MOLECULAR DYNAMICS SIMULATIONS 

AND NORMAL MODE ANALYSIS 
 

1.2.1. Molecular dynamics simulations 
 

Not surprisingly, a major endeavor in recent years has been to develop models and methods for 

simulating the dynamics of proteins, and relating the observed behavior to experimental data. In 

the last decades, Molecular Dynamics (MD) simulations have proven to be a promising strategy 

for generating conformational trajectories for macromolecules in order to visualize the 

correlation of their dynamics to the biological functions (Brooks et al., 1983; Bahar et al., 1998a; 

Temiz et al., 2002; Ming et al., 2003a; Cui et al., 2004). In principle, the MD trajectories can be 

subjected to a Principal Component Analysis (PCA) to decompose motions into different modes 

(Berendsen et al., 2000). The motions induced by the modes with low frequencies, delineate the 

global dynamics of the molecules and bear functional significance (Kitao et al., 1999; Berendsen 

et al., 2000).   

 

The process of extracting the dominant collective modes, or the essential dynamics (Amadei et 

al., 1993; de Groot et al., 1998) from fluctuations observed in MD trajectories—also called 

principal component analysis (PCA; Kitao et al., 1991), or the molecular optimal dynamics 

coordinates analysis (Garcia et al., 1996)—is now an established computational means of 

studying proteins’ dynamics (Kitao et al., 1999). The major shortcoming of this approach is the 

sampling inefficiency of MD simulations. The sampling problem becomes increasingly 

important as the size of the investigated molecular system increases, as shown by projecting the 

MD trajectory onto the first few computers (Clarage et al., 1995; Caves et al., 1998). In general, 
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multiple independent runs are needed for assessing equilibrium and convergence (Caves et al., 

1998; Smith et al., 2002). 

 

MD has also been impeded by the memory and time cost of the computation. The simulations at 

full atomic scale usually give atomic trajectories in the sub-nanosecond to nanoseconds time 

range (Leach, 2001), which usually fail to give a suitable time frame to observe biologically 

meaningful movements such as domain motions, protein folding or allosteric conformation 

changes that take from nanoseconds to microseconds (Clarage et al., 1995). Hence, a more 

simplified model is needed to obtain dynamics in large time scale by trading off detailed atomic 

trajectories and noises. 

 

1.2.2. Normal Mode Analysis (NMA) 

 

A view that emerges from many studies is that proteins possess a tendency, encoded in their 

three-dimensional (3D) structures, to reconfigure into functional forms, i.e. each native structure 

tends to undergo conformational changes that facilitate its biological function. An efficient 

method for identifying such functional motions is NMA, a method that has found widespread use 

in physical sciences for characterizing molecular fluctuations near a given equilibrium state. The 

utility of NMA as a physically plausible and mathematically tractable tool for exploring protein 

dynamics has been recognized for the last 20 years (Brooks et al., 1983; Go et al., 1983). With 

recent increases in computational power and speed the application of NMA to proteins has 

gained renewed interest and popularity.  

 

 4



 

The method has later been extended into a quasiharmonic oscillator approximation which utilizes, 

as input, the fluctuations (auto- and cross-correlations) observed in MD simulations, thus 

including the effects of anharmonicity (Karplus et al., 1981; Levy et al., 1984; de Groot BL et al., 

1998). The major weakness of the analytical approaches appears, on the other hand, to be their 

inadequacy to account for the anharmonic motions or multimeric transitions driven by the 

slowest collective mode observed in MD.  

 

1.2.3. Limitations of existing computational approaches 

 

As mentioned above, MD simulations and PCA-based analyses at full atomic scale are usually 

held back by computing time and sampling inefficiencies (Clarage et al., 1995). Localized or fast 

processes accessed by MD convey little information on the collective dynamics of large 

structures. NMA, on the other hand, demands pre-equilibrium energy minimization of the 

structure of interest and sophisticated full-atomic force field, which complicates its application to 

large bio-complexes and supramolecular assemblies. The passages to longer times and larger 

scales necessitate the adoption of less detailed models, hence the use of continuum models for 

solvent (Kollman et al., 2000; Wang et al. 2000), Poisson-Boltzmann for electrostatics 

(Archontis et al. 2001; Baker et al. 2001), and more recently elastic network (EN)-based models 

(Tirion, 1996; Bahar et al., 1997a; Hinsen et al., 1999; Doruker et al., 2000; Delarue et al., 2002; 

Ming et al., 2002a, b; Tama et al. 2002b) for global machinery. 
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1.3. SIMPLIFIED NMA MODELS: ELASTIC NETWORK (EN) 
MODELS 

 

To simulate the relatively longer time scale dynamics of large biomolecules of biomolecular 

assemblies, and yet maintain computational efficiency, lower resolution models have been 

adopted where groups of residues are clustered into unified sites (Kurkcuoglu et al., 2004; 

Doruker et al.,2002), or rigid blocks (RTB and BNM; Tama et al., 2000 and Li et al., 2002 

respectively). Related methods, such as quantized elastic deformational model (QEDM), 

effectively quantize the shape of the structure without directly identifying specific residues or 

groups of residues (Ming et al., 2002a; Tama et al. 2002b). A reduction in the number of nodes 

by one order of magnitude increases the computation speed by three orders of magnitude since 

NMA computing time scales with N3. Notably, the global motions computed by such coarse-

grained NMA maintain their fundamental characteristics that can be related to functional 

mechanisms (Doruker et al., 2002). 

 

The Gaussian Network model (GNM) is probably the simplest among these EN-based models. 

This EN model has been originally introduced at the residue level (Bahar et al., 1997a; Haliloglu 

et al., 1997), inspired by the full atomic NMA of Tirion. In this seminal work, Tirion 

demonstrated that the mode dispersion and slowest modes obtained for G-actin with a uniform 

harmonic potential do not practically differ from those obtained by NMA using a detailed 

(Charmm) force field (Tirion, 1996). Despite its simplicity, the GNM and its extension, the 

Anisotropic Network Model (ANM; Doruker et al., 2000; Atilgan et al., 2001), or similar coarse-

grained EN models combined with NMA (Hinsen et al., 1999; Tama et al., 2001; Li et al., 2002), 
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have proven to provide insightful information on biomolecular dynamics and found widespread 

use since then for elucidating the dynamics of proteins and their complexes.  

Significantly, the simplified NMAs with EN models have been applied to deduce both the 

machinery and conformational dynamics of large structures and assemblies including HIV 

reverse transcriptase (Bahar et al, 1999b; Temiz et al., 2002), hemagglutinin A (Isin et al., 2002), 

aspartate transcarbamylase (Thomas et al., 1999), F1 ATPase (Cui et al., 2004), RNA 

polymerase (Van Wynsberghe et al. 2004), an actin segment (Ming et al., 2003a), GroEL-GroES 

(Keskin et al., 2002a), the ribosome (Tama et al., 2003b; Wang et al., 2004), and viral capsids 

(Tama et al., 2002a; 2005; Rader et al., 2005).  

 

The theoretical foundations of the GNM will be presented in the next section, along with a few 

applications that illustrate its utility. The following questions will be addressed. What is the 

Gaussian Network Model? What are the underlying assumptions? How is it implemented? Why 

and how does it work? How does the GNM analysis differ from NMA applied to EN models? Or 

what are the advantages and limitations compared to coarse-grained NMA? What are the most 

significant applications and prospective utilities of the GNM, or the EN models in general? 
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1.4. THE GAUSSIAN NETWORK MODEL 
 
 
1.4.1. Theory 
 

1.4.1.1. A minimalist model for fluctuation dynamics  

Most analytical treatments of complex systems dynamics entail a compromise between physical 

realism and mathematical tractability. A challenge is to identify the simplest, yet physically 

plausible, model that retains the physical and chemical characteristics that are needed for the 

time and length scales of interest. Clearly, as the size and length scales of the processes of 

interest increase, it becomes unnecessary to account for many of the microscopic details in the 

model. The inclusion of these microscopic details could, on the contrary, tend to obscure the 

dominant patterns characterizing the biological function of interest.  

 

GNM was proposed by Bahar, Atilgan and Erman (Bahar et al., 1997a) within such a minimalist 

mindset to explore the role and contribution of purely topological constraints, defined by the 3D 

structure, on the collective dynamics of proteins. Inspired by the seminal work of Flory and 

collaborators applied to polymer gels (Flory, 1976), each protein is modeled by an EN (Figure 1-

1), the dynamics of which is entirely defined by network topology. The position of the nodes of 

the EN are defined by the Cα-atom coordinates, and the springs connecting the nodes are 

representative of the bonded and non-bonded interactions between the pairs of residues located 

within an interaction range, or cutoff distance, of rc. The cutoff distance is usually taken as 7.0 Å, 

based on the radius of the first coordination shell around residues observed in PDB structures 

(Miyazawa et al., 1985; Bahar et al., 1997b).  
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Figure 1-1 Description of the Gaussian network model (GNM). 
(a) Schematic representation of the equilibrium positions of the ith and jth nodes, Ri

0 and Rj
0, with respect to a 

laboratory-fixed coordinate system (xyz). The instantaneous fluctuation vectors, ΔRi and ΔRj, are shown by the 
dashed arrows, as well as the instantaneous separation vector Rij between the positions of the two residues. Rij

0 is the 
equilibrium distance between nodes i and j. (b) In the elastic network of GNM every residue is represented by a 
node and connected to spatial neighbors by uniform springs. These springs determine the N-1 degrees of freedom in 
the network and the structure’s modes of vibration. (c) Three dimensional image of hen egg white lysozyme (PDB 
ID:1hel; Wilson et al., 1992) showing the Cα trace. Secondary structure features are indicated by pink for helices 
and yellow for β-strands. (d) Using a cutoff value of 10Å, all connections between Cα nodes are drawn for the same 
lysozyme structure to indicate the nature of the elastic network analyzed by GNM. 
 
 

1.4.1.2. GNM assumes the fluctuations to be isotropic and Gaussian 

If we denote the equilibrium position vectors of a node, i, by R0
i, and the instantaneous position 

by Ri, the fluctuations, or deformations, from this mean position can then be defined in terms of 

the fluctuation vector . The fluctuations in the distance vector R0
iiiΔ RRR −= ij between residues 
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i and j, can in turn be expressed as  (Figure 1-1a). By assuming that 

these fluctuations are isotropic and Gaussian we can write the potential of the network of N nodes 

(residues), V

ijijijij RRRRR Δ−Δ=−=Δ 0

GNM, in terms of the components ΔXi, ΔYi and ΔZi of ΔRi, as 

 ( ) ( ) ([ ]⎥
⎦

⎤
⎢
⎣

⎡
Δ−Δ+Δ−Δ+Δ−ΔΓ= ∑

N

ji
jijijiijGNM ZZYYXXV

,

222

2
γ )  (1-1) 

Here Γij is the ijth element of the Kirchhoff (or connectivity) matrix of inter-residue contacts 

defined by  

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=Γ−
>≠
≤≠−

=Γ

∑
≠

ji
rji
rji

ijj
ij

cij

cij

ij

  if
  and  if
  and  if

,

0
1

R
R

                       (1-2) 

and γ is the force constant taken to be uniform for all network springs. Expressing the X-, Y- and 

Z- components of the fluctuation vectors ΔRi as three N-dimensional vectors ΔX, ΔY and ΔZ, 

equation 1-1 simplifies to  

 

  [ ]ZΓZYΓYXΓX ΔΔ+ΔΔ+ΔΔ= TTT
GNMV

2
γ  (1-3) 

 
Here ΔXT, ΔYT and ΔZT are the row vectors [ΔX1  ΔX 2  .....  ΔX N], [ΔY1   ΔY2  .....  ΔYN] and [ΔZ1  

ΔZ2  .....  ΔZN], respectively.  The total potential can alternatively be expressed as  

 

               [ REΓR Δ⊗Δ
γ

= )(
2

T
GNMV ]    (1-4)  

 
where ΔR is the 3N-dimensional vector of fluctuations, ΔR T is its transpose, ΔR T = [ΔX1  

ΔY1  .....  ΔZN], E is the identity matrix of order 3, and (Γ ⊗E) is the direct product of Γ and E, 
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found by replacing each element Γij of Γ by the 3×3 diagonal matrix ΓijE.  One should note that 

by construction the eigenvalues for this 3N×3N matrix, Γ ⊗E, are 3-fold degenerate. This 

degeneracy arises from the isotropic assumption, further explored in the next section. 

 

1.4.1.3. Statistical mechanical foundations of the GNM 

What we are primarily interested in is determining the mean-square fluctuations of a particular 

residue, i, or the correlations between the fluctuations of two different residues, i and j. These 

respective properties are given by 

                      222
iiiii ZYX Δ+Δ+Δ=Δ•Δ RR   (1-5) 

and  

       jijijiji ZZYYXX ΔΔ+ΔΔ+ΔΔ=Δ•Δ RR   (1-6)  

Thus, if we know how to compute the component fluctuations 2
iXΔ  and ji XX ΔΔ  then we 

know how to compute the residue fluctuations and their cross-correlations.  

 

In the GNM, the probability distribution of all fluctuations,  is isotropic (equation 1-7) and 

Gaussian (equation 1-8), i.e. 
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where kB is the Boltzmann constant and T is the absolute temperature. Similar forms apply to p(ΔY) 

and p(ΔZ).   ΔX = [ΔX

B

1 ΔX2 … ΔXi … ΔXN]  is therefore a multidimensional Gaussian random 

variable with zero mean and covariance 1−Γ
γ
TkB  in accord with the general definition (Papoulis et 

al., 1965) 

 

   ( ) ( )
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⎨
⎧ −−−= − μxΞμx
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Ξμ,x, 1

2
1exp
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T
N

W
π

    (1-9)  

for multidimensional Gaussian (normal) probability density function associated with a given N-

dimensional vector x having mean vector μ and covariance matrix Ξ. Here, the term in the 

denominator, (2π)N/2 |Ξ |1/2,  is the partition function that ensures the normalization of W(x, μ, Ξ) 

upon integration over the complete space of accessible x, and  |Ξ | is the determinant of Ξ. 

Similarly, the normalized probability distribution p(ΔX) is  
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where Zx is the partition function given by 
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The same expression is valid for ZY and ZZ such that the overall GNM partition function (or 

configurational integral) becomes 

   ZYXGNM ZZZZ =  
2

3

2
3 1)2( −= Γ

γ
π TkBN    (1-12) 
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Now we have the statistical mechanical foundations to write the expectation values of the residue 

fluctuations, 2
iXΔ , and correlations, ji XX ΔΔ . It can be verified that the N×N covariance 

matrix <ΔX ΔXT > is equal to 1−Γ
γ
TkB , using the statistical mechanical average*  

 <ΔX ΔXT > = ∫ ΔΔ Δ Δ Τ XXXX d)p(  = 1−Γ
γ
TkB  (1-13) 

Because 

 <ΔX ΔXT > = <ΔY ΔYT > = <ΔZ ΔZT > = (1/3) <ΔR ΔRT >, (1-14)  

we obtain 

 
ij

B
ji

ii
B

i

ΓTkRR

ΓTkR

)(

)(

1

12

3

3

−

−

=Δ⋅Δ

=Δ

γ

γ  (1-15) 

as the mean-square (ms) fluctuations of residues and correlations between residue fluctuations. It 

should be noted that the assumption of isotropic fluctuations (equation 1-8) is intrinsic to the 

GNM. Thus the 3-N dimensional problem (equation 1-4) can be reduced to an N-dimensional one 

described by equation 1-15.   

 
                                                 
* Note that solving equation 1-13 involves the ratio of the multidimensional Gaussian 

counterparts for the two integrals { } ( )∫ π=− adxax 2
12exp   and { } 2

3

4
22 exp

−π=−∫ adxaxx  

in the range (0, ∞) such that ( )
a

ax a 2
1

2
1

4
2 2

3
== ππ −

. For the simplest case of a single 

spring, subject to harmonic potential 2
1 γ x2, 

Tk
a

B2
γ

=  and <x2> = 
γ
Tk B .  
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1.4.1.4. Influence of local packing density 

The diagonal elements of the Kirchhoff matrix, Γii, are equal to the residue coordination numbers, 

zi (1 ≤ i ≤ N), which represent the degree of the EN nodes in graph theory. Thus zi is a direct 

measure of local packing density around the ith residue. To better understand this, it is possible to 

express Γ as a sum of two matrices Γ1 and Γ2, consisting exclusively of the diagonal and off-

diagonal elements of Γ, respectively. Using these two matrices, Γ 
-1

 may be written as  

 Γ 
-1

 = [Γ1 + Γ2]
-1 = [Γ1 (E + Γ1-1 Γ2)]-1 = (E + Γ1

-1 Γ2)
-1 Γ1

-1
   

 = (E - Γ1
-1 Γ2  + ....) Γ1

-1
 =  Γ1-1  -  Γ1

-1 Γ2 Γ1
-1

  + ....    (1-16) 

if one assumes that the invariants of the product (Γ1-1 Γ2) are small compared to those of the 

identity matrix, E, which is a valid approximation for protein Kirchhoff matrices. Thus, the 

information concerning local packing density and distribution of contacts is dominated by the 

diagonal matrix, Γ1

-1
, which is the leading term in a series expansion for Γ 

-1
 in equation 1-16. 

Consequently, application of equation 1-15 indicates that < (ΔRi)2 > scales with [Γ1
-1

]ii = 1/zi, to a 

first approximation. Thus the local packing density as described by the coordination numbers is 

an important structural property contributing to the mean square (ms) fluctuations of residues 

(Halle, 2002). However these coordination numbers represent only the leading contribution and 

not the entire set of dynamics described by equation 1-15.  

 
1.4.2. Applications of GNM 
 

1.4.2.1. Equilibrium fluctuations 

The ms fluctuations of residues are experimentally measurable (e.g. X-ray crystallographic B-

factors, or root mean-square (rms) differences between different models from NMR), and as such, 
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have often been used as an initial test for verifying and improving computational models and 

methods. Beginning with the original GNM paper (Bahar et al., 1997a), several applications have 

demonstrated that the fluctuations predicted by the GNM are in good agreement with 

experimental B-factors (Bahar et al., 1998b; Bahar, 1999a, b; Keskin et al., 2000a; Atilgan et al., 

2001; Kundu et al., 2002). The B-factors are related to the expected residue fluctuations and 

calculated according to  

 
BBi = (8π /3) < (ΔRi)2 > = (8π kBT/γ) [Γ -1]ii    (1-17)   2 2

 
Figure 1-2a illustrates the agreement between the B-factors predicted by the GNM (solid curve) 

and those calculated from experimental data (open circles) for an example protein, ribonuclease 

T1 (RNase T1), where Γ has been constructed from the Cα coordinates for RNase T1 deposited 

in the PDB. Panel B compares the rms fluctuations predicted by the GNM and those observed 

across the 20 NMR models deposited in the PDB for reduced disulfide-bond formation facilitator 

(DsbA; Wilson et al., 1992). The correlation coefficient between the GNM results and 

experimental data for these two example proteins are 0.769 and 0.823 in the respective panels a 

and b. An extensive comparison of experimental and theoretical (GNM) B-factors for a series of 

PDB structures by Phillips and coworkers has shown that GNM calculations yield an average 

correlation coefficient (Rcorr,avg) of 0.59 with experimental B-factors over 113 non-redundant 

high-resolution structures (Kundu et al., 2002). The agreement is even more prominent provided 

that the contacts between neighboring molecules in the crystal form are taken into account, 

which gives a Rcorr,avg of 0.66. The agreement with NMR data is also remarkable, pointing to the 

consistency between the fluctuations undergone in solution and those inferred from X-ray 

structures.  
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Figure 1-2 Compare fluctuations predicted by GNM and ANM with experimental observations.  
(a) Experimental X-ray crystallographic B-factors (open circles) reported for ribonuclease T1 (PDB ID:1bu4; Loris 
et al., 1999) plotted with calculated values from GNM (solid line) and ANM (dotted line) against residue number. (b) 
Root mean square (rms) deviation between Cα coordinates of NMR model structures (open circles) deposited for the 
reduced disulphide-bond formation facilitator (DsbA) in the PDB file 1a24 (Wilson et al., 1992). 
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1.4.2.2. Mode decomposition: Physical meaning of slow and fast modes 

A major utility of the GNM is the ease of obtaining the collective modes of motion accessible to 

structures in native state conditions. The GNM normal modes are found by transforming the 

Kirchhoff matrix into a product of three matrices, the matrix U of the eigenvectors ui of Γ, the 

diagonal matrix Λ of eigenvalues λi, and the transpose UT = U-1 of the unitary matrix U as in 

equation 1-18.  

  Γ = U Λ UT    (1-18) 

The eigenvalues are representative of the frequencies of the individual modes, while the 

eigenvectors define the shapes of the modes. The first eigenvalue, λ1, is identically zero with the 

corresponding eigenvector comprised of elements with a magnitude equal to a constant, 1/ N , 

indicative of an absence of internal motions in this zero mode. The vanishing frequency reflects 

the fact that the molecule can be translated rigidly without any potential energy change.   

 

Combining equations 1-15 and 1-18, the cross-correlations between residue fluctuations can be 

written as a sum over the N-1 nonzero modes (2 ≤ k ≤ N) using 

  ( )[ ] ( )[ ] ( ) [ ]∑ −=− ===Δ•Δ
k

ij
T
kkkBij

T
BijBji uuTkUUΛTkΓTkRR 111 333 λγγγ       (1-19) 

This permits us to identify the correlation, [ ]kRR Δ•Δ  contributed by the kth mode as 

 [ ] ( ) jkikkBkji uuTkRR ][][13 −=Δ•Δ λγ     (1-20) 

where [uk]i is the ith element of uk. Because uk is normalized, the plot of [uk]i
2 against residue 

index, i, yields the normalized distribution of mean-square fluctuations of residues in the kth mode, 

shortly referred to as the kth mode shape (Figure 1-3a). Because the residue fluctuations are 
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related to the experimental temperature (B-factors) by equation 1-17, these elements of uk reflect 

the residue mobilities in the kth mode. 

 
 

 
 
 
Figure 1-3 Physical meaning of slow and fast modes in GNM.  
(a) Distribution of squared displacements of residues in the slowest mode as a function of residue index for 
ribonuclease T1 (RNase T1). The red arrows identify local minima that correspond to five experimentally identified 
catalytic residues: Tyr38, His40, Glu58, Arg77, and His92. (b) Distribution of squared displacements averaged over 
the ten fastest modes for the same protein. Here the arrows indicate the residues shown by hydrogen/deuterium 
exchange to be the most protected and thus important for reliable folding. A majority of these critical folding 
residues appear as peaks in the fast modes. (c) Color-coded mapping of the slowest mode (a) onto the 3D Cα trace of 
RNase T1 (PDB ID: 1bu4; Loris et al., 1999) where red is most mobile and blue least mobile. The side chains of the 
five catalytic residues are shown in pink surrounding the nucleotide binding cavity. (d) A similar color-coded 
mapping of the fluctuations of the ten fastest modes (b) onto the Cα trace. Here the side chains of the ten most 
protected residues from hydrogen deuterium exchange experiments are drawn explicitly showing that most of them 
are calculated to be mobile (red). The images in C and D were generated using VMD (Humphrey et al., 1996). 
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Note that the factor λk-1 plays the role of a statistical weight, which suitably rescales the 

contribution of mode k. This ensures that the slowest mode has the largest contribution. In 

addition to their significant contribution, the slowest motions are in general also those having the 

highest degree of collectivity. Many studies have shown that the shapes of the slowest modes 

indeed reveal the mechanisms of cooperative or global motions, and the most constrained 

residues (minima) in these modes play a critical role, such as a hinge-bending center, that govern 

the correlated movements of entire domains (Bahar et al., 1998a; Bahar et al., 1999b; Jernigan et 

al.,1999; Thomas et al., 1999; Keskin et al., 2000; Jernigan et al., 2000; Keskin et al., 2002a, b; 

Temiz et al., 2002; Xu et al., 2003; Sluis-Cremer et al., 2004; Wang et al., 2004). It is important 

to note that although these motions are slow, they involve substantial conformational changes 

distributed over several residues. The fastest modes, on the other hand, involve the most tightly 

packed and hence most severely constrained residues in the molecule. Their high frequency does 

not imply a definitive conformational change, because they cannot effectively relax within their 

severely constrained environment. On the contrary, they enjoy extremely small conformational 

freedom, on a local scale, by undergoing fast, but small amplitude fluctuations.  

 

Figure 1-3 illustrates the contrast between the degree of collectivity for the slowest and fastest 

modes for an example protein, RNase T1. As in this case, the slow modes involve almost the 

entire molecule as indicated by the broad, delocalized peaks in panel a. The relative potential 

motion predicted by this mode is plotted onto the 3-d structure in Figure 1-3c, color-coded such 

that minima are blue and maxima are red. For RNaseT1, five red arrows are drawn in Figure 1-3a 

to indicate the residues identified as part of the catalytic site (Y38, H40, E58, R77 and H92; Loris 

et al., 1999). With the exception of H92, these five residues are located near minima in the slow 
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(global) mode shape (Figure 1-3a) and their side chains are shown to be spatial neighbors (pink 

tubes) in the 3-d plot of this protein (Figure 1-3c).   

