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NULL GEODESIC DEVIATION EQUATION AND MODELS OF 

GRAVITATIONAL LENSING 

Krishna Mukherjee, Ph.D. 

University of Pittsburgh, 2005 

A procedure, for application in gravitational lensing using the geodesic deviation equation, is 

developed and used to determine the magnification of a source when the lens or deflector is 

modeled by a “thick” Weyl and “thick” Ricci tensor. This is referred to as the Thick Lens Model. 

These results are then compared with the, almost universally used, Thin Lens Model of the same 

deflector. We restrict ourselves to spherically symmetric lenses or, in the case of a thin lens, the 

projection of a spherically symmetric thin lens into the lens plane.  Considering null rays that 

travel backward from the observer to the source, the null geodesic deviation equation is applied 

to neighboring rays as they pass through a region of space-time curvature in the vicinity of a 

lens. The thick lens model determines the magnification of a source for both transparent and 

opaque lenses. The null rays passing outside either the transparent or opaque lens are affected by 

the vacuum space-time curvature described by a Schwarzschild metric and transmitted via a 

component of the Weyl tensor with a finite extent.  Rays passing through the transparent lens 

encounter the mass density of the lens, chosen to be uniform. Its influence on the null geodesics 

is determined by both the Weyl and Ricci tensor with the use of the Einstein equations. The 

curvature in the matter region is modeled by a constant Weyl and constant Ricci tensor. We 

apply the thick lens model to several theoretical cases. For most rays outside the matter region, 

the thick lens model shows no significant difference in magnification from that of the thin lens 

model; however large differences often appear for rays near the Einstein radius, both in the 

magnification and in the size of the Einstein radius. A small but potentially measurable 

discrepancy between the models arises in microlensing of a star. Larger discrepancies are found 

for rays traversing the interior of a transparent lens. This case could be used to model a galactic 

cluster. 
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1.0  BRIEF HISTORY OF GRAVITATIONAL LENSING 

The effect of the gravitational field of a massive object on light rays has been studied by many in 

the last 300 years. That massive bodies could have this effect was first suggested by Isaac 

Newton in 1704. According to Newtonian theory the bending of the light rays is inversely 

proportional to the impact parameter and directly proportional to the deflecting mass. When the 

deflecting object’s density is sufficiently large, Mitchell (1783) and Laplace (1786) showed that 

the deflection angle is so extreme that light can be trapped or self generated light never escapes 

from the massive body.  Such objects are now recognized as black holes. In 1801, J. Soldner 

published a paper that calculated for the first time the deflection angle of a light ray at grazing 

incidence to the surface of the sun. Using Newtonian mechanics Soldner derived a value of 0.84 

arc seconds for this angle. A century later, with his newly discovered theory of general relativity, 

Albert Einstein (1911, 1915) obtained a value twice that of Soldner’s.  Einstein’s prediction was 

verified when Eddington and Dyson observed the deflection angle within the range of 

permissible error during the solar eclipse of 1919.  

Little did physicists and astronomers realize then that observation of light deflection by 

cosmic bodies would open an entirely new research field now referred to as “gravitational 

lensing” which both validates general relativity and becomes a tool for the study of astronomical 

and cosmological phenomena. 
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1.1 TYPES OF GRAVITATIONAL LENSING 

A gravitational lens system (here after abbreviated as GL) is comprised of a light source, an 

intervening matter distribution that acts as the gravitational lens and an observer who sees 

images of the source.  The simplest example of such a system would be the perfect alignment of 

the observer with a spherical lens and source. It produces a magnified image of the source in the 

form of a ring, known as the Einstein ring.  Other configurations of GL system’s can lead to 

multiple images.  Both Chwolson (1924) and Einstein (1936) were skeptical of the Einstein ring 

or double images ever being observed because of the small angular radius of the ring and the arc 

second separation of images.  It was Fritz Zwicky (1937) who envisioned the potential for 

observing separate images of sources that are lensed by large masses, as for example, galaxies 

instead of stellar masses. 

In the sixties Refsdal (1964; 1966) wrote several important papers working out the details 

of gravitational lensing; in one he demonstrated that quasars as sources could be used to 

determine the mass of lensing galaxies from the angular separation of their images and in the 

other he explained how variability in a quasars’ intrinsic brightness could be used to constrain 

one of the cosmological parameters, the Hubble constant.  If the lensing system was 

asymmetrical, light rays could follow different path lengths to the observer who could measure a 

time delay by the flux variations between the pair of images. From the time delay and combining 

it with the redshift information of the images, Refsdal showed that the Hubble constant could be 

calculated (figure 1.1).   



 

 

Figure 1.1 Deflection of light rays from a source due to a gravitational lens 

 

        

  With the discovery of the first gravitational lensed quasar by Walsh et al. (1979) the age 

of observational lensing was launched. Observational studies of gravitational lensing have now 

branched off into two categories. Lenses that create multiple images and have large 

magnification belong to the group called strong lenses; those that have large impact parameters 

produce a single image with some distortion in the image and small magnification of the source 

fall under the category of weak lenses. Besides strong and weak lensing, in the late seventies and 

eighties another area in gravitational lensing, called “microlensing” was explored by 

astronomers.  Microlensing is the gravitational lensing of a source by another star or an object 
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smaller than a star. Chang and Refsdal (1979) showed that image separations of a micro arc 

second were not discernible; however the relative motion between the source and a micro-

lensing star, which would change their alignment, results in variable image magnification which 

is observable.  

We now discuss several examples from these three areas of gravitational lensing. 

1.1.1  Strong Lensing 

The images of a gravitationally lensed quasar in the shape of a cross (four images) was 

discovered by Huchra (1984). These were later referred to as the Einstein cross.  Other Einstein 

crosses have since been discovered with one particular cross observed by Rhoads et al. (1999) 

located within the bulge of the galaxy. The first Einstein ring with an angular diameter of 1.75 

arc seconds was imaged by Hewitt et al. (1988) using the Very Large Array radio telescope.  

Today many GL systems show multiple images of quasars while a few also show Einstein rings. 

Often a partial ring is observed; Cabanac et al. (2005) has found a 270 degree ringed image with 

an angular diameter of 3.36 arc seconds.  

1.1.2  Weak Lensing 

The first giant arcs that were distorted images of distant galaxies were observed around a galaxy 

cluster by Soucail et al. (1986) and Lynds et al. (1986).  Faint images of background galaxies 

oriented tangentially around galaxy clusters were first recognized by Tyson et al. (1990) as weak 

lensing signals. These signals were later used by Kayser and Squires (1993) to determine the 
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surface mass distribution of the cluster.  Arcs provide valuable information about the existence 

and the quantity of the dark matter content in clusters. 

 Researchers like Jaroszynski et al. (1990), are studying how weak lensing can be used to 

investigate the large scale structure of the universe.  Weak GL gives rise to temperature and 

polarization fluctuations in the cosmic microwave background radiation that can be used to 

constrain cosmological parameters like the cosmological constant and the critical density of the 

universe (Metcalf and Silk, 1998).  The Sloan Digital Sky Survey researchers, Scranton et al. 

(2005) did a statistical analysis on the magnification of images of 200,000 quasars as their light 

rays traveled through dark and visible matter and obtained a lensing signature that confirmed the 

existence of a non-vanishing cosmological constant and overwhelming abundance of dark matter 

over visible matter in our universe.  Today galactic clusters act as huge cosmic lenses that reveal 

distant galaxies in the form of multiple tangential arcs or in the form of a single distorted image.  

This allows astronomers to find the red shift distribution of faint galaxies. By analyzing the 

spectral lines of the arcs, the star formation rate and morphology of these distant galaxies can be 

determined (Mellier, 1999). 

1.1.3  Microlensing 

By monitoring the light curves of stars in the Large Magellanic Cloud, Paczynski (1986) 

predicted that it would be possible to detect massive compact halo objects (MACHO) having 

masses in the range of one tenth to one hundredth of the solar mass in our galaxy acting as 

“micro” lenses.  This opened up a whole new era in microlensing research. In the last decade 

there has been a concerted effort by many groups of astrophysicists (OGLE, “Optical 

Gravitational Lensing Experiment”, EROS, “Experience pour la Recherche d’Objets Sombres” 
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and MACHO) to detect microlensing events by observing millions of stars in the Large 

Magellanic Cloud that are lensed by our Galaxy’s halo members. Quasar microlensing by 

Wambgnass et al. (2002) has recently shown potential for determining the sizes of emitting 

regions in quasars. 

Recently several observer groups (MPS, Microlensing Planet Search, PLANET, Probing 

Lensing Anomaly Network, MOA, Microlensing Observations in Astrophysics) have focused 

their attention on microlensing events to detect extrasolar planets. Discovery of the first 

extrasolar planet by gravitational lensing by Udalski et al. (2005) was possible when a 

microlensed star showed sharp increase in magnification in its light curve. The spikes in the light 

curve were due to lensing by the orbiting planet and from the duration of such an event the size 

of the planet could be estimated.  Similarly detailed analysis of light curves of microlensing 

events by Rattenbury et al. (2005) have led to the determination of the oblate shape of a star due 

to its rotation. 

1.1.4  Flux variation in strong, weak and microlensing GL system 

Observation of some gravitational lens systems with radio telescopes and the Hubble Space 

Telescope have revealed anomalous flux ratio of images (Xanthopoulos, 2004; Jackson et al., 

2000; Turnshek et al. 1997).  The anomalies refer to the different ratios obtained from theoretical 

analysis and observation. There are a variety of possible causes for these anomalies. They could 

be due to microlensing caused by stars in the lensing galaxy or in systems where the flux varies 

with wavelength (Angonin-Willaime et al., 1999). There could be extinction due to 

inhomogeneous dust distributions in the lensing galaxy. Some have speculated that the variation 

in image fluxes could be due to the proximity of multiple lenses (Chae and Turnshek, 1997); in 
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the case of multiple imaged quasars it could be explained by the substructure in the dark matter 

halos as suggested by Metcalf et al. (2004) or by the varying sizes of the emission regions of the 

quasars, Moustakas and Metcalf (2005).  If it was properly understood, the magnification 

anomalies could provide considerable insight into the structure of lensing matter, Metcalf and 

Zhao (2002) and its dark matter content, Mao et al. (2004).   

          The purpose of the present work was first to examine an alternative method to 

determine the magnification of the source in a GL system that differed from that of the standard 

thin lens approximation and second, to see if this approach could address some of the observed 

magnification anomalies. This alternative method was based on using a thick lens rather than the 

usual thin lens approximation. 

