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SPATIALLY RESOLVED GALAXY STAR FORMATION AND ITS

ENVIRONMENTAL DEPENDENCE

Niraj D. Welikala, PhD

University of Pittsburgh, 2008

The role of star formation in galaxies is clearly a fundamental component of their evolution,

although it is becoming clear that galaxy environments may also play a significant role. To

explore the relationship between environment and star formation in galaxies, I use the pho-

tometric information contained in individual pixels of 44 964 galaxies (volume-limited) from

the Fourth Data Release of the Sloan Digital Sky Survey. I use the pixel-z technique, which

combines stellar population synthesis models with photometric redshift template fitting on

the scale of individual pixels in galaxy images. Spectral energy distributions are constructed,

sampling a wide range of properties such as age, star formation rate (SFR), dust obscura-

tion and metallicity. By summing the SFRs in the pixels, I show that, as found in other

studies, the distribution of total galaxy SFR shifts to lower values as the local density of

surrounding galaxies increases. The effect is most prominent in the galaxies with the highest

SFR. Since the method enables an estimate to be made of the spatial distribution of star

formation within galaxies, the mean SFR of each galaxy is then calculated as a function of

radius. I find that, on average, the mean SFR is dominated by star formation in the central

regions of galaxies and it is this central star formation that is suppressed in high density

environments. The mean SFR in the outskirts of galaxies is found to be largely independent

of environmental effects. These trends are shared by galaxies which are highly star forming.

I also investigate the impact of the density-morphology relation of galaxies on the observed

trends. Early-type and late-type galaxies exhibit distinct radial SFR distributions. A sup-

pression of star formation in the highest density environments is still found in the highest
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star forming galaxies within each type. I show that the density-morphology relation alone

cannot account for this observed suppression. This points to a mechanism by which the

environment governs the evolution of galaxies, affecting the star formation in the innermost

regions in both early and late-type galaxies. I suggest that this is a natural consequence of

“downsizing” in galaxies.

keywords: galaxies: structure — galaxies: statistics — galaxies: distances and redshifts —

galaxies: evolution — galaxies: formation.
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1.0 INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

The formation and evolution of galaxies is one of the most challenging problems in astro-

physics today. Throughout the 20th century, our understanding of the way we think galaxies

form has changed dramatically. Some of the early models of galaxy formation favored “Mono-

lithic Collapse”, whereby galaxies form through the collapse of a protogalactic cloud. The

most famous example of this model was one by Eggen et al. (1962) who studied the motions

of a sample of high-velocity stars in the Milky Way. They found that the metal-poor halo

stars in the Milky Way have highly elliptical orbits which are characteristic of a system in

free fall. They inferred that the Galaxy formed quickly through the collapse of a uniform,

isolated protogalactic cloud. In 1978, this model was challenged by Searle and Zinn (1978)

who analyzed globular clusters in the Milky Way (low metallicity and old Population II stars

which form a halo around the Galactic disk) and concluded from the low metallicity gradient

and large age spread of these stars that the halo was built instead on a timescale of several

Gigayears (Gyrs) from separate, low mass fragments.

Today, a basic framework exists to describe the formation of galaxies from primordial

fluctuations in the density field (White and Rees, 1978; Blumenthal et al., 1986; White and

Frenk, 1991). The standard picture of structure formation is that we live in a Cold Dark

Matter (CDM) Universe with hierarchical clustering: the smallest objects in the Universe

collapse first and merge to form larger ones. In a CDM Universe, the initial small density

fluctuations grow due to gravitational instability and eventually form virialized objects called

“dark matter halos”. Halos grow as a result of a series of mergers, assembling mass in a

hierarchical fashion, with less massive halos in the past merging to form more massive ones.
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The spectrum of fluctuations is roughly flat on scales greater than 100 Megaparsecs (Mpc)1

and on these scales the density fluctuations are small in size (rms fluctuations of the order

∼ 0.1 at 1 Gpc). However, on scales of the order of 10 Mpc, the density fluctuations are large

(∼ 1). The most apparent overdensities are therefore on small scales, less than 10 Mpc which

are the typical scale of galaxy clusters. It is the environments around galaxies on those scales

that are of interest to those who study galaxy evolution. Galaxies are thought to reside in

dark matter halos and just like the dark matter halos, undergo hierarchical merging, with

smaller galaxies merging to become larger ones. In this picture, the clusters of galaxies we

see today, such as the Coma cluster, shown in the top left panel of Figure 1.2 must have

been assembled from this mass buildup through the hierarchical merging of smaller galaxies

in the past. Despite this framework for the way galaxies form, many of the processes that

accompany galaxy formation are not well understood.

What is known about the physical processes, both internal and external to galaxies? The

first indicator of the internal structure within a galaxy is the galaxy morphology. Edwin

Hubble first classified galaxies according to their morphology along the so-called “Tuning-

fork diagram” (Hubble, 1936; Sandage, 1961). Some of the more common classifications are

based on visually determining the galaxy morphologies, (de Vaucouleurs et al., 1991; Lintott

et al., 2008). Other studies over the past decade have attempted to quantify morphology

using measurements of concentration, color, surface brightness profiles or features in the

galaxy spectrum (e.g., Abraham et al. (2003); Conselice (2006); Goto et al. (2003b); Strateva

et al. (2001)). Broadly speaking, galaxies classified as “early-type” have morphologies that

are typically elliptical and lenticular while “late-type” morphologies are either spiral or

irregular. Early-types also tend to be redder, more luminous, gas-poor and have older stellar

populations than do late-types. Figure 1.1 shows an example of a “late-type” and an “early-

type” galaxy both of which have been imaged by the Hubble Space Telescope (HST).

How are these stellar populations distributed throughout a galaxy? Although there is a

strong empirical connection between the ages of stellar populations and the galaxy morphol-

ogy, it still does not give a complete picture of the properties of these stellar populations.

There are strong correlations among the measurable physical properties of galaxies. As

11pc = 3.26 light years (ly)
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Figure 1.1: Left panel: An example of a late-type galaxy: the spiral galaxy M74 seen face-

on. The galaxy is at a distance of around 30 million light years. The spiral arms, which

consist of gas and dust, are about 1000 light years across. They contain many young and

blue stars with high rates of star formation. The pink, colored regions correspond to diffuse

gaseous nebulae (HII regions). The galaxy also consists of a bulge containing older, redder

stellar populations. Right panel: An example of an early-type galaxy: the elliptical galaxy

M87. This is a bulge-dominated galaxy containing old stellar populations, giving the galaxy

a red color. There is very little gas or dust and little star formation. Images are taken from

the Hubble Space Telescope (HST). Source: Hubble Heritage Project (NASA and STScI,

http://heritage.stsci.edu/).

3
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noted by Blanton et al. (2003b), the visual morphologies of the galaxies, classified according

to the “Tuning Fork Diagram” (Hubble, 1936) correlate well with other properties such as

surface brightness, color, star formation rate (SFR), luminosity, the winding angle of spiral

arms in disk galaxies and the extent to which the bulge of the galaxy dominates (Roberts and

Haynes, 1994). The mass of a galaxy is known to be closely related to its luminosity, while

the surface brightnesses of giant elliptical galaxies are known to be strongly correlated with

their sizes (Kormendy, 1977). These relations express themselves in the Tully-Fisher relation

for spiral galaxies (Tully and Fisher, 1977), which relates luminosity with rotation velocity

of the disk, and the Fundamental Plane for elliptical galaxies (Faber and Jackson, 1976),

which relates luminosity, surface brightness and effective radius. Many physical properties

of galaxies are also correlated with the galaxy environment. The most noted correlation is

that between the environment of the galaxy and its type. Early-type galaxies are found in

denser regions than late-type galaxies, as was first observed by Hubble (1936) and confirmed

by many subsequent studies (Oemler, 1974; Dressler, 1980; Hashimoto and Oemler, 1999).

How do galaxies acquire their current properties? To answer this within a theoretical

framework, it is necessary to characterize the observed distribution of galaxy properties in

a systematic manner (Blanton et al., 2005). There have been a number of studies that de-

scribe the joint distribution of galaxy properties, including studies of the number density

and luminosity density distributions of galaxy colors, luminosities, stellar masses, SFRs,

surface brightnesses, sizes and galaxy concentrations. These galaxy properties are particu-

larly of interest because they can be predicted in cosmological hydro-dynamical simulations

(Nagamine et al., 2001; Steinmetz and Navarro, 2002); or in semi-analytic models (Somerville

et al., 2001; Mathis et al., 2002). While galaxy formation theory has had some success in

predicting some of the spatial clustering of galaxies, it does not yet successfully predict the

detailed joint distribution of the above properties. Progress in the field is hampered by the

lack of a complete understanding of the gas dynamics and feedback mechanisms in galaxies

which in turn affects the evolution of their stellar populations and hence the properties of the

galaxies. Thus, as yet, we do not have a complete understanding of the physical processes

associated with galaxy formation.

The fact that the most overdense fluctuations preferentially reside within overdensities

4



on larger scales implies that there should be a connection between halo mass and environ-

ment (Mo and White, 1996; Lemson and Kauffmann, 1999). The relationships between the

properties of a halo and the properties of the galaxy or galaxies it hosts are not understood,

so conventional theories do not currently make predictions for how the observed galaxy prop-

erties depend on environment. Studies to date (Kauffmann et al., 1997, 1999; Benson et al.,

2000) suggest that observables such as SFR, luminosity, color and morphology will all be re-

lated to the galaxy environment. A more detailed understanding of the relationship between

those properties and the galaxy environment is an important ingredient in galaxy forma-

tion. In what follows we examine the observational and theoretical evidence for a correlation

between these galaxy properties and the environment of the galaxies.

The star formation rate, luminosity, color and morphology in these studies of “environ-

ment” are calculated for each galaxy as a whole rather than for individual components within

the galaxy. They are therefore integrated over the stellar populations in the galaxy so we

have no sense of how the stellar populations, and processes such as star formation (SF) that

occur on the scales of molecular clouds, are distributed within the galaxies. Integral field

spectroscopy (e.g., Reunanen et al. (2007)) provides evidence for this for small numbers of

galaxies but it is not possible to do this for large samples of galaxies. The main motivation of

this work is to provide a means to study the internal spatial distribution of galaxy properties,

particularly those related to the underlying stellar populations, and to study how this spatial

distribution changes as a function of the galaxy environment. The aims of this are two-fold:

• Studying the spatial distribution of these galaxy properties should provide a new tool with

which to study galaxy formation. Current models of formation, as we shall see, make

predictions about how the integrated galaxy properties vary with their environment.

Given our current understanding of the physical processes that influence the way a galaxy

interacts with its environment, we can use those models to make predictions about how

the spatial distribution of galaxy properties vary with environment. By comparing the

spatial distributions (and their dependence on environment) with theoretical predictions,

we may be able to determine which models of galaxy formation are favored.

• Having a large sample of galaxies with resolved SFR will lead to a better understanding of

the physical processes that are currently modelled in hydro-dynamic simulations. These
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processes include gas infall, disk dynamics, galaxy mergers, star formation, and feedback

in the Interstellar Medium (ISM), including feedback from supernovae and central black

holes.

Our focus in this work will be on what can be inferred about stellar populations of

galaxies. In §1.2 we describe the stellar populations that underlie the majority of these

galaxy properties. In §1.3, we describe the observed correlations between various galaxy

properties (including star formation) and their environment. Theoretical predictions from

current semi-analytic models of hierarchical structure formation and numerical simulations

are presented in §1.4, as well as details of the physical mechanisms that underlie many

galaxy interactions and which characterize the “environment” of the galaxies. We must also

address another issue: there has long been speculation regarding whether galaxies evolve

primarily because of their environment (we shall call this “Nurture”) or because of their

intrinsic properties such as mass (we shall call this “Nature”). §1.5 presents evidence for

the fact that galaxy properties may not be shaped primarily by these physical mechanisms

but may have already been in place at early epochs, with the environment perhaps shaping

the subsequent evolution. §1.6 discusses how studying the spatial distribution of galaxy

properties can provide insight into the relative importance of these two different ideas of

galaxy formation.

1.2 STELLAR POPULATIONS AND STAR FORMATION

The discovery by Lindblad and Oort that spiral galaxies could be decomposed into separate

spheroidal and disk components ties in closely with galaxies having distinct stellar popula-

tions. Baade (1944) used the 100-inch Mount Wilson telescope to resolve individual stars

in the inner regions of several spiral galaxies where the spheroidal component dominates.

He also obtained resolved stellar images in a few nearby elliptical galaxies. By analyzing

the colors and luminosities of the stellar images, he realized that the brightest stars in both

elliptical galaxies and in the spheroidal components of the spiral galaxies are red giants,

distinct from the blue supergiants which dominate the spiral arms in the disks. These ob-
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servations implied that there were two characteristic stellar populations: “Population I”,

containing luminous, blue stars, accompanied by gas and dust; and “Population II”, which

is dominated by luminous red stars in a dust-free and gas-free environment. Open clusters

and stellar disks comprise Population I stars, while globular clusters, galactic spheroids and

elliptical galaxies are made of Population II stars. Hertzsprung and Russell analyzed the

distribution of stars in the so-called ‘HR’ or Color-Magnitude Diagrams of stellar clusters 2,

and found that stars are not randomly scattered but are concentrated within tightly defined

bands. The bands which are populated by the stars in open clusters were found to differ from

those which are populated by globular-cluster stars. It followed that the stellar populations

of these two types of clusters contain very different types of stars.

Star formation shapes the observable galaxy properties. But star formation involves

many complicated dynamical, thermal, radiative and chemical processes on a wide range

of scales (see McKee and Ostriker (2007) for a review). A key ingredient in the under-

standing and modelling of galaxy evolution is the relationship between the SFR and the

physical conditions in the interstellar medium (ISM). Most current galaxy formation and

evolution models (e.g., Navarro and Steinmetz (1997)) treat star formation using simple, ad

hoc parameterizations, and our limited understanding of the actual form and nature of the

SFR-ISM interaction remains one of the greatest limitations in these models. Measurements

of the star formation law in nearby galaxies (Kennicutt, 1998b) can address the problem, by

providing empirical recipes that can be incorporated into analytical models and numerical

simulations, and by providing clues to the physical mechanisms that underlie the observed

correlations (Robertson and Kravtsov, 2008).

Observed galaxies exhibit large-scale correlations between their global star formation

rate surface density and their average gas surface density (Kennicutt, 1989, 1998b). These

correlations can be used in many galaxy formation models to characterize star formation.

However, the global SFR density-gas density correlation is now known to be not universally

valid (Wong and Blitz, 2002; Boissier et al., 2003). We know now that the efficiency of

converting gas into stars depends strongly on the mass of the galaxy. For example, as

2the “magnitude” refers to the absolute magnitude of the stars which is a measure of their luminosity
and the color is a measure of the relative fluxes at two different wavelengths
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observed by Robertson and Kravtsov (2008), the faint-end of the galaxy luminosity function

has a shallower slope (Blanton et al., 2001, 2003c) compared to the steeper mass function

of dark matter halos (Press and Schechter, 1974; Sheth and Tormen, 1999) which suggests

a decrease in SF efficiency in low-mass systems. While feedback processes from supernovae

and AGN (e.g., Brooks et al. (2007); Sijacki et al. (2007)), or the efficiency of gas cooling

and accretion (Dekel and Birnboim, 2008) may account for star formation efficiency being a

function of galaxy mass, it may also be due to processes intrinsic to the ISM (Tassis et al.,

2008). There is, therefore, a need for an intrinsic model for the conversion of gas into stars

in galaxies.

The most widely applied relation between star formation and gas density in galaxies is

the empirical Schmidt-Kennicutt relation (Schmidt, 1959; Kennicutt, 1998b) in which the

star formation rate ΣSFR is a universal power-law function of the total disk-averaged or

global gas surface density Σgas.

ΣSFR = (2.5± 0.7)× 10−4 (
Σgas

1 M¯ pc−2
)
n

M¯ yr−1 kpc−2. (1.1)

ntot ≈ 1.4 describes the correlation for the entire population of normal and starburst

galaxies. There is now, however, evidence of deviations from this relation as a function of

spatial trends in the H2 molecular fraction which traces the total gas distribution in disk

galaxies (Robertson and Kravtsov, 2008). In low-mass systems, the distribution of H2 is

patchy throughout the galaxy, and this is shown to cause a break in the above relation.

1.3 OBSERVED RELATIONS BETWEEN GALAXY PROPERTIES AND

THEIR ENVIRONMENT

1.3.1 The Dependence of Star Formation Rate on Environment

1.3.1.1 Estimating Star Formation There are many methods of determining SFRs in

galaxies. One of them relies on the fact that the SFR is correlated with measurements of

the far-infrared luminosity (Kennicutt, 1998a). This arises because of dust heated by star
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formation. Other measurements include the radio luminosity (resulting from synchrotron

emission associated with supernovae, Condon (1992)). There are also indicators that are

sensitive to the ionizing flux from massive stars. These includes measurement of the UV

continuum and the fluxes of nebular emission lines. Each of these techniques is subject to

different biases and calibration uncertainties as detailed in Hopkins et al. (2003), but they

give consistent estimates for “normal” galaxies when these are accounted for (Hopkins et al.,

2001, 2003).

The equivalent widths (EW) of the Hα emission lines in particular is often used as a

measure of recent star formation activity in young, massive stars. UV radiation is absorbed

by Hydrogen and will ionize any neutral Hydrogen gas in the vicinity of O and B stars. The

de-excitation of the resulting ionized gas will result in Hα emission. It traces unobscured star

formation since the Hα photons are efficiently absorbed by dust. The Hα line has been used

in many studies of SFR and environment in the SDSS (e.g., Gómez et al. (2003)). The [OII]

emission line is also used frequently in these studies as it is correlated with Hα and remains

in the optical window to higher redshifts (Hα can typically be measured out to z ≈ 0.3 at

optical wavelengths while [OII] can be measured to z ≈ 1). This makes it an important

tracer of SF in galaxies to higher redshift. Both lines are sensitive to the metallicity and

ionizing levels of the gas, although the problem is more significant for [OII ]. Dust extinction

is the largest source of uncertainty - both the effective optical depth and dust geometry must

be considered (Calzetti, 2001).

In their measurements of galaxy SFRs, Hopkins et al. (2003) used the calibration of the

SFR to the Hα luminosity, which was formulated by Kennicutt (1998a):

SFRHα (M¯ yr−1) =
LHα

1.27× 1034 W
. (1.2)

The SFR is obtained by applying a scaling factor to the star formation sensitive luminosity

measurement for the galaxy, which is derived from a flux measurement from a fiber-based

spectrum. The calibration assumes a form for the initial mass function (IMF) - the distribu-

tion of initial stellar mass - that was proposed by Salpeter (1955) and a stellar mass range

from 0.1 to 100M¯.
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There are two steps that have to be taken before applying this calibration. The flux has

to be obscuration-corrected to account for the intrinsic dust content of the galaxy. Second,

the flux needs to be aperture-corrected to account for the emission that is missed due to the

finite size of the SDSS fiber (3′′) which can be smaller than the size of the target galaxy. Both

the obscuration and aperture corrections are described in detail in Hopkins et al. (2003).

1.3.1.2 The Environmental Dependence It has been known for over 40 years that

cluster regions lack emission-line galaxies (Dressler et al., 1985). Recent studies have shown

that the star formation in cores of clusters is much lower than in the surrounding field

(Balogh et al., 1999; Poggianti et al., 1999; Couch et al., 2001; Balogh et al., 2002).

Lewis et al. (2002) measured the equivalent width (EW) of the Hα emission line for 11 006

galaxies brighter than Mb = −19 at 0.05 < z < 0.1 in the 2degree Field Galaxy Redshift

Survey (2dFGRS), in the fields of 17 known galaxy clusters. They used this measurement to

trace the distribution of µ?, the specific SFR (normalized to L?) as a function of distance from

the cluster center and the local projected galaxy density. They found that the distribution of

µ? steadily shifts towards lower values with decreasing distance to the cluster center. Away

from the cluster center, the distribution of µ? eventually converges to the field distribution

at distances greater than ≈ 3 times the virial radius. A correlation between SFR and local

projected gas density is also observed, which is independent of cluster velocity dispersion

and disappears at projected densities below ∼ 1 (h−1Mpc)−2. This characteristic scale was

shown to correspond to the mean density at the virial radius of the cluster. The same

correlation between SFR and galaxy density is seen to hold true for galaxies more than two

virial radii from the cluster center. This suggests that the influence of the environment is

not simply confined to cluster cores, but extends to all groups where the density exceeds

≈ 1 (h−1Mpc)−2.

Gómez et al. (2003), using Hα equivalent widths (EW) as an indicator of SFR in the

Early Data Release (EDR) of the SDSS, confirmed this result and established a SFR-density

relation for the SDSS galaxies. They found that the overall distribution of SFRs is shifted to-

ward lower values in more dense environments. The effect is most noticeable for the strongly

star-forming galaxies (EW(Hα)> 5 Å) in the 75th percentile of the SFR distribution. They
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also found a characteristic “break” (or characteristic density) in the density-SFR relation at

a local galaxy density of ≈ 1 (h−1Mpc)−2. They explored whether the density-morphology

relation (Dressler (1980), see §1.3.3) alone could explain the density-SFR relation and con-

cluded that it could not. Using the concentration index of SDSS galaxies as a morphology

indicator, they showed that SFRs for galaxies of the same type were suppressed in dense

regions. Samples at z > 0.2 have also been used to suggest a suppression in the SFR of

galaxies in the cores of distant clusters compared to those in the field (Balogh et al., 1997;

Hashimoto et al., 1998; Couch et al., 2001; Postman et al., 2001). Together this provides

strong evidence for a decrease in SFR of galaxies in dense environments, spanning a wide

range of densities (0.08− 10 (h−1Mpc)−2) and redshift (out to z ≈ 0.5). In addition, Balogh

et al. (1997) and Hashimoto et al. (1998) found that cluster galaxies have a reduced SFR

compared with the field, independent of morphology.

Not all studies agree with the general SFR-density trend though. Balogh et al. (2004)

analyzed Hα emission strength as a function of galaxy environment using galaxies selected

from the SDSS and 2dFGRS. They found that the distribution of Hα EWs is bimodal, con-

sisting of actively star-forming populations with EW(Hα)> 4 Å and a quiescent population

with little current SF. They showed that the distribution of EW(Hα) for the star forming

population does not itself depend on environment, and concluded that it was unlikely that

SFRs are gradually decreasing in a substantial number of star-forming galaxies in or near

dense regions today. They did find, however, that the fraction of galaxies with EW(Hα)> 4 Å

decreases steadily with increasing local density.

At higher redshifts, we are beginning to see evidence that the SFR-density relation may

be inverted. Cooper et al. (2008), using galaxies from the SDSS and DEEP2, studied the

relationship between star formation and environment at z ≈ 0.1 and at z ≈ 1. The SFR

is estimated using the [OII]λ3727 Å nebular line luminosity. The SFR-density relation at

z ≈ 1 is found to be inverted relative to the local relation, with the average SFR in galaxies

being higher in more dense regions as we go to higher redshifts. This observed evolution

in the relation is thought to be driven by a population of bright, blue galaxies in dense

environments at z ≈ 1. This population, which lacks a counterpart at z ≈ 0, is thought

to evolve into members of the red sequence of galaxies from z ≈ 1 to z ≈ 0. The trend in
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the SFR-density relation at high redshift was also confirmed by Elbaz et al. (2007) using

galaxies in the Great Observatories Origins Deep Survey (GOODS) at z ≈ 1. We discuss

the inversion of the SFR-density relation in §1.5.

1.3.2 The Dependence of Luminosity and Color on Environment

Blanton et al. (2003b) observed that the distribution of (g-r) color of galaxies is bimodal

for galaxies in the SDSS, there being a strong correlation between the very reddest galaxies

and their exponential light profile. They found that the most luminous galaxies consist of

a homogeneous red, highly-concentrated, high-surface brightness population which resides

in dense environments in the Universe. Underluminous galaxies are less homogeneous, but

are generally bluer, less concentrated, with lower surface brightness, and reside in less dense

environments. The relationships between galaxy luminosities, surface brightness profiles and

colors were found to separate clearly for concentrated versus unconcentrated galaxies. Some

of these relationships, like the color-magnitude relation of concentrated galaxies (Baum,

1959) have already been well established.

Blanton et al. (2003b) showed that galaxy luminosity is a strong function of the local

galaxy density. The most luminous galaxies exist preferentially in the densest regions of the

Universe. Density is found to increase with luminosity for all absolute magnitudes above

Mi = −18. At lower luminosities, the local density increases again – this is related to the

existence of dwarf spheroidal galaxies in clusters. This result agrees with results from the

Center for Astrophysics (CfA) redshift survey (Hamilton, 1988), the Optical Redshift Survey

(Hermit et al., 1996), as well as with the results of Zehavi et al. (2002) in the SDSS. It turns

out that the dependence on luminosity is not independent of galaxy color; in fact, there is

a complex interrelationship between galaxy density, color and luminosity as was shown by

Hogg et al. (2003).

Hogg et al. (2003) studied the mean environment of 115 000 galaxies in the Sloan Digital

Sky Survey (SDSS) as a function of their rest-frame luminosity and color. Galaxy overdensi-

ties were estimated in 8 and 1 h−1Mpc spheres centered on each galaxy. They observed that

blue galaxies i.e., those bluer than the red sequence of old stellar populations, show no corre-
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lations between their luminosities and their overdensities, at fixed color. These galaxies are

“late-type” and include most spiral and irregular galaxies. This suggests that at fixed star

formation history, the late-type mass is only a weak function of environment. For galaxies

with the red colors of early-types, the environment does seem to depend on their luminosity.

Both low-luminosity and high-luminosity red galaxies were found to be in highly overdense

regions.

Hogg et al. (2004) also studied the distribution of color and absolute magnitude for

55 158 galaxies in the redshift range 0.08 < z < 0.12 as a function of galaxy overdensity. The

latter was measured in a cylinder of transverse radius 1 h−1Mpc and line-of-sight half-length

8h−1Mpc. In all environments, they showed that the color-magnitude diagrams of bulge-

dominated galaxies were dominated by red galaxies and the mode of the color distribution

at fixed absolute magnitude varied linearly as a function of the absolute magnitude. They

concluded that although the most luminous galaxies reside preferentially in high-density

regions and blue galaxies reside preferentially in low-density regions, there was only a very

small variation with overdensity in the color (zero-point) or slope of that linear relation

between color and luminosity (< 0.02 mag in g − r.). They used these results to constrain

variations with environment in the ages and metallicities of typical bulge-dominated galaxies

to be under 20 percent.