 

In contrast, the fastest modes are highly localized, with mode shapes that usually involve only a 

few peaks, as in Figure 1-3b. These peaks refer to the residues that have a high concentration of 

local energy and are tightly constrained in motion. It has been noticed that these residues are often 

conserved across species and may form the folding nuclei (Demirel et al., 1998; Rader 2004a, b). 

In the application to RNase T1, the ten most protected residues (57, 59, 61, 77-81, 85, and 87), as 

identified by hydrogen-deuterium exchange experiments (Mullins et al., 1997), are indicated by 

gold arrows in Figure 1-3b and shown with their side chains in the 3-d structure, color-coded such 

that minima are blue and maxima are red (Figure 1-3d). As illustrated, many of these residues 

involve interactions between different strands of the central β-sheet, suggesting their potential 

involvement in the folding of RNase T1. 

 

1.4.2.3. The utility of GNM beyond protein dynamics 

Studying proteins with the GNM provides more than the dynamics of individual biomolecules. 

GNM has indeed been used for identifying the common traits among the equilibrium dynamics 

of proteins (Kundu et al., 2002), the influence of native state topology on stability (Burioni et al., 

2004), the localization properties of protein fluctuations (Wu et al., 2003) or the definition of 

protein domains (Kundu et al., 2004a, b). Additionally, GNM has been used to identify residues 

most protected during hydrogen-deuterium exchange (Bahar et al., 1998c; Jaravine et al., 2000), 

critical for folding (Ortiz et al., 2000; Micheletti et al., 2002b; Micheletti et al., 2004), conserved 
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among members of a given family (Chen et al., 2004; Yang et al., 2005a), or involved in ligand 

binding (Micheletti et al., 2002a; Yang et al., 2005a).   

 

 

1.5. ANISOTROPIC NETWORK MODEL (ANM) 
 

1.5.1. What is ANM?   
 
 
The anisotropic network model (ANM) has been originally introduced as an alternative EN model 

to address the deficiencies of the GNM (Doruker et al., 2000; Atilgan et al., 2001), mainly to 

 compute the directions of the modes of motions, in addition to their sizes. In the ANM, the total 

potential of the structure is defined as 

           ( ) ( ⎥
⎦

⎤
⎢
⎣

⎡
−−= ∑

N

ji
ijcijijANM RrHRRV

,

20

2
γ )    (1-21) 

where H(rc -Rij) is the Heavyside step function equal to 1 if the argument is positive, and zero 

otherwise.  H(rc -Rij) selects all residue pairs within the cutoff separation of rc. In the GNM, on the 

other hand, the potential is given by  

  ( ) ( ⎥
⎦

⎤
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⎣

⎡
−−= ∑
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ji
ijcijGNM RrHV

ij
,

20

2
RRγ )    (1-22) 

 

1.5.2. How does GNM differ from ANM? 
 

Equation 1-22 looks very similar to equation 1-21, with the major difference that the 

vectors and  in equation 1-22 are replaced by distances (scalars), RijR 0
ijR ij and Rij

0. This means 
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that the potential which depended upon the dot product between the fluctuation vectors in the 

GNM,  
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now (in the ANM) depends upon their scalar product, 
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Because the scalars Rij and Rij
0 depend upon their components in a non-quadratic form, it is 

natural to end up with anisotropic fluctuations upon taking the second derivatives of the potential 

with respect to the displacements along the X-, Y- and Z- axes as is done in NMA. Using 

equations 1-23 and 1-24, the difference between these two potentials is  

     (1-25)( ) ( ⎥
⎦

⎤
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⎣

⎡
−−=− ∑
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ji
ijcijijijijANMGNM RrHRRVV

,

00 ),cos(1 RRγ )  

i.e. the two potentials are equal only if cos(Rij, Rij
0) = 1, i.e. Rij = cRij

0 or ΔRi = cΔRj where c is a 

scalar. 

 

Physically, this means that in addition to changes in inter-residue distances (springs), any change 

in the direction of the inter-residue vector Rij
0 is also being resisted or penalized in the GNM 

potential. On the contrary, the ANM potential depends exclusively on the magnitudes of the inter-

residue distances and does not penalize any such changes in orientation. It is conceivable that 

within the densely packed environment of proteins, orientational deformations may be as 

important as translational (distance) ones, and a potential that takes account of the energy 

dependence associated with the internal orientational changes (i.e. VGNM) is physically more 

meaningful than one exclusively based on distances (VANM). Not surprisingly, ANM used in a 
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NMA has been observed to give rise to excessively high fluctuations compared to the GNM 

results or experimental data (Figure 1-2), and hence necessitated the adoption of a higher cutoff 

distance for interactions (Atilgan et al., 2001). With a higher cutoff distance, each residue is 

connected to more neighbors in a more constrained and consolidated network. 

 

Inasmuch as VGNM is physically more realistic, one might prefer to adopt the GNM, rather than the 

ANM for a coarse-grained NMA. However, this greater realism comes at a price. Because the 

GNM describes the dynamics within an N-dimensional configurational space as opposed to a 3N-

dimesional one of ANM, the residue fluctuations predicted by the GNM are intrinsically isotropic. 

Thus GNM cannot provide information regarding the individual components: ΔX(k), ΔY(k) and 

ΔZ(k), of the deformation vectors ΔR(k) associated with each mode, k, but rather predicts the 

magnitudes, |ΔR(k)|, induced by such deformations. The conclusion is that GNM is more accurate, 

and should be chosen when evaluating the deformation magnitudes, or the distribution of motions 

of individual residues. However, ANM is the only possible (less realistic) model when it comes to 

assessing the directions or mechanisms of motions. That the fluctuations predicted by the GNM 

correlate better with experimental B-factors than those predicted by the ANM has been observed 

and confirmed in a recent systematic study of Phillips and coworkers (Kundu et al., 2002). The 

dotted curves in Figure 1-2 illustrate the ANM results, and provide a comparison of the level of 

agreement (with experimental data) usually achieved by the two respective models.  The 

correlation coefficients between the GNM results and experimental data are 0.769 and 0.823 in 

the panels A and B, respectively, whereas their ANM counterparts are 0.639 and 0.261. We note 

that the two sets of computed results are themselves correlated (0.756 and 0.454, respectively), 

which can be expected from the similarity of the underlying models. 
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1.6. APPLICATIONS OF GNM/ANM IN STRUCTURAL 
BIOLOGY 

 

1.6.1. Applicability to supramolecular structures 
 
 
A major advantage of the GNM is its applicability to large complexes and assemblies. The size 

of the Kirchhoff matrix is N×N for a structure of N residues, as opposed to the size 3N×3N of the 

equivalent Hessian matrix for a residue-level EN NMA (or ANM). The resulting computational 

time requirement for GNM analysis is then about 33 times shorter than for ANM, which in turn is 

about 83 times shorter than for NMA at atomic scale (assuming 8 atoms on the average per 

residue). This enormous decrease in computational time permits us to use the ANM, and 

certainly the GNM, for efficiently exploring the dynamics of supramolecular structures (Keskin 

et al., 2002a; Rader et al., 2004a).  

 

Due to limitations in computational memory and speed, efforts to analyze large structures of 

~105 residues rely upon further coarse-graining of the structure of interest. This type of coarse-

graining is now the standard approach, having been implemented in several forms by various 

research groups including hierarchical coarse-graining (HCG; Doruker et al., 2002), discussed 

below; rotations-translations of blocks (RTB; Tama et al., 2000) or block normal mode (BNM; 

Li et al., 2002) and substructure-synthesis method (SSM; Ming et al., 2003b). 
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For both GNM and ANM, it has been demonstrated that an HCG scheme where clusters of 

residues and their interactions, as opposed to individual pairs of residues, are considered as the 

EN nodes (as opposed to individual residues), can successfully reproduce the essential features 

of the full-residue GNM/ANM calculations (Doruker et al., 2002). The global dynamics of 

hemagglutinin A were obtained at least two orders of magnitude faster than standard 

GNM/ANM by coarse-graining to the level of every 40th residue (N/40). (Doruker et al., 2002) 

Notably, the minima in the global mode shapes, which refer to key regions that coordinate the 

collective dynamics, could be exactly reproduced by the N/40 coarse-graining.   

 

Figure 1-4 illustrates the application of GNM to the wild type 70S ribosome from Escherichia 

coli (Vila-Sanjurjo et al., 2003). The calculations were performed by considering a single node 

for each amino acid (on the Cα atom) and each nucleotide (on the P atom), yielding a total of 

10,453 nodes (residues and nucleotides). Because the diameter of the A-form RNA double helix 

is 20 Å, a larger cutoff distance is required to correctly identify base-paired nucleotides solely by 

their P-atom positions (Bahar et al., 1998b). To ensure adequate connectivity, two cutoff 

distances were adopted, 9.0 Å if both atoms were Cα and 21.0 Å if one or both were phosphorous, 

analogous to the recent ANM analysis of ribosome (Wang et al., 2004). Panels A and B illustrate 

the slowest (non-zero) mode shape as a color-coded 3-d structure and against the residue index. 

The coloring emphasizes the distinct difference between the motions of the 50S (red) and 30S 

(blue) subunits in this mode and indicates an anti-correlated motion of one subunit with respect 

to the other. This type of anti-correlated motions (i.e. ratcheting of one subunit with respect to 

the other) has been observed by cryo-EM (Frank et al., 2000). 
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Figure 1-4 Application of GNM to the 70S ribosome structure.  
The calculations were performed on the wild type 70S ribosome from E. coli (PDB IDs: 1pnx and 1pny; Vila-
Sanjurjo et al., 2003). (a) The slowest non-zero mode for the 70S ribosome colored from -1 (red) to +1 (blue) is 
mapped onto the 3-d structure indicating a dramatic break at the interface between the two subunits (50S and 30S). 
This image was generated using VMD. (b) The slowest non-zero mode plotted versus the residue number. Residues 
in the 50S subunit (blue) exhibit one direction of motion that is opposed to the motion in the 30S subunit (red). 
 
 

1.6.2. Other applications 
 
 
1.6.2.1. Flexible docking  

A major application of normal modes is the identification of potential conformational changes, 

e.g. of enzymes upon ligand binding (Tama et al., 2001; Delarue et al., 2002). In particular, it has 

been shown that over half of 3800 known protein motions (inferred from different forms of the 

same protein deposited in PDB) can be approximated by perturbing the original structures along 

the direction of their two low-frequency normal modes (Krebs et al., 2002). Such results suggest 

that the protein structures may have evolved to accommodate or facilitate biologically functional 

conformational changes. The functional mechanisms are indeed more readily accessible provided 

that they coincide with the smoothest ascent directions in the neighborhood of the global energy 

minimum, i.e. those along the lowest frequency modes. The fact that the observed changes 
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coincide with those predicted by the slowest NMA modes should not be a coincidence but a 

design principle favored by nature.  Building on the notion  that NMA can be used to identify 

potential motions induced by binding, a computationally tractable way to generate a set of 

docking targets has been proposed (Delarue et al., 2002). 

 

1.6.2.2. Cryo-EM structure modeling 

Recently there have been several applications of NMA to low-resolution cryo-electron 

microscopy (cryo-EM) structure modeling. Cryo-EM data are naturally low-resolution, being 

reconstructed by averaging over multiple images of many molecules from several different 

angles. Additionally, the imaged molecules often undergo structural changes along with 

vibrations making it very difficult to extract high-resolution structural information. Several 

groups (Ming et al, 2002a; Tama et al., 2002b; Delarue et al., 2004) have constructed EN models 

of pseudo-atomic representations for particular cryo-EM maps and calculated the resulting 

distortions due to normal modes as an aid in the refinement of the raw cryo-EM data to produce 

higher-resolution structural information. Alternatively, a procedure for the flexible docking of 

atomic or residue level structures into cryo-EM has been suggested by using the NMA mode 

shapes calculated for either these pseudo-atomic EN or homology-based structures (Delarue et 

al., 2004; Tama et al., 2004a, b; Hinsen et al., 2005).  

 

1.6.2.3. Steering MD simulations and exploring non-equilibrium dynamics. 

As discussed above, the low-frequency modes from NMA are able to capture the collective 

dynamics of proteins. A recent application of this fact is to steer MD simulations along these 

dominant modes of motion using hybrid methods that combine MD and harmonic modes (Zhang 
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et al., 2003; He et al., 2003; Tatsumi et al., 2004). Specifically a hybrid MD-NMA simulation 

protocol has been implemented where motions along the direction of the slowest few modes are 

coupled to a temperature bath and thus amplified to study the unfolding and large-scale domain 

motions of peptides and proteins (Zhang et al., 2003; He et al., 2003). The inverse of this 

approach, namely, that the normal modes of a protein can be extracted from an applied driving 

force in a MD simulation (Kaledin et al., 2004) has also recently been shown.  

 

Drawing on similar insights, it has been suggested that one can minimize steric clashes and 

interpolate between two conformations of a protein using the modes from an EN model (Kim et 

al., 2002) to characterize this transition. Because the harmonic approximation of NMA remains 

valid only near the equilibrium structure, an alternative method to escape the local minima 

surrounding the native state involves the iterative calculation of successive EN models deformed 

along one or several low-frequency modes (Miyashita et al., 2003). This method allows 

“cracking” or partial unfolding of the underlying EN structure suggesting that such unfolding or 

“proteinquakes” may be coupled to collective motions (Itoh et al., 2004; Miyashita et al., 2005).  

 

1.6.2.4. High throughput examination of families of proteins  

Fold families such as globins (Maguid et al., 2005), and protein superfamiles (Leo-Macias et al., 

2005) in general have been compared using NMA-based methods to identify common and 

distinctive structural-dynamic features. For the test case of proteases, these salient dynamic 

features from GNM calculations combined with data mining techniques in an unsupervised 

learning technique have been shown to identify the highly conserved catalytic triad (Chen et al., 

2004). More recently the minima in the slowest modes (global hinge centers) have been shown to 
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be co-localized near catalytic residues in a representative set of enzymes (Yang et al., 2005). 

These results indicate that there is a great deal of information about functional residues to be 

extracted from the comparative EN-based NMA of protein family members. 

 

1.6.2.5. Databases/servers of molecular motion  

The logical extension of the protein family analysis is the compilation and update of web 

accessible databases housing NMA-based calculations for all available protein structures. 

Several such databases have been constructed including iGNM (Yang et al., 2005), ProMode 

(Wako et al., 2004), ElNémo (Suhre et al., 2004a), WEBnm@ (Hollup et al., 2005), and 

MolMovDB (Alexandrov et al., 2005) that allow users to browse pre-calculated data and/or 

submit structures for NMA. These current developments and applications will be discussed in 

more details at Chapter 4. 
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2. JUSTIFICATION OF THE APPLICABILITY OF 
GAUSSIAN NETWORK MODEL AND PARAMETER 

REFINEMENTS 
 
 
 
 

2.1. ABSTRACT 
 
 
In this chapter, we contest the idea of introducing residue specificities in the GNM, after a 

thorough examination of its consequences. A modified GNM model (SPGNM), which allows the 

attractive potentials only between the residue pairs that belong to the same polarity group, is 

tested. Our results have shown that SPGNM, a model that throws away the springs connecting 

the residues that have different polarities, gives a decreased agreement with experimental data. 

We further challenge the idea - ‘the more specificities are considered, the better prediction of 

dynamics can be achieved.’ by comparing GNM predictions for X-ray crystallographic 

temperature factors (Bexp) with conventional NMA results. To our surprise, GNM predicts Bexp 

slightly better than NMA does over a set of 183 monomeric, non-homologous proteins. A 

correlation coefficient (Rcorr) value of 0.58 ± 0.16 is obtained between theoretical and 

experimental data using the non-specific GNM, as opposed to 0.52 ± 0.18 by the examination of 

the same set by NMA. We further compared GNM predicted Mean Square Deviations (MSD) 

between NMR structural models and Bexp values of X-ray structures deposited in the Protein 

Data Bank,. We found that GNM predictions exhibit a stronger correlation with NMR MSD, 

compared to their correlation with the Bexp of X-ray structures over 181 non-homologous 

families, each of which contain both an NMR structure and an X-ray structure. The Rcorr between 
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GNM and NMR MSD is 0.65 ± 0.22 while it is only 0.53 ± 0.19 between GNM and X-ray 

crystallographic Bexp values. The data suggests that the GNM yields better agreement with 

experiments if the measurements are done under less constrained environment. For 1250 non-

homologous proteins independently examined by GNM, it was found that the correlation 

coefficient (Rcorr) between Btheo and Bexp is a function of cutoff distance of inter-residue 

interaction adopted in the model, as well as the X-ray diffraction temperature (XDT). The cutoff 

distance of 15Å is found to give the best average correlation for all the 1250 proteins that were 

determined by X-ray at an XDT ≥ 70K, and gives the same Rcorr as the optimal result when the 

cutoff is chosen over a range from 7.3 to 15 Å at the XDT ≥ 297K for 59 proteins. These data 

suggest that a larger cutoff distance covering the second coordination shell in the neighborhood 

of amino acids in folded structures gives a better Rcorr for proteins in the relatively lower XDT 

regime. On the other hand, Rcorr is the same for a wide range of cutoffs as the measurement is 

obtained at higher XDT, presumably larger than protein glass-transition temperature. In the study 

of protein Penicillopepsin (E.C. 3.4.23.20; E.C. stands for Enzyme Class; PDB ID: 1BXO), we 

see how the choice of the cutoff distances affects the mobility of a functionally critical residue, 

Tyr75. A careful selection of GNM cutoffs may therefore be needed for improving the accuracy 

of the predictions. A new criterion to assess the improvement of the model is discussed later in 

this chapter. 
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2.2. INTRODUCTION 
 
 
The Gaussian Network Model (GNM) is a highly simplified model for examining protein 

dynamics, as introduced and discussed in the INTRODUCTION. Despite its simplicity, GNM 

has proven to yield results in good quantitative and qualitative agreement with experimental data 

and MD simulations (Bahar et al., 1998a; 1998c; 1999b; Demirel et al., 1998; Bahar and 

Jernigan, 1998; 1999; Haliloglu and Bahar, 1999; Jaravine et al., 2000; Kundu et al., 2002; Rader 

A.J., 2004b; Kurt et al., 2003; Wu et al., 2003; Erkip and Erman, 2004; Burioni et al., 2004; 

Kundu et al., 2004b; Lattanzi, 2004; Liao and Beratan, 2004; Micheletti et al., 2004; Temiz et al. 

2004). Experimental data that have been compared and successfully reproduced with the GNM 

include X-ray crystallographic B-factors (Bexp), H/D exchange protection factors or free energies 

of exchange, order parameters from 15N-NMR relaxation, hinge regions and correlations between 

domain motions inferred from the comparison of the different forms of a given protein, key 

residues whose mutations have been observed to impede function or folding.  

 

This and other studies based on elastic network (EN) models lend support to the view that 

proteins possess intrinsic mechanical characteristics uniquely defined by their particular 

architecture, regardless of their chemical properties. The current model, GNM, gives similar 

large-scale dynamic behavior as similar architecture is assumed by the sequence (Keskin et al., 

2000). Detailed biological functions are dictated by the local chemistry within a relatively small 

number of mechanical frameworks recruited by sequences. We would like to examine if there is 

any change in dynamics as we single-mutate a residue in the sequence. Also, a scaffold maybe 

used for multiple purposes and subtle functional differences are mediated by local motions, 

which involve more specific interactions.  
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To achieve this goal, our first attempt is to include specificities in the GNM by grouping amino 

acids into two categories – polar (P) or hydrophobic (H). We then compare the ability of the 

GNM and the modified models, termed specific GNM (SPGNM) in this chapter, to predict Bexp. 

 

In the past, the theoretical computation of temperature factors (Btheo) has been a computationally 

expensive task. Btheo, which is the sum of all the eigenvalue-weighted normal modes, demands 

computing time that scales with N3 to decompose the Kirchhoff matrix of inter-residue contacts 

and extract the N-1 GNM modes for a structure of N nodes (or N residues is a single-residue-per-

node representation is adopted). To minimize the computing time requirement for moderate-to-

large size proteins, researchers chose to approximate this sum by that of a subset of modes 

(Suhre and Sanejouand, 2004a). However, the error incurred in this approximation grows with 

the size of the protein, and becomes significant if a fixed number of modes are taken into account. 

The quality of the agreement between Btheo and Bexp may be viewed as an important measure for 

assessing the validity of the molecular motions predicted by NMA-based models. Hence, we 

have developed a new approach, PowerB, which takes advantage of power method (Mendelsohn, 

1957) to minimize this computational cost of evaluating all modes for large structures. The Btheo 

values can be elegantly computed by subtracting the zero mode from the pseudo-inverse 

Kirchhoff matrix, as will be explained in the METHOD section. 

 

Also, we have conducted a series of studies to compare GNM predictions with NMA results, the 

Mean Square Deviations (MSD) of residues between NMR models, the X-ray crystallographic B 
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factors using models where a range of cutoff distances are tested. The need for new criteria to 

assess the performance of the EN models is discussed in the end of the chapter. 

 

 

2.3. METHOD 
 

2.3.1. Residue-specific GNM (SPGNM) 
 
 
According to the Venn diagram proposed for classifying amino acids (Taylor, 1986), we group 

amino acids according to their polarity into two groups: Polar (P) group, which comprises amino 

acids N, Q, S, T, H, D, E, C, R and K, and Hydrophobic (H) group, which comprises amino acids 

I, L, V, F, M, Y, W, A, P and G.  A(i) denotes amino acid type of residue i. Its value is either H 

or P (e.g. if residue i is Val, A(i) = H ). The cutoff distances are selected according to the residue 

type. The Kirchhoff matrix is thus modified as follows: 
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where  is the cutoff distance of interaction between the Ccijr αs, The cutoff distances are taken as 

            =7.3 Ả for = H and =5.5 Ả forcijr )()( jAiA = cijr )()( jAiA = = P;  

We set the potential of H-P pairs to zero and assumed that the same force coupling H-H pairs and 

P-P pairs in different contact ranges. The condition abs(i-j) = 1 ensures that a spring connects 

sequential amino acids regardless of their type. Hence, in the modified Kirchhoff matrix, only 
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the elements representing the HH or PP interactions within given contact distances and the 

sequential neighbors are assigned -1 whereas the remaining off-diagonal elements are zeros. 

 

2.3.2. B factor calculation. PowerB method 

 

2.3.2.1. Power method 

We start from a short review of conventional power method (Mendelsohn, 1957). Let us consider 
a real matrix A of size NxN, which has n linear eigenvectors Vi=1,.., N associated with the 
eigenvalues 121 ... λλλλ ≥≥≥> −− NNN . λ  is the dominant eigenvalue. The eigenvalues and 
eigenvectors

N

 are related as               
 

AVi = λiVi      1 ≤ i ≤ N                          (2-1) 

 

The decomposition of a symmetric matrix A (such as the Kirchhoff matrix Г) ensures real and 
orthogonal eigenvectors such that 
 

                        0=⋅ Ni VV  for i ≠ N 

                        1=⋅ NN VV
 

Any N-dimensional vector Xo (given by rand(N,1) in the code) can be written as  

 

     , C∑
=

=
N

i
iiC

1
o VX i ≠ 0                         (2-2) 

 

By premultiplying both sides by A, we obtain  
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And repeating (2-3) for k-1 times, we obtain 
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For large k, the ratio 0)( →k

N

i

λ
λ

 for i = 1, .., N-1, and equation (1-4) is reduced to one surviving 

term in the summation, i.e. 

 

AkXo ≈                                                   (2-5) NN
k
N C Vλ

 

This leads us to the normalized Vn 
 
 

                                            Vn = 
o

k
o

k

XA
XA                                                       (2-6) 

 
Using equation (2-5), it is also correct to state that 
 
 

Ak+1Xo ≈  NN
k
N C V1+λ
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which gives the relationship 
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The inner product of both sides of the above equation with a random vector YN×1 and 

rearrangement of the result, yields 
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                                   (2-7) 

 

as long as YN×1 is not perpendicular to A X . This way, the dominant eigenvalue and –vector 

are obtained. 

k+1
o

 

One can derive the subdominant eigenvalues and –vectors through a deflation process. 

The inner product of both sides of (2-2) by VN gives  
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Repeating the above described process, (2-3) through (2-7) for X0’, we evaluate the second 

largest eigenvalue λ  and eigenvector N-1 VN-1. Any pair of (λ , k Vk) can thus be obtained recursively  

from previously known pairs (λi = 1, .., k-1, Vi = 1..k-1). Note that the larger 
1−k

k

λ
λ  is, the faster 

we reach convergence.  