 

1.2 THIN LENS APPROXIMATION 

  

 The thin lens approximation arises from the fact that the light deflection from a light source 

takes place near the lens over a spatial length that is extremely small compared to the total light 

path. Observationally this is true for most gravitational lens system since the distances involved 

are enormous compared to the dimension of the lens. This becomes the justification for replacing 

the three dimensional mass distribution of a lens by a two dimensional sheet of mass defining the 

lens plane and is also the rationale for using the term “thin lens”. 
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       The derivation of the thin lens equation, which relates via the astronomical 

parameters, the apparent source position in the sky due to the deflection to that of the un-

deflected position, is given in chapter 2. 

 

1.3 DEFINITION OF A THICK LENS 

           

To describe the thick lens and the thick lens approximation that we will be using, we consider an 

extended space-time source whose world tube intersects the past light cone of an observer 

(Figure 1.3.1). The cross-section of the light cone at the intersection of the source’s world tube 

determines the source’s visible shape. The pencil of null rays that join this cross-section to the 

observer transfers the information regarding the source’s shape to the observer.  

 

 



 

 

Figure 1.3.1 Observer’s past light cone 

 

Figure 1.3.2 Intersection of source’s worldtube with observer’s past light cone 
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An extended source is a collection of individual points; each of these points is mapped 

onto the observer’s celestial sphere via individual null geodesics to form an image of the source. 

By assuming a small source, we can focus on a single null geodesic, the one that connects the 

center of the source’s cross-section to the observer, and describe the relationship between the 

source’s shape and the image’s shape by “connecting vectors” along the central null geodesic 

(Figure 1.3.2). These connecting vectors or Jacobi fields satisfy the geodesic deviation equation 

along the central null geodesic and connect the latter to neighboring null geodesics belonging to 

the pencil of null rays (Frittelli, Kling & Newman, 2000) 

Far from the lens and near the source, we assume a flat space-time, but closer to the lens 

the space-time curvature has a non-trivial effect on the deviation vector. Astrophysical lenses 

have a mass distribution over a finite region. Granted the spatial dimension is small compared to 

the distances involved, nevertheless in this thesis we want to study whether the finite extent of 

this region’s curvature could affect the null geodesic deviation vectors and thereby change the 

magnification of the source significantly from the magnification obtained by the thin lens 

approximation.  

We choose spherically symmetric lenses that are described by a Schwarzschild metric 

outside the matter distribution of the lens. The geodesic deviation equation involves two tensors, 

the Ricci and the Weyl as sources. Both the Ricci tensor, which is a measure of the mass density 

of the lens, and the Weyl tensor describe the gravitational field inside the matter region of the 

lens while in the neighboring vacuum region of space-time outside only the Weyl tensor is of 

relevance. 



Our definition of a “thick lens” is an approximation consisting of a finite region where 

we assume a constant Weyl curvature and a smaller region of uniform mass density (Figure 

1.3.3) or constant Ricci tensor.  

 

 

 

Figure 1.3.3 Illustration of region of constant curvature  

 

Our model which we shall describe in detail in chapter 3, is illustrated in Figure 1.3.4. 

We choose null geodesics from the source to the observer that passes through a region of the 

constant Weyl tensor and, depending on the size of the impact parameter, through the matter 
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region of constant Ricci tensor of the lens.  Part of the approximation is to determine these null 

geodesics via the thin lens equation. We then seek a solution to the geodesic deviation equation 

along the entire trajectory of the null geodesic from the observer to the source. The derivation of 

the magnification of the source from the deviation vectors is described in chapter 3.  The basic 

difference between our derivations of the magnification versus the conventional derivation is that 

instead of using the lens equation in the thin lens model we use the geodesic deviation vector to 

compute the magnification. We then compare the magnification obtained from our thick lens 

model with that of the thin lens model for different lensing masses and sizes. They will be 

discussed in chapter 4 and 5.   

 

 

Figure 1.3.4 Thick lens model 
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1.4 OTHER THICK LENS MODELS 

 

We mention several other attempts at thick lens models.  Using Newtonian approximation 

Bourassa and Kantowski (1975) had studied a transparent lens by projecting a “thick” spheroidal 

volume mass density (density inversely proportional to the semi-major axis) on to the lens plane, 

thus essentially working in the thin lens approximations. 

            Hammer (1984) examined a thick lens model similar to the one developed here to 

compute the amplification of the light source.  He chose the background to be a low density 

Friedmann solution with a vacuum Schwarzschild region near the lens and the matter density of 

the lens as high density Friedmann solution. From the optical scalar equation he obtains the 

ratios of the light beam diameters with and without the lens as a power series expansion as a 

product of the lens radius and the Hubble constant scaled by the velocity of light. This work in 

point of view is closest to ours. The thick lens calculations are done in a cosmological 

background with no use of Schwarzschild Weyl tensor. 

            Kovner (1987) had considered a thick gravitational lens that is composed of multi-

redshifted thin lenses located at varying distances which is not related to our approach. 
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Bernardeau (1999) determines the amplification matrix of a lensed source by including 

cosmological parameters in the optical scalar equations. This work is similar to Hammer.   

Frittelli et al. (1998, 1999), and Frittelli, Kling and Newman (2000) introduced the 

idealized exact lens map which, in principle, maps by means of the past null geodesics, the 

observer’s celestial sphere, through arbitrary lenses, to arbitrary source planes that contain the 

light sources.  To implement the basic procedure a perturbation theory off Minkowski space had 

to be developed to find the approximate null geodesics from which the lens equation could be 

determined. Our work is in some sense an application of this method. 

 

1.5. OBJECTIVE OF THIS WORK AND SUMMARY OF FINDINGS 

    

 Rijkhorst has voiced concern (2002) about using the thin lens approximation when an entire 

galactic cluster acts as a lens. These enormous lenses can be the most stringent test of the thin 

lens approximation. Thus it may be that the thin lens is not the ideal model to consider in all 

situations. The other motivation behind this work is to study transparent lenses. Given the 

observational evidence of Einstein cross located within the bulge of a galaxy and the substructure 

that astronomers are suspecting within the lens, it seems a study of transparent thick lens model 

is of possible use. Our goal is to (a) find out whether there is a significant difference in the 

magnification of the images as calculated from the thin lens and our “thick” lens model. Is the 

difference sufficiently large so that it could be observed with present or near future telescopes?  

(b) To see how the magnification of a source is affected by the mass density of a transparent 
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lens. (c)  Does the thick lens approximation predict the same values for the Einstein radius as 

does the thin lens 

We find that, most often, the thick lens magnification did not differ significantly from the thin 

lens magnification; but there were several exceptions where there was a significant affect. This 

occurred most often when the impact parameter took the ray close to the Einstein radius. The 

largest difference in the thick and thin lens magnification occurred for a transparent lens when 

the null geodesics, for particular impact parameters, passed through the lens.  The mass density 

of the transparent lens determines whether multiple images are observable and the location of 

these images. 

Chapter 2 contains a discussion of the thin lens. This is followed by the development of 

the thick lens model in chapter 3.  In chapter 4 we examine four theoretical lenses and the 

variation in mass density with the magnification and location of images. In Chapter 5 we 

describe three configurations of lenses with potential astrophysical applications. Finally, in 

chapter 6, we summarize our results and discuss possible future developments. 
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2.0  THE THIN LENS 

This chapter contains a review of the thin lens equation, the default equation used for the bulk of 

lensing work. The material in this chapter relies heavily on the discussion given in Schneider, 

Ehlers and Falco, (1992) and Narayan and Bartelmann, (1998).  In section 2.1 we derive the thin 

lens equation.  The magnification of the source in the thin lens approximation is described in 

section 2.2. In section 2.3, in order to compare, later in this work, the magnification of the source 

for a thick spherically symmetric transparent lens with that of a transparent thin lens we describe 

the thin lens calculations for a spherically symmetric lens projected into the thin lens plane, 

referring to it as the Projected Spherically Symmetric Thin Lens (PSSTL) model. We will denote 

the thin lens magnification by 0μ  and for the thick lens by Tμ  which we shall derive in the 

next chapter 
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2.1 THE THIN LENS EQUATION 

On the observer’s celestial sphere (Figure 2.1.1, 2.1.2) let the angular positions of the unlensed 

source S and its lensed image I´ be β and θ respectively. 

 

    

 

Figure 2.1.1 Angular positions of source and image on the observer’s celestial sphere 



 

 

Figure 2.1.2 Model of a thin lens 

 

 The line connecting the observer O, with the center of the lens L is known as the optical 

axis. It is perpendicular to both the lens and source planes and intersects the latter at S´. If DS is 

the distance to the source then arc (S´S) = DS sin β and arc (S´I´) = DS sin θ. 

  In most GL systems the angles β and θ are small, being of the order of a few arc 

seconds. Using the small angle approximation we have, arc (S´S) = DSβ and arc (S´I´) = DSθ. 
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A light ray from the source travels in a straight line over flat space. At point I in the lens 

plane it is bent by an angle α, (the deflection angle), before proceeding to the observer. In the 

case of the thin lens approximation, the deflection angle is usually considered to be small. Only 

near a black hole or a neutron star can the deflection angle be extremely large. For example this 

case was studied by Virbhadra & Ellis (2000). These type of lenses are excluded in the present 

work. 

A relationship between the angular position of the unlensed source and its image can be 

obtained from the following observation:  one can see directly from the lens diagram, figure 

(2.1.2), the relationship     

)(ξαθβ
rrrr

LSSS DDD −=                                          (2.1.1) 

where,  and β
r

θ
r

are the angular vectors describing the location of the source and the image in 

their respective planes relative to the optical axis and  is the distance between the source 

and the lens. Therefore 

LSD

     )(ξαθβ
rrrr

S

LS

D
D

−=                                               (2.1.2) 

which is the thin lens equation used almost universally by the lensing community.  

In the special case of a spherically symmetric (Schwarzschild) lens, using linearized Einstein 

theory, the deflection angle, which becomes a scalar, is given by  

     ξ
α 2

4
c
GM

=                                                  (2.1.3) 
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Here, M is the mass of the lens, ξ is the impact parameter of the light ray in the lens 

plane, G is the universal constant of gravitation and c the speed of light in vacuum. 

For a general lens with a given mass distribution in the lens plane, the deflection angle is 

given by 

   ∫
′−

′−′Σ′= 2
2

2

)()(4)(
ξξ

ξξξξξα rr

rr
rrr d

c
G

                            (2.1.4) 

where Σ is the mass density projected onto the lens plane. 

Since we will be considering only spherically symmetric lenses, rotational symmetry 

permits us to take the observer, lens, source and the optical axis to be coplanar so that equation 

(2.1.2) can be rewritten as, 

    )(ξαξη LS
L

S D
D
D

−=                                     (2.1.5) 

where η = DS β, is the distance of the source from the optical axis in the source plane and ξ = 

DLθ, is the impact parameter in the lens plane. DL is the distance to the lens from the observer. 