The relationship between color and environment observed locally has been shown to

occur at higher redshifts as well. Cooper et al. (2006) studied the relationship between color

and environment in a sample of 19 464 galaxies drawn from the DEEP2 Galaxy Redshift

Survey, with redshifts in the range 0.4 < z < 1.35. They found that the fraction of galaxies

on the red sequence depends strongly on the local environment out to z > 1, being larger

at higher galaxy densities. They also observed a small population of red, early-type galaxies

in low density environments over the entire redshift range. They showed that the color-

density relation in galaxies evolves continuously over the redshift range studied, and became

weaker at higher redshifts. Red galaxies are seen to favor more dense environments at low

redshifts compared to their red-sequence counterparts at high redshifts. At z > 1.3 there

is no detectable dependence of galaxy color with environment in the DEEP2 sample. The

results support a picture whereby the red sequence grew preferentially in dense environments
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(i.e. galaxy groups) at z < 1.5. It suggests that the environment does play an important role

in establishing the existence of the color-density and morphology-density relation in galaxies

over cosmic time. Their findings also suggest that there should be little color dependence in

the clustering of ∼ L? galaxies at z > 1.3.

Cucciati et al. (2006) also studied the color-density relation up to z ≈ 1.5 using 6582

galaxies from the First Epoch VIMOS-VLT Deep Survey (VVDS) and observed similar

results. They show that the color-density relation undergoes a large change as a function of

cosmic time. At lower redshift, they found a steep color-density relation, with the fraction

of the reddest galaxies of the same luminosity increasing as a function of density, while this

trend progressively disappears at higher redshifts. The results suggest the existence of an

epoch characterized by the absence of the color-density relation. The rest frame u− g color-

magnitude diagram shows a bimodal distribution in both low and high density environments

up to z ≈ 1.5. The bimodal distribution is not universal but is found to depend strongly on

the galaxy environment: at lower redshifts the color-magnitude diagrams in low and high

density regions are quite different. At high redshifts the two distributions almost mirror each

other, reflecting the progressive weakening of the color-density relation.

1.3.3 The Dependence of Galaxy Morphology on Environment

In dense environments the galaxy population is dominated by early-types. This was first

established by Dressler (1980) who studied 55 nearby, rich clusters and found that the S0

fraction increases steadily and the elliptical galaxy fraction increases sharply at the highest

densities while the fraction of spiral galaxies decreases steadily with increasing local galaxy

density. This density-morphology relation implies that the morphology of the galaxy is

shaped by the physical mechanisms that are prevalent in its particular environment. The

density-morphology relation was also observed in groups of galaxies. Postman and Geller

(1984), looking at the same dataset found that the relation extended to galaxy group en-

vironments identified in the CfA Redshift Survey. The relation was also observed in X-ray

selected poor groups (Tran et al., 2001). However Whitmore (1995) found that the relation

is very weak or non-existent in groups.
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Goto et al. (2003b) studied the density-morphology relation and the morphology-cluster-

centric-radius relation in galaxies in the SDSS and found that the elliptical fraction increases

and the disk fraction decreases with increasing galaxy density. They also found that there

are two characteristic changes in both relations, suggesting that two different mechanisms

are responsible for the relations. In the sparsest regions (below 1 (h−1Mpc)−2 or outside of 1

virial radius), they found that both relations became less noticeable, but in the intermediate-

density regions (density between 1 and 6 (h−1Mpc)−2 or between 0.3 and 1 virial radii), they

found that the fraction of S0s increases in higher density environments, whereas the disk

fraction decreases. In the densest regions (above 6 (h−1Mpc)−2 or inside 1 virial radius), the

S0 fraction decreases rapidly and the elliptical fraction increases, suggesting that a second

mechanism is responsible for any morphological transformation of galaxies in the cluster

cores.

The density-morphology relation has also been detected at higher redshifts. Dressler

et al. (1997) found a strong relation for centrally concentrated clusters at z ≈ 0.5 but not

for less concentrated ones. Fasano et al. (2000) studied nine clusters in the redshift range

0.1 ≤ z ≤ 0.25 and found a density-morphology relation in high elliptical concentration

clusters though not in low elliptical concentration clusters, consistent with Dressler et al.

(1997). They also traced the morphological fraction as a function of cosmic time and found

that the S0 fraction in clusters decreases with increasing redshift while the spiral fraction

increases, a phenomenon known as the “Butcher-Oemler effect” (Butcher and Oemler, 1978).

However, Holden et al. (2007), using galaxies in five massive X-ray clusters from z = 0.023

to z = 0.83 found that the evolution of the morphology-density relation differs considerably

between galaxies selected by stellar mass and those selected by luminosity, the early-type

fraction changing much less in mass-selected samples. The result is echoed by van der Wel

et al. (2007) who used galaxies in the SDSS and the GOODS-South field and found little

change in the morphology-density relation since z ≈ 0.8 for galaxies more massive than

0.5M?.

We now examine the theoretical predictions from numerical simulation and semi-analytic

models of galaxy formation that attempt to account for the above trends between galaxy

properties and their environment. While a majority of the observed trends can be replicated
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by these predictions, some of them, especially the evolution of these trends with redshift,

cannot. We attempt to understand the source of this disagreement.

1.4 THEORETICAL PREDICTIONS: HIERARCHICAL STRUCTURE

FORMATION

According to models of hierarchical formation (Kauffmann et al., 1993; Somerville and Pri-

mack, 1999; Cole et al., 2000), galaxies form in less dense environments and are then accreted

into larger halos (e.g., falling into clusters or groups), having their hot gas reservoir removed

as this occurs. Galaxies therefore experience different environments during their lifetimes.

Recent N-body simulations and semi-analytical models have addressed a number of the im-

portant issues with the hierarchical formation scenario. The models predict that “integrated”

galaxy properties such as color, luminosity and SFR, are correlated with their environment.

However, it is difficult to make model predictions about how properties within galaxies de-

pend on their environment. The reason for this is that processes such as star formation

which occur on the scales of molecular clouds, are an order of magnitude smaller in scale

than those of galaxies themselves.

In the semi-analytic models by Kauffmann et al. (1993), for example, a morphology-

density relation is, in some sense, built into the model: early-type galaxies form by mergers

within galaxy groups and are then incorporated into larger systems such as clusters. Their

colors are predicted to redden as a result of accretion into the high density region and

this environment is also expected to host the most massive and luminous bulge-dominated

systems. This prediction is in agreement with the the observed dependence of the mean

galaxy environment on the color and luminosity of galaxies in the SDSS (Hogg et al., 2003;

Blanton et al., 2003b) and also the dependence of the color-magnitude relation of bulge-

dominated galaxies on their environment (Hogg et al., 2004) as was discussed in the previous

section. The models also predict a gradual decrease in SF activity in more dense regions as

the remaining cold gas in the accreting galaxies is used up. As was discussed earlier, this

effect is observed by Lewis et al. (2002) with the 2dFGRS and Gómez et al. (2003) with the
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SDSS.

Which galaxy interactions are incorporated in the environment of galaxies? Figure 1.2

shows a sample of different environments that galaxies can reside in, as well as the interactions

they undergo in these environments. We first examine the numerous physical mechanisms

that have been proposed for how the SFR and other physical properties in galaxies are

affected by their environments. Not all mechanisms have been included in the latest models,

but it is important to characterize the different mechanisms that are at play and also their

relative importance in different environments.

1.4.1 Physical Mechanisms That Affect Galaxies

1.4.1.1 Mergers Galaxy mergers, such as the one shown in the top right of Figure 1.2,

are thought to be quite rare in massive clusters because of the large velocity dispersion in

clusters, but they are much more common in the infalling group environment (De Lucia,

2006). According to De Lucia (2006), mergers are an integral “preprocessing” step in the

evolution of galaxy clusters. They are important at early times in the life of a cluster, when

it is first collapsing, and at later times in the outskirts of the cluster, as it accretes groups

from the field. Numerical simulations (e.g., Mihos (2004)) have shown that close encounters

can result in the formation of spiral arms and in some cases, bars. The axisymmetry of

these structures leads to the funnelling and compression of the gas and this in turn can fuel

starburst or AGN activity. A direct merger, however, can completely destroy the disk. The

hot remnant then has the photometric and structural properties of elliptical galaxies (as in

the right of Figure 1.1) which explains why mergers are thought to be the main mechanism

by which bulges are formed.

Given their importance in the evolution of clusters, mergers are included in standard

semi-analytic models. As discussed previously, in the hierarchical formation scenario, smaller

galaxies merge to form larger systems. In their model, De Lucia et al. (2006) defined every

galaxy as an effective number of stellar progenitors. They found that in contrast to the

formation history of stars themselves, the assembly history of ellipticals mirrors the hier-

archical growth of dark matter halos. Their work suggested that a significant fraction of
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Figure 1.2: Different galaxy environments. Top left: A galaxy cluster – this is the Coma

Cluster of Galaxies, which is more than 350 Mly away and 1 Mpc in diameter. It is one

of the densest clusters known, containing over 1000 galaxies. It consists mainly of elliptical

galaxies although a blue spiral galaxy can be seen in the upper left. Top right: A merger of

two spiral galaxies – NGC 2207 and its smaller companion, IC 2163. The merger disrupts the

morphologies of the two objects, creating sheets of shocked gas, dust lanes and starbursts.

The merger remnant is likely to be an elliptical. Bottom left: An interacting galaxy pair,

Arp 87 before a merger. The bridge of stars, gas and dust, which stretches for over 75 000

ly, and joins the two galaxies, is evidence that a close encounter took place. Both galaxies

experience strong tides due to mutual gravity which distorts their shapes. Repeated close

encounters over several Gyr should result in an eventual merger. Bottom right: Evidence

of Cannibalism (see §1.4.1.5). The larger galaxy is M51, the “Whirlpool Galaxy” which is

about 37 Mly away and the smaller companion is NGC 5195. Due to the interaction, the

gas in the larger galaxy is disturbed and compressed in some regions, triggering new star

formation. Source: Hubble Heritage Project (http://heritage.stsci.edu/).
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present ellipticals have assembled relatively recently through mergers alone, and this is also

in agreement with recent observations (van Dokkum, 2005; De Lucia et al., 2006).

1.4.1.2 Galaxy Harassment “Galaxy harassment” refers to repeated, high-velocity in-

teractions between galaxies. It is a high density phenomenon and has been studied by Rich-

stone (1976) in their work on the dynamical evolution of cluster galaxies. It has also been

explored in numerical simulations by Farouki and Shapiro (1981). Harassment is distinct

from galaxy mergers. Moore et al. (1996) observed that spiral galaxies that have disturbed

morphologies and show bursts of star formation pervaded clusters at z ≈ 0.4 while nearby

clusters strongly favor ellipticals over spirals. Harassment is believed to drive the morphologi-

cal transformation of galaxies in clusters and it also provides fuel for quasars in subluminous

hosts and leaves detectable debris arcs, as observed with Hubble Space Telescope (HST)

imaging. While merging of spirals in groups creates bright ellipticals, in a cluster, dwarf

ellipticals are created by harassment of low luminosity spirals. Harassment thus can change

any internal property of a galaxy within a cluster, including the gas distribution, the or-

bital distribution of stars and the overall morphology by destroying low surface brightness

galaxies in clusters. Moore et al. (1999) showed, through more detailed simulations, that

the efficiency of this process is indeed limited to low-luminosity hosts, due to their slowly

rising rotation curves and their low density cores, as was noted by De Lucia et al. (2006).

Harassment is less able to explain the evolution of massive, luminous cluster galaxies.

Harassment is not currently included in semi-analytic models of galaxy formation. Moore

et al. (1998) showed that both harassment and the interaction with the global tidal field of

the cluster (discussed below) can drive a strong response in cluster galaxies and lead to a

similar effect on the star formation and morphology of the galaxies.

1.4.1.3 Ram-pressure stripping Ram-pressure stripping requires dense, hot intra-

cluster gas and takes place in the cores of clusters or in dense sub-clumps. If a cluster

galaxy moves through the hot, dense intracluster medium (ICM), it undergoes a pressure

front from the ICM which depends on the density of the ICM and the relative velocity be-

tween the galaxy and the ICM (Gunn and Gott, 1972; Fujita, 2001). A schematic figure of
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this effect is shown in Figure 1.3. Depending on the binding energy of the gas in the galaxy,

the ICM will either be forced to flow around the galaxy or will just blow through it, remov-

ing some of the diffuse interstellar medium (ISM) in the disk, according to De Lucia et al.

(2006). High-resolution three-dimensional numerical simulations show that the ram-pressure

can remove almost all of the atomic hydrogen of luminous galaxies within 10 Gyr (Quilis

et al., 2000). Even if ram-pressure stripping is not effective, similar mechanisms can take

its place, including thermal evaporation (Cowie and Songaila, 1977) and viscous stripping

of galaxy disks (Nulsen, 1982). In the latter case, turbulence in the gas flowing around the

galaxy causes the depletion of the ISM.

Unlike mergers which result in bulge formation, gas stripping can only change the galaxy

morphology indirectly. It can halt star formation in the disk resulting in the disk becoming

fainter and in a higher bulge-to-disk luminosity, seeming to make the galaxy more “early-

type” (De Lucia et al., 2006). The effects of ram-pressure stripping have only been discussed

in a handful of studies that employed semi-analytic models (Lanzoni et al., 2005). These

studies conclude that the inclusion of gas stripping causes only mild variations in galaxy

colors and SFR. Driver et al. (2008) has also proposed that stripping the dust (instead of

the gas) can also make galaxies brighter and also redder, as the red bulge light which was

previously concealed behind optically-thick dust screens, becomes visible.

Sometimes the pressure front can be so strong as to strip the hot gas from the halo of

the infalling galaxy, not just the cold gas in the disk. This is referred to as “strangulation”

and has been shown to suppress star formation in the infalling galaxy very efficiently.

1.4.1.4 Interaction with the Cluster Tidal Field It was observed by Gavazzi (1987)

that some very active spiral galaxies exist in nearby rich clusters, such as the Coma Cluster

shown in Figure 1.2, in which a blue disk galaxy can be observed. Byrd and Valtonen (1990)

demonstrated, using computer simulations, that the tidal field of a cluster as a whole should

have major effects on gas-rich spiral galaxies. They found that spirals within several core

radii of the center of the cluster (roughly 800 kpc) should experience nuclear inflow and disk

star formation, and thus be triggered into activity. Mutual collisions of gas clouds within

the disk can be induced by tidal perturbations and this will trigger cloud collapse and star
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Figure 1.3: A schematic representation of ram-pressure stripping. Top panel: A low mass

galaxy containing cold gas, before accretion into a more more massive halo (a cluster of

galaxies) containing the dense, hot intra-cluster medium (ICM). Only the central galaxy in

the cluster is shown. The arrow shows the velocity of the infalling satellite galaxy. Bottom

panel: After the smaller satellite galaxy is accreted into the larger halo, it experiences a

pressure front due to the ICM (indicated by the boundary between the cold and hot gas in

the smaller halo) – the direction of the front is shown by the three arrows. The hot ICM will

either be forced to flow around the smaller satellite galaxy or will blow through it, removing

the cold gas in the smaller galaxy in the process.
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formation because of the thinness of the cluster medium compared to the high density of

the molecular clouds (Byrd and Valtonen, 1990). The presence of active spiral galaxies in

rich clusters suggests that mergers and harassment are not the only mechanisms to generate

starburst spirals in clusters. In the long-term, such activity will remove the disk gas from

spirals, truncating their star formation and changing them into S0s. This would suggest

that gas rich spirals would be rare in such clusters. Byrd and Valtonen (1990) showed that

ram-pressure stripping by the ICM is unlikely to produce these gas-poor S0s.

The blue but H-I poor disk galaxies identified in the central part of the Coma Cluster

(Bothun and Dressler, 1986) are probably galaxies which initially underwent a tidally induced

burst of star formation followed by “disk cleaning”, as was pointed out by Byrd and Valtonen

(1990). Red gas-poor disk galaxies in the same cluster regions were probably cleaned at an

earlier time. Byrd and Valtonen (1990) also showed from simulations that a strong tidal field

could transform a normal spiral into a barred spiral, which would explain the overabundance

of barred spirals in the central regions of the Coma Cluster.

1.4.1.5 Cannibalism: Dynamical Friction Cannibalism refers to a slow encounter

between a large and small galaxy. An example of cannibalism is shown in the bottom right

panel of Figure 1.2. While the smaller galaxy is tidally disrupted by the larger companion,

gas and stars are incorporated into the larger galaxy. Isolated galaxies can grow in this

way by accreting their dwarf companions, and those in clusters can grow by accreting their

satellite galaxies, via dynamical friction. This is responsible for forming the brightest cluster

galaxies (Ostriker and Tremaine, 1975; White, 1976) and is in agreement with the hierarchical

growth of structure. Like galaxy-galaxy mergers, this phenomenon is most efficient within

small halos with low velocity dispersion. According to De Lucia et al. (2006), it is the

accretion rate of the galaxies into the proto-cluster, along with the cluster growth itself, that

controls and sets the conditions for cannibalism as well as galaxy merging.

1.4.1.6 AGN heating It was realized that there must be some mechanism which stops

the cooling flows that would otherwise produce too many massive and luminous galaxies

compared to the observed number (De Lucia et al., 2006). Early semi-analytic models
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included an ad-hoc prescription to suppress cooling flows in halos above a critical mass. More

recent models have included more physically motivated prescriptions and have confirmed that

AGN heating is indeed important to reduce the exponential cut-off at the bright end of the

galaxy luminosity function (Croton et al., 2006). Recently, Somerville et al. (2008) presented

a new semi-analytic model that self-consistently traces the growth of supermassive black holes

and their host galaxies within the context of the LCDM cosmological framework. In this

model, the energy emitted by accreting black holes regulates the growth of the black holes

themselves, and produces powerful jets that heat the hot gas atmospheres that surround

groups and clusters. The model predicts that star formation should be largely quenched in

massive galaxies at z ≈ 0. These prescriptions are still not well grounded in observations,

and much more work needs to be done to understand the role of AGN in galaxy evolution.

Unfortunately, there exists little empirical evidence that any one of the above processes

is actually responsible for driving trends in galaxy evolution. These processes act over a

long period of time, and observations at a specific redshift cannot provide the detail that

is necessary to understand what is happening in each of these complex interactions (De

Lucia et al., 2006). One way of making progress is to specify the environment in which the

properties of galaxies change, from say blue star-forming systems to red, quiescent systems.

1.4.2 Comparing Theoretical Predictions to Observations

The results of Gómez et al. (2003) with the SDSS, and Lewis et al. (2002) with the 2dFGRS,

show that suppressed star formation is not limited to the cores of rich clusters, but is found

in any environment in which the local projected galaxy density exceeds one galaxy (brighter

than Mb = −19) per Mpc−2. This is in approximate agreement with the results of Kodama

et al. (2001), though a direct comparison is not possible because that survey probes much

deeper down the luminosity function, so the local projected galaxy densities are higher in the

same environments. Whatever mechanism is responsible for terminating star formation in

galaxies is therefore not specific to the cores of rich clusters, but is also associated with dense

groups in the cluster infall regions as well. The low SFRs even well beyond the virialized

cluster seem to rule out the physical processes that are predominant in the cores of rich
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clusters. Mechanisms such as ram-pressure stripping of galaxy disks appear not to be solely

responsible for the correlation of star formation with local density.

The observations are in qualitative agreement with the predictions of present-day hierar-

chical models of galaxy formation. Unfortunately, these are somewhat limited in that they do

not directly model all the above processes – instead there are some assumptions about them

that are built-in. In particular, most do not include a calculation of ram-pressure stripping

of the cold, disk gas, nor of other physical processes like galaxy harassment which might

play a role in dense environments. The only environmental effect on star formation rate in

these models, apart from a possible difference in merging history, is related to the hot, halo

gas which is thought to surround every isolated galaxy (Diaferio et al., 2001). According to

Diaferio et al. (2001), it is assumed that galaxies maintain the supply of cold gas (to fuel

star formation) via continuous cooling from a hot, diffuse gas halo associated with the dark

matter potential (Somerville and Primack, 1999; Kauffmann et al., 1999; Cole et al., 2000).

In halos with more than one galaxy, this hot gas is only associated with the central galaxy;

satellite galaxies are assumed to lose their supply of fresh fuel through ram pressure stripping

and tidal effects (though these are not directly modelled). In these models, therefore, star

formation rates begin to decline for any satellite galaxy, whether in a poor group or a rich

cluster.

These models are able to reproduce radial gradients in star formation within the virial

radius of clusters to a very high accuracy. Diaferio et al. (2001) predict that the mean star

formation rate should be equivalent to the field value beyond ∼ 2Rv, in physical (i.e. not

projected) space. Balogh et al. (2000) also investigated the origin of cluster-centric gradients

in SFRs and colors of rich cluster galaxies in the CNOC1 data set of intermediate-redshift

clusters. They used a more simplified version of the Diaferio et al. (2001) model, where

clusters are built through the ongoing accretion of field galaxies. These models assume that

after galaxies enter the cluster their SFRs decline on a timescale of a few Gyr (comparable

to the typical gas consumption timescale for disk galaxies in the field). They combined

these timescales with mass accretion histories from N-body simulations of cluster formation

in a ΛCDM universe to show that there is an expected strong suppression of SF in cluster

galaxies. The simulations also show that a significant fraction of galaxies beyond the virial
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radius of the cluster may have been within the main body of the cluster in the past. This

would explain why star formation in the outskirts of clusters (and as far out as two virial

radii) is systematically suppressed relative to the field. The agreement with data beyond

the cluster virial radius is further improved by assuming that gas-stripping happens within

lower mass systems, before the galaxy is actually accreted into the cluster. The suggestion

is that the SFRs of cluster galaxies depend primarily on the the time since their accretion

onto massive virialized systems, and that the SFR suppression happens gradually over a few

Gyr.

In their work, Balogh et al. (2000) do not model the properties of the field galaxy

population directly, but they take them empirically from observations of the z ∼ 0.3 field.

The advantage of this is that the effects of halo-stripping can be seen directly, since that

is the only physical process (apart from gravity) which is accounted for. They traced the

mean star formation rate relative to the field, as a function of the local projected density

of galaxies. Local density is defined as the projected surface mass density, computed by

finding the radius encompassing the ten nearest (in projection) particles in the simulations.

According to Balogh et al. (2000), galaxies are assumed to lose their reservoir of hot gas

when they are associated with a group with circular velocity Vc > 600 km s−1. While a

direct comparison with the data is not possible since the simulations only provide the dark

matter density, they argued that a comparison relative to the mean surface density within

Rv should be fair if the mass distribution traces the light distribution. They found that

the mean star formation rate decreases by a factor of ∼ 3 for every factor 10 increase in

surface density and that the correlation plateaus at surface densities ∼ 1/7 that of the mean

projected density within Rv. This threshold is a factor ∼ 2 lower than seen in the data,

but the agreement was considered quite promising given the crudity of the model. The

simulations used in the model do not include a large enough volume to probe beyond a few

Rv.

However, we now know that current models in which halo-stripping of the satellite galax-

ies is the only direct effect of the “environment” (simply assuming that every satellite galaxy

has no reservoir of hot gas immediately after it merges with a larger halo) do not agree with

the observations. Coil et al. (2008), compared measurements of the color and luminosity
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dependence of galaxy clustering at z ≈ 1 in DEEP2, with the predictions of a semi-analytic

galaxy formation model that was applied to the Millennium Run simulation. Differences

between the data and the model suggest that in the model, star formation is shut down

too efficiently in these infalling satellite galaxies. Much work therefore needs to be done to

improve the success of the models in the lower density regions, far from the cluster core.

1.5 EVIDENCE FOR “NATURE”: DOWNSIZING

The most massive galaxies known today are giant ellipticals that reside in the most dense

galaxy environments (Dressler, 1980), which are also known to have formed their stars rapidly

at an early stage in cosmic history. Recent studies of the evolution in the global space density

of galaxy SFRs find that the majority of the observed SF occurs in the highest mass galaxies

at high redshift, moving to lower mass galaxies at lower redshifts (Panter et al., 2004; Juneau

et al., 2005; Panter, 2006; Seymour et al., 2008; Feulner et al., 2005). This is referred to as

“downsizing” (Cowie et al., 1996). It is characterized by a decline in the mass of the galaxies

that dominate the star-formation rate density with decreasing redshift (“downsizing of star

formation”). The term “downsizing” was coined by Cowie et al. (1996) to describe the decline

with time of the K-band rest-frame luminosity of galaxies with the highest specific SFR as

observed in the redshift interval 0.2 < z < 1.7. This “downsizing” has been confirmed by

other studies.

“Downsizing” is clearly evident in the stellar populations of galaxies. Thomas et al.

(2005) used star formation histories derived from observed line indices and abundance ratios

in combination with the predictions of stellar evolution models and showed that there is

a strong correlation between mean stellar age and galactic stellar mass both in elliptical

galaxies and in the general population of galaxies from the SDSS. Heavens et al. (2004),

using 96 545 nearby galaxies in the SDSS, found that the larger the stellar mass of the galaxy,

the earlier its stars were formed. This points to a very different formation history for high-

and low-mass galaxies. Juneau et al. (2005) studied the cosmic SFR and its dependence

on galaxy stellar mass over the redshift range 0.8 < z < 2 using data from the Gemini
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Deep Deep Survey (GDDS). They discovered that the SFR in the most massive galaxies

(M? > 1010.8M¯) is higher at z = 2 than it is today. It was shown to drop steeply from

z = 2, reaching its present value by z ≈ 1. In contrast, the SFR density of intermediate-

mass galaxies (1010.2M¯ < M? < 1010.8M¯) declines more slowly and may peak or plateau at

z ≈ 1.5. They use the characteristic growth time (given by the ratio of stellar mass density to

SFR density), tSFR = ρM?/ ρSFR, to provide evidence of an associated transition in massive

galaxies from a bursty star formation mode to a quiescent one at z ≈ 2. Intermediate-

mass systems transit from burst to quiescent mode later, at z ≈ 1, while the lowest mass

objects are found to undergo bursts throughout their evolution. Their results showed that

the formation era for galaxies was extended and proceeded from high- to low-mass systems.

The most massive galaxies formed most of their stars in the first ∼ 3 Gyr of cosmic history.

Intermediate-mass objects continued to form their dominant stellar mass for an additional

∼ 2 Gyr. But the lowest mass systems were shown to have been forming over the whole

cosmic epoch spanned by GDDS. These observations clearly support the “downsizing” in

the SFR whereby galaxy formation proceeds from larger to smaller mass scales.

It is possible that downsizing and galaxy bimodality are connected through the same

underlying physics. Recent models of galaxy formation (Cattaneo et al., 2006; Bower et al.,

2006) have been driven by the fact that there are two distinct galaxy types: blue star-forming

late-type galaxies tend to reside in low-density environments while red quiescent early-type

galaxies reside in groups and clusters. Blue galaxies fall below a critical stellar mass of

M? ≈ 3× 1010M¯ while red galaxies have higher stellar masses. The color bimodality itself

is therefore evidence for downsizing: the most massive galaxies which happen to be the red

ones have converted their gas into stars several billion years ago, while less massive galaxies

which are generally blue, are still making stars. In fact, downsizing can be viewed as part of

a more general phenomenon which takes place across the Hubble sequence of galaxy types.