 

2.3.2.2. Evaluation of B-Factors with the Power Method  

The fact that the diagonal elements of the Kirchhoff matrix are equal to the summation of off-

diagonal elements in the same row/column reduces the rank of the matrix by one, which therein 

contributes to a zero eigenvalue. 
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The pseudo-inverse of the Kirchhoff matrix is obtained after eliminating the zero eigen mode: 
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The diagonal elements of the pseudo-inverse Kirchhoff scales with Btheo (Bahar et al., 1997a) as 
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In principle, one has to compute and add up the contribution of all modes in order to evaluate 

BBtheo. However, if we perturb the Kirchhoff matrix by adding a small number ε, on one of its 

elements, say Г11, Г becomes invertible.  
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Equation (2-10) can be therefore re-written as 
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where δ is a small number (of the order of 10-7 if ε = 0.0001). In general, δ-1 >> λ-1, such that 

we can extract the first dominant eigenvalue δ-1 at a fast convergence rate. We term this fast 

algorithm to obtain Btheo as PowerB. 

 
2.3.3. Examination of a non-homologous protein set 
 
 
We examined the fluctuations of residues in a non-homologous protein set retrieved from PDB-

REPRDB (Noguchi et al., 1997; http://mbs.cbrc.jp/pdbreprdb-cgi/reprdb_menu.pl). We selected 

only the structures resolved by X-ray crystallography with a resolution ≤ 2.4 Ǻ, and R-factors ≤ 

0.3, and those having no chain discontinuities in the reported PDB files, and number of residues 

≥ 40, excluding membrane proteins. Chains are classified into families. Members of each family 
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have sequence identity ≤ 30% and structural RMSD ≥ 10 Ǻ with members of the other families. 

1930 families were obtained. We further deleted those cases where the single protein chains 

(such as 1JJ2) comprise multiple families to leave 1804 families to which PowerB was applied 

with a series of cutoffs. We further eliminated the structures that contained more than five 

nucleotides, those that did not report Bexp values, and those create the ‘eigenvalue error’ in GNM 

computations caused by missing atom coordinates in the structure (see Chapter 4, Figure 4-2) or 

contained Cα atoms that are assigned multiple positions as solved by X-ray, which resulted in 

1250 families. The entire list of the resulting set proteins can be found in Table S1-1 of 

Supplementary material∗. 

 
2.3.4. Comparison of NMA results with GNM predictions 
 
 
Time average fluctuations, computed by NMA, for 183 monomeric proteins that are included in 

the ProMode DB (http://promode.socs.waseda.ac.jp/) (Wako and Endo, 2002; Wako et al. 2003; 

Wako et al. 2004) were kindly provided by Dr. Wako (personal communication). Each protein 

belongs to a different SCOP family. The structures are pre-equilibrated first and then a NMA is 

performed in the coordinate system of dihedral angles after the work of Go and collaborators 

(Wako et al., 1995). Due to the sophisticated energy minimization process as well as 

approximately six degrees of freedom (rotatable bonds on the backbone and sidechain) of each 

residue considered, ProMode DB currently reports NMA results for relatively small proteins 

having < 300 residues in view of the time and memory cost of the computation. The smallest and 

the largest proteins in this study contain 77 and 245 residues, respectively. The Btheo, predicted 

by GNM, were also retrieved from iGNM (Yang et al., 2005 and also Chapter 3) for the same set 

of 183 proteins to compare with the NMA results and experimental values. 
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2.3.5. Comparison of GNM predictions with X-ray crystallographic Bexp 
factors, and with NMR data 

 

Structures determined by both X-ray and NMR are listed in the PDB (Berman et al., 2000; 

http://www.rcsb.org/pdb/XrayAndNmr.html). There were 263 families listed as of Feb 2nd 2005. 

Each family comprises proteins that have sequence similarity larger than 95% between one 

another for a stretch containing at least 100 amino acids. One X-ray structure and one NMR 

structure from each family were selected. By selecting the NMR structures that contained at least 

3 models, 197 families were retrieved. We further removed 12 ‘eigen error’ structures and 4 

structures that contained unrealistic Bexp data, which resulted in 181 families (see Table S1-2 in 

supplementary materials∗) for the analysis. The Mean Square Deviation (MSD) for each residue 

in a given set of NMR models for a given structure was calculated and compared with the Btheo 

predicted by the GNM. The MSD for residue i is defined as 
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,r
r  , ri,k is the coordinate vector of residue i in the kth model and m is the total 

number of models in the structure. Note that GNM was performed on the first model in the NMR 

structure file. The average correlation coefficients between the MSDi and Btheo,i values, as well as 

those between Bexp,i and Btheo,i for the 181 examined proteins and their subsets were computed 

and compared. 
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2.4. RESULTS 
 

2.4.1. PowerB – speed And accuracy 
 

Application of PowerB to 10 proteins with sizes ranging from 150 to 7350 residues showed the 

accuracy and high efficiency of the method (Figure 2-1). Btheo obtained by PowerB has exactly 

same values as those computed using the conventional singular value decomposition (SVD) 

subroutine from Numerical Recipes (Press et al., 1992) for all the proteins with a correlation 

coefficient of unity for each of them. The SVD subroutine computing (real) time is observed to 

scale with the 3.8th power of the number of residues (N) (tSVD (seconds) = 4.17E-10×N3.77) while  

PowerB shows a time dependence proportional to approximately N2 (tPB = 2.29E-5×N1.94), which 

can be explained by the fact that the computing time for matrix inversion, also scaling as N2, 

dominates the overall computation. This reduction in computation time is especially prominent 

for large structures such as GroEL Protein (PDB ID: 1KP8; 7350 nodes). The conventional 

approach (SVD) took longer than 63 hrs for getting Btheo which can be obtained within 16 mins 

by PowerB. 

2.4.2. SPGNM 
 

Inspired by the classical HP model (Chan et al. 1998), which is widely used in protein folding 

simulations, we modified GNM by (1) assigning attractive interactions to H-H and P-P pairs only, 

and neglecting the interactions between H-P pairs and (2) considering that interactions of P-P 

and H-H pairs occur in particular distance ranges, characteristic of the type of amino acids. 

We repeated the above described computations with the objective of seeing if this will give any 

better Bexp predictions. 
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PDB ID         N 
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1bxr    5808 
1ryp    6386 
1kp8    7350 

 
 
Figure 2-1 Improvement in computation time using PowerB method. 
The logarithmic computing time is plotted as a function of logarithmic residue number N. Theoretical B-factors 
(Btheo) were computed by conventional approach (SVD) and by PowerB method. m denotes the slope of the 
regression lines in log-log plot. SVD shows that time (in units of seconds) scales with the 3.8th power of N while 
PowerB gives a time increase scaling approximately with N square, which reduces the computing time dramatically 
for large structures such as GroEL (PDB ID: 1KP8; 7350 nodes). The conventional approach (SVD) took longer 
than 63 hrs to compute BBtheo which could be computed within 16 minutes by PowerB. The data points used in this 
analysis are listed on the left. The correlation coefficient between the B-factors computed from SVD and those from 
PowerB is equal to 1. 
 
 
 

We repeated the above described computations with the objective of seeing if this will give any 

better Bexp predictions. 
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Bahar and Jernigan reported structure-derived potentials in 1996 and 1997 (Jernigan et al., 1996; 

Bahar et al., 1997b) and found that the most favorable attractive potentials between hydrophobic 

groups occur in range between 4 and 6 Å and those between polar and charged groups occur in a 

closer interval between 2 and 4 Å, suggesting a stronger interaction exist between P-P pairs. The 

potential between hydrophobic and polar groups monotonically decreases with increasing inter-

residue separations. We termed this modified model SPGNM. This model will first be compared 

with GNM in their abilities to predict Bexp. If the agreement with experiments is higher than that 

achieved by the GNM, we could then expect to further improve the model and parameters to 

represent the perturbations in fluctuation dynamics induced by alterations in local chemistry. 

 

The theoretical B-factors (Btheo) of 1250 proteins (see Supplementary, Table S2-1∗), retrieved 

from the PDB-REPRDB (Noguchi et al., 1997), were calculated by PowerB approach in different 

models and compared with the Bexp values. The results are shown in Figure 2-2. As we can see, 

the original GNM, using two different cutoffs – 7.3 and 15 Å, outperforms SPGNM models, and 

exhibits a higher agreement (Rcorr) with experimental B-factors. These results do not support the 

view of further pursuing this type of inclusion of specificities in the GNM.  

We then step back and ask ourselves again if it is true that more specific models do not improve 

the Bexp prediction? The failure of the HP model may lie in its simplicity. Can we generalize this 

finding to models containing more specific features of the 20 different types of amino acids? To 

answer this question, we would like to see how much, if any, a full atomic NMA with a detailed 

force field would outperform GNM in predicting Bexp? 
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Figure 2-2 The average correlation coefficients (Rcorr) between Btheo and Bexp over 1250 non-
homologous proteins.  
The model SPGNM-7355 uses cutoff 7.3 Å for HH pairs and 5.5 Å for PP pairs. SPGNM-7373 and SPGNM-1515 
use 7.3 Å and 15 Å respectively for both HH pairs and PP pairs while they set a zero potential for HP pairs. GNM-
7.3 and GNM-15 are the original GNM models that use 7.3 and 15 Å cutoffs respectively. All the 1250 proteins 
have X-ray diffraction temperatures (XDTs) above 70K. The average Rcorr values of the 1250 proteins are shown by 
the vertical stripe columns. The average Rcorr for 235 proteins that have XDT ≥ 273K, and for 59 proteins that have 
XDT ≥ 297K are indicated in the diagonal stripe and solid columns respectively. The symbols above the group 
columns refer to the statistical significance of the differences between these values. The groups referring to the same 
XDT (same color) are considered statistically identical by paired student T-test if the symbols above the group 
columns are the same. Groups with different symbols have different mean values. 
 
 
 

2.4.3. Comparison of NMA and GNM results 
 

NMA results computed for 183 monomeric, non-homologous proteins were kindly provided by 

Dr. Hiroshi Wako, the creator of ProMode, a database where equilibrium dynamics computed by 

full atomic NMA has been collected. The performance of NMA in predicting Bexp could provide 
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guidance as to how far GNM predictions can be improved by introducing specificities into its 

coarse-grained framework. The assumption here is that the more specificities are considered, the 

better prediction of Bexp can be achieved.  

 

The results are presented in Figure 2-3. To our surprise, we find that the GNM predictions agree 

with Bexp better than NMA do. The Rcorr of NMA and Bexp is 0.549 while GNM and Bexp is 0.582 

and 0.575 for cutoff 7.3 and 15 Å respectively. The difference between NMA and GNM is 

statistically significant. However, the changes in the cutoff distances used in GNM do not affect 

the quality of predictions in this case, as indicated by the same symbol in Figures 2-3.  

 

This finding led us to reconsider the rationale that GNM can be improved by introduction of 

residue specificities. At least, we have seen the upper bound of the predicting power for Bexp in 

current elastic network models. On the other hand, we have to re-define what we mean 

‘improvement’ in the model. Some alternative experimental benchmarks are needed as we assess 

the performance of GNM. Or, new criteria, directly related to protein functions, have to be 

established so as to verify if the time average fluctuations or mode mobilities, predicted by the 

GNM are functionally meaningful. The present results also warn us about future attempts in 

introducing amino acid specificities into the simplified elastic network models such as GNM, 

ANM, βNM (Micheletti et al., 2004) or Hinsen’s NMA model in MMTK (Hinsen, 2000) when 

the performance of the model is assessed by their ability to reproduce Bexp. Not surprisingly, one 

can find the correlation coefficient between NMA and GNM to be quite high (0.735 for cutoff7.3 

Å and 0.783 for cutoff 15 Å). It is very interesting to notice that GNM using cutoff 15 Å bears 

closer agreement with NMA than GNM with a 7.3 Å cutoff. This could be explained by the fact 
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that a longer range of interaction, compare to atomic NMA, is incorporated into the elastic 

network. At this point, we deem appropriate not to pursue any further our attempts for including 

residues specificities in the GNM to give better B-factor predictions. 
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Figure 2-3 Comparison of NMA and GNM predictions.  
The predictions of Btheo from NMA and GNM using two cutoff distances are compared with their experimental 
counterparts, Bexp, for 183 test proteins NMA-B, GNM-7.3-B and GNM-15-B are the average Rcorr between Bexp and 
BBtheo from NMA, GNM using 7.3 Å cutoff and GNM using 15 Å cutoff, respectively, for 183 monomeric proteins. 
Correlations of NMA and GNM predictions using two different cutoff distances are also shown on the rightmost two 
columns. The groups whose mean Rcorr values are statistically identical, as examined by paired student T-test, are 
indicated by the symbols above the group columns. 
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2.4.4. GNM predictions for X-ray crystallographic B-factors and mean-
square deviations from NMR models 

 
 
Apart from Bexp, we are also interested in assessing how GNM predictions agree with the Mean 

Square Deviations (MSDs) of NMR models deposited in the PDB for a given protein and in 

finding alternative benchmarks to validate the performance of GNM in general. As a result, we 

initiate a systematic analysis to compare GNM predictions with the MSDs of NMR models. We 

also would like to know how good the agreement with NMR results is in comparison to the 

agreement between GNM predictions and Bexp from X-ray Structures. 

 

181 families (Supplementary, Table S2-3∗) of proteins were selected as described in the 

METHOD section. One X-ray structure and one NMR structure in each family were downloaded. 

So, there are 181 X-ray structures and 181 NMR structures. The GNM analyses are applied for 

the entire 362 structures and MSD of the 181 NMR structures were computed. The first model in 

each NMR structure is taken for the GNM Btheo calculation, which is again obtained from 

PowerB algorithm. The data have shown that the average Rcorr of Btheo from GNM and MSD 

from NMR structures over 181 proteins is 0.65 while it is only 0.53 for that of Btheo and Bexp (X-

ray structures) over the other 181 proteins. The difference is statistically significant. Due to some 

X-ray members that are much larger in size than their NMR partners within the same families; 

we selected 82 families the members of which were both monomeric structures with a size 

difference less than 40 residues. This should exclude the possibilities that the differences in 

correlation coefficients that might be imparted by the size discrepancy between the members. We 

note that the GNM is theoretically expected from central limit theorem to give poorer predictions 

for smaller proteins. The data confirm again that the fluctuation behavior predicted by the GNM 
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does give a better agreement with NMR MSD (than X-ray B-factors), scoring a Rcorr value of 

0.66 while the X-ray Bexp, give an Rcorr value of 0.57. Again, the difference of the two is 

statistically significant according to the result of paired student T-test. 

 
2.4.5. Parameter refinement 
 
 
As we know from the INTRODUCTION, the GNM has two adjustable parameters. One is the 

spring constant γ, which is usually adjusted to match the absolute size of experimental Bexp and 

the other is the cutoff distance, defining the connectivity of the network. The latter is less 

influential in terms of qualitative effect on the profile of fluctuations, specially in the low 

frequency regime. However, there have been only a few rigorous studies, carried out 

systematically, to examine how the selection of cutoff distance affects GNM predictions except 

for Kundu’s work in 2002 on exploring this effect over 113 non-homologous proteins (Kundu et 

al., 2002). Their results suggested an optimal cutoff of 7.3 Å, which is consistent with the first 

coordination shell range of 6.8-7 Å (Miyazawa and Jernigan, 1985; Bahar and Jernigan 1997) in 

the neighborhood of amino acids in folded structures. With a fast B-factor calculation algorithm 

(PowerB) at hand, we would like to revisit this issue by varying the cutoff distances over a wider 

range and by performing the computations for a larger set of proteins.  

 

The representative set of proteins of 1250 non-homologous proteins (Supplementary material, 

Table S2-1∗) was selected to study the effect of the cutoff distance on Rcorr of Btheo and Bexp. The 

computation was carried out using PowerB. An average constant kBT/γ = 1.10 ± 0.50 Å2 was 

obtained in reasonable agreement with Kundu’s result, kBT/γ = 0.87 ± 0.46 Å2, over 113 

monomeric proteins (Kundu et al., 2002). As we can see in Figure 2-4, an optimal cutoff of 15 Å 
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was observed as opposed to the local maximum at 7.3 Å for all the proteins that have X-ray 

diffraction temperature (XDT) above 70K. When we select the 235 proteins that have XDT ≥ 

273K, we can see that the range of cutoffs from 7.3 Å to 15 Å give statistically identical Rcoff 

except for the case as Rc = 10 Å. However, if one selects only those proteins with an XDT ≥ 

297K, which results in a subset of 59 proteins, the wide range of the cutoff 7.3 Å to 15 Å are 

observed to give the same Rcoff. The inverse coordination number 1/Гii (denoted as 1/contact in 

Figure 2-4), the leading term of serial expansion of Btheo, is also compared with GNM results 

using different cutoff distances. We can see how GNM improves Rcorr compared to this first 

approximation. Figure 2-4 shows that the predictions from GNM with all of the different cutoffs 

give a better Rcorr with experiments than 1/Гii does.  

 

2.4.6. Other criteria to assess the performance of GNM: Protein 
Penicillopepsin as an illustrative example 

 
 
Penicillopepsin is a hydrolase that has a broad specificity similar to that of pepsin A (Khan et al., 

1998). If one examines its dynamics using GNM with two different cutoffs – 7.3 and 15Å, it can 

be seen that the mobility at the catalytic residue Tyr75 has a dramatic change in its lower modes 

(Figure 2-5). At cutoff 7.3 Å, Tyr75 appears highly mobile as evidenced by the red color in the 

ribbon diagram or mounting on a high peak in the mobility plot (the upper and lower panel in 

Figure 2-5a, respectively). Interestingly, these two cutoffs give approximately the same Rcorr 

between Bexp and Btheo (0.596 for cutoff 7.3Å and 0.603 for cutoff 15Å) despite the 

disappearance of the peak near Tyr75. This suggests that we could miss the mobility changes in 

some functional residues if we were only focusing on the overall Rcorr values. 
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Figure 2-4 Average Rcorr as a function of cutoff distance and XDT, over 1250 proteins.  
The correlation coefficient (Rcorr) between BBtheo and Bexp is shown as a function of cutoff distance and XDT for 1250 
non-homologous proteins. The first set of results (labeled 1/Contact) refers to the correlation Rcorr between Bexp and 
the inverse residue coordination number (1/Гii) averaged over all proteins. Гii is the coordination number of residue i, 
an indication of local packing density (Halle, 2002). The value is determined with a GNM cutoff 7.3 Å in this case. 
The average Rcorr, computed by PowerB approach using different cutoff distances, were obtained for a subset of 
proteins of which the X-ray diffraction data were collected at different temperature ranges of XDT - ≥ 70K, ≥ 273K 
and ≥ 297K. The mean Rcorr values of different groups are considered statistically identical by paired student T-test 
if the symbols above the group columns are the same. Groups with different symbols have different mean values. 
 
 

In Chapter 2, we will show that a strong coupling exists between enzyme catalytic residues and 

key mechanical sites that are distinguished by their low mobilities in the slower modes. Since 

this restricted mobility of catalytic sites in the GNM slow modes is a general effect observed for 

enzymes across all the classes, this observation could serve as a new criterion, directly related to 

protein function, to assess the optimal model parameters. 
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Figure 2-5 Dependence of the slowest two modes accessed by 1BXO on cutoff distances.  
The slowest two modes accessed by 1BXO are changed with the selection of cutoff distances. The ribbon diagrams 
are color-coded according to the residue mobilities in the upper panels. The residues are colored blue→ green→ 
yellow→ orange→ red in the order of increasing mobilities. The catalytic residue, Tyr75, is shown in ball-and-stick. 
Residue mobilities against residue index are plotted in the bottom panels. The 1st and 2nd slowest normal modes are 
shown in solid and dash lines, respectively. The mobility of Tyr75 in the two modes are marked by open circles. 
This GNM analysis was performed with two cutoff distances, 7.3 and 15 Å. 
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In Chapter 2, we will show that a strong coupling exists between enzyme catalytic residues and 

key mechanical sites that are distinguished by their low mobilities in the slower modes. Since 

this restricted mobility of catalytic sites in the GNM slow modes is a general effect observed for 

enzymes across all the classes, this observation could serve as a new criterion, directly related to 

protein function, to assess the optimal model parameters. 

 

 

2.5. DISCUSSION 
 
 
Why does GNM agree better than NMA with Bexp? The difference between GNM and ANM 

could still be attributed to their different potentials. As discussed in the INTRODUCTION, 

GNM potential that takes account of the energy dependence associated with the internal 

orientational changes (i.e. VGNM), and it is physically more meaningful than one exclusively 

based on the magnitude of distances (VANM or VNMA). Hence, GNM could give better Bexp 

predictions despite of its isotropic assumption. Full atomic NMA potentials are more 

complicated, and uncertainties in energy functions and parameters may be partly responsible for 

their limited performance.  

 

The better agreement of GNM with NMR MSDs, compared to that with X-ray Bexp is 

another interesting result. Since this study is performed over proteins within the same family, 

the difference in Rcorr between the two proteins in the same family mainly results from different 

experimental approaches. It seems that the measurements done in solution (NMR) show better 

agreement with GNM, compared to those measured in densely packed crystals (X-ray). In 

Kundu’s study (Kundu et al., 2002), crystal contacts were considered when comparing the Bexp 
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with GNM result. A better agreement is obtained when crystal contacts from the neighbor 

molecules are considered than those are omitted. The correlation coefficient with experiments 

increases 7% (from 0.58 to 0.65; Kundu et al., 2002) in this case. We did not consider the crystal 

contacts in this study. Hence, the fact that Rcorr value between NMR and GNM surpasses that of 

X-ray and GNM by 9% over 82 protein pairs could be partly due to the crystal contacts in the X-

ray structures.  

 

Additionally, we adopted a wide range of distances from 7.3 to 30 Å, in the examination of the 

effect of cutoff distance on GNM results, and found that, in general, Rc values from 7.3 to 15 Å 

give approximately the same Rcorr although Rc = 15 Å gives the best correlation at low XDT. 

Higher XDT values results in a better correlation. The enhancement is quite noticeable. It seems 

that, at an XDT higher than the glass transition temperature of proteins, roughly 200K (Ringe 

and Petsko, 2004), the topology of inter-residue contacts rigorously included in the GNM plays a 

dominant role. To summarize the findings, we believe that the dynamics exhibited by a protein 

molecule can be satisfactorily described by the GNM as a first approximation. And the 

predictions provided by GNM would be expected to be more accurate if the measurements refer 

to a higher temperature and less constrained environment (e.g. solution). 

 

In the illustrative study of the penicillopepsin (1BXO), the dramatic change in the mobility of 

Tyr75, as an increased cutoff distance is imposed, can be explained by its relatively larger 

coordination number (CN) compared to its sequential neighbors. For instance, the CNs for 

SER72, ILE73, SER74, TYR75, GLY76, ASP77, GLY78 and SER79 are 9, 8, 8, 7, 5, 4, 6 and 10, 

respectively, for Rc = 7.3 Å. However, the CN for the same residues changes to 53, 60, 45, 54, 53, 
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43, 28 and 41 as the cutoff increases to 15 Å. One can easily see that the CN of Tyr75 changes 

from being relatively low to relatively high compared to its neighbors as Rc increases. This is due 

to the fact that Tyr75 sits on a loop that points into the center of an open pocket surrounded by 

the rest of the structure. As the cutoff increases, the surrounded neighbors start to be ‘visible’ or 

‘sensible’. The special topological arrangement in which Tyr75 is embedded, and therefore the 

resulting constrained dynamics renders this residue functionally critical. As a result, 15 Å could 

be a ‘safer’ choice when we apply GNM to a middle size protein based on the new criterion that 

catalytic residues in enzymes have a constrained dynamics, which will be discussed extensively 

in the next chapter. However, one should note that, in general, cutoffs from 7.3 to 15 Å give 

qualitatively the same GNM mode profile especially in the low frequency mode. Only in a few 

cases did we observe a mobility change in a group of residues as that we see in 1BXO.  More 

discussion regarding this will be presented in the discussion of COMPACT algorithm in the next 

chapter.   