For a spherically symmetric lens, substituting the value of )(ξα from equation 2.1.3 into the lens 

equation 2.1.5, we have, 

     LS
L

S D
c
GM

D
D

ξ
ξη 2

4
−=                                      (2.1.6) 

In the special occasion when the source lies on the optical axis,   η = 0 and β = 0, then, 

for a spherically symmetric lens, 

    ξξα
LSL

S

DD
D

=)(                                            (2.1.7)   
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Substituting equation (2.1.2) into the above, gives 

    
S

LSL

Dc
DGMD

2

2
=ξ                                            (2.1.8) 

This particular value of the impact parameter is called the Einstein radius (RE) and was 

first calculated by Chwolson (1924) and again by Einstein (1936).  Perfect alignment of a GL 

system gives rise to a luminous ring. The angular radius of the ring, θE , which can be measured, 

is given by, 

     
L

E
E D

R
=θ                                                     (2.1.9) 

Typical observed values of this angle are a few arc seconds.  Observational determination of this 

angle, together with redshift measurement of image and lens distances (Appendix C), provides 

an estimate of the mass of the lens. 

The thin lens equation allows us to calculate the magnification of lensed image of the 

source. A detail analysis of thin lens magnification is discussed in the next section.   

 

2.2 MAGNIFICATION 

The magnification of the source is defined by the ratios of the solid angle subtended by 

the lensed image and the unlensed image of the source at the observer, i.e., 

    ))((
2

20
S

S

L

I

S

I

A
D

D
A

d
d

=
Ω
Ω

=μ                                   (2.2.1) 
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IA  and  are the image area on the lens plane and source plane ( figure 2.2.1) 

respectively. 

SA

If θ  is the angular distance of the image from the optical axis and φ  is the azimuthal 

angle, then the area of the image in the celestial sphere of the observer is given by, 

φθθ ddDA LI sin2=  

Since θ  is small, 

φθθ ddDA LI
2= . 
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Figure 2.2.1 Illustration of source and image area 

 

Similarly we can obtain the area of the source.  Since the source is at an angular distance 

β  then at distance DS its area is, 
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φββ ddDA SS
2= . Thus by the substitution of the source and lens areas into 

equation 2.2.1 we get, 

    ββ
θθμ

d
d

=0                                                              (2.2.2) 

In the thin lens approximation, as we saw earlier, the lens equation can be written in 

terms of the angular distances of the source and the image, the deflection angleα , the 

Schwarzschild radius, 2

2
c
GMRS = . 

Since ,2
)(

44
22

L

S

L D
R

Dc
GM

c
GM

θθξ
α ===  by substituting this into equation 2.1.2 for 

a spherically symmetric lens, we obtain the spherically symmetric thin lens equation in the form 

   
LS

LSS

DD
DR

θ
θβ

2
−=                                                           (2.2.3) 

For this case, to determine the magnification as defined by equation 2.2.2, we 

differentiate equation 2.2.3 with respect to θ: 

   2
21

θθ
β

LS

LSS

DD
DR

+=
∂
∂

 

  )21)(21( 22 θθθ
β

θ
β

LS

LSS

LS

LSS

DD
DR

DD
DR

+−=
∂
∂

, 

this leads to 
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)

4
1(

1

422

220

θ
ββ
θθμ

LS

LSS

DD
DRd

d

−

==
                                           (2.2.4) 

Since the impact parameter b in the lens plane, is given by 

bDL =θ , by substituting this into equation 2.2.4, we get, 

  
1

24

222

0 ))(41( −−
−=

S

LLSS

Db
DDDRμ  

     =
4

222
2

2

)(4
b

DDDR
D

D

LSLS
S

S

−
−

                                                  (2.2.5) 

Equation 2.2.5 gives the magnification of the thin non-transparent lens in terms of the 

fixed lens parameters and the arbitrary impact parameter, b.  

  We now show how the magnification of a thin transparent lens is determined.  

The magnification of the image can also be defined as the inverse of the determinant of 

the Jacobian matrix Â  of the lens mapping βθ
rr

→  (Schneider, Ehlers and Falco, 1992, Narayan 

and Bartelmann, 1996): 

   
SL

IS

AD
AD

2

21

det =
∂
∂

=
−

ϑ
βμ r

r

                                              (2.2.6) 

In order to understand the physical significance of the elements of the Jacobian matrix, 

we need to define the “deflection potential”.  The deflection potential )(ξψ
r

 is the projection of 

the Newtonian potential into the lens plane.  From this deflection potential we can derive certain 
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entities that are relevant to gravitational lensing by taking a scaled potential that is related to the 

deflection potential, 
LS

LS

DD
D ψ

ψ =~
.   

We define a scaled deflection angle that is related to the true deflection angle, 

αα
rr

S

DS

D
D

=~
 and is given by the gradient of the scaled potential with respect to the angular 

position of the image, ),( 21 θθθ = ,  

    ψα ~~ ∇=
rr

                                                                (2.2.7) 

The elements of the Jacobian matrix  for a lens in general, are given by (Schneider et 

al. 1992) , 

Â

   )
~

(
2

ji
ijijA

θθ
ψδ
∂∂

∂
−=                                                     (2.2.8) 

The second derivative of the scaled deflection potential in equation 2.2.8 reveals the 

deviation from the identity mapping due to the thin lens mapping. It also describes the 

convergence and the shear. The lensed image of a source can have the same shape as the source 

but be larger or smaller in size. This isotropic focusing effect is described by the 

convergence )(θκ . When the mapping is anisotropic and the shape of the image is different, e.g. 

elliptical rather than the spherical shape of the source, it is described by the shear 

),()( 21 γγθγ ≡ . 

The Laplacian of the deflection potential gives the convergence )(θκ  for a symmetric 

lens: 
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                                                  (2.2.9) )(2)(2 θκθψ =∇

If   and 21 θθ are the components of the angular vector θ
r

in the lens plane, then the 

convergence and the shear can be determined from the deflection potential in the following 

manner, 

122211

2211

21  ;  )-(
2
1 

 ,)(
2
1)(

θθθθθθ

θθθθ

ψγψψγ

ψψθκ

==

+=

 

The Jacobian matrix expressed in terms of the convergence and the shear is,   

                                  (2.2.10) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−

−−−
=

12

21

1
1ˆ

γκγ
γγκ

A

  The determinant of   is used in the next section to obtain the transparent thin lens 

magnification.   

Â

 

2.3 THE PROJECTED SPHERICALLY SYMMETRIC THIN LENS (PSSTL) 

 

In this section we derive the magnification for a thin transparent lens. In order to do this, 

we first find the projected mass on the lens plane of a spherically symmetric lens. Then 

determine the shear and convergence that would enable us to find the Jacobian matrix which 

would eventually lead to the determination of the magnification of the source.  
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For a spherically symmetric lens, (a) the source and the observer can be assumed to be 

coplanar with the optical axis, and the two dimensional vector ξξ
r

= ;  (b) the angular 

coordinates of the image θθθ == 21 ; (c) if the lens has a uniform mass density ρ and a radius 

R then the surface mass density is given by  

  ∫
−

−−
−==Σ

22

22

222 )(
ξ

ξ
ξρρξ

R

R
Rdz                    (2.3.1) 

To make the surface mass density dimensionless a critical mass density is used which 

involves the distances of the GL system: 

    
LSL

S
c DGD

Dc
π4

2

=Σ                                               (2.3.2)  

For a spherically symmetric lens the scaled deflection angle α~  and potential ψ~  

(Schneider et al., chapter 8) both being a function of the angular position of the image
LD
ξθ =  

are, 

)5.3.2(                                         
)(2

2)(  where,

(2.3.4)                                               ln)()(ln2)(~

(2.3.3                                                            )()(2)(~

0

22

0

0

∫

∫

∫

Σ

′−
′′=

≡′′′=

≡′′′=

θ

θ

θ

θρ
θθθ

θθθκθθθθψ

θ
θθκθθ

θ
θα

c

LDR
dm

md

md

)(θm is the dimensionless mass within a circle of angular radius ),( 21 θθθ = . 
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Evaluating the integral in equation 2.3.5 we get 

  ⎥
⎦

⎤
⎢
⎣

⎡
−−

Σ
= 2/3

2

2

2

3

))(1(1
3
4)(

R
D

D
Rm L

Lc

θρθ                             (2.3.6) 

From the scaled deflection potential the shear can be obtained for a spherically symmetric 

lens and assuming θ  is small; 

   
22

2

21

2

2

2
2

2

2
1

2

1

~~

  0)
~~

(
2
1 

θθ
ψ

θθ
ψγ

θ
ψ

θ
ψγ

m
=

∂
∂

=
∂∂

∂
=

=
∂
∂

−
∂
∂

=

                                     (2.3.7) 

 The determinant of  in equation 2.2.10 is Â

                                           (2.3.8) 
2
2

2
1

2)1(ˆdet γγκ −−−=A

Substituting the shear components from equation 2.3.7 into 2.3.8 we get, 

   )21)(1(det 22 κ
θθ

−+−=
mmA                                (2.3.9) 

Incorporating the dimensionless mass from equation 2.3.6 into 2.3.9, we get, 

⎥
⎦

⎤
⎢
⎣

⎡
Σ
−

−
Σ
−

−
Σ

+

⎥
⎦

⎤
⎢
⎣

⎡
−−

Σ
−=

c

L

Lc

L

Lc

L
Lc

DR
D
DR

D
R

DRR
D

A

2/1222

22

2/3222

22

3

2/32223
22

)(4
3

)(4
3

41        x 

})({
3

41ˆdet

θρ
θ
θρ

θ
ρ

θ
θ
ρ

 

Substituting the impact parameter LDθξ = , into the above equation we have, 
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⎥
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⎡
Σ
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−
Σ
−

−
Σ
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⎥
⎦

⎤
⎢
⎣

⎡
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Σ
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2
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)(4
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ξρ
ξ
ξρ

ξ
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ξ
ξ
ρ

                 (2.3.10) 

The inverse of the determinant of Â  in equation 2.3.10 is the magnification of the image 

of the source in the PSSTL model. 

Summarizing, for an uniform density spherically symmetric lens, 

    Adet
1

0 =μ                                                            (2.3.11) 

For a transparent thin lens det  is given by equation 2.3.10  and for an opaque thin lens, Â

   
4

222
2

2

0 )(4
b

DDDRD

D

LSLS
S

S

−
−

=μ
                                (2.3.12) 

here ξ=b  is the impact parameter and is the Schwarzschild radius. SR
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3.0 THE THICK LENS MODEL 

 In our thick lens model we consider the past light cone of the observer where all null geodesics 

originating at the observer initially travel backwards in time through flat space. As they approach 

the lens, the space-time curvature changes in a finite region from zero to a non-zero value 

governed by the space-time metric of the lensing mass. The solution to the geodesic deviation 

equation gives the deviation between two neighboring null rays in regions of flat space and non-

zero curvature. We first derive in section 3.1 the geodesic deviation equation in the form that is 

applicable to our model.    