Even with the same spectral type, less massive galaxies contain younger stars.

Our primary focus in this work is on star formation. What does this imply for the

environmental dependence of star formation in galaxies that formed in different epochs?

Together with the trend for massive systems to occur predominantly in dense environments,

downsizing should result in a scenario where the SFRs in dense environments at low redshifts
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are lower than in less dense regions, and this is consistent with the observations. The

implication is that at sufficiently high redshifts, (z ≥ 2) where the SFR is dominated by

the most massive galaxies, the SFR-density relation should invert, with the most dense

environments hosting elevated SFRs compared to the field.

This trend is beginning to be observed. Elbaz et al. (2007) observe this reversal in

the SFR-density relation at higher redshifts for galaxies in the redshift range 0.8 < z <

1.2. Poggianti et al. (2006) show that at 0.4 < z < 0.8 the suppression of SFR in dense

environments is weaker than that observed locally. Ilbert et al. (2006) show environmental

dependent evolution in the galaxy luminosity function from 0.4 < z < 1.2, suggesting an

increase in the density of faint red galaxies in overdense regions as cosmic time increases.

More confirmation is clearly needed but these examples are consistent with the scenario

that galaxies in dense environments form stars rapidly at early times, quickly building up

mass and becoming quiescent, while galaxies in less dense environments form stars at a more

sedate pace but over longer timescales.

There is another type of downsizing that has an important distinction from that de-

scribed above. This is “downsizing with quenching” and it follows a different timescale -

spheroidal galaxies have been known to have a second star-formation timescale, namely that

of “quenching”: it becomes easier to keep galaxies gas-free with time. In fact, recent studies

of the galaxy luminosity function at z ≈ 1 (Bell et al., 2004; Faber et al., 2007) conclude that

massive red galaxies observed at z ≈ 0 migrated to the bright end of the red sequence by a

combination of two process: the quenching of star formation in blue galaxies and the merg-

ing of less-luminous, previously quenched red galaxies. Faber et al. (2007) conclude that the

typical mass at which a blue, star-forming galaxy is quenched (and therefore enters the red

sequence) decreases with time. Our work will focus on the “downsizing of star formation”

as opposed to this “downsizing with quenching”.
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1.6 DISTINGUISHING BETWEEN NATURE AND NURTURE USING

THE SPATIAL VARIATION OF STAR FORMATION IN GALAXIES

In this work, we aim to determine whether it is indeed the strong physical “infall and

quench” processes described in §1.4 that shape the properties of galaxies or whether there

exists some other mechanism by which galaxy properties are determined. This alternate

mechanism is independent of the strong physical interactions that galaxies undergo but may

still be indirectly dependent on the galaxy environment. Indeed, we have outlined one such

scenario in §1.5 whereby galaxies evolve primarily because of their intrinsic properties such as

mass. These intrinsic properties could still be shaped by the environment in which the galaxy

resides (for example, more massive galaxies reside preferentially in more dense regions). We

can thus refer to this latter scenario as “environmentally-governed evolution”. It is possible

that both of these scenarios play a role in the evolution of galaxies. Perhaps one may be

significantly or even marginally dominant over the other.

Can we then distinguish between these two scenarios of galaxy evolution? In fact, the

“environmentally-governed evolution” scenario makes a distinct prediction compared to the

“infall and quench” one. The latter incorporates strong physical interactions such as ram-

pressure stripping and galaxy harassment and these processes should affect the outskirts of

galaxies before they affect the interiors. This suggests that galaxies in dense environments

should show an SFR distribution that is progressively suppressed from the outside in, as the

outer regions are those which will be affected first by their rapidly changing environment. The

“environmentally-governed evolution” scenario, on the other hand, makes quite a different

prediction. It suggests that the suppression should either happen uniformly as a galaxy ages

or that the inner regions should be suppressed first, since nuclear star formation seems to

occur more rapidly than star formation in the disk given the elevated gas densities present.

Thus by studying the spatial distribution of SFR in star-forming galaxies as a function of

environment, we should be able to distinguish clearly between these two scenarios. The

spatial distributions of SFR in galaxies should be obtained in a statistical way in order

to make this distinction. The very large sample of galaxies available in present multicolor

imaging surveys such as the SDSS will provide an excellent data set with which to explore
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this. The SDSS is the largest imaging and spectroscopic survey of galaxies that has been

undertaken to date, having mapped more than one quarter of the sky using a dedicated

wide-angle 2.5m optical telescope.

Previous studies on the radial dependence of SF have focused on individual galaxies.

Pérez-González et al. (2006) studied the recent SF in the early-type galaxy M81 using imag-

ing observations from the far-ultraviolet (UV) to the far-infrared (IR). The data was then

compared to models of stellar, gas and dust emission, with results from different sub-galactic

regions, including individual HII regions (around 0.1 kpc). They were able to confirm the

existence of a diffuse dust emission not directly linked to the SF. Using the Hα emission

that probes the unobscured SF, and the IR luminosity (especially the 24µm emission) that

probes the obscured SF in the galaxy, they found a decrease in the ratio of obscured SF to

total SF with radius. This fraction varies from an obscured SF of 60% in the inner regions

of the galaxy to 30% in the outer regions. Johnston et al. (2005) used pixel-based spectral

energy distribution (SED) fitting to a merging system hosting a compact steep spectrum

radio source, in order to explore the connection between the nuclear radio emission and

the distribution of star formation. Kassin et al. (2003) used pixel-based colors to explore

stellar populations and obscuration in the Antennae, and de Grijs et al. (2003) used the

same technique to explore the Mice and the Tadpole interacting galaxy systems. Boissier

et al. (2007) showed, using GALEX and Spitzer data, that for disk galaxies the attenuation

varies radially, being highest in the nuclear regions, and is correlated with metallicity. They

also found that the Schmidt law connecting the SF and gas surface densities continues be-

yond the traditional “threshold” radius. Lanyon-Foster et al. (2007) used a study of pixel

Color-Magnitude Diagrams for a sample of 69 nearby galaxies to study stellar populations

and structure of galaxies. They found that these Color-Magnitude Diagrams of each galaxy

type have distinct trends. In addition, they performed a pixel-by-pixel analysis to show that

there is a steady progression in the average pixel color along the Hubble sequence. Finally

they compared pixel colors to the Bruzual and Charlot (2003) stellar population models and

used these to map the stellar mass distribution and M/L ratio in galaxies.

The current analysis has the advantage of a very large sample, accessible as a result of the

SDSS, which enables a study of the environmental dependence of spatially distributed star
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formation within galaxies. Also, since the inferred SFRs come from fitting SEDs, derived

from stellar population synthesis models, to broadband photometry, there is no aperture

effect such as that affecting fiber-based spectroscopy. By fitting SEDs to individual pixels

within resolved galaxy images, we can spatially resolve the star formation and explore how

this distribution varies for galaxies as a function of local galaxy density.

We will first detail the technique (known as “pixel-z”) that will be used to study the

spatially resolved star formation in galaxies. This is described in Chapter 2. We will use the

“pixel-z” technique to analyze a large sample (more than 40 000) of galaxies in the SDSS.

The technique is applied to galaxies in the imaging survey which enables us to determine the

SFR (as well as metallicities, age and dust obscuration) of the stellar populations contained

in individual pixels of galaxy images. We then use these calculated quantities to explore

the radial dependence of SFR within galaxies as a function of the galaxy environment and

morphological type. This is described in Chapter 3. In Chapter 4, we attempt to determine to

what extent the known morphology-density relation of galaxies affects the radial dependence

of SFR in them. As we shall see by the end of the analysis, the environment of galaxies plays

a significant role in governing their properties.

1.7 PUBLICATIONS AND CONTRIBUTIONS

The following is a list of my papers and publications whose content is described in this thesis:

• Welikala et al. (2008b)

• Welikala et al. (2008a)

This thesis is my own work but I received much help and advice throughout from my

advisor, Dr. Andrew Connolly, and also from Dr. Andrew Hopkins and Dr. Ryan Scranton.

In addition, Dr. Scranton provided the estimates of local density for galaxies in SDSS DR4,

which are described in §3.2.3.
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2.0 THE PIXEL-Z: SPATIALLY RESOLVED PROPERTIES OF GALAXY

STELLAR POPULATIONS FROM PHOTOMETRY

2.1 INTRODUCTION

The spatially resolved properties of stellar populations in galaxies, such as the rate of star

formation, can be a key probe in studying galaxy evolution. In the previous chapter, we

proposed that studying these properties as a function of the galaxy environment could put

constraints on different galaxy formation scenarios. In this chapter, we describe a method to

determine how the parameters that characterize the stellar populations, such as their ages,

the rate of star formation (SFR), metallicities and obscuration, are spatially distributed

within galaxies. The principle is based on an extension of a technique to obtain photometric

redshift (“photo-z”) estimates of galaxies. We call it “pixel-z” because the method can be

applied to individual pixels in galaxies and makes use of the photometry in these pixels. First

however, we describe the motivation for developing the method and the proof-of-concept idea

that gave rise to the “pixel-z” technique. We illustrate the method here and before applying

the technique to galaxies in the Sloan Digital Sky Survey (SDSS), we test it on galaxies in one

multicolor imaging survey: the Hubble Deep Field (HDF). We also discuss the uncertainties

in the estimates of the various stellar population parameters that are obtained from the

photometric fluxes in the pixels of galaxies.
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2.2 SPATIALLY RESOLVED COLORS AND GALAXY EVOLUTION

Deep surveys such as the Hubble Deep Fields1 (Williams et al., 1996, 2000) have stimulated

the growth of new ideas for studying galaxy evolution. One of these papers (Abraham et al.,

1999), focused on “exploring the resolved multicolor data for galaxies of known redshift using

spectral-synthesis models”. They studied the star formation history of the Hubble sequence

using spatially resolved color distributions of intermediate-redshift galaxies in the Hubble

Deep Field (HDF). They used a technique based on matching resolved four-band colors to

the predictions of evolutionary synthesis models (the methodology will be discussed in more

detail in §2.3.2). The technique enabled them to quantify the relative age, dispersion in age,

on-going SFR and star formation history in distinct subcomponents of each galaxy. For spiral

galaxies, for example, the properties of the underlying stellar populations in the bulge and

the disk could be studied separately. In this way, the technique was used to determine the

evolutionary history of high-redshift galaxies. They studied spiral and elliptical systems in

a near-complete sample of 32 I814 < 21.9 mag galaxies with z ≈ 0.5 studied by (Bouwens

et al., 1998).

How can multi-color data in subcomponents of a galaxy, perhaps pixels in the galaxy

image, be used to place constraints on its past star formation history? To answer this,

Abraham et al. (1999) considered the following example: take a late-type spiral galaxy whose

star formation history can be approximated by a constant SFR. In reality the constant SFR

is effectively a time-average of spatially distinct star forming regions, each of which can be

considered as a simple stellar population with a lifetime which is short compared to the

dynamical timescale of the galaxy. Over time these young populations would mix with older

stars and become part of older components of the galaxy. Abraham et al. (1999) showed

that this qualitative picture can be described quantitatively by spectral synthesis modelling,

and we will turn to this in §2.4.2.

Abraham et al. (1999) recognized that galaxies are not homogeneous systems with a

single age and star-formation history. They argued that this meant that when they are

1Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope
Science Institute
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spatially resolved, one can expect a dispersion of points on the color-color diagrams, since

colors are sensitive to the star formation histories in galaxies. The distribution of pixel-by-

pixel colors within a galaxy image is therefore a fossil record, storing the manner in which

the stellar population was assembled in a galaxy (e.g., through many small bursts, or by a

few larger bursts). The distribution of pixel colors should directly trace the shape of the flux

from stars with a range of ages (and metallicities) – such a stellar population is known as a

Composite Stellar Population (CSP) (a Single Stellar Population (SSP) refers to a collection

of single stars all with the same age and metallicity). This is where the stellar population

synthesis codes becomes relevant – in generating the spectra of these stellar populations.

The technique thus makes an explicit connection between evolutionary history and stellar

populations. Abraham et al. (1999) used the dispersion around the color-color tracks to

distinguish between models that are degenerate in their integrated color. This allows the

dust content to be explicitly parameterized and the star-formation histories of spatially

distinct galactic subcomponents to be derived. Most importantly, they argued that these

spatially resolved color analyses could enable robust studies of the relative ages of stellar

populations within galaxies. This can be used to determine whether or not the stellar

populations are homogeneous and also to study the order in which the components of the

galaxy were assembled.

The findings of Abraham et al. (1999) are now briefly discussed. For elliptical systems,

they found that the dispersion of the internal colors of a sample of 0.4< z <1 field galaxies

in the HDF are consistent with them being old and coeval, with ∼ 40% showing evidence

of younger stellar populations with star formation which must have occurred more recently.

The field sample is much too small for robust conclusions to be drawn regarding the star-

formation history of early type systems as a whole, but the current fraction (∼ 40%) of

young early-type systems is quite consistent with the predictions from hierarchical models.

For the spiral systems, they similarly exploit the dispersion in color to analyze the relative

histories of bulge and disk stars, in order to estimate the ages of galactic bulges, which are

currently under dispute. Hierarchical galaxy formation scenarios require old bulges formed

by mergers (e.g., Kauffmann et al. (1993)). However, N-body simulations indicate that

bulges form instead from bulge instabilities in disks (Norman et al., 1996) and this has been
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supported by observations of boxy or “peanut” shaped bulges (Kuijken and Merrifield, 1995).

The median ages of the stellar populations in the bulge are found to be significantly older than

those in galactic disks, and exhibit very different star-formation histories, suggesting that

the bulges have a short initial period of star formation followed by relative quiescence. They

concluded that unless bulges are heavily enriched relative to disks, this result is inconsistent

with the secular growth of bulges from disk instabilities, but consistent with gradual disk

formation by accretion of gas onto bulges, as predicted by hierarchical models.

The star-formation histories they inferred for the spiral galaxies in the field agree with

those derived from deep galaxy surveys. If significant morphological transformations have not

occurred within the spiral sample, then the declining star-formation histories are consistent

with typical fading in disk light by MB ∼ 0.4 mag between z = 1 and z = 0.5. This agrees

with observations from the CFRS survey (Brinchmann et al., 1997).

Abraham et al. (1999) did not state it explicitly at the time but their methodology is

an offshoot of a broader idea, that of obtaining photometric redshifts of galaxies by utilizing

their colors or magnitudes in different passbands. When the redshifts of the galaxies in

question are known, the concept can be modified in order to probe the internal structure

of the galaxy in terms of the quantities that describe the stellar content. As we shall see,

this information can be derived, not from a galaxy spectrum but from its internal colors and

broad-band fluxes.

2.3 TOWARDS A BILLION REDSHIFTS: THE ERA OF PHOTO-ZS

Photometric redshifts or “photo-z”s (Koo, 1985; Connolly et al., 1995; Gwyn and Hartwick,

1996; Sawicki et al., 1997; Wang et al., 1998; Fernández-Soto et al., 1999; Beńıtez, 2000;

Csabai et al., 2000; Budavári et al., 2000; Csabai et al., 2003) are a means to obtain redshifts

for large samples of galaxies, including faint objects whose spectra cannot be measured. They

can be measured much faster and in larger quantities than their spectroscopic counterparts.

In spectroscopy, the light from the galaxy is separated into narrow wavelength bins of a few

Angstroms in width. Each bin then receives only a small fraction of the total light from the
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galaxy. So to achieve a sufficiently high signal-to-noise ratio in each bin, long integration

times are required. For photometry, the bins are much larger: typically 1000 Åwide. This

requires a relatively short exposure time to reach the same signal-to-noise ratio. In addition,

imaging detectors generally cover a greater area of the sky than multi-object spectrographs.

Thus the redshifts of more objects can be measured simultaneously by using photometry

than by spectroscopy. Due to this, they have been seen as an efficient and effective means

of studying the statistical properties of galaxies and their evolution.

The goal of photometric redshifts is to derive estimates of the physical properties of

galaxies (e.g., redshift, type and luminosity) from a set of observed properties (e.g., colors)

(Csabai et al., 2003). With past and ongoing large multicolor observational programs such

as the SDSS and 2MASS and future photometric surveys such as the Large Synoptic Survey

Telescope (LSST), the photometric redshift technique will prove to be an even more powerful

tool in interpreting these very large and detailed data sets. Photometric redshifts have

enabled the galaxy luminosity function to be studied (Subbarao et al., 1996) and large

distributions of redshifts of any galaxy population can now be created. In addition, obtaining

accurate estimates of photometric redshifts (and characterizing the uncertainties in those

redshifts) is crucial to weak lensing studies that aim to map out the mass distribution in

the Universe. The LSST in particular will obtain thousands of images of each patch of sky

covering 20 000 square degrees, integrating to 26.5 mag in 6 bands: u,g,r,i,z,y, covering the

ultra-violet (UV) to the infrared (IR). Photometric redshifts will be available for ∼ 3 billion

detected galaxies.

The SDSS provides a very large sample of galaxies whose “photo-z”s can be measured.

Purger et al. (2006) applied photometric redshift estimation techniques to Data Release Five

(DR5) of the SDSS, which contained more than 215 million unique objects and spectroscopy

for 675 000 galaxies. This is an order of magnitude increase in sample size compared to the

HDF and the wide angle camera of the SDSS allows a much larger cosmological volume to

be probed, compared to the previous narrow pencil beam surveys. In the Sixth Data Release

(DR6) (Stoughton et al., 2002), there were over 287 million objects imaged. Out of these,

there are approximately 791 000 galaxies with published spectroscopic redshifts from which

to calibrate the photo-zs and determine both their statistical and systematic uncertainties.
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2.3.1 Techniques for Photometric Redshift Estimation

Both empirical and template-fitting techniques have been applied extensively to estimate

redshifts of galaxies using broadband colors, although there are many others (see Csabai

et al. (2003) for a review).

Empirical approaches use the data itself to obtain a relation between color and redshift for

the galaxies and is relatively free from systematic effects within the photometric calibration

(Csabai et al., 2003). They can be used when one has a sufficiently large (∼100–1000,

depending on the redshift range) and representative subsample with spectroscopic redshifts.

They are based on fitting a functional form (typically a 2nd or 3rd order polynomial) to

obtain the spectroscopic redshifts from the colors (or magnitudes). The mapping between

color and spectroscopic redshift is then used to estimate redshifts for the remainder of the

sample with unknown redshifts (Connolly et al., 1995; Wang et al., 1998; Brunner et al.,

1999). Errors in the estimated redshifts are estimated analytically or through Monte Carlo

simulations. Another empirical approach is the nearest neighbor method (Csabai et al.,

2003). For a test galaxy, this finds the galaxy in a training set which has the smallest

distance in the color (or magnitude) space (weighted by the errors). The test galaxy is then

given the redshift of this closest match. Ideally, the training set has so many galaxies that

for each unknown object there is a close neighbor. The disadvantage of this method is that

these relations can only be applied to galaxies with colors that lie within the range of colors

and redshifts found within the training set.

The second approach is that of template-fitting (Koo, 1985; Gwyn and Hartwick, 1996;

Sawicki et al., 1997; Connolly et al., 1999; Fernández-Soto et al., 1999; Beńıtez, 2000; Bu-

davári et al., 1999, 2000; Csabai et al., 2000, 2003). This involves compiling a library of

template spectra - either theoretical SEDs from stellar population synthesis models (e.g.,

Bruzual and Charlot (2003)) or empirical SEDs (e.g., Coleman et al. (1980)). The expected

flux through each passband is calculated for each template SED on a grid of redshifts. By

comparing these fluxes to the observed ones, a redshift and spectral type can be estimated.

The usual method is to minimize χ2 with respect to redshift, z, and spectral type, where

χ2(z, type) =
∑

i

(
Fi − b(z, type)Ti(z, type)

σi

)2

, (2.1)
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Fi is the observed flux in filter i, σi is the error in Fi, Ti(z, SED) is the flux in filter i for the

template SED at redshift z and b(z, SED) (the scaling factor that normalizes the template

to the observed flux) is determined by minimizing equation 2.1 with respect to b, giving

b(z, type) =

(∑
i

FiTi(z, type)

σ2
i

)
/

(∑
i

Ti(z, type)2

σ2
i

)
. (2.2)

As mentioned by Csabai et al. (2003), the standard procedure for template fitting is to

chose a small number of SEDs corresponding to different galaxy types (e.g., E, Sa, Sb and

Irr galaxies) and then choose the best fit.

Template-fitting photometric redshift estimation techniques do not have the limitation of

a training set and can be applied over a wide range of redshifts and intrinsic colors. It makes

use of a relatively detailed knowledge of galaxy SEDs that exists today and in principle it

may be used to estimate redshifts reliably even for populations of galaxies for which there are

few or no spectroscopically confirmed redshifts (Csabai et al., 2003). However, in order to

do this, it is critical to have a library of accurate and representative template SEDs (see e.g.,

Hogg et al. (1998); Firth et al. (2002)). Empirical templates are typically derived from nearby

bright galaxies which may not be truly representative of high redshift galaxies. Theoretical

SEDs, generated from stellar population synthesis models, on the other hand, can cover a

large range of star formation histories, metallicities, dust extinction models etc. A pitfall

of this is that not all all combinations of these parameters (at any particular redshift) are

realistic, and it could result in including superfluous templates. This can be particularly

problematic when using observations with noisy photometry (Csabai et al., 2003).

According to Csabai et al. (2003), it is difficult to obtain an optimal set of galaxy spec-

tral templates, especially spectrophotometrically calibrated spectral templates. The first

difficulty with empirical spectra lies in calibrating them spectrophotometrically over the full

spectral range. The situation has improved with the SDSS which has measured spectropho-

tometrically calibrated spectra for approximately a million objects in the 3800–9200Å range.

A second caveat with spectral templates is that, because the galaxy spectrum is redshifted,

there is a need to have spectra over a wavelength range that is wider than the range of the

optical passbands (3000–12 000Å). Finally, multi-fiber spectrographs, such as those used in
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the SDSS, usually sample only the central region of the galaxy while photometric measure-

ments integrate over the entire galaxy. On the theoretical front, the accuracy of spectra

generated from stellar population synthesis models is now improving (Bruzual and Charlot,

2003) but deriving redshifts using them is still not as accurate as directly measuring the

galaxy spectra.

2.3.2 A Byproduct of “Photo-z”s: Spatially Resolved Properties of Stellar Pop-

ulations with SED Fits

The use of sophisticated training algorithms highlighted above allows for a better interpreta-

tion of the intrinsic photometric properties of a galaxy sample. Here we focus on an offshoot

of the template-based photometric redshift technique, namely the best fitting spectral energy

distribution (SED) template. We can extend the work of Abraham et al. (1999) by applying

the template-fitting photometric redshift technique to individual pixels of resolved galaxy

images which have measured fluxes and flux errors (in place of colors and their associated

errors). Given a library of SED templates constructed from population synthesis codes, for

which the underlying physical parameters are defined, the spatial distribution of those pa-

rameters within the galaxy can be determined. The SED templates are functions of galaxy

type: early-types which are typically S0s, ellipticals and lenticulars and late-types which

are typically spirals. We can thus shift the focus from the inferred photometric redshifts

themselves, to what the best fitting SEDs can say about the properties of the galaxy sample

whose redshifts are known. The presence of multiband imaging surveys also provide ideal

testing beds for this technique.

Abraham et al. (1999) first applied the technique to galaxies in the Hubble Deep Field

(HDF). Their methodology is as follows: They generated model tracks in color-color space i.e.

in the V-I versus U-B plane for stellar populations using the GISSEL96 spectral synthesis

code of Charlot and Bruzual (1991). They assumed a Salpter IMF and that the colors

of individual pixels can be modeled using an exponential star formation history with a

characteristic time-scale τ , i.e. ψ(t) = ψ0e
−t/τ which is often used to model the integrated

colors of galaxies (Caldwell et al., 1991). This allows a general parameterization of the star
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formation history of the galaxies. The color-color tracks were generated for model galaxies

at fixed redshift values and for stellar populations with four free parameters: age t, e-folding

time for star formation τ , dust extinction E(B−V ) and metallicity Z. For each pixel in the

galaxy image, they computed the optimum evolutionary track in color-color space using a

maximum likelihood estimator L that is effectively least-squares (Abraham et al., 1999):

L(t, τ, Z,E(B − V )) =
4∏

n=1

1√
2π∆Cn

exp

(
−(cn − Cn)2

2∆Cn
2

)
(2.3)

where the product is over the four colors, and [Cn,∆Cn] are the data colors and errors in

the pixel (determined using the formulae in Williams et al. (1996)). Thus, each pixel could

now be assigned a value of t, τ , Z and E(B − V ), so that each galaxy considered now had

a pixelized map showing the distribution of t, τ and so on.

In fact, Conti et al. (2003) extended this work and applied a similar SED fitting pro-

cedure, a technique referred to as “pixel-z,” to individual pixels in ∼ 150 galaxies with

measured spectroscopic redshifts, and ∼ 1500 galaxies with measured photometric redshifts,

in the Hubble Deep Field-North (HDFN). The aim was to decompose the internal photomet-

ric structure of galaxies into intrinsic properties of the stellar populations like stellar ages

and metallicities. The study made several enhancements on the technique used by Abraham

et al. (1999). The first was that it was able to use all available redshifts, photometric as

well as spectroscopic. They extended the Abraham et al. (1999) sample by including not

only the ∼ 190 object in the HDFN with measured spectroscopic redshifts, but all of the

∼ 1500 galaxies detected in the HDFN for which only photometric redshifts were measured.

While this approach propagates the larger redshift uncertainties associated with photometric

redshifts onto the measured properties of galaxies, the use of the original HDFN passbands

extended by the NICMOS data (J, F and K bands) was found to reduce the redshift uncer-

tainty to more than acceptable levels with σz ∼ 0.05 (Conti et al., 1999). Each pixel was

regarded as the smallest “multicolor unit” available in the HDFN. Thus they made use of

the multicolor information for each of the pixels in a galaxy to constrain the relative ages for

physically distinct sub-components of the galaxy and determine their dust and metallicity

content as well as the timescale τ for their star formation histories. They used the pixels to

calculate the comoving density of star formation and metallicity enrichment in galaxies, as a
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function of redshift. With the sample of galaxies available, they were able to directly assess

the drivers behind the current understanding of the global star formation history.

We aim to extend this work by applying the pixel-z technique to galaxies in the SDSS,

to study the dependence on environment of both the total “integrated” galaxy SFR and the

spatial distribution of SFR within those galaxies. First, however, we describe the “pixel-z”

methodology.