 
 
 
 
 
 
 
 
 
 
 
 
 
†

 
 

                                                 
∗ All the Supplemental materials can be found at http://ignm.ccbb.pitt.edu/Lee-thesis.zip
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3. COUPLING BETWEEN CATALYTIC SITES AND 
COLLECTIVE DYNAMICS: A REQUIREMENT FOR 
MECHANOCHEMICAL ACTIVITY OF ENZYMES‡ 

 
 
 
 

3.1. ABSTRACT 
 
 
A subtle interplay between chemical kinetics and molecular mechanics results in enzyme 

activities. This interplay requires a communication between catalytic residues and key 

mechanical regions of the enzyme. Here, we conducted a systematic study on 98 enzymes 

representative of different enzyme classes using GNM to reveal the existence of coordination 

between catalytic function and conformational dynamics. The result showed that more than 70% 

of the catalytic residues in the examined monomeric enzymes are co-localized with the global 

hinge centers predicted by the GNM. Moreover, 94% (87/93) of the examined enzymes have at 

least one global hinge center in their active site. If one normalizes the fluctuations in each protein 

and rate the most mobile residue as 100% and the least one as 0%, a low translational mobility 

(< 7%) is observed for the catalytic residues consistent with the fine-tuned design of enzymes to 

achieve precise mechano-chemical activities. The odds ratio showed an average 3.9-fold 

enhancement in the probabilities of finding a catalytic residue in the key mechanical regions (or 

hinge sites) compared to that of randomly finding one such residue in a given enzyme. On the 

other hand, the ligand-binding residues enjoy a moderate flexibility to accommodate the 

incoming substrates, although they exhibit a tendency to closely neighbor the catalytic sites. 

                                                 
‡ Reprinted from Structure 13(6), Yang, L-.W. and Bahar, I. “Coupling between Catalytic Site and Collective 
Dynamics: A requirement for Mechanochemical Activity of Enzymes” p893-904  Copyright (2005) with permission 
from Elsevier. 
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Nevertheless, highly mobile ligand-binding residues are occasionally observed in the case of 

sites that bind a wide range of ligands or sites that serve as part of the proton-shuttling machinery. 

We utilized these findings in an algorithm for enzyme active site prediction, which is based on 

low resolution structural constraints and dynamic fingerprints. The method shows a high 

sensitivity and a moderate specificity for a set of representative monomeric enzymes across all 

the six enzyme classes. All the false positives predicted by this algorithm turn out to be highly 

conserved residues, suggesting their dynamics to be associated with evolutionarily optimized 

functional requirements. These findings could serve as new criteria for assessing drug binding 

residues, and reduce the computational time and memory cost of substrate docking searches. 

 

 

3.2. INTRODUCTION 
 
 
Understanding the relationship between protein structure and biochemical function is of utmost 

importance for effective design or inhibition of proteins. Despite the rapidly increasing number 

of known structures and the advances in techniques for probing activity, relatively few studies 

have systematically investigated the connection between catalytic function and conformational 

dynamics. While several groups have examined the molecular dynamics of individual enzymes, 

only recently is conformational dynamics being recognized as a mechanism that supports 

catalytic activity (Benkovic et al., 2003; Daniel et al., 2002; Diaz et al., 2003; Luo et al., 2004; 

Ringe et al., 2004; Tousignant et al., 2004; Agarwal et al., 2004; Eisenmesser et al., 2002; Clark, 

2004; Kohen et al., 1999; Wolf-watz et al., 2004).  
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Kern has given compelling evidence on the coupling between enzymatic kinetics and molecular 

dynamics in a quantitative detail (Eisenmesser et al., 2002) In this study, the transverse auto-

relaxation rates (R2), sensible to the slow conformational changes (micro- to milliseconds), have 

been measured for an enzyme, human cyclophilin A(CypA). Measurements of R2 revealed that 

during the catalysis of CypA, some amino acids (the catalytic residues) undergo microsecond 

conformational exchanges. Kern divided the catalytic scheme into 3 states – free enzyme (E), 

enzyme bound with trans-formed substrate (EStrans) and enzyme bound with cis-formed substrate 

(EScis). There are mass flows between two given states with certain forward and backward rates. 

The flow from E to EStrans or EScis reflects the substrate binding affinity and the flow between 

EStrans and EScis gives a catalytic rate. Kern was able to derive the rate constants from measuring 

the increased value of R2 upon substrate binding (Rex) as a function of the increase in substrate 

concentration. Those rates were determined to be in hundred microseconds range, which agreed 

well with the measurements on the enzyme conformational changes. If we assume this catalysis 

to be described by a simpler Michaelis-Menten scheme, the parameter Kcat, revealed by the rate 

constants for the flows between EStrans and EScis, and KM, revealed by the binding kinetic 

constants associated with the flow from E to EStrans and EScis, have been indirectly determined in 

this study. In other words, the conformational dynamics for correct enzymatic catalysis should 

occur in a frequency range proportional to the enzyme turnover rate or to Kcat/KM, which can be 

experimentally measured, as proven by Kern’s study. 

  

Thornton and collaborators recently created a dataset (CATRES) in which structural and 

physico-chemical data on 615 catalytic residues have been compiled (Bartlett et al., 2002). The 

catalytic residues in the dataset are defined according to well-defined criteria and experimental 
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data reported for 176 non-homologous enzymes. Properties compiled in CATRES include amino 

acid type, secondary structure, solvent accessibility, flexibility, conservation and quaternary 

structure and function. In particular, attention is invited to the low temperature factors of 

catalytic residues as well as their preferred coiled conformations. Also, the data have shown that 

the relative solvent accessibility (RSA) of catalytic residues is low; catalytic residues indeed tend 

to be localized within ‘clefts’ that have moderate access to solvent, while they are not deeply 

buried inside the proteins. Using a neural network algorithm and spatial clustering, Thornton and 

coworkers were able to predict the catalytic sites of a number of test enzymes with an accuracy 

rate of 69% (Gutteridge et al., 2003). From the weighting scheme used in their neural network 

algorithm, it can be inferred that the conservation of amino acids, the residue types, especially 

the charged residues, RSA and cleft types play an important role (in the order of importance) but 

the secondary structure features and the depth (extent of the burial) have trivial impact on the 

accuracy of active site predictions. More recently, a new resource, the Catalytic Site Atlas (CSA) 

database (http://www.ebi.ac.uk/thornton-srv/databases/CSA/ ), has been made available by the 

same group (Porter et al., 2004). CSA contains both hand-curated CATRES entries and 

homologous entries generated by multiple sequence alignments, covering about 27% of all 

enzymes structures presently deposited in the Protein Data Bank (PDB) (Berman et al., 2000).   

 

Recently, Ma and coworkers invited attention to the possibility of accurately describing proteins 

dynamics in the absence of amino acid sequence and atomic coordinates (Ming et al., 2002a; 

2002b) . The major point is to take rigorous account of the protein architecture, described by the 

inter-residue contact topology, using an elastic network (EN) formalism (Bahar et al., 1997a; 

Atilgan et al., 2001). This and other studies based on EN models lend support to the view that 
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proteins possess mechanical characteristics uniquely defined by their particular architecture, 

regardless of their chemical properties. It also raises other questions. To what extent are these 

structure-induced mechanical properties functional? Is there any coupling between 

conformational mechanics and chemical activity? Can we identify potentially functional residues 

by merely examining the enzyme dynamics?  

 

We present here the results from a set of 98 non-redundant, non-homologous enzymes, 24 of 

which are inhibitor-bound enzymes extracted from the PDB (Set 1; Table 3-1), and 74 are 

monomeric enzymes taken from CATRES (Set 2). Set 1 provides information on 104 catalytic 

residues, and 159 ligand-binding residues, and Set 2, on 253 catalytic residues.  

 

Figure 3-1 illustrates the distribution of mean-square (ms) fluctuations, as exhibited by the 

experimental temperature factors, for all residues (panel a), catalytic residues (panel b), ligand-

binding residues (panel c) in this set, as well as the distribution of these enzymes among the six 

EC classes (panel d). The B-factors scale with ms fluctuations as BBi = 8π <(ΔR2
i
2)>/3, where the 

subscript 1 ≤ i ≤ N refers to the residue position along the sequence.  We already note upon 

comparison of the distributions in panels a and b that catalytic residues tend to have smaller 

fluctuations compared to the average behavior. The origin of this behavior will be clarified 

below by examining the involvement of active sites in the collective motions predicted by an EN 

model, the Gaussian network model (GNM) (Bahar et al., 1997a).  
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Table 3-1 Correlation between functional sites from experiments and computations. 
 

PDB (a) Protein name 
Size (b) Experimental data (c) 

Catalytic res       | Ligand-binding res 
Theoretical results (d) 

   The global hinge centers 
10GS   Human glutathione S-

transferase P1-1 
2 x 209 
 

7, 8, 13, 38, 44, 51, 52, 64, 
65, 98 

A, B: 10, 108  A, B: 47-50 

1A16 Aminopeptidase P 440 260, 271 ,354, 361, 383, 
406 

350, 404 168-181  

1A30 HIV-1 protease 2 x 99 
 

A25, A30, B25 A27, A29, A48-A50, 
B23,B81,B84 

A, B: 25-28, 47-54 

1A3B Human α-thrombin 
heavy chain 

245 +14 57, 195 60A, 60D, 189, 194, 215, 
219

95-102, 121-123, 132-138, 158-176, 
198-208, 212-220, 221-228 

1A42 Human carbonic 
anhydrase II 

260 64, 92, 94, 96, 119 106, 131, 198, 199, 200, 
202 

44-53, 142-148, 186-191, 210-215, 
243-245 

1A47 CGTase 683 101, 141, 228, 230, 258, 
328, 329

197, 371 131-148, 247-262, 496-510 

1A5I Plasminogen 
activator 

244 57, 102, 156, 195 194 90-105, 120-123, 135-141, 155- 
161, 183-192, 194-209 

1A5V Asv integrase 54-199 64, 121, 157 62, 119, 154, 155, 158 62-67, 76-82, 153-158 

1AEC Actinidin 218 25 19 ,24, 26,66,68,69, 162 7-19, 113-115 
1AL8 Glycolate oxidase 359 24, 108, 129, 257 161, 254 80-106, 150-161, 225-258 
1ARZ E Coli dihydrodi-

picolinate reductase 
4 x 273 
 

B-D:159, 160, 163 B-D:12,13, 16, 17, 34, 39, 
81 ,84 ,88, 102,104, 127, 
129, 169, 170 

A, B: 134-195, 197-239 
C, D: 147-164, 189-216 
 

1B3N β-ketoacyl carrier 
protein synthase 

412 163,398-401 107, 108, 111, 193, 
198,202, 303, 340, 342

41-56, 145-219 

1B6A Methionine 
aminopeptidase 2 

110-478 231 219, 328, 331, 339, 340, 
376, 444, 447

163-271, 363-381, 445-462 

1BGQ N-Terminal domain 
of yeast Hsp90 

214 40,44,79,80,84,92,93 98, 
123, 124,171,173

34, 83, 124, 171 27-42, 82-93, 127-141, 149-165 

1BH6 Subtilisin DY 275 32, 64, 221 99-101 ,125- 127, 155 20-26, 122-126, 204-207, 214-217

1BVV Endo-1,4-β−xylanase 185 69, 78, 172 9, 80, 112, 116, 166 59-109, 128-140, 162-177 
1BLC β-lactamase 31-290 70 69, 234 65-72, 206-215 
1BR6 Ricin 268 80, 81, 121,123, 177, 180 78 14-33, 45-52, 168-180 
1BIO Complement factor D 16-243 57, 102, 195 189, 214, 218 122-124, 136-153, 155-160 
1BK9 Phospholipase A2 134 48, 52, 99 5, 9, 30, 45, 49 3-22, 43-54, 100-111 

1BXO Penicillopepsin 323 33, 213 75, 216 146-180 
1CP3 Apopain 35 +227 121, 122, 161-165 64, 205, 207, 209, 214 169-195, 261-274 

1CQQ Human rhinovirus 3C 
protease 

180 40, 71, 145, 147 142, 143, 144, 161, 165, 
170 

61-63, 70-72, 86-89 

1CR6 Murine soluble 
epoxide hydrolase 

2 x 544 
 

A, B: 333, 334, 465, 495, 
523

A, B: 381 A,B : 225-241 

 

 (a) References: 10GS:(Oakley et al., 1997); 1A16:(Wilce et al., 1998); 1A30:(Louis et al., 1998); 1A3B:(Zdanov et al., 1993); 
1A42:(Stams et al., 1998); 1A47:(Wind et al., 1998); 1A5I:(Renatus et al., 1997); 1A5V:(Lubkowski et al., 1998); 
1AEC:(Varughese et al., 1992); 1AL8:(Stenberg et al., 1997); 1ARZ:(Scapin et al., 1997); 1B3N:(Moche et al., 1999); 
1B6A:(Liu et al., 1998); 1BGQ:(Roe et al., 1999); 1BH6:(Eschenburg et al., 1998); 1BVV:(Sidhu et al., 1999); 1BLC:(Chen et 
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al., 1992); 1BR6:(Yan et al., 1997);1BIO:(Jing et al., 1998); 1BK9:(Zhao et al., 1998); 1BXO:(Khan et al., 1998); 1CP3:(Mittl et 
al., 1997); 1CQQ:(Matthews et al., 1999); 1CR6:(Argiriadi et al., 1999).  
(b) 1A3B has two subunits of 14 and 245 residues. 1A5V, 1B6A and 1BLC PDB coordinates refer to the indicated ranges.  
(c) The underlined residues are computed to have mobility scores < 0.10.  
(d) Hinge residues with mobility scores < 0.05, at the crossover between positive and negative displacements in mode 1.  
 
 
 
 

 
 
 
Figure 3-1 Distribution of temperature (B-) factors for average residues and catalytic residues. 
Distribution of temperature (B-) factors for (a) all (30419) residues in the examined dataset of 93 monomeric 
enzymes (Table 1 in Supplementary materials), (b) the 324 catalytic residues of these enzymes, and (c) and the 82 
ligand- binding residues of the subset of 19 monomeric enzymes in Set 1. The abscissa refers to the B-factors, 
divided into 20 intervals of equal size, and the ordinate indicates the number of counts in each interval. The original 
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Gaussian-like distribution of all residues is skewed towards low B-factors in the case of catalytic residues, and 
shows the same tendency but to a weaker extent in the case of ligand-binding residues. The mean values are <B> = 
0.24 for ‘all’ residues, 0.14 for catalytic residues and 0.17 for inhibitor-binding residues. Panel (d) shows the 
distribution of enzyme classes (E.C.) in the observed sets of proteins. 
 

Hinge-bending flexibility has been pointed out in several studies to be an important mechanism 

that underlies functional changes in protein conformations (Bahar et al., 1998a; Banks et al., 

1979; Frauenfelder et al., 1998; Falcon et al., 1999; Hirano et al., 2002; Levitt et al., 1985; Pang 

et al., 2003; Xiang et al., 2001; Zhang et al., 2003; Ma et al., 1998; McCammon et al., 1976; 

Cregut et al., 1998; Sinha et al., 2001). Hinge motions may be instrumental in facilitating ligand 

binding (Bahar et al., 1998a; Towler et al., 2004), in mediating allosteric effects (Xu et al., 2003) 

or fine-tuning function (Gutteridge et al., 2003). We have shown for HIV-1 reverse transcriptase 

(RT), for example, that the hinge residues in the p66 palm subdomain form a stable anchoring 

region about which the thumb and fingers enjoy rotational mobility (Bahar et al., 1999b). The 

mechanical role of the p66 palm goes hand-in-hand with its biochemical function, inasmuch as 

RT catalyzes nucleotide addition in the p66 palm, and not surprisingly RT inhibitors bind the 

palm to interfere with the global motions (Temiz and Bahar, 2002).  

 

We focus here on the low frequency motions, also called global motions (as opposed to local 

motions subject to high frequency modes), and ask if or how the global dynamics and enzymatic 

function are correlated. The dominant role of the slow modes in effectuating the functional 

motions has been suggested in early normal mode analyses (NMAs) (see for example Karplus et 

al., 1983; Go et al., 1983) and confirmed in many studies (e.g. Tama et al., 2000; Kitao et al., 

1999). Our approach is to determine the slowest modes for each enzyme, examine if the catalytic 

residues and ligand-binding sites are distinguished by any patterns in these modes.  
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The hypothesis on which our study is based is that a general dynamic pattern exists for the active 

sites of enzymes. We further ask how we can predict enzyme active sites using this information 

along with our knowledge of structural and chemical properties of proteins. In the later part of 

this chapter, we demonstrate an early attempt to predict enzyme active sites using information of 

global mode mobility and coarse-grained structural features. A new algorithm – 

COnformational-Mobility-based Prediction for enzyme ACTive sites (COMPACT) was 

developed for this purpose. Recognition of such dynamic patterns could serve as an additional 

criterion for identifying potentially functional sites, and pinpointing the relationship between 

dynamics and function in a more concrete manner, an issue that becomes increasingly important 

with progresses in structural genomics and proteomics. 

 

 

3.3. METHOD 
 
 
3.3.1. Sample proteins 
 
 
Our dataset consists of two sets of enzymes. First, all ligand-protein complexes available in the 

PDB were downloaded. Structures having higher than 90% sequence identity were removed; the 

remaining >100 structures were reduced to 24 (Set 1, Table 3-1) after requiring (i) the 

availability of explicit experimental data on inhibitor-binding and catalytic residues, (ii) the size 

of the inhibitor to be small-to-moderate (up to 35 heavy atoms), and (iii) all atomic coordinates 

to be deposited except those at the truncated domains that do not interfere with the catalytic site. 

Set 2 consists of 74 non-homologous, monomeric proteins extracted from CATRES (Bartlett et 

al., 2002). Three of these have a substrate composed of less than 10 residues (PDB identifiers: 
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2PHK, 8PCH and 8TLN). The complete dataset of enzymes is given in the Supplementary 

Material, Table S3-1 ( http://ignm.ccbb.pitt.edu/Lee-thesis.zip ). 

3.3.2. Definition of catalytic residues 
 
 
According to the definition introduced by Bartlett et al. (Bartlett et al., 2002), a  given residue is 

catalytic if (i) it is directly involved in a catalytic function, (ii) it affects the residues or water 

molecules directly involved in catalysis, (iii) it can stabilize a transient intermediate, or (iv) it 

interacts with a substrate or cofactor that facilitates the local chemical reaction. These criteria 

were adopted for defining the catalytic residues in set 2. Those in set 1 were identified either 

from (i) experimental data that explicitly indicate the involvement in catalytic function, or from 

(ii) the label ‘SITE’ in the PDB entry. We note that not all PDB files of enzymes include these 

labels, hence the need to examine the literature. This definition was confirmed to point to the 

same ‘active’ amino acids when applied to set 1, except for the inclusion of 1-2 additional 

residues in a few cases.  

 

The inhibitor-binding sites listed in Table 3-1 are those reported in previous experimental studies 

to bind the inhibitor (ligand). They may, or may not, overlap with an active site.   

 
3.3.3. Defining catalytic/inhibitory residues in two illustrative examples  
 
 
Penicillopepsin (PDB code:1BXO)  

The Protein Data Bank file 1BXO is a structure comprising a penicillopepsin, an aspartic 

protease, and a macrocycle pentapeptide inhibitor, PPi4. The aspartic protease family, which 

carries the essential proteolytic functions in many human pathogens, utilizes two aspartic acids 

and a deprotonated water to mediate the electron transfer between the catalytic residues and the 
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substrate, which in turn triggers the breakage of the scissile peptide bond of the substrate (Khan 

et al., 1998).  

The general catalytic mechanism is demonstrated through an example of rhizopuspepsin in 

Figure 3-2 (reproduced from Suguna’s work; Suguna et al., 1987). First, a water molecule 

coordinated by the catalytic aspartic acids D35 (corresponding to D33 in penicillopepsin) and 

D218 (corresponding to D213 in penicillopepsin) is deprotonated by the carboxyl oxygen of 

D218, which generates a nucleophilic hydroxyl group (Figure 3-2a). The carbonyl oxygen of the 

scissile bond forms a hydrogen bond with the Oδ1 atom of D35, polarizing the carbonyl bond and 

making the carbon atom more susceptible to the nucleophilic attack by the hydroxyl ion. A 

tetrahedral carbonate intermediate is thus formed at the onset of the peptide bond cleavage 

(Figure 3-2b). A weak hydrogen bond between the carbonyl oxygen of the P2 residue of the 

substrate and one of the hydrogens of the peptide nitrogen positions the hydrogen, such that the 

opposite direction becomes accessible to accept a proton from the Oδ2 of D218, which breaks the 

peptide bond and convert the catalytic aspartic acids back to their original hydrated state (Figure 

3-2c).  

 

In the case of penicillopepsin, the substrate is replaced with the noncovalently bound inhibitors, 

PPi3 and PPi4, mimicking the tetrahedral intermediate in the transition state along the reaction 

pathway (Figure 3-3; reproduced figure; Khan et al., 1998). The P2 asparagine on PPi3 and PPi4 

are coordinated in position through a hydrogen bond between the Nδ2 atom of the asparagines 

and the Oγ1 atom of T216 in both PPi3 and PPi4. Y75, a highly conserved residue in the flap 

region of all aspartic proteinases, forms part of the S1 pocket that interacts with the substrate at 
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the P1 position that contains a leucine residue. Here, T216 and Y75 are considered as inhibitory 

residues due to their contribution in interacting with specific inhibitors.  

 

In the CSA, the catalytic information on 1BXO was not obtained manually from literature survey. 

Instead, it is derived from sequence alignment against its sequential homologs whose catalytic 

residues are also annotated through sequence alignment. In addition to D33 and D213, threonine 

34, serine 36 and threonine 216 were also found to be potentially active site residues. However, 

warnings have been prompted in the CSA stating that the catalytic site annotation transferred by 

sequence alignment could be problematic. This problem has been revealed at the slight 

difference in protein functions that are conventionally indicated by 4-digit E.C. codes, although 

the differences usually lie in the last one or two digits. In this case, we conform to the original 

literature and annotate D33 and D213 as the catalytic residues for penicilopepsin. 

Based on the GNM analysis, 46 residues fulfill the requirement of belonging to minima of type I 

or type II with a mobility score Mi1,2 <  0.05; D33 and D213 are found to take part in this set of 

selected residues. Thus, the odds ratio for 1BXO is equal to (the number of catalytic residues 

present in the set “Selected” by GNM/ total number of “Selected” residues) / (total no. of 

catalytic residues/size of the protein) = (2/46)/(2/323) = 7.02 (Table 3-3); “Selected” is defined 

as the residues that belong to minima of type I and II with Mi1,2 <  0.05. 
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Figure 3-2 A proposed catalytic mechanism for rhizopuspepsin.  
D35 is Asp-35; D218 is Asp-218; OD1 is Oδ1; OD2 is Oδ2. 
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Figure 3-3 The chemical structures of PPi3 and PPi4. 
PPi3 and PPi4 are cyclic pentapeptide inhibitors with the side chains of P1’ and P2 being intramolecularly bonded. 
 
 

Endo-1, 4-xylanase (PDB code:1BVV) 

The endo-1, 4-xylanase of family G/11 is one of the enzymes responsible for xylan hydrolysis in 

many organisms. The catalytic mechanism is known as a retaining mechanism involving two 

carboxylic acids, one of which serves as a general base and the other serves as a general acid. 

The proposed mechanism is illustrated in Figure 3-4 (reproduced from Figure 1 of McCarter’s 

work in 1994; McCarter and Withers, 1994). First, a glycosyl-enzyme intermediate is formed 

through an anomeric linkage between the C1 atom of the glucoside and the general base as the 

general acid protonates the –OR leaving group. Subsequently, an adjacent water molecule comes 

in between the two carboxylic acids and protonates the general acid. The resulting nucleophilic 

 69



 

hydroxyl group forms a covalent bond with the C1 atom of the glucoside and replaces the 

anomeric bond. In the case of endo-1, 4-xylanase, E78 is the general base and E172 is the 

general acid as shown in Figure 3-5 (reproduced from Figure 1 of Sidhu et al., 1999). CSA 

annotates these two as the catalytic residues as well according to Davies’ work in 1995 (Davies 

G. and Henrissat B., 1995). However, in Sidhu’s experiments (Sidhu et al., 1999), point mutation 

of Tyr69 into phenylalanine abolishes the enzyme activity entirely. The catalytic importance of 

Y69 is also confirmed by the mutagenesis study of Tyr298 in β-glucosidase, corresponding to 

the Y69 in the xylanase. The catalytic activity of the mutant is reduced by 2000 fold compared to 

that of the native enzyme. Based on structural analysis, it is observed that a bifurcated hydrogen 

bond is formed between Hη of Y69 and the endocyclic oxygen (O5) of the xylose residue as well 

as between Hη of Y69 and Oε2 of the catalytic nucleophile, Glu78 (Sidhu et al., 1999). Hence, it 

is very likely that an asymmetric protonation occurs during the catalytic transition that favors the 

hydrogen bond on the side of Hη;Y69 - Oε2;E78. This in turn facilitates the attack of the 

nucleophilic water on the anomeric carbon (the C1 atom of the xylose residue), and results in the 

displacement of the α-anomeric linkage with the hydroxyl group. Based on this information, we 

consider Y69 also to be a catalytic residue for 1BVV. 