The geodesic deviation equation has a different structure for a transparent lens than from 

a non-transparent one.  In one there is both Ricci and Weyl tensor while in the other just Weyl 

tensor.  In section 3.2 we solve the deviation equation for the non-transparent lens and in section 

3.3 we do the same for the transparent lens.  Finally in section 3.4 we explain the derivation of 

the thick lens magnification and compare it with the thin lens magnification in the vacuum 

region.   



3.1 THE NULL GEODESIC DEVIATION EQUATION 

Let an observer be at rest in the local coordinates in a four dimensional space-

time , with signature of (1,-1,-1,-1). The world line of the observer is given by 

 where 

ax

)(g ,( ab
axM

)(0 τax τ is the proper time of the observer. The observer views the source on his or 

her celestial sphere (associated with the observers past light cone) with (stereographic) angular 

coordinates ζζ , . The parameter length of the geodesics that generate the past cone are the 

affine length s. These null geodesics can be described by the curve, ),,),(( 0 ζζτ sxYx aaa = , 

which satisfies the geodesic equation,  

                                                       3.1.1 

with the null condition .  Here  is the tangent to the geodesics and is given by 

the derivative of 

0=∇ b
a

a ll

0=ba
ab llg al

aY  with respect to the affine length s. The derivative of 
aY  with respect to 

the angular coordinates ζζ , , give the connecting vectors of the neighboring null geodesics: 

    s
Yl

a
a

∂
∂

=                                                                   3.1.2 

    ζ
ζζ

∂
∂

+=
a

a YM )1(1                                             3.1.3a 

    ζ
ζζ

∂
∂

+=
a

a YM )1(2                                            3.1.3b 
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aM 1  and are, in general, linearly independent Jacobi fields that are orthogonal 

to  such that  

aM 2

al

     0

0

2

1

=

=
ba

ab

ba
ab

lMg

lMg

Let us define a pair of independent, complex, orthonormal space-like vectors 

(
aa mm , ), that are parallel propagated along the null geodesic tangent to . 

al

The Jacobi fields ( ) can now be expressed in terms of the space-like vectors 

(

aa MM 21 ,

aa mm , ) in the transverse direction and a longitudinal component along .  
al

   
aaaa lmmM νηξ ++≡∴ 1                                    3.1.4a 

   
aaaa lmmM νξη ++≡∴ 2                                    3.1.4b 

Our interest is in the deviation vector, therefore the component of  along the 

tangent,  can be ignored and only the orthogonal components to  will be considered. 

aa MM 21 ,

al al

The connecting vectors aM , satisfies the geodesic deviation equation 

                              3.1.5 
dcba

bcd
a

b
b

c
c lMlRMll =∇∇

where  is the curvature tensor, and can be rewritten in terms of the components of 

equations 3.1.4a and 3.1.4b as a complex 2x2 matrix 

abcdR
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     ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ξη
ηξ

X̂                                                              3.1.6 

The curvature tensor  can be written in the form of a curvature matrixQ , 

represented by 

abcdR ˆ

    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΦΨ
ΨΦ

=
000

000Q̂                                                       3.1.7 

The elements of the curvature matrix are 

    
ba

ab llR
2
1

00 =Φ                                                    3.1.8 

where  is the Ricci tensor and abR

                                           3.1.9  
dcba

abcd mlmlC=Ψ0

where is the Weyl tensor. abcdC

In terms of X̂ ,  and Q̂
ds
dD = , the geodesic deviation equation (3.1.5) becomes the 

2x2,  second order matrix differential equation, 

                                                           3.1.10 XQXD ˆˆˆ2 −=

Our primary objective is to solve equation (3.1.10) for the deviation along a single null 

geodesic traveling from the observer (s = 0) to the source (s = s*). In between the observer and 

the source the null geodesic may encounter a distribution of matter which in turn creates, via the 

Einstein equations, curvature in the form of Ricci and Weyl tenors that is the gravitational lens 
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lying along the line of sight of the observer. In the next section we seek and find solutions to 

equation (3.1.10) for a non-transparent lens only in the Weyl tensor region.  

 

3.2 THE OPAQUE LENS 

 When the lens is opaque, the trajectory of the null geodesic travels first and last through 

flat space regions far from the lens; these regions will be labeled as I on the observer side and III 

on the source side.  Closer to the lens it passes through the constant curvature vacuum region, 

identified as region II.  Figure 3.2.1 illustrates the different regions. 

  

 

Figure 3.2.1 Model of an opaque lens 

The geodesic deviation equation will differ in region II from I and III because the 

curvature matrix varies when the light rays travel through regions of non-vanishing space-time 

curvature.  In Region I and III, the assumption of flat space means both the Weyl curvature and 

the Ricci tensor are zero, 
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    0,0 000 =Ψ=Φ                                                 3.2.1 

so that the geodesic deviation equation for region I and III is 

                                                                       3.2.2 

In the vacuum region II near the lens, the space-time curvature is non-vanishing therefore, 

0ˆ2 =XD

    0,0 000 ≠Ψ=Φ                                             3.2.3 

and the geodesic deviation equation in region II becomes 

    XXD ˆ
0

0ˆ
0

02
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ψ

Ψ
−=                                            3.2.4 

We seek solutions to the geodesic deviation equations 3.2.2 in region I (the observer 

side), with the following initial conditions.  Null geodesics of the observer’s past null cone have 

their apex at the observer so the deviation matrix X̂  must vanish at the observer. 

    0ˆ =∴ X  at s=0                                                        3.2.5  

The orthonormality condition for the connecting vectors at the observer force the initial 

condition on the first derivatives, 

     at s=0                                               3.2.6 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

10
01ˆ

IXD

In region II we solve equation 3.2.4 and in III equation 3.2.2 with the boundary condition 

that X̂  and its first derivative must be continuous across the boundaries of all the three regions: 

                                    3.2.7 2...1),(ˆ)(ˆ
1 == + iLXLX iiii

                          3.2.8 2...1),(ˆ)(ˆ
1 == + iLXDLXD iiii
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 We write the component of the Weyl tensor, 0Ψ as 

                                                                    3.2.9 
ifeΔ=Ψ0

and refer to  as the height or strength of the Weyl. f is a phase factor depending on the initial 

choice of . In regions of constant curvature II we will take a constant value of Δ.  

Δ
am

As mentioned earlier we choose lenses with spherical symmetry so that the exterior 

regions of such lenses can be described by the Schwarzschild metric: 

  ( ) )sin(
/21

)/21( 222
2

22 φθθ ddr
rm

drdtrmds +−
−

−−=               3.2.10 

where 2c
GMm =  and M is the mass of the lens. 

The components of the Weyl tensor in the radial null tetrad coordinate were determined by Janis 

and Newman (1965), Todd and Newman (1980): 

  3224310 ,0
rc

GM
=Ψ=Ψ=Ψ=Ψ=Ψ                                  3.2.11 

In order to apply this to lensing we must transform the components of the Weyl tensor 

from radial to a null tetrad chosen along the null geodesic in the observer’s past light cone.  The 

construction of this transformation is given in appendix A. From it we find the Weyl tensor 

component , given in the appropriate tetrad system that is associated with our null geodesic. 

It takes the form  

0Ψ

   320 ),(
rc

GMbzf=Ψ                                                     3.2.12 

The variable b is the impact parameter while z represents the orthogonal distance along the 

geodesic from the impact parameter. (See figure 3.2.2.) The function f (z, b) has the form  
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}))/(1)(/(2)/(2)/(31{
}))/(1)(/(2)/(21{3),( 2/3242

2/122

bzbzbzbz
bzbzbzbzf
++++

+++
= …..3.2.13 

 

 

Figure 3.2.2 Determination of the height of the Weyl tensor 

In order to assign a constant width  to the non-vanishing Weyl region 0w 0Ψ , we 

chose (arbitrarily) a spherical region of radius twice that of the matter region of the lens .  

From this we determined the width; 

0R

    22
0 42 bRw −=                                                   3.2.14 

To obtain the height , we integrated Δ 0Ψ  (equation 3.2.12) over the entire path of the 

null geodesic for each particular value of the impact parameter b, see figure 3.2.2.   The average 

area under this curve gave us the estimate of the height Δ : 
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0

0

w

dz∫
∞

∞−
Ψ

=Δ                                                        3.2.15 

Using 3.2.14 and solving the geodesic equations in the three regions with the initial 

conditions and the continuity conditions between the regions we finally obtain the full solution in 

region III at the source. The solution  is given by IIIX̂

   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠
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X III                             3.2.16 
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−Δ=
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                                                                                                                                                  3.2.17 

2
L  ,

2
0

2
0

1
w

D
w

DL SS +=−= , Δ= 0ww  

From this solution we will show, in section 3.2.4, how the opaque thick lens magnification can 

be determined.  

 

3.3 THE TRANSPARENT LENS 

When null geodesics pass through a transparent lens we have five different regions to 

consider as shown in figure 3.3.1.  The curvature matrix Q  varies as the null geodesic moves ˆ
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through regions of different space-time curvature, consequently the geodesic deviation equation 

changes too.   

 

Figure 3.3.1 Model of a transparent lens 

 

In the far zones I (observer side) and V (source side), 0=Q
)

 because of flat space and 

the geodesic deviation equation is identical to equation 3.2.2.      

 

Region II and IV are the near zone outside the lens mass where we assume constant Weyl 

curvature but no Ricci tensor (or mass), therefore in these two regions 0,0 000 ≠Ψ=Φ . 

In these two zones the deviation equation is the same as equation 3.2.4.    

In region III the null geodesic encounters the mass of the lens and a constant Weyl 

curvature, hence here 0,0 000 ≠Ψ≠Φ . For region III, the geodesic deviation equation is  

   XXD ˆˆ
000

0002
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΦΨ
ΨΦ

−=                                                           3.3.1 
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To solve the geodesic deviation equation in region I we applied the same initial 

conditions as equations 3.2.5 and 3.2.6.  The boundary conditions are similar to equations 3.2.7 

and 3.2.8, except that in this case we have to match the continuity of the solution and its first 

derivative across four boundaries.  Therefore, 

                                               3.3.2 4...1),(ˆ)(ˆ
1 == + iLXLX iiii

                                       3.3.3 4...1),(ˆ)(ˆ
1 == + iLXDLXD iiii

The component of the Weyl tensor, 0Ψ is again written as 

ifeΔ=Ψ0 . , the height of the Weyl curvature is taken constant across the regions 

II, III and IV.  The determination of 

Δ

Δ is different from that of a non-transparent lens. 0Ψ  is a 

piecewise continuous function.  In the regions II and IV, 0Ψ is determined in the same manner 

as the opaque lens:  

   ),(320 bzf
rc

GMtotal=Ψ , 00 2RrR ≤≤                      3.3.4 

where r is the radial coordinate given by, 00
22 Rb2R  , ≥≥+= bzr .  