2.4 PIXEL-Z

2.4.1 Method

By making use of strong spectral features such as the 4000 Å break, the Balmer break and

the Lyman decrement, the standard photometric redshift techniques can be used to quickly

provide an estimate of a galaxy’s redshift. Each SED is systematically redshifted through

the photometric filters as shown in Figure 2.1. The SED Fλ is then convolved with each of

the photometric filter response functions Sλ according to:

FT (λ) =

∫ λf

λi
dλλFλ(λ)Sλ(λ)
∫ λf

λi
dλSλ(λ)

(2.4)

λi and λf are the wavelength limits of each filter. The convolved SED fluxes FT are then

compared with the observed fluxes through each filter.

In the pixel-z method, we assume a redshift and fit for the SED type. In fact, for the SDSS

Main Galaxy Sample, all galaxies have measured spectroscopic redshifts, so z can therefore

be fixed in the fitting function. The best-fitting template is then established for each pixel

at that particular redshift. The fitting function, which is a modification of equation (2.1),

has the form:

χ2(T ) =

Nf∑
i=1

[Fobs,i − bj × Fi,j(T )]2

σ2
i

(2.5)

Fobs,i is the flux through the ith filter, bj is a scaling factor, Fi,j is the flux through the

ith filter of the jth SED template (calculated at redshift z) and σi is the uncertainty in

the observed flux. The sum is carried out over all available filters Nf . The resulting χ2 is
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Figure 2.1: Redshifting a model SED through the SDSS u,g,r,i,z passbands. The filter

response functions are shown in black. The original spectrum (in red) is redshifted through

three redshifts: z = 0.1 (green), z = 0.5 (blue), z = 1.0 (cyan). The 4000 Å break in the

spectrum now moves through the g,r and i filters as a result. In the pixel-z method, since

the redshift of the pixel is known, the model SED can be redshifted and then convolved with

each passband to obtain a theoretical filter-convolved flux in each passband. These fluxes

can then be compared to the observed fluxes in the pixel.
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minimized as a function of template T providing an estimate of its spectral type (together

with the variance on this measure). Minimizing χ2 in equation 2.5 with respect to bj gives

bj(T ) =

∑Nf

i=1
Fobs,iFi,j(T )

σ2
i∑Nf

i=1
Fi,j(T )2

σ2
i

, (2.6)

which determines the normalization of the SFR obtained from the best fitting SED template.

Rather than applying this technique to the integrated fluxes of galaxies, we instead

apply it to the fluxes of pixels within resolved galaxy images. The individual pixels typically

have larger photometric uncertainties than integrated fluxes measured in apertures, and

careful account needs to be made of the uncertainties and error-propagation. The optimum

solution would be to keep the spatial information present in the resolved image together with

the improved signal-to-noise ratio offered by combining pixels. A step in this direction is

indicated by Budavári (2003) (private communication), where spatially connected pixels of

similar colors are joined into superpixels in order to improve on the statistical errors without

mixing the different galaxy components, such as a red bulge or bluer SF regions in spiral

arms. Incorporating this technique into the current pixel-z implementation is beyond the

scope of this investigation, but holds promise for future work.

By careful choice of the SED template library, the pixel-z technique enables a decompo-

sition of the internal photometric structure of galaxies into basic constituents such as the

ages of the stellar population, their metallicities and their dust content. It can therefore be

used to determine the SFR for each pixel inside a galaxy and the contribution of each pixel

to the SFR of either the whole galaxy or a projected radial shell of that galaxy.

We have thus shifted the attention of the technique from the photometric redshift itself

to the SED templates. In fact, the SED of a galaxy should reflect the distribution of stellar

masses, ages and metallicities and hence provide clues to the past history of star formation.

By fitting SEDs to individual pixels in a galaxy, we can recover the morphological charac-

teristics of the galaxy and separate out the individual contributions of age, metallicity, dust

and star formation history.

Next, we describe the SED templates used in our analysis.
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2.4.2 The SED Templates

We use a large number of SEDs generated by the Bruzual and Charlot (2003) stellar popula-

tion synthesis models. The main input parameters are the form of the SFR, the stellar initial

mass function (we assume a Salpeter function with Ml = 0.1M¯ and Mu = 100M¯), and

the rate of metal enrichment. Using assumptions about the time evolution of these parame-

ters, they compute the age-dependent distribution of stars in the Hertzsprung-Russell (HR)

diagram from which they obtain the integrated spectral evolution of the stellar population.

These models have become standard tools in the interpretation of galaxy colors and spectra.

The model computes the spectral evolution of stellar populations of different metallicities

at ages between 1 × 105 yr and 2 × 1010 yr at a resolution of 3 Å FWHM across the whole

wavelength range from 3200 Å to 9500 Å (corresponding to a median resolving power λ/∆λ ≈
2000). These predictions are based on a new library of observed stellar spectra assembled by

Le Borgne et al. (2003). It also computes the spectral evolution across a larger wavelength

range, from 91 Å to 160 µm, at lower spectral resolution.

2.4.2.1 Isochrone Synthesis and Simple Stellar Populations (SSPs) ‘Isochrone

synthesis’ is used to compute the spectral evolution of stellar populations (Charlot and

Bruzual, 1991; Bruzual A. and Charlot, 1993). This technique is based on the property that

stellar populations with any star formation history can be expanded in a series of instanta-

neous starbursts - the simple stellar populations (SSPs). The spectral energy distribution

at time t of a stellar population characterized by a star formation rate ψ(t) and a metal-

enrichment law ζ(t) can be written (Bruzual and Charlot, 2003; Tinsley, 1980)

Fλ(t) =

∫ t

0

ψ(t− t′)Sλ [t′, ζ(t− t′)] dt′ , (2.7)

where Sλ [t′, ζ(t− t′)] is the power radiated per unit wavelength per unit initial mass by an

SSP of age t′ and metallicity ζ(t − t′). The above expression assumes that the initial mass

function (IMF) is independent of time.

The function Sλ [t′, ζ(t− t′)] is the sum of the spectra of stars defining the isochrone of

an SSP of metallicity ζ(t− t′) at age t′. To compute Sλ(t
′, Zi) at a given metallicity Zi of the
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stellar evolutionary tracks, the isochrone at age t′ must be interpolated from the tracks in

the HR diagram, as is described by Bruzual and Charlot (2003). The different evolutionary

stages along the isochrone are populated by stars of different initial masses in proportions

given by the IMF weight φ(m) [defined such that φ(m)dm is the number of stars born with

masses between m and m + dm]. Spectral libraries are then used to assign spectra to stars

in the different evolutionary stages. In the model by Bruzual and Charlot (2003), the SED

of the SSP is obtained by summing the spectra of the individual stars along the isochrone.

The IMF is an adjustable parameter of the model. In this work, the Salpter IMF is

employed, which corresponds to φ(logm) ∝ m−1.35, or equivalently φ(m) ∝ m−2.35. We

adopt lower and upper IMF mass cutoffs mL = 0.1 M¯ and mU = 100 M¯. The spectral

energy distribution of a model SSP is normalized to a total mass of 1 M¯ in stars at age

t′ = 0, and the spectra are computed at 221 unequally spaced time steps from 0 to 20 Gyr.

Each spectrum covers the wavelength range from 91 Å to 160 µ.

2.4.2.2 The Generated Spectra and the Underlying Properties of the Stellar

Populations The input parameters for our SED templates are chosen to maximize our

ability to solve for the above quantities. The SEDs have the following properties:

1. We allow the underlying stellar population within each pixel to vary over a wide age

range. The age in the synthesis model is defined as the time since the most recent burst

of star formation. We sample extremely young (0.001, 0.01, 0.1, 0.5 Gyr), to middle age

(1, 3, 5 Gyr), to old and very old (9, 12, 15 Gyr), for a total of ten ages.

2. We restrict our parameterization of the star formation history of the underlying stellar

population within each pixel to an exponential function and reject other parameteriza-

tions that are available in the model. We assume that the fluxes of individual pixels

can be modeled using an exponentially declining SFR with an e-folding timescale τ , i.e.

Ψ(t) = Ψ0e
(−t/τ). This parameterization is convenient for its simplicity in describing the

SFR of an instantaneous burst when τ → 0 and a constant SFR when τ → ∞. The

e-folding times we use for τ range from 0.1Gyr for a short burst, to 1, 3, 5, 9 and 12Gyr

for subsequently longer bursts. It is worth noting at this point that an exponential SFR

for individual pixels does not inevitably lead to an exponentially decaying SFR for the
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galaxy as a whole, other than in the special case in which every pixel in the galaxy is

coeval and all have the same SFR (Conti et al., 2003).

3. Since pixels with any SF history can be expanded in a series of instantaneous bursts, each

having fixed metallicity, the spectral evolution of individual pixels (or whole galaxies)

can be investigated without prior knowledge of the chemical evolution. We assume the

SEDs to be characterized by six possible metallicities spanning 1
50

to 2.5 solar.

4. The general spectral characteristics of the SEDs of galaxies will be modified by the

presence of dust. We parameterize dust obscuration in terms of the relative optical

extinction in the rest frame E(B−V ) using the reddening curve k(λ) = A(λ)/E(B−V ),

for star-forming systems formulated by Calzetti et al. (2000). For each of the SEDs we

allow for six independent values of extinction ranging from no extinction to E(B−V ) =

0.9 magnitudes of extinction.

In Figure 2.2, we show some examples of the generated galaxy SEDs and how these

change as the underlying properties of their stellar populations are allowed to vary. Panels

(a) and (b) show the spectral evolution of stellar populations with two different time scales

for star formation: τ = 3 Gyr and τ = 9 Gyr. In each case, we show the evolution of the

spectrum from t = 0.001 Gyr to t = 9 Gyr where t is the age of the stellar population.

The UV-to-optical spectrum remains approximately constant during the main episode of

star formation because of the continuous input of young massive stars, but the near-infrared

light rises as more and more evolved stars accumulate. When star formation decreases, the

properties of the spectrum are now determined by stars which are in the advanced stages of

stellar evolution. Panel (c) shows the effect of dust extinction for stellar populations with

fixed age (t = 1 Gyr, τ = 3 Gyr and for Z = Z¯). The spectrum is reddened according to

the Calzetti (2000) extinction curve. Panel (d) shows the effect of varying metallicity for a

population with t = 1 Gyr, τ = 3 Gyr and E(B − V ) = 0.1 mag. It is seen that increasing

metallicity decreases the UV part of the spectrum while not affecting the infra-red part

significantly.

The pixel-z technique therefore allows us to probe not only the underlying morphological

details of the galaxy, but also the relation between a galaxy’s morphology and its stellar

constituents which characterize the fitted SEDs. To verify our implementation of pixel-z and
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Figure 2.2: Model spectra of stellar populations as predicted by the stellar population syn-

thesis model (Bruzual and Charlot, 2003). Both panels (a) and (b) shows the evolution of

the spectrum from t = 0.001 Gyr to t = 9 Gyr where t is the age of the stellar population.

In (a), τ = 3 Gyr; (b) τ = 9 Gyr. E(B − V ) = 0.1 mag and the metallicity is fixed to

Z = Z¯; (c) The effect of varying the dust obscuration E(B− V ) (in magnitudes) using the

Calzetti et al. (2000) extinction curve, for stellar populations with t = 1 Gyr, τ = 3 Gyr and

Z = Z¯; (d) The effect of varying metallicity for stellar populations with t = 1 Gyr, τ = 3

Gyr and E(B − V ) = 0.1 mag.
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for comparison with the initial application to the HDFN by Conti et al. (2003), we test our

method first on HDFN galaxies before moving to our SDSS sample.

2.5 PIXEL-Z IMPLEMENTATION: AN INITIAL APPLICATION TO THE

HUBBLE DEEP FIELD NORTH

2.5.1 The Hubble Deep Field North

The Hubble Deep Field (HDF) is a Director’s Discretionary program on the Hubble Space

Telescope (HST) to image an undistinguished field at high Galactic latitude in four passbands

as deeply as possible (Williams et al., 1996, 2000). These images provide one of the most

detailed views to date of distant field galaxies and have been central to a wide range of studies

in galaxy evolution and cosmology. In order to optimize observing in the time available, a

field in the northern continuous viewing zone was selected and images were taken for ten

consecutive days, or approximately 150 orbits. Shorter 1-2 orbit images were obtained of the

fields immediately adjacent to the primary HDF in order to facilitate spectroscopic follow-up

by ground-based telescopes. The observations were made from 18 to 30 December 1995, and

both raw and reduced data were put in the public domain. Imaging was done using four

filters (U, V,B, I), centered on 300 nm, 450 nm, 606 nm and 814 nm respectively.

The rich dataset has many of the characteristics that make it an ideal testbed for our

purpose. First and foremost, it is among the best studied areas of the sky and, as such, can

be regarded an ideal benchmark for our technique. The HDFN also provides morphological

and size information for high redshift galaxies. For our analysis we will make use of the

2500×2500 pixel versions of the HDFN and NICMOS data together with the corresponding

relative weight maps. The latter are needed to correctly estimate the photometric errors on

individual pixels. We use version 1.04 of the renormalized rms maps. These maps give the

“true” noise level in the data, corrected for inter-pixel correlations. With the rms images,

one can sum (in quadrature) the noise values for pixels over any aperture and determine the

effective flux uncertainty within that aperture or use the measure on a pixel-by-pixel basis.
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The rms maps quantify the uncertainty due to noise in the background. These maps are

used to determine the detection significance of an object or a pixel. As we shall see, the

error in the photometric flux in the pixels of an object will be used to assess the significance

of our photometric decomposition performed with the pixel-z method.

2.5.2 Galaxy Maps: The Hubble Deep Field

We first test our code on the same galaxies in the HDFN as used by Conti et al. (2003).

As in their analysis, we are able to connect features in the parameter maps (of age, SFR,

obscuration, metallicity) of galaxies to individual morphological features such as knots of

star formation that appear in the original images. Figure 2.3 shows the result of fitting 2160

SED templates to a spiral galaxy in the HDFN at z = 1.2. The top left image shows a face-on

spiral galaxy in the F606W (V-band) filter. The other images show the decomposition of

the best-fitting SED template according to the values of the SFR e-folding time τ , E(B−V ),

and metallicity relative to solar [Fe/H]. The redshift of all pixels have been fixed to that of

the galaxy. As the assumption of a common age for all the pixels was used by Conti et al.

(2003), we have implemented it only for this comparison. All future results will have this

assumption relaxed. The results can be seen to be highly consistent with those from Conti

et al. (2003), clearly identifying the same structures and regions, such as the dark “knots”

in the spiral arms, elevated metallicity and obscuration in the nucleus, and strong contrast

between the arm and inter-arm regions.
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Figure 2.3: Result of fitting 2160 SED templates to a large spiral galaxy in the Hubble Deep

Field-North as was done by Conti et al. (2003). The top left map shows the galaxy in the

F606W WFPC2 (V) filter. The other three maps display the breakdown of the best-fitting

template in each pixel according to the values of star formation rate e-folding time τ in Gyr,

color excess E(B − V ) in magnitudes, and metallicity relative to solar.
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2.5.3 Error Maps: The Hubble Deep Field

The pixel-z method also involves calculating the intrinsic error arising from the SED fitting,

for each property that characterizes the best-fitting SED. This is detailed by Conti et al.

(2003). We provide a brief summary of the process here. Each pixel has a 4-dimensional

likelihood function L(t, τ, E(B − V ), [Fe/H]) that results from fitting each of the 2160 tem-

plates to the multi-band fluxes in that pixel. In order to calculate the uncertainty associated

with each of the four axes of variability (t, τ , E(B − V ) and [Fe/H]), we marginalize the

likelihood over the three remaining parameters, essentially collapsing the four dimensional

function along each of its axes. These probabilities are sampled at the allowed values of

each parameter (based on the grid of parameters defined in §2.4.2.2). For example, the age

likelihood is sampled at 10 different points corresponding to the 10 different ages.

The errors are then the 1 σ uncertainties (corresponding to ∆χ2 = 1) found by measuring

the width of the 1 σ line that intersects the curve that is fitted to the points. This provides

a conservative estimate of the errors. Each pixel thus has uncertainties associated with each

of the four parameters.

The results are shown in Figure 2.4 for the galaxy in Figure 2.3, where the age dependence

has been suppressed as we compute the “best fitting age” for the galaxy using the method

described in Conti et al. (2003). As expected, those pixels with the highest signal-to-noise

ratio in all passbands, usually the pixels towards the center of the object, have relatively

small errors in contrast with “sky pixels”. Direct comparison with the V band image of

Figure 2.4 underlines how the uncertainty in τ , for example, is indeed reliable only within

the source and then degrades in the outskirts. The distribution of the uncertainty in the

obscuration is even more marked. Although the central pixel itself has a relatively high error

in E(B − V ), the dark knots of star formation seen in the original image have very low

uncertainties in E(B − V ) (less than 0.05 magnitudes) as evident in the dark blue regions

of the E(B−V ) map. Elsewhere in the galaxy, the light blue regions represent pixels where

the E(B − V ) estimate is reliable to less than 0.1 magnitudes. As we move outward our

estimate of E(B − V ) degrades rapidly, with uncertainties greater than 0.2 magnitudes. A

similar trend is seen in the metallicity error map although the knots of star formation are
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Figure 2.4: Error maps for the galaxy shown in Figure 2.3. The top left map shows the

galaxy in the F606W filter. The other three maps show the errors (in every pixel) in the

star formation rate e-folding time τ , color excess E(B − V ) and metallicity relative to so-

lar [Fe/H], respectively. These error maps are obtained by computing the marginalized

likelihood in a particular parameter for each pixel in the galaxy, as described in §2.5.3.
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not as apparent here.

Having shown that our results are consistent with the findings of Conti et al. (2003), we

now turn our attention to galaxies in the SDSS. Before doing so, we address the issue of

degeneracies between the fitted parameters that characterize the SED templates.

2.5.4 SED Degeneracies

Another source of uncertainty in the pixel-z method is introduced by the degeneracies be-

tween the different parameters that characterize the model SEDs which are fitted to the

photometric fluxes of every pixel in the galaxy. This is particularly relevant when the num-

ber of templates that are used in the fitting is large. Population synthesis models showed

that age, metallicity and dust all tend to affect spectra in similar ways (Bruzual and Char-

lot, 2003). This was found to be particularly true at the low resolving power of the earlier

models, typically ∼ 250 at optical wavelengths. The most well known degeneracy is that

between age and metallicity: it is known that luminosity-weighted ages and metallicities

which are derived from galaxy spectra tend to be strongly degenerate (Bruzual and Charlot,

2003). Worthey (1994) explored this phenomenon while constructing detailed models for

intermediate and old stellar populations in galaxies. The parameters that were input to the

model were the metallicities (−2 < [Fe/H] < 0.5), single-burst ages (between 1.5 and 17

Gyr) and the exponent of the IMF. Broadband magnitudes, SEDs, surface brightness fluc-

tuation magnitudes, and 21 different absorption feature indices in the spectra were output

from the model and compared with a wide range of available observations.

It was concluded that if the percentage change δ (age)/δ Z ≈ 3/2 for two populations,

they would appear almost identical in most of the absorption indices. This rule holds to

within 50% for almost every color and index. Worthey (1994) found that a few indices can

break this degeneracy, for example, those that are more sensitive to the abundance (Fe4668,

Fe5015, Fe5709 and Fe5782) and those that are more age sensitive (G4300, Hβ and higher

Balmer lines) than usual. They were able to use the Hβ index to crudely date recent merger

events in galaxies. He pointed out that the reason for this is that a difference between

populations of say, 5 and 15 Gyr in age is easily measurable using Hβ. It was also noted
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that due to the similar effects of age and metallicity, changes in the abundance ratios are

most noticeably apparent in the spectra of old stellar populations. Other studies found

that in old populations, the age-metallicity degeneracy can be broken by studying surface

brightness fluctuations which are more sensitive to details of the stellar luminosity function

than ordinary integrated light (Liu et al., 2000; Blakeslee et al., 2001). However, it was found

that using surface brightness fluctuations was mostly only applicable to studies of nearby

ellipticals and spiral bulges.

The age-metallicity degeneracy is therefore inherent in the SSP model that we use. While

the degeneracy affects the spectral evolution of an SSP, Bruzual and Charlot (2003) show

that the models can also trace how it affects the photometric evolution. From this, the

origins of this degeneracy can be understood. Optical and near-infrared colors reflect the

relative contribution of hot and cool stars to the integrated light. Bruzual and Charlot (2003)

followed the evolution of B-V and V-K colors and the stellar mass-to-light ratio M/LV for

different metallicities. At fixed age, they found that increasing metallicity tends to redden

the colors and increase the M/L ratio. They explained this as follows: at fixed initial

stellar mass, increasing the metallicity causes stars to evolve at lower effective temperatures

and lower luminosities (Girardi et al., 2000), which increases the M/L ratio. Changing the

metallicity also changes the relative numbers of red and blue supergiants. It was shown that

the contribution of red supergiants in the color evolution of an SSP depends crucially on

metallicity. Increasing metallicity at fixed age was found to have a similar effect to increasing

age at fixed metallicity.

In the pixel-z method, degeneracies are therefore inherent in the spectra that we generate

and fit to the photometric fluxes in the pixels of galaxies. As well as the above degener-

acy, there could also be degeneracies between the other parameters, including between dust

obscuration and metallicity as well as between age and dust obscuration. In the first ap-

plication of the pixel-z technique to galaxies in the HDF-N, Conti et al. (2003) examined

the redshift-evolution of the obscuration-metallicity degeneracy, using the best-fit values of

E(B−V ) and Z in the pixels. They found that at low redshifts, the degeneracy is quite ap-

parent. Pixels whose best fitting SEDs are characterized by solar or above solar metallicities

tend to be more obscured than those containing stellar populations with lower metallicites.
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The trend flattens off at higher redshift so that by z ∼ 3, they find that obscuration is not

a good indicator of the underlying metallicity.

In Chapter 3, where we apply the pixel-z method to galaxies in the SDSS, we attempt

to characterize these degeneracies between the various fitted parameters. Finally, it is also

worth noting that there are also uncertainties arising directly from the models themselves.

For example, while spectral synthesis models have been quite established for solar metallicity

stellar populations in optical photometry, the models are less well defined for very sub-solar

or very high metallicity populations.

2.6 SUMMARY

We have described the pixel-z method, which is used to determine the SFR and other proper-

ties of the stellar populations within every pixel of a galaxy image. The technique combines

stellar population synthesis models with photometric redshift template-fitting on the scale

of individual pixels in multi-band galaxy images. Over 2000 spectral energy distributions

(SEDs) are constructed, sampling a wide range of properties of the underlying stellar pop-

ulations, such as star formation rate (SFR), dust obscuration and metallicity. The SEDs

are redshifted and convolved with the photometric filters of the detector. They are then

compared to the observed fluxes through each pixel in each of the passbands. In the pixel-z

technique, however, we fix the redshift of the pixel (which is known since the redshift of the

host galaxy is known) and fit for the spectral type only. The best-fit SED is then returned

for every pixel within the galaxy. This allows the properties of the stellar populations in

that pixel to be determined. We also calculate an associated uncertainty in each of these

parameters that arises from the fit. In an initial application to galaxies in the Hubble Deep

Field, we showed that the technique allows us to connect features of the galaxy morphology

(such as the presence of spiral arms or knots of star formation) with physical properties of

the underlying stellar populations (such as the age of the stellar populations, the timescale

of star formation decline, the dust obscuration and metallicity). The technique also enables

a study of the interplay between these physical properties. In the next chapter, we apply
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the technique to a large sample of galaxies in the SDSS, being primarily focused on the

star formation within the pixels. Since the method enables a spatial resolution of the star

formation distribution within galaxies, we can now explore how the SFR of each galaxy –

both total SFR and the spatial distribution of SFR within galaxies – varies as a function of

the galaxy environment.
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3.0 SPATIALLY RESOLVED GALAXY STAR FORMATION AND ITS

ENVIRONMENTAL DEPENDENCE I: THE SLOAN DIGITAL SKY

SURVEY

3.1 INTRODUCTION

As discussed at the end of Chapter 1, determining the spatial distribution of the star for-

mation rate (SFR) in galaxies as a function of the galaxy environment should provide a

novel way to constrain various galaxy formation models. One possible scenario by which

galaxy properties can be influenced is described in “infall and quench” models of galaxy

formation. This refers to strong physical mechanisms which underly galaxy interactions and

which result in a depletion of cold gas that would otherwise have been used to form new

stars. There could also be an alternate means by which galaxy evolution can be influenced,

other than these strong physical mechanisms. One possible scenario would be that galaxy

properties are set by their mass at an early epoch, and since more massive galaxies tend to

reside in more dense environments, their evolution would thus be indirectly influenced by

their environment.

We argued that we can use the spatial variation of star formation within galaxies to distin-

guish between the predictions of the “infall and quench” scenario and those of “environmentally-

governed evolution”. “Infall and quench” mechanisms such as ram-pressure stripping can

cause depletion of the cold gas in the disks of galaxies in clusters and thereby truncate star

formation in them. These mechanisms would cause the outskirts of galaxies to be affected

before the galaxy interiors. “Environmentally-governed evolution” on the other hand should

result in star formation that is uniformly suppressed as the galaxy ages, or star formation in

the galaxy center being suppressed more than in the outskirts since nuclear star formation
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proceeds faster than in the disk due to the elevated gas densities in the former. In this way,

we can distinguish between the two scenarios and determine which would be dominant in

shaping galaxy properties.

In order to do this, we apply the pixel-z technique, described in Chapter 2, to a large

sample of SDSS galaxies to obtain the spatially resolved SFR in these galaxies. The SDSS

provides a large sample of galaxies with multi-color imaging in five passbands, and the pixel-z

technique can be applied to this galaxy sample. We can then study the spatially resolved

star formation in these galaxies in a statistical way, and determine how this varies with the

galaxy environment.

3.2 THE SLOAN DIGITAL SKY SURVEY

3.2.1 Background to the SDSS and the Fourth Data Release

The Sloan Digital Sky Survey (SDSS) is an imaging and spectroscopic survey of the sky using

a dedicated 2.5m telescope (Gunn et al., 2006) at Apache Point Observatory in New Mexico

(see Figure 3.1). It was commissioned in 1998 and aims to map a quarter of the sky, spanning

the Northern Galactic Cap (York et al., 2000). Imaging is done in drift-scan mode using a

142 mega-pixel camera (Gunn et al., 1998), which gathers data in five passbands, u, g, r, i, z,

spanning wavelengths 3000 < λ < 10 000 Å. The photometric system and calibration are

described in Fukugita et al. (1996); Hogg et al. (2001); Ivezić et al. (2004); Tucker et al.

(2006); Padmanabhan et al. (2008). The astrometric calibration is described by Pier et al.