 

A few additional interactions are involved in the binding or better positioning of the inhibitor but 

not directly in mediating the glucosyl bond breakage in the enzyme-glucoside intermediate 

complex, BCX-2FXb (2-deoxy-2-fluoro xylobiosyl enzyme intermediate of Bacillus circulans 

xylanase). These are either contributed from the hydrogen bonds (Arg112, Pro116 and Tyr166) 

or by the hydrophobic interaction (Trp9) (Figure 3-6). These residues are defined as inhibitory 

residues in the present study. 
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There are 57 residues that are identified by GNM to belong to minima of type I and II with Mi1,2 

<  0.05; Y69 is the only catalytic residue among them. Residues E78 and E172, on the other hand, 

have Mi1,2 <  0.05 but do not belong to the minima I/II. Thus, the odds ratio for 1BVV is equal to 

(1/57)/(3/185) = 1.08 (Table 3-3);. 

 
 
 

 
 
 
Figure 3-4 The proposed mechanism for retaining glucosidases. 
 
 
3.3.4. Collectivity 
 
 
The degree of collectivity of mode k (Tama et al., 2001) is computed from 

 Ωk = (1/N) exp {– Σk [uk]i
2 ln [uk]i

2} (3-1)  

The kth eigenvector (uk) of Γ gives the profile of residue displacements along the mode k. N is the 

number of residues. The lower frequency modes usually have higher collectivity than the higher 

frequency modes. We examine the spatial position of the catalytic and inhibitor-binding residues 

relative to that of the global hinge regions associated with the slowest modes. The global hinges 

are identified from the crossover between the positive and negative elements of the eigenvectors.  
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Figure 3-5 Description of the formation of the glycosyl-enzyme intermediate.  
The fluorine atom at position 2 of saccharide slows down both the formation and the hydrolysis of the intermediate. 
The 2, 4-dinitrophenyl leaving group polarizes the anomeric carbon upon leaving and facilitates the first 
nucleophilic attack by Glu78, allowing the intermediate to form. 
 
 
 
3.3.5. Illustration of GNM analysis and comparison with experiments  
 
 
Figure 3-7 illustrates the computations for an example protein, endo-1,4-β-xylanase (1BVV) 

(Oakley et al., 1997) from Set 1. The eigenvectors u1 and u2 are plotted in panel a. The global 

hinge centers in the modes 1 and 2 are located at the crossover between the positive and negative 
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displacements of the respective eigenvectors u1 and u2. Four groups of global hinge residues are 

shared by the two modes: T67-G70, V81-S84, R89-P90, and Y166-M169, indicated by the  

 

 
 
 

 
 
 
Figure 3-6 2FXb group covalently bound with E78. 
2FXb (2-deoxy-2-fluoro xylobiosyl) group is surrounded by the catalytic residues of E78, E172 and Y69 and the 
inhibitory residues Trp9, R112, P116 and Y166. The fluoride atom is shown in green, oxygen in red, and nitrogen in 
blue along with the gray carbon backbone.  
 
 
 
arrows. Panel b shows the ribbon diagrams colored from red (most mobile) to blue (most rigid) 

according to the square fluctuations of residues in the slowest two modes, and panel c displays 

the structural regions exhibiting opposite direction fluctuations in these modes, colored red 

(positive) and blue (negative) in the two modes. The hinge residues lie at the interface between 

these anticorrelated regions. The catalytic and/or inhibitor-binding residues reported in the 

literature are labeled in panel a.  Note that mode 1 essentially sets in motion an extended loop at 

the entrance of the catalytic pocket permitting the opening/closing of the catalytic site, while 

 73



 

mode 2 engages a larger portion of the structure. The respective collectivities of modes 1 and 2 

calculated from Eq. 3-1 are Ω1 = 0.246 and Ω2= 0.576.   

 
 
 

 
 
 
Figure 3-7  Distribution of residue displacements along global modes for endo-1,4-β-xylanase 
 (a) Distribution of displacements along slowest modes 1 (solid) and 2 (dotted), as a function of residue index, 
computed for endo-1,4-β-xylanase. Catalytic and inhibitor binding residues are indicated by the respective labels ‘O’ 
and ‘■’. The crossover regions between negative and positive motions are the predicted global hinge sites, G41-W42, 
Y53-N54, T67-G70, V81-S84, R89-P90, T110-T111, F125-T126, Q133-P137, S140-N41, T147-N148, Y166-M169 
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(by combining both modes), four of which indicated by arrows are common to modes 1 and 2. (b) ribbon diagrams 
colored blue-green-yellow-orange-red in the order of increasing mobility of residues along modes 1 and 2. The 
(normalized) mobilities, [uk]i

2, are directly found from the values in panel a, squared, (c) the regions subject to 
opposite direction movements in modes 1 and 2, deduced from panel (a). Regions colored red and blue correspond 
to ‘+’ and ‘-’ displacements, respectively, along the first (left) or second (right) mode axes. 
Of interest is the comparison of experimentally known residues with the hinge sites predicted by 

the GNM. Three catalytic residues have been reported for 1BVV, one of which (Y69) coincide 

with a global hinge residue and the other two (E78 and E172) are positioned close to the hinge 

centers V81-S84 and Y166-M169, supporting the view of a coupling (communication) between 

catalytic and mechanically important sites.   

 

The inhibitor binding residues, on the other hand, show a more varied behavior: one (Y166) 

coincides with a global hinge residue, two (Y80 and R112) are first sequential neighbors to hinge 

residues V81 and T111 (mode 2 only), while P116 is rather exposed, distinguished by a high 

flexibility. The latter may indeed be instrumental for efficient recognition of substrates. These 

results suggest that ligand-binding may involve a network of residues that includes both highly 

flexible ‘recognition’ sites as well as constrained residues establishing the communication with 

the mechanically and chemically active sites. 

 
3.3.6. COnformational-Mobility-based Prediction of enzyme ACTive sites 

(COMPACT)  
 

Residues that precisely lie at minima in the mobility plots (see the plots in Figures 3-9a) are 

referred to as key mechanical residues of type I, and their first and second neighbors along the 

sequence are described as types II and III, respectively. In COMPACT, each minimum comprises 

5 residues : i-2, i-1, i, i+1 and i+2 (i falls in the range 3 ≤ i ≤ N-2) where Mi-2,av ≥ Mi-1,av ≥ Mi,av ≤ 

Mi+1,av ≤ Mi+2,av and Mi,av has to be less than 0.1. Residue i is the type I key mechanical residue. 
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Here,                                                   Mi,av = Mi,1 /λ1+ Mi,2/λ2                     (3-2) 

Let Ri represent the distance between the mass center of the protein and a given residue i. A 

small Ri value will usually correspond to a residue occupying a more central (interior) position, 

and the coordination number zi corresponding to that residue would be expected to be relatively 

high. Thus, an inverse proportionality between Ri and zi would be expected. The normalized ri, 

equal to RiN-1/3, for each minimum (potential catalytic residues) is plotted against Zi, which is 

the cumulative zi that equals , in Figure 3-8 on the right panel. A residue may be viewed as 

an ‘outlier’ if its coordination number is much smaller than that expected from its R

∑
+

−=

2

2

i

ik
kz

i by the 

regression line. This residue could enjoy a relatively higher solvent exposure despite being 

tightly packed. So, the relative position of minima and the regression line provide information on 

the solvent accessibilities of potential catalytic sites.  

 

The minima in the global mode shapes that have a high-to-moderate Zi or the ‘outliers’ that are 

distinguished by relatively low Zi (for a given ri) are selected for further scoring. We divide the 

region between the highest and the lowest Zi (see the legend of Figure 3-8) into four zones – 

Zone I, II , III and IV. In each zone, those minima are ranked according to their Δri value where 

Δri = f(Zi) - ri and f(Zi) is the function of the regression line. The residue with the largest Δri is 

top-ranked in each zone. A subset of top-ranking residues are selected for further clustering and 

scoring, which consists of the top-ranking 4/5 residues in zone IV, the top-ranking 4/5 residue 

below the regression line in zone III, the top-ranking 2/5 residues below the regression line in 

zone II, and one residue below the regression line in zone I. The number of minima to be 

selected in a given zone is rounded to its next integer value. For example, if there are 11 minima 
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in zone IV, the first 9 (instead of 8.8) with the highest Δri values will be selected. The selected n1 

minima are rank-ordered according to their Δri values and a deviation score, DS(i), is given by 

 

                   DS(i) = (n1 – i + 1)/n1 , i = 1, .n1            (3-3) 

where                                         Δri  >  Δri+1 , i = 1,. n1-1      

 

The clustering property of a given minimum is indicated by the summation of its pairwise 

distances from the other minima. d(i, j) denotes the linear distance between minimum i and j. We 

rank the summation of pairwise distances for minimum i, D(i) and give clustering score, CS(i), is 

given by 

 

                                                    CS (i) = (n1- i +1)/n1, i = 1,.n1               (3-4) 

where                                                  D(i)  <  D(i+1), i = 1,. n1-1 

and                                                     D(i) = Σj d(i, j) , j=1..n1      

 

As we can see, both DS(i) and CS(i) are normalized between 0 and 1. We further rank the 

residues by their FS(i) score, which is the sum of CS(i) and DS(i). The smallest of 12 or 3/4 of 

the minima with the highest FS score will be selected. If the number is less than 9, a re-clustering 

procedure is applied and minima are ranked according to their new FS scores. 
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Figure 3-8 The COMPACT algorithm 
The left panel provides a coarse-grained presentation of this illustrative protein. The gray nodes indicate the Cα 
atoms of the residues. The black dot denotes the mass center and each red dot indicates the type I minimum with 
Mi,av ≤ 0.1 centered at residue i. CN5i is the summation over the coordination numbers of residues i-2, i-1, i, i+1 and 
i+2. R stands for the distance between the mass center of the protein and a given residue. On the panel right, R at 
each minimum is plotted against its CN5. R is normalized by dividing it by N1/3. Blue dash circles indicate the 
minima that are far away from the regression line, implying locally high solvent accessibilities. Three vertical dash 
lines divide the minima into four regions: Zones I, II, II and IV. Each region spans one quarter of the difference 
between the highest and the lowest CN5 values. 4/5 of the total minima in Zone IV, 4/5 of the total minima 
underneath the regression line in Zone III, 2/5 of the total minima underneath the regression line in Zone II and 1 
minimum underneath the regression line in Zone I are selected for further spatial clustering and scoring, after rank-
ordering the residues based on their departure from the regression line. See the text for more details. 
 
 

3.4. RESULT AND DISCUSSION 
 

3.4.1. Catalytic residues coincide or communicate with global hinge regions 
 

Figure 3-9a displays the fluctuation profiles in the global modes of motion for a few enzymes 

selected from set 1. Fluctuation profiles for the complete set of 98 enzymes can be accessed at 

http://ignm.ccbb.pitt.edu/. The abscissa represents the residue index, and the curve displays the 
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distribution of residue fluctuations (squared) in the slowest modes predicted by the GNM. Peaks 

indicate the most mobile regions, and minima are those regions anchored in space, some of 

which act as global hinge residues (shown by the arrows). Global hinge residues are at the 

interfaces between domains, or clusters of residues, which move in opposite directions in the 

global modes. We will refer to minima in the slow modes as key mechanical sites.  

Figure 3-9a suggests that most of the active residues tend to occupy minima in the fluctuation 

profiles. Notably, the catalytic residues preferably coincide with, or sequentially neighbor, key 

mechanical sites regardless of the enzyme function or size. Panel b displays the color-coded 

ribbon structures corresponding to the proteins in panel a. The dark blue regions (minima in the 

slow modes) point to the residues subject to the strongest constraints in the global modes. 

Although these residues are not contiguous along the sequence, they usually cluster in space so 

as to consolidate the anchor/hinge region that coordinates the global movements. Examination of 

their structural properties and context shows that they are not necessarily coiled regions or 

domain linkages, but may occasionally occur in secondary structural motifs, such as kinks in 

helices. 

 
3.4.2. Quantitative assessment of mobilities in the global modes 
 

In order to make a quantitative assessment of the dynamics of active residues or ligand-binding 

in relation to key mechanical residues, we assigned a mobility score Mik to each residue i in the 

kth mode. Mik is the square fluctuation normalized with respect to the most mobile residue in the 

kth mode of the particular enzyme. The highest peak in the slow mode profile of each enzyme 

(Figure 3-9a) is thus assigned a mobility score of unity and the lowest, zero. Additionally, we 

examined the relative mobilities along the sequence, because a given residue may appear rigid 
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due to the constraints imposed on its bonded neighbors. Residues that precisely lie at local 

minima are referred to as key mechanical residues of type I, and their first and second neighbors 

are described as types II and III, respectively.  

 

The global mobility scores corresponding to the more collective mode among the two slowest 

modes were computed for all catalytic and inhibitor-binding residues of our dataset, which led to 

the distributions shown in Figure 3-10. The scores for the individual residues can be accessed in 

the iGNM database at http://ignm.ccbb.pitt.edu/ (Yang et al., 2005). The distributions in Figure 

3-10 panels a and b may be compared to the respective distributions in panels b and c of Figure 

3-1, which reveals that the skewed distribution of ms fluctuations indicated by the B-factors is 

further pronounced when attention is confined to the mobilities in the most collective modes. 

78% of the catalytic residues show mobility scores below 0.10 in the slow modes (66% below 

0.05) as can be seen from the inset in panel a. In contrast, the same interval (< 0.10) in the B-

factors distribution (i.e. all modes) contains 43% of catalytic residues and 25% of all residues. 

The insets in Figure 3-10 display the cumulative percentage of catalytic residues (panel a), and 

inhibitor-binding residues (panel b) in different mobility ranges, compared to those observed for 

all residues in the same mobility ranges. We also compare the predictions from global modes, vs 

all modes, which clearly demonstrates the high propensity of catalytic residues to have low 

mobilities in the global mode profiles. The low frequency mode shapes thus provide a means of 

discriminating potentially active sites.  
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Figure 3-9 Fluctuation profiles and Color-coded ribbon diagrams for 6 representative enzymes 
 (a) Fluctuation profiles in the global mode (k = 1) and position of catalytic and inhibitor binding residues illustrated 
for six enzymes from Set 1. Residues involved in catalytic function are marked in (o), inhibitors binding sites are in 
(■), and residues serving both catalytic and inhibitor binding functions are marked in (•). Arrows indicate the hinge 
sites. (b) Color-coded ribbon diagrams showing the localization of inhibitors (gray ball-and-stick) near the most 
constrained (blue) regions. See Table 1 for the list of chemically (from experiments) and mechanically (from 
computations) key residues for all ligand/inhibitor- bound enzymes in our dataset. 
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Figure 3-10 Distribution of mobilities predicted by the GNM slow modes analysis 
for (a) 325 catalytic residues, and (b) 81 ligand-binding residues in the examined set of 98 enzymes. The abscissa 
refers to the mobility scores of the residues found in the most collective GNM mode. The inset displays the 
cumulative fraction of catalytic residues (panel a), and inhibitor-binding residues (panel b) in different ranges of 
mobility based on the slow modes, compared to the cumulative fraction of catalytic residues and all residues in all 
modes and (see the labels). 
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The results found by averaging the scores over all proteins are presented in Table 3-2. <M1>cat 

and <M2>cat refer to the average behavior of catalytic residues in the slowest modes 1 and 2, and 

<M1>lig and <M2>lig are their counterparts for ligand-binding residues. The averages were 

calculated by evaluating first an average over catalytic residues for each protein, and then 

averaging over all proteins, which removes the biases arising from the different numbers of 

functional sites per protein. These results show that the catalytic residues possess highly 

suppressed mobilities in the first two slowest (dominant) modes. The low mobilities indicate 

their participation in (or close proximity to) the key mechanical sites of the molecules. These 

residues are for the most part fixed/anchored in space while the other regions undergo motions 

about them. The low mobility of the catalytic residues was already apparent in their B-factors, 

although this effect was less pronounced due to the superimposition of all modes in the B- 

factors. Extraction of the global modes shows that the reduced mobilities are essentially caused 

by their constrained global dynamics, rather than local packing effects.  

 

Table 3-1 compares the chemically active (catalytic and ligand-binding) residues identified in 

previous experimental studies (columns 4 and 5) and the global hinge centers (column 6) 

predicted by present computations. The underlined residues in columns 4 and 5 are those, among 

the experimentally reported chemically active residues, that are indicated by the GNM to be key 

mechanical sites of types I – III and to have mobility scores < 0.10. The close correspondence 

between chemical activity and mechanical role is evident by the large fraction of underlined 

residues. Column 6 lists the global hinge centers distinguished by mobility scores below 0.05 in 

the slowest mode. These residues are proposed here to be critical residues from mechanical point 
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of view, which could serve as targets for interfering with the dynamics of the enzyme, yet may or 

may not being involved in the active site. 

 
 
 
 
Table 3-2 Mobility scores (x 100) for catalytic and ligand-binding residues 
 
 

Enzymes ACTIVE SITES LIGAND-BINDING SITES 

  <M1>cat <M2>cat <MB>cat <M1>lig <M2>lig <MB>lig        
Average over 
proteins 

6.72 5.94 12.55 12.15 9.72 16.72 

A
ll 

(s
et

1)
 

Standard deviation 8.60 9.91 7.44 13.37 10.31 7.24 
        

Average over 
proteins 

9.06 6.75 13.77    

A
ll 

(s
et

2)
 

Standard deviation 9.40 8.46 9.09    
       
Average over 
proteins 

4.55 3.47 11.49 11.06 8.89 15.25 

Standard deviation 5.22 4.67 7.55 12.82 10.42 6.94 

M
on

om
er

s 
(s

et
1)

 

       
10GS (dimer) 21.30 41.08 24.45 27.31 23.05 25.62 
1A30 (dimer) 10.13 5.13 11.56 5.24 6.94 24.38 
1CP3 (dimer) 35.90 2.73 21.51 39.33 3.71 22.21 
1CR6 (dimer) 12.98 18.11 20.90 12.92 17.60 18.00 M

ul
tim

er
s 

(s
et

1)
 

1ARZ (dimer) 0.10 0.13 12.13 2.81 5.46 27.15 
 
 

3.4.3. Ligand-binding residues enjoy higher mobility despite their close 
proximity to catalytic sites 

 

The ligand-binding sites exhibit higher flexibility (<M1-2>lig ≈ 0.11 and <MB>B lig ≈ 0.17) and 

larger variations compared to the catalytic sites, although they are also relatively constrained in 

the global motions. We note that some of the ligand-binding residues also act as catalytic 

residues. Exclusion of these residues (46 out of 159), leads to an increase in mobility scores 
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(<M1>lig = 0.148, <M2>lig = 0.104 and <MBB>lig = 0.19) accompanied with larger variations. This 

suggests that ligand-binding residues occupy proximal positions with respect the catalytic 

residues but enjoy higher fluctuation, and the latter may indeed be required for efficient 

recognition of substrate, and optimization of intermolecular interactions. The close proximity of 

inhibitors to catalytic sites and their moderate mobility suggest that they block the catalytic 

function by interacting with the fluctuating residues in the entrance of a catalytic pocket for 

example. Our findings support the observation that regions of high and low structural stabilities 

participate in binding sites (Freire, 1999). 

 
3.4.4. Dimerization induces new cooperative modes that engage the catalytic 

site 
  

Among the 98 enzymes presently examined, four (10GS, 1A30, 1CP3 and 1CR6) are dimers, and 

one (1ARZ) is a tetramer. It is of interest to assess how multimerization affects the mobilities of 

active sites. A pure monomer set was generated by removing the multimers from the set 1. It is 

shown in Table 3-2 that the <M1>cat and <M2>cat 
values decrease in this case, as well as their 

standard deviations, consistent with the higher mobilities of chemically active residues in the 

multimers (Table 3-2). Multimerization usually provides a means of achieving structural and 

dynamic properties that would otherwise be inaccessible to the monomers. It is of interest to see 

if the new structures and structure-induced modes of motion (especially low-frequency global 

motions) impart stability and/or mechanical properties that affect catalytic residues. It can be 

anticipated that a high mobility/disorder at the catalytic site might be detrimental from the point 

of view of the precise regulation and communication ability of the active site. 
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Figure 3-11 displays the color-coded ribbon diagrams obtained for the 1st (left column) and 2nd 

(right column) slowest modes of these multimers. Catalytic residues are shown in red ball-and-

stick representation, and inhibitor-binding residues are shown in color-coded (according to 

mobilities) ball-and-stick representation. 

 

The dimers 10GS, 1A30 and 1CP3 exhibit symmetric motions with respect to extended hinge 

regions that span the entire structures. The hinge-region lies at the interface between the 

monomers in mode 1 in all three cases, whereas it runs through the cores of the monomers in 

mode 2, as indicated by the dashed lines. Interestingly, the motions of the monomers in the 2nd 

mode of the dimers almost exactly reproduce their 1st mode computed for the monomers taken 

alone (not shown), consistent with the decrease in the wavelength of the 2nd slowest vibrational 

mode by ½ compared to the 1st; and one expects the higher frequency modes to be even more 

localized. So, mode 1 is the new (most collective) mode that appears to be exclusively induced in 

the dimeric form. In 10GS, this mode ensures the localization of the catalytic sites in a 

mechanically important region. The mobility score of the catalytic residues in this mode is 0.21, 

which is decreased by a factor of 2 compared to the mobility in mode 2 (0.41), and this coupling 

to a global hinge region may be anticipated to be functional. A similar effect can be conjectured 

in 1CR6 where dimerization secures the co-localization of the catalytic site with a global hinge 

region. In 1A30 and 1CP3, on the other hand, mode 2 already confines the catalytic site in a 

mechanically key region, as evident from the low mobility scores. Dimerization seems to be a 

structural, rather than dynamic, requirement in these cases. It permits the catalytic site to be 

sequestered from solvent in HIV-1 protease (1A30). Finally, the catalytic residues are positioned 

at the interface between the core domain and two different peripheral domains in the two slowest 

modes of 1ARZ, suggesting the activation of different domains in different modes. 

 86



 

 
 
 

 
 
 
Figure 3-11 Global mode shapes of five multimeric enzymes included in our dataset. 
The left and right ribbon diagrams refer to modes 1 and 2, respectively. Catalytic residues are shown by red ball 
representation. The dashed line indicates the loci of global hinge regions. The mobility scores corresponding to 
catalytic residues are indicated in each case. 
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3.4.5. Catalytic residues occupy or neighbor key mechanical sites 
 

The correspondence between the loci of the catalytic residues and key mechanical sites, revealed 

upon comparison of the position of the residues that control the chemical activity (from 

experiments) and global dynamics (from computations), is a feature of fundamental functional 

importance that deserves further examination. The ligand-binding residues are found to exhibit a 

broad range of mobilities. The catalytic residues, on the other hand, are severely constrained. The 

averages over the 93 monomeric enzymes are <M1>cat = 0.085 and <M2>cat = 0.066 in the 1st and 

2nd 
slowest modes, respectively, as opposed to <M1>all = 0.236 and <M2>all = 0.154 for all 

residues. From another perspective, 228, out of 325 catalytic residues included in our dataset 

serve as a key mechanical sites of type I, II, and III (with respective proportions of 107:82:39) 

upon considering the weighted average of the two slowest modes. Therefore more than 70% of 

the examined catalytic residues communicate with key mechanical sites, if not directly engaging 

in a mechanical role, and their ms fluctuations are, on the average, 2-3 times smaller than those 

of ‘average’ residues. This reveals a simple but important feature in the design of enzymes: 

catalytic activity takes place at cooperatively constrained regions distinguished by suppressed 

fluctuations in the collective dynamics. And a corollary is to select inhibitor target sites from 

amongst the residues lying at the minima of the global mode shapes.  

 

One could hypothesize based on these observations that catalytic residues are immobilized in 

order to protect the delicate arrangement of functional groups. It is important to note, however, 

that the low mobility of catalytic residues is not a consequence of their being rigidly embedded 

in a given (functional) domain, but lying near crossover regions between substructures subject to 

oppositely correlated motions, as illustrated in Experimental Procedures for an example enzyme. 
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The catalytic residues are therefore localized in/near anchoring (hinge) regions that have limited, 

if any, translational mobility, while enjoying rotational flexibility to allow for the concerted 

rearrangements of the surrounding domains. This co-localization may be a requirement for 

effective coupling between chemical activity and conformational mechanics.  

 

Examination of the catalytic residues (< 30% of the complete set) that do not conform to the 

general behavior of restricted fluctuations in the global modes shows that the computed 

mobilities of these particular residues may be attributed to specific requirements. For example, 

Tyr75 in 1BXO is located at the tip of a “flap” - a β-hairpin loop that forms the catalytic pocket 

against which inhibitors pack. The large fluctuations of Tyr75 are needed to accommodate the 

docking of big inhibitors such as PPi3 or PPi4. Another example in His64 in 1A42, which acts as 

a proton shuttle between zinc-bound solvent and bulk solvent, and switches between ‘in’ and 

‘out’ conformations depending on the pH. The rotational motions of His64 ensure the occurrence 

of catalytic reaction at suitable pH. 