In region III, the null rays encounter the mass of the lens. The Weyl component 0Ψ  is a 

function of the mass M within a radius r given by  

0
22 Rb  , ≤+= bzr   

   ),(320 bzf
rc

GM
=Ψ , 0Rr ≤                                    3.3.5 
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The function f( z, b ) has the same form as equation 3.2.12  

In order to assign a constant width and a constant height to this 0Ψ , 0Ψ was integrated over the 

entire path of the null geodesic for a particular value of the impact parameter b and the area 

under this curve gave us the height  (see figure 3.3.2) Δ

.   

                                                          3.3.6 ∫
+∞

∞−
Ψ=Δ dzw 00 ))((

The width w0 depends on the assumed extent of the Weyl curvature (figure 3.3.2) 

We assume the Weyl curvature is nonzero over a spherical region of radius . Therefore the 

width is given by 

02R

   when 
2/122

00 )4(2 bRw −= 0Rb <                             3.3.7 

 

 

Figure 3.3.2 Determination of width of the Weyl and Ricci tensors 
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To find the height Δ when b < R0 equation 3.3.6 is integrated piecewise across the 

vacuum region II, the matter dominated region III and then the vacuum region IV: 

∫

∫∫
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−

−−
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00
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)()(

bR opaque

bR

bR ttransparen

bR

opaque

dz

dzdzw

             3.3.8 

opaque)( 0Ψ  is given by equation 3.3.4 and ttransparen)( 0Ψ by equation 3.3.5.   

 To obtain the Ricci tensor 00Φ in the geodesic deviation equation 3.3.1 we 

assume that the transparent lenses are made of non-interacting fluid matter of constant density. 

The matter field is characterized by the velocity and the density. The velocity is given by 

τd
dxu

a
a = , where τ is the proper time of the world line of a particle and if ρ0 is the proper 

density of the flow, then the energy-momentum tensor for the matter field is given by abT

),1(u    where a
0 vuuT baab rγρ ==  

    
.

)1(

1

2

2

c
v

−

=γ
, u = ( 1, 0 )                                                 3.3.9 

Einstein’s field equation is  

   2
8

2 c
GTRgR abab

ab
π

=−                                                  3.3.10 
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abR  is the Ricci tensor and R is the Scalar Curvature.  

Contracting equation 3.3.10 with the tangent to the geodesic, we get, 
al

   2

8
c

llGTllR
ba

abba
ab

π
=  with                 3.3.11 )1,0,0,1(=al

   
ba

ab llR
2
1

00 ≡Φ                                                             3.3.12 

Substituting equations 3.3.12 and 3.3.9 into equation 3.3.12, we get, 

   H
Rc

GM
c
G total ≡==Φ 3

0
22

0
00

34 ρπ
                                    3.3.13  

Since we assume that the lens has a uniform density the height H of the Ricci tensor will 

be independent of the impact parameter but the width will be dependent on b and is given by 

.2 22
0 bR −=ω  

 The solution to the geodesic deviation equation in region V is given by 
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In the next section we will see that the magnification can be found from this solution in 

the case of the transparent lens. 
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3.4 THE MAGNIFICATION OF THE SOURCE IN THE THICK LENS 

In our model where we consider the observer’s past light cone and the geodesic deviation 

equation with the initial conditions at the observer,   and   , Frittelli et 

al. (2002) showed that this implied that the solid angle of the image at the observer was 

normalized to be one. By choosing,

0ˆ =X ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

10
01

X̂D

*sDS = , the magnification of the source in the thick lens 

model is then, in general, given by, 

   
sSS

I
T X

s

s
A ˆdet
1 2

*

*
2

==
Ω
Ω

=μ
 

where  is the solution to the geodesic deviation equation at the source. sX
The magnification of the image for a transparent lens is given by the inverse of the 

determinant of , VX̂

    
V

T X
s

ˆdet

2
*=μ                                                          3.4.1 

while for an opaque lens is given by 

    
III

T X
s

ˆdet

2
*=μ                                                       3.4.2 

For a transparent lens, when the null geodesics have impact parameter greater than the 

radius of the lens, we use equation 3.4.2 to determine the source magnification.  When the 
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impact parameter for a null ray is less than the radius of the lens, we use equation 3.4.1 to find 

the magnification.  

We can make a comparison of the thick versus thin lens magnification for null geodesic 

having an impact parameter 0Rb >   in the following manner.  In appendix B we show that the 

thick lens magnification can be expanded about the thin lens magnification 0μ  for small widths 

 as 0w
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where  is  J

    2220
24
b
R

bc
GMwJ S==Δ≡                                     3.4.4 

Hence in the thick opaque lens the source magnification can be compared with the thin 

opaque lens as  in equation 3.4.3. To compare equation (3.4.3) with the thin lens 

magnification given in (2.3.12), we take

00 →w

LDLL == 21 . Substituting 3.4.4 for  

and , equation 3.4.3 can be rewritten as, 
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which is exactly the thin lens magnification.  We thus see that our thick lens magnification goes 

smoothly to the thin lens as the thickness goes to zero. 

By putting in detailed numbers later, into equation 3.4.3, we can see that there is little or 

no disagreement between the thick and thin lens magnification for impact parameters far from 

the Einstein radius, i.e., far from regions of high magnification. The correction term becomes 

large for impact parameters near the Einstein radius. 



4.0   IDEALIZED TRANSPARENT LENSES AND THEIR PARAMETERS 

In this chapter we study and compare the thick versus the thin lens models in several cases of 

idealized spherically symmetric transparent lenses with lensing parameters that lie in reasonable 

astrophysical ranges. Though for most situations they are unphysical (with a few real 

exceptions), we work out and compare the thin and thick lensing magnifications and the 

locations of the critical regions for several transparent astrophysical objects. This is done largely 

for the sake of simply understanding the mathematics of lensing in a transparent object. 

In the thin lens map described in chapter 2 the magnification 0μ  is known for light rays 

that lie outside the lens. But the lenses that are considered here are transparent and the null 

geodesics can pass through the lens. To compare the image magnification of the thick 

lens Tμ with the thin lens for rays that pass through the transparent lens, we use the PSSTL model 

described in chapter 2.   A description of certain lensing parameters for interior regions is given 

in 4.1. The mass of the theoretical lenses studied here is taken to be 1012 Msun , a value similar to 

our Milky Way Galaxy. The distances are chosen to be comparable to those of observed galactic 

lensing systems. The thick lens parameters are defined in section 4.2.  In 4.3 we give the 

definition of caustics and critical points. In 4.4 we examine four examples of gravitational 

lensing of a source due to a lens of constant mass but with 4 values of the radius. This allows us 

to test, what role the density of the transparent lens plays in the magnification in both thick and 
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thin lens models. The relationship between the density and the magnification is analyzed in 

section 4.5.  

 

4.1 GRAVITATIONAL LENSING PARAMETERS 

For the study of lensing by a transparent astrophysical object we review below four parameters 

that are relevant when the null geodesics pass through the interior of the lens. The Einstein radius 

is the exception, it is important for geodesics both passing outside and inside the lens.  

These parameters are,  

(i) the surface mass density Σ , which is the projection of the volume mass density of 

the lens onto the lens plane; 

(ii) the Einstein radius , which is the particular value of the impact parameter (in the 

vacuum region) that would theoretically give infinite magnification of the image 

when the source is located on the optical axis; 

ER

(iii) the critical surface mass density crΣ , which is the ratio of the mass of the lens to the 

area enclosed by the Einstein radius;  

(iv) the dimensionless surface mass density κ , also known as the convergence.      

    For a spherically symmetric lens of uniform mass density ρ and radius R, the surface 

mass density is given by  

   ∫
−

−−
−==Σ

22

22

222 )(
bR

bR
bRdzb ρρ                                  4.1.1 
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Here b is the impact parameter and z is chosen as the Cartesian coordinate parallel to the line of 

sight and transverse to b.  

The Einstein radius is a function of the mass M of the lens, the distances to the 

source , and lens , from the observer, and the distance between the lens and the 

source ; 

SD LD

LSD

    
S

LSL
E Dc

DGMD
R 2

4
=                                         4.1.2 

The critical surface mass density also depends on the variables described above, except 

that it is independent of the mass; 

    
LSL

S
cr DGD

Dc
π4

2

=Σ                                                 4.1.3 

For a fixed lens and source location, the dimensionless surface mass density κ is a 

function of the impact parameter b; 

    
cr

bb
Σ
Σ

=
)()(κ                                                              4.1.4 

The parameterκ establishes the criteria for multiple imaging. When 

                1>κ                                                                   4.1.5 

the lens will give a large magnification of the image for four (two on either side of the optical 

axis) values of the impact parameters. For 

     1<κ                                                                  4.1.6 

the lens will not cause any large magnification of the image. 

     1≈κ                                                                 4.1.7      
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is interesting since this value of kappa separates the two cases where the Einstein radius of the 

lens lies either outside or inside the lens. We will discuss the effect of such lenses on the 

magnification in section 4.4.    

 

4.2 THE THICK LENS PARAMETERS  

The numerical values of the astrophysical parameters for the four cases that are discussed in this 

section are given below.  In appendix C we show the derivation of the cosmological distances 

that are chosen here. 

The parameters that are kept constant are:  

M = the total mass of the lens = 1012 x MSun =2 x 1042 kg;  

The Einstein radius, RE = 0.3616 x 1018 km; 

The Schwarzschild radius, RS = 2

2
c
GM

 = 2.96 x 1012 km; 

The distance between source and observer, DS = 2868 Mpc = 8.86 x 1022 km; 

The distance between lens and observer, DL = 1348 Mpc = 4.16 x 1022 km; 

The distance of the source from the lens, DLS = 1558 Mpc = 4.8 x 1022 km; 

The minimum value of the impact parameter, = . minb SR100

The one parameter that is varied is the radius of the lens . As a consequence the mass density 

of the lens

0R

ρ  as well as the Ricci tensor 200
4

c
Gπρ

=Φ also varies.  We take four different 

values for .  0R
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4.3 CRITICAL POINTS AND CAUSTICS 

 

When the determinant of A, the Jacobian of the lens map, is close to zero, the image 

magnification is extremely large.  The locations of the source in the source plane, at which the 

magnification of the image is large, are the “caustics”.  The corresponding positions for the 

image in the image plane are referred to as the “critical points”.  The magnification changes sign 

when the impact parameter crosses a critical point. When the determinant A has a positive value, 

the image is said to have a positive parity and a negative parity when the determinant of A has a 

negative value. The Einstein radius of a lens is situated at a critical point if it is larger than the 

radius of the lens. There is some ambiguity about its meaning when the Einstein radius lies 

within the lens. 