(2003) and the data pipelines by Lupton et al. (2001). The Fourth Data Release (DR4) of

the SDSS, which was used for this work, is described by Adelman-McCarthy et al. (2006). It

includes five-band photometric data for 180 million objects selected over 6670 square degrees,

and 673 280 spectra of galaxies, quasars and stars selected from 4783 square degrees of that

imaging data using the standard SDSS target selection algorithms. Objects are selected from

the imaging data for spectroscopy using a variety of algorithms. These include a complete

sample of galaxies with reddening-corrected (Schlegel et al., 1998) Petrosian magnitudes
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(Petrosian, 1976) brighter than r = 17.7 (Strauss et al., 2002). Spectra are taken using a

pair of multi-fiber spectrographs (Adelman-McCarthy et al., 2006) and cover the wavelength

range 3800 < λ < 9200 Åwith a resolution of λ/δλ ≈ 2000.

The sky coverage of the imaging and spectroscopic surveys are shown in Figure 3.2. It

shows the incremental increases in area of sky covered since Data Release One (Abazajian

et al., 2003). The imaging data in DR4 was taken along a series of great circles on the

sky with the aim of filling a contiguous area in the Northern Galactic Cap, and three non-

contiguous stripes in the Southern Galactic Cap (Adelman-McCarthy et al., 2006; York et al.,

2000). Two contiguous regions cover the Northern Galactic Cap, one centered roughly on

the Celestial Equator, and the other at around δ = +40◦.

3.2.2 Sample Selection

In our study, we use galaxies chosen from the Main Galaxy Sample in the spectroscopic data

in DR4. Galaxies are chosen which have a redshift confidence of at least 0.7. We ignore ob-

jects with saturated pixels. We exclude galaxies whose spectra has the Z WARNING NO BLUE

(no blue side of the spectrum) and Z WARNING NO RED (no red side of the spectrum)

flags (Stoughton et al., 2002). We then define a volume-limited sample through the further

restrictions 0.019 < z < 0.125 and −23.5 < Mr < −20.5. This gives a sample of 44 964

objects. For each object we obtain the Atlas image (from the SDSS Data Archive Server)

which comprises the pixels detected as part of each object in all filters. We use these images

in the pixel-z analysis of the final volume-limited sample.
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Figure 3.1: The SDSS 2.5m telescope at Apache Point Observatory. Credit: Fermilab Visual

Media Services.
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Figure 3.2: The sky coverage in Data Release 4 of the SDSS. The top panel shows the

coverage for the imaging survey, showing the incremental increases in area of sky covered by

the previous successive data releases (DR1 onwards). The Northern Galactic Cap is covered

by two contiguous regions, one centered roughly on the Celestial Equator, and the other

at around δ = +40◦. Successive data release have tried to close the gap between these two

regions: DR1 and DR2 (cyan), DR3(green), DR4(red). The imaging in DR4 covers an area of

sky around 6670 deg2. The bottom panel shows the corresponding incremental sky coverage

for the spectroscopic survey. Credit: The Sloan Digital Sky Survey (SDSS) Collaboration,

http://www.sdss.org.
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3.2.3 The Galaxy Environment

Previous studies have parameterized the local environment of each galaxy using the pro-

jected density of galaxies (Gómez et al., 2003; Dressler, 1980). This involves calculating the

projected distance to the nth nearest spectroscopically observed neighbor and then convert-

ing that into a surface density (in Mpc−2). In our work, we characterize the local density

around each galaxy using a 5 h−1Mpc sphere centered on the galaxy in question. Each

galaxy within that sphere is weighted according to the local completeness as calculated by

Blanton et al. (2003d) to account for spectroscopic fiber collisions.

We also need to scale the volume of the sphere according to the fraction of the projected

sphere that is contained within the survey area. Since we are using a volume limited sample,

we do not need to correct for redshift distribution variations.

There are a few possible caveats associated with this method. Naturally, working in

redshift space versus real space opens us up to the possibility of galaxies scattering out of

our volume in high density regions where the peculiar velocities would be high and vice-versa

in lower density regions. In addition, our calculation of the spherical volume is compromised

somewhat by treating masked regions near the center of the projected sphere identically to

those on the edges, despite the fact that the former would remove a larger volume from the

sphere than the latter. One possible solution for this which can be attempted in the future

would be to use cylinders centered on each galaxy (e.g., 5 h−1Mpc in radius and 5 h−1Mpc

length along the line of sight) rather than spheres, so that removing any masked regions

would take out equal volumes irrespective of whether it is at the center or at the edges.

Between the volume correction and redshift distortions, the latter is more problematic;

our sky coverage is sufficiently uniform that tests using an exact spherical volume were not

significantly different from those using our method. However, given that redshift distortions

are at least equally problematic for any density estimates working in redshift space (Dressler,

1980; Gómez et al., 2003), the more physically-based aspect of this method for measuring

local galaxy density makes it the preferred approach. Figure 3.3 shows the distribution of

local galaxy densities in our sample.
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Figure 3.3: Distribution of local galaxy densities in the sample.
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3.2.4 SDSS Imaging and the Photometric Calibration of Atlas Images

We utilize one of the photometric data products of the SDSS: the “Atlas images”. These

are cutouts from the imaging data in all five bands of all detected objects in the survey.

Unlike the HDF, no rms error maps in the counts are available for the SDSS galaxies.

The photometry in every pixel that belongs to each galaxy of the Atlas image needs to be

calibrated to obtain a measured flux in that pixel. In this section, we illustrate the steps

that need to be taken to do this. The photometric calibration of the Atlas images was done

according to the asinh magnitude system developed by Lupton et al. (1999). The photometry

is also corrected for foreground Galactic extinction using the extinction values obtained from

the dust maps of Schlegel et al. (1998).

We follow the prescription for the photometric calibration of the imaging data as de-

scribed in the SDSS Photometric Flux Calibration web page 1. The basic steps are summa-

rized as follows.

We obtain a count rate t/t0 from the net count NDN (in “Data Numbers”, DN) in each

pixel in each of the passbands (u,g,r,i,z).

t

t0
=
NDN × 100.4×(a0+(k×A))

T
(3.1)

where t/t0 is defined to be the count rate and t0 is the zero point count rate and is given

by t0 = 10−0.4×aa. T is the exposure time, k is the atmospheric extinction coefficient in that

passband and A is the airmass (optical path length relative to zenith for light travelling

through the Earth’s atmosphere) for that passband. a0 is the zero-point in each passband.

The count rate is then converted to an SDSS asinh magnitude m (and thence to an AB

flux) using:

m = −2.5× (asinh((t/t0)/2b) + ln(b))

ln(10)
(3.2)

The error in the counts is calculated from the Poisson error from the photoelectrons

which are counted by the CCD detectors, and the total noise contributed by read noise and

1http://www.sdss.org/dr4/algorithms/fluxcal.html
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dark currents:

δNDN =

√
(
NDN +Nsky

G
) +Npix × (D + δNsky) (3.3)

where Nsky is the number of sky counts (in DN) over the area considered, Npix is the

area covered by the object in pixels (Npix = 1 for one pixel). D is the noise due to dark

variance (in DN) and δNsky is the error on the estimate of the average sky level (converted

from maggies/arcsec2 to DN/pix) in the frame.

Finally, we work out the error in the SDSS magnitude (from which we can derive an

error in the flux):

δm =
2.5× δNDN × 100.4×(a0+k×A)

2bT × ln(10)×
√

1 + ( t
2bt0

)2
(3.4)

The Point Spread Function (PSF) is not taken into account in our analysis. The median

seeing value reported in DR4 was 1.4′′ so the PSF will be 3 − 4 pixels across typically.

This means that adjacent or nearby pixels are potentially not independent in their pixel-z

parameters. We have ignored this effect for now since, as long as the galaxies are well-enough

resolved, there will be useful information to be gained regardless of whether the small-scale

details of structure (that will be hidden by the PSF) can be extracted.

3.3 PIXEL-Z IMPLEMENTATION: THE SDSS GALAXIES

We fit 2160 SED templates to all pixels in each of the SDSS galaxies in our sample, keeping

the redshift of all pixels fixed to the spectroscopic redshift of their host galaxy. As discussed

earlier, this effectively removes one degree of freedom in the fit and returns the properties

of each of the pixels in terms of their best-fitting template, i.e. the age, SFR e-folding time,

dust obscuration and metallicity.

We remove the simplifying assumption used by Conti et al. (2003) that all the pixels

are coeval, i.e. that they share a common age over the whole galaxy. The assumption of

common age simplifies the interpretation by removing a degree of freedom, and enabling a
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clearer vision of the interplay between the remaining fitted parameters. That approach was

useful in the analysis of Conti et al. (2003) in comparing maps of SFR, dust obscuration

and metallicity for each galaxy with the underlying morphology. This assumption, however,

is not consistent with the galaxy formation scenarios we are testing, nor is it required for

our current analysis, and so we dispense with it.

The results of applying the pixel-z technique to the SDSS galaxies are described below.

3.3.1 Galaxy Maps

The first two panels of Figure 3.4 show the results of the likelihood decomposition for two

galaxies. The image on the left of the top panel shows a SDSS spiral galaxy, NGC 450

(SDSS J011530.44-005139.5) and the middle image shows the distribution of best fitting

stellar population ages in Gyr throughout this galaxy. We see an older population in the

nucleus of the galaxy (ranging from 5-12 Gyr). In the outskirts there is a younger population

whose ages range from 0.001 to 0.2 Gyr. The distribution of this parameter also traces out

some of the spiral arm structure. Around the inner spiral arms, some of the “knots” of star

formation seen in the original r′ band image can be detected in the age image too as yellowish-

green regions (with ages between 0.1 and 2 Gyr). The bottom panel shows the results for an

edge-on disk galaxy. We detect an older population in the nuclear region (around 12 Gyr)

and a mix of intermediate (2-5 Gyr) and old populations (5-12 Gyr) elsewhere in the disk.

The stellar populations in the outskirts have a comparatively younger age.

Figure 3.5 is a result of the template decomposition for another SDSS galaxy (SDSS

J075642.69+364430.0). There is evidence for a bulge in this disk galaxy - the stellar popula-

tions are older - as much as 10 to 15 Gyr, whereas those in the disk are much younger, typi-

cally less than 1 Gyr. The population in the core also has a lower e-folding time (4 < τ < 5

Gyr) than in the outer disk. Together these results point to a lower current SFR in the cen-

tral (bulge) population, compared to the disk population. The nucleus itself has a relatively

low obscuration with E(B−V ) ≈ 0.0, while the stellar populations in the outer parts of the

disk typically show a higher obscuration (E(B − V ) ≈ 0.9). The central part of the galaxy

therefore shows an older population of stars, a faster timescale for SFR decline and a lower
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Figure 3.4: Top panel: Result of fitting 2160 SED templates to NGC 450 (SDSS J011530.44-

005139.5) in the SDSS. The top left map shows the galaxy in the SDSS r’ filter. The middle

map displays the breakdown of the best-fitting template in each pixel according to the values

of stellar population age in Gyr. Blue regions have the lowest age (0.001-0.1 Gyr), then green

(0.1-0.6), then yellow (0.6-2 Gyr), then orange (2-7 Gyr), then red (7-15 Gyr). The third

map shows the corresponding relative errors in the age for the pixels in this galaxy. As can

be seen, the relative errors increase when going from the bulge region to the spiral arms. The

map is obtained by computing the marginalized likelihood for each pixel in the galaxy as

described in §2.5.3 and §3.3.2. Bottom panel: Another galaxy (SDSS J155919.97+061729.8).

The left image shows the image in the r’ filter. The middle map is the age map and the

right image is the corresponding relative error map for the age. The nuclear region, with

high flux pixels, shows a lower relative error for the age but the disk has a higher relative

error. A substantial number of sky pixels are captured on the outskirts of this galaxy. These

have the highest relative errors.
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Figure 3.5: Result of fitting 2160 SED templates to each pixel in the SDSS galaxy SDSS

J075642.69+364430.0. The top left map shows the galaxy in the SDSS r’ filter. The other

three maps display the breakdown of the best-fitting template in each pixel according to the

values of the age of the stellar population, star formation rate e-folding time τ in Gyr and

color excess E(B − V ) in magnitudes.
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level of obscuration than the stellar populations in the outskirts of the disk. As we go further

out we expect to be dominated by the sky pixels, which are artificially best fit by our SED

templates corresponding to a younger stellar population, a longer timescale for SFR decline

and a higher obscuration. Again, this artifact is identified through the large errors in the

fitting, an important aspect of the pixel-z analysis, discussed in detail next.

3.3.2 Error Maps

In the top rightmost panel of Figure 3.4, we display the relative error in the age of the stellar

populations. The inner arms of the spiral galaxy have a higher relative error in the age than

does the central bulge region. In the second galaxy in the lower rightmost panel, the central

bulge region has a lower relative error in the age than does the disk region.

In Figure 3.6 the bulge region, which shows an older stellar population, has a lower rela-

tive error in the age (∆ t
t
≈ 0.1 ) than the disk region which shows younger stellar populations

with much higher relative uncertainties. These higher uncertainties correspond to lower flux

pixels. The high values of these relative errors can be reduced somewhat by finer sampling

of the age parameter near the low best-fitting age value. Now beyond the disk, the pixel-z

technique artificially fits to the sky background, so that the seemingly lower values of the

relative error on the age parameter in the outermost pixels are an artifact of the fitting and

could also be a product of template degeneracy (discussed below). However, in either the

disk or the sky, pixels with a relative error > 1 will have a negligible contribution to the

calculated SFR compared to those with very low relative errors.

The bulge also shows a faster e-folding time for star formation, with a lower relative

error (0 < ∆ τ
τ
< 0.4) than in the disk (∆ τ

τ
> 1.0). The pixels in the outer regions within

the galaxy generally show the highest relative errors associated with the age and e-folding

time. This emphasizes that calculation of the total or local SFR has to be weighted by

these fitting uncertainties. Similar trends are seen in other parameters though the bulge

population in the obscuration map has a higher relative error in the obscured flux (with

100.4(∆ E(B−V )−E(B−V )) ≈ 1.2 ) than does the disk (≈ 0.5 ), although the relative error becomes

large again in the furthest outskirts of the galaxy.
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Figure 3.6: Relative error maps for the galaxy shown in Figure 3.5. Original image (top

left), relative error in age (top right), relative error in SFR τ (bottom left) and relative error

in reddening flux 100.4(∆ E(B−V )−E(B−V )) (bottom right).
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In calculating either the total SFR of the galaxy or the mean SFR in radial shells, we

weight the SFR in each pixel by its relative uncertainty as calculated from the error maps

for the age and τ parameter. The weight of each pixel is proportional to the reciprocal of

the fractional error squared in the calculated SFR of each pixel.

3.3.3 SED Degeneracies

Another uncertainty in the method is introduced by degeneracies among the different param-

eters as discussed in Chapter 2. There is likely to be a correlation between the parameters

that determine the best-fit SED. Here, we investigate these correlations by using the 2-

dimensional marginalized likelihood function, i.e. collapsing the 4-dimensional function onto

the two axes of interest. Example results from this analysis are shown in Figure 3.7. The

top panel shows the likelihood contours as a function of age and SFR e-folding time τ for a

single central pixel in an SDSS galaxy. This is typical of the degeneracies seen in the fitting

of most pixels. The near-elliptical contours indicate that these two quantities are not inde-

pendent at least in the central region. The likelihood function is double-peaked, with the

global maximum corresponding to a 3Gyr old population and a 1 Gyr SFR e-folding time.

As both these quantities are used in determining the star formation rate, we could expect

a certain degeneracy in the calculated star formation rate. The bottom panel shows the

degeneracy between age and metallicity in a central pixel of another galaxy, with the maxi-

mum corresponding to a 0.01 Gyr old populations and a [Fe/H] ≈ 0.01. Although we have

identified such degeneracies, we have not yet exhaustively analyzed their impact through all

pixels in all galaxies in the sample. The integrated properties of the whole sample (such as

the average total SFR or the average SFR radial profile) are likely to be more robust to such

systematics than any individually measured value of a particular parameter.

One of the effects of the degeneracies can be seen directly in the images. Figure 3.8

shows the effect of constraining all the pixels to have a common age. The lower-left image

corresponds to the case where no constraint was used and a fit in the full parameter space

was done, but the lower-right image shows the case where the common age assumption was

used. The reduced number of degrees of freedom enables a more resolved distribution of
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Figure 3.7: Top panel: Age-τ likelihood contours for a pixel in the nucleus of a galaxy.

Bottom panel: Age-metallicity likelihood contours for a pixel in the nucleus of another

galaxy. Contours are obtained from marginalizing the 4 dimensional likelihood function

onto the two dimensions.
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Figure 3.8: Effect of age-τ correlations. Top panel: Image of galaxy in the r’ band. Lower-

left panel: Map of SFR e-folding time τ . Lower-right panel: Map of τ where all the pixels

are constrained to have a common age. The reduced number of degrees of freedom enables

the central bulge and disk in this τ map to be better resolved.
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central bulge and disk in this τ map. As discussed in Chapter 2, some of these degeneracies

represent real physical relationships between the parameters, such as the well know age-

metallicity degeneracy, while others reflect the choice of templates. Our selected templates

cover the majority of parameter space, and since the fitting is done simultaneously over all

parameters, the existence of degeneracies between any two parameters is mitigated. A more

detailed study of the effect of these degeneracies will be incorporated in future work.

3.4 SFR VARIATION WITH LOCAL DENSITY

In this section, we investigate how the distribution of galaxy SFRs changes as a function of

the local (spherical) galaxy density. We study how both the total SFR and the SFR within

galaxies changes as a function of this galaxy density. As discussed in Chapter 2, the SFR

due to stellar populations within each pixel of a galaxy is assumed to follow an exponential

functional form Ψ(t) = Ψ0e
(−t/τ). The normalization of the SFR in each pixel is based on

the scale factor bj (equation (2.6)), which gives the SFR in units of M¯ yr−1.

The total SFR for each galaxy is calculated from the sum of all pixels in the galaxy,

summed within consecutive radial annuli from the center of the galaxy up to 1.5 Petrosian

radii (Rp), where Rp is a measure of the scale length of the galaxy derived from its surface

brightness profile and is measured in the r′ band (Petrosian, 1976; Blanton et al., 2001). We

construct both unweighted and weighted sums to give a total star formation rate for the

galaxy, where the weights correspond to the reciprocal of the square of the fractional error

on the SFR in each pixel. The weighting is done to avoid giving undue significance to poorly

constrained pixels, such as pixels dominated by the sky background, so that these pixels do

not bias our measurements. The unweighted results turn out to be qualitatively the same as

the weighted ones, but with some quantitative differences.

We find that doing the summation of SFR in annuli up to 1.5Rp captures the vast

majority of pixels that actually belong to the galaxy while not including the contribution

of a majority of sky pixels surrounding the galaxy. The reason for this is that although low

surface brightness, low signal-to-noise pixels in the galaxy outskirts should individually have
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only a very small contribution to the total SFR (since we are weighting the SFR in each pixel

by the square of the signal-to-noise), galaxies can have a substantially large areas of these

low signal-to-noise pixels which extend well beyond the disk scale length. The combined

contribution of these pixels could therefore bias the total SFR that is calculated. This

appears to be less of a problem for typical disk galaxies than for bulge-dominated systems

which can have a large area of these low-surface brightness pixels surrounding the galaxy.

Limiting the spatial extent to 1.5Rp within which the SFR in the pixels is counted therefore

provides a more accurate estimate of the total SFR in the galaxy.

3.4.1 Total Galaxy SFR as a Function of Local Galaxy Density for All Galaxies

Here, we investigate how the total SFR in galaxies varies as a function of the local galaxy

density. As described above, the total SFR in each galaxy is calculated as a weighted sum

of the SFR over the pixels in the galaxy, where the weights are inversely proportional to

the square of the fractional uncertainties in the SFR of each pixel. The local environment

is quantified by counting the number of galaxies in a 5 h−1Mpc radius sphere centered on

each galaxy.

Figure 3.9 shows the variation of the SFR distribution with local density, the three

lines corresponding to the 25th, median and 75th percentiles of the SFR distribution. The

fluctuations at low densities are characteristic of the size of the systematic uncertainties in

these measurements. The SFR decreases with increasing density, with the greatest effect

in the highest density environments, > 0.05 (h−1Mpc)−3 (densities that correspond to the

outskirts of rich clusters).

These results, consistent with the measurements of Lewis et al. (2002) and Gómez et al.

(2003), suggest that the total SFR of galaxies in the SDSS is strongly correlated with lo-

cal density. This is also in agreement with the predictions of various hierarchical galaxy

formation models whereby SF in galaxies is suppressed as galaxies fall into more dense en-

vironments such as clusters. The range of local densities in our sample allows us track the

total SFR in galaxies in a wide range of environments: from the cores of rich clusters and

groups into the field. As detailed by Gómez et al. (2003), based on the SDSS Early Data
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Figure 3.9: Galaxy SFR in M¯ yr−1 as a function of density, where the SFR is calculated

from a weighted sum over pixels in each galaxy. From top to bottom, the lines indicate the

75th, median and 25th percentiles of the SFR distribution respectively. The fluctuations at

low densities correspond to the size of systematic uncertainties in the measurements. The

overall SFR distribution which is essentially flat (given the size of these fluctuations) for low

densities shifts to lower values at the higher densities. The decrease at higher densities is most

noticeable in the most strongly star-forming galaxies, those in the 75th percentile. Finally,

the range in the SFR distribution is largest at lower densities and decreases continuously

with density.
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Release and using Hα EW as a measure of SFR, Figure 3.9 illustrates the effect of envi-

ronment on SFR. The overall SFR distribution, essentially flat for low densities, shows a

decrease or suppression in regions of higher density. The effect is most noticeable in the

most strongly star-forming galaxies, i.e. those in the 75th percentile of the SFR distribution.

This means that the skewness of the distributions decreases with increasing density. The

“break” density, around 0.05 (h−1Mpc)−3, beyond which the SFR distribution falls rapidly

to lower values, occurs well into the regime of rich clusters, the extreme tail of the galaxy

density distribution. A comparison between the “break” density seen here using our density

estimator and that measured by Gómez et al. (2003) will be explored in future work.

3.4.2 Total SFR-Density Relation for Early and Late Type Galaxies

As discussed in Chapter 1, it is well established that in more dense environments the galaxy

population becomes dominated by early-type galaxies (e.g., Dressler (1980); Postman and

Geller (1984); Tran et al. (2001)).

We seek to determine whether the SFR of galaxies of a given morphology are also affected

by environment, i.e. whether the SFR-density relation holds regardless of morphology. We

thus split our sample into two broad morphological bins based on the (inverse) concentration

index Cin i.e early-types with Cin ≤ 0.4 and late-types with Cin > 0.4. Consequently, there

are 27 993 early-type galaxies and 16 971 late-type galaxies. Figure 3.10 presents the distri-

bution of SFR as a function of the local galaxy density for each of these morphological types.

It can be seen that the distribution of SFR for late-type galaxies is skewed towards higher

values of SFR, while early-type galaxies populate the lower SFR portion of the distribution in

the full sample. This is consistent with early-types having red, older stellar populations and

lower SFR, while late-types typically have blue, star-forming populations with consequently

high SFR. For early-types, the density-SFR relation is similar to the one observed for the

full sample: the overall SFR distribution is relatively flat (compared to the size of system-

atic fluctuations) for low densities and then shifts to lower values beyond 0.05 (h−1Mpc)−3.

Like the trend for the full sample, the decrease at higher densities is most noticeable in the

most strongly star-forming galaxies in the 75th percentile of the SFR distribution, with a
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Figure 3.10: Top panel: SFR-density relation for early-type galaxies (with Cin ≤ 0.4 as

discussed in §3.4.2). Bottom panel: SFR-density relation for late-types (with Cin > 0.4 ).

In each panel, the total galaxy SFR is calculated from a weighted sum over pixels in each

galaxy. From top to bottom, the lines indicate the 75th, median and 25th percentiles of

the SFR distribution respectively. For early-types, the overall SFR distribution is relatively

flat (compared to the size of systematic fluctuations) for low densities and then shifts to

lower values beyond 0.05 (h−1Mpc)−3. The decrease at higher densities is most noticeable in

the most strongly star-forming galaxies in the 75th percentile of the SFR distribution. For

late-types, the overall SFR distribution is also relatively flat at low densities but then falls

to lower values beyond 0.055 (h−1Mpc)−3. The range in the SFR distribution decreases with

increasing galaxy density for early-types but is relatively unchanged for late-type galaxies.

Finally, late-type galaxies are also seen to be more highly star-forming than early-types at

all densities.
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sharp decrease beyond 0.05 (h−1Mpc)−3. The scatter in the SFR distribution decreases with

increasing galaxy density for early-types. For late-types, the overall SFR distribution is also

relatively flat at low densities but then falls to lower values beyond 0.055 (h−1Mpc)−3. How-

ever, even in the highest density environments, the SFR of these high-SF late-type galaxies

is higher than for the early-types. Finally, unlike the early-types, the scatter in the relation

is relatively unchanged for late-type galaxies across all densities.

The results are broadly consistent with the findings of Gómez et al. (2003) who also split

their sample based on the parameter Cin. They found that early and late-type galaxies each

obey a SFR-density relation although it is a shallow one for early-types (which have low

SFR) while for late-types (which dominate the galaxies in their sample with high SFR), the

relation is similar to that for the full sample.

3.4.3 Radial Variation of SFR as a Function of Local Galaxy Density

Although we have established a correlation between the total galaxy SFR and galaxy density,

we can now explore where within the galaxies this suppression is taking place. In particular,

we are interested in finding out if the suppression is primarily in the outskirts of galaxies

or if it is in their inner regions. The former would support the predictions of hierarchical

(“infall and quench”) models of galaxy formation, as the SF in the outskirts of the galaxies

would be expected to be first affected by encountering an increasingly dense environment,

while the latter would favor an “environmentally-governed evolution” scenario. By using

pixel-z to study the spatial distribution of SF, we will be able to distinguish between these

two models.

For each galaxy we calculate a weighted mean SFR Ψw within successive annuli:

Ψw =

∑Na

i=1wi ×Ψi∑Na

i=1wi

(3.5)

where wi is the weight corresponding to Ψi, the SFR in pixel i, and Na is the number of

pixels within that annulus a. The weight wi is inversely proportional to the square of the

fractional error on the SFR for the pixel i. The SFR in each annulus is thus normalized

by the number of pixels, accounting for the larger total SF at larger radii due to a greater
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number of pixels. Scaling the radius of each annulus by the Petrosian radius (Rp) of the

galaxy allows us to stack annuli for different galaxies (which have different Petrosian radii)

together. The center of the galaxy is chosen as the brightest pixel in the galaxy.