From another perspective, our analysis shows that 86% (80/93) of the enzymes have at least one 

key mechanical residues of type II and III; and 94% (87/93) have at least one key mechanical 

residue of type I, II and III in their active site. 

  

3.4.6. Enzymes are predisposed to couple their chemical and mechanical 
activities  

 
 
Several studies have demonstrated that the global mode shapes are insensitive to structural 

details, but are uniquely defined by the overall 3-dimensional structure (see for example Kitao 

and Go, 1999). The global mode profiles may indeed be viewed as the signatures of particular 
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architectures. Consistent with this observation, the inclusion or exclusion of a few contacts are 

usually inconsequential, because the observed dynamics is a collective property of ~10
3 

inter-

residue contacts (for a protein of N = 300 residues, and an average coordination number of 7 per 

residue). The restricted motions at the catalytic sites are not due to the presence of substrates at 

those sites, but are intrinsic mechanical properties of the enzymes themselves irrespective of 

bound molecules. We also note that active sites are frequently in clefts, which may be functional 

in excluding water molecules and/or maximizing the contact surface at the ligand binding site. 

 

Figure 3-12 shows the global modes obtained for liganded and unliganded forms of a protein (β-

lactamase in panel a, and for two different ligand-bound forms of another protein (plasminogen, 

panel b. The close similarity of the two curves in each panel illustrates the robustness of the 

global modes. We note, however, that inhibitor binding may alter the mobility of a few key sites, 

while leaving the overall profile almost unchanged, and the maintenance of the fluctuation 

profile may indeed be critical for inducing or propagating functional motions. The similarity in 

the global dynamics of liganded and unliganded forms suggests that particular regions of 

proteins are already predisposed to serve as a catalytic center prior to substrate or inhibitor 

binding, and substrate binding essentially stabilizes the conformations, or induces the motions, 

that are intrinsically favored or accessible by the enzyme under native state conditions. 
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Figure 3-12 Comparison of the dynamics of the liganded and unliganded forms of two enzymes 

(a) β-lactamase in liganded (1BLC, black) and unliganded (1BK9, green) forms. (b) plasminogen activator 
bound to different ligands. The black curve refers to the complex with inhibitor Glu-Gly-Arg chloromethyl 
ketone (1A5I), and the red to the complex with the inhibitor 2-(2-hydroxy-5-methoxy-phenyl)-1H-
benzoimidazole-5-carboxamidine (1GI9). The critical mechanical sites (minima) are preserved in both 
forms, illustrating that the global dynamics retains the same qualitative features in the liganded and 
unliganded forms while the amplitudes of motions may be affected. 
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Table 3-3 Selected key mechanical residues (minima residues) and the odds ratio. 
 
PDB Catalytic residues (a)  Selected residuals that are of minima type I or II with Mi1,2 < 0.05 (b)  OR (c)

10GS   7, 8, 13, 38, 44, 51, 52, 64, 65, 98 A,B: 48-51, 63-64, 66-67, 70-71, 74, 83-84, 86-88, 90-91, 94 8.3

1A16 260, 271 ,354, 361, 383, 406 2-3, 170-173, 178-180, 358-359, 361-364 5.6
1A30 A25, A30, B25 A:4-7, 25-27, 48-49, 51-53, 98-99; B:1, 3, 5, 7-8, 25-27, 49-51, 87, 91, 95-97 4.9
1A3B 57, 195 16, 20-22, 27, 42-43, 54-57, 73, 90-91, 93, 95, 97-97, 97, 99, 101-103, 121-123, 

139-140, 142-143, 151-152, 155-157, 179, 193-195, 197-198, 200, 208-209, 211-
213, 228-229, 231, 233-235 

4.8

1A42 64, 92, 94, 96, 119 48-50, 52-53, 72, 74-75, 77-79, 84-85, 89-98, 100, 102, 104-106, 108, 112-114, 
116-117, 119-121, 144-147, 188-190, 212-214, 244-245 

4.5

1A47 101, 141, 228, 230, 258, 328, 329 1, 3, 5, 7, 9-11, 20-23, 26-27, 31-32, 34, 36-38, 44-45, 47-49, 51, 53-55, 58-59, 62-
63, 77-82, 84-85, 87-88, 91, 96-97, 99-101, 103, 105-106, 108-110, 114-116, 119-
121, 123-124, 127-128, 136-138, 141-144, 146-151, 153-154, 160-162, 169-170, 
198-199, 212, 214-215, 218-219, 222-230, 232-233, 247-248, 253-255, 257-259, 
269-270, 272, 274-276, 278-280, 315-317, 320-322, 377, 498-501, 503, 505-506, 
517-520, 522-525, 533, 535-536, 541-546, 561-571, 575-576 

3.0

1A5I 57, 102, 156, 195 1-4, 6, 16-20, 25-27, 29-31, 42-43, 45, 47-48, 54-58, 61-62, 68-74, 77, 79-80, 90-99, 
101-103, 110-110, 110-110, 110, 115-117, 121-123, 132-133, 136-139, 142-143, 
145-149, 151-152, 156-160, 165, 167-175, 177-178, 184-186, 186-186, 186-186, 
186-186, 186-186, 186-186, 186-186, 186, 188-192, 194-195, 197-208, 212-216, 
219-221, 221-223, 226-227, 229-230 

2.9

1A5V 64, 121, 157 64-66, 73-74, 76, 78-80, 86-87, 89, 91, 93-94, 99-101, 103-105, 108-109, 113, 115, 
119-121, 125-126, 130-132, 134-136, 144-145, 147, 150-151, 153-154, 156-157, 
192-193, 196-197 

5.7

1AEC 25 7-8, 10-11, 13, 15, 17-19, 25, 29, 32-34, 36-37, 40, 113-115, 132, 134, 163, 165, 
183-184, 213-215 

7.5

1AL8 24, 108, 129, 257 3, 12-14, 17-19, 21-24, 70, 74-77, 83-85, 87-88, 91-92, 94-96, 98-99, 101-103, 119, 
122-125, 127-129, 155-157, 228-230, 236-237, 240-241, 243, 245-248, 254-255, 
257-258, 265, 268-269, 271-272, 275-276, 279-281, 285-286, 307-309, 311-316, 
318-321, 323-324 

3.2

1ARZ B-D:159, 160, 163  A:143-192, 204-234; B:128, 130-150, 154-221, 235-239; C:194-201, 227-229; D:3-
137, 152-180, 183-213, 216-224, 232-273 

2.5

1B3N 163,398-401 3, 5-8, 10, 13-15, 17-20, 22-23, 29, 31-34, 40, 42, 44-45, 47, 52-54, 76-77, 80-81, 
83-85, 87-89, 95-96, 98-99, 102-103, 105, 107, 140, 142-143, 146-148, 154-155, 
160-163, 165-166, 168, 170-172, 174-175, 177-179, 183, 185, 187-189, 191, 193-
194, 196-199, 201-202, 204-205, 210, 212-216, 218-219, 232-234, 236, 238, 240-
244, 246-249, 252-254, 260, 262-263, 268-270, 278, 282-283, 285-290, 300-301, 
303, 305, 334-335, 337-338, 340-343, 345, 347-352, 354-355, 357-359, 363-364, 
366, 383-384, 386-388, 396-401, 403, 405, 407, 409-410, 412 

4.1

1B6A 231 110, 112-117, 119-120, 122-123, 125, 127-128, 168-169, 171-172, 174-176, 178-
180, 182-184, 187-188, 190-193, 195-199, 201-210, 214-218, 221-224, 228, 230-
233, 240-242, 246, 248, 251-255, 257-261, 267-268, 325, 327-328, 334-335, 337-
339, 360-362, 364, 366, 368, 370-371, 375-377, 446-448, 455-457, 459-462, 472-
473, 475-476, 478 

3.3

1BGQ 40,44,79,80,84,92,93 98, 123, 
124,171,173 

1-5, 12-14, 16-17, 19-20, 27-28, 31-32, 34-37, 52-59, 61-62, 64, 66, 69-70, 72-74, 
78-80, 84-90, 92-96, 123-124, 126-127, 130-131, 133-134, 140, 143-151, 153, 156-
160, 167, 170-171, 175-182, 184-186, 193-198, 201-202 

1.5

1BH6 32, 64, 221 3-5, 21-23, 26, 68, 71-73, 75-76, 78, 81-82, 84-85, 121, 123-124, 126, 130-132, 136, 
139-140, 143-144, 146, 148-150, 171, 173-174, 205-207, 215-217, 221-222, 224-
226, 228-229, 231-233, 235-236, 238-240, 243 

1.6

1BVV 69, 78, 172 3-6, 18, 23-24, 26-27, 43-48, 58, 60, 68-70, 80-82, 89-91, 98-100, 102-105, 131- 1.1
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134, 146-151, 154-158, 165-168, 176-177, 183-185 
1BLC 70 68-71, 152-153, 155, 157, 159-162, 169-171, 173, 176-180, 184-186, 188-189, 191-

192, 195-196, 208-209, 212-214, 216, 232, 234, 236-239 
6.2

1BR6 80, 81, 121,123, 177, 180 13, 17-19, 21-29, 31-32, 34, 47-49, 56, 77-80, 133-134, 136-140, 143-144, 172-180, 
191-193, 195-199 

2.9

1BIO 57, 102, 195 17-20, 26-30, 42-43, 45, 47-48, 54-55, 57-58, 60-62, 64-68, 71-73, 79-85, 90-91, 
93-94, 98-103, 110-112, 115, 118, 123-124, 124, 132-133, 137-139, 142-147, 149-
151, 157-159, 167-170, 170-172, 176-178, 187-191, 194-195, 197-199, 202, 207-
209, 212-214, 217-218, 220-221, 224, 226-230 

2.1

1BK9 48, 52, 99 5-6, 8-10, 12-14, 16, 21, 41, 44-45, 47-48, 50-54, 99-102, 104-105, 107-108, 110 5.0
1BXO 33, 213 1-3, 5, 7, 9-12, 14-15, 33-35, 125-126, 153-155, 158, 160-161, 163-164, 169-171, 

179, 181, 185-188, 190-191, 213-216, 304, 311-313, 322-323 
7.0

1CP3 121, 122, 161-165 A:36-37, 39-40, 48-50, 52, 55-60, 67-68, 71, 74-76, 78-79, 81-82, 84-85, 87-91, 95-
97, 116-118, 120-122, 125-128, 130-131, 138-139, 158-161, 195-197, 200-201, 205, 
210, 212-213, 215, 217, 219-220, 223-224, 227-228, 230-232, 265-267, 273-274, 
276-277; B:35-37, 39-40, 43-44, 48-51, 53-54, 63-65, 67-68, 71-72, 74-76, 80-81, 
85, 87-88, 93, 95-96, 111-112, 118-119, 121-122, 125-126, 130, 132-134, 159-160, 
162-163, 195-197, 201-202, 205, 209-211, 215-217, 219-221, 223-224, 227-229, 
231-232, 265-267, 273-274, 276 

0.5

1CQQ 40, 71, 145, 147 2-3, 6-7, 11, 62, 71-72, 86-88, 103-105, 107-108, 111-113, 144-145, 147-148, 154-
155 

5.4

1CR6 A, B: 333, 334, 465, 495, 523 A: 227-231, 233, 235, 237-241, 243-245, 247, 249-253, 256-258, 261-262, 269-270, 
273-274, 276-287, 292, 294, 296-299, 314-315, 317-319, 321-323, 330, 440, 452-
453, 455-456, 525-527, 530-531, 533-535, 537-544; B:226-227, 233-234, 236-237, 
254-256, 276-278, 280-281, 283-286, 322 

- 

 
(a) The bold-faced residues in the 2nd column are the catalytic residues among those selected of minima type I or II and having 
mobility scores Mi1-2 ≤ 0.05.  
(b) All the residues that are of minima type I or II and have mobility scores ≤ 0.05 in the two slowest mode.  
(c) Odds ratio(OR) is the ratio p/p0, which is the probability of finding a catalytic residue among minima, relative to that in all 
residues where p is the fraction of catalytic residues that fulfill the criteria Mi1-2 < 0.05 and minima type I or II, p0 is. the fraction 
of experimentally reported catalytic residues in all the residues of a given protein 
 
 
 
3.4.7. Participation in key mechanical sites: a criterion for identifying 

functional sites  
 
 
The present analysis suggests that the low mobilities in the global modes can be adopted as a 

new criterion for discriminating catalytic sites. The utility of this criterion may be assessed by a 

simple probabilistic analysis. Let us first sort all mechanically key residues of types I and II 

whose mobility score found from the weighted average of modes 1 and 2, Mi,1-2 < 0.05. Let us 

consider the odds ratio p/p0 of detecting a catalytic site among these key mechanical residues (p), 

compared to a random search over all residues (p0). p0 is simply the fraction of active residues in 

the examined enzyme. The ratio p/p0 was computed for all enzymes in Set 1. The results are 
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listed in the last column of Table 3-3. p/p0 is found to be 3.9 on the average, with a standard 

deviation of 2.1, which means the odds of having a catalytic residue among the key mechanical 

sites is about 4 times higher than the fraction of catalytic residues in the sequence. 

 
3.4.8. Enzyme active site prediction  
 
 
Our recent study supports the utility of considering global modes profiles in addition to physico-

chemical features, for predicting catalytic sites (Chen et al., 2004), an issue that will be further 

pursued in the future. Here, an interesting question arises following the present study – do all the 

minima predicted by GNM enjoy the same functional significance in enzymes? The answer is 

surely negative given that there are 10-50 minima in the global mode of an enzyme (depending 

on the size of enzymes) while only an average 3.5 (324/93 in this study) catalytic residues in 

each enzyme. Assuming one minimum contains 1-2 catalytic residues, less than 4 minima out of 

10-50 are the ‘catalytic minima’. We would like to see how we can combine other structural 

information to discriminate the chemically functional minima before considering any chemical 

and phylogenetic properties of residues in the prediction algorithm. As pointed out by Gutteridge 

and Bartlett (Gutteridge et al., 2003), catalytic residues possess moderate RSA and are usually 

located in the ‘clefts’. We also note that catalytic residues should function in groups, or say, be 

clustered in space. Hence, the rationale therein is to select minima that cluster in space, and those 

that exhibit moderate RSA and coordination number (CN). 

 

A de novo algorithm, COMPACT, was developed to test this idea. Given coarse-grained and 

chemical-detail-free structures at hand, we exploited the idea that active sites, usually in the 

clefts, bear moderate solvent accessibility. This feature may be assessed by taking into account 
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the position of the residue in the Ri vs Zi plot (Figure 3-8). A naïve scoring scheme is adopted 

based on (i) the degree of clustering with other minima and (ii) the extent of its Zi departure from 

the average behavior (see detailed approaches in METHOD). The results are summarized in 

Table 3-4. 12 functionally distinct enzymes are selected from the CSA database for the analysis 

except for 1a5v and 1br6, the catalytic sites of which were acquired from literature survey. A 

good sensitivity and a low-to-moderate specificity due to many false positives, are observed. In 

all enzymes, certain catalytic residues are correctly predicted by COMPACT, i.e. they are the 

highest or second highest-ranking minima.  

 

We are also interested in assessing if the minima predicted by COMPACT have any evolutional 

significance. We obtained the normalized conservation score for each residue using the ConSurf 

server (Glaser et al., 2003). The conservation scores of the correctly predicted residues are high, 

as expected. Interestingly, the false positives also turn out to be conserved (an average score 7.0 

in comparison with the score 5.6 for average residues). This could suggest that the ‘wrong 

predictions’ may also bear some mechanical or structural significances even if they do not seem 

to have any obvious, functional importance. It remains to be further tested to see if the clustered 

FPs can serve as alternate drug binding sites.  

 

One should note that, in our prediction, we have ignored the chemical properties of the sequence. 

All amino acids are treated as identical nodes connected by uniform spring regarless of their 

specificities. No empirical conservation properties or other specific propensities of residues, 

which appear to play a dominant role in Gutteridge’s neural network, were used in the prediction. 

Of course, inclusion of those properties would narrow down the search space, and help pinpoint 
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the functional residues. However, besides the focus on predicting the functional residues, we are 

intrigued to see why/when some residues are functional and conserved (instead of knowing what 

residues are catalytic, while dynamic features are coming into the scope.  

 

The results summarized in Table 3-4 were obtained with a Cα-Cα cutoff of 7.3Å. However, a 

recent test demonstrated that the use of a larger cutoff distance can further improve the 

predictions. Take the protein triosephosphate isomerase (PDB ID:1TPE) as an example, with the 

new cutoff 15Å. We notice that the results improve from {N11(2),K13(x),H95(3), 

E167(6),G173(x)} to {N11(3),K13(3),H95(9), E167(2),G173(/)}. Two new minima, K13 and 

G173 cannot be detected with the lower cutoff, appeared while K13 is highly ranked in the end. 

Another significance of this observation is the establishment of an alternate benchmark to 

validate/experiment the effects or these cutoffs on GNM results, which may be assessed by 

relating the performance directly to function in addition to the current comparisons of GNM 

predictions with experimental B-factors and NMR RMSD. 

A larger enzyme set should be tested to further validate the applicability of COMPACT. Another 

interesting verification would be to apply COMPACT to clustered electron clouds in the electron 

density map of an X-ray determined enzyme with known catalytic residues and see if the 

algorithm is still valid when the type and connectivity of the residues are barely defined in the 

protein. 
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Table 3-4 Active site prediction of 12 functionally distinct enzymes using COMPACT 
 
PDB E.C. Length Active Site NMP Sensitivity Specificity Conservation Score  

( TP+FP / FP / All ) 
2alr 1.1.1.2 312 Y49(12),K79(2),D44(1),H112(6) 12 1 0.33  7 / 6.6 / 5.2 

2jcw 1.15.1.1 153 H63(/),R143(2) 8 0.5 0.13  5.1 / 4.7 / 5.5 

4thi 2.5.1.2 362 C113(1), E241(5) 8 1 0.25  N / A 

1a5v* 2.7.7.49 146 D64(2), D121(9), E157(5) 10 1 0.20  5.5 / 4.6 / 5.5 

1br6* 3.2.2.22 268 Y80(2), V81(2), G121(8), Y123(8), 

E177(1), R180(3) 

11 1 0.45  7.7 / 7.2 / 5.1 

1bvv 3.2.1.8 185 Y69(1), E78(2), E172(5) 10 1 0.30  6.7 / 6.1 / 5.5 

1m4n 4.4.1.14 421 Y145(12), D230(1), K273(6), 

C400(/) 

12 0.75 0.25  7.4 / 7.0 / 5.9 

2plc 4.6.1.13 274 H45(2), D46(2), R84(1), H93(x), 

D278(4) 

6 0.8 0.67  8 / 8.5 / 6.4 

1tpe 5.3.1.1 249 N11(2),K13(x),H95(3), 

E167(6),G173(x) 

9 0.6 0.33  7.2 / 7.3 / 5.2 

3pgm 5.4.2.1 230 H8(2), R59(8), E86(3), H179(1) 8 1 0.50  8.4 / 8.0 / 5.3 

1gim 6.3.4.4 431 D13(4), H41(6), Q224(1) 11 1 0.27  8.6 / 8.5 / 5.4 

1a0i 6.5.1.1 332 K34(1) 12 1 0.08  8.2 / 8.1/ 6.7 

 Avg.    7.3 / 7.0 / 5.6 

 
The 4th column lists the experimentally determined catalytic residues obtained from CSA except for those of 1a5v 
and 1br6 (denoted by * in the 1st column) where the catalytic site information is taken from the literature. The bold-
face numbers in parentheses indicate the rank of the minimum the catalytic residue belongs to, predicted by 
COMPACT. (/) refers to the catalytic residues that are correctly identified to lie in a minimum, but cannot be 
captured by COMPACT. (x) is the case where the residue is not in any of the minima. NMP is the number of 
minima predicted. Note that the two selected enzymes from each E.C. functionally differ by at least the third digit of 
their E.C. number. Sensitivity and specificity are defined as TP/(TP+FN) and TP/(TP+FP), respectively where TP, 
FN and FP are the numbers of true positive, false negative and false positive results, respectively. Conservation 
score is obtained from ConSurf server (Glaser et al., 2003) ranging from 1 (most phylogenetically diversed) to 9 
(most conserved). The last column designates the average conservation scores over all the predictions (TP+FP), for 
the false positives (FP), and for all residues (All) in a given protein respectively.   
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4. DATABASE (iGNM) AND ONLINE CALCULATION 
SERVER (oGNM) FOR PROTEIN MOTIONS BASED 

ON GAUSSIAN NETWORK MODEL§ 
 
 
 
 

4.1. ABSTRACT 
 
 
The knowledge of structure is not sufficient for understanding and controlling protein function. 

Function is a dynamic property. While protein structural information has been rapidly 

accumulating in databases, little effort has been invested to date towards systematically 

characterizing protein dynamics. Recent success of analytical methods based on elastic network 

models, and in particular the Gaussian Network Model (GNM), permits us to perform a high 

throughput analysis of proteins’ collective dynamics.  

 

Here, we computed the GNM dynamics for 20,058 structures from the Protein Data Bank, and 

generated information on the equilibrium dynamics at the level of individual residues. The 

results are stored on a web-based system called iGNM, and configured so as to permit users to 

visualize or download the results through a standard web browser using a simple search engine. 

Static and animated images for describing the conformational mobility of proteins over a broad 

range of normal modes are accessible. In additional to the database, we provide computations for 

newly deposited structures in PDB or customized structures submitted by the users. The later 

part of the efforts is summarized in a new online calculation web-server (oGNM) that computes 

                                                 
§Reprinted, added and modified from Bioinformatics, (2005; 21(13):2978-2987), with permission by OXFORD 
UNIVERSITY PRESS 
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GNM dynamics for proteins or DNA/RNA/protein complexes that comprise single or multiple 

chains with selectable cutoffs for the constitutive nodes. Comprehensive graphic tools and 

visualization engines are powered by Chime plug-in, Jmol and Java applets. Most importantly, a 

quick eigensolver, BLZPACK, and the PowerB algorithm for solving theoretical B-factors (Btheo) 

were implemented in oGNM serving as a tool for fast computations and high throughput 

analyses of collective motions in biocomplexes. The results have shown that the BLZPACK can 

generate 20 low frequency normal modes within 20 seconds (excluding the time for file upload) 

and the residue fluctuations of all modes within 6 minutes for a protein with 5808 residues. Our 

new engine is 104-105 faster for essential normal mode analysis and 102-103 faster for Btheo (sum 

of all modes) calculation than conventional subroutines. A case study here suggests a Cα-Cα 

cutoff in the range 14-18 Ǻ, a distance that covers second coordination shell, achieves the 

highest correlation between Btheo and experimental B-factor (Bexp) for 6 protein/DNA complexes. 

Database iGNM and the online calculation web-server oGNM are available at 

http://ignm.ccbb.pitt.edu/ and http://ignm.ccbb.pitt.edu/GNM_Online_Calculation.htm 

respectively.  

An online service is provided for newly deposited structures: 

http://ignm.ccbb.pitt.edu/gnmwebserver/index2.html

 

 

4.2. INTRODUCTION 
 

With the rapid accumulation of protein structures in the Protein Data Bank (PDB) (Berman et al., 

2000) it has become evident that structural information per se is not sufficient for gaining 

insights into the mechanisms of function. Protein function is a dynamic property. It is closely 
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related to conformational mechanics, which, in turn, is largely dictated by the equilibrium (native) 

structure. It is now widely recognized that efficient computational methods and tools are needed 

for understanding the dynamics, and thereby controlling the function of proteins and their 

complexes. 

 

Time cost of molecular dynamics simulations has been a major drawback for a systematic 

computational characterization of protein dynamics. This motivated efforts for developing 

efficient, but physically realistic, methods for deriving dynamic properties based on structure. 

Recent success of analytical methods based on Normal Mode Analysis (NMA) combined with 

Elastic Network (EN) models after the original studies of Tirion (1996), Bahar and coworkers 

(Bahar et al., 1997a; Doruker et al., 2000; Atilgan et al., 2001), Hinsen (Hinsen, 1998; Hinsen 

and Kneller, 1999) and Tama (Tama and Sanejouand, 2001) is paving the way for overcoming 

the computational limitations and making a rapid assessment of proteins collective motions 

(Tama, 2003a; Ma, 2004). 

 

Among the EN models of different complexities, the simplest is the Gaussian Network Model 

(GNM) (Bahar et al., 1997a; Haliloglu et al., 1997). The GNM is entirely based on inter-residue 

contact topology in the folded state; it requires no a priori knowledge of empirical energy 

parameters, in accord with the original proposition of Tirion (1996). Most importantly, it lends 

itself to a unique, closed mathematical solution for each structure.  