For the four examples of a lens that we consider in this section with constant mass but 

different radii we compute the magnification in the thin lens model (rays exterior to lens) and 

PSSTL model (rays interior to lens) and make a comparison with the thick lens model for   
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ib=ξ , and  (i) the magnification at each impact parameter

(ii) the location of the critical points.  

 



4.4 CONSTANT MASS LENSES 

 

4.4.1 Case 1. Lens radius is 5 kpc 

This is the case where we consider the entire mass of our galaxy to be concentrated within a 

volume of radius smaller than the sun’s distance to the center of the galaxy.  

238
00  10 x 12.0 −−=Φ km   

3
10-

km
kg 10 x 29.1=ρ  

kmxR  10  1545.0 18
0 =  

kmRE  10 x 3616.0 18=  

Figure 4.4.1a shows the magnification of the image for the thick lens and the thin lens 

plotted against the impact parameter for values larger than the radius of the lens.  
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Figure 4.4.1a R=5kpc exterior region thick & thin lens mag identical at RE 

 

The Einstein radius is larger than the lens radius and is the position of the critical 

point outside the lens. In this case, we find that there is a second critical point that lies within the 

transparent lens for both the thick and the PSSTL model. The impact parameter where the second 

critical point is located is labeled as . The magnification changes sign for both models from 

positive values for to negative values for

ER

cb

ERb > ERb < .  In figure 4.4.1b, as the impact 

parameter is decreased to values less than the radius of the lens, the image in the thick lens 

maintains its negative sign until the value of the impact parameter is equal 

to . This is the location of the critical point inside the thick lens 

where the magnification is large. The magnification of the image changes sign again from 

km 10 x 1513.0 18=Cb
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negative to positive, for values of the impact parameter smaller than .  In the PSSTL model the 

critical point inside the lens is located at  and the magnification of 

the image like the thick lens changes sign too at the second critical point. In this particular case 

we find that there is a difference of 0.4 kpc or an angular separation of 0.02 arc second between 

the location of the thick and thin lens second critical point.    

Cb

km 10 x 1388.0 18=Cb

 

 

 

 

 

Figure 4.4.1b R=5kpc interior region thick (blue) thin (red) 
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4.4.2 Case 2. Lens radius is 10 kpc 

This is the case when   

239
00  105x 1.0 −−=Φ km   

3
11-

km
kg 10 x 62.1=ρ  

kmxR  10  309.0 18
0 =  

The magnification of the thick and thin lens is plotted against the impact parameter for 

values outside the lens in figure 4.4.2a and for values inside the lens in figure 4.4.2b.  

 

Figure 4.4.2a R=10kpc exterior region thick & thin lens mag coincides 
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We find a critical point at the Einstein radius which lies outside the lens. The 

magnification is large at and again at the second critical point inside the lens at 

.  The PSSTL model also gives two critical points, one at  and the 

second one at b=0.23 x 10

ER

km 10 x 20.0 18=Cb ER
18 km. The image changes sign for both models at each critical point in 

the PSSTL and the thick lens model.  The two critical points inside the lens for the thick and thin 

lens are separated by 1 kpc or 0.05 arc second. 

 

 

Figure 4.4.2b R=10kpc interior region thick (blue) thin (red) 
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4.4.3 Case 3. Lens radius is 15 kpc 

This is the case that places the entire mass of our galaxy, both visible and dark matter within this 

radius.  

240
00  10 x 446.0 −−=Φ km   

3
12-

km
kg 10 x 80.4=ρ  

kmxR  10  4635.0 18
0 =  

kmRE  10 x 3616.0 18=  

The magnification for both models is plotted against the impact parameter for values 

smaller than the lens in figure 4.4.3.  
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Figure 4.4.3 R=15kpc interior region thick (blue) thin (red) 

  

 

In this case the Einstein radius is smaller than the radius of the lens. For the PSSTL 

model there is an increase in magnification of the image inside the lens but no critical points are 

found whereas in the thick lens model we find one critical point located at b=0.46335 x 1018 km 

almost coinciding with the radius of the lens at 0.4635 x 1018 km. The image magnification for 

the thick lens changes sign from positive to negative at b=0.4635 x 1018 km and then remains 

negative after that. The magnification in the PSSTL model shows no change in sign but increases 

to a large value and then decreases.  
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4.4.4 Case 4 Lens radius is 50 kpc 

Here we assume that the dark matter in our galaxy extends to a radius much larger than the 

visible disk. 

242
00  10205x .1 −−=Φ km   

3
13-

km
kg 10 x 29.1=ρ  

kmxR  10  545.1 18
0 =  

kmRE  10 x 3616.0 18=  

The magnification is plotted against the impact parameter in figure 4.4.4 for values of the impact 

parameter smaller than the lens.  

 

 

Figure 4.4.4 R=50kpc interior region thick (blue) thin (red) 
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The Einstein radius is located inside the lens. For this low density lens, we find that both 

PSSTL and the thick lens model produce no large magnification of the image inside or outside 

the lens. 

 

4.5 INTERPRETATION OF RESULTS 

In the thick and thin lens model we find critical points for some of the lenses, for others there are 

none.  In order to understand the relationship between the location of critical points, parity 

reversal (change in sign of the magnification) and location of caustics we refer to figure 4.5.1 

where the critical points and caustics are shown.  

This is the case when a lens has two critical points one inside and the other outside. The 

latter coincides with the Einstein radius. For a spherically symmetric lens if the source is 

positioned on the optical axis, it is perfectly aligned with the lens and observer.  The null rays 

impacting the lens plane at the Einstein radius form a magnified ringed image of the source. 



 

Figure 4.5.1 Lens with two critical points 

 

The source of this ringed image is said to be located at a tangential caustic. Rays with 

impact parameters larger than strike the source plane above the “tangential caustic” hence 

they have positive parity; light rays that strike the source plane below the tangential caustic 

reverse their parity. The null rays with impact parameters less than , strike the source plane 

ER

ER
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at greater distances from the caustic. They reach a threshold point on the source plane when the 

rays no longer touch the source plane lower than this threshold point. This threshold point is the 

location of the second caustic and is known as the “radial caustic”.  It corresponds to the second 

critical point inside the lens. The light rays that impact the lens plane below the second critical 

point strike the source plane above the radial caustic and hence they change their parity again. 

 The density of the lens is critical to determine whether the light rays will bend 

sufficiently to form a caustic. For the very low density cases we found no critical points (see 

figure 4.5.2). 

  

Figure 4.5.2 Lens with no critical point 
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The case where the dimensionless surface density is close to one, we find one critical 

point located inside the mass or Ricci part of the lens and lying close to the radius. In this case 

the tangential and the radial caustics merge (see figure 4.5.3). From these observations we can 

deduce that a lens with a surface density equal to the critical density will have one critical point 

located on the edge of the lens.   

  

Figure 4.5.3 Lens with one critical point 
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In section 4.1, from equations 4.1.5-4.1.7, we examined the value of the convergence that 

will give a large magnification of the image of the source. 

For our hypothetical lenses the convergence values were as follows:   

lens  theoutsideor  inside points critical no,082.0

lens  theinside points critical  two,913.0

inside one and outsidepoint  critical one ,05.2
inside one and outsidepoint  critical one ,22.8

50

15

10

5

=

=

=

=

kpc

kpc

kpc

kpc

κ

κ

κ

κ

 

The 5 kpc and 10 kpc lenses have both values of  1>κ  and we find two critical points 

for both of them. The 50 kpc lens has a value of  1<κ  and it has no critical points. The case 

when the lens radius is 15 kpc we find 1≈κ . This is where we find a discrepancy between the 

thick lens result and the PSSTL result. The presence of one critical point in our model with none 

in the PSSTL model shows that this is the correction to the thin lens model due to the thickness 

of the lens and it occurs close to the critical value of the convergence.  

The figures in section 4.4 for the opaque lens demonstrate that for values of b larger than 

R0, the thick lens magnification is almost the same as the thin lens model. For values of b inside 

the lens the thick lens magnification is often quite different from the PSSTL model. 

In chapter 5 we will examine an example of a possible transparent astrophysical lens. 
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5.0 APPLYING THE THICK LENS MODEL TO ASTROPHYSICAL LENSES 

  In this chapter we apply our thick lens model to simulate three types of astrophysical lenses:  

(a) a galaxy cluster which is an example of a genuine transparent astrophysical lens                        

 (section 5.1)  

(b) a galaxy that is like our Milky Way Galaxy (section 5.2) and 

(c) a star that microlenses another star (section 5.3).  

The goal in each case is to test whether the differences in the magnification of the image 

as determined by the thick lens model is significantly different from the thin lens model.  Since 

we assume a spherically symmetric lens with a uniform density, which is unphysical for galaxies 

and galaxy clusters, it is not relevant to compare our results with observation. Instead it is 

important to establish the magnitude of the difference between the thick and thin lens model for 

future modeling applications. In the case of a star these assumptions are standard and just for 

curiosity we test our result with observation. 

 



 

5.1 THE GALAXY CLUSTER 

The astrophysical lenses that allow images of quasars or distant galaxies to be seen through the 

lens are clusters of galaxies.  Currently, over a dozen transparent galaxy clusters have been 

observed.  Such lenses often show multiple images inside the lensing cluster and numerous 

arclets encircling the outer fringes of the lens. The galaxy cluster that we modeled as our 

transparent lens was Abell 2218.  The Abell 2218 cluster is believed to consist of about 10,000 

galaxies. If we assume that the galaxies in Abell 2218 are on an average like the mass of the 

Milky Way Galaxy, then including the dark matter, the mass of Abell 2218 would be 

.  We also decided to pick distances to our source and lens different from the 

Abell cluster’s distance.  Realizing that astrophysical sources that are imaged by clusters are 

either quasars that lie at distances of , or they are distant galaxies that lie as far away as 

 we chose a source with a redshift of 

Sun
16 M 10 =M

5.0>z

5.0 >z 0.1=Sz . The redshift of the Abell 2218 cluster 

is known to be 0.171.  We chose a higher redshift for the lens, 5.0=Lz

kg4616

km 10 x 09.3 Mpc 1 19
0 ==R

.  Using a smaller 

cluster radius, and using the redshifts to determine the source and lens distances (Appendix C), 

the Einstein radius was found to be outside the lensing cluster.  The parameters of the cluster that 

were used in our thick and PSSTL model, listed below, were chosen so that the Einstein radius 

was outside the matter region: 

(i)    the mass of the cluster is  M Sun 10 x 0.2M 10 ==

(ii)   the radius of the cluster is   
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(iii)  the Einstein radius is  km 10 x 125.3 19=ER

(iv)  the distance to the cluster is     km 10 x 78.4 22=LD

(v)   the distance to the source is  km 10 x 705.9 22=SD

(vi)  the distance between the source and the lens is  km 10 x 928.4 22=LSD

(vii) the density of the cluster is 3
13-

km
kg 10 x 02.2=ρ  

(viii) the dimensionless surface mass density of the cluster is 26.2=
Σ
Σ

=
cr

κ  

The magnification of the image is plotted against the impact parameter in Figure 5.1.1.  