We examine the annular distribution of Ψw for the stacked galaxies, spanning a range

of local densities: 0.0 < ρ ≤ 0.01 (h−1Mpc)−3, 0.01 < ρ ≤ 0.04 (h−1Mpc)−3, 0.04 < ρ ≤
0.09 (h−1Mpc)−3. Figure 3.11 shows the median and 75th percentiles of this distribution.

The inner annuli are more finely binned with ∆ (r/Rp) = 0.125 for r/Rp ≤ 0.25, while

∆ r/Rp = 0.25 for r/Rp > 0.25. Errors in Ψw are calculated for each annulus by propagating

the errors in all the SFRs Ψi of the pixels within that annulus. The typical size of 0.125r/Rp is

2-3 pixels. There are 2785 galaxies where 0.125r/Rp is below the pixel resolution. Removing

these galaxies neither significantly changes the radial profile of SF nor affect its dependence

on local density.

Star formation in galaxies on average is higher in the the mid-annular region than in

the core or outskirts. It is lower (averaged over all morphological types and inclinations)

in the nucleus than in the circumnuclear regions. We find that in dense environments this

low SF in the nuclear regions appears lower still. The higher SF in the circumnuclear region

(0.125 < r/Rp ≤ 0.25) is also lessened in more dense regions. It is this depression in the

innermost annuli that accounts for the dependence of total galaxy SFR on density.

The effect can be seen most prominently in the 75th percentile of the distribution of

Ψw. The density dependence in the 75th percentiles of Ψw is most evident in the first two

innermost annuli up to r/Rp = 0.25, where there is a clear suppression of Ψw between the

lowest and highest density intervals: by 8.2 × 10−4M¯ yr−1 (with 4 σ significance) in the

nuclear region and 2.6× 10−3M¯ yr−1 (with 3 σ significance) in the circumnuclear region. A

Kolmogorov-Smirnov (KS) test on the distribution of Ψw of these two innermost annuli in the

lowest density interval (0.0 < ρ ≤ 0.01 (h−1Mpc)−3) and the highest density interval (0.04 <

ρ ≤ 0.09 (h−1Mpc)−3) rules out the hypothesis that the populations in the two density

ranges are derived from the same underlying distribution at more than 99.9% confidence

level. The suppression of SF in the central regions of the galaxies is therefore an effect of

the environment rather than being due to stochastic fluctuations.

Beyond r/Rp = 0.25 there appears to be no clear dependence of the mean SFR on the
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Figure 3.11: Top panel: Median of the weighted mean SFR Ψw (M¯ yr−1) within successive

radial annuli for 3 different intervals of galaxy density ρ: 0− 0.01 (h−1Mpc)−3 (red), 0.01−
0.04 (h−1Mpc)−3 (green), 0.04− 0.09 (h−1Mpc)−3 (blue). Bottom panel: 75th percentile of

Ψw (M¯ yr−1). The mean SFR in each annulus for each galaxy is a weighted mean of the

SFRs in all the pixels in the annulus. For galaxies in each local density interval, these radial

annuli are then stacked. The percentiles are obtained from the distribution of the mean SFR

in these stacked annuli. The inner annuli are more finely binned with ∆ r/Rp = 0.125, while

∆ r/Rp = 0.25 for r/Rp > 0.25. The density dependence in the 75th percentiles of Ψw is

most evident in the first two innermost annuli up to r/Rp = 0.25, where there is a clear

suppression of Ψw between the lowest and highest density intervals. The same is true to a

lesser extent in the median. Beyond r/Rp = 0.25, no dependence on the local density of

galaxies is detected. Errors in Ψw are calculated for each annulus by propagating the errors

in all the SFRs Ψi of the individual pixels within that annulus.
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local density of galaxies. We see a similar, though less pronounced, trend in the median of

the distribution of Ψw. Again, there is no statistically significant dependence of the mean

SFR on local density in galaxy outskirts.

3.4.4 Radial Variation of SFR with Environment for High and Low Star Form-

ing Galaxies

The suppression of the total galaxy SFR with increasing local density is most noticeable in

the 75th percentile curve of Figures 3.9. In other words, at progressively higher densities, the

distribution of galaxy SFRs is truncated at lower SFR values, and it is the population of the

most highly star forming galaxies that are being affected. Here we investigate whether the

radial variation we observe in Figure 3.11 is seen only in these high SFR galaxies or whether

such a trend also exists in more quiescent galaxies. We examine the galaxy populations

comprising the upper and lower quartile of the SFR distribution, and the results are shown

in Figure 3.12 for the high SFR galaxies (with SFR > 0.60 M¯ yr−1) and in Figure 3.13

for the low SFR galaxies (SFR < 0.14 M¯ yr−1). For the high SFR population, up to a

radius of 0.25Rp, the suppression of Ψw with environment is clearly evident, and as with the

total galaxy population, there is no dependence beyond this radius. Again, as before, the

effect is most pronounced for the 75th percentile of Ψw (in the range 0 < r/Rp ≤ 0.25),

where there is a 2 σ difference between the highest and lowest density intervals in the range

0 < r/Rp ≤ 0.125 and a 3 σ difference in the range 0.125 < r/Rp ≤ 0.25. But it can

also be seen in the median of the distribution (in the range 0.125 < r/Rp ≤ 0.25), where

the difference is 2.5σ. This is consistent with the dependence of the radial variation of the

mean radial SF on environment for the total galaxy population in the sample (averaged

over all star formation rates) in §3.4.3. A KS-test on the distribution of Ψw of these two

innermost annuli in the lowest density interval (0.0 < ρ ≤ 0.01 (h−1Mpc)−3) and the highest

density interval (0.04 < ρ ≤ 0.09 (h−1Mpc)−3) once again rules out the hypothesis that the

populations in the two density ranges are derived from the same underlying distribution, at

more than 99.9% confidence level.

For the low star forming galaxies a small, although not statistically significant, depen-
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dence on environment is seen. It is thus the population of strongly star forming systems

that account for the observed relation between the radial mean SFR and the local density of

galaxies shown in Figure 3.11. The suppression of SFR in the innermost annuli of the most

strongly star-forming systems accounts for the observed SFR-density relation in the overall

galaxy population.

It should be noted that the innermost annulus (r ≤ 0.125Rp) is resolved (i.e. larger than

the pixel resolution) for the majority of galaxies. For over 53% of galaxies, the innermost

annulus is also larger in angular scale than the median PSF width in the SDSS (1.4”).

3.4.5 Physical Interpretation

In §3.4.1 and §3.4.2, we find evidence for a suppression of total SFR as we go to higher

density environments, and this relation seems to be preserved independent of morphology.

So the total SFR-density relation is a result of SFR suppression at higher densities, not

just a result of the morphology-density relation (at least not solely). The suppression is

evident at the highest densities, beyond 0.05 (h−1Mpc)−3, in the regime of clusters. In these

high density environments, there are a number of physical mechanisms responsible for the

suppression of total SFR. These include ram-pressure stripping, galaxy harassment and tidal

disruptions, mechanisms that are known to be dominant in cluster cores.

However, in §3.4.3, we find that the suppression of mean radial SF takes place in the

cores of galaxies (particularly in the nuclear and circumnuclear region) while the outskirts

are not affected by their changing environment. This implies that the environment itself is

not impinging on galaxies to suppress the SFR, as the outer regions should otherwise be most

affected according to “infall and quench” models. Any physical mechanism cannot therefore

be solely responsible for this drop in the nuclear SF. By extension, they cannot therefore be

governing the suppression in total SFR in galaxies in high density environments.

This seems to point to an evolutionary rather than an environmental origin for the SFR-

density relation. If galaxies in more dense environments formed their stars earlier and faster

than those in less dense environments, that would be consistent with either a uniformly

depressed SFR as a function of galaxy radius, or a depressed nuclear SFR, given that higher
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Figure 3.12: Top panel: Median of the distribution of weighted mean SFRs Ψw (M¯ yr−1)

within successive radial annuli as a function of the local galaxy density ρ for high star forming

galaxies (> 0.60M¯ yr−1 ). There are 3 different intervals of ρ, as in Figure 3.11. Bottom

panel: 75th percentile of Ψw (M¯ yr−1).
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Figure 3.13: Top panel: Median of the distribution of weighted mean SFRs Ψw (M¯ yr−1)

within successive radial annuli as a function of the local galaxy density ρ for low star forming

galaxies (< 0.14M¯ yr−1 ). There are 3 different intervals of ρ, as in Figure 3.11. Bottom

panel: 75th percentile of Ψw (M¯ yr−1).
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gas densities in the nuclear regions are likely to drive star formation more rapidly (supported

by the fact that star forming disk galaxies typically show bulges dominated by old, red stellar

populations).

These results seem to be consistent with the idea of “downsizing” in galaxy formation

(Cowie et al., 1996), discussed in Chapter 1, whereby the more massive galaxies form at

earlier epochs. Downsizing is characterized by a decline in the mass of the galaxies that

dominate the star-formation rate density with decreasing redshift (“downsizing of star for-

mation”). This is supported by recent measurements of star-formation histories in both local

galaxies from the SDSS (Heavens et al., 2004) and distant galaxies from the Gemini Deep

Deep survey (Juneau et al., 2005). This is distinct from the “downsizing with quenching”

which follows a different timescale - spheroidal galaxies have been known to have a second

star-formation timescale, namely that of “quenching”: it becomes easier to keep galaxies

gas-free with time. In fact, recent studies of the galaxy luminosity function at z ≈ 1 (Bell

et al., 2004; Faber et al., 2007) conclude that massive red galaxies observed at z ≈ 0 migrated

to the bright end of the red sequence by a combination of two process: the quenching of

star formation in blue galaxies and the merging of less-luminous, previously quenched red

galaxies. Faber et al. (2007) conclude that the typical mass at which a blue, star-forming

galaxy is quenched (and therefore enters the red sequence) decreases with time. Our radial

result is evidence for the “downsizing of star formation” as opposed to this “downsizing with

quenching”.

In §3.4.4, we have also found that whereas the quiescent galaxies (corresponding to the

bottom quartile of the total SFR distribution) in the sample show no significant dependence

of SFR on environment at any radius, the radial dependence of the mean annular SFR for the

highest star-forming galaxies (top quartile of the total SFR distribution) mirrors the trend

for the full sample. In addition, while the decrease of total SFR with density is dominated by

the high-SFR galaxies, the quiescent galaxies show hardly any dependence of their total SFR

on environment. The radial result in §3.4.4 confirms that the total SFR-density relation is

largely due to the decline of nuclear SF in these high SF galaxies as we go to higher density

environments. The overall radial result can therefore be explained if we consider a population

of active, star-forming galaxies which formed at high redshift. The SF in this population of
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galaxies is dominated by the nuclear SF. Out of this population, the more massive systems

which formed in more dense environments also formed their stars earlier and faster than

those in less dense environments. By z ≈ 0, this sub-population (which originated from

more massive systems) has a lower nuclear SF than the sub-population which formed in

less dense environments. This supports the idea that the “downsizing of star formation” in

galaxies as described by Cowie et al. (1996) apples only to the actively star-forming galaxies

in our sample.

It could also be possible that this SFR suppression in galaxy cores may be a consequence

of feedback from an active galactic nucleus (AGN). In particular, if AGN feedback in more

massive systems is more efficient than in lower mass systems, and since dense environments

are known to host more massive galaxies on average (Dressler, 1980; Postman and Geller,

1984), this could perhaps lead to preferential suppression of nuclear star formation in more

dense environments. This mechanism could be explored further by looking into the mass

dependence of the SFR suppression in galaxies, although this is beyond the scope of our

current analysis. The radius out to which such a feedback mechanism could suppress SF also

needs to be quantified. The complete explanation may be a combination of this “downsizing”

in SF together with more efficient AGN feedback in galaxies in more dense environments.

3.4.6 Effect of Probing the Full PDF: Systematic Uncertainties in Annular SFR

Estimates

In the pixel-z method, we compare the observed fluxes in five passbands in every pixel in a

galaxy to the filter-convolved SED fluxes through the same passbands (see §2.4.1). We chose

a best-fitting template SED using χ2 minimization on a discrete grid of stellar population

parameters: age t, SFR e-folding time τ , E(B − V ) and the metallicity Fe/H. The SFR

in every pixel is calculated from the values of t and τ that correspond to the best-fit SED.

We now study the effect of sampling the full probability distribution defined by the grid

of stellar population parameters. We use Markov Chain Monte Carlo (MCMC) to sample

the full probability distribution defined by these parameters. This involves constructing a

Markov Chain that approximates its stationary distribution. The aim of this work (Welikala
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et al. 2008, in preparation) is to determine whether the estimates of the mean annular SFR

Ψw derived from MCMC differ substantially from those derived from the pixel-z method that

relies on χ2 minimization.

We chose pixels in the annulus 0.125 < r/Rp ≤ 0.25 to perform our analysis since this is

where the most significant suppression in the SF in the highest density environments takes

place. Yip et al. (2008, in preparation) used the “Metropolis” algorithm (Gamerman, 1997).

This has been shown to converge to an equilibrium probability distribution after sampling

a sufficiently long chain. The transition probability at a particular step in the algorithm

depends only on the ratio between that step and its previous step. In forming the chain, the

probability density at a particular parameter combination [t,Z,τ ,E(B − V )] is assumed to

be (Yip et al. 2008, in prep.):

ρ(t, Z, τ, E(B − V )) = Ae−sχ2(t,Z,τ,E(B−V )) (3.6)

where χ2 is defined as in equation (2.5). A is a normalization constant and s is fudge

factor used to decrease the acceptance rate when making the Markov chain.

In this study, we use 450 pixels from 9 annuli belonging to 9 galaxies (5 early-type and 4

late-type), the pixels being located in the radial annulus defined by 0.125 < r/Rp < 0.25. An

SFR (in M¯ yr−1) is calculated for every pixel in each galaxy before doing a weighted sum

over the pixels within the annulus, as described in §3.4.3, in order to calculate Ψw for each

annulus. The results are shown in Figure 3.14. The left panel shows the result of comparing

the values of Ψ in the annulus that were obtained by template SED-fitting via the pixel-

z method with those obtained from sampling the full probability function via the Markov

Chains. It can be seen that there is a correlation between the SFR estimates calculated by

each method, although the scatter becomes large for Ψ > 0.0065M¯ yr−1. The next panel

shows the residual (the difference between the MCMC and pixel-z value) for each value of Ψw

estimated by pixel-z. Up to 0.006M¯ yr−1, there is good agreement between the two methods
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Figure 3.14: Top panel: A comparison of the estimated weighted mean SFR Ψw in the

annulus 0.125 < r/Rp < 0.25 in 9 galaxies which are obtained from two different methods:

the pixel-z method (via template SED-fitting to the photometric u,g,r,i,z fluxes in the pixel

and using χ2 minimization to obtain the best-fit values of t and τ) and the Monte Carlo

Markov Chain (MCMC) method that samples the full probability function. Bottom panel:

The difference between the MCMC value of Ψw and the value obtained from the pixel-z

method, as a function of the pixel-z measurement.
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but beyond 0.0065M¯ yr−1, the pixel-z based value of Ψ is increasingly overestimated relative

to the MCMC value. At Ψw = 0.009M¯ yr−1, the offset is 0.008M¯ yr−1.

The study, based on a very small number of galaxies, shows that the pixel-z measurement

of mean SFR in annuli is generally consistent with the MCMC method that samples the full

probability function, at least for values of mean SFR less than 0.0065M¯ yr−1. Beyond that

SFR, there is some suggestion that the pixel-z value becomes an increasing overestimate

(relative to the MCMC value). This may thus affect the most highly star-forming systems.

A larger sample of galaxies is needed to explore this offset further and possibly to apply

it to make a correction to the measured values of Ψw in the radial annuli. This would be

particularly interesting to do for those central annuli where we do detect a suppression of

mean SFR due to an increasingly dense galaxy environment.

3.5 SUMMARY

Pixel-z is a useful technique for exploring spatially distributed galaxy properties, including

the star formation rate. Although it has inherent limitations (described in this work), it can

provide insights to direct more detailed exploration, and when applied to large samples, many

of those limitations can be overcome. We draw several conclusions about the environmental

dependence of spatially resolved galaxy star formation:

1. By summing the SFRs in individual pixels, a total SFR-density relation is established.

The SFR-density relation measured from emission lines (Gómez et al. (2003), Lewis et al.

(2002)) is confirmed based on SFRs inferred from SED template-fitting to pixel fluxes

across five bands.

2. The total SFR-density relation is found to be independent of the morphological type of

the galaxy. Therefore, the SFR-density relation for galaxies in the SDSS is not solely

a result of having a larger fraction of early-type galaxies as we go to higher densities

(the morphology-density relation). So there is indeed a SFR suppression in more dense

environments.
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3. Within galaxies, star formation, averaged over all morphological types and inclinations,

is highest in a region spanning 0.125 < r/Rp < 0.5, with the specific location of the peak

dependent on local density. It is lower in both the nucleus and the outskirts than in the

circumnuclear region. In denser environments, the low mean SFR in the nuclear regions

appears lower still. The higher mean SFR in the circumnuclear region is also lessened in

more dense regions, with the peak SFR moving towards larger radii. The SFR beyond

r/Rp ≈ 0.25 and in the outskirts of galaxies is not affected by a changing environment.

It is thus a depression of SF in the innermost annuli that accounts for the dependence

of total galaxy SFR on density. This suggests that quenching mechanisms such as ram-

pressure stripping are not the sole driver of the observed SFR-density relation in galaxies.

4. When the sample is split based on the total SFR of galaxies, it is the highly star-forming

systems that are found to be responsible for the dependence of radial SFR on local density.

The low star-forming galaxies show little dependence of radial SFR on environment.

Although the density-morphology relation is seen to be independent of the total SFR-

density relation, the relationship between the density-morphology relation and the radial

result has yet to be explored. We know that in addition to the nuclear SF declining in more

dense environments, the location of the SF peak within galaxies is shifted to larger radii at

higher densities. Is this telling us that the signal from early-type galaxies is just becoming

stronger as we go to higher densities because there is a higher proportion of early types in

those environments? At lower densities, the nuclear SF is higher, so could this be due to

a predominance of star-forming late-types which are known to reside in these low density

environments? We know that by the “downsizing” argument, the more massive galaxies at

high redshift form their stars early and rapidly. But these more massive systems tend also to

be elliptical galaxies, so to some degree, the radial trend (and its dependence on density) for

the full sample could still be a result of the density-morphology relation. To disentangle this,

we wish to find out first what the radial SFR-density trends look like for each morphological

type within our sample. Next, given these separate radial profiles, together with the fact that

the proportion of early-type galaxies is expected to increase as we go to intervals of higher

density, we wish to establish what the contribution of each type is to the radial SF-density

relation for the full sample.
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In the next chapter, we explore in the detail the effect of the density-morphology relation

on the spatial distribution of star formation in galaxies.
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4.0 EFFECT OF THE MORPHOLOGY-DENSITY RELATION

4.1 INTRODUCTION

In dense environments, for example in the cores of rich clusters, the galaxy population is

dominated by early-types, as discussed in §1.3.3. In fact, the fraction of early-type galaxies

has been shown to increase with increasing galaxy density (Dressler, 1980; Postman and

Geller, 1984; Tran et al., 2001). The same physical mechanisms that are proposed to ex-

plain the relation between SFR and environment have also been proposed to explain the

morphology-density relation as well. These mechanisms include ram pressure stripping of

gas (Gunn and Gott, 1972), gravitational interactions between galaxies (Byrd and Valtonen,

1990), galaxy harassment via high-speed encounters (Moore et al., 1996) and galaxy merg-

ers. However, little observational evidence exists to suggest that these processes drive the

evolution in galaxies. On the theoretical front, the combination of semi-analytic models with

N-body simulations of cluster formation has enabled the density-morphology relation to be

simulated. Diaferio et al. (2001) derived the relation assuming that galaxy morphologies

(determined in the simulation using a bulge-to-disc ratio) in clusters are solely determined

by their merging histories. They found good agreement with data from the CNOC1 sample

(Yee et al., 1996) for bulge-dominated galaxies. Benson et al. (2001) found that a strong

density-morphology relation was established at z = 1 which was similar to that at z = 0

but their results suggested that more than one of the physical mechanisms mentioned above

may have to be used to explain the relation.

In Chapter 3, I studied the spatial variation of SF within galaxies as a function of the

galaxy environment, for 44 964 galaxies in the SDSS. I showed that the SFR in galaxies in

high-density regions is suppressed compared to those in lower-density regions. I showed that
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this suppression occurs in the innermost regions within galaxies (r < 0.25Rp where Rp is the

Petrosian radius). The study dealt with galaxies of all morphologies. I now aim to extend

that investigation by focusing on the following three questions:

1. Do early-type and late-type galaxies, which have distinct radial light profiles, also have

distinct radial distributions of SF? This may be associated with different formation mech-

anisms or evolutionary histories in either galaxy type.

2. Does any type-dependent change in the spatial distribution of SFR occur for all galaxies

of that type uniformly? Or is it restricted to a sub-population, such as the highly star

forming systems? In Chapter 3, we established that the suppression of SF seen in high

density environments for the full sample is a consequence of suppression only in the

highly star forming sub-population of the sample. We want to establish whether the

trends in early-type and late-type galaxies separately are also dominated by this active

sub-population.

3. Is the observed environmental dependence of SFR in galaxies a consequence of, or in

addition to, the reduced average SFRs expected simply from the higher proportion of

low star-forming early-types in high density environments?

We describe our method and approach in §4.2, and our results in §4.3. The implication

of the results are discussed in §4.4, where we explore an evolutionary explanation for the

observed trends. We present our conclusions in §3.5. We assume throughout that ΩΛ = 0.7,

ΩM = 0.3, and H0 = 75 km s−1 Mpc−1.

4.2 METHOD

We retain the same two morphological classes as in Chapter 3, as used also by Goto et al.

(2003b), based on discriminating galaxies according to their inverse concentration index Cin.

This is defined as the ratio of the Petrosian 90 percent light radius to the Petrosian 50

percent light radius. The selection results in 27 993 early-type galaxies (Cin ≤ 0.4 ) and

16 971 late-type galaxies (Cin > 0.4) classified according to this parameter.
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To establish that our results are not sensitive to, or biased by, this choice of morphology

proxy, we duplicate our analysis using the Sersic index. The Sersic model for the surface

brightness in a galaxy is given by I(r) = I0e
(−r/r0)1/n

, where I(r) is the intensity at an angular

radius r, I0 is the central intensity, r0 is the characteristic radius and n the Sersic index or

profile shape parameter. An exponential profile, which typically describes the light profile of

late-type galaxies, is recovered with n = 1, while n = 4 gives the traditional de Vaucouleurs

profile which is best fit to bulge-dominated, early-type systems. The Sersic index values

calculated for the SDSS galaxies used in our sample have been corrected for the effects of

seeing. In our analysis we classify galaxies with n < 2 as late-types and those with n > 2 as

early-types.

4.3 RADIAL AND ENVIRONMENTAL TRENDS IN SFR

4.3.1 The Density-Morphology Relation

Figure 4.1 illustrates the density-morphology relation in this sample of SDSS galaxies. The

proportion of early-type galaxies, with Cin < 0.4, is shown to be increasing as a function

of local galaxy density. In the low-density environments, around 50 percent of galaxies are

early-types, while in the highest density environments this increases to around 75 percent.

The bottom panel gives the total number of galaxies found in each density interval. These

plots sample the local galaxy density more finely than in the analysis described in Chapter

3 or in subsequent analyses herein, where only three intervals of local density are used. We

use the results of the density-morphology relation below in §4.3.4 when assessing whether

the observed suppression in SF can be recovered simply by mimicking this effect. Before we

can do this, though, we need to establish the radial variation of SFR for each morphological

type as a function of environment.
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Figure 4.1: Top panel: The density-morphology relation, showing the fraction of early-type

galaxies (with Cin < 0.4). Error bars are Poisson. Bottom panel: Number of galaxies in

each interval of local galaxy density. The local galaxy density is sampled more finely in these

bins that in the subsequent analysis in the paper, where only three intervals of local density

are used.
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4.3.2 Radial Variation of SFR as a Function of Environment

Here we examine the radial distribution of SFR in both early-type and late-type galaxies as

a function of their environment for galaxies (a) spanning the entire range of (total) SFR and

(b) within the highly star-forming population only.

We calculate the weighted mean SFR ψw for each radial annulus in every galaxy (see

Chapter 3 for details). For a sample of galaxies this gives a distribution of ψw for each

annulus. Figure 4.2 shows the 75th percentile of ψw for the early-types, late-types and for

the full sample, within three intervals of galaxy density (corresponding to the three panels

in the Figure). As shown in Chapter 3, the effect of environment is most pronounced for the

75th percentile of ψw, rather than the median of ψw. In determining the radial variation of

SFR and its dependence on environment, we focus on the 75th percentile of ψw in this study.

Both early and late-type galaxies have distinct radial SFR profiles. This answers the first

of the questions we posed above. The peak of ψw in early-types is significantly lower than

in late-type galaxies. The SF in the center is very low, reflecting the fact that in early-type

systems, which are typically bulge-dominated, the stellar populations in the center of the

bulge are old and there is consequently little ongoing SF. In contrast, the stellar populations

with higher SFR are further out in the bulge and the mean SF in this region is also better

sampled. The early-type galaxies show a more extended distribution of SF which peaks

further out in radius than in late-type galaxies. This reflects the fact that late-type galaxies

have a smaller bulge compared to early-types.

In the late-types most of the SF takes places in the inner part of the disk, closer to the

center. There is thus a very sharp increase in SFR as we go from the center (r ≤ 0.125Rp) to

the inner part of the disk (r ≈ 0.25Rp) followed by a rapid decline in the SFR throughout the

disk to the outskirts. Disk galaxies have, on average, a much higher SFR up to to r ≈ 0.25Rp

(by as much as 0.014M¯ yr−1 in the lowest density environments and 0.012M¯ yr−1 in the

highest density environments) than do the early-types. This reflects the younger star-forming

stellar populations in the disks of these galaxies.
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Figure 4.2: Top panel: 75th percentile of the distribution of weighted mean SFRs Ψw

(M¯ yr−1) within successive radial annuli for early-type galaxies (red), late-type galax-

ies (blue), and all galaxies (green) which have local galaxy densities ρ in the range

0.0 < ρ ≤ 0.01 (h−1Mpc)−3. Middle panel: 0.01 < ρ ≤ 0.04 (h−1Mpc)−3. Bottom panel:

0.04 < ρ ≤ 0.09 (h−1Mpc)−3. The three density intervals are the same as those used in

Chapter 3, Figure 3.11.
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4.3.3 The Significance of Highly Star Forming Galaxies

Figure 4.2 shows that the effect of the environment on the full sample of galaxies (early-

types and late-types together, green curve) is to push the peak of the SFR profile to larger

radii. A straightforward explanation in terms of the density-morphology relation presents

itself, namely that at low densities there is almost an equal fraction of early and late-type

galaxies, while at higher densities the profile is progressively more dominated by the higher

contribution from early-types. It is important to note that while the shifting of the peak

mean SFR in the full sample of galaxies can indeed be explained simply by the increasing

fraction of early-type galaxies in higher density environments, there are other aspects of the

density dependence that are not.