 

An important feature of the GNM is the possibility of dissecting the observed motion into a 

collection of normal modes. The GNM mode analysis is similar, but simpler and more efficient 
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than conventional NMA (see Chapter 1). The slowest modes usually provide information on the 

collective motions relevant to biological function (Hinsen and Kneller, 1999; Kitao and Go, 1999; 

Tama and Sanejouand, 2001), as demonstrated in many applications. The accumulating evidence 

that supports the utility of the GNM as an efficient tool for a first estimation of the machinery of 

proteins and their complexes led us to the construction of iGNM, a DB of GNM results compiled 

for >20,000 PDB structures.  

 

The earliest attempt to establish a collection of biomolecular motions was the Database (DB) of 

Macromolecular Movements (MolMovDB; http://molmovdb.mbb.yale.edu/molmovdb/), 

originally known as the DB of Protein Motions, constructed by Gerstein and collaborators 

(Echols et al., 2003). Two main features of MolMovDB are the visualization and classification 

of molecular motions according to their size and their mechanism. The displayed animations 

require the knowledge of starting and ending conformational states between which the molecule 

moves. About 17,000 movies are available in the DB, generated by morphs interpolating 

between pairs of known structures of proteins and RNA molecules, and refined by X-PLOR 

(Brünger, 1993) and CNS (Brünger et al., 1998).  

 

A more extensive study has been conducted by Wako and coworkers where the normal modes 

have been generated using the ECEPP/2 force field (Nemethy et al., 1883), and collected in the 

ProMode DB (http://promode.socs.waseda.ac.jp/) (Wako and Endo, 2002; Wako et al. 2003; 

Wako et al. 2004) for nearly 1400 single chain proteins from the PDB. The structures are 

subjected therein to a detailed energy minimization prior to NMA computation. The NMA is 

performed in the coordinate system of dihedral angles after the work of Go and collaborators 
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(Wako et al., 1995), such that each residue is subject to approximately six degrees of freedom 

(rotatable bonds on the backbone and sidechain), assuming the bond rotations to be independent. 

ProMode DB has been restricted to relatively small proteins having < 300 residues in view of the 

time cost of energy minimization. 

 

The continuation of Gerstein’s work is the use of a simplified NMA, an implementation from 

Hinsen’s MMTK (The Molecular Modelling Toolkit) package (Hinsen, 2000), to interpret the 

evolution of biomolecular motions in the low-frequency modes, especially the lowest global 

mode, which best characterizes the motion undertaken by residues that enjoy the largest 

fluctuations (Alexandrov et al., 2005). A similar application, developed by Reuter et al. (Hollup 

et al., 2005), is WEBnm@ (a web application for normal mode analyses of proteins) that 

provides protein motions of the first 6 modes for detailed analysis and reports deformation 

energy for first 14 modes using MMTK. 

 

A similar online calculation tool based on a simplified NMA combined with the RTB (Rotations-

Translations of Blocks) algorithm (Tama et al., 2000) has been developed by Sanejouand and 

coworkers (elNémo; http://igs-server.cnrs-mrs.fr/elnemo/) presenting up to 100 slowest modes of 

studied structures (Suhre and Sanejouand, 2004a). This website provides information on the 

degree of collectivity of each predicted mode, as well as the overlap with experimentally 

observed change in conformation. Additionally, the implementation of normal mode perturbed 

models as templates for diffraction data phasing through molecular replacement is discussed 

(Suhre and Sanejouand, 2004b).  
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Molecular Vibrations Evaluation Server (MoViES; http://ang.cz3.nus.edu.sg/cgi-

bin/prog/norm.pl ), developed by Chen’s group, distinguishes itself as the only available ‘true’ 

NMA server based on full-atomic AMBER force field, which derives thermal vibrations for 

proteins and DNA/RNA up to 4000 heavy atoms (Cao et al. 2004). The results can be obtained in 

7 days via email. 

 

Despite all these attempts, a DB of predicted mobilities for all PDB structures, ranging from 

small enzymes to large complexes and assemblies in a unified framework is lacking. In this 

chapter, we discuss a new internet-based system, iGNM, recently developed to address this need 

and to release the results from GNM computations applied to PDB structures.  

 

As for NMA-based online calculation web-servers, in general, give a short response time (except 

for MoViES) for small proteins (< 1000 residues) due to the efficiency of matrix diagonalization 

tool for Hessian. For instance, MMTK uses sparse-matrix eigenvalue solver from the ARPACK 

library (Hinsen, 2000). It provides a subset of mode vectors and saves the running time 

substantially. However, for large structures over 2000 residues, the computation takes hours to 

days if the process is not hung up in the middle. Moreover, hardly any of the servers provide 

computations for protein/DNA/RNA complexes such as ribosome, DNA polymerases or 

nucleosomes. Also, the computed Btheo is either missing or under-represented by the sum of a 

subset of modes (Suhre and Sanejouand, 2004a). The quality of the agreement of Btheo and Bexp is 

an important assessment for good characterization of molecular motions using NMA-based 

models. The calculation of Btheo, which is the sum of all the eigenvalue-weighted normal modes, 

is nevertheless a computationally expensive task given that all the modes have to be obtained. 
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The current version of iGNM consists of three modules: DB Engine, GNM Computations Engine, 

and Visualization Engine. The DB Engine is presented here, which contains visual and 

quantitative information on the collective modes predicted by the GNM for 20,058 structures, 

with various size (Figure 4-1), deposited in the PDB prior to September 15, 2003. The goal of 

constructing the DB has been to provide information on the dynamics of all proteins beyond 

those experimentally provided by B-factors (for X-ray structures) or root-mean-square 

fluctuations (NMR structures), or by interpolation between existing PDB structures. We have 

developed an internet-based query system to allow users to retrieve information through a simple 

search engine by entering the PDB identifier of the protein structure of interest. The retrieved 

data are viewed by Chime plug-in (PC users), Jmol (users of any the platform) for 3D 

visualization or Java applets for 2-D mobility plots. The output includes: the equilibrium 

fluctuations of residues and comparison with X-ray crystallographic B-factors, the sizes for 

residue motions in different collective modes, the cross-correlations between residue fluctuations, 

or domain motions in the collective modes, the identity of residues that assume a key mechanical 

role (e.g. hinge) in the global dynamics, and thereby function, of the molecule, as well as those 

potentially participating in folding nuclei cores (Bahar et al., 1998a; Rader and Bahar, 2004).  
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Figure 4-1 Distribution of the sizes of PDB structures compiled in the iGNM DB.  
The number N of residues includes the number of amino acids contained in the examined PDB structures. 8.4% 
(1,701 out of 20,058) of the structures contain more than 103 residues. The inset displays the same distribution on a 
logarithmic plot to show the complete range of protein sizes (up to N = 11,730), each point corresponding to the 
total number of counts in intervals of size ΔN = 50. 
 
 
 
On the other hand, to address the insufficiency of current computational tools, oGNM is 

developed to render fast computations for large protein/DNA/RNA complexes with the 

implementation of the BLZPACK package (Marques, 1995) based on the Lanczos algorithm, 

granting an efficient extraction of a subset of modes at either end of vibrational spectrum. A new 

algorithm, PowerB, based on power method (Mendelsohn, 1957), is proposed to expedite the 

computation for Btheo as well as spring constant by 102-103 folds compared to conventional 
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approaches. GNM results for 20 essential modes and summation of all modes (Btheo) can be 

obtained within seconds (excluding the file uploading time) and minutes respectively, for a 

protein of about 6,000 residues. This consequentially removes the need for the recruitment of any 

automated queuing system. Users can access the result of normal modes in text format as well as 

the multimedia presentations adopted in iGNM, allowing the browsing in an interactive fashion 

across the platforms. The results computed are purged monthly when allowing time for users' 

return to access. 

 

The new engines is 104-105 and 102-103 faster for essential normal mode extraction and for Btheo 

(sum of all modes) calculation, respectively, than conventional engines. Here, we also present a 

case study to examine the agreement of Btheo and Bexp as a function of cutoff distances in the 

model for 6 proteins/DNA complexes. It is suggested that a Cα-Cα cutoff in the range 14-18 Ǻ 

achieves the best agreement with experimental data. 

iGNM is accessible at http://ignm.ccbb.pitt.edu/ and  

oGNM is available at http://ignm.ccbb.pitt.edu/GNM_Online_Calculation.htm

 

 

4.3. METHOD 
 

4.3.1. Structures 
 
 
All the structures deposited in PDB as of Sept. 15, 2003 have been downloaded (22,549 of them) 

and subjected to GNM analysis. A file parser was implemented to eliminate structures composed 

of (1) predominantly DNA or RNA molecules, (2) carbohydrates, small organic compounds or 
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short peptides containing less than 15 residues, which eliminated 6.2% of the structures, and (3) 

4.8% of the originally downloaded structures that yielded unrealistic mode shapes due to their 

incomplete or inaccurate coordinates deposited in the PDB. Figure 4-2 gives a schematic 

description of such an occurrence where a portion of the network is ‘disconnected’. For a given 

fully connected structure Γ has rank N-1 and its eigenvalue decomposition yields N-1 non-trivial 

eigenvalues and one zero eigenvalue. However, more than one zero eigenvalue was obtained for 

the disconnected networks.   

 

We generated the GNM results for 20,058 structures, after filtering out the above listed cases. 

The examined structures cover a broad range of size, including for example, large proteins such 

as contractile protein of insect flight muscle (PDB: 1o1c), with 11,730 amino acids. The size 

distribution of the examined structures is shown in Figure 4-1.   

 

4.3.2. The eigensolver 
 
 
The eigenvalue decomposition of Γ is the most time-consuming part of the computations. We 

have recently implemented the BLZPACK package (Marques, O., 1995) based on the Lanczos 

algorithm, which permits us to efficiently extract subsets of interesting modes at either end of the 

vibrational spectrum. This package reduces the computing time by at least three orders of 

magnitude in the case of large proteins.  
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Figure 4-2 A schematic diagram to explain the cause of more than one eigenvalues. 
Here, we illustrate how a discontinuity in the PDB sequence/coordinates may lead to more than one zero eigenvalue. 
In panel a, the coordinates of residue C belonging to the A-B-C-D-E are missing. The distance between residues B 
and D is larger than the cutoff 7.3 Å, which leads to two independent blocks in the corresponding Kirchhoff matrix 
ΓDIS and more than one zero eigenvalue in the associated diagonal matrix of eigenvalues ΛDIS. In contrast, the 
continuous tetrapeptide (no gap) in panel b accurately gives one zero eigenvalue, despite the possibly missing 
terminal residue E. 
 
 
 
4.3.3. File parsing in oGNM 
 
 
Any file created in PDB format, having size less than 10 MB, can be submitted to the oGNM 

website. The ‘nodes’ selected to construct the EN are the Cα atoms for amino acids, including 
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non-standard amino acid, and P atoms for nucleotides, including non-A, G, T, C, U nucleotides. 

C α, P and Cα-P pairs in the network are considered to be coupled if they are located within a 

cutoff distance of 10 Ǻ(rc), 19 Ǻ(rp) and the average of rc and rp respectively. The values of 10 Ǻ 

for rc and 19 Ǻ for rp are chosen as default, yet can be interactively changed by the user. 

Currently, oGNM supports structures represented by ENs up 6200 nodes. For NMR structures, 

only the first model deposited in the PDB is used in the calculations. 

 

 

4.4. RESULTS 
 

4.4.1. Output files 
 

Eleven output files can be accessed for each query structure (Fig 4-3a).  Users can retrieve the 

generated output files for structures of interest by simply entering the 4-digit PDB ID in the 

search engine, http://ignm.ccbb.pitt.edu/FileDownload.htm. A brief description of the output 

files that can be accessed is presented below.  

 

4.4.1.1. Contact topology (“.ca” or “.nodes”, “.cont”, “.eigen” and “.kdat”) 

The residue types, sequence numbers, α-carbon coordinates and temperature factors reported in 

the PDB and used in the GNM are listed in the files with suffix “.ca”. The size of the protein, 

defined by the number of α-carbons (N) included in the computations, is listed in the last line of 

the file. In oGNM, this information is recorded in the “.nodes” file where the constitutive nodes 

include both the α-carbons and the nucleotide phosphor atoms. The number of nodes taken into 

the network along with the cutoffs used in the calculation is shown in the oGNM result page. 
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 (a) 

(b) 

 
 
 
Figure 4-3 The query enigines of iGNM 
(a) The query engine to retrieve GNM data for 20,058 structures. The PDB identifier (ID) of the protein of interest is 
entered to retrieve the output files from the iGNM. Alternatively, a search with a keyword is made (b). The results 
using ‘phospholipase’ as keyword are shown. The GNM information for all the retrieved structures is tabulated in 
the right column. 
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The “.cont” file lists the contact number (the number of adjacent neighbors within a cutoff rc = 

7.3 Å) for each residue. A large contact number refers to a constrained environment that limits or 

inhibits the residue mobility. The “.eigen” file lists the N-1 non-zero eigenvalues λk in 

descending order, starting from the fastest mode (k = N-1), and the zero eigenvalue λ0 is listed as 

the last element. Any value of the order of 10-6 or lower is deemed as zero. The structures with 

the above described spatial ‘discontinuity’ that yielded more than one zero eigenvalues, which 

were captured in the corresponding ‘.eigen’ files, will be re-submitted to an online service 

(http://ignm.ccbb.pitt.edu/gnmwebserver/index2.html) for GNM re-calculation with a larger 

cutoff. In oGNM, the users will be given warnings as the problematic structure being uploaded. 

In oGNM, since only a subset of modes is extracted by BLZPACK, only the eigenvalues of 21 

lowest modes are listed. Also, the “.kdat” file in oGNM lists the non-zero contacts between 

residue i and j (i≠j) defined in the upper triangular Kirchoff matrix. One can see the contact 

elements are generally sparsely distributed, which rationalizes the employment of Lanczos 

algorithm. 

 

4.4.1.2. Time average properties (“.bfactor”, “.cc”, “.gamma” and “.corr” files) 

The theoretical temperature factor (Btheo,i) predicted by the GNM is proportional to the inverse 

Kirchhoff matrix and also to the summation of all modes as  
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Eq 4-1 follows from Eq 1-19 in Chapter 1 and the definition BBtheo,i = (8π /3) <(ΔR2
i) >. The term [u2

k]i 

designates the i  element (corresponding to i  residue) of the k  eigenvector. The “.bfactor” file 

contains the experimental Bi

th th th

B  values of α−carbon atoms (if available in the PDB) and the 

corresponding theoretical BBi values for each residue. Figure 4-4 panel c illustrates the comparison of 

the two sets of BiB  values, as a function of residue index, for a query protein, phospholipase 2 (1BK9; 

Zhao, et al., 1998) whose mobilities in the lowest mode are color-coded in panel a. oGNM provides 

two more output files related to B-factors. A comparison of the quality of prediction – the 

correlation coefficient value of Bexp,i and Btheo,i, is recorded in the “.corr” file. For example, the 

correlation coefficient value (Rcorr) for this Dnaa/DNA complex (1J1V; Fujikawa et al., 2003), 

shown in Figure 4-4e, is 0.642 at cutoffs of 10 Å and 19 Å for Cα-Cα and P-P contacts respectively 

with an uniformed spring constant of 0.217×kBT (kcal/mol.Å2), derived from the equation: 
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This value is reported in the “.gamma” file. 

The predicted cross-correlations <ΔRi  ΔRj> between the fluctuations of residues i and j are 

listed in the ‘.cc’ files. These are reported for small size proteins (N≤290 for iGNM; N≤500 for 

oGNM) due to the memory constraints. The data in these files are used to construct the color-

coded correlation maps (called CCplot) (Figure 4-4d). <ΔRi  ΔRj> values are normalized 

between -1 and 1, by dividing them by [<(ΔRi)2><(ΔRj)2>]½. A value of -1 refers to perfectly 

anticorrelated (i.e. concerted but in opposite direction) fluctuations undergone by residues i and j 

(colored blue in the map), and +1 refers to fully correlated motions (colored red). 
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 (a) (b)

(d) (c) 

(e) (f) 

 
 
 
Figure 4-4 Visualization of GNM dynamics for phospholipase A2 (PDB ID: 1BK9). 
(a) Color-coded ribbon diagram (Chime) that illustrates the mobilities in the slowest GNM mode (slow1).  The 
structure is colored from dark blue, green, orange to red in the order of increasing mobility in the slow mode (b) The 
Java applet shows the corresponding mobility plot ([u1]i vs. i) with scalable range of view, max/min value 
information window and pop-up tag to show the residue number and coordinates. (c) Comparison of experimental 
and theoretical BBi factors. (d) Cross-correlation map, i.e. normalized <ΔRi  ΔRj> values plotted for residue 
i(abscissa) and j (ordinate). The fully concerted motion (+1) is colored dark red while the perfect anti-correlated 
motion (-1) is colored dark blue, and weakly correlated and anticorrelated regions are yellow and cyan, respectively. 
The visualization of GNM dynamics for Domain IV of Chromosomal Replication Initiator Protein Dnaa Complexed 
with Dnaabox DNA (PDB ID: 1J1V) is shown in (e) and (f). (e) Color-coded ribbon diagram in Jmol, that illustrates 
the mobilities [(ΔRi ) ]2

1-2 induced in the slowest two modes. The structure is colored from blue, white to red in the 
order of increasing mobility. (f) Mobilities [(ΔRi ) ]2

1-2 of 1J1V, plotted against residue index. One protein chain 
(chain A) and DNA chains (chain B and C) are well separated on the plot. Note that the residue index of mobility 
plots such as (b) and (e) reflects the ‘real’ reported sequential numbers in the PDB file where the discontinuities in 
sequence numbers are commonly seen. However, the axes values in the cross-correlation map, shown in (d), give 
serial numbers for residues, which are created only for the plotting purposes. 
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4.4.1.3. Mobilities in normal modes (“.sloweigenvector”, “.slowmodes” and “.slowav”) 

The shapes of the slowest 20 modes ([uk]i
2, 1 ≤ k ≤ 20, as a function of residue index i) are given 

in the “.slowmodes” file, and the corresponding eigenvectors, uk, in the “.sloweigenvector” file. 

Each row in these files corresponds to a given residue, and each column to a different mode, 

starting from the slowest (global) mode. We note that the eigenvectors are orthonormal, and 

consequently the kth mode shape represents the normalized distribution of residue mobilities 

(square displacements) induced in mode k. The joint effect of modes 1 and 2 on mobilities can be 

found in the “.slowav” file. The entries therein refer to the weighted average  

 

                   [(ΔRi )2]1-2  = (λ1
-1 + λ2

-1)-1 (λ1
-1 [u1]i [u1]i + λ2

-1[u2]i[u2]i)      (4-3) 

 

4.4.1.4. Global hinge residues 

The positive and negative elements of uk refer to residues moving in opposite direction along 

mode k. Of interest are the residues at the passage between positive and negative elements of 

slowest modes, which presumably act as hinges between the oppositely moving clusters of 

residues. The “.sloweigenvector” files thus provide information on the identity of the residues 

that play a mechanically critical role in the global modes.  

 

4.4.1.5. Peaks in high frequency modes (“.fasteigenvector”, “.fastmodes”, “.fast10av”) 

These files are currently unavailable in oGNM. In iGNM, the shapes of fastest 20 modes ([uk]i
2, 

N-20 ≤ k ≤ N-1, as a function of residue index i) are given in the “.fastmodes” file, and the 

corresponding eigenvectors, uk, in the “.fasteigenvector” file, similarly to their slow mode 

counterparts. We note that, contrary to the slow mode shapes, the fast modes are highly localized 

and exhibit sharp peaks at certain residues. The cumulative mode shape for the fastest 10 modes 
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is presented in the file “.fast10av”. The peaks in the latter file are indicative of potential folding 

nuclei or conserved residues important for stability (Demirel et al., 1998; Rader and Bahar, 

2004). 

 

4.4.2. Query and Visualization 
 

iGNM allows users to conveniently query and visualize GNM output files. All the search start 

with a single entry : http://ignm.ccbb.pitt.edu/FileDownload.htm. Upon the PDB ID is submitted, 

people can access the output files instantly. The results can be viewed, saved or re-directed to 3D 

Visualization Modules for normal modes or B-factors (Btheo and Bexp). These modules provide 

structure ribbon diagram that is colored according to the residue (or the nodes) mobilities of a 

single normal mode or of all modes (B-factors). The mobility plots can then be accessed from the 

buttons anchored in the top of these diagrams. Queries for accessing 3D Visualization Modules 

for normal modes and B-factors are also provided at http://ignm.ccbb.pitt.edu/3D_GNM.htm and 

http://ignm.ccbb.pitt.edu/BFactors.htm respectively. 

 

In addition to queries using PDB IDs, iGNM is integrated with PDB SearchLite query interface 

for keyword-based queries (http://ignm.ccbb.pitt.edu/PDB_Integration.htm). By typing keywords 

related to the biological macromolecules of interest, users can browse PDB records and iGNM 

output files for a given protein family in an integrated environment (Fig 4-3b). 

 

Two major visualization engines are implemented in iGNM DB and oGNM are (i) the ribbon 

diagrams that are color-coded according to residue mobilities, and (ii) the mobility plots. 
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Ribbon diagrams are visualized with Jmol (http://jmol.sourceforge.net/), an open source 

molecule viewer written in Java. JmolApplet (http://jmol.sourceforge.net/applet/) is Jmol's Web 

browser applet version that can be integrated into web pages. Since JmolApplet is a cross-

platform and runs with Java Virtual Machine (JVM) 1.1 which is included in most popular 

browsers, it is deployed easily without additional software installation by the end users. 

JmolApplet adopts Chime/Rasmol scripting language and allows users to manipulate color-coded 

structures in a way similar to the Chime plug-in (MDL Information Systems, Inc. 

www.mdlchime.com). Chime plug-in (for PC users only) and Jmol (cross-platform)are currently 

available in oGNM as shown in the illustrative Figures 4-4 panels a and e respectively. Note that 

Chime gives a broader color spectrum, while Jmol renders better representations for nucleotide-

containing structures. 

 

The interactive mobility plot viewer grants the user the ability to visually inspect the mode 

fluctuations of GNM outputs. The viewer is constructed as a Java applet using the Java Virtual 

Machine 1.5.0_02 and requires a Java Runtime Environment (Sun Microsystems, Inc. 

http://java.sun.com) of version 1.4.1 at a minimum. This applet is invoked from HTML tags with 

parameters including the data source, the desired PDB ID, the desired GNM output and desired 

normal modes from that output. The graphing ability is rendered through a product entitled 

JClass from Quest Technologies (http://www.quest.com/jclass/). The interface’s controls are 

created from Java swing classes and provide a means to interact with the graph. The applet can 

also be run as a stand-alone application outside of a web page but still requires an Internet 

connection to connect to the data source. The current features allow users to load selected modes 
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of computed assemblies for comparison, scale the view of the plot and view the raw GNM output 

associated the selected modes. A demonstration is shown in Fig 4-4f. 

 

Links to the raw iGNM data, PDB, PDBsum, SCOP and CATH are also included in iGNM for 

access by the users.  

 

4.4.3. Online calculations 
 

Currently (May 17, 2005), the PDB contains 30,963 structures. The iGNM DB has processed 

22,549 of them, and generated results for 20,058. When the user performs a search for a PDB ID, 

the Database Engine is checked first for the GNM files corresponding to this structure. If the 

GNM results are found, the results are displayed to the user through the Visualization Engine. 

For those PDB structures that are not included in iGNM, an online service 

(http://ignm.ccbb.pitt.edu/gnmwebserver/index2.html) is provided for automated file retrieving 

and subsequent GNM calculations (Liu et al., 2004). oGNM can also be used for the same 

purpose if the PDB file of the structure is available. 

 

4.4.3.1. Database architecture  

The online calculation module is a three-tier architecture, where the user’s browser 

communicates with iGNM, and the server communicates with the PDB server (Figure 4-5). This 

server takes as input the 4-digit PDB ID, searches the PDB, and if the structure is found, it then 

retrieves the file and runs the GNM calculations on it. Once the calculation is complete the 

results are passed to the Visualization Engine for graphical presentation to the user. 
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Future additions to iGNM will include an automatic update module for checking the PDB for 

new structures, downloading the structure files, running the GNM calculations on the structure 

files, and updating the Database with the newly computed GNM results.   

 

4.4.3.2. The eigensolver - BLZPACK 

BLZPACK was implemented for 20 lowest normal mode calculation in oGNM. The original 

implementation of GNM utilized the singular value decomposition (SVD) routine from 

Numerical Recipes (Press et al., 1992). Although sufficiently accurate and robust for small 

protein structures, this method became prohibitive for large protein structures because its 

computational time scales as O(N3) where N is the number of residues. Comparisons between 

SVD and several alternative eigenvalue solvers are shown in Figure 4-6a.  

 

Two important aspects regarding the data are not considered by these complete eigensolvers. 