The figure shows a change in the sign of the magnification on adjacent side of the Einstein 

radius.  The magnification increases tremendously near the Einstein radius but it is not situated at 

the same location for both the thick and thin lens model.  The difference in the position is 0.5 kpc 

= 1.56 x 1016 km or 0.067 arc seconds.  This is small on cosmological scale but discrepancies in 

the Einstein radius is reflected in the mass of the lens. The ratios of the square of the Einstein 

radius of the thick and the thin lens gives the ratio of the thick lens mass to the thin lens mass. 
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Figure 5.1.1 Exterior of Galactic Cluster, R=1Mpc, thick (blue) & thin (red) 
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ET =                                                                 5.1.1 

In equation (5.1.1) the factor 
S

LSL

Dc
DGD

2

4
does not appear as it is common to both the 

numerator and denominator. 

Substituting the values of the thick and thin lens Einstein radius in equation 5.1.1 

   
9988.0

)0001.1(
)9995.0(

0

2

2

2
0

2

=

=

M
M
R
R

T

E

ET

                                                               5.1.2 

This means the difference in mass is 0.1% which is negligible considering the 

uncertainties in present day cluster masses.   

Fore the transparent lens there is a critical point for both the thick and thin lens but the 

two are separated by 164 kpc or have an angular separation of 21.8 arc second.  
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Figure 5.1.2 Interior of Galactic Cluster, R=1Mpc, thick (blue) & thin (red) 

5.2 A MASSIVE MILKY WAY GALAXY 

 In chapter 4 we had examined four theoretical cases with the same lens mass as our Milky Way 

Galaxy.  None of the radii chosen resembled the true size of the galaxy.  Here we choose an 

opaque lens with a more realistic radius of the galaxy and a mass ten times greater than the actual 

value to include dark matter.   

For this case the values of the parameters, were chosen to resemble a cosmological 

gravitational lensing system. 

 (i)    the mass of the galaxy is  kgM 43
Sun

13 10 x 2M 10 ==

(ii)   the radius of the galaxy is   km 10 x 927.0 kpc 30 18
0 ==R

(iii)  the Einstein radius is  km 10 x 1435.1 18=ER
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(iv)  the distance to the galaxy is     km 10 x 16.4346Mpc1 22==LD

(v)   the distance to the source is  km 10 x 8.862867Mpc 22==SD

(vi)  the distance between the source and the lens is              

         km 10 x 7.4 21Mpc15 22==LSD

(vii) the density of the cluster is  3-11 kg/km 1051x .2=ρ

The magnification of the source is plotted against the impact parameter ( ) for both 

the thick and thin lens in Figure 5.2.1.  We find that far from the Einstein radius the difference in 

magnification between the two models is negligible but close to the Einstein radius the difference 

is large.  Figure 5.2.2 shows a plot of the ratio of the thick lens to the thin lens magnification 

against the impact parameter.   The percentage difference can be as large as 10 to 15% in the 

vicinity of the Einstein radius but far away it drops to less than 0.001%. 

0Rb >

 

Figure 5.2.1 Exterior of 30Kpc Galaxy, thick (blue & thin (red) 
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Figure 5.2.2 Ratio of thick to thin lens magnification of Galaxy 

 

5.3 MICROLENSING DUE TO A STAR 

To compare our thick lens model for the microlensing of a star with an observed microlensing 

event we chose the MACHO Alert 95-30 event detected by Alcock et al. (1995).  The lensing 

star is probably a bulge star at a distance of 6.93 kpc.  The source is a red giant of spectral case 

M4 III.  Alcock et al. determined the spectral type from the spectral atlas of Turnshek et al. 

(1985).  This implies that the radius of the star is SUN12)R(61± . From the Color Magnitude 

Diagram of the stars near the field of the source star, the location of the source star revealed that 

it lies in the galactic bulge, about 9  kpc from the observer.  The microlensing parameters that 

we use in our calculation are taken from Alcock et al.’s paper.  Although the source is a giant 

1±
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star we assume in the thick and thin lens models that it is a point source and is lensed by an 

opaque lens with a small radius. 

 As the lensing star moves across the line of sight of the red giant star a brief 

increase in the magnification of the source occurs.  In this work we model the movement of the 

source across the line of sight of the lens. The closest approach of the source to the optical axis is 

p = 2.387 x 107 km in the source plane (figure 5.3.1).  In the lens plane, the source appears to 

move across the Einstein ring with an impact parameter given by p. The displacement of the 

source η
r

from the optic axis is determined in the following manner: 

                                                            5.3.1 
2/1222 )( tvp +=η

where v = 193 km/s is the relative velocity of the source with respect to the lens.  The time t is 

measured in days starting with the time when the source is closest to the optical axis as the initial 

time. From the Einstein radius, 

kmxRE
810  42.4=  

and the lensing distances, 

kmxkpcD

kmxkpcD

L

S
17

17

1014.293.6

1078.29

==

==
  

the mass of the lens is determined to be SUNLens MM 67.0=  
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Figure 5.3.1 Projection of source’s motion on lens plane 

 

 

To find the impact parameterξ
r

, the thin lens equation is used,  

   ξ
ξη r
rr 2

E

S

L R
D
D

−=                                                                5.3.2 

The spherical symmetry of the lens makes the above equation a quadratic equation in the 

scalarξ :  
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   0)( 22 =−− E
S

L R
D
D

ξ
η

ξ                                                     5.3.4 

The roots of this equation, gives the two impact parameters in the lens plane, where the 

image is located.  One image is found inside the Einstein ring the other outside.  The combined 

magnification of the two images gives the total observed magnification of the source. The 

magnification for each of the image is determined from the thick lens model and the thin lens 

model. To find the magnification in the thick lens model the null geodesic is taken to pass 

through the constant curvature matrix region having a width given by: 

   )4(2 22 bRw E −=                                                        5.3.5 

For each value of the source position η the combined magnification of the two images in the 

thick lens model is 

   TTT 21 μμμ +=                                                                5.3.6 

and in the thin lens model is 

   20100 μμμ +=                                                                 5.3.7 

The thick lens magnification for each of the two impact parameters ξ1 and ξ2 corresponding to a 

particular source position is given by 

   1,2j  ,
)(det

2

==
jIII

S
jT X

D
ξ

μ                                         5.3.8 

The denominator in equation (5.3.8) is the determinant of the solution to the geodesic deviation 

equation at the source.  The numerator is the square of the distance to the source.  
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 The same impact parameters were used to determine the magnification of the 

source in the thin lens model.  We now show how the expression for the traditional thin lens 

magnification can be written in a simple form.  

 For a point source the thin lens magnification is given by equation 2.2.5 found 

directly from Schneider et al. as 

   

ES

L

RD
Du

uu
u

η
μμμμ

μ

=

==

±
+
+

=

+

±

0201

2/12

2

_  ;
2
1

)4(2
2

                                              5.3.9 

Using η  from equation (5.3.4), u  becomes 

   ξ
ξ 22

ERu −
=                                                                       5.3.10 

Substituting this value of u into the first equation of (5.3.9) 
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4

2222

44

2/12222222

224224
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E
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−
=

+
+−

+
=

+
+−−
++−

=+

ξ
ξ

ξξ
ξ

ξξξ
ξξξ

μ

                   5.3.9 

Using this equation we found the time dependent magnification in the thin lens model for 

the microlensed star. 
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From equations (5.3.6) and (5.3.7) the magnification of the thick and thin lens are plotted 

against the time.  Figure (5.3.2) shows the light curves for the two models.  Figure 5.3.3 is the 

light curve of the observed event. 

The peak magnification between the thin and thick lens differs by 0.8, the thin lens being 

higher than the thick lens.  We compare these two light curves with the observed light curve 

given in Alcock et al.’s paper (1997).  The observed peak magnification lies between the thick 

and thin lens model. We also plot the graph of the ratio of the thick and thin lens magnification.    

 

 

 

Figure 5.3.2 Light curve of MACHO Alert 95-30, thin lens (blue) & thick lens (red) 
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Figure 5.3.3 Light curve of MACHO Alert 95-30, Alcock et al., 1995 
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Figure 5.3.4 Ratio of thick to thin lens magnification, MACHO Alert 95-30 
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6.0 CONCLUSION 

In this thesis we developed a model for gravitational lensing that we referred to as the thick lens 

model.  This model is based on the idea that perhaps the standard, almost universally used, thin 

lens calculations could be in error under certain circumstances and that perhaps the use of a thick 

lens could sometimes correct those errors.  For the sake of model building, we have assumed that 

our lens is spherically symmetric hence the Schwarzschild metric yields an appropriate space-

time description.  The idea is to compare the magnifications from both the thick and the thin lens 

models and, if differences do show up, to compare them with observations. 

It did turn out that the difference in magnification of a gravitationally lensed source, 

determined by the thick lens and the universally accepted thin lens approximation, and does in 

fact appear to be quite small in most circumstances. But there were real differences in special 

cases.  Both these results could be seen from the Taylor series expansion in the width of the thick 

lens in the limit of the width approaching zero and from the detailed individual comparisons. 

There were, as we mentioned, scenarios where the difference could be significant and 

hence require special attention.  We found the largest difference in magnification between the 

two models for the case when the lens was transparent and the light rays traversed the interior of 

the lens.  

 One of the questions about thick lenses that were of primary concern in this work was 

determining the effect of changes in the width of the region of constant Weyl curvature on the 
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magnification.  Applying a variety of widths to lenses of different sizes we found that slow but 

appreciable changes in width has only, in general, a small effect on the magnification of the 

source in the thick lens.  This excludes the choice of extremely large widths that gave us 

unphysical results. 

There were three scenarios in the vacuum region where we did find a real difference 

between the thick and thin lens models. These were for lenses that simulated a galactic cluster, a 

galaxy and a star microlensing another star.   