In Chapter 3, it was shown that the most significant decrease in the total SFR with

increasing local galaxy density takes place for galaxies in the top quartile of the total SFR

distribution. Here we explore the radial SFR profiles for the galaxies that are in the top

and second quartile of the total SFR for each galaxy type, to identify whether the trends

with environment are driven only by the most active star-forming galaxies. In §4.3.5, we

also examine the proposal by Park et al. (2007) that the trends are instead driven primarily

by luminosity, with the most luminous late-type galaxies having the highest SFRs.

We refer to the top quartile of the total SFR distribution, for both morphological types, as

the “highest SF galaxies,” and the second quartile as the “the next highest SF galaxies”. We

examine the distribution of ψw for these subpopulations for early and late-types separately,

determining the quartiles of ψw of these distributions as above in the same intervals of local

galaxy density. The results, as before, are most prominent in the 75th percentile of ψw

(compared to the median or 25th percentile) and only radial trends for this quartile are

shown.

The results of this analysis are presented in Figure 4.3, with the full sample spanning all

SFRs shown for comparison in Figure 4.4. Figure 4.3 shows the 75th percentile of ψw for

the highest and next highest SF galaxies for both galaxy types. In the early-type highest-SF

galaxies there is a relatively small suppression (just under 1.5σ) in ψw between the least

and most dense environments but only in the region 0.125 ≤ r/Rp ≤ 0.25. We do not see a
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significant effect of environment on the SFR in early-types in the center (0.0 ≤ r/Rp ≤ 0.25)

or in the outskirts. In the next highest SF early-types, we do not detect a similar suppression

in the SF, suggesting that this is a phenomena that affects only the most active early-type

systems. In the highest-SF late-type galaxies, we detect a suppression of 3σ in the mean SFR

in the center (r/RP ≤ 0.125) while there is no significant suppression of SF at other radii. In

the next highest SF late-types, we find a slightly lower suppression in ψw of 2σ in the SFR

in the center (r/RP ≤ 0.125), and again, no significant effect of the environment at other

radii. The cores of late-type galaxies thus have their SF reduced in more dense environments

while the SF in the remainder of the disk and outskirts is largely unaffected by a changing

environment. Further, unlike the early-type systems, this affects a larger proportion of

star-forming late-types. All late-types in the top two quartiles of the total SFR have their

central SFR suppressed in the highest densities. In contrast, in the early-types, we detect a

suppression only in galaxies in the highest quartile of the total SFR distribution.

Figure 4.4 shows the results of performing a similar analysis for the full sample of early

and late-type galaxies, without making any cuts in total SFR. Neither galaxy type shows

any statistically significant variation in the 75th percentile of ψw with environment at any

radius when the full sample of galaxies of each type is considered. The suppression of SF in

the highest density environments is therefore driven by the most active, highly SF galaxies.

This answers the second of the questions posed above. It is also worth noting that, as found

for the full sample in Chapter 3 when considering both morphological types together, the

SFR in the outskirts of either the early or late-type galaxies is not affected by a changing

environment. In fact, despite the relatively low values of ψw in the outskirts of the galaxies

of either type, the signal-to-noise in the outskirts remains relatively high (S/N ≈ 10) as long

as the radius does not exceed 1.5Rp.

The right-hand panels of Figure 4.4 also show the radial SFR profiles when the Sersic

index is used as a proxy of galaxy morphology. It is clear that these results hold independent

of the choice of inverse concentration index Cin or the Sersic index as the morphological proxy.
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Figure 4.3: 75th percentile of the distribution of weighted mean SFRs Ψw (M¯ yr−1) within

successive radial annuli as a function of the local galaxy density ρ for the highly SF popula-

tions of either galaxy type. The intervals of local galaxy density ρ considered are 0.0 < ρ ≤
0.01 (h−1Mpc)−3 (red), 0.01 < ρ ≤ 0.04 (h−1Mpc)−3 (green), 0.04−0.09 (h−1Mpc)−3 (blue).

Top left panel: For the early-type galaxies in the highest quartile of the total galaxy SFR

(‘the highest SF galaxies’). Top right panel: For early-type galaxies in the second highest

quartile of the total galaxy SFR (‘the next highest SF galaxies’). Bottom left panel: For

the highest SF late-type galaxies. Bottom right panel: For the next highest SF late-type

galaxies.
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Figure 4.4: 75th percentile of the distribution of weighted mean SFRs Ψw (M¯ yr−1) within

successive radial annuli as a function of the local galaxy density ρ for the full sample of

galaxies of either type. No cuts in total SFR are made here. Top left panel: For all early-

type galaxies chosen according to the concentration index (Cin < 0.4). Top right panel:

For all early-type galaxies chosen according to the Sersic index (n > 2). Bottom left panel:

late-type galaxies chosen using Cin > 0.4. Bottom right panel: late-type galaxies chosen

using n < 2.
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4.3.4 Can the density-morphology relation alone explain the suppression of star

formation?

The results for the high SF populations of either galaxy type suggest that the suppression of

SF is not due solely to the density-morphology relation. In order to determine definitively

whether the suppression in SF is a result of the density-morphology relation or if another,

perhaps evolutionary, mechanism is at work, we carry out a further test. We have deter-

mined the radial SFR profiles for the early and late-types in the lowest density environments,

together with the fraction of early and late-types as a function of density. So we can now

ask how the radial SFR profile for the full sample (all types) in the highest density envi-

ronment compares with a profile constructed by combining the low-density profiles for each

morphological type in the proportions appropriate to the high-density environment.

Let Ψ(r, ρ)E be the mean SFR profile of early-types at density ρ, Ψ(r, ρ)L the mean SFR

profile of late-types at density ρ and Ψ(r, ρ)T the mean SFR profile of all types at density ρ.

We will use ρ1, ρ2, ρ3 to refer to the lowest, intermediate, and highest density environments

respectively. Figure 4.5 shows the radial variation of Ψ(r, ρ)E and Ψ(r, ρ)L. The high value of

the mean, compared to the 75th percentile, reflects an underlying distribution of ψw that is

skewed towards higher values of SFR. The trends in the mean reflect many of those observed

with the 75th percentile in that there is little effect of environment on the outskirts of the

galaxies of either type, but there is a more marked suppression in the mean of Ψ in the galaxy

center in either type. This is true for both the highest SF galaxies and for the full sample

of early and late-types (the mean being more sensitive to the high SFRs in the most active

galaxies). For the highest SF late-types, there is a relatively high mean Ψ in the galaxy

center (r/Rp ≤ 0.125) and this is suppressed by about 2σ in the highest density environment

ρ3. In the highest SF early-type galaxies, there is a 2σ suppression in the first two inner

annuli, up to r ≤ 0.25Rp.

Suppose the suppression of SF is just due to the density-morphology relation, simply a

higher fraction of early-types in high-density environments. We can use the individual SF

profiles of early and late-type galaxies at low densities ρ1 to determine what the profile for the

composite sample would be at the highest densities ρ3. To do this we take Ψ(r, ρ1) for early
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Figure 4.5: Mean of the distribution of weighted mean SFRs Ψw (M¯ yr−1) within successive

radial annuli as a function of the local galaxy density ρ. Top left panel: For the highest SF

early-type galaxies. Top right: For the highest-SF late-type galaxies. Bottom left panel: For

all early-types in the full sample (no cuts in the total SFR are made). Top right panel: For

all late-type galaxies in the full sample.

104



and late-types, explicitly assuming these remain the same within different environments, and

average them, weighted by the relative proportion of early and late types at ρ = ρ3. This

produces an artificial composite profile at ρ = ρ3 that reflects the profile expected if it arose

solely from the density-morphology relation:

Ψ(r, ρ3)artificial =
NE

NE +NL

(ρ3)×Ψ(r, ρ1)E +
NL

NE +NL

(ρ3)×Ψ(r, ρ1)L. (4.1)

We compare this artificial profile at ρ = ρ3 to the one actually observed at ρ = ρ3:

Ψ(r, ρ3)observed =
NE

NE +NL

(ρ3)×Ψ(r, ρ3)E +
NL

NE +NL

(ρ3)×Ψ(r, ρ3)L. (4.2)

Ψ(r, ρ3)observed is of course simply equal to Ψ(r, ρ3)T .

The result of this composite SFR profile is shown in Figure 4.6 for both the highest SF

galaxies and for the full sample. The observed SFR profile in both cases is significantly below

the artificial SFR profile, particularly in the innermost annulus r ≤ 0.125Rp where there is

a 2σ result. This shows directly that the density-morphology relation alone cannot give rise

to the observed suppression in SF in centers of galaxies in high density environments. This

answers the third of the questions we initially posed, but raises another. Since the effect is

not due to the density-morphology relationship alone, what is the mechanism or mechanisms

that drive the observed suppression in SF? Before addressing this, we briefly investigate the

possibility that our results, which as we have shown are a consequence of the highest SF

galaxies, are a simple consequence of higher SFRs in more luminous galaxies.
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Figure 4.6: Testing how much the density-morphology relation is responsible for the observed

dependence of SFR on galaxy density. The red line is the artificial composite SFR radial

profile (for both early and late-types) in the highest density interval for the highest SF

galaxies. The profile is obtained by using the SFR profile of the highest SF early and late-

types in the lowest density interval and propagating this to the highest density environment

using the density-morphology relation. This artificial composite profile then predicts what

the SFR profile would look like in the highest density environment if the SFR-density relation

was just due to the density-morphology relation alone. This profile can then be compared

to the observed composite profile in the highest density environment (in blue). The bottom

panel shows the composite artificial and observed SFR profiles for the full sample of galaxies

(not just the highly star-forming ones).
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4.3.5 The Effect of Luminosity

Here we investigate the effect of galaxy luminosity on the radial variation of SF and its

dependence on environment. Park et al. (2007) studied the color gradients of galaxies brighter

than Mr = −18.5 as a function of the local galaxy density in the SDSS. For early-type

galaxies, they found no environmental dependence of the color gradient at a given absolute

magnitude, and in addition found that the gradient is almost independent of the luminosity

as well. They also found that for late-type galaxies which are bright, there is no dependence

of the gradient on environment, while for fainter late-types, there is a weak dependence on

environment - fainter galaxies were seen to become bluer at the outskirts (relative to the

galaxy center) at low densities while the color gradient vanishes in high density environments.

In order to determine if the luminosity of galaxies has some effect on the radial variation of

SF and the way it depends on the galaxy environment, we split our galaxies into narrower

intervals of absolute magnitude and examine the radial distribution of SF within the early and

late-type galaxies in each interval, across the same range of densities. Absolute magnitudes

are k-corrected according to Blanton et al. (2003a). The top panel of Figure 4.7 shows

the SFR profiles (75th percentile of ψw) for early-type galaxies in the absolute magnitude

intervals −22.5 < Mr < −21.5 and −21.5 < Mr < −20.5 respectively, and the bottom

panel is for the late-type galaxies for the same absolute magnitude intervals. The general

characteristics of the profiles for both types remain unchanged when we split our sample into

these narrower intervals of luminosity. We detect no effect of the environment on the SF in

the brighter sample but do recover the suppression of SF with increasing local density in the

fainter sample.

For the brighter early-type galaxies we find no significant change in the variation of SF

with galaxy density in either the center or outskirts of the galaxies, which is consistent with

the findings of Park et al. (2007). But for the fainter early-type galaxies we do detect a

suppression of SF at higher densities. There is a decrease of 2.5σ in 0.125 ≤ r/Rp ≤ 0.25

between the lowest and highest local density intervals, while there is no change in the SFR

with increasing density in the outskirts.

For the late-type galaxies, just as for the early-types, there is no change in the mean
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Figure 4.7: Top panel: 75th percentile of the distribution of weighted mean SFRs Ψw

(M¯ yr−1) within successive radial annuli as a function of the local galaxy density ρ for

early-type galaxies in our sample in intervals of absolute magnitude: −22.5 < Mr < −21.5

(top left) and −21.5 < Mr < −20.5 (top right). Bottom panel is for late-type galaxies for

the same two absolute magnitude intervals.
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SFR at any radius with environment for the brighter sample, which is consistent with the

Park et al. (2007) result. For the fainter sample, there is a decrease in the mean SFR

(approximately a 2σ difference) in the region r/Rp ≤ 0.125, while the mean SF in the

outskirts is again unchanged. Park et al. (2007) finds that at the highest densities, both

the center and the outskirts become redder (giving zero color gradient). This is inconsistent

with our findings which suggest that the suppression of SF in the faint late-types occurs only

in the center.

There are some conclusions to be drawn here. First, there is no indication that our

primary results are a direct consequence of a SFR-luminosity relation, since it is the fainter

subsample that contributes primarily to the trends with environment that are observed.

There remains the caveat that the sample selection was very different between the two

groups: Park et al. (2007) classified galaxies based on their locations in u-r versus g-i color

gradient space as well as concentration index space (Park and Choi, 2005) whereas we use

concentration alone. Finally, the disparity between our results and those of Park et al. (2007)

may be explained to some extent by the inclusion of dust obscuration in the pixel-z analysis.

SFR gradients may be observed in the absence of color gradients, as the effect of dust will

be to redden otherwise bluer star forming stellar populations.

4.4 DISCUSSION

The distinct radial SF profiles separate the two galaxy types cleanly. Early-types have a

lower mean SFR throughout compared to the late-type galaxies. The environment is found

to affect the highest SF early-type galaxies only while affecting the late-type galaxies in both

the highest and second highest quartiles of their total SFR distribution. In the highest SF

early-type galaxies, the suppression of SF takes place in 0.125 ≤ r/Rp ≤ 0.25 while in the

the late-type galaxies, the suppression takes place at r/Rp ≤ 0.125. This suggest that the

suppression of SF in these active galaxies of either type is independent of the established

density-morphology relation.

It is worth noting that, as found for the full sample in Chapter 3, the outskirts of galaxies
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in either the early or late-type galaxies are not affected by a changing environment. This

implies that the outskirts of either type of galaxy are not significantly affected by processes

such as ram-pressure stripping and galaxy harassment, processes which remove cold gas

available for star formation, and which should primarily affect the outskirts of galaxies

before they affect the inner regions. The lack of effect in the outskirts could alternatively be

due to the fact that these processes affect only a small fraction of the population. The short

timescales for the physical mechanisms of SFR quenching would also make them difficult for

our method to detect as they will only be detectable for a small fraction of the sample at any

given redshift (e.g., only a small fraction of galaxies will be undergoing ram-pressure stripping

at the time of observation) and this will be hidden by our quartile sampling statistics. This is

supported by the results of Doyle and Drinkwater (2006) who find a reduction in the number

of galaxies with neutral hydrogen (HI) in high-density environments, but no significant trend

with environment in the star formation rate or efficiency of star formation in HI galaxies.

There is also the possibility that some of these processes could be taking place at much lower

densities than we are probing.

The results of §4.3.4 suggest that the suppression of SF cannot be due to the density-

morphology relation alone. Given that both physical “infall and quench” mechanisms and

the density-morphology relation are unlikely to be the main mechanisms of SF suppression

in either type of galaxy, we explain the trends observed by extending the “downsizing of SF”

hypothesis laid out in §1.5 in terms of galaxy morphology.

As discussed in §1.5, downsizing is characterized by a decrease in the mass of galaxies

that dominate the SFR density with increasing cosmic time, as was first suggested by Cowie

et al. (1996). Heavens et al. (2004) observed that the most massive local galaxies seen in

the SDSS also appear to be dominated by stars which formed at early epochs. Juneau et al.

(2005) studied the cosmic SFR and its dependence on galaxy stellar mass in galaxies in the

Gemini Deep Deep Survey (GDDS) and found that the SFR in the most massive galaxies

(M > 1010.8M¯) was 6 times higher at z = 2 than at present and that the SFR at z = 2 falls

sharply to reach its present (z = 0) value by z ≈ 1. Mobasher et al. (2008) used a mass-

selected sample of 66 544 galaxies with photometric redshifts from the Cosmic Evolution

Survey (COSMOS) to study the evolution of star formation activity as a function of stellar
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mass in galaxies over the redshift range 0.2 < z < 1.2. They found that the SFR is a strong

function of stellar mass at any given redshift. They then combined this data with galaxies

from the GDDS, thereby extending the cosmic SFR density (SFRD)-redshift relation as a

function of stellar mass to z ≈ 2. For massive systems, they found a steep increase in the

SFRD-z relation to z ≈ 2, while for less massive systems, the SFRD which also increases

from z = 0 to z ≈ 1, levels off at z ≈ 1. This implies that massive systems had most of their

star formation activity occur at earlier epochs (z > 2) compared to less massive systems.

Panter et al. (2004) found no evolution in the stellar mass function of galaxies in the SDSS in

the redshift range 0.05 ≤ z ≤ 0.34 indicating that almost all stars were formed at z ≈ 0.34

with little SF activity since then. In a radio-selected survey, Seymour et al. (2008) also

determined that the majority of the observed SF occurs in the highest mass galaxies at high

redshift, then moving to lower mass galaxies at lower redshifts.

To interpret our results we consider a population of galaxies that is active and highly

star forming at high redshifts. Some of these become early-type galaxies and include in

particular the most massive systems that form within the more massive dark-matter halos

in dense environments. As the SF, in the “downsizing” scenario, is progressively associated

with less massive galaxies in lower-mass halos and less dense environments, the SF moves

from being dominant in cluster regions at high redshift to being dominant in low-density

regions at low redshifts. This explains the density-morphology relation – at low redshift,

there is a predominance of passive early-type galaxies with little SF, residing in clusters.

To explain the central suppression of SF in the high-SF galaxies, we consider that bulges

within late-type galaxies may form and evolve similarly to early-type galaxies (Driver et al.,

2007). This will result in late-type galaxies in high-density environments having bulges that

formed the bulk of their stars earlier than similar late-types in lower-density environments.

These will consequently show the same kind of reduced current SF, purely as a consequence

of their rapid early evolution, compared to late-types in lower-density environments. This

is also consistent with the observed reduction in the SFR of early-types in high-density

environments.

A natural consequence of downsizing in galaxies would be that the SFR-density relation

should invert at higher redshifts, with increased SFR in the more dense environments. This
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has been measured by Elbaz et al. (2007) using data from the Great Observatories Origins

Deep Survey (GOODS) at z ≈ 1. They found that the SFR-density relation observed locally

was reversed at z ≈ 1, with the average SFR of galaxies increasing with increasing local

density. This adds additional support to the interpretation of our observed SFR suppression

at low redshifts in terms of the downsizing in galaxies.

Reproducing the radial SFR profiles and their density dependence may require some

addition to current models. It has recently been shown (Neistein et al., 2006) that downsizing

could be a natural outcome of hierarchical structure formation if mass assembly and star

formation are treated as distinct processes that proceed in opposite directions, and if a

characteristic mass for SF truncation is introduced. Stars can form first in the small building

blocks of today’s massive galaxies. If gas processes limit galaxy formation to dark matter

halos above a minimum mass, a certain downsizing arises naturally from the mass assembly

process itself. Cattaneo et al. (2008) who studied the origin of downsizing of elliptical

galaxies using the mean stellar ages of galaxies, showed that this could result naturally from

a shutdown of star formation in dark matter halos above a critical mass of 1012M¯. Above

this mass there is stable shock heating which truncates the star formation.

Our observations could well be driven by the downsizing of SF together with a treatment

of late-type galaxy bulges in a similar fashion to those of early-type galaxies, resulting in the

observed central suppression of SF in high density environments. More work needs to be done

on the theoretical front, however, if the observed dependence of radial SF on environment is

to be reproduced in the models.
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4.5 THE POST-STARBURST POPULATION

In a visual inspection of a randomly selected sample of galaxies (of both types), we observe

a very small number of red disk galaxies in both the field and cluster environments. Some of

these could well be candidates for the elusive post-starburst (“K+A”) population – galaxies

that have undergone a recent burst of star formation, followed by relative quiescence. The

spectrum of these galaxies are characterized by a strong Hδ absorption line. Post-starburst

galaxies have recently been detected in both the SDSS and in the DEEP2 Galaxy Redshift

Survey primarily in low density environments (in the field). They were identified in the

SDSS by Goto et al. (2003a) and Quintero et al. (2004) and in both the SDSS and DEEP2

by Yan et al. (2008). As a first step towards possibly identifying this population with a view

to determining if it has a contribution to the radial SF-environment relation, we examine the

distribution of the equivalent width (EW) of Hδ. This line indicates that the spectral energy

distribution of a galaxy is dominated by A stars. In fact, strong Hδ absorption is consistent

with models of galaxy evolution that include a recent burst of star formation followed by

passive evolution (any on-going star formation would hide the Hδ absorption line due to

emission-filling of the line and the dominance of hot O and B stars which have weaker Hδ

absorption compared to A stars (Balogh et al., 1999; Poggianti et al., 1999)). The exact

mechanism by which the star formation history changes abruptly remains unclear.

Goto et al. (2003b) selected a sample of 3340 galaxies from the SDSS based solely on

the observed strength of their Hδ line. More recently, post-starburst galaxies have been

selected based on the excess A/K ratio relative to the Hα EW (Quintero et al., 2004; Hogg

et al., 2006), where the A/K ratio is found by fitting a linear sum of an average old stellar

population spectrum (K) and an average A star spectrum (A) to the galaxy spectrum. The

post-starburst population appears to be bulge-dominated, but bluer and with higher surface

brightness than normal bulge-dominated galaxies. The post-starburst population was found

to lie predominantly in the field, and not in the cluster regions which are mostly populated

by bulge-dominated (early-type) galaxies. Other studies have used cuts in the fraction of A

stars and the Hα or Hβ EWs to select the post-starburst population (Yan et al., 2008).

In this work, we chose the Hδ absorption line EW and examine its distribution across
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Figure 4.8: The distribution of equivalent widths for the Hδ absorption line for early-type

(red) and late-type galaxies (blue) in the sample, in different environments. The three panels

are for three different galaxy density intervals: Top left panel: 0.0 < ρ ≤ 0.01 (h−1Mpc)−3.

Top right: 0.01 < ρ ≤ 0.04 (h−1Mpc)−3. Bottom panel: 0.04 < ρ ≤ 0.09 (h−1Mpc)−3.
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Figure 4.9: Top panel: The distribution of local galaxy densities for confirmed post-starburst

galaxies (those with Hδ > 5A) for early-type (red) and late-type (blue) galaxies. Bottom

panel: the distribution of galaxy densities for post-starbursts (both early and late-types)

from the Yan et al. catalog that are also found in this sample.
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different intervals of local density for both early-type and late-type galaxies. Goto et al.

(2003b) made a careful analysis, comparing different methods of measuring theHδ absorption

lines and studying the effect of stellar absorption, dust extinction and emission-filling in their

measurements. In our study, we wish to see if the distribution of the Hδ EW (1) is different

for early-type galaxies as it is for late-type galaxies and (2) changes with galaxy density.

Figure 4.8 shows our results.

We find that the distributions of early-type galaxies and late-type galaxies are indeed

very different, with the Hδ distribution for early-type galaxies peaking at low Hδ EWs, while

the late-type Hδ EW distribution has a longer tail at higher EWs. For EW > 5Å though

– the criteria used by Goto et al. (2003b) to select post-starburst candidates – there is a

very small fraction of either type. The environment has little impact on the distributions,

except that that there is a slightly higher fraction of early-type galaxies with low Hδ at high

densities, while the late-type fraction with low Hδ decreases slightly.

Figure 4.9 demonstrates how the proportion of Hδ-selected post-starburst galaxies (those

with strong Hδ absorption, EW > 5Å) changes with environment. We see that in the case of

both early-type and late-type galaxies, the post-starburst population is confirmed as being

a low-density phenomenon, and not prevalent in the cluster environments. The result that

the population is largely present in the field was confirmed independently with a population

of ∼ 150 post-starburst galaxies in the SDSS, selected based on cuts in fA (the fraction of

A stars) and the Hβ EW, by Yan et al. (2008). A more detailed study of this post-starburst

population in the SDSS and the spatial variation of SF within its galaxies, as well as the

environmental dependence of this spatial variation, is a subject of future work.
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4.6 SUMMARY

Here we divide SDSS galaxies by morphology in order to study the role of the density-

morphology relation on the spatially resolved SF in galaxies. A density-morphology relation

is quantified for our volume-limited galaxy sample. We find that a suppression of SF occurs

in the most active and highly star-forming systems in the highest density environments for

both broad galaxy morphological types. Neither “infall and quench” mechanisms nor the

density-morphology relation appear to account for the observed suppression of SF in either

early or late-type galaxies. The results are consistent with the picture of “downsizing” in

galaxy formation, together with the idea that late-type galaxy bulges form and evolve in the

same fashion as early-type galaxies, leading to a lower SFR in high-density environments.

In particular, we observe the following:

• Early and late-type galaxies in the SDSS have distinct spatial variations of SF, with

early types having a SFR distribution that extends further (relative to the galaxy scale

length) compared to late-type galaxies.

• A suppression of SF occurs in the most active and highly star-forming systems in the

highest density environments for either galaxy type. The suppression takes place in

the innermost regions of the galaxies, occurring at 0.125 < r/Rp < 0.25 for early-type

galaxies and r/Rp < 0.125 for late-type galaxies. No suppression of SF is detected in the

outskirts of galaxies of either type.

• In early-type galaxies, only those in the top quartile of the total SFR distribution (SFR >

0.45 M¯ yr−1) show any significant SF suppression in cluster environments. In late-types

galaxies, there is a much larger range of total SFR in these galaxies (the top two quartiles)

where a suppression of SF is observed.

• We find no significant environmental dependence when considering the full sample of

early-type and late-type galaxies, indicating that the trends with environment are driven

by the highly star-forming galaxies.

• The suppression of SF is seen primarily in lower-luminosity galaxies (−21.5 < Mr <

−20.5) in our sample, while we detect no environmental dependence on the radial distri-

bution of SF for brighter galaxies.
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• By appropriately weighting the average SFR profiles of early-type and late-type galaxies

in low-density regions by the proportions of these types found at high densities, we show

that the density-morphology relation alone cannot account for the suppression of SF in

the highest density environments.