First, since the slow modes have been shown to correlate with functional motions, typically only 

a small fraction of the entire spectrum of eigenvalues and eigenvectors are of interest. Second, 

the Kirchhoff matrix is very sparse. We have taken advantage of these two characteristics by 

using a blocked Lanczos algorithm as implemented in the BLZPACK software (Marques, 1995). 

The lowest two curves in Figure 4-6 indicate an enormous speedup over previous methods for 

large structures. This allows for efficient online calculation (approximately 3 minutes for protein 

complexes with 6200 residues). 
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Figure 4-5 iGNM architecture. 
iGNM currently consists of two standalone servers, one that houses the DB Engine with the Visualization Engine, 
and the other houses the online calculation module and visualization for structures deposited after Sept 2003. To use 
the system, the user can choose to view Mobility Ribbon Diagrams, B-factors, or download GNM results in 
http://ignm.ccbb.pitt.edu. Upon entering the 4-digit PDB ID the DB Engine is checked for GNM files of the queried 
structure. If the files are found they are immediately displayed on the user’s browser window. If they are not found, 
the user is offered the option to use an online service (http://ignm.ccbb.pitt.edu/gnmwebserver/index2.html) that 
invokes the search of PDB for the structure file, retrieves it to the server, and runs GNM calculations for it. Once the 
calculations are complete the results are displayed to the user’s browser window. Future plans for iGNM involve 
implementing an automatic update module for synchronizing the DB data with PDB. 
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Figure 4-6 Improvement in computing time for calculating the slow modes by BLZPACK. 
The execution times for several eigensolvers are shown by the different symbols (labeled on the right). These curves 
reflect the fact that the complete eigensolution using any of the top three methods, singular value decomposition 
(SVD), householder, or the dsyev subroutine of LAPACK), scales as O(N3).  Exploiting both the sparsity of the 
Kirchhoff matrix and the utility of extracting the slowest modes as a first approach, allows for a significant decrease 
in calculation time for large structures. The final two methods, blzp_101 and blzp_301, return the slowest 101 and 
301 modes respectively using the BLZPACK routine. Both of these methods are much faster, scaling rather with 
O(N). 
 
 
 
4.4.3.3. BBtheo computation 

PowerB (described in Chapter 2) is encoded and implemented in oGNM. The Btheo calculation is 

computed optionally upon users’ demand. It can only be started after the sparse form of Kirchoff 

matrix is computed and stored. The related output files such as the spring constant of the network, 

Rcorr of theoretical and experimental B-factors and CCplot are shown soon after the B-factor 
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calculation is done. Currently, it takes around 10 minutes to compute the Btheo for the largest 

protein (6200 nodes) allowed in oGNM. 

 

4.4.3.4. Prediction of Btheo for six protein/DNA complexes 

Six protein/DNA complexes belonging to distinctive CATH topology groups were selected from 

the PDB to investigate how Rcorr of Btheo and Bexp change with rc as rp is fixed at 19 Ǻ (Table 4-

1). As shown in Figure 4-7, the complexes have an optimal cutoff between 12-18 Ǻ at different 

X-ray diffraction temperatures. Since the number of amino acids way outnumbers that of the 

nucleotides, we expect a similar optimal cutoff to be observed for protein/DNA complexes when 

the number of amino acids dominates the entire structure. We realize that a larger number of 

DNA/protein complexes should be investigated before any solid conclusions can be drawn. The 

analysis demonstrates, however, that such studies can be carried out using the oGNM. 
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Table 4-1 Attributes of Six Protein/DNA complexes for Rcorr vs. cutoff distance study 
 
 
PDB ID CATH Nodes Protein/DNA Resolution(Ǻ) XDT (K) 

1J1V 3.40.50.2000 118 A:94,B:12,C:12 2.1 100 

1QTM 

A1:3.30.420.10 

A2:1.20.1060.10 

A3:3.30.70.370 

A4:1.10.150.20 

563 A:539,B:11,C:13 2.3 100 

1AAY 
A1,A2,A3: 

3.30.160.60 
105 A:85,B:10,C:10 1.6 295 

1AOI 
A0,B0,C0,D0,E0,F0,

G0,H0: 1.10.20.10 
1095 

A:98,B:83,C:115,D:99

, E:116,F:87,G:108, 

H:99, I:145,J:145 

2.8 110 

1ECR 
A1:3.50.14.10 

A2:3.30.54.10 
333 A:305,B:14,C:14 2.7 288 

1OTC 

A1,A2,A3: 

2.40.50.140 

B0:2.40.200.10 

683 A:459,B:213, D:11 2.8 288 

 
 
CATH number describes the structural characteristics of the domains in the 6 complexes. Note that the domains list 
here differ from each other at the level of structural sub-classes ‘T’. ‘Protein/DNA’ lists the number of residues in 
the protein and DNA chains, the DNA chains being written in bold face, followed by the number of nodes in the 
chain. XDT is the temperature at which the X-ray diffraction is measured.  
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Figure 4-7 Correlation coefficient (Rcorr) between Btheo and Btheo as a function of cutoff distance 
for six protein/DNA complexes.  
The attributes of the six complexes are listed in Table 4-1. 
 
 
 
 

4.5. DISCUSSION  
 

We generated information on the equilibrium dynamics of 20,058 structures in the reach of 

covering the entire PDB. The variation of the spring constant γ and the correlation Rcorr between 

BBtheo and Bexp as a function of cutoff distances can also be examined in oGNM for various 
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biocomplexes as shown in the above illustrative example for 6 protein/DNA complexes. The 

utility of such a protein dynamics DB and computing tool is to give us insights about the relation 

between the structure, functions and collective motions of proteins. 

 

The current file-parsing strategy in oGNM is to include all the Cαs and Ps in the EN. This 

includes short peptide or nucleotide inhibitors. Users can manually delete the coordinates of 

those in the uploaded file if those are deemed insignificant to the overall dynamics. The default 

rc, 10 Ǻ, for Cα-Cα is set to cover wider spatial discontinuity in structures due to the incomplete 

or inaccurate report of atom positions defined by X-ray diffraction. This enlarged cutoff, 

compared with the cutoff 7.3 Ǻ in iGNM, is expected to generate less eigenvalue- problematic 

dynamics results. A default rp, 19 Ǻ, for P-P is proposed to cover the distance, across DNA 

strands, of the P atoms in two based-paired nucleotides. 

 

The size of the uploaded PDB file currently determines the responding time of oGNM website 

for mode calculation. The real time taken for mode computation is trivial for complexes with a 

size > 6,000 nodes. The B-factors calculation is initiated upon users’ request and completed 

within 10 minutes for the largest structure allowed on the server. 

 

The eigenvalue decomposition of the connectivity matrix Γ is the most expensive task in GNM 

calculations from computational time point of view. We used a singular value decomposition 

(SVD) subroutine to this aim for iGNM, the computing time of which scales with N3 for a 

network of N residues. For N < 1,500, the computations are performed within minutes, while the 

CPU times increase up to 15 days in the case of the largest structure (11730 residues), the output 
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of which are compiled and accessible in the DB. While all N-1 modes, and the mean-square 

fluctuations resulting from the superposition of all modes have been compiled to date in the 

iGNM, a much faster algorithm has been implemented in oGNM. The BLZPACK software 

(Marques, 1995) based on Block Lanczos Method for large structures is used to evaluate a subset 

(1 ≤ k ≤ 20) of dominant (slowest) modes, within a time scale of N (Figure 4-6a), i.e. the 

computing times is more than 6 orders of magnitude shorter than the subroutine SVD, when 

structures of >103 residues are analyzed. The same algorithm will be particularly useful for 

generating the ANM (anisotropic network model) (Doruker et al., 2000; Atilgan et al., 2001) data 

that we plan to incorporate in the near future in the iGNM DB.  

 

In theory, PowerB can be applied to any type of Hessians. The extension of this method to ANM 

or NMA is currently under study. One can subtract 6 zero eigenmodes from the pseudo-inversed 

Hessian subject to small perturbation in order to obtain the summation of all modes. The future 

implementation includes computing fast modes with power method. The convergence rate of 

power method is highly related to the distribution of eigenvalues. In general, Г gives a sparse 

distribution in lower modes, contributing a higher 
1−k

k

λ
λ

 value and shorter computation time than 

that in higher modes. Currently, the bottleneck in PowerB is the matrix inversion process. A 

faster routine is currently being tested to boost up the speed. 

Iteration loops k = 1000, threshold t = 0.01 are good enough for an instant extraction of the zero 

mode. The convergence reaches as 
o

k
o

k

o
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In a previous study, we have shown that GNM can satisfactorily reproduce the experimentally 

observed fluctuations and functional motions of proteins complexed with RNA or DNA (Bahar 

and Jernigan, 1998b; Bahar et al., 1999b; Temiz and Bahar, 2002), including supramolecular 

structures like ribosomal complexes(Wang et al., 2004) or viral capsids (Rader et al. 2005). P 

and O4’ atoms of nucleotides have been adopted in these studies as nodes to model the 

RNA/DNA structures. The choice of these two atoms per nucleotide provides a spatial resolution 

comparable to that of α-carbons in proteins, and the cutoff distances are reasonably adjusted to 

account for the longer range interactions of nucleotides. However, given that in some PDB files, 

only the phosphorus atoms in nucleotides are provided, we adopted single node representation 

for the nucleotides in DNA and RNA with an enlarged cutoff distance to 19 Å. This by no means 

implies that 1-node-representation outperforms, in terms of the agreement with Bexp or NMR 

results, the 2- or 3-node representations. More detailed studies are needed to reach conclusive 

results. Yet, oGNM here provides a comprehensive and physically tangible model for researchers 

to explore the collective dynamics of complexes of interest. On the other hand, one should note 

that the current iGNM DB does not contain the results for such complexes or assemblies 

containing RNA/DNA components. An updated version of iGNM DB that incorporates the 

DNA/RNA/protein complexes plus biological units (see the next paragraph) is in progress. 

 

Finally, users have to be cautious about two facts: (i) the iGNM results reflect the equilibrium 

dynamics for proteins in their crystal form reported in the PDB, and (ii) the method is applicable 

to fluctuations near the native structure. Conformational changes involving the passage over an 

energy barrier, or other non linear effects on the conformational dynamics cannot be described 

by the GNM, and necessitate more detailed MD simulations. In some cases, the crystallized form 
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may not be the active state of the protein under physiological conditions. For instance, PDB 

entry 1hho contains one half of a hemoglobin (Hb) molecule (two chains) in the crystal 

asymmetric unit, while the bio-active Hb is a tetramer that can actually be generated by 

combining 1hho with its crystallographic two-fold axis partner. We are currently designing a 

new module that will facilitate the retrieval and generation of such user-customized structures 

that combine the biological units (the physiologically functional structures) or any structural 

parts of interest. Finally, we note that the GNM is particularly useful in the case of large 

structures and complexes/assemblies, while its application to small structures (< 30 nodes) may 

not be always justifiable. First, small structures are amenable to analysis using more detailed full 

atomic models that take account of their specific interactions. Second, the Gaussian 

approximation for residue fluctuations becomes more accurate with increasing size of the 

network, as follows from the central limit theorem. 

 

As the number of ‘new’ folds deposited in the PDB decreases on a yearly basis, we are close to 

collecting data for a large fraction of all possible folds. While the biomolecular function 

overwhelmingly exceeds the number of known folds, the types of large scale conformational 

motions undergone by biomolecules seem to be relatively limited, similarly to the finite number 

of folds. The particular fold and its intrinsic global dynamics can presumably offer a versatile 

scaffold and mechanism for achieving a diversity of biochemical functions by amino acid 

substitutions that can accommodate the same fold and global dynamics. iGNM resulted from an 

attempt to collect those dynamic data in a DB framework to enable further exploration and 

establishment of biomolecular structure-dynamic-function relations. 
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5. CONCLUSION AND FUTURE WORK 
 
 
 
 

5.1. ASSESSMENT OF THE ELASTIC NETWORK MODELS 
 
 
In this dissertation, we showed that the Gaussian Network Model (GNM) agrees with 

crystallographic results slightly better than Normal Mode Analysis (NMA) does. This does not 

necessarily imply that the introduction of residue specificities into simplified EN-models is 

unnecessary. The findings redirected our thoughts to two facets. First, we need multidimensional 

experimental results to assess and confirm our predictions. These benchmarks should directly 

correlate with the protein function. For example, we would like to know how accurate the 

statement ‘catalytic sites are distinguished by their low mobilities in the global modes of motion, 

compared to their neighbors along the sequence’ is, when we resort to NMA instead of GNM to 

examine this phenomenon. This observation should hold true across all the dynamics models, 

probably more so for NMA given its ‘detailed’ nature at atomic scale. Second, more importantly, 

we have to understand why GNM performs better than NMA, despite its simplicity and 

underlying isotropic deformations assumptions. We currently invite attention to the difference 

between the potential functions implicitly adopted in the GNM and ANM. An intuitive thinking 

would lead to the proposal of creating a modified ANM model that adopts a potential that 

penalizes the orientational deformation of residue pairs, a topic that can be explored in future 

work. 
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Since the GNM considers no solvent damping effect nor are other constrains besides topological 

features of the molecule imposed, we expect our predictions to match experimental data better as 

the proteins move in a less restricted environments. It is indeed encouraging to observe that the 

GNM yields better agreement with NMR MSD than those with the X-ray temperature factors, 

and also that the GNM performs better when applied to structural diffraction data collected at 

higher XDT. To summarize the results, GNM appears to give better agreement with 

experimental data if the measurements are taken at higher temperature or in solution.  

 

Although the GNM yields the same level of agreement with experimental data over a wide range 

of cutoff distances, Rc = 15Å could be a safer choice to employ in order to cover the possible 

spatial discontinuities in structure originated from unresolved atom coordinates, to eliminate any 

overestimation in the mobilities of hanging tails/ends. Other situations where a higher cutoff 

distance may be more appropriate are the ‘stretched’ structures observed under intensive crystal 

constraints at low temperature, or the loop that stick into a hollow catalytic pocket as illustrated 

for penicillopepsin (1BXO).   

 

In assessing the performance of different harmonic models or the effects of parameters in a 

model, the comparison of the predictions with X-ray crystallographic B-factors seems 

straightforward and considers the physical properties in a good approximation. In fact, B-factor 

reports the uncertainty in the atom positions as a result of two effects – static and dynamic. Static 

effects come from the fact that some subset of atoms can orient themselves in more than one 

energy well bearing a similar depth. These atoms therefore distribute themselves in different 

spatial positions, corresponding to the different energy wells, with a similar possibility. Dynamic 
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effect, on the other hand, is what we analyze in this thesis, originating from the thermal 

fluctuations of atoms about their local energy minima.  

 

However, the B-factors do not distinguish these two effects. Structures of high resolution are 

often accompanied with low atomic B-factors. It is not very clear that the decrease in B-factors 

results from the decrease in purely static effects or both effects. The crystallographic B-factors 

are not therefore the most accurate experimental measures of fluctuation behavior. In this respect, 

NMR measurements may provide a better measure of dynamics, not limited by crystal contacts 

or experimental temperatures. This feature is further confirmed by the fact that GNM predictions 

show a better agreement with NMR measurements than X-ray data. In this thesis, we have not 

conducted a systematic comparative study on the agreement levels of fluctuations revealed by X-

ray B-factors and by NMR MSD between models. Such a future assessment should be valuable 

to clarify the suitability of different experimental approaches for benchmarking theoretical 

predictions. 

 

In a systematic analysis of 235 proteins structurally characterized at different resolutions (from 1 

to 2.4 Å) at XDT ≥ 273 K, a temperature considered to allow for ‘vivid’ protein dynamics and 

thereby decreased static effects on B-factors, the Rcorr values show a very minor dependence on 

crystal resolution with a correlation coefficient factor less than 0.15. A regression line of a 

negative slope -0.086 is observed in the Rcorr - Resolution plot, showing a very weak increase in 

Rcorr as the resolution improves. An even smaller correlation of 0.12 between Rcorr and crystal 

resolution has been observed for 831 proteins under XDT at 100K. 
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One should note that although the observed absolute residue fluctuations vary with the 

resolutions of a given structure, their relative fluctuation profiles (as a function of residue index) 

remain consistent. Moreover, the RMSD between two structures at different resolutions for a 

given protein are usually very small, which leads to the same Btheo profile. Hence, in terms of 

correlation with theoretical predictions, the influence of crystal resolutions on the Rcorr is trivial, 

at least for a certain range of resolutions, say, 1 – 3 Å.  

 

 

5.2. ACTIVE SITE PREDICTION USING COMPACT AND 
NEURAL NETWORK ALGORITHMS 

 
 
Within the scope of this thesis, the potential utility of the GNM for elucidating structure-

dynamics-function relations in enzymes of different EC classes has been explored systematically. 

It was found that catalytic residues have highly restricted mobilities in the global modes. Also, 

catalytic residues are subject to more restricted mobilities than their four flanking neighbors (two 

on each side) along the sequence, and this feature holds for more than 70% of the examined 

catalytic residues. A close interplay between chemical activity and molecular mechanics is 

suggested by these findings.  

 

A new software, COMPACT, has been developed within the scope of this thesis.  COMPACT 

takes advantage of the lower mobility concept observed for the active sites, and is found to 

observe amazing results. For the first time, we can ‘roughly’ predict the position of the active 

sites on a given enzyme structure without knowing the amino acid sequence. The results are 

observed to show high sensitivity, but low specificity. The low specificity (TP/(TP+FP)) of the 
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prediction should be overcome by employing more sequence and structure information, 

especially the knowledge of residue conservation, which has been observed to be most effective 

in previous algorithms (Gutterige et al., 2003). Our findings suggest that the active sites should 

be located at regions where dynamics requirements are met. The specific function is apparently 

achieved with the right spatial arrangement of atoms and local composition of amino acids, the 

specific function can be conducted.  

 

We are currently in the process of incorporating the dynamics information along with other 

sequence/ structural features into a neural network algorithm for active site predictions. The 

preliminary results are encouraging and yield a high accuracy rate that is deemed the best 

amongst reported algorithms. The idea of COMPACT can be further utilized and validated in 

low-resolution structures such as those from cryo-EM. Inspired by Ma’s work (Ming et al., 

2002a, b), we are planning to predict the catalytic loci of low-resolution enzymes from the fuzzy 

electron density map provided by EM or X-ray. The ‘nodes’, connected by the springs, can be 

created by clustering and quantizing the electron density clouds. This idea will be pursued and 

tested in the near future.  

 

 

5.3. DEVELOPMENT OF iGNM 
 
 
GNM, as the simplest EN model, provides a means of performing a high-throughput analysis of 

protein dynamics. With the deposition of ever growing large number of structures in the PDB, as 

well as the determination of increasingly larger supramolecular structures by experimentalists, 

GNM demonstrate a unique ability to compute and generate dynamics information in a database 
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framework, iGNM.  The database iGNM has been a pioneering effort to address this need; it was 

compiled and interfaced to allow biologists to access the dynamics of their molecules of interest 

with minimal computational hustle. Online calculation web servers, such as the current oGNM, 

allow us to upload and obtain the dynamics of proteins or protein/DNA/RNA complexes that 

belong to (1) part of the biological units, (2) a combined complex comprising two PDB files, or 

(3) the structure derived from homology modeling. We describe three recent applications 

assisted by the stored and computed GNM dynamics. 

 

PolQ, a new sequence identified by Professor Richard Wood and coworkers at the University of 

Pittsburgh Cancer Institute has been shown to have DNA polymerase activities (Seki et al., 2004). 

This polymerase, however, was found to have low-fidelity in DNA replication, which facilitated 

the bypass of DNA damages, despite its evolutionary similarity to the high-fidelity polymerase 

family, Pol I, observed in the sequence alignment. It bypasses damaged (AP) sites, inserting a 

nucleotide A with 22% of the efficiency of a normal template, and then continuing the extension 

as avidly as with a normally-paired base. To gain insight into the mechanism by which PolQ 

bypasses DNA damage, we carried a homology modeling study using Pol I members as 

templates. A converged model verified by two potentials was obtained for PolQ. Insert 1, an 

insertion of 22 residues between the conserved motifs in its catalytic pocket, was found to insert 

into the tip of the polymerase thumb subdomain and dock into the minor groove of the double 

helix DNA. GNM results for PolQ were retrieved from the calculation engine currently 

implemented in oGNM. It was found that in the global modes this highly positively charged 

stretch, Insert 1, would exhibit outstanding mobilities. The considerable flexibility conferred by 

Insert 1 to the thumb domain of the polymerase could alter the cooperativity of PolQ processing 
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and offer a stronger interaction with DNA that helps bypass damages without dissociating from 

the DNA template. 

 

Creatinase (Creatine amidinohydrolase) is a component enzyme in the biocomplex that was 

immobilized in a biosensor that monitors the creatine levels in patients’ blood. It was found to be 

highly susceptible to the inhibition of silver ions from the amperometric electrodes that contain 

Ag/AgCl (Berberich et al., 2005). Preliminary studies have shown that silver would lead to 

deactivation provided that their concentration would identically match that of the enzyme in 

solution. This inhibition does not apparently occur at the active site, given that the addition of 

substrate would not protect the enzyme from losing its activity. Addition of silver scavenging 

molecules, thiol containing molecules in particular, were extremely effective in preventing the 

loss of enzymatic activity due to the decreased free silver ions in chelating reagents. To identify 

remote sites that were impacted by silver ion binding, we used GNM results from iGNM. We 

proposed the critical cysteines in creatinase that allosterically alter the catalytic motions upon 

silver binding. We were able to show that two critical thiol residues, Cys297 and Cys60, exist, 

that if modified/bound by silver ions, may perturb the enzyme function and lead to inactivation. 

Among these, Cys297 is surrounded by negatively charged residues which may attract positively 

charged silver ions. We also concluded that the enzyme motions mediated by Cys297, which act 

as a hinge center in the global modes, could be impeded by silver ions and this could be the 

mechanism that leads to creatinase inactivation. 

 

The future extensions of iGNM are several folds. First, we would like to compute and store the 

dynamics data for structures in which the biological unit is different from the structure in the 
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PDB file. For instance, in our recent study on HK97 bacteriophage capsid (Rader et al., 2005), 

the initial step before examining the capsid dynamics was to assemble the 420 asymmetric units  

(PDB ID:1ifo and 1ohg), each of which comprises seven monomers of 385 residues each, into a 

shell (Prohead I) of 60 hexamers and 12 pentamers, forming an icosahedrally symmetric 

structure. Complexes as such can be derived from the combination of repeated subunits. Usually 

the coordinates of repeat units are available in the PDB, as well as the transformation (rotation 

and translation) matrices for constructing the entire structure of the multimer or assembly. The 

complex (entire HK97 bacteriophage capsid) rather than the constituent heptamers, is the 

biologically functional unit. This type of reconstruction of structure draws our attention to the 

necessity of generating and storing the dynamics of biological units.  

 

Second, EN-models that provide information on the directionalities of molecular motions, such 

as ANM, will be incorporated into the iGNM server. The challenge lies in the computer memory 

allocation given that the Hessian is 9 times larger than the Kirchhoff matrix in the GNM. 

However, coarse-grained approaches, fast algorithms such as BLZPACK and PowerB that 

extract a subset of modes and compute Btheo respectively, and parallel computing environment 

can always help us push up the limit of computation to describe functional dynamics of 

supramolecules. During the course of present doctoral studies, it has been for the first time 

possible to compute GNM dynamics for proteins over 105 residues (Rader et al., 2005).  

 

Third, an automated system is needed to download and compute the dynamics for the newly 

deposited structures. The mirror site of PDB has been created in our center to synchronize this 

attempt. Although iGNM is a continuing, active projects, we would like to coordinate our 
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activities with those on-going for PDB update to provide an one-on-one structure-to-dynamics 

mapping as the former three goals are met. 

 

iGNM datamining is probably the most interesting issue to pursue in the near future. We have 

unprecedented opportunities to explore protein dynamics in a systematical fashion. In addition to 

characterizing the conserved dynamics pattern of given protein families, we are going to ask 

more fundamental questions. What is the average dynamics for individual amino acids in general? 

How do the dynamics vary in different structural classes? Are there specific dynamic patterns 

preferred by secondary structural elements, or structural motifs, or by particular sequences 

(triplets or higher n-grams) of residues? As we unravel more and more such patterns, we will be 

able to start to infer dynamics from sequence compositions. This effort should nevertheless go 

hand-in-hand with other techniques such as comparative modeling, machine learning technique 

and clustering algorithms, and most importantly, with experimental studies that can provide 

feedback for improving or testing our computational models and results. 

 

Overall, this dissertation supports the view that protein structures have been designed to undergo 

conformational changes that dictate their biological functions. Many applications based on EN-

models seem feasible with promising results. ‘Dynamics database’, iGNM, opens the possibility 

storing pre-computed dynamics information in a database framework for various uses and 

implementations that can potentially shed light into the conformational mechanisms of protein 

function.  
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