We first summarize the results from the galaxy cluster. 

Though we treat the galactic cluster as transparent, we first discuss the vacuum region.    

Our thick lens model when applied to the cluster showed appreciable variation in magnification 

between the thick and thin lens models near the Einstein radius.  It was apparent that the large 

difference in magnification near the Einstein radius is due to the fact that the Einstein radius does 

not coincide in the two models.  The difference in the two Einstein radii was 0.5 kpc (0.067 arc 

second).  This difference is certainly negligible in cosmological terms.  But the Einstein radius is 

important because it is an observable feature among large lenses in the cosmos.  The angular 

diameter of the Einstein ring constrains the mass of the lens and can be determined if the 

distances to the lens and the source are known.  A 0.5 kpc difference in the ring diameter implies 

that the mass of the lens calculated in the two models differ by 0.1 %.  Clusters of galaxies are so 

massive that a 0.1 % difference can be a major error.  Although mass determination of clusters to 

this level of precision is unheard of now but it could be a possibility in the distant future.  The 

results for the magnification of the source for this transparent lens in the non-vacuum region will 

be summarized later.  
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The second example of a cosmic lens was a galaxy similar to our Milky Way Galaxy, 

which is non-transparent.  We chose a mass ten times larger than the accepted value and a radius 

twice that of the visible disk to take account of the dark matter.  Here we found the difference in 

magnification between the thick and thin lens models to gradually increase around the Einstein 

radius.  Far from the Einstein ring the percentage difference in magnification was less than 0.001 

%.  But the difference increased and was as high as 10-15% near the Einstein radius. 

Our third astrophysical lens is a non-transparent star.  For this particular case we applied 

our model to an actual observed microlensing event (MACHO-Alert 95-30).  Here a star in the 

bulge of our galaxy had microlensed another giant star in the bulge and the light curve of this 

event was observed by astronomers.  Using the actual observable parameters to model this lens 

we determined the light curve for the thick and thin lens models.  The largest disparity in 

magnification among the two models was found for this case.  For the MACHO-Alert 95-30 

event, the peak magnification differs by 3 percent between the thin and thick lens.  Some would 

argue that this is too small a discrepancy to be observable.  Presently, fluxes of stars are 

observable to 0.005 of a magnitude and microlensing events with extreme precision are being 

undertaken.  This small deviation of today could in future translate to an observationally 

significant difference.  Both the models predicted a light curve that was comparable with the 

observed light curve and became indistinguishable far from the closest approach of the lens and 

source.  The observed peak magnification was found to have a value less than the thin but more 

than the thick lens model. In fact many claim this source should be considered an extended 

source since it is a red giant, but both the thin and thick lens model of a point source did a good 

job of fitting the light curve. 
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One of the objectives of this study was to model transparent lenses regardless of their 

feasibility.  We wanted to test the relationship between the density of the lens and the location of 

the critical points and caustics. In order to compare our model for the interior regions of the 

transparent lens with the thin lens we chose the PSSTL model. This enabled us to compare the 

thick lens source magnification with the PSSTL model when the null geodesics passed through 

the lens.  Recapitulating our model, in the case of a transparent lens when the light rays were 

outside the lens, the thick lens magnification was compared with the standard thin lens 

approximation; when the light rays passed through the lens the thick lens magnification was 

compared with the magnification obtained by the PSSTL model.  

We now review the results of the transparent non-realistic lenses and the plausible 

transparent lens, i.e., the galaxy cluster.  

The four theoretical lenses that we examined showed that the light rays passing through 

the transparent lens would produce a very large magnification of the source when the density of 

the lens was close to the critical density.  The high density lenses would show large 

magnification for two pairs of impact parameters; one at the Einstein radius and other inside the 

lens on either side of the optical axis. The image changed parity whenever the impact parameter 

crossed a critical point. These observations were true for thick and thin lens. 

The location of the interior critical point is a function of the critical density.  As the 

surface density approached the critical density value, the two critical points, one inside and the 

other outside decreased their separation. This observation was not always true for the PSSTL 

model.  

We believe that when the surface density is exactly equal to the critical density then the 

Einstein radius coincides with the radius of the lens. 
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This latter case was not tested but we did apply our model to a lens with a surface density 

close to the critical density.  This lens had both the critical points inside the lens. In this case the 

Einstein radius was located within the lens. What physical significance an interior Einstein radius 

can play is not known but we did observed a large increase in magnification at this impact 

parameter where our critical point was located.  However the spherically symmetric thin lens did 

not show a large magnification at the Einstein radius.  In this case the PSSTL model’s 

magnification increased substantially and reached a maximum value over 100 but no where near 

the Einstein radius.   

For the 5 kpc and 10 kpc radii lenses the location of the critical points inside the lens 

differed considerably between the thick and the PSSTL model.  The location of the Einstein 

radius, in both cases, was situated outside the lens and was the same as the thin lens 

approximation. The difference in magnification was less than a hundredth of that of the thick 

lens.  For the very low density lens of 50 kpc the two models showed little difference in 

magnification inside and outside.   

In all the lenses and in both the models the magnification would decrease as the impact 

parameter approached the center of the lens.  Our analysis was terminated for impact parameters 

close to the Schwarzschild radius where the linear approximation breaks down. 

We also showed geometrically the location of the tangential and radial caustics.  When 

the null rays strike the source plane and cross or touch the caustic it changes sign and hence 

change the parity of the lens.  When the source is located on the optical axis it was a tangential 

caustic. This is the basis of the Einstein ring where rays from every point on the circumference of 

the ring would converge to the tangential caustic.  If the location of the source anywhere else 
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gave rise to a caustic then the critical point was located inside the lens.  The distance to the 

source and lens also affected whether a lens possessed a caustic.             

The motivation for doing this work was based on astrophysical observations that showed 

there was a discrepancy between theoretical calculation and observations for certain complicated 

lens configuration of the magnification of a source with multiple images as observed by optical 

telescopes and radio telescopes.  One of the suggestions that have been made was: could 

considerable dust in the lensing galaxy have anomalous effect on the magnification of the source 

as observed by different telescopes.  With our transparent lens we might be able to address the 

issue of the discrepancy.  Our idea was to raise the possibility that the thickness of the lens could 

sort this issue. Another problem in astronomy is the determination of the dark matter content in 

galaxies and cluster of galaxies. We believe the thick lens model has the potential to determine to 

some extent the amount of dark matter associated with a gravitational lens.  The more recent 

claim by astronomers of substructure in the lens which leads also to observed magnification 

discrepancies can be examined with our transparent thick lens.    

6.1 FUTURE GOAL 

The thick lens model that is developed here has limited application in astrophysics.  To make our 

model more realistic the next step is to make a pyramid like model with varying Ricci and Weyl 

tensors that would represent varying density and strength of the space-time curvature, 

respectively.  The idea is to model the variation in density that is normal in cosmic lenses. The 

Weyl tensor that is assumed to have a uniform strength both inside and outside the lens in this 

thesis would be changed with different heights reflecting variation in strength.  Similarly, the 



Ricci would have different heights representing the variation in density of the halo, the disk and 

the bulge if we are using the galaxy as a lens. We illustrate our pyramid model in figure 6.1 

Recent observations of the Einstein cross appearing within the bulge of the galaxy would 

be an interesting cosmic lens to study with our thick lens model but modified to use regions of at 

least two different mass densities. 

Presently, our thick lens model probably has the greatest application in microlensing 

events. Since several groups of astrophysicists are involved in searching for microlensing events, 

we are interested in the possibility of applying our model to these events.  

 

Figure 6.1 Pyramid Model of Milky Way Galaxy 

 

We would also like to explore more comprehensively the relationship between the 

positions of the critical points inside the lens with the critical density and the location of the 

caustics.   

 

 

  

 

88



APPENDIX A 

TRANSFORMATION OF WEYL TENSOR 

For a spherically symmetric mass, the space-time exterior to it can be  

described by the Schwarzschild solution. The metric in spherical polar  

coordinates is given by  

 )sin(
)/21(

)21( 2222
2

22 φθθ ddr
rm

drdt
r
mds +−

−
−−=                                   A1 

 

Here, m = GM/c2, where M is the mass of the body in regular units and m is  

the mass of the body in geometrical units, such that m/r is dimensionless. 

Equation A1 is valid for r > R, where R is the radius of the spherical mass. 

 

The Schwarzschild metric in terms of the null tetrad is given by  

ba
ba

ba
ab dxdxll

r
mdxdxds 22 −=η  

 

The components of the Weyl tensor in the null tetrad formalism is given by  

(Newman and Penrose, 1962) 
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For the Schwarzschild metric, Newman & Todd (1980) and Janis & Newman 

(1965) had shown that these components reduce to only one non-zero component: 

32 r
m

=ψ  

Therefore taking  0am =

0  ,0  ,  ,0  ,0 433
0

210 ===== ψψψψψ
r
a

 

But this component depends on the radial  distance r  from the center of the  

 

lens. We are interested in a coordinate transformation from the radial to the  

 

cartesian coordinate z, where the z axis lies along the line of sight of the  

 

observer but is measured from the center of the lens. 

 

Following Janis and Newman (1965), we do a rotation around : l
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Finally a rotation about n gives, 
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)()(e       

ˆ
){ˆ

)(bb     
)()(     

ˆ

i

1

1-

μμμμμφ

μμμ

μμμμμ

μμμμ

μμφμμφμ

μμμμμ

λ

λ

λ

λ

laamamanbalm

bnmm
laamannn

laamaman
almeblambel

nbbmbmbll
ii

+++++=

+=

++==

+++=

++++=

+++=

++

−+

−

++++

                         A2 

  

 

92



Equating 
μμμμ nmml ,,,  in terms of the stereographic coordinates  
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with the null tetrads along the line of sight, 
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and solving for λ,,, baa  we have, 
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Assuming ζζφ =∴=    ,0 , where .  Transforming the  )2/(θζ φCotei=

 

stereographic coordinates to (z, b), we get  
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APPENDIX B 

TAYLOR SERIES EXPANSION OF THE THICK LENS 
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APPENDIX C 

COSMOLOGICAL DISTANCE DETERMINATION 
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In the above expression a is the expansion parameter; 
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2
03H

Λ
=ΩΛ  is the parameter that is related to the cosmological constant  

 

and (kpc) s
km 700 =H is the Hubble constant, s

km 103 5xc = is the speed of light. 

 

 

1=Ω+Ω+Ω Λ MR , where RΩ  is the curvature parameter. Since we assume a  
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This equation can be used to determine the cosmological distances to the  

 

lens and the source when the redshifts of both are known. The above  

 

equation is usually used for redshift values larger than 0.5.  
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