In future work we will probe whether the “downsizing” of star formation in galaxy bulges

is indeed responsible for our observed trends by exploring these trends as a function of

stellar mass, together with the local density. Since “downsizing” is concerned with the mass

dependence of the SFR history of galaxies, this will allow for a more detailed exploration

of the origins and likely evolution of the observed variation in the spatially resolved SF in

galaxies.
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5.0 CONCLUSIONS

This work explores the complex relationship between galaxy properties and their environ-

ment. We focus in particular on the role of star formation in galaxies. By studying how

the star formation varies with the galaxy environment, we aim to determine whether it is

indeed the physical “infall and quench” processes – ram-pressure stripping, galaxy harass-

ment, mergers etc. – that shape the properties of galaxies or whether there exists some other

means by which those galaxy properties are determined. Despite some agreement between

theoretical predictions for hierarchical structure formation and the observed correlations be-

tween galaxy properties (such as luminosity, color and SFR) and their environment, there

exists little empirical evidence that any of the “infall and quench” processes are actually

responsible for driving trends in galaxy evolution.

An alternative scenario to the “infall and quench” models is that galaxies evolve primarily

because of their intrinsic properties, such as mass. These properties can still be shaped by

the galaxy environment – indeed we know that more massive galaxies reside preferentially

in more dense environments (Dressler, 1980; Postman and Geller, 1984)– but not through

these strong physical interactions that galaxies suffer. We refer to this latter scenario as

“environmentally-governed evolution”. Their already exists observational evidence for such

an evolution – this has been termed “downsizing” (Cowie et al., 1996). In this scenario, more

massive galaxies (which form in more dense environments in the Universe) form their stars

early and then undergo passive evolution, while less massive galaxies form their stars later

but over a longer period of time. This would also explain the observed SFR-environment

relation observed locally in galaxies.

The two scenarios should affect the spatial distribution of star formation within galaxies,

in different ways. “Infall and quench” mechanisms should affect the outskirts of galaxies
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before they affect the interiors. This suggests that galaxies in dense environments should

show a SFR distribution that is progressively suppressed from the outside in, as the outer

regions are those which will be affected first by their rapidly changing environment. The

“environmentally-governed evolution” scenario makes a different prediction, suggesting in-

stead that the suppression should either happen uniformly as a galaxy ages, or that the

inner regions should be suppressed first. Thus by studying the spatial distribution of SFR

in star-forming galaxies as a function of environment, we aim to distinguish clearly between

these two scenarios.

We use the “pixel-z” technique to explore spatially distributed galaxy properties, includ-

ing the SFR. The technique combines stellar population synthesis models with photometric

redshift template-fitting on the scale of individual pixels in multi-band galaxy images. Over

2000 spectral energy distributions (SEDs) are constructed, sampling a wide range of prop-

erties of the underlying stellar populations, such as SFR, dust obscuration and metallicity.

The SEDs are redshifted and convolved with the photometric filters of the detector. The

SED fluxes are then compared to the observed fluxes through each pixel in each of the pass-

bands. In this method, however, we fix the redshift of the pixel (which is known since the

redshift of the host galaxy is known) and fit for the spectral type only. The best-fit SED

is then returned for every pixel within the galaxy. This allows the properties of the stellar

populations in that pixel to be determined. We also calculate an associated uncertainty in

each of these parameters that arises from the fit. In an initial application to galaxies in the

Hubble Deep Field, we showed that the technique allows us to connect features of the galaxy

morphology (such as the presence of spiral arms or knots of star formation) with physical

properties (such as the age of the stellar populations, the timescale of star formation decline,

the dust obscuration and metallicity).

We then apply the technique to a large sample of galaxies in the SDSS, being primarily

focused on the star formation within the pixels. Since the method enables a spatial resolution

of the star formation distribution within galaxies, we can now explore how the SFR of each

galaxy – both total SFR and the spatial distribution of SFR within galaxies – varies as a

function of the galaxy environment. We draw several conclusions about the environmental

dependence of spatially resolved galaxy star formation.
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By summing the SFRs in individual pixels, a total SFR-density relation is established.

The SFR-density relation measured from emission lines (Gómez et al. (2003), Lewis et al.

(2002)) is confirmed based on SFRs inferred from SED template-fitting to pixel fluxes across

five bands. The total SFR-density relation is found to be independent of morphological type

of the galaxy. Therefore, the SFR-density relation of galaxies in the SDSS is not solely a

result of having a larger fraction of early types as we go to higher densities (the morphology-

density relation). So there is indeed a SFR suppression in more dense environments.

Within galaxies, star formation, averaged over all morphological types and inclinations,

is highest in a region spanning 0.125 < r/Rp < 0.5, with the specific location of the peak

dependent on local density. Star formation is lower in both the innermost region 0 < r/Rp <

0.125 and in the outskirts than in the region 0.125 < r/Rp < 0.5. In denser environments,

the low mean SFR in the innermost regions is further decreased. The higher mean SFR in

the region 0.125 < r/Rp < 0.25 is also lessened in more dense regions. The SFR beyond

r/Rp ≈ 0.25 and in the outskirts of galaxies is not affected by a changing environment.

It is thus a depression of SF in the innermost annuli that accounts for the dependence of

total galaxy SFR on density. This suggests that quenching mechanisms such as ram-pressure

stripping are not the sole drivers of the observed SFR-density relation in galaxies. When

the sample is split based on the total SFR of galaxies, it is the highly star-forming systems

that are found to be responsible for the dependence of radial SFR on local density. The low

star-forming galaxies show little dependence of radial SFR on environment.

Next, we explore in the detail the effect of the density-morphology relation on the spatial

distribution of star formation in galaxies. We divide SDSS galaxies using the concentration

index as a proxy for morphology. A density-morphology relation is quantified for our volume-

limited galaxy sample. We find that a suppression of SF occurs in the most active and highly

star-forming systems in the highest density environments for both broad galaxy morphologi-

cal types. We find that neither “infall and quench” mechanisms nor the density-morphology

relation by themselves can account for this observed suppression of SF in either early or

late-type galaxies. The results are consistent with the picture of “downsizing” in galaxy

formation, together with the idea that late-type galaxy bulges form and evolve in the same

fashion as early-type galaxies, leading to a lower SFR in high-density environments.
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In particular, we find that early and late-type galaxies in the SDSS have distinct spatial

variation of SF, with early types having a SFR distribution that extends further (relative to

the galaxy scale length) compared to late-type galaxies. A suppression of SF occurs in the

most active and highly star-forming systems in the highest density environments for either

galaxy type. The suppression takes place in the innermost regions of the galaxies, occurring

at 0.125 < r/Rp < 0.25 for early-type galaxies and r/Rp < 0.125 for late-type galaxies.

No suppression of SF is detected in the outskirts of galaxies of either type. In early-type

galaxies, only those in the top quartile of the total SFR distribution (SFR > 0.45 M¯ yr−1)

show any significant SF suppression in cluster environments. In late-types galaxies, we find

a broader range of total SFR where there is an effect of the environment. We find no

significant environmental dependence when considering the full sample of early and late-

type galaxies, indicating that the trends with environment are driven by these highly star-

forming galaxies. The suppression of SF is also seen primarily in lower-luminosity galaxies

(−21.5 < Mr < −20.5) in our sample, while we detect no environmental dependence on the

radial distribution of SF for brighter galaxies.

It is worth noting that the lack of effect on the outskirts of galaxies suggests that “in-

fall and quench” mechanisms are not the dominant mechanism by which star formation is

suppressed in more density environments. It is important to note that we cannot rule out

their contribution, however small, by this analysis alone. The lack of effect in the outskirts

could alternatively be due to the fact that these processes affect only a small fraction of

the population. The short timescales for the physical mechanisms of SFR quenching would

also make them difficult for our method to detect as they will only be detectable for a small

fraction of the sample at any given redshift, and this will be hidden by our quartile sampling

statistics. There is also the possibility that some of these processes could be taking place at

much lower densities than we are probing.

By appropriately weighting the average SFR profiles of early and late-type galaxies in

low-density regions by the proportions of these types found in high-densities, we show that

the density-morphology relation alone cannot account for the suppression of SF in the highest

density environments. That would imply that both physical “infall and quench” mechanisms

and the density-morphology relation are ruled out as the dominant means of SF suppression
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in either type of galaxy, given the caveats mentioned above. We can then explain the trends

observed by extending the “downsizing of SF” hypothesis laid out earlier in terms of galaxy

morphology.

To interpret our results we consider a population of galaxies that is active and highly

star forming at high redshift. Some of these will eventually become early-type galaxies – a

proportion of these will be massive ellipticals that form within the more massive dark-matter

halos in dense environments and still have some ongoing SF. As the SF, in the “downsizing”

scenario, is progressively associated with less massive galaxies in lower-mass halos and less

dense environments, the SF in these early-type galaxies moves from being dominant in

cluster regions at high redshift to being dominant in low-density regions at low redshifts.

This would result in a predominance of low star-forming early-type systems in clusters and

thereby explain the density-morphology relation. To explain the radial dependence of SF

with environment – the central suppression of SF in the high-SF galaxies – we consider that

bulges within late-type galaxies may form and evolve similarly to early-type galaxies (Driver

et al., 2007). This will result in late-type galaxies in high-density environments having

bulges that formed the bulk of their stars earlier than similar late-types in lower-density

environments. These will consequently show the same kind of reduced current SF (at low

redshifts), purely as a consequence of their rapid early evolution, compared to late-types in

lower-density environments. This is also consistent with the observed reduction in the SFR

of early-types in high-density environments.

Our observations could well be driven by the downsizing of SF together with a treatment

of late-type galaxy bulges in a similar fashion to early-type galaxies, resulting in the observed

central suppression of SF in both types in high density environments. However, more work

needs to be done on the theoretical front if the observed dependence of radial SF with

environment is to be reproduced in the models.

There is a final “quench mechanism” which could influence the interpretation of the

results. It could also be possible that this SFR suppression in galaxy cores may be a conse-

quence of feedback from an active galactic nucleus (AGN). In particular, if AGN feedback

in more massive systems is more efficient than in lower mass systems, and since dense envi-

ronments are known to host more massive galaxies on average (Dressler, 1980; Postman and
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Geller, 1984) this could perhaps lead to preferential suppression of central star formation in

more dense environments. This can be probed by looking for AGN activity in the spectra of

SDSS galaxies. The mechanism could be explored further by looking into the mass depen-

dence of the SFR suppression in galaxies, although this was beyond the scope of the current

analysis. The radius out to which such a feedback mechanism could suppress SF also needs

to be quantified.

I summarize the main findings of this dissertation below.

• A total SFR-density relation is established. The SFR-density relation measured from

emission lines is confirmed based on SFRs inferred from SED template-fitting to pixel

fluxes across five bands.

• The total SFR-density relation is found to be independent of the morphological type of

the galaxy.

• Within galaxies, star formation, averaged over all morphological types and inclinations,

is highest in a region spanning 0.125 < r/Rp < 0.5, with the specific location of the peak

dependent on the local density.

• In denser environments, the low mean SFR in the nuclear regions appears lower still.

The higher mean SFR in the circumnuclear region is also lessened in more dense regions,

with the peak SFR moving towards larger radii.

• The SFR in the outskirts of galaxies is not affected by a changing environment. It is

thus a depression of SF in the innermost annuli that accounts for the dependence of total

galaxy SFR on density. This suggests that “infall and quench” processes are not the sole

mechanism of SFR suppression in dense environments.

• It is the highly star-forming systems that are responsible for the dependence of radial

SFR on environment while the low star-forming galaxies show little dependence of radial

SFR on environment.

• Early and late-type galaxies in the SDSS have distinct spatial variations of SF, with

early types having a SFR distribution that extends further (relative to the galaxy scale

length) compared to late-type galaxies.

• A suppression of SF occurs in the most active and highly star-forming systems in the

highest density environments for either galaxy type. The suppression takes place in
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the innermost regions of the galaxies, occurring at 0.125 < r/Rp < 0.25 for early-type

galaxies and r/Rp < 0.125 for late-type galaxies. No suppression of SF is detected in the

outskirts of galaxies of either type.

• We find no significant environmental dependence when considering the full sample of

early and late-type galaxies, indicating that the trends with environment are driven by

the highly star-forming galaxies.

• The suppression of SF is seen primarily in lower-luminosity galaxies in the sample, while

we detect no environmental dependence of the radial distribution of SF for brighter

galaxies.

• By appropriately weighting the average SFR profiles of early and late-type galaxies in

low-density regions by the proportions of these types found in high densities, we show

that the density-morphology relation alone cannot account for the suppression of SF in

the highest density environments.

In future work, I would like to undertake the following:

• One of the main limitations of the technique are the SED degeneracies that arise from

using a large number of template SEDs in the fitting procedure, and from correlations

between the stellar population parameters. I aim to undertake a systematic study to

quantify the effects of SED degeneracies and propagate their uncertainties into the results

for the annular SFR. In particular, I aim to quantify the uncertainties due to correlations

between the stellar population parameters.

• I aim to explore the differences that may arise from using templates from a different stellar

population synthesis model, in order to determine if the statistical results obtained are

in fact dependent on the model chosen and the different degeneracies that exist among

the various parameters in that model. In future work, I aim to explore this issue using

models such as PEGASE (Fioc and Rocca-Volmerange, 1997).

• I have used the concentration index as the primary morphological classifier in our investi-

gation of the impact of the density-morphology relation. As there remains the possibility

of misidentifying a fraction of early-types as late-types and vice-versa, I checked the ro-

bustness of the results for the radial SF variation by selecting galaxies based on their
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Sersic index as well. In the future, I aim to use different morphological classifiers in or-

der to test the robustness of the results. Recently, morphological classifications based on

visual inspection of SDSS galaxies have been made available (“The Galaxy Zoo” project,

Lintott et al. (2008)).

• I would like to probe whether the “downsizing” of star formation in galaxy bulges is

indeed responsible for our observed trends by exploring galaxy populations as a function

of stellar mass, together with the local density. Since “downsizing” is concerned with

the mass dependence of the SFR history of galaxies, this will allow a more detailed

exploration of the origins and likely evolution of the observed variation in the spatially

resolved SF in galaxies.

• To further explore and support the “downsizing” idea, I also plan to extend this work

to include an analysis on galaxies in a high redshift sample, from COSMOS (Koekemoer

et al., 2007), GOODS (Giavalisco et al., 2004), or AEGIS (Davis et al., 2007). At high

redshifts the high density environments are less evolved, and the relationship between

SFR and density is likely to be quite different. Indeed, as discussed earlier, Elbaz et al.

(2007), using GOODS data, has shown that the SFR-density relationship is inverted by

z ≈ 1, such that dense environments support enhanced, rather than suppressed, star for-

mation. We could thus extend our study to these high redshifts in order to see if such an

enhancement in the SFR occurs and if so, if this takes place in the centers of the galaxies

or in their outskirts. Using DEEP2 Galaxy Redshift Survey data, Cooper et al. (2006)

also suggest that bright blue galaxies in overdense regions at high redshift have their

star formation quenched and evolve into members of the red sequence by z ≈ 0. These

conclusions indicate that there exists a population of massive blue galaxies that has likely

undergone quenching at z ≈ 1, which has no high-mass counterpart today, and that there

is a downsizing of the characteristic mass (or luminosity) at which the quenching of a

galaxy’s star formation becomes efficient. They suggest that the quenching mechanism

must operate efficiently in both cluster and group environments for consistency between

their z ≈ 1 and z ≈ 0 results. Using pixel-z to explore the relationship between environ-

ment and the SFR distribution within galaxies at high redshift will aid in constraining

the process by which such a mechanism might operate.
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• I am currently undertaking a project with the aim of studying the effect of galaxy in-

teractions (such as mergers) on the SFR in the galaxies, from both a theoretical and

observational front. Star formation in close pairs of galaxies can be tidally triggered

and numerical models have been able to match the tidal trails and streams with the

occurrence of starbursts. The project aims to bridge the gap between the predictions

of merger hydro-dynamic simulations and the observations by doing a statistical study

with a large sample of observed close pairs in the SDSS. I aim to measure the amount of

triggered SF as a result of the merger and then compare this to the predictions of a suite

of merger simulations. Specifically, I wish to establish how the probability that a galaxy

has a certain SFR during the merger, changes as a function of merger parameters such as

the mass ratios of the merger pairs and their relative separation on the sky, over a wide

dynamical scale. I wish to determine these distributions for both the observed pairs as

well as the pairs in the simulations. By studying how the triggered SFR probability dis-

tribution changes as a function of both mass ratios and relative separations, I aim to put

constraints on the simulations’ feedback mechanisms in the ISM, which is currently not

well constrained during mergers. These constraints can come from using a much larger

sample of observed galaxy pairs than has previously been used. In addition, the infor-

mation in the pixels should enable me to pinpoint where the triggered SF occurs within

galaxies, and I aim to make a statistical comparison with the predictions of the merger

simulations. The technique – once the uncertainties in the SFR measurements have been

properly characterized – should provide an unprecedented ability to use observations to

constrain baryonic physics on these small scales in galaxies.
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S. Jester, D. E. Johnston, B. Jordan, W. P. Jordan, A. M. Jorgensen, M. Jurić, G. Kauff-
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G. Knapp, R. Lupton, G. Pauls, R. Simcoe, R. Hirsch, D. Sanford, S. Wang, D. York,
F. Harris, J. Annis, L. Bartozek, W. Boroski, J. Bakken, M. Haldeman, S. Kent, S. Holm,
D. Holmgren, D. Petravick, A. Prosapio, R. Rechenmacher, M. Doi, M. Fukugita, K. Shi-
masaku, N. Okada, C. Hull, W. Siegmund, E. Mannery, M. Blouke, D. Heidtman,
D. Schneider, R. Lucinio, and J. Brinkman. The Sloan Digital Sky Survey Photomet-
ric Camera. AJ, 116:3040–3081, December 1998.

J. E. Gunn and J. R. I. Gott. On the Infall of Matter Into Clusters of Galaxies and Some
Effects on Their Evolution. ApJ, 176:1–+, August 1972.

J. E. Gunn, W. A. Siegmund, E. J. Mannery, R. E. Owen, C. L. Hull, R. F. Leger, L. N.
Carey, G. R. Knapp, D. G. York, W. N. Boroski, S. M. Kent, R. H. Lupton, C. M. Rockosi,
M. L. Evans, P. Waddell, J. E. Anderson, J. Annis, J. C. Barentine, L. M. Bartoszek,
S. Bastian, S. B. Bracker, H. J. Brewington, C. I. Briegel, J. Brinkmann, Y. J. Brown,
M. A. Carr, P. C. Czarapata, C. C. Drennan, T. Dombeck, G. R. Federwitz, B. A. Gillespie,
C. Gonzales, S. U. Hansen, M. Harvanek, J. Hayes, W. Jordan, E. Kinney, M. Klaene, S. J.
Kleinman, R. G. Kron, J. Kresinski, G. Lee, S. Limmongkol, C. W. Lindenmeyer, D. C.
Long, C. L. Loomis, P. M. McGehee, P. M. Mantsch, E. H. Neilsen, Jr., R. M. Neswold,
P. R. Newman, A. Nitta, J. J. Peoples, J. R. Pier, P. S. Prieto, A. Prosapio, C. Rivetta,
D. P. Schneider, S. Snedden, and S.-i. Wang. The 2.5 m Telescope of the Sloan Digital
Sky Survey. AJ, 131:2332–2359, April 2006.

S. D. J. Gwyn and F. D. A. Hartwick. The Redshift Distribution and Luminosity Functions
of Galaxies in the Hubble Deep Field. ApJ, 468:L77+, September 1996.

A. J. S. Hamilton. Evidence for biasing in the CfA survey. ApJ, 331:L59–L62, August 1988.

137



Y. Hashimoto and A. J. Oemler. The Concentration-Density Relation of Galaxies in the Las
Campanas Redshift Survey. ApJ, 510:609–613, January 1999.

Y. Hashimoto, A. J. Oemler, H. Lin, and D. L. Tucker. The Influence of Environment on
the Star Formation Rates of Galaxies. ApJ, 499:589–+, May 1998.

A. Heavens, B. Panter, R. Jimenez, and J. Dunlop. The star-formation history of the Universe
from the stellar populations of nearby galaxies. Nature, 428:625–627, April 2004.

S. Hermit, B. X. Santiago, O. Lahav, M. A. Strauss, M. Davis, A. Dressler, and J. P. Huchra.
The two-point correlation function and morphological segregation in the Optical Redshift
Survey. MNRAS, 283:709–720, December 1996.

D. W. Hogg, M. R. Blanton, J. Brinchmann, D. J. Eisenstein, D. J. Schlegel, J. E. Gunn,
T. A. McKay, H.-W. Rix, N. A. Bahcall, J. Brinkmann, and A. Meiksin. The Dependence
on Environment of the Color-Magnitude Relation of Galaxies. ApJ, 601:L29–L32, January
2004.

D. W. Hogg, M. R. Blanton, D. J. Eisenstein, J. E. Gunn, D. J. Schlegel, I. Zehavi, N. A.
Bahcall, J. Brinkmann, I. Csabai, D. P. Schneider, D. H. Weinberg, and D. G. York. The
Overdensities of Galaxy Environments as a Function of Luminosity and Color. ApJ, 585:
L5–L9, March 2003.

D. W. Hogg, J. G. Cohen, R. Blandford, S. D. J. Gwyn, F. D. A. Hartwick, B. Mobasher,
P. Mazzei, M. Sawicki, H. Lin, H. K. C. Yee, A. J. Connolly, R. J. Brunner, I. Csabai,
M. Dickinson, M. U. Subbarao, A. S. Szalay, A. Fernández-Soto, K. M. Lanzetta, and
A. Yahil. A Blind Test of Photometric Redshift Prediction. AJ, 115:1418–1422, April
1998.

D. W. Hogg, D. P. Finkbeiner, D. J. Schlegel, and J. E. Gunn. A Photometricity and
Extinction Monitor at the Apache Point Observatory. AJ, 122:2129–2138, October 2001.

D. W. Hogg, M. Masjedi, A. A. Berlind, M. R. Blanton, A. D. Quintero, and J. Brinkmann.
What Triggers Galaxy Transformations? The Environments of Poststarburst Galaxies.
ApJ, 650:763–769, October 2006.

B. P. Holden, G. D. Illingworth, M. Franx, J. P. Blakeslee, M. Postman, D. D. Kelson,
A. van der Wel, R. Demarco, D. K. Magee, K.-V. Tran, A. Zirm, H. Ford, P. Rosati, and
N. Homeier. Mass Selection and the Evolution of the Morphology-Density Relation from
z = 0.8 to 0. ApJ, 670:190–205, November 2007.

A. M. Hopkins, A. J. Connolly, D. B. Haarsma, and L. E. Cram. Toward a Resolution of
the Discrepancy between Different Estimators of Star Formation Rate. AJ, 122:288–296,
July 2001.

138



A. M. Hopkins, C. J. Miller, R. C. Nichol, A. J. Connolly, M. Bernardi, P. L. Gómez,
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N. Purger, I. Csabai, T. Budavári, and Z. Győry. Photometric Redshifts For The SDSS Data
Release 5. The Virtual Observatory in Action: New Science, New Technology, and Next
Generation Facilities, 26th meeting of the IAU, Special Session 3, 17-18, 21-22 August,
2006 in Prague, Czech Republic, SPS3, #40, 3, August 2006.

V. Quilis, B. Moore, and R. Bower. Gone with the Wind: The Origin of S0 Galaxies in
Clusters. Science, 288:1617–1620, June 2000.

A. D. Quintero, D. W. Hogg, M. R. Blanton, D. J. Schlegel, D. J. Eisenstein, J. E. Gunn,
J. Brinkmann, M. Fukugita, K. Glazebrook, and T. Goto. Selection and Photometric
Properties of K+A Galaxies. ApJ, 602:190–199, February 2004.

J. Reunanen, L. E. Tacconi-Garman, and V. D. Ivanov. VLT/SINFONI integral field spec-
troscopy of the Super-antennae. MNRAS, 382:951–959, December 2007.

D. O. Richstone. Collisions of galaxies in dense clusters. II - Dynamical evolution of cluster
galaxies. ApJ, 204:642–648, March 1976.

M. S. Roberts and M. P. Haynes. Physical Parameters along the Hubble Sequence. ARA&A,
32:115–152, 1994.

B. E. Robertson and A. V. Kravtsov. Molecular Hydrogen and Global Star Formation
Relations in Galaxies. ApJ, 680:1083–1111, June 2008.

E. E. Salpeter. The Luminosity Function and Stellar Evolution. ApJ, 121:161–+, January
1955.

A. Sandage. The Hubble atlas of galaxies. Washington: Carnegie Institution, 1961, 1961.

143



M. J. Sawicki, H. Lin, and H. K. C. Yee. Evolution of the Galaxy Population Based on
Photometric Redshifts in the Hubble Deep Field. AJ, 113:1–12, January 1997.

D. J. Schlegel, D. P. Finkbeiner, and M. Davis. Maps of Dust Infrared Emission for Use
in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds.
ApJ, 500:525–+, June 1998.

M. Schmidt. The Rate of Star Formation. ApJ, 129:243–+, March 1959.

L. Searle and R. Zinn. Compositions of halo clusters and the formation of the galactic halo.
ApJ, 225:357–379, October 1978.

N. Seymour, T. Dwelly, D. Moss, I. McHardy, A. Zoghbi, G. Rieke, M. Page, A. Hopkins,
and N. Loaring. The star formation history of the Universe as revealed by deep radio
observations. MNRAS, 386:1695–1708, May 2008.

R. K. Sheth and G. Tormen. Large-scale bias and the peak background split. MNRAS, 308:
119–126, September 1999.

D. Sijacki, V. Springel, T. di Matteo, and L. Hernquist. A unified model for AGN feedback in
cosmological simulations of structure formation. MNRAS, 380:877–900, September 2007.

R. S. Somerville, P. F. Hopkins, T. J. Cox, B. E. Robertson, and L. Hernquist. A Semi-
Analytic Model for the Co-evolution of Galaxies, Black Holes, and Active Galactic Nuclei.
ArXiv e-prints, 808, August 2008.

R. S. Somerville, G. Lemson, Y. Sigad, A. Dekel, G. Kauffmann, and S. D. M. White.
Non-linear stochastic galaxy biasing in cosmological simulations. MNRAS, 320:289–306,
January 2001.

R. S. Somerville and J. R. Primack. Semi-analytic modelling of galaxy formation: the local
Universe. MNRAS, 310:1087–1110, December 1999.

M. Steinmetz and J. F. Navarro. The hierarchical origin of galaxy morphologies. New
Astronomy, 7:155–160, June 2002.

C. Stoughton, R. H. Lupton, M. Bernardi, M. R. Blanton, S. Burles, F. J. Castander, A. J.
Connolly, D. J. Eisenstein, J. A. Frieman, G. S. Hennessy, R. B. Hindsley, Ž. Ivezić,
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I. Strateva, Ž. Ivezić, G. R. Knapp, V. K. Narayanan, M. A. Strauss, J. E. Gunn, R. H.
Lupton, D. Schlegel, N. A. Bahcall, J. Brinkmann, R. J. Brunner, T. Budavári, I. Csabai,
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